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No substantial part of the universe is so simple that it can be grasped and

controlled without abstraction. Abstraction consists in replacing the part of the

universe under consideration by a model of similar but simple structure. Models

are thus central necessity of scientific procedures.

A. Rosenblueth and N. Wiener, 1945
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Introduction

In the last decades, great attention has been paid to the description of biological,

physical and engineering systems subject to various types of jumps. A jump, or

catastrophe, is considered as a random event that shifts the state of an evolution-

ary process in a certain level from which the process can re-start. In the most of

literature, a downward jump represents the extinction or reduction of elements in a

biological population (due to virus infection or external agent) or of customers in a

queue system (due to power failure, reset or system bug).

On the other hand, during the spreading of a rumor one can consider the effect of

an external entity that denies the rumor so that the process is reset to the initial

state consisting in a unique spreader (the rest of population is ignorant) that renews

the spreading process. In Section 0.1, we study two rumor spreading models with

denials to give examples of evolutionary processes with jumps.

The notion of catastrophe was introduced by Brockwell in the 80’s to evaluate

the dangerous of extinction of some wild species subject to phenomenons such as

pollution, epidemics, fires or any other external agent. Specifically, Brockwell stud-

ied birth-death stochastic processes with catastrophes causing the reduction of the

population size n to n − j, with a general probability; he introduced models with

geometric, binomial and uniform distribution (cf. [12]) and he obtained interesting

results regarding the extinction time and the mean size of the population (cf. [14]).

After that, most of the literature on such models focuses on studies related to birth-

death processes subject to total catastrophes, where the effect of a catastrophe is

the total extinction of the population (cf. [26], [27], [40], [41], [55], [70], [82]). These

kind of catastrophes, occurring at exponential rate, have been introduced in systems

which evolve according to dynamics of some continuous-time Markov chains (cf. [13],

[19], [56], [57]). In these papers, the transient and the stationary probabilities, the

time of extinction and the first occurrence time of effective catastrophe have been

studied.

Taking into account that many of real phenomena are non-stationary, one can

consider time non-homogeneous stochastic processes and study them under the effect

of jumps; for example, one can study a queueing system whose rates are time-
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dependent as well as they are dependent on the number of customers present in the

queue. In this direction, in [43] we have considered a inhomogeneous continuous-

time Markov chain subject to total catastrophes with time varying intensity; in

Section 0.2 we report the performed analysis. In particular, we analyze the system

by studying the transition probabilities and the moments of the number of customers

in the system. We focus on the problem of the first visit time (FVT) to zero state

with particular attention to the busy period of the service center, i.e the time interval

during which at least one server is busy. Specifically, we pay attention to the case

in which the catastrophe intensity is a periodic function of time obtaining some

properties of asymptotic distribution and of the FVT density.

The results obtained in literature for continuous-time Markov chains have sug-

gested the possibility of deriving corresponding results for continuous processes

bounded by one reflected boundary and subject to catastrophes that occur at ex-

ponential rate. Indeed, in [25], [26], [28], [29] some general results for the transient

and steady-state probability density functions of diffusion processes in the presence

of catastrophes have been obtained. In particular, some characteristics for jump

diffusion processes can be expressed in terms of the same characteristics of the cor-

responding processes without jumps.

In this thesis, the effect of jumps is introduced in stochastic diffusion processes

of interest in neurobiological environment. Specifically, we consider the Gompertz

model of cancer growth with jumps to simulate the effect of an intermittent therapy

and we study a model of neuronal activity based on the non-homogeneous Ornstein-

Uhlenbeck process including the effect of refractoriness periods.

In the remaining part of this chapter, we study two rumor spreading models

with denials and we analyze an inhomogeneous continuous-time Markov chain in

the presence of catastrophes with periodic intensity function.

The rest of thesis is organized as follows.

In Chapter 1, we introduce stochastic diffusion processes and we remark some char-

acteristics such as the transition probability density function (pdf) and its moments,

the first passage time (FPT) problem and the asymptotic behavior of the FPT den-

sities. Then, we construct a stochastic diffusion process with jumps. In particular,

we suppose that catastrophes occur at time interval following a general distribution

and we suppose that return points are randomly chosen. Moreover, we consider the

possibility that, after each jump, the process can evolve with a different dynamics

respect to the previous processes; we also suppose that the inter-jump intervals and

the return points are not identically distributed. For this type of process, we analyze

the transition pdf, its moments and the FPT problem, then we study the Wiener

process with jumps, as example.
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In the other chapters, we focus on two stochastic diffusion processes with jumps

having neurobiological interest. In both cases, firstly we study the dynamic char-

acterizing the phenomenon, then we focus on an appropriate diffusion process on

which construct the process with jumps.

Specifically, in Chapter 2, we consider a diffusion process with jumps for cancer

growth. Among all processes describing the cancer growth, we consider the Gom-

pertz model; indeed the Gompertz law plays an important role in the dynamic of

solid tumor because in several contexts it seems to fit experimental data in a reason-

able precise way (cf., for example, [66], [86]). Specifically, the Gompertz equation

has proven to be a useful tool to describe human cancer evolution such as the breast

and colon cancer (cf., for example, [17], [49], [69], [79], [80]). Moreover, this model

is used to study the problem of finding the optimal chemotherapy ([65]) and to de-

scribe the interaction between the cancer and the immunological system ([5], [23],

[24], [54]). Hence, in order to analyze the effect of a therapeutic program that pro-

vides intermittent suppression of cancer cells, we construct a Gompertz process with

jumps for which a jump represents a therapeutic application. Firstly, we consider a

simple model in which the Gompertz process has the same characteristics between

two consecutive jumps, the return points and the inter-jump intervals are random

and identically distributed. For this model, we study the transition pdf, the average

state of the system (representing the mean size of the tumor) and the number of

therapeutic applications to be carried out in time intervals of fixed amplitude ([42]).

After this first step, we introduce a more realistic model ([46], [47], [48]). Specifically,

we assume:

• the therapeutic program has a deterministic scheduling, so that jumps occur

at fixed and conveniently chosen time instants;

• the return points are deterministic;

• when a therapy is applied there is a selection event in which only the most

aggressive clones survive (for example this perspective could be applied to

targeted drugs that have a much lower toxicity for the patient).

Taking into consideration these aspects, we construct the deterministic and the

stochastic processes with jumps. Since each therapeutic application involves a re-

duction of the tumor mass, but it also implies an increase of the growth speed, the

problem of finding a compromise between these two aspects raises. We propose two

possible schedulings in order to control the cancer growth. In the first scheduling,

we assume that inter-jump intervals have equal size (cf. [46], [47]); this study is

useful when one is forced to apply the therapy at equidistant times. In this case, we

show interesting properties which allow to choose the most appropriate application

times, when the toxicity of the drug is fixed. In the second scheduling (cf. [48]),
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we suggest to apply the therapy just before the cancer mass reaches a fixed control

threshold. To this aim, we study the FPT problem through a constant boundary

and we provide information on how to choose the application times so that the

cancer size remains bounded during the treatment. Finally, we compare the deter-

ministic and the stochastic approaches, and we provide a comparison between the

two proposed scheduling.

In Chapter 3, we consider a stochastic diffusion process with jumps for the neu-

ronal activity. In particular, to describe the input-output behavior of a single neuron

subject to a diffusion-like dynamics, we model the neuronal membrane potential via

the Ornstein-Uhlenbeck (OU) diffusion process ([44]). We consider the OU process

because it takes account of the exponential decay exhibited by the membrane poten-

tial in the absence of input of any type. We assume that inputs, while remaining a

constant amplitude, are characterized by time-dependent rates, meaning that some

external stimulations are induced on the neuron. Hence, to take into account this

feature, we construct a return process on a time non-homogeneous OU process and

we study the number of firings and the distribution of interspike intervals, under the

assumption of exponential distribution for the firing time.

Moreover, we take into account the effect of refractory periods on the model; a re-

fractory period is a time interval following each spike and during which the neuron

is completely or partially unable to respond to stimuli. Hence, we introduce ran-

dom downtimes which delay spikes, simulating the effect of refractoriness. Finally, a

theoretical and numerical analysis of the return process in the presence of constant

and exponential refractoriness is performed.

0.1 Rumor spreading with denials

During the spreading of a rumor one can consider the effect of an external entity

that denies the rumor so that the process is reset to the initial state consisting in

a unique spreader (the rest of population is ignorant) that renews the spreading

process. For example, if we consider the rumor as a virus, the denial represents the

effect of an anti-virus that restores the initial condition; the hacker reinforces the

virus or designs a new virus restarting the spreading process. In business marketing,

the rumor is the advertisement of a product, the denial can be an information that

discredits it or the launch of a new concurrent product; the society improves the

product or defends oneself from the accuses and the process restarts. In a political

campaign, the rumor can be the promoting of a candidate, the denial can be the

consequence of a scandal, the re-starting is the consequence of the refusal of the

scandal.
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We insert the concept of denial in rumor spreading models representing a denial

as a Poisson event and it resets to start the initial situation from which the process

starts following the previous rules. Denials are introduced in the classic Daley-

Kendall model and in an its generalization; the steady state densities are analyzed

for these models (for details see [45]).

0.1.1 Model A

We consider a population consisting of N individuals which, with respect to the

rumor, are subdivided into three classes: ignorants, spreaders and stiflers. We

assume that the rumor spreads by direct contact of spreaders with others in the

population. Each individual mets another one according to a Poisson process of

parameter λ. The contacts between spreaders and the rest of the population are

governed by the following set of rules:

• when a spreader contacts an ignorant, the ignorant becomes spreader;

• when a spreader contacts another spreader both become stiflers;

• when a spreader contacts a stifler, the spreader becomes stifler.

Moreover, we assume that a denial occurs following a Poisson process of parameter ξ.

A denial transforms all spreaders and stiflers into ignorants except one spreader. We

assume that contacts occur independently from denials. We denote by X(t), Y (t)

and Z(t) the normalized mean size of population that are ignorants, spreaders and

stiflers at time t, respectively.

The initial conditions X(0) = 1− 1
N
, Y (0) = 1

N
, Z(0) = 0 hold and, for all t > 0, it

is verified the normalizing condition X(t) + Y (t) + Z(t) = 1.

Assuming that N is sufficiently large, we can approximate Y (t)
[
Y (t) − 1

N

]
with

Y 2(t), so the rumor spreading mechanism is described by the following equations:





dX(t)

dt
= −λX(t)Y (t) + ξ

[
1− 1

N

]
− ξX(t)

dY (t)

dt
= Y (t)

{
λ[X(t)− Y (t)− Z(t)]− ξ

}
+

ξ

N

dZ(t)

dt
= λY (t)[Y (t) + Z(t)]− ξZ(t).

(1)
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Setting X = limt→∞X(t), Y = limt→∞ Y (t), Z = limt→∞ Z(t), from (1), recalling

the normalizing condition, one obtains





XY − ρ
(
1− 1

N
−X

)
= 0,

Y
(
−ρ+ 2X − 1

)
+

ρ

N
= 0

(2)

with ρ = ξ/λ > 0. Our aim is to solve system (2) to know the percentage of

ignorants X in the stationary regime. Specifically, by solving system (2), we obtain

the following expression for the steady-state density of ignorants:

X =
Nρ+ 3N − 1−

√
N2(1− ρ)2 + 1 + 6Nρ+ 2N

4N
.

Note that 1−X is the percentage of population which know the rumor asymptoti-

cally.

For large population, one has

lim
N→∞

X =





ρ+ 1

2
if ρ < 1

1 if ρ ≥ 1.

Hence, when N is large, if ρ < 1 at most 50% the population is asymptotically

informed, whereas if ρ ≥ 1 the rumor does not spread (ρ ≥ 1 means that the denial

rate is greater or equal than the contact rate).

Moreover, the density of ignorants X increases with ρ and

lim
ρ→∞

X =
N − 1

N

N→∞→ 1.

In Table 1 the asymptotic percentage of ignorants is showed for varying N and ρ.

In the last row the values of X are listed for N → ∞. Note that X tends to 1 when

ρ increases and the speed of this growth increases with N .

Finally, we can calculate ρ such that a fixed percentage 1 − ν of the population

ρ 0.01 0.04 0.08 0.10 0.30 0.50 0.70 0.90 1.00
N = 50 0.49 0.50 0.52 0.53 0.63 0.72 0.80 0.87 0.89
N = 100 0.49 0.51 0.53 0.54 0.64 0.73 0.82 0.90 0.92
N = 1000 0.50 0.52 0.54 0.55 0.65 0.74 0.84 0.94 0.97
N → ∞ 0.50 0.52 0.54 0.55 0.65 0.75 0.85 0.95 1

Table 1: For Model A the values of X are listed for different choices of N and ρ.
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knows the rumor. Indeed, for ν > 1/2, one has X = ν if, and only if,

ρ =
N(2ν2 − 3ν + 1) + ν − 1

N(ν − 1) + 1

N→∞→ 2ν − 1.

0.1.2 Model B

As before, we consider a population consisting of N individuals, we assume that

a rumor spreads by directed contact of spreaders with others in the population

and each individual mets another one according to a Poisson process of parameter

λ. In this model we suppose that the population is divided into k + 2 groups,

for k = 1, 2, . . .: ignorants, spreaders that have spreaded the rumor i times (for

i = 0, 1, . . . , k − 1) and stiflers. The spreader which has told the rumor i times

is called i-th spreader. The 0-th spreader is the individual who has not yet told

the rumor. Hence, the 0-th spreader is the initial spreader that starts the diffusion

process or an ignorant who has just become spreader. Moreover, we suppose that a

spreader can spread the rumor only k times when he mets an ignorant; so, when the

(k − 1)-th spreader mets an ignorant, he transmits the rumor and then he becomes

stifler. The contacts are governed by the following set of rules:

• for i = 0, 1, . . . , k−2, when the i-th spreader contacts an ignorant, the ignorant

becomes 0-th spreader and the i-th spreader becomes (i+ 1)-th spreader;

• when the (k− 1)-th spreader contacts an ignorant, the ignorant becomes 0-th

spreader and the (k − 1)-th spreader becomes stifler;

• when a spreader of any class contacts another spreader of any group, both

spreaders become stiflers;

• when a spreader of any class contacts a stifler, the spreader becomes stifler.

Also for this model we assume that a denial occurs according to a Poisson process

of parameter ξ.

We denote by X(t), Yi(t) (i = 0, 1, . . . , k − 1) and Z(t) the normalized mean size of

ignorants, i-th spreaders (i = 0, 1, . . . , k − 1) and stiflers at time t, respectively and

with Y (t) =
∑k−1

i=0 Yi(t) the normalized mean size of spreaders at time t.

Conditions X(0) = 1 − 1
N
, Y0(0) = 1

N
, Z(0) = 0, Yi(0) = 0 (1 ≤ i ≤ k − 1)

and the normalizing condition X(t) + Y (t) + Z(t) = 1 (∀t ≥ 0) holds. Assuming

that N is sufficiently large (so we can approximate Yi(t)
[
Yi(t) − 1

N

]
≃ Y 2

i (t) for

i = 0, 1, . . . , k − 1), the rumor spreading mechanism is described by the following
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equations:





dX(t)

dt
= −λX(t)Y (t) + ξ

[
1− 1

N

]
− ξX(t)

dY0(t)

dt
= λX(t)Y (t)− λY0(t)− ξ

[
Y0(t)−

1

N

]

dYi(t)

dt
= λX(t)Yi−1(t)− λYi(t)− ξYi(t), (i = 1, 2, . . . , k − 1)

dZ(t)

dt
= λY (t)

[
1−X(t)

]
+ λX(t)Yk−1(t)− ξZ(t).

(3)

Setting ρ = ξ/λ > 0, X = limt→∞X(t), Yi = limt→∞ Y (t) (1 ≤ i ≤ k − 1),

Y =
∑k

i=0 Yi and Z = limt→∞ Z(t), recalling the normalizing condition and assuming

N sufficiently large (so 1− 1/N ∼= 1), from (3) one obtains





−XY + ρ(1−X) = 0

XY − Y0 − ρ Y0 = 0

XYi−1 − Yi − ρ Yi = 0 (i = 0, 1, . . . , k − 1).

(4)

By solving system (4), we have that the steady-state density of ignorants satisfies

the following relations:





X2 − (A+ 1)X + A = 0 (k = 1)

Xk+1 + (A− 1)
k−2∑

j=0

Aj(1− A)Xk−j − Ak−1(A+ 1)X + Ak = 0 (k ≥ 2)

(5)

with A = ρ+ 1 > 1.

For k = 1, solutions of (5) are 1 and A. Since we are interested into solutions less

or equal than 1, we conclude that X = 1 is the unique acceptable solution. Hence,

if k = 1 and N is sufficiently large, the rumor does not spread.

Now, we focus on the case k ≥ 2; note that we can re-write equation (5) (for k ≥ 2)

as f̃k(X) = (X − 1)fk(X) = 0, where

fk(x) = xk + Axk−1 + A2xk−2 + . . .+ Ak−1x− Ak. (6)

Hence, one solution of (5), for k ≥ 2, is X = 1 and the remaining solutions coincide

with the zeros of the polynomial fk(X). These zeros are not computable explicitly,

but we can determine the range in which the solution of our interest is. Indeed,
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equation fk(x) = 0 has a unique real solution in the interval (0, A), because of

fk(0) = −Ak < 0, fk(A) = (k − 1)Ak > 0 and fk(x) is a continuous increasing

function respect to x being f ′
k(x) > 0 (for details see [45]).

Let xk be the unique real solution of fk(x) = 0 in the interval (0, A). We write

xk = dkA, with 0 < dk < 1.

By recalling that A > 1, for x < A one has:

fk(x)− fk+1(x) >
k−1∑

i=0

xk−iAi −
k∑

i=1

xk+1−iAi − xk+1

= (1− A) x
xk − Ak

x− A
− xk+1 >

xk+1

x− A
(1− x)

>
xk+1

x− A
(1− A) > 0.

Hence, since {fk(x)}k≥2 is a decreasing succession, {xk}k≥2 is decreasing and conse-

quently {dk}k≥2 is decreasing too.

Note that f2(x) = 0 if and only if x2 + Ax − A2 = 0, that is x = A (
√
5 − 1)/2;

hence, d2 = (
√
5− 1)/2.

Moreover, because limk→∞ fk(dkA) = 0 if, and only if,
∑∞

j=1 d
j
∞ − 1 = 0, we have

d∞ = 0.5. From this last observation and recalling that {xk}k≥2 is decreasing,

we conclude that the percentage of ignorants is always greater than 50% because

xk = dk A > d∞A = (ρ+ 1)/2 > 1/2.

Since our interest is on the root less than 1, note that for k ≥ 2, in order to fk(x) = 0

has always a unique real root less than 1, we have to request xk = dk(1+ρ) < 1, i.e.

0 < ρ < 1
dk

− 1. Hence, being {dk}k≥2 a decreasing succession, if ρ < 1/d2 − 1 = d2,

then the polynomial fk(x) has a unique real zero less than 1.

In conclusion, for large population one has:

• if k = 1, the rumor does not spread asymptotically,

• if k ≥ 2 and ρ = ξ
λ
< (

√
5− 1)/2 = 0.61803, the percentage of ignorants is less

than 1; in particular, X is solution of fk(x) = 0, with fk(x) given in (6).

In Table 2 we list the proportion of ignorants for Model B with N = 1000 and various

choices of ρ and k. Note that the values of X decrease as k increases because the

rumor has more chance to spread. Moreover, as ρ increases, X grows to 1 and, for

ρ ≥ 1, the rumor does not spread at all. Fixed ρ > 0, the values for k = 100 in

Table 2 coincide with the corresponding values of Model A, listed in Table 1 with

N = 1000. In particular, one has that for k = 6 the percentage of ignorants reaches

the same values obtained for k ≥ 7, if we consider only two decimal digits.

From Table 2, one can observe that to spread as much as possible the rumor, it
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is advisable to choice k ≥ 6 and ρ ≤ 0.1. In these cases just shy of 50% of the

population knows the rumor.

ρ k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 10 k = 100

0.01 0.62 0.54 0.52 0.51 0.50 0.50 0.50 0.50
0.02 0.63 0.55 0.52 0.51 0.51 0.51 0.51 0.51
0.04 0.64 0.56 0.53 0.52 0.52 0.52 0.52 0.52
0.06 0.65 0.57 0.54 0.53 0.53 0.53 0.53 0.53
0.08 0.66 0.58 0.56 0.54 0.54 0.54 0.54 0.54
0.10 0.67 0.59 0.57 0.55 0.55 0.55 0.55 0.55
0.30 0.80 0.70 0.67 0.66 0.65 0.65 0.65 0.65
0.50 0.92 0.81 0.77 0.76 0.75 0.75 0.75 0.75
0.70 1 0.92 0.88 0.86 0.85 0.85 0.85 0.85
0.90 1 1 0.98 0.96 0.95 0.95 0.95 0.95
1.00 1 1 1 1 1 1 1 1

Table 2: For Model B the values of X are listed for some choices of ρ and k.

0.2 Time non-homogeneous adaptive queue with

catastrophes

Let {N(t), t ≥ t0} be a non-homogeneous continuous Markov chain with jumps,

representing a queueing system in the presence of catastrophes. We assume that

catastrophes occur according to a time-non-homogeneous Poisson process. The state

space for N(t) is S = 0, 1, 2, . . .. We assume that N(t) is regulated from transitions

that occur according to the following scheme:

• n→ n+ 1 with rate αn(t), for n = 0, 1, . . .,

• n→ n− 1 with rate βn(t), for n = 2, 3, . . .,

• 1 → 0 with rate β1(t) + ξ(t),

• n→ 0 with rate ξ(t), for n = 2, 3, . . .,

where αn(t) > 0, βn(t) > 0 and ξ(t) ≥ 0 are bounded and continuous functions of

the time.

For the process N(t) it is interesting to study some statistical characteristics as the

transition probabilities, the related moments and the distribution of the random

variable FVT to zero state.

The transition probabilities pj,n(t|t0) = P{N(t) = n |N(t0) = j}, for j, n ∈ S

and t > t0 ≥ 0, satisfy the following system of forward equations:

d

dt
pj,0(t|t0) = −[α0(t) + ξ(t)] pj,0(t|t0) + β1(t) pj,1(t|t0) + ξ(t),
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d

dt
pj,n(t|t0) = −[αn(t) + βn(t) + ξ(t)] pj,n(t|t0) + αn−1(t) pj,n−1(t|t0) (7)

+βn+1(t) pj,n+1(t|t0) (n = 1, 2, . . .)

with initial condition limt↓t0 pj,n(t|t0) = δj,n.

We denote by {Ñ(t), t ≥ t0} the time non-homogeneous continuous Markov chain

obtained from N(t) by removing the possibility of catastrophes, i.e. when ξ(t) ↓ 0

for t ≥ t0. Hence, the transition probabilities p̃j,n(t|t0) = P{Ñ(t) = n|Ñ(t0) = j}
(j, n ∈ S) satisfy the system of forward equations obtained from (7) by taking

ξ(t) ↓ 0 for t ≥ t0, with initial conditions limt→t0 p̃j,n(t|t0) = δj,n.

We restrict our attention to non-explosive processes Ñ(t), i.e. we suppose∑+∞
n=0 p̃j,n(t|t0) = 1, j ∈ S, t ≥ t0, and we assume that

lim
t→+∞

∫ t

t0

ξ(u) du = +∞. (8)

The probabilities pj,n(t|t0) can be expressed in terms of the probabilities p̃j,n(t|t0)
of the process Ñ(t). Indeed, conditioning on the age of the catastrophe process, for

j, n ∈ S and t > t0 one has (see, for instance, [28], [32]):

pj,n(t|t0) = ϕ(t|t0) p̃j,n(t|t0) +
∫ t

t0

ξ(τ)ϕ(t|τ) p̃0,n(t|τ) dτ, (9)

where we set

ϕ(t|t0) = exp

{
−
∫ t

t0

ξ(u) du

}
(t ≥ t0). (10)

Furthermore, due to (9), the moments of the process N(t) and those of Ñ(t) are

related. Indeed, let

Mℓ(t|j, t0) = E[N ℓ(t)|N(t0) = j]=
+∞∑

n=1

nℓ pj,n(t|t0),

M̃ℓ(t|j, t0) = E[Ñ ℓ(t)|N(t0) = j]=
+∞∑

n=1

nℓ p̃j,n(t|t0),

be the ℓth-order moments of the processes Ñ(t) and N(t), respectively; from (9),

for ℓ = 1, 2, . . . one obtains:

Mℓ(t|j, t0) = ϕ(t|t0) M̃ℓ(t|j, t0) +
∫ t

t0

ξ(τ)ϕ(t|τ) M̃ℓ(t|0, τ) dτ.
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Let us now consider the FVT of N(t) to 0 starting from the initial state j:

Tj,0(t0) = inf{t ≥ t0 : N(t) = 0}, N(t0) = j,

and we denote by gj,0(t|t0) = dP{Tj,0(t0) ≤ t}/dt its pdf. For j = 1, 2, . . . and t ≥ t0,

one has (see, for instance, [28])

gj,0(t|t0) = ϕ(t|t0) g̃j,0(t|t0) + ξ(t)ϕ(t|t0)
[
1−

∫ t

t0

g̃j,0(τ |t0) dτ
]
, (11)

where g̃j,0(t|t0) is the pdf of T̃j,0(t0) = inf{t ≥ t0 : Ñ(t) = 0}, with Ñ(t0) = j,

describing the FPT pdf from j to 0 for the process Ñ(t). By virtue of (8), from (11)

we obtain
∫ +∞
t0

gj,0(τ |t0) dτ = 1, implying that the FVT of N(t) to 0 occurs with

probability 1, whereas for Ñ(t) such an event may have probability less than 1.

In the following, we assume that catastrophes occur according to a Poisson pro-

cess characterized by a bounded and periodic intensity function ξ(t), such that

ξ(t+ k Q) = ξ(t) (k = 1, 2, . . .). We denote by

ξ̂ =
1

Q

∫ Q

0

ξ(u) du (12)

the average catastrophe rate in the period Q. Due to the periodicity of ξ(t), we have

∫ t+kQ

t

ξ(u) du = k

∫ t+Q

t

ξ(u) du = k Q ξ̂ (k = 1, 2, . . .). (13)

Let

qn(t) = lim
k→+∞

pj,n(t+ k Q|t0) (n = 0, 1, 2 . . .)

be the quasi-stationary distribution for the process N(t). When Ñ(t) is a time-

homogeneous process, the process N(t), subject to catastrophes of periodic inten-

sity function ξ(t), admits a quasi-stationary distribution, as shown in the following

proposition.

Proposition 1. Let Ñ(t) be a time-homogeneous process, with arrival rates

αn(t) = αn (n = 0, 1, . . .) and departure rates βn(t) = βn (n = 1, 2, . . .). If ξ(t) is a

bounded periodic function of period Q, then

qn(t) =

∫ +∞

0

ξ(t− u)ϕ(t|t− u) p̃0,n(u) du (n = 0, 1, 2, . . .), (14)

where p̃j,n(t) = p̃j,n(t|0).

Proof. Since Ñ(t) is time-homogeneous, one has p̃j,n(t|τ) = p̃j,n(t − τ |0), so that
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from (9) one obtains:

pj,n(t|t0)=ϕ(t|t0)p̃j,n(t− t0) +

∫ t−t0

0

ξ(t− u) exp
{
−
∫ u

0

ξ(t− y) dy
}
p̃0,n(u) du. (15)

Therefore, changing t into t + k Q in (15) and recalling the periodicity of ξ(t), it

results:

pj,n(t+ k Q|t0) = e−kQ ξ̂ ϕ(t|t0) p̃j,n(t+ k Q− t0)

+

∫ t+kQ−t0

0

ξ(t− u) exp
{
−
∫ u

0

ξ(t− y) dy
}
p̃0,n(u) du (16)

with ξ̂ given in (12). From (16), taking the limit for k → +∞, equation (14)

follows.

Note that, since Ñ(t) is a non-explosive process, from (14) one has:

+∞∑

n=0

qn(t) =

∫ +∞

0

ξ(t− u)ϕ(t|t− u) du = 1.

Furthermore, from (14), by virtue of periodicity of ξ(t), one has:

qn(t+ k Q) =

∫ +∞

0

ξ(t+ k Q− u) exp
{
−
∫ t+kQ

t+kQ−u

ξ(x) dx
}
p̃0,n(u) du

=

∫ +∞

0

ξ(t− u) exp
{
−
∫ t

t−u

ξ(y + k Q) dy
}
p̃0,n(u) du

=

∫ +∞

0

ξ(t− u)ϕ(t|t− u) p̃0,n(z) dz = qn(t) (n = 0, 1, 2, . . .),

so that qn(t) is a periodic function of period Q. Moreover, under the assumptions

of Proposition 1, from (14) one obtains the asymptotic moments of N(t):

mℓ(t) = lim
k→+∞

Mℓ(t+ k Q|j, t0) =
+∞∑

n=1

nℓ qn(t)

=

∫ +∞

0

ξ(t− u)ϕ(t|t− u) M̃ℓ(u|0, 0) dz (ℓ = 1, 2, . . .). (17)

From (17) follows that if M̃ℓ(t|0, 0) is a bounded function for all t, hence the asymp-

totic moment mℓ(t) is certainly a bounded periodic function.

Now we analyze the influence of periodicity of ξ(t) on FVT pdf of the process

N(t). To this aim we denote by N̂(t) the continuous-time Markov chain with ar-

rival rates αn(t) and departure rates βn(t) subject to catastrophes that occur with

exponential distribution of constant rate ξ̂ defined in (12). Furthermore, we denote
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by ĝj,0(t|t0) the FVT pdf from j to 0 for the process N̂(t).

Proposition 2. Let Ñ(t) be an inhomogeneous process, with arrival rates αn(t)

(n = 0, 1, . . .) and departure rates βn(t) (n = 1, 2, . . .). If ξ(t) is a bounded periodic

function of period Q, then

gj,0(t+ k Q|t0) =
g̃j,0(t+ k Q|t0) + ξ(t)

[
1−

∫ t+kQ

t0
g̃j,0(τ |t0) dτ

]

g̃j,0(t+ k Q|t0) + ξ̂
[
1−

∫ t+kQ

t0
g̃j,0(τ |t0) dτ

]

×γ(t|t0) ĝj,0(t+ k Q|t0), (18)

where

γ(t|t0) = ϕ(t|t0) eξ̂ (t−t0). (19)

Proof. From (11), with ξ(t) = ξ̂, for the process N̂(t) one has

ĝj,0(t|t0) = e−ξ̂ (t−t0) g̃j,0(t|t0) + ξ̂ e−ξ̂ (t−t0)
[
1−

∫ t

t0

g̃j,0(τ |t0) dτ
]
,

so that, changing t into t+ k Q and recalling (12) and (13), one obtains:

e−kQ ξ̂ =
ĝj,0(t+ k Q|t0) eξ̂ (t−t0)

g̃j,0(t+ k Q|t0) + ξ̂
[
1−

∫ t+kQ

t0
g̃j,0(τ |t0) dτ

] · (20)

Similarly, for the process N(t), changing t into t+ k Q into (11), it results

gj,0(t+ kQ|t0) = e−kQ ξ̂ ϕ(t|t0)
{
g̃j,0(t+ kQ|t0) + ξ(t)

[
1−

∫ t+kQ

t0

g̃j,0(τ |t0) dτ
]}
,

from which, by virtue of (19) and (20), equation (18) immediately follows.

Proposition 2 allows to study the behavior of gj,0(t|t0) in the intervals in which

the function ξ(t) exceeds, equals or is less than its average ξ̂ in a period, as expressed

in the following

Remark 1. Under the assumption of Proposition 2, for t ≥ t0 one has:

gj,0(t|t0)





> γ(t|t0) ĝj,0(t|t0), ξ(t) > ξ̂

= γ(t|t0) ĝj,0(t|t0), ξ(t) = ξ̂

< γ(t|t0) ĝj,0(t|t0), ξ(t) < ξ̂

Proof. For all t ≥ 0 such that ξ(t+ k Q) = ξ̂, from (18) we obtain that

gj,0(t+ k Q|t0) = γ(t+ k t|t0) ĝj,0(t+ k Q|t0),
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so gj,0(t|t0) intersects the curve γ(t|t0) ĝj,0(t|t0) when ξ(t) = ξ̂. Similarly, from (18)

it follows that gj,0(t|t0) exceeds [is below] the curve γ(t|t0) ĝj,0(t|t0) when ξ(t) > ξ̂

[ξ(t) < ξ̂ ].

Proposition 2 also shows that choosing the periodic function ξ(t) in such a way

that ξ(t0) = ξ̂, one has:

gj,0(t0 + k Q|t0) = ĝj,0(t0 + k Q|t0) (k = 1, 2, . . .), (21)

so that the FVT density with catastrophe periodic function ξ(t) intersects the FVT

pdf with constant catastrophe rate ξ̂, given in (12), at multiples of the period.

Now we study the M/M/1 process to provide an application in the context of

queueing systems; other examples, such as the non stationary birth-death-immigration

process and the queueing system M(t)/M(t)/1, M(t)/M(t)/∞, are provided in the

paper [43].

We consider the time-homogeneous M/M/1 model Ñ(t) with arrival and departure

rates

αn(t) = α (n = 0, 1, . . .), βn(t) = β (n = 1, 2, . . .).

The transition probabilities of Ñ(t) are (cf. [88]):

p̃j,n(t|t0) = e−(α+β)(t−t0)
{(α

β

)(n−j)/2

In−j[2
√
αβ (t− t0)]

+
(α
β

)(n−j−1)/2

In+j+1[2
√
αβ (t− t0)]

+
(
1− α

β

)(α
β

)n +∞∑

k=n+j+2

(α
β

)−k/2

Ik[2
√
αβ (t− t0)]

}
,

where

Iν(z) =
∞∑

m=0

(z/2)ν+2m

m! (m+ ν))!
(ν > 0)

denotes the Bessel function modified of first kind. Furthermore, the first two mo-

ments of Ñ(t) are given by

M̃1(t|j, t0) = j + (α− β) (t− t0) + β

∫ t

t0

p̃0(τ |t0) dτ

M̃2(t|j, t0) = j2 + (α + β) (t− t0)− β

∫ t

t0

p̃0(τ |t0) dτ

+2 (α− β)

∫ t

t0

M̃1(τ |j, t0) dτ.
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For the process Ñ(t), the FVT pdf from j to zero is (cf., for instance, [28])

g̃j,0(t|t0) =
j

(t− t0)

(
β

α

)j/2

e−(α+β) (t−t0) Ij[2
√
αβ (t− t0)] (22)

for t ≥ t0 and j = 1, 2, . . .. From (22) it follows that the first visit to zero

starting from j is a sure event as α ≤ β, whereas it occurs with probability

P (T̃j,0 < +∞) = (β/α)j when α > β.

Let N(t) be the process M/M/1 in the presence of catastrophes with periodic in-

tensity function ξ(t) of period Q. Since Ñ(t) is a time-homogeneous process, the

expressions of the asymptotic distribution and of the related moments of N(t) are

given in (14) and (17), respectively. Furthermore, making use of (22) in (11), one

obtains the FVT pdf of N(t) from j to zero:

gj,0(t|t0) =
(α
β

)−j/2

e−(α+β) (t−t0)ϕ(t|t0)
{ j

t− t0
Ij[2

√
αβ (t− t0)]

+ξ(t)
+∞∑

k=1

(α
β

)k/2(
Ik−j[2

√
αβ (t− t0)]− Ik+j[2

√
αβ (t− t0)]

)}
, (23)

for j = 1, 2, . . . with ϕ(t|t0) given in (10). In particular, taking j = 1 in (23) and

recalling that z [Iν−1(z)− Iν+1(z)] = 2 ν Iν(z), one has

g1,0(t|t0) =
ϕ(t|t0)
α(t− t0)

e−(α+β)(t−t0)
{√

αβ I1[2
√
αβ (t− t0)]

+ξ(t)
+∞∑

k=1

k
(α
β

)k/2
Ik[2

√
αβ (t− t0)]

}
(t ≥ t0).

We also consider the process N̂(t), with arrival rate α and departure rate β subject

to catastrophes that occur according to a Poisson process with constant rate ξ̂,

given in (12), and we denote by ĝj,0(t|t0) the FVT pdf from j to zero. The function

ĝj,0(t|t0) can be obtained from (23) by setting ξ(t) = ξ̂ and ϕ(t|t0) = e−ξ̂(t−t0). In

particular, if ξ(t0) = ξ̂ relation (21) holds.

In Figure 1 we consider the periodic intensity function ξ(t) given by

ξ(t) = D +
[
1− cos

(2π t
Q1

)] [
A+ B sin

(2π t
Q1

)
+ C cos

(2π t
Q1

)]
, (24)

with A = 0.05, B = 0.04, C = 0.1, D = 0.25, Q1 = 1, and we compare g̃j,0(t|0)
for the process M/M/1 without catastrophes (dot-dashed curve), ĝj,0(t|0) (dashed
curve) for the process N̂(t) and gj,0(t|0) (solid curve) for the process N(t). Figure 1

shows that g̃j,0(t|0) is very flat when α > β with respect to the case in which α < β.
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Differently, in the presence of catastrophes, the discrepancy between analogous FVT

densities is reduced. We note that the FVT pdf gj,0(t|0) is strongly influenced by the

shape and the periodicity of ξ(t). Furthermore, since ξ(0) = ξ̂ = 0.25 and Q1 = 1,

by virtue of (21), it follows that gj,0(k|0) = ĝj,0(k|0) (k = 1, 2, . . .), as evidenced in

Figure 1.
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0 2 4 6 8
t0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
g j0HtL

(b) α = 0.8, β = 0.4, j = 3

Figure 1: g̃j,0(t|0) for the process M/M/1 without catastrophes (dot-dashed curve),

ĝj,0(t|0) (dashed curve) for the process N̂(t) and gj,0(t|0) (solid curve) for the process
N(t) are plotted with ξ(t) given in (24).
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(a) α = 0.4, β = 0.8, j = 3
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Figure 2: ξ(t) − ξ̂ (dotted curve) and d(t|0) (solid curve) are plotted for the cases
of Figure 1.

For t ≥ t0, we now consider the function

d(t|t0) = gj,0(t|t0)− ϕ(t|t0) eξ̂ (t−t0) ĝj,0(t|t0),

with ϕ(t|t0) defined in (10). In Figure 2 we plot the function d(t) = d(t|0) (solid

curve) and the function ξ(t) − ξ̂ (dotted curve) for the same cases of Figure 1.

According to Remark 1, Figure 2 shows that d(t) > 0 when ξ(t) − ξ̂ > 0 and

d(t) < 0 when ξ(t)− ξ̂ < 0.
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Chapter 1

Stochastic diffusion processes with

random jumps

1.1 Stochastic diffusion processes

Many physical, biological, economic and social phenomena are either well approxi-

mated or reasonably modeled by diffusion processes. These include examples from

molecular motions of enumerable particles subject to interactions, security price

fluctuations in a perfect market, some communication systems with noise, neuro-

physiological activity with disturbances, variations of population growth, changes

in species numbers subject to competition and other community relationships, gene

substitutions in evolutionary development, etc. In the following, we point out the

most significant aspects of stochastic diffusion processes such as the probability

density function, its moments and the FPT problem (cf. [51], [74]).

1.1.1 The probability density function and its moments

Definition 1. A continuous time parameter stochastic process which has the (strong)

Markov property and for which the sample paths X(t) are (almost always) continuous

functions of t is called a diffusion process.

Let {X(t), t ≥ t0} be a stochastic diffusion process defined in the diffusion in-

terval J ≡ (r1, r2), with −∞ ≤ r1 < r2 ≤ +∞ and ri called boundary. For all τ < t

and x, y ∈ I we define:

F (x, t|y, τ) = P {X(t) < x|X(τ) < y}

f(x, t|y, τ) = ∂

∂x
F (x, t|y, τ)

the transition distribution and the transition pdf of X(t), respectively.
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The pdf f(x, t|y, τ) of X(t) satisfies the following integral relation, called Chapman-

Kolmogorov equation:

f(x, t|y, τ) =
∫ r2

r1

f(x, t|z, u)f(z, u|y, τ)dz

for all x, y ∈ J and τ < u < t. On the other hand, one can study the process

X(t) via the so called diffusion equations approach. In particular, it is well-known

that the transition pdf f(x, t|y, τ) satisfies the Fokker-Planck and the Kolmogorov

equations:





∂f(x,t|y,τ)
∂t

= − ∂
∂x
[A1(x, t)f(x, t|y, τ)] + 1

2
∂2

∂x2 [A2(x, t)f(x, t|y, τ)],

∂f(x,t|y,τ)
∂τ

+ A1(y, τ)
∂f(x,t|y,τ)

∂y
+ 1

2
A2(y, t)

∂2f(x,t|y,τ)
∂y2

= 0,

(1.1)

respectively. The functions A1(x, t) and A2(x, t) are the drift and infinitesimal

variance of the process and they are defined as follows:

Ai(x, t) = lim
∆t→0

1

∆t
E
{
[X(t+∆t)−X(t)]i|X(t) = x

}

= lim
∆t→0

1

∆t

∫

R

(z − x)if(z, t+∆t|x, t)dz, (i = 1, 2).

The diffusion equations (1.1) are used to determine f(x, t|y, τ) by using the following

initial conditions:

lim
t→τ

f(x, t|y, τ) = lim
τ→t

f(x, t|y, τ) = δ(x− y). (1.2)

They mean that at the initial time the probability mass is completely concentrated

at the initial state y. Nonetheless, the initial conditions are not always sufficient to

determine uniquely the transition pdf, therefore boundary conditions may have to

be considered.

The n-th moment of the process X(t) is given by

µ(n)(t|y, τ) =
∫

x∈J
xnf(x, t|y, τ) dx;

in particular, E[X(t)|X(τ) = y] = µ(1)(t|y, τ) = µ(t|y, τ) is the mean of the process

X(t) and V ar[X(t)|X(τ) = y] = µ(2)(t|y, τ)− [µ(t|y, τ)]2 is the variance of X(t).

Now we focus on time homogeneous diffusion processes:

Definition 2. If for all x ∈ I the drift A1(x, t) ≡ A1(x) and the infinitesimal

variance A2(x, t) ≡ A2(x) > 0 are continuous functions, the diffusion process X(t)
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is time homogeneous.

If X(t) is time homogeneous, one has

f(x, t|y, τ) = f(x, t− τ |y, 0) ≡ f(x, t− τ |y),

and the diffusion equations (1.1) become





∂f(x,t|y)
∂t

= − ∂
∂x
[A1(x)f(x, t|y)] + 1

2
∂2

∂x2 [A2(x)f(x, t|y)],

∂f(x,t|y)
∂t

= A1(y)
∂f(x,t|y)

∂y
+ 1

2
A2(y)

∂2f(x,t|y)
∂y2

.

(1.3)

Feller solved the integration problem for diffusion equations (1.3) (cf. [34], [35])

by introducing an original classification of the behavior of the process near the

boundaries r1 and r2. Denoting by ri (i = 1, 2) the general boundary, the following

classification holds.

Definition 3. The boundary ri (i = 1, 2) is said inaccessible or unattainable if X(t)

never attains in finite time the state ri with positive probability. Otherwise, ri is

said to be accessible or attainable.

Accessible boundaries are divided into regular and exit, whereas inaccessible

boundaries are entrance or natural. In particular:

1. ri accessible

• regular: it is a boundary crossed from the process in both directions, that

is, X(t) can enter or leave a regular boundary. For a full characterization

of the process, the behavior at the boundary must be specified. This can

range from full absorption to full reflection.

• exit: if ri is an exit boundary, starting at ri the process cannot reach any

interior state x ∈ J in finite time, no matter how near to ri is x.

2. ri inaccessible

• entrance: it cannot be reached from the interior of the state space, while

it is possible to consider a process that starts right there. Such a process

quickly moves to the interior never to return to the entrance boundary.

• natural: the process X(t) can neither reach a natural boundary in finite

mean time nor be originated there.

Due to this classification, if one knows the nature of the diffusion interval’s bound-

aries, one can decide what kind of boundary condition, if any, have to be associated
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with the diffusion equation in order to determine the transition pdf of the process.

Moreover it is possible to establish the nature of the boundaries without having to

know preliminarly the transition pdf of the process. Indeed, as proved by Feller, the

classification of the boundaries depends only on certain integrability properties of

the coefficient A1(x) and A2(x) of the diffusion equations. More specifically, for all

x and y (x < y) inside the diffusion interval J = (r1, r2), let introduce the following

functions:

h(x) = exp

{
−2

∫ x A1(ξ)

A2(ξ)
dξ

}
(scale function)

s(x) =
2

A2(x)h(x)
(speed density)

H[x, y] =

∫ y

x

h(ξ)dξ (scale measure)

S[x, y] =

∫ y

x

s(ξ)dξ (speed measure).

The relevant integrals for the boundaries classification are:

H(r1) ≡ H(r1, x] = lim
a→r1

H[a, x], H(r2) ≡ H[x, r2) = lim
b→r2

H[x, b],

S(r1) ≡ S(r1, x] = lim
a→r1

S[a, x], S(r2) ≡ S[x, r2) = lim
b→r2

S[x, b],

U(r1) ≡ U(r1, x] = lim
a→r1

∫ x

a

h(u)S[u, x]du,

U(r2) ≡ U [x, r2) = lim
b→r2

∫ b

x

h(u)S[x, u]du,

V (r1) ≡ V (r1, x] = lim
a→r1

∫ x

a

s(u)H[u, x]du,

V (r2) ≡ V [x, r2) = lim
b→r2

∫ b

x

s(u)H[x, u]du.

In Table 1.1, Feller’s criteria for such boundary classification are summarized. The

asterisk ∗ indicates the minimal sufficient conditions for establishing the nature of

the boundary ri. For example, to establish that a boundary ri is entrance, it suffices

to verify that H(ri) = ∞ and U(ri) < ∞. Note that when both boundaries are

natural, the initial conditions (1.2) alone uniquely determines the transition pdf as

the solution of the diffusion equations (1.3). In the other cases, we must consider

boundary conditions to solve (1.3) with (1.2). The most useful boundary conditions

are the following:

1. total reflection at ri when ri is an exit boundary: by this one means that there

is no probability flow at the boundary. Therefore, the appropriate boundary

conditions are:
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Table 1.1: Feller’s criteria for boundary classification.

H(ri) S(ri) U(ri) V (ri) classification of boundary ri

<∞∗ <∞∗ <∞ <∞ regular (attracting, attainable)

<∞ = ∞∗ <∞∗ = ∞ exit (absorbing, attracting, attainable )

<∞∗ = ∞∗ = ∞∗ = ∞ natural (attracting, unattainable)
= ∞∗ <∞∗ = ∞ = ∞∗ natural (nonattracting, unattainable)
= ∞∗ = ∞∗ = ∞ = ∞∗ natural (nonattracting, unattainable)

= ∞∗ <∞ = ∞ <∞∗ entrance (nonattracting, unattainable)

• for the Fokker-Planck equation

lim
x→ri

{
∂

∂x

[
A2(x)

2
f(x, t|y)

]
− A1(x)f(x, t|y)

}
= 0,

• for the Kolmogorov equation

lim
y→ri

h−1(y)
∂

∂y
f(x, t|y) = 0.

2. total absorption at ri when ri is an entrance boundary:

• for the Fokker-Planck equation the condition is

lim
x→ri

[A2(x)h(x)f(x, t|x0)] = 0,

• for the Kolmogorov equation the condition is

lim
x0→ri

f(x, t|x0) = 0.

Sometimes the transition pdf of a time-homogeneous process admits a limit for

t→ ∞. This limit is a pdf W (x), called stationary density (or steady-state density),

that does not depend on the initial state y. One can determine this density in the

following way.

From the Fokker-Planck equation one can easily prove that W (x) satisfies

1

2

d2

dx2
[A2(x)W (x)]− d

dx
[A1(x)W (x)] = 0. (1.4)

Equation (1.4) can be written as:

1

2

d

dx
[A2(x)W (x)]− [A1(x)W (x)] =

c1
2
,
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with c1 an arbitrary constant. From this last equation one has

W (x) =
1

h(x)A2(x)

[
c2 + c1

∫ x

h(u)du

]
,

where h(x) is the scale function and the constants c1 and c2 are determinated such

that W (x) > 0 and
∫ r2
r1
W (x)dx = 1. When this is possible, a stationary density

exists.

Note that, for a lot of diffusion processes, one has c1 = 0 to assure W (x) > 0.

Specifically, if S(ri) <∞ (i = 1, 2), then the steady-state density exists and is given

by

W (x) =
1

h(x)A2(x)
c2. (1.5)

Moreover, by using the condition
∫ r2
r1
W (x)dx = 1, the following expression of c2

holds:

c2 =

[∫ r2

r1

1

h(x)A2(x)
dx

]−1

.

Hence, if c1 = 0 and c2 > 0, W (x) exists and is given by (1.5).

1.1.2 The first passage time problem

In many physical and biological problems, a prime concern is the time at which a

process first enters or crosses a particular state. Indeed, also for processes analyzed

in Chapter 2 and Chapter 3, the knowledge concerning the FPT random variable is

fundamental. Specifically, in Chapter 2 we consider cancer population growth and

we use the mean FPT to propose a strategy in order to keep the cancer mass under

a control threshold during an intermittent treatment. In Chapter 3, we study the

neuronal activity for which the firing pdf is modeled by FPT pdf of the stochastic

process invoked to mimic the membrane potential time course.

In the following, we focus on the FTP problem for a diffusion process in the presence

of one threshold and we consider time dependent and constant thresholds.

Let {X(t); t > τ ≥ 0} be a time-homogeneous stochastic diffusion process defined

in the interval J ≡ (r1, r2), where r1, r2 are natural boundaries.

A time depending threshold

Let S(t) a continuous function, called threshold or boundary. The first passage time

random variable is defined as follows:

Ty(τ) =

{
inft≥τ {t : X(t) > S(t)} , X(τ) = y < S(t)

inft≥τ {t : X(t) < S(t)} , X(τ) = y > S(t).
(1.6)
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The pdf g [S(t), t|y, τ ] of the random variable Ty(τ) is defined as

g [S(t), t|y, τ ] = ∂

∂t
P (Ty(τ) < t).

Note that the sample paths ofX(t) are continuous functions, so any sample path that

reaches a state x > S(t) [x < S(t)], after starting at time τ from y < S(τ) [y > S(τ)],

must cross S(θ) for the first time at some intermediate instant θ (τ < θ < t). Hence

the following relation holds:

f(x, t|y, τ) =
∫ t

τ

g [S(θ), θ|y, τ ] f [x, t|S(θ), θ] dθ, (1.7)

for x ≤ S(t) and y > S(τ) or x ≥ S(t) and y < S(τ).

Equation (1.7) is a first-kind Volterra integral equation in the unknown function

g[S(t), t|y, τ ]. It is characterized by the kernel f [x, t|S(θ), θ] that exhibits a singu-

larity of the type 1/
√
t− θ as θ ↑ t. Hence, efficient numerical methods must be

used to determine g[S(t), t|y, τ ] from (1.7).

The idea is to remove the singularity of the kernel of the equation (1.7) by changing

the equation itself. In the following the essential results of the procedure are shown

(cf. [15], [38], [74]).

Given S(t) ∈ C1[t0,∞), the FPT pdf g[S(t), t|y, τ ] satisfies the following second-kind
Volterra integral equation

g[S(t), t|y, τ ] = ρ

{
−2Ψ [S(t), t|y, τ ] + 2

∫ t

τ

g[S(θ), θ|y, τ ]Ψ[S(t), t|S(θ), θ]dθ
}

(1.8)

with y 6= S(τ), where

ρ = sgn[S(τ)− y] =

{
1, y < S(t)

−1, y > S(t)

and

Ψ[S(t), t|z, θ] = d

dt
F [S(t), t|z, θ] + k(t)f [S(t), t|z, θ],

with

F [x, t|z, θ] = P [X(t) < x|X(θ) = z] .

In particular

Ψ[S(t), t|z, θ] =

{
S

′

(t)− A1[S(t)] +
1

2
A

′

2[S(t)] + k(t)

}
f [S(t), t|z, θ] +

+
1

2
A2[S(t)]

∂

∂x
f(x, t|z, θ)|x=S(t), (1.9)
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with S ′(t) = dS(t)
dt

, A′
2[S(t)] =

dA2(x)
dx

|x=S(t) and k(t) an arbitrary continuous function.

By choosing a specific function k(t), it is possible to remove the singularity of the

kernel. Indeed, if S(t) ∈ C2[t0,∞), one has

lim
θ→t

Ψ[S(t), t|S(θ), θ] = 0 (1.10)

if, and only if,

k(t) =
1

2

{
A1[S(t)]−

A
′

2[S(t)]

4
− S ′(t)

}
. (1.11)

Hence, choosing k(t) as in (1.11), the kernel of the equation (1.7) becomes non

singular so that a simple numerical procedure can be used. Indeed, denoting by

h > 0 the integration step and setting t = τ + kh, k = 1, 2, ..., equation (1.8)

becomes:

g[S(τ + kh), τ + kh|y, τ ] = ρ{−2Ψ[S(τ + kh), τ + kh|y, τ ]

+2

∫ τ+kh

τ

g[S(θ), θ|y, τ ]Ψ[S(τ + kh), τ + kh|S(θ), θ]dθ}. (1.12)

Note that by taking k(t) as in (1.11), condition (1.10) is satisfied. Hence, from equa-

tion (1.12), using a composite trapezium rule, one obtains the following approximate

solution ǧ to g:

ǧ[S(τ + h), τ + h|y, τ ] = −2Ψ[S(τ + h), τ + h|y, τ ],

and for k = 2, 3, . . .

ǧ[S(τ + kh), τ + kh|y, τ ] = ρ {−2Ψ[S(τ + kh), τ + kh|y, τ ]

+2h
k−1∑

j=1

ǧ[S(τ + jh), τ + jh|y, τ ]

×Ψ[S(τ + kh), τ + kh|S(τ + jh), τ + jh]} . (1.13)

A constant threshold

Let focus on the FPT problem through a constant threshold S; the random variable

Ty(τ) is defined as in (1.6) with S(t) = S. In this case equation (1.7) becomes

f(x, t|y) =
∫ t

0

g(S, θ|y)f(x, t− θ|S)dθ, (1.14)

for x ≤ S and y > S or x ≥ S and y < S. An analytic approach to the solution of

equation (1.14) is based on the Laplace transform (LT).
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Let

gλ(S|y) =
∫ +∞

0

e−λtg(S, t|y)dt

fλ(S|y) =
∫ +∞

0

e−λtf(S, t|y)dt

be the LT with respect to t of the functions g and f , respectively. Since a convolution

integral appears on the right-side of (1.14), passing to the LT one obtains:

gλ(S|y) =
fλ(x|y)
fλ(x|S)

. (1.15)

If the transition pdf of X(t) is known and if its LT can be calculated, the right-

hand-side of (1.15) can be determined. If the inverse LT of the function gλ(S|y) can
be calculated, one can determine g(S, t|y); otherwise, the function gλ(S|y) can be

used to get other information on the FPT. Specifically, we can determine the FPT

probability P (S|y) =
∫∞
0
g(S, t|y)dt = gλ(S|y)|λ=0. Moreover, if P (S|y) = 1 the

moments of Ty(τ) are given by

tn(S|y) =
∫ ∞

0

tng(S, t|y)dt = (−1)n
dngλ(S|y)

dλn
|λ=0, n = 1, 2, . . . .

Note that, if y < S and H(r1) = ∞, the probability P (S|y) ≡ t0(S|y) = 1 and the

moments tn(S|y) can be iteratively calculated in the following way

tn(S|y) = n

∫ S

y

dzh(z)

∫ z

r1

s(u)tn−1(S|u)du, n = 1, 2, . . . . (1.16)

If, instead, y > S and H(r2) = ∞, one has P (S|y) ≡ t0(S|y) = 1 and

tn(S|y) = n

∫ y

S

dzh(z)

∫ r2

z

s(u)tn−1(S|u)du, n = 1, 2, . . . . (1.17)

As proved by Siegert (cf. [78]), when the process X(t) admits of the steady-state

density, the FPT probability P (S|y) is unity and relations (1.16) and (1.17) hold.

1.1.3 The asymptotic behavior of the FPT density

Let assume that X(t) admits of the steady-state density pdf W (x). In the following

the boundary r1 is denoted by r if ρ = −1, while r ≡ r2 for ρ = 1.

We analyze the following two cases (cf. [39], [74]): Case (i) the threshold pos-

sesses an asymptote; Case (ii) the threshold is asymptotically periodic.
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Case (i) Let assume that the threshold S(t) possesses an asymptote S, i.e.

lim
t→∞

S(t) = S, S ∈ J. (1.18)

For all y ∈ J we consider the function:

R(S) = −2ρ lim
t→∞

Ψ[S(t), t|y, τ ] = −ρ
[
A1(S)−

A′
2(S)

4

]
W (S),

where Ψ[S(t), t|y, τ ] is defined in (1.9) and W (x) is the stationary density of the

process.

If S(t) is bounded such that (1.18) holds in [0,∞) and if, for 0 ≤ θ < t,

lim
S→r

R(S) = 0

lim
S→r

{
−2ρ[R(S)]−1Ψ

[
S

(
t

R(S)

)
− t

R(S)
|y]
}

= 1

lim
S→r

{
−2ρ[R(S)]−1Ψ

[
S

(
t

R(S)

)
− t

R(S)

∣∣∣∣S
(

θ

R(S)

)
− θ

R(S)

]}
= 1

then,

lim
S→r

{
1

R(S)
g

[
t

R(S)
|y]
}

= e−t.

Last relation leads to the following asymptotic result, for S → r:

g(t|y) ≈ R(S) exp {−R(S)t} .

If limS→r R(S) = 0 and if

lim
S→r

[
A1(S)−

A′
2(S)

4

]−2

×
{
A2(S)

[
A′

1(S)−
A′′

2(S)

4

]
− A′

2(S)

2

[
A1(S)−

A′
2(S)

4

]}
= 0,

then the mean FPT has the following asymptotic representation

t1(S|y) ≈ [R(S)]−1.

Case (ii) Let assume that the threshold S(t) is asymptotically periodic, i.e.

lim
n→∞

S(t+ nT ) = V (t), (1.19)
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with V (t) a periodic function of period T . For all y ∈ J we consider the function

R[V (t)] = −2ρ lim
t→∞

Ψ[S(t), t|y, τ ]

= −ρ
{
V ′(t) + A1[V (t)]− A′

2[V (t)]

4

}
W [V (t)],

where Ψ[S(t), t|y, τ ] is defined in (1.9) and W (x) is the stationary density of the

process.

Note that if S(t) is a bounded function such that (1.19) holds as t ∈ [0,∞), setting

S =
1

T

∫ T

0

V (τ)dτ, γ =
1

T

∫ T

0

R[V (τ)]dτ,

one can define a non-negative monotonically increasing function ϕ(t) which is solu-

tion of ∫ ϕ(t)

0

R[V (τ)]dτ = γt

and such that

ϕ(t+ nT ) = ϕ(t) + nT (n = 0, 1, . . .).

Furthermore, if there exists S∗ ∈ J such that R[V (t)] > 0 for ρ(S − S∗) > 0 and if

lim
S→r

R

{
V

[
ϕ

(
t

γ

)]}
= 0

lim
S→r

−2ρΨ
{
S
[
ϕ
(

t
γ

)]
, ϕ
(

t
γ

)
|y}

R
{
V
[
ϕ
(

t
γ

)]} = 1

lim
S→r

−2ρΨ
{
S
[
ϕ
(

t
γ

)]
, ϕ
(

t
γ

) ∣∣∣S
[
ϕ
(

θ
γ

)]
, ϕ
(

θ
γ

}

R
{
V
[
ϕ
(

t
γ

)]} = 1

one has:

lim
S→r

{[
d

dt
ϕ

(
t

γ

)]
g

[
ϕ

(
t

γ

)
|y]
}

= e−t.

This last relation shows that for S → r the following asymptotic result holds

g(t|y) ≈ R[V (t)] exp

{
−
∫ t

0

R[V (θ)]dθ

}
.
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1.1.4 Example: the Wiener process

The Wiener process is a diffusion process {X(t), t ≥ 0} defined in the diffusion in-

terval J ≡ (−∞,∞), with drift and infinitesimal variance

A1(x) = µ, A2(x) = σ2,

respectively, where µ ∈ R and σ > 0. Since A1(x) and A2(x) do not depend on t,

X(t) is time-homogeneous. When µ = 0 and σ2 = 1 the Wiener process is called

standard.

From the Feller’s classification, it follows that ri = ±∞ are natural. In particular:

if µ < 0, r1 is attracting and r2 is nonattracting,

if µ > 0, r1 is nonattracting and r2 is attracting,

if µ = 0, both boundaries are nonattracting.

For this process, one can prove that the transition pdf is

f(x, t|y) = 1√
2πσ2t

exp

{
−(x− y − µt)2

2σ2t

}
. (1.20)

Moreover the mean and the variance of X(t) are

E[X(t)|X(0) = y] = y + µ t,

V ar[X(t)|X(0) = y] = σ2 t, (1.21)

respectively. The Wiener process does not have the steady-state density and the

FPT pdf through a constant threshold S 6= y is

g(S, t|y) = |S − y|√
2πσ2t3

exp

{
−(S − y − µt)2

2σ2t

}
. (1.22)

1.2 Stochastic diffusion processes with

random jumps

Now we consider stochastic diffusion processes subject to jumps. We call catastro-

phe, jump or return the random event that transforms the state of the process in

a certain value from which the process can re-start, and we call inter-jump interval

the time interval elapsing between two consecutive jumps.

In [25], [26], [28], [29] some general results for the transient and steady-state pdf’s

of diffusion processes in the presence of catastrophes have been obtained. However,
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in all these works the effect of a catastrophe is to reset the process to a fixed and

particular point for the process, the process re-start following the same behavior of

before and the inter-jump intervals are identically distributed following the expo-

nential law.

Whereas, we suppose that catastrophes occur at time interval following a general

distribution and the return points are randomly chosen. Moreover, we consider the

possibility that, after each jump, the process can evolve with a different dynamics

respect to the previous processes; we also suppose that the inter-jump intervals and

the return points are not identically distributed.

In the following, we construct the process with jumps, we analyze the pdf and its

moments, the FPT problem and we perform the Wiener process with catastrophes

as example.

Let
{
X̃k(t), t ≥ t0 ≥ 0

}
be a diffusion stochastic process defined in the diffusion

interval Jk, for k = 0, 1, . . .. We construct the stochastic process with random

catastrophes X(t) as follows. Starting from the initial state ρ0 = y at time t0,

the process X(t) evolves according to the process X̃0(t) until a random catastrophe

occurs shifting process to a random state ρ1. From here, X(t) re-starts according

to X̃1(t) until another catastrophe occurs resetting the process to ρ2. In general,

the effect of the k-th catastrophe (k = 1, 2, . . .) is to transform the state of X(t)

in a certain level ρk, randomly chosen according to a pdf φk(x). Then, the process

evolves like X̃k(t), until a new catastrophe occurs.

The process X(t) consists of independent cycles I1, I2 . . ., whose durations are

Figure 1.1: The notation for a process with jumps.

described by the independent random variables I1, I2, . . ., that represent the time

intervals between two consecutive catastrophes. The random variable Ik is described

by the pdf ψk(·) (k = 1, 2, . . .).

Moreover, we denote by Θ1,Θ2, . . . the times in which the jumps occur and we set
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Θ0 = t0. Let ξk(τ) be the pdf of the random variable Θk, k = 1, 2, . . ., if the initial

time of observation is t0. The variables Ik and Θk are related, indeed it results:

Θ1 = I1, and for k > 1 one has Θk = I1 + I2 + . . . Ik.

We summarize the notation as follows and we represent it in Figure 1.1:

• I0 is the interval starting at t0 and finishing when the first jump occurs; while,

Ik is the time elapsing between the k-th and the (k + 1)-th jump, for k ≥ 1;

• Ik is the duration of the k-th inter-jump interval, for k ≥ 1;

• Θ0 = t0 and the k-th jump occurs at Θk = I1 + I2 + . . . Ik, for k ≥ 1;

• ρ0 = y and ρk is the return point in correspondence to the k-th jump, for

k ≥ 1;

• X̃k(t) is a stochastic diffusion process which starts from ρk at the time Θk and

it lasts until the time Θk+1.

In the following, given two random variables X and Y , we write X ≡ Y if they are

identically distributed; whereas, given two stochastic processes X(t) and Y (t), we

write X(t) ≡ Y (t) if they are characterized by same drift and infinitesimal variance.

In the remaining part of this chapter, we analyze the pdf of the process with jumps,

its moments and the FPT problem. Note that, these characteristics will be expressed

in terms of the same characteristics of the involved processes without jumps. Finally,

we consider the Wiener process with jumps.

1.2.1 The probability density function and its moments

Let f̃k(x, t|x0, t0) = ∂
∂x
P
[
X̃k(t) < x|X̃k(t0) = y

]
be the pdf of the process X̃k(t).

To obtain the pdf f(x, t|y, t0) of X(t) we note the following.

Starting from ρ0 at time t0, the process reaches x at time t if one, and only one, of

the successive events occur:

• there are not jumps between t0 and t: this probability is expressed by

1− P (0 < I1 < t− t0) = 1−
∫ t−t0
0

ψ1(s) ds, so that the pdf of X(t) is equal to

the pdf of X̃0(t);

• k jumps have occurred between t0 and t, for k = 1, 2, . . ..

The k-th jump occurs at time τ (t0 < τ < t) with intensity ξk(τ) (i.e.

ξk(τ)dτ ≈ P (τ < Θk < τ + dτ)); then the process starts from ρk at time

τ and evolves according to X̃k(t) to reach the state x at time t. In partic-

ular, we want that the last jump occurs in τ , so the duration of the k-th
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interjump interval, starting at τ , has to stop before t: this is expressed by

1− P (0 < Ik < t− τ) = 1−
∫ t−τ

0
ψk(s) ds.

Therefore

Remark 2. The pdf of the process X(t) is:

f(x, t|ρ0, t0) =
(
1−

∫ t−t0

0

ψ1(s) ds

)
f̃0(x, t|ρ0, t0)

+
∞∑

k=1

∫ t

t0

ξk(τ)

(
1−

∫ t−τ

0

ψk(s)ds

)(∫

z∈Jk
φk(z) f̃k(x, t|z, τ) dz

)
dτ, (1.23)

and its moments µ(n)(t|y, τ) are:

µ(n)(t|ρ0, t0) =
(
1−

∫ t−t0

0

ψ1(s) ds

)
µ̃
(n)
0 (t|ρ0, t0)

+
∞∑

k=1

∫ t

t0

ξk(τ)

(
1−

∫ t−τ

0

ψk(s)ds

)(∫

z∈Jk
φk(z) µ̃

(n)
k (t|z, τ) dz

)
dτ, (1.24)

where µ̃
(n)
k (t|y, τ) are the moments of X̃k(t).

From Remark 2 one obtains:

Remark 3. If the return points are fixed states ρ1, ρ2, . . ., the expression (1.23)

becomes

f(x, t|ρ0, t0) =
(
1−

∫ t−t0

0

ψ1(s) ds

)
f̃0(x, t|ρ0, t0)

+
∞∑

k=1

∫ t

t0

ξk(τ)

(
1−

∫ t−τ

0

ψk(s)ds

)
f̃k(x, t|ρk, τ)dτ. (1.25)

In the following, for clarity, we suppose that the return points are fixed states.

Now, we show two examples in which deterministic and exponentially distributed

inter-jump intervals are considered.

Deterministic inter-jumps

We set τ0 = t0 = 0 and jumps occur in the time instants τ1, τ2, . . . , τN . The resulting

process X(t) consists of a combination of processes X̃k(t):

X(t) =
N∑

k=0

X̃k(t)1(τk,τk+1)(t), X̃k(τk) = ρk

35



where τN+1 = ∞ and 1(τk,τk+1)(t) =

{
1, t ∈ (τk, τk+1)

0, t /∈ (τk, τk+1)
.

The random variable Ik is described by the degenerate pdf ψk(t) = δ [t− (τk − τk−1)],

where δ(·) is the Dirac delta-function. In this case Θk is a degenerate random

variable, indeed Θk = τk almost surely (a.s.) and consequently ξk(t) = δ(t − τk).

Note that, denoting by

H(x) =

∫ x

−∞
δ(u) du =

{
0, x < 0

1, x > 0,

the Heaviside unit step function, one obtains
∫ b

a
δ(s− τk)ds = H(b− a− τk). Hence,

from (1.25) one has:

f(x, t|ρ0, 0) = [1−H (t− τ1)] f̃0(x, t|ρ0, 0)

+
N∑

k=1

∫ t

0

δ (τ − τk) [1−H (t− τ − (τk − τk−1)] f̃k(x, t|ρk, τ)dτ

= [1−H (t− τ1)] f̃0(x, t|ρ0, 0)

+
N∑

k=1

H (t− τk) [1−H (t− τk − (τk − τk−1))] f̃k (x, t|ρk, τk) .

Taking into consideration the definition of the Heaviside unit step function, one has

f(x, t|ρ0, 0) =
N∑

k=0

f̃k (x, t|ρk, τk)1(τk,τk+1)(t)

=





f̃(x, t|ρ0, 0), t ∈ I1

f̃(x, t|ρk, τk), t ∈ Ik+1 (k = 1, 2, . . . , N).

(1.26)

and the moments are

µ(n)(t|ρ0, 0) =
N∑

k=0

µ̃(n) (t|ρk, τk)1(τk,τk+1)(t). (1.27)

Exponentially distributed inter-jumps

We assume that X̃k(t) ≡ X̃(t), ρk = ρ (for all k) and that Ik are identically dis-

tributed with ψk(s) ≡ ψ(s) = ξe−ξs, for k ≥ 1. In this case Θk is the sum of k

exponentially distributed random variables so that ξk(τ) =
ξkτk−1e−ξτ

(k−1)!
is an Erlang
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distribution with parameters (k, ξ). From (1.25) one has:

f(x, t|ρ, t0) = e−ξ(t−t0)f̃(x, t|ρ, t0) +
∞∑

k=1

∫ t

t0

ξkτ k−1

(k − 1)!
e−ξtf̃(x, t|, τ)dτ

= e−ξ(t−t0)f̃(x, t|ρ, t0) +
∫ t

t0

∞∑

k=1

(ξτ)k−1

(k − 1)!
ξe−ξtf̃(x, t|ρ, τ)dτ

Since
∑∞

k=1
(ξτ)k−1

(k−1)!
= eξτ , one has that the pdf of X(t) is

f(x, t|ρ, t0) = e−ξ(t−t0)f̃(x, t|ρ, t0) + ξ

∫ t

t0

e−ξ(t−τ)f̃(x, t|ρ, τ)dτ ; (1.28)

and its moments are

µ(n)(t|ρ, t0) = e−ξ(t−t0)µ̃(n)(t|ρ, t0) + ξ

∫ t

t0

e−ξ(t−τ)µ̃(n)(t|ρ, τ)dτ. (1.29)

1.2.2 The first passage time problem

In this section we focus on the FPT problem for the process X(t) through a constant

threshold S.

Let

Tρ0(t0) = inf{t ≥ t0 : X(t) > S}, X(t0) = ρ0 < S

be the FPT random variable of X(t) through S and let g(S, t|ρ0, t0) be its pdf.

For k = 0, 1, . . ., let

T̃ k
ρ (θ) = inf{t ≥ θ : X̃k(t) > S}, X̃k(θ) = ρ < S

be the FPT random variable through S of the process X̃k(t), which starts from ρ at

the time θ, and let g̃k(S, t|ρ, θ) be its pdf.

We obtain an expression for g as follows. Starting from ρ0 at time t0, the process

reaches the threshold S for the first time at t if one, and only one, of the successive

events occurs:

• there are not jumps between t0 and t, so that X(t) ≡ X̃0(t) and g(S, t|ρ0, t0) =
g̃0(S, t|ρ0, t0);

• k jumps occur (k ≥ 1); the k-th jump occurs in τ ∈ [0, t] and S is not crossed

before τ . Recalling that X̃k(t) is defined in the time interval Ik+1 = [Θk,Θk+1]

and making use of the independence of cycles I1, I2 . . ., the probability

that none of the processes X̃0, X̃1, . . . , X̃k−1 cross S before τ is given by∏k−1
j=0

[
1− P (T̃ j

ρj
(Θj) < Θj+1)

]
.
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Therefore one has:

Remark 4. The FPT pdf of X(t) through S is

g(S, t|ρ0, t0) =

(
1−

∫ t−t0

0

ψ(s) ds

)
g̃0(S, t|ρ0, t0)

+
∞∑

k=1

∫ t

t0

ξk(τ)

(
1−

∫ t−τ

0

ψ(s)ds

)
g̃k(S, t|ρk, τ) dτ

×
{

k−1∏

j=0

[
1− P (T̃ j

ρj
(Θj) < Θj+1)

]}
. (1.30)

Deterministic inter-jumps

We set τ0 = t0 and we suppose that jumps occur at times τk, k = 1, 2, . . .. Since

Θk ≡ τk, one has 1 − P (T̃ k
ρk
(τk) < τk+1) = 1 −

∫ τk+1

τk
g̃k(S, τ |ρk, τk)dτ ; so, following

the procedure to obtain (1.26), from (1.30), one has:

g(S, t|ρ0, t0) =





g̃0(S, t|ρ0, t0), t ∈ I1

k−1∏

j=0

[
1−

∫ τj+1

τj

g̃j(S, τ |ρi, τj)dτ
]
g̃k (S, t|ρk, τk) , t ∈ Ik,

(1.31)

with k = 2, 3, . . ..

We note that, if the processes X̃k(t) are time homogeneous and t0 = 0, the ex-

pression (1.31) becomes

g(S, t|ρ0) =

=





g̃0(S, t|ρ0), t ∈ I1

k−1∏

j=0

[
1−

∫ τj+1−τj

0

g̃j(S, τ |ρj)dτ
]
g̃k (S, t− τk|ρk) , t ∈ Ik.

(1.32)

In particular, if Ik ≡ I are characterized by the same amplitude A > 0, ρk = ρ,

X̃k ≡ X̃ and denoting g̃k(S, t|ρ0) with g̃(S, t|ρ0), the expression (1.32) becomes

g(S, t|ρ) =
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=





g̃(S, t|ρ), t ∈ I1

k−1∏

j=0

[
1−

∫ A

0

g̃(S, τ |ρ)dτ
]
=

[
1−

∫ A

0

g̃(S, τ |ρ)dτ
]k
, t ∈ Ik.

Exponentially distributed inter-jumps

We suppose ρk = ρ, Ik ≡ I exponentially distributed with mean 1/ξ and the pro-

cesses X̃k(t) ≡ X̃(t) are time homogeneous (T̃ k
ρ (Θ) ≡ T̃ρ(Θ)).

Noting that P (T̃ j
ρj
(Θj) < Θj+1) = P (T̃ j

ρj
(0) < Ij+1) = P (T̃ρ(0) < I), the expression

(1.30) becomes:

g(S, t− t0|ρ) =

= e−ξ(t−t0)g̃(S, t− t0|ρ)

+

∫ t−t0

0

∞∑

k=1

(ξτ)k−1e−ξτ

(k − 1)!
ξe−ξ(t−τ)g̃(S, t− τ |ρ)dτ ×

{
k−1∏

j=0

[
1− P (T̃ρ(0) < I)

]}

= e−ξ(t−t0)g̃(S, t− t0|ρ) +
∫ t−t0

0

∞∑

k=1

(
ξτ
[
1− P (T̃ρ(0) < I)

])k−1

(k − 1)!

×ξe−ξtg̃(S, t− τ |ρ)dτ
[
1− P (T̃ρ(0) < I)

]

= e−ξ(t−t0)g̃(x, t− t0|ρ)

+ξ
[
1− P (T̃ρ(0) < I)

]
e−ξt

∫ t−t0

0

eξτ[1−P (T̃ρ(0)<I)]g̃(S, t− τ |ρ)dτ. (1.33)

1.2.3 Example: Wiener process with jumps

Let X̃k(t) be the Wiener diffusion processes with drift Ak
1 = µk and infinitesimal

variance Ak
2 = σ2

k. Let X(t) be the process with jumps constructed as described in

Paragraph 1.2.

Wiener process with deterministic jumps

We suppose that τ0 = t0 = 0, τ1, τ2, . . . , τN are the instants in which jumps occur

and Ik = [τk−1, τk], k = 2, 3, . . . , N with IN+1 = [τN , τN+1] and τN+1 = ∞.

From (1.26), by taking into account (1.20), the pdf of X(t) is

f(x, t|ρ0) =
N∑

k=0

1√
2πσ2(t− τk)

exp

{
− [x− ρk − µk(t− τk)]

2

2σk2(t− τk)

}
1(τk,τk+1)(t).
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From (1.27) and (1.21), the mean of X(t) is

E[X(t)|ρ0] =
N∑

k=0

[ρk + µk(t− τk)] 1(τk,τk+1)(t).

In Figure 1.2 a sample path of the Wiener process X(t) with deterministic catastro-

phes’ instants (4, 8, 13, 17, 20, 22) is plotted. The red line is a sample path of X̃0(t).

The coefficients are µk = 0.5 (on the left), µk = 0.5 + k (on the right) and the

infinitesimal variance is σ2
k = 2, for all k. The return points are ρk = 0 on the left

and ρk = −k on the right. In Figure 1.3 and Figure 1.4 the pdf f(1, t|0, 0) and the

mean E[X(t)|0, 0] of X(t) are shown, respectively, with the same choices of Figure

1.2.

Regarding the FPT pdf, since the Wiener processes X̃k(t) are time homogeneous,
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Figure 1.2: A sample path of the process X(t) (black line) for x0 = 0, and deterministic
catastrophes’ instants (4, 8, 13, 17, 20, 22). The coefficients are µk = 0.5 (on the left),
µi = 0.5 + i (on the right) and the infinitesimal variance is σ2

k = 2. The return points are
ρi = 0 on the left and ρi = −i, i = 0, 1, . . . on the right. The red line is a sample path of
the process X̃0(t).
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Figure 1.3: The pdf f(1, t|0, 0) (black line) and the pdf f̃0(1, t|0, 0) (red line) with deter-
ministic jumps, for the same choices of Figure 1.2.
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Figure 1.4: The mean E[X(t)|0, 0] (black line) and E[X̃0(t)|0, 0] (red line) with deter-
ministic jumps, for the same choices of Figure 1.2.

the expression of g(S, t|ρ0) is given by (1.32) where g̃k(S, τ |ρk) is defined in (1.22),

so, for ρk < S and k ≥ 1, one has:

g(S, t|ρ0) =

=





(S−ρ0)√
2πσ2

0t
3
exp

{
− (S−ρ0−µ0t)2

2σ2
0t

}
, t ∈ I1

k−1∏

j=0


1−

∫ τj+1−τj

0

(S − ρj)√
2πσ2

j τ
3
exp

{
−(S − ρj − µjτ)

2

2σ2
j τ

}
dτ




× (S−ρk)√
2πσ2

k(t−τk)3
exp

{
− [S−ρk−µk(t−τk)]

2

2σ2
k(t−τk)

}
, t ∈ Ik

where

∫ τj+1−τj

0

(S − ρj)√
2πσ2

j τ
3
exp

{
−(S − ρj − µjτ)

2

2σ2
j τ

}
dτ

=
1

2
Erfc


S − ρj + µj(τj+1 − τj)√

2(τj+1 − τj)σ2
j




+
1

2
exp

{
−2µj(S − ρj)

σ2
j

}
Erfc


S − ρj − µj(τj+1 − τj)√

2(τj+1 − τj)σ2
j


 ,

with Erfc = (2/
√
π)
∫∞
x
e−t2dt the complementary error function.

In Figure 1.5 the FPT pdfs’ g(5, t|0) (black line) and g̃0(5, t|0) (red line) are plotted

for the same choices of Figure 1.2.
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Figure 1.5: FPT pdfs’ g(5, t|0) (black line) and g̃0(5, t|0) (red line), with deterministic
jumps, are plotted for the same choices of Figure 1.2.

Wiener process with exponentially distributed jumps

We assume that X̃k ≡ X̃, ρk = ρ and ψk(s) ≡ ψ(s) = ξe−ξs. The expression (1.28)

holds, where f(x, t|ρ) is defined in (1.20), so one has for t0 = 0:

f(x, t|ρ) =
e−ξt

√
2πσ2t

exp

{
−(x− ρ− µt)2

2σ2t

}

+ξ

∫ t

0

e−ξ(t−τ)

√
2πσ2(t− τ)

exp

{
− [x− ρ− µ(t− τ)]2

2σ2(t− τ)

}
dτ

where

∫ t

0

e−ξ(t−τ)

√
2πσ2(t− τ)

exp

{
− [x− ρ− µ(t− τ)]2

2σ2(t− τ)

}
dτ =

e(x−ρ)(µ−
√

µ2+2σ2ξ)

2
√
µ2 + 2σ2ξ

×
[
Erfc

(
x− ρ− t

√
µ2 + 2σ2ξ√

2tσ2

)

−e
2(x−ρ)

√
µ2+2σ2ξ

σ2 Erfc

(
x− ρ+ t

√
µ2 + 2σ2ξ√

2θσ2

)]
.

Moreover, the mean of X(t) has the expression given in (1.29) for n = 1, with

µ̃(1)(t|ρ) defined in (1.21); so it results, for t0 = 0:

E[X(t)|X(0) = ρ] = e−ξt(ρ+ µt) + ξ

∫ t

0

e−ξ(t−τ)[ρ+ µ(t− τ)]dτ

with ∫ t

0

e−ξ(t−τ)[ρ+ µ(t− τ)]dτ =
ρ

ξ
+
µ

ξ2
− e−ξt

[
−ρ
ξ
+
µ

ξ2
+
µt

ξ

]
.

On the left of Figure 1.6 the pdf’s f(1, t|0, 0) (black line) and f̃0(1, t|0, 0) (red line)

for ρk = 0 (k = 0, 1, . . .) and exponentially distributed inter-jumps with 1/ξ = 4 are
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plotted. Each Xk(t) is a Wiener diffusion process with drift A1 = µ and infinitesimal

variance A2 = σ2, where µ = 0.5 and σ2 = 2. On the right of Figure 1.6 the mean

E[X(t)|0, 0] (black line) and E[X̃0(t)|0, 0] (red line) are plotted for the same choices

of the left side.

The FPT pdf is given in (1.33), where g̃j(S, τ |ρ) is defined in (1.22); so one has, for

t0 = 0,

g(S, t|ρ) = e−ξt S − ρ√
2πσ2t3

exp

{
−(S − ρ− µt)2

2σ2t

}
+ ξ

[
1− P (T̃ρ(0) < I)

]
e−ξt

×
∫ t

0

eξτ[1−P (T̃ρ(0)<I)] S − ρ√
2πσ2(t− τ)3

exp

{
−(S − ρ− µ(t− τ))2

2σ2(tτ)

}
dτ,

with

P (T̃ρ(0) < I) =

∫ ∞

0

dθξe−ξθ

∫ θ

0

S − ρ√
2πσ2v3

e−
(S−ρ−µv)2

2σ2v dv

=

∫ ∞

0

dθξe−ξθ

{
−1

2
Erfc

[
ρ− S + µθ√

2σ2θ

]
− 1

2
Erfc

[
ρ− S − µθ√

2σ2θ

]}

= −1

2
ξ

{
Lξ

[
Erfc

(
ρ− S + µθ√

2σ2θ

)]
+ Lξ

[
Erfc

(
ρ− S − µθ√

2σ2θ

)]}
,

where Lξ[k(θ)] =
∫∞
0
e−ξθk(θ)dθ is the Laplace Transform. In this case, the closed

form for g(S, t|ρ) is not found.
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Figure 1.6: On the left the pdf’s f(1, t|0, 0) (black line) and f̃0(1, t|0, 0) (red line) for
ρk = 0 (k = 0, 1, . . .) and exponentially distributed inter-jumps with mean 4. Each Xk(t)
is a Wiener diffusion process with drift A1 = µ and infinitesimal variance A2 = σ2, where
µ = 0.5 and σ2 = 2. On the right the mean E[X(t)|0, 0] (black line) and E[X̃0(t)|0, 0] (red
line) are plotted for the same choices of the left side.
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Chapter 2

A Gompertz model with jumps for

an intermittent treatment in

cancer growth

Tumor is one of the main causes of death in the modern society so, in least decades,

a lot of attempts have been made to describe the tumor dynamic. From the mathe-

matical point of view, the studies in this direction have also affected the construction

and the analysis of some models aimed at predicting the evolution of the disease un-

der particular conditions or under the influence of specific therapies. Most of these

models are based on the assumption that the growth curve is exponential type (see,

for instance, [36] for historical development of tumor growth laws). These models

describe the increase of the tumor size over time via differential equations. Since the

exponential curve seems unable to explain tumor growth in the longer term, differ-

ent models have been formulated for describing the tumor dynamic. More accurate

models are characterized by the presence of an inflection point. This point deter-

mines a sigmoidal shape whose limit value, called carrying capacity, is imposed by

some environmental limitation such as nutrients. In particular, the law of Gompertz

plays an important role in the dynamic of solid tumor because in several contexts it

seems to fit experimental data in a reasonable precise way (cf., for example, [66] and

[86]). Specifically, the Gompertz equation has proven to be a useful tool to describe

human cancer evolution. For example, in [17], [49], [69], [79], [80], Gomperztian

model of breast cancer growth have been formulated and analyzed. In [64] the prob-

lem of optimal chemotherapy is considered based on the Gompertz cancer model.

In [65] fourteen deterministic mathematical models have been studied to describe

the tumor growth in vivo. In that context, the authors show how the Gompertz

model best fits data from colon carcinoma. The Gompertz law has been also used

to describe the interaction between the cancer and the immunological system. In
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this direction, in [5], [23], [24], models that include the principal characteristics of

the T-cell-metiated reaction against cancer was proposed. Moreover, in [54] it has

been considered also the dynamics between proliferating and quiescent cells that

form the tumor mass.

However, often some discrepancies exist between clinical data and theoretical

predictions, due to more or less intense environmental fluctuations depending on

various factors that are not measurable or are not known. So, to take into consider-

ation such environmental fluctuations, generally associated with the dynamics of real

systems, the notion of growth in random environment has been formulated. Various

contributions which follow the stochastic approach are present in literature. In [61]

and [62], the proposed models take account of both cell fission and mortality. In [1]

the growth of tumor size under the effect of therapies that modify the growth rates

of the phenomenon has been studied. In [4] a stochastic Gompertz model is used to

describe the evolution of a solid tumor treated with a time-dependent therapy able

to modify the birth rate of the cancer cells. Since then, various other models have

been formulated to include interesting parameters of the phenomenon. Specifically,

in [6] the interactions between proliferating and quiescent cells have been analyzed

under the effect of two kinds of therapies: non-specific cycle drugs (that can damage

tumor cells in any phase of the cellular cycle) and specific cycle drugs (that act on

tumor cells only in a fixed phase of their cycle). In [9], the authors have studied

the growth of tumor size under the effect of anti-proliferative and/or pro-apoptotic

therapies that modify both growth rates of the phenomenon.

Recently, some models have been proposed to describe the tumor dynamic under

the effect of therapies that reduce an intrinsic factor of the tumor worsening at

predefined levels. In particular, in [50] and [83] models of prostate tumor growth

under intermittent hormone therapy have been studied. The models are categorized

into a hybrid dynamical system because switching between on-treatment and off-

treatment intervals are considered in addition to continuous dynamics of tumor

growth.

In the following we consider the tumor size as the intrinsic factor to control.

In order to describe the effect of a therapeutic program that produces an inter-

mittent suppression of the intrinsic factor, we consider a Gompertz process with

jumps. Each jump represents the effect of a therapeutic application and it shifts the

process to a certain return value which, in general, we can assume random.

We consider a process with jumps X(t) such that in the k-th inter-jump interval

is defined by a Gompertz diffusion process X̃k(t). In this context the process X(t)

consists of recurring cycles whose durations are described by random variables which
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represent the time elapsing between successive applications of the therapy.

In the following, we construct X(t) and we perform a particular case for which

X̃k(t) ≡ X̃(t), Ik+1 ≡ I, ρk+1 = ρ (for all k ≥ 0) and we study the transition pdf,

the average state of the system (representing the mean size of the tumor) and the

number of therapeutic applications to be carried out in time intervals of fixed am-

plitude. In particular, we consider two probability distributions for the inter-jump

intervals and for each of these we consider three distributions for the random vari-

able describing the return point. Note that we consider ρ as a random point because

we want to take into account that the therapy would not be precise.

After this firs step, we introduce a more realistic model. Specifically:

• the therapeutic program has a deterministic scheduling, so that jumps occur

in fixed and conveniently chosen time instants;

• the return points ρ1, ρ2, . . . are deterministic; we consider only deterministic

points because we will show that in this case there is not a loss of generality;

• when a therapy is applied there is a selection event in which only the most

aggressive clones survive; for example, this perspective could be applied to

targeted drugs that have a much lower toxicity for the patient.

The obtained process X(t) is composed of independent cycles that can be of variable

deterministic durations if the inter-jump intervals are not constant; moreover, after

each jump, the process starts with a gradually increased growth rate, depending on

the number of applications made. Hence, each therapeutic application involves a

reduction of the tumor mass, but it also implies an increase of the growth speed.

This raises the problem of finding a compromise between these two aspects. We

analyze the deterministic and the stochastic process with jumps and we propose

two possible schedulings to control the cancer growth.

In Scheduling 1 we assume that inter-jump intervals have equal size. This study

could be useful when one is forced to apply the therapy at equidistant times. In

this case, we show interesting properties which are useful for the choice of the most

appropriate application times, fixed the toxicity of the therapy.

In Scheduling 2 we suggest to apply the therapy just before the cancer mass reaches

the control threshold and we provide information on how to choose the application

times so that the cancer size remains bounded during the treatment.

Finally, we compare the deterministic and the stochastic approaches, and we provide

a comparison between the two proposed scheduling.
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2.1 The Gompertz model

The deterministic model of tumor growth is based on the Gompertz growth model.

The Gompertz curve is the function x̃(t) solution of

dx̃

dt
= αx̃− βx̃ log x̃, (2.1)

with the initial condition

x̃(0) = ρ0. (2.2)

In this context, x̃(t) represents the cancer size at time t and ρ0 > 0 expresses the size

at the initial time, considering 0 as the moment in which the disease was diagnosed.

We suppose that x̃(t) is a continuous and differentiable function. Parameters α and

β, representing the growth and decrease rate respectively, are used as controller

parameters and they are measured in the inverse of the unit time chosen; they

depend on the evolution of different types of cancer.

Let x̃k(t) the Gompertz curve with α = αk and β = βk for k ≥ 0; it is solution

of (2.1) with the initial condition x̃k(0) = ρk, that is, the Gompertz curve x̃k(t) is

given by:

x̃k(t) = exp

{
αk

βk
+

(
ln ρk −

αk

βk

)
e−βkt

}
. (2.3)

The function (2.3) is a sigmoidal curve and it is limited by the environmental ca-

pacity given by

Ck = lim
t→+∞

x̃k(t) = e
αk
βk , (2.4)

which represents the maximum tumor density that an organism can tolerate. The

Gompertz curve (2.3) is a growing curve in
[
0, e

αk
βk

)
, it has upwards concavity up

to the inflection point f such that x̃k(f) = e
αk
βk

−1
, then the function continues to

grow with downwards concavity; in our context, f is the point where the tumor

mass reaches the maximum growth speed. Moreover, the Gompertz law has an

exponential trend around the origin: this is in agreement with the studies of tumor

growth which shows that for small tumor sizes the growth velocity is such as to not

make the immune system effectively, and this means that the tumor, initially, grows

faster.

As already mentioned, there is often a discrepancy between the clinical data and the

theoretical predictions, this is due to more or less intense environmental fluctuations,

as happens for all biological systems. Ignoring these oscillations may lead to wrong

predictions which, in many cases, cause inadequate therapy. Then, we consider the

growth in random environment following a standard procedure (cf., for example,

[67] and [73]), starting from equation (2.1).
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For τ > 0, equation

x̃(n+1)τ − x̃nτ = (ατ − βτ log x̃nτ )x̃nτ , n = 0, 1, 2, . . . (2.5)

approximates (2.1) and (2.2) holds for n = 0.

Now we make an assumption about the randomness of the environment. Suppose

that in [nτ, (n + 1)τ) (n = 0, 1, . . .) the intrinsic variation of the population size is

the average value of a sequence of independent and identically distributed Bernoulli

random variables Z0, Zτ , Z2τ , . . . characterized by the following probability distribu-

tion
P (Znτ = σ

√
τ) = 1

2
+ a

√
τ

2σ
, n = 0, 1, . . .

P (Znτ = −σ√τ) = 1
2
− a

√
τ

2σ
, n = 0, 1, . . .

(2.6)

where σ > 0 is a constant, measuring the width of environment fluctuations.

The mean and higher moments of Znτ are:

E (Znτ ) = ατ, E
(
Z2

nτ

)
= σ2τ, E

(
Z2+k

nτ

)
= o(τ), k = 1, 2, ...

Taking into consideration (2.6), equation (2.5) in a random environment is

X̃(n+1)τ − X̃nτ =
(
ατ − βτ log X̃nτ

)
X̃nτ , n = 0, 1, 2, ... (2.7)

where X̃nτ is a stochastic process.

The initial condition implies that the population size at the initial instant t0 = 0

must be ρ0, that is P
(
X̃0 = ρ0

)
= 1. It is not difficult to prove that the moments

of the increment process X̃(n+1)τ − X̃nτ conditional upon X̃nτ = x are:

E
[
X̃(n+1)τ − X̃nτ |X̃nτ = x

]
= (α− β log x)xτ,

E

[(
X̃(n+1)τ − X̃nτ

)2
|X̃nτ = x

]
= σ2x2τ + o(τ),

E

[(
X̃(n+1)τ − X̃nτ

)2+k

|X̃nτ = x

]
= o(τ), (k = 1, 2, . . .).

Dividing both members by τ and taking the limit as τ goes to zero, from (2.7) one

has that X̃nτ converges to a time homogeneous stochastic diffusion process X̃(t)

with drift and infinitesimal variance

A1(x) = ax+ βx log x,

A2(x) = σ2x2,
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respectively. The diffusion interval is J ≡ (0,+∞), whose boundaries are natural,

non-attracting and non-attainable.

Let X̃k(t) (k ≥ 0) the Gompertz process characterized by drift and infinitesimal

variance

A
(k)
1 (x) = (αk − βk ln x)x, A

(k)
2 (x) = σ2

kx
2, (2.8)

respectively and diffusion interval Jk ≡ (0,+∞). It is also described by the following

stochastic differential equation

dX̃k(t) = [αk − βk log X̃k(t)] X̃k(t) dt+ σk X̃k(t) dB(t)

where B(t) is a standard Wiener process. Some sample paths of the processes X̃k(t)

are plotted in Figure 2.1 for k = 0, 1, . . . , 5, from the bottom to the top. Parameters

are ρ0 = 0.1, σk = σ = 0.01 for both the figures, while on the left βk = β = 0.3,

αk = 4.5+0.1k and on the right αk = α = 5, βk = 1−0.1k. Of course, for increasing

values of α the sample paths are higher, while for increasing values of β the sample

paths decrease.

Because the boundaries are natural, the initial condition P (X̃k(τk) = ρk) leads
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Figure 2.1: Some sample paths of the processes X̃k(t), from the bottom to the top, are
plotted for k = 0, 1, . . . , 5. Parameters are ρ0 = 0.1, σk = σ = 0.01 for both the figures,
while on the left βk = β = 0.3, αk = 4.5+0.1k and on the right αk = α = 5, βk = 1.5−0.1k.

to the unique solution of the Fokker-Planck equation (the first expression of (1.3)),

which describes the pdf of the process. Note that the study of X̃k(t) can be per-

formed via an Ornstein-Uhlenbeck process, with transformation coordinates z =
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log x, z0 = log ρ0 (cf. for example [4]). Hence, the process X̃k(t) is characterized by

the lognormal transition pdf:

f̃k(x, t|ρk, τk) =
1

x
√

2πV 2
k (t|τk)

exp

{
− [ln x−Mk(t| ln ρk, τk)]2

2V 2
k (t|τk)

}
, (2.9)

where 



Mk(t|y, τ) = y e−βk(t−τ) − σ2
k/2−αk

βk
(1− e−βk(t−τ))

V 2
k (t|τ) =

σ2
k

2βk

(
1− e−2βk(t−τ)

)
,

(2.10)

whereas, the moments are given by

µ̃
(n)
k (t|ρk, τk) = exp

{
nMk(t| ln ρk, τk) +

n2

2
V 2
k (t|τk)

}
. (2.11)

Since X̃k(t) is a time homogeneous process, one has f̃k(x, t|ρk, τk) = f̃k(x, t− τk|ρk),
µ̃
(n)
k (t|ρk, τk) = µ̃

(n)
k (t − τk|ρk), Mk(t|y, τ) = Mk(t − τ |y) and V 2

k (t|τ) = V 2
k (t − τ).

Moreover, the process always admits the steady-state lognormal density:

w̃k(x) =

√
βk
σ2
kπ

1

x
exp



−



√
βk
σ2
k

log x− 1

2

√
σ2
k

βk

(
2αk

σ2
k

− 1

)


2
.

Now we remark some aspects regarding the FPT of X̃k(t) through a constant bound-

ary S. Let

T̃ k
ρk
(τ) = inf{t ≥ τ : X̃k(t) > S}, X̃k(τ) = ρk < S

be the random variable FPT of X̃k(t) through the threshold S and let g̃k(S, t|ρk, τ)
be its pdf. For S > ρk, we recall that the density g̃k is solution of the following

second kind Volterra integral equation (cf., for example, [15] and [38])

g̃k(S, t|ρ, τ) = −2Ψk(S, t|ρ, τ) + 2

∫ t

τ

g̃k(S, u|ρ, τ)Ψk(S, t|S, u) du, (2.12)

where

Ψk(S, t|z, u) = −S
2

[(
αk − βk lnS − 3σ2

k

2

)
f̃k(S, t|z, u)

−σ2
kS
∂f̃k(x, t|z, u)

∂x

∣∣∣
x=S

]
. (2.13)

Note that T̃ k
ρ (τ) = τ+T̃ k

ρ (t0), where T̃
k
ρ (t0) is the FPT of the process X̃k(t) translated
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to the initial time t0. Therefore, one has

E[T̃ k
ρ (τ)] = τ + E[T̃ k

ρ (t0)].

Moreover, following [74], we can prove that T̃ k
ρ (t0) is an honest random variable and

its mean can be evaluate by means of

E[T̃ k
ρ (t0)] =

∫ S

ρ

dz hk(z)

∫ z

t0

du sk(u), (2.14)

where

hk(x) = x−2αk/σ
2
k exp

{βk
σ2
k

ln2 x
}
, sk(x) =

2

A
(k)
2 (x)hk(x)

,

are the scale function and speed density of X̃k(t), respectively.

Moreover, we recall that the function g̃k(S, t|ρ, τ) can be approximated with the

function ǧk(S, t|ρ, τ) via the following numerical algorithm (cf. [15] and [38]):

ǧk(S, τ + h|ρ, τ) = −2Ψk(S, τ + h|ρ, τ)
ǧk(S, τ + i h|ρ, τ) = −2Ψk(S, τ + i h|ρ, τ)

+2h
i−1∑

r=1

ǧk(S, τ + r h|ρ, τ)Ψk(S, τ + i h|S, τ + r h) (i = 2, 3, . . .) (2.15)

where h represents the integration step and Ψk is given in (2.13).

2.2 The Gompertz model with jumps

In order to analyze the effect of a therapeutic program that provides intermittent

suppression of cancer cells, we suppose that the growth process is influenced by

jumps, producing instantaneous changes of the system state. We define the process

with jumps X(t) as showed in the first chapter. More precisely, X(t), starting from

X(t0) = X̃0(t0) = ρ0, evolves as X̃0(t) as long as a jump occurs shifting the process

in a state ρ1 > 0 randomly chosen according to the pdf φ1(x); from here, after a ran-

dom time interval, X(t) evolves with the same dynamics of X̃1(t) as long as another

jump occurs, representing a new application of the therapy, which leads X(t) in ρ2,

and so on. The process X(t) consists of recurring cycles I1, I2, . . . whose duration

are described by independent and identically distributed random variables I1, I2, . . .,

described by pdf’s ψ1(·), ψ2(·), . . ., which represent the time intervals between suc-

cessive applications of the therapy. Moreover, we denote by Θ1, Θ2, . . . the times in

which jumps occur.

The transition pdf f(x, t|ρ0, t0) of X(t) is given in (1.23), and the expression of the
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moments µ(n)(t|y, τ) follows from (1.24).

In the following we give a simple example of X(t) focusing on the moments of

the process.

2.2.1 A special case

We assume that t0 = 0, X̃k ≡ X̃ (αk = α, βk = β, σk = σ), Ik+1 ≡ I (ψ is the

pdf of I) and ρk+1 ≡ ρ (φ is the pdf of ρ) for k ≥ 0. In this case, the expression of

moments µ(n)(t|y, τ), from (1.24), is:

µ(n)(t|ρ) =
(
1−

∫ t

0

ψ(s) ds

)
µ̃(n)(t|ρ)

+
∞∑

i=1

∫ t

0

ξi(τ)

(
1−

∫ t−τ

0

ψ(s)ds

)(∫

z∈J
φ(z) µ̃(n)(x, t− τ |z) dz

)
dτ,

where µ̃(n) are the moments of X̃(t) and they are defined in (2.11).

In the following we consider two kinds of intermittent therapeutic treatments defined

in terms of the pdf’s characterizing the random variables I. In particular, we assume

that the function ψ is a degenerate pdf (constant intermittence) and an exponential

pdf (exponential intermittence). Furthermore, for all specified ψ, we assume three

pdf’s for the random variable ρ: degenerate, uniform and bounded bi-exponential.

In the first case we suppose that the therapy is so precise that the process jumps

exactly in the chosen point; otherwise the therapy shifts the cancer mass in an inter-

val with central point ρ without any preferences (uniform distribution) or favoring

the central points of the interval (bounded bi-exponential distribution).

Moreover, we consider the stochastic process Nt representing the number of thera-

peutic treatments to be applied until a fixed time t.

Therapeutic treatment with constant intermittence

We assume that the duration between two consecutive therapeutic treatments is 1/ξ,

(ξ > 0), so that I is described by the degenerate pdf ψ(t) = δ
(
t− 1

ξ

)
, where δ(·) is

the Dirac delta-function; Θk = k/ξ almost surely. Let Nt the number of treatments

to be applied until the time t, one has that

Nt =
∞∑

k=1

H

(
t− k

ξ

)
,

where H(x) denotes the Heaviside unit step function. Note that the last jump before

t occurs at Nt/ξ.
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The moments of X(t) can be obtained as the moments (1.27), but with a random

return point:

µ(n)(t|ρ0) =





µ̃(n)(t|ρ0), t < 1/ξ

∫∞
0
φ(z)µ̃(n)

(
t− Nt

ξ
|z
)
dz, t > 1/ξ.

where µ̃(n)(t|y) is defined in (2.11).

Case a): φ(z) degenerate

We suppose that φ(z) = δ(z − ρ) is a degenerate distribution in ρ. In this case the

moments of X(t) are:

µ(n)(t|ρ0) =





µ̃(n)(t|ρ0), t < 1/ξ

µ̃(n)
(
t− Nt

ξ
|ρ
)
, t > 1/ξ.

Case b): φ(z) uniform

We consider φ(z) = 1
2l
for z ∈ [ρ− l, ρ+ l]. In this case we have:

µ(n)(t|ρ0) =





µ̃(n)(t|ρ0), t < 1/ξ

1
2l

∫ ρ+l

ρ−l
µ̃(n)

(
t− Nt

ξ
|z
)
dz, t > 1/ξ.

Taking into consideration the expressions of Mk and V 2
k given in (2.10), the explicit

form of the involved integral is:

∫ ρ+l

ρ−l

µ̃(n)

(
t− Nt

ξ
|z
)
dz =

= exp

{
n2

2
σ2(1− e−2β(t−k/ξ))− n

σ2/2− α

β

(
1− e−β(t−k|ξ))

}

×
∫ ρ+l

ρ−l

n exp
{
e−β(t−k/ξ) log z

}
dz,

where,

∫ ρ+l

ρ−l

exp
{
e−β(t−k/ξ) log z

}
dz =

∫ log(ρ+l)

log(ρ−l)

exp
{
u
(
ne−β(t−k/ξ) + 1

)}
du

=
1

n (e−β(t−k/ξ) + 1)

[
exp

{(
ne−β(t−k/ξ) + 1

)
log(ρ+ l)

}
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− exp
{(
ne−β(t−k/ξ) + 1

)
log(ρ− l)

}]
.

Hence, one has:

µ(n)(t|ρ0)

=





µ̃(n)(t|ρ0), t < 1/ξ

1
2l
exp

{
n2

2
σ2(1− e−2β(t−k/ξ))− nσ2/2−α

β
(1− e−β(t−k/ξ))

}

× 1
n(e−β(t−k/ξ)+1)

[
(ρ+ l)ne

−β(t−k/ξ)+1 − (ρ− l)ne
−β(t−k/ξ)+1

]
, t > 1/ξ

Case c): φ(z) bounded bi-exponential

We suppose φ(·) a bounded bi-exponential distribution in [ρ−l, ρ+l] with parameter

λ, that is φ(z) = 1
2(1−eλl)

e−λ|z−ρ| for z ∈ (ρ− l, ρ+ l). The moments of X(t) result:

µ(n)(t|ρ0) =





µ̃(n)(t|ρ0), t < 1/ξ

1
2(1−eλl)

∫ ρ+l

ρ−l
e−λ|z−ρ|µ̃(n)

(
t− N(t)

ξ
|z
)
dz, t > 1/ξ.

Therapeutic treatment with exponential intermittence

We assume that I is described by the exponential pdf ψ(x) = ξe−ξx, for x > 0. In

this case, Nt is a Poisson process of parameter ξ.

The expression of moments of X(t) are given in (1.29), but with a random return

point:

µ(n)(t|ρ0) = e−ξtµ̃(n)(t|ρ0) + ξ

∫ t

0

e−ξ(t−τ)

(∫ ∞

0

φ(z)µ̃(n)(t− τ |z)dz
)
dτ.

Case a): φ(z) degenerate

The moments of X(t) are given by

µ(n)(t|ρ0) = e−ξtµ̃(n)(t|ρ0) + ξ

∫ t

0

e−ξ(t−τ)µ̃(n)(t− τ |ρ)dτ.

Case b): φ(z) uniform

For φ(z) = 1
2l
for z ∈ [ρ− l, ρ+ l] one has:

µ(n)(t|ρ0) = e−ξtµ̃(n)(t|ρ0) +
ξ

2l

∫ t

0

dτe−ξ(t−τ)

∫ ρ+l

ρ−l

µ̃(n)(t− τ |z)φ(z)dz.
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Case c): φ(z) bounded bi-exponential

We assume that φ(z) = 1
2(1−eλl)

e−λ|z−ρ| for z ∈ (ρ− l, ρ+ l). In this case

µ(n)(t|ρ0) =

e−ξtµ̃(n)(t|ρ0) +
λξ

2(1− eλl)

∫ t

0

dτe−ξ(t−τ)

∫ ρ+l

ρ−l

e−λ|z−ρ|µ̃(n)(t− τ |z)φ(z)dz.

Numerical results

We compare the means of the process X(t) in correspondence to two therapeutic

protocols for three considered return point distributions. In Figure 2.2 the means of

X(t) are shown for α = 1, β = 0.5, σ = 1, ρ0 = 0.1 and ρ = 0.5 in correspondence

to deterministic (on the left) and exponential (on the right) protocol. For both

therapeutic treatments three different return point distributions are compared: de-

generate pdf (blue curve), uniform pdf with l = 0.4 (red curve) and bi-exponential

pdf for l = 0.4 and λ = 1 (magenta curve). Note that, although the red and magenta

curves are below the blue curve, they are comparable, so we can study only the de-

generate case without loss of generality (since this happens also for other choices of

parameters).
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Figure 2.2: The means of X(t) are shown for α = 1, β = 0.5, σ = 1, ρ0 = 0.1 and
ρ = 0.5, ξ = 0.1 in correspondence to a constant (on the left) and exponential (on the
right) therapeutic protocols for the three different return distributions: degenerate (blue
curve), uniform (red curve) and bi-exponential (magenta curve) for l = 0.4 and λ = 1.

Figures 2.3-2.6 show the mean of X(t) for the constant (on the left) and expo-

nential (on the right) intermittence in correspondence to degenerate distribution for

α = 1, β = 0.5, σ = 1, ρ0 = 0.1 and ρ = 0.5 and 1/ξ = 10, 5, 4, 3, respectively. The

green line represents the carrying capacity C = Ck = exp{α/β}, given in (2.4), of
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Figure 2.3: The means of X(t) are shown for α = 1, β = 0.5, σ = 1, ρ0 = 0.1 and ρ = 0.5
in correspondence to a constant (on the left) and exponential (on the right) therapeutic
protocols with 1/ξ = 10 for degenerate return process.
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Figure 2.4: As in Figure 2.3 with 1/ξ = 5.

the deterministic Gompertz curve x̃k(t), given in (2.3). In all cases we note that the

mean of the process for the exponential distribution is less than the mean for the

constant case. In particular, for 1/ξ = 10 (cf. Figure 2.3), only for the exponential

treatment the tumor size is kept under the level C/2. It is understandable because

in the exponential case the probability of occurrence of more than one jump before

of the time 10 is non-zero, while in the constant case it is equal to zero. The mean

of the jump process decreases by reducing the frequency of treatments, however

the better results are obtained for the exponential intermittences. In particular for

1/ξ = 3 (cf. Figure 2.6) the exponential treatment reduces the tumor size below

C/3.
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Figure 2.5: As in Figure 2.3 with 1/ξ = 4.
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Figure 2.6: As in Figure 2.3 with 1/ξ = 3.

2.3 The model with combined effects:

reduction of tumor size and rise of growth

rate

We want to take into account other effects that a therapy can cause. Firstly, ther-

apeutic treatments weaken an ill organism. Moreover, when a therapy is applied,

there is a selection event in which only the most aggressive clones survive. Hence,

we assume that after a therapeutic application, the tumor size returns to a fixed

value from which the evolution starts with an increased growth rate. For example,

this perspective could be applied to targeted drugs that have a much lower toxicity

for the patient.

Specifically, we assume that, after each jump, the process starts with a gradually

increased growth rate, depending on the number of applications made. Hence, each

therapeutic application involves a reduction in the tumor mass, but it also implies
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an increase in the speed of growth. This raises the problem of finding a compromise

between these two aspects.

We suppose that the therapeutic program consists of N therapeutic applications

and the return state ρ is equal to the initial tumor mass. We denote by ζ1 the time

interval between the initial time and the first jump, ζk the amplitude of the k-th

inter-jump interval (2 ≤ k ≤ N), τk = ζ1 + ζ2 + . . . + ζk (1 ≤ k ≤ N) the time

instant in which the k-th jump occurs.

Let x(t) [X(t)] be the deterministic [stochastic] process describing the tumor

size at the time t. Then, x(t) [X(t)] consists of independent cycles, each of one is

described by the Gompertz law with different growth rates. In particular, starting

from ρ > 0 at the time t0 = 0, the process evolves according to the Gompertz law

with parameters α0 = α and β, where α > 0 and β > 0 are the natural growth

parameters of the tumor cells in the absence of therapies. After a time ζ1 a therapy

is applied, whose effect is to reduce the tumor size to ρ1 on one hand, and on the

other hand to increase the growth rate. Thus proceeding, after the k-th application

occurring at τk, the process evolves from the state ρk following the Gompertz law

with growth parameter αk > αk−1, while parameter β remains the same of before.

The effectiveness of an intermittent treatment depends on the amplitude of the

inter-jump intervals; of course the choice of ζk must comply with both the times that

medical needs. Denoting by S a control threshold, we require that x(t)[X(t)] < S

during the treatment. Hence, in the following we propose two possible therapeutic

schedulings: inter-jump intervals with constant size and inter-jump intervals deter-

mined such that the therapy is applied just before the threshold’s crossing of the

process.

2.3.1 The deterministic model

Generally, assuming that the therapy is applied N times, the cancer size at time t

can be described as follows:

x(t) =
N∑

k=0

x̃k(t)1[τk,τk+1)(t), (2.16)

with x(τ−k ) = x̃k−1(τk), x(τk) = ρk, τ0 = 0, τN+1 = ∞, where x̃k(t) is given in (2.3)

and its carrying capacity Ck is defined in (2.4). Note that, if ρ < Ck, x̃k(t) increases

until Ck, being this value an upper bound, else x̃k(t) decrease until Ck. Here, we

consider the case ρ < Ck.
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2.3.2 The stochastic model

The corresponding stochastic process X(t) of the deterministic one (2.16) is defined

by:

X(t) =
N∑

k=0

X̃k(t)1[τk,τk+1)(t), (2.17)

where X̃k(t) is characterized by drift and infinitesimal variance given in (2.8). The

transition pdf of X̃k(t) and its moments are defined in (2.9) and (2.11) respectively.

In order to show graphically the behavior of the process X(t), several simulated

sample-paths are plotted in Figure 2.7.

In the simulation analysis we assume that the rates are measured in years−1 and

the tumor size is given by the tumor cell density. Specifically, following [71], we

consider α = 6.46 year−1, β = 0.314 year−1, X̃k(τk) = ρ = 108. Note that the value

108 is representative of a 0.1 gram tumor mass (namely the smallest diagnosable

mass). In Figure 2.7, a sample path of X(t) is plotted for N = 5 with αk = α+0.1k

(k = 0, 1, . . . , 5), σ = 0.1 and different choices of inter-jump intervals. On the

left of Figure 2.7 the instants of the therapeutic applications are (1, 3, 5.5, 7), in

the center are (2, 6, 10, 13) and on the right we choose (2, 4, 6, 8, 10). The blue

and red curves represent X(t) and X̃0(t), respectively. Note that for this choice of

parameters, during the treatment, the process X(t) is below X̃0(t), corresponding

to the natural evolution of the illness.
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Figure 2.7: The sample-paths X(t) are plotted for ρk = ρ = 108, αk = 6.46 + 0.1k,
β = 0.314, σ = 0.1 and therapeutic application times (1, 3, 5.5, 7), (2, 6, 10, 13) and
(2, 4, 6, 8, 10) from left to right. The red line represents X̃0(t).

We focus on the FPT problem for the process X(t) through a constant threshold

S because we are interested in keeping the cancer mass under S as long as possible.

Since X(t) is defined in terms of the single processes X̃k(t), we firstly recall some

aspects about the FPT of X̃k(t) through S.

Let

T̃ k
ρ (τk) = inf{t ≥ τk : X̃k(t) > S}, X̃k(τk) = ρ < S

be the random variable FPT of X̃k(t) through the threshold S and let the function
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g̃k(S, t − τk|ρ) be its pdf. For S > ρ, the density g̃k is solution of (2.12) and it can

be approximated with the function ǧk via the numerical algorithm shown in (2.15).

Moreover, we recall that E[T̃ k
ρ (τk)] = τk + E[T̃ k

ρ (0)].

Let

Tρ0(0) = inf{t ≥ 0 : X(t) > S}, X(0) = ρ0 < S

be the FPT of X(t) through S and let g(S, t|ρ0) be its pdf. The expression of g

follows from (1.32), that is:

g(S, t|ρ0) =





g̃0(S, t|ρ0), t ∈ I1

k−1∏

j=0

[
1−

∫ τj+1−τj

0

g̃j(S, τ − τj|ρj)dτ
]
g̃k(S, t− τk|ρk), t ∈ Ik,

where Ik = [τk, τk+1) for k ≥ 0.

Moreover, the mean of Tρ(0)

E[Tρ(0)] =

∫ ∞

0

t g(S, t|ρ) dt,

can be computed by using the numerical evaluation of g(S, t|ρ).
In Figure 2.8 the FPT pdf of X(t) is plotted for αk = 6.46 + 0.1k, β = 0.314,

σ = 0.1, S = 8 · 108, ρk = ρ = 108 and various choices of the application times:

(1, 3, 5.5, 7), (2, 6, 10, 13) and (2, 4, 6, 8, 10) from left to right.
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Figure 2.8: The FPT pdf of X(t) for values αk = 6.46 + 0.1k, β = 0.314, σ = 0.1,
S = 8 · 108, ρk = ρ = 108 and therapeutic application times (1, 3, 5.5, 7), (2, 6, 10, 13)
and (2, 4, 6, 8, 10) from left to right.
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2.3.3 Scheduling 1

We assume that ρk+1 = ρ and the inter-jump intervals have equal size ζk = ζ > 0,

for k ≥ 0. Since τk = k ζ, (2.16) [(2.17)] becomes

x(t) =
N∑

k=0

x̃k(t)1{kζ<t<(k+1)ζ}

[
X(t) =

N∑

k=0

X̃k(t)1{kζ<t<(k+1)ζ}

]
.

Moreover, we suppose that

αk = α + kγ.

For each k = 1, 2, . . . , N , the constant γ > 0 describes the toxicity of the drug. In

this case, αk depends on the number of applications and toxicity of the drug.

Deterministic approach

Let consider the couples (ζk, x̃k−1(ζk)) for k = 1, 2, . . ., where ζ k represents the

time of the k-th therapeutic application and x̃k−1(ζk) is the corresponding cancer

mass at this time. We note that (ζk, x̃k−1(ζk)) is the maximum point of x̃k−1(t).

Let y(t) be the curve interpolating the points (ξk, x̃k−1(ξk)) for k = 1, 2, . . .. One

has:

y(t)|t=k ζ = x̃k−1(t)|t=k ζ = x̃t/ζ−1(k ζ),

from which, recalling the expression of x̃k(t) in (2.3), one obtains

y(t) = exp




α +

(
t
ζ
− 1
)
γ

β
+


log ρ−

α +
(

t
ζ
− 1
)
γ

β


 e−β[t−( t

ζ
−1)ζ]



,

hence

y(t) = exp




α +

(
t
ζ
− 1
)
γ

β

(
1− e−βζ

)


ρ

e−βζ

, t ≥ ζ. (2.18)

In this context, we consider S > ρ as a threshold which represents a mortality

or a control level characterizing the particular cancer and the patient’s organism.

The curve y(t) is useful in order to understand where the tumor mass is in a certain

instant or when it reaches a certain threshold. Indeed, an alarm time for the patient,

whose illness is described by x(t), is given by the intersection point t∗ between S and

the curve y(t). For example, in Figure 2.9 the process x(t) (black line), the curve

y(t) (red curve) and the threshold S (blue line) are plotted for α = 6.46, β = 0.314,

γ = 0.5, ζ = 0.25, ρ = 108, S = 8 · 108 and t∗ is represented by the magenta circle.

We are interested in computing the time t∗ by solving the equation y(t) = S. From
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Figure 2.9: The process x(t) (black lines), the curve y(t) (red curve) and the threshold
S (blue line) with α = 6.46, β = 0.314, γ = 0.5, ξ = 1/4, ρ = 1.074× 108, S = 8 · 108. The
magenta circle is y(t∗).

(2.18), one has:

α +
(

t
ζ
− 1
)
γ

β

(
1− e−βζ

)
+ log ρe−βζ = log S,

then
t

ζ
− 1 = −α

γ
+

β

γ (1− e−βζ)

(
log S − log ρe−βζ

)
,

so we obtain

t∗ = ζ

[
1− α

γ
+

β

γ(1− e−βζ)

(
log S − e−βζ log ρ

)]
. (2.19)

Note that t∗ is not the point in which the cancer mass reaches the threshold, but

it gives an alarm: before the successive application of the therapy the cancer mass

crosses S; i.e. if t∗ ∈ [(k − 1) ζ, k ζ], then x̃k(t) crosses S. To know the time of

such crossing t̄, represented by the red circle in Figure 2.9, we will consider the

intersection of the involved curve x̃k(t) with S.

First of all, our objective is to maximize t∗. Note that parameters α, β, S and

ρ are fixed because they are specific of cancer or of patient’s organism, hence we

can analyze and, eventually, modify only the kind of therapy and the frequency of

applications. In other words, we want to determine a strategy, i.e. a couple (γ, ζ),

in order to delay the threshold’s crossing.

We consider t∗ as a function of γ and ζ. For each fixed ζ, t∗ is decreasing with re-
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spect to γ, that is, if the toxicity of the drug increases, the alarm time t∗ decreases.

Hence, if we are forced to use a fixed ζ, it is better to apply the most delicate pos-

sible therapies.

Instead, for each fixed γ it is not evident the monotony of t∗ with respect to ζ, thus

we need to pay more attention on the analytic form of t∗ by using its derivative with

respect to ζ. From (2.19), setting r = γ − α, one has:

dt∗

dζ
= r + β log S + e−βt

[
−2r − β log S − β log ρ+ ζβ2 log

ρ

S

]

+e−2βζ [r + β log ρ] ,

or, equivalently,

dt∗

dζ
= (r + β log S)

(
1− e−βζ

)
− (r + β log ρ)

(
1− e−βζ

)
e−βζ

+ζβ2e−βζ log
ρ

S
. (2.20)

Proposition 3. If

γ < α− β log S, (2.21)

therefore the alarm time t∗ is a decreasing function of ζ.

Proof. Recalling ρ < S, one has ζβ2e−βζ log ρ
S
< 0, hence, from (2.20) it follows:

dt∗

dζ
< (r + β log S)

(
1− e−βζ

)
− (r + β log ρ)

(
1− e−βζ

)
e−βζ . (2.22)

Moreover, since 1− e−βζ > 0, we have

|r + β log S| > |r + β log ρ| > |r + β log ρ| e−βζ . (2.23)

From (2.22), if r+β log S < 0, i.e. (2.21) holds, one has r+β log ρ < r+β log S < 0.

So that, from (2.23), observing that 1− e−βζ > 0, it results

(r + β log S)
(
1− e−βζ

)
< (r + β log ρ)

(
1− e−βζ

)
e−βζ < 0.

Thus, if (2.21) holds, from (2.22) one has
dt∗

dζ
< 0, the thesis follows.

We note that if (2.21) holds, one has t∗ ≥ 0 when ζ < ζ̄, where ζ̄ is:

ζ̄ = − 1

β
log

α− γ − β log S

α− γ − β log ρ
; (2.24)
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From Proposition 1, if γ < α − β log S, we can conclude that t∗ decreases with ζ;

hence to have a longer crossing time it is better using the smallest plausible ζ < ζ̄,

that is, one should apply the therapies as frequently as possible.

However, (2.21) is only a sufficient condition and it would be interesting to analyze

what happens in other cases. In particular, in the following, we determine conditions

on γ such that t∗ is an increasing function of ζ. To this purpose we consider the

following lemma.

Lemma 1. For all x > 0 the function

G(x) =
β log ρ

(
1− e−βx

)
e−βx − β log S

(
1− e−βx

)
− β2xe−βx log ρ

S

(1− e−βx)2
(2.25)

is decreasing.

Proof. The derivative of G(x) with respect to x is:

dG(x)

dx
=

e−βx log S
ρ

(1− e−βx)2

(
2− βx

1 + e−βx

1− e−βx

)
.

To study the sign of
dG(x)

dx
, we note that

e−βx log S
ρ

(1− e−βx)2
> 0, so we need to pay more

attention on the sign of the function 2− βx
1 + e−βx

1− e−βx
depending only on sign of the

function

f(x) = 2
(
1− e−x

)
− x

(
1 + e−x

)
,

which is smaller than zero for x > 0. Indeed, f(x) is null for x → 0 and it is a

decreasing function because, making use of from Bernoulli’s inequality ex > 1 + x,

one has:
df(x)

dx
= (1 + x)e−x − 1 < 0 x > 0.

Hence, the thesis follows.

Proposition 4. Let ζ0 be the smallest plausible ζ. If

γ > α +G(ζ0), (2.26)

therefore the alarm time t∗ is a increasing function of ζ.

Proof. From (2.20), we have that
dt∗

dζ
> 0 if

γ > α +G(ζ).

Therefore, recalling that G(ζ) is decreasing respect to ζ, we obtain the thesis.
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When condition (2.26) is satisfied, t∗ is an increasing function of ζ, so that it is

better applying the treatment infrequently.

Once chosen ζ and γ in order to maximize the time t∗, we calculate the crossing time

t̄ of x(t) through S to understand how long the cancer mass is below the threshold.

To obtain the crossing time t̄ we have to calculate k such that (k−1) ζ < t∗ ≤ k ζ and

then we have to solve the equation x̃k(t) = S in the variable t. In particular, taking

into consideration the expression of t∗ given in (2.19), one has (k − 1) ζ < t∗ ≤ k ζ

for k = k̄, with k̄ given by:

k̄ =

⌊
1− α

γ
+

β

γ(1− e−βζ)

(
log S − e−βζ log ρ

)⌋
, (2.27)

where ⌊x⌋ is the largest integer not greater than x. Then, considering this particular

k̄, that represents the maximum number N of applications, we obtain t̄ by solving

x̃k̄(t) = S; that is the crossing time t̄ is:

t̄ = − 1

β
log

[
log S − α+k̄γ

β

log ρ− α+k̄γ
β

]
+ ζ k̄. (2.28)

Moreover, we require that at least one application is made, that is N ≥ 1. To

compute the value ζ̂ such that N ≥ 1, we solve the inequality k̄ ≥ 1 respect to ζ, so

from (2.27) we obtain:

ζ ≤ − 1

β
ln

(
α− β lnS

α− β ln ρ

)
= ζ̂ . (2.29)

In conclusion, fixed γ, we can decide what is better to do:

• one should apply the therapy as frequently as possible if (2.21) is verified, by

choosing ζ <min
{
ζ̄ , ζ̂
}
, with ζ̂ and ζ̄ given in (2.24) and (2.29) respectively;

• one should apply the therapy as infrequently as possible if (2.26) holds, by

choosing ζ < ζ̂, with ζ̂ given in (2.29).

Let be the parameters α = 6.46, β = 0.314, ρ = 108 and S = 6 ·108. In Table 2.1 we

show the times t∗, the number of application N and the crossing time t̄ for various

values of ζ by choosing a therapy such that γ = 0.1 on the left table and γ = 0.6 on

the right table.

For the first choice of γ = 0.1, one has γ < α−β log S = 0.113294, so our study sug-

gests to apply the therapy as frequently as possible, with ζ <min{12.0021, 5.68812}.
Results on the left of Table 2.1 support this, since longer times are obtained for

more frequent applications (ζ = 1/12). For the second choice of γ = 0.6, one has
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γ > α + G(10−6) = 0.404641, so our study suggests to apply the therapy as infre-

quently as possible. The results on the right of Table 2.1 confirm this, since the

longest time is obtained for the most infrequent application, that is ζ = 5.6. We do

not consider larger value of ζ because for ζ = 5.7 one has N = 0.

Now we analyze values of γ such that 0.113294 = α− β log S < γ < α+G(10−6) =

0.404641. Note that in these cases we do not have analytical results so only a nu-

merical analysis can provide an efficient criterion to choose the application times.

In Table 2.2 we consider the same parameters of Table 2.1 with γ = 0.3 (on the left)

and γ = 0.37 (on the right). For the chosen parameters, from Table 2.2 one has

that if γ = 0.3 it is better to apply the therapy as frequently as possible, whereas if

γ = 0.37 it is better to apply the therapy infrequently.

Finally, we analyze what happens for different values of the threshold.

We consider γ = 0.1, ζ = 1/12 and we compute the maximum number of application

N and t̄ in Table 2.3. Obviously, for decreasing values of S the values of N and t̄

decrease.

γ = 1
10 ζ = 1

12 ζ = 1
4 ζ = 1

2 ζ = 1

t∗ 17.67 17.19 16.48 15.11
N 212 68 32 15
t̄ 17.74 17.24 16.49 15.95

γ = 6
10 ζ = 3 ζ = 4 ζ = 5 ζ = 5.6

t∗ 4.23 4.78 5.28 5.63
N 1 1 1 1
t̄ 4.85 5.85 6.85 7.45

Table 2.1: The times t∗, the number of applications N and t̄ are computed for the values
αk = 6.46 + γk, β = 0.314, S = 6 · 108, ρ = 108, γ = 0.1 on the left, γ = 0.6 on the right
and various choices of ζ.

γ = 0.3 ζ = 1
4 ζ = 1

2 ζ = 1 ζ = 2

t∗ 5.89 5.82 5.70 5.53
N 23 11 5 2
t̄ 5.99 5.98 5.95 5.85

γ = 0.37 ζ = 1
4 ζ = 1

2 ζ = 1 ζ = 2

t∗ 4.82 4.81 4.81 4.86
N 19 9 4 2
t̄ 4.99 4.98 4.96 5.61

Table 2.2: The times t∗, the number of applications N and t̄ are computed for the same
value of Table 2.1 with γ = 0.3 on the left, γ = 0.37 on the right and for various choices
of ζ.

S 6 · 108 3 · 108 1.5 · 108
t̄ 17.74 10.66 3.66
N 212 127 43

Table 2.3: The times t̄ and the number of applications N are listed for γ = 0.1, ζ = 1/12
and various values of S.
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Stochastic approach

In the present context, we can numerically analyze the behavior of the cancer mass,

but we need a new tool to understand how many applications can be done. We

proceed as follows.

For k = 0, 1, . . .:

• if E[T̃ k
ρ (0)] > ζ (that is, intuitively, X̃k < S), then we apply the therapy at

time (k + 1) ζ,

• else, if E[T̃ k
ρ (0)] < ζ, the number of applications is N = k and it results

E[Tρ0(0)] = k ζ + E[T̃ k
ρ (0)].

Let fix the parameters α = 6.46, β = 0.314, ρ = 108 and S = 6 · 108. In Table 2.4

we list the number of application N and the mean FPT of X(t) through S (denoted

with E[T ]) for various values of ζ with γ = 0.1, σ = 0.1 on the left table and σ = 0.5

on the right table. For σ = 0.1, the results are almost similar to ones obtained in

the deterministic approach, since the chosen σ is small. In Figure 2.10 we plot the

mean of X(t) for the same parameters of Table 2.4 for σ = 0.1, with ζ = 1 on the

left and ζ = 1/2 on the right. Whereas, with a bigger σ = 0.5 (on the right of Table

2.4), we note that the mean FPT times (denoted with E[T ]) are bigger than ones

obtained in the deterministic case and more applications are possible.

In Table 2.5 we list N and E[Tρ0(0)] ≡ E[T ] for γ = 0.6 with σ = 0.1 on the left

table and σ = 0.5 on the right table. Also in this case, the mean FPT times for

σ = 0.5 are bigger respect than σ = 0.1, but, since γ is big, no more that one

application is possible .

However, the criterion used in the deterministic case to chose the most appropriate

ζ is a very useful tool also in the stochastic environment.

ζ = 1
12

ζ = 1
4

ζ = 1
2

ζ = 1
N 212 68 32 15
E[T ] 17.74 17.24 16.49 15.95

ζ = 1
12

ζ = 1
4

ζ = 1
2

ζ = 1
N 213 69 33 16
E[T ] 17.83 17.49 17 16.95

Table 2.4: The number of applications N and E[Tρ0(0)] (denoted by E[T ]) are computed
for αk = 6.46 + γk, β = 0.314, S = 6 · 108, ρ = 108, γ = 0.1, σ = 0.1 on the left, σ = 0.5
on the right and various choices of ζ.

ζ = 3 ζ = 4 ζ = 5 ζ = 5.6
N 1 1 1 1
E[T ] 4.85 5.85 6.85 7.45

ζ = 3 ζ = 4 ζ = 5 ζ = 5.6
N 1 1 1 1
E[T ] 5.02 6.02 7.02 7.62

Table 2.5: The number of applications N and E[Tρ0(0)] (denoted by E[T ]) are computed
for the same parameters of Table 2.4 with γ = 0.6.
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Figure 2.10: The mean of X(t) for the same parameters of Table 2.4, with ζ = 1 on the
left and ζ = 1/2 on the right. The line S = 6 · 108 represents the threshold.

2.3.4 Scheduling 2

We propose to apply the therapy before x(t) [X(t)] reaches S. Hence, for k ≥ 0 we

choose ζk+1 < t̂k, where t̂k is the solution of x̃k(t) = S in the deterministic model,

while t̂k = E[T̃ k
ρ (τk)] is the FPT mean of X̃k(t) through S in the stochastic model.

One could consider ζk+1 = t̂k−A (k ≥ 0), where A > 0 is an arbitrary constant such

that ζk+1 > 0, but this is not an objective choice because A is not related with the

involved values. It is more plausible that A = h t̂k is proportional to the crossing

time or the FPT mean. Thus, we consider τk+1 = τk + ζk+1, for k ≥ 0, with

ζk+1 = (1− h) t̂k, (2.30)

where 0 < h < 1 is the percentage of reduction respect to t̂k. Hence, increasing

values of h (that correspond to decreasing inter-jump intervals) are safer in terms of

not passing the control threshold. Generally, the maximum number of applications

N is chosen such that, for k > 0, one has τk+1 − τk > θ, where θ can be considered

as the minimum waiting time between consecutive applications.

In the following, we consider fixed values of αk, βk, σk and S; we calculate t̂k to

determine (τ1, τ2, . . . , τN) via the crossing times of x̃k(t) through S in the determin-

istic case and via the FPT times of X̃k(t) thought S in the stochastic model. Then,

we compute the crossing time t̄k given in (2.28) for the deterministic model, while,

for the stochastic model we determine the mean FPT E[Tρ0(0)] = τN + E[T̃N
ρN
(0)]

with E[T̃N
ρN
(0)] given in (2.14).

Note that the proposed strategy allows to make predictions for any choice of

the parameters and of the inter-jumps intervals. On the other hand, the choice

of application times depends on the parameters involved in the model that can be

estimated via the maximum likelihood method, as shown in [48].

However, to illustrate the proposed procedure, we assume that the parameters
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are αk = 6.46 + kγ, β = 0.314, ρk = ρ = 108 (for all k) and we choose various

values of γ and S. We consider three values for the inter-jump intervals and for the

application times of the therapy for k = 0, 1, . . . , N − 1:

• Case (a): h = 0.10, ζak+1 = 90% t̂k, τa1 = ζa1 , τak+1 = τak + ζak+1,

• Case (b): h = 0.05, ζbk+1 = 95% t̂k, τ b1 = ζb1, τ bk+1 = τ bk + ζbk+1,

• Case (c): h = 0.01, ζck+1 = 99% t̂k, τ c1 = ζc1, τ ck+1 = τ ck + ζck+1.

The maximum number of applications N is chosen such that ζak+1 ≥ 0.5, so it is also

ζbk+1 ≥ 0.5 and ζck+1 ≥ 0.5.

Deterministic approach

For Case (a), Case (b) and Case (c), in Table 2.6 the value of t̂k for S = 6 · 108
and γ = 0.1 are listed in the second column; in the other columns we report the

amplitude of inter-jump intervals (ζk+1), the application times (τk+1) and the corre-

sponding crossing times t̄ if the therapeutic program consists of k + 1 applications.

We note that t̄ is always greater than t̂0 and it increases as the number of appli-

cations increases. The crossing times for Case (c) are greater respect to the other

considered cases (cf. Table 2.6), so it is preferable waiting as long as before applying

another therapy.

In Table 2.7 the analysis is realized for the same choices of Table 2.6 but assuming

γ = 0.6. In this case, since γ is greater, the number of therapeutic applications and

the crossing time of x(t) are considerably lower than the previous case. However, as

before, the best results are for Case (c).

In Table 2.8, in order to show as the control threshold influences the crossing time

of x(t), we propose the same analysis for S = 3 ·108 and γ = 0.1; since the threshold

is lower the mean FPT of X(t) and the number of therapeutic applications decrease

respect to the results of Table 2.6. Also for decreasing values of the threshold S,

Case (c) gives bigger crossing time (cf. Table 2.8).

In conclusion, Case (c) gives always the best results, in particular the crossing

time is larger for smaller values of γ and for higher control threshold.
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Stochastic approach

For Case (a), Case (b) and Case (c), in Table 2.9 the means of T̃ k
ρ0
(0) through

S = 6 · 108 and γ = 0.1 are listed in the second column; in the other columns

we report the amplitude of inter-jump intervals (ζk+1), the application times (τk+1)

and the corresponding mean of Tρ0(0) if the therapeutic program consists of k + 1

applications. We note that E[Tρ0(0)] is always greater than E[T̃
0
ρ0
(0)] and it increases

as the number of the applications increases. In Figure 2.11, to summarize the results

of Table 2.9, we plot the mean FPT of X(t) when the therapy is applied 29 times. As

shown in Figure 2.12, the strategy is effective for the considered values of h, indeed

the mean of X(t) (blue curve) is always below S (black line) and E[X̃0(t)|X̃0(0) = ρ]

(red curve) during the treatment. However, since the mean FPT of X(t) for the

Case (c) is greater respect to the other considered cases (cf. Table 2.9 and Figure

2.11), it is preferable waiting as long as before applying the therapy.

In Table 2.10 and in Figure 2.13, the analysis is realized for the same choices of

Table 2.9 but assuming γ = 0.6. In this case, since γ is greater, the number of

therapeutic applications and the mean FPT of X(t) are considerably lower than the

previous case. Also in this case the best results are for Case (c).

In Table 2.11 and in Figure 2.14, the same analysis for S = 3 · 108 and γ = 0.1 is

proposed; since the threshold is lower, the mean FPT of X(t) and the number of

therapeutic applications decrease respect to the results of Table 2.9.

Also for decreasing values of the threshold S, Case (c) gives larger mean FPT (cf.

Table 2.11 and Figure 2.14).

In conclusion, Case (c) gives always the best results, in particular the mean FPT is

larger for smaller values of γ and for higher control threshold.

We summarize the results regarding the mean FPT of X(t) and of N associated

to Case (c) for different values of γ (Figure 2.15) and S (Figure 2.16).

Specifically, from Figure 2.15 we note that the product γE[Tρ0(0)] ∈ (4, 8) increases

as γ increases, whereas γN ∈ (2, 2.8) decreases as γ increases.

Moreover, as shown in Figure 2.16, the quantities E[Tρ0(0)]/S ∈ (1.3·10−8, 1.83·10−8)

and N/S ∈ (1.3 · 10−8, 1.83 · 10−8) increase with S.

2.3.5 Comparison between the deterministic and

the stochastic approach

To underline the effect of the stochasticity, we show the mean FPT considering var-

ious choice of σ for both the proposed scheduling. The results for σ = 0 correspond

to the deterministic case. Moreover, we analyze the mean FPT of X(t) for some

choices of S and of γ.
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In Figure 2.17, we show the means of Tρ0(0) for Scheduling 1 with various choices

of σ: on the left we consider γ = 0.1, ζ = 1.83̄ and S = 3 · 108, 6 · 108, while on the

right S = 6 · 108 and for γ = 0.1, 0.5 we consider ζ = 1/12, 5.6 respectively.

In Figure 2.18, we show the means of Tρ0(0) for Scheduling 2 in Case (c) with various

choices of σ and N = 6: on the left we consider γ = 0.1 and S = 3 ·108, 6 ·108, while
on the right S = 6 · 108 and γ = 0.1, 0.5.

We note that for both scheduling the mean FPT increases as σ increases even if the

rise is slow for σ ≤ 0.5. Indeed, the deterministic curve goes up to the carrying

capacity while the sample paths of the stochastic process grow with upward and

downwards fluctuations: downwards fluctuations delay the crossing of S.

2.3.6 Comparison between the two proposed scheduling

In order to understand what would be the best strategy (if we was free to chose

between them) we summarize in Table 2.12 the results from the two strategies in

the stochastic approach with σ = 0.1 and by choosing the best result in Strategy 1.

From Table 2.12, it is evident that the second strategy is the best: it is preferable

to apply the therapy just before the cancer mass crosses the control threshold. One

can think that this contrasts with what we obtain from the results of Scheduling 1

because we suggested to apply the therapy as frequently as possible for some values

of γ; but it is not so. The reason is that this criterion holds only if we have to

use the Scheduling 1 (i.e. if we are forced to consider the same amplitude for each

inter-jump interval) and not in comparison with Scheduling 2.

To explain better this, in Figure 2.19 we compare the mean of X(t) for ζ = 1 (blue

line), ζ = 5 (black line) by using the first strategy, while the other parameters are

σ = 0.1, γ = 0.1, S = 6 · 108 (red line). From figure 2.19, one has that for ζ = 5

the mean cancer size crosses the threshold at the time 9.11, while for ζ = 1 at the

time 15.95. In particular, for ζ = 5 the threshold’s crossing occurs before the second

application of the therapy because for big values of ζ we are forced to wait too long.
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k t̂k ζak+1 τak+1 t̄ ζbk+1 τ bk+1 t̄ ζck+1 τ ck+1 t̄

0 5.68 5.11 5.11 9.23 5.40 5.40 9.51 5.63 5.63 9.74
1 4.11 3.70 8.82 12.09 3.90 9.31 12.58 4.07 9.70 12.97
2 3.27 2.94 11.76 14.50 3.11 12.42 15.15 3.24 12.94 15.68
3 2.73 2.46 14.23 16.58 2.59 15.02 17.37 2.33 15.65 18.01
4 2.35 2.12 16.35 18.42 2.23 17.25 19.33 0.74 17.98 20.05
5 2.07 1.86 18.21 20.06 1.96 19.22 21.08 0.61 20.03 21.89
6 1.85 1.66 19.88 21.55 1.75 20.98 22.66 0.61 21.87 23.54
7 1.67 1.50 21.39 22.91 1.59 22.57 24.10 0.61 23.53 25.05
8 1.52 1.37 22.76 24.17 1.45 24.03 25.43 0.61 25.04 26.44
9 1.40 1.26 24.03 25.33 1.33 25.36 26.67 0.61 26.43 27.73
10 1.30 1.17 25.20 26.41 1.23 26.60 27.81 0.61 27.71 28.93
11 1.21 1.09 26.29 27.43 1.15 27.75 28.89 0.61 28.92 30.06
12 1.13 1.02 27.31 28.38 1.07 28.83 29.90 0.61 30.05 31.11
13 1.06 0.96 28.27 29.28 1.01 29.85 30.85 0.61 31.10 32.11
14 1.00 0.90 29.18 30.13 0.95 30.80 31.75 0.61 32.10 33.05
15 0.95 0.85 30.04 30.94 0.90 31.71 32.61 0.61 33.04 33.95
16 0.90 0.81 30.85 31.71 0.85 32.57 33.43 0.61 33.94 34.80
17 0.86 0.77 31.63 32.45 0.81 33.38 34.20 0.61 34.79 35.61
18 0.82 0.73 32.37 33.15 0.77 34.16 34.95 0.61 35.60 36.39
19 0.78 0.70 33.07 33.82 0.74 34.91 35.66 0.61 36.38 37.13
20 0.75 0.67 33.75 34.47 0.71 35.62 36.34 0.61 37.12 37.84
21 0.72 0.64 34.40 35.09 0.68 36.31 37.00 0.61 37.84 38.53
22 0.69 0.62 35.02 35.69 0.65 36.97 37.63 0.61 38.52 39.19
23 0.66 0.60 35.62 36.27 0.63 37.60 38.24 0.61 39.18 39.83
24 0.64 0.57 36.18 36.80 0.61 38.19 38.81 0.61 39.80 40.42
25 0.62 0.55 36.74 37.34 0.58 38.78 39.38 0.61 40.41 41.01
26 0.60 0.54 37.28 37.86 0.57 39.35 39.93 0.61 41.01 41.59
27 0.58 0.52 37.80 38.36 0.55 40.46 11.27 0.61 41.58 42.15
28 0.56 0.50 38.31 38.85 0.53 40.44 40.98 0.61 42.14 42.68

Table 2.6: For αk = 6.46 + γk, β = 0.314, γ = 0.1 and ρ = 108 the crossing times t̂ and t̄
through S = 6 · 108 are listed.

k t̂k ζak+1 τak+1 t̄ ζbk+1 τ bk+1 t̄ ζck+1 τ ck+1 t̄

0 5.68 5.11 5.11 6.97 5.40 5.40 7.25 5.63 5.63 7.48
1 1.85 1.66 6.78 7.92 1.75 7.16 8.29 1.83 7.46 8.60
2 1.13 1.02 7.80 8.62 1.07 8.24 9.06 1.12 8.58 9.40
3 0.82 0.73 8.54 9.19 0.77 9.02 9.66 0.81 9.40 10.04
4 0.64 0.57 9.12 9.65 0.61 9.63 10.16 0.63 10.03 10.56

Table 2.7: As in Table 2.6 with γ = 0.6.
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k t̂k ζak+1 τak+1 t̄ ζbk+1 τ bk+1 t̄ ζck+1 τ ck+1 t̄

0 2.27 2.04 2.04 3.91 2.16 2.16 4.03 2.25 2.25 4.12
1 1.87 1.68 3.73 5.32 1.77 3.93 5.53 1.85 4.10 5.69
2 1.59 1.43 5.16 6.55 1.51 5.45 6.84 1.57 5.68 7.07
3 1.38 1.25 6.41 7.64 1.31 6.77 8.00 1.37 7.05 8.29
4 1.23 1.10 7.52 8.63 1.16 7.94 9.04 1.21 8.27 9.38
5 1.10 0.99 8.52 9.52 1.05 8.99 9.99 1.09 9.37 10.37
6 1.00 0.90 9.42 10.34 0.95 9.94 10.86 0.99 10.36 11.28
7 0.91 0.82 9.90 11.09 0.87 10.82 11.66 0.91 11.27 12.12
8 0.84 0.76 10.25 11.80 0.80 11.62 12.41 0.83 12.11 12.90
9 0.78 0.70 11.01 12.45 0.74 12.37 13.10 0.77 12.89 13.62
10 0.73 0.66 11.72 13.07 0.69 13.07 13.75 0.72 13.62 14.30
11 0.68 0.61 12.38 13.64 0.65 13.72 14.37 0.68 14.30 14.94
12 0.64 0.58 13.00 14.19 0.61 14.33 14.95 0.64 14.94 15.55
13 0.61 0.54 14.13 14.71 0.58 14.91 15.49 0.60 15.54 16.12

Table 2.8: As in Table 2.6 with S = 3 · 108.
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Figure 2.11: The mean FPT of X(t) for the same choice of the parameters of Table 2.12.
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Figure 2.12: E[X(t)|X̃0(0) = ρ] (blue curve), E[X̃0(t)|X̃0(0) = ρ] (red curve) and S =
6 · 108 (black line) for the same parameters of Table 2.12 and for the Case (a), (b), (c)
(from left to right).

73



k E[T̃ k
ρ (0)] ζak+1 τak+1 E[Tρ] ζbk+1 τ bk+1 E[Tρ] ζck+1 τ ck+1 E[Tρ]

0 5.63 5.06 5.06 9.18 5.34 5.34 9.46 5.57 5.57 9.69
1 4.11 3.70 8.77 12.05 3.91 9.26 12.54 4.07 9.65 12.93
2 3.28 2.95 11.73 14.47 3.12 12.38 15.12 3.25 12.90 15.64
3 2.74 2.47 14.20 16.56 2.61 14.99 17.35 2.71 15.62 17.98
4 2.36 2.12 16.33 18.41 2.24 17.23 19.31 2.34 17.96 20.04
5 2.08 1.87 18.20 20.06 1.97 19.21 21.07 2.05 20.02 21.88
6 1.85 1.67 19.87 21.55 1.76 20.98 22.66 1.83 21.86 23.54
7 1.68 1.51 21.38 22.92 1.59 22.57 24.11 1.66 23.52 25.06
8 1.53 1.38 22.76 24.17 1.45 24.03 25.44 1.51 25.04 26.45
9 1.41 1.26 24.03 25.34 1.34 25.37 26.67 1.39 26.44 27.74
10 1.30 1.17 25.21 26.43 1.24 26.61 27.83 1.29 27.73 28.95
11 1.21 1.09 26.30 27.44 1.15 27.77 28.90 1.20 28.93 30.07
12 1.13 1.02 27.33 28.40 1.08 28.85 29.92 1.12 30.06 31.13
13 1.06 0.96 28.29 29.30 1.01 29.86 30.87 1.05 31.12 32.13
14 1.00 0.90 29.20 30.15 0.95 30.82 31.78 0.99 32.12 33.07
15 0.95 0.85 20.06 30.96 0.90 31.73 32.64 0.94 33.07 33.97
16 0.90 0.81 30.87 31.74 0.86 32.59 33.45 0.89 33.96 34.82
17 0.86 0.77 31.65 32.47 0.81 33.41 34.23 0.85 34.82 35.64
18 0.82 0.74 32.39 33.18 0.78 34.19 34.98 0.81 35.63 36.42
19 0.78 0.70 33.10 33.85 0.74 34.94 35.69 0.77 36.41 37.16
20 0.75 0.67 33.78 34.50 0.71 35.65 36.38 0.74 37.15 37.88
21 0.72 0.65 34.43 35.12 0.68 36.34 37.03 0.71 37.87 38.56
22 0.69 0.62 35.05 35.72 0.65 37.00 37.67 0.68 38.56 39.23
23 0.66 0.60 35.65 36.30 0.63 37.63 38.28 0.66 39.22 39.86
24 0.64 0.57 36.21 36.83 0.61 38.23 38.85 0.63 39.83 40.46
25 0.62 0.55 36.77 37.37 0.59 38.82 39.42 0.61 40.45 41.05
26 0.60 0.54 37.31 37.90 0.57 39.39 39.97 0.59 41.05 41.63
27 0.58 0.52 37.84 38.40 0.55 39.94 40.50 0.57 41.62 42.18
28 0.56 0.50 38.34 38.89 0.53 40.47 41.02 0.55 42.18 42.72

Table 2.9: For αk = 6.46 + γk, β = 0.314, γ = 0.1, σ = 0.1 and ρ = 108 the FPT means
of X̃k(t) and of X(t) through S = 6 · 108 are listed.

k E[T̃ k
ρ (0)] ζak+1 τak+1 E[Tρ] ζbk+1 τ bk+1 E[Tρ] ζck+1 τ ck+1 E[Tρ]

0 5.63 5.06 5.06 6.92 5.34 5.34 7.20 5.57 5.57 7.43
1 2.08 1.67 6.74 7.87 1.76 7.11 8.25 1.83 7.41 8.55
2 1.30 1.02 7.76 8.58 1.08 8.19 9.01 1.12 8.54 9.36
3 0.95 0.74 8.50 9.15 0.78 8.97 9.62 0.81 9.35 10.00
4 0.75 0.57 9.08 9.61 0.61 9.59 10.12 0.63 9.99 10.52

Table 2.10: For αk = 6.46+ γk, β = 0.314, γ = 0.6, σ = 0.1 and ρ = 108 the FPT means
of X̃k(t) and of X(t) through S = 6 · 108 are listed.
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Figure 2.13: The mean FPT of X(t) for the same choice of the parameters of Table 2.13.

k E[T̃ k
ρ (0)] ζak+1 τak+1 E[Tρ] ζbk+1 τ bk+1 E[Tρ] ζck+1 τ ck+1 E[Tρ]

0 2.28 2.05 2.05 3.93 2.16 2.16 4.07 2.25 2.25 4.13
1 1.87 1.69 3.74 5.34 1.78 3.95 5.55 1.86 4.11 5.72
2 1.60 1.44 5.18 6.58 1.52 5.47 6.86 1.58 5.70 7.09
3 1.39 1.25 6.44 7.67 1.32 6.79 8.03 1.38 7.08 8.32
4 1.23 0.99 7.55 8.66 1.17 7.97 9.08 1.22 8.30 9.41
5 1.11 0.90 8.55 9.55 1.05 9.02 10.03 1.09 9.40 10.41
6 1.10 0.82 9.45 10.38 0.95 9.98 10.90 0.99 10.40 11.32
7 0.92 0.76 10.28 11.13 0.87 10.85 11.70 0.91 11.31 12.16
8 0.85 0.71 11.05 11.84 0.80 11.66 12.45 0.84 12.15 12.94
9 0.78 0.66 11.76 12.49 0.74 12.41 13.15 0.78 12.93 13.67
10 0.73 0.62 12.42 13.11 0.69 13.11 13.80 0.72 13.66 14.35
11 0.68 0.58 13.04 13.69 0.65 13.77 14.41 0.68 14.35 14.99
12 0.64 0.55 13.62 14.24 0.61 14.38 14.99 0.64 14.99 15.60
13 0.61 0.52 14.18 14.76 0.58 14.96 15.54 0.60 15.59 16.17

Table 2.11: For αk = 6.46+ γk, β = 0.314, γ = 0.1, σ = 0.1 and ρ = 108 the FPT means
of X̃k(t) and of X(t) through S = 3 · 108 are listed.
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Figure 2.14: The mean FPT of X(t) for the same choice of the parameters of Table 2.14.
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Figure 2.15: Case (c): means of T (on the left) and values of N (on the right) for
S = 6 · 108 and various choices of γ.
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Figure 2.16: Case (c): means of T (on the left) and values of N (on the right) for γ = 0.1
and various choices of S.

Figure 2.17: For the first scheduling the means of T for various values of σ are showed:
on the left γ = 0.1, ζ = 1/12 and S = 3 · 108, 6 · 108; on the right S = 6 · 108 and for
γ = 0.1, 0.5 we consider ζ = 1/12, 5.6 respectively.

Figure 2.18: For the case (c) of the second scheduling: means of T for various values of
σ and N = 6 with γ = 0.1 and S = 3 · 108, 6 · 108 (on the left) and with and S = 6 · 108
and γ = 0.1, 0.5 (on the right).
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S = 6 · 108 S = 6 · 108 S = 3 · 108 S = 3 · 108
γ = 0.1 γ = 0.5 γ = 0.1 γ = 0.5

Scheduling 1 17.74 7.68 10.66 7.47
Scheduling 2 42.72 11.76 16.17 12.24

Table 2.12: The mean FPT of T for Scheduling 1 and Scheduling 2 for various choices of
γ and S by considering in all cases the best results.
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Figure 2.19: The mean of X(t) for σ = 0.1, γ = 0.1, S = 6 ·108 (red line) and ζ = 1 (blue
line), ζ = 5 (black line).
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Chapter 3

Return process with refractoriness

for a non-homogeneous

Ornstein-Uhlenbeck neuronal

model

The neuron is the fundamental discrete unit of the central nervous system which

is composed of brain and spinal cord. Each cell is separated from the external

by a limiting permeable membrane. Between the external and the internal of the

cell there is a potential difference (membrane potential) due to the different ionic

concentrations. Before a neuron is stimulated, it has a slightly negative electric

polarization: its interior has a negative charge compared with the extracellular

fluid. This polarized state is called resting membrane potential ; it is generated by

a high concentration of positively charged sodium ions (Na+) outside the cell and

high concentration of negatively charged chloride as well as a lower concentration of

positively charged potassium (K+) inside. The resulting resting potential usually

measures about −75 millivolts (mV); the minus sign indicates a negative charge

inside. When a neuron is appropriately stimulated, there is an action potential,

i.e. the cell membrane goes through a sequence of depolarization from its rest

state followed by repolarization to that rest state, since the ions move through the

membrane (via sparsely located specialized holes called channels). In such sequence,

it actually reverses its normal polarity for a brief period before reestablishing the

resting potential. The entire sequence last less than 6 milliseconds (ms) and can be

divided in the following main steps (see Figure 3.1):

• A neuron is stimulated. This causes the Na+ channels to open. If the opening

is sufficient to drive the interior potential from the resting state (−75mV ) to
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Figure 3.1: Transmission of an action potential.

the critical state, the process continues. The critical state is called threshold

potential or firing threshold and measures about −55mV.

• For the reaching of the action threshold, more Na+ channels open. The Na+

influx drives the interior of the cell membrane up to about +30mV . The

process to this point is called depolarization and the positive peak, reached in

less than a millesecond, is called spike or firing.

• The Na+ channels close and the K+ channels open. Since the K+ channels

are much slower to open, the depolarization has time to be completed.

• With the K+ channels opening, the membrane begins to repolarize back to-

ward its resting potential.

• The repolarization typically overshoots the resting potential to about −90mV

. This is called hyperpolarization and it prevents the neuron from receiving

another stimulus during this time, or at least raises the threshold for any new

stimulus. Moreover, hyperpolarization assures that the signal is proceeding in

one direction.

• After hyperpolarization, the Na+/K+ pumps eventually bring the membrane

back to its resting state.

During the transmission of an action potential, an interesting observed phenomenon

is the refractory period: a short interval time following each spike and during which

the neuron is completely or partially unable to respond to stimuli. In particular, as

one area of membrane is being depolarized, the preceeding area of membrane is still

in the depolarizing phase of its action potential, thus that area of membrane may not
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be immediately stimulated to produce another action potential anyway. This period

is called the absolute refractory period. In a period called relative refractory period

that follows the absolute refractory period, the threshold is drastically increased,

thus while not being impossible to generate another action potential, it requires a

much stronger stimulus. This period is due to the sodium channels being closed and

the potassium channels being open. So, exceptionally strong stimuli can cause more

frequent generation of action potentials.

Various types of spiking neuron models exist, with different levels of details in

the description. The starting point is the classical Gerstein-Mandelbrot model: in

1964 Gernstein and Mandelbrot proposed a model of neuronal activity based on the

Wiener process ([37]). These authors demonstrated that with a suitable choice of

parameters, the histograms of the interspike intervals (ISI), experimentally recorded,

could be plotted with a good degree of approximation with the average of the FPT for

a temporally homogeneous Wiener process. Since then various other models, based

on diffusion stochastic processes, have been proposed to describe the evolution of

the neuronal membrane potential. In particular, to take account of the exponential

decay exhibited by the membrane potential in the absence of input of any type, in

1971 Capocelli and Ricciardi proposed a model based on the Ornstein-Uhlenbeck

(OU) process (cf. [18]. This model has been used widely to describe the activity of

a single neuron (see, for instance [16], [58], [76]). Several ways exist to derive this

model, one of these consists of assuming that the neuron is subject to a sequence of

inhibitory and excitatory postsynaptic potentials (PSP’s) with constant amplitude

that occur according to the Poisson’s law. Further, it is assumed that, in the absence

of input, the membrane potential decays exponentially to the resting potential, with

a time constant which we denote by θ. When this constant diverges, the OU model

yields to the Wiener model.

To describe the spikes train, we build a return process on an OU process in which

the effect of random refractoriness is introduced. In this regard we recall that the

first attempt to study the effect of refractoriness in a point process was made in [75]

and in [84].

In the present chapter we assume that inputs, while remaining a constant am-

plitude, are characterized by time-dependent rates, meaning that some external

stimulations are induced on the neuron; so that the involved Poisson process is not

homogeneous. In Section 1 the model, based on a non-homogeneous OU process, is

introduced. A comparison between the obtained OU model and the corresponding

time-homogeneous process is done analyzing the trajectories of the two processes

and considering the relative entropy of distributions characterizing the two models.

Particular attention is paid to the FPT random variable because it represents the
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“theoretical counterpart”of the neuronal firing time, so that the FPT’s pdf describes

the pdf of the firing time. In this regard it should be noted that for the OU process

the FPT’s pdf is not known in closed form if not for thresholds that are not of partic-

ular interest in the neuronal context, nonetheless, for the FPT pdf of the OU process

is possible to make use of an asymptotic behavior of exponential type. To study the

train of spikes, in Section 2, we build the return process. It is a process with jumps.

The number of firings and the distribution of interspike intervals are studied under

the assumption of exponential distribution for the firing time. We recall that the

importance of interspike intervals is due to the generally accepted hypothesis that

information transferred within the nervous system is usually encoded by timing of

occurrence of neuronal spikes.

In Section 3, we introduce random downtimes which delay spikes, simulating the

effect of refractoriness. A theoretical and numerical analysis of the return process

in the presence of constant and exponential refractoriness is performed.

3.1 The model

To construct the model, we assume that the neuronal membrane potential is subject

to a sequence of inhibitory and excitatory postsynaptic potentials characterized by

constant magnitude ǫ occurring with time-dependent rates:

αi(t) =
Ai(t)

ǫ
+

σ2

2 ǫ2
, αe(t) =

Ae(t)

ǫ
+

σ2

2 ǫ2
,

where Ai(t), Ae(t) are positive function of time and σ2 > 0. Moreover, in the

absence of inputs the membrane potential decays to the resting potential with a

time constant θ > 0. So, making use of a standard procedure (cf., for instance,

[74]), it can be proved that the evolution of the neuronal membrane potential is

described via a diffusion process {X̃(t), t ≥ t0 ≥ 0} defined in R whose infinitesimal

moments are related to the rates. In particular, the drift and infinitesimal variance

of X̃(t) are

A1(x, t) = −x
θ
+ µ(t), A2 = σ2,

respectively, with

µ(t) = lim
ǫ→0

ǫ [αe(t)− αi(t)] = µ+m(t), σ2 = lim
ǫ→0

ǫ2[αe(t) + αi(t)],

where m(t) is a periodic and bounded function. We consider m(t) periodic because

this situation reflects some oscillatory effects of the environment acting on the neu-

ron.
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Figure 3.2: On the left a sample path of X̂(t) is plotted; on the right sample paths of
X̂(t) (blue line) and of X̃(t) with m(t) = sin t (magenta line), m(t) = 5 sin t (black line)
and m(t) = 10 sin t (red line) are plotted. The chosen parameters are µ = −14, θ = 5,
σ = 1 and η = −70.

Note that when θ diverges, X̃(t) becomes a Wiener process with drift µ(t). More-

over, to give a quantitative information on the evolution of the membrane potential,

we focus on the case m(t) = A sin t.

In general, X̃(t) is solution of the following stochastic equation:

dX̃(t) =
[
− X̃(t)

θ
+ µ+m(t)

]
dt+ σ dB(t), X̃(t0) = η, (3.1)

where B(t) is a standard Wiener process and η represents the resting potential.

Equation (3.1) describes the evolution of the membrane potential.

To analyze the effect of the time dependent drift, in the following we denote by

X̂(t) the process obtained from X̃(t) when m(t) = 0. Hence, X̂(t) is described by

the following equation:

dX̂(t) =
[
− X̂(t)

θ
+ µ
]
dt+ σ dB(t), X̂(t0) = η. (3.2)

X̂(t) is a time homogeneous OU process with drift Â1(x) = −x/θ+ µ and infinites-

imal variance Â2 = σ2. A sample path of X̂(t) is plotted on the left of Figure 3.2,

while sample paths of X̂(t) and of X̃(t) with periodic m(t) are compared on the

right. In particular, we choose µ = −14 mV/ms, θ = 5 ms, σ = 1 mV/ms1/2,

η = −70 mV and we consider various amplitudes of m(t): m(t) = sin t (magenta

line), m(t) = 5 sin t (black line) and m(t) = 10 sin t (red line). The sample path of

X̂(t) is flat when it is compared to ones of X̃(t), indeed the introduction of m(t)

makes the process more fluctuating. Moreover, by increasing A the sample paths of

the process X̃(t) become more and more oscillating.
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Note that X̂(t) can be obtained from X̃(t) via a transformation as shown in the

following Remark.

Remark 5. Let

d(t) = −e−t/θ

∫ t

t0

m(u) eu/θ du.

Then, the process

X̂(t) = X̃(t) + d(t) (3.3)

is a homogeneous OU process characterized by drift and infinitesimal variance

Â1(x) = −x/θ + µ Â2 = σ2. (3.4)

Proof. Let v[X̃(t), t] = X̂(t), from the Ito’s lemma we have that X̂(t) satisfies the

following stochastic equation

dX̂(t) =

(
∂v

∂t
+
∂v

∂x
F +

1

2
σ2 ∂

2v

∂x2

)
dt+

∂v

∂x
σ dB(t),

where

∂v

∂t
= −m(t)− d(t)

θ
,

∂v

∂x
= 1,

∂2v

∂x2
= 0, F = −X(t)

θ
+ µ+m(t).

It follows that

dX̂(t) =

(
−X̃(t) + d(t)

θ
+ µ

)
dt+ σ dB(t) ≡

(
−X̂(t)

θ
+ µ

)
dt+ σ dB(t)

is the Ito’s equation for the diffusion process X̂(t) characterized by infinitesimal

moments (3.4).

In particular, by choosing m(t) = A sin(t) and t0 = 0, we have

d(t) =
Aθ

1 + θ2
[
θ
(
cos t− e−t/θ

)
− sin t

]
, (3.5)

and d(0) = 0.

The transition pdf of X̃(t) is a normal density:

f̃(x, t|y, τ) = 1√
2 π V (t|τ)

exp

{
− [x−M(t|y, τ)]2

2V (t|τ)

}
(3.6)

with mean and variance

M(t|y, τ) = µθ + (y − µθ) e−(t−τ)/θ + e−t/θ

∫ t

τ

m(u)eu/θ du,
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V (t|τ) = σ2θ

2

[
1− e−2 (t−τ)/θ

]
,

respectively. Note that if m(t) is such that

m = lim
t→∞

e−t/θ

∫ t

τ

m(u)eu/θ du,

exists and it is finite, then the steady state density of X̃(t) is:

W̃ (x) = lim
t→∞

f̃(x, t|y, τ) = 1√
πσ2θ

exp

{
− [x− µθ −m]2

σ2θ

}
.

Alternatively, when m(t) is a periodic function with period Q it is possible to con-

sider limn→∞ f̃(x, t + nQ|y, τ) = W̃ (x, t); if this limit exists, W̃ (x, t) plays a role

analogous to steady state density.

To analyze the influence of m(t) on the transition pdf, we consider the relative

entropy between f̃(x, t|y, τ) and f̂(x, t|y, τ):

D(f̃ |f̂) =
∫

R

f̃(x, t|y, τ) log f̃(x, t|y, τ)
f̂(x, t|y, τ)

dx, (3.7)

where

f̂(x, t|y, τ) = 1√
2 π V (t|τ)

exp

{
− [x− M̂(t|y, τ)]2

2V (t|τ)

}
, (3.8)

with M̂(t|y, τ) = y e−(t−τ)/θ+µθ[1− e−(t−τ)/θ], represents the transition pdf of X̂(t).

The relative entropy, although it is not symmetrical, is used as a measure of the

“distance” between f̃ e f̂ . Making use of (3.6) and (3.8), from (3.7) we have

D(f̃ |f̂) = [M(t|y, τ)− M̂(t|y, τ)]2
2V (t|τ)2 . (3.9)

In Figure 3.3 for µ = −14, θ = 5 and σ = 2, we plot on the left the time functions

f̂(−65, t| − 70, 0) (blue line) and f̃(−65, t| − 70, 0) with m(t) = A sin t by choosing

A = 1 (magenta line), A = 2 (black line) and A = 3 (red line). The function

f̃(−65, t|−70, 0) fluctuates around f̂(−65, t|−70, 0) and the width of the fluctuations

increases as A increases. On the right of Figure 3.3 the relative entropy (3.9) is

plotted. Note that the relative entropy vanishes at times in which f̃ = f̂ , moreover

it increases as A increases according to the behavior shown on the left of Figure 3.3.
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Figure 3.3: On the left, the functions f̂(−65, t| − 70, 0) (blue line) and f̃(−65, t| − 70, 0)
with m(t) = A sin t by choosing A = 1 (magenta line), A = 2 (black line) and A = 3
(red line) are plotted. On the right, D(f̃ |f̂) is plotted with m(t) = sin t (magenta line),
m(t) = 5 sin t (black line) and m(t) = 10 sin t (red line). The chosen parameters are
µ = −14, θ = 5 and σ = 2.

Let S̃ ∈ R be the state of the process X̃(t) representing the firing threshold. Let

T̃y(τ) = inf{t ≥ τ : X̃(t) > S̃}, X̃(τ) = y < S̃

be the FPT through S̃ and let g̃(S̃, t|y, τ) be its pdf. The random variable T̃y(τ)

describes the time of occurrence of neuronal spike and g̃(S̃, t|y, τ) is the theoretical

counterpart of the firing pdf for the neuron. Making use of Remark 5, we can study

the FPT problem of X̃(t) through S̃ via the FPT problem of X̂(t) through

Ŝ(t) = S̃ + d(t) = S̃ − e−t/θ

∫ t

m(u) eu/θ du. (3.10)

In particular, denoting by ĝ[Ŝ(t), t|ŷ, τ ] the FPT pdf of X̂(t) from ŷ = y + d(τ)

through Ŝ(t), we have that g̃(S̃, t|y, τ) = ĝ[Ŝ(t), t|ŷ, τ ]; so we focus on ĝ[Ŝ(t), t|ŷ, τ ].
Unfortunately, the FPT pdf ĝ is known analytically only in particular cases that are

not of interest in the present context. However, numerical approximations for FPT

pdf can be obtained via the appropriate algorithm described in the Subsection 1.1.3

of Chapter 1.

Furthermore, since X̂(t) admits steady state density

Ŵ (x) = lim
t→∞

f̂(x, t|y, τ) = 1√
πσ2θ

exp

{
− [x− µθ]2

σ2θ

}
, (3.11)

the FPT pdf exhibits an exponential behavior for large times when the boundary is

far from the starting point, as we showed in the Chapter 1. In particular, two cases

85



can be distinguished:

1. if Ŝ(t) admits limit Ŝ = limt→∞ Ŝ(t), then for large times one has:

ĝ[Ŝ(t), t|τ ] ∼ R(Ŝ) exp{−R(Ŝ) (t− τ)}

where

R(Ŝ) =
[ Ŝ
θ
− µ

]
Ŵ (Ŝ);

2. if Ŝ(t) is a periodic function of period Q, then for sufficiently large time the

following approximation holds

ĝ[Ŝ(t), t|τ ] ∼ λ(t) exp {−Λτ (t)} , (3.12)

where

λ(t) =

{
−U ′(t) +

U(t)

θ
− µ

}
Ŵ [U(t)] and Λτ (t) =

∫ t

τ

λ(u) du, (3.13)

with U(t) = limn→∞ Ŝ(t+ nQ) and Ŵ (x) defined in (3.11).

If m(t) = A sin(t), one has U(t) = S̃+ d(t) with d(t) given in (3.5), hence it follows:

λ(t) =

(
A sin(t) +

S̃ + d(t)

θ
− µ

)
1√
πσ2θ

exp

{
− [S̃ + d(t)− µθ]2

σ2θ

}
.

In Figure 3.4 the approximation of the FPT pdf ĝ[Ŝ(t), t|τ ] obtained via (3.12) is

plotted for Ŝ(t) = −60 + d(t), where d(t) is given in (3.5) with A = 1, and for

µ = −14, θ = 5, σ = 2 on the left and σ = 3 on the right.

3.2 The return process

In this Section the return process constructed on X̂(t) is studied to describe the

train of spikes characterizing the neuronal activity. Note that if the firing threshold

is asymptotically constant, the firing time mean is time independent. This situation

has been widely studied in [33], so that in the following we will analyze the return

process constructed on X̂(t) making use of the exponential approximation of the

FPT pdf (3.12).
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Figure 3.4: For the process X̂(t) with µ = −14, θ = 5, σ = 2 on the left and σ = 3 on the
right, the approximation of FPT pdf (3.12) is plotted for Ŝ(t) = −60 + d(t) where d(t) is
given in (3.5) with A = 1.

3.2.1 Description of the process

Let X(t) be the return process constructed from X̂(t) in the following way. Starting

at X(0) = X̂(0) = η, the process goes on as described by (3.2) until the threshold

Ŝ(t), defined in (3.10), is reached for the first time. After this time the process is

instantaneously reset to η and then evolves as described by (3.2) until Ŝ(t) is reached

again, and so on.

The process X(t) consists of recurrent cycles I1, I2, . . . of random durations

I1, I2, . . .. The random variable I1 is the waiting time for the first firing and,

for i = 2, 3, . . ., Ii measures the time interval elapsing between the (i − 1)-th and

the i-th firing.

The sample path of X(t) is solution of the following stochastic equation:

dX(t) =

(
−X(t)

θ
+ µ

)
dt+ σ dB(t)− d[(Ŝ(t)− η)P (t)]

where B(t) is a standard Wiener process, P (t) is a non-homogeneous Poisson process

with intensity λ(t), given in (3.13), and the term Ŝ(t)− η represents the amplitude

of the jumps. In this context, η represents the resting potential and each return,

occurring simultaneously with a jump, represents a neuronal spike.

Figures 3.5-3.6 show the sample-paths of X(t) assuming that the process returns

on the starting point η when the boundary Ŝ(t) is reached. In Figure 3.5, for

µ = −10 and θ = 5, we have on the left σ = 1 and Ŝ(t) = −50 + d(t), where d(t) is

given in (3.5) with A = 1, so the distance between the starting point η = −70 and

the threshold is approximatively 20; moreover η is different from the equilibrium

point of the process being µθ = −50. On the right of Figure 3.5, the threshold
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Figure 3.5: For η = −70, µ = −10 and θ = 5, a sample path of X(t) is plotted assuming
Ŝ(t) = S̃+d(t) (black curve) with σ = 1 and S̃ = −50 on the left, with σ = 2 and S̃ = −60
on the right; d(t) is given in (3.5) with A = 1.

Figure 3.6: For η = −70, µ = −14 and θ = 5, a sample path of X(t) is plotted assuming
Ŝ(t) = S̃+d(t) (black curve) with σ = 3 and S̃ = −60 on the left, with σ = 4 and S̃ = −60
on the right; d(t) is given in (3.5) with A = 1.
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Ŝ(t) = −60+d(t) has been approached to η = −70, simultaneously the width of the

environmental oscillations σ = 32 has been increased, consequently the frequency of

the jumps increases. In Figure 3.6, for µ = −14 and θ = 5, we consider η = µθ = −70

and Ŝ(t) = −50+ d(t) such that |Ŝ(t)− η| ≈ 10. Note that on the left of Figure 3.6

the threshold is rarely reached although σ = 3; the frequency of the jumps increases

when σ grows, as shown on the right of Figure 3.6, where σ = 4.

3.2.2 Analysis of interspike intervals (ISI)

To analyze the sequence of the spikes we denote with T = (T1, T2, . . . , Tn) the

random vector representing the instants of time in which firings occur. Note that

Ti is a FPT random variable and the variables Ti (i = 1, . . . , n) conditioned from

Ti−1 = ti−1 are independent and distributed according to ĝ[Ŝ(t), t|ti−1]. Now we

study the joint density of T.

For t0 < t1 < t2 < . . . < tn it follows:

fT(t1, t2, . . . , tn) =
n∏

i=1

λ(ti) exp{−Λti−1
(ti)} (3.14)

= exp{−
n∑

i=1

Λti−1
(ti)}

n∏

i=1

λ(ti) = exp{−Λt0(tn)}
n∏

i=1

λ(ti).

From (3.15) the marginal density and the distribution function of the i-th element

Ti of T can be determined. Indeed, one has

fTi
(ti) =

∫ ti

t0

dti−1

∫ ti−1

t0

dti−2 . . .

∫ t2

t0

dt1 fT1,T2,...,Ti
(t1, t2, . . . , ti)

=

∫ ti

t0

dti−1

∫ ti−1

t0

dti−2 . . .

∫ t2

t0

dt1 exp{−Λt0(ti)}
i∏

j=1

λ(tj),

and, after k < i integrations, it follows:

fTi
(ti) =

exp{−Λt0(ti)}λ(ti)
k!

∫ ti

t0

λ(ti−1)dti−1 . . .

∫ tk+2

t0

λ(tk+1)[Λ(tk+1)]
kdtk+1.

Hence, it results:

fTi
(ti) = λ(ti)

[Λt0(ti)]
i−1

(i− 1)!
exp{−Λ0(ti)}. (3.15)

From (3.15) the marginal distribution function of Ti can be determined. In particular

one has:

FTi
(t) =

∫ t

t0

exp{−Λt0(ti)}λ(ti)
[Λt0(ti)]

i−1

(i− 1)!
dti;
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placing x = Λt0(t) so that dx = λ(t)dt, it follows:

FTi
(t) =

∫ Λt0 (t)

t0

xi−1

(i− 1)!
e−x dx.

Therefore

FTi
(t) = 1−

i−1∑

k=0

[Λt0(t)]
k

k!
exp{−Λt0(t)}. (3.16)

We use (3.16) to determine the probability of occurrence of k firings up to time

t. To this aim, we denote by M(t) the stochastic process that counts the number

of firings records in (t0, t). It results that M(t) is a Poisson process with intensity

Λt0(t). Indeed,

P [M(t) = k|M(t0) = 0]

= P [M(t) ≥ k|M(t0) = 0]− P [M(t) ≥ k + 1|M(t0) = 0]

= FTk
(t)− FTk+1

(t) =
[Λt0(t)]

k

k!
exp{−Λt0(t)}.

To analyze the ISI distribution we assume that T0 = t0 and for n = 0, 1, . . . we

denote with In+1 = Tn+1 − Tn the random variable describing the duration of the

(n+1)-th ISI, i.e. the duration of the time interval between the n-th and (n+1)-th

firing. One has:

FIn+1|Tn(x|tn) = P [In+1 ≤ x|Tn = tn] = 1− P [In+1 > x|Tn = tn]

= 1− P [Tn+1 > x+ tn|Tn = tn] =

∫ x+tn

tn

ĝ[Ŝ(t), t|tn] dt,

so, assuming that (3.12) holds, it follows that

FIn+1|Tn(x|tn) = 1− exp{−Λtn(tn + x)}.

Therefore, In+1 conditioned from Tn = tn (n = 0, 1, . . .) is distributed according to

a pdf with hazard function λ(tn + x) and integrated hazard function Λtn(tn + x),

that is:

fIn+1|Tn(x|tn) =
∂

∂x
FIn+1|Tn(x|tn) = λ(tn + x) exp{−Λtn(tn + x)}.

3.3 The effect of refractoriness

The refractoriness is the time interval of variable duration that follows a spike during

which the neuron is incapable of responding to input signals. We introduce refrac-
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Figure 3.7: A sample path of XR(t) is plotted with a constant refractoriness of 5 ms
and for η = −70, θ = 5. On the left µ = −10, S̃ = −50, σ = 1, while on the right
µ = −14, S̃ = −60, σ = 3. The black line is the threshold Ŝ(t) = −50 + d(t) on the left
and Ŝ(t) = −60 + d(t) on the right, with d(t) defined in (3.5) for A = 1.

toriness periods in the return process so that the interspike’s interval, starting from

the second one, can be considered as consisting of the sum of two terms: the first

one represents the refractory period following the firing, the second term describes

the time for firing from the state η. Therefore we construct a new process XR(t)

describing the evolution of membrane potential in the presence of refractoriness as

follows. Starting at XR(0) = X̂(0) = η, a firing takes place when X̂(t) attains for

the first time the firing threshold Ŝ(t), defined in (3.10), after which the neuron is

unable to fire again for a period of refractoriness of random duration. At the end

of this period, XR(t) is instantaneously reset to η. The subsequent evolution of the

process goes on as described by X̂(t), until the boundary is again reached. A new

firing then occurs, followed by the period of refractoriness, and so on.

The process XR(t) consists of recurrent cycles F0, R1, F1, R2, . . . each of ran-

dom duration. The duration of cycle Fi is represented by the random variable Fi

described by the FPT pdf of X̂(t) through Ŝ(t) starting from η. Moreover, for

i = 1, 2, . . ., the refractory period Ri is represented by the random variable Ri. The

pdf of Ri is denoted with hti(t) and it depends on the time ti in which the last spike

occurs. In particular, for i = 0, 1, . . ., the duration Fi of Fi denotes the time interval

elapsing between the i-th reset of the membrane potential at the value η and the

(i+1)-th FPT from η to Ŝ(t). Instead, for i = 1, 2, . . ., Ri indicates the duration of

the i-th refractory period. Note that the random variables Fi are not independent

and identically distributed because they depend on the instant of the last reset as

well as R1, R2, . . . depend on the last firing time.

In Figure 3.7 sample paths of XR(t) are shown with a constant refractoriness of

5 ms and for η = −70, θ = 5. On the left µ = −10, σ = 1, while on the right
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Figure 3.8: The random variables that describe the ISI are represented; the same sample
path of the process plotted on the left of Figure 3.7 is considered.

µ = −14, σ = 3. The black line is the threshold Ŝ(t) = −50 + d(t) on the left and

Ŝ(t) = −60 + d(t) on the right, with d(t) defined in (3.5) for A = 1. For the chosen

parameters, we can compare the left side of Figure 3.7 with the left side of Figure

3.5 and the right side of Figure 3.7 with the left side of Figure 3.6. Since in Figures

3.6 and 3.5 sample paths of the process X(t) without refractoriness are considered,

the sample path of XR(t) reaches the thresholds less times than X(t) during 50 ms.

The random variables that describe the ISI are given by:

IR1 = F0, IRn+1 = Rn + Fn (n = 1, 2, . . .);

they are represented in Figure 3.8 in which we consider the same sample path of the

process plotted on the left of Figure 3.7.

To study the ISI pdf’s we denote by TR = (TR
1 , T

R
2 , . . . , T

R
n ) the random vector

that represents the instants of time in which single firings occur during the evolution

of XR(t). Note that TR
1 = IR1 is a FPT random variable, moreover TR

n =
∑n

k=1 I
R
k .

Let

FIRn+1|TR
n
(x|tn) = P [IRn+1 ≤ x|TR

n = tn]

be the ISI distribution conditioned by the occurrence of the last firing at time tn.

Proposition 5. For n = 1, 2, . . . the ISI conditional distribution is:

FIRn+1|TR
n
(x|tn) =

∫ x+tn

tn

htn(r) [1− exp{−Λr(x+ tn)}] dr (3.17)
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and the ISI conditional pdf results:

fIRn+1|TR
n
(x|tn) =

∫ x+tn

tn

htn(r)λ(tn + x) exp {−Λr(x+ tn)} dr. (3.18)

Proof. To obtain the distribution FIRn+1|TR
n
(x|tn) we note that x represents the width

of the interval (tn, tn + x). So, after the instant of the n-th firing, occurred at time

tn, there is a refractory period that can have width at most x and ends at a certain

time r. In the remaining interval (r, tn + x) another firing occurs. It follows that:

FIRn+1|TR
n
(x|tn) =

∫ x+tn

tn

dr htn(r)

∫ x+tn

r

du λ(u) exp

{
−
∫ u

r

λ(v) dv

}
, (3.19)

from which, recalling (3.13), equation (3.17) immediately follows.

By taking the derivative with respect to x in (3.19), we get:

fIRn+1|TR
n
(x|tn) =

∂

∂x

∫ x+tn

tn

[htn(r) (1− exp {−Λr(x+ tn)})] dr

= htn(tn + x) [1− exp {−Λtn+x(tn + x)}] ∂(tn + x)

∂x

− htn(tn) [1− exp {−Λtn(tn + x)}] ∂(tn)
∂x

+

∫ x+tn

tn

htn(r)λ(tn + x) exp {−Λr(x+ tn)} dr,

that leads to (3.18).

In the following we consider two types of refractoriness. In the first case the

refractoriness is constant and its duration is 1/ζ, whereas in the second case we

consider a refractoriness period of random duration characterized by exponential

distribution with parameter ζ, so that its mean duration is the same of the constant

case.

3.3.1 Constant refractory period

We assume that the refractoriness period is constant and of duration 1/ζ, with ζ > 0.

So, assuming that the last spike occurs at τ , one has:

hτ (t) = δ

(
t− τ − 1

ζ

)
, (3.20)

where δ(x) is the Dirac delta function. From Proposition 5, the ISI distribution

can be evaluated. In particular, from (3.17), recalling (3.20) and making use of the

properties of the Dirac delta function, it follows that:
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FIRn+1|TR
n
(x|tn) =

∫ tn+x

tn

δ

(
r − tn −

1

ζ

)
[1− exp {−Λr(tn + x)}] dr

=

{
1− exp

{
−Λtn+

1
ζ
(tn + x)

}
, if x > 1

ζ

0, if x < 1
ζ
,

with Λτ (t) defined in (3.13). Hence, one has:

FIRn+1|TR
n
(x|tn) = H

(
x− 1

ζ

)[
1− exp

{
−Λtn+

1
ζ
(tn + x)

}]
,

where H(x) is the Heaviside unit step function. Furthermore, the ISI pdf is:

fIRn+1|TR
n
(x|tn) = H

(
x− 1

ζ

)[
λ(tn + x) exp

{
−Λtn+

1
ζ
(tn + x)

}]
. (3.21)

In Figures 3.9-3.10 the ISI pdf’s in the presence of constant refractoriness are plotted
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Figure 3.9: For the same parameters of the left side in Figure 3.7 and tn= 5 ms, the
ISI pdf’s in the presence of constant refractoriness, given in (3.21), are plotted for ζ = 1
(black line) and ζ = 0.1 (red line).

with the same parameters of the left side in Figure 3.7. In Figure 3.9, we choose

ζ = 0.1 (red line), which represents a refractoriness of 10 ms, and ζ = 1 (black line).

Note that when the refractoriness period is longer (red line) the ISI pdf assumes

higher values at times greater than 10 ms. Indeed, for a fixed time x ≥ 10, the

spikes are more frequent for shorter refractoriness, consequently, the distribution of

the ISI decreases when ζ increases. The ISI pdf without refractoriness fIn+1|T̂n
(blue

line) and the ISI pdf in the presence of constant refractoriness fIRn+1|TR
n

(red line),

with 1/ζ = 10 ms, are compared in Figure 3.10. From the left of Figure 3.10, one

can observe that, assuming the last spike occurs at the same time tn, the ISI pdf
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with refractoriness is not shifted with respect to that without refractoriness, as one

would expect. This is due to the assumption that the two densities are evaluated

for the same instant tn. Indeed, if we consider the ISI pdf without refractoriness

evaluated in tn +1/ζ, we have the ISI pdf with refractoriness is shifted with respect

to that without refractoriness, as shown on the right of Figure 3.10.
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Figure 3.10: For the same parameters of Figure 3.9, on the left the ISI pdf’sfIn+1|T̂n
(x|tn)

(blue line) and f IRn+1|TR
n
(x|tn) with ζ =0.1ms (red line) are plotted, on the right the ISI

pdf’s fIRn+1|TR
n
(x|tn) and fIn+1|T̂n

(x|tn + 1
ζ ) are compared.

3.3.2 Exponential refractory period

We suppose that the refractory period is a random variable having an exponential

distribution of parameter ζ. Hence, assuming that the last firing occurs at time τ

one has:

hτ (t) =

{
ζ exp {−ζ(t− τ)}, if t > τ

0, if t ≤ τ.
(3.22)

To determine the ISI distribution we make use of the Proposition 5. In particular,

from (3.17), recalling (3.22), one has:

FIRn+1|TR
n
(x|tn) =

∫ tn+x

tn

ζe−ζ(r−tn)[1− exp {−Λr(tn + x)}] dr (x > τ),

from which it follows:

FIRn+1|TR
n
(x|tn) = 1− e−ζx − ζeζtn

∫ tn+x

tn

exp {−ζr − Λr(tn + x)} dr (x > τ),
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Figure 3.11: For the same parameters of Figure 3.9 and tn= 5 ms, the ISI pdf given in
equation (3.23) with ζ = 1 (black line) and with ζ = 0.1 (red line) are plotted.
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Figure 3.12: For the same parameters of Figure 3.10, on the left the ISI pdf’s fIn+1|T̂n
(x|tn)

(blue line) and fIRn+1|TR
n
(x|tn) (red line) given in equation (3.23) with ζ = 0.1 are plotted;

on the right, the densities fIn+1|T̂n
(x|tn + 1

ζ ) (blue line) and fIRn+1|TR
n
(x|tn) (red line) are

compared.

where Λτ (t) is defined in (3.13). Moreover, the ISI density in the presence of expo-

nential refractoriness is

fIRn+1|TR
n
(x|tn) = ζeζtnλ(tn + x)

∫ tn+x

tn

exp {−ζr − Λr(tn + x)} dr (x > τ).

(3.23)

In Figures 3.11-3.12, the ISI pdf’s in the presence of exponential refractoriness,

obtained from equation (3.23), are plotted for the same parameters of Figure 3.9-

3.10, respectively. From Figure 3.11, where ζ = 0.1 (red line) and ζ = 1 (black line),

we note that for small amplitudes (small values of x) the ISI pdf for ζ = 1 exceeds

the density for ζ = 0.1 and then this behavior reverses, differently from the case of

constant refractoriness (cf. Figure 3.9). Indeed, since the refractoriness mean is 1/ζ

ms, one has that for small values of x, corresponding to small ISI durations, it is

more likely that the neuron with smaller mean refractoriness fires. As in the case of
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constant refractoriness we compare the ISI densities with and without refractoriness.

From Figure 3.12, where ζ = 0.1, we note that, also in this case, the curves are not

shifted, whereas this property is verified when we compare fIn+1|T̂n
(x|tn + 1

ζ
) and

fIRn+1|TR
n
(x|tn) at least for great values of x as we can see on the right of Figure 3.12.
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Conclusions and future

developments

In this thesis we have studied evolutionary processes subject to jumps and we have

considered various applications of interest in different areas.

A jump, or catastrophe, is considered as a random event that shifts the state of

the process in a certain level from which the process can re-start. We have intro-

duced the effect of jumps in deterministic models for rumor spreading, in time non-

homogeneous Markov chains and in stochastic diffusion processes with particular

attention to the Gompertz model for cancer evolution and to the non-homogeneous

Ornstein-Uhlenbeck process for neuronal activity.

In the following, we summarize the performed studies and we provide some possible

developments.

• We have firstly analyzed rumor spreading mechanisms, during which one can

consider the effect of an external entity that denies the rumor so that the

process is reset to the initial state consisting in a unique spreader that renews

the spreading process. The denials are random and they occur according to a

Poisson process with parameter ξ.

Two rumor spreading models with denials have been studied. In both models

the population has been divided into three groups: the spreaders (who know

and transmit the rumor), the ignorants (who do not know the rumor) and

the stiflers (who know the rumor but do not transmit it). The rumor spreads

through pair-wise contacts between spreaders and the other people occurring

with rate λ.

We have considered the well-known DK model with denials (model A), and an

alternative model in which denials occur and each spreader can transmit the

rumor at most k times (model B). For both models, we have focused on the

asymptotic percentage of ignorants to identify the density of the population

that knows the rumor.

We have noted that, in both cases the asymptotic percentage of ignorants

increases when the rate of the denials grows respect to the rate of the contacts;
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in particular, if the size of the population is large and ξ ≥ λ, the rumor does

not spread at all.

For the model B, the density of individuals that knows the rumor increase

with k, since the rumor has more chance to spread. Moreover, the model B

behaves like the model A when k increases, in particular a good match is found

already for k = 6. In both models, we have obtained that at most the half of

the population can be informed about the rumor.

Future work would consists in studying the corresponding stochastic processes

and in constructing other models that follows different rules.

• Concerning the time non-homogeneous Markov chains, we have considered the

effect of catastrophes which occur at random times and that empty instanta-

neously the system reducing to zero the number of customers.

Catastrophes occur according to a time non-homogeneous Poisson process; in

particular, the catastrophe’s rates depend on time and on the number of cus-

tomers in the queue.

We have analyzed the system by studying the transition probabilities and the

moments of the number of customers in the system. We have focused on the

problem of FVT to zero state with particular attention to busy period of the

service center, i.e the time interval during which at least one server is busy.

Specifically, we have paid attention to the case in which the catastrophe in-

tensity is a periodic function of time obtaining some properties of asymptotic

distribution and of the FVT density. We have studied the M/M/1 queueing

systems to perform an example of the obtained results.

• In Chapter 1, Stochastic diffusion processes with random jumps, we construct

diffusion processes with jumps by supposing that catastrophes occur at time

interval following a general distribution and the return points are randomly

chosen. Moreover, we have considered the possibility that, after each jump, the

process can evolve with a different dynamics respect to the previous processes;

we have also supposed that the inter-jump intervals and the return points are

not identically distributed. For this type of process, we analyze the pdf, its

moments and the FPT problem. We have also studied the Wiener process

with jumps, as example.

• In Chapter 2,A Gompertz model with jumps for an intermittent treat-

ment in cancer growth, to analyze the effect of a therapeutic program that

provides intermittent suppression of cancer cells, we have constructed a Gom-

pertz process with jumps for which a jump represents an application of the

therapy.
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Firstly, we have considered a simple model in which the Gompertz process

has the same characteristics between two consecutive jumps, the return points

and the inter-jump intervals are random and identically distributed. For this

model, we have studied the transition pdf, the average state of the system

and the number of therapeutic applications to be carried out in time intervals

of fixed amplitude. We have considered the degenerate and the exponential

distribution for the inter-jump intervals and we have studied three different

distributions of the return point (degenerate, uniform and bi-exponential). We

have noted that the obtained results for different distribution are comparable,

so, in the following studies, we have considered only the degenerate case with-

out loss of generality.

After this first step, we have constructed a more realistic model. Specifically,

we have assumed: the therapeutic program has a deterministic scheduling, so

that jumps occur at fixed and conveniently chosen time instants; the return

points are deterministic; therapeutic treatments weaken an ill organism and

when a therapy is applied there is a selection event in which only the most

aggressive clones survive (for example this perspective could be applied to tar-

geted drugs that have a much lower toxicity for the patient).

Taking into consideration these aspects, we have constructed the deterministic

and the stochastic processes with jumps.

Two possible scheduling have been proposed in order to control the cancer

growth. In the first scheduling, we have assumed that inter-jump intervals

have equal size. We have also supposed that the return points are all equal

after each jump. In this case, we have obtained interesting properties which

allow to choose the most appropriate application times, when the toxicity of

the drug is fixed.

In the second scheduling, we have suggested to apply the therapy just before

the cancer mass reaches a fixed control threshold S. To this aim, we have stud-

ied the FPT problem through S and we have provided information on how to

choose the application times so that the cancer size remains bounded during

the treatment. The goodness of the obtained results has been measured via

the increase of the mean FPT of the process through S. The performed anal-

ysis have shown that better results are obtained when the therapy is applied

as later as possible, for higher control thresholds and smaller weakening rates.

Moreover, we have compared the deterministic and stochastic approaches not-

ing that, for both scheduling, the mean FPT through S increases as the am-

plitude of random fluctuations increases.

We have also provided a comparison between the two proposed scheduling
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concluding that the second strategy is the best, i.e. it is preferable to apply

the therapy just before the cancer mass crosses the control threshold.

Future study would consist the inclusion of delay times after each therapeutic

application. Indeed, it is reasonable to think that the effect of an applica-

tion is not instantaneous, but it needs a time interval to observe the effect of

the treatment. Such interval can have random duration imagining that the

reaction times are variable for different individuals.

• In Chapter 3,Return process with refractoriness for a non-homogeneous

Ornstein-Uhlenbeck neuronal model, we have considered a diffusion stochas-

tic process with jumps for the neuronal activity.

To describe the input-output behavior of a single neuron subject to a diffusion-

like dynamics, we have modeled the neuronal membrane potential via the

Ornstein-Uhlenbeck (OU) diffusion process. We have assumed that inputs,

while remaining a constant amplitude, are characterized by time-dependent

rates. In particular, we have considered an OU process characterized by a

time-dependent drift in which appears a periodic function m(t) representing

some oscillatory effects of the environment acting on the neuron.

A return process has been constructed on such time non-homogeneous OU

process as follows. Starting from a value representing the resting potential,

the neuronal membrane potential follows the non-homogeneous OU process

as long as a threshold (the action threshold) is reached for the first time. In

correspondence to the reaching of this peak, a neuronal spike occurs resetting

the process to the resting potential. Then, the membrane potential evolves as

before until the threshold is reached again causing another neuronal spike, and

so on. This process describes the spike train. In order to study the ISI dis-

tribution, we have studied the FPT random variable of the non-homogeneous

OU process because it represents the theoretical counterpart of the neuronal

firing time, so that the FPT’s pdf describes the pdf of the firing time. In this

regard, for the FPT pdf of the OU process we have made use of an asymptotic

behavior of exponential type for the firing time.

Concerning this return process, we have studied the ISI distribution and the

number of firings occurring until a fixed time.

Moreover, we have taken into account the effect of the refractoriness on the

model. Hence, we have introduced random downtimes which delay spikes,

simulating the effect of refractoriness. We have provide the expression of the

ISI distribution also for the process with refractoriness. This distribution is

conditioned by the time in which the last fire occurs.

A theoretical and numerical analysis of the return process in the presence of
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constant and exponential refractoriness has been performed.

Some similarities between the ISI pdf with refractoriness and without refrac-

toriness have been observed. In particular, our analysis has shown that the

ISI pdf in the presence of refractoriness is shifted with respect to the ISI pdf

in the absence of refractoriness provided the latter is suitably conditioned.

Future research may investigate the behavior of the model with different ex-

ternal inputs (different choices of the function m(t)) as well as different refrac-

toriness distributions.
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