Utilizza questo identificativo per citare o creare un link a questo documento: http://elea.unisa.it/xmlui/handle/10556/3042
Record completo di tutti i metadati
Campo DCValoreLingua
dc.contributor.authorGiannella, Venanzio-
dc.date.accessioned2018-12-13T14:55:10Z-
dc.date.available2018-12-13T14:55:10Z-
dc.date.issued2018-03-13-
dc.identifier.urihttp://hdl.handle.net/10556/3042-
dc.identifier.urihttp://dx.doi.org/10.14273/unisa-1329-
dc.description2016 - 2017it_IT
dc.description.abstractTo comply with fatigue life requirements, it is often necessary to carry out fracture mechanics assessments of structural components undergoing cyclic loadings. Fatigue growth analyses of cracks is one of the most important aspects of the structural integrity prediction for components (bars, wires, bolts, shafts, etc.) in presence of initial or accumulated in‐service damage. Stresses and strains due to mechanical as well as thermal, electromagnetical, etc., loading conditions are typical for the components of engineering structures. The problem of residual fatigue life prediction of such type of structural elements is complex, and a closed form solution is usually not available because the applied loads not rarely lead to mixed-mode conditions. Frequently, engineering structures are modelled by using the Finite Element Method (FEM) due to the availability of many well‐known commercial packages, a widespread use of the method and its well-known flexibility when dealing with complex structures. However, modelling crack-growth with FEM involves complex remeshing processes as the crack propagates, especially when mixed‐mode conditions occur. Hence, extended FEMs (XFEMs) and meshless methods have been widely and successfully applied to crack propagation analyses in the last years. These techniques allow a mesh‐independent crack representation, and remeshing is not even required to model the crack growth. The drawbacks of such mesh independency consist of high complexity of the finite elements, of material law formulation and solver algorithm. On the other hand, the Dual Boundary Element Method (DBEM) both simplifies the meshing processes and accurately characterizes the singular stress fields at the crack tips (linear assumption must be verified). Furthermore, it can be easily used in combination with FEM and, such a combination between DBEM and FEM, allows to simulate fracture problems leveraging on the high accuracy of DBEM when working on fracture, and on the versatility of FEM when working on complex structural problems... [edited by Author]it_IT
dc.language.isoenit_IT
dc.publisherUniversita degli studi di Salernoit_IT
dc.subjectFinite Element Method (FEM)it_IT
dc.subjectDual Boundary Element Method (DBEM)it_IT
dc.titleEnhanced FEM-DBEM approach for fatigue crack-growth simulationit_IT
dc.typeDoctoral Thesisit_IT
dc.subject.miurING-IND/14 PROGETTAZIONE MECCANICA E COSTRUZIONE DI MACCHINEit_IT
dc.contributor.coordinatoreReverchon, Ernestoit_IT
dc.description.cicloXVI n.s. (XXX ciclo)it_IT
dc.contributor.tutorCitarella, Roberto Guglielmoit_IT
dc.identifier.DipartimentoIngegneria Industrialeit_IT
dc.relation.infoPON 2000-2006 “Ricerca Scientifica, Sviluppo Tecnologico, Alta Formazione”. Regioni dell’Obiettivo 1 – Misura III.4 “Formazione superiore ed universitaria”it_IT
dc.contributor.refereeEsposito, Renatoit_IT
È visualizzato nelle collezioni:Ingegneria industriale

File in questo documento:
File Descrizione DimensioniFormato 
tesi_di_dottorato_V_Giannella.pdftesi di dottorato5,79 MBAdobe PDFVisualizza/apri
abstract_in_inglese_e_in_italiano_V_Giannella.pdfabstract in inglese e in italiano a cura dell'autore417,64 kBAdobe PDFVisualizza/apri


Tutti i documenti archiviati in DSpace sono protetti da copyright. Tutti i diritti riservati.