Utilizza questo identificativo per citare o creare un link a questo documento: http://elea.unisa.it/xmlui/handle/10556/3016
Titolo: High-dimensional statistics for complex data
Autore: Pacella, Massimo
Destefanis, Sergio Pietro
Giordano, Francesco
Parole chiave: High-dimensional data;Variable selection;Spatio-temporal models
Data: 29-mag-2018
Editore: Universita degli studi di Salerno
Abstract: High dimensional data analysis has become a popular research topic in the recent years, due to the emergence of various new applications in several fields of sciences underscoring the need for analysing massive data sets. One of the main challenge in analysing high dimensional data regards the interpretability of estimated models as well as the computational efficiency of procedures adopted. Such a purpose can be achieved through the identification of relevant variables that really affect the phenomenon of interest, so that effective models can be subsequently constructed and applied to solve practical problems. The first two chapters of the thesis are devoted in studying high dimensional statistics for variable selection. We firstly introduce a short but exhaustive review on the main developed techniques for the general problem of variable selection using nonparametric statistics. Lastly in chapter 3 we will present our proposal regarding a feature screening approach for non additive models developed by using of conditional information in the estimation procedure... [edited by Author]
Descrizione: 2016 - 2017
URI: http://hdl.handle.net/10556/3016
http://dx.doi.org/10.14273/unisa-1306
È visualizzato nelle collezioni:Economia e politiche dei mercati e delle imprese

File in questo documento:
File Descrizione DimensioniFormato 
tesi_di_dottorato_M_Pacella.pdftesi di dottorato819,56 kBAdobe PDFVisualizza/apri
abstract_in_inglese_M_Pacella.pdfabstract in inglese a cura dell'autore32,08 kBAdobe PDFVisualizza/apri
abstract_in_italiano_M_Pacella.pdfabstract in italiano a cura dell'autore38,16 kBAdobe PDFVisualizza/apri


Tutti i documenti archiviati in DSpace sono protetti da copyright. Tutti i diritti riservati.