Utilizza questo identificativo per citare o creare un link a questo documento: http://elea.unisa.it/xmlui/handle/10556/7307
Record completo di tutti i metadati
Campo DCValoreLingua
dc.contributor.authorPetti, Danilo-
dc.date.accessioned2024-09-06T07:46:09Z-
dc.date.available2024-09-06T07:46:09Z-
dc.date.issued2023-07-11-
dc.identifier.urihttp://elea.unisa.it/xmlui/handle/10556/7307-
dc.description2021 - 2022it_IT
dc.description.abstractBivariate survival outcomes frequently arise in applied studies where the occurrence of two associated events of interest is observed. However, the practical utility of bivariate copula survival models is often hindered by the presence of data influenced by various censoring mechanisms and high-dimensional datasets. This thesis presents a novel solution to address these two challenges. In the first part, we propose a general and flexible copula regression approach capable of effectively handling bivariate survival data subject to various censoring mechanisms. This approach offers versatility in modelling the association between the two events of interest. In the second part, we introduce a variable selection procedure based on the class of models presented in the previous section. This procedure represents an absolute novelty in the panorama of bivariate copula survival models. To evaluate the effectiveness of the proposed methodologies, extensive simulation studies are conducted. Additionally, illustrated examples using data from the Age-Related Eye Disease Study are discussed. Lastly, the developed modelling frameworks are implemented in the R programming language, making them accessible to a wide range of users. [edited by Author]it_IT
dc.language.isoenit_IT
dc.publisherUniversita degli studi di Salernoit_IT
dc.subjectVariable selectionit_IT
dc.subjectBivariate survivalit_IT
dc.subjectUltrahigh dimensionalityit_IT
dc.titleCopula link-based additive models for bivariate time-to-event Outcomes with general censoring scheme: Computational advances and variable ranking proceduresit_IT
dc.typeDoctoral Thesisit_IT
dc.subject.miurSECS-P/01 ECONOMIA POLITICAit_IT
dc.contributor.coordinatoreAmendola, Alessandrait_IT
dc.description.cicloXXXV cicloit_IT
dc.contributor.tutorNiglio, Marcellait_IT
dc.identifier.DipartimentoScienze Economiche e Statisticheit_IT
È visualizzato nelle collezioni:Economia e politiche dei mercati e delle imprese

File in questo documento:
File Descrizione DimensioniFormato 
tesi di dottorato D. Petti.pdftesi di dottorato2,41 MBAdobe PDFVisualizza/apri
abstract in italiano e in inglese D. Petti.pdfabstract a cura dell’autore (versione italiana e inglese)39,25 kBAdobe PDFVisualizza/apri


Tutti i documenti archiviati in DSpace sono protetti da copyright. Tutti i diritti riservati.