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Capitolo 1

Abstract

We studied the some type of phase transitions in Strongly Correlated Electro-
nic Systems. In particular we rigorously established some exact properties of a
multi-orbital Hubbard model, here formulated to describe a nematic phase tran-
sition. In the first step, using Bogoliubov’s inequality, we rigorously showed that
the multiorbital Hubbard model with narrow bands, eventually in the presence
of the spin-orbit coupling, does not exhibit long-range nematic order, in the low
dimensions. This result holds at any finite temperature for both repulsive and
attractive on-site Coulomb interactions, with and without spin-orbit coupling.
In the following step, using the reflection positivity method, we showed that
this model supports a staggered nematic order if repulsive or attractive on-site
inter-orbital and intra-orbital interactions and off-site repulsive inter-orbital in-
teraction are considered. Depending on the dimensions of the lattice where the
model is defined, the order may or not may exist. Indeed, in three dimensions
the order may exist at finite temperature, and we get the condition for its exi-
stence finding out an upper bound for the critical temperature. On the other
hand, for two dimensional lattices, the order may exist at least in the ground
state, if the hopping amplitude is small enough.

Furthermore, in the final step, we studied the symmetry properties of the
non-degenerate Hubbard model with spin-orbit interactions of Rashba and Dres-
selhaus type. These interactions break the rotational symmetry in spin space,
so that the magnetic order cannot be excluded by using the Bogoliubov ine-
quality method. Nevertheless, we rigorously show that the existence of the
magnetic long-range orders may be ruled out when the Rashba and Dresselhaus
coupling constants are equal in modulus, whereas the η-pairing can be always
ruled out, regardless of the microscopic parameters of the model. These results
are obtained by imposing locally the SU(2) gauge symmetry on the lattice, and
rewriting the spin-orbit interactions in such a way that they are included in the
path ordered of the gauge field on lattice.
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4 CAPITOLO 1. ABSTRACT

In questo lavoro consideriamo alcuni tipi di transizioni di fase in Sistemi Elet-
tronici Fortemente Correlati stabilendo, in particolare, alcuni risultati rigorosi
riguardanti il modello di Hubbard multibanda dove possono presentarsi ordini
a lungo raggio di tipo orbitale. In un primo passo, usando la diseguaglianza di
Bogoliubov, mostriamo che il modello di Hubbard multibanda con interazione
spin orbita non presenta ordine nematico in sistemi a bassa dimensionalita’ .
Questo risultato vale a temperatura finita e se consideriamo interazione Cou-
lombiana on-site repulsiva o attrattiva con o senza interazione spin orbita. Nel
passo successivo, usando il metodo degli Infrared Bounds e condizione di Reflec-
tion Positivity, mostriamo che il modello presenta uno Staggered Nematic order
almeno nello stato fondamentale se consideriamo on-site Interazione Coulombia-
na repulsiva o attrattiva ed una interazione Coulombiana repulsiva fra elettroni
appartenenti alla stessa banda e siti reticolari primi vicini. I sistemi considerati
sono definiti su reticoli bidimensionali o tridimensionali sui quali diamo delle
condizioni necessarie affinche’ l’ordine esista.

Infine, considerando il modello di Hubbard non degenre su reticoli uni e
bidimensionali, studiamo le sue propriet di simmetria se vengono aggiunte inte-
razioni spin-orbita di tipo Rashba o Dresselhauss. Queste interazioni rompono
la simmetria rotazionale nello spazio dello spin, quindi l’ordine magnetico non
pu essere escluso utilizzando la diseguaglianza di Bogoliubov. Comunque riscri-
vendo l’intrazione spin orbita in termini di una teoria di Gauge SU(2) siamo
in grado di dire che l’ordine magnetico assente se le costanti di accoppiamento
delle interazioni Rashba e Dresselhauss sono uguali.
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Capitolo 2

Introduction

Phase transitions are the manifestation of violation of the thermodynamic sta-
bility conditons like the convexity of the Energy or, equivalently, the convexity
of the thermodynamics potential with respect their extensive variables and the
concavity with respect the intensive variables. In such cases homogeneous sta-
tes of the system are not possible and equilibrium manifestes between many
phases. The transition liquid-vapour is a classic example where, below the cri-
tical point, two portions of the system have different comprexibility and density
in equilibrium between them. The Equilibrium conditions are given by the
equality of the chemical potentials of the two phases, furthermore the equation
µ1(P, T ) = µ2(P, T ) is a line where we have coexistence of the two phases. Now
by variation of the pressure or volume there are transitions between these pha-
ses. This is an example of first order phase transition, indeed one defines a
transition of the first order if the internal Energy of the system changes in a di-
scontinuous way at a certain temperature, that is the transition is accompanied
by a release or an assimilation of latent heat. If T is increased, the coexistence
line terminates in the critical point, where the transition between the two pha-
ses is continuous. Beyond the critical point, there is no transition between the
two phases, there is no singularity in any physical quantity upon going from one
phase to the other. This is a second order phase transition. One defines the
second order phase transition if it does not involve latent heat and the Internal
Energy changes continuously with the temperature but the first derivative of
the Energy diverges at the transition temperature called critical temperature
Tc. The most important examples for materials undergoing second-order tran-
sitions are ferromagnets, superfluids, and superconductors. Furthermore such
transition can usually be characterized by an order parameter, this is a ther-
modynamic quantity that is zero in one phase (the disordered or symmetric
phase) and non-zero and non-unique in the other (the ordered) phase, indeed
by a microscopic point of view one can define an observable such that its ther-
mal expectation value can be considered as an order parameter, in particular
if it is not vanishing and is not unique then the symmetry of the Hamiltonian
and the Gibbs potential are spontaneously broken. In general one speaks of a
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8 CAPITOLO 2. INTRODUCTION

spontaneous symmetry breakdown if the symmetry group in field space reduces
to a subgroup when passing from the disordered high-temperature phase to the
ordered low-temperature phase.

An important property of second-order phase transitions is the divergence,
at the critical temperature Tc, of the length scale, over which the system behaves
coherently. Indeed while the thermodynamic average of the order parameter is
zero in the disordered phase, its fluctuations are non-zero, hence if the critical
point is approached, the spatial correlations of the order parameter fluctuations
become long-ranged and this is accompanied by a divergence of the size of
thermal fluctuations. As a consequence, many physical observables show, near
Tc, a power type behaviour in the temperature difference |T − Tc| from the
critical point. More precisely they behave like |T − Tc|p where the power p is
called a critical exponent of the associated observable.

In order to describe correctly a second-order phase transition, a model must
have the following properties. At Tc, the fluctuations must occur on arbitrarily
large length scales. In the neighborhood of Tc, a correlation length which diver-
ges for T → Tc should be the only relevant length scale of the system, making
the correlation functions of the model at the critical point scale independent.
For example close to the critical point their typical length scale, the correlation
length ζ, diverges as:

ζ ∝ |t|−ν (2.1)

with t = T−Tc

Tc
. In addition to the long-range correlations in space there are

analogous long-range correlations of the order parameter fluctuations in time.
The typical time scale for a decay of the fluctuations is the correlation (or
equilibration) time τc. As the critical point is approached the correlation time
diverges as:

τc ∝ |t|−zν (2.2)

The divergencies (2.1) and (2.2) are responsible for the so-called critical phe-
nomena. At the phase transition point, correlation length and time are infinite
and the system is scale-invariant. Then to the critical point the correlation
length is the only relevant length scale, therefore the physical properties must
be unchanged if we rescale all lengths in the system by a common factor, and at
the same time adjust the external parameters in such a way that the correlation
length retains its old value. This gives rise to the homogeneity relation for the
singular part of the free energy density:

f(t, h) = b−df(td
1
ν , byB )

Here yB is another critical exponent whereas d is the spatial dimensionality. The
scale factor b is an arbitrary positive number. Analogous homogeneity relations
for other thermodynamic quantities can be obtained by differentiating f . If
follows that in the vicinity of a second-order phase transition all thermodynamic
potentials are generalized homogeneous functions. In addition to the critical
exponents ν, and z defined above, a number of other exponents is in common
use. They describe the dependence of the order parameter and its correlation
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on the distance from the critical point and on the conjugate field h to the
order parameter. In particular for the specific heat at zero external field h one
has that C ∝ |t|−α the order parameter M ∝ (−t)β whereas the susceptivity
χ ∝ |t|−γ and the critical isotherm h ∝ sign(M)|M |δ at t = 0. The set of
corresponding critical exponents completely characterizes the critical behavior
near a particular phase transition. Indeed one of the most remarkable features
of continuous phase transitions is universality, that is, the fact that the critical
exponents are the same for entire classes of phase transitions which may occur in
very different physical systems. These universality classes are determined only
by the symmetries of the order parameter and by the space dimensionality of
the system. The mechanism behind universality is, again, the divergence of the
correlation length, therefore, to the critical point, the relevant characteristics of
the system are the averages over large volumes hence the microscopic details of
the Hamiltonian are unimportant.

The phase transition described above have critical temperature strictly po-
sitive and the order parameter is the thermal average of an observable, but is
possible to define phase transitions at zero temperature that describe the chan-
ge in the ground state structure of the system as function of a parameter in
the Hamiltonian operator (for example a coupling constant). These are Quan-
tum Phase Transition. A quantum phase transition is a non-analyticity of the
ground state properties of the system as a function of a control parameter g.
If this singularity arises from a simple level crossing in the many-body ground
state, then we have a first order quantum phase transition, without diverging
correlations and associated critical singularities. The situation is different for
continuous transitions, where a higher-order singularity in the ground state ener-
gy occurs, where an infinite number of many-body eigenstates are involved, and
the thermodynamic limit is required to obtain a sharp transition. Near a phase
transition the relevant physics is described by long-wavelength order parameter
quantum fluctuations that it is the quantum expectation value on the ground
state of an operator.

In the study of quantum system new emergent states of the matter can be
described if one consider systems with a highly degenerate ground state. These
new states of the matter can be described in terms of topological quantum
order (TQO) where one does not define any order parameter or spontaneous
symmetry breking, but they are intuitively associated with insensivity to any
local perturbation. In essence, this new order is associated with robustness
against local perturbations, and hence cannot be described in principle by local
order parameter. Thus, the underlying order remains hidden to ordinary local
probes. Indeed, this new order exhibits nonlocal correlations that potentially
can lead to novel physical consequences, indeed the characteristic signature of
the novel phase is a finite ground state degeneracy that depends on the topology
of the system, where can exist charge fractionalization (with respect to that
of the constituent particles) and/or fractional statistics of the quasiparticles
(Anyons). In more precise terms when a system is in a topological phase it has
a set of orthonormal pseudo-ground states |ai > with a = 1, 2, ..., Ng, which
includes the absolute ground state of the system. These pseudo-ground states
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satisfy, for each |a > and |a′ >, the following condition:

δE0 = max(a,a′)|Ea − Ea′ | ∼ O(e−
L
ζ )

where L is the system size and ζ is the correlation length of the system, which
is finite in the limit L→ ∞, that is these ground states are degenerate exactly
in the thermodynamics limit. Furthermore these states are separated from the
rest of the spectrum by an energy gap that remains non-zero in the thermody-
namics limit. In a topological phase, one has degeneration of the ground state
V0 which depends only on the topological configuration of the system, genus,
number of boundaries, its topology and boundary conditions, in particular the
correlation functions on the ground state are invariant under smooth deforma-
tion of the spacetime manifold in which the system lives. Furthermore, for any
local operator Q and for each |a >, |b >∈ V0 one has

< a|Q|b >= q0δa,b +O(e−
L
ζ ) (2.3)

with q0 is a constant independent from |a > and |b >, that is any local opera-
tor cannot cause transitions between states belonging to V0, at most, the state
of the system can acquire an overall phase. This condition is naturally sati-
sfied if degenerate states are distinguished only by a non-local topological order
parameter.

A system that satisfies the properties listed above is described by a topolo-
gical quantum field theory (TQFT), that is a field theory where the correlators
or the expectation value are independent from the metric tensor. In particu-
lar, the low-energy and long distances physical properties are described by an
effective theory in which the degrees of freedom are entirely topological, they
depend only on the global properties of the system (with no dynamical degrees
of freedom nor geometry/metric dependence). The first and classical example
of topologically ordered system is a quantum Hall fluid. This effect, realized
for two dimensional electronic systems in a strong magnetic field, is characte-
rized by a gap between the ground state and the excited states, a vanishing
longitudinal resistivity ρxx = 0 and the quantization of the Hall resistivity, pre-
cisely to values of ρxy = 1

ν
h
e2 , with ν being an integer (IQHE), whereas in the

FQHE ν = 1
n with n odd. Indeed if one neglects Coulombian interaction then

the system can be considered as a gas of free electrons in a magnetic field, in
this case the eigenstates of the single particle Hamiltonian are a discrete set
of degenerate levels equally spaced called Landau levels. If the electrons are
confined to a surface of area A pierced by magnetic flux B · A, then there are
Ng = BA/Φ0 = BA e

hc degenerate states in each Landau level, that is the degree

of degeneration is equal to the number of elementary quantum flux Φ0 = hc
e .

In the absence of disorder, these single-particle states are all precisely degene-
rate. When the chemical potential lies between the νth and (ν + 1)th Landau
levels, the Hall conductance takes the quantized value σxy = ν e2h while ρxx = 0.

The two-dimensional electron density is n = ν eBhc . In the presence of a periodic
potential and/or disorder as for example impurities, the Landau levels broaden
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into bands. When the chemical potential lies in the region of localized states
between the centers of the νth and (ν+1)th Landau bands, the Hall conductan-
ce again takes the quantized value σxy = ν e2h while ρxx = 0 and the electronic

density will be close but not necessarily equal to ν eBhc . This is known as the
Integer quantum Hall effect because ν is an integer. Neglecting Coulomb inte-
ractions is justified when an integer number of Landau levels is filled, so that
the energy splitting between Landau levels is much larger than the scale of the
Coulomb energy, whereas if the electron density is such that a Landau level is
only partially filled then the Coulomb interactions may be important and the
degeneration of the Landau levels is broken by electron-electron interaction. In
this case there is a gap between the ground state and the exciting states as in
the IQHE but only a fraction of the Landau level is filled. In this case we have
the Fractionary Quantum Hall Effect and a its theorical description is given by
Laughlin.

In this work we give, in the chapter three, some mathematical concept on
the phase transitions. In particular we define the thermodynamic potentials and
the thermodynamic limit. We prove that, under certain conditions, the thermo-
dynamics potentials exist and are uniques. We give a classification of the phase
transitions and the connection between phase transitions and Spontaneous Sym-
metry Breaking concept. An important part of the second chapter is devoted
to the study of some methods used in Statistical Mechanics in order to prove
the existence or the absence of phase transitions in specific models. These are
the Bogoliubov and the indetermination inequality used in order to prove that
a specific system does not exhibit a phase transition. We devoted particular
attention to the problem of the existence of a phase transition in particular at
the Infrared Bounds methods and the Reflection Positivity concept.

We dedicate the fourth chapter to some applications of the methods studied
in the third chapter. Here we give a proof of the Mermin and Wagner theorem
for a generic model of Strongly Correlated Electronic System, furthermore we
extend the theorem at the d-band Hubbard model with tensorial order parame-
ter. In the specific case we study the possible orbital order in a model of TMO
(Transition Metal Oxides) system, in particular we define the order parameter
as the expectation value of the electric quadrupole momentum obtaining that
in a rotational symmetric model the order is absents.

In the fifth chapter we study the problem of the existence of phase tran-
sitions in TMO models, in the specific case we consider the d-band Hubbard
model where an infraband off-site Coulombian repulsion is introduced, obtaining
that, under particular conditions, the orbital order can exist in this model at
low temperature in two and three dimensional systems. In this chapter we stu-
dy possible Charge Density Wave (CDW) and Superconductivity Lond Range
Order (LRO) in these systems.

In the Chapter six we introduce the spin orbit interaction in Strongly Cor-
related Electronic Systems as a SU(2) Gauge theory in the Pauli Lagrangian
density. We decsribe how the charge is conserved and spin current is covarian-
tly conserved with this approach. In a system defined a lattice we introduce
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the spin orbit interaction by an Hamiltonian (Kogut Susskind approach) lattice
SU(2) Gauge theory. In particlar we study the non degenerate Hubbard model
with Rashba and Dresselhaus interaction obtainig some rigorous result.



Capitolo 3

Mathematical tools in
Phase Transitions

3.1 Thermodynamic Potentials and the Ther-
modynamic Limit.

Let H the Hamiltonian and {|a >} the eigenvectors of the quantum system,

one defines a Partition function as Z(T,N, V, ∂V ) = Tr(e
− H

kBT ) with T the
temperature, kB the Boltzmann constant whereas N and V are respectively the
number of particle an the volume of the system. For a classical system the trace
is replaced by integration on the phase space, hence the partition function is

Z(T,N, V, ∂V ) =
r
dµe

− H
kBT where dµ is the Lebesgue measure on the phase

space. Furthermore one defines dP = 1
Z e

− H
kBT dµ as a probability measure of

realization of a microscopic state (Gibbs measure), for a finite size systems this
is a conditioned probability and depends on the boundary conditions ∂V of
the system. Formally one can define a Thermodynamic limit where the system
has infinite size at constant density. Hence one defines the thermodynamic
limit as limN→∞,V→∞() under the condition that limN→∞,V→∞

N
V = ρ where

ρ is the density of the system. More formally the ensembles which we have
considered describe systems enclosed in a bounded region Λ ∈ Rd of Λ ∈ Zd,
then let (L1, ..., Ld) ∈ Rd (resp.∈ Zd) and ΛL = {x ∈ Rd 0 ≤ xi ≤ Li} or (if
lattice systems are considered) ΛL = {x ∈ Zd |0 ≤ xi ≤ Li}, furthermore let
ΛnL = {x |niLi ≤ xi ≤ (ni+1)Li} then the family of regions {ΛnL}n∈Zd forms
a partitions of Rd or Zd. For each Λ ∈ Rd (or ∈ Zd) one define:

� N+(Λ)L the number of sets ΛnL such that ΛnL
∩

Λ = ∅

� N−(Λ)L the number of sets ΛnL such that ΛnL ⊂ Λ

13
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then the sets Λ tend to infinity in the sense of Van Hove if:

lim
N−

L →∞

N−
L

N+
L

= 1 (3.1)

Let |Λ| be the measure of Λ ∈ Rd and ∂Λρ = {x ∈ Rd |d(x, ∂Λ) ≤ ρ} where
d(x, ∂Λ) is a distance between a point x and ∂Λ the contour of the set Λ, then
the Van Hove convergence to infinity is equivalent to :

lim
|Λ|→∞

|∂Λρ|
|Λ|

= 0

We will restrict our study from now on to quantum lattice systems, hence the
system is defined on Λ ∈ Zd. Now we introduce some basic objects of thermo-
dynamics and statistical mechanics, in particular the so called thermodynamic
functions. Let HΛ : V → V the selfadjoint Hamiltonian of the system with V

the Hilbert space, furthermore the operator e−βHΛ is a Trace class operator,
hence if O : V → V an observable then one defines:

� The equilibrium state: The expectetion value of O is

< O >=
1

ZΛ
Tr(Oe−βHΛ),

then one defines < · > as equilibrium state and it is unique and it is
invariant under all symmetry operators of the Hamiltonian, hence for Ha-
miltonians commuting with the traslations operator this state is traslation-
invariant. This means that finite size systems do not have phase transitions
or symmetry breaking. Furthermore the equilibrium state has the KMS
(Kubo-Martin-Schwinger) property

< A(t)B+(t′) >=< B+(t′)A(t+ iβ) >=< B+(t′ − iβ)A(t) >

indeed

< A(t)B+(t′) >= Tr
(
e−βHA(t)B+(t′)

)
= Tr

(
e−βHeβHB+(t′)e−βHA(t)

)
=

=
(
e−βHei(−iβ)HB+(t′)e−i(−iβ)HA(t)

)
=< B+(t′ − iβ)A(t) > .

This periodicity in the imaginary time caracterizes the equilibrium states.

� Energy density: uΛ = 1
ZΛ|Λ|Tr(HΛe

−βHΛ)

� Helmotz free energy density: fΛ(T, ..) =
F (T,|Λ|,...)

|Λ| = − 1
β

1
ZΛ|Λ| lnZΛ

� Gibbs free energy density: If one introduce an external field h in
the Hamiltonian such that H → H +

∑
x∈Λ h(x)O(x) where O(x) is

an observable, then the Partition function depends on h(x). By diffe-
rentiation respect to this parameter of the Helmotz free energy one has
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<O(x)>h

|Λ| = ∂
∂h(x)fΛ(T, h). Then the order parameter ϕh(x) = <O(x)>h

|Λ|
depends by external field, hence one defines the Gibbs free energy as the
Legendre transformation with respect to h that is

GΛ(T, ϕh) = gΛ(T, ϕh)|Λ| = |Λ|f(T, h)−
∑
x∈Λ

h(x) < O(x) > .

By differentiation of gΛ(T, ϕΛ) with respect to the order parameter one
has:

h(x) =
∂

∂ϕh(x)
gΛ(T, ϕh(x)). (3.2)

In general one cosiders the Hamiltonian operators such that HΛ =
∑
X⊂Λ Φ(X)

where Φ(X) is a |X| particles potential interaction and/or hopping in a subsetX
of the lattice Λ with finite range r, that is Φ(X) = 0 if diam(X) = supx,y∈X |x−
y| > r. Now we will prove a theorem due Griffiths Robinson and Ruelle:

Theorem 1: If the Hamiltonian is traslation invariant then the thermody-
namic limit (Van Hove) of the thermodynamic potentials exist and they are
finite.

Lemma1 Let A and B be two bounded and selfadjint operators and || · || the
norm, then:

| ln(Tr(eA))− ln(Tr(eB))| ≤ ||A−B|| (3.3)

proof: One defines the self-adjoint operator O = tA + (1 − t)B and f(t) =
lnTr(eO(t)) then:

| ln(Tr(eA))− ln(Tr(eB))| = |f(1)− f(0)| = |
1w
0

dt
d

dt
f(t)| =

= | 1

Tr(eO(t))
Tr(

d

dt
O(t)eO(t))| ≤ || d

dt
O(t)||

where the inequality is due at the Eq.(8.2). Now if one defines two Hamiltonian
with two interactions Φ1 and Φ2 then by Eq.(3.3) with A = −βH1 and B =
−βH2, one has the following inequality for the free energy:

|FΛ(T,Φ1, ..)− FΛ(T,Φ2..)| ≤ ||Φ1 − Φ2||. (3.4)

Furthermore by the Peierls-Bogoliubov theorem the free energy is a convex
functions in Φ.
Proof of the theorem 1: In order to prove the theorem 1 one considers
systems of increasing size Ln = 2n with n ∈ N, hence |Λn| = 2nd where d is
the dimensionality of the system. Correspondingly, the Free energy density is
fn = − 1

β|Λn| ln(Tre
−βHΛn ), hence the prove is obtained if one show that the

sequence {fn}n∈N is a Couchy sequence, indeed in R any Couchy sequence is
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convergent. For this, one divides the volume Λn into 2d subdomains Λn−1 and
provide each domain with an inside margin of width r (the range of interaction
in the Hamiltonian). This provide that each pair of internal subregions do not
interact. Furthermore, in each sublattice, the Hamiltonian is HΛn−1 = H<

Λn−1
+

H>
Λn−1

, where respectively H<
Λn−1

and H>
Λn−1

are the Hamiltonian operators in

the internal and the margin of Λn−1, hence HΛn =
∑2d

i=1{H
(i)<
Λn−1

+H
(i)>
Λn−1

} (the

index (i) indicates the i−sublattice). Then by inequality Eq.(3.3) one has:

|fn − fn−1| = | 1

β|Λn|
ln(Tre−βHΛn )− 1

β|Λn−1|
ln(Tre−βHΛn−1 )| =

=
1

β|Λn|
| ln(Tre−βHΛn )− 2d ln(Tre−βHΛn−1 )|

but using Eq.(8.1) one has

2d ln(Tre−βHΛn−1 ) = ln(Tre−βHΛn−1 )2
d

≥ ln(Tre−2dβHΛn−1 )

then

|fn − fn−1| ≤
1

2nd
||HΛn − 2dHΛn−1 ||

hence by traslational invariance of the Hamiltonian the theorem is proved.

3.2 Phase transitions and Spontaneous Symme-
try Breaking

The phase transitions are formally the singular points of the free energy of
the system that arise by thermodynamic limit, indeed, as we said any finite
size system does not have phase transition and the free energy is an analytic
function. This definition arises by thermodynamic considerations and the phase
transitions can be classified according to the type of singular point of the free
energy. In particular one defines:

Discontinuos or the first order phase transitions. If we define the che-
mical potential as µ = ∂

∂|Λ|F (T, |Λ|, h, ...) where h is an external field, then the

condition for a first-order phase transition is that the chemical potentials, of the
two phases, must be equals

∆µ = µ1(T, h, ...)− µ2(T, h, ...) = 0

whereas

∂

∂T
∆µ(T, h, ...) ̸= 0

∂

∂h
∆µ(T, h, ...) ̸= 0

∂

∂...
∆µ(T, h, ...) ̸= 0

so that the chemical potentials or the free energies cross at the transition. The
phase with the lower chemical potential is stable and the other phase is metasta-
ble. By a microscopic point of view one has coexistence of phases if the thermo-
dynamic limit of the Gibbs state is not unique but there are many equilibrium
states sensible to the boundary conditions.
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Continuous phase transitions. A transition is continuous when the chemi-
cal potentials of both phases are equal and when their first derivatives are also
equal:

∆µ = µ1(T, h, ...)− µ2(T, h, ...) = 0

and

∂

∂T
∆µ(T, h, ...) = 0

∂

∂h
∆µ(T, h, ...) = 0

∂

∂...
∆µ(T, h, ...) = 0

so that the chemical potentials or the free energies have a common tangent
at the transition. There is no latent heat in this type of transition and the
Free Energy has a singular point in the second derivative (susceptibility χ),
more precisely the susceptibility has a divergence to critical point. Instead of
continuous transitions, some authors write about second order phase transitions.
The phase transition can be studied by a point of view of the changing of sym-
metries of the system. Indeed, in a transition the number of local minimum
states of the thermodynamic potentials is not constant with the temperature
variations, that is, there is a unique infinite-volume Gibbs state for T > Tc and
two or more translation-invariant Gibbs measures for T < Tc where one has
coexistence of two or more phases. More precisely the Hamiltonian is invariant
under a transformations belonging to a group G, hence for each U ∈ G one has
[H,U ] = 0, whereas the equilibrium state does not have this symmetry, in par-
ticular there are many degenerate ground states and they are invariant under
a subgroup of G. Therefore there is an observable O such that < U+OU >=<
O >= 0 for T > Tc whereas < U+OU ≯=< O ≯= 0 for T < Tc. Since a sym-
metry is either absent or present, the two phases must be described by different
functions of thermodynamic variables, which cannot be continued analytically
across the critical point. Because of the reduction in symmetry, an additional
parameter is needed to describe the thermodynamics of the low-temperature
phase. This parameter is called the order parameter that, generally, is connec-
ted to the expectation value of the observable O. An example of this fact is th
ferromagnetic transition in the isotropic Heisenberg model defined on the lattice
Λ ⊂ Zd. If we consider interaction between spins relative at nearest sites, then
the Hamiltonian operator of the system is:

H = −
∑
x∈Λ,δ

S⃗(x) · S⃗(x+ δ)

where δ is an unit vector on lattice. The Hamiltonian is invariant for rota-
tions in the spin space, whereas if one turn on an external magnetic field B⃗
this breaks explicitely this symmetry and the spins are all polarized in the di-
rection of the field. Now, if the system has finite size and we turn off the
magnetic field, then for each finite temperature we have that the magnetisation
is zero always. On the other hand, if one turn off B⃗ after the thermodynamic
limit then, below critical temperature, there is a spontaneous magnetisation

M⃗ = lim|Λ|→∞
∑
x∈Λ

<S⃗(x)>
|Λ| ̸= 0 and the equilibrium state has a preferred di-

rection in space. Now we describe this fact in more precise terms. Then we
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consider a finite size system described by Hamiltonian HΛ invariant under spa-
tial traslations and the unitary transformations U ∈ G where G is a group, then
[U,H] = 0. Let O be an observable and if an external field h is introduced the
Hamiltonian becomes HΛ → HΛ(h) = HΛ − h

∑
x∈ΛO(x) then for each finite

size lattice one has:

< O(x) >Λ,h=
Tr(O(x)e−βHΛ(h))

ZΛ(h)
=< O(x) >Λ,h ̸= 0 (3.5)

furthermore one has always

lim
h→0

< O(x) >Λ,h= 0

but, if there is a phase transition, a critical temperature Tc exists such that for
T < Tc one has:

lim
h→0

lim
|Λ|→+∞

< O(x) >Λ,h ̸= 0.

that is the infinite volume limit and vanishing external field limit does not
commute for T < Tc. This because the Free energy has the first derivative
discontinuous below critical temperature.

Now we consider some example.

Group Z2: A classical example is the forromagnetic Ising model:

H(σ, h) = −
∑
x

σ(x)σ(x+ δ)

where σ(x) : Λ → [−1, 1] and Λ a two or more dimensional lattice. The
symmetry group Z2 corresonds to the replacement σ(x) → −σ(x). As it is
easy to prove for each finite size lattice, if one introduces an external field
H → H(h) = H − h

∑
x σ(x) then limh→0 < σ(x) >Λ,h= 0, but it is possible to

prove that:

lim
h→0+

∂

∂h
( lim
|Λ|→∞

fΛ(T, h)) = m > 0

lim
h→0−

∂

∂h
( lim
|Λ|→∞

fΛ(T, h)) = −m < 0

Then below the critical temperature two phase coexist, sublattices with
< σ(x) >= 1 and sublattices where < σ(x) >= −1. Therefore for T > Tc the
Gibbs potential has an unique ground state where < σ(x) >= 0, whereas at
T < Tc there are two equilibrium states sensible to the boundary conditions.

Continuous group: Let G a group such that for each g(θ) ∈ G, g = e−iθaTa

with a = 1, ..., n, θa are the parameters and Ta are the group generators. The
n matrices Ta fulfil the following commutation rules:

[Ta, Tb] = ifabcTc
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where the group structure constants fabc are completely antisymmetric under
permutation of the indices. In a quantum representation g(θ) → U(θ) = e−iθaGa

where Ga (the charge operators) are the quantum representations of the group
generators such that [Ga, Gb] = ifabcGc. We can do the following considerations:

1. if A(x) is a scalar representation of G then U+A(x)U = A(x) from which

[A(x), Ga] = 0 (3.6)

for each a. Hence there are not reason for which < A(x) >Λ= 0

2. if Ai(x) a G-vectorial representation then U+Ai(x)U = (e−iθaTa)ijAj(x).
If we consider an infinitesimal G-transformation U = 1̂− iθaGa we obtain:

U+Ai(x)U = Ai(x)− iθa(Ta)ijAj(x)

in adjoint representation (Ta)ij = ifabc hence

[Ga, Ab(x)] = ifabcAc(x). (3.7)

Hence if U is an infinitesimal transformation we compute

< Ai(x) >Λ=
1

ZΛ
Tr(e−βHΛAi(x)) =

1

ZΛ
Tr(e−βHΛU+Ai(x)U) =

=
1

ZΛ
Tr(e−βHΛAi(x)) + iθa

1

ZΛ
Tr(e−βHΛ [Ga, Ai(x)]) =

=< Ai(x) >Λ −θafaij
1

ZΛ
Tr(e−βHΛAj(x))

then we have < Ai(x) >Λ= 0 for each finite size lattice.

3. if Bij(x) a 2-rank tensorial representation of G then

U+Bij(x)U = (e−iθaTa)ik(e
−iθaTa)jlBkl(x)

and the commutation rules with the generators are:

[Ga, Bij(x)] = ifaikBkj(x) + ifajlBil(x), (3.8)

This representation is reducible, but it is possible to prove that< Bij(x) >Λ=
0 for each lattice Λ such that |Λ| < ∞ considering the irreducible repre-
sentations.

These considerations can be generalized to k-rank tensorial representation of
the group G.

An important consequence of the spontaneous symmetry breaking is the
correlation between operators relative to infinite spaced sites of lattice. Indeed,
if SSB occurs one has Long Range Order, that is

lim
|x|→∞

lim
|Λ|→∞

< A(x)A(0) >Λ= m ̸= 0.
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In a lattice system invariant under translations the correlation function dependes
only by the coordinate difference of the sites on lattice, that is < A(x)A(y) >=
G(x − y) =< A(x − y)A(0) > and if g(k) is the Fourier transformate then
g(k) =< A(k)A(−k) >. Indeed one can write:

g(k) =
∑
x∈Λ

e−ik·x < A(x)A(0) >=
∑
x∈Λ

e−ik·x < A(x+ y)A(y) >=

=
∑
x∈Λ

e−ik·(x−y) < A(x)A(y) >=
∑

x∈Λ,q,q′

e−ik·(x−y)eiq·xeiq
′·y

|Λ|
< A(q)A(q′) >

from which:
g(k) =

∑
q

ei(k+q)·y < A(k)A(q) >

Now, the first side of the previous equation is independent by y then we sum
on y and divide by |Λ| both side, obtaining

g(k) =
1

|Λ|
∑
y

g(k) =< A(k)A(−k) > .

Now we will prove the theorem:

Theorem: Let M(x, y) =< O(x)O(y) > a square matrix of order |Λ|, if
M(x, y) has an eigenvalue of the order of |Λ| then the system has Long Range
Order.
Proof: The matrix M(x, y) is an Hermitian matrix hence it is diagonalizable,

furthermore, if its eigenvalues are {λi}|Λ|
i=1 and fi(x) are the eigenvectors then:

M(x, y) =

|Λ|∑
i=1

λifi(x)f
∗
i (y)

now the eigenvectors are normalized ||fi||2 =
∑
x∈Λ |fi(x)|2 = 1 therefore they

have a normalization constant ∼ O( 1√
|Λ|

), furthermore if λj = O(|Λ|) = α|Λ|
then we write:

M(x, y) =
α|Λ|
|Λ|

fj(x)f
∗
j (y) +

|Λ|∑
i=1,i ̸=j

λifi(x)f
∗
i (y) (3.9)

hence lim|x−y|→∞ lim|Λ|→∞ < O(x)O(y) >= αfj(x)f
∗
j (y) ̸= 0.

Theorem: For traslational invariant Hamiltonian the plane waves are eigen-
vectors of M(x, y) and its Fourier coefficients are the eigenvalues.
Proof: The secolar equation is

∑
yM(x−y)eik·y = λeik·x hence by replacement

x′ = x− y one obtains:∑
y

M(x− y)eik·y = eik·x
∑
x′

M(x′)e−ik·x
′
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from which λ = g(k). In this basis the Eq.(3.9) can be rewritten as:

< O(x)O(0) >Λ=
∑
k

1

|Λ|
eik·xg(k) =

eik
∗·xg(k∗)

|Λ|
+
∑
k ̸=k∗

1

|Λ|
eik·xg(k)

therefore in the thermodynamics limit

lim
|Λ|→∞

< O(x)O(0) >Λ= αeik
∗·x +

w ddk

(2π)d
eik·xg(k).

Therefore an Hamiltonian H has Long Range Order for the observable O(x) if
exist a vector of the reciprocal lattice kj such that g(kj) = O(|Λ|), that is, the
correlator has a divergence for some vector of the reciprocal lattice.

In the following theorem we prove that the Spontaneous Symmetry Brea-
king is equivalent to the Long Range Order condition. Indeed if we define the
fluctuations of the order parameter as (∆ϕ))2 =< (ϕ− < ϕ >)2 > one has
that (∆ϕ)2 ≥ 0 hence | < ϕ > |2 ≤< ϕ2 > and defining the order parameter

A =
∑
x∈Λ

eiq
∗·x

|Λ| A(x), in the thermodynamic limit one has:

(
∑
x∈Λ

eiq
∗·x

|Λ|
< A(x) >)2 ≤ 1

|Λ|
∑
x∈Λ|

eiq
∗·x < A(x)A(0) > (3.10)

that is the maximum of the eigenvalue of the matrix M(x − y) then one can
write:

lim
h→0

lim
|Λ|→∞

(< A(x) >Λ,h)
2 ≤

≤ lim
|x|→∞

lim
|Λ|→∞

< A(x)A(0) >Λ,h=0 . (3.11)

Therefore if the second side of the Eq.(3.11) is zero then also the order parameter
vanishes. On the other hand if the order parameter is non-vanish then also the
correlator is non-vanishing.

Theorem: One has spontaneous symmetry breaking if and only if

lim
|x|→∞

lim
|Λ|→∞

< O(x)O(0) >Λ= α ̸= 0 (3.12)

3.3 Inequalities

In the theory of the phase transitions the use of inequalities between traces
and/or expectation value of operators has a natural application. In particular
it is possible to find upper and/or lower bounds of the order parameters or
correlators which allow to obtain rigorous results on absence or existence a
Long Range Order in thermodynamic systems. Therefore we derive some of
this inequalities by defining an opportune inner product and using the Schwartz
inequality.
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3.3.1 Indetermination Inequality

Theorem: Let A,B : H → H two arbitrary operators on Hilbert space H,
furthermore let H : H → H the Hamiltonian operator and |0 > the its ground
state then

| < 0|[A,B]|0 > |2 ≤< 0|[A+, A]+|0 >< 0|[B+, B]+|0 > (3.13)

where [, ] and [, ]+ are, respectively, the commutator and the anticommutator
between the two operators.
Proof: One defines an inner product between the operators A and B as
(A,B) =< 0|A+B|0 > then one has:

| < 0|A+B|0 > |2 ≤< 0|A+A|0 >< 0|B+B|0 >

but
| < 0|[A+, B]|0 > |2 = | < 0|A+B|0 > − < 0|B+A|0 > |2 ≤

≤< 0|A+A|0 >< 0|B+B|0 > + < 0|AA+|0 >< 0|BB+|0 > +

+2
√
< 0|A+A|0 >< 0|BB+|0 >< 0|AA+|0 >< 0|B+B|0 >

by using 2
√
ab ≤ |a|+ |b| one proves the theorem.

3.3.2 Two point Duhamel function and Bogoliubov ine-
quality

The order parameter is the first derivative of the Helmholtz Free energy respect
to the external field h. The second derivative of f(T, h) gives the susceptivity
χ, then it is:

χ = − ∂2

(∂h)2
f(T, h) =

1

β
lim

|Λ|→∞

1

|Λ|Tr(e−βH+βhO)

∂

∂h
Tr(e−βH+βhOO)

Now, one knows that in general d
dhe

H(h) ̸= dH(h)
dh eH(h), this because dH(h)

dh and
H(h), in general, do not commute. Therefore one has:

d

dh
eH(h) =

1w
0

dxe(1−x)H(h) dH(h)

dh
exH(h). (3.14)

By using Eq.(3.14) the susceptivity is the thermodynamic limit of the following
function:

χ =
1

|Λ|

1w
0

dx

ZΛ
Tr(e−β(1−x)H(h)Oe−βxH(h)O) (3.15)

Then one defines the two points Duhamel function as

(A,B) =

1w
0

dx

Z
Tr(e−(1−x)βHAe−xβHB), (3.16)
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it is easy to verify thet the Eq.(3.16) defines an inner product between two
operators, then by the Schwartz inequality one obtains:

|(A+, B)|2 ≤ (A+, A)(B+, B). (3.17)

Now we give two important properties of the two points Duhamel function:

Lemma: Let A : H → H an operator, then:

(A+, A) ≤ 1

2
< A+A+AA+ > . (3.18)

Proof: Indeed, writing explicitely the trace in Eq.(3.16) and inserting the
identity operator 1̂ =

∑
α |α >< α|, where |α > are the eigenvectos of the

Hamiltonian, one has:

(A+, A) =
1

Z

1w
0

dx
∑
αα′

e−(1−x)βEα < α|A+|α′ > e−xβEα′ < α′|A|α >=

=
1

Z

∑
αα′

1w
0

dxe−βEαexβ(Eα−Eα′ ) < α|A+|α′ >< α′|A|α >=

=
1

Z

∑
αα′

e−βEα
e−β(Eα′−Eα) − 1

β(Eα − Eα′)
< α|A+|α′ >< α′|A|α >,

but knowing that the exponential function is a convex function one has the
following uinequality

e−xβEα − e−Eα′

β(Eα′ − Eα)
≤ β

2
(e−βEα + e−βEα′ ),

then

(A+, A) ≤ 1

2Z
(
∑
αα′

e−βEα < α|A+|α′ >< α′|A|α > +
∑
αα′

e−βEα′ < α|A+|α′ >< α′|A|α >) =

=
1

2
< A+A+AA+ > .

Lemma: For each A and B operators on the Hilbert space H the following
equality holds:

< [A,B] >= β([A,H], B) (3.19)

Proof: Writing the second side of the Eq.(3.19) in explicit way one has

β([A,H], B) =
β

Z

∑
αα′

1w
0

dxe−(1−x)βEα < α|[A,H]|α′ > e−xβEα′ < α′|B|α >
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but < α|[A,H]|α′ >= (Eα′ − Eα) < α|A|α′ > hence

β([A,H], B) =
1

Z

∑
αα′

e−βEα

1w
0

dxe−xβ(Eα′−Eα)β(Eα′−Eα) < α|A|α′ >< α′|B|α >

being, furthermore e−xβ(Eα′−Eα)β(Eα′ − Eα) = − d
dxe

−xβ(Eα′−Eα) one obtains

β([A,H], B) =
1

Z

∑
αα′

(e−βEα − e−βEα′ ) < α|A|α′ >< α′|B|α >=< [A,B] > .

Bogoliubov inequality for T > 0[1]: For each A and B arbitrary operators
on the Hilbert space H the following inequality holds:

| < [A,B] > |2 ≤ β

2
< [A+, A]+ > | < [B+, [H,B]] > |, (3.20)

proof: By Eq.(3.19) and Eq.(3.17) one has:

| < [A,B] > |2 = |β([B,H], A)|2 ≤ (A+, A)([H,B+], [B,H])

but if one defines C+ = [H,B+] then
β([H,B+], [B,H]) = ([B,H], C+) = β < [B,C+] >= β < [B, [H,B+]] >.
Therefore by using the Eq.(3.18) the proof of the theorem is complete. The
Bogoliubov inequality is a rigorous relation between two arbitrary operators
A, B and the Hamiltonian H of the physical system. The its physical signifi-
cance depends by choice of the operators involved, it holds at closely positive
temperature, but it is possible to extend this result also at the ground state
of the system (T = 0) where, in this case, the enegy gap play the role of the
temperature. Hence we prove the following theorem:

Bogoliubov inequality for T = 0: Let two arbitrary operators A,B : H →
H and H : H → H be the Hamiltonian of the system, if

∆ = inf
α∈(σ(H)−{E0})

|Eα − E0| ̸= 0

with σ(H) is the spectrum of H and E0 the energy on its ground state, then

| < 0|[A,B]|0 > |2 ≤ 1

∆
< 0|[A+, A]+|0 > | < 0|[B+, [H,B]]|0 > |, (3.21)

where |0 > is the ground state of the Hamiltonian.
Proof: One defines the inner product as

(A|C) =
∑

α∈(σ(H)−{E0})

1

Eα − E0
(< 0|A+|α >< α|C|0 > + < 0|A+|α >< α|C|0 >)

then (A|[H,B]) =< 0|[A+, B]|0 > furthermore (A|A) ≤ 1
∆ < 0|[A+, A]+|0 >

hence by Schwartz inequality one can write:

| < 0|[A+, B]|0 > |2 = |(A|[H,B])|2 ≤ (A|A)([H,B]|[H,B]) ≤
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≤ 1

∆
< 0|[A+, A]+|0 >< 0|[[H,B]+, B]|0 >

from which follows the theorem.

3.3.3 Falk Bruch Inequality

In Eq.(3.18) we give an upper bound of the two point Duhamel function, now
we prove the existance of a lower bound of this function.

Theorem[2]: Let f : [0,+∞) → (0, 1] such that f(x tanhx) = tanh x
x then the

following inequality holds[2]:

(A+, A) ≥ 1

2
< [A+, A] > f(

β < [A+, [H,A]] >

2 < [A+, A] >
) (3.22)

Proof: The function f(x) is a convex and strictly monotone decreasing function,

indeed if one define g(x) = x tanhx then f(x) = tanh(g−1(x))
g−1(x) with f ′(x) < 0 and

f ′′(x) > 0 for each x ∈ [0,+∞). Now we define the following variables:

b(A) = (A+, A) (3.23)

g(A) =
1

2
< [A+, A]+ > (3.24)

c(A) = β < [A+, [H,A]] > (3.25)

h(x) =
1

Z
Tr(e−(1−x)βHA+e−xβHA). (3.26)

By differentiation of the Eq.(3.26) one has h′(x) = β
ZTr((e

−(1−x)βH [H,A]e−xβHA+)
hence

b(A) =

1w
0

dxh(x) g(A) = 1
2 (h(0) + h(1)) c(A) = h′(1)− h′(0), (3.27)

in Eq.(3.26) we write the trace in the basis {|α >} of the eigenvectors of the
Hamiltonian and including the identity operator 1̂ =

∑
α |α >< α| hence

h(x) =
1

Z

∑
αα′

e−βEαexβ(Eα−Eα′ )| < α|A+|α > |2

furthermore inserting 1 =
r
dtδ(t−β(Eα−Eα′)) one has that h(x) =

r
dµ(t)ext

where

dµ(t) = dt
1

Z

∑
αα′

e−βEα | < α|A+|α > |2δ(t− β(Eα − Eα′)). (3.28)

The Eq.(3.28) defines a definite positive measure. The proof of the theorem is
besed on the Jensen inequality that involves probability measures and convex
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function, that is if dω is a probability measure and ϕ(t) a convex function one
has:

f(
w
dω(t)ϕ(t)) ≤

w
dω(t)ϕ(t). (3.29)

Then one define a new measure dν(t) = 1
2 (e

t + 1)dµ(t) from which:

b(A) =
w
dν(t)

2

t
tanh

t

2
g(A) =

r
dν(t) c(A) = 4

w
dν(t)

t

2
tanh

t

2
,

hence dω(t) = dν(t)
g(A) is a probability measure, furthermore being f(x) convex

one has:

g(A)f(
c(A)

4g(A)
) = g(A)f(

w
dω

t

2
tanh

t

2
) ≤ g(A)

w
dωf(

t

2
tanh

t

2
) =

= g(A)
w
dω

2

t
tanh

t

2
= b(A)

Corollary: Let b ≥ gf( c4g ) with f : [0,+∞) → (0, 1] a function such that

f(x tanhx) = tanhx
x . If there are two quantities B and C such that b ≤ B and

c ≤ C then

g ≤ 1

2

√
BC coth(

√
C

4B
) (3.30)

Proof: We define G such that B = Gf( C4G ), if we suppose that g ≥ G hence
c
4g ≤ C

4G , but f(x) is strictly decreasing then b > B and this is in contrast

with the ipothesis. Now if one defines C
4G = x tanhx then B

G = tanh x
x hence the

inequality in Eq.(3.30).

3.3.4 Reflection Positivity

In this section we consider certain interactions which satisfy a positivity pro-
perty called reflection positivity. This concept was introduced in quantum field
theory Osterwalder and Schrader[3] and it has continued to play an important
role, in particular in the theory of the phase transitions[4, 6, 7, 8, 10]. This
property can only be formulated for lattices which have a certain reflection in-
variance. For simplicity we only consider simple, cubic lattices. In the language
of a mathematical physicist reflection positivity expresses the existence of a self
adjoint transfer matrix. In more general case let H a many-body Hamiltonian
defined on a lattice and M is a set of all relevant operators of the system, and
we assume that this set is an algebra with the operations of addition, complex
scalar multiplication and operator product. In several cases, this algebra can be
written as the direct product of two subalgebras and an isomorphism Θ between
these subalgebras can also be introduced. More precisely we consider an arbi-
trary Hermitean polynomial Hamiltonian H : H → H, wehre the Hilbert space
has the form of tensorial product of two subspace H = H+ ⊗ H− furthermore
let M± the subalgebras M± = {F |F : H± → H±} and Θ an isomorphism
between M+ and M− such that for each F ∈ M−
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� Θ2 = 1̂

� < FΘ(F )∗ >≥ 0

then the Gibbs state < · > is called reflection positive. Here ∗ is the complex
conjugation. In Classical and Quantum Lettice systems this propriety is used to
prove the existence of the Long Range Order, in these case one assumes periodic
boundary conditions so that the lattice Λ ⊂ Zd is equivalent to a d-dimensional
torus . If the number of sites along a specified direction is even, then it exists a
plane P orthogonal to this direction that divides the lattice Λ in two sublattices
Λ+ and Λ− such that Λ = Λ+ ∪ Λ−, and Λ+ ∩ Λ− = 0. For instance, for a
direction along the x-axis, we have

Λ = {x ∈ Zd | − L+ 1 ≤ xi ≤ L, i = 1...d} ,

P = {x ∈ Rd−1 |x1 =
1

2
} ,

Λ+ = {x ∈ Zd | − L+ 1 ≤ x1 ≤ 0} ,
Λ− = {x ∈ Zd |1 ≤ x1 ≤ L} , (3.31)

L being the number of lattice sites.
Thus, it is possible to define an idempotent one to one mapping θ between Λ+

and Λ− such that:

θ(x)k = { xk if k ̸= 1
1− x1 if k = 1

(3.32)

and the ensemble ΛP , a sublattice of sites of Λ, that lies on a plane located on
the left of P plane and parallel to it,

ΛP = {x ∈ Λ |x1 = 0} . (3.33)

Therefore, P is a empty ensemble whereas ΛP is not empty.
Next, we define a mapping χ between operators on the two sublattices such that

Θ(O(x)) = G+O(θ(x))G ,

for any operator O(x), with x ∈ Λ+, θ(x) ∈ Λ−; G is a suitable unitary operator.
The reflection positivity condition corresponds to the definition of the definite
positive inner product between two operators relative to two sublattices. More
precisely, the Hilbert space of the Hamiltonian model is the tensorial product
of two subspaces H+ and H− associated with two sublattices and for each A :
H+ → H+, Θ(A) : H− → H−, hence for each pair of operators A,B : H+ → H+

one can define an positive inner product between A and B as:

(A|B) =< AΘ(B) > .

Therefore, by the Schwartz inequality one has that for each A,B ∈ M+, where
M+ and M− the corresponding subalgebras operators to the two subblettices,
the following inequality:

| < AΘ(B) > | ≤ (< AΘ(A) >)
1
2 (< BΘ(B) >)

1
2 . (3.34)
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Lemma: For each A ∈ M+ one has Tr(AΘ(A)) ≥ 0.
Proof: Indeed

Tr(AΘ(A)) = TrΛ+(A)TrΛ−(Θ(A)) = |TrΛ+(A)|2 ≥ 0

Theorem: If the Hamiltonian of the system has the form:

H = A⊗ 1̂ + 1̂⊗Θ(A)∗ −
p∑
i=1

Bi ⊗Θ(Bi)
∗ , (3.35)

where A,Bi ∈ M+ then the Gibbs state is reflection positive.
Proof: We consider F ∈ M+ and compute the thermal expectation value:

< FΘ(F ) >=
1

Z
Tr(e−βHFΘ(F )) =

=
1

Z
Tr(e−β(A⊗1̂+1̂⊗Θ(A)∗−

∑p
i=1 Bi⊗Θ(Bi)

∗)FΘ(F )∗).

The Hamiltonian, by redefinition of A, can be transformed as follows:

H = A⊗ 1̂ + 1̂⊗Θ(A)∗ +
1

2

p∑
i=1

(Bi −Θ(Bi)
∗)2 (3.36)

then, by using the Trotter formula, one has

< FΘ(F ) >= lim
n→∞

an

where the sequence an is:

an =
1

Z
Tr(FΘ(F )∗{e−β A

n e−β
Θ(A)∗

n

p∏
i=1

e−β
(Bi−Θ(Bi)

∗)2

2n )}n) (3.37)

but using the Hubbard Stratonovic transformation

e−F
2

=

+∞w
−∞

dq√
4π
e−

q2

4 +iqF (3.38)

we write:

an =
1

Z
Tr(FΘ(F )∗{e−β A

n e−β
Θ(A)∗

n

w
Rp

dpqe−
∑

i q2i
4

(4π)
p
2

p∏
i=1

ei
√

( β
2n )qiBie−i

√
( β
2n )qiΘ(Bi)

∗
}n)

and, observing that (
r
dq(..))n =

∏n
i=1

r
dqi(...)i =

r
dnq

∏
i(...)i, we have:

an =
1

Z
Tr(FΘ(F )∗

w
dµ

n∏
l=1

e−β
A
n e−β

Θ(A)
n

p∏
i=1

ei
√

( β
2n )qiBie−i

√
( β
2n )qiΘ(Bi)

∗
)
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where the measure dµ is defined as

dµ =
dnpq

(4π)
np
2

p∏
i=1

n∏
l=1

e−
q2il
4 (3.39)

then

an =
1

Z

w
dµTr(FΘ(F )∗

n∏
l=1

e−β
A
n e−β

Θ(A)
n

p∏
i=1

ei
√

( β
2n )qiBie−i

√
( β
2n )qiΘ(Bi)

∗
) =

=
1

Z

w
dµ{TrΛ+(F

n∏
l=1

e−β
A
n

p∏
i=1

e−i
√

( β
2n )qiBi)}2 ≥ 0

where we used tha condition that each operator in M+ commute with any
operator in M−.

Gaussian Domination theorem: Let an Hamiltonian operator of the form
(3.35) with the additional condition that the all Bi operators are real (that is
B∗
i = Bi) then one has:

Z(h) = Tr(e−β(A⊗1̂+1̂⊗Θ(A)∗+ 1
2

∑p
i=1(Bi−Θ(Bi)−hi)

2)) ≤ Z(h = 0) (3.40)

where hi with i = 1, ..., p are real number, physically it is an external field.
Proof: one follows the same procedure used in the previous theorem. Indeed
by Trotter formula one writes Z(h) as limit of a sequence {an}+∞

n=0 where the
general term an is:

an = Tr((e−β
A
n e−β

Θ(A)
n

p∏
i=1

e−β
(Bi−Θ(Bi)−hi)

2

2n ))n))

from which, using the Hubberd Stratonovic transformation, after some step one
has:

an =
w
dµ

n∏
l=1

ei
√

( β
2n )qilhiTr(e−β

A
n e−β

Θ(A)
n

p∏
i=1

ei
√

( β
2n )qiBie−i

√
( β
2n )qiΘ(Bi)) =

=
w
dµ

n∏
l=1

ei
√

( β
2n )qilhiTr(+)(e−β

A
n

p∏
i=1

ei
√

( β
2n )qilBi)

n∏
j=1

Tr(−)(e−β
Θ(A)

n

p∏
i=1

e−i
√

( β
2n )qijΘ(Bi)).

(3.41)
Now an inner product can be defined (f |g) =

r
dµf(q)g∗(q), hence if we define

the two function f and g as

f(q) =
n∏
l=1

ei
√

( β
2n )qilhiTr(+)(e−β

A
n

p∏
i=1

ei
√

( β
2n )qilBi)
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g(q) =

n∏
j=1

Tr(−)(e−β
Θ(A)

n

p∏
i=1

ei
√

( β
2n )qijΘ(Bi)) =

n∏
l=1

Tr(+)(e−β
A
n

p∏
i=1

ei
√

( β
2n )qilBi)

then using the Schwartz inequality we have that an ≤ |an| = |(f |g)| ≤
√
(f |f)(g|g),

but it is easy to prove that (f |f) = (g|g) from which

an ≤ (f |f) =
w
dµ

n∏
l=1

ei
√

( β
2n )qilhiTr(+)(e−β

A
n

p∏
i=1

ei
√

( β
2n )qilBi). (3.42)

Now following step by step backward the procedure one proves that the second
side of the Eq.(3.42) is equal to Z(h = 0). Therefore the ineqality (3.40) is
proved. We notice that the index i in Eq.(3.40) can be an enumeration of
operators but it can indicate also the sites of the lattice. Then, in this case, the
Hamiltonian is:

H = H+ ⊗ 1̂ + 1̂⊗Θ(H+)−
p∑

x∈Λ,i=1

(Bi(x)Θ(Bi(x)))
2 (3.43)

Gaussian Domination theorem II: Let H be an Hamiltonian operator of
the type:

H(h) = A+Θ(A)∗ +

n∑
a=1

(Ba −Θ(Ba)− ha)
2 −

m∑
b=1

(Db −Θ(Db))
2 (3.44)

where the operators {Ba}na=1 are real hence B∗
a = Ba whereas the operators

{Db}mb=1 are purely imaginary, that is D∗
b = −Db, then one has the following

inequality:
Z(h) = Tr(e−βH(h)) ≤ Tr(e−βH(h=0)) = Z(0). (3.45)

Proof: The proof follows the same steps of the previous theorem, but the
Hubbard Stratonovic Eq.(3.38) for imaginary operators is:

eD
2

=

+∞w
−∞

dq√
4π
e−

q2

4 +qD. (3.46)

In Classical and Quantum systems defined on lattice the Gaussian domination
theorem has an important corollary that we will use.

Corollary 1: Let H be an Hamiltonian operator of a system defined on lattice
Λ ⊂ Zd, let G be an unitary operator such that G+HG has the form (3.43)
and {hil(x) |x ∈ Λ, i = 1, ..., p, l = 1, ..., d} with hil(x) ∈ R, furthermore
let Θ(O(x)) = O(θ(x)). If one defines the divergence on lattice as ∂lhil(x) =∑
l hil(x+ δl)− hil(x), then the following inequality holds:

Tr(e−β(G
+HG−

∑p
x∈Λi=1

∑d
l=1 ∂lhil(x)Bi(x)))

Tr(e−βH)
≤ e

β||h||2
2 (3.47)
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where l = 1, ..., d whereas ||h||2 =
∑p
x∈Λi=1 |hi(x)|2 in which hi(x) =

∑d
l=1 hil(x).

Proof: The proof of the theorem uses the result of the Gaussian Domination
theorem. The first step is to fix the reflection plane P orthogonal to x1 axis,
therefore the Hamiltonian has the form (3.36) and contains a term with the
external field hi(x) as follows:

G+HG = H+(h)⊗ 1̂ + 1̂⊗Θ(H+(h)) +
1

2

p∑
x∈ΛP ,i=1

(Bi(x)−Θ(Bi(x))
∗)2−

−
∑

x∈ΛP ,i

d∑
l=1

hil(x)(Bi(x)−Bi(x−δl)))∗)+
1

2

∑
x∈Λ,i

d∑
l=1

|hil(x)|2−
1

2

∑
x∈Λ,i

d∑
l=1

|hil(x)|2 =

= H ′
+(h)⊗1̂+1̂⊗Θ(H ′

+(h))+
1

2

p∑
x∈ΛP ,i=1

(Bi(x)−Θ(Bi(x))
∗−hi1(x))2−

1

2

∑
x∈Λ,i

d∑
l=1

|hil(x)|2.

The Hamiltonian has the same form of Eq.(3.36) hence we can write:

Tr(e−β(G
+HG−

∑p
x∈Λi=1

∑d
l=1 ∂lhil(x)Bi(x))) = e

β
2 ||h||2Z(h)

where the partition function is defined as in Eq.(3.40). Then by the Gaussian
domination theorem one has:

|Z(h)|2 ≤ Z(h(+))Z(h(−)) (3.48)

with

h(−)i(x) = {
hi(x) if x ∈ Λ− − ΛP
0 if x ∈ ΛP

hi(θ(x)) if x ∈ Λ+

,

and similarly

h(+)i(x) = {
hi(x) if x ∈ Λ+

0 if x ∈ ΛP
hi(θ(x)) if x ∈ Λ− − Λp

.

We notice that h(±)i(x) have a number of equal zero components larger than
hi(x), this property allows us to state that if the inequality Eq.(3.48) is true,
then Z(h) is maximum when hi(x) = 0 for each x ∈ Λ.
Indeed, let us suppose that Z(h) is maximum for a specified value h = hmax; if
this maximum value is assumed at more than one point of the lattice we may
select the point with the largest number of h’s components equal to zero. Then,
by inequality Eq.((3.48)), we know that there is an other point of maximum
for Z(h) with larger number of vanishing components in contradiction with the
hypothesis. Therefore, hmax must be identically zero, therefore the inequality
in Eq.(3.47) holds.
Now we shift the external field as hi(x) → λhi(x)), where λ is a constant, there-

fore, in Eq.(3.47), the first side is a function of λ and f(λ) ≤ e
λ2β
2

∑p
x∈Λ,il=1(hil(x))

2

.
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Performing a Taylor expansion of both sides of the Eq.(3.47) and noticing
thatf(0) = 1 and d

dλf(λ)|λ=0 = 0, we get:

f(0) +
λ2

2
f ′′(0) +O(h3) ≤ 1 +

λ2β

2

p∑
x∈Λ,il=1

(hil(x))
2 +O(h4)

(
dO

dλ
,
dO

dλ
) ≤ β

p∑
x∈Λ,il=1

h2il(x) , (3.49)

where O(λ) = −βH+λβ
∑p
x∈Λ,i=1

∑d
l=1 ∂lhil(x)Bi(x). The Eq.(3.49) holds for

h such that any its component is real. Now we observe that for each A and B
complex we have:

(A,B) = (ReA,ReB) + (ImA, ImB) (3.50)

where ReP and ImP are, respectively, the Real part and Imaginary part of the
operator P . Therefore the inequality Eq.(3.49) holds separately for Real and
Imaginary part of the involved quantitities. The choice of the h function is arbi-
trary and depeds by physical system, typically the Eq.(3.47) is used to obtain an
upper bound on the susceptivity χij(q) = (Bi(q), Bj(−q)), in this case we choose
hil(x) = hi(e

−iq·(x−δl) − e−iq·x), hence O(λ) = −βH + 2λβ
∑p
i=1 hiBi(q)E−(q)

where E−(q) =
∑d
l=1(1−cos ql) and hi are constants, furthermore, by Eq.(3.49),

we have the following inequality:

2βE−(q)

p∑
ij=1

hihj(Bi(q), Bj(−q)) ≤ |Λ|
p∑
i=1

h2i ,

but taking hi = δi1 or hi = δi2 or...hi = δip we have:

(Bi(q), Bi(−q)) ≤
|Λ|

2βE−(q)
. (3.51)

In Eq.(3.51) the two point Duhamel function is computed using the Hamiltonian
G+HG hence, returning, to H we write:

(G+Bi(q)G,G
+Bi(−q)G) ≤

|Λ|
2βE−(q)

. (3.52)

The plane P is arbitrary, furthermore the Schwartz inequality (3.34) can be used
an arbitrary number of times hence one can obtain an its disseminates version
(a type of Holder inequality).

Chessboard estimation: Under the hypoyhesis of the previous theorem, gi-
ven
A : H → H an osservable and Tx the traslation operator such that T+

x A(y)Tx =
A(x+ y) then for each x ∈ Λ the following inequality holds:

| <
∏
x∈Λ

A(x) >Λ | ≤
∏
x∈Λ

(<
∏
y∈Λ

(T+
y A(x)Ty) >Λ)

1
|Λ| . (3.53)
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Proof: We do reference to the convention (3.31), (3.32) and (3.33), with perio-
dic boundary condition and, for convenience, we take Li = 2p for each i = 1, ..., d
where p ∈ N. As the first step we consider two reflection planes, the pla-
ne P1 is defined as in Eq.(3.32) whereas P2 is shifted of 2p−2 sites respect to
P1, hence they divide the lattice in four sublattices and the operator algebra
in four subalgebras. Now if we consider four operators belonging to the four
subalgebras A1(1), A2(2), A3(3), A4(4) and the correspondent shifted operators
Ai(1), Ai(2), Ai(3), Ai(4) with i = 1, ..., 4. Then the iterated Schwartz inequality
gives the following result:

| < A1(1)A2(2)A3(3)A4(4) >Λ | = | < A1(1)A2(2)Θ1(A3(2))Θ1(A4(1)) >Λ | ≤

≤ (< A1(1)A2(2)Θ1(A1(1))Θ1(A2(2)) >Λ)
1
2 (< A3(2)A4(1)Θ1(A3(2))Θ1(A4(1)) >Λ)

1
2 =

= (< A1(1)Θ1(A1(1))A2(2)Θ1(A2(2)) >Λ)
1
2 (< A3(2)Θ1(A3(2))A4(1)Θ1(A4(1)) >Λ)

1
2 ≤

≤ (< A1(1)Θ1(A1(1))Θ2(A1(1))Θ2(Θ1(A1(1))) >Λ)
1
4×

×(< A2(2)Θ1(A2(2))Θ2(A2(2))Θ2(Θ1(A2(2))) >Λ)
1
4×

×(< A3(2)Θ1(A3(2))Θ2(A3(2))Θ2(Θ1(A3(2))) >Λ)
1
4×

×(< A4(1)Θ1(A4(1))Θ2(A4(1))Θ2(Θ1(A4(1))) >Λ)
1
4 .

But being for example Θ1(A1(1)) = A1(2), Θ2(A1(1)) = A1(4) and Θ2(Θ1(A1(1))) =
A1(3), hence we have that:

| < A1(1)A2(2)A3(3)A4(4) >Λ | ≤ (< A1(1)A1(2)A1(3)A1(4) >Λ)
1
4×

×(< A2(1)A2(2)A2(3)A2(4) >Λ)
1
4 (< A3(1)A3(2)A3(3)A3(4) >Λ)

1
4×

×(< A4(1)A4(2)A4(3)A4(4) >Λ)
1
4 .

This procedure can be iterated and in general one can consider a generic reflec-
tion mapping θ(l) with respect to Pl plane as:

θ(l)(x)k = { xk if k ̸= 1
2l − 1− x1 if k = 1

(3.54)

we can take l such that ≤ l < 2p, that is a plane for each bond between two
sites on lattice obtaining the inequality:

| <
2p∏
i=1

Ai(x
(1)
i ) >Λ | ≤

2p∏
i=1

(<
2p∏
j=1

Aj(x
(1)
i ) >Λ)

1
2p . (3.55)

In Eq.(3.55) we considered all the planes Pi with i = 1, ..., 2p orthogonal to the
x(1) direction, hence repeating the argument in the other d − 1 directions one
has

| <
|Λ|∏
i=1

Ai(xi) >Λ | ≤
|Λ|∏
i=1

(<

|Λ|∏
j=1

Ai(xj) >Λ)
1

|Λ| ,

if one has a single operator A(x) depending by site on lattice one has the result
in Eq.(3.53). The Eq.(3.53) is used in the Infrared method and in the Peierls
Argument in order to estimete the Contour weight.
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3.4 Infrared Bound Method

If in a translation-invariant model there is a phase transition then we can prove
the existence rigorously if some inequality is fulfilled, in particular if there is
a k∗ belonging to the first zone of Brillouin such that the correspondent Fou-
rier component deverge in the thermodynamic limit, in such case the Fourier
transformate, in the thermodynamics limit, has the form:

g(k) =< B(k)B(−k) >= g′(k) +m2δ(k − k∗)

hence the system has Long Range Order with order parameterm2 = lim|Λ|→∞ <
(
∑
x∈ΛB(x))2 >. The goal of the Infrared Bound Method is to prove that

m2 > 0 at low temperature. Therefore, in a general theory, we consider a system
with Hamiltonian H where H is invariant under transformation U = eiθaQa

belonging a Group G where Qa with a = 1, ..., N are the generators of the
group, furthermore {Qa} fulfil the following commutation rules:

[Qa, Qb] = ifabcQc.

We suppose that, for example, Ba is a vectorial order parameter, hence:

[Qa, Ba] = ifabcBc.

We suppose that the Fourier Transformate of the correlator

g(k) ≤ f(k) (3.56)

and that there exist an wave vector k∗ such that limk→k∗ f(k) = +∞. This is
a condition to prove the existence of the phase transition, now we find another
condition. If the Ba operator is bounded then we have the condition:

N∑
x∈Λ,a=1

< Ba(x)Ba(x) >

|Λ|
=

1

Z|Λ|

N∑
x∈Λ,a=1

Tr(e−βHBa(x)Ba(x)) =

=
1

Z|Λ|

N∑
x∈Λ,a=1

∑
α

e−βEα < α|Ba(x)Ba(x)|α >=
1

Z

∑
α

e−βEα ||Ba(x)|α > ||2 ≤ ||B||2.

then there exist a positive constant M such that the Parseval identity holds:

N∑
x∈Λ,a=1

< Ba(x)Ba(x) >

|Λ|
=

N∑
a=1

< (Ba(0))
2 >=M, (3.57)

where we used the translation-invariant of the Hamiltonian and the quantity
||B|| is the norm of the Ba(x) operator. The Eq.(3.57) is an example of sum
rule and it together with the Eq.(3.56) forms a pair of conditions necessary to
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prove the existance of the phase transition. Indeed by the Eq.(3.57) one can
write

M =

N∑
x∈Λ,a=1

< Ba(x)Ba(x) >

|Λ|
=

N∑
k∈BZ,a=1

1

|Λ|
< Ba(k)Ba(−k) >=

=
1

|Λ|

N∑
a=1

< Ba(k
∗)Ba(−k∗) > +

N∑
k∈BZ,k ̸=k∗a=1

1

|Λ|
< Ba(k)Ba(−k) >

that, in the thermodynamics limit, one can rewrite as M = m2 +
r

ddk
(2π)d

g(k),

but by Eq(3.56) one has:

M ≤ m2 +
w ddk

(2π)d
f(k).

Therefore one has phase transition if M −
r

ddk
(2π)d

f(k) > 0 at low temperature.

Now the reflection positivity property and the Gaussian domination theorem
or Chessboard estimate can be used to obtain the function f(k). As the first
example, we do reference to the Eq.(3.52) from which we notice that the su-
sceptivity of the vectorial observable Φi(x) = G+Bi(x)G has a divergence in
q = 0. Then we compute the double commutator [G+Bi(−q)G, [H,G+Bi(q)G]]
and we estimate its upper bound, that is, we find the Function C(q) such that
| < [G+Bi(−q)G, [H,G+Bi(q)G]] > | ≤ C(q), hence by inequality (3.30) one
has

< Φi(q)Φi(−q) >≤

√
C(q)

2E−(q)
coth(β

√
C(q)E−(q)

2
)

but using the inequality cothx ≤ 1 + 1
x one has:

< Φi(q)Φi(−q) >≤

√
C(q)

2E−(q)
+

1

βE−(q)
, (3.58)

in particular in the ground state of the Hamiltonian (T → 0) then

< 0|Φi(q)Φi(−q)|0 >≤

√
C(q)

2E−(q)
(3.59)

In this case the sum rule of the Eq.(3.57) corresponds to
∑p
q∈BZ,i=1

1
|Λ| <

Φi(q)Φi(−q) >= M , therefore one has Long Range Order if the following
inequality holds:

M −
w ddk

(2π)d

√
C(q)

2E−(q)
> 0, (3.60)

whereas we can estimate the critical temperature by:

M −
w ddk

(2π)d

√
C(q)

2E−(q)
− 1

β

w ddk

(2π)d
1

E−(q)
> 0. (3.61)



36 CAPITOLO 3. MATHEMATICAL TOOLS IN PHASE TRANSITIONS

Example[10]: As example we consider the Antiferromagnetic Heisenberg mo-
del, the Hamiltonian is

H = j
∑
x∈Λ,δ

S⃗(x) · S⃗(x+ δ) (3.62)

where δ is a unit vector on lattice. The invariance Group is SU(2) and the spin
components are the generators, the order parameter is the staggered magneti-
zation

M(T ) = lim
h→0

∑
x∈Λ

eiQ·x

|Λ|
< S3(x) >h .

The sum rule is easly obtained observing that∑
x∈Λ

1

|Λ|
S2(x) =

∑
q∈BZ

S⃗(q) · S⃗(−q) = s(s+ 1)

where s is the spin of the single site on lettice. Now we know that the Si are not
all reals but we have two real components (S1 and S3) and one purely imaginary
(S2). In Eq.(3.62) the interaction is restrict to nearest lattice sites, hence the
lattice is bipartite, Λ = ΛA

∪
ΛB with:

� ΛA = {x ∈ Λ (−1)|x| = 1}

� ΛB = {x ∈ Λ (−1)|x| = −1}

Then we define the transformation operator G =
∏
x∈ΛB

e−iπS2(x), that is a
rotation around Y axis of angle π of the sites belonging ΛB sublattice. Therefore
the transformed Hamiltonian is:

G+HG = j
∑
x∈Λ,δ

S2(x)S2(x+δ)−j
∑
x∈Λ,δ

(S1(x)S1(x+δ)+S3(x)S3(x+δ)) (3.63)

Now by introducing the external field h we observe that the Hamiltonian exhibits
the Reflection Positivity propriety, indeed if we do refernce to the convenction
Eq.(3.31), (3.32) and (3.33), then Hamiltonian (3.63) can be rewritten as:

G+HG =

= H−+Θ(H−)+j
∑
x∈ΛP

S2(x)Θ(S2(x))−j
∑
x∈ΛP

(S1(x)Θ(S1(x))+S3(x)Θ(S3(x))),

(3.64)
where

H− = j
∑

x,x+δ∈Λ−

S2(x)S2(x+ δ)− j
∑

x,x+δ∈Λ−

(S1(x)S1(x+ δ) + S3(x)S3(x+ δ))

Therefore by inequality (3.52) one has:

(GSi(q)G
+, GSi(−q)G+) ≤ 1

2βE−(q)
,
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then

(Si(q), Si(−q)) ≤
1

2β(1 + cos q)
for each i = 1, 2, 3. (3.65)

The susceptivity diverge at the q = Q = (π, ..., π) ∈ Rd and this is a signal of a
phase transition. Now, we must compute the upper bound C(q) to the doubble
commutator [Sj(−q)[H,Sj(q)]], hence

[H,Sj(q)] = iϵijk
∑
x∈Λ,δ

e−iq·x
(
e−iq·δ − 1

)
Si(x)Sk(x+ δ)

from which

[Sj(−q)[H,Sj(q)]] = −2
∑
δ

(1− e−iq·δ)(1− eiq·δ)
∑
x∈Λ

3∑
i=1

Si(x)Si(x+ δ)

therefore

| < [Sj(−q)[H,Sj(q)]] > | ≤ 4s(s+ 1)

d∑
i=1

(1− cos qi) =
1

β
C(q). (3.66)

then by the Falk-Bruch inequality we have that the correlation function has an
upper bound, hence

g(q) =

3∑
i=1

< Si(q)Si(−q) >≤

√
3s(s+ 1)E−(q)

2E+(q)
coth

(
2β

√
2

3
s(s+ 1)E−(q)E+(q)

)

Now if we define M2 =
<Sj(Q)Sj(−Q)>

|Λ| then

s(s+ 1) =M2 +
w
BZ

d4q

(2π)4
g(q),

therefore there is spontaneous magnetization if the following inequality holds

s(s+ 1)−
w
BZ

d4q

(2π)4

√
3s(s+ 1)E−(q)

2E+(q)
coth

(
2β

√
2

3
s(s+ 1)E−(q)E+(q)

)
> 0

(3.67)
whereas the Ground State is ordered if√

2s(s+ 1)

3
>

w
BZ

d4q

(2π)4

√
E−(q)

E+(q)
(3.68)

Inequalities like Eqs.(3.67) and (3.68) and their generalizations[11, 12, 13] al-
low us to conclude that the Antiferromagnetic Heisenberg model supports a
staggered spontaneous magnetization at low temperature in three or higher di-
mensions, whereas in two dimensional systems the Ground state is ordered if
s > 1/2. For s = 1/2 there is not an exact proof of the existence of a quantum
order of the system.
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Capitolo 4

Mermin and Wagner
Theorem

The phase transitions can be absent if the fluctuations amplitude diverge for
each temperature. The quantum fluctuation, due to the Heisenberg indetermi-
nation principles, can destroy the order in the ground state of the Hamiltonian.
The dimensionality of the system play a very important role on the amplifica-
tion of the thermal and quantum fluctuation of the order parameter. Indeed
a theorem due to Mermin and Wagner[35, 34] states that a continuous sym-
metry can only be spontaneously broken in a dimension larger than two. For
a discrete symmetry this lower critical dimensionality is one. For example the
antiferromagnetic Heisenberg model with SU(2) symmetry can not be ordered
at the one an two dimension at any finite temperature. Alternatively, for the
models with discrete symmetry as the Ising model where the symmetry corre-
sponds to reversing all the spins, the symmetry is spontaneously broken in the
low-temperature phase below a critical point in dimension two or higher, but
no transition occurs in dimension one.

The Mermin-Wagner theorem has been restated by Coleman in the fra-
mework of field theory. One can establish this property by showing that the
spontaneous breakdown of a continuous symmetry would lead to a Goldstone
boson. But in a two-dimensional space-time it is not possible to construct a
massless scalar field operator. Indeed the correlator is

< 0|ϕ(x, t)ϕ(0)|0 >=
+∞w
0

dq

2πq
cos(qx)eiqt (4.1)

and it is an infrared divergent integral. No subtraction procedure may be de-
vised to circumvent this difficulty without spoiling the fundamental properties
of field theory, for instance, positivity of the Hilbert space metric. A massless
scalar field theory is undefined in a two-dimensional world due to severe infra-
red divergences. In the statistical language, fluctuations overcome energy in
destroying long-range order in this dimension. A simple argument reveals the

39
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nature of this phenomenon. Let us use a discrete classical Heisenberg model
on a lattice of side L. Compare the two configurations where the orientation of
the spin is allowed to vary along the direction, for example, of the X axis, the
energies are, respectively, proportional respectively to Ea = −Ld (spins parallel

to X axis) and to Eb = −Ld−1
∑L
i=1 cos(

θ
L i) if the angle between the spins and

the X axis is (θ/L)i. The relative weight of these configurations is given by the

Boltzmann factor e−β(Ea−Eb) ≈ e−
βθ2

2 Ld−2

, For d > 2 one can see that the (b)
configuration has a negligible weight in the thermodynamic limit and for suf-
ficiently low temperature, meaning that order is favored. For d = 2 averaging
over fluctuations will destroy the order where all the spins are parallel to X
axis.

Same consideration can be done for the quantum fluctuation on the ground
state, therefore one can exclude that the countinuous symmetry can be broken
sponteneously in one dimensional systems. The Mermin and Wagner theorem
has a general validity, the unique restriction is that the interaction must be
short ranged. In which that follows we will consider itinerant electron systems.

4.1 T-finite Mermin and Wagner theorem

We consider an Hamiltonian operator having the form

H =

N∑
xy∈Λ,a=1

t(|x− y|)ψ+(x)ψ(y) + λ
∑
x∈Λ

f(ψ+(x)ψ(x)) (4.2)

where Λ ∈ Zd is a d-dimensional lattice, the field ψ(x) is

ψ(x) =


c1(x)
.
.
.

cn(x)

 (4.3)

with the anticommutation rules [ca(x), c
+
b (y)]+ = δxyδab and [ca(x), cb(y)]+ = 0.

The Hamiltonian is invariant under a countinuous Group G. The more general
continuous Symmetry Group of physical interest is the U(n) Group. The U(n)
Group is composed by n × n Unitary matrices and any element of U(n) is

g = e−i
∑N

a=1 θaTa where θa are the parameter, whereas {Ta}Na=0 with T0 = 1̂ and
N = n2 are the generators of the group, they fulfil the following commutation
rules

[Ta, Tb] = ifabcTc

Here the constant fabc are the structure constant of the Group, they are comple-
tely antisymmetric under permutations of any pairs of the indices. In a quantum

representation g → U such that U = e−i
∑N

a=1 θaQa the charge

Qa =
∑
x∈Λ

ψ+(x)Taψ(x)
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are the quantum representation of the generators. It is easy to prove that:

[Qa, Qb] = ifabcQc.

Hence we suppose [H,Qa] = 0 for each a = 1, ..., N , furthermore the following
commutation rules are fulfilled:

[Qa(x), ψ(y)] = −δxyTaψ(x)
[Qa(x), ψ

+(y)] = δxyψ(x)Ta (4.4)

Mermin and Wagner Theorem: Let the Hamiltonian (4.2) where the hop-
ping is short ranged

∑
x∈Λ t(x)|x|2 ≤ ∞, if one defines an order parameter as

the expectation value of the vectorial bounded operator

Oa =
∑
x∈Λ

e−ik
∗·x

|Λ|
Oa(x) =

Oa(k
∗)

|Λ|
,

where k∗ is a particular vector wave belonging to the first zone of Brillouin.
Then there is not Long Range Order for any finite temperature.
Proof: The proof of the theorem follows three step:

1. One introduces an external field h, then H → H(h) = H + Vh = H +
h
∑
x∈Λ e

−ik∗·xOa(x).

2. One obtains an upper bound of the order parameter, that is M(T, h,Λ) ≤
f(T, h,Λ) that after the thermodynamic limit became M(T, h) ≤ f(T, h).

3. If the limh→0 f(T, h) = 0 one proves that the order is absent.

In Eq.(4.2) the term
∑
x f(ψ

+(x)ψ(x)) commute with Qa(x) = ψ+(x)Taψ(x)
whereas the Hopping term commute with total charge Qa =

∑
xQa(x). In order

to obtain the function f(T, h,Λ) we use the Bogoliubov inequality Eq.(3.20)
with an appropriate definition of the operators A and B, in particular their
commutator must be the order parameter whereas the operator B must be
connected to the generators of the invariance Group. Therefore, if we want
study the 1-component of the order parameter then we take: A = f1NjOj(k

∗−k)
whereas B = QN (k). The order parameter is a vectorial operator under G hence
the following commutation rules are fulfilled:

[A,B] =
∑
xy∈Λ

e−i((k
∗−k)·x+k·y)f1Nj [Oj(x), QN (y)] =

= −if1NjfjNk
∑
xy∈Λ

e−i(q·x+k·y)Ok(x)δxy

but using the Fiertz identity Eq.(8.12) one has that −f1NjfjNk = −fj1NfjNk =
nδ1k hence:

[A,B] = inO1(k
∗) (4.5)
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Then | < [A,B] > |2 = n2|Λ|2|M1|2 = n2| < O1(k
∗) > |2 is the 1-component of

the order parameter. Now it is necessary to compute the double commutator
[B+, [H,B], but we notice that [f(ψ+(x)ψ(x)), B] = 0 then we must compute
only [B+, [Ht + Vh, B] where Ht is the hopping term in the Hamiltonian (4.2).
Therefore we write:

[Ht, B] = −
∑

xx′y∈Λ

t(x− y)e−ik·x
′
[QN (x′), ψ+(x)ψ(y)] =

= −
∑

xx′y∈Λ

t(x− y)e−ik·x
′
(ψ+(x)[QN (x′), ψ(y)] + [QN (x′), ψ+(x)]ψ(y)) =

from which by using the Eq.(4.4) one has:

[Ht, B] = −
∑
xy∈Λ

t(x− y)(e−ik·x − e−ik·y)ψ+(x)TNψ(y).

Furthermore:

[B+, [Ht, B]] = −
∑

xx′y∈Λ

t(x− y)(e−ik·x − e−ik·y)eik·x
′
[QN (x′), ψ+(x)TNψ(y)] =

= −
∑

xx′y∈Λ

t(x−y)(e−ik·x−e−ik·y)eik·x
′
(Ψ+(x)TN [QN (x′), ψ(y)]+[QN (x′), ψ+(x)]TNψ(y)]) =

= −
∑
xy∈Λ

t(x− y)(e−ik·x − e−ik·y)(eik·x − eik·y)ψ+(x)(TN )2ψ(y) =

= −2
∑
xy∈Λ

t(x− y)(1− cos k · (x− y))ψ+(x)(TN )2ψ(y)

Therefore its expectation value is

| < [B+, [Ht, B]] > | ≤ 2
∑
xy∈Λ

t(x−y)(1− cos k · (x−y))| < ψ+(x)(TN )2ψ(y) > |

but knowing that 1− cosx ≤ x2

2 and (k · (x− y))2 ≤ k2(x− y)2 one has

| < [B+, [Ht, B]] > | ≤ k2
∑
xy∈Λ

t(x− y)(x− y)2| < ψ+(x)(TN )2ψ(y) > |, (4.6)

Now one defines an inner product as (A|B) =< A+B >, hence by Schwartz
inequality one has:

< Ψ+(x)(TN )2ψ(y) >≤< ψ+(x)(TN )2ψ(x) >

hence, if the group G is the SU(2) group the Tb =
σb

2 with σb is a Pauli matrix,
then (Tb)

2 = 1
4 and the expectation value of the ψ+(x)ψ(x) is smaller then 4
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(the field operator ψ(x) has only two component). However, in general (TN )2

is an hermitean matrix M = (mij)
n
ij=1, therefore

< ψ+(x)(TN )2ψ(x) >=

n∑
ij=1

mij < ψ+
i (x)ψj(x) >≤ λmax

∑
ij

< ψ+
i (x)ψj(x) >≤

≤ λmax
∑
ij

√
< ψ+

i (x)ψi(x) >< ψ+
j (x)ψj(x) > = λmaxN

2,

where λmax is the max of the eigenvalue of the matrix M , furthermore by
hipothesis

∑
x∈Λ t(x)x

2 ≤ α with α independent by number of sites on lattice.
Hence the Eq.(4.6) can be rewritten as:

| < [B+, [Ht, B]] > | ≤ k2|Λ|αn2λmax = ρn2|Λ|k2. (4.7)

By the same procedure we compute:

< [B+, [Vh, B]] >= h < O1(k
∗) >= h|Λ|M1 (4.8)

Now we compute the quantity < [A+, A]+ > obtaining:

< [A+, A]+ >= 2f1Njf1Nk < Oj(k − k∗)Ok(k
∗ − k) >≤

≤ 2
√
f1Nj < Oj(k − k∗)Oj(k∗ − k) > f1Nk < Ok(k − k∗)Ok(k∗ − k) > =

= 2f1Nj < Oj(k − k∗)Oj(k
∗ − k) >

but let fmax = max(2≤j≤N−1){f1Nj} and ||O|| the norm of the operator Oj(x)
then:∑
k

< [A+, A]+ >≤ 2fmax
∑
x∈Λ,k

e−i(k−k
∗)·x < Oj(x)Oj(0) >≤ 2fmaxN |Λ|2||O||2.

(4.9)
Therefore by Bogoliubov inequality (3.20), the Eq.(4.7), (4.8), (4.9) and sum-
ming on k one has: ∑

k

n2

|Λ|
|M1|2

k2 + h |M1|
ρ

≤ βfmaxN ||O||2ρ

and in the thermodynamics limit:

n2|M1|2
w ddk

(2π)d
1

k2 + h |M1|
ρ

≤ βfmaxN ||O||2ρ (4.10)

then the order parameter |Mc|2 is smaller of the function f(T, h) defined as:

f(T, h) = {

βfmaxN ||O||2ρ
n2 2√

h|M1|
ρ

arctan π√
h|M1|

ρ

if d = 1

βfmaxN ||O||2ρ
n2π ln(1+ ρπ

h|M1| )
if d = 2.

(4.11)
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hence limh→∞ f(T, h) = 0 in d = 1, 2 We proved the Mermin and Wagner
theorem in a generic Hamiltonian of itinerant electrons, but one can generalize
it to the Hamiltonian of the form:

H = −
N∑

xy∈Λi=1

j(x− y)Bi(x)Bi(y) +
∑
x∈Λ

F (x) (4.12)

where the operators Bi(x) with i = 1, ..., N are vectorial observable under G
and the operator F (x) is a scalar.

4.1.1 Tensorial order parameters and Nematicity in the
Hubbard model

Until now we considered order parameters where the component are vector un-
der transformation belonging to group G. But we can extend the theorem if
tensorial order parameters are considered. Indeed during the past decade the
nematic Fermi fluids have received a great deal of attention[14]. The term ne-
matic comes from the classical liquid crystal terminology, and refers to a phase
that breaks a continuous rotational symmetry, but remaining invariant under
other symmetry operations, such as inversion and translation. When a lat-
tice is introduced, the underlying symmetry of the system becomes discrete,
so that the nematic order breaks a discrete rotational symmetry. The intere-
st towards these systems has been triggered by interesting and unconventional
transport measurements observed in two-dimensional electron systems at high
magnetic fields[15, 16], strontium ruthenate materials,[17] in several high tem-
perature superconductors[18, 19], and also in Fe-based superconductors[20, 21],
Furthermore, among the heavy-fermion systems, it is found that CeB6 exhibits
non-magnetic quadrupole order[22], and the hidden-order phase in URu2Si2 is
expected to be a quadrupole or higher-rank multipole ordered phase[23, 24].
The multiorbital Hubbard models have been adopted to investigate the orbital
polarized state, usually studied within a mean-field approximation[30, 31]. In
this picture, the microscopic models includes the three t2g orbital manifold in
presence of an on-site intraorbital, an on-site interorbital, and a nearest-neighbor
intraorbital interaction as well as the spin-orbit coupling[32].

Since we are primarily interested in d-band materials, we will start from a
suitable mathematical description of electrons belonging to these orbitals. It is
well-known that the five real d-states |dα > are given by

|dx2−y2 >=
1√
2
(|2, 2 > +|2,−2 >) |dxy >=

1√
2i
(|2, 2 > −|2,−2 >)

|dxz >=
1√
2
(|2, 1 > +|2,−1 >) , |dyz >=

1√
2i
(|2, 1 > −|2,−1 >)

|d3z2−r2 >= |2, 0 >, (4.13)

where, |l,m > denotes a state with angular momentum l, its third component
being m.
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If we define the annihilation and creation operators dσα, d
+
σα of electrons having

spin σ in the α orbital, the model Hamiltonian on a periodic lattice Λ is:

H =
∑

x,y∈Λ,α,σ

t(x− y)d+σ,α(x)dσ,α(y)+

+U
∑
x,α

n↑α(x)n↓α(x) +
1

2
(U ′ − J

2
)
∑
x,a̸=b

na(x)nb(x)− J
∑
x,a ̸=b

Sia(x)S
i
b(x) +Hso,

(4.14)
where a and b denote the orbitals like in Eq.(4.13), t(x − y) are the hopping
amplitudes between x and y sites on the lattice Λ, U is the on-site intra-orbital
Coulomb repulsion, and U ′ − J

2 is the on-site inter-orbital Coulomb repulsion
whereas J is the Hund coupling constant between electronic spin at different
orbital a and b. The last term in the Hamiltonian is the SOI, whose explicit
expression is Hso = η

∑
x∈Λ L⃗x · S⃗x. Defining a multi-component field operator

by:

ψ(x) =


dx2−y2(x)
dxy(x)
dxz(x)
dyz(x)

d3z2−r2(x)

 . (4.15)

Now by using the propriety of the Pauli matrices the Hund term can be rewritten
as:

HJ = −J
∑
x

(ψ+(x)
σi

2
ψ(x))2 +

3

2
J
∑
x

ψ+(x)ψ(x)− 3

4
J
∑
x,a

(na(x))
2

therefore the Hamiltonian in Eq.(4.14) can be rewritten as:

H =
∑
x,y∈Λ

t(x− y)ψ+(x)ψ(y)+

+
1

2
(U − U ′ − J)

∑
x,a

(na(x))
2+

1

2
(U ′−J

2
)
∑
x

(ψ+(x)ψ(x))2−1

2
(U−3J)

∑
x

ψ+(x)ψ(x)+

+J
∑
x

(ψ+(x)
σα

2
ψ(x))2 +Hso.

We note that the term proportional to (na(x))
2 is not invariant under rotation

hence with the constraint U = U ′ + J we recover the rotational symmetry and
the Hamiltonian is:

H =
∑
x,y∈Λ

t(x− y)ψ+(x)ψ(y)+

+
U ′

2

∑
x

(ψ+(x)ψ(x))2−1

2
(U ′+

3

4
J)
∑
x

ψ+(x)ψ(x)+
J

2

∑
x

(ψ+(x)
σα

2
ψ(x))2+Hso

(4.16)
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Introducing the following matrices:

T 1 =


0 0 0 −1 0
0 0 1 0 0
0 1 0 0 0

−1 0 0 0
√
3

0 0 0
√
3 0

 T 2 =


0 0 1 0 0
0 0 0 1 0

1 0 0 0
√
3

0 1 0 0 0

0 0
√
3 0 0



T 3 =


0 −2i 0 0 0
2i 0 0 0 0
0 0 0 −i 0
0 0 i 0 0
0 0 0 0 0

 ,

the components of the orbital angular momentum are La(x) = ψ+(x)T aψ(x),
a=x, y, z. Moreover, it is easy to prove that

[La(x), ψ(x)] = −T aψ(x)

[La(x), ψ+(x)] = ψ+(x)T a. (4.17)

Analogously, the components of the spin operator can be written as:

Sa(x) = ψ+(x)
σa

2
ψ(x),

implying that

[Sa(x), ψ(x)] = −σ
a

2
ψ(x)

[Sa(x), ψ+(x)] = ψ+(x)
σa

2
.

Finally, the components of the total angular momentum are Ja =
∑
x J

a(x),
where

Ja(x) = ψ+(x)(T a ⊗ 1+ 1⊗ σa

2
)ψ(x). (4.18)

We notice that the following commutation rules are fulfilled

[Ja, ψ(x)] = −(T a ⊗ 1+ 1⊗ σa

2
)ψ(x)

[Ja, ψ+(x)] = ψ+(x)(T a ⊗ 1+ 1⊗ σa

2
). (4.19)

Using these representations, the spin-orbit coupling term is then written as

Hso = η
∑
x

ψ+(x)(T a ⊗ σa

2
)ψ(x)
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where the T a matrices act on the orbital index, whereas the Pauli matrices σa

act on the spin index. Furthermore, it can easily be checked that the Hamilto-
nian in Eq.(4.14) commutes with each component of the total angular momen-
tum. We define the order parameter as the expectation value of the quadrupole
momentum defined as:

Qij =
w
ddxρ(x)(ninj −

1

3
δij), (4.20)

where ni is the i-component of a unit vector ni =
x
|x| and ρ(x) is a charge den-

sity. To investigate if the model Hamiltonian in Eq.(4.16) exhibits spontaneous
nematic order, we start considering the case in which η is vanishing, i. e. when
the spin-orbit term is absent. In this case, the total orbital angular momentum,
i. e. La =

∑
x L

a(x), as well as the total spin, i. e. Sa =
∑
x S

a(x), are con-
served quantities, therefore by the Wigner-Eckart theorem, we know that the
matrix elements in the basis of the angular momentum L2 and Lz of any vec-
torial operator Ai are proportional to the same matrix elements of the angular
momentum Li. Thus, one can write the second quantized Qij in the Eq.(4.20)
as

Qij(x) = ψ+(x)

[
1

2

(
T iT j + T jT i

)
− 1

3
δijT 2

]
ψ(x), (4.21)

and we may define the nematic order parameter as the expectation value of the
quadrupole momentum operator:

∆ij =
1

|Λ|
∑
x∈Λ

< Qij(x) >, (4.22)

where |Λ| denotes the number of lattice sites of the Λ lattice.
It is important to remark that the Hamiltonian (4.16) has the same form of

the Eq.(4.2) and the order parameter (4.22) is a tensor under transformation
belonging to the SU(2) group, therefore under rotation it transforms like the
product of two vectors and fulfils the following commutation rules:

[La, Qij ] = iϵaikQkj + iϵajkQik. (4.23)

Now, let us suppose that there is a nematic symmetry breaking around the third
axis; in this case the nematic order parameter is

∆n =
1

|Λ|
∑
x

< Qx2−y2(x) >=

=
1

|Λ|
∑
x

(2
√
3 < (d+x2−y2(x)d3z2−r2(x)+d

+
3z2−r2(x)dx2−y2(x)) > +3 < (nxz(x)−nyz(x)) >).

We notice that ∆n is the sum of the two terms: the first one is related to the
anisotropy between the X − Y plane and Z axis, whereas the second one to
the charge anisotropy between X and Y axis. It is well-known from classical
electrodynamics that if we write the electric potential of a charge distribution as
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the sum of electric multipoles, then the interaction energy between the charge
distribution and an external electric field may be easily written considering
that the charge density interacts with the external electric potential, the dipole
with the electric field, and the quadrupole momentum with the gradient of the
electric field. Therefore, the symmetry breaking Hamiltonian which we has to
add to the Hamiltonian in Eq.(4.16) is of the form Hint ∼ −∂iEjQij , i. e.
Hint = −λijQij . If we introduce an electric field with gradient on the X − Y
plane, then the symmetry-breaking Hamiltonian is:

Hλ = −λ
∑
x

Qx2−y2(x).

Now, we may finally apply the Bogoliubov’s inequality to prove the absence of
nematic order. To this end, we define B(k) =

∑
x e

−ik·xL3(x) and A(−k) =∑
x e

ik·xQxy, so that < [A(−k), B(k)] >= −i|Λ|∆n, and

| < [A(−k), B(k)] > |2 = |Λ|2|∆n|2.

The upper bound of the expectation value of the anticommutator between A
and A+ is:

< [A,A+]+ >=
∑
x,y∈Λ

e−ik·(x−y) < [Qxy(x), Qxy(y)]+ >,

and summing on all wave vectors k belonging to the first Brillouin zone we can
write:∑
k

< [A,A+] >= |Λ|
∑
x

< [Qxy(x), Qxy(x)]+ >= 2|Λ|
∑
x

< Qxy(x)Qxy(x) > .

Since by Eq.(4.20) the order parameter operator Qxy may be written as Qxy =
ψ+(x)Γxyψ(x) with Γxy = 1

2 (T
xT y + T yT x), we have that:∑

k

< [A,A+]+ >= |Λ|(Γxy)ij(Γxy)kl
∑
x

< (ψ+
i (x)ψj(x)ψ

+
k (x)ψl(x)) > .

Introducing the following operator Oij(x) = ψi(x)ψ
+
j (x), and defining an inner

product between two operators as (A|B) =< A+B >, then the second term in
the previous equation is

| < (ψ+
i (x)ψj(x)ψ

+
k (x)ψl(x)) > |2 ≤< ψ+

i (x)(1−nj(x))ψi(x) >< ψ+
k (x)(1−nl(x))ψk(x) >≤

≤< ni(x) >< nk(x) >≤ 1,

where we used the condition that the matrix elements of the operators ni(x)
and 1− ni(x) are smaller of 1. Then we proved that∑

k

< [A+, A] >≤ |Λ|2N4 max
1≤i,j≤N

(Γxyij )
2 = |Λ|2α
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that is smaller then the maximum of the matrix element of Γxyij .
As the second step, we notice that

[B+, [B,H]] =
∑
x,y∈Λ

t(x−y)(e−ik·x−e−ik·y)(eik·x−eik·y)ψ+(x)(T 3)2ψ(y)−4λ
∑
x∈Λ

Qx2−y2(x).

The expectation value of this quantity is:

< [B+, [B,H]] >= 2
∑
x,y∈Λ

t(x−y)(1−cos k·(x−y)) < ψ+(x)(T 3)2ψ(y) > −4λ|Λ|∆n,

and its upper bound is:

| < [B+, [B,H]] > | ≤
∑
x,y∈Λ

t(x−y)|x−y|2k2| < ψ+(x)(T 3)2ψ(y) > |+4λ|Λ||∆n|

implying that

| < [B+, [B,H]] > | ≤ |Λ|ρσ(k2 + λ
4|∆n|
ρσ

).

Here, we used the inequality

| < ψ+(x)(T 3)2ψ(y) > | ≤
∑
ij

((T 3)2)ij
√
< ni >< nj > ≤ 2

∑
ij

((T 3)2)ij =

= 2N2 max
1≤i,j≤N

{((T 3)2)ij} = σ,

i. e. σ is connected to the maximum among the matrix elements of (T 3)2; we
also introduce the following notation: ρ =

∑
x t(x)|x|2.

In conclusion, summing on k of the first Brillouin zone, the Bogoliubov’s ine-
quality becomes

|∆n|2
1

|Λ|
∑
k

1

k2 + λ4|∆n|
ρσ

≤ ρασ

2kBT
. (4.24)

but performing the thermodynamics limit and remembing the Eq.(4.10) and
Eq.(4.11) limλ→0 lim|Λ|→∞ |∆n(λ, |Λ|)| = 0.
Therefore, we conclude that for one- and two-dimensional multiorbital Hubbard
model without spin-orbit coupling, the nematic long-range-order will not appear
at any nonzero temperature, since the order parameter goes to zero as the
symmetry-breaking field λ is turned off.
The SOI explicitly breaks the rotational symmetry in the real space so that
the orbital angular momentum is not a conserved quantity. However, the total
angular momentum commutes with the Hamiltonian. Thus, the previous con-
clusions still remain valid if the operators A and B in Eq.(3.20) are defined as
follows: B operator has to be related to the symmetry operator for the Hamil-
tonian, i. e. the total angular momentum, whereas the operator A must be such
that the commutator between A and B has to reproduce the order parameter.
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Therefore, we define A and B in the following way: A(k) =
∑
x e

ik·xQxy and
B(k) =

∑
x e

−ik·xJ3(x), respectively. With these definitions we obtain an ine-
quality like that of Eq.(4.24), and we can state that the spontaneous quadrupole
momentum is vanishing also for a multiorbital Hubbard model in the presence
of a SOI, in low dimensional cases.
We notice that in the presence of SOI the results here obtained can be generali-
zed to model Hamiltonians containing other terms such as the hopping between
different orbitals or other Coulomb interactions. In the first case, the angular
momentum is not conserved. Nevertheless, if this hopping term commutes with
total angular momentum we can recover the results previously shown, otherwise
the rotational symmetry is explicitly broken and the previous conclusions are no
more valid. To prove this conclusion, we introduce the hopping term by means
of a mixing matrix M such that Ht may be written as:

Ht =
∑
x,y∈Λ

t(x− y)ψ+(x)Mψ(y).

The commutator of this term with the total angular momentum is:

[Ja, Ht] =
∑
x,y∈Λ

t(x− y)ψ+(x)[T a +
σa

2
,M ]ψ(y),

so that if [T a + σa

2 ,M ] = 0 then the rotational symmetry is preserved and the

conclusions of the present paper still hold, whereas if [T a + σa

2 ,M ] ̸= 0 the
symmetry is broken and we cannot exclude the existence of the nematic order.

To generalize the previous results at k-rank tensorial order parameter it is
necessary to describe it in terms of its spherical component, indeed the cartesian
tensor Qij or, in general, Qi1...ik is reducible (it is the sum of object that they
transform itself in different way under transformation belonging G group, in this
case rotations). One defines irreducible k-rank tensor if it transform itself as the
irreducible representation of the rotations. Hence if U = e−iθaJa is a rotation
of angle θ⃗ then one defines the irreducile k-representation of the rotations the

matrices D
(k)
mm′(θ⃗) =< k,m|e−iθaJa |k,m′ > where k(k+1) are the eigenvalue of

the J2 whereas m are the eigenvalue of the Jz, therefore T
(k)
q with −k ≤ q ≤ k

is a irriducible k-rank tensor if under rotations one has:

U+T (k)
q U =

∑
q′

D
(k)
qq′T

(k)
q′ . (4.25)

Let U a infinitesimal rotation operator then U = 1 − iθaJa (on the repeated
indices we intend the sum) then we write:

(1 + iθaJa)T
(k)
q (1− iθaJa) =

∑
q′

< k, q|(1− iθaJa)|k, q′ > T
(k)
q′

from which we have the following commutation rules:

[Ja, T
(k)
q ] = −

∑
q′

< k, q|Ja|k, q′ > T
(k)
q′ , (4.26)
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therefore

[Jz, T
(k)
q ] = qT (k)

q (4.27)

[J±, T
(k)
q ] =

√
k(k + 1)− q(q ± 1)T

(k)
q±1. (4.28)

In this case, the tensorial order parameter can be defined as

∆ =
∑
x∈Λ

eiq
∗·x

|Λ|
< T (k)

q (x) >

hence if we have an Hamiltonian like Eq. (4.2) then defining, for example,

B(q) = J+(q) =
∑
x∈Λ e

−iq·xJ+(x) andA = T
(k)
q−1(q

∗−q) =
∑
x∈Λ e

−i(q∗−q)·xT
(k)
q−1(x)

one has an inequality as Eq.(4.24) for the order parameter ∆.

4.2 T=0 Mermin and Wagner Theorem

The consideration done in the previous paragraph can be extended immediately
to the Ground State of the system if the non-vanishing energetic gap exist,
indeed if ∆ = infEa∈(σ(H)−E0) |Ea − E0| ̸= 0 then the inequality (3.21) allows
to obtain a inequality like (4.24) where the order parameter, now, is defined as
the quantum expectation value on the Ground State of an observable, say O(x),
that is

M =
∑
x∈Λ

e−ik
∗·x

|Λ|
< 0|O(x)|0 > .

In general we does not know the spectrum of the Hamiltonian, therefore we can
not extend the previous results to the ground state, furthermore a vanishing
energetic gap do not mean existence of the order. Then we need another strategy
for to study the Quantum Order on the Ground State.

In general the quantum fluctuations of the order parameter are smaller then
the thermal fluctuation, then there is not reason for exclude the order in the
Ground state of a two dimensional system, on the other hand, in one spatial
dimension the fluctuations can be amplified and the order can be absent. In
relativistic field theory the Coleman theorem excludes Spontaneous Symmetry
Breaking on the Ground State of a scalar field. The quantum fluctuation are
due to the Heisenberg indetermination principle, hence if the operator relative
to the order parameter commute with the Hamiltonian then the Ground state
can be ordered in one dimensional system, an example of this is the ferroma-
gnetic Heisenberg model where the Ground State is ordered also in one spatial
dimension. Indeed the Hamiltonian is:

H = −
N∑
i=1

S⃗i · S⃗i+1 (4.29)

where the periodic boundary conditions are imposed S⃗N+1 = S⃗1. Now we
consider the state in which all spins are polarized along Z direction, that is
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|α >= ⊗Ni=1|j, j >(i) then it is an eigenvector of the Hamiltonian with energy
Eα = −Nj, furthermore any state like

|α′ >= ⊗k−1
i=1 |j, j >(i) ⊗|j, j − 1 >(k) ⊗Ni=k+1|j, j >(i)

is an eigenstate with energy Eα′ = −Nj + 1 then it is an excited state. We
remark that the order parameter is the expectation value of the total spin, but it
is a motion integral, hence the quantum fluctuations are absent. However, in this
case, one has Spontaneous Symmetry Breaking of the discrete symmetry S⃗i →
−S⃗i. Similar consideration can not done for the antiferromagnetic Heisenberg
model where the SSB is necessarily a continuous symmetry and the Ground
State is disordered, indeed, in this case an ordered Ground State does not break
the symmetry S⃗i → −S⃗i.

In order to prove the Mermin and Wagner theorem in the Ground State of
one dimensional system one must be use the inequality (3.13) and the reflection
positivity is necessary. The strategy is the same of the T -finite theorem, but
it is necessary the knowledge of the upper bound of the correlation function
on the Ground state, that is an inequality like Eq.(3.59). A prototype of this
considerations is the antiferromagnetic Heisenberg model where the Ground
State is disordered. Indeed the Hamiltonian is:

H = j
∑
x∈Λ,δ

S⃗(x) · S⃗(x+ δ) (4.30)

The invariance Group is SU(2) and the spin components are the generators.
Now by introducing the external field h we observe that the Hamiltonian

exhibits the Reflection Positivity propriety, indeed if we do refernce to the con-
venction Eq.(3.31), (3.32) and (3.33), then Hamiltonian (3.63) can be rewritten
as:

G+HG =

= H−+Θ(H−)+j
∑
x∈ΛP

S2(x)Θ(S2(x))−j
∑
x∈ΛP

(S1(x)Θ(S1(x))+S3(x)Θ(S3(x))),

(4.31)
where

H− = j
∑

x,x+δ∈Λ−

S2(x)S2(x+δ)−j
∑

x,x+δ∈Λ−

(S1(x)S1(x+δ)+S3(x)S3(x+δ))+

+h
∑
x∈Λ−

(−1)|x|S3(x).

Therefore the inequality (3.65) are true also in presence of the external field
h, hence we write

(Si(q), Si(−q)) ≤
1

2β(1 + cos q)
for each i = 1, 2, 3 (4.32)

(S2(q −Q), S2(Q− q)) ≤ 1

2β(1− cos q)
. (4.33)
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Now, using the inequality (3.13) in which one defines A = S1(Q − q) and
S2(q) (here Q = π) one has:

| < 0|[A,B]|0 > |2 = | < 0|S3(Q)|0 > |2 = |Λ|2∆(|Λ|, h) (4.34)

where ∆ = limh→0 lim|Λ|→∞ ∆(|Λ|, h) is the order parameter. Furthermore we
compute the quantity: ∑

q

< 0|[A,A+]+|0 >≤ 2|Λ|2s2, (4.35)

whereas by inequality (3.59) the correlator

< 0|[B,B+]+|0 >= 2 < 0|S2(Q−q)S2(q−Q)|0 >≤

√
2|Λ| < 0|[S2(Q− q), [H,S2(q −Q)]]|0 >

(1− cos q)
,

hence after sraightforward algebra one has:

| < 0|[B,B+]+|0 > | ≤ |Λ|

√
4j(1 + cos q)s(s+ 1) + 2h∆(|Λ|, h)

1− cos q
. (4.36)

Therefore by inequalities (3.13), (4.35) and (4.36) one proves easly that, in
the thermodynamic limit, the following inequality is fulfilled:

|∆(h)|2 ≤
4s2
√
js(s+ 1)

I(h)
(4.37)

with

I(h) =

+πw
−π

dq

2π

√
1− cos q

1 + cos q + f(h)
(4.38)

where the function f(h) = h ∆(h)
2js(s+1) then limh→0 f(h) = 0 furthermore the

integral (4.38) can be computed easly and one has:

I(h) =
2

π
ln |
√
f(h) + 1 + 1√
f(h) + 1− 1

|

but limh→0 I(h) = ∞ then the order is absent.
In order to study the itinerant electronic systems we prove the following

equality for the T = 0 susceptivity:

lim
β→∞

β(ϕ(q), ϕ(−q)) =
+∞w
0

dω

ω

∑
α∈σ(H)

δ(ω−Eα+E0)(| < 0|ϕ(q)|α > |2+| < 0|ϕ(−q)|α > |2)

(4.39)
indeed

β(ϕ(q), ϕ(−q)) =
1w
0

dx

Z
Tr(e−(1−x)βHϕ(q)e−xβHϕ(−q)) =
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=

1w
0

dx

Z

∑
αα′

e−βEαexβ(Eα−Eα′ ) < α|ϕ(q)|α′ >< α′|ϕ(−q)|α >=

=
1

Z

∑
αα′

e−βEα′ − e−βEα

Eα − Eα′
< α|ϕ(q)|α′ >< α′|ϕ(−q)|α >

hence, we have

lim
β→∞

β(ϕ(q), ϕ(−q)) =

= lim
β→∞

1

Z

∑
αα′

(e−βEα′ | < α|ϕ(q)|α′ > |2

Eα − Eα′
− e−βEα

| < α|ϕ(q)|α′ > |2

Eα − Eα′
) =

= lim
β→∞

1

Z

∑
αα′

(e−βEα′ | < α|ϕ(q)|α′ > |2

Eα − Eα′
+ e−βEα

| < α′|ϕ(−q)|α > |2

Eα′ − Eα
)

and inserting inside at the sum the quantity 1 =
r +∞
−∞ dωδ(ω − Eα + Eα′) the

Eq.(4.39) is evident.

T=0 Mermin and Wagner Theorem: Let the G-invariant Hamiltonian
in Eq.(4.2) defined on a one dimensional lattice, then the Ground State is
disordered, that is, if one defines the order parameter as

∆a = lim
h→0

lim
|Λ|→∞

∑
x∈Λ

e−iq
∗·x

|Λ|
< 0|Qa(x)|0 > (4.40)

then is is vanish. Here q∗ is a vector belonging to the first zone of Brillouin and
Qa(x) is a G-vector operator.
Proof: If the non-vanishing energy gap exist then by Bogoliubov inequality
Eq.(3.21) the conclusions on systems at T -finite hold also in this case. Hence
we suppose that there are gapless excitations on the energetic spectrum, that
is exist a energetic band Eα(q) such that limq→0Eα(q) = E0 (if there is SSB
this is a Goldstone mode). The term Eα(q) is given by Hopping term in the
Hamiltonian Eq.(4.2). Indeed if we write the Hopping term using the Fourier

components then we have: Ht =
∑
q
Eα(q)
|Λ| nα(q) with nα(q) = c+α (q)cα(q) and

Eα(q) =
∑
x tα(x)e

−iq·x, hence if one considers an Hoppong such that t(x) ̸= 0
for each x = 1, ..., N < |Λ|

E(q) = 2t(1) cos q +

N∑
l=1

t(l) cos ql (4.41)

whereas if we consider the Hopping only between nearest sites then the disper-
sion law is

E(q) = 2t cos q (4.42)
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furthermore if t > 0 the the minimum of the band is for q = π. If there is a
Goldstone mode then E(π) = −|E0|+ ∆

|Λ| , hence

E(q) = |E0| cos q +
∆

|Λ|
(4.43)

therefore by Eq(4.39) one has that

lim
β→∞

β(Qa(q), Qa(−q)) ≤
1

|E0|(1 + cos q)
(4.44)

In Eq.(4.43) the quantity ∆
|Λ| is a gap for finite size lattice, indeed, in this case,

the Goldstone mode is a low lying excitation. There are many models where
inequality Eq.(4.44) can be proven rigorously using the Reflection Positivity as
the antiferromagnetic Heisenberg model. Now, the susceptivity diverge for q = π
therefore in Eq.(4.40) we take q∗ = π. Furthermore we use the indetermination
inequality Eq.(3.13) where we take A = f1aNQa(q) and B = QN (Q − q) and
following the standard Mermin and Wagner strategy the theorem can be easly
proved.

We remark that if t < 0 then the Eq.(4.43) must be replaced by E(q) =
∆
|Λ| cos q+ |E0|(1−cos q) and the susceptivity diverge for q = 0 then in Eq.(4.40)

we must take q∗ = 0, but in this case the order parameter commute with the
Hamiltonian therefore the quantum fluctuations are absent and the Ground
State can be ordered.
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Capitolo 5

Existence of Phase
Transitions in Strongly
Correlated Electronic
Systems

5.1 Orbital Order in t2g band of the TMO

The Transition metals are the elements that, in their compound, have partial-
ly filled d orbitals. The properties of transition-metal (TM) compounds are
a topic of longstanding interest, and many their compounds show an orbital
ordering[48], that is an Long Range Order on the orbital occupation[66]. In
these compounds the electrostatic interaction (Crystal Field Theory) removes
partially the degeneration of the d orbitals, in particular this gives rise to two
sets of orbital energy levels. The doubly degenerate eg set consists of the axial
orbitals dx2−y2 and d3z2−r2 and the triply degenerate t2g set consisting of the
interaxial dxy, dxz and dyz orbitals. The Jahn-Teller effect reduce further the
degeneration[67]. Now we consider an Hubbard model for t2g orbitals on a d-
dimensional hypercubic lattice Λ ⊂ Zd, confining the analysis to the half filled
case, i. e. three electrons on the t2g orbitals. We will adopt the following model
Hamiltonian:

H = −t
∑
x,δ

ψ+(x)ψ(x+ δ) + U
∑
x,a

(n↑a(x)−
1

2
)(n↓a(x)−

1

2
)+

+U ′
∑
x,a>b

(na(x)− 1)(nb(x)− 1) + V
∑
x,δ,a

(na(x)− 1)(na(x+ δ)− 1) , (5.1)
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where a, b = xy, xz, yz denote the t2g orbitals, δ is a unit vector on the lattice
and

ψ(x) =

 dxy(x)
dxz(x)
dyz(x)

 ,

is a spinor field operator, dxy(x), dxz(x), dyz(x) being the annihilation operators
for electrons in the t2g manifold. The U term is the on-site intra-orbital Coulomb
interaction, the U ′ term describes the on-site inter-orbital Coulomb interaction,
and finally the V term corresponds to the off-site intra-orbital Coulomb inte-
raction, furthermore we assume that U=U ′ and, without to lose generality, the
hopping amplitude t is a real and positive constant.
Then, we define the nematic order parameter as

∆N =
1

2|Λ|
∑
x

< (nxz(x)− nyz(x)) >,

and the staggered nematic order parameter as

∆NS =
1

2|Λ|
∑
x

eiQ·x < (nxz(x)− nyz(x)) > .

with Q = (π, ..., π) ∈ Rd.
To prove that a staggered nematic order (SNO) may exist within the model
Hamiltonian of Eq.(5.1), we start by defining the following operators:

Ia(x) = ψ+(x)
T a

2
ψ(x) ,

with a = x, y, z and

T a =

(
0 0
0 σa

)
,

where σa are the ordinary Pauli matrices and

T 2 = (T x)2 + (T y)2 + (T z)2 =
3

4

(
0 0
0 1

)
≡ 3

4
T 0 .

We note that the Ia(x) operators fulfil a genuine SU(2) isospin algebra, that is:

[I+(x), I−(y)] = 2δx,yI
z(x) ,

[Iz(x), I±(y)] = ±δx,yI±(x) , (5.2)

where I±(x) = Ix(x) ± iIy(x) hence the eigenvalue of the operator Î2 are I =
1
2 , 1.
It is worth stressing that the Hamiltonian Eq.(5.1) is invariant under the global
U(1) transformation generated by Iz operator.
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The order parameter can be then rewritten in term of Iz(x) as

∆NS =
1

|Λ|
∑
x

eiQ·x < Iz(x) >=
Iz(Q)

|Λ|
.

Using Ia(x) operators, the off-site Coulomb term of the Hamiltonian can be
written as follows:

HV = V
∑
x,δ

(nxy(x)− 1)(nxy(x+ δ)− 1)+

+
V

2

∑
x,δ

(nxz(x)+nyz(x)−2)(nxz(x+δ)+nyz(x+δ)−2)+2V
∑
x,δ

Iz(x)Iz(x+δ) .

(5.3)
The existence of SNO will be accomplished if we show that[59]

lim
|x|→∞

lim
|Λ|→∞

< Iz(x)Iz(0) >= lim
|Λ|→∞

< (
∑
x

eiQ·xIz(x)

|Λ|
)2 > ̸= 0 . (5.4)

5.1.1 Sum Sule and Symmetries.

We remark that the Hamiltonian is invariant under rotation of angle π/2 around
the three axis X,Y, Z of the real space, hence the three orbitals are three
degenerates states, furthermore if we write the Hamiltonian as

H = H(0) + 2V
∑
x,δ

Iz(x)Iz(x+ δ)

with U = U ′ then H(0) = Ht + Hint has a complete rotational invariance
in the isospin space, in particular for the Hint this symmetry is also a gauge
symmetry, that is if we define U =

∏
x∈Λ e

−iθa(x)Ia(x) then U+HintU = Hint

(this is do not true for the hopping term). Now we consider the correlator
Gz(δ) =< 0|Iz(x)Iz(x+δ)|0 > in the ground state |0 > between two nearest sites
x and x+ δ, it is independent from δ direction. In terms of Fourier component
it is (BZ is the first Brillouin zone):

Gz(δ) =
∑
q∈BZ

eiq·δ

|Λ|
< 0|Iz(q)Iz(−q)|0 >

Now isolating the mode q = Q = (π, ..., π) and performing the thermidynamic
limit we have:

Gz(δ) = − 1

|Λ|
< 0|Iz(Q)Iz(−Q)|0 > +

∫
BZ

ddq

(2π)d
eiq·δ < 0|Iz(q)Iz(−q)|0 >=

= −∆NS −
∫
BZ

ddq

(2π)d
(−1

d

d∑
i=1

cos qi) < 0|Iz(q)Iz(−q)|0 >
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If we consider the set B+ = {q ∈ BZ |
∑d
i=1 cos qi ≤ 0} then we have

∆NS ≥ −Gz(δ)−
∫
B+

ddq

(2π)d
(−1

d

d∑
i=1

cos qi) < 0|Iz(q)Iz(−q)|0 > (5.5)

indeed the integrand function is non negative in B+ hence
∫
BZ

... ≤
∫
B+ ...

At this point it is necessary to obtain an upper bound of the function Gz(δ),
therefore we write the energy in the ground state as

E0 = −t
∑
x,δ

< 0|ψ+(x)ψ(x+ δ)|0 > + < 0|Hint|0 > +2V d|Λ|Gz(δ)

but < 0|A+B|0 > is an inner product between the operators A and B, hence
using the Schwartz inequality one can write that

< 0|ψ+(x)ψ(x+ δ)|0 >≤< 0|ψ+(x)ψ(x)|0 >

where we used the traslational invariance of the ground state. Then we conclude
that

E0 ≥ −3td|Λ|+ < 0|Hint|0 > +2V d|Λ|Gz(δ)
Now we consider the excited state |α > such that for each site the isospin is
polarized in ±Iz direction (the sign ± depends from the sublattice), that is
Iz(x)|α >= eiQ·xI|α >. In this state the energy is higher or equal at the
ground state energy, furthermore it is easy compute an upper bound of this
energy. Indeed, the state |α > is obtained from the ground state by rotation of
angle θa(x) dependent by the site of the lattice around an opportune axis a in
the isospin space, that is |α >=

∏
x∈Λ e

−iθa(x)Ia(x)|0 >= U |0 >. Furthermore
by Schwartz inequality we write

< α|Ht|α >≤ | < α|Ht|α > | ≤ t
∑
x,δ

| < 0|U+ψ+(x)UU+ψ(x+ δ)U |0 > | ≤

≤ td
∑
x

< 0|U+ψ+(x)ψ(x)U |0 >= td
∑
x

< α|ψ+(x)ψ(x)|α >= 3td|Λ|

then we have
Eα ≤ 3td|Λ|+ < 0|Hint|0 > −2V I2d|Λ|

from which

Gz(δ) ≤ 3
t

V
− I2

but knowing that I2 ≥ 1
4 one has that the condition Eq.(5.5) can be rewritten

as

∆NS ≥ 1

4
− 6

t

2V
−
∫
B+

ddq

(2π)d
(−1

d

d∑
i=1

cos qi) < 0|Iz(q)Iz(−q)|0 > (5.6)

then there is SNO long range order if the second side of the previous equation
is strictly positive.
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5.1.2 Existence of the Long Range Order.

In order to prove the existence of the SNO we do reference to the conventions
Eq.(3.31), (3.32) and (3.33) and we use the Infrared Bound Method.
Now, we notice that the hopping term of the Hamiltonian acts on an antisym-
metric Fock space, which does not have the form of tensor product H+ ⊗H−.
Indeed, the field operators defined on H+ does not commute with all field opera-
tors defined on H−. Therefore, by means of a Jordan Wigner[60] transformation
we introduce two new operators ρ+(x) and ρ(x) defined as follows:[61]

ρ(x) =
∏
y∈Λ+

eiπψ
+(y)ψ(y)ψ(x) , (5.7)

ρ+(x) = ψ+(x)
∏
y∈Λ+

e−iπψ
+(y)ψ(y) . (5.8)

It can be easily checked that

[ρ(x), ρ+(y)]+ = 0 [ρ(x), ρ(y)]+ = 0 [ρ+(x), ρ+(y)]+ = 0 ,

for each x, y ∈ Λ+ or x, y ∈ Λ−, while

[ρ(x), ρ+(y)] = 0 [ρ(x), ρ(y)] = 0 [ρ+(x), ρ+(y)] = 0 ,

for each x ∈ Λ+ y ∈ Λ− or x ∈ Λ− y ∈ Λ+.
Now, coming back to our model Hamiltonian, we define two operators F and
R, where F is the hole-particle transformation and R is an opportune gauge
transformation.

Since the lattices is bipartite, hence we define:

� ΛA = {x ∈ Λ |eiQ·x = 1}

� ΛB = {x ∈ Λ |eiQ·x = −1}

If one defines a patricle-hole transformation as follows:

F+ρ(x)F = { ρ(x) if x ∈ ΛA
eiQ·xρ+(x) if x ∈ ΛB

then the hopping term of the Hamiltonian (5.1) is rewritten as:

F+HtF = −t
∑

x∈ΛA,δ

eiQ·(x+δ)ρ(x)ρ(x+ δ)− t
∑

x∈ΛB ,δ

eiQ·xρ+(x)ρ+(x+ δ)

Now by U(1) Gauge transformation R =
∏
x∈ΛB

ei(Q·x)n(x) the Hamiltonian can
be rewritten as follows:

R+F+HFR = −t
∑

x∈ΛA,δ

ρ(x)ρ(x+ δ)− t
∑

x∈ΛB ,δ

ρ+(x)ρ+(x+ δ)−
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−V
∑
x,δ

(nxy(x)− 1)(nxy(x+ δ)− 1) +HU−

−V
2

∑
x,δ

(nxz(x)+nyz(x)−2)(nxz(x+δ)+nyz(x+δ)−2)−2V
∑
x,δ

Iz(x)Iz(x+δ) .

(5.9)
Then, we can write the Hamiltonian in the required form and the Gibbs states
exhibit the reflection-positivity property:

H ′ = R+F+HRF = H+ ⊗ 1̂ + 1̂⊗ χ(H+)−

−t
∑

x∈ΛP

∩
ΛA

ρ(x)⊗ χ(ρ(x))− t
∑

x∈ΛP

∩
ΛB

ρ+(x)⊗ χ(ρ+(x))

−
∑

x∈ΛP ,a

Ba(x)⊗ χ(Ba(x))− 2V
∑
x∈ΛP

Iz(x)⊗ χ(Iz(x)) , (5.10)

where [Ba(x), χ(Ba(x))] = 0 for each x ∈ ΛP , a indicates all operators in
Eq.(5.9) that are defined on ΛP and that are different from Iz(x).

Now, the Reflection Positive form of the Hamiltonian allows the use of the
Gaussian Domination theorem then one has that the the nematic susceptibility
χ′(q) defined as

χ(q) = (Iz(q), Iz(−q))′,

has the following upper bound:

χ(q) = (Iz(q), Iz(−q))′ ≤ |Λ|
4βV E−(q)

, (5.11)

where Iz(q) = 1√
|Λ|

∑
x e

−iq·xIz(x) and E−(q) =
∑d
i=1(1 − cos qi), whereas

(, )′ is the Duhamel function computed using the Hamiltonian H ′ in Eq.(5.10).
Therefore we easly obtain the following inequality:

χ(q) = (Iz(q), Iz(−q)) ≤ |Λ|
4βV E+(q)

, (5.12)

where now E+(q) =
∑d
i=1(1 + cos qi).

In order to obtain the upper bound for the correlator we use the Falk-Bruch
inequality (3.22), but we must compute the C(q) function, hence:

[Iz(−q), [Ht, I
z(q)]] =

t

2

∑
x,δ

(1− cos q · δ)
|Λ|

ψ+(x)T 0ψ(x+ δ),

but by Schwartz inequality one get < ψ+(x)T 0ψ(x+ δ) >≤ 4, so that

< [Iz(−q), [Ht, I
z(q)]] >≤ 2tE−(q) , (5.13)

with E−(q) =
∑d
i=1(1− cos qi).
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We point out that the inequality Eq.(5.13) is verified also in the ground state,
i. e.

< 0|[Iz(−q), [Ht, I
z(q)]]|0 >≤ 2tE−(q) .

Using this result, the correlator has the following upper bound:

< Iz(q)Iz(−q) >≤ 1

2

√
tE−(q)

2V E+(q)
coth(2β

√
2tV E+(q)E−(q)) . (5.14)

On the other hand, in the ground state we have:

< 0|Iz(q)Iz(−q)|0 >≤ 1

2

√
tE−(q)

2V E+(q)
.

Hence, the susceptibility has an upper bound that diverges when q = Q =
(π, ..., π). This result is very important since it may suggest a possible phase
transition. Indeed, let us start from Eq.(5.6) we have a SNO if

∆NS ≥ 1

4
− 6

t

2V
− 1

2

√
t

2V

∫
B+

ddq

(2π)d
(−1

d

d∑
i=1

cos qi)

√
E−(q)

E+(q)
> 0

furthermore defining y =
√

t
2V and Γ(d) =

∫
B+

ddq
(2π)d

(− 1
d

∑d
i=1 cos qi)

√
E−(q)
E+(q)

we have to resolve the inequality:

1

4
− 6y2 − 1

2
Γ(d)y > 0

but Γ(1) = +∞, Γ(2) = 0.65, Γ(3) = 0.35, then the SNO exist at low tempera-
ture if:

d = 2)
t

V
< 0.06 (5.15)

d = 3)
t

V
< 0.07 (5.16)

whereas d = 1 the previous equation is not conclusive.

5.1.3 Consideration on eg states and discussion of the re-
sults.

As extension of the previous results we can consider an other situation where
the eg electron are considered, in this case the infra-band off-site repulsion is:

HV = V
∑
x,δ

{(nx2−y2(x)−1)(nx2−y2(x+δ)−1)+(n3z2−r2(x)−1)(n3z2−r2(x+δ)−1)}.

(5.17)
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Furthermore now we have ψ(x) =

(
dx2−y2(x)
d3z2−r2(x)

)
whereas the isospin Ia(x) =

ψ+(x)σ
a

2 ψ(x) and the order parameter is ∆NS =
∑
x
eiQ·x

|Λ| < 0|Iz(x)|0 >. In

this case the eigenvalue of the Î2 is I = 1 and the conditions in Eq.(5.15) and
(5.16) are:

d = 2)
t

V
< 0.44 (5.18)

d = 3)
t

V
< 0.31 (5.19)

In conclusion we have shown that a half-filled multi-orbital Hubbard model
may support a SNO if repulsive or attractive on-site inter-orbital and intra-
orbital interactions and off-site repulsive inter-orbital interaction are considered.
We find that, depending on the dimensions of the lattice where the model is
defined, the SNO may or may not exist. In particular, applying the infrared
bound method, we have shown that in three dimensions the order may exist at
finite temperature and we get the condition for the existence of the SNO. In two
and three dimensional lattices the order may exist also in the ground state, if the
hopping amplitude is small enough (see Eqs.(21)-(22) and Eqs. (24)-(25)). If the
existence of the nematic order is investigated within the Mermin and Wagner
theorem, it has been recently proven that rotationally symmetric models cannot
sustain the nematic order.[58] However, we point out that this result cannot be
applied to the present case, since the intra-orbital off-site repulsion breaks the
rotational symmetry of the model Hamiltonian so that the existence of the
nematic order at the finite temperature cannot be excluded. We point out that
the conditions Eq.(5.15) and Eq.(5.16) are sufficient but not necessary, implying
that the order can exist even though they are not verified.

Now, let us comment on a potential applications of the results above presen-
ted to real systems. It is well-known that in TMO with a-axis larger than the
c-axis in octahedral crystal field, if we would like to accomodate fourth electrons
in d-orbitals, we face with the following problem: one electron could be used
to pair one of the electrons in the lower energy (t2g) set of orbitals or it could
be placed in one of the higher energy (eg) orbitals. The latter of these configu-
rations is called high-spin because it contains four unpaired electrons with the
same spin, whereas the other one is called low-spin because it contains only two
unpaired electrons. We notice that a similar problem occurs when we are loo-
king at TMO having five, six or seven electrons. On the other hand, we notice
that for eight, nine and ten electrons there is only one way to write energetically
satisfactory configurations. As a result, we have to worry about high-spin versus
low-spin octahedral complexes only when there are four, five, six, or seven elec-
trons in the d-orbitals. Therefore, referring to half-filled t2g orbitals, the results
obtained in this paper apply to elongated (a-axis lower than c-axis) TMO with
seven electrons in octahedral crystal field crystal or to flattened (a-axis larger
than c-axis) TMO with three electrons. Moreover, when half-filled eg orbitals
are considered, our results apply to TMO with two electrons (a-axis larger than
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c-axis) or eight electrons (a-axis lower than c-axis) in the d-orbitals. We would
like also point out that the Jahn-Teller effect may play an important role in
TMO compounds, and it is known that in these systems this effect can lead the
orbital ordering.[68] In particular, it has been recently proven that the ground
state of the compass model may exhibit a SNO-like orbital ordering, similarly
to the results here presented.[66] Nevertheless, we stress that the SNO order
here discussed appears within the crystal field approximation, neglecting the
Jahn-Teller effect, as shown in Eqs.(5.18)-(5.19).

As final remark, we notice that the conclusions of the present paper do not
hold for the doped system, because in this case the particle hole-symmetry of
the Hamiltonian is lost and, within the procedure here applied, the upper bound
of the susceptibility cannot be inferred. Furthermore the conclusions reached
are not valid for systems with anisotropic hopping.

5.2 Charge Density Wave and Superconductivi-
ty in the Multiband Hubbard model.

Now we study the Charge Density Wave in the Multiband Hubbard model,
hence, doing reference to systems previous discussed, we consider an half-filled
degenerate d-band Hubbard model. Therefore the Hamiltonian is defined in
Eq.(4.16) where now we add a rotational-symmetric off site coulombian repulsion
HV and an off site Pseudospin interaction, hence we write:

H = −t
∑
x∈Λ,δ

ψ+(x)ψ(x+ δ) +HU +HJ+

+
J ′

2

∑
x∈Λ,δ

(η+(x)η−(x+ δ)+ η−(x)η+(x+ δ))+
V

4

∑
x∈Λ

(n(x)−N)(n(x+ δ)−N)

(5.20)
where the field ψ(x) is defined in Eq.(4.15) (in the d-band case N = 5), whereas

η+(x) =
∑
α

c+α↑(x)c
+
α↓(x) η−(x) =

∑
α cα↓(x)cα↑(x) (5.21)

ηz(x) =
1

2
(ψ+(x)ψ(x)−N) (5.22)

are the generators of the pseudospin SU(2) algebra (α is the band index). Is
evident that they fulfils the SU(2) algebra, indeed:

[ηz(x), η±(y)] = ±η±(x)δxy

[η+(x), η−(y)] = 2ηz(x)δxy.

One defines Charge Density Wave order parameter as:

∆CDW =
∑
x∈Λ

e−iQ·x

|Λ|
< ηz(x) >=

< ηz(Q) >

|Λ|
(5.23)
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with Q = (π, ..., π) ∈ Rd. The Charge Density wave LRO is a Spontaneous Sym-
metry Breaking of the U(1) of rotation around the third axis of the Pseudospin,
we remark that for J ′ ̸= V the model is not Pseudospin SU(2)-symmetric,
therefore in low dimensional systems, the Mermin and Wagner arguments are
not conclusive and one can not exclude the order at finite temperature. Now
by Jordan-Wigner transformations Eq.(5.7), (5.8), the Hamiltonian (5.20) is
rewritten as

H = −t
∑
x∈Λ

ρ+(x)ρ(x+ δ) +HU +HJ+

+
J ′

2

∑
x∈Λ,δ

(η+(x)η−(x+ δ) + η−(x)η+(x+ δ)) + V
∑
x∈Λ,δ

ηz(x)ηz(x+ δ), (5.24)

we remember that in a state with l orbital angular momentum one as N = 2l+1
electrons with definite spin.

The lattices is bipartite, hence we define:

� ΛA = {x ∈ Λ |eiQ·x = 1}

� ΛB = {x ∈ Λ |eiQ·x = −1}

If one defines a patricle-hole transformation as follows:

F+ρ(x)F = { ρ(x) if x ∈ ΛA
eiQ·xρ+(x) if x ∈ ΛB

then the Hamiltonian (5.20) is rewritten as:

F+HF = −t
∑

x∈ΛA,δ

eiQ·(x+δ)ρ(x)ρ(x+δ)−t
∑

x∈ΛB ,δ

eiQ·xρ+(x)ρ+(x+δ)+HU+HJ−

−J
′

2

∑
x∈Λ,δ

(η+(x)η+(x+ δ) + η−(x)η−(x+ δ))− V
∑
x∈Λ,δ

ηz(x)ηz(x+ δ) (5.25)

Now by U(1) Gauge transformation R =
∏
x∈ΛB

ei(Q·x)n(x) the Hamiltonian can
be rewritten as follows:

R+F+HFR = −t
∑

x∈ΛA,δ

ρ(x)ρ(x+ δ)− t
∑

x∈ΛB ,δ

ρ+(x)ρ+(x+ δ) +HU +HJ−

−J
′

2

∑
x∈Λ,δ

(η+(x)η+(x+ δ) + η−(x)η−(x+ δ))− V
∑
x∈Λ,δ

ηz(x)ηz(x+ δ) (5.26)

hence doing reference to the convenctions Eq.(3.31), (3.32) and (3.33) we rewrite
the transformed Hamiltonian in Reflection Positive form:

H ′ = H−⊗Î+Î⊗Θ(H−)−t
∑

x∈ΛP

∩
ΛA

ρ(x)⊗Θ(ρ(x))−t
∑

x∈ΛP

∩
ΛB

ρ+(x)⊗Θ(ρ+(x))−
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−J
′

2

∑
x∈ΛP

(η+(x)Θ(η+(x)) + η−(x)Θ(η−(x))− V
∑
x∈ΛP

ηz(x)⊗Θ(ηz(x)) (5.27)

Therefore, by Gaussian Domination theorem Eq.(3.52) one can prove that the
Charge Density Susceptivity fulfils the following inequality:

(ηz(q), ηz(−q)) ≤ |Λ|
V βE+(q)

. (5.28)

By same considerations we have the upper bound for the eta-pairing Suscepti-
vity:

(η+(q), η−(−q)) + (η−(q), η+(−q)) ≤ 4|Λ|
J ′βE+(q)

. (5.29)

In each site of the lattice we can have maximum 2N electrons and minimum 0
electrons hence the eigenvalue m of ηz(x) must be such that −N/2 ≤ m ≤ N/2
and the eigenvalues of η2(x) = 1/2(η+(x)η−(x) + η−(x)η+(x)) + (ηz(x))2 are
j(j + 1) with j = N/2. Therefore we have the following sum rule:

1

|Λ|
∑
q,a

< ηa(q)ηa(−q) >= N

2
(
N

2
+ 1) (5.30)

furthermore by Eq.(3.30) one has:

< ηz(q)ηz(−q) >≤ 1

2

√
|Λ|< [ηz(−q), [H, ηz(q)]] >

V E+(q)
(5.31)

but [ηz(−q), [H, ηz(q)]] = t
2

∑
x,δ(1−cos q·δ)ψ+(x)ψ(x+δ) then< [ηz(−q), [H, ηz(q)]] >≤

t
2E−(q)N |Λ|. Then the Eq.(5.31) became:

< ηz(q)ηz(−q) >≤ |Λ|
2

√
tNE−(q)

2V E+(q)
. (5.32)

Then the divergence of the susceptivity indicates a possible CDW and Super-
conductivity Long Range Order.
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Capitolo 6

Gauge theories and
Spin-Orbit Coupling.

The interactions are due to the symmetry properties of the Lagrangian density
that describe the system, the electromagnetism is the more striking example of
this. Indeed the Lagrangian of the matter fields with charge are global U(1)
invariant and the generator of the Group, the Charge, is a motion integral.
This is the principle of the conservation of the electric charge. This symmetry
is not only global but local and this has the consequence of the existence of the
electromagnetic interaction. Indeed if one consider the Dirac field ψ(x) with
Lagrangian density:

L = ψ̄(x)(i ̸∂ −m)ψ(x) (6.1)

where ̸∂ = γµ∂
µ = γ0∂0 − γi∂i and ψ̄(x) = γ0ψ+(x). The matrices γµ are the

four Dirac matrices, they are square matrices of the fourth order, furthermore
they fulfil the Clifford algebra:

γµγν + γνγµ = 2gµν Î (6.2)

where gµν is the metric tensor:

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (6.3)

In the standard representation the Dirac matrices are defined as follows

γ0 =

(
1 0
0 −1

)
γi =

(
0 σi

−σi 0

)
γ5 =

(
0 1
1 0

)
where the σi are the classical Pauli’s matrices and γ5 = iγ0γ1γ2γ3. The
Lagrangian Eq.(6.1) is U(1) invariant, that is, performing the transformation

69
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ψ′(x) → e−ieθψ(x) the Lagrangian is invariant therefore, by the Noether theo-
rem, there is a conserved current ∂µJ

µ(x) = 0 with Jµ(x) = eψ̄(x)γµψ(x) then
the charge, defined as Q = −i

r
d4x ∂L

∂(∂0ψ(x))ψ(x) = e
r
d4xψ+(x)ψ(x), is time

invariant Q̇ = 0. We remark that in a quantum theory the Charge operator is
the generator of the symmetry group considered, hence one has that if U ∈ U(1)
then U = e−ieθQ and U+ψ(x)U = e−ieθψ(x). This symmetry is also local where
the parameter θ dependents on the space-time coordinate. In order to extend the
invariance property of the Lagrangian density (6.1) at the local transformation
one defines a covariant derivative Dµ as ∂µ → Dµ = ∂µ − ieAµ(x) where Aµ(x)
is the electromagnetic 4-potential. The covariant derivative has the following
transformation propriety:

ψ(x) → ψ′(x) = U(x)ψ(x)

and

Dµψ(x) → D
′

µψ
′(x) = UDµψ(x) = UDµU+ψ′(x)

hence

D
′

µ = UDµU+

whereas the transformation law of the gauge field Aµ are:

A′
µ(x) = Aµ(x) +

i

e
U∂µU

+ = Aµ(x)− ∂µθ(x)

Now one defines a strength gauge field as Fµν = ∂µAν − ∂νAµ and its dual
Fµν = 1

2ϵµνρσF
ρσ they are 2-rank antisymmetric tensors, but, whereas Fµν

is a true tensor its dual is a pseudotensor under spatial reflections. The free
Lagrangian density of the Gauge field can be constructed by using both Fµν
and Fµν , but it must be a true scalar function then one can not have term like
FµνFµν . Therefore the free Lagrangian of the Gauge field is LA = αFµνF

µν .
The constant α must be such that the Euler-Lagrange equations for LA give
the Maxwell Equations. Hence, in natural units, α = −1

4 and the complete
Lagrangian density for the Electrodynamics is:

L = −1

4
FµνF

µν + ψ̄(x)(i̸D −m)ψ(x) (6.4)

These considerations can be extended to non-Abelian Group, for example
the QCD is a generalization to the SU(3) Group. Therefore, given a generic
Lagrangian with non hermitian matter field ϕ(x) and G a non-Abelian Group
of symmetry with generators {Ta}Na=, hence U ∈ G then U = e−iθiTi . For each
generator one has a conserved current ∂µJ

µ
a = 0 where Jµa = −i ∂L

∂(∂µϕ(x))
Taϕ(x)

Charge {Qa}Na=1 defined as Qa =
r
d4xJ0

a(x) such that Q̇a = 0. The extension
to local Gauge transformations is done by taking

∂µϕ(x) → Dµϕ(x) = ∂µϕ(x)− iAµϕ(x) = ∂µϕ(x)− iAaµTaϕ(x)
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that is, there is a Gauge field Aaµ(x) for each generator of the Group. In this
case the transformations property of the Gauge fields are:

A′
µ(x) = UAµU

+ + iU∂µU
+.

For non-Abelian Gauge theory the strength tensor is defined as iFµν = [Dµ,Dν ],
hence under Gauge transformation one has that F ′

µν = UFµνU
+. The free

Lagrangian must be a Gauge invariant, that is, a G-scalar function, hence one
defines it as:

LYM = −1

2
Tr(FµνF

µν) (6.5)

whereas the complete Lagrangian for a generic theory is

L = Lm(ϕ(x),Dµϕ(x))−
1

2
Tr(FµνF

µν)

the interaction is hidden in the covariant derivative.

6.1 Spin Orbit Coupling and Gauge Theories in
non-relativistic Field Thories.

If a charged particle is moving in a region where an electric field exist then
it is subject to the action of a magnetic field, this is due to the relativistic
transformations property of the electromagnetic field. Indeed if v⃗ is the velocity
of the particle (in the laboratory frame) with v ≪ c and E⃗ is the electrostatic
field in the laboratory frame then, in the rest frame of the particle, one has that
B⃗ ≈ −β⃗ × E⃗. Therefore if Φ is the electrostatic potential then the magnetic
field, in the particle rest frame, is B⃗ ≈ β⃗×∇⃗Φ(x⃗). The interaction between the
magnetic field due to the motion of the particle and the its spin it is the origin
of the Spin-Orbit coupling. If one consider a central potential then ∇⃗Φ(r) =
x⃗
r
∂
∂rΦ(r) and knowing that the spin-magnetic field interaction, in Gauss units,

is Hso = − e}
mc S⃗ · B⃗ one writes that

Hso =
e}
m2cr

∂Φ(r)

∂r
L⃗ · S⃗.

This result is incorrect because it does not take account of the Thomas preces-
sion of the particle rest frame. A correct way to obtain all non-relativistic terms
is write the non-relativistic approximation of the Dirac Equation. Therefore by
solving the Euler Lagrange equations the motion equations of the Dirac field
are:

(i̸∂ −m)ψ(x) = 0 (6.6)

But, in natural units, it is:

(−iα⃗ · ∇⃗+mβ)ψ(x) = i
∂

∂t
ψ(x),
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and definited the matrices β = γ0 and

αi = γ0γi =

(
0 σi

σi 0

)
.

In appendix we give a complete derivation of the non relativistic approximation
of the Dirac equation, indeed by a Foldy Wouthuysen transformation it is possi-
ble to obtain, order by order, the non relativistic equation. Then rewriting the
Eq.(8.39) one has:

i(
∂

∂t
+ieA0+igσ⃗·B⃗)ψ = {− 1

2m
(∇⃗−ieA⃗−ig σ⃗

2
×E⃗)2− e2

8m3
((σ⃗·B⃗)2+(

σ⃗

2
×E⃗)2)+H ′}ψ

(6.7)
where the coupling constant g is the Bohr magneton g = µB = e/2m and H ′ is
defined as

H ′ =
∇⃗ · E⃗
8m2

− 1

8m3
((P⃗ − eA⃗)4 + e(P⃗ − eA⃗)2(σ⃗ · B⃗) + e(σ⃗ · B⃗)(P⃗ − eA⃗)2). (6.8)

The H ′ term can be rewritten as

H ′ = − 1

8m3
((P⃗ − eA⃗)4 + 2e(P i − eAi)(σ⃗ · B⃗)(Pi − eAi)−∇2(σ⃗ · B⃗)).

One can consider this equation as the solution of the Euler-Lagrange equation

δ

δψ+(x)
S(ψ,ψ+) = 0

where the functional S(ψ,ψ+) =
r
d4xL(ψ,ψ+) is the Action and L(ψ,ψ+) is

the Pauli Schroedinger Lagrnangian density defined as:

L = iψ+Dtψ − 1

2m
(Diψ)+(Diψ) +

g2

2m
ψ+((W 0)2 +WiW

i)ψ + L′ (6.9)

where we defined

Dt = D0 =
∂

∂t
+ ieA0 + ig

σa

2
Wa0 (6.10)

Di = ∂i − ieAi − ig
σa

2
W i
a (6.11)

in covariant notation: Dµ = ∂µ + ieAµ + ig
σa

2
W aµ (6.12)

with Wai = ϵiajE
j , Wa0 = 2Ba and Wµ = σa

2 Waµ. The fields Gaµ are the
components of the Gauge fields and they introduce the spin-orbit coupling in
the free Schroedinger Lagrangian density L = iψ+ ∂ψ

∂t − 1
2m (∂iψ)

+(∂iψ). The
kinetic term of the Gauge fields are, for the electromagnetic potential Fµν =
∂µAµ − ∂νAµ and L = − 1

4F
µνFµν = 1

2 (E⃗
2 − B⃗2) whereas for the non abelian

SU(2) Gauge field it is:

igGµν = ig
σa

2
Gaµν = [∂µ + ig

σa

2
Waµ, ∂ν + ig

σa

2
Waν ] =
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= ig
σa

2
(∂µWaν − ∂νWaµ − gϵabcW

b
µW

c
ν )

from which:
Gaµν = ∂µWaν − ∂νWaµ − gϵabcW

b
µW

c
ν . (6.13)

then the its component are Gµµ = 0 and if we define Ei = G0i then

E⃗ =
∂

∂t
(
σ⃗

2
× E⃗)− ∇⃗(σ⃗ · B⃗) + ig[σ⃗ · B⃗, σ⃗

2
× E⃗] =

=

 ˙⃗
W

3

2 − ∇⃗B3 + i g2 (B
−W⃗+ −B+W⃗−)

˙⃗
W

−

2 − ∇⃗B− + ig(B3W⃗− −B−W⃗ 3)
˙⃗
W

+

2 − ∇⃗B+ + ig(B+W⃗ 3 −B3W⃗+) −( Ẇ
3

2 − ∇⃗B3) + i g2 (B
+W⃗− −B−W⃗+)


with W⃗ 3 = (−E2, E1, 0), W⃗ 1 = (0,−E3, E2), W⃗ 2 = (E3, 0,−E1) and defining
Gij = ϵijkBk

B⃗ = ∇⃗ × (
σ⃗

2
× E⃗)− ig(

σ⃗

2
× E⃗)× (

σ⃗

2
× E⃗) (6.14)

Then the free Lagrangian density of the Yang and Mills fields is LSU(2) =

−1
8Tr(GµνG

µν), that, after straightforward algebra becames:

LSU(2) = −1

2
(∂µWaν∂

µW aν − ∂µWaν∂
νW aµ) + ϵabc∂µWaνW

µ
b W

ν
c −

−g
2

2
(WaµW

µ
aWbνW

ν
b −WaµW

µ
b WaνW

ν
b )

therefore the complete Lagrangian density is

L = −1

4
FµνFµν −

1

4
GaµνG

aµν + iψ+D0ψ +
1

2m
(Diψ)+(Diψ) + L′. (6.15)

The Zeeman and Spin-Orbit terms are hidden in the covariant derivative Dt and
Di hence if one considers only these terms then the Lagrangian density is

L = −1

4
FµνFµν −

1

4
GaµνG

aµν + iψ+D0ψ +
1

2m
(Diψ)+(Diψ). (6.16)

The Lagrangian Eq.(6.16) is SU(2)spin ⊗ U(1)em gauge invariant then the cor-
respondents conserved Noether Currents are:

jµ(x) = −ie
(

∂L
∂(Dµψ(x))

ψ(x)− ψ+(x)
∂L

∂(Dµψ(x))+

)
e.m. current (6.17)

Jaµ(x) = −ig
(

∂L
∂(Dµψ(x))

σa

2
ψ(x)− ψ+(x)

σa

2

∂L
∂(Dµψ(x))+

)
spin current.

(6.18)

We notice the last term in Eq.(6.15) breaks the Gauge symmetry, this because

the fields E⃗ and B⃗ are physical observables hence the gauge symmetry SU(2) is
not fundamental. In general, if one studies system with only spin orbit coupling,
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one does not consider this term. Now by Lagrangian density Eq.(6.16) we
compute:

∂L
∂(D0ψ(x))

= iψ+(x) (6.19)

∂L
∂(D0ψ(x))+

= 0

∂L
∂(Diψ(x))

= − 1

2m
(Diψ(x))+

∂L
∂(Diψ(x))+

= − 1

2m
(Diψ(x)),

thus the current Eq.(6.17) is jµ(x) = (ρ(x), ji(x)) with

ρ(x) = eψ+(x)ψ(x)

ji(x) = − ie

2m

(
ψ+(x)Diψ(x)− (Diψ(x))+ψ(x)

)
(6.20)

whereas the Spin Current Eq.(6.18) is Jaµ(x) = (Ma(x), Jai(x)) where the
components are:

Ma(x) = gψ+(x)
σa

2
ψ(x) = gSa(x)

Jai(x) = − ig

2m

(
ψ+(x)

σa

2
Diψ(x)− (Diψ(x))+

σa

2
ψ(x)

)
(6.21)

Tha quantity Ma(x) is the magnetic moment density, whereas the spatial com-
ponent J ia(x) are the component of the 3-vector Spin-Current. Furthermore
the Eq.(6.17) and (6.18) can be rewritten more explicitely as follows

ρ(x) = eψ+(x)ψ(x)

ji(x) = −i e
2m

(
ψ+(x)∂iψ(x)− ∂iψ+(x)ψ(x)

)
− e

m
ψ+(x)ψ(x)Ai(x)

(6.22)

and

Ma(x) = gψ+(x)
σa

2
ψ(x)

Jai(x) = −i g
2m

(
ψ+(x)

σa

2
∂iψ(x)− ∂iψ+(x)

σa

2
ψ(x)

)
− g2

4m
ψ+(x)ψ(x)W ia.

(6.23)

Therefore one can consider:

� L = iψ+(x)Dtψ(x) − 1
2m (Diψ(x))+(Diψ(x)) in this case the Lagrangian

density is completely invariant under gauge transformations, then the total
current is covariantely conserved ∂µj

µ = 0 and DµJ⃗µ = 0.
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� The Lagrangian density Eq.(6.9), neglecting L′, contains a Gauge fixing
term LGf = g

2mψ
+(x) (WµW

µ)ψ(x) hence by a infinitesimal gauge tran-
sformation this term changes as:

LGf → L
′

Gf = LGf − i
g2

2m
ψ+(x)[Wµ, U+∂µU ]+ψ(x) +O(θ2)

with U = Î − iθa(x)
σa

2 and [, ]+ the anticommutator, then it is gauge
invariant if

ψ+(x)[Wµ, U+∂µU ]+ψ(x) = 0 (6.24)

but

U+∂µU = −i∂µθa(x)
σa

2
+O(θ2)

from which the Eq.(6.24) can be rewritten as

∂µθa(x)ψ
+(x)[Wµ,

σa

2
]+ψ(x) = 0 (6.25)

but [Wµ, σ
a

2 ]+ = 1
2W

aµ then the gauge fixing condition is:

∂µθa(ψ
+(x)ψ(x)W aµ) = −θa∂µ(ψ+(x)ψ(x)W aµ) + surface term.

Now neglecting the surface term one can write the gauge fixing condition
as:

∂µ(ψ
+(x)ψ(x)W aµ) = 0 for each a = 1, 2, 3 (6.26)

from which

∂µ(ψ
+(x)ψ(x)) = 0 (incompressible fluid) (6.27)

∂µW
aµ = 0 then

∂Ba

∂t
= 0 (6.28)

Then by Eq.(6.28) one has Gauge invariance if the magnetic field B⃗ is
time independent

In general, however the LGf and L′ are of the order ∼ O( 1
m3 ) then one neglects

them in the first approximation.

6.1.1 Spin-Orbit interactions in low dimensional semicon-
ductors

Now we consider a 2D electron gas where the spin-orbit interactions are impor-
tant. In particular we study some models where we have a spin orbit interaction
due to an external electric field and/or produced, for example, by nuclei in mole-
cules or solids. As frequently discussed, the Rashba spin-orbit (RSO) interaction
and Dresselhaus spin-orbit (DSO) interaction exist in two dimensional electron
gas (2DEG) made of semiconductor heterostructures. The former, with strength
adjustable via the gate voltage[69, 70] results from the inversion asymmetry of
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the structure[71], while the latter is due to lack of bulk inversion symmetry[72].

Rashba spin-orbit coupling HR = (α/})(P⃗ × σ⃗) and the coupling coefficient α is
proportional to an external electric field. The Dresselhauss interaction can be
written as

HD =
β

}
(Pxσ

1 − Pyσ
2)

For 2D models with SO interaction of Rashba and/or Dresselhaus type, the
time component of SU(2) potential (in Gauss units) is

Aa0(x) =
2gL
e
µBB

a(x)

with an appropriate Landé factor gL.
The spatial components are defined as

A⃗3(x) = 0

A⃗1(x) =
2mc

e}

 −β
α
0

 A⃗2(x) =
2mc

e}

 −α
β
0

 (6.29)

It can be easily checked that the substitution

P̂ 2

2m
→ 1

2m
(
ˆ⃗
P − e

c
A⃗a

σa

2
)2 + eAa0

σa

2

allows to obtain the well-known Hamiltonian with SO Rashba and Dresselhaus
coupling:

H =
P̂ 2

2m
+HR +HD + gL

e}
2mc

σ⃗· B⃗(x) (6.30)

Here,

HR =
α

}
(Pxσ

2 − Pyσ
1)

and

HD =
β

}
(Pxσ

1 − Pyσ
2)

are the Rashba and Dresselhaus terms, respectively.

6.2 Lattice Gauge Theories.

The Lattice gauge theories are the most promising method for extending, at the
non-perturbative regime, the Quantum Chromodynamics. The most common
approach to these theories is the Lagrangian formulation, where the action and
all fields contained in it are discretized on a 4-dimensional Euclidean space.

The Hamiltonian formulation, less often pursued, offers an alternative to
the Lagrangian framework with several attractive features. In this case the
fields are discretized on a 3-dimensional lattice whereas the time is a continuous
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variable, hence in the non-relativistic many body problems this approach has
a natural application. In particular we describe the Hubbard model with spin-
orbit Rashba and Dresselhauss interactions as a Lattice SU(2) gauge theory.

In a Lattice Gauge Theory the Gauge fields live on the links between two
sites, then U(x, y) is the gauge field living between x, y ∈ Λ, we remark that, in
our case, Λ is a Crystal Lattice defining the structure of a solid. We start de-
scribing the Lagrangian theory and as second step we describe the Hamiltonian
approach. Therefore let G a gauge transformations Group, its elements are

g = eiθaTa ,

where θ1, ..., θn are the group parameters and T1, ..., Tn are the group generators.
These operators fulfill the commutation rules

[Ta, Tb] = ifabcTc,

where (fabc)
n
a,b,c=1 are the group structure constants. Let Λ⊗Z (Λ is a spatial

lattice whereas Z represents the discretized time) a 4-dimensional Euclidean
lattice and ψ(x) with x ∈ Λ⊗Z the matter field then a local transformation is
defined by the following relation:

ψ(x) → ψ′(x) = e−iθa(x)Taψ(x). (6.31)

The Lagrangian of the matter field contains terms like ψ+(x)ψ(x) and terms
non-local as ψ+(x)ψ(y). The local terms are naturally gauge invariant whereas
the non-local one break the Gauge symmetry, then, as in the continuous case, in
order to restore the local invariance one introduces the link Gauge field U(x, x+
eµ), where eµ is a unit vector along the µ direction, with µ = 0, ..., 3, and a link
vector potential Aµa(x) = Aa(x, x + eµ). Therefore, for each pair of (x, x + eµ)
nearest-neighbor lattice sites we write:

ψ(x)+ψ(x+ eµ) → ψ+(x)Uµ(x)ψ(x+ eµ),

with
Uµ(x) = U(x, x+ eµ) = eiA

µ
a(x)Ta .

We remark that U+
µ (x) = U−µ(x + eµ). If lattice sites (x, y) are not nearest-

neighbor sites, we consider the link path ordered sequence

Γ(x1, xn) =

n−1∪
i=1

(xi, xi+1),

and we define U(x, y) as

U(x, y) =
∏

(z,l)∈Γ(x,y)

U(z, z + el) = ei
∑

(z,l)∈Γ(x,y) A
l
a(z)Ta =

= Pei
r y
x
dxµA

aµTa

,
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where the link gauge field is such that

U(x, y) → U ′(x, y) = e−iθa(x)TaU(x, y)eiθa(y)Ta . (6.32)

If C is a closed path, that is C =
∪p
i=1(xi, xi+1) with xp+1 = x1 and one defines

the Wilson loop

W (C) =

p∏
i=1

U(xi, xi+1)) = Pei
u
dxµA

aµ(x)Ta

then the trace of W (C) is gauge invariant for each C, indeed under Gauge
transformation one hasW (C) →W ′(C) = e−iTaθa(x)W (C)eiTaθa(x) with x ∈ C.
On the other hand we know that the plaquettes, elementary square, are the most
local closed contours and any closed loop is the union of elementary plaquettes.

In the Group theory two elements g, g′ belonging to G are equivalent if
and only if exists h ∈ G such that gh = hg′ then for each C and C ′ closed
path on lattice one has that W (C) and W (C ′) are equivalent, but the Action
for the Lattice Gauge field (Wilson Action) must be 1)invariant under gauge
transformation and 2) function only of the equivalence class of W (C), so a
candidate for the Wilson’s Action on lattice[74, 75, 76] is:

S =
1

2g2

∑
x∈Λ⊗Z,µν

Re Tr (1− (Uµ(x)Uν(x+ eµ)U−µ(x+ eµ + eν)U−ν(x+ eν))) .

(6.33)
Now we indicate the argument of the trace with W (P ) that is

W (P ) = Uµ(x)Uν(x+ eµ)U−µ(x+ eµ + eν)U−ν(x+ eν)

W (P ) is the Wilson loop on the plaquette P = (x, x + eµ)
∪
(x + eµ, x + eµ +

eν)
∪
(x + eµ + eν , x + eν)

∪
(x + eν , x). The Wilson Action Eq.(6.33), in the

continuous limit, must be the ordinary Action for the Yang and Mills fields
where the Lagrangian is defined in Eq.(6.5). In all previous equation the we
taken the lattice constant a = 1, but if we want study the limit for a → 0 we
must write Uµ(x) = e−igaAaµ(x)Ta where g is the coupling constant. Indeed the
continuous limit is defined as

lim
a→0

∑
x∈Λ⊗Z,µν

→ lim
a→0

w d4x

a4

∑
µν

.

Now, knowing that A−ν(x+eν) = −Aν(x) and A−µ(x+eµ+eν) = −Aµ(x+eν)
we write

TrW (P ) = Tr
(
e−igaAµ(x)e−igaAν(x+eµ)eigaAµ(x+eν)eigaAν(x)

)
=

and using the formula eAeB = eA+B+ 1
2 [A,B]+... we have that

W (P ) ≈
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≈ e−iga(Aµ(x)+Aν(x)+a∂µAν(x)− iga
2 [Aµ(x),Aν(x)])eiga(Aµ(x)+Aν(x)+a∂νAµ(x)+

iga
2 [Aµ(x),Aν(x)]) ≈

≈ e−iga
2Fµν(x) ≈

(
1− igaFµν −

a4g2

2
F 2
µν

)
,

since the trace of the generator Ta is vanish then Tr(W (P )) ≈ Tr
(
1− a4g2

2 F 2
µν

)
hence we write the Action as

lim
a→0

S = lim
a→0

(
1

2g2

w d4x

a4

∑
µν

Tr(
a4g2

2
FµνFµν)

)
=

=
1

4

w
d4xTrFµνFµν ,

hence, in the continuous limit the Wilson Action corresponds to the Euclidean
ordinary Yang and Mills Action. A suitable order parameter for a Lattice Gauge
theory is the expectation value of the Wilson loop, hence one considers a closed
loop (closed link sequence) C and the order parameter is

< W (C) >=
1

Z

w ∏
(x′,ν)∈Λ⊗Z

DUµ(x)
∏

(x,µ)∈C

Uµ(x)e
−S =

1

Z

w
DUW (C)e−S

where we used the equality W (C) =
∏

(x,µ)∈C Uµ(x) and Z is the Partition

function defined as Z =
r
DUe−S , furthermore DU =

∏
(x′,ν)∈Λ⊗ZDUµ(x) is

the Haar measure on the group that has the proprieties:

1)
w
DU = 1

2)DU = DU ′ = D(g+Ug) for each g ∈ G
that is D is invariant for transformation belonging to the Group G. (6.34)

The propriety 1) is a normalization condition, whereas the second one states that
the measure on the Group space must be invariant under Group transformations,
therefore for each gauge non-invariant function f(U) one has

r
DUf(U) = 0,

hence w
DUUijU

+
kl = constδilδjk

indeed Tr(UU+) is gauge invariant whereas UijU
+
kl with i ̸= l and j ̸= k is gauge

dependent, furthermore Tr(UU+) = TrÎ = N then

w
DUUijU

+
kl =

1

N
δilδjkw

DUUij = 0 (6.35)

In the Hamiltonian approach[77] the time is a continuous variable hence
we distinguish between plaquettes with a temporal link and those without.
Therefore we have∑

x,µν

(...) =
∑
x,0,0

(...) +
∑
x,0,i

(...) +
∑
x,i,0

(...) +
∑
x,i,j

(...)
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and we study the system in the temporal gauge hence if A0 = 0 then U0(x) = Î,
furthermore we take x ∈ Λ⊗Z → (x, t) ∈ Λ⊗Z where we separated the spatial
coordinate by time, hence we can write the Action as

S =
1

2g2

 ∑
x∈Λ,t∈Zi

Re Tr(1− Ui(x, t)U
+
i (x, t+ a)) + Re Tr(1− Ui(x, t+ a)U+

i (x, t))

+

+
1

2g2

∑
x∈Λ,t∈Zij

Re Tr
(
1− Ui(x, t)Uj(x+ ei, t)U

+
i (x+ ej , t)U

+
j (x, t)

)
(6.36)

where a = ti+1 − ti, but

(Ui(x, t+ a)− Ui(x, t))
(
U+
i (x, t+ a)− U+

i (x, t)
)
=

= 2− Ui(x, t)U
+
i (x, t+ a)− Ui(x, t+ a)U+

i (x, t),

therefore the Action Eq.(6.36) can be rewritten as

S =
1

2g2

∑
x∈Λ,t∈Z,i

Re Tr (Ui(x, t+ a)− Ui(x, t))
(
U+
i (x, t+ a)− U+

i (x, t)
)
+

+
1

2g2

∑
x∈Λ,t∈Zij

Re Tr
(
1− Ui(x, t)Uj(x+ ei, t)U

+
i (x+ ej , t)U

+
j (x, t)

)
. (6.37)

In the time continum limit one has lima→0

∑
t∈Z(...) = lima→0

r
dt
a (...) then one

has the form lima→0 S =
r
dtL wehre L is the Lagrangian defines as

L =

=
1

2g2

∑
x∈Λ

Re Tr

∑
i

U̇i(x, t)U̇
+
i (x, t) +

∑
ij

(
1− Ui(x, t)Uj(x+ ei, t)U

+
i (x+ ej , t)U

+
j (x, t)

)
(6.38)

where the first term is the kinetic part whereas the second one is the potential
function. In Eq.(6.38) the matrix elements of the spatial link gauge field are the
generalized coordinates, then the conjugate canonical moments are:

(Pa(x, t)ij =
∂L

∂(U̇a(x, t))ij

(P+
a (x, t))ij =

∂L

∂(U̇+
a (x, t))ij

(6.39)

but the kinetic part of the Lagrangian can be rewritten as

Lkin =
1

2g2

∑
x∈Λ,a

(
(U̇a(x, t))ij(U̇

+
a (x, t))ji + (U̇+

a (x, t))ij(U̇a(x, t))ji

)
=
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=
1

g2

∑
x∈Λ,a

(U̇a(x, t))ij(U̇
∗
a (x, t))ij

hence

(Pa(x, t))ij =
1

g2
(U̇∗

a (x, t))ij (P ∗
a (x, t))ij =

1

g2
(U̇a(x, t))ij .

The Hamiltonian is

H =
∑
x∈Λ,a

(
(Pa(x, t))ij(U̇a(x, t))ij + (P ∗

a (x, t))ij(U̇
∗
a (x, t))ij

)
− L =

= g2
∑
x∈Λ,a

(P ∗
a (x, t))ij(Pa(x, t))ij−

1

2g2

∑
x∈Λ,ij

Re Tr
(
1− Ui(x, t)Uj(x+ ei, t)U

+
i (x+ ej , t)U

+
j (x, t)

)
furthermore taking

P ∗
a (x, t))ij(Pa(x, t))ij =

1

2
(P ∗
a (x, t))ij(Pa(x, t))ij + Pa(x, t))ij(P

∗
a (x, t))ij) =

=
1

2
Re Tr

(
P+
a (x, t)Pa(x, t)

)
here ·∗ the complex conjugation. The Hamiltonian can be write as follows

H =
g2

2

∑
x∈Λ,i

Re Tr
(
P+
i (x, t)Pi(x, t)

)
− (6.40)

− 1

2g2

∑
x∈Λ,ij

Re Tr
(
1−

(
Ui(x, t)Uj(x+ ei, t)U

+
i (x+ ej , t)U

+
j (x, t)

))
Now, the matrix elements (Pa(x, t))ij and (Ua(x, t))ij are canonically conjugate
variables hence their Poisson Brakets is:

{(Ua(x, t))ij , (Pb(x′, t))kl} = δxx′δabδikδjl

{(U∗
a (x, t))ij , (P

∗
b (x

′, t))kl} = δxx′δabδikδjl (6.41)

we remember that the Piosson Brakets are defined as

{A,B} =
∑

x∈Λ,aij

(
∂A

∂(Ua(x, t))ij

∂B

∂(Pa(x, t))ij
− ∂B

∂(Ua(x, t))ij

∂A

∂(Pa(x, t))ij

)
+

+
∑

x∈Λ,aij

(
∂A

∂(U∗
a (x, t))ij

∂B

∂(P ∗
a (x, t))ij

− ∂B

∂(U∗
a (x, t))ij

∂A

∂(P ∗
a (x, t))ij

)
(6.42)

hence, in a most compact way, we can write:

{A,B} = g2
∑
x∈Λ,a

Tr

(
∂A

∂Ua(x, t)

∂B

∂U̇+
a (x, t)

− ∂B

∂Ua(x, t)

∂A

∂U̇+
a (x, t)

)
+ h.c.
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In order to quantize this system one must identify the independents degree of
freedom, a way is eliminate the U̇ (or Pi(x, t) variables in favour of the generators
of gauge transformation and impose the opportune constraints. Indeed if one
considers the Gauge transformation Ui(x) → U

′

i (x) = e−igθa(x)TaUi(x)e
igθa(x+ei)Ta

with i, j = 1, ..., 3 the Lagrangian (6.38) is invariant, then there is a conserved
charge Ea(t) for each generator, indeed, for an infinitesimal Gauge transforma-
tion, we have

U
′

i (x, t) = Ui(x)− ig (θa(x)TaUi(x, t)− θa(x+ ei)Ui(x, t)Ta)

hence

δUi(x, t) = −ig
∑
x′∈Λ,a

θa(x
′) (δx′,xTaUi(x, t)− δx′,x+eiUi(x, t)Ta)

δU+
i (x, t) = ig

∑
x′∈Λ,a

θa(x
′)
(
δx′,xU

+
i (x, t)Ta − δx′,x+eiTaU

+
i (x, t)

)
(6.43)

then, by the Noether theorem, the conserved charge is

E(t) =
∑
x∈Λ

(
∂L

∂(U̇i(x, t))kl
(δUi(x, t))kl + (δU+

i (x, t))kl
∂L

∂(U̇+
i (x, t))kl

)
=

=
1

g2

∑
x∈Λ,i

Tr
(
U̇+
i (x, t)δUi(x, t) + δU+

i (x, t)U̇i(x, t)
)

(6.44)

such that dE
dt = 0 that is E(t) is time independent. Now inserting the Eq.(6.43)

in the Eq.(6.44) one has:

E = − i

g

∑
x∈Λ,ai

θa(x){(Tr
(
U̇+
i (x, t)TaUi(x, t)− U+

i (x, t)TaU̇i(x, t)
)
−

−Tr
(
Ui(x− ei, t)TaU̇

+
i (x− ei, t)− U̇i(x− ei, t)TaU

+
i (x− ei, t)

)
} (6.45)

but, being all θa independents, by Ė = 0 one has Ėa = 0 for each a = 1, ..., N
with

Ea = − i

g2

∑
x∈Λ,i

{Tr(U̇+
i (x, t)TaUi(x, t)− U+

i (x, t)TaU̇i(x, t)) +

+Tr(U̇+
−i(x, t)TaU−i(x, t)− U+

−i(x, t)TaU̇−i(x, t))} =
3∑

x∈Λ,i=−3

Eai(x) (6.46)

where Eai(x) = − i
gTr(U̇

+
i (x, t)TaUi(x, t))+h.c. is the charge on the link (x, x+

ei), whereas Ea,−i(x) on the link (x − ei, x). Now we write the Hamiltonian
Eq.(6.40) in terms of the plaquette variables Ui(x)... and charges Eai(x). As
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the first step, using the Eq.(8.12), we note that if A,B,C,D are four N × N
matrices then∑

a

Tr(ATaB)Tr(CTaD) = NTr(BADC)− Tr(AB)Tr(CD) (6.47)

obtaining the following identity

∑
a

3∑
i=1

Eai(x, t)Eai(x, t) =
4

g2

3∑
i=1

(
NTr(U̇+

i (x, t)U̇i(x, t))− (Tr(U+
i (x, t)U̇i(x, t))

2
)

(6.48)
but, being Ui(x) = e−igAi(x,t), we can write

U̇i(x, t) = −ig
1w
0

dτe−i(1−τ)gAi(x,t)Ȧi(x, t)e
−iτgAi(x,t)

hence

Tr(U+
i (x, t)U̇i(x, t)) = −igTr(Ȧi(x, t)) = −igȦai(x, t)Tr(Ta) = 0.

Therefore the Eq.(6.48) becames

N∑
a=1

3∑
i=1

Ea,i(x, t)Eai(x, t) =
4N

g2

3∑
i=1

Tr(U̇+
i (x, t)U̇i(x, t)) =

2N

g2

3∑
i=1

Tr
(
U̇+
i (x, t)U̇i(x, t) + U̇i(x, t)U̇

+
i (x, t)

)
=

2N

g2

3∑
i=1

Re Tr(U̇+
i (x, t)U̇i(x, t))

hence

N∑
a=1

3∑
i=1

Ea,i(x, t)Eai(x, t) =
2N

g2

3∑
i=1

Re Tr(P+
i (x, t)Pi(x, t)). (6.49)

Now, inserting the Eq.(6.49) in the Eq.(6.40), we obtain:

H =
1

4N

N∑
x∈Λ,a=1

3∑
i=1

(Ea,i(x, t))
2− 1

2g2

3∑
x∈Λ,ij=1

Re Tr
(
1−

(
Ui(x, t)Uj(x+ ei, t)U

+
i (x+ ej , t)U

+
j (x, t)

))
.

(6.50)
Now writing the charges in terms of coordinates and canonical momenta

Eai(x) = i
∑
lk

(
(Pi(x, t))lk(TaUi(x, t))lk − (U+

i (x, t)Ta)lk(P
∗
i (x, t)kl

)
the Poisson Brakets between the charges and the generalized coordinate are:

{Eai(x, t), Uj(x′, t)} = −igδijδxx′TaUi(x, t) (6.51)

{Eai(x, t), U+
j (x′, t)} = igδijδxx′U+

i (x, t)Ta (6.52)

with the link indices i, j = 1, 2, 3



84 CAPITOLO 6. GAUGE THEORIES AND SPIN-ORBIT COUPLING.

but being

Ea,−i(x, t) = − i

g2
Tr
(
Ui(x− ei, t)TaU̇

+
i (x− ei, t)− U̇i(x− ei, t)TaU

+
i (x− ei, t)

)
we have

{Ea,−i(x′, t), Uj(x, t)} = igδijδx′,x+eiUi(x, t)Ta (6.53)

{Ea,−i(x′, t), U+
j (x, t)} = −igδijδx′,x+eiTaU

+
i (x, t) (6.54)

hence the Poisson Berakets

{Ea(x′, t), Uj(x, t)} =
3∑
i=1

({Ea,i(x′, t), Uj(x, t)}+ {Ea,−i(x′, t), Uj(x, t)})

then

{Ea(x′, t), Uj(x, t)} = −ig (δxx′TaUi(x, t)− δx′,x+eiUi(x, t)Ta) (6.55)

{Ea(x′, t), U+
j (x, t)} = ig

(
δxx′U+

i (x, t)Ta − δx′,x+eiTaU
+
i (x, t)

)
(6.56)

The quantization procedure consist in the replacement observable→operators
acting on a Hilbert space and {, } → −i[, ], therefore at the Eq.(6.55) and
Eq.(6.56) correspond the following commutation rules:

[Ea(x
′, t), Uj(x, t)] = −g (δxx′TaUi(x, t)− δx′,x+eiUi(x, t)Ta)

[Ea(x
′, t), U+

j (x, t)] = g
(
δxx′U+

i (x, t)Ta − δx′,x+eiTaU
+
i (x, t)

)
(6.57)

whereas at the fundamental Poisson Brakets Eq.(6.41) correspond the commu-
tators

[(Ua(x, t))ij , (U̇
+
b (x′, t))kl] = ig2δijδxx′δilδkj

[(U+
i (x, t))ij , (U̇j(x

′, t))kl] = ig2δijδxx′δilδkj (6.58)

In a quantum theory the charges are the generators of the generalized ro-
tations belonging to the Gauge group. Indeed let ψ(x) the classic matter field,
if we perform the transformation ψ(x) → ψ′(x) = e−igθa(x)Taψ(x) then, in a
quantum theory, there is an unitary operator F such that

� for any state |α > we have |α >→ |α′ >= F |α >

� < α|ψ(x)|α >→
→< α′|ψ(x)|α′ >=< α|F+ψ(x)F |α >= e−igθa(x)Ta < α|ψ(x)|α >

where one can write F = e−i
∑

x∈Λ θa(x)Qa(x). Then, for an infinitesimal transfor-
mation, we have F+ψ(x)F = (Î−igθa(x)Ta)ψ(x) with F = Î−ig

∑
x∈Λ θa(x)Qa(x)

then the following commutation rules holds:

[Qa(x
′), ψ(x)] = −δx′xTaψ(x)
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[Qa(x
′), ψ+(x)] = δx′xψ

+(x) (6.59)

the charge operator is Qa(x) = ψ+(x)Taψ(y). If we consider the Gauge field
U(x, y) and F = e−ig

∑
x∈Λ θa(x)Ga(x) one has:

F+U(x, y)F = e−igθa(x)TaU(x, y)eigθa(y)Ta

from which one has the following commutation rules:

[Ga(x
′), U(x, y)] = − (δx′,xTaU(x, y)− δx′,yU(x, y)Ta)

[Ga(x
′), U+(x, y)] = δx′,xU

+(x, y)Ta − δx′,yTaU
+(x, y) (6.60)

Now by Eq.(6.60) and Eq.(6.57) we can identify Ga(x) with gEa(x), furthermore
hold the commatation rules:

[Ea,i(x), Eb,j(x
′)] = ifabcEc,i(x)δijδxx′ . (6.61)

Indeed we have

[Ea,i(x), Eb,j(x
′)] =

i

g
Tr([Ea,i(x), U̇

+
j (x′, t)]TbUj(x

′, t)+U̇+
j (x′, t)Tb[Ea,i(x), Uj(x

′, t)]−

−[Ea,i(x), U
+
j (x′, t)]TbU̇j(x

′, t)− U+
j (x′, t)Tb[Ea,i(x), U̇j(x

′, t)]) =

= iδijδxx′Tr
(
U̇+
j (x′, t)[Ta, Tb]Uj(x

′, t)− U+
j (x′, t)[Ta, Tb]U̇j(x

′, t)
)
=

= ifabciTr
(
U̇+
j (x′, t)TcUj(x

′, t)− U+
j (x′, t)TcU̇j(x

′, t)
)
.

If one consider the SU(2) Group the operators then Ea,i(x) are the components
of an angular momentum, hence taking |(x, i)n, p > the eigenvectors of Ez,i(x)

and
∑3
a=1E

2
a,i(x) = E2(x, i) one has

E2(x, i)|(x, i)n, p >= n(n+ 1)|(x, i)n, p > (6.62)

Ez,i(x)|(x, i)n, p >= p|(x, i)n, p > (6.63)

In conclusion the complete (Gauge fields + matter) generators of the Gauge
transformations are

Ja(x) =
3∑

i=−3

Eai(x) + ψ+(x)Taψ(x)

with [Ja(x), Jb(x
′)] = ifabcJc(x)δxx′ (6.64)

whereas the physical states are a subspace of the Hilbert space, indeed if H is
the Hilbert space, then the space of physical states is Hphys ⊂ H defined as

Hphys = {|α >∈ H | (Ea(x) +Qa(x)) |α >= 0}

the constraint (Ea(x) + Qa(x))|α >= (
∑3
i=−3Ea,i(x) + Qa(x))|α >= 0 is the

Gauss law.



86 CAPITOLO 6. GAUGE THEORIES AND SPIN-ORBIT COUPLING.

6.2.1 The Hubbard Model with Spin-Orbit interaction.

After having considered the main results for the lattice gauge theory in the
preceding section, let us now discuss how they can be applied to the Hubbard
model in the presence of SOIs.

Now we conside the non-degenerate Hubbard model with Rashba and Dresse-

lhauss Spin-Orbit coupling, hence defining the spinor ψ(x) =

(
c↑(x)
c↓(x)

)
, where

cσ is the annihilation operator at site x ∈ Λ ⊂ Zd for an electron with spin σ,
then the Hubbard Hamiltonian may be written as

H =
∑
x,y∈Λ

t(x− y)ψ+(x)ψ(y) + U
∑
x∈Λ

n↑(x)n↓(x), (6.65)

where nσ(x) = c+σ (x)cσ(x) is the particle number operator with spin σ. This
Hamiltonian is rotationally invariant in the spin space, i. e. [H,Sa] = 0, where
Sa =

∑
x∈Λ S

a(x) with

S+(x) = c+↑ (x)c↓(x) S−(x) = c+↓ (x)c↑(x),

Sz(x) =
1

2
(n↑(x)− n↓(x)). (6.66)

The operators defined by Eq. (6.66) are the SU(2) group generators, and
their commutation rules are:

[S+, S−] = 2Sz [Sz, S±] = ±S±. (6.67)

According to Mermin-Wagner theorem, a spontaneous magnetic order is ab-
sent in the Hubbard model. [97] This result has been obtained adding to this
Hamiltonian of SU(2) symmetry-breaking term, and applying the Bogoliubov
inequality. We notice that the SU(2) symmetry exhibited by the Hubbard mo-
del is a global one. To get a SU(2) local gauge symmetry for this model, we
may implement the lattice gauge theory previously introduced. In this way the
Hubbard Hamiltonian can be written as

H =
∑
x,y∈Λ

t(x− y)ψ+(x)U(x, y)ψ(y) + U
∑
x∈Λ

n↑(x)n↓(x)+

+Hgauge, (6.68)

where U(x, y) is a lattice gauge field and Hgauge is the free gauge field Hamil-
tonian.

Introducing the following field operators

Ja =
∑
x∈Λ

Ja(x) =
∑
x∈Λ

(
∑
l

Ela(x) + Sa(x)),
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i. e. the transformation generators of the local SU(2) group, the Hamiltonian
Eq. (6.68) is invariant under the considered group, that is [Ja(x),H] = 0. This
result can be easily verified using Eqs.(6.59)-(6.60), that for SU(2) group are

[Ja, U(x, y)] = −[
σa

2
, U(x, y)], (6.69)

[Ja(x), U(x, y)] =
σa

2
U(x, y),

[Ja(y), U(x, y)] = −U(x, y)
σa

2
, (6.70)

and

[Ja, ψ(x)] = −σ
a

2
ψ(x) [Ja, ψ+(x)] = ψ+(x)

σa

2
, (6.71)

where σi are the Pauli matrices.
The Spin-Orbit coupling can be introduced by the potenetials defined in

Eq.(6.29), therefore we introduce SOI in Eq. (6.65) by using the SU(2) lattice
gauge theory previously outlined. To this end, we define for our case the link
gauge fields as

U1(x) = e−i
e

2}cσ
aA1a(x) = eig(βσ

1+ασ2) =

= λ11+ iλ2(cosϕσ
1 + i sinϕσ2)

=

(
λ1 λ2e

−i(ϕ−π
2 )

−λ2ei(ϕ−
π
2 ) λ1

)
,

U2(x) = e−i
e

2}cσ
aA2a(x) = e−ig(ασ

1+βσ2) =

= λ11− iλ2(sinϕσ
1 + i cosϕσ2) =

=

(
λ1 −λ2eiϕ

λ2e
−iϕ λ1

)
, (6.72)

U3(x) = 1,

with g = m
}2

λ1 = cos(g
√
α2 + β2), λ2 = sin(g

√
α2 + β2),

and tanϕ = α
β .

We notice that the link gauge fields verify the following commutation rules:

[A1(x), A2(x′)] = 2i(α2 − β2)σ3,

[U1(x), U2(x
′)] = 2i(λ2)

2(cos2 ϕ− sin2 ϕ)σ3. (6.73)

It is worth stressing that when the coupling constants α and β are equal, the
symmetry group becomes an abelian U(1) group. Furthermore, within the de-
finition reported in Eq. (6.29), the gauge fields Ul(x) are independent on the
choice of the lattice site. This means that, if the pair of lattice sites (x, y) in
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the hopping term of the Hamiltonian Eq. (6.68) are not nearest-neighbor si-
tes, then U(x, y) depends on sites x and y only. But this is not the general
case and U(x, y) may depend on the link sequence connecting the x site to
the y site. Therefore, if Γ = (x, x1, ..., xn−1, y) is a path on the lattice, then
UΓ(x, y) = Ui1(x)Ui2(x1)...Uin(xn−1) where ik is the direction on the lattice
connecting xk−1 and xk of the path Γ. We point out that it is possible to ob-
tain the general form of U(x, y) by imposing the time reversal symmetry of the
Hamiltonian in Eq. (6.68). The time reversal operator is given by

T =
∏
x∈Λ

e−iπS
y(x)K,

where K is the complex conjugation. By imposing T+HT = H one obtains

U(x, y) =

(
g(x, y) j(x, y)

−j∗(x, y) g∗(x, y)

)
. (6.74)

Here, the functions g(x, y) and j(x, y) are connected to the electronic jump from
x to y with spin conservation and spin flip, respectively. These functions depend
obviously on the electronic path followed in the jump.
Assuming the local SU(2) gauge symmetry on the lattice, the interaction is
contained in the path ordered of the gauge field on the lattice U(x, y), so that
the group SU(2) algebra can be used when we apply the Bogoliubov inequality
to get the upper bound on the order parameter.

It is important to observe that the spin-orbit coupling breaks explicitly the
SU(2) spin symmetry, and therefore we cannot say anything on the spontaneous
magnetization. Nevertheless, we will show that within our approach, if Rashba
and Dresselhaus coupling constants are equal, then the Hubbard Hamiltonian in
Eq. (6.68) exhibits a U(1) rotational symmetry in spin space and the SU(2) can
be restored by a gauge transformation in the spin space. This conclusion will
be used to prove that if hopping matrix t(x− y) v O( 1

|x−y|2 ) then the magnetic

ordering is absent in d = 2, for any finite temperature, in agreement with
Mermin-Wagner theorem. In d = 1, it is always possible to restore the SU(2)
symmetry in spin space by a gauge transformation, and therefore the magnetic
order is equally absent. On the other hand, the η pairing superconductivity is
vanishing for any value assumed by α and β, because the U(1) symmetry in
pseudospin space is not broken at all. To better clarify these points we consider
separately the study of the magnetic order in the d = 2 and the d = 1 cases,
and then the η pairing long-range.

Magnetic order in two dimensional lattice with α = ±β: Here, we
show that in the special case when Rashba and Dresselhaus SOI become equal
in intensity, the magnetic order is excluded in two-dimensional lattices. When
Rashba and Dresselhaus coupling constants are such that α = ±β, the link
gauge fields, Eqs. (6.72), are:

U1(x) = U1 = λ11+ i
λ2√
2
(±σ1 + σ2),
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U2(x) = U2 = λ11− i
λ2√
2
(σ1 ± σ2). (6.75)

They are commuting operators [U1, U2] = 0, as it can be deduced looking at
Eq. (6.73). Thus, the symmetry group is the U(1) abelian group of rotations
around a given direction. This statement implies that the ordering of the link
gauge fields is not important and we can write the hopping term in the Hamil-
tonian in Eq. (6.65) as follows∑

x,y∈Λ

t(x− y)ψ+(x)U(x, y)ψ(y) =

=
∑
x,y∈Λ

t(x− y)ψ+(x)U1(x)U1(x+ e1)∗

∗... ∗ U1(x+ le1)U2(x+ le1)U2(x+ le1 + e2)...U1(x+ le1 +me2)∗

∗ψ(x+ le1 +me2), (6.76)

where y = x+ le1+me2, e1 and e2 being the unit vectors on the x̂1 and x̂2 axis
of the two dimensional lattice, respectively and l and m are integers. Moreover,
we can also write

U(x, y) = Uy1−x1

1 Uy2−x2

2 = eig
′(l−m)n⃗±·σ⃗, (6.77)

with g′ = g
√
α2 + β2 and n⃗± = 1√

2
(1,±1, 0), where the sign + (-) holds if α = β

(α = −β). It is easy to verify that if α = β then the Hamiltonian in Eq. (6.65)

is rotationally invariant around the n⃗+ = 1√
2
(1, 1, 0) axis, that is [n⃗· S⃗,H] = 0

where S⃗ is the total spin. This is also easily observable in the Hamiltonian
(6.30), whereas if α = −β the symmetry is around the n⃗− = 1√

2
(1,−1, 0) axis.

After straightforward algebra, the gauge interaction can be written as

U(x, y) = e−ig
′θ∓(x)n⃗±·σ⃗eig

′θ∓(y)n⃗±·σ⃗, (6.78)

where θ±(x) =
√
2n⃗±· x⃗.

Defining a gauge transformation F as

F =
∏
x∈Λ

eig
′θ∓(x)n⃗±·S⃗(x),

we find that the Hubbard Hamiltonian with spin orbit coupling is globally SU(2)
invariant in the spin space:

F+ψ+(x)U(x, y)ψ(y)F = ψ+(x)ψ(y). (6.79)

If we consider the average value of the spin projection along x̂3 axis, we can
write

< S3(x) >= Tr(e−βHS3(x)) = Tr(F+e−βHFF+S3(x)F ) =
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= Tr(e−βF
+HF ρ⃗· S⃗(x)),

where ρi = Ri3(e3)i andR is a rotation matrix of θ∓(x) around n⃗± axis. The Ha-
miltonian is now SU(2) invariant, and then by the global gauge transformation

O = e−ig
′θ∓(x)n⃗±·S⃗ we get

< S3(x) >=< S3(x) >′,

where < >′ is the average value of the S3(x) in the transformed Hamiltonian.
Since for the Hubbard model without spin orbit coupling the spontaneous

magnetization is absent,[97] introducing the magnetic order parameter as

mh(Q,Λ) =
1

|Λ|
∑
x∈Λ

eiQ·x < S3(x) >=
1

|Λ|
< S3(Q) >′,

we trivially deduce

lim
h→0

lim
|Λ|→∞

mh(Q, |Λ|) = 0.

Magnetic order in one dimensional lattice: We consider the Hubbard
model on a chain of lattice sites with a constant lattice a assumed for simplicity
equal to 1. Therefore, the crystal lattice is Λ ⊂ Z, and the Hubbard Hamiltonian
is

H =

|Λ|∑
l=1

|Λ|−l∑
j=1

t(j)ψ+(l)ψ(l + j) + U

|Λ|∑
l=1

n↑(l)n↓(l).

In one spatial dimension, we have one link direction, so that the lattice may
be seen as a sequence of links. Also, it can be considered as U(1) subgroup of
SU(2) where we have one gauge field associated with the link (l, l + 1), that is,
the group is abelian and its elements are:

U1(x) = e−i
e
}cσ

aA1a

= λ11+ iλ2(cosϕσ
1 + sinϕσ2).

To introduce the spin-orbit coupling we perform the replacement

ψ+(l)ψ(l + j) → ψ+(l)U1(l)U1(l + 1)...U1(l + j − 1)ψ(l + j) =

= ψ+(l)U(l, l + j)ψ(l + j).

Since the gauge fields are independent on the site, we write

U(l, l + j) = eig
′jn⃗·σ⃗, (6.80)

with g′ = g
√
α2 + β2 and n⃗ = (cosϕ, sinϕ, 0).

Summarizing, the Hubbard Hamiltonian is rotationally invariant around the

vector n⃗. Indeed if S⃗ =
∑|Λ|
l=1 S⃗(l) denotes the total spin operator, then we have
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[S⃗· n⃗,H] = 0. Furthermore, Eq. (6.80) is very similar to Eq. (6.77), so that we

may define the unitary operator F =
∏|Λ|
l=1 e

ig′ln⃗·S⃗(l). Therefore, we can write

F+ψ+(l)U(l, l + j)ψ(l + j)F = ψ+(l)ψ(l + j),

that is, the transformed Hamiltonian is the Hubbard model without the spin-
obit interaction. Therefore, using the argument previously outlined for the
two-dimensional lattice, we can conclude that the spontaneous magnetization is
absent for any α and β values, also in the 1D case.

η pairing long-range order in one and two dimensional lattices: The
η pairing long-range order is connected to the spontaneous symmetry breaking
of the U(1) invariance around the third axis in the pseudospin space of the
Hamiltonian. [99] The Hubbard Hamiltonian exhibits this symmetry and the
introduction of the spin orbit interaction does not modify this property. If we
define the pseudospin operators as

η−(x) = c↑(x)c↓(x) η+(x) = c+↓ (x)c
+
↑ (x),

η3(x) =
1

2
(n↑(x) + n↓(x)− 1),

then [η3,H] = 0. Here,

η3 =
∑
x∈Λ

1

2
(n↑(x) + n↓(x)− 1).

From the commutators
[η3, U1] = [η3, U2] = 0,

[η3, ψ(x)] = −ψ(x) [η3, ψ+(x)] = ψ+(x), (6.81)

it is easy to prove that

[η3, ψ+(x)U(x, y)ψ(y)] = 0.

The absence of long-range η pairing in the Hubbard model without spin-orbit
coupling has been widely studied. [98] Here, following the same approach, we ex-
tend this result to the Hubbard Hamiltonian with SOI. To this end, we introduce
the symmetry breaking external field λ in the Hamiltonian as follows

H → H − λ(η+(Q) + η−(−Q)),

and we define the η pairing order parameter as

∆(Q) = lim
|Λ|→∞

1

|Λ|
∑
x∈Λ

e−iQ·x < η+(x) >=

= lim
|Λ|→∞

< η+(Q) >

|Λ|
.
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To show that long-range η pairing is absent in this model we have to show that

lim
λ→0

∆λ = 0.

So, in the Bogoliubov inequality

| < [A,B] > |2 6 1

2kBT
< [A,A+]+ >< [B+, [B,H]] >, (6.82)

we define the operators A and B as

A(q) = η+(q +Q) B(q) = η3(−q).

Then, from the commutator

[B,ψ+(x)U(x, y)ψ(y)] = (eiq·x − eiq·y)ψ+(x)U(x, y)ψ(y),

we get the average value of the double commutator as

< [B+, [B,H]] >=

= 2
∑
x,y∈Λ

t(x− y)(1− cos(q· (x− y)))∗

∗ < ψ+(x)U(x, y)ψ(y) > −λ(< η+(Q) > + < η−(−Q) >).

Now, if one defines the scalar product by (A,B)=< A+B >, then by Schwartz
inequality one gets

< ψ+(x)U(x, y)ψ(y) >6 2,

so that

| < [B+, [B,H]] > | 6 |Λ|(2q
2

ρ
+ λ∆(Q,Λ)). (6.83)

Since < [A,B] >= |Λ|∆(Q,Λ) and∑
q

< [A,A+]+ >6 |Λ|2,

by using the Bogoliubov inequality Eq. (6.82) the proof is accomplished. Indeed,
we get

|∆(Q)|2
∫

ddq

(2π)d
1

q2 + λρ2∆(Q)
6 2

ρkBT
,

Thus, by solving the integral we find out that, when λ→ 0, ∆(Q) → 0 for d=1,
2, at finite temperature. This implies that the Hubbard model with SOI does
not exhibit the η pairing long-range order.

In conclusion we presented an extension of the Mermin-Wagner theorem
for the Hubbard model in the presence of SOI, and showed that spontaneous
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magnetic order is ruled out in two dimensions, at finite temperature, if the
Rashba (α) and the Dresselhaus (β) spin-orbit interactions are such that α =
±β. On the contrary, in one-dimension the magnetic order can be excluded,
regardless of the values assumed by the spin-orbit coupling constants. We notice
that, when Q=0 in m(Q) the ferromagnetic order is forbidden, while choosing Q
in such a way that exp(iQRi) = ±1 whenRi connects sites in the same sublattice
and different sublattices, respectively, we argue that also the antiferromagnetic
order is forbidden. We also proved the absence of long-range η pairing, at
finite temperatures, in one- and two-dimensions, independently on α and β
interaction parameters. As stated for the magnetic order, looking at the η-
pairing order parameter ∆(Q), we may infer that for Q = 0 the s-wave pairing
can be excluded, for Q = ±π we exclude the η-pairing, and finally for Q ̸=
{0,±π} we rule out the existence of generalized η-pairing order with momentum
Q.

For copleteness, we note that the Mermin-Wagner theorem follows from the
fact that in low-dimensional cases, a diverging number of infinitesimally low-
lying excitations is created at any finite temperature, and thus the assumption
of a non vanishing order parameter is not self-consistent. This consideration, as
well as the rigorous proof, does not apply at T=0, implying that the ground-
state may be ordered. For instance, two-dimensional ferro(anti)magnetism is
possible at zero temperature: quantum fluctuations oppose but do not prevent
the appearance of a two-dimensional magnetically ordered phase. In contrast,
for one-dimensional systems quantum fluctuations become so strong that they
usually prevent even ground state ordering. Indeed, it is known that the ground-
state of the one-dimensional Hubbard model is a non magnetic singlet at any
band filling and for any value of Coulomb interaction U. More generally, if the
energy spectrum has a gap, it can be shown that the model under investigation
does not exhibit long range order, and interestingly, this energy gap plays the
role of the temperature in conventional Bogoliubov inequality[46, 40, 47, 73].
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Capitolo 7

Conclusions.

We studied the phase transitions in some model of Strongly Correlated System
using the Bogoliubov’s inequality and the Infrared bounds method, in parti-
cular we considered the d-band Hubbard Hamiltonian as theoretical model of
the TMO materials. Therefore we defined the Nemetic order parameter as the
expectation value of the Quadrupole momentum and in the first step (chapter
four) we considered a degenerate multiorbital (d-bands) Hubbard model in the
presence of the spin-orbit interaction (SOI) and using the Bogoliubov’s inequa-
lity we excluded the existence of the nematic order in low dimensional cases at
finite temperature of the adopted Hamiltonian specifing, furthermore, the con-
ditions of validity of the our conclusions. We did also an extension to generic
k-rank tensorial order parameters and we showed as the Bogoliubov inequality
can be used in this cases.

For completeness, we note that the Mermin-Wagner theorem does not ap-
ply at T=0, implying that the ground-state may be ordered. Indeed, two-
dimensional ferro(anti)magnetism is possible at zero temperature since quantum
fluctuations oppose but do not prevent the appearance of a two-dimensional
magnetically ordered phase. On the other hand, for one-dimensional systems
quantum fluctuations become so strong that they usually prevent even ground
state ordering. For instance, the ground-state of the one-dimensional Hubbard
model is a non magnetic singlet at any band filling and for any value of Cou-
lomb interaction U . On a more general ground, it can be rigorously shown that
if the energy spectrum has a gap then the model under investigation does not
exhibit long range order, and interestingly, this energy gap plays the role of the
temperature in conventional Bogoliubov inequality[46, 40, 47, 73].

In the following step (chapter five), using the reflection positivity method,
we showed that this model at half-filling supports a staggered nematic order
if repulsive or attractive on-site inter-orbital and intra-orbital interactions and
off-site repulsive inter-orbital interaction are introduced. In more explicit term
we obtained that in two and three dimensions the order may exist at least in
the Ground state, and we get the condition for its existence. The conclusion
is that the the anisotropic off-site interorbital repulsion play an important role

95
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in the formation of the staggered orbital long range order. The Mermin and
Wagner arguments are not possible in this case because the rotational symmetry
is explicitely broken therefore we can not exclude the order at finite temperature.

The 2D systems have an important role in the modern Condensed Matter
Physics, in particular the 2D semiconductors systems with spin orbit interaction
are important in spintronic. Therefore we investigated a specific model, namely
the single-band Hubbard model, in presence of SOIs, and we rigorously showed
that the existence of long-range orders may be ruled out also when SOIs are
present and the Bogoliubov inequality method is applied. Since SOIs break the
spin symmetry of the model, we first introduced SOIs in the model by imposing
local SU(2) gauge symmetry on the lattice, then we re-wrote SOIs in such a
way that they are included in the path ordered of the gauge field on the lattice.
In this way, the SU(2) invariance is restored allowing the use of the Bogoliu-
bov inequality and the derivation of upper bounds for order parameters. In the
Pauli-Schroedinger Lagrangian density the spin orbit terms can be introduced
also as a SU(2) Gauge theory[84] where the Yang and Mills fields can be written
in terms of the electric and the magnetic fields, this description is useful in the
introduction of the covariantly conserved spin current. At this stage, it is worth
mentioning that local symmetries, such as the local gauge symmetry, cannot be
broken spontaneously, indeed, the Elitzur’s theorem [88] states that a local gau-
ge symmetry cannot be broken spontaneously, that is, the expectation value of
any gauge non-invariant local observable (order parameter) must vanish. This
result means that the spontaneous breaking of the gauge invariance can only
occur when the local symmetry is explicitly broken by gauge fixing. Hence, first
one chooses a gauge and in this gauge the remaining global gauge symmetry
is spontaneously broken, as it happens for instance in the Anderson-Higgs me-
chanism [89]. We also mention that for two-dimensional systems, if the residual
symmetry is continuous, after the gauge fixing, at finite temperatures the asso-
ciated order parameter must vanish according to the Mermin-Wagner theorem.
Nevertheless, when a discrete symmetry is considered then the ordered phase
can still exist. In the chapter six, after an introduction of these concepts and a
review of the Hamiltonian lattice gauge theory, we studied the non degenerate
Hubbard model with Rashba (α) and Dresselhauss (β) spin orbit interaction
obtaining that:

� In a two dimensional system if α = ±β the magnetic order is absent
whereas the superconductivity (η-pairing) is absent always at finite tem-
perature.

� In a one dimensional system the magnetic order and the η-pairing super-
conductivity are absents always at finite temperature.
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Appendices

8.1 Appendix A: Operator inequalities.

An operator on the Hilbert space H, O : H → H is positive semidefinite if for
each |a > and |b > one has < a|O|b >≥ 0. One can introduce a partial ordering
indeed if A and B two operators then A ≥ B if A−B is positive semidefinite.

If f : I → R a function and O an Hermitian operator on Hilbert space H
one defines a operator function f(O) as:

f(O) =
∑
α

f(λα)P̂α

where {λα} are the eigenvalues of O and P̂α the projection operators on relative
eigensubspaces.

For the function of operators one can defene the monotony and convexity
concept as for real functions, hence:

� Monotonicity: Let A and B be two hermitian operators, a function
f : (0,∞) → R is said to be operator monotone if for all A ≥ B then
f(A) ≥ f(B)

� Convexity: function f : (0,∞) → R is said to be operator convex if

f(tA+ (1− t)B) ≤ tf(A) + (1− t)f(B)

It is easy to prove the following lemma

Lemma: Let A be a positive defined and bounded selfadjoint operator, if p
an integer then:

(TrA)p ≥ Tr(Ap). (8.1)

Theorem: If A and B are two operators with B selfadjoint and ||B|| the
its norm then one has:

Tr(AB) ≤ Tr(A)||B||. (8.2)
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Proof: If B is selfadjoint then {|b >} are its eigenvectors, hence

Tr(AB) =
∑
b

< b|AB|b >=
∑
b

< b|A|b > λb,

but for each |b > the eigenvalue λb ≤ ||B|| from which the Eq.(8.2)

Peierls inequality: Let O : H → H be a Hermitian operator on Hilbert space
H and f a convex function. if {|a >} a basis in H then:∑

a

f(< a|O|a >) ≤ Trf(O)

Proof:

Trf(O) =
∑
a

< a|{
∑
α

f(λα)P̂α}|a >=
∑
a

< a|{
∑
α

f(λα)P̂
2
α}|a >=

=
∑
a

{
∑
α

f(λα)||P̂α|a > ||2} ≥
∑
a

f(
∑
α

λα||P̂α|a > ||2) =
∑
a

f(< a|O|a >)

where the inequality arises by Jensen inequality, indeed
∑
α ||P̂α|a > ||2 = 1.

There is equality if each |α > is an eigenvector of O. If f(t) = et then∑
α

e<α|O|α> ≤ Tr(eO). (8.3)

Theorem: If A,B : H → H are two bounded selfadjoint operators, then:

Tr(eA+B) ≥ Tr(eAeB). (8.4)

Proof: Indeed by Trotter’s formula and by Eq.(8.1) one write:

Tr(eA+B) = lim
n→∞

Tr(e
A
n e

B
n )n ≥ lim

n→∞
Tr((e

A
n )n(e

B
n )n) = Tr(eAeB)

Theorem: If A,B : H → H are two bounded selfadjoint operators, if they are
positive semidefinite then:

Tr(eA+B) ≥ TreA. (8.5)

Proof: taking

Tr(eA+B)− TreA =

1w
0

dt
d

dt
Tr(eA+tB) =

1w
0

Tr(eA+tBB) ≥ 0

this because eA+tBB is a positive semidefinite operator.
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Klein inequality: Let A,B : H → H be two bounded selfadjoint operators
and f : (0,+∞) → R then:

Tr[f(A)− f(B)− (A−B)f ′(B)] ≥ 0. (8.6)

Proof: Let C = A−B so that for 0 ≤ t ≤ 1, B+ tC = (1− t)B+ tA. Defining
g(t) = Tr[f(B+ tC)] then, by the Peierls inequality, it is easy to prove that g(t)
is a convex function, and so for all 0 ≤ t ≤ 1 one has:

g(1)− g(0) ≥ g(t)− g(0)

t

and in fact the right hand side is monotone decreasing in t. By taking the limit
t→ 0 one proves the theorem.

Peierls Bogoliubov inequality 1: If O : H → H is an Hermitian operator
then the function f(O) = ln(Tr(eO)) is convex.
Proof: Let A and B be two Hermitian operators and taking O(t) = tA+(1−t)B
and {|α >} its eigenvectors fot t fixed then, using the Holder inequality with
p = 1

t and q = 1
1−t , one has:

Tr(etA+(1−t)B) =
∑
α

e<a|tA+(1−t)B|a> =
∑
α

{et<a|A|a>e(1−t)<a|B|a>} ≤

≤ (
∑
α

e<a|A|a>)t(
∑
α

e<a|B|a>)1−t.

By using the Peierls inequality one completes the proof.

Peierls Bogoliubov inequality 2: Let A and B be two bounded operators
on the Hilbert space H then:

ln(
Tr(eA+B)

Tr(eA)
) ≥ Tr(BeA)

Tr(eA)
. (8.7)

Proof: Indeed f(t) = lnTr(eA+tB) is a convex function then

f(t)− f(0) ≥ t
d

dt
f(t)|t=0,

but
d

dt
f(t) =

1

Tr(eA+tB)
Tr(BeA+tB)

hence by taking t = 1 the theorem is proved.
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8.2 Appendix B: Proprieties of the U(n) and SU(n)
Group

The MU (n) is the set of the Unitary matrices, that is

MU (n) = {U ∈Mn×n(C) |U+U = 1̂}

where Mn×n(C) is the set of the square complex matices of n order. On this set
one can define a product between matrices. The pair (MU (n),×) (with × we
indicate symbolically the product of matrices) is the Group U(n). If U ∈ U(n)
then det(U+U) = 1 hence | detU | = 1. Therefore the Group of the matrices
belonging U(n) such that det(U) = 1 is the SU(n) Group. Let U ∈ U(n) then

U = eiP with P an Hermitean matrix, therefore it has N = 4n2

2 − 1 = n2

independents parameters, indeed one has (2n)2 real parameters (this because
there are n2 complex parameters) but there are the constraint pij = p∗ji and
the diagonal elements must be real. Hence one can defines the real o purely
imaginary matrices Ta with a = 0, ..., N = n2 − 1 (we take T0 = Î) that
they form a basis on the space of the Hermitean matrices of n order then:

P = θ1̂ + θiTi, hence if U ∈ U(n) then U = eiθÎ+θiTi = eiθeiθiTi , whereas
U ∈ SU(n) then U = eiθiTi . If one defines the inner product between matrices
as (A|B) = Tr(AB) then the basis element {Ti} can be chosen orthogonal, that
is

Tr(TiTj) = nδij , (8.8)

therefore any matrices Hermitean A is rewritten as

A = α0Î + αiTi (8.9)

with α0 = 1
nTr(A) and αi =

1
nTr(TiA)

Commutation rules for the generators: The commutator [Ti, Tj ] is an
n×nmatrix with elements real or imaginary, hence by Eq.(8.9) one has [Ti, Tj ] =

α0Î + λijkTk, but α0 = 1
nTr([Ti, Tj ]) = 0, whereas λijk = 1

nTr(Tk[Ti, Tj ]). The
quantities λijk are completely antisymmrtryc under permutation of any pair of
the indices and they can be chosen real, then λijk → ifijk, indeed if

fijk = −i 1
n
Tr([Ti, Tj ]Tk)

then the complex conjugate is

f∗ijk = i
1

n

∑
a

< a|[Ti, Tj ]Tk|a >∗= i
1

n

∑
a

< a|Tk[Tj , Ti]|a >= −i 1
n

∑
a

< a|[Ti, Tj ]Tk|a >= fijk

. Therefore the commutation rules of the generators Ti are:

[Ti, Tj ] = ifijkTk, (8.10)
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and the constant fijk are called structure constant of the Group. By the same
procedure one can obtain that

[Ti, Tj ]+ = 2δij Î + dijkTk (8.11)

where dijk = 1
nTr([Ti, Tj ]+Tk).

Fiertz Identity: By Eq.(8.9) one writes A = 1
nTr(A)Î+

1
nTr(TaA)Ta hence:

Aij =
1

n
δijδklAlk +

1

n
(Ta)ij(Ta)klAlk

but being Aij = Alkδilδjk one has:

(Ta)ij(Ta)kl = nδilδjk − δijδkl (8.12)

Adjoint Representation: Let the generators {Ta}Na=1 of SU(n) Group, then
it is possible choice the matrices Ta such that (Ta)ij = −ifaij . This follows by
Jacobi identity:

[[Ta, Tb], Tc] + [[Tc, Ta], Tb] + [[Tb, Tc], Ta] = 0

from which

fabj [Tj , Tc] + fcaj [Tj , Tb] + fbcj [Tj , Ta] = 0

therefore

fablflck + fcajfjbk + fbcjfjak = 0

then the commutation rules (8.10) correspondes to take (Ta)ij = −ifaij
The Generators {Ta} of the Group can be not all real matrices, indeed if the

Ta are real for a = 1, ..., N then doing the complex conjugate of the commutation
rules [Ta, Tb] = ifabcTc one has [Ta, Tb] = −ifabcTc, whereas they can be purely
imaginary (Es. the Adjoint representation). If it is necessary to have generators
with real representation then the following condition must be fulfilled: if fabc ̸= 0
then two generators must be real and one purely imaginary.

8.3 Appendix D: Foldy-Wouthuysen Transfor-
mation.

In order to obtain a non-relativistic approximation of the Dirac equation a
systematic approach exist. Indeed the Foldy Wouthuysen transformation allows
to decouple the small and large components of the Dirac wave function. Let
Ψ(x) be the Dirac wave function and if it fulfils the Dirac equation:

i
∂

∂t
Ψ = HΨ
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where H is the Dirac Hamiltonian, for the free case it is H = −iα⃗ · ∇⃗ +mβ.
Then we consider the unitary transformation Ψ = e−iSΨ′ therefore the Dirac
equation became:

i
∂

∂t
Ψ = ie−iS

∂

∂t
Ψ′ + (

∂

∂t
ie−iS)Ψ′ = He−iSΨ′

from which one has:

i
∂

∂t
Ψ′ = eiS(H − i

∂

∂t
)e−iSΨ′

with H ′ = eiS(H−i ∂∂t )e
−iS the transformed Hamiltonian. The operator S is an

opportune Hermitean operator and now we find it. Let us call odd the operators
which couple large and small components (like αi, γ5,...), even those which do
not (as Î, β,...). Now we want to study the non relativistic approximation at
the order ∼ (vc )

2 of a Dirac particle in an external electromagnetic field, then
the Hamiltonian is

H = −iα⃗ · (∇⃗ − eA⃗) +mβ + eA0, (8.13)

The actual dimensionless expansion parameters are the operators (}/mc)∇⃗ and
(}/mc2)(∂/∂t) then in roughly terms 1/m. Now we want to compute the
non-relativistic correction at the order ∼ O(1/m2), hence as the first step we
compute the term

eiSi
∂

∂t
e−iS = eiS

1w
0

dxe−i(1−x)SṠe−ixS =

1w
0

dxeixSṠe−ixS . (8.14)

Then, at the wanted order, the transformed Hamiltonian is:

H ′ = H − Ṡ + i[S,H]− 1

2
[S, [S,H]]− i

6
[S, [S, [S,H]]]+

+
1

24
[S, [S, [S, [S,H]]]] + ...− i

2
[S, Ṡ] +

1

6
[S, [S, Ṡ]] + ... (8.15)

The Hamiltonian Eq.(8.13) has the form H = βm+ E +O where

O = −iα⃗ · (∇⃗ − eA⃗) is the odd term, whereas E = eA0 is the even term. In the
expansion Eq.(8.15) we take S = −iβO2m , this operator is of the order ∼ O(1/m)
(of the order ∼ O(v/c) ). Therefore we compute the following commutators:

[S,O] = −i β
m
O2 [S,O3] = −i βmO4 (8.16)

[S,O2] = 0 [S,O4] = 0

[S, β] =
i

m
O [β,O] = 2βO [S, Ṡ] =

i

2m
[O, Ȯ].

Then we have

[S,H] = i(O − β

m
O2 − β

2m
[O, E ]) (8.17)
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[S, [S,H]] =
β

m
O2 +

O3

m2
+

1

4m2
[O, [O, E ]]

[S, [S, [S,H]]] = i(
O3

m2
− βO4

m3
− β

8m3
[O, [O, [O, E ]]])

[S, [S, [S, [S,H]]]] =
βO4

m3

where we neglect all terms of the order ∼ O(1/m4) (∼ O((v/c)4) ), furthermore

Ṡ = −i β
2m

Ȯ (8.18)

[S, Ṡ] =
1

4m2
[O, Ȯ]

[S, [S, Ṡ]] = − iβ

8m3
[O, [O, Ȯ]]

Therefore by Eq.(8.15) the transformed Hamiltonian is:

H ′ = βm+ E − β

48m3
([O, [O, [O, E ]]] + i[O, [O, Ȯ]])+

+β(
O2

2m
+

1

2m
[O, E ]− O4

8m3
)− O3

3m2
− 1

8m2
([O, [O, E ]]+i[O, Ȯ])+i

β

2m
Ȯ. (8.19)

The equation (8.19) has the same form of the original Hamiltonian H ′ = βm+
E ′ +O′ but now the odd term is an infinitesimal of higher order. Indeed

E ′ = E + β(
O2

2m
− O4

8m3
)− 1

8m2
([O, [O, E ]] + i[O, Ȯ])(8.20)

O′ = − O3

3m2
+

β

2m
[O, E ] + i

β

2m
Ȯ − β

48m3
([O, [O, [O, E ]]] + i[O, [O, Ȯ]])

In order to delete O′ is necessary another step and one defines S′ = − iβ
2mO′ ∼

O(1/m2) and one compute the new Hamiltonian:

H ′′ = eiS
′
(H ′ − i

∂

∂t
)e−iS

′
≈

≈ H ′ + i[S′,H ′]− 1

2
[S′, [S′,H ′]]− Ṡ′ (8.21)

then

[S′, H ′] = iO′ − i
β

2m
[O′, E ′]− i

β

m
O′2 (8.22)

[S′[S′,H ′] =
β

m
O′2

Ṡ′ = −i β
2m

Ȯ′
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where we neglected all terms of the order ∼ O( 1
m4 ) then the Eq.(8.21) can be

rewritten as:

H ′′ = βm+ E ′ +
β

2m
[O′, E ′] +

β

2m
O′2 + i

β

2m
Ȯ′ = βm+ E ′ +O′′ (8.23)

It is necessary another step, hence one defines S′′ = −i β2mO′′ ∼ O(1/m3) where

O′′ =
β

2m
[O′, E ′] +

β

2m
O′2 + i

β

2m
Ȯ′

then, at this order one has:

H ′′′ = eiS
′′
(H ′′ − i

∂

∂t
)e−iS

′′
= H ′′ + i[S′′,H ′′]− iṠ′′ (8.24)

then we compute

[S′′,H ′′] = iO′′ − i

2m
β[O′′, E ′]− i

m
βO′′2

but i
mβO

′′2 ∼ O( 1
m5 ),

i
2mβ[O

′′, E ′] ∼ O( 1
m3 ) and Ṡ′′ ∼ O( 1

m3 ), therefore,
neglecting all terms ∼ O(1/m4) one has

H ′′′ = H ′′ −O′′ +
1

2m
β[O′′, E ′]− β

2m
Ȯ′′ = βm+ E ′ +O′′′ (8.25)

with

O′′′ =
β

2m
[O′′, E ′]− β

2m
Ȯ′′ (8.26)

therefore we define S′′′ = − iβ
2mO′′′ obtaining

H(4) = H ′′′ + i[S′′′,H ′′′], (8.27)

now computing the commutator we have that [S′′′,H ′′′] ≈ iO′′′ + O(1/m4)
then H(4) = βm+ E ′ +O(1/m4). After these considerations one can write the
Eq.(8.24) as

H(4) =

= β(m+
O2

2m
− O4

8m3
) + E − 1

8m2
([O, [O, E ]] + i[O, Ȯ]) (8.28)

then the Dirac equation with the transformed Hamiltonian correspondes to two
independent equations for the big and small component of the Dirac spinor Ψ
at the considered order. Now we must compute in explicit way the terms in

Eq(8.28). Being O = −iα⃗ · (∇⃗ − ieA⃗) and Ȯ = −eα⃗ · ˙⃗A we have:

i[O, Ȯ] = −e{αiαj∂iȦj + [αi, αj ]Ȧj(∂i − ieAi)} (8.29)

and, being [O, E ] = −ieαi∂iA0 one has:

[O, [O, E ]] = −e{αiαj∂i∂jA0 + [αi, αj ]∂jA0(∂i − ieAi)} = (8.30)

= −e∇2A0 + 2eΣ⃗ · (∇⃗A0 × (∇⃗ − ieA⃗)),
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where Σi =

(
σi 0
0 σi

)
. Furthermore [O,−e∇2A0] = ie∇2α⃗ · ∇⃗A0 therefore

summing the Eq.(8.29) with Eq.(8.30) one has

[O, [O, E ]] + i[O, Ȯ] = e{αiαj∂iEj + [αi, αj ]Ej(∂i − ieAi)} (8.31)

where we used the identity Ei = −(∂iA0 + Ȧi) with E⃗ the electric field. The

Dirac spinor is Ψ =

(
ψ
χ

)
hence if we consider only the upper component then

the Eq.(8.31) can be rewritten as

[O, [O, E ]] + i[O, Ȯ] = e∇⃗ · E⃗ − ieσ⃗ · ∂B⃗
∂t

− 2ieσ⃗ · (E⃗ × (∇⃗ − ieA⃗)). (8.32)

On the other hand one has

O2

2m
= − 1

2m
(∇⃗ − ieA⃗)2 +

e

2m
σ⃗ · B⃗ (8.33)

where B⃗ is the magnetic field. Furthermore

− O4

8m3
= − 1

2m
(
1

2m
(P⃗ − eA⃗)2 +

e

2m
σ⃗ · B⃗)2 = (8.34)

= − 1

8m3
((P⃗ − eA⃗)4 + e2(σ⃗ · B⃗)2 + e(P⃗ − eA⃗)2(σ⃗ · B⃗) +

+e(σ⃗ · B⃗)(P⃗ − eA⃗)2)

therefore the complete Dirac equation approximation is

i
∂ψ

∂t
= {m+

1

2m
(P⃗ − eA⃗)2 + eA0 +

e

2m
σ⃗ · B⃗ − e

4m2
σ⃗ · E⃗ × (P⃗ − eA⃗)− ie

8m2
σ⃗ · (∇⃗ × E⃗)−

−e∇⃗ · E⃗
8m2

− e2

8m2
B⃗2 − 1

8m3
((P⃗ − eA⃗)4 + e(P⃗ − eA⃗)2(σ⃗ · B⃗) + e(σ⃗ · B⃗)(P⃗ − eA⃗)2}ψ.

(8.35)

For time independent electric and magnetic fields with B⃗ uniform the equation,
in the Coulomb gauge, becames

i
∂ψ

∂t
= {m+

1

2m
P⃗ 2 + eA0 +

e

2m
(L⃗+ 2S⃗) · B⃗ − P⃗ 4

8m3
− e∇⃗ · E⃗

8m2
+Hso}ψ (8.36)

where L⃗ = x⃗× P⃗ is the angular momentum of the particle, S⃗ = σ⃗
2 and Hso the

spin orbit interaction defined as Hso = − e
4m2 σ⃗ · E⃗× P⃗ . In a central electrostatic

potential the spin orbit interaction has the following expression:

Hso =
e

2m2r

∂A0

∂r
S⃗ · L⃗
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Now we know that [P i − eAi, (σ⃗ × E⃗)i] = −i∂i(σ⃗ × E⃗)i then with reference
to the Eq.(8.35) we rewrite the spin orbit term as follows:

Hso = − e

4m2
σ⃗ · (E⃗ × (P⃗ − eA⃗))− ie

8m2
σ⃗ · (∇⃗ × E⃗) =

= − e

4m2
(σ⃗ × E⃗) · (P⃗ − eA⃗) +

ie

8m2
∇⃗ · (σ⃗ × E⃗) =

= − e

4m2
(σ⃗ × E⃗) · (P⃗ − eA⃗)− e

8m2
[P i − eAi, (σ⃗ × E⃗)i] =

= − e

8m2
((σ⃗ × E⃗) · (P⃗ − eA⃗) + (P⃗ − eA⃗) · (σ⃗ × E⃗)), (8.37)

therefore the kinetic and spin orbit terms in Eq.(8.35) can be rewritten as

1

2m
(P⃗ − eA⃗)2 +Hso =

=
1

2m
(P⃗ − eA⃗− e

2m

σ⃗

2
× E⃗)2 − e2

32m3
(σ⃗ × E⃗)2. (8.38)

In order to cancel the rest energy m in the Eq.(8.35) one performs the phase
transformation ψ → e−imtψ, then the complete Hamiltonian is

H =
1

2m
(P⃗ − eA⃗− e

2m

σ⃗

2
× E⃗)2 + eA0 +

e

2m
σ⃗ · B⃗−

− e2

8m3
(B⃗2+(

σ⃗

2
× E⃗)2)− 1

8m3
((P⃗ −eA⃗)4+e(P⃗ −eA⃗)2(σ⃗ · B⃗)+e(σ⃗ · B⃗)(P⃗ −eA⃗)2

then the complete equation is:

i
∂ψ

∂t
= { 1

2m
(P⃗ − eA⃗− e

2m

σ⃗

2
× E⃗)2 + eA0 +

e

2m
σ⃗ · B⃗ +HGSB}ψ, (8.39)

where

HGSB = − e2

8m3
(B⃗2+(

σ⃗

2
×E⃗)2)− 1

8m3
((P⃗−eA⃗)4+e(P⃗−eA⃗)2(σ⃗·B⃗)+e(σ⃗·B⃗)(P⃗−eA⃗)2)
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