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Chapter 1

Introduction

1.1 Interest of the matter

Computational modelling and analysis in biology anedicine have
received major attention in recent years. The diseiplinary efforts
developed so far aimed at elucidating structures famctions of
living systems with major challenges in computagiomodelling and
analysis to understand, analyze and predict theptExmmechanisms
of biological systems. Continued research invesbga In

computational biology and physiology have addressagortant

issues across many applications spanning from mialedynamics,
biological signalling pathways, cellular biologydaeommunication,
tissue mechano-biology, organ function and perfolrea systemic
auto regulation, all the way up to lifestyle andviesnmental

influences and behavioural responses. Researcterow beginning
to address the grand challenge of multi-scale céatiomal modelling
and analysis: effectively capturing biological amhysiological

interdependencies across multiple observationdescanot only in
time and space, but also in physiochemical modakityd doing so in
a computationally efficient manner. The developmehnmany such
models involves the design of multimodal data asitjon

instrumentation and systems capable of measuridghamitoring of
structural and functional properties in vivo andnmimally invasive
manner [1],[2]. Over the last few years, the redearork is being
extended not only to further improve the basic usi@@ding of
biological and physiological models but also to lexg translational
biomedical research. For example, multi-scale andltisimodal

modelling approaches are now paving the way tebetiderstanding
of the mechanisms of disease and its treatmeng tielping to
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establish diagnostic biomarkers, physiology-basatept selection
criteria, and more principled strategies for chngspersonalizing and
optimizing therapeutic options.

Multi-scale computational modelling [3] promisesbiecome a
fundamental contributor to future biomedical sciesc and
technologies, and personalised predictive healéhcar
In particular, current and emerging neural prostkeand therapies
based on nerve stimulation and recording involvectebdes
chronically interfaced to the central and periphergervous
systems.[4]-[11] Applications include theoreticahderstanding on
how networks of neurons develop over time and chamgesponse to
stimuli. Because of the interest in this field, mastientific studies
have been carried out of neural development anstipity focus on
the spatiotemporal dynamics of neural activity.

Although neurons are complex electrochemical sysidirey
encode a large portion of the information that tipegcess in quick
voltage transients, known as action potentials JARZ]; thus, the
ability to accurately measure the effects of statiny and recording
neural tissue main activities is essential to magyentific and
engineering efforts.

From a much more practical point of view, otherlagpions
include upper and lower limb prostheses for spomab injury [13]
and stroke; bladder prostheses, cochlear and btan- auditory
prostheses, cortical recording for cognitive contfcassistive devices
[10], vagus nerve stimulation for epilepsy and é@spron and deep
brain stimulation (DBS) ([14]-[17]) for essentiakimor, Parkinson’s
disease, epilepsy, dystonia or depression, as agellhe design of
biosensors for research aims and retinal and cebrtvisual
prostheses.

All these research fields strongly require eleatsod
characterized by low impedance for recording ore sedversible
charge injection for stimulation.

In particular, as far as retinal prosthetics areceoned, since
photoreceptors may degenerate or cease to exish) age-related
macular degeneration (AMD) and in retinitis pignumsa (RP),
leading to partial or complete blindness, greabréfin research
field([18],[27]), indeed, has been taken in thet Igsars to tailor
devices, capable of partly restoring sight, bypassithe



photoreceptors retinal layer[28].

There are two main approaches to retinal implantseatly
being studied by scientists across the gladsretinalandepiretinal
[29]. The subretinal approach [19],[24],[30] invets implanting the
chip underneath the retina, specifically in the al@cregion. In this
case, the macular region is believed to be the ideation because
this is the most sensitive area, which is respda$dy producing clear
images in sighted people. Instead, the epiretipgr@ach involves
placing the chip on top of the macular region @f tetina and requires
additional equipment—Ilike cameras or special gksde properly
function.

Therefore, whilesubretinal prosthesis relay signals to the
bipolar cells,epiretinal ones pass them directly to the ganglion cells,
in turn, carrying them to specific brain areasdtaboration.

Focalizing on this latter case, passing througlouarstages of
development, since the 70s-80s, plenty of studie lheen conducted
on arrays of microelectrodes (MEAS) [4],[30], foterfacing with the
Central Nervous System (CNS) in general and withinae in
particular. Nevertheless, because of this techmyolagtrinsic
limitations (large size of the electrodes, causipgur spatial
resolution, lack of control on the local electrieald chemical activity
of axons and their neurotransmitters as well aogen-loop nature of
the stimulation), new solutions have been sought lzave emerged
recently, thanks to the ongoing development of teximology
[1].[31]-[38].

In addition to this, for further improving retingtimulation
effectiveness, other constraints must be takenaotount, concerning
its main electrophysiological features.

Since as we will briefly discuss in Chapter 2, matperforms
anencoding(compression) of images to fit the limited capaait the
optic nerve and this is necessary since there laxesa one hundred
times more photoreceptors than ganglion cells. dddein
correspondence witfovea(retinal area responsible for sharp central
vision, necessary for any activity where visualadets strongly
required) there are relatively few ganglion cdiésding APs to brain
areas through their axons (Fig. 1).

Moreover, an increase in stimulation intensity doest
proportionally change the intensity of the singud& (which depends
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non linearly by various parameters), but it isteasl, translated into
an increase in the number of transmitted pulsesupgrof time @ll-
or-nothingaxon response, frequency codification).

This implies that, especially in epiretinal stintida devices, the
primary goals are multiple.

First of all they can be identified in gainiagonspatial selectivity
[39], as well as in the ability telicit APs as readily as possiblan
response to a change of the visual scenario thedcodormation the
neuron has to carry to the brain changes and treugdeal triggering
should be as prompt as possible, because instefmimation
distortion can be generated.

This objective is, in turn, in trade-off with tlether fundamental
aim: the respect of axonal refractory periods, Wwhicevent, after a
first AP elicitation, a further excitation stimuto be effective in
producing new APs. Thus, it is clear how, espegiall ganglion
axons stimulation, in order to reduce informatiastattion, it is of
paramount importance to accurately (and possibistesyatically)
investigate the effectiveness that the excitatistrumentation gains
when it is interfaced with the cells. In literatuiedeed, as we have
seen, many investigations can be found differeatliglressing the
topic of the neurostimulation and its effectivenbss less is done to
precisely evaluate nanoscale effects (the systesmniiansically high
nonlinearities thus severe reduction in some of geometrical
parameters -nanoelectrode vs microelectrode- &edylito lead to
different system responses) or to approach thectépm a more
analytical/systematic point of view.

1.2 Finite Element modelling and sensitivity
analysis on the neurostimulating system

This thesis is focussed on the description of tlagnmesults obtained
applying Design of Experiment procedures on Fikiiement Method
(FEM) models, on purpose implemented, of a simpl&rostimulating
nanoelectrode system. Thus particular focus is @aghe description
of the activity devoted to obtain the model toafsvehich to perform
the investigations and on the study of the systerfopmances.
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Furthermore, the nanoelectrode system is thoughtaas
constitutive part of a nanoporous alumina (biocaribpg) layer
supporting the growth of nanoelectrodes, realizabth a bundle of
MWCNTS, in interface with neural cells.

The implemented models are, indeed, differenteddmg on
the neuron or system most prominent feature tha mexessary to
highlight and observe.

In particular, once defined the desired performafuretions of
the system (the elicitation of the APs, the speé&dwhich this
phenomenon starts when it starts, the space resoluf the
neurostimulating stress), Response Surface Metbggol(within the
theoretical context of the Design of Experiments)eploited to
deduce particularly meaningful information on thestem dynamics
and on the most significant factors leading them.

The 3D FEM models range from a “nanostimulated’orax
segment, to a whole complex structure constitutgdseama, axon
hillock and the very first segment of the depart@xgn, built in order
to evaluate geometrical parameters and ionic cHsartistributions
affecting APs activation. In the end, a system magef a couple of
axons is implemented to obtain a tool where itassible to verify the
space resolution (space selectivity among fibreainegl in the
neurostimulation performed.




Chapter 2

A brief review on retina and neuron
electrophysiology

The retina in vertebrates is a light sensitiveugssovering the inner
surface of the eye. The optical properties charaatg the eye are
capable of creating an image of the on the retiparating as the film
in a camera. As previously said, when the lighikes this tissue, it
initiates a sequence of chemical and electricahsvéhat end by
activating nerve impulses. Optic nerve then semgsntto various
visual centers of the brain, by means of the fibentains. Since
during the embryonic development the retina and dpac nerve
originate as outgrowths of the developing braitineeis considered
part of the central nervous system (CNS), constguthe only part of
it that can be visualized in a non-invasive manfiére structure of
this tissue is a complex superimposition of sevigbrs of neurons
interconnected by synapses. However, the only msurdirectly
sensitive to light are the photoreceptor cellsytban be classified in
two subtypes, rods and cones. The first one worklmna dim light
and provide black-and-white vision, while conestAemain actors in
daytime vision and in the perception of colourse Tlones respond to
bright light and mediate high-resolution colouriers during daylight
illumination (also called "photopic” vision). Theds are saturated at
daylight levels and don't contribute to patternions However, rods
do respond to dim light and mediate lower-resohuytimonochromatic
vision under very low levels of illumination (calléscotopic” vision),
There is also another, less common type of phodptec, the
photosentitive ganglion cell, which is importantr foeflexive
responses to bright daylight. Neural signals fréva tods and cones
undergo a complex processing sequence by othepmeurelonging
to the retina itself . The output is in the formAd®s in retinal ganglion
cells axons. Several important features of visuakcgption can be



traced to the retinal encoding and processinggot li

2.1 Anatomy of vertebrate retina
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Fig. 1 Section of retina. [40]

From innermost to outermost, the ten retinal layeckide:

. Inner limiting membrane - Mller cell footplates

. Nerve fiber layer - Essentially the axons of gjaaglion cell
nuclei.

. Ganglion cell layer - Layer that contains nudeganglion
cells and gives rise to optic nerve fibers.

. Inner plexiform layer.

. Inner nuclear layer contains bipolar cells, whichrespond to

heat and touch sensory skin receptors, capabtamgritting signals
to the spinal cord or its continuation, the medulla

. Outer plexiform layer

. Outer nuclear layer

. External limiting membrane - Layer that separgbesinner



8 Chapter 2 A brief review on retina and neugtattrophysiology

segment portions of the photoreceptors from thairmucleus.

. Photoreceptor layer - Rods and Cones

. Retinal pigment epithelium

Of these the four main layers of the ten, from ioletan: pigment
epithelium, the photoreceptor layer, bipolar celsd finally, the
ganglion cell layer. Therefore, the optic nervdeiss a nerve than a
central tract, connecting the bipolars to the HEtgeniculate body, a
visual relay station in the diencephalon (the w@&fathe forebrain). In
adult humans the entire retina is approximately % sphere about
22 mm in diameter. An area of the retina is thacogisc, sometimes
known as "the blind spot" because it lacks photpears. It appears
as an oval white area of 3 mm2. In the directiotheftemples there is
the macula. At its centre is the fovea, a pit nsastsitive to light and
responsible for our sharp central vision. Arounel fibvea extends the
central retina for about 6 mm and then the perglhetina. In section
the retina is no more than 0.5mm thick. It hasdHheyers of nerve
cells and two of synapses, including the uniqueaibsynapses. The
optic nerve carries the ganglion cell axons toliteen and the blood
vessels that open into the retina. The gangliots ¢l innermost in
the retina while the photoreceptive cells lie otest. Because of this
counter-intuitive arrangement, light must first pagrough and
around the ganglion cells and through the thicknafsshe retina,
(including its capillary vessels) before reachihg rods and cones.
However it does not pass through the epitheliurtherchoroid (both
of which are opaque). Between the ganglion celedagnd the rods
and cones there are two layers of neuropils whegnapgic contacts
are made. The neuropil layers are the outer plexiftayer and the
inner plexiform layer. In the outer the rods andhe&® connect to the
vertically running bipolar cells, and the (horizalhy oriented)
horizontal cells connect to ganglion cells. Thet@mretina is cone-
dominated and the peripheral retina is rod-domahabe the central
macular fovea zone the cones are smallest and gadann a
hexagonal mosaic, the most efficient and highesisitieThe area
directly surrounding the fovea has the highest itfensf rods
converging on single bipolars. Since the cones raveuch lesser
power of merging signals, the fovea allows for sharpest vision the
eye can attain .Since, as we said there are much reoeptors than
optic nerve fibers, and the horizontal action oé thorizontal and



9

amacrine cells can allow one area of the retinaotdrol another (e.qg.,
one stimulus inhibiting another), the messagesre®ed and mixed.
An image is produced by the "patterned excitatiohthe cones and
rods in the retina. The information retina sendgrscessed by the
neuronal system and various parts of the brain wgrkn parallel to
form a representation of the external environmdihie response of
cones to various wavelengths of light is calledirthspectral
sensitivity”. In normal human vision, the specsahsitivity of a cone
falls into one of three subgroups. These are oftdled "red, green,
and blue" cones but more accurately are short, unedand long
wavelength sensitive cone subgroups. When lighd @l a receptor it
sends a proportional response synaptically to bipoélls which in
turn signal the retinal ganglion cells. The receptare also 'cross-
linked' by horizontal cells and amacrine cells, ethimodify the
synaptic signal before the ganglion cells. In tegnal ganglion cells
there are two types of response, depending oneteptive field of
the cell. Since there are more retinal receptbia) axons in the optic
nerve; a large amount of pre-processing is perfdrmi¢éhin the retina.
The fovea produces the most accurate informati@spide occupying
about 0.01% of the visual field (less than 2° cfual angle), about
10% of axons in the optic nerve are devoted to ftheea. The
resolution limit of the fovea has been determinedraund 10,000
points. The information capacity is estimated a0,800 bits per
second without colour or around 600,000 bits peosd including
colour. The retina, unlike a camera, does not sisphd a picture to
the brain. It spatiallgncodegcompresses) the image to fit the limited
capacity of the optic nerve. We remind that comgiesis necessary
because there are 100 times more photoreceptdssticah ganglion
cells as mentioned above. The retina does so bgofdsating” the
incoming images. These operations are carried guthk center
surround structures as implemented by the bipaidrganglion cells.
Finally, the horizontal and amacrine cells playgasicant role in this
process. Once the image is spatially encoded byé¢heer surround
structures, the signal is sent out the optical @éwa the axons of the
ganglion cells) through the optic chiasm to the L{dteral geniculate
nucleus) and then to the V1 Primary visual cortex.
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2.2 Anatomy of vertebrate retina: the nervous
cell

The nerve cell [41] can be divided into four diffat zones in terms of
morphological features: cell body (soma), dendritexon and
presynaptic axon terminals, each playing a padrcuble in the
genesis of nerve signals. The cell body (somd)asmetabolic center
of the neuron, gives rise to two types of extersioaxon and
dendrites, which branch off as a harborization frtwa cell body and
the human body apparatus are intended to receigentbssages
arriving to the neuron from other nerve cells Tle# body also gives
rise to the axon is a cylindrical process, withianteter (in humans)
from 0.2 to 20um. It is also capable of transmitting informatioveo
long distances by propagating an electrical sigfalll-or-nothing of
very short duration, called indeed the Action Poénit is the major
route of conduction of the signals of the neuronnc® the
transmembrane voltage has reached the criticattibtd, an AP is
typically generated at a specialized area wheretioa originates, the
axon hillock. The axon is divided into many thirabches, each of
which has specialized swellings, called presynapéioninations,
which are the support for messages transmission.

Retinal Ganglion Cell

7 days in vitro

Cell Bielogy Lab, Anatomy, UNSY

cell body

Fig. 2 The nervous cell
It is through these terminals that neurons transmhdrmation about
its activities at the interfaces of other neuroden@rites and cell
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bodies). The “contact” points are called synapses therefore the
cell that transmits the information is that thegyreaptic cell, while
the receiving is called postsynaptic. Between the there is a space
called the synaptic cleft, which communicates fre@lith the
extracellular space. Most of the presynaptic nesifonish close to the
postsynaptic dendrites of the neuron but contabwdsn neurons can
be sometimes with the soma or, less frequentlyh akon initial or
terminal segment.




Chapter 3

Modelling of the Neurostimulation
System

3.1 Neurostimulation system issues and choices

Carbon nanotubes are attractive as neural electiogisause of a very
wide range of reasons. A very high Electrical Stipet Area /
Geometrical Superficial Area ratio, (ESA/GSA), sherent in the
nanotube geometry, which gives rise to a large olalyer charge
capacity; for neural stimulation: in literature opeinjection
capacities have been found of 1-1.6 mCZwith vertically aligned
nanotube electrodes. Works on the development abtnhe and
nanofibre neural interfaces have been reportedjnaeduced in
Chapter 1. The discovered excellent biocompatyilif carbon
nanotubes, especially with CNS, [42]-[44], has phtee way for
deeper investigation into the possibility of usititgem to improve
microelectrode performances or even to obtain rieotedes.
Moreover, microelectrodes coated with CNTs havenbpmposed
[36] , in order to obtain a rougher surface, prowjda better electrical
coupling with the cells. Furthermore, thanks to irthadditional
properties (high mechanical resistance and elett@onductivity,
extremely small diameters, good experienced Sigéleise-Ratio
and capability to be functionalized and to be usedeurotransmitters
sensors), CNTs have been suggested as stronglcieetffi
nanoelectrodes [31]-[38].The resulting advantage® alearly
understood: tri-modal Nanoelectrode Arrays (NEA)véabeen
investigated in [33], allowing much higher spatiatolution for the
electrical stimulation and capability of recordiagd monitoring of
neurotransmitters levels (closed-loop control).@@arnanotubes may
also be chemically modified to enhance biocompigibor provide
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other functional properties (they are even invedéd in literature as
anticorrosive coating agents for general purposéaliite electrodes
[45]).Their usage, thus, deeply favours quantigatimprovement of
the neurostimulating apparatus and outperforms ntle¢allic more
corruptible metallic electrodes.

These are the reasons why we have chosen to igaesthe
properties of a system realizable with CNT basetwakectrodes.

Another particularly meaningful issue to decide f@as been
the type of modelling approach.

3.1.1 The necessity of a modeling approach

Keeping in mind the objective of this work, it itear that it is of
paramount importance to develop an accurate matieahenodel to
the entire system. We are moving within the fielf \ortual
engineering (specifically applying DoE- Design okpgriments-
techniques), in order to benefit of all its advaget® In particular,
virtual engineering integrates geometric models arelated
engineering tools such as analysis, simulationntexa optimization
and decision making tools, etc.,, within a compuggenerated
environment that facilitates multidisciplinary prad development.
This requires a model that includes the geomethnysiocs, and any
quantitative or qualitative data from the real eyst so that is possible
to observe how it works and how it responds to gkann design,
operation or any other engineering modification.n®del requires
selecting and identifyingelevant aspects of a situation in the real
world and exploits mathematical language. In thiaywthe real
system can be analyzed, in order to be controlteaptimized, using
the mathematical model to take into account itsuli@c and most
meaningful features and to try to estimate how @ioreseeable event
could affect it. The system is described by a $etapviables and of
equations that establish relationships between tlaiables,
representing some properties of the system, fomela signals or
events occurrence. The actual model is the setun€tions that
describe the relations between the different véeghclassifiable as
decision, input, state, exogenous, random and ouyauiables.
Different system constraints and objective fundiofalso called
indexes of performance) can be identified whoserast strongly
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depends on the specific application. Mathematicaldels can be
classified inlinear (or nonlinear), deterministi¢or stochastic), static
(or dynamic). In general, model complexity involves a trade-off
between simplicity and accuracy. Occam's Razor igriaciple
particularly relevant to modelling; the essentdda being that among
models with roughly equal predictive power, the @est one is the
most desirable. While added complexity usually ioves the realism
of a model, it can make it difficult to understaamad analyze, and can
also pose computational problems, including nunaértstability.

3.1.2 The field solution and the Finite Element Method
adoption

As far as this thesis work is concerned, our chb&® been to
model the reality under study by means of a noalindeterministic
and dynamic model, taking into account the natudr¢éhe reality to
emulate. In particular, it has been necessary tiddevhich was the
best modelling technique to capture the main festwf the problem
under analysis. We have opted for a field solutmadel and the
Finite Element Method to implement it. Very oftanm literature the
matter is addressed by using biomolecular or comntal
approaches .[3],[46]-[48]. Indeed, it is very diffit to (e.g.) “tailor”
appropriate density fluxes lines for currents acaic field lines or
analyzing systematically different electrode coufaions, adopting
biomolecular or compartmental typical modellingutimins. The first
one has a much deeper and detailed breath thanisvhatessary for
our investigation: it is focused more on the stualy proteins,
properties of enzymes, metabolic pathways, thathem interactions
with the applied electric fields and the higher lscahenomena
related, making it very uneasy to explore the pemémnces we wanted
to explore. For the second classically used mdtelcompartmental,
it must be said that one of its big disadvantagesdénced in many
models used so far) is that on the one hand itois possible to
simulate the interaction between activated fibned #the surrounding
tissue (making the implemented models less extEnsibhd thus less
useful), on the other hand it is very difficult ttegrate geometrical
aspects and time dependency.
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Thus, within this thesis work, our choice has falta the field
solution (which has started to be more appreciatethe last years
also thanks to greater power of calculus), becatsallows to
overcome all the cited troubles, especially in thexible and
manageable FEM implementation [8]. We are, thusabkd to
couple, quite simply, multiphysical parameters addscriptive
equations into a whole system and to have the &ppity to quite
easily make parametric geometrical variations afaptations.

In the end, our modelling of neuron membrane highly
nonlinear behaviour has been based on the setustieqgs that the
two Nobel Prizes, A. L. Hodgkin and A. F. Huxleywhhished [49],
paving the way for the research in the field. Timeathematical theory
on neural membrane electrophysiology uncovered daing
mechanisms in axons and represents a milestonederstanding and
modelling the excitation and spike propagation émve and muscle
fibres. Therefore it is by far the most broadly addpn literature to
simulate neural activities [12]. These equationdeed, once coupled
with Maxwell equations for electromagnetic fieldgpresent the
suitable tool for describing sufficiently accurgteleuron response to
nanoelectrode stimulation. In particular, since tyygcal frequencies
involved in neural stimulation are quite low, thejuasi static
formulation has been adopted. Finally, in the raxtsection a brief
overview of the Finite Element Method is reportedetter clarify its
advantages and the reasons of its choice, while stiizssequent
sections of the chapter follow the modelling phasase obtained the
2D representation of the main axon features, wee hanoceeded
(following a a step by step procedure) towardsitgementation of
a valid 3D model tool, which is supposed to tak® iaccount more
sophisticated and spatially differentiated neurparating conditions.

3.1.2.1Notes on the theory of FEM

The finite element method (FEM) is a very widelypted numerical
technique employed to obtain approximate solutidos partial
differential equations (PDE) and to integral ortesler's and Runge-
Kutta method together with other standard techrsgaee used to
perform numerical integration for solving the omip differential
system of equations (ODE) in which the PDE are @yprated.
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Indeed, in this context, the primary goal is toedetine equations that
approximate those under study, with the constrafita good
numerical stability. This means that errors in thput and in the
intermediate calculations phases should not acatsutausing the
resulting output to be less meaningful or meansglat all. In
literature there are various possible techniques,REM is a good
choice for solving partial differential equationseo complicated or
time changing domains, when the desired precisames over the
entire domain or when the solution lacks smoothnéks paragraph
very briefly describes how the FEM approximates BizE problem
with a problem that has a finite number of unknoparameters,
leading to a discretization of the original problefo do so an
introduction must be done to finite elements amabshfunctions, that
describe the possible forms of the approximatetswiu
The starting point for the finite element methodimesh, a partition
of the geometry into small units of a simple shapeshelements.
Different types of elements are available in 1D,, 2&nd 3D.
Sometimes the term “mesh element” means any of rtresh
elements—mesh faces, mesh edges, or mesh vertticgsrticular,
mesh elements of a particular domain in the gegmn{atisubdomain,
boundary, edge, or vertex) have its dimensionaktg-dimensional
domain is discretized witt-dimensional mesh elements (Fig. 3).
Once performed this first problem partitioning task is
possible to introduce approximations to the dependariables. An
example is clarifying. Let us consider the casa single variable.

Approximated

Domain <
domain

T

Fig. 3 Geometry approximation by meshing

If we analyze it, from a basic point of view, thEM solves equations
in the matrix form, as synthesized in Fig. 4, whdre analogy is
reported with the mechanics terminology, form whichmherited the
approach. Written in a very simple and intuitivenigp what the solver
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has to obtain at the end of all the geometricablemm discretizing and
linearization , is the solution of a matrix equatia the form reported

in Fig. 4., wherau is the vector of the unknown values assumed by the
dependent variable on the nodes of the discregeedhetry. Attention
must be paid to avoid situations like the one reggbm Fig. 5 where
there is a so called ill conditioning of the prahlesince (keeping the
analogy with elastic constants and mechanics) the elastic
constants (in general the elements of the stiffrasdrix K) are
extremely different in amplitude, thus posing comagpional problems.

[K] {u} = {F} K: Stiffness matrix
/ J‘: 'Y x: Displacement

Property ‘|| Action F: Load

Behavior

Fig. 4 The philosophy and also terminology of FEM brrowed from the
mechanics

In particular, the general idea is to approximateith a function that
it is possible to describe with a finite humberpairameters, the so-
calleddegrees of freedofDOF). Inserting this approximation into the
weak form (that we will later briefly discuss ) dfie equation
generates a system of equations for the degrdeseafom.

p =u [-2
1% 2. % &

1 2

}"1 = kz . f\'l = ()

Fig. 5 Simple example of an ill conditioned problem

This simple example can help immediate understagndimear



18 Chapter 3 Modelling of tleurostimulation System

elements in 1D. Let us assume that a mesh comdigist two mesh
intervals: 0 <x< 1 and 1 « < 2. Linear elements means that on each
mesh interval the continuous functionis linear (affine). Thus, the
only thing there is need to know in order to cheeazeu uniquely is

its values at theode points; = 0,x,= 1, andxs = 2. Denote these as
Ui=u(0),U>=u(1),Us=u(2). These are thdegrees of freedom

Now it is possible to write:

u(x)=U @ (x)+Uzps(x)+Usp3(x) (1)

whereg,(x) are certain piecewise linear functions. Nameéj{x) is the
function that is linear on each mesh interval, ésjdaat the™ node
point, and equals 0 at the other node points. kKamgle,

1-x if0<sxl<1l

2
0 if 1< x1<2 @

¢1(X)={

The ¢(x) are called thdasis functionsThe set of functions(x) is a
linear function space called thiaite element space
For better accuracy, it is possible to considereotfinite element
spaces corresponding to quadratic, cubic, etc.exi&gnFunctions in
this space are" 39 etc. polynomials on each mesh interval.
Moreover, in general, a finite element space ixidipel by giving a
set of basis functions.

Quadratic element Cubic element

True deformation )
Linear element
7
=) ’
FEM

Fig. 6 An example showing the degree of approximain due to different orders
of the elements
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The description of the basis functions is, furthedimplified by the
introduction oflocal coordinates(or element coordinatgs Let us
consider a-dimensional mesh element in exdimensional geometry
(whose space coordinates are denoter by, X,) and thestandard d-
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dimensional simplex
5120,5220,...,5(1 20,£1+£2+..fd <1 (3)

which resides in the local coordinate space pandreet by the local
coordinatesy, ..., &q. If d = 1, then this simplex is the unit interval. If
d = 2, it is a triangle with two 45 degree anglasd & d = 3 it is a
tetrahedron.

If we consider the mesh element as a linear tramsfboon of
the standard simplex, namely, by letting the glagce coordinates
X be suitable linear (affine) functions of the localordinates, it is
possible to get the mesh element as the imageeaftdmdard simplex;
when described in terms of local coordinates, thsish functions
assume one of a few basic shapes. These ashape functions

Moreover, when using higher-order elements (thaglsments
of an order > 1), the solution has a smaller erfidre error also
depends on how well the mesh approximates theoumdary. To
keep errors in the finite element approximation dahd boundary
approximation at the same level, it is wise to wuseved mesh
elements They are distorted mesh elements that can appeigi a
boundary better than ordinary straight elementth&fboundary of the
problem is curved). It is possible to get curvedsimelements by
writing the global coordinates; as polynomials of ordek (the
geometry shape ordem the local coordinate§ For mesh elements
that do not touch the boundary, there is no redsomake them
curved, so they are straight.

The orderk is determined by choosing tlggometry shape orddor
the coordinate system associated with the fingeneht.

Nevertheless, if a curved mesh element becomedistarted,
it can become inverted and cause problems in thei@o. This is
exactly what happens in one of the models desciibélde following
sections. More details for the solution adoptedtfas inconvenient
are indeed reported in § 3.3.2.2
In this brief overview, it must be pointed out tloat choice for all the
modeled structures has fallen on theagrange element type
(piecewise polynomials of degrdg. They are indeed widely used
since they are available with all types of mesimelets.

In these quick notes on FEM, it is certainly intpot to
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mention the choice of the type of analysis (lineen linear, time
dependent non linear, etc.) strongly depending hen ghysical and
mathematical features inherent the reality to model

In general, the solvers break down each problem-tivene
linear or nonlinear—into one or several linear egst of equations by
approximating the given problem with a linearizesblpem. The
coefficient matrix of the discretized linearizecoplem is called the
Jacobian matrix (or stiffness matrix just the one cited in the
introductory part of this paragraph. Moreover, sinc this work we
have used for all our models the time-dependenesoit is necessary
to highlight that it must be chosen (it is indekd bne we have used
for all our investigations) to find the solution limear or nonlinear
time-dependent PDRroblems also known aslynamic problemsor
unsteady problems

Indeed, the general formulation of a time-dependebE
(defined on computational domains in 1D, 2D, or 3D)xoefficient
form is:

0%u du _

e,— +dy—+00~cOu-au+y)+BMMu+au= f (4)
ot ot

where:

* g, is called mass coefficient

* g, is said to be damping coefficient, or mass cofific

* cis the diffusion coefficient.

* o Is the conservative flux convection coefficient.

* S is called the convection coefficient.

* ais the absorption coefficient.

* y is the conservative flux source term.

* f is the source term.

This PDE formulation together with boundary andiahiconditions
fully define the problem.

The time-dependent solver operates a discretizaifotme problem,
leading to a differential-algebraic system (DAE) twr ordinary
differential equations (ODE), solved by approptiiatechosen
algorithm. Thus the solver is an implicit time-gté scheme, which
implies that it must solve a possibly nonlineartegs of equations at
each time step. It solves the nonlinear system gusinNewton
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iteration, and it then solves the resulting systemitsi an arbitrary
linear system solver.

Furthermore, it is sometimes essential for accuracy
performance to set absolute and relative tolergmacameters for the
time-dependent solver. They are tolerances to obtite error in each
integration step. More specifically, ld be the solution vector
corresponding to the solution at a certain tim@,séad letE be the
solver estimate of the (local) error th committed during this time
step. The step is accepted if

N ( ; jz
Z_ A+RU;| (%)
=1 < 1

N

where A is the absolute tolerance for DAOF R is the relative
tolerance, andN is the number of degrees of freedom. The
accumulated (global) error can be larger than tha sf the local
errors for all the integration steps. However, thaver's error
estimate is often too pessimistic, which means tthaestimated local
error typically is of the same order of magnitudetlae true global
error.

To conclude our brief digression on FEM, it is veiseful to
point out, as in some cases it has been used irlfimgdthe neural
cell structures that we will describe in the foliag sections, that
there is an alternative formulation of the problatiferent from the
one defined in (4): it is the so-calleecak formulation.

Indeed eq. (4) is astrong definition while the problem can be also
solved working on the integral formulation (the weme) of the PDE,
using test functions. In the practice, they arepaelb to multiply both
members of eq. (4) and then integrate over the dowfainterest to
solve the problem in its integral definition. Thusilike the other
formulation, the weak form takes on the charactergenerality,
allowing greater flexibility in setting the conditis: it is possible to
assign constraints on subdomains, boundaries ,sedgd points.
Moreover, it is always possible to translate amgjréormulation into
the weak one, if the used test function is a welidved function,
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while the converse is not always true. Moreovehmboundary weak
form, it is possible to solve for variables definedyoah boundaries
and couple this equation with other equations @effion a subdomain.

This technique is particularly useful in modelliagsorption
processes (where it is necessary for balanceseordbes to “agree”
with those in adjacent domains) for a smart-haigdéihextremely thin
layers. This will be clearly demonstrated in thetngections by the
reduction in computational burden attained expigitihe well known
technique of the thin layers approximation anddatlng the obtained
results with a non-approximated model.

To summarize: modelling with FEM requires a prepssing,
the solving phase and the analysis of the requitgeeding following
the reported steps:

1) Selection of the analysis type (transient dymaamalysis with time
dependent solver is the one we use in this thesik)w

2) Selection of the element dimensionality and fyfepending on the
problem to solve and on the geometry analyzed (3-D) leading to
linear, quadratic, etc. elements;

3) Choice of the primary material properties to epd
4) Choice of nodes positioning;

5) Construction of the elements by assigning cotivigcbetween the
nodes (these last two are typically implementedmatically by an
algorithm, in our case the Delaunay one);

6) Application of the boundary conditions and “ingtresses”;

7) Processing: solution of the (eventually timeywag) boundary
value problem;

8) Postprocessing: evaluation and analysis ofdhalts.
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3.2 Hodgkin-Huxley lumped circuit set of
differential equations translated into field
ones (2D case).

Fig. 7 The axon slice under analysis (3D sketch)h& section in r-z plane is
highlighted in pink

Here a description is performed of the FEM modet Bo
nanoelectrode-axon segment stimulation system.

A 2D FEM model of the stimulating equipment andtoé
axon segment is implemented that simulates the mekgvant
dynamics of spatiotemporal transmembrane voltayy®)1[50].

Bases on Hodgkin and Huxley (HH) set of highly doear
differential equations (linking the phenomena o€rmical transport
through the membrane with the electrical dynamicthe neuron), a
translation is performed in terms of electromagngtarameters in
three dimensions. Coupling this model with the @staic
formulation of Maxwell equations the elicitationdapropagation of
APs is obtained by exploiting the high nonlinearify the medium
membrane. Indeed, the nonlinearity of the membram®t modelled
as classically in literature by using the so-calledble equation”
which has the disadvantage of having to estimaseliance the speed
of propagation of the AP along the axon, but is lemgented
"implicitly”, using the definition itself of the egvalent conductivity
which is gained by the translation itself of Hodgkiuxley equations
suitable for a field solution.

The adopted modelling approach has been modular and
incremental since, in order to have a first congmariwith literature
data, before starting with a three dimensional imgeactivity, a 2D
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accurate model has been realized, for a sectitubodar segment of a
nervous cell axon (the neuronal structure carrywegvous signals)
which takes into account, through the so calledgkodHuxley (HH)
equations , the non linear and time varying behaviof the
membrane that surrounds it. The lumped-circuit ¢tias of the HH
electrophysiological model are transformed intoapaaters adapt to a
field solution study. In fact, the Electro Quasi Static (EQS)
formulation of the Maxwell equations describing thelevant
phenomena is faced by using the Finite Element dte(FEM). The
non linear differential equations describing thentheane behaviour
are efficiently and accurately combined with theM~Eolution in a
numerical procedure performed by using COMSOL Nbhigsics®.
The proposed procedure is then employed to evathatespace and
time dynamics of the Action Potential (AP) alon@ tiixon segment.
Due to its simple implementation the proposed madel be easily
used to simulate the behaviour of more complex ows\structures.
The simulation procedure encompasses three ph#sesfirst, in
which the resting (static) solution is calculatdd)s ensuring that the
correct starting point for dynamic simulations [#ained, the second
one, exploited to simulateon-propagated APand the third one to
reproduce their propagation along the segment ugx@nination.

The extrusionfeature of COMSOL Multiphysics proves to be a very
helpful tool in projecting variables (voltages) ftocell membrane
boundaries onto the domain itself, where the catau of its voltage-
dependent electric conductivity needs to be peréakm

In addition, the very small dimension of the mennigrahickness
compared to the other geometrical dimensions of giistem is
approximated, in an alternative version of the nhode a thin layer
thus leading to a sensible reduction of the contfmurtaburden. A
comparison between the two model versions has tedvdry
satisfactory results, as far as APs elicitation gmdpagation are
concerned.

3.2.1 The extrusion tool in FEM modelling

In FE modeling arextrusioncoupling variablemaps values from a
source domain to a destination domain. When theagiwsrare of the
same space dimension, and it is typically a poisewnapping. When
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the destination domain has higher dimension tharstiurce one, the
mapping is done by extruding point-wise values ke thigher
dimensions. It is possible to define the transfdaromabetween the
source and destination in two ways: asliear or a general
transformation

The linear transformation maps between domainh@fsame
dimension. The domains can exist in geometriesiiérdnt space
dimensions. For example, it is possible to coupdenfedges in 2D to
those in 3D or 2D subdomains to 3D faces. In tloases obviously
there is need of geometries of different space dgioes for the
source and destination. The linear transformatiendefined by
specifying points in both the source and destimatio

As far as thegeneral transformatiors concerned, instead, the
extrusion coupling variable defines a more genérahsformation
between source and destination than the linear $mecifically, when
the destination domain has more space dimensicns tiie source
domain, the variable performs extrusion of values.

Destination

Source (30 subdomain)

(2D boundary)

Destination
transhormation

Source

transformatien

Intermediate mash

(20, planar)

Fig. 8 Example of a general transformation mappindgrom a 2D to a 3D domain
[51]

The definition of any extrusion coupling variablesolves two mesh
transformations, which are important to understamtie source
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transformationis a one-to-one mapping that maps the mesh of the
physical source domain to amtermediate mesbmbedded in a space
of the same dimension as the source. déstination transformation
is a mapping from the destination domain, where \thkeie of the
variable is defined, to the same space that cantiie intermediate
mesh.When the value is requested of the couplingha somewhere
in the destination domain, the transformation @&f destination points
is realized, using the destination transformatiincompares the
resulting coordinates to the elements in the inéeliate mesh to find
corresponding locations in the physical source doméhis means
that the source transformation must be invertechbuithe destination
transformation. The latter can in fact be noninbét which is, for
example, the case for a linear extrusion.

To avoid the need to solve a nonlinear system aagons for every
destination point, the software solver assumes that source
transformation is linear on each element of thermediate mesh. In
practice, the transformation is often trivial aeaves the coordinates
unchanged, but it can also rescale, stretch, mameflect the mesh. It
is important to notice that the definition must performed of the
source transformation that maps the source dorodimetintermediate
domain of the same dimensiofhe source transformation has the
same number of fields as the dimension of the sowm@main
Expressions can be used containing space coordimatthe source
geometry when defining the transformation. It isrexwer necessary
to highlight that the transformation must be apprately linear
within each mesh element. When defining the transétion it is,
also, permissible to use expressions containingespaordinates in
the destination geometry and specifying an arlyittemnsformation,
which can be highly nonlinear or noninvertible.

To summarize thegeneral case, we can say that if source and
destination transformation are defined accordingadble 1, the FEM
solver operates a back substitution starting frdra testination
domain®.
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Table 1 Extrusion general transformation in the mat general form: when the
source domain is 3D

Source Transformation Destination Transformation
Xsrc = Sx( X,y,Z) xdest = Dx( X,y,Z)
Ysrc = Sy( X,y,Z) Ydest = Dy( X,y,Z)
Zsrc = Sz( X,y,Z) Zdest = Sz( X,y,Z)

Here the final goal, in extruding the assigned atala VVar from the
source domain§ to 9, is to calculate its value in every point
Pi(x,Yi,Z), belonging to the destination domain mesh. In otdedo
S0, it is necessary for the solver to determinegayivenP; which are
the coordinategx;,y;,z) of the corresponding poir®(x.y;,z) in S,
where Var(P)=Var(P;). In particular, going through the following
series of passages for every assigned [{rty;,z), the solver firstly
determinesXgesi Ydest aNd Zgest (this way destination transformation
can be also non invertible) (6) and then matchemtwith the values
of Xsrc , Ysrc @andZs,c respectively (7).

Xdest = Dy (nyiz)|pi = X*

Yaest= Dy( xy.2)|, =Y* (6)

Xsrc = Xdest
Ysrc = Ydest (7)
Zsre = Lgest

Now, since source transformation must be invertthke coordinates
can be finally determined of the poiBi(x;,y;,z) as in(8), obviously

including as third equation (there are three d.dlie geometrical
constraint assuring Pj to belongs to the its paldicsubdomain
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Sx(Xj.yj zj)=X*
Sy(Xj.yjZj)=Y* - (Xj,¥jZj) (8)
SZ(Xj ,yj ,Zj ):Z*

3.2.2 Membrane  nonlinearity  exploitation  for
propagative effect simulation.

The schematic structure of an axon segment of negllesurrounded
by its membrane (or axolemma) is pictured in FigDude to its axial
symmetry, it is possible to consider only the higfled section by
modelling it in a cylindrical coordinate systemitsill be shown in
Fig. 9(a) and (b).The 2D axial symmetric transianalysis packet of
the Quasi-Static Electric AC/DC module, the tim@eledent analysis
of the PDE mode packet in general (version A) arehkvform
(version B), the extrusion tool and the possibitity perform a thin
layer approximation given by COMSOL Multiphysicse agxploited,
in order to evaluate the behaviour of the consilieteucture [52]. .In
particular, we model a section of QrBx1.505um (0.5umx0.5um for
the axon domain, ) 0.5umx5nm for the membrane domaingPand
0.5umx1um for the external medium represented Ry D

The small size of the system with respect to theratteristic
wavelength of the electromagnetic field and the mtribution of
the energy associated to the magnetic field condptrehat stored in
the electric field allow the adoption of the EQSpagximation of
Maxwell equations. Sub-domains, Bnd Q are considered as linear,
homogeneous and isotropic dielectric materialscrilesd by their
constant electric conductivity, and g and dielectric permeabilitg,
and & respectively The corresponding values are repanédble 1.
On Dy, besides a linear permittivitgy, and a non linear equivalent
conductivity g, defined by (11), an external current density depen
on the voltage across the membrane is imposed deroto
approximate the nonlinear behaviour of the mediuith wespect to
the imposed electric field (according to the HH mlodf the
membrane). In particular, HH circuit-equations mhset“converted”
to obtain theifield equivalent
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First of all, since membrane thickness is very g§nala first
approximation it can be looked at as a paralleleptapacitor, when
determining its dielectric and equivalent condutfifrom values
found in literature.Thus, once defined all condaad in Table 2, the
dielectric constant per unit area is:

g - Cmdm 9
n=p ©)

whereas membrane equivalent conductivitycan be derived by HH
overall membrane conductanc&,, defined as a function of the
Sodium, Potassium and Leakage conductances, degendn

Transmembrane Voltage (TMV) through the so calldtanoel

activation variables. Then, once defined Gm aslD), (o, becomes
(11):

Gm =GnatGk +G (10)
Om =Gy [ (11)

The expressions of ionic channel conductancesytego (12) and in
(13) show their connection with the activation ahiesm, n andh,
implicitly defined by the differential equationst &4) [53]:

GNa = GNamaxm3h (12)
Gk =Gk mat” (13)

dx :
Pl (1-x) - xBy with xTO{m,n,h} (14)

The transfer rate coefficientg@G,, an, G, an G in (14), are not
constant numbers but, as shown in Table 3, deperideovalue of the
voltage across the axon membrafigx,y,z,t)
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Table 2 Parameters appearing in the model.

Parameter| Value Description

Veta -6QmV] Static TMV, at which
membrane is polarized in the
simulation

&m 5.65 Membrane relative dielectri¢
constant

Cn A[uF/cnf] Membrane capacitance per,
unit area

dn 5[nm] Membrane thickness

Gramax 12gmS/cnf] | Conductance per unit area pf
the Na channel

Gkmax 3gmsS/cnf] Conductance per unit area pf
the K channel

G 0.3mS/cnf] Conductance per unit area pf
the leakage channels

Ena 55[mV] Nernst voltage due the Na
concentration

Ex -72[mV] Nernst voltage due the K
concentration

E -49.38TmV] | Nernst voltage due other
ionic concentrations

Ansta 58.197 Initial value[1/s]

Dista 125 Initial value [1/s]

Amsta 223.563 Initial value [1/s]

Dinsta 4000 Initial value [1/s]

Ahsta 70 Initial value [1/s]

bhsta 47.425 Initial value [1/s]

Ony 0.5 Axoplasm conductivity

Enx 80 Axoplasm diel. constant

Oyt 1 Ext. Med. conductivity.

Eext 80 Ext. Med. diel..constant

Table 3 Expressions of the transfer rate coefficidn. V'=V —Vq, represents the
TMV deviation from the resting value [mV].

01- 00V 0.125
an =100 (1 owv') _ ,3 =1000 00128
- 25- 01\/' : 4
=100 (25 0v') _ ,8 =100 (v /18)
- 007 : 1
_100 @00’ 'B =100 (3 0av') +1
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The HH trans-membrane current density equatiom fonit area patch
of membrane can be expressed as:

dv.

l,=Cp—"+G,V,, —J 15
dt m™m e ( )

m m

with
Je. =GuaEna G E +GE (16)

Furthermore, the equation of continuity implemerggdrywhere over
the FEM model can be written as (17)

12V v - Tex )= 0 (17)

ot

where

— Jor onD
Jext:{ © m (18)

0onD, 0D,

The continuity equation (17) must be implementedtba whole
model, whereas the HH equations system must beiasswh only to
the membrane domain. As the three voltage-conttailenductances
Gna, Gk and G, are meaningfubnly on membrane domaimand not
externally, they require to benly locally defined. The flexibility of
COMSOL Multiphysics proves useful in handling vales, as well as
in the post-processing phase. In the simulatiosieesaPDE packet
in general formis coupled to the Electrostatic module: the fase is
employed in order to solve equation (17) with ez$po the so-called
dependent variable (in this casé&ctric potential V), whereas the
second one is introduced to solve the three difte@akequations im,
n, h (dependent variablesjepresenting channel activation variables
according to the HH model [49], as shown in equei(i4) and Table
2. In order to obtain the voltage values along Isidles of membrane,
point by point along the z coordinate, the “extomsi feature of
COMSOL Multiphysics is conveniently employed. Inctfathe



33

equations implemented there, explicitly depend @mnsmembrane
voltageVn(z, t}

V() =V, (2,0) -V, (1) (19)

where V; andV, are the voltage along the boundaries 4 and 6 (as
depicted in Fig. 9(a)), respectively extruded frahose two 1D
domain with the extrusion transformation reported able 4:

Table 4 Extrusion transformation from 1D boundaries4 and 6 of Fig. 9 to 2D
membrane domain.

Source Transformation Destination Transformation

Xsre = Sx( X,y.2) =z Xgest = Dx( X,y,2) =2

In this way a sort of translation of the HH lumpacdtuit quantities
into parameters adapt to a field solution study, pasviously
highlighted, is achieved It must also be noticeat thhile &, obtained
IS a constantg, depends on transmembrane voltagg (z,t).-The
simulation is carried out, fixing all initial cortddns from nominal
resting values. The iterative procedure is stoppken the numerical
variations aresufficiently negligible leading to the “equilibrium”
steady state conditions. This condition is adomsd starting point
for studying the membrane dynamical behaviour engbcond step of
the procedure in which the cellular responsestation are evaluated.
Square window current density stimuli of differeamplitude and
duration have been applied to boundary 1 (Fig. ) the relative
results will be shown in § 3.2.4.

3.2.3 Thin layer approximation

In finite element modelling (here in particulan), erder to simplify

meshing and to greatly reduce simulation time aedory request, it
is preferable to avoid extremely thin structures mgmbrane
subdomain could be, especially in the perspective generalization
of this model to a more complex situation (takingpiaccount soma,
axon hillock, axon initial segment). For exampfef were necessary
to simulate a motor neuron behaviour, this woulgsulein a form
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factor (length of the axon divided by membranekhéess) that could
also, at worst, be of the order of“10t is clear that the idea of
completely avoiding membrane physical realizatiosing thin layer
approximation[51]as an alternative to the model described i@ th
previous section, appears very attractive. Thikesreason why a new
model (Fig. 9) has been implemented that explbits dpproximation
technique, whose hypotheses of applicability amapetely satisfied
in the case under examination:

1) there is a substantial difference between mengbrdomain

conductivity and those of the other two domains;

2) lateral boundaries are insulated (null net flux)

3) current density components aloggand z are negligible with

respect to that along r-axis.
In particular, since membrane is very thin, it i®sgble to
approximate the potential distribution along itsckiness as being
linearly varying fromV, to V;, so, using the continuity equation for the
current, it is easy to derive, as explained in [Bi¢ expression for an
equivalent current densitly, , wherele is defined in(16):

b/z _Vl)""]e + €méo ab/z _Vl)
dm dn, ot

(20)

Jeq =0m

where V; and V, represent the voltage values along the membrane
boundaries 4 and 7, respectively. This equationbmimmplemented
by using two different Electrostatic systems of a&ns in order to
allow the solver to “see” interface surface, whicbw substitutes
membrane domain, once as belonging to axoplasm idpmace to
external medium domain. It is clearly expectablat toltage on that
boundary will have a discontinuity/{-V;) almost equal to the value
that transmembrane voltage would have reachedyeif hembrane
were really implemented in the model as a 2D domEmis,V; is set
as anactive variable only in the axoplasm domai only on the
external medium domain, while both are definedt@rtinterfaceJeq

is imposed as an input current density to this damn In addition, an
alternative formulation of the three non linearfeliéntial equation
must be provided on this surface where all expoessare locally
defined. The idea is to use veeak form for boundaryapproach,
instead of thePDE formulation in general formas that adopted in
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version A. This choice allows to handle all the &pns in the
integral form, multiplying both sides of each edqoiatby a test
function and then integrating.

3.2.4 Comparison between the two 2D models

In order to make a fair comparison between the twodelling
solutions, some common parameters as those reparfeable 5 are
adopted. The same initial and boundary conditioms #&xed
everywhere, exception made for the various settinglated to
membrane domain since it is not present in therskeoodel. This
settings induce the meshes pictured in Fig. 10. nEwefore
introducing any current density source to elicimmbeane response, a
clear improvement can be observed when adoptingvdak solution
B, instead of A, since the Delaunay algorithm doeslead to crowd
the great amount of triangles next to the thin memé domain, as
Fig. 10 demonstrates.

The savings in terms of simulation time and amooht
memory consumed are summarised inTable 6 to simalatationary
equilibrium state.

Table 5 Parameters used for comparing the two model

Calculus and mesh Value
parameters

Simulation times 0:16:20ms
Relative tolerance 10
Absolute tolerance 10
Max. elem. size scaling factor 1
Element growth rate 1.3
Mesh curvature factor 0.3
Mesh curvature cut off 0.001
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Fig. 10 Mesh in the model a) with membrane and b) ihout membrane using
thin layer approximation

Table 6 Figures of merit concerning the two models

PARAMETER /

MODEL A B
Degrees of freedom 7086 685
N. of boundary sides 220 45

N. of elements 2378 300
Minimum quality level 0.5867 0.5666
Simulation duration 13.000$ 2.630]s

In Table 7, instead, the case of 20ms of membragleabour
simulation is reported when it undergoes a stintidsiced response.
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In this case an appropriate current densiy, the square window
shown in the inset of Fig. 9 is appliedrat;=1nm very close to the
symmetry axis, in order to trigger the excitablenmbeane (if current
density stimulus where injected exactly at g current density
would have been undefined).

Table 7. Simulation times in [s]. Stimulus duration short (d), long (D).
Stimulus amplitude: low (a), high (A)

d/a d/A D/a D/A
X‘Ode' 83.64 185594 | 119313 | 183.719
'\B"Ode' 19.797 48.968 26.891 42.704

A great advantage is offered by Model B in the dyitacase
too, as far as stimulation length is concerned i@ @h It is interesting
to observe how membrane responses, in the fouesmonding cases
(Fig. 11) almost coincide in the two modelling apgorhes and are in
accordance with theoretical expectations [54].Ha first caseda),
the stimulus is not sufficient to elicit any AP [sthreshold
behaviour, whose parameters, rise time and amplitade those
expected) showing a passive electrotonic naturé¢hef membrane,
being it approachable (at least in first approxiolgt as an R-C
circuit.
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Fig. 11 (a),(b),(c),(d) Membrane response (T= 6.3 caseda, dA ,Da DA,
respectively. Inset in (a): input stimulus parametes
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In the second and in the third one, an AP is olexkrwhile in
the fourth one, since both strength and duratiothefstimulus pulse
are high, two APs are excited, the second of wigdower than the
other, because refractory period is not respected.

Moreover, this simulations are carried out supppsen
operation temperature of 6.3°C. Adding also tentpeeadependence
to the model, it has been possible to obtain tlelt® shown in Fig.
14. This picture shows how, as theoretically expedb5],[56] , the
spiking of the neuron is affected by a change i@ ttmperature
parameter (here a step of 3°C separates the fipertesl cases).
Moreover, it can be observed, in Fig. 14a) andi@adrly in Fig. 14b)
(zooming on the first AP) that the maximum valusuamsed by the
Vm(t) gets lower and lower increasing the value of tmebiant
temperature, while the duration of the spikes geitsor in contrast
with the number of them (three spikes for the @3e=9°C and seven
for T=21°C). In particular, as a particular case exefcplion in Fig.
14c) we have chosen to show when the temperatsenes a
particular value of 18.5°C As theoretically expectavhen the
temperature assumes this value the membrane respesslts in a
sequence of six APs, shorter than the two obseraedower
temperature (Fig. 11). Indeed, channel time constare all scaled by
the factor3%179% see [56], since the new differential equations
become:

T-63
&~ [ f1-%)- o3 10 (21)
with x U{m,nh}. This yields to:
dx , :
7:[0')((1—X)—,8XX] (22)

dt

where @’y and B« correspond to the old values times the factor just
introduced, modifying the of the “channel-gating” processes as:

alx+lglx 3% (23)
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Fig. 12 Temporal shape of th&sN, (magenta),GK(green),G (blue), total
membrane conductance in [mS/cA} vs [ms] , for Upper: T=18.5°C (also an
initial phase of the second triggering is observedt the end depending on the
stimulus time duration). Lower T=6.3°C
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This results in a reduced time constdpt which induces faster
dynamics in the TMV (it can be seen also through bduction of
time duration of the membrane conductances dynaneipsrted in
Fig. 12).
A further validation of the model is performed bgnmparing these
time shapes with those reported in [56]. togethi¢h Whe agreement
of the simulated rate constamtandf with those reported in [49]
Another particularly meaningful remark concerns the
possibility to reproduce nervous stimulus propagebffered by the
models. Specifically, in accord to Hodgkin and Hyxkexperimental
setup, once the resting state conditions have aeeved over all the
structures, a potential difference, beyond the nahtexcitement
threshold, can be fixed across membrane at angueasal section (in
this case at = 0) of the models to elicit a local action potahtThis
propagates along the considered axon segment, shankhe well-
known physiological mechanisms proper of non-mykd fibres,
whose reproduction was the objective of this pludsemulation.
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Fig. 14 a) Multiple APs at different temperatures ) Zoom on the first AP peak
) at a particular temperature: T=18.3°C

In particular, in the two model solutions this isheeved by
fixing a 15mV voltage difference across axon meméren the point
whose coordinates are r=Qud and z=0, thus obtaining the
propagation effect shown in Fig. 15.The explanatibthese results is
the presence in a certain instant of an AP in aa @heactive zong
emulated constraining TMV).This implies that theen side of the
membrane is “more positive” with respect to theeowine. The charge
distribution non-homogeneity, thus created, indudesgitudinal
potential gradients; these in turn generate etecuirents (known as
local current$ in both intra and extra-cellular media, whoses$in
merge into the active zone (Fig. 16(a) and (b)). tAls process
results, as it would have been expected theorbtigalthe activation
of the other near areas interested by these chdhgees.
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Fig. 15 Propagation phenomenon: the moving activeone. Potential map at
three different times of pulse conduction (Axes [m]Voltage [V])
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V)

Simulation results for model A are reported tovghequipotential
lines distribution within an activated section okembrane domain
(Fig. 16(b)). The visualization of the propagatiefiect would not
have been easy if actual electric properties otresl means and
axoplasm domains had been used in the simulatigimoemment: the
time an AP needs to pass all along the segmenemmgaited is of the
same order of amplitude of a reasonable discresizéime step.
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So, in order to make propagation phenomenon not
“instantaneous”, but better “visible” at this phasfemodel testing, a
choice has been done to divide the two dielectoastants and
electric conductivities of those domains by therappate factor 19
Indeed, a theoretical approximation of propagasipeed is (11):

_ Ka
"Vcop (24)

wherev is propagation speed [m/#,the constant 10470 [1/4,axon
radius [cm],a axoplasm resistivity 2 cm] as those used by Hodgkin
and Huxley. It is, thus, possible to understand vitwgy simulated
velocity is a thousand times smaller than the reak, since

Psimulated™ 106,areal-

3.3 3D model of the neurostimulation system

Once obtained the 2D representation of the maim dgatures, the
steps towards the implementation of the whole rsumulation
system go through the realization, as previoustgdgiof the axon
segment model.

3.3.1 Single axon segment FEM model

The structure depicted in Fig. 17 represents tigensat of the axon
with the alumina layer and the nanoelectrodesiamikiting agents.
We have started the 3D model construction, by niiogead segment
of the axon to reduce calculus burden. The stracti@picted in Fig.
17 represents the segment of the axon with theinlutayer and the
nanoelectrodes as stimulating agents.

A 3D transient analysis packet of the Quasi-St&liectric AC/DC
module (for the same reasons described in § 3.2m2) a time
dependent analysis of the PDE module in generah fbave been
adopted to simulate the depicted piece of the systethe chosen
commercial environment. In particular, the contagnbox is modelled
by the domain @ a parallelepipedon whose dimensions are
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5.1umx4.5umx4.8um and characterized by its dielectric constant and
electric conductivity, respectively. and g.. The nanoelectrode is
represented by a cylinder (length: drnd and radius: 400nm).

- Axon
Segment -

Fig. 17 Sketch of the modeled neurostimulation systn (when only the axon
segment is taken into account)

Alumina thin layer is modelled by adomain and its dimensions are
2umx2umx0.2um , while its electromagnetic parameters Q@nd c.
Moreover we have modelled the axon as qudh.Jong segment, with
a um long.

As far as its membrane is concerned, it has beafedc
(increasing its value) defining its correspondirgmain, in order to
avoid meshing troubles as those already mentiooethé 2D model.
Trials with different scaling factors have beenfpened, to check the
different extent of the approximation introduced. the trade-off
between the correctness of the result and the esssiof meshing in
FEM modelling a maximum error (below 3%) in voltaggues over
the examined structure has been accepted assomaestaling factor
of 107[57].
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=" dm_real
Dm_scaled
dm'=
dm_scaled
z
xl y
/////D\

Fig. 18 Zoom at the top of the implemented membrandomain: visual
comparison (in plane y-z) between the real value dfie membrane domain
thicknessdn,_reqand the actually implemented scaled onéy,

Thus real membrane thickness is

dm=5-10° [m] (25)
while its implemented scaled value is

dm=5-10"[m] (26)

Thus, the scaled membrane conductivity and dietegermittivity
can be determined as

' (27)
=200 (s
m
= Emdm ey (28)
dm

where o, and g, are determined using equations (9), (10) and (11)
together with all other previously reported HH s#t equations
(83.2.2).
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All EM parameters are reported in Table 8, othenstants and
general parameters linked to HH equations are #mesas those
reported in Table 2 and Table 3.

Table 8. Simulation times in [s]. Stimulus duration short (d), long (D).
Stimulus amplitude: low (a), high (A)

Parameter | Value Description

OAx 5[S/m] Axon electric conductivity

Eax 200[F/m] | Axon dielectric permittivity

OExt 1[S/m] External medium electric conductivit
EExt 200[F/m] | External medium dielectric permittivity
OAl 10°[S/m] | Alumina electric conductivity

€Al 9.7[F/m] | Alumina dielectric permittivity

On 10°[S/m] | Nanoelectrode electric conductivity

€n 10[F/m] | Nanoelectrode dielectric permittivity

Current continuity equation, as in 2D case, is@etevery domain,
thus coupling Maxwell equations in their Quasi f8tdbrmulation
with HH ones, implemented on,D(exploiting the cited PDE packet
for m, n andh activation variables determination) in full anajogith
the method used and above described for the 2D case

The main differences with it, nevertheless, condée definition of
the external current density impressed on the mangbrdomain
(taking into account the Nernst Potentials), thignden of the initial
conditions over it and of all the boundary condisoon the analysed
structure and, in the end, the implementation ntetdopted for the
extrusion of the external and internal electricegpdials to define the
TMV, Vp, within Dp,.

First of all, it is necessary to highlight thal,ext, the externally
impressed current density, in this case, becomes

- {Jef = Je cos(@( y,2)) X + Je sin(6( y,z))y onD, (29)

Jext =
0 elsewhere

whereJe is defined as in (16)
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r is defined by:

ro=fr=iyy?+22 (30)
anddis:
atan2(zy)
2] ,Z)=
(v.2) {|atan2(z,y)|+n (31)

In addition to this, initial and boundary conditgogettings are
arranged as follows:

V(t=0) =Ar+BonD,
{V(t =0)=elsewhere (32)
where
A=1073 Vsta
R (33)
B= —Ar2

fixing an initial linear distribution of electric gpential over [}
ranging from -60mV at; (1.5um) to zero atr, (2um) - respectively
inner and outer radii definingpdomain.

For the channel activation variables, initial cibiods have been
set to:

mt=0)=my = Amsta

am sta + bm sta

n(t=0)=ny=——"ns&__ (34)

ansta* Pnsta

AN — Ansta
h(t=0)=hy =————<
( )= ansta * Phsta
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with &, andbig, (i0{m,n,h})defined in Table 2.

Vo) =V (6]~

Fig. 19 Definition of inner and outer potential Voand Vi for extrusion

Finally the extrusion of the external and interalgctric potentials to
define the TMV,Vy, within the membrane domain,Ds performed
according to the transformation defined in Table 9.

Table 9 Extrusion transformation from n the most gaeral form: when the
source domain is 3D

Source Transformation Destination Transformation
xsrc:Sx(X):X xdest: DX(X):X
Ysrc = Sy( y!Z) =0 Ydest = Dy( y!Z) = 0

V.(8) :V(9)|r:r2 >Extruded VariableV,(8) =V(8)
V,(8)=V(8)|_ >Extruded VariableV,(8)=V(9)

ol n,nl

el

3.3.1.1 Analysis of some simulations results

Now that a description of the modelling phases Iesn performed
and model settings have been delineated, it isiges® present some
of the many simulations results obtained, in orterdelineate the
potentiality of the model just presented and tovshiwat it behaves as
theoretically expected.

In particular, since the implementation steps v@@ehmade are
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based on an incremental approach (starting fron2henodel and its
approximations to the 3D axonal until the modelhws#toma, axon
hillock and initial axon segment) we have testéadat models (as for
the 2D case) with amplitudes supposed to elicit ARd with signal
too low to induce and active response and we hagerged whether
they responded accordingly in both axon and mofisleosoma zone.
In this section we will go through a very brief degtion of only
axonal model, while (after having described it) wd do the same
for the much more complex one including soma, akolock and
initial axon segment.
Therefore, under and overthreshold stimuli have hesed to test the
passive electrotonic potential generation and tbevea AP birth
respectively.

As far as boundary conditions are concerned, thiewing
assumptions are mad#, 42.231A/m?, is the current density value at
resting state of HH model, defined in eq.(15)):

Table 10 Boundary conditions assignments for the natel depicted in Fig. 17

Boundary Imposed condition

Bottom of the external box Ground

Upper and later boundaries of thElectrical insulation
external box

Inner lateral surface defined by | Current sourced source=fJsta

Circular upper base of theElectric potentialVinpudt)
nanoelectrode

Other inner boundaries Continuity of the normal
component of current density

whereVinpu(t) is the externally applied electric stress. Whereasr
the boundaries delimiting domainy,Pfor the activation variables, the
Neumann condition is set, fixing to zero the norrdalivative of
them. Temperature coefficient is taken into accasnn (21).
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4 Vﬁ'npuf( f)
Amp [

S

L4

D

Fig. 20 Input voltage waveform

When Vinpudt) (Fig. 20) is an underthreshold symmetrical
triangular waveform (amplitude -15mV, absolute sl§wf 20V/s and
duration ofD=0.75ms) no AP is elicited, as theoretically expeeerd
as shown in Fig. 21 and Fig. 22.

Fig. 21 Correct underthreshold behaviour of the axn. Colormap: V,,[mV] at
t=1.4ms, near the time in which the maximum voltge is reached. In red
current density flux lines
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In particular, an electrotonic passive behaviour loa observed in Fig.
22, where the comparison with Fig. 24 clearly destiates the totally
different membrane response.

30F

0t : e

B e S e

40 | : .

o] 1 2 3 4 5

Fig. 22V (1) [mV] vs t[ms]. Understimulation: only electrotonic passive
response

Indeed, it shows the effects of an overthreshaludts (triangular
shaped voltage waveform, but with an amplitude IdfOmV and a
slope of 200V/sb= 0.5ms) .

Another interesting test situation is the respottsa repetitive
stress. In Fig. 25 two APs elicited (the secondelom amplitude as
expected, because the relative refractory perioshas respected),
when input voltage stress is a simple train of apt® of triangular
waveforms (blue line). Instead with two nearer inpulses while a
first AP is triggered the second one cannot skg. 26).
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40

30

20

10

-10

-20

Fig. 23 Correct overthreshold behaviour of the axonV,,[mV] at t=0.525ms,
near the time in which the maximum voltage is readcdd. In red current density
flux lines

[}
w
5}
-3

Fig. 24 Elicited AP in correspondence of a point 8um translated along x from
the projection of the nanoelectrode on the axon/m[mV], t{ms]
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Fig. 25 Pink (V,(t)[mV] vs t[ms]): two APs elicited (the second lowein
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amplitude as expected). Blue: input voltage stress
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Fig. 26 Two nearer pulsed (blue) elicit only one APV, (t)[mV] vs t{ms] (pink).

The second peak is an electrotonic potential
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Moreover, for the same reasons expressed in F2eldlso eq.(24)),
exactly as we have done for the 2D case, we haaleddielectric
constants and electric conductivities of axon anigrnal medium
domains to “slow down” the propagation velocity amdke it more
“appreciable”, which, here too (see § 3.2.4) icaled version of the
real one. Fig. 27 depicts the obtained time shiAl triggering at two
different points along the axon membrane (herendmgoelectrode is
centred on the axon symmetry axis).

40 f_ﬂ‘

] bz 04 nE 08 1 12 14
Fig. 27 APs (Vm(t) [mV] , t[ms]). 4 is the delay between two points shifted by a
couple of microns

In the end, Fig. 28 depicts three different “piesir of the model at
three different time instant to show propagaticieaf The colormap
represents the TVIW(t) From up to down, structure &t0.5ms,t=
0.78ms,t=0.98ms: colormap/, [mV]. Active zones (fluxes lines of
current density in red) are moving from the “shadmme” just under
the nanoelectrode, spreading in all directions itoignal (alongx)
and alongd. To sum up, as expected, whér,.(t) has not a sufficient
combination of amplitude and duration, indeed, dhby
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Fig. 28 From up to down, structure att=0.5ms,t= 0.78mst=0.98ms: colormap
Vi [MmV]. Moving active zones (fluxes lines of currentlensity in red)
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passive electrotonic potential is generated [56hiley with an
appropriate stimulus the elicitation of an AP isetved; moreover, an
APs bursting is induced across the axon membranenwthne
refractory period is respected, while, as it shdodg no second AP
comes if it is not. In the end, propagative efteas been observed. All
this checks attest the correctness of the model raake of it a
possible tool to exploit for investigations on aabmesponse to the
different main parameters if the neurostimulatiggtem.

3.3.2 Model with soma, axon hillock and axon initial
segment

-.Alumina
Thin \(-,;.f--ﬁn_lx

Layer.
pr

I |Nanoelectrode

Fig. 29 Sketch of the modeled neurostimulation sysin when the neuron is
stimulated in proximity of the soma( axes are ipum)

In Fig. 29, the sketch representation is reportédhe modelled
neurostimulation system when the operating conditontemplates
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an external stress to be performed in proximity toé soma.
Obviously, as it happened for the single axon segntiee majority of
the settings referring to neuron membrane are nra@malogy with
those reported in 3.2.2, thus in this paragrapl tvd differences with
the previously described model will be discussed.

First of all, here the soma and the axon hillogkhdre the
physiological different distribution of channel d&#y is taken into
account) are modeled together with the initial segimof the axon
departing from it.

Reminding that our primary goal is always to achi¢he better
model solution and, thus, a flexible and managetdé to perform
the automated procedure, in determining the mdstaat factors,
when interfacing with the neuron, as we have prefity done in the
bidimensional case, we, now, perform (in 3D) a carrgon between a
base model and a thin layer approximated one.

To reduce computational burden, which proves toeb#y high in
the base model (the one with membrane domain ingiésd), a
slight reduction in soma and axon dimensions has liretroduced in
the two geometries that we compare (obviously @aesfor both),
with respect to the typical literature values, néweess, as we will
show in the dedicated paragraph 4.3.2, the DoE mghted
procedure is, obviously, based on more classitahblure values.

The geometrical structure is, then, composed dswsel a sphere
(3 um diameter), intercepting a trunk of cone (and esenting the
axon hillock (1.¢im long) and cylinder corresponding to the axon
initial tract (0.7um long) inserted in an external box (@ x 4um x
4um) .The nanoelectrode is 1uén long and has a diameter of 300nm

Dm

- Volxy.z) De
Dm_ah

Fig. 30 Piece of the transversal section (in planez) of the model depicted in
Fig. 29. Different sections are highlighted whosenion constitutes membrane
domain Dm. Inner V;(x,y,z)(pink) and outer voltageV,(x,y,z)(blue)
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As far as the physical settings are concernedrlgld®e settings of the
external current density, as well as initial androdary conditions and
the extrusion transformation must be rearrangecentipg on the
zone where they apply (soma, axon, etc.). In padicthe externally
impressed current density is differentiated indigdinition as follows
(it must be foregrounded that a junction sectios lbeen introduced as
in Fig. 30 to connect continuously hillock and axesttions):

Table 11 Summary of equations, variables, boundargnd initial settings
imposed on the different [, sections.

Soma (Dn_s)

Jext=J¢f =Jg fy X+Je fyy+Jef,2

fx =sin(6y( y.2)) [Cos(Pn( y.2))
fy =sin(6h( y,2)) 5in(¢n( y.2))
f, =cos@( y.2))

2 2

r=tr=tx%2+y®+z

On (X, y,2)= aCO{?Zj
Pn (X, y,z)=atan2(y,x)+ 277
Os(x,y,2)= aCO{?Zj

P (X, y,z):acos(?le

extrusion
Initial condition for electric potential:

modified set of variables used for the

V(t=0) =Ar+B

! The explanation of the choices made in the matkieaianodelling of the
different D, sections is reported in 83.3.2.2.
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A = lo_sr\/%;a y Wlth (\/5ta = '60103)

B=-Ar
rpandrpare: inner and outer radii defining soma membrane

Initial condition for the activation variables:

a
m(t=O)=lTb= msta
amsta* Bmsta

nt=0)=ny —_ Gnsta  ag.andbig. (i0{m,n,h}) (see Table 2)

anstat Pnsta
—A\—h — _ Onsta

h(t=0)=hy=—hsta__

anstat bhsta

Axon Hillock (Dm_an)

Jext = Jof =Jg fy X+Jg fyy+Jg f,2

fx =sin(8y )
fy =cos(8y ) [cos(I)
f, =cos(@y ) 5in(6; )

6, =atan(0.379)

a cos{lj
rC

G =
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re =fr=iyy?+2z?

Xp =c0s(f,)cos(@y )(x—a)+(sin(F, )cos(By ) + cos(F, )sin(by )
+(sin(8; ) sin(8y ) — cos(@, ) sin(8y )cos(By ))(z~-c)

zp =sin(dy )(x—a)-cos(@y )sin(Fy )(y —b) +cos@y )cos@y )(

a=4601107°
b =rapccos(Oc)
C = TrgpcSiN(bc)

fape = 12110107

GNa = G Namax™°h
Gk = G K maxn”

G Namax — G K max =10

GNamax GK max

Initial condition for electric potential:

Vit =0) =Az,|+B

A=103VS8  \iith (Ve = -60-10%)
22 1-222

B= —A22 )
2 = 0, Z, = dy, where d,, is the scaled membrane thickness

in (26))

Initial condition for the activation variables:
The same as for therDs section.

Junction Section(Dn j)

(as



Jext =Jof =Jg fy X+ fyy+Jg f,2

fx =cos(+Bj -y )
f, =sin(rr+ B -y )[to(F)
fy =sin(+ Bj -y )SIn(F;)

_|atan2zz,x3) if z3#0
o if z3=0

yj =dy

X3 =c0s(@; )cos(y; )(x—Py)+

+(sin(8, )cos(6x ) +cos(@; ) sin(y; )sin(By ))(y—Ry) +
+(sin(6; )sin(8y ) —cos(@; )sin(y; )cos@y ))(z-F.)

zz =sin(y; )(Xx—Py)—cos(y; )sin(Zx )(y-Ry)) +
+cos(y; )cos@y )(z-F;)
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P, = 2160107
Ry = pabcCos(fc)
Pe = I'pabcSin(dc)

l pabc = 7210

Initial condition for electric potential:

Vy(t=0) =Azz+B
A= ——iB Wheredm' is the scaled membrane thickness (as in (26
dm

- Vsta
B= 1000’

with (Vsa = -60-10°)

Initial condition for the activation variables:
The same as for thenDs section.

Axon (Dm a)

Jext =Jof =g c0s(@,( ¥.2)) X + Jg sin(B,( y.2))y

. Ha(y’z):{atanZ(z,y)

Initial condition for electric potential:

latan2(zy)|+m

V. (t=0) =Ar+B
A=10°Vsa , with (Vsta = -60-10°)
r-r
B=-Ar
rpandrpare: inner and outer radii defining soma membrane

Initial condition for the activation variables:
The same as for therDssection.
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3.3.2.2 Extrusion and meshing difficulties in 3D spherical
geometries: adopted solutions and particular settigs

Realizing a model for such a complex structure theguently led,
during its implementation, to several modificatioimsthe adopted
approaches and strategies, because from time te tifferent
implementation troubles have been highlighted.

The most prominent of these are connected to ththemmtical
definition of angles, which in turn are necessanythe imposition of
the external current density on,2and forVy, extrusion on it, as well
as to the meshing of a still tiny membrane in cdri@geundaries zones,
often leading to inverted mesh elements. In thistice a brief
overview of the adopted solutions is presented.

It must be noticed that all parameters cited is g@ctions have been
defined according with Table 11.

First of all on Dn_s the definition of the couple of angles capable
of univocally identifying a direction for the immged current density
on membrane domain and for the extrusion of inmer @ut electric
potentialsV; andV, (as depicted in Fig. 30) has initially fallen dret
typical defined in the spherical coordinates systeNevertheless, the
calculation of their values (in particular the ftioa atan(y/x)for ¢
was not correct in correspondence with the bouedast Oy, s where
it had a discontinuity. This brought to a changéhim definition of the
@ angle, leading to the definition of a new variatblat (in couple with
the usual expression &f) have been used to define the direction:

Os(x,y,2)= aco{%)

p(x y,z)=aco{7xj

(35)

while &, and ¢ (Table 11) are used to calculate impressed current

density Jext. There are also other expressions adopted to solve
modelling issues, but this was a particularly meghil example in
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order to show how a simple mathematical definitan necessitate of
slight adjustment to be implemented in FEM.

In addition to this, failures of the solver due its reported
impossibility to invert source transformation inns@ extrusion ol,
andV; (see 83.2.1) have been discovered as effectegirésence of
inverted mesh elements. Often along a curved baynta possible
to have (if a not extremely refined mesh is used réoluce
computational burden) a coarse mesh and this ¢kély can cause
problems with inverted mesh elements. This meard # mesh
element is wrapped inside-out or has zero are2@nor volume (in
3D). More precisely, there are some coordinates vitnich the
Jacobian matrix for the mapping from local to glod@ordinates has a
negative or zero determinant. In most cases, tieati(straight) mesh
elements, visible in a mesh plot are not inverted,the higher-order
curved mesh elements used for computing the soluiight be. [51].
Hence, studying the minimum element quality in hesh Statistics
section of the software does not reveal the presehiverted mesh
elements in most cases. Inverted mesh elementemselves do not
pose any immediate threat to the overall accurdcthe solution.
However, convergence is not assured. It is, anywayth bearing in
mind that the faces along which there are invediednents are less
than perfectly resolved. If these faces are immorta is possible to
pursue a mesh without inverted elements or at leage sure that the
mesh resolution is sufficiently fine to guarant@eagcurate solution.
The easiest way to get an idea of the accuraaytigta few different
meshes and to see how the solution changes.

It is possible to avoid problems with inverted meslements by
modifying the geometry or the mesh or reducingghemetry shape
order and this is what we have done.

The last solution has allowed us to overcome tiffecdity in
inverting the source transformation for soma extnugTable 12) and
inverted mesh elements were definitely avoided.

Moreover a general brief overview on the passdegding to the
definition of the variables of Table 11 must beargd. Table is
divided in four sections (soma,Ds ,axon hillock, By an junction
section, B_j and in the end axon,,D,).

Soma and axon settings have been already discugsésl,thus
necessary to delineate the meaning of the subdoexairession set on
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Dm_anand DOy_j.

On the first of the two, a new set of coordinafdse base
coordinates are fixed on soma spherical domainreeritas been
exploited to define extrusion direction normal ke ttruncated cone
external and internal surface. The most appropsgttem has been
identified in a rototranslated one (translated lie tocus of points
(a,b(&),c(&)) -which is the circle indicated in Fig. 31- andated
with respect to the translated axidy g, see Table 11):

X, _ X _ X Ty 36
y2 = Re yl = Re y — Ty ( )
z z Z] T,

2 1

where Ris the well known matrix of axis systems rototratisin. [X;
Y; andZ;] is the translated system leading to the definiodx, , y»,
2. Instead& 8, and &, are the rotation angles of th¥;[Y, Z,] axis
with respect to those oKf Y; Z3]) and

| [a
T, |=|b(6,) (37)
T, (6 )

which, in our case does not represent a point,dite its coordinates
are function ofé. (as indicated in the rough sketch of Fig. 31), it
describes the depicted circle of radiug.
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Fig. 31 Sketch of the rototranslated axis to definaxon hillock variables and to
perform extrusion along normal direction to the axa hillock membrane
domain (pink)

Moreover, in order to define théextthree components along x,y and
z basis system axis, the following projections @eeved, taking into

account the variability of the normal vectorwith &. This leads to
the definition of the componterts fy, f;:

fx =sin(8y )
fy =cos(@y ) [Cos(I;)
f, =cos(@y ) 5in(6; )

(38)

Analogous modelling has been performed for the tjoncsection
domain Oy_; In particular a new set of axiX{ Ys Z3] is defined with
xz parallel to the light blue segment of Fig. 32 ane locus P,,Py,Pc)
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is defined in full analogy witha(b,q in the axon hillock.

¥/
‘f / Vi=ys

]. (Pa,Pb(gc),Pc(gc))

Fig. 32 Sketch of the rototranslated axisXs Yz Zs]to define junction section
variables and to perform extrusion from boundary déimiting the bottom of
Dn_jdomain (whose section in plane x-z is colored inmk). A generic g is
represented

The definition of the compontents f,, f, here (in analogy with the
axon hillock considerations just made) is:

fx = cos(r+ Bj - ;)
fz =sin(rr+ Bj -y ) €0, ) (39)
fy =sin(7r+ B -y, ) Bin(J; )

while 43 is defined as:
_|atan2zz,x3) if z3#0
- {o if z3=0 (40)

In the end, it is necessary to explain that simcéterature, over the
axon hillock, Na and K channels are reported toehspatial density
typically ten times higher than in the other sawi®mf the neuron
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membrane, new constan® namaxand G'kmax have been introduced,
scaled by this factor.

Finally, membrane domain meshing has been seléctigéned in the

zones where the Delaunay algorithm had not stiksed a sufficient
amount of tetrahedra to assure the solver a seffiiji low spatial

gradient for variables to solve for, between theeses belonging to
each one of them (this was particularly true forapaeters defined
over membrane, especially in correspondence withasand junction

domains). Finally, we recall that axon segmentirggtt are exactly
those reported in 83.3.1.

Table 12 reports the extrusion settings for all feetions of the
membrane domain, implemented as previously domedear to define

TMV, Vp, within the membrane domain,D

Table 12 Extrusion implemented for the membrane seions.

Soma (Dn_s)
Source Transformation Destination
Transformation
Xsre = Sx( X,Y,2) = @5 Xdest= Dx( X,y,2) = ¢¢
Ysrc = Sy (X,y.2) =05 Ydest = Dy (X,y,2) = 65

Vo(bs,05)=V (65,05 )|r=r2 - Extruded Variable:
Vo(es’ws ) :V(BS’% )|I’D[ r, I’2]

V; (85,0 ) =V (8 ,¢)5)|r=r19 Extruded Variable:
Vi(6s.08) =V (05,85 ) ¢, 1

Axon Hillock (D m_an)

Source Transformation Destination
Transformation
Xsre = Sx( X,¥.2) = X2 Xdest = Dx( X,¥,.Z) = Xo
Ysrc = Sy (X,y,2) = 6¢ Ydest= Dy (x,y,2) = 6;

Vo (%2,6; ) =V (Xp,6, )|22=222 - Extruded Variable:

Vo(XZ !HC ) :V(X2 ’HC )| ZD[ 221 ,222]
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Vo (%2,6; )=V (X2,6, )|22:221 - Extruded Variable:
Vo(X%2,60c) =V (X2,6c )|

z0O[ Zy Z5 |

Junction section

Source Transformation Destination
Transformation
{Xsrc =S (xYy,z)=0; forV, {xdest =D (x,y,2)=6;
{Xsrc =Sy( XY,2) =0, for V/ {xdest: Dx( x,y,2) =0
Ysrc = Sy (X,¥,2) = Bj | Ydest= Dy (X,y.2) = B

Vo(6:)=V(6; )|@(Pa,Pb,Pc) - Extruded Variable:
Vo(6c) =V(6E; )|

overDm_j

Vi(6:.8)) =V (6B )‘am_ - Extruded Variable:

Vi(8c.B8;) =V(6:.5; )

overDm_j

Axon extrusion transformation has been alreadyntegadn Table 9.

3.3.2.3Simulation results: AP elicitation and propagation
simulation with the moving active zone for the modewith
soma.

Exactly following the same philosophy we have addpto test 2D
and 3D axon model we, now, proceed in the desonpif only some
of the simulations results obtained stressing thedeh with a
triangular waveform under and overthreshold.

Boundary conditions resemble very closely thosethef single
axon, as they are synthetically reported in TaBle 1



74 Chapter 3 Modelling of tleurostimulation System

Table 13 Boundary conditions assignments for the nael depicted in Fig. 29

Boundary Imposed condition

Bottom of the external box Ground

Upper and later boundaries of thElectrical insulation
external box

Inner lateral surface (Dm Current Sourceasource: stta

Circular upper base of theElectric potentialVinput)
nanoelectrode

Other inner boundaries Continuity of the normal
component of current density

Over the boundaries delimiting,Dfor the activation variables, the
Neumann condition is set, fixing to zero the tmairmal derivative.

Let us consider the first stimulation case: aroalie value of the
slope and a peak amplitude of the symmetrical guéar voltage input
are respectively 35V/s and -35mV, Fig. 33 and B4.show the
expected response of the examined structure afethe

Instead, with a greater absolute value of the tijoltage slope,
200V/s and a peak amplitude of -80mV the resuksdapicted in Fig.
35 and Fig. 36. It is remarkable to note that theximity of the
nanoelectrode to the axon hillock “helps” the aation of APs and
thus facilitates the neural stimulation with redper the zones far
from the soma along the axon.

Also propagative phenomenon is observed as i@Ehease and in
axon segment stimulation (see Fig. 37).

Moreover, when the input signal amplitude is taghh the so-
called potential blockoccurs as it can be inferred by our simulation
results Fig. 38 in full accordance with literatdioeeseen behaviour as
reported in Fig. 39.
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Fig. 33 Understhreshold expected behaviow,[mV]. No active zone
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Fig. 34V, (t)[mV] vs t[ms].Underthreshold correct behaviour.
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Fig
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. 35 Overthreshold behaviour. Colormap:V,,[mV]. Red fluxes lines :
current density

Fig. 36 Transmembrane voltage Vm(t) [mV], tms]
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Fig. 38 Very narrow AP (V,[mV] vs t[s]) elicitation due to a triangular
waveform. As expected when the stimulus is veryrsing a block of the action
potential generation occurs
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Fig. 39 Figure extracted from [46]
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3.3.3 Thin layer approximation in 3D whole neuron
modelling

Analogously to what we have done in the 2D casee hee have
adopted thin layer approximation, in order to rezthee computational
burden and memory consumption of the simulatiomhis proves to
be particularly useful now that we work in a thaéemensional case
and 3D FEM models are particularly expensive imt&eof resources
drain. Indeed, we have implemented the model wigmimrane in
order to have the possibility to compare this agpnated one and
contrast them in 3D case as we have already domhelawn for the
2D. Here memory request and time consumption agatlyrreduced
by substituting the membrane domain with the alyeagéntioned (8
3.2.3) mathematical condition accounting for thepuin voltage at
the boundary surface. The current dendigyadopted in this case is
set all over the discontinuity surface separatinger and external
medium; thusV; is the dependent variable within the inner medium
andV; is defined in the external mediudqis defined according with
(41)

b/z _Vl) + £méo ab/z _Vl)

m m ot

(41)

Jeq=am

All variables definition is made according to HH debd equations as
defined in 83.2.2.

Moreover, the use of the two Electro Quasi Statystem of
equations has been adopted (as previously don&)njunction with
the PDE model for the definition of the channehaatton variables.
Although apparently this could look like the stistigrwardly easiest
modelling task achieved, some implementation tresidlave come
forth(as in the 3D case for the model with somaaxwh hillock etc.),
even if its implementation has required certainlycensiderable
inferior amount of time.



80 Chapter 3 Modelling of tleurostimulation System

Fig. 40 Overthreshold behaviour. Colormap TMV [mV]. Input stress:
symmetric triangular waveform (peak amplitude -100nV, absolute value of
slope 200V/s)

3.3.4 Comparison between models implementing
membrane domain and those exploiting the Thin
Layer Approximation in 3D

This paragraph shows the numerical simulation aidggs in the Thin
Layer Approximation modelling solution in 3D, witlespect to the
previously analysed whole model (with membrane)c&ulefined
MODEL1, the one implementing the membrane domaird an
MODEL2, the thin layer approximated, we can compdneir
performances in terms of namely a chosen (an retewaodel output
variable. In this case we have realized the coreparbbserving the
TMV in an assigned reference point of the structure
(2.88um,0,0.721m). To be fair the same FEM element type
(Lagrange, quadratic) relative tolerance {jl@nd absolute tolerance
(10°), the same time vector ([0:8°3@-10%]) and even the same type
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of solver have been employed as well as the sanmeulating
conditions in terms of relative positioning of theell and the
nanoelectrode and in terms of input signal absdlape, 200V/s, and
peak amplitude, 100mV, of a real voltage step.

The measured root mean square error amounts toxapately 4mV,
which shows that MODEL2 is a really good approxiomatof the
simulated structure, also because only in a vew peints of the
simulation time vector there is a certain relatdiference between
the two models predictions, while a very conspicidecrease in DoF
to solve for, elements of the mesh and as a coesequin memory
and time consumption, as well as in terms of emplayt possibility
of the MODEL2 in possible serial parametric anaygable 14
synthesizes the comparison terms.
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Fig. 41 Comparison between the two different TMVs Yh1(t) and Vm2(t) [mV]
vs t[s] (@ point of coordinates (2.88m,0,0.72um). simulated with MODEL1
(with membrane- magenta) and MODEL?2 (with thin laye approximation-blue)
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15

10

-10
0

Fig. 42 Relative error of theV,, [mV] vs t[s]: only in a very few points there is
a significant difference between the the two modelsredictions, thus leading to
an RMSE of almost 4mV

Table 14 Comparison of the MODEL1 with MODEL2. Main simulation

parameters (Overthreshold stimulation).

Parameter MODEL1 | MODELZ2
Simulation duration [s] 3815 1243
Number of Degrees of Freedom 67720 38703
Number of mesh points 5752 4448
Number of elements 30682 22834
Number of tetrahedra 30682 22834
Number of boundary faces 6625 4524
Number of triangular boundary faces 6625 4524
Number of boundary quadrilateral face@ 0
Number of edges elements 798 480
Number of vertex elements 83 50

A second comparison in arranged in exactly the saomlitions
except for the stimulation which is set to a anartideshold real step
(absolute slope 20V/s and peak amplitude -40mV).
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Table 15 Comparison of the MODEL1 with MODEL2. Main simulation
parameters. (Underthreshold stimulation)

Parameter MODEL1 | MODEL2

Simulation duration [s] 2800 658

The reduction in the time spent in simulating issttof almost one
third in the overthreshold case reported in Figadd in Fig. 42, while
in the second underthreshold case the reductiemes more sensible
with a rate 1 to 4. Moreover an RMSE in the wavefermulated with
MODEL2 of about 1mV is verified and relative erram Vm
calculation even gets reduced to less than 0.@/t&sults are shown
in Fig. 43 and Fig. 44 and Table 15.

Fig. 43V(t) [mV] vs t[s] according to MODEL1 (magenta) and MODEL2
(blue)
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Fig. 44 Relative error on the calculation ofV(t) vs t[s]

3.4 The selectivity problem: verification of the
selective neuron triggering (the biaxonal
model).

A new model containing two different axon segmestsitroduced in

this paragraph, purposely to be able to show h@tinaulus targeting
one axon can invest and then trigger an AP alsoeighbour cells
structures and eventually how it does not. As weehalready
described in the introductory part of this thesisrkvnanoelectrodes
(especially CNT- nanoelectrodes) can be seen amahetechnology
answer to an extremely important issue: the spatsdlution in the
functional restoration of sight [3], [58]. Indeedl,is well known in

literature that to achieve a minimum required visaity of 20/80, is
equivalent to assure approximately 2500 pixel (decteodes

units)/mnf [58]. Moreover, as we noticed previoustjcroelectrodes



85

(and thus MEA) (even those using the donut-shaped,an literature
reported as much effective) are very far behind thaget, therefore
requiring different solutions to enlarge the stiatidn effectiveness
and quality through elevating its spatial denslty.83.4.1 the brief
description of the modelling adaptations neces$arythe described
equations used to model HH in the axon segmenDir{sge 8§83.3.1)
and its exploitation helps us in showing how at thcale the low
voltages that can be employed, facilitate in beigffective in

selectively triggering APs only across the membrainhe target cell
and finally, in increasing the neurostimulationteys resolution

3.4.1 A couple of axons 3D FEM model

In order to obtain the simulations needed to acdmmpthis,
nevertheless a few tiny changes in the modellintk had to be
performed. Translation of some equations parametes function of
the distanceYx=5um) between the two centres of the axons had to be
performed in the expressions governing the modeal sihgle axon, in
order to model the “victim” axon behaviour (in gnei@ Fig. 46). The

external current densityl exthad to be redefined accordingly (42):

— _[Jdef =Jecos(@a( y,2)) X+ Je sin(fa( y,2))y onDpy,
Jext = (42)
0 elsewhere
wherele is defined as in (16) an@ is:
atan2(z,y-Ya)
O>(y,2)= A (43)
[atan2(z,y =Yp )|+ 7

The fundamental setting of the initial conditiom tbe TMV, Vm(t),
Vm(t=0): Ar,+B (44)

with
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fa =y (22 +(y-Ya)?) (45)

andA andB defined as in (33).

In the following pictures two different working cditions are
simulated: the parallel targeting of the two (oméemnded and the
second at the right, the victim axon) and the sdcanselective
elicitation achieved with different signal paramseteBetter and
clearer understanding of the dependencies on syletars of the
neural activity will be reached in 84.3.3.

Fig. 45 Ps are triggered on both axons: no seledity obtained. Color map: Vm
[mV]. Fluxes lines in red: current density entering also the second neuron are
sufficient to elicit an AP also in the latter

In that section, indeed, interesting conclusions ba drawn on the
main factors discriminating the targeted or paralles activation for
this configuration of neighbor fibers.
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Fig. 46 TMV [mV] vs t[ms], evaluated across the membranes of the two axa
Vn(t) in the target cell (green) and in the “victim” cell (blue)



Chapter 4

Performance analysis for
Neurostimulation

4.1 Design of Experiment Technique Adoption

Simulation and optimization are nowadays a key ssgdactor for
cost effectively and timely development, manufaomr of
competitive products and processes. Thus, we hamded to
approach the study of our neurostimulation systemiopmances by
means of the typical numerical prototyping procegurbased on a
sequence of numerical simulations, done in an titeraform
(exploiting the previously described FEM models aftier 3). In this
case, numerical prototyping, is specially focused the DoE
approach, leading to a substantial reduction ofemisal experiments
[59],[60].

Numerical prototyping methods rely on a sequence of
uncorrelated simulations and follow up procedures.

There are basic steps typically performed. Firstabf the
capture of the simulation sequence necessary éblego simulate the
desired design attribute. In our case, it can lemtiled with stress
simulation main characteristics, in terms of sigtiale evolutions,
geometrical parameters and positioning of the nactrede with
respect to the target system (a single axon segmeamuple axons or
a complex of soma, axon hillock and initial axorgreent). This
procedure proves to be effective, because typidalligerature design
attributes are taken into account not in a systematerall
perspective, thus loosing the global effectiverasd validity of the
approach sight. Furthermore, it often happens thiatulation
sequences are derived by hand on the basis ofy dratided down



89

among experts.

The next step is the exploitation of the DoE (Desiof
Experiments) technique, in order to scatter theuktions in the
region of interest, according to the chosen schesmg, orthogonal,
random and so on. The last step in the proceduheiRSM (response
surface methodology), allowing the interpolatiopfaximation of the
response, using a mathematical model.

It must be also said that, besides the advantagels ocumented in
the literature) [59]there are some drawbacks hidden in any numerical
prototyping based on the above summarized procediitee primary
ones are: the ability to automate capturing ancammmation of the
necessary simulation sequences, secondly the ezftigji due to the
required number of simulations, which in turn gromgoonentially
with the number of input factors (variables) anst laut not the least
the quality, due to the reliability or credibilitf the response model,
which can be in turn used for introducing an optiation procedure.
The first is a limiting factor since the engineeeds to perform a lot
of error tedious and time consuming manual workti&rmore, most
often the engineer faces the decision on a comgerbecause it
seems unrealistict to improve the quality of thepmnse model and at
the same time to reduce the number of tests iglibeen experiment.

FEM Criteria Evetual
Modelling —>| DoE M RSM |‘"’ Matching > Optimization

Adaptation: iterative
approach

Fig. 47 Schematic diagram of an elaborated advancetimerical prototyping
algorithm [59].

The scheme of the well known method we are applymghis

particular context of the neurostimulation is preed in Fig. 47 and it
can be summarized by the following steps. Buildum numerical
FEM models-of a product or process capturing thgsiols of the
problem. Automating the design process, also rieglia screening
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experiment based on orthogonal DoE scheme procddudéscover
the correlation binding the response and input ofact(thus
interactions are included) and eventually definintheir
meaningfulness in terms of mean, variance or medialecting the
most essential or significant input factors and imgldadditional
experiment tests according to (e.g.) a Latin Hypleecdesign scheme.
Then interpolating the initial RSM model of the pease in a form
capable of reflecting relationships between th@aase and the most
significant factors. In the end, if necessary, iempénting the iterative
approach in order to improve the final model of ttesponse by
sequential adding additional experiment points rgasion the
estimation of the interpolation error.

4.1.1 Some details for Design of Experiments (DoE)

Engineering Experiments

®  Reducdime to
design/develop new

products & processes Controllable factors
Y x, xz xp
Improveperformance of
existing processes l 1 T
. . g
Improvereliability and Inputs S Output
performance of products /
i Achieve product & procesg T T 00C T
robustness z, 2 z,

i i Uncontrollable factors
®  Evaluation of materials i

and system performances
design alternativesgetting
component & system
tolerances, etc.

Fig. 48 A schematic representation of experiments amn features and
applications for the DoE technique [60]
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Experiments are performed by investigators in wityuall fields of
inquiry, usually to discover something about a ipatar process or
system. Literally, an experiment istast More formally, we can
define anexperimentas a test or series of tests, in which purposeful
changes are made to the input variables of a psamesystem so that
we may observe and identify the reasons for chatiggs may be
observed in the output response. It is always cdipaunt importance
to wonder whether:

-the chosen parameters represent the only factqustential interest
to be controlled within the experiment context ,

- which are the possible methods to elaborate atadaanalyze them,

- in which order data must be collected and orgahiduring the
analysis,

-what difference in average observed output dataden different
parameters must be considered important etc.

This is why, in some critical and complex situaignt is clear

that a scientific approach to planning the expenimes to be
employed, instead of an non automated dbmtistical design of
experimentgefers to the process of planning the experimenthab
appropriate data that can be analyzed by statistieshods will be
collected, resulting in valid and objective conabus. The statistical
approach to experimental design is necessary ifwigh to draw
meaningful conclusions from the data. DoE stepkide 1. statement
of the problem. 2. Choice of factors, levels, aadges 3. Selection of
the response variable. 4. Choice of experimentsigdes. Performing
the experiment. 6. Statistical analysis of the dd@taConclusions to
draw.
Some useful classifications are design factorsgduogistant factors,
and allowed-to-vary factors. The design factorsthesthose actually
selected for study in the experiment. Held-constéadtors are
variables that may exert some effect on the respobst that, for
purposes of the present experiment, are not efast, so they will be
held at a specific level. The potential design destare those the
experimenter may wish to vary in the experiment.

Once the experimenter has selected the desigrrsati® must
choose the ranges over which these factors willvdréed, and the
specific levels at which runs will be made. Thoughtst also be
given to how these factors are to be controllethatdesired values
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and how they are to be measured, when dealing plitysically
implemented experiments.

This process knowledge is usually a combination poéctical
experience and theoretical understanding. It isomamt to investigate
all factors that may be of importance and not taberly influenced
by past experience, particularly when we are in ¢hdy stages of
experimentation or when the process is not veryureatWhen the
objective of the experiment is factor screening process
characterization, it is usually best to keep theber of factor levels
low. Generally, two levels work very well in factecreening studies.
The selection of the response variable is oriemntegrovide useful
information about the process under study. Stesistinethods could
be used to analyze the data so that results andlustons are
objective rather than judgmental in nature. It isoausually very
helpful to present the results of many experimantserms of an
empirical model that is, an equation derived from the data that
expresses the relationship between the responsahantmportant
design factors. Moreover, it must be taken intooaot that statistical
methods cannot prove that a factor (or factors)ahparticular effect.
They only provide guidelines as to the reliabileyd validity of
results. The primary advantage of statistical méshis that they add
objectivity to the decision-making process. Stat#t techniques
coupled with good engineering or process knowledgéd common
sense will usually lead to sound conclusions. Odata have been
collected conclusions can be drawn Moreover, thinoug this entire
process, it is important to keep in mind that expentation is an
important part of the learning process, where watesely formulate
hypotheses about a system, perform experimentsvisiigate these
hypotheses, and on the basis of the results fateuwmew hypotheses,
and so on. This suggests that experimentationeistive. As an
experimental program progresses, we often drop sanpat
variables, add others, change the region of exjorafor some
factors, or add new response variables.

Once delineated this scenario, we must say thatiratial
approach, in the stimulation system analysis camsei] is, as
theoretically prescribed in literature, A full factorial design
approach. Factorial designs are widely used in raxgats involving
several factors where it is necessary to studyjdhe effect of the
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factors on a response.. However, there are sespealal cases of the
general factorial design that are important becahsg are widely
used in research work and also because they foenbdbis of other
designs of considerable practical value. The mogtortant thing of
this special study is that each of thiactors assume only two levels.
A complete replicate of such a design require@x2. . . x2=2
observations and is called factorial design The 2 design is
particularly useful in the early stages of expentaé work, when
there are likely to be many factors to be inveséidalt provides the
smallest number of runs with which k factors candbedied in a
complete factorial design. Consequently, thesegdssiare widely
usedin factor screening experiment8ecause there are only two
levels for each factor, we assume that the respmnapproximately
linear over the range of the factor levels chodenmany factor
screening experiments, when we are just startirggudy the process
or system, this is often reasonable .

A potential concern in the use of two-level facbdesigns is
the assumption ofinearity in the factor effects. Of course, perfect
linearity is unnecessary, and tBesystem will work quite well even
when the linearity assumption holds only very agpmately. In fact,
if interaction termsare added to a main effects or first-order model,
we have a model capable of representing some cwevah the
response function. This curvature, of course, tedubm the twisting
of the plane induced by the interaction teyfigx,. There are going to
be situations where the curvature in the respomsetibn is not
adequately modelled by eq (46).

K
y:ﬁO+Zﬁij +ZZIBinin tE& (46)

i<j

In such cases, a logical model to consider is whieesf3;
represent pure second-order quadratic effects Equation (47) is
called asecond-order response surface model

y:ﬂo+zﬁjxi +2. D BiXiX; +Z'BHXJ'2+‘9 (47)

i<j
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There are also some extensions and variationseeéttlesigns that are
occasionally useful, such as the designs for cakese all the factors
are present at three levels: 3héactorial design

Factor B

Factor A

Fig. 49 Notation for the & Design

In the 3 system of designswe often denote the low,
intermediate, and high levels by -1, 0, and +1peesvely. This
facilitates fitting aregression modetklating the response to the factor
levels. For example, consider thed@sign, and let, represent factor
A andx® represent factdB. A regression model relating the response y
to x; andx, that is supported by this design is:

y = ﬁO + llel + IBZXZ + 1812X1X2 + ﬁlle + [;22)(22 tE (48)

Notice that the addition of a third factor leveloals the relationship
between the response and the design factors to deelled as a
quadratic. The3* design is certainly a possible choice by an
experimenter who is concerned about curvature | tbsponse
function.

All is based on the idea that it can be usefulit@ fesponse
curve to the levels of a quantitative factor obtained that the
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experimenter has apquationthat relates the response to the factor.
This equation might be used for interpolation, tisatfor predicting
the response at factor levels between those agtwséd in the
experiment. When at least two factors are quamn#aive can fit a
responsesurfacefor predicting the function at various combinations
of the design factors. In generhear regression methodse used to

fit these models to the experimental. The methotka$t squares is
typically used to estimate the regression coeffiisiein a multiple
linear regression model.

4.2 Sensitivity Analysis on the neural
membrane main electrophysiology: DoE
investigations

4.2.1 Analysis of Simulations Results

This section is devoted to the description of teeperiments” we
have chosen to conduce, exploiting the DoE theoyrder to achieve
a better understanding of some of the main featwfeseuron
membrane active behaviour. The objective is tordetee the extent
of sensitivity of the different modelled configurts to some chosen
input controllable parameters and /or to discover best operating
conditions for the elicitation of the AP, by obsery the effect that
some of these factors produce on the TMV.

The first analysis we have conduced is dedicaigtie prediction
of the AP triggering and its speed, once an appatgprsearch is
conduced of suitable parameters ranges. It couldideful when a
constraint on a particularly high frequency of g (several APs
per unit of time) is needed to code optical infotioa

The second exploits our axon segment model to stigege
quantitative dependence of the AP spike duratiomil@ly to what
we have done for the 2D case, but in a more sysienmvay) on the
operating temperature.

The third and the fourth analysis, that we havendcoed,
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investigate the sensitivity of TMV peak value taiations in the same
parameters of the stimulation apparatus and in ptaetical case
adopted for the first analysis. In particular weveastigate
neurostimulation effects, when it is performed gldhe axon and in
proximity with the soma, axon hillock and axon i@itsegment zones.

Then another experiment is considered, aimingtadysg the
influence of the cited controllable design paramseta the possibility
to selectively elicit APs, by focusing on one rattiean another close
axon.

4.3.1 Analysis on a single axon segment

4.3.1.1 Analysis of the system promptness dependence ormress
input parameters with linear regression

Before going though the summarized descriptiorhefdesign phases
carried out to perform our experiments devoteddieimine the most
relevant factors for the PFs, a clarification musimade.

All the analysis we have implemented on the redlimodels aim
at furnishing a (though partial) helpful backgrowpré-information on
the effectiveness of certain types of nanoelecsosienulations on
neurons, with respect to certain others. Then, gmind that our
particular interest is cast on retina ganglionscekrformances under
neuroprosthetic devices and that we are imagingnodelling the
effects of an neurostimulating system which isng gonstitutive part
of a much greater apparatus (NEA). It must be gwtlits positioning
and fixing, in particular, is constrained by theegyanatomy (the
distance of the retinal ganglion cells to the in&r limiting
membrane). Nevertheless, with nanotechnology,possible to arrive
nearer to the target zone with respect to what pessible until few
years ago. Thus, instead of considering an eleettadjet tissue
distance within the range of tens of microns, we io@agine to build a
support layer sufficiently thick as to bring naremttode more
precisely and more closer to the target. This cddduseful since it
leads to a reduction in the signal strength necgdsaelicit APs in
ganglion cells (which are our target), in turn,ueidig the probability
of the observed focal phosphenes (spot of lighpatients with retinal
prosthetics .
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It is, indeed, possible that also other retinalscipart from the target
ganglion ones) are excited by electrical stimulateven though
ganglion cells are physically closer to the elabts This is
particularly true for massive and invasive actibmacroelectrodes as
opposed to the possibly softer one of nanoelecsiode

In particular, this is due, for example, to muchvér activation
thresholds (AV) of retina photoreceptors paving the outermogeia
of the eye from the back (as cited in Chapter 2).

As a matter of fact, within this context they anetim and, thus
unwanted, targets, perceiving the stimulus aimedhat ganglion
axons of the innermost layer and triggering thespblight cited.

If photoreceptor or bipolar cells are easier exglcally stimulate,
they tend to give focal responses since their msE® and receptive
fields have limited spread in areas outside thedov
In addition to this, as we said in Chapter 2, thame more
photoreceptors than bipolar cells and more bipthlan ganglion cells.
Thus, a greater number of deeper cells (photorecepir bipolar)
might be stimulated compared to the number of digoarcells, if the
stimulus manages to affect all layers approximagejyally [3].

Once made all this necessary practical consiaderstiit is clear
that nanolectroddesignablemost prominent parameters (at least for
the knowledge in this initial phase of the expentsg can be
identified with in its diameter, its transversalsfimning with respect
to the axon symmetry axis and with in its lengtbr the last two, in
particular, it must also be evidenced that theee sill technologic
controllability troubles.

We still cannot know precisely in a NEA where th@n falls with
respect to its nearest electrode (problem of rdalityaand as a
consequence of selectivity: 84.3.3 too) and, fer skcond one, it is
still difficult to exactly predict its produced wes when the
nanoelectrode is made up of one ore more CNTs (itmes) because
of well known nanoscale technical production priecislimitations.
Thus, (this applies especially for the first one@de two parameters
are only partially under the designer control, legdo an uncertain
operating conditions, that can surely benefit frdne systematic
sensitivity analysis we have set up.

In this particular section, we first focus on theitation of the AP
and then on its readiness. Since we needed tot sele®erformance
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Function (PF), we have chosen to estimate it bgiisg the instant,
be it ty,, when the axon membrane TMV crosses the time adgs (F

50), as a function of the main (signal and georoatyiinput stress
parameters.
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Fig. 50 Definition of ty,

Here the axon segment stimulation is performedhim $ame way
reported in 8§ 3.3.1, applying a voltage signdh(t) to the
nanoelectrode upper face.

The waveform considered in this initial approacipeziment (in
accord with the previously cited iterative and graty focussing
iterative procedure typical of DoE technique) isnstituted by a
trapezoidal one, whose shape parameters are tbtubsgalue of its
rise and fall slopeS) (they are set to the same value), its minimum
amplitude Amp -the applied voltage is negative- and its “omid
(Dur).
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+ Vin ( f)

Amp

Dur
Fig. 51 Time shape oV¥,(t)

Geometrical variable parameters of our model arstead: the
radius of the nanoelectrode),(its transversal displacemer} with
respect to its starting position, which is obviyoséntered on the y-
axis and, in the end, its lengtly)(leading also to a univocal definition
of d (parameter more frequently found in literature ,afar this
reason, to which in this context we refer) as ig. B2. In particular
the latter is defined as the distance from the lohsenoelectrode to
the tangent plane at the uppermost point of the ax@ection y-z, as
reported in Fig. 52.

The number of variable parameters considereduss @ therefore,
choosing a2 DoE scheme we needed to run 64) (@imulations
varying one-factor-a-time.

In order to set up an efficient and meaningfuligdictive model
choice of the starting ranges for parameters iddurental.

The firstly chosen are trial ones and are repomedable 16, they
obviously take into account the general pre-infdioma acquired
studying literature on this topic.

In particular the choice of the “on” time for theaveform in not
dictated by the values typically used in literafurecause it is by far
larger than tens qis usually adopted, but by our desire to experiment
whether (with the adopted ranges of the other parars and
especially for the adopted value of temperatuteig was really little
influent or not on the activation of the AP.
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Fig. 52 Plane y-z: a simulated particular stimulatbn condition for the
geometrical parameters, reproduced as an example graphically representD,,
r and |, and d(axis values are expressed ipm)

Table 16 Adopted ranges for first trial DOE iteration

Parameter Adopted range
S [20,200]V/s
Amp [-100mV,-40mV]
Dur [0,14ms]

r [100nm, 350nm]
d [100,1100]nm
Dy [0,1.5um]

At this point of the work a transformation of COMBMultiphysics
® integration with MATLAB environment has proved aessary:
MATLAB script code has been generated for definmgportune
functions aiming at the systematic management aadation of
model parameters as well as comfortable simulatisasults
elaboration. An automatic procedure has, then, begtemented in
MATLAB , sampling the space of the parameters anddimg a
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matrix containing all the input n-ples. Once cadiet all the PF
samples calculated by a COMSOL file (the cited fiom)
implemented in MATLAB interface, the vector of thetput values
have been exploited with the objective of determana fitting linear
model for the time APs start as a function of teported variable
parameters.

First of all, analyzing simulations results, we mpsecise that
since our ranges were trial ones, we have realthatl not every
parameter combination led to an AP elicitation, sthposing the
problem of the definition of thig, in this cases.

We can deduce from this that, since it is not msically
meaningful to try to obtain a regression model dovariable which
can be also non-existing for some parameters catibirs, we look
for ranges leading to assured AP triggering: malkiwnguations on the
data obtained where all the unfeasible n-ples ewesed out would
bias our main factor inferring. To understand tiwe can fix our
attention on a single parameter and we can suppase¢here can be
some combinations of the remaining variables lgadinthe birth of
APs for its maximum value but not for the minimumeo Thus,
ignoring the (n-1)-ples with the same combinati¢as far as all the
other variables are concerned) and keeping thecorresponding to
this parameter maximum, unfairly biases our estonatof the
“strength” of its effect, being one output uncongide with the
corresponding one.

We have thus, decided to exploit the2esimulations (always in
accordance with the prescription of DoE which iesito derive the
maximum information on each feature or respondbetystem under
analysis)only in order to estimate their effect on the activatod the
AP. In addition to this we have decided to seartieroranges to
obtain a certain triggering, also on the basisisf analysis .

It must also be pointed out that all consideredapeters have a
certain amount of effectiveness on the activatiomgssed activation
of the AP, nevertheless none of them is really iafuor the on-off
phenomenon of the threshold crossing of the TMMs ™an be seen,
because passing from the minimum to the maximumalbfthe
variables there is no concentration of the PF sasph activation or
not (in Dex scatter plot of Fig. 53 we refer to iacdete variable
defined on purpose assuming a value equal to HeifAP has started
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and O if not). We have chosen to represent ourteeby Dex scatter
plots because it is the primary data analysis flarotletermining if and
how a response relates to another factor. Detengirii such a
relationship exists is a necessary first step inveding statistical
association to possible engineering cause-andtefffom such a
foundational plot, the analyst invariably extractformation dealing
with location shifts, variation shifts, and outBerSuch information
may easily be washed out by other "more advancedhtitative or
graphical procedures (computing and plotting meamsijice there is
motivation for the Dex scatter plot. If we weredrdsted in assessing
the importance of a single factor, and since "ingat' by default
means shift in location, then the simple scattet {g an ideal tool. A
large shift (with little data overlap) in the bodf/the data from the "-"
(minimum parameters values) setting to the "+"isgtof a given
factor would imply that the factor is important. ghall shift (with
much overlap) would imply the factor is not imparta

In our case also Fig. 54 is used as a means thetyedlly and quickly
represent the “strength” of each parameter in deteng an
activation or not. A notation highlight must be donn all figures
reported in the following text the design paranmetereasurement
units are missed for brevity, they are reportedadvance in the
summary tables. Indeed, out of 64 simulations oBly APs are
triggered, distributed according to the bar diagraported in Fig. 54.
Although they are not sufficient to derive infornoat for the
dependence df, on the variables we can infer from this distribati
that within the ranges of chosen parame®rss the least important
factor in determining whether an AP starts or A&t APs when it is at
its minimum 15 at its maximum), whilBur follows (12,18), then
comesr, Amp and d have the same weight (10, 20), (20,10) and
(20,10) respectively andlis the most prominent one (8, 22). Thus, at
this stage of our analysis, (although it is onhalgative and it does
not give us the opportunity to obtain a regresswodel for the
activation phenomenon (matter that will be furtbed more deeply
investigated in § 4.3.1.4 and in § 4.3.2 with aahle choice of the
PF) we can already deduce that at least as a tepdéme most
meaningful parameter is the slofeof the waveform (better when
higher), afterwardsy and Amp (better when higher), and (better
when lower) and in the erdlur (better when higherPy is indifferent
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in the chosen range.
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Fig. 53 Dex scatter plot representing PF values whea variable is fixed to its
extreme values (minimum and maximum), while the otérs are free to vary

Now, as far asy, is concerned, we decided to assign new trial renge
(Table 17), obtained following the hints dictateg the results just
gained: we have extended the investigation ranggh, a particular
attention in increasing the lower limit & andr and decreasing the
upper ford andAmp(we remind it is a negative value).

Moreover for Dur parameter, we have decided to drop it out just
because it has low influence even when it is vadeda much wider
range than the typical adopted in literature (ef dinder ofus).

Table 17 New adopted ranges for the second DoE itgion

Parameter Adopted range
S [120,500]V/s
Amp [-500,-100] mV
r [400,700]nm

d [100nm, 900nm]
Dy [0,1.2um]
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Fig. 54 Number of triggered APs when each parametés at its minimum (blue)
or maximum (pink)

To summarize: these ranges assure a well defipdebcause
there is always an AP elicitation: we have actezbeting to the DoE
intrinsically iterative and adaptive proceduresedefining the ranges
and eventually the choice of the parameters tosinyate. Fig. 55
depicts the data scattering in determining the,PF

Here we can observe how again, also for the rapufitAP
birth, the main factor is certainly by far the sopf the input
waveform because there is no overlapping of datakih to a shift
from minimum to maximum of approximately 0.1mslie tPF.

Now it is possible to build a regression model floe data,
interpolating them. We have decided to exploit MAR. rstool
functionalities, providing the possibility to oltaexploring graphs of
multidimensional polynomials. The function can ksed to perform
an interactive fit and plot of a multidimensiona@sponse surface
(RSM). Moreover this GUI offers an environment &xploration of
the graph of a multidimensional polynomial.
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Fig. 55 Dex scatter plot for §, PF [s]

In Fig. 56, each plot shows the fitted relationsbipthe PF to the
independent variable at a fixed value of the othdependent ones.
The fixed value of each independent variable is alditable in a text
box below each axis, and is marked by a verticahdd blue line (in
the reported case it is the middle point for eaatdr ).

It is

thus possible to change the fixed value afy

independent variable by either typing a new valughie box or by
dragging any of the vertical lines to a new positiand this is
particularly useful for searching the best parametembination

minimizing or maximizing the PF.

Indeed, changing the value of an independent biasiall the
plots update to show the current picture at the peint in the space

of the independent variables.

With this particular choice of the parameters Pfngation value can
thus be easily obtained, moving the blue cursaracathe regression
function representation (green), thigs= 0.414 ms together with its
estimation uncertainty (2.688-3€), which is calculated on the bases
of the chosen extent of confidence (in our case)99¢th which the
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model makes the prediction that a further samplédctall within the
green line delimited zone.
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Fig. 56 Linear prediction plot ty, (measurement units: 0.1ms)

The interpolating function obtained is instead:

tth = Bo + B1S+ BoAmp+ Bar + S4d + BsDy + & (49)

where $=7.218-1¢f, £=-9.155-10, 3=7.552-10, 3;=-97.222 3=
95.05, 4~ 86.806 (thefs have each the opportune measurement units
as to obtain seconds, in the multiplication by rtHactors) ande =
3.275-10 represents the RMS regression error. This lastevas
particularly important since it gives us (as pothteit in the summary

of the theory underlying regression and curveniifithe opportunity

to estimate the quality of the approximation magehe interpolating
function. Furthermore, it is necessary to preclsa,tobviously, the

weight of a factor does not depend only on itsrpaéation coefficient
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L, but also on the values it assumes on its assigaeation range.
Thus, taking into account all the observations mawi@# now, from
the analysis we have conducted on the rapidity witiich the AP
starts and also observing slopes of the functioreh plot in Fig.
56, it can be inferred that the phenomenon (wittsination domain of
the parameters) is mostly sensitiveSpthe slope of the waveform,
then in decreasing order, to the distance fromniugoelectrode and
the axon, then to nanoelectrode radius and sigredssmore or less at
the same rate and in the end to the transvergalbdement.

This information could be very useful for a NEA dger when he
has to unavoidably tradeoff choices among the &f@dopted ranges
of these parameters.

With this in mind, if we search the best paramstdution (as far as a
linear prediction can attain) with the tool presehtwe obtain:

Table 18 Best solution set of parameters minimizing,

Parameter Adopted range
S 509.5 V/s

Amp -510mV

r 707nm

d 80nm

Dy -30nm

It must be noticed that it is not strange that ab&ained best values
exceed the minimum or maximum because the regressio
implemented makes prediction also for tiny areg®beé the assigned
ranges and that certainly symmetry consideratiomDp make us
understand that its although its estimated bestevad -3nm its real
one should be 0.

Moreover, It could be useful to refine our study tre
behaviour of the PF, by choosing (always in theattee approach
scenario of the DoE) to investigate better the aalsen we fix the
position of the nanoelectrode and more accuratelgdipt the
behaviour ofty, adopting a3¢ (k=2 parameters) levels full factorial
experiment, where the to variable parameters armosly SandAmp
(the waveform parameters). We will thus have th@oojunity to
determine a full quadratic regression of the praorags of the system
as a function of these two parameters.



108 Chapter 4 Performance analysi®Eurostimulation

4.3.1.2 Quadratic regression model for the AP starting tine

The quadratic regression model we have set up tlsesranges
reported in Table 19. Each variable assumes eatttedhree values.

Table 19 Adopted ranges for the quadratic regregsn model fot .

Parameter Adopted range (with middle point)
S [120, 310,500]V/s
Amp [-500,300,-100] mV

These new iteration more deeply investigates ttaweur of
the PF with respect to the two signal paramegand Amp. The
results summarized in Fig. 57 show that ageimp for the considered
values is not too relevant as far as the speedtviagion is concerned,
but we can infer the quadratic model f@r
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Fig. 57 Quadratic prediction plotty [0.1ms]
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Indeed we obtain the following fitting model:

tin = o *+ BLS+ BoAmp+ f1oSAMpE 5118 + B AmP? +£ (50

while the new quadratic model interpolation coeéits are:
5=7.913-1¢, p=-2.352-10, B=1.078:1C, B,,=5.482-1C,
[i1=2.346 10, [,=3.472-10 and & 2.121-10°. We can also
represent this function as in Fig. 58.
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Fig. 58 Response surface as deduced by quadratigression model for  [S]
4.3.1.3 AP duration Temperature dependence analysis

After having analyzed the effect of signal and getiioal parameters
of the input stress on the promptness of the sysésponse, now we
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perform another analysis whose investigation i @ncerned about
time membrane dynamics, but takes into accountwavaiable: the
operating temperature.

During this experiment we have fixed our attentiorthe first of
the implemented and described stimulation systexon(asegment
undergoing a nanoelectrode induced stimulation @s the last
section).

Here the stimulus parameters are fixed (in termgexmetrical
characteristics of the nanoelectrode and time shapé¢he input
stressing signal) with exception of the waveforrsadbite value of the
slope which is varied together with temperature.

We chose the variation range for the it to be268C because it
is nearer to the temperature measurements Hodgkih Huxley
performed during their research activity, oriented capture axon
membrane physics and thus we are more confidetiteoreliability of
the approximation HH FEM model makes on the realralecell
behaviour [49].

The objective of this investigation is to furnish regression
function describing the correlation between terapee {) variation
and signal slope shifts on the duration of the ARi¢h in turn affects
also the constraint on the maximum per unit of tmuenber of APs
that can be activated to code retina ganglion ¢eft'mation). The
knowledge we can obtain this way, could be usefeheaf T is not a
design parameter, but even just to dig more deeptp the
mechanisms underlying axon membrane behaviours.

First of all it must be highlighted that our choifer the stress
parameters has fallen within the same ranges alraddpted for the
study on thdy, performed with al=22°C, this value had been chosen
because it is typically adopted in literature wheodelling HH
behaviour. It is worthwhile reminding that althoughkl equations are
by far the most frequently used and have many coatipnal and
general adaptability to different types of situatipthey nevertheless,
suffer from the fact that they do not propagatéoacpotentials above
31 °C.[3] Now we can go through the descriptiontioé adopted
experimental choices. We have, indeed, assignedatmelectrode
radius, to its length and to its transversal disphaent the middle
values of the cited ranges. We wanted to determigeneric function
binding rapidity of membrane dynamics temporal atiohs to
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temperature and stress signal parameters variatindsnot the one
that could emerge from “forcing” the system to wak its best
conditions for the other studied case (4.3.1.1) .

In addition to this it must be said that, in thexton, we have
conventionally defined thEF, w, in terms of time difference between
the instants of consecutive crossings of AP andithe axis).

Again we perform & experiment with variables defined in the

ranges reported in Table 20.
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Fig. 59 Definition of PFw.

Table 20 Adopted ranges for the quadratic regressn model for ty,.

Parameter Adopted range (with middle
point)

S [120, 310,500]V/s

T [18,22,26] °C

The quadratic regression implemented on the sedaté obtained
brings to:
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W= By + ByS+ BoT + B1oST+ 1182 + BosT2 +¢ (51)

with, £=7.925-1¢, £,=-9.256-10, 5,=2.595-1C, 3,,=7.675-1C,
L= -4.039:10, Bo= -1.302-10 and &= 4.547-10°.
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Fig. 60 Quadratic prediction of the PFw (measurement units: [0.1ms])

We can observe from Fig. 60, that apart from th@mmtness of the
system (estimated witly,), membrane dynamics are (more in general)
deeply affected by the waveform input sldpeWNe can also observe
that the dependence on temperature is in keepilly tleoretical
expectations since data announce a non linear leatredsing
dependence from the it of the AP duratwnNe have just highlighted
and also estimated qualitatively what we had alreqaalitatively
described in our 2D model. Indeed the specific beha of w with an
increase of T is explainable with the effect of the correction
coefficient that HH equations report for the chdndgnamics (8
3.2.4). Tridimensional representation of the fdticurve is also
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reported in Fig. 61.
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4.3.1.4 Analysis of peak value of TMV dependence on stregsput
parameters

We have realized even more clearly during our fiverking phase
that it is worthwhile finding a way to model morpantitatively
dependences of PFs on variable factors of themystaler study. We
have, thus, wondered whether it was possible taeafur knowledge
on the values that the TMV assumes under the typssmulation we
are considering, since perhaps among the variousnbname
electrophysiological parameters that we can imagin@analyze the
TMV is the most important since it is strongly bdunith the birth of
the nervous signal. Thus, implemented an iteraearch of the peak
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value that the TMV assumes for the axon segmentusdied (with
parameters ranging within the windows reported ablé 16), we
have defined the analogical PF as the maximum velye of the
TMV itself, calculated all over the nervous fibneder stress.

Indeed, by observing it we can infer the slopeshef PF and
thus not only generically the directions towardschht is desirable to
move along parameters ranges, but also quantitative extent of the
dependencies, thus obtaining a fitting functiomfreimulated data.
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Fig. 62 Dex scatter plot for \f,y PF [mV]

The interpolating function fo¥my is, in the end, reported below . It
must be noted tha¥,,v is expressed in mV and that this regression
presents a percent greater variability due to tklimear triggering
(or not) of the APs and thus, perhaps, a tiny worsaity.
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Viom = Bo + B1S+ Lo Amp+ Bar + 4d + BsDy +& (52)

with, [B=--74.249, [3,=0.104 [3,=-8.082-16, 35=6.669-10, £,=-
2.671-10, 8= -3.577-10and &= 25.86.
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Fig. 63 Linear prediction plot for V,y at the optimum solution[mV]

The analysis of the results obtained in the sinnat elaborations
leads us to observe that since we know from 8§ 4.3Hat elicitation
of APs is principally favoured by a greater sigmalveform slope,
even though the evaluation of the peak amplitudd MV over the
stressed neuron axon is important, it cannot bd egactly as direct
estimator of the on-off phenomenon of spike gemmmatThere,
indeed, can be cases favoured by a growth in thst p@minent
factor, which is also intuitively the signal amptiie,Amp that lead in
the direction of an increase of TMV peak but they ot sufficient to
elicit AP. This also demonstrates (if necessarg) lifgh nonlinearity
of the phenomenon under observation. Moreover, tfer same
reasons, it is interesting to note that there mueh greater general
dependence of this new PF on the set of parami@nsforty, This is
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in accordance with Fig. 54 (where the number ofnbéPs is
represented): greater distributed dependence cabhdsved when the
PFis ty. It is worthwhile noting that this deeper and mquantitative
analysis is in perfect accordance with the previowhown bar
diagram qualitative predictions of the same citgdire (Fig. 54), as
for the directions towards AP triggering. Moreovitre slightness of
the dependence of AP triggering phenomenonDgn(here more
precisely estimated), was not clarified by the seaestimation made
counting the APs.

4.3.2 Analysis on the model with soma, axon hillock and
axon initial segment (in the thin layer
approximation)

What we have observed and modelled until now iatike to an
axonal stimulation, but it is interesting to examwhat happens if,
not just the axon, but the zone near the gangl@hsoma undergoes
a stress voltage in order to promote its signallcgvity. We know
from literature [3] that soma are more easily aitd because of a
smaller surface curvature with respect to the dfexexl by axon, thus
we have chosen to simulate a slightly small sonth véspect to the
typical ones in the retina in order to reduce cotagenal burden and
also knowing that stresses capable of triggering APsomas with
smaller radii certainly stimulate them better imgb with a smaller
surface curvature, because the “effective area’etmahth is bigger.
Therefore we have decided to investigate a wors¢ sgtuation Thus
the model implemented (as described in §3.3.3bleas used (with a
soma radius of jam) to investigate this new situation main features.
The imposed voltage waveform has the same shajeRag. 51 with
Dur=0 (thus collapsing into a triangular wave as ihthe cases
previously examined wittDur parameter fixed). Initially we had
decided to use, where possible for the way thenpeter is defined,
the same ranges adopted for the analysis on tle afathe singular
axon.

Nevertheless, (as more than on time discussecdhensection
dedicated to the theory of DoE, ranges good chisiome of the most
difficult and laborious things to achieve ) a stigtdifferent definition
has proved necessary together with a change inabl@aparameter.
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In particular since as we have already pointed out84.3.1.1
anatomical considerations suggest to fix the uppase of the
nanoelectrode support distance from the neurorg mepresence of
the geometrical shape of the soma we cannot sayixhrg the length
of the nanoelectrode means fixing the distance ftloenneuron, thus
within we refer directly to nanoelectrode lendgithin addition to this
we introduce another observation varialidg:defined (as reported in
Fig. 64) as the displacement of the electrode fthe longitudinal
positioning along x axis just on the upper poletled soma Dy = -
12.25um) or to the middle of the axon segmedni<0).

Fig. 64 Example figure with an activated AP under he electrode (TMV is
higher toward the red color) used to show parametexr definition: Dy, I,.

In order to try to furnish a better representatidrreality, since this
model is much more complex than the other until rovalyzed, we
have widened some ranges, changing the extremeldgtain the
direction of a much greater number of APs birthdétter observe a
situation that more likely would have brought teithelicitation. We
have managed to do this, by exploiting the inforaratgained by
observing the slopes of linear prediction plotsagied in the case of
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singular axon stimulation.

Table 21 Range of parameters adopted for the analigson the initial zone of the
axon near the soma.

Parameter Adopted range
S [40,200]V/s
Amp [-200mV,-40mV]
r [300nm, 800nm]
In [600,1400]nm
Dy [0,1.5um]
Dy [-12.25,0]um
200 200 200 200 200 200
150}, 1 150 B 1501 Z g 1501 ; B 1504 Z 150 ; B
o 8 o o © 8 :
wot?  § 100 1owo0rC % 1002 f 0 a00f  ° w0 ¢
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8 g © g ¥ g
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o° A 0 g or° A o ° A o} o ° A
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S Amp rx10° Inx10° Dy x 10° Dx x 10°

Fig. 65 Dex scatter plot for \,y PF [mV] in the case of a stimulation near the
soma

The interpolation of scattered data brings to:
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Viam =Bo + B1S+ BoAmp+ Bar + Pyl + fsDy + feDy + € (53)
with, 3=-1.515-16, [3=12.71 3,=-8.189-16, 3;=2.078-10, 8=
2.882-10, B==-4.508-18, B~=-3.071-16,ande= 253.

Moreover, we must precise that although the intetpmn is not of
high quality as in the case for the single axoe, BF Vv that we
have selected can still be used as a guidelinghfomanoelectrodes
system designer, who can now benefit from the kedgé on the
weight of a parameter with respect to the otheig. ¢6).
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Fig. 66 Linear prediction plot for V,y at parameters best solution[mV]

Again general variability with the parameters (amdortunately also

a tiny coarseness of the interpolation) has grovth vespect to the
time dynamics observed in § 4.3.1.1 and 4.3.118rathe case of/
with which obviously shares the signs in the raieghange of the
linear interpolation for each of the common parare§, Amp r and
Dy) and this is quite intuitive. Fo, we must remind that, in the
axonal model, definingl or |, was equivalent since they added up to
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generate the total distance from the upper tanglane to the neuron
and the upper base of the support for the nanoetect(Fig. 52).
Since here this is not true any more, for a fikghe parameter that
we can really design) different distances fromupeer profile of the
neuron are assumed depending on the position atoagis of the
nanoelectrode. Thus if in the other model we hapomed the
dependence oh instead ofd it would have had the same sign of this
case analysis. Moreover no comparison can be donelifear
approximation rate of dependence @p because it was undefined in
the other analyzed situation. It is possible togeotlso thaD, has
decreasedn importance likely because of the presence is thodel
of the axon hillock. It indeed, with a ten timesgter membrane
channels density with respect to the other zosem& and axon)
represents the most “sensitive” zone to the triggeof APs, thus
making more in general soma zone stimulation edkin near the
axon. Thus we obtain a confirmation of what expgdtem literature
data. Nevertheless it is not completely advisablesttimulate here.
Reportedly, ([3]) since in the reality, near sonume there are also
dendrites, that, due to their arborisation creag@sible neuron
segments overlapping, a reduction in the spatiablugion of the
stimulations and thus the AP elicitation selecyivitould emerge.

Anyway this phenomenon could be better investigaigding
a third point in the range dDx and refining our analysis on the
dependences choosing the most relevant factorgvgidmenting &8~
(as already done) full factorial experiment.

4.3.3 Analysis on the biaxonal model for the selectivity
(parameters design to avoid parallel neurons
activation)

One of the most pernicious troubles of neurostitaas we know
from 8§ 3.4 is the difficulty to be selective in addsing a specific
neuron (or a group of neurons/axons), because,eabave already
mentioned, this leads, especially in the case ef ftina dense
neuronal patterns, to a distortion of the codedrmftion induced on
the axon themselves by the neurostimulation deVids.keeping this
in mind that we have concluded our analysis on arewalynamics by
trying to determine the most relevant factors @edsing a voltage
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stressed simple couple of axons to be selectiveliyaed. Ranges
adopted are those of Table 17, exception madeepadrametes.

For this, a wider range lowering the minimum val@6V/s) has been
chosen, trying to obtain also cases where theifufctiid not activate
any AP, to better distinguish between cases, wayd seeking the
triggering in the first one (as it has really happd). We must
evidence that foDy parameter, its upper limit is chosen as the 24% of
the distance between the centres of the two axomsder to keep the
nanoelectrode in any case nearer to the target alxerfirst one. The
definition of the performance function has beenaltiging to find an
analogical variable that could convey information a on off
phenomenon (the selective triggering of APs infits¢ one and not in
the second one). The most suitable PF in this eppeared to be
somehow correlated with the peaks of the TMVs m tdrget and in
the victim axon. In particular, seeking ranges b#épaof always
activating the APs in the first intended targetaxiv is sufficient to
observe the peak value of the “victim” TMV in ordi&r determine
whether the stimulation has been selective or Ihat.is negative no
AP has born in the second neuron; if not, no seiecthas been
granted.

80 80— 80 T 80 T 80

60 % eof B S o 6of &
8 i 8 @
Q
g &
: 8 g s ¥ B
4010 404 B 404 B 40 < 40¢ B
o] e o]
)
E
w 20 B 20+ q 201 q 201 q 201
=
£
-
0r 4 0r o 0 [ O q 0r o
e il o]
201 1 20 o1 20F o4 20f 4 20
=] [+] e} o [+]
[} [+ C o]
o] [¢]
-40 =40 — -40 - -40 : -40 :
0 500 -0.4-0.2 0 4 6 8 0 05 1 0o 1 2
Pen Amp T107 d 10° Dy10-6

Fig. 67 Dex scatter plot for \,om PF [MV]



122 Chapter 4 Performance analysi®Eurostimulation
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Fig. 68 Linear prediction plot for V., at parameters best solution[mV]

The interpolation of scattered data brings to:
Vimmz2 =Bo + B1S+ BoAmp+ Bar + B4d + 5Dy +&  (54)

with, 3=10.976, £=-6.237-1C, 3=-1.006-1F, 3;=1.080-10, B,=-
5.674-16, 5=6.134-10and= 22.4

It is very interesting to note that whifparameter was the most
influent for the other performances considered| umaw, here, for the
selectivity, not only does it loose the main faghoominence Ampis
much more relevant), but also changes its effecsigm: while for
minimizing (as we need to do know) the TVM peakré¢hevas the
necessity to push the S to lower values, hereakatly the opposite.
This can be explained, thinking that the valuesumesl by the
distanceDy (here becoming much more meaningful) from thettmé
is far beyond the ones simulated until now. It was most equal to
1.5um in the other cases and it now ranges within [@Gin, Sum ].
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Thus, a different domain for the PF (with respedhie victim axon) is
being investigated. Instead for the other pararaetikee first order
dependences have the same sign. This last analydisliscovering
could prove very helpful. First of all, the oppanity is offered to
determine the optimum combination of parametersimiaing the
TMV of the victim axon Vmw2 as shown in Fig. 68. This, in turn,
makes it possible to be more confident that it Wwél only the AP in
the first axon to be triggered (we remind that ¢hesen ranges have
proved effective in always eliciting the first axé#). Secondly, the
behaviour of the function in dependence of the esldpf the input
waveform can be in general better investigated exmuloited since
pushing towards higher slopes (at least for thasgas) seems to be
an attractive way of assuring the target excitenaewt also a greater
selectivity.

At the end, it would be an interesting goal to aghiin future works ,
the exploitation of this model in order to inveatig (always through
the analysis of experiments) the reasons why tlw®nsk APs is
triggered, when it happens: direct elicitation (dwly to
nanoelectrode effect), the presence of the otleeechaxon perturbing
field lines or even both? Applying again DoE tottdss hypothesis
could lead to an efficient tool to design nanoetmfts systems also
taking into account the issue of the so caftechl confinemenof the
input stress current fluxes lines , thus increasiregselectivity of the
stimulation and, in a global high-scale vision tepatial resolution
attainable.




Conclusions and future work

The importance of the work lies not only in haviged a systematic
approach for determining the sensitivity of eleptrgsiological
parameters of nerve cells membrane, in order tebahderstand its
functioning and, eventually, to optimize the partare of a possible
stimulation, but also in having built a tool thaincbe quite easily
expanded and improved, by introducing other deparide. Indeed,
using the potentiality of the field solution, thEM approach (instead
of the classical compartmental one) and the mulsmal nature of
the software adopted, the proposed thin layer aqmpaied model
allows to overcome calculus burden limitations dwoe the high
nonlinearity of the membrane dynamics and alsdstextremely high
form factor.

We have studied various stimulation cases: aldrg axon,
near the soma zone, with a couple of fibres.

The implemented models have been validated u#ieigture
data and comparing the simulated membrane respangeshem (in
terms of typical underthreshold and overthreshdiahidations or in
terms of dependence on the temperature and on dlationship
between distance among repeated input pulses anghbraee
refractory period).

The other meaningful contribution of the work idsaa
represented by the application of a systematic aypgically
engineering investigation technique (the DoE) difterent field: the
neuron electrophysiology, with particular focusra@urostimulation.

Indeed, often in literature, approaches to simgduations
adopt simplified HH equations (e.g. model of FitgHtNagumo) in
order to perform quicker analysis or even lineatine passive models
when the focus is on the bioelectromagnetic effgmaerated by
applied fields. On the contrary there are variousiepth modelling
approaches that do not realize a systematic asgbyscedure on the
obtained data. This work, instead, integrates th® ttypical
perspectives, thus being able to foresee complawdical effects an
to investigate them from a global point of view.

By now, we are we have offered a general panoramithe
extent of sensitivity of main membrane featuresaoset of chosen
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parameters of interest. Investigation that, in feitucould be also
widened, to take into account more design and unakable
parameters.

All the analysis that we have implemented, on itbalized
neurostimulation system models, aim at furnishinghaugh partial)
helpful background pre-information on the effectiges of certain
types of nanoelectrodes simulations with respectddain others,
with especial focus on retinal prosthetics .

The first analysis we have conduced (once an apptep
search is made of suitable parameters ranges) dxaied to the
prediction of the AP triggering speed, which is &asure of the
system response promptness. This investigatiorddoeiluseful when
particularly high frequency bursts of APs are neettecode specific
optical information. We have analyzed various strearameters: the
slope of the input signal waveform, its peak ampl, geometrical
nanoelectrode parameters, such as radius, length tramsversal
displacement with respect to the axon symmetry.akige results
obtained show that the most prominent feature g PF can be
identified with the slope of the waveform, thendacreasing order,
the nanoelectrode length, its radius and the sigtraks parameters
(more or less at the same extent) and, in the #ral transversal
displacement.

The second analysis (& experiment) exploits our axon
segment model to investigate quantitative deperelehthe AP spike
duration on the operating temperature. Here wergbsa quadratic
dependence of the AP duration on #ignal slope while, in keeping
with theoretical expectations a negatskepe of the PRvith respect to
temperature can be observed. This is explainalile tive effect of the
correction coefficient, that HH equations report lee dependence of
channel dynamics on temperature.

The third and the fourth analysis, we have conduce
investigate the sensitivity of TMV peak value tarigdons with the
same parameters ranges of the lately describedulatioms. In
particular we investigated effects, when neurostatnn is performed
along the axon and in proximity with the soma. Brtgular in the
third, we have discovered that also for this new &fr increase in
signal waveform slope has great effects, but hbee dignal peak
amplitude (in absolute value) is more important.
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Instead, for the fourth case analysis, where timugation is
made in presence of the soma, it has been pogdsibiletice that the
transversal displacement has lost of importanceaulse of the
different curvature of the soma, compared with tbhtthe axon.
Moreover, channels density increase on the axdockiimitigates the
effects of this parameter too. For the same readenpositioning of
the nanoelectrode directly over the top of the samat the initial
segment of the axon is the most relevant paranretars analysis.

In the end, another experiment is performed, amat
studying the influence of the cited controllablesida parameters on
the possibility to selectively elicit APs, focusimg one axon rather
than its neighbour. Our investigation has brought a pair of
remarkable consequences: the opportunity is offevedetermine the
optimum combination of parameters minimizing the \I\of the
victim axon, thus increasing the confidence withclhwe can assert
that we have exclusively triggered an AP only oe first axon.
Secondly, we have found out an attractive tendericthe PF, as a
function of the slope of the input waveform (atstefor the chosen
ranges). It could be, indeed exploited, pushing slupe to higher
values, because this goes in both the directicawslithting the first
axon spiking and, at the same time, preventingsdo®nd axon from
being activated. This in turn can be translate@nnincrease in the
system spatial resolution. Which was one of thenary goals in
retinal prosthetics.

As far as the future possible developments thiskvatlows,
there is a wide range of perspectives that cambaieed about.

- Due to the growing literature interest devotedafuplications of
magnetic and higher frequencies electromagnetildsfi¢o neural

tissue, the study conducted and the models intextiocan be used for
investigating their effects or to determine the eekt of

electromagnetic susceptibility of the prosthetiesides to them.

- It would be interesting also to study the depewds that distortion
of the coded retinal information has on temperatdieis can be
accomplished, analyzing its influence on the APatlan and, asa
consequence, on the maximum number of spikes peoutime that

are producible.
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- Simulations with many nanoelectrodes emulatirgyester area of a
NEA could be done to better tailor their spatiatcipi between
nanoelectrodes, as a function of the axons digtabwnderneath.

- The introduction of a set of equations, descgbireat conduction
within the cell and within the membrane, in parideyucould help in
assessing the constraints for the applied signalderms of cell
viability

- In the end, clusters of axons (instead of twa)léde simulated,
while undergoing a stimulation (exploiting the thiayer

approximation model to reduce power of calculusum@ments) to
determine best selective set of parameters, whesdénario is much
more complicated than the examined one.
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