Universita degli Studi di Salerno
Dipartimento di Informatica

Dottorato di Ricerca in Informatica - X111 Ciclo

Tesi di Dottorato

Improving Network Anomaly Detection
With Independent Component Analysis

Ugo Fiore

Anno Accademico 2013-2014

Candidato: Coordinatore: Tutor:

Ugo Fiore Prof. Giuseppe Persiano Prof. Alfredo De Santis

To the memory of Antonio Di Meo

Abstract

Complexity, sophistication, and rate of growth of modern networks, coupled with
the depth, continuity, and pervasiveness of their role in our everyday lives, stress the
importance of identifying potential misuse or threats that could undermine regular
operation. To ensure an adequate and prompt reaction, anomalies in network traflic
should be detected, classified, and identified as quickly and correctly as possible.
Several approaches focus on inspecting the content of packets traveling through the
network, while other techniques aim at detecting suspicious activity by measuring
the network state and comparing it with an expected baseline. Formalizing a model
for normal behavior requires the collection and analysis of traffic, in order to iso-
late a set of features capable of describing traffic completely and in a compact way.
The main focus of this dissertation is the quest for good representations for net-
work traffic, representation that are abstract and can capture and describe much of
the intricate structure of observed data in a simple manner. In this way, some of
the hidden factors and variables governing the traffic data generation process can
be unveiled and disentangled and anomalous events can be spotted more reliably.
We adopted several methods to achieve such simpler representations, including In-
dependent Component Analysis and deep learning architectures. Machine learning
techniques have been used for verifyving the improvement in classification effective-

ness that can be achieved with the proposed representations.

Acknowledgements

[would like to express my gratitude to my supervisor Alfredo De Santis, who gave me
the opportunity of taking this PhD and is an endless source of ingpiration, insights,
and guidance.

[am indebted with the course coordinator Pino Persiano for creating and main-
taining the conditions for fruitful research. Special thanks go te Enzo Loia and
Paolo Zanetti for providing many stimulating opportunities. I would also like to
thank Guglielmo Tamburrini, who gracefully accepted my decision to dedicate all
my time to research.

[am grateful to Francesco Palmieri for his long-lasting friendship and collabo-
ration, and to Nello Castiglione for his initiative and teamwork spirit.

Finally, my thanks from the deepest of my heart go to my wife, my daughter,

and my son, who brighten every day of my life.

vi

Contents

Abstract

Acknowledgements

1 Introduction

1.1
1.2
1.3

Our contribution e e
State of the art

Organization of this thesis

2 Network anomaly detection

2.1

What makes network anomaly detection hard

3 Finding Appropriate Representations

3l

Undirected models o L e

4 Independent Component Analysis

4.1
4.2
4.3
4.4

Principal Component Analysis
Centering and Whitening
Erthosonalizablon & » 2 6 w 5 5 8 6 " 4 5 5 6 " 8 § % 6 % ¥ 58 5 % B 8 8y

Independence e

vii

vi

11
13

19
27

5 Improving anomaly detection

5.1 Different views on the same phenomenon

5.2 Baselining and Features Extraction

53 FastICA

54 Knowledge Construction: Rule-Based Classifier

6 Experimental evaluation

6.1 Classification Performance Metrics

6.2 'Testing on Real Traffic Data

6.3 Analysis of the Results

6.3.1 ICA at a single collection point
6.3.2 ICA at five collection points

6.3.3 Performance of clasifiers

7 Conclusions

A Log likelihood in RBMs

vill

41
42
45
48
49

58
62
67
68
71
75
32

88

91

List

3.1
3.2

4.1

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

of Figures

Two Restricted Boltzmann Machines stacked

The composite generative model from the RBMs in Fig. 3.1

Ilustration of the difference between transformations for a uniformly

distributed bidimensional signal
Pruning on the decision tree example

Confusion matrix for a binary classification task.
Kommiple BOU GV ¢+ « 505 6 2 5 % 58 8 5% 5 6 25 % 5 688 % 548 3
Unmixing matrix for the testing data (packet counts only).
Scatter plot of packet and byte counts.
Scatter plot of the independent components (IC).,
Scatter plot of packet and byte counts vs. the ICs..
Time series chart of packets and bytes, single collection point.

Time series chart of the ICs, single collection point.
Time series chart of packets, five collection points.
Time series chart of [Cs from packets, five collection points.
Time series chart of bytes, five collection points.
Time gseries chart of the ICs from bytes, five collection points.

Time series chart of packets and bytes, five collection points.

Time series chart of [Cs from packets and bytes, five collection peints.

ix

6.15 Time series chart of the independent components {(IC) relative to pkts. 79
6.16 Scatter plot of the byte counts at the five collection points. 80
6.17 Scatter plot of [Cs from bytes at the five collection points. 80
6.18 Scatter plot of bytes vs. 1Cs from bytes at the five collection points. . 81

Chapter 1

Introduction

In the Internet economy, attacks are a growing concern. For example, distributed
cooperative large-scale attacks such as Distributed Denial of Service {DDoS) at-
tacks can have an impact at national level, involving entire countries. Identification
and prevention of network abuses is thus becoming strategic to ensure an adequate

protection from threats.

The network anomaly detection problem consists in analyzing the raw tratfic
transmitted over a network segment to determine if anything suspect or unusual is
happening. The key assumption is that attacks patterns are fundamentally different
from normal usage. On the other hand, anomalies in traffic need not necessarily
reflect hostile activity: conditions of overload or particular events may cause signif-
icant deviations in the traffic patterns. For example, transient malfunctions in the
network elements may induce congestion or broadcast storms. Evidently, the prob-
lem of anomaly detection in any complex system relies on the definition of the notion
of what is ordinary, i.e., *normal”. Normal behavior can be defined as what fits a
model describing the traffic as the result of relations between all the fundamental
components involved in the traffic dynamics, depending on several considerations
and elements associated to the daily human activities accomplished by using the
network. These include the applications running on the involved hosts, and the

data they process. The main goal of anomaly detection is to devise techniques, typ-

Chapter 1. Introduction 2

ically based on machine learning, data mining or statistical analysis, that are able
to model what a normal operating network should look like and, thus, detect and
report any pattern that does not conform to such normal (also known as baseline)
behavior. When considering network traffic flowing across one or more observation
points, an event can be classified as anomalous if its degree of deviation from the
“normal” network behavior observed at the same observation points ig high enough.
Thus, anomaly detection can also be viewed as a classification task. In the ideal
case, all the data used for training belong to a single class (the “normal” traffic
class) and a classifier has to learn the characteristics of such class and determine
if any unseen instance belongs to it or not. Note also that the problem does not
reduce to simply distinguishing true structure from noise in the data. Complexity
is inherent in the interaction of the unknown explanatory factors, which can evolve
over time at different speeds, can have both a local and a non-local span, and can

have intertwined effects.

In anomaly detection and in other applications, the classification performance of
many machine learning algorithms depends on the representation of data in terms
of features. Effective machine learning techniques require a representation that can
condense salient characteristics of data and facilitate combined analysis across fea-
tures. Long and complex preprocessing pipelines are thus commonly designed and
refined by human experts in order to achieve such representations. While this strat-
egy vielded good results, it would be desirable that the effort of manual feature
handcrafting were coupled with a form of extraction of relevant information from
data where the focus changes: instead of leveraging domain-specific knowledge, one
concentrates towards the discovery of unexpected features and correlations. In this
perspective, it can be expected that “good” representations are those that abstract
from the nitty-gritty details of low-level data and get closer to the latent explana-
tory factors and, ultimately, to the (unknown) underlying dynamics governing the

generation of data.

One approach involves explicitly transforming the data in order to view it from a

different standpoint, attempting at combining information from different time scales

Chapter 1. Introduction 3

or different observation peints. Thus, transformations that get closer to the space of
the explanatory variables can disentangle these variables. Moreover, transformations
can also be useful in detecting invariant features that can be discarded in order to
accelerate the analysis. In turn, this can help in reducing the number of dimensions,
i.e., the number of features considered. The “curse of dimensionality”, in fact, is a
major problem, because it entails a combinatorial explosion in the number of cases
to be scrutinized. Reducing the number of dimensions to analyze, by selecting the
ones that convey the most information, is an important step towards an efficient

classification.

This question is also related to the circumstance of learning being supervised or
unsupervised. In a supervised setting, i.e., with data associated to labels indicating
if an instance is normal or anomalous, “good” features are those that, separately or
in combination, have a high classification power. Labeled data, however, are hardly
available in large quantities, sufficient to encompass a satisfactorily wide variety of
cases that can be considered as fully representative of the population. Specifically, in
network anomaly detection, labeling data is a lengthy and costly operation, because
it involves considerable manual intervention by experts. This is why research has

somewhat shifted its objectives to the unsupervised or semi-supervised settings.

A natural question that raises is about which transformations produce a posi-
tive impact on discovering unknown structure in data. Some transformations could
hide such structure, bringing confusion instead of clarity. Informally, one can say
that representations which are appropriate will make modeling the distribution of
data more straightforward than will be the case with inappropriate representations.
Intuitively, if a representation can be found that simplifies the model, that would

mean that at least some of the explanatory factors have been isolated.

Another approach that is actively explored is the devising of generative models
that, without human intervention, produce an abstract representation of the ob-
served data. Much work in the deep learning research community [1] is focused on
obtaining such abstract representations by means of stacking layers of auto-encoders

or Restricted Boltzmann Machines {(RBMs) in such a way that only the lowest layer

Chapter 1. Introduction 4

receives the original data as input, while each upper layer produces a representa-
tion of the output of the layer below it [2]. In this way, progressively more abstract
representations can be obtained, establishing nonlinear mappings between data and
features and between low-level features and high-level ones. It is worth noting that
many classical techniques can be reduced to special cases of the general graphical
model [3].

Although deep learning algorithms can separate out the explanatory factors to
some extent, relying exclusively on them might not be the ideal avenue to a successful
solution of the network anomaly detection problem. Firstly, there is no guarantee
that the abstractions found would reflect all the governing wvariables. Secondly,
increased complexity can slow down the learning process. Thirdly, it is difficult to
have a deep model explain its decisions. The abstract representations vielded by
deep learning algorithm can, however, be expected to elucidate, at least partially,
the dynamics of the observed system by exposing some of the latent variables that
are responsible for its evolution. It is natural, then, to think of complementing
the disentangling ability of deep learning algorithms with other ways of obtaining
representations that capture relevant structure that may not be immediately evident

in the data distribution.

1.1 Our contribution

The main goal of this dissertation is to delineate an approach to network anomaly
detection based on the search of representations that simplify the model of network
traffic. T'wo strategies to attain such representations are described. The first involves
the use of artificial intelligence techniques to find the appropriate representation in
a fully automated, unassisted way. The second strategy capitalizes upon methods
from signal analysis, discussing the effects of a transformation of input that separates

the data into independent components.

In particular, a first study involved the analysis of traffic and the construction

of an automated representation by means of a generative model, the RBM. The

Chapter 1. Introduction 5

approach based on RBMs lays down the framework for automated generation of
representation through deep, layered, architectures, where each layer generates its
“portray” of the data it receives from lower layers. Upper layers produce an abstract
representation that can expose some of the latent variables, though the abstraction
is not easy to visualize and analyze. The emphasis is on a semi-supervised setting,

where only limited labeled data is available to train the classifier.

Subsequently, separation of the characteristics of the observed data in the Inde-
pendent Components was applied as a different way to extract relevant characteris-
tics from observations. The procedure employing Independent Component Analysis
(ICA) is founded on the basic intuition that observable traffic is the superposition
of individual streams, each agsociated to a specific phenomencn or to a particular
category of traffic. Separating such streams has the potential to expose variations
with respect to the normal behavior in more efficient way than it is achievable by
examining raw, untransformed traffic only. Accordingly, we locked into the traflic
time series by inspecting the independent components responsible for the evolution
of traffic and evaluating their variation with respect to the baseline. We also tested

the effectiveness of separation in improving the classification accuracy of classifiers.

A trait which is shared by both the techniques proposed is that the intrinsic
components obtained make discernible some information that is not immediately
evident with other statistic features calculated directly on the observed data. The
derived representations can disentangle the latent factors that govern the generation
of observable data, help build a simpler model and ultimately give insights for better
understanding the data-producing process. We provide a framework that could also
be applied to anomaly detection problems in similar domains, because its flexibility
makes it adaptable in a wide range of contexts, especially when available data is

collected over multiple sampling points.

Chapter 1. Introduction 6

1.2 State of the art

Several works addressed the network anomaly detection problem by analyzing the
traffic time series in order to isolate deviations. Several surveys and books have
been published on the topic of network anomaly detection, and a recent survey
article also contains a comparison of prior surveys [4]. A wide range of methods
have been used, including expeonential smoothing and forecasting based on the Holt-
Winters decomposition [5], adaptive setting of thresholds and cumulative sum [6].
Initial attempts 7| analyzed audit trail records and underlined the importance of
scrutinizing activity coming from inside as well as from outside. As research reached
more maturity, in both theory and methods, general techniques were adjoined by
methods aimed specifically at a single threat (e.g., DDoS or botnet detection [8]),

or a particular network domain (e.g., Wireless Sensor Networks {WSNs)).

One of the first contributions to convey the idea that the observed data were the
combined effect of multiple separated sources was the work by Lakhina et al. [9].
They measured the traffic on backbone network links and considered that aggregate
traffic counters as the linear sum of the contribution of individual Origin-Destination
(OD) flows. The separation technique they applied involved only second-order statis-
tics. The survey of Chandola et al. [10] introduced the notion of point, contextual,
and collective anomalies, Point anomalies differ from expected patterns as single
observations, anomalies of the second kind are anomalous when referenced to a par-
ticular context, while collective anomalies involve a collection of events that may

not constitute anomalies when considered individually.

In the literature, there are various machine learning approaches for intrusion
detection systems, such as neural networks (NNs), fuzzy logic (FL), genetic al-
gorithms {GAs), genetic programming (GP), swarm intelligence {SI) and artificial
immune systems (AlSs). Recently, techniques of soft computing were also applied to
network anomaly detection. Wu and Banzhaf surveyved the approaches to intrusion
detection based on computational intelligence [11]. Metrics originating from informa-

tion theory were studied in anomaly detection by Lee and Xiang [12]. Entropy-based

Chapter 1. Introduction 7

detection systems are promising for the specific individuation of DDoS attacks, in
part because they are robust with respect to changes in network utilization. Shan-
nons entropy and Kullback-Leibler divergence methods are assumed to be the most
effective methods. An empirical evaluation of information metrics can be found
in [13].

The particular characteristics of network traffic when observed on multiple time
scales, with long-ange dependencies (LRD) and heavy-tailed distributions stimulated
works studying the spectral analysis and autocorrelation, as well as wavelet anal-
ysis [14]. Techniques such as Recurrence Quantification Analysis (RQA) were first
applied to network anomaly detection in our previous work [15]. Reconstruction of
the unknown dynamics of the traffic data generating process was attempted through
delay-coordinate embedding in conjunction with Average Mutual Information and

False Nearest Neighbors, and RQA was then used to isolate unusual patterns.

1.3 Organization of this thesis

The next chapter provides motivation for the network anomaly detection problem,
framing it into a description of proposed solutions. In the third chapter, the ideas
and motivations of looking for appropriate representations are introduced, follow-
ing with a discussion of deep learning architectures and undirected graphical mod-
els. The complex structure of network traffic suggests that automated methods to
change the feature space of data and attaining more abstract representation can
help producing a simplified model, where normal and abnormal events are clearly
separated. Explicit transformations, by means of methods from signal processing,
are a different, but not necessarily alternative strategy to get closer to the underly-
ing variables governing the traffic production process. These aspect are discussed in
detail in the fourth chapter. The fifth chapter reports together with an overview of
the techniques to assess the performance of classifiers aimed at separate anomalous
events from normal traflic. In the sixth chapter, a proof of concept implementation

and experiments evaluating the effects of applying the separation of independent

Chapter 1. Introduction 8

components to the detection of volume-based attacks are described. Validation has
been carried out by using real traffic data from a production network. In the final
chapter, after drawing some conclusions, directions for further research are sketched,

including some ongoing efforts and ideas to be explored later on.

References

1]

Y. Bengio, A. Courville, and P. Vincent, “Representation learning: a review
and new perspectives,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 35, no. 8, pp. 1798-1828, 2013,

G. E. Hinton, “Learning multiple layers of representation,” Trends in cognitive
sciences, vol. 11, no. 10, pp. 428-434, 2007,

A. Cichocki and S.-i. Amari, Adaptive blind signal and image processing: learn-
ing algorithms and applications. John Wiley & Sons, 2002.

M. Bhuyan, D. Bhattacharyya, and J. Kalita, “Network anomaly detection:
methods, systems and tools,” IEEE Communications Surveys Tutorials, vol.
16, no. 1, pp. 303-336, 2014.

J. Brutlag, “Aberrant behavior detection in time series for network monitor-
ing,” in Proceedings of the 1jth USENIX conference on System administration,
2000, pp. 139-1486.

V. Siris and F. Papagalou, “Application of anomaly detection algorithms for
detecting SYN flooding attacks,” Computer Communications, vol. 29, no. 9,
pp. 1433-1442, 2006.

J. P. Anderson, “Computer Security Threat Monitoring and Surveillance”
Computer Security Division of the Information Technology Laboratory, Na-
tional Institute of Standards and Technology, Fort Washington, Pennsylvania,
Tech. Rep., 1980.

G. Gu, R. Perdisci, J. Zhang, W. Lee, et al., “Botminer: clustering analysis of
network traffic for protocol-and structure-independent botnet detection.,” in
USENIX Security Symposium, 2008, pp. 139-154.

A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic anoma-
lies,” in ACM SIGCOMM Computer Communication Review, ACM, vol. 34,
2004, pp. 219-230.

REFERENCES 10

[10]

[11]

[12]

[13]

[14]

[15]

V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: a survey,”
ACM Comput. Surv., vol. 41, no. 3, 2009.

S. X. Wu and W. Banzhaf, “The use of computational intelligence in intrusion
detection systems: a review,” Applied Soft Computing, vol. 10, no. 1, pp. 1-35,
2010.

W. Lee and D. Xiang, “Information-theoretic measures for anomaly detec-
tion,” in Proceedings, 2001 IEEE Symposium on Security and Privacy (S&P
2001), IEEE, 2001, pp. 130-143.

M. H. Bhuyan, D). Bhattacharyya, and J. Kalita, “An empirical evaluation of
information metrics for low-rate and high-rate ddos attack detection,” Paftern
Recognition Letters, vol. b1, pp. 1-7, 2015,

X. Tian, H. Wu, and C. Ji, “A unified framework for understanding network
traffic using independent wavelet models,” in Proceedings, Twenty-First An-
nual Joint Conference of the IEEE Computer and Communications Societies.
INFOCOM 2002, IEEE, vol. 1, 2002, pp. 446-454.

I'. Palmieri and U. Fiore, “Network anomaly detection through nonlinear anal-
ysis,! Computers & Security, vol. 29, no. 7, pp. 737-755, 2010.

Chapter 2

Network anomaly detection

Anomaly detection in network traffic has been studied at least since 1980, when
Anderson, analyzing system audits, characterized threats originated by external
penetrators or internal misfeasors and suggested that audit trails could point to
misbehavior [1]. In the work of Garcia-Teodoro et al. [2], anomaly-based Network
Intrusion Detections Systems (A-NIDS) were classified into three main groups, ac-

cording as their basis: knowledge, statistical, and machine learning.

Knowledge-based anomaly detection systems attempt at classifying data from
auditing and other sources in accordance with a set of rules that describe legiti-
mate behavior. Rules are built—and maintained—by incorporating human expert
knowledge. Often these rules are protocol-based, and therefore they address only a
specific portion of the problem. The process of setting up the rules, detecting and
correcting errors with them, and preserving their efficacy over time is lengthy and

requires extensive human intervention. Consequently, it results in high costs.

Statistical-based anomaly detection systems build a statistical profile character-
izing the distribution of observed data, and then compare the identified behavior to
the profile associated with normal behavior, flagging as anomalous the events that
do not conform, or conform badly, to the normal profile. In statistical models, the
usual assumption is that observations are independent and independently distributed
(i.id.) samples taken from an unknown probability distribution 7. Parametric
methods assume that the form of the distribution is known and only its parameters

have to be estimated given the observations, for example by maximum likelihood.

Chapter 2. Network anomaly detection 12

When nothing can be assumed about the structure of the data-generating distribu-
tion P, non-parametric methods such as histograms are used to gain insights into
the distribution. Frequency thresholds can then be applied to identify ancmalies.
However, histogram-based methods fall short of describing the interactions among

different features.

Machine learning-based anomaly detection systems build an implicit or explicit
model to represent normal behavior and categorize observed patterns with refer-
ence to that model. A decision boundary is then sought to separate normal and
anomalous data points. Such decision boundary is learnt from training data. The
detection system is thus trained on behavioral characteristics of network traffic, and

it triggers alerts when it finds irregular traffic patterns.

Based on the nature of input data to be analyzed, anomaly detection systems
can also be divided in packet-based, flow-based, and window-based [3]. Raw packets
are inspected and evaluated individually in packet-based systems. This causes scal-
ability problems, if the explosive growth in the network throughput is considered.
Agoregated information can provide sufficient detail for the analysis while at the
same time maintaining a granularity suitable for practical collection and analysis.
Agoregation can be done at the flow level or by using time windows. Packets with
the same source address and port, destination address and port, and protocol be-
long to the same flow. Window-based systems, instead, group input data into sliding

time windows and analyze the evolution of patterns over time windows.

A traditional taxonomy of network intrusion detection systems is based on the
strategy used to flag significant events. Misuse-detection systems rely on precise
descriptions of what constitutes malicious behavior, whereas anomaly-detection sys-
tems characterize normal activity in some way and identify deviations from the basge-
line [4]. It is worth noting that the above-specified grouping bears some similarity
with the subdivision of machine learning contexts in the supervised setting, on one
hand, and the semi-supervised and unsupervised settings, on the other. Although
misuse detectors have analyzed various sources of data, including logs or system call

traces [2], the most common form of such detectors is based on signature analysis.

Chapter 2. Network anomaly detection 13

Signature-based systems scan network traffic searching for byte sequences that are
specifically associated to malicious activity. While such systems can quickly spot
many attacks, their main drawback is that they rely on prior knowledge and can
only cope with attacks whose signature has been isolated and exposed. In other
words, these systems are limited by the coverage and timeliness of their database of

signatures. They are thus vulnerable to zero-day, polymorph, and evolving attacks.

Anomaly detection, by contrast, relies on the hypothesis that attacks patterns
have characteristics that constitute a deviation from normal behavior. Generally
speaking, anomaly detection is not affected by the shortcomings of misuse detection.
In theory, new attacks and variations of existent attacks can be detected. In practice,

however, several difficulties arige.

2.1 What makes network anomaly detection hard

Sommer and Paxson [4] delineated several respects in which network anomaly de-
tection is different—and fundamentally harder—from other applications of machine
learning. After arguing that the negative definition of “anomalous” (the word a-
nomalous actually means not normal) is challenging because recognizing similar-
ity to previously seen examples is easier than recognizing deviations from what is
expected, they list characteristics that significantly hinder application of machine
learning to network anomaly detection. A straightforward approach to anomaly
detection would define a region in some space and declare anomalous all the obser-
vations that lie cutside that region. This procedure would require that the boundary
between the normal region and the outside be sharp, increasing the difficulty of spec-
itying the normal region. Even if a perfect system were able to recognize examples
similar to what it had previously seen, discovering outliers by characterizing them
as dissimilar from the known patterns would be difficult. The perfect system would
need, in fact, to have a complete model of normality, where all possible cases are

encompassed and described. Otherwise, every new form of regular behavior would

Chapter 2. Network anomaly detection 14

be classified as anomalous. The assumption that the ensemble of normal examples
is wide enough to cover all possible variation is called the closed world assumption
[5]. The provocative comment that closed the paper by Gates and Taylor [6] is still

valid:

Perhaps it is time that we applied anomaly detection to the detection
of legitimate traffic, filtering it out and leaving the majority for further

analysis

In intrusion detection, the cost of misclassification is remarkably high. False
positives cause a significant waste of expert time to examine the reported attack
only to conclude that there was no incident. Too many false positives would thus
make an anomaly detection systems unusable. On the other hand, false negatives
carry a cost that can be still more serious: the compromise of even a single system
can jeopardize the integrity of the entire structure, and recovery could take extensive

resources and time.

In order to appropriately train a detection system so that it will achieve a good
ability to recognize normal examples, a dataset will be needed that contains no ma-
licious patterns. However, it is hard to certify that a dataset is completely free from
attacks. This conclusion is supported by precisely the same argument that under-
lines the advantage of anomaly detection with respect to signature-based analysis,
i.e., that the latter cannot detect previously unseen attack patterns. A novel at-
tack could be present in a dataset and nevertheless go undetected. In addition, all
considerations about the costs of preparing a clean dataset beforehand apply.

Systems trained to discover deviations from normal behaviour unavoidably have
to set a threshold beyond which an example is considered unexpected and hence
anomalous. Once such a threshold has been established, attackers may configure
their malicious activity in such a way that it would systematically stay under the
threshold. For example, Ozcelik and Brooks [7] have recently shown how entropy-
based detectors for DDoS attacks can be deceived by spoofing addresses in such a

way as to adjust the entropy of the header fields, making it stay in a predefined

Chapter 2. Network anomaly detection 15

range. This problem is exacerbated when thresholds are adaptively modified to
reflect variations in normal activity, as attackers may adjust their endeavors to

escape detection.

In addition to the themes raised in [4], we can add two further reasons why
network anomaly detection faces additional difficulty with respect to other machine
learning tasks. Once attackers arrive at knowing the anomaly detection mechanism
that is in place, besides adapting the profile of their attack to make it stay just
under the critical threshold, they also have another tactic available to them that
can degrade the efficacy of the detection system. Attackers could fabricate single
packets or sets of packets with the sole purpose of making the detection system issue
false alarms |7|. These attacks would come from spoofed [P addresses and impact
different targets from the real ones, because attackers would wish to preserve the
machines they control (likely through bots) and simultaneously avoid to disclose the

real objectives they are interested in.

Modeling network traffic is a satisfactory way is also harder than what can be
intuitively anticipated. The traffic profiles may vary substantially from one net-
work environment to ancther, due to several factors including the characteristics of
users, the architecture of machines, and the operating system run on them. IFur-
thermore, network administrators usually set and enforce traffic-regulating policies
which specify traffic types that are allowed or privileged. In their 2001 analysis [§],
Floyd and Paxson observed that simulating Internet traffic suffered from three major
difficulties. The first one derives from design choices in the IP protocol, privileging
connective ability over uniformity of behavior. The second one relates to the di-
mension and growth of the Internet, which complicate the setting of threshelds for
“rare” events in terms of percentage of occurrence. The third one depends on the

quick rate of change over time of the Internet and of its structure,

Even within a single network, the fluctuation of measured parameters can be ex-
tremely high, leading to bursty and heavy-tailed distributions. Evaluation of bursti-
ness made on a single time scale can only account for spatial correlation between

traffic counters. When the observation time scale gets longer, observations tend to

Chapter 2. Network anomaly detection 16

exhibit greater smoothness, but there are still intricate relationships between phe-
nomena occurring at different time scales. To fully describe the effects of temporal

correlation and LRD, an analysis spanning multiple time scales is required [9)].

References

1

J. P. Anderson, “Computer Security Threat Monitoring and Surveillance”
Computer Security Division of the Information Technology Laboratory, Na-
tional Institute of Standards and Technology, Fort Washington, Pennsylvania,
Tech. Rep., 1980.

P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macid-Fernandez, and E. Vazquez,
“Anomaly-based network intrusion detection: Techniques, systems and chal-

lenges,” Computers & Security, vol. 28, no. 1-2, pp. 18-28, 2009.

J. Wang, D. Rossell, C. G. Cassandras, and [. C. Paschalidis, “Network anomaly
detection: a survey and comparative analysis of stochastic and deterministic
methods,” in TEEE 52nd Annual Conference on Decision and Control (CDC),
[EEE, 2013, pp. 182-187.

R. Sommer and V. Paxson, “Outside the closed world: on using machine learn-
ing for network intrusion detection,” in 2010 IEEE Symposium on Security and

Privacy (SP), IEEE, 2010, pp. 305-316.

[. H. Witten and E. Frank, Data Mining: Practical machine learning tools and

techniques. Morgan Kaufmann, 2005.

REFERENCES 18

6]

C. Gates and C. Taylor, “Challenging the anomaly detection paradigm: a
provocative discussion,” in Preceedings of the 2006 workshop on New security

paradigms, ACM, 2006, pp. 21-29.

[. Ozcelik and R. R. Brooks, “Deceiving entropy based dos detection,” Com-

puters & Security, 2014.

S. Floyd and V. Paxson, “Difficulties in simulating the internet,” IFEE/ACM

Transactions on Networking (TON), vol. 9, no. 4, pp. 392-403, 2001.

X. Tian, H. Wu, and C. Ji, *A unified framework for understanding network
traffic using independent wavelet models,” in Proceedings, Twenty-First An-
nual Joint Conference of the IEEE Computer and Communications Societies.

INFOCOM 2002, IEEE, vol. 1, 2002, pp. 446—454.

Chapter 3

Finding Appropriate Representations

When modeling complex phenomena, a central challenge is to find a representation
of data that can disentangle, at least to some extent, the unknown factors that are
responsible for the variation of the observed data. A representation is satisfactory
when it captures all essential aspects of the observed system, yet in a compact way.
From the standpoeint of supervised learning, for example, a good representation is
given by features with the greatest predictive power; a subset of the features is able
to account for a major part of the variation in the observations. In the unsupervised
setting, instead, it is not obvious to state what constitutes an appropriate repre-
sentation. Intuitively, if a representation can be found that produces a simplified
model, that would mean that at least some of the intricately connected explanatory

factors have been somewhat isolated.

This is closely related to the problem of reducing the dimensionality of data and,
more generally, to the manifold hypothesis. Identifying and discarding irrelevant
dimensions is known from a long time to be key to achieving a compact model and,
in turn, efficient machine learning algorithms. The manifold hypothesis [1](2] states
that, in many scenarios of practical interest, the probability mass for the data-
generating distribution concentrates near a collection of m-dimensional manifolds
projected in the n-dimensional input space (with m < n). Manifolds associated with
different classes tend to be separated by regions characterized by low probability
density. If spaces can be found in which the manifolds have a simpler structure

than their projections, modeling and classification would be greatly simplified in

Chapter 3. Finding Appropriate Representations 20

these spaces. The ultimate goal is to find a representation in which the classes
are linearly separable, i.e., they can be divided by a set of hyperplanes. Efficient
methods such as Support Vector Machines are available for linearly separable data.
A supporting argument in favor of the manifold hypothesis is that, if the hypothesis
were not true, then synthesizing data by sampling randomly over ocbservable features

would produce reasonably-looking data much more often than it is empirically seen.

The manifold hypothesis also suggests interesting connections to the phase space
attractors of chaos theory [3]. Assuming that the observed data is the visible part of
a dynamical system that is governed by some differential equations (whose number
and form are both unknown), then the system state is determined by a number
of latent variables. Observable features are the result of (typically complex) inter-
actions between entangled state variables. Notably, since the state variables can
interact in many ways, the number of observed variables can be higher than the
number of state variables. Few latent variables can therefore produce very com-
plex structures. Given the observations, reconstructing the space of the latent state
variables (the phase space) is challenging, but can provide deep insights into the un-
derlying dynamics governing the system. Considering a single observed variable, by
means of such techniques as delay-coordinate embedding, the “natural” dimension
in which to describe the observations can be found. Delay-coordinate embedding
reconstructs the phase space starting from a time series, by assembling observations
taken at regular intervals into vectors belonging to the phase space. In this process,
both the dimension of the phase space and the time delay for embedding should
be estimated. In particular, autocorrelation or mutual information can reveal some
periodic structure in the time series, which can hint at good values to be tried for
the time delay. To estimate the appropriate embedding dimension, the method of
False Nearest Neighbors (FNNs) is generally adopted . When the reconstructed
dimension approaches the “correct” one, trajectories in phase space can be seen to
“unfold”: points that used to be close neighbors in up to & dimensions become far
in £ 4+ 1 dimensions. Proximity can, in fact, derive from the effects of projection,

with no relation to the actual clogseness of points. The percentage of FNNs can

Chapter 3. Finding Appropriate Representations 21

be expected to be steady as the embedding dimension increases, because the errors
induced by projection tend to be distributed uniformly. When the “natural” em-
bedding dimension is reached, however, the percentage of FNNs should drop, as a

consequence of the unfolding structure.

Once a good representation has been found, with probability mass concentrated
in a predictable and regular way in the representation space, estimating the proba-
bility distribution of the data becomes easier. This point can be further illustrated
if interpelation is considered. Usually, interpolating in the input space produces ex-
amples whose characteristics are very different from those of examples drawn from
the real distribution. That behavior stems from the fact that the complexity of in-
teractions produces involved topologies in the input space. Points that appear to be
close in the input space can actually be far in representation spaces endowed with
a different number of dimensions. In contrast, an ideal representation would “flat-
ten” the manifold so that the transformed high-probability manifold becomes closer
to a convex set [4], so that generating samples by interpolation in the representa-
tion space would yield reasonably-looking results. Experimentally, this flattening
effect has been observed with deep learning architectures such as stacked denoising

auto-encoders or RBMs [5]]6].

Deep learning is concerned with learning multiple levels of representation, asso-
ciated, in a sense, with different levels of abstraction relevant to the distribution of
interest. Just as more sophisticated levels of abstraction are defined hierarchically as
elaborations of the lower-level ones, deep learning architecture are built by stacking
layers of neural networks in such a way that the output of each layer makes the
input for the layer above it. Learning, in deep architectures, is difficult precisely for
the same reason that makes deep architectures powerful, i.e., because of the growth
in complexity of inter-layer dependencies as the number of layers increases. To cope
with this problem, training signals should be propagated across the different layers
in a controlled way. One of the techniques used to this purpose is greedy layer-wise
pretraining: each layer is trained independently of the layers above it and pre-trained

layers are then combined to form the final architecture.

Chapter 3. Finding Appropriate Representations 22

Denoising auto-encoders (DAE) 7] are a class of greedily pre-trainable layers
where noise is deliberately added to input {during training only) and the auto-
encoder learns to reconstruct the original signal. Auto-encoders learn a pair of
functions from input space to representation space (the encoding function) and
vice versa (the decoding function) with the property that the composition of de-
coder and encoder (the reconstruction) is close to the original sample. Obviously,
an auto-encoder might simply learn the identity function. This is prevented by
regularization, determining low reconstruction errors for examples in the training
set, but high reconstruction errors elsewhere. Note that the layer-wise pretraining
iz unsupervised because no label is necessary: the correct input is already avail-
able for comparison with the reconstruction. For an obgerved random variable X,
denote the data-generating distribution with P({X). Then a known corruption pro-
cess C will stochastically map X to X according to the conditional distribution
C(X|X). Now, to obtain the training data, a number of datapoints (X, X) are sam-
pled from the data-generating process and the corruption process, i.e., X ~ P(X)
and X ~ C(X|X). The denoising auto-encoder learns a conditional distribution

Q(X\f(), that is to predict X given X by regularized maximum likelihood.

3.1 Undirected models

A neural network may contain “inward” and “outward” connections between its
layers. Outward connections, also commonly known as top-down or “generative”
connections, go from the inner hidden layers to the outer hidden layers and from
the outermost hidden layer to the visible neurons. These connections constitute
the model the network has built of the training data. Weights on outward connec-
tions are modified, during learning, to maximize the probability that the generated
patterns coincide with training data. Inward connections, commonly also known
as bottom-up or “recognition” connections, go from the visible neurons to the out-
ermost hidden layer and from outer layers to inner layers. These connections are

responsible for explaining, in a sense, how the network could have generated a pat-

Chapter 3. Finding Appropriate Representations 23

tern., although it is challenging to actually explain the behavior of a network in
simple terms. Similarly, finding out why a neural network performs unsatisfactorily
is not an easy task.

A Boltzmann machine (BM) is a network of stochastic neurons with bidirec-
tional, symmetrical links [8]. In RBMs, the connections between layers constitute
the totality of connections, as no intralayer connections are allowed; hence the Re-
stricted term in RBM. Put differently, the units of a RBM are the vertices of a
bipartite undirected graph. All the stochastic binary units (feature detectors) in the
hidden layer are influenced by all the stochastic binary units in the visible layer,
and vice versa. With respect to general BMs and directed graphical models, RBMs
have the distinctive trait that inferring the state of hidden units, given the state of
the visible units, is straightforward. Contrarily, in unrestricted BMs and directed
models, inference is difficult.

In a RBM, the conditional distributions of the hidden h and visible v stochastic
binary units, p(h|v) and p(v|h), factorize because there are no intralayer links.

Considering a sigmoid linkage
plhlv) = Hp (hjlv) = H sigm{a; + Z Wivs) (3.1)
i i

and similarly

p(vih) = Hp vi|h) = H sigm{b; + Z Wiihs) B2
i b

where
1

1 + exp(—z)

iz the logistic sigmoid function, a and b are biases, and W is the matrix of weights.

sigm(z) = (3.3)

The model parameters are collectively denoted with 6 = {a,b, W}, The logistic
sigmoid is a commonly chosen function for coupling units {together with the tanh
function, which is affine to it), because it resembles the shape of a step function, yet
it is differentiable. RBMs can be readily extended to handle real-value visible units.

The probability of a joint configuration of the stochastic hidden and visible units

can be related to a potential energy function of the states, in such a way that the

Chapter 3. Finding Appropriate Representations 24

Hidden

Visible

Hidden

Visible

Figure 3.1: Two Restricted Boltzmann Machines stacked [9].

network will tend to stay in low-energy states. A joint configuration of the the

hidden and visible stochastic binary units has an energy
E(h,v) = —a’h —b’v —vTWh (3.4)

and the probability of a joint configuration is proportional to e to the power of its
energy:
p(h,v) o exp(~E(b, V) . (35)

To get the probability, a normalization factor is needed, namely the partition func-

Chapter 3. Finding Appropriate Representations 25

tion!
Z= Z Z exp(—£&(h,v)) (3.6)
v h
thus obtaining the Boltzmann distribution

ol) = L)

(3.7)

The partition function is intractable because it involves summing over all possible
joint configurations.

Learning involves maximizing the average likelihood that the model would gener-
ate the training data. Marginalizing over all possible hidden vectors, the probability

of a configuration of the visible units
1
p(v) = Zh:p(h, vi=% Zh: exp(—&(v, h)) (3.8)
is obtained. Defining the free energy F as
Fv) = —log ¥ exp(—£(v,h)) (3.9)
h

it follows that
Z exp(—E(v, h)) = exp(—F(v)) (3.10)
and

Z = Zexp(—?(v)) ; (3.11)

v

Using Eq. (3.10), Eq. (3.8) can be written in a similar form to Eq. (3.7):

exp{—F(v
plv) = % ; (3.12)
Considering the logarithm of p({v)
logp(v) = —F(v) —log Z (3.13)

IThe partition function is usually denoted with the letter Z, from the German word Zus-

tandssunmime—sum over states

Chapter 3. Finding Appropriate Representations 26

the derivative of the aggregate log likelihood (averaging over the training datapoints)

with respect to the parameters can be written (details are in Appendix A) as

% logp(v) = —Ep {%5(\?, h)} + By {%5(\?, h)} (3.14)
that is, as the difference of two expectations. The first expectation, Ep{-}, is rela-
tive to the posterior distribution D of training data and is therefore data-dependent,
the second expectation, Ey{-}, is relative to the posterior distribution M defined
by the model and is therefore data-independent. Note that the hidden units are
independent given a single data vector, but the aggregated posterior over all train-
ing vectors will not factorize. Exact maximum likelihood learning is intractable,
because the data-independent expectation involves summation over all possible con-
figurations. In a RBM, learning can be done through Gibbs sampling, alternatively
in the inward and outward direction, until an equilibrium is reached so that the
weights will not change. In detail, the data-independent part could be estimated by
inferring the states of hidden units from training datapoints, then starting Markov
chains at the inferred hidden states, updating alternatively all the visible units in
parallel and all the hidden units in parallel, until convergence. In practice, efficient
learning can be achieved with Contrastive Divergence [10], with a limited number
of Gibbs sampling steps.

Deep architectures can be built by stacking RBMs on top of one another, as it is
shown in Figg. 3.1 and 3.2. The activities of the hidden units of the “outside”™ RBM
become the inputs for the “inside” RBM as in Fig. 3.1. In the resulting generative
model, only connections between the topmost two layers are undirected; the other
connections to units in the lower layers are directed (i.e., outward only) 3.2. This
model is called Deep Belief Network (DBN). Learning, in such architectures, can be
done in a layer-wise fashion. A proper Deep Boltzmann Machine can be attained
by averaging the weights of the connections that a layer has with the upper and the
lower layer next to it in the RBM stack and appropriately modifying the weights in
the middle layers to avoid the effect of double-counting [11].

Another interesting related approach was laid out in reference [12], where Neigh-

Chapter 3. Finding Appropriate Representations 27

Hidden

Hidden

Visible

Figure 3.2: The composite generative model from the RBMs in Fig. 3.1 [9].

bourhood Components Analysis (NCA) is introduced. Starting from the properties
of the k-Nearest-Neighbor (kNN) classifier, namely its nonlinear decision surfaces
and low overfitting, Goldberger ef ol estimate a linear transformation which maxi-
mizes the expected number of points correctly classified by kNN. A neural network
to learn the parameters of a nonlinear transformation with the same objective was

then proposed [13].

References

1

L.. Cayton, “Algorithms for manifold learning,” UCSD, Tech. Rep., 2005.

H. Narayanan and S. Mitter, “Sample complexity of testing the manifold hy-
pothesis,” in Advances in Neural Information Processing Systems 23, J. Laf-
ferty, C. Williams, J. Shawe-Taylor, and R. Z. a nd A. Culotta, Eds., Curran

Associates, Inc., 2010, pp. 1786-1794.

F. Palmieri and U. Ficre, “A nonlinear, recurrence-based approach to traffic

clagsification,” Computer Networks, vol. 53, no. 6, pp. 761-773, 2000,

8. Ozair and Y. Bengio, “Deep directed generative autoencoders,” Université

de Montréal, Tech. Rep., 2014, http://arxiv.org/pdf/1410.0630.pdf.

Y. Bengio, G. Mesnil, Y. Dauphin, and S. Rifai, “Better mixing via deep rep-
resentations,” in Proceedings of the 30th International Conference on Machine

Learning (ICML13), ACM, 2013, pp. 552-560.

X. Glorot, A. Bordes, and Y. Bengio, “Domain adaptation for large-scale sen-
timent classification: a deep learning approach,” in Proceedings of the 25th
International Conference on Machine Learning (ICML-11), 2011, pp. 513~

520.

REFERENCES 29

7]

[10]

[11]

[12]

[13]

P. Vincent, H. Larochelle, Y. Bengio, and P-A. Manzagol, “Extracting and
composing robust features with dencising autoencoders,” in FProceedings of
the 25th international conference on Machine learning, ACM, 2008, pp. 1096—

1103.

U. Fiore, F. Palmieri, A. Castiglione, and A. De Santis, “Network anomaly
detection with the Restricted Boltzmann Machine,” Neurocomputing, vol. 122,

pp. 13-23 2013.

G. E. Hinton, “Learning multiple layers of representation,” Trends in cognitive

seiences, vol. 11, no. 10, pp. 428-434, 2007.

—, “Training products of experts by minimizing contrastive divergence,”

Newral computation, vol. 14, no. 8, pp. 1771-1800, 2002,

R. Salakhutdinov and G. Hinton, “An efficient learning procedure for deep

boltzmann machines,” Neural computation, vol. 24, no. 8, pp. 1967-2006, 2012.

J. Goldberger, G. E. Hinton, S. T. Roweis, and R. Salakhutdinov, “Neighbour-
hood components analysis,” in Advances in Neural Information Processing

Systems, 2004, pp. 513-520.

R. Salakhutdinov and G. E. Hinton, “Learning a nonlinear embedding by pre-
serving class neighbourhood structure,” in International Conference on Arti-

ficial Intelligence and Statistics, 2007, pp. 412-419.

Chapter 4

Independent Component Analysis

Finding a good representation of cbserved data, essentially, amounts to transform
it until structure becomes more visible. A representation is better than another as
far as it is able to capture more information about regularities and dependencies in
the input data. In many cases of practical interest, and network anomaly detection
is no exception, in the light of the complexity of the observed behavior, it can
be expected that the underlying dynamics governing the process producing it are
intricate as well. The regularities and dependencies shown on observed data can,

thus, involve many input dimensions or combinations thereof.

Independent Component Analysis [1] aims at separating observed data into sta-
tistically independent components. ICA bears a close relationship to the problem of
Blind Source Separation (BSS) in signal processing. BSS assumes that the observed
data is the product of a mixing process acting on unknown components on which
weak assumptions are made, and has the objective of finding those components.
The observed signal can be reconstructed based on the components found. ICA
iz one method for addressing and solving the BSS problem. When some mixtures
of probabilistically independent source signals are observed, ICA recovers the orig-
inal source signals from the observed mixtures without knowing how the sources
are mixed. A requirement for the signal reconstruction system is that it is should

adaptively conform to nonstationary variations of the source and observed signals.

The way the original source signals can be extracted from the observed signals

is, in general, not unique. For example, scaling of the original sources produces

Chapter 4. Independent Component Analysis 31

indeterminacies that are difficult to avoid. Additionally, the order in which the
source signals are found may not be determined. These indeterminacies are inherent
to the fact that both the factors and the mixing function are unknown. The most
relevant information, however, is in the waveform of the reconstructed signals rather
than in their amplitude or order of arrangement in the reconstruction.

Let x(t) = [z1(2),...,z.(t)]! be a vector of n observations at index . What is
ideally sought is a mapping from the n-dimensional input space te an m-dimensional
representation space such that the transformed variables are as close as possible
to the factors that explain the structure in the observed data. Suppose that the
observed variables are the result of a combination of (unknown) explaining factors,

also called sources, s(t) = [s1(t), ..., 8, (t)]7, with typically m < n:

x(t) = £(s(t)) (4.1)

5(t) = g(x(1)) (4.2)

will be an estimate of the source vector s(t). The sources s(f) are assumed to be

zero-mean and mutually independent:
sit) Lss(t) Vit (4.3)

with L denoting statistical independence. Note that any non zero-mean source can

be modeled by the sum of a zero-mean source and an additive constant source.

The most frequently used data model is linear:
x(t) = As(t) (4.4)

where A is an unknown matrix called mizing matriz. Consequently, the observed
signals are also called mixed signals. In the linear model, the objective is to find
a matrix W {the separating matriz) such that the linear transformation y = Wx

produces a reconstruction signal y(¢) = [11(t), ..., 9.(t)]? whose components are as

Chapter 4. Independent Component Analysis 32

independent as possible. The weights, i.e. the elements w;; of the separating matrix

W need to be adapted in order to generate estimates of the source signals:

5(1) = y(t) = Wx(1) . (4.5)

The matrix W that is estimated together with the sources is thus the pseudo-inverse

of A, that is, W =A™,

4.1 Principal Component Analysis

A clagsical method to find an unmixing matrix is to determine the linear combination
that explains the maximum variation in the observations. Put differently, find a
representation of the data in a rotated coordinate system (the principal components)
such that each axis is aligned (if data is zero-meaned) with the greatest variance not
already accounted for by the preceding axes. Principal Component Analysis (PCA)
was first introduced by Pearson [2] in the context of finding closest fits for sets of

” variables are

points in space when, in contrast to situations where the “independen
supposed to be accurately known and the probable values of “dependent” variables
are sought, all variables are found by experiment or cbservation.

The order in which principal components are arranged is significant: the first
components are those that convey as much information as possible. One interpreta-
tion for this is that PCA can be used to separate signal from noise. The former will
coincide with the directions on which input data have the largest variance, while the
latter will be aligned with the directions accounting for the residual variance. In the
same vein, ancther application of PCA has been dimensionality reduction. Again,
the first principal components are good candidates to select a subset of features
which are the most informative ones. The components with smaller variances can,
instead, be discarded without losing too much information.

The use of PCA in anomaly detection of network traffic was proposed in [3] and

extended in [4]. Those were also the first studies that focused on network-wide traffic

Chapter 4. Independent Component Analysis 33

instead on concentrating upon single-link traffic. In [3], Lakhina et al. decomposed
traffic volume on each backbone link as the linear sum of Origin-Destination {OD)
flows traversing that link. Subsequently, by applying PCA on the traffic link matrix,
they achieved to separate traffic into principal components that, when compared
to baseline measurements, showed anomalies. The subsequent work [4] adopted
an unsupervised approach and widened the analysis to encompass the entropies of

origin and destination addresses and ports.

PCA can be converted to the eigen structure problem of the data covariance
matrix! Ry = E{xx?}, where E{.} denotes the expectation operator. Thus, PCA

can be expressed as an eigenvalue problem [5]
Rxxvj =)\jVj (46)

where A; are the eigenvalues of the covariance matrix, and v; are the corresponding
eigenvectors. Denoting by A, the diagonal matrix of the eigenvalues and by V the

orthogonal matrix of the eigenvectors, Eq. (4.6) can be written in matrix form
R V=V, A, (4.7)

or, since Vy is orthogonal,

VxTRxxVx — Ax (48)

The covariance matrix is not available in practice, since the distribution of ob-
served data is not known. What is available is an estimate f{xx of Ry based on the

N obgserved samples
N
2. 1 T
Rxx - ﬁ t§=1 X(t)X (t) (49)

It is essential for PCA that there is redundancy in the observations, Had the

analyzed components been independent, PCA would have been useless.

1 The covariance matrix is the correlation matrix with the mean removed; for zero-mean signals

such as the one considered here, the covariance matrix and the correlation matrix are identical.

Chapter 4. Independent Component Analysis 34

4.2 Centering and Whitening

Unlike PCA, all ICA methods rely on higher-order statistics in some form. Expressed
in a different way, they are based on information not contained in the covariance ma-
trix. Preprocessing is an important step in ICA, and basically amounts to removing

the effects of first-order and second-order statistics.
It is useful to consider zero-mean random vectors, because for such vectors, the

covariance and correlation matrices are the same. In practice, centering consists in

subtracting the sample mean from observations:
X =x—-X (4.10)

so that E{x'} = 0.

Some algorithms require prewhitening of mixed signals. A random, zero-mean
n-vector u is said to be white if its covariance matrix is the n x n identity matrix
j

Ry, = E{uu’} =1, . (4.11)

Thus, the components of a white vector are mutually uncorrelated and have unit
variance: F{usu;+ = d;; by the definition of Ry, and Eq. (4.11), where §;; is the
Kronecker delta. A whitening transformation is a linear transformation of a random
vector x such that the resulting vector is white. If the whitening transformation is

written as

ult) = Yx(t) (4.12)

then the whitening matrix (also known as the Mahalanobis decorrelation transfor-
mation [5]) Y should be chosen in such a way that the covariance matrix £{uu’ }

is the identity matrix.

Whitening fundamentally consists in decorrelation followed by scaling, and PCA

gives a solution. Indeed, the matrix

Y = AV, T (4.13)

Chapter 4. Independent Component Analysis 35

is & whitening matrix. Recalling Eq. (4.8) and Eq. (4.13)

Ry = E{uu’} = B{YxxTYT} = YR YT = YV, AV, YT
= ATIVIVAVIVA T = A TIAA T =
— ACIAGA A E =1 (4.14)

because V is orthogonal and A, is diagonal.

4.3 Orthogonalization

PCA or linear ICA will produce a set of source vectors such that all observed vectors
can be expressed as a linear combination of the sources. Therefore, the sources
will form a basis for the space spanned by the observations. As with any basis, a
desirable property for the basis vectors produced by separation algorithms is that
they are orthogonal or orthonormal. Not every algorithm will yield orthogonal
vectors automatically. Therefore, an orthogonalization procedure should be applied
to ensure that the solution obtained is an orthogonal basis for the space spanned by
the observed data. Orthogonalization transforms a generic basis (i.e., a set of vectors
such that any vector in the spanned space can be expressed ag a linear combination
of basis vectors) into an orthogonal basis. Orthonormalization is, then, achieved by
normalizing each basis vector, i.e., dividing it by its Euclidean norm.

There are two main approaches to orthogonalization in ICA: deflationary and
symmetric. Deflationary approaches are sequential in nature. Given an arbitrary
basis {uy,...,u,}, the classical Gram-Schmidt procedure iteratively takes at each
step an orthogonal basis {vy,...,v;}, § < n, for a subspace of the space spanned
by the original basis and augments it, covering the entire space in the end. The
algorithm starts with vy = u; and at each iteration step it adds to the set of

orthogonal vectors {vy,...,v;_ 1} the vector v;:

—u; Z Vil (4.15)

il

Chapter 4. Independent Component Analysis 36

where ||v|| = v'v denotes the norm. Orthogonality is maintained because, when
checking ervi for any 7 < %, all the inner products in the sum vanish except the one
for & = 7 (as a consequence of the orthogonality of {vy,...,v; 1}), and for that one

G ¥

the result is vju; — v;

; u; = 0. Inherent to the sequential nature of the procedure

are the problems of the proper choice of the order in which basis vectors are to be
processed and the problem of accumulation of errors.

In contrast to deflation approaches, symmetric orthogonalization methods deal
with all input basis vectors equally. Symmetric methods rely on the eigenvalue

decomposition of the matrix obtained by stacking the basis vectors u; columnwise,

4.4 Independence

Alternatively to uncorrelatedness, the principle of statistical independence can be
used to disentangle the explanatory factors in observed data. If the sought factors
reflect causes that were involved in the process that generated the observed data, it
is reagonable to expect that a good representation would isolate a minimal number
of independent factors. Being independent is a stronger condition than being un-
correlated: independence means that no information can be gained on the value of
a factor, given the value of another factor. Independence can be defined referring

to probabilities. Two random variables are independent if
Pr(X =Y =y) = P(z,y) = P() P(y) (4.16)

that is, the joint probability factorizes into the product of the marginal probabilities.

Considering the conditional probabilities,

P(zly) = P]ﬁzi’), Ply|z) = Pﬁg) (4.17)
it follows from Eq. (4.17) that
P(zly) = P(z), Plylz) = P(y) (4.18)

it x and y are independent.

Chapter 4. Independent Component Analysis 37

For two independent random variables x and g, the following holds

E{g(z)h(y)} = E{g(z) }E{h(y)} (4.19)

for any functions g(-) and k(-) such that the expectations exist. In other words, non-
linear transformations of independent function are uncorrelated. From Eq. (4.19) it
can be seen that independence implies uncorrelatedness. The converse is not true,
except in the case of variables having Gaussian distributions.

One of the methods to extract the independent components from a mixture is to
find a separating matrix such that different components y; and y; are uncorrelated
and, for suitable nonlinear functions ¢ and &, ¢(y:;) and h(y;) are uncorrelated. The
other main method relies on the fact that the Central Limit Theorem states that
the distribution of the sum of independent random variables tends to be gaussian,
under mild conditions. Thus, to estimate the independent components, cne can
consider a linear combination of the input vectors and vary the coefficients until
the maximum nongaussianity is obtained. The strategy of maximizing the non-
gaussianity can also be interpreted as minimizing the mutual information between
the latent variables. The linear combination of independent sources is expected to
be more gaussian than the sources, thus the maximum nongaussianity indicates that
the linear combination is roughly aligned with one of the sources. The local maxima
of nongaussianity correspond to independent components.

To obtain a quantitative measure of the nongaussianity of a random variable,
a property of gaussian variables can be used, namely that they have the largest
entropy among all variables with zero mean and unit variance. This result can be
generalized: the gaussian distribution has the uniquely largest entropy among all
distribution with a given covariance matrix. Entropy can therefore be used as a
measure of nongaussianity. A convenient form of this measure of nongaussianity is
the negentropy. The negentropy of a random vecter x is defined as the difference
between the entropy H(Xguues) of a gaussian random vector Xy having the same

covariance as x and the entropy of x:

J(x) = H(Xgmss) — H(X). (4.20)

Chapter 4. Independent Component Analysis 38

The negentropy J(x) is always nonnegative (due to the maximality of the entropy
of the gaussian distribution) and is zero only if x is gaussian.

Estimating the negentropy is computationally very difficult. A computationally
simple approximation of the negentropy of a scalar zero-mean random variable x is
given by

) s %E{f’}g + 4—18kurt($)2 (4.21)

where kurt(z) = E{z!} — 3(E{2%})? is the kurtosis (z is zero-mean). The kurtosis
measures the flatness of a distribution. Positive values of the kurtosis are associated
to supergaussian (or leptokurtic) probability density functions with spiky peaks and
heavy tails; negative values to subgaussian or platykurtic distributions with broad
peaks and slender tails; zero kurtosis characterizes distributions peaked in the same
way as a Gaussian distribution. Note that for white data, kurt{z) = E{z*} —3. The
kurtosis itself could have been used as a measure on nongaussianity. It is, however,
not robust with respect to outliers. Negentropy is less sensitive to irrelevant or
erroneous data. Approximations to negentropy through the kurtosis attempt at

combining the best characteristics of both indicators.

Chapter 4. Independent Component Analysis 39

X5,
1 5 |:I es IXI
| | |
PRINCIPAL INDEPENDENT
Pﬁ:fﬁé;fﬁéﬁle COMPONENT COMPONENT
l ANALYSIS ANALYSIS
| !

Figure 4.1: Illustration of the difference between transformations for a uniformly

distributed bidimensional signal [5]

References

[1] A. Hyvérinen and E. Oja, “Independent component analysis: algorithms and

applications,” Neural networks, vol, 13, no. 4, pp. 411-430, 2000,

[2] K. Pearson, “On lines and planes of closest fit to systems of points in space,”

Philosophical Magazine, vol. 2, pp. 559-572, 6 1901.

3] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic anoma-
lies,” in ACM SIGCOMM Computer Communication Review, ACM, vol. 34,

2004, pp. 219-230.

[4] ——, “Mining anomalies using traffic feature distributions,” in ACM SIG-

COMM Computer Communication Review, ACM, vol. 35, 2005, pp. 217-228.

[5] A. Cichocki and S.-i. Amari, Adaptive blind signal and image processing: learn-

ing algorithms and applications. John Wiley & Sons, 2002.

Chapter 5

Improving anomaly detection

The shortcomings of signature-based systems become evident when such systems are
confronted with previously unseen attacks, which can be completely new, variations
of earlier attacks, or polymorphic ones. For an appropriate signature to be generated,
the community needs to be made aware of the threat, and detailed information about
it and its workings should become available. This time-consuming process does not
make signatures a colorable alternative when prompt response is required. On the
other side, network anomaly detection systems have the essential benefit of not
requiring prior knowledge about attacks. However, they suffer from the absence of
an universal traffic model which is valid anywhere and anvtime. In addition, there is
an inherent difficulty due to the fact that, while individual flows are often provoking
or indicating an anomaly, only aggregate quantitative measures show the regularity
needed for building a model for normal behavior and detecting variations from that
model. The benefits of signature-based methods can be reaped by arranging multiple
detectors in a hierarchical structure, where the front layers have the purpose of
reducing the volume of traffic by quickly identifying the easily detectable attacks,
easing the job of subsequent layers, which can perform more sophisticated analyses

on a subset of flows,

Whatever the strategy that is selected to detect attacks, traffic should be cap-
tured and observed at some place in the network. An important point that should
be scrutinized is the choice of how many sensing points to deploy and where those

should be placed for the performance of the anomaly detection system to be opti-

Chapter 5. Improving anomaly detection 42

mal. Interfaces in the routers at the network border are an appealing option, as they
allow the capture of traffic traversing the border. Such choice would, however, pre-
vent the observation of activity which is only “internal” to the network considered,
and threats coming from the inside can outrank their outside counterparts both in
number and in harmfulness [1|. In addition, if the collection points are too close to
the backbone, it is possible that excessive aggregation of traffic information results
in losses in discriminative power. A single collection point can only build a partial
view of traflic. Ideally, many different sensing points are needed, at different hier-
archical levels, to obtain a rich and complete set of measurements able to describe

traffic in a comprehensive way.

Accordingly, we propose a novel network anomaly detection architecture, rely-
ing on a fully distributed trafic observation system based on multiple independent
sensor agents installed on a large number of connected hosts. These sensors collect
traffic reaching their network interfaces, pre-process it by extracting some features of
interest that should best describe the inveolved traffic dynamics, and finally send the
resulting data to one {or two, for redundancy/robustness sake) centralized collec-
tor node aggregating all the data incoming from the distributed sensors for further

analysis.

5.1 Different views on the same phenomenon

Different features may reflect different observation dimensions such as the commu-
nication intensity (i.e., number of transactions/flows, average packet length, packet
inter-arrival times, etc.), and connection dispersion (i.e., number of corresponding
counterparts). By using these features, each sensor/host is able to describe in a de-
tailed and independent way the traffic-related phenomena observable from its own
point of view. The resulting multi-dimensional data exhibit distributions that are
highly sparse and may lack of invariance in their statistical distributions with respect

to the associated generating events/phenomena. That is, the sequence of samples

Chapter 5. Improving anomaly detection 43

associated to the same kind of events occurring at different times may be mapped
in completely different classes of traffic behavior. Furthermore, the different sam-
ples/signals describing the observed features may have a disordered structure and

tend to be highly redundant, presenting overlapping and mutual dependencies.

These signals may be depending on other, more intrinsic, variables determined by
the hidden dynamics governing the traffic itself so that each individual observation
may be viewed as a linear combination of the above variables. Such variables can be
reasonably assumed to be mutually independent and their number is a fundamen-
tal dimension to be used to correctly describe traffic, and hence to flag anomalous
behaviors. That is, each intrinsic component, due to the above independence prop-
erty, contains a great deal of information about the real traffic dynamics, and hence,
being strictly necessary to describe it, can be more sensitive to network anoma-
lies and their related disorders than other directly available features. Such more
sensitive components, incoming from the different sensors, can be considered as the
really useful signals or “fundamental” features to be inspected in the classification of
anomalous or normal phenomena, while the components associated to the other cor-
related or non-informative features can be viewed as “noise” or “unwanted” signals,

degrading the classifier’s performance.

Hence, we are interested in extracting the network behavior profiles to be used for
a more effective classification process from the time series associated to the above in-
trinsic components, determined by performing I[CA on the observation data collected
from all the available sensors. This can be modeled as a BSS problem, such as the
classic n by m “cocktail party” one, where the n individual speaker (or “voice”) sig-
nals to be isolated are the fundamental traffic components and the m microphones,
capturing the mixed voices and noise, correspond to the available traffic sensors.
The power of this approach resides in the assumption that different processes inde-
pendently operating on the network (e.g., browsing, data transfer, e-mail retrieval
or peer-to-peer sessions) generate unrelated signals, whose statistical combination
completely describes the network behavior and hence the desired “baseline”. In

other words, the observed traffic results from the superposition of a certain number

Chapter 5. Improving anomaly detection 44

of fundamental components, directly associated to these unrelated signals. Due to
their mutual independence the resulting component signals inherently maximize the
information content that can be used to describe the traffic behavior and its less
evident dynamics, and hence, their exploitation is expected to introduce significant
improvements in the overall efficiency of the anomaly classification process without

loss of accuracy.

Starting from these “fundamental” signals /features, we can try to “understand”
the process generating the traffic data, and hence complete our baseline modeling
task, by allowing the system to build its knowledge about the occurrence of the
statistical phenomena describing the “normal” traffic via inductive inference based
on observing the empirical data that represent incomplete information about their
evolution dynamics, This will be the training activity in which the system “learns”
by example to recognize complex patterns, to distinguish between samples based on
their different patterns and to make intelligent decisions related to binary classifi-
cation of the anomalous and normal events. The training data consist of a set of
pre-classified independent component signals (or time series), corresponding to the
above fundamental features. According to a classic supervised learning paradigm,
each training instance is a pair consisting of an input object (typically a vector)
and a desired output value (also called the supervisory signal}. A supervised learn-
ing algorithm analyzes such training data and produces an inferred function, which
drives the classifier (if the output is discrete). The inferred function should predict
the correct output value for any valid input object. This requires the learning al-
gorithm to generalize from the known pre-classified situations in training data to

unseen situations in a “reasonable” way.

The learning algorithm may be structured according to a decision tree scheme,
such as C4.5 and related methods, generating a sequence of rules based on splitting
its input objects into the two classes Normal, Anomalous according to the above
pre-trained model, that is able to work in a satisfactory way also on unseen input

values (i.e., it generalizes well).

Chapter 5. Improving anomaly detection 45

5.2 Baselining and Features Extraction

A fundamental preliminary task in a network anomaly detection process is baselin-
ing, which can be defined as the act of measuring and rating the performance of a
network under normal conditions. Providing a network baseline requires evaluating
the regular network utilization, protocol usage, peak network utilization, and aver-
age throughput over a significant period of time. This is a very slow and complex
task requiring a lot of computing effort and human expertise, but fortunately it
has to be performed only once, in the initial “knowledge construction” phase where
the most significant network utilization patterns, describing the fundamental traffic
dynamics, should be described in terms of specific features gathered from traflfic

observations.

In building our baseline, we start from the assumption that traffic originat-
ing from a single host results from the linear composition of many independent
streams, each associated to a specific instance of a protocol/application (e.g., web
browsing, mail activity, file sharing, etc.). The same concept can be extended to
the aggregated traffic associated to a group of hosts or an entire network. In this
case, each stream can be viewed as the composition of effects due to homogeneous
protocol /application-originated traffic belonging to the involved hosts. The com-
position affects all the statistical features measured, though not every feature is
affected in the same way. Starting from the features associated to cumulative traf-
fic trends, the simultaneous analysis of the above independent streams related to
the cumulative variations in each traffic class or host aggregates, introduces great
control granularity in the detection process. The time series incoming from mul-
tiple points of observation, and hence multiple dimensions in the feature vectors,
can ease correlation and inference activities in the machine learning based binary
classification process. The availability of several different observations (coming from
multiple sensors) associated to the individual traffic features may also be helpful in
spotting and describing the nature and behavior of the observed anomalous phe-

nomena. For example, the analysis of an anomaly can be, in principle, extended

Chapter 5. Improving anomaly detection 46

to encompass the protocols that are involved, the transport facilities that are used,
and the distribution of traffic volumes distribution.

We can note that under normal network conditions the traffic time series asso-
ciated to each aggregation of homogeneous streams tend to systematically follow a
specific trend /distribution when observed on a sufficiently large network dimension
and time scale. Accordingly, we transform the aggregated input data into a subset
of features so that the reduced representation contains only the really relevant in-
formation from the original signal dynamics and no more artifacts or noise effects
due to the combination of mutually dependent signals. For this reason, the resulting
signals /time series will be the ones bringing the maximum content of information.
Consequently, they will be the most relevant and effective, or “fundamental”, fea-
tures to be used in the classification process.

In doing this we used the CAIDA CoralReef tools [2| to process the collected
packet traces and compute the original input feature values. CoralReef is a suite
of tools developed by CAIDA to assist network administrators. The suite includes
device drivers, libraries, and applications that support the capture and analysys of
network traffic in a wide variety of formats and systems. The suite is designed to
be easily expandable: by using the available APIs, new tools can be developed with
limited effort.

The basic features considered in our scheme are any statistics (e.g., traffic volume
data, the lengths of observed IP packets, the packet inter-arrival times, etc.) that
can be useful to characterize the behavior of network traffic, structured as multi-
dimensional feature vectors. When choosing such features, we only considered statis-
tics that can be easgily and effectively computed by the distributed sensors, without
introducing additional burden—unsustainable on resource-constrained devices. This
enables our system to be completely agnostic with regard to packet payload as well
as to implicit constraints introduced from the transport layer. Accordingly, the

statistics considered in constructing our basic feature set are:

e the average packet length within the time interval. Lengths are based on the

[P datagram length excluding link layer overhead;

Chapter 5. Improving anomaly detection A7

e the average packet arrival rate within the sampling interval;

¢ the average number of end-to-end transactions or traffic flows.

Several other more detailed features can be determined by breaking traffic down
into elementary flows, which are specifically identified by source and destination IP
addresses, protocol, source and destination ports. However, these data cannot be
completely relied upon, and hence must be used carefully. Addresses can be spoofed,
especially when one of the interacting parties has no interest in the other’s reply, as it
is the case with many DoS attacks. Proxies and NAT boxes can also introduce noise
within a traffic description plan of action based solely on the address. Port numbers
can be easily spoofed, too: if the communicating entities agree, they can select
arbitrary port numbers, irrespective of the ones usually assigned to the application
protocol used. Even tunneling can be used for the purpose of disassociating port
numbers with application traffic. The traffic relative to one (tunneled) application
can be encapsulated within traffic belonging to another (tunneling) application, thus
maintaining the properties of the tunneling one. Masquerading techniques such as
the above have been extensively used in order to make unauthorized, or undesirable,
traffic appear as legitimate traffic. Abundant literature is devoted to the problem
of characterizing traffic based on its properties and behavior, thus spotting port
number disguise [3], [4]).

Starting from the basic features, we try to gather the characteristic properties
of the most significant traffic components by extracting a minimum set of highly
discriminating (or “pure”) traffic features on which the various traffic profiles can
be reliably built. More specifically, for each measured traffic feature, the corre-
sponding time series values, sampled across all the available observation points (the
sensors), should result from the linear composition of the “pure” (or fundamental)
traffic features deriving from all the individual and independent component signals.
Therefore, although the single components may not strictly adhere to a specific dis-
tribution, if we assume that in line of principle the component series are generated

by independent, non-gaussian, stochastic processes, we can estimate, through ICA,

Chapter 5. Improving anomaly detection 48

the single component signals that can be associated to the basic protocol/application
streams (i.e., the “voices” to be separated in the cocktail-party problem), starting
from the original multivariate “noisy” traffic measures. An example of such “voice”
or basic independent component signal, may be the time series corresponding to all

the web access-related traffic.

5.3 FastICA

In this work, the FastICA 5] method has been used to separate the independent
components, where the non-gaussianity is measured by means of negentropy, defined

in Eq. (4.20) and approximated as described in Eq. (4.21).

In contrast to many ICA techniques, based on other measures of non-gaussianity,
the convergence of the FastICA algorithm is cubic (under mild conditions on the
nonlinearity chosen) and the independent components can be easily estimated one
by one. Convergence, with gradient-based methods, is slow and critically depends
on the learning rate. In gradient descent methods, the learning rate gives the step
taken in the opposite direction of the gradient of the objective function. If the
learning rate is too low, convergence will be very slow, Conversely, a high learn-
ing rate may lead to instability. By contrast, FastICA does not require setting a
learning rate nor it has adjustable parameters. The algorithm is asymptotically ef-
ficient if the non-linearity is optimally matched to the probability density function
of the source |6|. Implementations of FastICA are available in a variety of program-
ming languages, including C++ and Python. Both the deflation and symmetric
approaches to orthonormalization are available, in literature and in software. The
convergence properties, originally derived for the deflation version of the algorithm,

are also shared by the symmetric version [7].
In our specific case, the trafic time series resulting from the available observa-
tions can be viewed as made up of a finite number of component signals s—mixed

through an unknown linear mixing process described by an n x n mixing matrix A as

Chapter 5. Improving anomaly detection 49

in Eq. (4.4)—while the n different observed dimensions (the traffic features) record
the mixed signals x. Each of the components changes in time, but has a fixed
weight for each channel. The FastlCA algorithm finds an unmixing (separating)
n x n matrix W consisting of the coefficients with which the traffic feature signals
should be taken to form, by summation, the estimated components § as in Eq. (4.5).
In other terms, these coefficients indicate how strongly each involved observation

brings information that is strictly required to describe the traffic dynamics.

5.4 Knowledge Construction: Rule-Based Classi-
fier

Once we have been able to estimate the fundamental (i.e., unmixed) traffic compo-
nents, the description of traffic profiles built from the time series of feature vectors,
considered with reference to a consolidated bageline, can help us to isclate previously
unseen, and hence possibly anomalous, behaviors. The construction of the knowl-
edge base from the aforementioned feature vectors/profiles, determined according to
the previously presented methods, is the next step in building a working anomaly de-
tection system. To this purpose, a sufficiently large number of pre-classified feature
vector samples have been aggregated into homogeneous “training” data sets. With
the aid of traditional data mining and machine learning techniques, training data
are used to determine the most discriminating features associated to the interesting
type of traffic. Hence, a model of normal and anomalous traffic data is built from
the training set, and the anomaly detector will take its decisions by inference from
this model, being able to classify previously unseen events also without knowing
what they look like.

More formally, training data is a set T' = {t;,ta,...ty} of N already classified
samples. Each sample t; = (tgi),tg), e S)) is an n-dimensional vector where the
7-th component t?) represents the j-th independent feature, extracted by ICA, from

the original sample observations incoming from the input sensors. The training data

Chapter 5. Improving anomaly detection 50

is augmented with an additional feature set C' = (¢1,cs,...cp) where ¢; represent
the class (i.e., anomalous/not anomalous) to which sample t; belongs. In this way,
the detector’s knowledge could be modeled as a set or rules/criteria “learned” from
a collection of training samples gathered under “certified” normal or anomalous

conditions.

Decision trees are currently among the best available solutions to implement
inductive rule-based clasgsification schemes, where the decision process is expressed
as a recursive partition of the instance space [8]. The widespread use of decision
trees is essentially due to their robustness and execution performance, as well as
to their ability in translating concepts into explicit rules that can be interpreted
and checked with modest effort. Decision trees are structured according to the
choice steps needed in order to achieve a correct classification. Nodes within the
tree correspond to a test. These tests can involve the weighing of a single specific
feature against a constant, the comparison of two features with each other, or the
evaluation of a function of a collection of features. Branches correspond to possible
outcomes of the test. Each decision step results in a move down the tree. The path
taken describes the decision process needed to complete the classification task for
a specific instance. Leaf nodes provide the class labels that are predicted for paths
that arrive at the leaf. Put differently, classification using a decision tree always
starts with a root node, considered to be the “ancestor” of every other decision
node, and is accomplished recursively, by following the branches corresponding to
the values that can be assumed by the features involved into the decision process.
Hence, starting from the root node, one arrives at a leaf whose class value is assigned
to the instance to be classified. Each path from the root of a decision tree to one of
its leaves can be transformed into a rule: the antecedent part is formed by joining
the comparisons along the path and the class prediction in the leaf is taken as the

clagsifier output.

In order to create the most efficient decision tree, the simplest method uses a
greedy approach, driven by a divide-and-conquer strategy. Starting with an empty

tree, the algorithm greedily selects a first attribute to partition the training instances

Chapter 5. Improving anomaly detection 51

into subsets associated to the possible attribute values. It then creates a node (ini-
tially, the root) corresponding to splitting the training set on the selected attribute.
Afterwards, child nodes are created recursively by processing the split sets, stopping
when the sets are pure (i.e., all instances belong to the same class) or there are no

more features to be scrutinized.

It is likely that the greedy strategy for constructing decision trees will produce
trees that mirror too closely the detailed structure of training data. Artifacts of
the particular distribution of the training data used to build the decision tree may
blend with characteristics genuinely related to the general distribution of the data
of interest, interfering with the ability to generalize to unseen test data. In a word,
overfitting is a possible problem with trees built by the divide-and-conquer algo-
rithm. Although this may be somewhat alleviated by n-fold cross-validation, strate-
gies have been developed for pruning decision trees [8]. These methods evaluate the
effects of two basic pruning operations, namely replacing a subtree with a single leaf
and collapsing a path by removing a branch and raising the subtree below it (see
Fig. 5.1). Both operations will induce an increase in the classification errors on the
training data, but they may lead to improving the performance on an arbitrary test
sets. The criterion to guide pruning decisions needs an estimate of the error that
can be expected at an internal node on generalized test data. If the estimated error
for a candidate replacement subtree is lower than that of the original subtree, then

replacement is advisable,

We used one of the most common classification schemes based on decision trees,
formalized within the well-known C4.5 algorithm [9] whose pseudo-code formulation
is reported in Algorithm 1. At each node of the tree, the C4.5 algorithm determines,
by the locally most effective choice, the attribute that splits in the best way the
involved instances into different subsets associated to the different classes. The in-
formation that is gained by splitting on an attribute is a measure of the effectiveness
of splitting on that attribute. Thus, an appealing selecting criterion is the Infor-
mation Gain (IG)—difference in entropy (see also Section 6.1)—that results from

choosing an attribute for splitting the data. The IG should be corrected, however, to

Chapter 5. Improving anomaly detection

52

Algorithm 1 C4.5Tree() — Building a C4.5 tree

Input:

R: current decision tree root

Output:

N:

10:
11:
12:
13:
14:
15:
16:
17:

18:

resulting decision iree root

Check for base cases

N «— new decision node

: maxig +— 0

abest +— nil

. for all attribute a do

Find the Gain Ratio IGR{a) from splitting on a
if {GR(a) > maxig then
maxig + IGR(a)
abest +— a
end if
end for
Create a decision node that splits on abest
for all U in the splitting of K do
if Uis not empty then
add C4.5Tree(U) as a child of N
end if
end for

return N

Chapter 5. Improving anomaly detection 53

account for the effects deriving from the nonuniformity in the number of partitions
induced by attributes. The information gain attainable by splitting on attributes
with a large number of possible values tends, in fact, to outrank the one obtainable
by splitting on attributes with less options. The gain ratio (the IG divided by the
entropy of the split obtained without considering class labels) is therefore chosen as
the quantity to maximize when making the selection of the attribute on which to
split. The C4.5 algorithm then recurs on the smaller subsets produced, terminating
when a given subset iz pure. The resulting decision tree contains all the features
that are most predictive to classification, whereas the branches that correspond to
less useful features are automatically pruned (see Fig. 5.1). Hence, irrelevant and
redundant information is dealt with by providing an automatic feature selection
strategy based on an initial learning/mining phase operating on a sufficiently large
quantity of pre-classified data. It also provides the basic mechanisms for ranking
(usually on the basis of the Information Gain) the features present in the decision

tree to determine the relative importance of any individual feature.

Figure 5.1: Pruning on the decision tree example (source: [8]).

The aforementioned IG comes from information theory, and represents the change
in entropy from a prior state to a state that takes some information as given. De-

noting with T* C T the subset of the training set such that the value of attribute

Chapter 5. Improving anomaly detection 54

a is w, the IG is

IG(X,a) = H(T) - Y _ H(T!) (5.1)

wel,

where D, is the domain of @ and H is the entropy. The IG is thus associated to
an increment in certainty resulting from a splitting decision. Ideally, each split in
the decision tree should drive the classification to the most efficient choice, and
that choice is the one that reduces randomness by the greatest amount. The whole
process of training and building a decision tree-based binary classifier is sketched in

Algorithm 2.

Chapter 5. Improving anomaly detection 55

t

Algorithm 2 Training (t,n,m, {{ler}2=1 s {:Em}jzl

7

},p) — The training pro-

Cess
Input:

t: training duration in time samples

n: number of independent components to be isolated, n = m

m. number of sensors

{{f}};l R {fy"}zzl} basic feature vectors, where T ={f1,..., fp}

p. number of basic features in vectors T

Output:

DT C4.5 decision tree classifier

Local:

{{y i 1,...,{y(f)?};:1}: independent components resulting from [CA on
feature f

{{2}};1’” { } } fundamental feature vectors

1: if n > m then
2: n < m {ICA requires the components being less than sources}
3 end if
& {{z'},... . {?}}« {2,...,9}
5: for all feature feido
¢ m 1t
s {{u o fusY s« oA (tma {8 T)
{extract components}
e i & :
o {{EY L AgYL) - (B B v, | {buid
fundamental feature vectors}
8 end for
9: DT + BuildDecisionTree (t,n, {{2’;};1 N {2’;‘};1 })

10: return DT

References

1

E. E. Schultz, “A framework for understanding and predicting insider attacks,”

Computers & Security, vol, 21, no. 6, pp. 526-531, 2002,

K. Keys, D. Moore, R. Koga, E. Lagache, M. Tesch, and k. c. Claffy, “The ar-
chitecture of CoralReef: an internet traffic monitoring software suite,” in FPas-
sive and Active Network Measurement Workshop (PAM), Amsterdam, Nether-
lands: RIPE NCC, 2001.

Y. Wang, Y. Xiang, and S. Yu, “An automatic application signature construc-
tion system for unknown traffic,” Concurrency and Computation: Practice and

Experience, vol. 22, no. 13, pp. 1927-1944, 2010.

F. Palmieri and U. Fiore, “A nonlinear, recurrence-based approach to traffic

clagsification,” Computer Networks, vol. 53, no. 6, pp. 761-773, 2000,

A. Hyvérinen and E. Oja, “A fast fixed-point algorithm for independent com-

ponent analysis,” Neural computation, vol. 9, no. 7, pp. 1483-1492, 1997,

P. Tichavsky, Z. Koldovsky, and E. Oja, “Performance analysis of the fastica
algorithm and crame” r-rac bounds for linear independent component analy-
sis,” Signal Processing, IEEE Transactions on, vol. b4, no. 4, pp. 1189-1203,
20086.

REFERENCES 57

[7] E. Oja and Z. Yuan, “The fastica algorithm revisited: convergence analysis,”

Neural Networks, IEEE Transactions on, vol. 17, no. 6, pp. 1370-1381, 2006.

[8] 1. H. Witten and E. Frank, Data Mining: Practical machine learning tools and

techniques. Morgan Kaufmann, 2005.

9] J. Quinlan, C4.5: programs for machine learning. Morgan Kaufmann, 1993,

vol. 1.

Chapter 6

Experimental evaluation

Asg it has been discussed in the previous chapters, the basic intuition behind the
use of ICA to untangle the explanatory factors of traffic and achieve a better clas-
sification performance in anomaly detection is two-sided. The first part is that the
data we observe are the result of a complex process, where several factors play a
role in an intertwined pattern of interactions. In particular, observed quantities at
the aggregate level are thus the superposition of the effects of simpler streams. The
second part is the hypothesis that extraction of independent components from these
aggregated measurements is a step towards the construction of a simplified model.
The view of independent components thus unveils, somehow, portions of informa-
tion which were inaccessible because they were masked by the intricate webwork of

relationships between the explanatory factors.

To test this hypothesis, the performance of some anomaly detectors has been
analyzed, comparing the results obtained in two situations. In the first setting,
the clagsifiers were given the criginal, unprocessed data. In the second setting, the
independent components extracted from the original data were given ag input to
the classifiers. An improvement in the performance of classifiers would mean that
some information had been made awvailable by the application of ICA in such a
way that anomalies that had previously gone undetected can now be discovered.
In particular, especially a reduction in false negatives would be an indicator that
the model that can be built after ICA is closer to the true data distribution. In

other words, the manifold where normal data lie has, after ICA, a simpler structure

Chapter 6. Experimental evaluation 59

allowing a more accurate separation between points belonging to the manifold and

points not belonging to it.

In order to verify the effectiveness of the models induced by our changes of
representation in improving anomaly detection, we carried out an extensive set of
experiments on real network traffic traces (see Table 6.1) collected at the University
of Naples, Italy. A proof-of-concept implementation has been built, which did not
require the use of proprietary analysis tools: rather, it has been based on open-
source software, because of the wide availability of these tools and of the rich set
of functionalities they provide. In our experiments, the [T+ library' version 4.2
has been emploved. I'T++ is a C++ library mainly used in analysis and simulation
of communications systems, developed and maintained by a community of industry
and academic researchers. [T+ can also use and interoperate with other exist-
ing open-source libraries. We linked the code with ATLAS? (Automatically Tuned
Linear Algebra Software), a software package for linear algebra offering an imple-
mentation that iz at the same time efficient and portable. Routines in ATLAS are
written to be competitive with machine-specific versions of the original BLAS (Basic
Linear Algebra Subprograms) for a variety of architectures, and try to achieve good

performance also on unknown machines.

As discussed in Chapter 4.3, the FastICA algorithm has two variants, correspond-
ing to different approaches to orthonormalization, both of which are implemented
in the [T++ library. The deflation approach estimates the components one after
another while ensuring that orthogonality is maintained, whereas the symmetric ap-
proach computes the updates in parallel and applies symmetric orthogonalization
to the de-mixing matrix at each iteration. The library also provides two different
types of nonlinearity: the kurtosis (codenamed POW3) and the hyperbolic tangent
(tanh). The choice of the nonlinearity significantly affects performance. In our tests,

we used the symmetric approach and kurtosis nonlinearity.

The Waikato Environment for Knowledge Analysis (WEKA) [1] has been used to

Yhttp://itpp.sourceforge.net /devel /index.html
“http://math-atlas.sourceforge.net /

Chapter 6. Experimental evaluation 60

build the tree-based binary classifier based on the J48 Java-based implementation
of C.4.5. Since decision tree-based algorithms such as C4.5 can sometimes result
in excessively large trees, overfitting the training data, J48 extensively uses tree
pruning as a method to cope with the risk of overfitting, by relaxing the specificity
of the decision tree in order to improve its performance on the testing set. In
detail, J48 gradually generalizes a decigion tree until it gains a balance of flexibility
and accuracy by means of two pruning methods, respectively known as subtree
replacement (reducing the number of tests along a path by replacing decision nodes
with leafs) and subtree raising (moving nodes towards the root, by replacing other

nodes along the way).

To achieve a more realistic evaluation and ensure maximum reliability of the
whole training process, we post-processed the final results through 10-fold cross val-
idation on all the training set constituents. To do this, training data is randomly par-
titioned into ten—mutually exclusive—blocks of approximately equal size, and the
resulting classifier is tested on each one of the ten blocks, after having been trained
on the remaining nine. The cross-validation estimation of accuracy results from the
ratio between correct classifications, and the number of samples in the training data.
In order to further validate our results, we compared the performance of J48 with

two other well-known classification algorithms available in WEKA: BayesNet and

OneR.

BayesNet is an implementation of Bayesian networks [2]. A Bayesian Network
over a set of variables X is a directed acyclic graph (DAG) whose vertices corre-
spond to the elements of X, together with a Conditional Probability Table (CPT),
describing the probability of an element x given its parents in the DAG. BayesNet
make explicit the idea that classification learning fundamentally amounts to esti-
mating class probabilities, which are more expressive of plain predictions, for they
also express the confidence in classification. More precisely, what is sought is an es-
timate of the conditional probability of the class given the values of the attributes.
The classification task is to find an appropriate Bayesian Network starting from a

dataset consisting of pairs (z,y) where ¥ is the class variable, specifying the class of

Chapter 6. Experimental evaluation 61

Different Bayesian networks can be constructed to represent the same probability
distribution. Machine learning techniques for Bayesian networks induce a network
from the correlations in the data. Learning is done in two stages: first, the network
structure is learnt, exploring the space of possible networks; then, the probability
tables are populated by computing the relative frequencies of the matching combina-
tions of attribute values. Learning the structure corresponds to learning the edges,
for nodes correspond to the attributes {including the class attribute). An approach
for building a network structure is to maximize a quality measure of the structure,
given the training data. Quality is gauged by the probability of the data, given the
network. In practice, log-likelihood is preferred in place of probability, because the
probabilities involved in the CPTs are usually very small. Maximization of the log-
likelhood of the network, given the training data, can lead to overfitting if applied
without correctives. In fact, there always is an incentive to add a new edge to the
network. A common strategy to combat overfitting is to restrict to a predefined limit
the maximum number of edges going out of each node, or the number of edges in the
entire network. Alternatively, a penalty term can be added to limit the complexity
of the network. For example, the AIC score, a meagure for evaluating the quality of
a network based of the Akaike Information Criterion (AIC), combines the negative

log-likelihood with the number of free parameters:
A=—-L+ K (6.1)

where A is the AIC score, I. the log-likelihood, and K the number of parameters.
Clearly, the lower is the AIC score, the better is the network. To find the number
of parameters, it should be noted that, in a CPT, the last column is determined
by the values in the other columns because probabilities must sum to 1. Therefore,
the number of parameters is the number of independent entries in the CPTs. An
important propriety is that metrics such as the AIC score are local, ie., thay can
be optimized separately for each node. The penalty term is evidently local, and the

log-likelihood is a sum where terms can be rearranged and grouped so that each

Chapter 6. Experimental evaluation 62

term depends only on the entries in a single CPT. Thus, considering one node at a
time, edges to other nodes can be added or removed, evaluating the result, provided
that the network remains acyclic. This can be achieved, for example, by analyzing
the nodes in a predefined order and only considering as potential parents the nodes
which have already been visited. Because the results will depend on the initial order,
other methods have been proposed, including simulated annealing, tabu search, and
genetic algorithms.

OneR. [3] is a simple but effective rule-based classifier, belonging to a family of
classifiers, called 1R, that classify samples on the basis of a single attribute. The
OneR algorithm takes a training set as input and produces a set of rules—all based
on a particular attribute—by ranking attributes in accordance to the error rate.
Despite being simple, 1R classifiers perform well on a wide variery of data, and they

remarkably cater for missing values in a straightforward way.

Before discussing the results, some considerations about systematic techniques
to evaluate anomaly detection methods and compare different methods with one

another, as well as about the datasets, are in order.

6.1 Classification Performance Metrics

To evaluate the classification power of anomaly detectors, metrics commonly used in
machine learning are often used [4]. Measuring the performance of a classifier and,
thus, being able to compare it with competing approaches is a fundamental, but by
no means easy, task in machine learning. In particular, it is important to be able of

assessing the cost of misclassification, taking the type of error into account.

The confusion matrix C is a contingency table detailing the frequencies of the
events “one instance belonging to class 7 is classified as belonging to class 77. Entry
¢i; (see Fig. 6.1) is, thus, the count of items whose true class is 7 that were classified
as belonging to class 7. In the anomaly detection context, the classification is binary.

Suppose that the two classes, normal and anomalous, are labeled, respectively with

Chapter 6. Experimental evaluation 63

(Clagsified as

Negative | Positive

Actual | Negative TN P

Class | Positive N TF

Figure 6.1: Confusion matrix for a binary classification task.

Negative (N), and Positive (P}. The four classification outcomes depending on the

true class are the classical ones:
e True Negatives { TN). Count of normal elements classified as normal.
¢ Halse Positives (FF). Count of normal elements classified as anomalous.
e Halse Negatives (FN). Count of anomalous elements classified as normal.
¢ True Positives (TF). Count of anomalous elements classified as anomalous.

Exploratory analysis of the confusion matrix can be used for performance evaluation
of classifiers. Classic indicators are the sensitivity or True Positive Rate and the

specificity or True Negative Rate:

TPR — N I'NR i)

- 6.2
TP+ FN TN + FFP (6:2)

The sensitivity gives the proportion of actual positives that were correctly identified
as positives (anomalies). Correspondingly, the specificity represents the fraction of
actual negatives that were correctly identified as negatives. In information retrieval,
the usual performance measures are precision and recall, The precision is the pro-
portion of predicted positives that are actually positive, while the recall is the same

as the sensitivity described above.

TP TE
precigion = ———— recall = ———— . (6.3)

TP + FP TP +FN

An ideal indicator would summarize all the information in the confusion matrix

into a single number, so that a simple comparison may be used for ranking classifiers.

Chapter 6. Experimental evaluation 64

Accuracy, the fraction of correctly classified instances, is a single-figure criterion in

widespread use:

TP + TN (6.4)
accuracy = :
YT TP TN+ FP L FN
whereas its specular measure is the error rate:
error_rate = 1 — accuracy . (6.5)

Although accuracy is an intuitive metric, it has, however, been criticized [5] as
not taking the type of misclassification errors into proper account. The F-measure

is the harmonic mean of precision and recall:

1 1 N\
F-measure = — . (6.6)
precision recall

Receiver-Operating-Characteristic (ROC) analysis, and in particular the Area
Under the ROC Curve (AUC) [6], is a method for evaluating data mining methods
that derives from the trade-off, usually met in signal detection, between hit rate
and false alarm rate on noisy channels. Assuming a threshold-baged classifier, the
ROC curve is a plot of the sensitivity versus the specificity as the threshold varies.
Optimal classification would correspond to the upper left-hand corner. Alternatively,
the ROC curve can be drawn by considering the actual positive instances sequentially
and marking on the x (resp., ¥) axis the points corresponding to the total count of
false positives (resp., true positives) found so far, divided by the total number of
actual positives. A sample ROC curve obtained with the latter method is shown
in Fig. {6.2). To avoid the dependence on the order of test data, commonly used
solutions entail the ranking of instances in some way. Ranking can be generated
on the basis of the confidence of classification, where available, or by means of the
results of a number of cross-validations. Again in the quest for a single quantity that
could summarize the information in the ROC curve, the AUC has been introduce
as a measure of quality, on the observation that better models tend to correspond
to larger areas.

The Matthews Correlation Coefficient (MCC) [7] measures the statistical corre-

lation between actual and predicted values. Put differently, it is a measure of the

Chapter 6. Experimental evaluation 65

100%
80% P
+) - -
frue positives 72

40% -7

20%

0 T T \ T
0 20% 40% 60% 80% 100%

false positives
Figure 6.2: A sample ROC curve [5].

linear association between truth and prediction, calculated as the Pearson product-

moment correlation coefficient:

o TP. TN — FP.FN (67
TP 1+ FP)(TP + FN)(TN + FP)(TN + FN)

The MCC lies in the interval [—1,1], with a value of U indicating no correlation, a
value of -1 indicating completely wrong classification (which, for binary classification,
only needs reversal) and a value of 1 indicating perfect classification. MCC has been
recommended [8] as an indicator exhibiting a good trade off between consistency and
discriminatory ability. However, when the number of positives (i.e., TP + FP) is

low, the MCC will be very high in proportion.

Cohen’s Kappa indicator statistic measures the agreement between predictions
and actual labels, correcting for the agreements that might have occurred by chance.

The Kappa. indicator & is computed as

E L p—

where P, is the probability of correct classification (estimated by the accuracy) and

P. is the probability for a random classificer to produce an accurate classification,

Chapter 6. Experimental evaluation 66

estimated by

(I'P+ FP)TP+FN)+ (IT'N+ FP)(TN+ FN)

P =
(TP +TN + FP + FN)?

(6.9)

In other terms, the indicator expresses the proportion of classification success with
respect to the performance of a perfect classifier.
Other indicators were proposed which have their theoretical ground in Informa-
tion Theory [9]. The Confusion Entropy (CEN) [10].
(FN + FP)log, ((TP + TN + FP + FN)? — (TP — TN)?)
2(TP + TN + FP + FN)

~ FN logy FN + FP log; FP
TP+ TN+ FP+FN

CEN =

(6.10)

In [11], the similarity between the MCC and the CEN is studied, showing that the
two measures are strongly correlated. Gu et al. also proposed a metric for the
evaluation of intrusion detection systems: the Intrusion Detection Capability Crp is
the mutual information between the IDS input and output, normalized with respect
to the entropy of input. The Cp is

I(X;Y)
H(X)

iy = (6.11)

where X and Y are two random variables associated with the input and output
respectively, I(X;Y) is their mutual information and H(X) the entropy of X. Recall
that, in information theory, entropy is a measure of uncertainty associated with a
random variable. If X is a discrete random variable and p{z) its distribution, its

entropy H(X) is defined as the expectation of the information
H(X) = E{log } Zp z) log p(z (6.12)

Different units of entropy are obtained, depending on the basis of the logarithm. If
plz,y) is the joint distribution of X and Y and p(y|z) the conditional distribution
of Y given X, the conditional entropy H(Y|X) is defined as

H(Y|X) = E:E:pxylﬁpy\) (6.13)

Chapter 6. Experimental evaluation 67

with the interpretation of H(Y|X) being the degree of uncertainty remaining about
Y once X is determined. The mutual information /{Y; X) = /{Y’; X) is a symmetric
quantity that can be interpreted as giving the reduction of uncertainty in one of the

random wvariables once the other is known. It can be calculated as

I(X:Y) = H(X) — H(X|Y) = HY) — H(Y|X). (6.14)

6.2 Testing on Real Traffic Data

Standardized datasets for testing would be of great value for achieving reliable tests
of a newly developed anomaly detection system, and for comparing its performance
to other algorithms. Nevertheless, publicly available datasets are rare. Network
administrators are reluctant to provide network packet captures to the research
community. Network traces contain indeed sensitive information, some of which
can be extracted even after that attempts at masking it are brought into action:
extensive research has been dedicated to anonymization and de-anonymization of
packet traces. For example, Pang et al. [12] discuss the conflicting goals of trace
anonymizers, underlining that these systems should confuse data to the greatest pos-
sible extent but without destroying important information that may be relevant to
researchers. On the other hand, despite being relatively simple to produce, synthetic
traces might not adequately reflect all the complexity of real-world traffic.

The DARPA /Lincoln Labs and the KDD99 datasets, though old and deprecated,
continue to be widely used in assessing the performance of anomaly detection algo-
rithms. The classical DARPA /Lincoln Labs dataset containg labeled network traces
for several days from a simulated network [13][14]. The DARPA dataset was in fact
criticized [15] as being synthetic, thus not reflecting real-world traffic characteristic,
for both usage patterns and actual attacks. Ideally, a dataset should show statisti-
cally verifiable similarity with typical traffic captured in the network within regular

operation. In the same vein, attacks can be expected to span all vulnerable hosts,

Chapter 6. Experimental evaluation 68

and not be limited to a subset of them. The KDD cup dataset [16] was derived
from DARPA traces, extracting the essence of them into a set of features. It could
not possibly, therefore, avoid the shortcomings of the DARPA dataset. In addition,
it raised criticism as per the rates of some events [17|, which were frowned on as
being too uniform. The KDD dataset was extensively analyzed in [18], finding that
a large number of redundant records are contained within it. This causes a bias in
the learning algorithms towards the more frequent attacks. The NSL-KDD is an
improvement over the KDD dataset. The NSL-KDD includes a selection of records
from the complete KDD dataset and solves the issues raised in [18]. Redundant
records have been removed from the NSL-KDD training dataset, and the number
of records for each group is more balanced than in the original KDD dataset. How-
ever, NSL-KDD still suffers from the shortcomings detailed in [15]. Another publicly
available data set is the LNBL dataset, that contains enterprise traffic anonymized
with the tcpmkpriv tool [12]. Traces only include packet headers, without payload. In
addition, attack traffic filtered at the border is not available, ag traffic was captured

for two internal subnets.

An important issue that should be considered is the extent to which test datasets
retain their significance over time. In fact, the usage of networks is constantly
evolving, often in radical ways. Consequently, new applications emerge and usage
patterns change, sometimes dramatically. As a result, there is no guarantee that
a baseline which used to be valid years before will still reflect the characteristic of
current normal traflic. Even though a complete dataset was available at a certain

moment, its validity as a test tool would fade over time.

6.3 Analysis of the Results

The training and testing traces have been captured by using 5 different sensors,
located on independent workstations operating within the same LAN segment, with

a sampling rate of 1 second, properly chosen to cover some typical cases such as the

Chapter 6. Experimental evaluation 69

noticeable differences in network usage between morning and evening hours.

Table 6.1: General workload dimensions of the traces.

Trace Training Set | Testing Set
Duration 24 hours 24 hours
Anomalous Samples 26400 3900
Packets 582108 6.67 - 108
Bytes 897+ 108 2.18 - 101

The traces contain several anomalous events simulated through distributed SYN
floods occurring at various times {see Tables 6.2 and 6.3). A SYN flood attack is
a very well known attack that consists in forcing the creation of many *half-open”
TCP connections. By “half-open” it is meant that the attacker sends a T'CP packet
with the SYN flag set, to which the server responds with a packet having the SYN
and ACK flags set. The server will now be waiting for the final ACK packet to
complete the connection setup, but the attacker would never send that packet. A
great number of resources will be spent on the server side to keep track of these
unfinished connection setups. Address spoofing allows the attacker to send multiple
requests without disclosing its real address, for the attacker doesn’t care to actually
establish a connection and can safely ignore the server reply. Several variations exist
that are based on this bagic setting. Such variations involve other aspects of the
TCP protocol, with the use of other flags, or taking advantage of other machines
as reflectors, by spoofing the address of the victim in requests sent to the reflector,
thus forcing it to send reply packets to the victim. In the distributed version of this
attack, many machines join their attacking effort onto a single target.

The number and duration of the anomalies in the training set is considerably
higher than in the testing set, to provide the classifier with a sufficiently rich set of
anomalies.

The above three types of attacks have been chosen both for duration and specific

characteristics (i.e., their explicit “noisy” behavior) to be a sufficiently consistent and

Chapter 6. Experimental evaluation 70

Table 6.2: Simulated attacks in the training traces.

Training Set

Start Time | Duration | Attack | Rate
00:00 190min | SYN flood | 500/s
06:00 15min | SYN flood | 500/s
09:00 20min SYN flood | 500/s
13:00 195min | SYN flood | 250/s
19:00 20min SYN flood | 250/s

representative sample for a volume-based analysis. Most of the anomalous traflic
patterns that can be currently observed on the Internet (inbound DDoS attacks,
bandwidth floods, single and multiple scans) can be associated to these attack types.

After processing the raw traffic data with the CoralReef suite, the FastICA al-
gorithm has been run on the resulting data in order to separate the independent
components and determine the unmixing matrix. For example, the computed un-
mixing matrix for the testing data (limited, for the sake of presentation clarity, to

the packet counts) is reported in Fig. 6.3.

/ —0.001629 0.0000Z26 0.000004 —0.000006 0.000019 \
0.000431 —0.000532 —0.001766 0.000023 —0.000374
W = 0.000748 0.002665 —0.000490 —0.000663 0.001420

0.000116 —0.000058 0.000284 —0.000094 —0.000364

\ 0.000087 —0.000339 0.000259 0.000096 0.000579

Figure 6.3: Unmixing matrix for the testing data (packet counts only).

Some of the coefficients are relatively close to zero, indicating an almost complete

independence of the corresponding signal/component pair. Other elements show

Chapter 6. Experimental evaluation 71

Table 6.3: Simulated attacks in the testing traces.
Testing Set

Start Time | Duration | Attack | Rate
02:00 Smin SYN flood | 500/s
05:00 bmin SYN flood | 250/s
08:00 10min SYN flood | 500/s
14:00 15min SYN flood | 500/s
17:00 5min SYN flood | 250/s
20:00 10min SYN flood | 250/s
23:00 15min SYN flood | 500/s

a non-negligible dependence. As stated before, neither the sign nor the absolute
values are significant, on account of the inherent indeterminacy of the separation

into independent components.

6.3.1 ICA at a single collection point

The first analysis is meant to answer the question of whether and to what extent
the counts of packets and bytes taken at a single location in the network are related.
For readability of the graphs that will be shown next, only two features have been
selected. In particular, the choice privileged packet and byte counts because these
features are most prominent and convey much information. The scatter plots in
Fig. 6.4, obtained by analyzing the packet and byte counts at a single capture point,
confirms the intuition that these counts are strongly interdependent. Plots on
symmetrical positions in the figure are the same plot with axes swapped, while the
straight lines in the diagrams on the secondary diagonal are scatter plots of each
signal against itself. The diagram in the upper right corner of Fig. 6.4, in fact,

diverges significantly from a straight line, showing three clusters of points. The

Chapter 6. Experimental evaluation

T2

0.000

8.000 —

5.000 —

4.000 —

2.000 —

T
a 2.000

T
4.000

T
&.000
ariginal (1)

T
&.000

10.000

Oe00 2e06

T T
<e08 Ge0d

arininal (71

T
Seld

ariginal (23

ariginal (2}

T T T T
2.000 4000 G.000 8.000 10.000

original (1)

Belf

GelE o

4e05

2e0E

-

/

Oe00

T
O0e00 2e06

T T
<e06 Geld

arininal 31

T
Se08

Figure 6.4: Scatter plot of packet and byte counts.

n
1

iy
by
o

-20 T T T
-20 15 -10 5 a
I £13
u]
-5
3 10
15 <
-20 T T T T T T
=2 -1 o 1 2 3 2 3]
[Ipfarh]

Figure 6.5:

Scatter plot of the independent compeonents (1C).

2@

12 @)

Chapter 6. Experimental evaluation 73

cluster near the crigin is related to small packets, while the other two describe the
majority of packets and a small group of relatively large packets,

After performing the separation into independent compeonents, it is natural to
examine the mutual relationship between the obtained components. Analogously
to Fig. 6.4, Fig. 6.5 containg the scatter plots of the independent components, one
versus the other. As it can be seen in Fig. 6.5, graph at the top right, there still
remains some regularity (the straight line), but the majority of points are spread
across a wider area than in Fig. 6.4. In addition, there are at least four chservable
clusters instead of three, suggesting a more detailed structure in the independent

components and in the relationship between them. Looking in detail at the rela-

Wy
12(2)

0 —\
14 5
T T T T T T T T
o 2.000 4.000 6,000 2.000 10.000 o 2.000 4.000 G.000 2.000 10.000
original (1) original {13

1C{2)

o)

| e
g _‘4 ’
B

-20 T T T T -2 T - T T T
OedD Ze0 4806 EL Se0d Oe00 2e0B 406 Gelf 2e08
iminal MY mrAinal MY

Figure 6.6: Scatter plot of packet and byte counts vs. the [Cs.

tionship between the original signals (the packet and byte counts, labeled as 1 and
2) and the independent components, shown in the scatter plots in Fig. 6.6, it is ev-
ident that the second component is strongly coupled with the byte count (Fig. 6.5,
bottom right) and with the packet count (Fig. 6.6, top right). At the same time,

the first component has a more complex linkage with both of the original signals

Chapter 6. Experimental evaluation 74

4.000

3.500
a.000
2.500
2.000
1.500
1.000

500

T T T T
0 500 1.000 1.500 2000 2.500 3.000 3.500 4.000

4808
3.5e08
3806

2.5a06
2u06
1.6a08
1a08
Ge05

BBt e e
0 500 1000 1500 2000 2860 3000 3500 4.000

Figure 6.7: Time series chart of packets and bytes, single collection point.

— T T T T T T
0 500 1.000 1.500 2.000 2.500 3.000 3.500 4.000

— T T T T T T T T T T T T T
0 500 1.000 1.500 2.000 2.500 3.000 3.500 4.000

Figure 6.8: Time series chart of the ICs, single collection point.

Chapter 6. Experimental evaluation 75

(Fig. 6.6).

The time series chart of Fig. 6.7 is relative to the packet and byte counts mea-
sured at a single host for the time interval from 01:00 pm to 02:00 pm, while Fig. 6.8
containsg the time series charts of the corresponding independent components for the
same interval. Inspecting closely the time series charts in Fig. 6.7 and confronting
them with the plots of the independent components in Fig. 6.8, we can see that
the noticeable similarity between the original features is lost when the independent
components are examined. While one of the independent components closely re-
sembles the shape of the original signal, the other independent component has a
different behavior, with its own spikes, making evident information that was less

readily accessible in Fig. 6.7.

The previous plots confirm the intuition that observed data have much more
structure in them than it is immediately apparent, and that ICA can be used to

expose some of that structure, even when a single collection point is considered.

6.3.2 ICA at five collection points

The second set of experiments involved data captured at all five sensors. Again,

simplified versions of the charts are reported to enhance readability.

Analogously to the previous figures showing the time series chart of the mea-
surements and of the independent components, Figs. 6.9-6.12 report the time series
charts for the packets and bytes as measured at the five collection points, as well
as for the corresponding independent components, for the time interval from 07:00
am to 09:00 am. Figures 6.9 and 6.10 depict the packet counts and the independent
components obtained from these packet counts in isolation, i.e., without considering
other features when applying ICA. The same holds for Figs. 6.11 and 6.12, which
refer to the byte counts. The charts are, thus, only indicative. Nevertheless, the
comparison between Figs. 6.9 and 6.10 shows that a pattern of stepwise increasing
activity, observable in at least two of the subplots in Fig. 6.9, is more compactly

described by a more rise in a single component, namely the third one of Fig. 6.10,

Chapter 6. Experimental evaluation

76

1.000

500

T T T T
0 1.000 2.000

T T T
3.000 4.000

T T T
5.000 6.000 7.000 8.000

T T
4] 1.000 2.000
2000

T T
3.000 4.000

T | T
5.000 6.000 7.000 B.000

1.000 —

I T
0 1.000 2.000 3.000 4.000

I
8.000 7.000 £.000

b ol S AR L L

0 1.000 2,000 3.000 4.000 5.000 8.000 7.000 8.000

a A nan Py VS o man 4 Ann

= Aan & Ana - ann aAnn

Figure 6.9: Time series chart of packets, five collection points.

T T T I T I T
] 1.000 2.000 3.000 4.000

[I T T T
5.000 6.000 7.000 8.000

T T T T T T T I [T T T T T
o 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000

T T
o 1.000 2.000

I T T
3.000 4.000 5.000

I T
6.000 7.000 B8.000

T
0 1.000 2.000 3.000 4.000

T
5.000

T
5.000 7.000 8.000

~ a nnn A nnn o nnn 4 non

Figure 6.10: Time series chart of [Cs from packets, five collection points.

T T
e nnn & nnn > nnn a8 nnn

Chapter 6. Experimental evaluation

200.000

100.000

T T T T T T T
3.000 4.000 5.000 6.000 7.000 8.000

T T T T
0 1.000 2.000

Lt ekl iy o : |
] 1.009 2.900 3.000 4.000 5.000 6.000 7.000 B.000

I T
8.000 7.000 £.000

T T T
3.000 4.000 £.000

T T
0 1.000 2.000

2008 —
o0 —kanllo oo bOb LU bl bl itatidihl i il
] 1.000 2.000 3.000 4.000 5.000 8.000 7.000 8.000
100.000
l
L VS A ,.‘..”l' dalledodibsd

Figure 6.11: Time series chart of bytes, five collection points.

0.4
0.2
[+
| T T T I T I i T T T T I T T T
0 1000 2000 3000 4000 6000 6000 7000 8.000
]
| T) ' T T I T I I 1 T
0 1000 2000 3000 4000 6000 6000 7000 B.000
[r |
05
T T T T I T T T T T 2
o 1.000 2.000 3.000 4.000 5.000 6.000 7.000 B8.000
omwﬁww
-1
2 T S A R—
0 1000 2000 3000 4000 6000 6000 7000 8.000
2
1_me
[r
— , . —

~ a nnn A nnn o nnn 4 non e nnn & nnn > nnn a8 nnn

Figure 6.12: Time series chart of the ICs from bytes, five collection points.

Chapter 6. Experimental evaluation 78

oo
] s L.“,r‘ﬂ“ Yr A
i ks -y U il
ao
U_MMMM?

1.000
STRTV | R A R TR I I..i,lllLlI.J”h“I“L fo ek
T T T T 1

o
200.000 oo

o
mnnooj
o T T
o
s G e e M"‘

[ulu]
De00 _wmw&ﬂmdm_i

[ulu]

50.000

oo
3 ey FTIgpTTe g ...l. .. bl . L_;MJ—.W
L s i i T]- I ™
o0& oo
i WMMMWMW
0 ‘mmwmwwmmmmmm e
[u]
D T T T T T T T T T
1 o0
D

| | | ao

oo

by |i.||.||1.l I..l||IlL1| Y e e e ,J”ll““uL Lo kit
o T I-F T T T T T

I o0
o b S uuWMMM
T

o T T T T T T

Figure 6.14: Time zeries chart of [Cs from packets and bytes, five collection points.

Chapter 6. Experimental evaluation 79

allowing other components to describe other aspects.

Figures 6.12 and 6.14 show the results of the application of ICA to the combined
zet of packet and byte counts from all the five collection peoints. Again, the stepwise
increase is evident in a single independent component, but there apparently is no
other significant improvement in comparison with Figs. 6.9-6.12. This suggests
that, since the features considered are strongly correlated, the application of ICA to
a restricted set of them is sufficient to expose sone hidden structure. Such finding
would be beneficial in a practical implementation, where limiting the transformation
to a reduced set of features could be an important factor in improving the execution
time of the anomaly detection system. Note that, in passing, this would also allow

the analysis of longer time windows.

10

o —WWWM
R

5 _wwmm—-——ﬂuﬂ,r'wmwf\«&f%ww

a0 -

50 |
60 -

=70

-80 T T T T T T
1] a0 100 150 200 250 300 350

Figure 6.15: Time series chart of the independent components (IC) relative to

pkts.

A closeup chart is shown in Fig. 6.15, which depicts the independent components
(obtained from the packet counts only, at all locations) in a short time window that

has been chosen so that it includes the beginning of an attack It can be seen

Chapter 6. Experimental evaluation 80

that three components exhibit a clear spike in correspondence to the beginning of
the attack. Interestingly, the timing is slightly different: not all components react

simultaneously.

8500
3508] . wina]
3208 4
o 4206
2208 o
2508 2e08]
300 = T T T De00 : i T T De00 : :
D0eD0 2e06. 4e08 GeDd Be06 OeDO 2e06 4e05 GeDS Be0S De0O 2606 4e08 Ge06 8e05
o o _ m m —— m
3000 4 . 8e08 4 §
= 4208 o
o
2600 e
JedD De0D T T T De0D T — T
De00 De00 2e08 4e08 Ge08 Oel0 2e08 de0d Gel8
@) 2)
3208 a0 4 2607
3008 -, 15007 4
< 00] "
4208 4 T 1e07
2006 4 2e08 5e08 - -
3800 060
neon e
9208 1207 o
o T genn]
2ipe-] 5ed5 1
0e00 0e00 Qe00 T T
O Qe00 o=00 Se06 1e07
4y
3208 5 i 5208 | 077 1607 4 o -
508 .0 o I
3 . 408 -~ = -
4208 = 2 fe07 4 ki g 4e08
2606 2 3 5608 2:08 -
3e00 e T 000 — i T 000 -5 T T - 0s=00 e 000 - - -
NeON ZenA 4R RenR AR MeMn S0A 40N AR ReDA Meon e 4e0n e ReDn Nenn a0 deln Aetn Renn fenn 2efin detn nenn Retn
Fi S lot of the b he fi llecti i
igure 6.16: Scatter plot of the byte counts at the five collection points.
S
204 9
10
0]
; T |
-20 10 o 10 20 -20
e 1)
20 st
= 104 &] & &
o 2 T o] e
&) ! 2 ° B,
10 N 4
-10 o 10 20
1C ()
204 57
g & z @
e 2 e 7] 2
]
e
10 5 o 5 10
e
5] ;
a o £ .1 &
2) B 2
s
o 5 B
o
- - = ~
8 o) T 44 o
] e o o 249
&
T T T T T T T T 2 T T T T
AT a3 TR I T 58 s AT

Figure 6.17: Scatter plot of ICs from bytes at the five collection points.

Chapter 6. Experimental evaluation 81

1215)

T T T T T T T T T T T T T T T T T T T T
0e00 208 4eD6 GeDF GeDd 0e00 2608 4eD8 Ge0d Geld 0e00 2608 4eD8 BedE BeOB 0200 2208 4eD6 Be0B GeOB €00 2205 4eD6 BeDS Be0d
I il

15(2)
©@

Ic 5)

5@
5@
(1)

128)

5@
1563

1e3)
I . 1
i

S

-20 T T T T T T T T T T T T
NeO PeNA 4e0A ReDR ReOR NN 2e0A 4e0R ReDR ReNA NN 7e0A AEDA ReDA ARDA MO 2eNA 4sDR ReNA AeDA

Figure 6.18: Scatter plot of bytes vs. [Cs from bytes at the five collection points.

The scatter plotsin Figs. 6.16, 6.17, and 6.18 depict, respectively, the relationship
between the byte counts at the five locations, the independent components obtained
by separating those byte counts, and the mutual relationship between the byte
counts and the independent components. As stated earlier, the fact that the ICA
procedure and the plots have been purposely restricted to a single feature, namely
the byte count, collected at multiple points, is not restrictive of the meaningfulness
of the plots, because the effects of separation are already evident in the simple plots
and the complete set pf plots would have been unreadable. By comparing Fig. 6.16
with Fig. 6.17, the effectiveness of the separation procedure is immediately evident.
Almost all the byte counts show a complex pattern of relationship with the byte
count collected at a different location, resulting in two clusters of points noticeable
on the scatter plots in Fig. 6.16. An exception is the (unordered) pair (3,4), where
the relationship is even more complex, for there are three clusters. In contrast,
as can be expected, the scatter plots in Fig. 6.17 have a much more concentrated,
simpler structure. By analysis of the scatter plots in Fig. 6.18—which, differently
from the ones in Figs. 6.16 and 6.17, are not symmetric—we can see roughly linear

shapes in some diagrams, pointing to the similarity between the involved signal and

Chapter 6. Experimental evaluation

component. The best accordance is shown by that the fifth independent component
and the fourth signal, which are strongly related, as can be also seen from the
corresponding time series subplots in Figs. 6.11 and 6.12. In addition, the three
clusters which were present in the scatter plots at subgraph (3,4) and its symmetrical

in Fig. 6.16 are noticeable across all the scatter plots relative to the third signal,

but not the fourth,

6.3.3 Performance of clasifiers

Table 6.4: Classifier Performance Comparison

Parameter OneR | J48 | BayesNet
Percent correct 093.72 | 99.38 89.28
Kappa statistic 0.534 | 0.926 0.393

TP rate 0.895 | 0.900 0.912

FP rate 0.061 | 0.002 0.108

TN rate 0.939 | 0.998 0.892

FN rate 0.105 | 0.100 0.088

TP 3491 | 3511 3556

FP 5018 143 8919

TN 77482 | 82357 73581

FN 409 389 344
Precision 0.410 | 0.961 0.285
Recall 0.895 | 0.900 0.912

F measure 0.563 | 0.930 0.434
Matthews correl. || 0.927 | 0.94 0.475
Area under ROC || 0.917 | 0.949 0.960

Chapter 6. Experimental evaluation 83

As to the performance of classifiers, the results summarized in Table 6.4 show
that, among the classifiers tested, only the J48 classifier achieved a satisfactory

performance. This is largely due to the percentage of false positives, which is signif-

Table 6.5: Classifier Performance Comparison with and without ICA

Measure w/o [CA | with [CA
Percent correct 99.34 99.38
Kappa statistic 0.923 0.926

TP rate 0.894 0.900

FP rate 0.002 0.002

TN rate 0.998 0.998

FN rate 0.106 0.100

TP 3488 3511

FP 141 143
TN 82359 82357

FN 412 389
Precision 0.961 0.961
Recall 0.894 0.900

F measure 0.927 0.930
Matthews correl. 0.924 0.940
Area under ROC 0.937 0.949

icantly lower than the one obtained by the other classifiers. BayesNet has, by a slight
slack, the highest number of true positives, but that is counterbalanced by the false
positive rate, which is by far the highest among the three algorithms. In contrast
to the wide variation in the tallies of false positives, it is interesting to note that all
algorithms find a similar number of false negatives. Again, the lowest percentage

is shown by BayesNet, with OneR consistently being the worst performer with a

Chapter 6. Experimental evaluation 84

false negative rate of 0.105. The consensus of the three different algerithms on small
false negative rates is a confirmation of the effectiveness of ICA to isolate anomalous
events from the traffic, so that the resulting components show a distinctive behavior
that can be detected even by classifiers that do not perform particularly well under
other respects.

Finally, Table 6.4 reports the comparison of the results for the best-performing
clagsifiers (i.e., J48) when run on the observed data and on the transformed data
by means of [CA. It can be seen that the performance enhancement is small but
consgistent across the metrics, with the most notable improvements an increased
number of true positives and a decreased number of false negatives.

In conclusion, the preliminary results are interesting and indicate that the pro-

posed method is a promising avenue for further investigation.

References

1

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and [. Witten,
“The WEKA data mining software: an update,” ACM SIGKDD Explorations

Newsletter, vol. 11, no. 1, pp. 10-18, 2009,

N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network clagsifiers,”

Machine learning, vol. 29, no. 2, pp. 131-163, 1997.

R. Holte, “Very simple classification rules perform well on most commonly

used datasets,” Machine learning, vol. 11, no. 1, pp. 63-90, 1993.

T. Fawcett, “An introduction to ROC analysis,” Pattern recognition letters,

vol. 27, no. 8, pp. 861-874, 2006.

[. H. Witten and E. Frank, Data Mining: Practical machine learning tools and

technigques. Morgan Kaufmann, 2005,

J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a
receiver operating characteristic (ROC) curve.,” Radiology, vol. 143, no. 1,

pp. 29-36, 1082.

B. W. Matthews, “Comparison of the predicted and observed secondary struc-
ture of t4 phage lysozyme,” Biochimica et Biophysica Acta (BBA)-Protein

Structure, vol. 405, no. 2, pp. 442-451, 1975.

REFERENCES 86

8]

[10]

[11]

[12]

[13]

[14]

P. Baldi, S. Brunak, Y. Chauvin, C. A. Andersen, and H. Nielsen, “Assessing
the accuracy of prediction algorithms for classification: an overview,” Bioin-

formatics, vol. 16, no. 5, pp. 412424, 2000,

G. Gu, P. Fogla, D. Dagon, W. Lee, and B. Skorié¢, “Measuring intrusion de-
tection capability: an information-theoretic approach,” in Proceedings of the

2006 ACM Symposium on Information, computer and communications secu-

rity, ACM, 2006, pp. 90-101.

J-M. Wei, X.-J. Yuan, Q.-H. Hu, and S.-Q. Wang, “A novel measure for eval-
uating classifiers,” Erpert Systems with Applications, vol. 37, no. b, pp. 3799—

3809, 2010.

G. Jurman, S. Riccadonna, and C. Furlanello, “A comparison of MCC and
CEN error measures in multi-class prediction,” FloS one, vol. 7, no. 8, e41882,

2012,

R. Pang, M. Allman, V. Paxson, and J. Lee, “The devil and packet trace
anonymization,” ACM SIGCOMM Computer Communication Review, vol. 36,

no. 1, pp. 29-38, 2006,

R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall, D. Mc-
Clung, D. Weber, 5. E. Webster, D. Wyschogrod, R. K. Cunningham, et al.,
“FEwvaluating intrusion detection systems: the 1998 DARPA off-line intrusion

detection evaluation,” in Proceedings, DARFA Information Survivability Con-

ference and Erposition. DISCEX 00, IEEE, vol. 2, 2000, pp. 12-26.

R. Lippmann, J. Haines, D. Fried, J. Korba, and K. Das, “The 1999 DARPA
off-line intrusion detection evaluation,” Coemputer Networks, vol. 34, no. 4,

pp. 579-595, 2000

REFERENCES 87

[15] J. McHugh, “Testing intrusion detection systems: a critique of the 1998 and
1999 DARPA intrusion detection system evaluations as performed by Lincoln
Laboratory,” ACM transactions on Information and system Security, vol. 3,

no. 4, pp. 262-294, 2000,
[16] KDD39, http://kdd.ces.uci.edu/databases/kddcup99/task.html.

[17] M. V. Mahoney and P. K. Chan, “An analysis of the 1999 DARPA /Lincoln
Laboratory evaluation data for network anomaly detection,” in Hecent Ad-

vances in Intrusion Detection, Springer, 2003, pp. 220-237.

[18] M. Tavallace, E. Bagheri, W. Lu, and A.-A. Ghorbani, “A detailed analysis of
the KDD CUP 99 data set,” in Proceedings of the Second IEEE Symposium

on Computational Intelligence for Security and Defence Applications, 2009,

Chapter 7

Conclusions

Accurately detecting anomalies in network traffic is effective to preserve good work-
ing conditions for the network, as well as increase availability. Timeliness is also
important, as the time window for some attacks can be short. A good represen-
tation in term of features is a key factor to achieve a relatively compact model
of normal traffic behavior, so that the individuation of abnormal conditions can
be simplified. Flexibility and adaptivity in achieving such compact representations
is needed, because traffic keeps changing, and a representation which is good at
present might no longer yield good results years from now. In this context, we have
analyzed the effects of a change of representation based on blind source separation
techniques. This change of coordinates, coupled with off-the-shelf classifiers in a
two-stage system, has been shown to improve the accuracy of clagsification on real
traffic data. In particular, the proposed strategy has been designed with the aim
of being able to “notice” the occurrence of suspicious activity when observing from
multiple sources. The notion of statistical independence and the use of higher-order
statistics is also promising in the quest of finding a more “natural” representation,
closer to the unknown explanatory causes that determine the dynamics of traflic

data-generating process.

It should be noted that the proposed scheme assumes that the target phenom-
ena involve measurable variations of the statistical profile of the traflic time se-
ries. Thus, it cannot detect anomalous behaviors affecting only the pavload of

packet /transactions (e.g., buffer overflow or other vulnerability exploits). Analo-

Chapter 7. Conclusions 89

gously, it can be less effective with attacks designed to be indistinguishable, from
the point of view of the statistical properties, from regular activity.

The avenues for further research are multifarious. A main objective for future
study is the pursuit of obtaining a good representation in a mostly unsupervised
way, by means of deep learning mechanisms. In particular, the generative abilities
of deep graphical model, coupled with the composition of denoising autoencoders,
iz a good candidate for anomaly detection. Preliminary steps in this direction have
been taken with the analysis of the potential of RBM in this endeavor [1].

An interesting application of the main idea proposed here involves the detection
of the specific traffic related to the command and control (C&C) channel of botnets.
The intuition is that, since C&C traffic is strongly correlated temporally [2], ICA
can isolate it in a single independent component.

Besides recognizing the effect of a phenomenon measured over a set of different
sensing points, separation into independent components can be used also in another
context. This application relates to the change of representation induced by ICA for
a set of measurements taken at a single sensing point. An ongoing scientific inves-
tigation uses the separation of independent components within the flows sampled
at a single collection point for the purpose of traffic characterization and applica-
tion recognition, a problem that has received much attention in the literature [3].
The different independent sources can be estimated and their statistical character-
istics can be associated, by means of a variety of methods, with distinct traffic flows

connected with specific applications.

References

1

U. Fiore, F. Palmieri, A. Castiglione, and A. De Santis, “Network anomaly
detection with the Restricted Boltzmann Machine,” Neurocomputing, vol. 122,

pp. 13-23 2013.

G. Gu, R. Perdisci, . Zhang, W. Lee, et al., “Botminer: clustering analysis of
network tratfic for protocol-and structure-independent botnet detection.,” in

USENIX Security Symposium, 2008, pp. 139-154,

F. Palmieri and U. Fiore, “A nonlinear, recurrence-based approach to traffic

clagsification,” Computer Networks, vol. 53, no. 6, pp. 761-773, 2000,

Appendix A

Log likelihood in RBMs

The derivative of the free energy (please refer to Chapter 3 for the notation) with

respect to the parameter can be written as

AF(v) 8
/. —wlogzh:exp(—sv h
1 d
_ Zhexp(g(v,h))agzh:exp(E(V,h))
1 9
= _Zh exp(—&(v,h)) Zh: @exp(—g(v,h))
ot AE(v, h)
= 7o) 2Pl g
. exp(—&(v,h)) 1 9&(v,h)
E Z < p(v) o0
_ ZP v, h) 85 (v h)
a (v)
b 8(9
_ o [E
- ED{ o9 } ' (A1)
Theferore, the derivative of the log likelihood is
M _ 7‘9]:(") _ dlogZ
5l - a0 o0
_ OF(v) 10z
Wz
OF(v) 10

0 70 > exp(=F(v))

Appendix A. Log likelihood in RBMs 92

_ 97 +Z:exp(—?(")) 8F(v))

90 = Z 6
= ‘”;é") ¥ Z p(v) zh: P;‘(’;gl) 08 E;; h)
~ _ay;év) +VZh:p(h)aggg h)
_aJ;év) g {ag(v h)

	PhD_thesis_UF_Pagina_001
	PhD_thesis_UF_Pagina_002
	PhD_thesis_UF_Pagina_003
	PhD_thesis_UF_Pagina_004
	PhD_thesis_UF_Pagina_005
	PhD_thesis_UF_Pagina_006
	PhD_thesis_UF_Pagina_007
	PhD_thesis_UF_Pagina_008
	PhD_thesis_UF_Pagina_009
	PhD_thesis_UF_Pagina_010
	PhD_thesis_UF_Pagina_011
	PhD_thesis_UF_Pagina_012
	PhD_thesis_UF_Pagina_013
	PhD_thesis_UF_Pagina_014
	PhD_thesis_UF_Pagina_015
	PhD_thesis_UF_Pagina_016
	PhD_thesis_UF_Pagina_017
	PhD_thesis_UF_Pagina_018
	PhD_thesis_UF_Pagina_019
	PhD_thesis_UF_Pagina_020
	PhD_thesis_UF_Pagina_021
	PhD_thesis_UF_Pagina_022
	PhD_thesis_UF_Pagina_023
	PhD_thesis_UF_Pagina_024
	PhD_thesis_UF_Pagina_025
	PhD_thesis_UF_Pagina_026
	PhD_thesis_UF_Pagina_027
	PhD_thesis_UF_Pagina_028
	PhD_thesis_UF_Pagina_029
	PhD_thesis_UF_Pagina_030
	PhD_thesis_UF_Pagina_031
	PhD_thesis_UF_Pagina_032
	PhD_thesis_UF_Pagina_033
	PhD_thesis_UF_Pagina_034
	PhD_thesis_UF_Pagina_035
	PhD_thesis_UF_Pagina_036
	PhD_thesis_UF_Pagina_037
	PhD_thesis_UF_Pagina_038
	PhD_thesis_UF_Pagina_039
	PhD_thesis_UF_Pagina_040
	PhD_thesis_UF_Pagina_041
	PhD_thesis_UF_Pagina_042
	PhD_thesis_UF_Pagina_043
	PhD_thesis_UF_Pagina_044
	PhD_thesis_UF_Pagina_045
	PhD_thesis_UF_Pagina_046
	PhD_thesis_UF_Pagina_047
	PhD_thesis_UF_Pagina_048
	PhD_thesis_UF_Pagina_049
	PhD_thesis_UF_Pagina_050
	PhD_thesis_UF_Pagina_051
	PhD_thesis_UF_Pagina_052
	PhD_thesis_UF_Pagina_053
	PhD_thesis_UF_Pagina_054
	PhD_thesis_UF_Pagina_055
	PhD_thesis_UF_Pagina_056
	PhD_thesis_UF_Pagina_057
	PhD_thesis_UF_Pagina_058
	PhD_thesis_UF_Pagina_059
	PhD_thesis_UF_Pagina_060
	PhD_thesis_UF_Pagina_061
	PhD_thesis_UF_Pagina_062
	PhD_thesis_UF_Pagina_063
	PhD_thesis_UF_Pagina_064
	PhD_thesis_UF_Pagina_065
	PhD_thesis_UF_Pagina_066
	PhD_thesis_UF_Pagina_067
	PhD_thesis_UF_Pagina_068
	PhD_thesis_UF_Pagina_069
	PhD_thesis_UF_Pagina_070
	PhD_thesis_UF_Pagina_071
	PhD_thesis_UF_Pagina_072
	PhD_thesis_UF_Pagina_073
	PhD_thesis_UF_Pagina_074
	PhD_thesis_UF_Pagina_075
	PhD_thesis_UF_Pagina_076
	PhD_thesis_UF_Pagina_077
	PhD_thesis_UF_Pagina_078
	PhD_thesis_UF_Pagina_079
	PhD_thesis_UF_Pagina_080
	PhD_thesis_UF_Pagina_081
	PhD_thesis_UF_Pagina_082
	PhD_thesis_UF_Pagina_083
	PhD_thesis_UF_Pagina_084
	PhD_thesis_UF_Pagina_085
	PhD_thesis_UF_Pagina_086
	PhD_thesis_UF_Pagina_087
	PhD_thesis_UF_Pagina_088
	PhD_thesis_UF_Pagina_089
	PhD_thesis_UF_Pagina_090
	PhD_thesis_UF_Pagina_091
	PhD_thesis_UF_Pagina_092
	PhD_thesis_UF_Pagina_093
	PhD_thesis_UF_Pagina_094
	PhD_thesis_UF_Pagina_095
	PhD_thesis_UF_Pagina_096
	PhD_thesis_UF_Pagina_097
	PhD_thesis_UF_Pagina_098
	PhD_thesis_UF_Pagina_099
	PhD_thesis_UF_Pagina_100
	PhD_thesis_UF_Pagina_101
	PhD_thesis_UF_Pagina_102
	PhD_thesis_UF_Pagina_103

