Iura & Legal Systems — ISSN 2385-2445 XI11.2025/3, B (35): 381-396

ALGORITMO PER L’ANALIST E LA CREAZIONE DEL GRAFO DEI RIFERIMENTI
GIURIDICI SUL SITO ISTITUZIONALE “NORMATTIVA”

Fabio Pisano”

SOMMARIO: 1.- Introduzione; 2.- Revisione della letteratura; 3.- Limiti di questo approccio e
parametri; 4.- Risultato; 5.- Descrizione dell’algoritmo; 6.- Possibili Sviluppi; 7.- Appendice.

l.- Introduzione.

Esistono norme giuridiche il cui significato non si esaurisce all’interno dell’enunciato stesso, ma
all’interno di altre norme. I riferimenti possono essere impliciti (ad esempio facendo riferimento ad
un istituto giuridico o ad una fattispecie giuridica) o espliciti (facendo esplicito riferimento alla norma
giuridica a cui si rimanda). Il secondo tipo di riferimenti puo essere svolto in maniera meccanica, in
quanto non richiede nessun tipo di interpretazione, ma soltanto far combaciare degli identificativi. Se
il significato di una espressione dipende da un’altra, avendo a disposizione entrambe le espressioni
(quella di partenza e quella di riferimento) e collegandole opportunamente attraverso espliciti
riferimenti, sara possibile avere una nuova espressione che non fa esplicito riferimento ad altro. In tal
modo sara possibile ottenere un testo giuridico esaustivo, per lo meno dal punto di vista dei riferimenti
espliciti.

11 sito istituzionale normattiva.it ¢ strutturato in maniera tale da poter svolgere un tipo di analisi del
genere. Il testo di una norma ¢ redatto attraverso il protocollo HTML, un tipo di scrittura di testo
dinamica (corrispondente al paradigma WYSIWYM)! ovverosia un documento il cui testo inserito
non corrisponde al testo finale. All’interno di questo sara pertanto possibile identificare il nodo

<div class="bodyTesto"> il quale include il corpo del testo della norma giuridica. A questo punto,
all’interno di questo testo residuale possiamo identificare tutti i collegamenti ipertestuali che
rimandano ad altre disposizioni, come ad esempio:

<a href="/uri-res/N2Ls?urn:nir:stato:costituzione:1947-12-27~art87-com5"
target="_blank">articolo 87, quinto comma, della Costituzione</a>

Si puo ripetere la medesima operazione per le nuove norme che sono state identificate fino a che non
sara possibile andare oltre, ottenendo non soltanto tutte le norme, ma anche I’ordine di apparizione
delle medesime che puo agevolmente essere inserito in un grafo ad albero. E possibile implementare
queste operazioni in un codice informatico che svolga automaticamente questo tipo di lavoro, tale per
cui, una volta inserito ’URL associato alla norma giuridica iniziale nella funzione, il computer sia in
grado di svolgere tutte le operazioni di lettura ed ordinamento che sono state descritte. E stato
sviluppato un algoritmo scritto attraverso il linguaggio Python (scritto nella versione 3.8.18, testato
anche in 3.11) la cui versione integrale & resa disponibile nell’appendice di questo articolo. E possibile
inoltre offrire una valutazione quantitativa dell’efficienza di questa metodologia confrontando, per

* Dottore di Ricerca, presso Pegaso International, H.E.I., Valletta, Malta.
' What You See Is What You Mean.
2 Un attento osservatore potra notare come in questo caso, il collegamento ipertestuale & troncato, in quanto non viene
esplicitato nel corpo del testo la radice: https://www.normattiva.it.
E stato, pertanto, necessario gestire le circostanze in cui il collegamento esplicitato contenesse o meno il riferimento alla
pagina principale.

Universita degli Studi di Salerno

381



Iura & Legal Systems — ISSN 2385-2445 XI11.2025/3, B (35): 381-396

ogni iterazione, il numero di riferimenti che sono stati registrati nell’output e il numero di riferimenti
che sono stati registrati in totale (includendo di conseguenza quelli esclusi). Rapportando queste due
grandezze si puod agevolmente osservare che esse rappresentano due funzioni monotone crescenti, le
cui derivate corrispondono a 0 quando I’algoritmo cessa di funzionare.

Utilizzando come punto di partenza una norma differente, il risultato sara diverso. Infine, si ¢ tentato
di implementare un meccanismo che possa permettere di evitare 1 riferimenti circolari, fenomeno che,
tuttavia, viene sostanzialmente imputato alla struttura del sito internet e non ad una eventuale
incoerenza del sistema giuridico rappresentato. Si ¢ ritenuto opportuno redigere questo articolo in
lingua italiana poiché, analizzando un sito che tratta norme italiane, i portatori di interessi al di fuori
dell’ambito puramente accademico sono soggetti che utilizzano questa lingua. La sperimentazione ¢
stata testata sulla seguente norma*: D.P.R. 16/04/2013, n. 70.

2.- Revisione della letteratura.

G. Perigunelli, M. Ragona, 50 anni di studi, ricerche ed esperienze, L’ Informatica Giuridica in Italia
(2014) Appendice 2 rappresenta il punto di partenza per comprendere gli sforzi intrapresi a partire
dagli anni 70 in Italia per 1’utilizzo dei computer nel diritto. In particolar modo, ¢ importante
sottolineare come gli sforzi non siano stati puramente accademici, ma anche Senato e Camera dei
Deputati abbiano intrapreso iniziative per costituire basi dati pubbliche®. L’allegato 2 della medesima
pubblicazione fornisce altresi una bibliografia dei principali lavori di informatica giuridica in Italia.
Il progetto Normattiva.it® si inserisce in questa tradizione e nasce all’inizio del XXI secolo.

Sono state effettuate alcune sperimentazioni su Normattiva.it®.

3.- Limiti di questo approccio e parametri.

Il limite di questa metodologia si basa sull’assunto fondamentale che 1 riferimenti giuridici validi
siano tutti ed 1 soli collegamenti ipertestuali identificati. Cido non € vero, si sono riscontrati alcuni
limiti:

- Falsi Positivi, inclusione di riferimenti non corretta;

- Falsi Negativi, omissione di norme effettivamente presenti.

Tutte le norme che non sono contenute nel sito, come ad esempio le norme di diritto comunitario,
oppure di diritto internazionale e norme di diritto nazionale non indicizzate all’interno del sito (ad
esempio delle pubblicazioni in Gazzetta Ufficiale) non vengono approfondite da questo algoritmo:
Questo algoritmo, infatti, ¢ in grado di identificarle nel corpo del testo, ma I’assenza dei collegamenti
ipertestuali non permette di identificare gli eventuali riferimenti espliciti che queste norme
possiedono. Nella sezione FAQ, il sito Normattiva.it esplicita alcune regole alla voce “Come si fa a
linkare gli atti di "Normattiva"?”’, in particolar modo:

3 La scelta di questa norma in particolare mi ¢ stata suggerita da una collega del mio corso di Dottorato. L.’ argomento di
questa norma riguarda la scuola.
41dd., 50 anni di studi, ricerche ed esperienze, L Informatica Giuridica in Italia, Roma, 2014, Parte Seconda, Capitolo
I -1v.
5 https://www.normattiva.it/staticPage/progettoCoordinamento.
¢ Affrontano il problema di internalizzare le differenti versioni di una norma giuridica all’interno del formato HTML i
seguenti studi: A. Ciaghi, A., Dalla Valle, A. Villafiorita, A, Adapting Software Metrics to Analyze the Evolution of Laws
in Frontiers in Artificial Intelligence and Applications (2011) 53-62, N. Lettieri, A. Altamura, D. Malandrino, The legal
macroscope: Experimenting with visual legal analytics. Information Visualization 16(4) (2017) 332-345, F. Stellato,
LegalHTML: Semantic mark-up of legal acts using web technologies 51 (2023).
7 https://www.normattiva.it/staticPage/faq#9.
Universita degli Studi di Salerno
382



Iura & Legal Systems — ISSN 2385-2445 XI11.2025/3, B (35): 381-396

- @originale ed !vig=, queste stringhe di testo, aggiunte opportunamente a ciascun URL
permettono rispettivamente di ottenere la versione originale oppure la versione in vigore ad oggi (o
ad una determinata data) di un testo;

- ~, questa stringa permette di ottenere esclusivamente un articolo (o un comma) di un testo
giuridico.

Pertanto, come viene specificato nel sito internet, un collegamento del genere
https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:decreto.legge:2008-11-10:180!vig=2009-11-
10 contiene un testo all’interno del quale i riferimenti sono successivi a Novembre 2008 e precedenti
a Novembre 2009 e potrebbe essere auto-referenziale. Ad esempio, se si utilizza ’'URL della
Costituzione https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:costituzione~art26 per identificare
Cost. it., art. 26, la versione contemporanea fa riferimento ad un’altra norma, L. Cost 21/06/1967, n.
1 che, a sua volta, si riferisce ad una versione precedente della norma iniziale Cost. it., art. 26,
27/12/1947 individuata dall’'URL
https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:costituzione:1947-12-27~art26

che, comunque, include nel corpo del testo il riferimento alla norma successiva.

I riferimenti possono essere di una norma giuridica o di una parte di essa, distinzione che si pud
identificare se nel collegamento ipertestuale appare il simbolo tilde ~ (che separa il nome della norma
giuridica dall’eventuale articolo e comma). Un riferimento ad una norma giuridica in generale e non
ad uno specifico articolo determina un errore di falso positivo. Per gestire la contemporanea presenza
di collegamenti ipertestuali rispettivamente di una norma o di una sua componente, ¢ necessario
tenere in considerazione che cio puo inficiare la dinamica dell’efficienza dell’algoritmo medesimo.
Se, per ogni iterazione, risulta possibile espungere alcuni riferimenti che sono stati tenuti distinti
poich¢ rappresentano degli articoli (o dei commi) della medesima norma giuridica generale i cui
riferimenti giuridici siano identici, sara possibile avere una dinamica decrescente nel numero di
riferimenti registrati nell’output. Per affrontare questo problema, si ¢ ritenuto opportuno creare due
nuove colonne nelle tabelle di output:

- URL originale: che corrisponde alla versione integrale di un URL,;

- URL: che corrisponde a quanto effettivamente trovato.

Pertanto, possono esistere differenti URL associati allo stesso URL originale, in quanto parti dello
stesso atto giuridico. In tal caso, tutte le volte che un nuovo URL viene letto, per essere accettato,
ciascun elemento della lista di output dovra rispettare le seguenti condizioni:

a) Sia I’elemento, sia URL _originale associabile non devono comparire nella lista degli URL gia
individuati;

b) Gli URL originale associati ai nuovi elementi che ne siano diversi non appaiano nella lista
degli elementi di input.

In tal modo:

a) si eliminano non solo 1 duplicati, ma anche i duplicati parziali di una norma generale gia
individuati;

b) Nel caso in cui I’url di input abbia al suo interno i riferimenti ad una sottonorma e alla norma
generale, solo la norma generale viene registrata.

La numerazione delle nuove norme, avviene attraverso un identificativo di questa natura

- Xnpn. .np(T)

- X.npino. .na(Sai Sci)

Tale per cui:

Universita degli Studi di Salerno
383


https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:decreto.legge:2008-11-10;180!vig=2009-11-10
https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:decreto.legge:2008-11-10;180!vig=2009-11-10
https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:costituzione%7Eart26
https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:costituzione:1947-12-27%7Eart26

Iura & Legal Systems — ISSN 2385-2445 XI11.2025/3, B (35): 381-396

- La numerosita dei punti, rappresenta il livello di profondita dell’albero (a partire dal
riferimento giuridico iniziale identificato con X ) nel quale si colloca il nuovo riferimento;

- Ciascun sottoriferimento corrisponde al formato n, che pud semplicemente contenere un
numero intero (se il riferimento associato corrisponde ad una norma), oppure ad nn(Sa,;i Sc,i) (se il
riferimento associato corrisponde ad una parte della norma stessa, associata al numero di articolo sa;
ed al numero di comma s

Pertanto, ciascun identificativo in input, generera un numero di nuovi identificativi pari al numero di
nuovi URL accettati, la nuova numerazione:

- Xnpno. .Np0p+1(Sai Scii)

Una problematica legata a questo tipo di numerazione risiede quando nel ciclo vengono individuati,
non consecutivamente:

a) due sotto-norme della medesima norma;

b) prima una sotto-norma, e successivamente la norma generale.

In entrambi 1 casi i riferimenti vengono associati a due identificativi differenti, pertanto all’interno
del grafo ad albero verrebbe a perdersi la relazione che esiste tra di loro. La relazione, tuttavia, si
perde esclusivamente nel tipo di grafo che si sta studiando, in quanto 1’identificativo cosi costituito
non tiene conto degli URL originale (la variabile condivisa in entrambi 1 casi sopraesposti). L’'unica
implementazione che si propone ¢ I’indicatore:

o X. u+1(T), corrisponde ad aver individuato una norma integrale;

o X. mu+1(C), corrisponde ad aver individuato una norma integrale dopo aver gia individuato
una sua sotto-norma, in tal caso, pertanto, i riferimenti registrati saranno soltanto quelli
complementari;

o X. .nn1(E), corrisponde ad isolare i riferimenti a siti esterni (qualunque essi siano)®.

Sara pertanto possibile utilizzare un colore differente per il nodo che viene illustrato (ad esempio
grigio) rispetto a quelli trovati. In tal modo, dovrebbe essere garantita 1’assenza di ciclicita nei
riferimenti giuridici ed i collegamenti ipertestuali di “Normattiva.it” possono costituire una versione
esaustiva di un testo’. Inoltre, 1’algoritmo di ricerca cosi sviluppato potra godere delle seguenti
proprieta matematiche:

1) L’andamento dell’output parziale sara una funzione monotona crescente, pertanto, una volta
che un nuovo riferimento normativo ¢ stato aggiunto, non puo essere eliminato;
2) L’andamento dei risultati parziali ottenuti in ciascuna singola iterazione non sara mai minore

dei risultati che contribuiscono all’output definitivo.

In tal caso, il livello di inefficienza di questo metodo di ricerca potra essere studiato dall’area
compresa tra queste due funzioni (che rappresenta la quantita di riferimenti ad altre fonti di ciascuna
norma analizzata non inserita nel grafo), rappresentabile con questo semplice integrale:

n
f [INDIVIDUATI(x) — TRATTENUTI(x)]dx
0

8 Sarebbe in questo caso possibile procedere ulteriormente con la classificazione, ad esempio (G) per i riferimenti dalla
Gazzetta Ufficiale, oppure (EU) per i riferimenti del diritto Comunitario.

? Anche se tecnicamente possibile (ad esempio con espressioni del tipo “ai sensi di quanto sara definito nel nuovo articolo
X del codice Y”) ¢ invece da ritenersi poco probabile una reale petitio principii. Una norma puo fare esplicito riferimento
soltanto ad una norma pre-esistente, non ad una norma successiva. Una “riserva di legge”, infatti, prescrive che esisteranno
in futuro delle norme (le quali esse faranno riferimento a questa prima norma) ma non si riferisce a queste in maniera
esplicita, in quanto non esistono ancora.

Universita degli Studi di Salerno
384



Iura & Legal Systems — ISSN 2385-2445 XI11.2025/3, B (35): 381-396

4.- Risultato.

11 risultato di questa operazione corrispondera ad un grafo ad albero: partendo dal vertice iniziale
(corrispondente alla norma di partenza) sara quindi possibile rappresentare tanti archi quante sono le
norme a cui fa riferimento, e ripetere questa medesima operazione per tutti i nuovi livelli identificati,
fino ad arrivare a conclusione.

Questo tipo di grafo ¢ poco funzionale per norme generali, mentre molto piu utile per norme
particolari, non € un caso che i grafi associati a ciascun articolo della Costituzione Italiana siano poco
complessi, proprio perché ¢ piu facile che ci siano norme che fanno riferimento a queste ultime,
mentre ¢ molto piu raro che queste norme facciano riferimento ad altre.

Infatti, possiamo controllare attraverso questo semplice ciclo di iterazione:

for i in range(1,139):
url = 'https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:costituzione:1947-12-27"
url_c = url + '~art' + str(i)
OUTPUT_C, ATTESA_C = CICLO_GENERALE(url_c)
print (f"ARTICOLO no. {i}, HA {OUTPUT_C.shape[@] - 1} RIFERIMENTI GIURIDICI")

Solo gli articoli 10, 26, 56, 57, 60, 81, 97, 117, 119 contengono qualche riferimento ulteriore (delle
riforme di legge costituzionale).

Un ulteriore limite di questa rappresentazione corrisponde al fatto che una medesima norma possa
apparire piu volte. Da un punto di vista giuridico, una circostanza del genere non deve sorprendere:
Una norma generale di una qualsiasi disciplina pud avere tante norme particolari a cui fanno
riferimento, anche a piu livelli. La rappresentazione del grafo potrebbe risultare inutilmente profonda,
non solo rallentando le prestazioni di esecuzione del computer, ma anche mostrando un grafo con un
grado di complessita maggiore rispetto a quello che ¢ nella realta. Si ¢ preferito favorire la velocita
di esecuzione rispetto alla significativita del collegamento: nel caso di molteplici occorrenze di un
medesimo riferimento giuridico, la norma ¢ registrata nel grafo solo la prima volta in cui viene
incontrata, mentre le successive occorrenze vengono escluse. Infine, 1’algoritmo cosi sviluppato non
ha grandi prestazioni: prendendo come riferimento 1, 2 o 3 secondi per ciascuna iterazione: avendo
svolto, approssimativamente, 50 mila cicli, un codice del genere impiegherebbe, rispettivamente 13,
26 e e 39 ore'’. Cido nondimeno, possiamo comunque osservare una notevole variabilita dei tempi di
lettura di ciascuna iterazione legata ad ogni riferimento individuato.

10 ’andamento che ho riscontrato in fase di sperimentazione ¢ irregolare, con andamento tra 1 e 3 secondi, con picchi ad
intervalli irregolari. Tuttavia, 1’analisi della prestazione ¢ stata effettuata soltanto prendendo il tempo di ogni singola
iterazione.
Universita degli Studi di Salerno
385



Iura & Legal Systems — ISSN 2385-2445 XI11.2025/3, B (35): 381-396

3000 4000 5000

Un modo per affrontare questo problema ¢ stato quello di creare una copia di backup dei dati analizzati
fino ad un punto (per poi riprendere I’operazione successivamente), il codice ¢ stato adattato
opportunamente in modo tale che si possano selezionare il numero di iterazioni, oppure un tempo di
esecuzione superati i quali il codice si fermi e salvi i risultati temporanei (creando una copia di backup
dalla quale si possa riprendere le operazioni in un tempo successivo). Impostando I’esecuzione
durante un paio di notti, ¢ stato possibile eseguire tutta la mole di operazioni necessarie.

5.- Descrizione dell’algoritmo.

TT, ART, II = LETTURA(url@, n=None, m=None)
OUTPUT, ATTESA = CICLO_GENERALE(urlx, backup=, max=, TEMPUS=, reader=, xml_file=)

Il codice sviluppato contiene varie funzioni, quelle fondamentali sono la funzione LETTURA e
CICLO_GENERALE (le quali aggregano opportunamente le altre) funzioni.

La Funzione LETTURA apre un collegamento URL (denominato in questo caso url0) ed estrae gli
elementi:

- TT: Titolo dell’atto giuridico (se non si trova nessuna corrispondenza, ad esempio nel caso di
un atto giuridico che non ¢ presente nel sito normattiva.it, viene popolato con 1’espressione TITOLO
ASSENTE)

- ART: Numero dell’articolo e del comma (popolato solo nel caso in cui si tratti di una sotto-
norma, altrimenti viene popolato con I’espressione SOTTOTITOLO ASSENTE)

- II: Una tabella in cui sono presenti due colonne che comprendono gli URL dei riferimenti
giuridici individuati (ed unici) e gli URL originali (ovverosia i riferimenti giuridici della norma
generale a cui essi appartengono, informazione rilevante per studiare la relazione tra norme e sotto-
norme)

Questa funzione puod funzionare da sola, venendo utilizzata inserendo manualmente il collegamento
URL. Oppure, ¢ possibile far ripetere iterativamente queste operazioni in maniera che, una volta
estratti i nuovi collegamenti, la medesima operazione possa essere svolta in automatico dal computer.
Questa iterazione viene svolta all’interno della funzione CICLO GENERALE!'!,

Essa ¢ costituita dai seguenti INPUT:

' All’interno della quale, vengono usati anche i parametri “n” ed “m” della funzione LETTURA. Questi parametri sono
necessari per tenere conto del numero di cicli che si sta svolgendo e I’identificativo che era stato associato.
Universita degli Studi di Salerno
386



Iura & Legal Systems — ISSN 2385-2445 XI11.2025/3, B (35): 381-396

1) 1 variabile obbligatoria: urlx, che rappresenta 1’indirizzo URL di normattiva.it associato alla
norma giuridica che si desidera analizzare;

2) 5 variabili di INPUT facoltative: esse permettono una gestione migliore nel caso il codice
impieghi notevole tempo per la esecuzione. Backup e xml file rappresentano, rispettivamente, la
cartella ed il nome (inclusa I’estensione .xml) del file XML che include i dataframe output ed attesa
temporaneamente, max ¢ TEMPUS rappresentano, rispettivamente, il numero massimo di cicli ed il
numero massimo di secondi superati i quali la funzione salva i risultati nel documento XML, reader
rappresenta una variabile binaria (0,1) tale per cui se ¢ uguale ad 1 permette alla funzione di leggere
il file effettuare il salvataggio temporaneo dei documenti nel documento XML di cui sopra

E importante sottolineare che il codice di cui sopra ¢ stato strutturato in maniera tale che possa
funzionare senza che necessiti di un intervento umano da quando inizi le operazioni di ricerca a
quando termina. Si ritiene questa una condizione molto utile, in quanto permette di lasciare che il
computer stesso possa svolgere tutte le operazioni di ricerca senza necessitare di altre interazioni con
I’utente umano. L’output corrisponde a due tabelle (dataframe) aventi le stesse colonne, di cui:

C) OUTPUT: Rappresenta la tabella dei risultati finali;

d) ATTESA: Rappresenta la tabella dei risultati che devono essere ancora analizzati.

Se tutti 1 riferimenti sono stati analizzati, e la tabella OUTPUT sara 1’unica popolata, mentre la tabella
ATTESA avra un numero di righe pari a 0, vice versa, i dati che devono essere ancora letti sono
registrati temporaneamente in ATTESA.

La descrizione delle operazioni ¢ proposta in un diagramma di flusso illustrato in appendice. Infine,
eseguendo i seguenti comandi:

grafo = build_graph_from_strings(OUTPUT[ 'IDENTIFICATIVO'])
draw_graph(grafo)

Sara possibile ottenere una rappresentazione del grafo ad albero associato alla norma giuridica iniziale
(ciascun colore ¢ associato al livello di profondita del nodo). Qui di seguito ¢ riportato il grafo ad
albero del seguente url:
https://www.normattiva.it/uri-res/N2Ls?urn:nir:presidente.repubblica:decreto:2013;70@originale

Grafico cumulativo dei collegamenti individuati

—— VALORI INDIVIDUATI
—— VALORI TRATTENUTI
700000

600000
500000

°
2 400000
B

El
E
3

I}
> 300000
200000

100000

0 10000 20000 30000 40000 50000
e

Universita degli Studi di Salerno
387



Iura & Legal Systems — ISSN 2385-2445 XI11.2025/3, B (35): 381-396

6.- Possibili Sviluppi.

Una metodologia del genere puo essere integrata con altri tipi di analisi, come ad esempio ’analisi
del testo sottostante (attraverso un’analisi del linguaggio naturale denominata N.L.P.). Anche la
visualizzazione (realizzata attraverso matplotlib) ¢ migliorabile. Si preferisce discutere in questa sede
quali possano essere le possibili migliorie della metodologia applicata fino ad ora, per comprendere
quanto si possa sfruttare, capire dove si possa arrivare, € soprattutto dove non si possa arrivare,
pertanto considerando esclusivamente i seguenti passaggi:

1) Analisi dei Riferimenti espliciti;

2) Lettura dei collegamenti ipertestuali,

11 contributo principale di questo codice, cosi come ¢ stato sviluppato fino ad ora, ¢ il seguente:

E in grado di individuare tutti e soli i riferimenti giuridici presenti a partire da una norma iniziale
(esaustivita) ed ¢ in grado di stabilire una relazione gerarchica tra di essi.

A questo punto, il passo successivo € rappresentato dalla sintesi testuale di questo corpus giuridico.
Una possibile prima implementazione sarebbe la semplice sostituzione dei nodi con il testo
sottostante. In tal modo, sarebbe possibile generare un testo dinamico, in formato H.T.M.L., che, al
posto di ciascun riferimento esplicito sia sostituita da una frase del genere:

.. ai sensi della norma XXXX, la quale prevede che “YYYY”

In cui I’espressione “YYYY” corrispondera al testo giuridico di riferimento.

Questo tipo di testo potrebbe non rappresentare il riassunto piu efficace, per il semplice fatto che la
gerarchia individuata dal grafo ad albero fino ad ora sviluppato non necessariamente rappresenta una
gerarchia effettiva nell’importanza delle norme giuridiche e non necessariamente il modo migliore di

riassumere un testo.

Gia in fase di lettura dei dati, infatti, abbiamo a disposizione i riferimenti trovati e i riferimenti
selezionati per I’elaborazione del grafo. Un riferimento giuridico, infatti, puo apparire piu volte nel
corso della elaborazione della analisi stessa, non a caso la colonna OUTPUT['TROVATI'] puo
assumere valori maggiori di OUTPUT['SELEZIONATT'].

Il codice sviluppato fino ad ora non tiene conto dei riferimenti giuridici individuati successivamente
poiché vengono eliminati dal risultato finale (I’'unica informazione che si ¢ ritenuta opportuna da
registrare ¢ stata la numerosita degli elementi eliminati). Da un punto di vista puramente tecnico, ¢
facile includere questa informazione nell’output: basterebbe aggiungere una colonna che includesse,
in ciascun suo elemento, la lista di URL eliminati.'?

L’inclusione di questa ulteriore informazione, tuttavia, non dovrebbe essere fine a sé stessa, ma
dovrebbe servire per la creazione di corde, collegamenti tra nodi non sequenziali all’interno del
grafico.

12 Ad esempio modificando la funzione FILTRO, presente all’interno della funzione CICLO_GENERALE, e modificando
Y4 =set(URL(Y3)) # S PRENDONO LE OCCORRENZE UNICHE
All’interno della funzione LETTURA
Universita degli Studi di Salerno
388



Iura & Legal Systems — ISSN 2385-2445 XI11.2025/3, B (35): 381-396

7.- Appendice.
Diagramma di flusso

Dati di INPUT

Si verifica:
- reader = 1, se eciste un XML di backup
- reader = 0, se |a lettura &' originaria

reader = 1

rreader =0

- numerazione parte da 0
- ATTESA &' vuoto

- Si apre il file XML;
- Estrazione dataframe: OUTPUT - ATTESA
- numerazione riparte da OUTPUT

Valore di INFUT:

URL Valore di INPUT:

Prima riga di ATTESA

ITERAZIOME,
- ATTESA, non ha elementi

- Mumerazione = 0
- TEMPO E CICLI RISPETTATI

Contatori rispettati

Verifica leggibilita’ INFUT:
(Se 'URL appartiene a Mormatiiva)

INPUT non appartiene a "normatfiva.if”

) . o - Valore Aggiunto ai risultati di CUTPUT
INFUT apﬂa""*{;e a "nommattiva.it - ATTESA non ha risultati ulteriori

5i efiettua la funzione "LETTURA”™:
- Individuazione dei nuovi URL;
- Eliminati valori gia presenti in OUTPUT ed in ATTESA

v

Si effettua la funzione "NUMEROSITA™:
URL in QUTPUT come:
- Norma generale;
- Sotto-norma;
- Aggiunta a Sotto-norme parziali

CONTATORI:
- Aggiornamento ATTESA ;
- Aggiornamento NUMEROSITA

Y

Y

Risultato Parziale

Jv FIME CICLO V3 Risultato Totale
VISUALIZZAZIONE:
- GRAFD TEMPO E CICL} SUPERATI
- ANDAMENTI

SALVATAGGIO FILE XML:
FILE QUTPUT FINALE -QUTPUT
- ATTESA

Universita degli Studi di Salerno
389



Iura & Legal Systems — ISSN 2385-2445 XI11.2025/3, B (35): 381-396

Funzione Python:
Il codice ¢& stato stampato in varie caselle di testo per mantere I’indentazione'3. In primo luogo ¢
necessario caricare i pacchetti seguenti

# LISTA DI PACCHETTT DA INSTALLARE
import requests

import pandas as pd

import time

import matplotlib.pyplot as plt
import networkx as nx

from bs4 import BeautifulSoup
import re

import getpass

import os

import xml.etree.ElementTree as ET

Successivamente le funzioni di cui sotto, sara possibile far funzionare il presente codice. Questa prima
lista ¢ necessaria per far funzionare correttamente la funzione LETTURA.
1) OVERTURE, apre il sito di Normattiva

def OVERTURE(url):

try:
response = requests.get(url) # Usa la variabile url invece di x
lista = []
if response.status_code == 200:

soup = BeautifulSoup(response.text, 'html.parser')
return soup
except Exception as e:
print(f"Errore durante 1'apertura dell'URL {url}: {e}")
soup = 'TESTO ASSENTE'
return soup # Restituisci Nome in caso di errore

2) TITOLO, se lo trova, legge il titolo dell’atto giuridico sottostante

# Identifica il Titolo dell'Atto
def TITOLO(soup):
try:
# Prova a trovare il titolo
titolo_atto_div = soup.find('div', id="titoloAtto’, class_='data_info text-center my-1')
# Se trova 1'elemento, estrai il testo
if titolo_atto_div and titolo_atto_div.h2:
titolo_atto = titolo_atto_div.h2.get_text(strip=True)
# Normalizza il testo rimuovendo spazi extra
titolo_atto = ' '.join(titolo_atto.split())
else:
# Se 1'elemento non ha il titolo atteso, restituisce "TITOLO ASSENTE"
titolo_atto = 'TITOLO ASSENTE'
except Exception:
# Se c'e un'eccezione durante il tentativo di trovare 1'elemento, restituisce "TITOLO ASSENTE"
titolo_atto = 'TITOLO ASSENTE'
return titolo_atto

3) ARTICOLO, se esiste, legge il numero dell’articolo (e dell’eventuale comma) dell’atto
giuridico sottostante

# Identifica il numero dell’articolo e del comma, se esistono
def ARTICOLO(url):
# Verifica se la tilde (~) esiste nell'URL
if '~' not in url:
return 'SOTTOTITOLO ASSENTE'
# Estrai la stringa dopo la tilde (~)
after_tilde = url.split('~', 1)[1]
# Esegui le sostituzioni richieste
after_tilde = after_tilde.replace("a
after_tilde = after_tilde.replace("-"
after_tilde = after_tilde.replace("con",
return after_tilde

"ARTICOLO ")

4) TESTO, se esiste, estrae il testo dell’atto giuridico sottostante

# Estrae il Testo Sottostante
def TESTO(soup):
try:
body_testo = soup.find('div', class_='bodyTesto')
if body_testo:
return str(body_testo)
else:
print("Nessun nodo <div class='bodyTesto'> trovato.")
Soup = 'CORPO DEL TESTO ASSENTE'
return soup
except Exception as e:
print(f'Errore durante 1'analisi del testo HTML: {e}")
soup = 'ANALISI CORPO DEL TESTO FALLITA'
return soup

5) RIMOZIONE, si attivera se la funzione TESTO ha dato un output valido:

13 La dimensione del carattere di questi codici € stato volutamente piccolo per permettere che I’indentazione e gli eventuali
commenti possano rimanere intatti.
Universita degli Studi di Salerno
390



Iura & Legal Systems — ISSN 2385-2445

XI1.2025/3, B (35): 381-396

def RIMOZIONE(soup):
try:
# Converti il testo HTML in un oggetto BeautifulSoup
soup = BeautifulSoup(soup, 'html.parser')
# Trova tutti i nodi con classi che contengono “preamble” o "note-akn"
nodes_to_remove = soup.find_all(class_=lambda c: c and ('preamble’ in c or 'note-akn' in c))
# Rimuovi i nodi trovati
for node in nodes_to_remove:
node.extract()
# Restituisci il nuovo oggetto Beautifulsoup
return soup
except Exception as e:
print(f"Errore durante la rimozione dei nodi di preamble e note-akn: {e}")
return None

6) URL, estrae 1 collegamenti ipertestuali (dal testo individuato dalla funzione TESTO e

RIMOZIONE):

def URL(soup):

try:
links = soup.find_all('a’, href=True)
# Estrai gli URL dalla lista di tag 'a’ e aggiungi il prefisso se necessario
urls = [link['href'] if link['href'].startswith('http') else "https://www.normattiva.it" + Link['href'] for link in links]
return urls

except Exception as e:
print(f"Errore durante 1'estrazione degli URL dal testo HTML: {e}")
return None

7) modifica, uniforma gli URL di normattiva in modo tale che si eliminano le versioni di altri

periodi (e si utilizzino solo le versioni originali):

def modifica(lista_url):
url_modificati = []
for url in lista_url:
if ‘normattiva.it' in url:
# Cerca "lvig=" seguito da una data (yyyy-mm-dd) oppure solo "!vig="
url_modificato = re.sub(r' lvig=(\d{4}-\d{2}-\d{2}[)", '*, url)
url_modificato = re.sub(r'@riginale’, ', url_modificato)
# Sostituisci "@originale~" con "~"
url_modificato = re.sub(r'@riginale~', '~', url_modificato)
# Aggiungi "@originale” alla fine se non presente e se non c'& il tilde "~"
if not url_modificato.endswith('@originale') and '~' not in url_modificato:
url_modificato += '@originale’
else:
url_modificato = url
url_modificati.append(url_modificato)
return url_modificati

8) LISTA ORIGINALE, estrae la versione originale della norma generale a cui un URL di

Normattiva appartiene (rilevante se I'URL di INPUT ¢ una sotto-norma):

def LISTA_ORTGINALE (lista_url):
url_modificati = []
for url in lista_url:
if 'normattiva.it' not in url: # Gli URL non di Normattiva equivalgono al proprio originale
url_modificati.append(url)
else:
# Elimina tutto quello che si trova dopo "~" oppure dopo "lvig="
if '~ in url:
url = url.split(‘'~', 1)[0]
if 'lvig=' in url:
url = url.split('lvig=", 1)[e]
# Se, nel nuovo URL non compare alla fine "@originale” allora aggiungilo
if not url.endswith('@riginale’):
url += '@originale’
url_modificati.append(url)
return url_modificati

A questo punto si puo introdurre la funzione LETTURA; essa individua tutti 1 collegamenti
ipertestuali di norme valide a partire da un url di input. E stata strutturata in maniera tale per cui possa
essere utilizzata sia da sola, sia all’interno del codice ad un punto successivo. Nel caso si utilizzasse
da sola, ¢ sufficiente inserire come parametro I’url di input url0, mentre non sara necessario utilizzare
i parametri n ed m (utili invece successivamente). Il suo output € costituito da 3 elementi: due stringhe

di testo ed una tabella (dataframe).

Universita degli Studi di Salerno
391



Iura & Legal Systems — ISSN 2385-2445 XI11.2025/3, B (35): 381-396

def LETTURA(url®, n=None, m=None):
Y1 = OVERTURE(urle)
# Se 1'URL non si apre, allora 1'Output sara una tabella vuota
if not v1:
Singola_pagina = pd.DataFrame(columns=['URL', 'NOMI', 'COMPONENTI', 'Tempi']) # Creare un DataFrame vuoto
else:
# Possiamo a questo punto stampare il nominativo dell'atto giuridico che si sta analizzando e gestire il caso in cui non abbia un nome
# Se "TITOLO" o "ARTICOLO" sono assenti, essi daranno come risposta un valore vuoto
T1 = TITOLO(Y1)
ART = ARTICOLO(ur1@)
if T1 and ART:
print(f"CICLO {n} di {m} - IN ESECUZIONE {T1} - {ART}")
if T1 and not ART:
print(f"CICLO {n} di {m} -IN ESECUZIONE {T1}")
ART = 'SOTTOTITOLO ASSENTE'
if not T1 and not ART:
print(f"CICLO {n} di {m} -IN ESECUZIONE ATTO SENZA NOMINATIVO")
ART = 'SOTTOTITOLO ASSENTE'
T1 = 'TITOLO ASSENTE'
if not T1 and ART:
print(f"CICLO {n} di {m} -IN ESECUZIONE ATTO SENZA TITOLO")
T1 = 'TITOLO ASSENTE'
it
it
Y2 = TESTO(Y1) ### A QUESTO PUNTO POSSIAMO APRIRE IL TESTO E RICERCARE
# GESTIAMO IL CASO IN CUT QUESTO ALGORITMO NON DIA UN RISULTATO
if not va:
Singola_pagina = pd.DataFrame(columns=
['controllo_URL',
*URL_originale’,
'URL',
'NOMI',
*'COMPONENTI ',
"IDENTIFICATIVO',
'TEMPO',
'TROVATI',
'SELEZIONATI'])
# GESTIAMO IL CASO IN CUI VADA TUTTO BENE
else:
Y3 = RIMOZIONE(Y2)
Y4 = set(URL(Y3)) # ST PRENDONO LE OCCORRENZE UNICHE
Y4_list = list(Y4) # Trasformare 1'insieme in una lista
Singola_pagina = pd.DataFrame({
‘URL_originale’: LISTA_ORIGINALE(Y4_list),

'URL': modifica(Y4_list), 'NOMI': '*,
'COMPONENTI': ',

"IDENTIFICATIVO': '',

"TEMPO"

'TROVATI': ',
'SELEZIONATI': ''})
return T1, ART, Singola_pagina

Le funzioni seguenti sono necessarie per far funzionare correttamente la funzione denominata
CICLO_GENERALE.

Le 3 funzioni di seguito gestiscono il processo di creazione di un file XML temporaneo (nel caso si
desiderasse far interrompere I’esecuzione della funzione finale prima che essa si sia conclusa, dopo
un numero N di cicli, oppure dopo un numero S di secondi di esecuzione)

1) AGGIUSTA NOME DOCUMENTO, aggiusta il nome estratto dalla norma giuridica, per
utilizzarlo (se necessario) come nome del file di salvataggio temporaneo:

def AGGIUSTA_NOME_DOCUMENTO(ilename):
# Caratteri non consentiti nei nomi dei file
illegal_chars = ['<, '>", ":', ", /T, W\, U], 2,
# Sostituzione dei caratteri non consentiti con un carattere consentito
for char in illegal_chars:

filename = filename.replace(char, '_')

# Rimozione degli spazi bianchi all'inizio e alla fine del nome del file
filename = filename.strip()
# Aggiunta dell'estensione .xml
filename += '.xml'
return filename

e

2) SALVA XML TEMPORANEQO: salva i dataframe OUTPUT ed ATTESA nella cartella di
salvataggio temporaneo;

def SALVA_XML_TEMPORANEO(df1, output_folder, output_file, df2=None):

# Crea il percorso completo del file XML di destinazione
output_path = os.path.join(output_folder, output_file)
# Crea un elemento radice per il file XML
root = ET.Element('data’)
# Funzione per aggiungere i dati di un DataFrame come sotto-elementi
def add_dataframe_to_xml(df, parent_element, dataframe_name):

dataframe_element = ET.SubElement (parent_element, dataframe_name)

for index, row in df.iterrows():

record_element = ET.SubElement(dataframe_element, ‘record’)
for col in df.columns:
value = str(row[col])
ET.SubElement(record_element, col).text = value

# Aggiungi df1 come elemento principale
add_dataframe_to_xml(df1, root, 'OUTPUT')
# Se df2 & fornito, aggiungilo al file XML
if df2 is not None:

add_dataframe_to_xml(df2, root, 'ATTESA')
# Crea un albero XML e scrivi il contenuto su un file
tree = ET.ElementTree(root)
tree.write(output_path, encoding="utf-8', xml_declaration=True)

Universita degli Studi di Salerno
392



Iura & Legal Systems — ISSN 2385-2445 XI11.2025/3, B (35): 381-396

3) LEGGI XML TEMPORANEO: apre i dataframe OUTPUT ed ATTESA precedentemente
salvati;

def LEGGI_XML_TEMPORANEO(xml_folder, xml_file):
# Parsing del file XML
xml_path = os.path.join(xml_folder, xml_file).replace('\\', '//*)
xml_path = xml_path + ".xml"
tree = ET.parse(xml_path)
root = tree.getroot()
# Estrazione dei dati dal nodo 'OUTPUT'
data_output = []
for record_element in root.findall('./OUTPUT/record’):
record = {}
for child in record_element:
record[child.tag] = child.text
data_output.append(record)
# Estrazione dei dati dal nodo 'ATTESA' (se presente)
data_attesa = []
# Controllo per evitare errore se 'ATTESA' non & presente
if root.find('./ATTESA') is not None:
for record_element in root.findall("./ATTESA/record'):
record = {}
for child in record_element:
record[child.tag] = child.text
data_attesa.append(record)
# Creazione dei DataFrame
df_output = pd.DataFrame(data_output)
df_attesa = pd.DataFrame(data_attesa) # Questo sara vuoto se 'ATTESA' non & presente
return df_output, df attesa

Le seguenti tre funzioni sono necessarie per distinguere i riferimenti a norme in siti differenti da
Normattiva, e per gestire la contemporanea presenza di norme e sottonorme all’interno del ciclo di
letture.

1) CONTROLLO_ARTICOLO: controlla se, dato un INPUT una sotto-norma, sia presente nella
lista dei riferimenti individuati fino ad ora la norma generale associata;

def CONTROLLO_ARTICOLO(url, OUTPUT, ATTESA):
result = 1
if '~ in url and ‘normattiva.it' in url:
ORIGINALE = LISTA_ORIGINALE([url])[e]
url_originale_totale = pd.concat([OUTPUT[[ 'URL_originale’, 'URL']], ATTESA[['URL_originale', 'URL']]], ignore_index=True)
contains_no_tilde = url_originale_totale[url_originale_totale['URL_originale'] == ORIGINALE]['URL'].str.contains('~').any() == False
if contains_no_tilde:
result = @ # Se esiste almeno un elemento che non contiene tilde
else:
result = 1 # Se tutti gli elementi contengono tilde
return result

2) NUMERO_ARTICOLO: assegnazione dell'identificativo, che tiene conto se la norma ¢ una
sotto-norma o meno, se non appartiene a Normattiva o se si registrano norme e sotto-norme nella lista
dei risultati;

def NUMERO_ARTICOLO(url, OUTPUT, ATTESA):
# VARIE CONDIZIONI

if '~' not in url and 'normattiva.it' not in url: # 1. URL al di fuori di Normattiva -> Allora assente articolo e comma
return ' (€)"
if '~' in url and 'normattiva.it’ in url: # 2. URL di Normattiva con Articolo e comma: Inserisci articolo e comma

# Estrai la stringa dopo la tilde (~)
after_tilde = url.split('~', 1)[1]
# Verifica se "lvig=" & presente nell'URL
if 'lvig=" in after_tilde:
# Elimina cio' che e' presente dopo "lvig=" e la stringa "@riginale”
after_vig = after_tilde.split('lvig=", 1)[0].split('@originale’, 1)[6]

else:
# Se "lvig=" non & presente, utilizza 1'intera stringa dopo la tilde
after_vig = after_tilde
# Elimina 1'espressione "art” e sostituisce "-com” (oppure solo "com" se "-" non & presente) con "_"
after_vig = after_vig.replace("-",
after_vig = after_vig.replace("art", "").replace("com", "_")
return £"({after_vig})"
if '~' not in url and ‘normattiva.it' in url: # 3. URL di Normattiva Generale: Inserisci articolo e comma
ORIGINALE = LISTA_ORIGINALE([url])[e] # 3.1 - Si trova 1'URL Originale associato

url_originale_totale = pd.concat(
[OUTPUT[['URL_originale', 'URL']],
ATTESA[[ 'URL_originale', 'URL']]],
ignore_index=True) # 3.ii - Si genera 1'Unione degli URL originali finora trovati
url_originale_totale = url_originale_totale[
url_originale_totale['URL'].str.contains('~') &
url_originale_totale[ 'URL'].str.contains('normattiva.it')]
url_originale_totale = url_originale_totale[url_originale_totale['URL_originale']==ORIGINALE]['URL_originale']
if url_originale_totale.shape[@] > @:
return *(C)" #3.1ii - Se esiste corrispondenza, allora sara’ un riferimento complementare
else:
return ' (T)" # 3.iv - Altrimenti una nuova norma generale

3) FILTRO: Ad ogni iterazione, elimina i nuovi risultati che sono gia stati individuati;

Universita degli Studi di Salerno
393



Iura & Legal Systems — ISSN 2385-2445

XI11.2025/3, B (35): 381-396

def FILTRO(I, 0, A):
i
# 1. INPUT
i
RIGA = pd.concat([O['URL'], A['URL']], axis=e).reset_index(drop=True)
N_art = RIGA[RIGA.str.contains("normattiva.it") &
~RIGA.str.contains("~")]
I1 = I[['URL', 'URL_originale']
#1.iv - Gli input sono divisi in due tabelle
I_art = I[I['URL'].str.contains("normattiva.it") &

T_art = T_art[~I_art['URL'].isin(R1GA)] i.a

T_oth = I_oth[~I_oth['URL'].isin(R1GA)] ib -

T_oth = I_oth[~I_oth['URL_originale'].isin(N_art)

OUTPUT = pd.concat([I_art['URL'], I_oth['URL']],
axis=0).reset_index(drop=True)

OUTPUT = I[I['URL'].isin(OUTPUT)]

return OUTPUT

#2.
#2.
# 2,41 -

I['URL'].str.contains("~")] # l.iv.a -

I_oth = I1[~I1['URL'].isin(I_art['URL'])] # 1.iv.b
ittt

#4### 2. OPERAZIONT

ittt

# 2.iii.a -
# 2.iii.b - Creazione OUTPUT

# 1.1 - Unisce gli URL gia trovati
#1.ii - Trova gli URL gia trovati che non siano sotto-norme in normattiva
#1.iii - Importa gli URL e i loro riferimenti originali da analizzare

URL da analizzare che siano sotto-norme in normattiva
URL da analizzare che non siano sotto-norme in normattiva

- Elimina gli URL gia trovati
Elimina gli URL gia trovati
Elimina gli URL di sottonorme, le cui norme generali sono gia state trovate

Lista di URL di OUTPUT

A questo punto la funzione CICLO GENERALE aggrega tutte le funzioni di cui sopra. Dato come
input I’URL di una norma che si desidera analizzare, questa funzione puo procedere nella lettura di
tutti 1 riferimenti giuridici che siano legati ad essa, assegnando a ciascuno di essi un identificativo
unico, il quale tiene conto della posizione relativa la norma iniziale su un grafo ad albero. Nel caso la
variabile reader sia diversa da 0, sara necessario specificare anche le altre variabili opzionali.

Universita degli Studi di Salerno
394



Iura & Legal Systems — ISSN 2385-2445

XI11.2025/3, B (35): 381-396

def CICLO_GENERALE(url, backup=None, max=None, TEMPUS=None, reader=0, xml_file=None):
T = time.time()
TTMAX = ©

if reader == 1

OUTPUT, ATTESA = LEGGI_XML_TEMPORANEO(backup, xml_file)

pd.DataFrame(columns=[ 'URL_originale', 'URL', 'NOMI', 'COMPONENTI', 'IDENTIFICATIVO','TEMPO','TROVATI','SELEZIONATI'])
while (ATTESA.shape[@] > @ and (not max or n <= max) and (not TEMPUS or TTMAX <= TEMPUS)) or (ATTESA.shape[@] == @ an 0):
# I1 tuo codice qui
if n == o:
tt

d n
= time.time()

T1, ART, II = LETTURA(url, 6, @)
t = time.time() - tt

OUTPUT = pd.DataFrame({'URL_originale': [modifica([url])],

NOMI': [T1 if T1 else ''],
"COMPONENTI': [ART if ART else '],
*IDENTIFICATIVO': ['X'],

“TEMPO': [round(tt, 1)1,

"TROVATI': [II.shape[e]],

"SELEZIONATI': [II.shape[0]]})
ATTESA = pd.concat([ATTESA, II], ignore_index=True)

List = (II['URL']).reset_index(drop=True)

ATTESA[ ' IDENTIFICATIVO'] = [£'X.{i}{NUMERO_ARTICOLO(List[i-1], OUTPUT, ATTESA)}' for i in range(1, len(ATTESA) + 1)]
# Gestiamo le Iterazioni successive
if n > e:

Viene eseguito il ciclo nei valori in ATTESA
tt = time.time()

= ATTESA['URL_originale']
ATTESA["URL"

i = ATTESA[' IDENTIFICATIVO']
mm = OUTPUT['URL']

‘www.normattiva.it' not in 11[@]:

T1 = 'Titolo Assente’

print(f"CICLO {n} di {ii[@]} NON HA DATO RISULTATI PERCHE' NON APPARTIENE A NORMATTIVA.IT - {11[0]}")
# Altrimenti, assegna valori di default
ART = 'Sottotitolo Assente’

'URL': 11[e],

'NOMI': T1,
"COMPONENTI': ART,
'IDENTIFICATIVO': iife],

II = pd.DataFrame(columns=['URL_originale’,'URL', 'NOMI', 'COMPONENTI', 'IDENTIFICATIVO', 'TEMPO','TROVATI','SELEZIONATI'])
new_row = pd.DataFrame({'URL_originale': 'NO_ORIGINALE',

'TEMPO': @,
"TROVATI': @,
'SELEZIONATI': @}, index=[@])
OUTPUT = pd. concat([OUTPUT, new_row], ignore_index=True)
else:
XXX = CONTROLLO_ARTICOLO(url, OUTPUT, ATTESA)
if XXX == ©:
print(f"CICLO NUMERO {n} --- ELEMENTO 11[@] ELIMINATO PERCHE' GIA' PRESENTE LA NORMA GENERALE")
else:
T1, ART, II = LETTURA(11[@], n, ATTESA['IDENTIFICATIVO'][0])
trovati = II.shape[0]
tt =

time.time() - tt
if II.shape[e]

if II.shape[e] > @:
lunghezza
# II = filter_and_merge_dataframes(OUTPUT, ATTESA, II)
II = FILTRO(II, OUTPUT, ATTESA)
lunghezzal = II.shape[@]
if lunghezza > lunghezzal:

print(f"QUESTA NORMA NON HA ULTERIORI RIFERIMENTI")

II.shape[@]

print(fF"ELIMINATT {lunghezza - lunghezzal} VALORI DA {lunghezza}")
else:

print(f"NESSUN VALORE ELIMINATO, I VALORI SONO E RESTANO DI {lunghezza} ELEMENTI")
if II.shape[6] > @:
List = (II['URL']).reset_index(drop=True)

new_row = pd.DataFrame({ 'URL_originale’: uu[@],

II['IDENTIFICATIVO'] = [f"{ii[@]}.{i+1}{NUMERO_ARTICOLO(List[i], OUTPUT, ATTESA)}" for i in range(II.shape[])]
ATTESA = pd.concat([ATTESA, II], ignore_index=True)
‘URL': 11[e],
NOMI': [T1 if T1 else ''],
‘COMPONENTI': [ART if ART else ''],
*IDENTIFICATIVO': ii[e],
‘TEMPO': [round(tt, 1)],
‘TROVATI': trovati,
*SELEZIONATI': II.shape[@]})
OUTPUT = pd.concat([OUTPUT, new_row], ignore_index=True)
####t Si elimina dai valori di ATTESA la norma appena analizzata
ATTESA = ATTESA.drop(ATTESA. index[@]).reset_index(drop=True)
#### Si aggiorna il numero di ciclo
n=n+1
TTMAX = time.time() - TT
if backup is None:

backup = 'C://Users//' + getpass.getuser() + '//Documents’
if xml_file is None:

xml_file = OUTPUT['NOMI'][0]
if ATTESA.shape[6] > 6:

print(f"FILE DI RECOVERY SALVATO, CI SONO {OUTPUT.shape[@]} ELEMENTI ANALIZZATI ED {ATTESA.shape[@]} ELEMENTI DA ANALIZZARE RESIDUALT, CHIAMATO {xml_file} E SALVATO {backup}")
print("----- "
if ATTESA.shape[@] == o:

SALVA_XML_TEMPORANEO(OUTPUT, backup, AGGIUSTA_NOME_DOCUMENTO(xml_file))
print("--o--"

SALVA_XML_TEMPORANEO(OUTPUT, backup, AGGIUSTA_NOME_DOCUMENTO(xml_file), ATTESA)
print("-----")

pr;nt(f“cIcL? TERMINATO, ESISTONO {OUTPUT.shape[@]} ELEMENTI ANALIZZATI --- IL FILE E' STATO CHIAMATO {xml_file} E SALVATO {backup}")
retuﬁ;lgiTPl:l;:»;TTESA
Che puo essere attivato attraverso questa stringa di codice:
cartellina =

‘C://users//....
urlx = "https:

/www.normattiva.it/uri-res/N2Ls?urn:nir:presidente.repubblica:decreto:2013;70@originale”
OUTPUT, ATTESA = CICLO_GENERALE(urlx, backup=cartellina, max=1000,

TEMPUS=90@, reader=1, xml_fil

*ESPERIMENTO")

Per la visualizzazione:

Universita degli Studi di Salerno
395



Iura & Legal Systems — ISSN 2385-2445 XI11.2025/3, B (35): 381-396

#iH#H INIZIO VISUALIZZAZIONE UNICA
import matplotlib.pyplot as plt
import networkx as nx

def GRAFICO_SERIE_CUMULATA(dataframe, columnl, column2, ax):
# Estrai le serie dal DataFrame
dataframe[column1] = pd.to_numeric(dataframe[columnl], errors='coerce') # Ora & numerico
dataframe[column2] = pd.to_numeric(dataframe[colunn2], errors='coerce') # Anche questo & numerico
seriel = dataframe[columni].cumsum() # Calcola 1'andamento cumulativo della prima serie
serie2 = dataframe[column2].cumsum() # Calcola 1'andamento cumulativo della seconda serie
# Plotta nel subplot assegnato
ax.plot(seriel, label='VALORI INDIVIDUATI') # Plotta 1'andamento cumulativo della prima serie
ax.plot(serie2, label='VALORI TRATTENUTI') # Plotta 1'andamento cumulativo della seconda serie
ax.set_xlabel('Indice’) # Etichetta dell'asse x
ax.set_ylabel('Valore cumulativo') # Etichetta dell'asse y
ax.set_title('Grafico cumulativo dei collegamenti individuati') # Titolo del plot
ax.legend() # Mostra la legenda
ax.grid(True) # Mostra le linee della griglia

def GRAFICO_STRINGHE(string_list):
G = nx.Graph()
for string in string_list:
nodes = string.split('.')
parent = None
level = @
for i, node in enumerate(nodes)
ifi==0
parent = node
G.add_node(parent, level=level)
else:
current_node = f"{parent}.{node}"
level += 1
G.add_node(current_node, level=level)
G.add_edge(parent, current_node)
parent = current_node
return G

def DISEGNA_GRAFICO(G, ax):
pos = nx.spring_layout(G) # Layout algorithm
levels = set(nx.get_node_attributes(G, 'level').values())
cmap = plt.cm.get_cmap('viridis', len(levels))
node_colors = [cmap(level) for level in nx.get_node_attributes(G, 'level').values()]
# Impostazione personalizzata delle larghezze degli archi
edge_widths = [0.5] * len(G.edges())
# Disegna il grafo nel subplot assegnato
nx.draw(G, pos, ax=ax, with_labels=False, node_size=160, node_color=node_colors, edge_color='black’, width=edge_widths)

# Crea i subplot

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6)) # 1 riga, 2 colonne
# Utilizza la prima asse per il grafico cunulativo
GRAFICO_SERIE_CUMULATA(OUTPUT, 'TROVATI', 'SELEZIONATI', ax1)

# Costruisci il grafo e disegnalo nella seconda asse

grafo = GRAFICO_STRINGHE(OUTPUT['IDENTIFICATIVO'])

DISEGNA_GRAFICO(grafo, ax2)

# Mostra i subplot

plt.tight_layout() # Migliora la disposizione del layout

plt. show()

Il cui codice restituira come output il grafo ad albero e la tabella delle prestazioni includendo sia i
riferimenti trovati, sia quelli selezionati. Per la visualizzazione dei tempi di esecuzione:

# Esempio di conversione dei valori in numeri
valori_numerici = pd.to_numeric(OUTPUT['TEMPO'], errors='coerce’)

# Crea il grafico
plt.plot(valori_numerici)

# Aggiungi etichette e titolo
plt.xlabel('Indice’)
plt.ylabel('Valore')
plt.title('Grafico dei Valori'

# Mostra il grafico
plt. show()

Il presente codice implementa un automa a pila. I parametri che di solito sono stati utilizzati sono
stati, attraverso la calendarizzazione di esecuzione programmi:

- max = 30000 (cicli);

- Tempus = 36000 (tempo di esecuzione, 10 ore).

Abstract.- Si propone e si offre una spiegazione di un algoritmo, scritto in Python, per la ricerca
esaustiva dei riferimenti giuridici di una norma dell’ordinamento italiano utilizzando la base dati del
sito Normattiva.it. Il codice implementa un automa a pila e restituisce una rappresentazione del grafo
dei riferimenti giuridici espliciti di una data norma giuridica.

It is provided and it is explained an algorithm, written in Python, for the exhaustive research of
juridical reference from a law of the Italian Jurisdiction, using the Institutional database Normattiva.it.
Such code implements a pushdown automaton and returns a tree chart representation of the explicit
juridical reference starting from a given juridical rule.

Universita degli Studi di Salerno
396



