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Introduction

A conservation law is a partial differential equation, in which the
variable is a quantity which remains constant in time, that is it
cannot be created and destroyed. Thanks to the conservation laws
it is possible to define models able to describe real systems in which
something is stored. Fluid dynamic models, which are based on
them, have a wide range of applications, because they can be used
to describe blood flows, traffic evolution on street networks of big
cities or on motorways of big states, data flows on telecommunica-
tion networks, flows of goods on supply chains, electric networks,
etc.
The model of the blood flow in the cardiovascular system will
be treated in this thesis. Because of the increasing request from
the medical community of scientifically and rigorous investigations
about cardiovascular diseases, which are the cause of about the
40% of death, the research in this field is very active. Most of
these disturbs are connected to arteriosclerosis, which leads to ic-
tus, hearth attacks, etc. It is a common practice, in the vascular
surgery, to face vascular and coronaries diseases by doing a bypass,
but sometimes it fails. So, it is very important to have a better
understanding of the local hemodynamic, such that the doctor can
understand how different surgeries’ solutions influences blood cir-
culation and he/she can be led to the choice of the best procedure
for the specific patient. All this is possible thanks to the study
realized with numerical simulations, less invasive of in vivo inves-
tigations, and more accurate respect to in vitro ones.
The development of mathematical models of the cardiovascular
system hails from the latest three decades, since the first centuries
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before Christ, when some of the main characters of the human
history studied and analyzed blood circulation, such as Aristotele,
Prassagora, Galeno, Harvey, Bernoulli, Eulero, Poiseuille, Young,
Frank, Womersley.
The models currently known can be classified according to the di-
mension, which goes from 0-D to 3-D, the prefixed goals and the
required accuracy. In 0-D models with lumped parameters, the
parameters are distributed spatially in a discrete way, that is all
the elastic, inertial or resistive effect is concentrated in one point
and it represents the global behavior of a certain district (organ,
vessel, part of a vessel). They are developed in order to simulate
the dynamics of the blood flow in the entire cardiovascular system,
and they often use the hydraulic-electric analogy. These models
can be divided in two categories: mono-compartment models in
which increasing levels of sophistication are used to capture the
systemic response, and multi-compartment models, in which the
different parts of the vascular system are represented as distinct
components. Higher-dimension models, instead, permit the vari-
ation of the parameters in the space with continuity (so models
with distributed parameters are used), and they can include the
term of the convective acceleration (non-linear). One of the advan-
tages for such models is that they can reveal the detailed pressure
and the distribution of the velocity in a specific segment of the
vascular network, but limited computational resources restrict the
dimension of the studied domain. That is why the 1-D model is
usually chosen for the study of the variations of pressure and flow
along the whole length of the considered vessel. During the lat-
est years multi-scale modeling techniques have been developed, in
which 0-D models are coupled with 1-D, 2-D and/or 3-D models,
to give complete representations of the cardiovascular system.
The thesis is organized as follows. The conservation laws will be
introduced, which are characterized by the fact that, for smooth
initial data, the solution of the Cauchy problem can have discon-
tinuities in finite time. To have global solutions it is necessary
to work in a class of discontinuous functions, and look for weak
entropic solutions. This will be done in chapter 1. Since the



definition of such solutions is not restrictive enough to guarantee
the uniqueness of the solution for the corresponding Riemann and
Cauchy problems, some admissibility conditions will be proposed,
such as vanishing viscosity, entropy inequality, Lax condition.
The chapter 2 will be dedicated to a brief description of the car-
diovascular system and a classification of the models of blood flow,
considering different dimensions.
The attention will be focused on a specific 1-D model in chapter
3. In particular, in such model, the arteries are seen like thin, ho-
mogeneous and elastic tubes, while the blood like a homogeneous,
incompressible and Newtonian fluid. The governing equations will
be analyzed through the characteristic method and they will be
solved using the discontinuous Galerkin method and a two-step
time integration scheme of Adam-Bashfort. A linearized model
will be studied too, to obtain analytic solutions. To make this
model realistic, also inflow and outflow boundary conditions are
considered.
In chapter 4 some numeric results are presented, using different
formulations of the model and different types of networks. In par-
ticular, four optimization scenarios on artificial networks are inves-
tigated, such as the effect that truncation in a fractal network has
to the flow in the root edge, the effect that adding or subtracting
an edge has to the network dynamics, the effect that growth of a
given network has on the dynamics when a desired total outflow
is obtained and optimization of the heart rate in the event of a
blockage/unblockage of an edge or of an entire subtree. In addi-
tion, the simulation of the tilt table test is performed, considering
the 55-edge tree with the main arteries of the cardiovascular sys-
tem, modeling the cardiac valve. Finally, an optimization scenario
including the convective term in the mathematical formulation is
presented, in order to optimize heart rate and terminal reflection
coefficient, to obtain a desired pressure.





Chapter 1

Conservation Laws

The model presented in this thesis is based on conservation laws,
which are special partial differential equations, where the variable
is a conserved quantity, i.e. a quantity which can neither be cre-
ated nor destroyed.
In this chapter some basic preliminaries about systems of conser-
vation laws are given.

1.1 Definitions

Definition 1. A system of conservation laws in one space dimen-
sion is a system of the form

∂tu1 + ∂xf1(u) = 0,
...
∂tun + ∂xfn(u) = 0.

(1.1.1)

It can be written as
ut + f(u)x = 0, (1.1.2)

where u = (u1, ..., un) : [0,+∞[×R → Rn is the “conserved quan-
tity”and f = (f1, ..., fn) : Rn → Rn is the flux.

Remark 2. The scalar case. If n = 1, u takes values in R and
f : R→ R, then (1.1.2) is a single equation. In this case it is said
that (1.1.2) is a scalar equation.
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Figure 1.1 Conservation of flux.

In the scalar case, if (1.1.2) is integrated on an arbitrary space
interval [a, b], then

d

dt

∫ b

a

u(t, x)dx = −
∫ b

a

f(u(t, x))xdx = f(u(t, a))− f(u(t, b)).

In other words, the quantity u is neither created nor destroyed:
the total amount of u in any interval [a, b] can change only due to
the quantity of u entering and exiting at x = a and x = b.

f is always assumed to be smooth, thus, if u is a smooth function,
then (1.1.2) can be rewritten in the quasi linear form

ut + A(u)ux = 0, (1.1.3)

where A(u) is the Jacobian matrix of f at u.

Definition 3. The system (1.1.3) is said hyperbolic if, for every
u ∈ Rn, all the eigenvalues of the matrix A(u) are real. Moreover
(1.1.3) is said strictly hyperbolic if it is hyperbolic and if, for every
u ∈ Rn, the eigenvalues of the matrix A(u) are all distinct.

It is clear that equations (1.1.2) and (1.1.3) are completely equiva-
lent for smooth solutions. If instead u has a jump, the quasilinear
equation (1.1.3) is in general not well defined, since there is a
product of a discontinuous function A(u) with the distributional
derivative, which in this case is a Dirac measure.
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Example 4. (Gas dynamics). The Euler equations describing the
evolution of a non viscous gas take the form

ρt + (ρv)x = 0, (conservation of mass)
(ρv)t + (ρv2 + p)x = 0, (conservation of momentum)
(ρE)t + (ρEv + pv)x = 0, (conservation of energy).

Here ρ is the mass density, v is the velocity while E = e + v2/2
is the energy density per unit mass. The system is closed by a
costitutive relation of the form p = p(ρ, e), giving the pressure as
a function of the density and the internal energy. The particular
form of p depends on the gas under consideration.

A basic feature for the nonlinear system (1.1.2) is that classical
solutions may not exist for some positive time, even if the initial
datum is smooth. This can be shown by the method of character-
istics, briefly described for a quasilinear system.
Consider the Cauchy problem{

ut + a(t, x, u)ux = h(t, x, u),
u(0, x) = ū(x),

(1.1.4)

and, for every y ∈ R, the curves x(t, y), u(t, y) solving
dx
dt

= a(t, x, u),
du
dt

= h(t, x, u),
x(0, y) = y,
u(0, y) = ū(y).

(1.1.5)

The curves t 7→ x(t, y) when y ∈ R are called characteristics.
The implicit function theorem implies that the map

(t, y) 7→ (t, x(t, y)) (1.1.6)

is locally invertible in a neighborhood of (0, x0) and so it is possi-
ble to consider the map u(t, x) = u(t, y(t, x)) where y(t, x) is the
inverse of the second component of (1.1.6). It is easy to check that
u(t, x) satisfies (1.1.4).
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Example 5. Consider the scalar conservation law (inviscid Burg-
ers’ equation)

ut +

(
u2

2

)
x

= 0 (1.1.7)

with the initial condition

u(0, x) = u0(x) =
1

1 + x2
. (1.1.8)

For t > 0 small the solution can be found by the method of char-
acteristics. Indeed, if u is smooth, la (1.1.7) is equivalent to

ut + u ux = 0,

from which is get that the directional derivative of the function
u = u(t, x) along the vector (1, u) vanishes.
Therefore, u must be constant along the characteristic lines in the
(t, x)-plane:

t→ (t, x+ tu0(x)) = (t, x+
t

1 + x2
).

For t < T
.

= 8√
27

, these lines do not intersect (see Figure 1.2).
The solution to the Cauchy problem is thus given implicitly by:

u

(
t, x+

t

1 + x2

)
=

1

1 + x2
. (1.1.9)

On the other hand at t = 8√
27

the characteristics intersect together

and a classical solution can not exist for t ≥ 8√
27
. In fact, the map

x→ x+
t

1 + x2

is not one-to-one and (1.1.9) no longer defines a single valued
solution of the Cauchy problem.

To achieve a global existence result, it is thus essential to work
within a class of discontinuous functions. Hence it is indispensable
to deal with weak solutions.
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Figure 1.2 The characteristic for the Burgers equation in the (t, x)-plane.

Definition 6. Fix u0 ∈ L1
loc(R;Rn) and T > 0. A function u :

[0, T ]× R→ Rn is a weak solution to the Cauchy problem{
ut + f(u)x = 0,
u(0, x) = u0(x),

(1.1.10)

if u is continuous as a function from [0, T ] into L1
loc and if, for

every C1 function ψ with compact support contained in the set
]−∞, T [×R, it holds∫ T

0

∫
R

{u · ψt + f(u) · ψx} dxdt+

∫
R

u0(x) · ψ(0, x)dx = 0.

(1.1.11)

Notice that a weak solution u to (1.1.10) satisfies

u(0, x) = u0(x) for a.e. x ∈ R.

This is a consequence of the fact that u is continuous as a function
from [0, T ] to L1

loc and of equation (1.1.11).
Weak solutions may develop discontinuities in finite time. Some
notations are introduced to treat such discontinuities.

Definition 7. A function u = u(t, x) has an approximate jump
discontinuity at the point (τ, ξ) if there exist vectors u−, u+ ∈ Rn
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and λ ∈ R such that

lim
r→0+

1

r2

∫ r

−r

∫ r

−r
|u(τ + t, ξ + x)− U(t, x)| dxdt = 0,

where

U(t, x) :=

{
u−, if x < λt,
u+, if x > λt.

(1.1.12)

The function U is called a shock travelling wave.

The following theorem holds.

Theorem 8. Consider a bounded weak solution u to (1.1.2) with
an approximate jump discontinuity at (τ, ξ). Then

λ(u+ − u−) = f(u+)− f(u−). (1.1.13)

Equation (1.1.13), called Rankine-Hugoniot condition, gives a con-
dition on discontinuities of weak solutions of (1.1.2) relating the
right and left states with the “speed” λ of the “shock”. In the
scalar case (1.1.13) is a single equation and, for arbitrary u− 6= u+,
there is

λ =
f(u+)− f(u−)

u+ − u−
.

For a n× n system of conservation laws, (1.1.13) is a system of n
scalar equations.

Example 9. Consider the Burgers equation

ut +

(
u2

2

)
x

= 0 (1.1.14)

with the initial condition

u0(x) =

{
1− |x| , if x ∈ [−1, 1],
0, otherwise.

(1.1.15)

The characteristics in this case are drawn in Figure 1.3.



1.1. Definitions 11

Figure 1.3 Superposition of characteristic curves for a Burgers equation.

Therefore for 0 6 t < 1, the function

u(t, x) =


x+1
t+1

, if − 1 6 x < t,
1−x
1−t , if t < x 6< 1,

0, otherwise,

is a classical solution to (1.1.14). The Rankine-Hugoniot condition
in the case of Burgers equation reduces to

λ =

[
(u+)2

2

]
−
[

(u−)2

2

]
u+ − u−

=
u+ + u−

2
.

If t > 1, then the function

u(t, x) =

{
x+1
t+1

, if − 1 6 x 6 −1 +
√

2 + 2t,

0, otherwise,

satisfies the Rankine-Hugoniot condition at each point of discon-
tinuity and so a weak solution to the Cauchy problem (1.1.14)-
(1.1.15) exists for each positive time; see Figure 1.4.

Example 10. Let u0 be the function defined by

u0(x) :=

{
1, if x > 0,
0, if x < 0.

For every 0 < α < 1, the function uα : [0,+∞[×R→ R defined by

uα(t, x) :=


0, if x < αt

2
,

α, if αt
2
6 x < (1+α)t

2
,

1, if x > (1+α)t
2

,
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Figure 1.4 Solution to Burgers equation of the example.

Figure 1.5 A solution uα.
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is a weak solution to the Burgers equation (1.1.14); see Figure 1.5.

1.2 Admissibility conditions

Example 10 shows that, in the presence of discontinuities, the
Rankine-Hugoniot equations may not suffice to single out a unique
solution to the Cauchy problem. Therefore, the notion of weak
solution must be supplemented with admissibility conditions, mo-
tivated by physical considerations.

1.2.1 Admissibility Condition 1

Definition 11. (Vanishing viscosity) A weak solution u = u(t, x)
to the Cauchy problem{

ut + f(u)x = 0,
u(0, x) = u0(x),

(1.2.16)

is admissible if there exists a sequence of smooth solutions uε to

uεt + A(uε)uεx = εuεxx (A
.

= Df) (1.2.17)

which converges to u in L1
Loc as ε→ 0+.

Unfortunately, it is very difficult to provide uniform estimates to
the parabolic system (1.2.17) and characterize the corresponding
limits as ε → 0+. From the above condition, however, one can
deduce other conditions which can be more easily verified in prac-
tice.

1.2.2 Admissibility Condition 2

An admissibility criterion, coming from physical considerations, is
that of the entropy-admissibility condition.

Definition 12. A C1 function η : Rn → R is an entropy for
(1.1.2) if it is convex and there exists a C1 function q : Rn → R
such that

Dη(u) ·Df(u) = Dq(u) (1.2.18)
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for every u ∈ Rn. The function q is said an entropy flux for η.
The pair (η, q) is said entropy–entropy flux pair for (1.1.2).

Definition 13. (Entropy inequality) A weak solution u = u(t, x)
to the Cauchy problem (1.2.16) is said entropy admissible if, for
every C1 function ϕ > 0 with compact support in [0, T [×R and for
every entropy–entropy flux pair (η, q), it holds∫ T

0

∫
R
{η(u)ϕt + q(u)ϕx} dxdt > 0. (1.2.19)

Now an entropy admissible solution u and a sequence of entropy–
entropy flux pairs (ην , qν) are considered, such that ην → η and
qν → q locally uniformly in u ∈ Rn. If ϕ > 0 is a C1 function with
compact support in [0, T [×R, then∫ T

0

∫
R
{ην(u)ϕt + qν(u)ϕx} dxdt > 0 (1.2.20)

for every ν ∈ N. Passing to the limit as ν → +∞ in (1.2.20), it is
obtained that∫ T

0

∫
R
{η(u)ϕt + q(u)ϕx} dxdt > 0. (1.2.21)

This permits to call a C0 function η an entropy if there exists a se-
quence of entropies ην converging to η locally uniformly. Moreover
a C0 function q is a corresponding entropy flux if there exists a
sequence qν , entropy flux of ην , converging to q locally uniformly.
It is possible consider the scalar Cauchy problem (1.2.16), where
f : R → R is a C1 function. In this case the relation between C1

entropy and entropy flux takes the form

η′(u)f ′(u) = q′(u). (1.2.22)

Therefore if it is taken a C1 entropy η, every corresponding entropy
flux q has the expression

q(u) =

∫ u

u0

η′(s)f ′(s)ds,

where u0 is an arbitrary element of R.
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Figure 1.6 The condition (1.2.23) in the case u− < u+.

Definition 14. A weak solution u = u(t, x) to the scalar Cauchy
problem (1.2.16) satisfies the Kruzkov entropy admissibility con-
dition if∫ T

0

∫
R
{|u− k|ϕt + sgn (u− k) (f(u)− f(k))ϕx} dxdt > 0

for every k ∈ R and every C1 function ϕ > 0 with compact support
in [0, T [×R.

There is the following theorem.

Theorem 15. Let u = u(t, x) be a piecewise C1 solution to the
scalar equation (1.2.16). Then u satisfies the Kruzkov entropy
admissible condition if and only if along every line of jump x = ξ(t)
the following condition holds. For every α ∈ [0, 1]{
f(αu+ + (1− α)u−) > αf(u+) + (1− α)f(u−), if u− < u+,
f(αu+ + (1− α)u−) 6 αf(u+) + (1− α)f(u−), if u− > u+,

(1.2.23)
where u− := u(t, ξ(t)−) and u+ := u(t, ξ(t)+).

Equation (1.2.23) implies that, if u− < u+, then the graph of f
remains above the segment connecting (u−, f(u−)) to (u+, f(u+))
(see Figure 1.6), while if u− > u+, then the graph of f remains be-
low the segment connecting (u−, f(u−)) to (u+, f(u+)) (see Figure
1.7).
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Figure 1.7 The condition (1.2.23) in the case u− > u+.

1.2.3 Admissibility Condition 3

Definition 16. (Lax Condition) A bounded weak solution u =
u(t, x) to the Cauchy problem (1.2.16) is Lax admissible if, at every
point of approximate jump, the speeds corresponding to the left and
right states u−, u+ satisfy

λi(u
−) ≥ λi(u

−, u+) ≥ λi(u
+) (1.2.24)

for some i ∈ {1, ..., n}.

1.3 Riemann Problem

This section describes the entropy admissible solutions to a Rie-
mann problem, i.e. a Cauchy problem with Heaviside initial data.
Let Ω ⊆ Rn be an open set, let f : Ω → Rn a smooth flux and
consider the system of conservation laws

ut + f(u)x = 0, (1.3.25)

which it is supposed to be strictly hyperbolic.

Definition 17. A Riemann problem for the system (1.3.25) is the
Cauchy problem for the initial datum

u0(x) :=

{
u−, if x < 0,
u+, if x > 0,

(1.3.26)
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where u−, u+ ∈ Ω.

As shown in Section 1.5, the solution of Riemann problems is the
key step to solve Cauchy problems. In fact to prove existence
the wave-front tracking method is used, that, roughly speaking,
consists in the following:

1. approximate the initial condition with piecewise constant
solutions;

2. at every point of discontinuity solve the corresponding Rie-
mann problem;

3. approximate the exact solution to Riemann problems with
piecewise constant functions and piece them together to get
a function defined until two wave fronts interact together;

4. repeat inductively the previous construction starting from
the interaction time;

5. prove that the functions so constructed converge to a limit
function and prove that this limit function is an entropy
admissible solution.

As before A(u) denotes the Jacobian matrix of the flux f and with
λ1(u) < · · · < λn(u) the n eigenvalues of the matrix A(u). For
strictly hyperbolic systems, one can find bases of right and left
eigenvectors, {r1(u), . . . , rn(u)}, and {l1(u), . . . , ln(u)} depending
strictly on u, such that

1. |ri(u)| ≡ 1 for every u ∈ Ω and i ∈ {1, · · · , n};

2. for every i, j ∈ {1, · · · , n},

li · rj :=

{
1, if i = j,
0, if i 6= j.

The following notation is introduced. If i ∈ {1, · · · , n}, then

ri • λj(u) := lim
ε→0

λj(u+ εri(u))− λj(u)

ε
,

that is the directional derivative of λj(u) in the direction of ri(u).
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Definition 18. The i-characteristic field, i ∈ {1, · · · , n}, is gen-
uinely nonlinear if

ri • λi(u) 6= 0 ∀u ∈ Ω.

The i-characteristic field (i ∈ {1, · · · , n}) is linearly degenerate if

ri • λi(u) = 0 ∀u ∈ Ω.

If the i-th characteristic field is genuinely nonlinear, then, for sim-
plicity, it is assumed that ri • λi(u) > 0 for every u ∈ Ω.
Three cases are considered.

1. Centered rarefaction waves. For u− ∈ Ω, i ∈ {1, · · · , n} and
σ > 0, Ri(σ)(u−) denotes the solution to{

du
dσ

= ri(u),
u(0) = u−.

(1.3.27)

Let σ̄ > 0. Define u+ = Ri(σ̄)(u−) for some i ∈ {1, · · · , n}.
If the i-th characteristic field is genuinely nonlinear, then the
function

u(t, x) :=


u−, if x < λi(u

−)t,
Ri(σ)(u−), if x = λi(Ri(σ)(u−))t, σ ∈ [0, σ̄],
u+, if x > λi(u

+)t,
(1.3.28)

is an entropy admissible solution to the Riemann problem{
ut + f(u)x = 0,
u(0, x) = u0(x),

with u0 defined in (1.3.26). The function u(t, x) is called a
centered rarefaction wave.

2. Shock waves. Fix u− ∈ Ω and i ∈ {1, · · · , n}. For some σ0 >
0, there exist smooth functions Si(u−) = Si : [−σ0, σ0]→ Ω
and λi : [−σ0, σ0]→ R such that:

(a) f(Si(σ)) − f(u−) = λi(σ)(Si(σ) − u−) for every σ ∈
[−σ0, σ0];
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(b)
∣∣dSi
dσ

∣∣ ≡ 1;

(c) Si(0) = u−, λi(0) = λi(u
−);

(d) dSi(σ)
dσ
|σ=0 = ri(u

−);

(e) dλi(σ)
dσ
|σ=0 = 1

2
ri • λi(u−);

(f) d2Si(σ)
dσ2 |σ=0 = ri • ri(u−).

Let σ̄ < 0. Define u+ = Si(σ̄). If the i-th characteristic field
is genuinely nonlinear, then the function

u(t, x) :=

{
u−, if x < λi(σ̄)t,
u+, if x > λi(σ̄)t,

(1.3.29)

is an entropy admissible solution to the Riemann problem{
ut + f(u)x = 0,
u(0, x) = u0(x),

with u0 defined in (1.3.26). The function u(t, x) is called a
shock wave.

Remark 19. If it is considered σ̄ > 0, then (1.3.29) is again
a weak solution, but it does not satisfy the entropy condition.

3. Contact discontinuities. Fix u− ∈ Ω, i ∈ {1, · · · , n} and
σ̄ ∈ [−σ0, σ0]. Define u+ = Si(σ̄). If the i-th characteristic
field is linearly degenerate, then the function

u(t, x) :=

{
u−, if x < λi(u

−)t,
u+, if x > λi(u

−)t,
(1.3.30)

is an entropy admissible solution to the Riemann problem{
ut + f(u)x = 0,
u(0, x) = u0(x),

with u0 defined in (1.3.26). The function u(t, x) is called a
contact discontinuity.
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Remark 20. If the i-th characteristic field is linearly degen-
erate, then

λi(u
−) = λi(u

+) = λi(σ)

for every σ ∈ [−σ0, σ0].

Definition 21. The waves defined in (1.3.28), (1.3.29) and (1.3.30)
are called waves of the i-th family.

For each σ ∈ R and i ∈ {1, . . . , n}, it is possible to consider the
function

ψi(σ)(u0) :=

{
Ri(σ)(u0), if σ > 0,
Si(σ)(u0), if σ < 0,

(1.3.31)

where u0 ∈ Ω. The value σ is called the strength of the wave of the
i-th family, connecting u0 to ψi(σ)(u0). It follows that ψi(·)(u0) is a
smooth function. Moreover it is possible to consider the composite
function

Ψ(σ1, . . . , σn)(u−) := ψn(σn) ◦ · · · ◦ ψ1(σ1)(u−), (1.3.32)

where u− ∈ Ω and (σ1, . . . , σn) belongs to a neighborhood of 0
in Rn. It is not difficult to calculate the Jacobian matrix of the
function Ψ and to prove that it is invertible in a neighborhood
of (0, . . . , 0). Hence it is possible to apply the Implicit Function
Theorem and prove the following result.

Theorem 22. For every compact set K ⊆ Ω, there exists δ > 0
such that, for every u− ∈ K and for every u+ ∈ Ω with |u+ − u−| 6
δ there exists a unique (σ1, . . . , σn) in a neighborhood of 0 ∈ Rn

satisfying

Ψ(σ1, . . . , σn)(u−) = u+.

Moreover the Riemann problem connecting u− with u+ has an en-
tropy admissible solution, constructing by piecing together the so-
lutions of n Riemann problems.



1.3. Riemann Problem 21

Figure 1.8 Shock and rarefaction curves.

Example 23. The 2× 2 system of conservation laws

[u1]t+

[
u1

1 + u1 + u2

]
x

= 0, [u2]t+

[
u2

1 + u1 + u2

]
x

= 0, u1, u2 > 0,

(1.3.33)
is motivated by the study of two - components chromatography.
Writing (1.3.33) in the quasi linear form (1.1.3), the eigenvalues
and the eigenvectors of the corresponding 2 × 2 matrix A (u) are
found to be

λ1 (u) =
1

(1 + u1 + u2)2 , λ2 (u) =
1

1 + u1 + u2

,

r1 (u) =
1√

u1 + u2

·
(
−u1

−u2

)
, r2 (u) =

1√
2
·
(

1
−1

)
.

The first characteristic field is genuinely nonlinear, the second is
linearly degenerate. In this example, the two shock and rarefaction
curves Si, Ri always coincide, for i = 1, 2.
Their computation is easy, because they are straight line (Figure
1.8.):

R1 (σ) (u) = u+ σr1 (u) , R2 (σ) (u) = u+ σr2 (u) . (1.3.34)



22 1. Conservation Laws

Observe that the integral curves of the vector field r1 are precisely
the rays through the origin, while the integral curves of r2 are the
lines with slope −1. Now let two states u− =

(
u−1 , u

−
2

)
, u+ =(

u+
1 , u

+
2

)
be given. To solve the Riemann problem (1.3.26) for the

system (1.3.25), first it is computed an intermediate state u∗ such
that u∗ = R1 (σ1) (u−) , u+ = R2 (σ2) (u∗) for some σ1, σ2. By
(1.3.34), the components of u∗ satisfy

u∗1 + u∗2 = u+
1 + u+

2 , u∗1u
−
2 = u−1 u

∗
2.

The solution of the Riemann problem thus takes two different forms,
depending on the sign of

σ1 =

√(
u−1
)2

+
(
u−2
)2 −

√
(u∗1)2 + (u∗2)2.

Case 1: σ1 > 0. Then, the solution consists of centered rarefaction
waves of the first family and of a constant discontinuity of the
second family:

u (t, x) =


u−, if x/t < λ1 (u−) ,
su∗ + (1− s)u∗, if x/t = λ1 (su∗ + (1− s)u−) ,
u∗, if λ1 (u∗) < x/t < λ2 (u+) ,
u+, if x/t ≥ λ2 (u+) ,

(1.3.35)
where s ∈ [0, 1] .
Case 2: σ1 ≤ 0. Then the solution contains a compressive shock of
the first family (which vanishes if σ1 = 0) and a contact disconti-
nuity of the second family:

u (t, x) =


u−, if x/t < λ1 (u−, u∗) ,
u∗, if λ1 (u−, u∗) ≤ x/t < λ2 (u+) ,
u+, if x/t ≥ λ2 (u+) .

(1.3.36)

Observe that λ2 (u∗) = λ2 (u+) = (1 + u1 + u2)−1 , because the sec-
ond characteristic field is linearly degenerate. In this special case,
since the integral curves of r1 are straight lines, the shock speed in
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(1.3.36) can be computed as

λ1

(
u−, u∗

)
=

∫ 1

0

λ1

(
su∗ + (1− s)u−

)
ds =

=

∫ 1

0

[
1 + s (u∗1 + u∗2) + (1− s)

(
u−1 + u−2

)]−2
ds =

=
1

(1 + u∗1 + u∗2)
(
1 + u−1 + u−2

) .
1.3.1 The Non-Convex Scalar Case

It is possible to consider the Riemann Problem (1.3.25)-(1.3.26).
Assume f is uniformly convex and G = (f ′)−1.

Theorem 24. (Solution of Riemann’s problem)

• If u− > u+, the unique weak solution of the Riemann Prob-
lem is

u(t, x) =

{
u−, x

t
< λ,

u+, x
t
> λ,

(1.3.37)

where

λ =
f(u+)− f(u−)

u+ − u−
. (1.3.38)

• If u− < u+, the unique weak solution of the Riemann Prob-
lem is

u(t, x) =


u−, x

t
< f ′(u−),

G(x
t
), f ′(u−) < x

t
< f ′(u+),

u+, x
t
> f ′(u+).

(1.3.39)

Remark 25. In the first case the states u−, u+ are separated by
a shock wave with constant speed λ. In the second case the states
u−, u+ are separated by a (centered) rarefaction wave.

Remark 26. Assume f is uniformly concave. In this case, if
u− > u+ the unique weak solution of the Riemann Problem is a
rarefaction wave, while if u− < u+ the solution is a shock wave.
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Figure 1.9 Shock wave.

Figure 1.10 Rarefaction waves.
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Figure 1.11 Definition of f̃ .

In the scalar case, the construction of solutions to Riemann prob-
lems can be done not only in the genuinely nonlinear case, i.e. for
convex or concave flux or linearly degenerate case, i.e. affine flux.
Consider thus a scalar conservation law:

ut + f(u)x = 0,

with f : R → R smooth. Given (u−, u+) the solution to the
corresponding Riemann problem is done in the following way.
If u− < u+, f̃ is let to be the largest convex function such that for
every u ∈ [u−, u+], it holds:

f̃(u) 6 f(u);

see Figure 1.11.
If u− > u+, f̃ is let to be the smallest concave function such that
for every u ∈ [u+, u−], it holds:

f̃(u) > f(u);

see Figure 1.11.
Then the solution to the Riemann problem with data (u−, u+) is
the solution for the flux f̃ to the same Riemann problem.
Notice that, in this case, the flux f̃ is in general not strictly convex
or concave but may contain some linear part. The solution to
the corresponding Riemann problems may contain combinations
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Figure 1.12 Definition of α.

of rarefactions and shocks. For simplicity, only a special case is
illustrated.

Fix the scalar conservation law:

ut + (u3)x = 0,

and u− > 0.
If u+ > u−, then f̃ coincides with f and the solution to the corre-
sponding Riemann problem is given by a single rarefaction wave.
If u+ < u−, then it is necessary to distinguish two cases. First, for
every u define α(u) 6 u to be the point such that the secant from
(α(u), f(α(u)) to (u, f(u)) is tangent to the graph of f(u) = u3 at
α(u); see Figure 1.12.

In formulas:
f(u)− f(α(u))

u− α(u)
= f ′(α(u)),

then
u3 − α3(u)

u− α(u)
= 3α2(u),
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Figure 1.13 Solution to the Riemann problem with u− > 0 and u+ < α(u−).

and one can easily get two solutions. The trivial one α(u) = u
and

α(u) = −u
2
.

Now if u+ > α(u−) then again f̃ coincides with f and the solution
is given by a single shock. If, on the contrary u+ < α(u−), the
solution to the Riemann problem is given by the function:

u(t, x) =


u− , if x < 3

4
u− t,

−
√

x
3t
, if 3

4
u− t 6 x 6 3(u+)2 t,

u+ , if x > 3(u+)2 t,

which is formed by a shock followed by a rarefaction attached to
it; see Figure 1.13.

In the case u− < 0 the construction is symmetric with respect to
the case u− > 0, while for u− = 0 the solution is always given by
a rarefaction.

1.4 Functions with Bounded Variation

In this section some basic notions about functions with bounded
variation are given.

Consider an interval J ⊆ R and a function w : J → R. The total
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variation of w is defined by

Tot.Var.w = sup

{
N∑
j=1

|w(xj)− w(xj−1)|

}
, (1.4.40)

where N > 1, the points xj belong to J for every j ∈ {0, . . . , N}
and satisfy x0 < x1 < · · · < xN .

Definition 27. The function w : J → R has bounded total vari-
ation if Tot.Var.w < +∞. BV (J) denotes the set of all real
functions w : J → R with bounded total variation.

Notice that the total variation of a function w is a positive number.
If w is a function with bounded total variation, then it is clear that
w is a bounded function. The converse is false. In fact every non
constant periodic and bounded function on R has total variation
equal to +∞. An important property of functions with bounded
total variation is the existence of left and right limits for every x
of the interior of J .

Lemma 28. Let w : J → R be a function with bounded total
variation and x̄ be a point in the interior of J . Then the limits

lim
x→x̄−

w(x), lim
x→x̄+

w(x)

exist. Moreover the function w has at most countably many points
of discontinuity.

The next theorem shows that subsets of BV (J), with uniform
bound in total variation, have some compactness properties.

Theorem 29. (Helly) Consider a sequence of functions wn :
J → Rm. Assume that there exist positive constant C and M such
that:

1. Tot.Var.wn 6 C for every n ∈ N;

2. |wn(x)| 6M for every n ∈ N and x ∈ J .
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Then there exist a function w : J → Rm and a subsequence wnk
such that

1. lim
k→+∞

wnk(x) = w(x) for every x ∈ J ;

2. Tot.Var.w 6 C;

3. |w(x)| 6M for every x ∈ J .

Proof. For every n ∈ N and x ∈ J , define the function

Wn(x) = sup

{
N∑
j=1

|wn(xj)− wn(xj−1)|

}
.

where the supremum is taken in N > 1, x0 ∈ J and x0 < x1 <
· · · < xN = x. The value of the function Wn at a certain point
x ∈ J is the total variation of the function wn until the point x.
Moreover there is

0 6 Wn(x) 6 C, (1.4.41)

for every n ∈ N and x ∈ J and

|wn(y)− wn(x)| 6 Wn(y2)−Wn(y1), (1.4.42)

for every n ∈ N, x, y, y1, y2 ∈ J and y1 6 x 6 y 6 y2. By (1.4.41)
and a diagonal procedure, there exist a subsequence Wnh of Wn

and a function W such that

lim
h→+∞

Wnh(x) = W (x)

for every x ∈ J ∩Q. Define, for every n ∈ N,

Bn =

{
x ∈ Int J : lim

y→x+
W (x)− lim

y→x−
W (x) >

1

n

}
.

The set Bn is finite and it can contain at most Cn points; hence
the set

B =
⋃
n∈N

Bn
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is at most countable. It implies that the function W has at most
a countable number of discontinuities.
By hypotheses it is also possible to choose a subsequence nhk of
nh, which, for simplicity, is called nk, such that

lim
k→+∞

wk(x) = w(x)

for every x ∈ J ∩ (Q ∪B). Indeed there is that the previous limit
exists for every x ∈ J . Assume that x̄ ∈ J \ B. This implies
that x̄ 6∈ Bn for every n ∈ N and so, for every n ∈ N, there exist
y1 < x̄ < y2, y1, y2 ∈ Q such that W (y2)−W (y1) < 1

n
. There is

lim sup
k,k̃→+∞

|wk(x̄)− wk̃(x̄)| 6 2 lim sup
k→+∞

|wk(x̄)− wk(y1)|

6 2 (W (y2)−W (y1)) <
2

n
.

Finally consider points x0 < x1 < · · · < xN in the set J . It is
possible to deduce that

N∑
j=1

|w(xj)− w(xj−1)| = lim
k→+∞

(
N∑
j=1

|wnk(xj)− wnk(xj−1)|

)
6 C,

and this concludes the proof.

Theorem 30. Consider a sequence of functions wn : [0,+∞[×J →
Rn. Assume that there exist positive constants C, L and M such
that:

1. Tot.Var.wn(t, ·) 6 C for every n ∈ N and t > 0;

2. |wn(t, x)| 6M for every n ∈ N, x ∈ J and t > 0;

3.
∫
J
|wn(t, x)− wn(s, x)| dx 6 L |t− s| for every n ∈ N and

t, s > 0.

Then there exist a function w ∈ L1
loc([0,+∞× J ;Rn) and a sub-

sequence wnk such that

1. wnk → w in L1
loc([0,+∞× J ;Rn) as k → +∞;
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2.
∫
J
|w(t, x)− w(s, x)| dx 6 L |t− s| for every t, s > 0.

Moreover the values of w can be uniquely determined by setting

w(t, x) = lim
y→x+

w(t, y)

for every t > 0 and x ∈ Int J . In this case there is

1. Tot.Var.w(t, ·) 6 C for every t > 0;

2. |w(t, x)| 6M for every t > 0 and x ∈ J .

Proof. By Helly’s theorem, it is possible to find a subsequence wnk
such that, for every t > 0, t ∈ Q, wnk(t, ·)→ w(t, ·) pointwise and
hence in L1

loc(R;Rn). Thus there is∫
J

|w(t, x)− w(s, x)| dx 6 L |t− s| , Tot.Var.w(t, ·) 6 C,

and
|w(t, x)| 6M

for every t, s ∈ Q ∩ [0,+∞[, x ∈ J . Fix now t > 0 and consider a
sequence tm → t. Define

u(t, ·) = lim
m→+∞

w(tm, ·).

By the previous estimates, this limit exists and is independent
from the sequence tm. It is possible to deduce∫

J

|u(t, x)− u(s, x)| dx 6 L |t− s| , Tot.Var.u(t, ·) 6 C,

and
|u(t, x)| 6M

for every t, s ∈ [0,+∞[, x ∈ J , eventually by modifying the func-
tion u on a set of measure zero.
Consider now, for ε > 0 sufficiently small,

wε(t, x) =
1

ε

∫ x+ε

x

u(t, s)ds
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and

w̃(t, x) = lim
ε→0+

wε(t, x).

This function satisfies

w(t, x) = lim
y→x+

w(t, y).

This concludes the proof.

1.4.1 BV Functions in Rn

In this section the L1 theory for BV functions (see [11]) is briefly
described. Let Ω be an open subset of Rn and consider w : Ω→ R.
B(Ω) denotes the σ-algebra of Borel sets of Ω and with Bc(Ω) the
set

{B ∈ B(Ω) : B compactly embedded in Ω} . (1.4.43)

Definition 31. µ : Bc(Ω)→ R is a Radon measure if it is count-
able additive and µ(∅) = 0. M(Ω) denotes the set of all Radon
measures on Ω.

The following theorem holds.

Theorem 32. Fix a Radon measure µ ∈M(Ω). There exist two
positive and unique Borel measures µ+, µ− : B(Ω)→ [0,+∞] such
that

µ(E) = µ+(E)− µ−(E) (1.4.44)

for every E ∈ Bc(Ω).

It is now possible to give the definitions of bounded Radon
measures and of bounded total variation functions.

Definition 33. Fix a Radon measure µ ∈M(Ω) and consider the
total variation of µ defined by |µ| := µ+ +µ−. µ has bounded total
variation if |µ| (Ω) < +∞ and Mb(Ω) denotes the set of all Radon
measures with bounded total variation.
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Remark 34. Notice that Mb(Ω) is a Banach space with respect
to the norm

‖µ‖Mb(Ω) = |µ| (Ω).

Definition 35. w : Ω→ R has bounded total variation if

1. w ∈ L1(Ω);

2. the i-th partial derivative Diw exists in the sense of distri-
butions and belongs to Mb(Ω), for every i = 1, . . . , n.

The total variation of w is given by

n∑
i=1

|Diw| (Ω).

BV (Ω) denotes the set of all functions defined on Ω with bounded
total variation.

Remark 36. The space BV (Ω) is a Banach space with respect to
the norm

‖w‖L1(Ω) +
n∑
i=1

|Diw| (Ω).

Remark 37. Let w ∈ L1(Ω). Then w ∈ BV (Ω) if and only if
there exists c ∈ (0,+∞) such that∣∣∣∣∫

Ω

w divϕdx

∣∣∣∣ 6 c sup
x∈Ω
|ϕ(x)|

for every ϕ ∈ C∞c (Ω;Rn). In this case one can choose the constant
c equal to the total variation of w.

Remark 38. If Ω is an interval of R, then the two descriptions of
BV functions are not completely equivalent. The most important
difference is that if the values of a BV function w is changed in a
finite set, then the total variation of w changes but remain finite
if the first description is considered, while it does not vary in the
second case. Therefore, if we are interested only in the L1 equiva-
lence class, then it is possible to assume that a BV function w is
right continuous or left continuous.
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1.5 Wave-Front Tracking and Existence

of Solutions

This section deals with the existence of an entropy admissible so-
lution to the Cauchy problem{

ut + [f(u)]x = 0,
u(0, ·) = ū(·), (1.5.45)

where f : Rn → Rn is a smooth flux and ū ∈ L1(Rn) is bounded
in total variation. In order to prove existence, a sequence of ap-
proximate solutions using the method called wave-front tracking
algorithm is created.
Firstly the scalar case is considered, while the system case, much
more delicate, will be only sketched.

1.5.1 The Scalar Case

The following conditions are assumed:

(C1) f : R→ R is a scalar smooth function;

(C2) the characteristic field is either genuinely nonlinear or lin-
early degenerate.

The construction starts at time t = 0 by choosing a sequence of
piecewise constant approximations (ūν)ν of ū such that

Tot.Var.{ūν} 6 Tot.Var.{ū}, (1.5.46)

‖ūν‖L∞ 6 ‖ū‖L∞ (1.5.47)

and

‖ūν − ū‖L1 <
1

ν
, (1.5.48)

for every ν ∈ N; see Figure 1.14.
Fix ν ∈ N. By (1.5.46), ūν has a finite number of discontinu-
ities, say x1 < · · · < xN . For each i = 1, . . . , N , the Riemann
problem generated by the jump (ūν(xi−), ūν(xi+)) with piecewise
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Figure 1.14 A piecewise constant approximation of the initial datum satis-
fying (1.5.47) and (1.5.48).

Figure 1.15 The wave front tracking construction until the first time of
interaction.

constant functions of the type ϕ(x−xi
t

) are approximately solved,
where ϕ : R → R. More precisely, if the Riemann problem gen-
erated by (ūν(xi−), ūν(xi+)) admits an exact solution containing
just shocks or contact discontinuities, then ϕ(x−xi

t
) is the exact

solution, while if a rarefaction wave appears, then it is split in a
centered rarefaction fan, containing a sequence of jumps of size at
most 1

ν
, travelling with a speed between the characteristic speeds

of the states connected. In this way, it is possible able to construct
an approximate solution uν(t, x) until a time t1, where at least two
wave fronts interact together; see Figure 1.15.

Remark 39. In the scalar case, if the characteristic field is lin-
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early degenerate, then all the waves are contact discontinuities and
travel at the same speed. Therefore the previous construction can
be done for every positive time.

Remark 40. Notice that it is possible to avoid that three of more
wave fronts interact together at the same time slightly changing
the speed of some wave fronts. This may introduce a small error
of the approximate solution with respect to the exact one.

At time t = t1, uν(t1, ·) is clearly a piecewise constant function.
So it is possible repeat the previous construction until a second
interaction time t = t2 and so on. In order to prove that a wave-
front tracking approximate solution exists for every t ∈ [0, T ],
where T may be also +∞, it is necessary to estimate

1. the number of waves;

2. the number of interactions between waves;

3. the total variation of the approximate solution.

The first two estimates are concerned with the possibility to con-
struct a piecewise constant approximate solution. The third esti-
mate, instead, is concerned with the convergence of the approxi-
mate solutions towards an exact solution.

Remark 41. The two first bounds are nontrivial for the vector
case and it is necessary to introduce simplified solutions to Rie-
mann problems and/or non-physical waves.

The next lemma shows that the number of interactions is finite.

Lemma 42. The number of wave fronts for the approximate so-
lution uν is not increasing with respect to the time and so uν is
defined for every t > 0. Moreover the number of interactions be-
tween waves is bounded by the number of wave fronts.

Proof. Consider two wave fronts interacting together. The wave
fronts can be:
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Figure 1.16 Interaction between two wave fronts.

1. two shocks,

2. two rarefaction shocks,

3. a shock and a rarefaction shock,

4. two contact discontinuities.

By Remark 39, the case of two contact discontinuities can not
happen. Moreover, the speeds of waves imply that also the case
of two rarefaction shocks can not happen. In fact, suppose that
two rarefaction shocks interact together at a certain time. Denote
with ul, um and ur respectively the states as in Figure 1.16. Since
these waves are rarefactions shocks, there is

λ(ul) < λ(um) < λ(ur),

where λ denotes the characteristic speeds of the states. Therefore
the wave connecting ul to um has a speed less than or equal to the
speed of the wave connecting um to ur and the wave fronts can
not interact together.
So the remaining possibilities are the followings.

1. Two shocks. In this case it is clear that after the interaction,
a single shock wave is created. So the number of waves
decreases by 1.
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2. A shock and a rarefaction shock. In this case either a single
shock wave is produced as in the previous possibility, or a
single rarefaction shock is created. In fact, if the exact solu-
tion to the Riemann problem at the interaction time is given
by a rarefaction wave, then the size of the rarefaction wave is
less than or equal to the size of the rarefaction shock, which
is less than or equal to 1/ν. This implies that the wave is
split in a single rarefaction shock. Thus the number of waves
decreases by 1.

Therefore it is possible to conclude that at each interaction the
number of wave fronts decreases at least by 1 and so the lemma is
proved.

Lemma 43. The total variation of uν(t, ·) is not increasing with
respect the time. Therefore for each t > 0

Tot.Var.uν(t, ·) 6 Tot.Var. ū. (1.5.49)

Proof. It is clear that the total variation may vary only at inter-
action times.
Consider an interaction of two wave fronts at time t̄. It is possible
to call by ul, um and ur respectively the left, the middle and the
right state of the wave fronts; see Figure 1.16.
The interaction between the two waves produces a single wave
connecting ul with ur. The variation before t = t̄ due to the
interacting waves is given by |ul − um|+ |um − ur|, while the vari-
ation after t = t̄ due to the wave produced is given by |ul − ur|.
Triangular inequality implies that

|ul − ur| 6 |ul − um|+ |um − ur|

and so the proof is finished.

The following theorem holds.

Theorem 44. Let f : R → R be smooth and ū ∈ L1(R) with
bounded variation. Then there exists an entropy-admissible so-
lution u(t, x) to the Cauchy problem (1.5.45), defined for every
t > 0. Moreover

‖u(t, ·)‖L∞ 6 ‖ū(·)‖L∞ (1.5.50)
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for every t > 0.

Proof. For every ν ∈ N, construct a wave-front tracking approxi-
mate solution uν as before in this section.
Clearly there is

|uν(t, x)| 6 |uν(0, x)| 6 ‖ū‖L∞ (1.5.51)

for every ν ∈ N, t > 0 and x ∈ R. By Lemma 43,

Tot.Var.uν(t, ·) 6 Tot.Var. ū, (1.5.52)

for every t > 0 and ν ∈ N. Finally the maps t 7→ uν(t, ·) are
uniformly Lipschitz continuous with values in L1(R;R). There-
fore, by Theorem 30, it is possible to extract a subsequence, de-
noted again by uν(t, x), converging to some function u(t, x) in
L1([0,+∞[×R;R). Since ‖uν(0, ·)− ū(·)‖L1 → 0, then the initial
condition clearly holds.
It remains to prove that u(t, x) is a weak solution to the Cauchy
problem (1.5.45) and that it is entropy admissible. To prove the
first claim, fix T > 0 and an arbitrary C1 function ψ with compact
support in ]−∞, T [×R. It is necessary to prove that∫ T

0

∫
R
{u · ψt + f(u) · ψx}dxdt+

∫
R
ū(x) · ψ(0, x)dx = 0.

It is sufficient to prove that

lim
ν→+∞

{∫ T
0

∫
R{uν · ψt + f(uν) · ψx}dxdt+∫

R uν(0, x) · ψ(0, x)dx
}

= 0.
(1.5.53)

Fix ν ∈ N. At every t ∈ [0, T ], call x1(t) < · · · < xN(t) the points
where uν(t, ·) has a jump and set

∆uν(t, xα) := uν(t, xα+)− uν(t, xα−),

∆f(uν(t, xα)) := f(uν(t, xα+))− f(uν(t, xα−)).

The lines xα(t) divide [0, T ] × R into a finite number of regions,
say Γj, where uν is constant. Applying the divergence theorem to
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(ψ ·uν , ψ ·f(uν)) and splitting the integral (1.5.53) over the regions
Γj, the integral (1.5.53) can be rewritten in the form∫ T

0

∑
α

[ẋα(t) ·∆uν(t, xα)−∆f(uν(t, xα))]ψ(t, xα(t))dt.

(1.5.54)
If xα is a shock wave or a contact discontinuity, then

ẋα(t) ·∆uν(t, xα)−∆f(uν(t, xα)) = 0,

while if xα is a rarefaction wave, then

ẋα(t) ·∆uν(t, xα)−∆f(uν(t, xα)),

depends linearly on the L∞ distance between uν and ū. Splitting
the summation in (1.5.54) over waves of the same type, it is pos-
sible to deduce that the previous integral tends to 0 as ν → +∞,
concluding that u(t, x) is a weak solution to the Cauchy problem.
Fix now η a convex entropy with a corresponding entropy flux q.
It remains to prove that

lim inf
ν→+∞

∫ T

0

∫
R

[η(uν)ψt + q(uν)ψx] dxdt > 0

for every C1 positive function ϕ with compact support. Using
again the divergence theorem as before, it is necessary to prove
that

lim inf
ν→+∞

∫ T

0

∑
α

[ẋα(t) ·∆η(uν(t, xα))−∆q(uν(t, xα))]ϕ(t, xα)dt > 0

where

∆η(uν(t, xα)) := η(uν(t, xα+))− η(uν(t, xα−)),

∆q(uν(t, xα)) := q(uν(t, xα+))− q(uν(t, xα−)).

Using the same estimates as in the previous case, it is possible to
conclude.
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1.5.2 The System Case

For systems, the construction of wave-front tracking approxima-
tions is more complex, because more types of interactions may
happen. In particular the bounds on number of waves, interac-
tions and BV norms are no more directly obtained.
It is possible to start giving some total variation estimates for
interaction of waves along a wave-front tracking approximation.
These permit to illustrate the ideas for obtaining the needed bounds
in system case. The constants in the estimates depend on the to-
tal variation of the initial data, which is assumed to be sufficiently
small.
Consider a wave of the i–th family of strength σi interacting with
a wave of the j–th family of strength σj, i 6= j, and indicate by σ′k
(k ∈ {1, . . . , n}) the strengths of the new waves produced by the
interaction. Then it holds

|σi − σ′i|+ |σj − σ′j|+
∑
k 6=i,j

|σ′k| ≤ C|σi||σj|, (1.5.55)

For the case i = j, it is possible to indicate by σi,1 and σi,2 the
strengths of the interacting waves, then it holds

|σi,1 + σi,2 − σ′i|+
∑
k 6=i

|σ′k| ≤ C|σi,1||σi,2|. (1.5.56)

One can now fix a parameter δν and split rarefactions in rarefac-
tion fans with shocks of strength at most δν . Also, at each interac-
tion time, one solves exactly the new Riemann problem, eventually
splitting the rarefaction waves in rarefaction fans, only if the prod-
uct of interacting waves is bigger than δν . Otherwise, one solves
the Riemann problem only with waves of the same families of the
interacting ones, the error being transported along a non-physical
wave, travelling at a speed bigger than all waves. In this way, it is
possible to control the number of waves and interactions and then
let δν go to zero (for details see [3]).
Consider now a wave-front tracking approximate solution uν and
let xα(t), of family iα and strength σα, indicate the discontinuities
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of uν(t). Two discontinuities are interacting if xα < xβ and either
iα > iβ or iα = iβ and at least one of the two waves is a shock.
The Glimm functional computed at uν(t) is defined as:

Y (uν(t)) = TV (uν(t)) + C1Q(uν(t)),

where C1 is a constant to be chosen suitably and

Q(uν(t)) =
∑
|σα||σβ|

where the sum is over interacting waves. One can easily prove
that the functional Y is equivalent to the functional measuring the
total variation. Clearly such functional changes only at interaction
times. Using the interaction estimates (1.5.55) and (1.5.56), at an
interaction time t̄,

|TV (uν(t̄+))− TV (uν(t̄−))| 6 C|σi||σj|,

Q(uν(t̄+))−Q(uν(t̄−)) 6 −C1|σi||σj|+ C|σi||σj| TV (uν(t̄−)),

is get. Therefore

Y (uν(t̄+))− Y (uν(t̄−)) 6 |σi||σj|
[
C − C1 + C TV (uν(t̄−))

]
.

On the other side, for every t:

TV (uν(t)) ≤ Y (uν(t)).

Then choosing C1 > C and assuming that TV (uν(0)) is sufficiently
small, one has that Y is decreasing along a wave-front tracking
approximate solution and so the total variation is controlled.

1.6 Uniqueness and Continuous Depen-

dence

The aim of this section is to illustrate a method to prove unique-
ness and Lipschitz continuous dependence by initial data for solu-
tions to the Cauchy problem, controlling for any two approximate
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solutions u, u′ how their distance varies in time. For simplicity the
scalar case is considered. The method is based on a Riemannian
type distance on L1. In [4], the approach was applied to systems
case. Various alternative methods were recently introduced to
treat uniqueness, but the one presented here is the more suitable
to be used for networks.
The basic idea is to estimate the L1-distance viewing L1 as a Rie-
mannian manifold. It is considered the subspace of piecewise con-
stant functions and ”generalized tangent vectors” consisting of two
components (v, ξ), where v ∈ L1 describes the L1 infinitesimal dis-
placement, while ξ ∈ Rn describes the infinitesimal displacement
of discontinuities. For example, take a family of piecewise con-
stant functions θ → uθ, θ ∈ [0, 1], each of which has the same
number of jumps, say at the points xθ1 < ... < xθN . Assume that
the following functions are well defined (see Figure 1.17)

L1 3 vθ(x)=̇ lim
h→0

uθ+h(x)− uθ(x)

h
,

and also the numbers

ξθβ=̇ lim
h→0

xθ+hβ − xθβ
h

, β = 1, ..., N.

Then it is said that γ admits tangent vectors

(vθ, ξθ) ∈ Tuθ=̇1(R;Rn)× Rn.

In general such path θ → uθ is not differentiable w.r.t. the usual
differential structure of L1, in fact if ξθβ 6= 0, as h → 0 the ratio[
uθ+h(x)− uθ(x)

]
/h does not converge to any limit in L1.

One can compute the L1-length of the path γ : θ → uθ in the
following way:

‖γ‖L1 =

1∫
0

∥∥vθ∥∥
L1 dθ +

N∑
β=1

1∫
0

∣∣uθ(xβ+)− uθ(xβ−)
∣∣ ∣∣ξθβ∣∣ dθ.

(1.6.57)
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Figure 1.17 Construction of “generalized tangent vectors”.

According to (1.6.57), in order to compute the L1-length of a path
γ, the norm of its tangent vector is integrated, which is defined as
follows:

‖(v, ξ)‖ =̇ ‖v‖L1 +
N∑
β=1

|∆uβ| |ξβ| ,

where ∆uβ = u(xβ+)−u(xβ−) is the jump across the discontinuity
xβ.
It is possible to introduce the following definition.

Definition 45. A continuous map γ : θ → uθ=̇γ(θ) from [0, 1]
into L1

loc is a regular path if the following holds. All functions uθ

are piecewise constant, with the same number of jumps, say at xθ1 <
... < xθN and coincide outside some fixed interval ]−M,M [. More-
over, γ admits a generalized tangent vector Dγ(θ) = (vθ, ξθ) ∈
Tγ(θ) = L1(R;Rn)× RN , continuously depending on θ .

Given two piecewise constant functions u and u′, call Ω(u, u′) the
family of all regular paths γ : [0, 1]→ γ(t) with γ(0) = u, γ(1) =
u′. The Riemannian distance between u and u′ is given by

d(u, u′)=̇ inf {‖γ‖L1 , γ ∈ Ω(u, u′)} .
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To define d on all L1, for given u, u′ ∈ L1,

d(u, u′)=̇ inf {‖γ‖L1 + ‖u− ũ‖L1 + ‖u′ − ũ′‖L1 :

ũ, ũ′ piecewise constant functions, γ ∈ Ω(u, u′)} ,

is set. It is easy to check that this distance coincides with the
distance of L1. (For the systems case, one has to introduce weights,
see [4], obtaining an equivalent distance.)
Now it is possible to estimate the L1 distance among solutions,
studying the evolution of norms of tangent vectors along wave-
front tracking approximations. Take u, u′ piecewise constant func-
tions and let γ0(ϑ) = uϑ be a regular path joining u = u0 with
u′ = u1. Define uϑ(t, x) to be a wave-front tracking approximate
solution with initial data uϑ and let γt(ϑ) = uϑ(t, ·).

One can easily check that, for every γ0 (regular path) and every
t ≥ 0, γt is a regular path. If it is possible prove

‖γt‖L1 ≤ ‖γ0‖L1 , (1.6.58)

then for every t ≥ 0

‖u(t, ·)− u′(t, ·)‖L1 ≤ inf
γt
‖γt‖ L1 ≤ (1.6.59)

inf
γ0
‖γ0‖L1 = ‖u(0, ·)− u′(0, ·)‖L1 .

To obtain (1.6.58), hence (1.6.59), it is enough to prove that, for
every tangent vector (v, ξ)(t) to any regular path γt, one has:

‖(v, ξ)(t)‖ ≤ ‖(v, ξ)(0)‖ , (1.6.60)

i.e the norm of a tangent vector does not increase in time. More-
over, if (1.6.59) is established, then uniqueness and Lipschitz con-
tinuous dependence of solutions to Cauchy problems is straight-
forwardly achieved passing to the limit on the wave-front tracking
approximate solutions.
It is possible now to estimate the increase of the norm of a tangent
vector. In order to achieve (1.6.60), a time t̄ is fixed and the
following cases are treated:
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Case 1. no interaction of waves takes place at t̄;

Case 2. two waves interact at t̄;

In Case 1, denote by xβ, σβ, and ξβ, respectively, the positions,
sizes and shifts of the discontinuities of a wave-front tracking ap-
proximate solution. Following [4]:

d

dt

{∫
|v(t, x)| dx+

∑
β

|ξβ| |σβ|

}
=

−

{∑
β

(
λ(ρ−)− ẋβ

) ∣∣v−∣∣+
∑
β

(
ẋβ − λ(ρ+)

) ∣∣v+
∣∣}+

+
∑
β

Dλ(ρ−, ρ+) · (v−, v+) (signξβ) |σβ| ,

is get, with σβ = ρ+− ρ−, ρ±=̇ρ(xβ±) and similarly for v±. If the
waves respect the Rankine-Hugoniot conditions, then

Dλ(ρ−, ρ+)(v−, v+) =
(
λ(ρ−)− ẋβ

) v−
|σβ|

+
(
ẋβ − λ(ρ+)

) v+

|σβ|

and
d

dt

{∫
|v(t, x)| dx+

∑
β

|ξβ| |σβ|

}
≤ 0. (1.6.61)

In the wave front tracking algorithm the Rankine-Hugoniot con-
dition may be violated for rarefaction fans. However, this results
in an increase of the distance which is controlled in terms of 1/ν
(the size of a rarefaction shock) and tends to zero with ν →∞.
It is possible now to pass to Case 2. First, there is the following:

Lemma 46. Consider two waves, with speeds λ1 and λ2 respec-
tively, that interact together at t̄ producing a wave with speed λ3.
If the first wave is shifted by ξ1 and the second wave by ξ2, then
the shift of the resulting wave is given by

ξ3 =
λ3 − λ2

λ1 − λ2

ξ1 +
λ1 − λ3

λ1 − λ2

ξ2. (1.6.62)
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Moreover there is that

∆ρ3 ξ3 = ∆ρ1 ξ1 + ∆ρ2 ξ2, (1.6.63)

where ∆ρi are the signed strengths of the corresponding waves.

From (1.6.63) it follows

|∆ρ3ξ3| ≤ |∆ρ1| |ξ1|+ |∆ρ2| |ξ2| ,

from which
‖(v, ξ)(t̄+)‖ ≤ ‖(v, ξ)(t̄−)‖ . (1.6.64)





Chapter 2

Cardiovascular system:
description and
mathematical models

2.1 Description

The cardiovascular or circulatory system transports oxygen and
nutrients to all the tissues of the body, from where it removes car-
bon dioxide and other harmful waste products of cell metabolism.
From a physical point of view, the system consists of two synchro-
nized pumps in parallel that propel a viscous liquid (the blood)
through a network of flexible tubes. The heart provides energy
to move blood through the circulatory system. It consists of four
cavities: two ventricles and two atria (see Figure 2.1), whose size
varies during the cardiac cycle due to the activity of the heart
muscle. The right heart pumps deoxygenated blood through the
pulmonary circulation and the left heart pumps oxygen-rich blood
through the systemic circulation. There are four valves, one at the
exit of each heart cavity, which regulate blood flow in the heart
and ensure bulk unidirectional motion through both pulmonary
and systemic circulations.
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Figure 2.1 Human heart.

The systemic circulation consists of a network of curved and branch-
ing vessels whose size decreases in the arteries, arterioles and capil-
laries and increases in the venules and veins. In particular, arteries
distribute blood throughout the body and maintain blood pressure
between heartbeats, arterioles transport blood to capillary beds,
capillaries diffuse oxygen and nutrients to cells, and venules col-
lect deoxygenated blood from capillaries and return it to the heart
through veins. The topological pattern of the large systemic arter-
ies is mainly a binary tree structure, with the exception of some
arterial anastomoses, such as the palmar arch in the hand, the
plantar arch in the foot, and the circle of Willis in the cerebral
circulation, and some arteriovenous anastomoses in the skin and
in the gut.
Blood consists of an aqueous solution (plasma) and platelets that
is circulated by the heart through the vertebrate vascular system,
carrying oxygen and nutrients to and waste materials away from
all body tissues. It has a density similar to the water but its
viscosity is more than twice the viscosity of water.
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2.2 Classification of models

Cardiovascular system physiology has been object of study in the
past. For example, Aristotele (384-322 a.C.) has identified the rule
of blood vessels in the propagation of the “animal heat” from the
heart to the rest of the body. Later, a lot of scientists, like Pras-
sagora, Galeno, Sir William Harvey, Leonard Euler and Daniel
Bernoulli have focused their work on this matter. In XIX cen-
tury, J.P. Poiseuille, physic and physician, has identified the first
simplified mathematical model of the flux in a cylindrical tube.
Then, in XX century, O. Frank has proposed a model of the cir-
culatory system using the electrical analogy. In recent years there
was a strong improvement of these models, in order to obtain more
accuracy in simulations.

Figure 2.2 Different models.

The cardiovascular system can be classified in time domain and
frequency domain. Usually representations on frequency domains
are based on the linearisation of governing equations. These sim-
plified equations are solved using Laplace or Fourier transform. If
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non-linear terms are considered, the time domains must be used.
Representation models can have a dimension from 0-D to 3-D,
depending on the accuracy (see [32], [39]). Usually models with
lumped parameters are used for 0-D models, in which parame-
ters are spatial distributed in discrete way, that is all the elastic,
inertial and resistive effect is concentrate in one point and it repre-
sents globally the behavior of a particular district (organ, vessels,
portions of vessels), while higher dimensions models allow the vari-
ation of this parameters with continuity in the space, so they use
distributed parameters models. These models are illustrated in
Figure 2.2, where Q, P and v are, respectively, flux, pressure and
velocity.
Zero-dimensional models are usually described by two ordinary
differential equations for each partition, which represent mass and
momentum conservation, with an algebraic relation of equilibrium
which connects volume of the partition and pressure. One, two and
three dimensional models consist in partial differential equations,
which describe mass and momentum conservation (Navier-Stokes
equations), with the addition of equilibrium equations. It is pos-
sible to observe that when Navier-Stokes equations are discretized
and the convective term is excluded, a 0-D model is obtained. In
cardiovascular dynamics, 1-D models represent easily wave trans-
mission effects, 2-D models describe radial velocity variation in an
axisymmetric canal, while 3-D models give solutions for complex
flux models. A classification about dimensions and applications of
these models is in table 2.1.

2.2.1 0-D models

0-D models are used in order to simulate blood flow dynamics in
the entire circulatory system. In the definition of the 0-D model,
usually the hydraulic-electric analogy is used. In fact, in general,
blood flow in the circulatory system and electric conduction in a
circuit are very similar: blood pressure permits that the blood cir-
culates against hydraulic impedance; similarly, voltage in a circuit
permits the flux against electric impedance.
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Table 2.1 Comparing models for studies of cardiovascular dynamics.

Method of study Suitable research target

Time

0D (lumped Global cardiovascular dynamics in the whole

parameter) circulation system; General pressure and flow-rate

model changes in a local circulation loop; possibly to

provide boundary conditions for local 3D models

domain
1D Pulse wave transmission; improved boundary

Distributed conditions for 3D local models, capable of capturing

systemic wave reflections effects

study
2D Local flow field study in axisymmetric domains;

parameter further improvement of boundary conditions for

local 3D models, but limited applicability

model 3D Local flow field study in full 3D domains

Frequency domain study
Frequency response analysis of cardiovascular

system after linearization

Blood flow is described by the continuity equation for mass con-
servation, Poiseuille law for steady state equilibrium and Navier-
Stokes equations for non-steady state equilibrium; electrical flux
is governed by Kirchhoff law, Ohm law for voltage-power relation
and transmission equation for high frequency voltage-power rela-
tion. So, representing blood pressure and flow using voltage and
power, describing effects of inertia and friction force in the blood
flow with resistance R, inductance L and compliance C in the cir-
cuit, it is possible to use and apply in the study of cardiovascular
dynamics known methods, already well defined for the analysis of
electrical circuits. However these models are not able to describe
non linear problems typical of cardiovascular mechanism.
There are a lot of 0-D models. The most simple is Windkessel
model, which describes the vascular system from aorta to capil-
laries with a capacity C connected in parallel to a resistance R,
while the most complete one is Guyton model, where the most of
the branches from the arteries to veins are represented as effects of
autonomic and hormonal regulation. These models can be divided
in two classes: mono-compartment models and multi-compartment
models.
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Mono-compartment models

In these models, the whole vessel network is described by a single
combination of resistance-compliance-inductance (RLC).
In the following figure there are some examples of models.

Figure 2.3 Mono-compartment models for vessel networks.
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The simplest mono-compartment model is two-elements Wind-
kessel model, proposed by Stephen Hales in 1733 and then for-
mulated mathematically by Otto Frank in 1899. This model con-
sists of two elements connected in parallel, a capacitor C and a
resistance R. It describes only the arteries, non considering vessels
and capillaries. This model was extended by Landes, introducing
an other resistance element Rc (characteristic resistance), which
is connected in series with Windkessel RC model (Figure 2.3, (b)),
so to obtain the RCR model. This one was studied by Westerhof
and it is often called Westkessel. The second resistance represents
the impedance of the network of arteries, defined as the ratio be-
tween pressure and capacity without reflective waves. The total
resistance Rc+R has the same value of the resistance in the previ-
ous RC model, and the capacity C represents the elasticity effect
of the arteries network. Experiments and numerical studies have
shown that RCR models provide a good representation in the pre-
vision contest of the systolic volume and systolic and diastolic
aortic pressure, even if it underestimates significantly the peak of
the aortic flow, the mean arterial pressure and it does not provide
a realistic aortic pressure. At the same time, Burattini e Natalucci
have developed a different RCR model, in which there is a small
resistance Rc connected in series with the condenser C, instead of
RC combination (see Figure 2.3, (c)). In this configuration, the
small resistance Rc is conceptually connected with the condenser
C in order to describe viscoelastic proprieties of the vascular wall,
in contrast with the rule that it had in the model previously de-
scribed, in which it captures the wave’s reflection. Landes and
Westerhof have extended the RCR model considering the inertial
effect of the blood flow, and they have obtained, respectively, the
RLCR1 model (Figure 2.3, (d)) and the RLCR2 model (Figure
2.3, (e)). The use of the inertial term L helps to improve the ac-
curacy of the model. From several experimental studies on these
models, it has been proved that the RLRC1 is the best one in
order to model the vascular impedance. However, with the ad-
dition of more elements, the identification of model’s parameters
is more difficult. To improve the arteries’ model, Westerhof has
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extended the RCR model including more R and L components
(Figure 2.3, (f)), in order to simulate the sleeve effect, which is
the impedance of the laminar oscillatory flow. These models are
not very appropriate for complex vascular networks, so new mod-
els have been introduced with the addition of further R, C and
L elements. The RLCRCLR model (Figure 2.3, (g)) permits to
describe all the characteristics of the vascular system, but it can
be interpreted like a connection in series of a RLC model for the
arterial subsystem, a resistance model for capillaries and another
RLC model for the venous subsystem. In this case it can also be
considered as a multi-compartment model.

Multi-compartment models

In the mono-compartment models, the entire vascular system is
considered like one block, so the internal distribution of pres-
sure and capacity in the different segments of the vascular net-
work is not computed. In order to improve these lacks, multi-
compartment models have been developed. In these model the
vascular system is divided in a certain number of segments and
each segment is described by a resistance R, a capacity C and an
inductance L. The number of segments is decided in connection
with the level of accuracy required. In the construction of multi-
compartment models for vascular network, it is necessary to find
the RLC models appropriate for each segment of the blood ves-
sel. However these models are developed in order to describe units
of the vascular system and are not the most suitable to describe
its components, in fact characteristics of vascular segments are,
in general, very different from the ones of the system. Formaggia
and Veneziani [16], Milisic and Quarteroni [22], after having ex-
amined already existent models, have provided detailed results on
the typical four-compartment model appropriate for the study of
a vascular segment. In these results, the blood flow in a vascular
segment is considered through a mono-dimensional formulation,
and the mean capacity and pressure inside the vascular segment
are assumed to be equal to input or output values (it depends on
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the specific formulation). The four network elements have been
labeled as shown in the following table.

Table 2.2 Four typical models of vascular segments as blocks of a model
with more compartments in the vascular network.

Network element Circuit model Corresponding boundary condition

Inverted L element
Upstream flow-rate Qi

and downstream pressure P0

L element
Upstream pressure Pi

and downstream flow-rate

T element
Upstream and downstream pressure

Pi and P0

u element
Upstream and downstream flow-rate

Qi and Q0

Each one is used with suitable combinations of boundary condi-
tions. Among these configurations, the inverted L element uses
inflow and outcoming pressure like boundary conditions, and pro-
vides as result incoming pressure and outflow, which is common in
fluid dynamic. The most common approach used is to divide the
vascular system in segments that represent aorta, arteries, arte-
rioles, capillaries and vessels, characterizing the network element
with respect to the properties of local flux. Blood vessels are quite
elastic in aorta and main arteries, so the blood flow is variable and
the effects of resistance, capacity and inductance (RLC combina-
tion) must be considered. In arterioles and capillaries, the wall
of the vessel is more rigid, so the flux is constant and there is a
drop in friction force, so the dynamics of local flux are completely
described by one resistance element. Vessels and the caval vein
have a constant blood flux, so the inertial effect can be ignored
and a RC combination can be considered in order to describe the
characteristics of the capacity. This is showed in the following fig-
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ure:

Figure 2.4 Multiple compartimental model for the vascular system, proposed
by Shi. (sas: root of the aorta; sat: artery; sar: arteriola; scp: capillary; svn:
vein)

Parameters configuration for 0-D models

Generally it is hard to estimate the correct values for the parame-
ters of the model. Theoretically the initial values of the parameters
of 0-D models can be obtained by pressure/capacity data, mea-
sured in some positions of the cardiovascular system. However
some difficulties make this work very hard. In particular the accu-
racy of the parameters of the model is influenced by the invasive
nature of many measurements, the limited access in some parts of
the system due to the anatomic configuration, practical difficulties
connected with the orientation of the probe of the flux and with
the synchronization of pressure and flux data, the limited preci-
sion of the sensor of pressure/capacity. In addition, since the 0-D
model is an abstraction of the vascular system and not a punctual
mapping of the anatomy of the circulatory system, it is difficult to
find other positions of the system, in order to make more measure-
ments of pressure/capacity and provide useful information for the
improvement of the structure and the parameters of the model.
So, if there is a set of possible values for the parameters it is hard
to understand which one is the most appropriate for the model.
The derivation of the parameters of the model is based on the mul-
tivariate linear/non linear regression analysis. When the structure
of the model is simple and the number of the elements (such as the
number of R, L, C components) is small, the regression analysis is
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easy and sometimes it could be linearized. If the model becomes
more sophisticate, this is not true, so it is difficult to find the right
combination of the parameters for the model and the regression
analysis leads to poor results. In this case the only solution is to
find appropriate intervals for each parameter and then to assign
different combinations for the parameters of the model and to ob-
serve if the obtained output corresponds with the measured data of
pressure/capacity. This procedure is repeated until it is obtained
an acceptable combination of the values of the parameters, but it
results very much expensive in time, and the obtained results are
right only from a mathematical point of view, without having any
informations about the correctness of the physical interpretation.

0-D models applications

The research about 0-D models for the cardiovascular system has
been active for more than 200 years, since the Windkessel model
was introduced. 0-D model are widely used in several area of the
cardiovascular studies, from the basic research of cardiovascular
physiology to astronautical medicine and the analysis for the de-
sign of cardiovascular artificial organs. Figures 2.5, (a)-(c) show
some examples of simulation results, including pressure, capacity
and volume changes in the systemic circulation of a healthy human
person.
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Figure 2.5 (a) Pressure variation; (b) Variations in the flux of cardiac valves;
(c) Volume variations in the two left cavities of the heart.
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2.2.2 1-D cardiovascular models

The propagation of waves of pressure and capacity of the blood
flow in the vascular system is one of the most interesting prob-
lems in the study of cardiovascular physiology. It is believed that
the main information about the cardiac functionality, elastic prop-
erties of blood vessels, physiological conditions about important
organs (brain, liver, kidney, etc.) are contained in these two waves
and their relations. So, the research about cardiovascular prob-
lems has given much attention to the study of these waves.
It is possible to assure that a model composed by a sequence of
0-D components is, to the limit, a representation of a 1-D system.
In fact, Milisc and Quarteroni [22] have proved that it is possible
to consider 0-D models for the vascular network as a first order
discretization of one-dimensional linear systems, which are easily
interpreted in terms of electrical models. The biggest difference
between multiple-linear 0-D models and 1-D models is in the fact
that the last ones can include the convective term (non linear).
2-D and 3-D models of fluid dynamics can reveal the exact pres-
sure and the distribution of the velocity in a specific segment of the
vascular network, but there are limits due to the computational
power. So, a 1-D model can offer more advantages in revealing
pressure and flow variations for the entire length of the considered
vessel. Canic and Kim [7] have studied in details the character-
istics of the Navier-Stokes equations and they have proved that,
if the radius of the vessel is small with respect to a length of
the characteristic wave, the equation of the radial momentum im-
poses that the pressure is constant for each section. Being this
hypothesis valid for vascular fluxes, the deriving 1-D models, usu-
ally formulated with flow, pressure and area as main variables, are
appropriate for these systems.
There are several complications (some non linear) in the study of
the propagation of the pulse waves in 1-D models, like the thinning
of blood vessels (which causes other variations of the convective
acceleration), the bifurcation of vessels, the non linear relations
between pressure/cross area for the vascular wall, the axial ten-
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sion, the collapse of veins and pulmonary vessels, etc. The non
linear relation between pressure and cross area section and consti-
tutive relations have permitted to derive the governing equations
of the model. Brook and Pedly [6], Porenta [31], Formaggia [13],
Rooz [34], Sherwin [37], [38] have included also the effect of the
tapering of the vessels, considering the cross section variable at
the beginning of the vessel.

Solution Methods

The governing equations of the 1-D pulse wave propagation are hy-
perbolic equations and the dynamic of such wave are determined
by two Riemann invariants of the system (also called characteristic
quantities, equals to the blood pressure plus/minus the product
between characteristic flux and impedance, where the character-
istic impedance has the same meaning of the characteristic resis-
tance introduced previously for 0-D models). In order to solve the
governing equations, Streeter [42], Bodley [2], Parker and Joans
and Wang [28], [47], [48] apply the characteristic method, where
the partial differential equation for continuity and momentum are
replaced by ordinary differential equations on the characteristic
lines corresponding at the two Riemann invariants. The governing
equations have also been solved using finite differences methods,
but, in recent years, the finite volume method and the finite ele-
ments method have been applied too. Brook and Pedley [5], [6]
have used a Godunov scheme to discretize the equations in a fi-
nite volume formulation; Sherwin [38] has solved these equations
using a discontinuous Galerkin scheme and a Taylor-Galerkin one.
A small number of researchers has also used the spectral method
for the solution of the pulse wave equations, like Bessem that, for
example, has applied the residue method in order to transform the
equations in a spectral space. Sherwin has applied the spectral/hp
method.
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Boundary conditions

The equations for the transmission of the 1-D pulse waves are
hyperbolic and in the majority of the physiologic conditions the
blood flow is sub-critical, and it must be assigned a boundary con-
dition to each extremity of the vessel. At the upper extremity it is
possible to prescribe boundary conditions on pressure or capacity
of the flux, using theoretic derivations or experimental results. At
the lower extremity, the boundary condition requires more obser-
vations, in fact, in physiological conditions, arteries are branched
and connected with smaller arterioles and these ramifications can
be very deep, so it is impossible to track all these ramifications in
one simulation, and it is necessary to decide the section to model,
concerning with the scope of the specific study.
A large number of researchers have adopted a more simple ap-
proach that consists into specify directly the admissible combina-
tions for the pressure and the capacity of the incoming and exiting
flux. In order to have more realistic conditions, some researchers
have used a constant or variable resistance or a three elements
Windkessel model (RCR) to specify the relation between exiting
pressure and capacity. To improve the accuracy of the boundary
condition, Olufsen [25] has proposed the structured tree model in
which the impedance of the small arteries is estimated using lin-
earized Navier-Stokes equations. It seems to be that this model
has improved the simulation results, but no validation has been
published yet. A special type of boundary condition internal to a
segment of the vessel is the vascular ramification, where a parent
vessel is ramified in several daughters vessels. Many researchers
have applied directly the same static pressure and capacity conser-
vation to the ramifications points. A better description (which sat-
isfies the Bernoulli equation for the steady state) has been adopted
by Sherwin [38], who has applied the continuity of the total pres-
sure instead of the static pressure. To explain the wave reflection
in the branch point, Reymond [33], Wang and Parker [47] have
used wave reflection coefficients to compute pressure and capacity
variations. Smith [40] has considered momentum conservation in
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the bifurcations of the vessels, computing the equilibrium between
the differences of pressure and inertia.

1-D models applications

Traditionally 1-D models for the transmission of the pulse waves
are mostly been applied to study the dynamics of the transmis-
sion of pulse waves in arteries segments (see Bodley [2], Streeter
[42], Parker and Joans [28] works). Wang and Parker [47], [48]
have extended the study in order to investigate the dynamic of
propagation waves in the vascular segments in a complete arterial
network of the human body; Li and Cheng [19] have studied the
characteristics of the pulse waves in the arterial pulmonary net-
work; Porenta [31] and Rooz [34] have analyzed the characteristics
of the pulse waves in arteries with stenosis; Wan [44] and Steele
[41] have determined the dynamic of the pulse wave in sick vessels
with grafts of by-pass; Surovtsova [43], Sherwin [38], Pontrelli and
Rossoni [29] have studied the transmission of the pulse wave in
arteries with stents; Reymond [33] has modelled the propagation
of the pulse wave in an arterial systemic tree.
Many researchers have considered the transmission of the impulse
waves in collapsible vessels: Elad [10] has studied the instable flux
of the fluid through collapsible tubes; Brook [5], [6] has modeled
blood flux in the jugular vein of a giraffe.
Another development in 1-D modeling of the pulse wave transmis-
sion consists in the analysis of the intensity of the wave, proposed
by Park and Joans, where the product of the variations of pressure
and velocity on a small interval is defined as estimation of the rate
of the flux of energy per unit of area in a segment of the vessel.
Such index describes, precisely, the intensity of the wave and it
can be used to distinguish forward transmission wave from back-
ward transmission wave. The analysis of the intensity of the wave
has been severely applied to the study of the transmission of the
pulse wave in the left ventricle, in coronary arteries, in systemic
and pulmonary arteries. However, it is necessary to observe that
1-D models are valid in such applications only if the flux has an
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axial domain and the secondary flux in radial and circumferential
directions is negligible.

2.2.3 Multi-scale models

The cardiovascular system is a closed network with strong interac-
tions among its components. Underlining only global dynamics of
circulation or only local topics of the flux can provide only partial
information on the entire cardiovascular analysis. In latest years
multi-scale modeling techniques have been developed, where 0-D
models are coupled to 1-D, 2-D or 3-D models, in order to provide
complete representations of the cardiovascular system. Typically,
local hemodynamic is determined through a detailed and realis-
tic 3-D anatomic model of an organ or a region of interest, and
boundary conditions for this model are given by 0-D or 1-D mod-
els. Quarteroni has introduced a first multi-scale model in which
the different models’ scale have different mathematical character-
istics: 0-D models with lumped parameters are governed by ordi-
nary differential equations, 1-D models with distributed parame-
ters can be described by hyperbolic partial differential equations;
2-D and 3-D models are based on Navier-Stokes equations, which
are strongly non linear and its behavior can be parabolic, hyper-
bolic or elliptic, according to the specific problem. An accurate
treatment at the interfaces, that are the connection points be-
tween different models, is necessary to guarantee that the problem
is mathematically well posed. Due to the fact that the blood flow,
in most of the physiological/pathological conditions, is subcriti-
cal, a boundary condition must be assigned for every considered
part of each multi-scale mode. In 0-D models, boundary condi-
tions for pressure and capacity are directly applied; on 1-D, 2-D
or 3-D models with distributed parameters, boundary conditions
can be prescribed values for the variables in governing equations
or for the derivatives of the variables or for a linear combination of
variables and their derivatives. 0-D and 1-D models use pressure
and velocity (or capacity of the flux) as variables, integrated on a
transversal plane (the unvarying pressure on a transversal plane
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is due to the radial momentum equation, while the distribution of
the velocity in the convective non linear term can be represented
by a corrective coefficient). 2-D and 3-D models often use pressure
and velocity as primary variables.
A multi-scale model will include a strategy for the coupling of the
components in single scale. Pontrelli [30] has associated a 1-D
model for the transmission of the arterial pulse wave to two 0-D
models, which represent the components previous and next the
1-D section. The previous 0-D model provides the capacity at
the inlet and the next 0-D model provides the outcoming pres-
sure and boundary conditions for the 1-D model, while the 1-D
model computes pressure and capacity as boundary conditions for
previous and next 0-D model, respectively. In a similar model,
Formaggia [12] has incorporated a 1-D model for the aorta in a
0-D systemic cycle. It has been applied an inverse strategy respect
to the previous one. Another problem that is verified when 2-D
or 3-D models are associated, is due to the treatment of insuffi-
cient boundary conditions: the lack of information makes insuffi-
cient the description of the capacity in 0-D/1-D models, so they
can not be applied as boundary conditions for 2-D/3-D models.
Watanabe [49] has done a multi-scale simulation of the dynam-
ics of fulfilling on the left ventricle, in which a 3-D model for the
ventricular blood flow has been integrated with a 0-D model for
the other parts of the circulatory system. The 0-D model pro-
vides the pressure as boundary condition for the 3-D model, and
the 3-D model specifies the variation of the capacity for the 0-D
model. Vigono-Clementel [46] has applied a 0-D model, which
provides values of resistance/impedance as boundary conditions
for the 3-D arterial model, for which there is the pressure-capacity
relation at the interfaces of the model. In this case, the profile of
the outcoming velocity for the 3-D model has been represented as
Poiseuille flux for the boundary condition on the resistance and
as a linear wave solution of Womersley for the boundary condi-
tion of the impedance. In the analysis of blood flow in conform
vessels, Formaggia [13] has coupled a 1-D model and a 3-D one
to reduce the computational complexity and to delete the effect
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of outcoming pressure waves. To obtain the missing information
at the interfaces of the model, he has proposed two approaches to
find the admissible pressure and the distribution of the velocity: a
variational approach and another one which uses Lagrange multi-
pliers. In other studies Formaggia [16], [17] has also elaborated the
two approaches and he has verified that, for problems of transitory
flux, the Womersley profile is an admissible flow distribution.





Chapter 3

1-D model for the
cardiovascular system

In this chapter a 1-D model for defining the evolution of the blood
pressure and the velocity of the propagation wave in the circu-
latory system is introduced. After justifying the choice of a 1-D
model for the system, the governing equations are presented and
manipulated in order to obtain the velocity of the propagation
wave and the characteristic variables of the system, and to sepa-
rate backward and forward waves. The formulation is solved us-
ing the discontinuous Galerkin scheme, with appropriate boundary
conditions, considering inflow conditions, outflow conditions and
junctions. The described equations are also linearized in order to
study the effect of non linear terms on the wave propagation.

3.1 Assumptions for the 1-D formula-

tion

The cardiovascular system consists of a large number of vessels, so
it is very hard to use a 3-D model to study the whole system. In
order to reduce the complexity it is possible to use a 1-D model,
considering only the large arteries.
Each artery is approximated by an impenetrable 1-D tube of length
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l, axis s, circular cross section A(s, t), perpendicular to s, and
thickness h(s), with uniform properties along the circumference.
A can vary during the time (it depends on t), in fact the arterial
wall is deformable. Assuming that the curvature s is small enough,
it can be approximated by the coordinate x and the problem can
be described in one spatial dimension. This assumption is correct
in large arteries because the curvature is very small respect to the
diameter.

Figure 3.1 Layout of a blood vessel: natural layout (left) and layout with
1-D approximations (right).

The 1-D formulation permits an efficient simulation of the prob-
lem, because the lengths of the pulse waves in the arteries are big if
compared with their diameters, and this implicates that the prop-
agation of the waves holds principally in the axial direction. How-
ever, some simplifications about the blood flow and a mechanic
description of the arterial wall are introduced. The blood flow is
described only along the axial direction with U(x, t), defined as
the average velocity across the cross section A(x, t),

U =
1

R2

∫ R

0

2ru dr,

where r is the radial coordinate, R(x, t) is the lumen radius and
u(x, r, t) is the axial velocity of each fluid particle (assumed to be
axialsymmetric) in the cross section A(x, t). During the movement
of the wall, it is assumed that the arterial wall can be deformed
only in the radial direction. This deformity is due to the internal
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pressure p(x, t), considered constant on the cross section of the
lumen. The external pressure beyond the arterial wall can be con-
sidered constant in time and space or it can be taken variable.
The fluid resistance, compliance and inertia of the arteries, arteri-
oles and capillaries non simulated in the 1-D model, are included
considering linear models with lumped parameters (or 0-D mod-
els), in which pressure and capacity of the flux are only time de-
pendent. These are connected with the 1-D formulation through
boundary conditions.
The blood can be considered as a homogeneous, incompressible
and Newtonian fluid in a normal arterial flux. So, both the viscos-
ity µ and the density ρ are considered constant or dependent only
by the temperature that can be treated as a parameter, without
the necessity of introducing a thermodynamic state equation or
an energy equation. In addition, the blood is supposed to be lam-
inar1, because the Reynolds’ numbers2 in the all system are well
below 2000 in normal conditions.

3.2 Governing equations

Blood pressure and velocity pulse wave propagation in each artery
are simulated putting together the blood flux problem with the
moving of the arterial wall.
The governing equations are given by the mass and momentum
conservation equations, applied to a 1-D tubolar and straight con-
trol volume (see Figure 3.1) of incompressible and Newtonian fluid.

1The fluid particles move following coaxial cylindric foils, of infinitesimal
thickness, which slides one on the other without any type of reshuffling of
the fluid, with increasing velocity form the periphery to the center. It is in
contrast with the turbolent regime, which is typical of vessels with stenosis
and it is generated close to them. It causes noises, so it can be found thorough
auscultations. In addition it can originate an increase in the resistance of the
fluid.

2Reynolds’ numbers are adimensional numbers, used in fluiddynamic which
are proportional to the ratio between inertial and viscous forces. They permit
to evaluate if the flow of a fluid is laminar (if the number is smaller) or
turbolent (when the number is higher).
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The conservation of the mass requires that the variation of the
mass inside plus the external net flux of the mass is equal to zero.
Denoting the blood density with ρ, the volume with

V (t) =

∫ l

0

A dx,

where l is the length of the vessel, and assuming that there are not
infiltrations across the walls, the mass conservation can be written
as it follows:

ρ
dV (t)

dt
+ ρQ(l, t)− ρQ(0, t) = 0.

Replacing V (t), a mono-dimensional equation is obtained. Also,
observing that

Q(l, t)−Q(0, t) =

∫ l

0

∂Q

∂x
dx,

there is

ρ
d

dt

∫ l

0

A(x, t) dx+ ρ

∫ l

0

∂Q

∂x
dx = 0.

If l is assumed to be not dependent from the time, the derivative
with respect to t can be taken over under the integral, and there
is

ρ

∫ l

0

{
∂A

∂t
+
∂Q

∂x

}
dx = 0.

Since the length l is not specified, the control volume is arbitrary
and so the previous equation is valid for each value of l. So, in
general, the integral is zero if the function in the integral is null:

∂A

∂t
+
∂Q

∂x
=
∂A

∂t
+
∂(Au)

∂x
= 0.

Under the same hypothesis, the momentum equation requires that
the variation of the momentum in the control volume plus the mo-
mentum of the external net flux corresponds to the forces applied,
and this holds for an arbitrary length l:

d

dt

∫ l

0

ρQ dx+ (αρQu)l − (αρQu)0 = F,
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where Q = Au and F represents the forces applied in the direction
of the axis x, operating on the volume control. Since

ρQ = ρuA = ρ

∫
S

û dσ,

represents the momentum integrated on the section S, the left
member of this equation is similar to the left member of the mass
conservation equation. However in the balance of the momentum,
an adimensional correction factor α has been introduced, which
considers the non linearity of the integration on the section, in
terms of the local velocity û, that is∫

S

ρ (û)2 dσ ≡ αρu2A = αρQU =⇒ α(x, t) =

∫
S
û2dσ

au2
.

When the profile of the flux is uniform on a section, α = 1. To
complete the formulation it is necessary to define the force, indi-
cated by F , which usually includes a contribute of the pressure
and viscosity:

F = (pA)0 − (pA)l +

∫ l

0

∫
∂S

p̂nxdsdx+

∫ l

0

f dx,

where ∂S is the border of the section S, nx is the component with
respect to the axis x of the normal at the surface and f represents
the friction force per unit length. The pressure force, expressed
by the double integral, can be simplified assuming constant the
pressure on the section and treating the tube as axialsymmetric.
So ∫ l

0

∫
∂S

p̂nxdsdx =

∫ l

0

p
∂A

∂x
dx.

By combining the last equations, the momentum conservation
equation is obtained:

d

dt

∫ l

0

ρQ dx+ (αρQu)l − (αρQu)0 = (pA)0 − (pA)l +

+

∫ l

0

p
∂A

∂x
dx+

∫ l

0

f dx.
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The mono-dimensional equation is derived observing that

(αρQu)l − (αρQu)0 =

∫ l

0

∂ (αρQu)

∂x
dx,

(pA)0 − (pA)l = −
∫ l

0

∂ (pA)

∂x
dx.

Replacing this inside the latest equation and assuming l non de-
pending from the time and ρ constant, there is

ρ

∫ l

0

{
ρ
∂Q

∂t
+ ρ

∂ (αQu)

∂x

}
dx =

∫ l

0

{
−∂ (pA)

∂x
+ p

∂A

∂x
+ f

}
dx.

This relation is satisfied for each arbitrary length l and so it is
verified only when the function in the integrals are the same. So
the momentum equation becomes:

∂Q

∂t
+
∂ (αQu)

∂x
= −A

ρ

∂p

∂x
+
f

ρ
.

Manipulating this equation again and remembering that Q = AU
e αU = Q

A
, the following system with hyperbolic partial differential

equations is obtained:

∂A

∂t
+
∂(AU)

∂x
= 0, (3.2.1)

∂U

∂t
+ (2α− 1)U

∂U

∂x
+ (α− 1)

U2

A

∂A

∂x
+

1

ρ

∂ρ

∂x
=

f

ρA
. (3.2.2)

In the following, α is assumed constant (this means that the profile
of the velocity is constant in shape) and defined as

α =
1

U2R2

∫ R

0

2ru2 dr. (3.2.3)
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The equations (3.2.1) and (3.2.2) can be also derived by integrat-
ing the 3-D incompressible Navier Stokes equations on a cross
section.
In both cases, it is necessary to provide the shape of the radial
velocity. In the following it will be used a velocity profile as the
one proposed by Smith [40]

u = U
γ + 2

γ

[
1−

( r
R

)γ]
, (3.2.4)

where γ is constant. This profile satisfies the no-slipping condition
(u|r=R = 0), it assumes axialsymmetric flux (∂u/∂r|r=0 = 0) and
it satisfies

U =
1

R2

∫ R

0

2ru dr.

Replacing (3.2.4) in (3.2.3),

γ =
2− α
α− 1

,

is obtained and, so, the velocity profile (3.2.4) can be expressed in
terms of α as

u = U
α

2− α

[
1−

( r
R

) 2−α
α−1

]
. (3.2.5)

In the following γ = 9 (α = 1.1) will be considered, which is the
value chosen by Smith [40] in order to mimic the experimental
data obtained in different point of the cardiac cycle. The Figure
3.2 shows the shape of the profile of this velocity, compared with
a parabolic profile (γ = 2).
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Figure 3.2 Shape of the velocity profile used by Smith [40] (γ = 9) (solid
line) compared to a parabolic profile (γ = 2) (dashed line).

According to Brook [5], inertia terms 2(α− 1) U ∂U
∂x

e (α− 1)U
2

A
∂A
∂x

of the momentum equation (3.2.2) are ignored. These terms take
into account the fact that the profile of the velocity is not flat
and they are very much smaller than the remaining ones in the
momentum equation, which is reduced to

∂U

∂t
+ U

∂U

∂x
+

1

ρ

∂p

∂x
=

f

ρA
. (3.2.6)

The integration of the incompressible 3-D equations of Navier
Stokes, provides the following expression for f(x, t):

f = 2µ
A

R

[
∂u

∂r

]
R

. (3.2.7)

Replacing (3.2.5) in (3.2.7)

f = −2µπ
α

α− 1
U = −22µπ. (3.2.8)

The equations (3.2.1) and (3.2.6) are completed with a pressure-
area relationship or tube law: p = p(A;x, t). This law considers



3.2. Governing equations 77

the lumen to be circular at any internal pressure and the arterial
wall to be a linear, elastic and isotropic material with a small
thickness compared to the vessel radius (h << R), so that the
external forces applied at the arterial wall are reduced to stresses
acting in peripheral directions. So, applying the Laplace law, by
which the circumferential tensile stress, σ, depends on the pressure
on the wall and the radius of the vessel

σ =
R0(p− p0)

h
, (3.2.9)

is obtained, with p0 and R0, representing the pressure and the
radius of the artery at the state (A, p, U) = (A, p0, U0). The cor-
responding deformation on the circumference is

ε =
1

1− ν2

R−R0

R0

, (3.2.10)

where ν is the Poisson ratio (the ratio between cross and longitu-
dinal deformations with respect to the direction of the flux), which
it is assumed to be 1/2 because the biological tissue is almost in-
compressible. The equations (3.2.9) and (3.2.10) are connected
by σ = Eε (reformulation of the Hook’s law), where E(x) is the
Young modulus (or elasticity modulus) along the circumference,
which leads to the tube law used in the mono-dimensional model,
also called algebraic model:

p = pext +
β

A0

(
√
A−

√
A0), β =

√
πhE

1− ν2
, (3.2.11)

with pext the external pressure and β(x) a parameter depending on
the space and related to the mechanical proprieties of the arterial
wall. Although the arterial wall behaves like a non elastic material,
in this contest a linear elasticity will be assumed, so that the
curves of pressure and the Young modulus can be approximated
by straight lines in the physiological range of values (see Figure
3.3).
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Figure 3.3 Graphic diameter-pressure for a piece of artery of fixed length
(d0 is the length not outstretched). This picture shows a typical no-linear
behavior of a systemic artery. The studied range of value in-vivo is outlined
by the two vertical dashed lines. The Young modulus (E) is also showed, which
connects the circumferential tension and the circumferential deformation and
it drastically increases when the pressure caused by the fluid on the walls
exceeds the physiological range [21].

It is possible to observe that ∂p/∂A decreases when A increases
in the tube law (3.2.11), contrary to the physiological behavior
showed in Figure 3.3, in which the arterial wall becomes more
rigid when p increases. In the same figure it is possible to observe
that E grows in correspondence of an increasing in pressure. In
the following, E will be supposed constant in a given section, but
it can vary in each artery. Others fluid-structure interactions have
been considered in the literature:
Visco-Elastic Model:

p = pext +
β

A0

(
√
A−

√
A0) +

Γ

A0

√
A

∂A

∂t
,
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Wall-Inertia Model:

p = pext +
β

A0

(
√
A−

√
A0) +

Γ

A0

√
A

∂A

∂t
+m

∂2A

∂t2
,

where Γ = 2
3

√
πφhw is related to the visco-elastic properties of the

arterial wall, while m = ρhw
2
√
πA0

(see [14]).

3.3 Characteristic analysis

From the tube law (3.2.11), the term which defines the gradient
of the pressure in the momentum equation (3.2.6) is

1

ρ

∂p

∂x
=

1

ρ

(
∂p

∂A

∂A

∂x
+
∂p

∂β

dβ

dx
+

∂p

∂A0

dA0

dx

)
,

and the equations (3.2.1) and (3.2.6) can be rewritten in the non-
conservative form:

∂U

∂t
+ H

∂U

∂x
= S, (3.3.12)

where

U =

[
A
U

]
, H =

[
U A

1
ρ
∂p
∂A

U

]
,

S =

[
0

1
ρ

(
f
A
− ∂p

∂β
dβ
dx
− ∂p

∂A0

dA0

dx

) ]
.

Since A > 0 and 1
ρ
∂p
∂A

> 0, H has two real eigenvalues, λf,b = U±c,
where

c =

√
A

ρ

∂p

∂A
(3.3.13)

is the velocity of the pulse wave of the system. Under physiological
flow conditions, c is around one order of magnitude higher than
U . So, there is λf > 0 and λb < 0. It is possible to rewrite the
matrix H in the following way:

H = L−1ΛL, (3.3.14)
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where

L = ς

[
c
A

1
− c
A

1

]
, Λ =

[
λf 0
0 λb

]
,

and ς is an arbitrary scale factor. Replacing (3.3.14) in (3.3.12)
and premultiplicating (3.3.12) for L, it is obtained

L
∂U

∂t
+ ΛL

∂U

∂x
= LS. (3.3.15)

With the change of variables

∂W

∂U
= L, (3.3.16)

where W = [Wf ,Wb]
T is the vector of the characteristic or Rie-

mann variables, the system (3.3.15) is reduced to

∂W

∂t
+ Λ

∂W

∂x
= LS. (3.3.17)

If x̂(t) is defined as a parametric function x̂ = x̂(t) in the space
(x, t), then the variation of W along the curve x̂(t) is given by

dW(x̂(t), t)

dt
=
∂W

∂t
+
dx̂

dt
I
∂W

∂x̂
. (3.3.18)

A comparison between (3.3.17) and (3.3.18) shows that, if dx̂
dt

I = Λ,
then

dW

dt
= LS, (3.3.19)

along the path x̂(t), that is W(x̂(t), t) depends only from its initial
value and from the integration of dW

dt
along x̂(t). So, x̂(t) defines

the characteristic curves along which the information contained in
W propagates in the space (x, t). Being dx̂

dt
I = Λ, there are two

characteristic paths, Cf e Cb, defined by

Cf,b ≡
dx̂f,b
dt

= λf,b = U ± c. (3.3.20)
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Figure 3.4 In the space (x, t), each point (X,T ) of the domain is individuated
by the intersection of one couple of characteristic paths Cf and Cb. Wf moves
along Cf and transports information on pressure and velocity in the positive
direction of the axis x. Similarly, Wb travels along Cb transporting th same
information in the negative direction of the axis x

The characteristic analysis shows that the equations (3.2.1) and
(3.2.6), combined with the tube law (3.2.11), create a non-linear
system of hyperbolic differential equations.
In the space (x, t), Wf and Wb propagates along the paths Cf and
Cb, respectively at the velocities λf and λb (Figure 3.4), changing
their value because of viscous dissipation and geometrical vari-
ations, according to (3.3.19). Since U << c, Wf propagates the
variations in pressure and velocity from proximal to distal parts of
the arterial system (forward direction), while Wb transports infor-
mation about pressure and velocity from distal to proximal parts
(backward direction). It is possible to observe that, if f = 0 and β
and A0 are constant along x, then S = 0, and this implies that the
system (3.3.17) is decoupled and Wf and Wb are constant along
Cf and Cb, for (3.3.19).



82 3. 1-D model for the cardiovascular system

To satisfy Cauchy Riemann conditions,

∂2Wf,b

∂A∂U
=
∂2Wf,b

∂U∂A
,

the value of ς in L in (3.3.14) must be constant (ς = 1 is considered
in the following). The variables Wf and Wb are determined by the
integration of (3.3.16),

Wf,b = U − U0 ±
∫ A

A0

c

A
dA. (3.3.21)

Considering the tube law (3.2.11) and the expression (3.3.13) for
the velocity,

Wf = U − U0 + 4(c− c0), (3.3.22)

Wb = U − U0 − 4(c− c0), (3.3.23)

is obtained, with

c =

√
β

2ρA0

A1/4, (3.3.24)

and

c0 =

√
β

2ρ
A

1/4
0 . (3.3.25)

3.4 Wave separation

It is possible to obtain a better interpretation of the temporal
evolution of pressure and flow measured at each point of the ar-
terial system by separating backward and forward contributions
that produce them. The technique proposed here is based on the
work of Parker and Jones [28] which considers non-linear effects
due to the convective acceleration and the non-linear dependence
of p to A. Using the variable change (3.3.16), the variation of the
Riemann functions, dW, is connected to the variation of area and
velocity, dU, through the relation:

dW = LdU. (3.4.26)
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If β and A0 can be considered to be constant in a neighbourhood
of the measurement site, the equation (3.3.13) provides c = A

ρc
dp
dA

,

so that the equation (3.4.26) gives

dWf = dU +
dp

ρc
, (3.4.27)

dWb = dU − dp

ρc
. (3.4.28)

Solving it with respect to dp and dU ,

dp = ρc
dWf − dWb

2
, (3.4.29)

dU =
dWf + dWb

2
, (3.4.30)

are obtained. Since in the previous paragraph has been observed
that Wf propagates changes in area (or pressure) and velocity
forwards and Wb backwards, contributions of dp forwards, dpf ,
and backwards, dpb, are defined as:

dpf = ρc
dWf

2
, (3.4.31)

dpb = −ρcdWb

2
, (3.4.32)

and contributions of dU forwards, dUf and backwards, dUb, as:

dUf =
dWf

2
, (3.4.33)

dUb =
dWb

2
. (3.4.34)

Replacing (3.4.27) and (3.4.28) in the equations from (3.4.31) to
(3.4.34) holds to

dpf,b =
1

2
(dp± ρcdU), (3.4.35)

dUf,b =
1

2

(
dU ± dp

ρc

)
. (3.4.36)
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Finally, forwards and backwards contributions of pressure, pf,b,
and velocity, Uf,b, can be defined at each point by integrating with
respect to the time, the variations of pressure dpf,b and velocity
dUf,b:

pf =

∫ pf (t′)

pf (0)

dpf , pb =

∫ pb(t
′)

pb(0)

dpb, (3.4.37)

Uf =

∫ Uf (t′)

Uf (0)

dUf , Ub =

∫ Ub(t
′)

Ub(0)

dUb. (3.4.38)

3.5 Linearisation of the governing equa-

tions

The system
∂U

∂t
+ H

∂U

∂x
= S (3.5.39)

is non-linear because of the convective term U ∂u
∂x

in the momentum
equation, the non-linear dependence of p by A through tube law
(3.2.11), and the non-linear viscous term f

ρA
. If a perturbation

is introduced at an initial state (A, p, u) = (A0, 0, 0) with small
increments ∆a, ∆p, ∆u, and quadratic terms are ignored, the
system is reduced to

∂∆U

∂t
+ H0

∂∆U

∂x
= S0, (3.5.40)

where

∆U =

[
∆a
∆u

]
, H0 =

[
0 A0

β

2ρA
3/2
0

0

]
,

S0 =

[
0

1
ρ

(
f0
A0
− ∂∆p

∂β
dβ
dx
− ∂∆p

∂A0

dA0

dx

) ]
,



3.6. Numerical solution: the discontinuous Galerkin formulation85

and f0 = −22µπ∆u. ∂∆p
∂a

has been approximated by ∂∆p
∂a
|a=0 =

β

2A
3/2
0

, so

∆p =
β

2A
3/2
0

∆a =
ρ(c0)2

A0

∆a, (3.5.41)

with c0 defined in (3.3.25).
The characteristic analysis of the system (3.5.40) provides the fol-
lowing linear functions:

∆Wf = ∆u+
c0

A0

∆a, (3.5.42)

∆Wb = ∆u− c0

A0

∆a, (3.5.43)

which propagate in the space (x, t) at constant velocities, respec-
tively +c0 and −c0. The characteristic curves are straight lines
defined by

Cf,b ≡
dx̂f,b
dt

= ±c0. (3.5.44)

3.6 Numerical solution: the discontin-

uous Galerkin formulation

The non linear system (3.3.12) of mono-dimensional equations can
be solved using a discontinuous Galerkin scheme, with a spatial
discretization spectral/hp. This method is appropriate for a 1-D
formulation since it permits the propagation of waves of different
frequencies without having big dispersion and propagations of er-
rors.
First of all, the domain Ω = [0, l] of each artery is discretized in
a mesh of Nel non overlapping elemental regions, Ωe = [xLe , x

R
e ],

e = 1, ..., Nel, such that xRe = xLe+1 for e = 1, ..., Nel − 1 and

∪Nele=1Ωe = Ω. The superscripts L and R refer to the left and right
boundaries of each elemental region Ωe. In addition, the system
(3.3.12) can be written in conservative form:

∂U

∂t
+
∂F

∂x
= S, (3.6.45)
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where

U =

[
U1

U2

]
=

[
A
U

]
, F(U) =

[
F1

F2

]
=

[
AU

U2

2
+ p

ρ

]
,

S(U) =

[
S1

S2

]
=

[
0

1
ρ
( f
A
− ∂p

∂β
dβ
dx
− ∂p

∂A0

dA0

dx
)

]
.

The weak form of the system is obtained by multiplying the equa-
tion (3.6.45) by a vector of test functions Φ and integrating over
Ω: (

∂U

∂t
,Φ

)
Ω

+

(
∂F

∂x
,Φ

)
Ω

= (S,Φ)Ω, (3.6.46)

where

(w,v)Ω =

∫
Ω

wvdx. (3.6.47)

The integrals are decomposed into elemental regions as follows:

Nel∑
e=1

((
∂U

∂t
,Φ

)
Ωe

+

(
∂F

∂x
,Φ

)
Ωe

)
=

Nel∑
e=1

(S,Φ)Ωe , (3.6.48)

and the second member of (3.6.48) is integrated by parts:

Nel∑
e=1

((
∂U

∂t
,Φ

)
Ωe

−
(

F,
dΦ

dx

)
Ωe

+ [F ·Φ]
xRe
xLe

)
=

Nel∑
e=1

(S,Φ)Ωe .

(3.6.49)
The solution U(x, t) is approximated by a discretized expansion
denoted by Uδ(x, t) and, in the same way, Φ(x) is approximated by
Φδ(x). As basis for the expansion, polynomials of degree K have
been chosen on each elemental region Ωe. In addition, to obtain
a global solution in the domain Ω, information must propagate
between elemental regions Ωe and this is achieved by upwinding
the boundary flux, which is denoted as Fu. In this way,

Nel∑
e=1

((
∂Uδ

e

∂t
,Φδ

e

)
Ωe

−
(

F(Uδ
e),

dΦδ
e

dx

)
Ωe

+ [Fu·Φδ
e]
xRe
xLe

)
=

=

Nel∑
e=1

(S(Uδ
e),Φ

δ

e)Ωe , (3.6.50)
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is obtained. Integrating again the second term by parts:

Nel∑
e=1

((
∂Uδ

e

∂t
,Φδ

e

)
Ωe

+

(
∂F(Uδ

e)

∂x
,Φδ

e

)
Ωe

+

+[(Fu − F(Uδ
e)) ·Φ

δ

e]
xRe
xLe

)
=

Nel∑
e=1

(S(Uδ
e),Φ

δ

e)Ωe . (3.6.51)

To simplify the method, each elemental region is mapped onto the
standard element Ωst = {ξ ∈ R : −1 ≤ ξ ≤ 1}. This mapping is
defined as

χe(ξ) = xLe
1− ξ

2
+ xRe

1 + ξ

2
, ξ ∈ Ωst, (3.6.52)

and its inverse is given by

ξ = χ−1
e (x) = 2

xe − xLe
xRe − xLe

− 1, xe ∈ Ωe. (3.6.53)

As expansion basis, the Legendre polynomials Lk(ξ) have been
chosen, with k the polynomial order, because they are orthogonal
with respect to the product (3.6.47). In this way, the solution is
expanded on each elemental region Ωe as

Uδ
e(χe(ξ), t) =

K∑
k=0

Lk(ξ)Ûk
e(t), (3.6.54)

with Ûk
e(t) the time-varying coefficients of the expansion.

Replacing (3.6.54) in (3.6.51) and letting Φδ
e = Uδ

e, 2K differential
equations have been chosen to be solved for each Ωe, e = 1, ..., Nel :

dÛk
i,e

dt
= F(Uδ

e), k = 0, ..., K, i = 1, 2, (3.6.55)

where Ûk
i,e, i = 1, 2, are each of the two components of Ûk

e(t) and

F(Uδ
e) = −

(
∂Fi
∂x

, Lk

)
Ωe

− 2

xRe − xLe
[Lk ∗ (F u

i − Fi(Uδ
e))]

xRe
xLe

+

+(Si(U
δ
e), Lk)Ωe .
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The method is completed with a second-order Adams-Bashforth
time-integration scheme3

(
Ûk
i,e

)n+1

=
(
Ûk
i,e

)n
+

3∆t

2
F
(
(Uδ

e)
n
)
− ∆t

2
F
(
(Uδ

e)
n−1
)
,

k = 0, ..., K, i = 1, 2, e = 1, ..., Nel, (3.6.56)

in which ∆t is the time step and n the number of every time step.
To calculate the integrals a Gauss quadrature formula4 of order
q ≥ K + 1 is used.

3.6.1 The Riemann problem

The upwinded fluxes Fu, required in the equation (3.6.56) at the
interfaces of each elemental region Ωe, are calculate through the
solution of a Riemann problem which considers the characteristic
information arriving at both sides of interfaces and ignores the
characteristic information moving away. At time t, each interface
separates two states, (AL, UL) and (AR, UR) (Figure 3.5), with
corresponding β and A0. These states are identified at the final
point of the elemental region on the left and at the initial point of
the elemental region on the right.

3The Adam-Bashforth method is a multistep method for the solution of or-
dinary differential equations y′(x) = f(x, y). In this case a two-step method is
considered which permits to compute the n-th approximation of the solution,
yn, through

yn = yn−1 +
h

2
[3fn−1 − fn−2] .

4In numerical analysis the Gauss quadrature formulas are quadrature for-
mulas with the highest degree of precision, using to approximate integrals like
b∫
a

f(x)dx, knowing n+ 1 values of the function f in the interval [a, b].
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Figure 3.5 Layout of the Riemann problem, which calculates the upwinded
states (AuL, U

u
L) and (AuR, U

u
R), which are originated by the discontinuities

between the two initial states (AL, UL) and (AR, UR).

If there are discontinuities in β and A0 through the interface, the
equation (3.3.19) can not be applied, since there is a discontinu-
ity in the characteristic information which propagates across the
interface. So, the two forward state (AuL, U

u
L) and (AuR, U

u
R) have

origin on each side of the interface at the time t+ ∆t. Two of the
four equations required to determinate these states connect the
characteristic information which arrives at the interface from two
constant states at the time t. Assuming that the flow is not viscous
between the two initial states, in Figure 3.5, there is dW

dt
= 0 be-

tween each initial constant state and its corresponding upwinded
state, according to (3.3.19), and so,

Wf (AL, UL) = Wf (AuL, U
u
L) , (3.6.57)

Wb (AR, UR) = Wb (AuR, U
u
R) , (3.6.58)

with Wf and Wb determined by (3.3.22) and (3.3.23).
The remaining equations follow the mass conservation and conti-
nuity of the total pressure on the interface,

AuLU
u
L = AuRU

u
R, (3.6.59)
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ρ
(Uu

L)2

2
+ p (AuL) = ρ

(Uu
R)2

2
+ p (AuR) , (3.6.60)

with p(A) expressed by the pressure-area relation (3.2.11).
The equations from (3.6.57) to (3.6.60) are solved using the itera-
tive method of Newton-Raphson5, in order to obtain (AuL, U

u
L) and

(AuR, U
u
R).

The upwinded fluxes at each side of the interface, Fu
L and Fu

R, are
computed as Fu

L = F (AuL, U
u
L) and Fu

R = F (AuR, U
u
R).

The characteristic information, which moves away from both sides
of the interface, does not change the solution, especially if this in-
formation has not enough time to interact with the characteristic
one which propagates from the neighbourhood quadrature points.
So, ∆t must be limited by

∆tmax (|U ± c|) ≤ 1

2
∆x, (3.6.61)

where ∆x is the distance between two consecutive quadrature
points.
If β and A0 have the same value on both sides of the interface, then
dW
dt

= 0 is applied through the interface, according to (3.3.19). So

Wf (AL, UL) = Wf (AuR, U
u
R) , Wb (AR, UR) = Wb (AuL, U

u
L) ,

5The Newton-Raphson method is one of the methods for finding the ap-
proximate solution of an equation of the type f(x) = 0. It can be applied after
having determined an interval [a, b] which contains one root of the equation,
and it consists in substituting the curve y = f(x) with the tangent at the
curve, starting from any point (for simplicity it is possible to start from one
of the two points which have as abscissa the extremes of the interval [a, b] and
it assumes, as approximated value of the root, the abscissa xt given by the
intersection of the axis x with the tangent, inside the interval [a, b]).
For hypothesis the function and its first and second derivative exist in the in-
terval [a, b], are continuous and not null. The following iterative and recursive
relation :

xn+1 = xn −
f(xn)

f ′(xn)
,

permits to find consecutive approximations of the root of the equation y =
f(x) = 0. With the given hypothesis it is proved that the sequence of xn
converges to the root quite rapidly.
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which combined with (3.6.57) and (3.6.58) leads to

AuL = AuR, Uu
L = Uu

R,

that is the status is the same (Au, Uu) on both sides of the inter-
face. A combination of the equations (3.6.57) and (3.6.58) provides

Au =

[
Wf (AL, UL)−Wb (AR, UR)

8

√
2ρA0

β
+ A

1/4
0

]4

, (3.6.62)

Uu =
Wf (AL, UL) +Wb (AR, UR)

2
. (3.6.63)

The fluxes Fu of the elemental region at the inlet (Ω1) and the
outlet (ΩNel) of each arterial domain Ω are computed by solving
the Riemann problem which includes appropriate boundary con-
ditions that will be discussed in the following.

3.6.2 Application to the linear formulation

The algorithm described in the paragraph 3.6.1 can be applied to
solve the linear system of the governing equations (3.5.40), con-
sidering:

U = ∆U =

[
∆a
∆u

]
, F = F0 (∆U) =

[
A0∆u
β

2ρA
3/2
0

∆a

]
,

S = S0 (∆U) =

[
0

1
ρ

(
f0
A0
− ∂∆p

∂β
dβ
dx
− ∂∆p

∂A0

dA0

dx

) ]
.

In the linear version of the Riemann problem just presented, the
state on the left elemental region is denoted as (∆aL,∆uL), while
the one on the right elemental region as (∆aR,∆uR), and the corre-
sponding updated states as (δaL, δuL) and (δaR, δuR), respectively.
As it has been shown for the non-linear formulation, if β and A0

are the same on both sides of the interface, the flow between the
two initial states is not viscous, so δaL = δaR and δuL = δuR.
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So, a single state is obtained, denoted by (δa, δu). Combining the
linear characteristic information which arrives at the interface as

∆Wf (∆aL,∆uL) = ∆Wf (δa, δu) , (3.6.64)

∆Wb (∆aR,∆uR) = ∆Wb (δa, δu) , (3.6.65)

with ∆Wf and ∆Wb determined by (3.5.42) and (3.5.43),

δa =
A0 (∆Wf (∆aL,∆uL)−∆Wb (∆aR,∆uR))

2c0

, (3.6.66)

δu =
∆Wf (∆aL,∆uL) + ∆Wb (∆aR,∆uR)

2
, (3.6.67)

are get. In the paragraph 3.7.2 how obtain an analytical solution
to the Riemann problem when β and A0 are different on both sides
of the interface will be shown.

3.7 Boundary conditions

Boundary conditions inside and outside an arterial domain can
be classified in three types, depending on the location in the net-
work of arteries. There is an inflow condition (paragraph 3.7.1)
if the artery receives an inflow from the outside of the network,
a junction boundary condition (paragraph 3.7.2) if the artery is
part of a bifurcation with other vascular segments, and a terminal
boundary condition (paragraph 3.7.3) if it is coupled with lumped
parameters. Each case is analyzed in the following for both linear
and non-linear formulation.

3.7.1 Inflow boundary conditions

The 1-D model permits to prescribe a time-dependent section
Abc(t), velocity Ubc(t), or flow rate Qbc(t). The other variables
which define the flow are computed through the Riemann prob-
lem previously described.
One of the two states separated by the interface ((AL, UL) or
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(AR, UR) in Figure 3.5) belongs to the inlet (Ω1) or to the out-
let (ΩNel) of the arterial domain, and the other to a virtual region
outside the arterial domain. It is assumed that the virtual region
has the same β and A0 of the adjacent states in Ω1 or ΩNel , so
that a single forward state (Au, Uu) is obtained by the solution of
the equations (3.6.62) and (3.6.63). To define the desired inflow
boundary condition, it is necessary to determine the state in the
virtual region which provides Au = Abc, U

u = Ubc or AuUu = Qbc

when it is combined with the state at the inlet or the outlet of the
arterial domain.
To prescribe Abc(t) at the inlet of the arterial domain, UL = UR is
assumed. Then, the equation (3.6.62) becomes

2 (Au)1/4 = (AL)1/4 + (AR)1/4 ,

by which the value of AL is found, which satisfies Au = Abc at the
next time step,

AL =
(

2 (Abc)
1/4 − (AR)1/4

)4

. (3.7.68)

To prescribe Ubc(t) at the inlet of the arterial domain, AL = AR
is assumed, which leads to 2Uu = UL + UR, according to (3.6.63).
So, to obtain the desired Uu at the next time step,

UL = 2Ubc − UR, (3.7.69)

is enforced. To describe Qbc(t), the equation (3.7.69) is rewritten
in this way:

UL = 2
Qbc

AR
− UR. (3.7.70)

Following the same procedure, to define inflow conditions at the
outlet of the arterial domain,

AR =
(

2 (Abc)
1/4 − (AL)1/4

)4

, (3.7.71)

UR = 2Ubc − UL, (3.7.72)
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UR = 2
Qbc

AL
− UL, (3.7.73)

are enforced.
As inflow conditions it is also possible to use a valve model, which
mimics the real behavior of the physiological system. The aortic
valve is one of the two semilunar valves of the heart and lies be-
tween the left ventricle and the aorta. It permits the flow of the
blood from the left ventricle of the heart to the aorta. During
ventricular systole, pressure rises in the left ventricle. When the
pressure in the left ventricle rises above the pressure in the aorta,
the aortic valve opens, allowing blood to exit the left ventricle
into the aorta. When ventricular systole ends, pressure in the left
ventricle rapidly drops. When the pressure in the left ventricle
decreases below the aortic pressure, the aortic valve closes, and
remains closed until the next heart beat. The opening and clos-
ing of valve is determined by the pressure difference between the
left ventricle (pLV ) and the aortic pressure. More specifically, the
valve opens when

p(0, t) ≤ pLV (t),

in which case the pressure at the inflow gets prescribed

p(0, t) = pLV (t),

and it closes when the velocity becomes negative, in which case
the velocity at the inflow is prescribed to be zero:

u(0, t) = 0.

u(0, t) = 0, if pLV (t) < p(0, t)

p(0, t) = pLV (t), if u(0, t) > 0.
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Figure 3.6 Aortic pressure (red) and left ventricular pressure (blue) during
systole and diastole.

Since the equation (3.6.67) has the same shape of the equation
(3.6.63), the equations (3.7.69), (3.7.70), (3.7.72) and (3.7.73) are
valid for the linear formulation too, with (AL, UL) = (∆aL + A0L ,
∆uL) and (AR, UR) = (∆aR + A0R ,∆uR). However, to prescribe
Abc(t) in the linear theory it is necessary to use the equation
(3.6.66) with ∆uL = ∆uR, which holds to 2δa = ∆aL + ∆aR.
So, at the inlet of the arterial domain it is necessary to define

∆aL = 2 (Abc − A0R)−∆aR, (3.7.74)

and at the outlet

∆aR = 2 (Abc − A0L)−∆aL. (3.7.75)

3.7.2 Boundary conditions at junctions

In this paragraph how to determine the upwinded states at the
boundary of the arterial domain that is connected to another ar-
terial domain or it is a part of a junction, will be detailed. Both
the problems will be analyzed analytically for linear and non-linear
formulation.

Connection of two arteries

To calculate the upwinded states in the two involved elemental
regions, in the connection of two arterial domains, it is necessary
to solve the Riemann problem described previously, whose layout
is showed in figure 3.5. The initial state at the final point of the
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elemental region at the outlet of an arterial domain is (AL, UL),
while (AR, UR) is the initial state at the initial point of the initial
elemental region at the inlet of the arterial domain. The corre-
sponding upwinded states, (AuL, U

u
L) and (AuR, U

u
R), are determined

through the numerical solution of the equations (3.6.57)-(3.6.60).

Linear analysis of a connection of two arteries

For the linear formulation the upwinded states involved in the
connection of two arterial domains, or in two adjacent elemen-
tal regions in the same arterial domain, can be computed, but
with different values of β and A0. Since ∆u � c0 in physiologi-
cal conditions, each perturbation (∆a,∆p,∆u) at the initial state
(A, p, U) = (A0, 0, 0) at the point (of each elemental region) close
to the connection, produces an upwinded state on the left of the
connection, denoted by (A0L + δaL, δpL, δuL), and an upwinded
state on the right, denoted by (A0R + δaR, δpR, δuR). Following
the same procedure of the non-linear version of the problem, the
first two equations to satisfy connect the linear characteristic vari-
ables (3.5.42) and (3.5.43), which leads to the connection as

δuL +
c0L

A0L

δaL = ∆uL +
c0L

A0L

∆aL, (3.7.76)

δuR +
c0R

A0R

δaR = ∆uR +
c0R

A0R

∆aR. (3.7.77)

The mass conservation and the continuity of the pressure provide
other two equations to satisfy. Ignoring second order terms, they
are like

A0LδuL = A0RδuR, (3.7.78)

δpL = δpR. (3.7.79)

If the state on the left elemental region is perturbed with (∆aL,∆pL,
∆uL) and ∆aR = ∆pR = ∆uR = 0 in the right elemental region,
the relations (3.7.76) and (3.7.77) are reduced to

δuL = ∆uL +
c0L

A0L

(∆aL − δaL) , (3.7.80)
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δuR =
c0R

A0R

δaR. (3.7.81)

Replacing (3.7.80) and (3.7.81) in (3.7.78), and expressing area
variations in terms of pressure variations through (3.5.41),

A0L

(
∆uL +

1

ρc0L

(∆pL − δpL)

)
=
A0R

ρc0R

δpR, (3.7.82)

is obtained, putting (3.7.79) inside (3.7.82) and reordering the
terms

δpL = δpR ≡ δp = RL (∆pL + ρc0L∆uL) , (3.7.83)

with

RL =

A0L

c0L
A0L

c0L
+

A0R

c0R

.

Similarly, if the state on the right elemental region is perturbed
with (∆aR,∆pR,∆uR) and ∆aL = ∆pL = ∆uL = 0 on the left
elemental region,

δpL = δpR ≡ δp = RR (∆pR − ρc0R∆uR) , (3.7.84)

is obtained, with

RR =

A0R

c0R
A0L

c0L
+

A0R

c0R

.

Because of the linearity of the problem, if both perturbations hap-
pen in the same time interval (∆aL,∆pL,∆uL) and (∆aR,∆pR,
∆uR), the results (3.7.83) and (3.7.84) are combined, obtaining

δpL = δpR ≡ δp = RL (∆pL + ρc0L∆uL) +RR (∆pR + ρc0R∆uR) .
(3.7.85)

The final perturbed areas δaL and δaR are determined through
(3.5.41) as

δaL =
A0L

ρ (c0L)2 δp, δaR =
A0R

ρ (c0R)2 δp, (3.7.86)
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and the final perturbed velocities δuL and δuR are given by (3.7.76)
and (3.7.77), once that δaL and δaR have been determined.
From the equations (3.7.86) it is possible to observe that, if c0L =
c0R and A0L = A0R , then δaL = δaR, and so, for (3.7.78) results
δuL = δuR.

Junctions

Two type of junctions have been considered:

• junctions of type 1× 2 (Figure 3.7, left), where the outlet of
the parent vessel is connected to the inlet of two daughter
vessels;

• junctions of type 2× 1 (Figure 3.7, right), where the inlet of
the parent vessel is connected to the outlet of two daughter
vessels.

The first ones are the most common arrangement in big human
systemic arteries. The second ones are more rare in big arteries,
but occur more frequently in peripheral systemic arteries (such as
the circle of Willis and the palmar arch), in arterioles and capillar-
ies, are the most common type of junctions in the venous system
and are very important for simulations of surgical interventions
such as an arterial bypass.

Figure 3.7 Types of junctions: 1 × 2 (left) e 2 × 1 (right). The arrows
indicates the pisitive direction of the blood flow.

If (A1, p1, U1), (A2, p2, U2) and (A3, p3, U3) are the initial states
at the points adjacent to the junctions of each elemental region
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1× 2 (Figure 3.7, left), then their corresponding upwinded states
(Aui , p

u
i , U

u
i ) (i = 1, 2, 3) are determined by the resolution of the

non-linear system of six algebraic equations, using the Newton-
Raphson method. Assuming the flow to be constant in the points
close to the junction, there is

Wf (Au1 , U
u
1 ) = Wf (A1, U1) , (3.7.87)

Wb (Au2 , U
u
2 ) = Wb (A2, U2) , (3.7.88)

Wb (Au3 , U
u
3 ) = Wb (A3, U3) , (3.7.89)

with Wf and Wb determined by (3.3.22) and by (3.3.23). The mass
conservation applied to the upwinded variables provides

Au1U
u
1 = Au2U

u
2 + Au3U

u
3 . (3.7.90)

The Bernoulli’s law 6 provides the last two equations

p (Au1) +
1

2
ρ (Uu

1 )2 = p (Au2) +
1

2
ρ (Uu

2 )2 , (3.7.91)

p (Au1) +
1

2
ρ (Uu

1 )2 = p (Au3) +
1

2
ρ (Uu

3 )2 , (3.7.92)

with p (A) expressed by the tube law (3.2.11). It is possible to
observe that the Bernoulli’s law is just an approximation of the
balance of the energy inside the junction, since the separation of
the flow and the formation of a vortex are possible only in the
neighbourhood of the junction, because of the discontinuous vari-
ations of the area in it.
In the case of a 2 × 1 junction, with initial states (A1, p1, U1),
(A2, p2, U2) and (A3, p3, U3) (Figure 3.7, right), their correspond-
ing upwinded states (Aui , p

u
i , U

u
i ) (i = 1, 2, 3) are determined by

6The Bernoulli’s law is p+ ρv
2

2 + ρgh = cost in which:
v is the velocity of the fluid along the flow line,
g is the acceleration of gravity,
h is the altrimetrical quota (that is the high with respect to an horizontal
reference, of any point inside the pipe),
p represents the static pressure along a line of flow,
ρ is the density of the fluid.
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the solution of the following six non-linear equations. The conser-
vation of the characteristic variables, moving toward the junction,
leads to

Wb (Au1 , U
u
1 ) = Wb (A1, U1) , (3.7.93)

Wf (Au2 , U
u
2 ) = Wf (A2, U2) , (3.7.94)

Wf (Au3 , U
u
3 ) = Wf (A3, U3) . (3.7.95)

Mass conservation and Bernoulli’s law are imposed too, using the
equations from (3.7.90) to (3.7.92).

Linear analysis of junctions

In this paragraph the upwinded states of the three elemental re-
gions involved in a junction 1×2 or 2×1 are determined. Following
the same procedure of the linear study of a connection of two arter-
ies, each perturbation (∆a,∆p,∆u) in the initial state (A, p, u) =
(A0, 0, 0), in each of the three points adjacent to the junction, pro-
vides two upwinded stated denoted by (A0i + δai, δpi, δui) (i = 1, 2,
3). In the case of a flow junction 1 × 2, the following relation
between the linear characteristic variables (3.5.42) and (3.5.43)
moving through the junction is verified:

δu1 +
c01

A01

δa1 = ∆u1 +
c01

A01

∆a1, (3.7.96)

δu2 +
c02

A02

δa2 = ∆u2 +
c02

A02

∆a2, (3.7.97)

δu3 +
c03

A03

δa3 = ∆u3 +
c03

A03

∆a3. (3.7.98)

Mass conservation and the continuity of the total pressure are
applied, ignoring the second order terms. They are like

A01δu1 = A02δu2 + A03δu3, (3.7.99)

δp1 = δp2, (3.7.100)

δp1 = δp3. (3.7.101)
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If the state (A01 , 0, 0) is perturbed with (∆a1,∆p1,∆u1) at the fi-
nal point of the parent vessel and ∆aj = ∆pj = ∆uj = 0 (j = 2, 3),
the relations (3.7.96)-(3.7.98) are reduced to

δu1 = ∆u1 +
c01

A01

(∆a1 − δa1) , (3.7.102)

δu2 =
c02

A02

δa2, (3.7.103)

δu3 =
c03

A03

δa3. (3.7.104)

Replacing (3.7.102)-(3.7.104) in (3.7.99), and expressing area vari-
ations in terms of pressure variations through (3.5.41), there is

A01

(
∆u1 +

1

ρc01

(∆p1 − δp1)

)
=
A02

ρc02

δp2 +
A03

ρc03

δp3. (3.7.105)

Taking into account (3.7.100) and (3.7.101) and reordering the
terms, the equation (3.7.105) provides

δp1 = δp2 = δp3 ≡ δp = R1 (∆p1 + ρc01∆u1) , (3.7.106)

where

R1 =

A01

c01
A01

c01
+

A02

c02
+

A03

c03

.

Similarly, if the state
(
A0j , 0, 0

)
is perturbed with (∆aj,∆pj,∆uj)

(j = 2, 3) at the initial point of both daughter vessels and ∆ai =
∆pi = ∆ui = 0 for each i 6= j,

δp1 = δp2 = δp3 ≡ δp = Rj

(
∆pj − ρc0j∆uj

)
, (3.7.107)

is obtained, with

R2 =

A02

c02
A01

c01
+

A02

c02
+

A03

c03

, R3 =

A03

c03
A01

c01
+

A02

c02
+

A03

c03

.
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Because of the linearity of the problem, when three perturbations
in the same time interval are considered, combining the equations
(3.7.106) and (3.7.107),

δp1 = δp2 = δp3 ≡ δp = R1 (∆p1 + ρc01∆u1) +

+R2 (∆p2 − ρc02∆u2) +R3 (∆p3 − ρc03∆u3) , (3.7.108)

is obtained. The perturbed area follow from (3.5.41), and they
assume the following form

δa1 =
A01

ρ (c01)
2 δp, δa2 =

A02

ρ (c02)
2 δp, δa3 =

A03

ρ (c03)
2 δp,

(3.7.109)
while the final perturbed velocity came from the relations (3.7.96)-
(3.7.98), once that δa1, δa2 and δa3 are determined.
When a 2×1 junction is perturbed with (∆ai,∆pi,∆ui) (i = 1, 2, 3)
in the same time interval,

δp1 = δp2 = δp3 ≡ δp = R1 (∆p1 − ρc01∆u1) +

R2 (∆p2 + ρc02∆u2) +R3 (∆p3 + ρc03∆u3) , (3.7.110)

are get. The relations (3.7.109) provide perturbed area, while
perturbed velocities are given by the analogous equations (3.7.96)-
(3.7.98).
If a perturbation (∆a1,∆p1,∆u1) at the final point of a parent
artery of a junction 1 × 2 consists only in a forward wave, then
Wb has the same value assumed at the initial state (A1, p1, U1) =
(A01 , 0, 0) along the backward characteristic line. Therefore ∆Wb =
0, and so ∆u1 =

c01
A01

∆a1 = 1
ρc01

∆p1, according to the equations

(3.5.41) and (3.5.43). Consequently, the equation (3.7.106) is re-
duced to δp1 = 2R1∆p1. If the reflection coefficient

Rf1 ≡
δp1 −∆p1

∆p1

,

is defined, as suggested by Sherwin [37] (inspired by problems of
acoustics and waves of surface),

Rf1 =

A01

c01
− A02

c02
− A03

c03
A01

c01
+

A02

c02
+

A03

c03

, (3.7.111)
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is obtained. At the same way, if the perturbation (∆aj,∆pj,∆uj)
(j = 2, 3) acts at the state of both daughter vessels, at the point
adjacent to the junction 1 × 2, and it consists of only one back-
ward wave, then Wf has the same value assumed by the initial
state (Aj, pj, Uj) =

(
A0j , 0, 0

)
along the forward characteristic

line. Therefore ∆Wf = 0, and so ∆uj = − c0j
A0j

∆aj = − 1
ρc0j

∆pj,

according to the equations (3.5.41) and (3.5.42). Consequently,
the equation (3.7.107) is reduced to δpj = 2Rj∆pj, and, defining

the reflection coefficient Rfj ≡
δpj−∆pj

∆pj
,

Rf2 =
−A01

c01
+

A02

c02
− A03

c03
A01

c01
+

A02

c02
+

A03

c03

, Rf3 =
−A01

c01
− A02

c02
+

A03

c03
A01

c01
+

A02

c02
+

A03

c03

,

(3.7.112)
are obtained. Combining the three perturbations which satisfy
∆u1 =

c01
A01

∆a1, ∆u2 = − c02
A02

∆a2 and ∆u3 = − c03
A03

∆a3 in a split-

ting flow bifurcation

δp1 = δp2 = δp3 ≡ δp = (1 +Rf1) ∆p1+

+ (1 +Rf2) ∆p2 + (1 +Rf3) ∆p3, (3.7.113)

is get. This latest equation can be applied to a 2 × 1 junction
too, in which the three perturbations satisfy ∆u1 = − c01

A01
∆a1,

∆u2 =
c02
A02

∆a2 and ∆u3 =
c03
A03

∆a3.

3.7.3 Boundary terminal conditions

In the next paragraph, the 0-D equations, which govern mod-
els with lumped parameters, will be described and used to study
the effect of pulse wave propagation on the wall compliance and
the fluid resistance and inertia of the small arteries, arterioles and
capillaries. These are applied to solve the classic windkessel model
with two elements (proposed by Hales and Franck). How to cou-
ple different types of models with lumped parameters with 1-D
and non-linear formulation will be described, using the Riemann
problem already presented. The initial state (AL, UL) is put at
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the final point of the 1-D arterial domain, while the initial state
(AR, UR) is chosen to produce an upwinded state (Au, Uu), which
satisfies the relation between Au and Uu defined by the used model
with lumped parameters. The values of β and A0 in (AR, UR) are
assumed to be equal to their homologous in (AL, UL).

Zero-dimensional equations

The linear 1-D system of governing equations (3.5.40) can be re-
duced to { ∂∆a

∂t
+ A0

∂∆u
∂x

= 0,
∂∆u
∂t

+ 1
ρ
∂∆p
∂x

= −8πµ∆u
ρA0

,
(3.7.114)

assuming β and A0 constant along the arterial domain and the
friction term is given by the Poiseuille’s flow (γ = 2 in the generic
velocity profile (3.2.4), that in small arteries gives a better approx-
imation respect to the more flat velocity profile in larger arteries).
The system (3.7.114) can be written in terms of the increment in
flow rate, ∆q = A0∆u, and of the pressure, ∆p, as{

A0

ρ(c0)2
∂∆p
∂t

+ ∂∆q
∂x

= 0,
∂∆q
∂t

+ A0

ρ
∂∆p
∂x

= − c∆q
ρA0

,
(3.7.115)

using the equation (3.5.41). An integration of this last system on
the length l of the arterial domain leads to{

C dp̂
dt

+Qout −Qin = 0,

LdQ̂
dt

+RµQ̂+ pout − pin = 0,
(3.7.116)

where p̂(t) ≡ 1
l

∫ l
0

∆p dx and Q̂(t) ≡ 1
l

∫ l
0

∆q dx are the mean
pressure and flow rate on the whole arterial domain,

Qin ≡ ∆q(0, t),
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Qout ≡ ∆q(l, t),

pin ≡ ∆p(0, t),

pout ≡ ∆p(l, t),

and

Rµ ≡
8πµl

(A0)2 , (3.7.117)

L ≡ ρl

A0

, (3.7.118)

C ≡ A0l

ρ (c0)2 , (3.7.119)

are, respectively, the resistance to the flow, the inertia in the blood
and the compliance of the wall. The value of Qin is given by the
1-D formulation, and pout is a constant parameter in the simula-
tion which represents the venous pressure. Therefore, the system
(3.7.116) has four unknowns (p̂, Q̂, Qout and pin). To delete two of

them, p̂ = pin and Q̂ = Qout are assumed, and this leads to a

{
C dpin

dt
+Qout −Qin = 0,

LdQout
dt

+RµQout + pout − pin = 0.
(3.7.120)

The just obtained equations are analogous to the electric trans-
mission line equations, in which the role of the flow rate is played
by the electric power and the blood pressure corresponds to the
electric potential. So, the obtained system can be visualized as the
electric circuit showed in Figure 3.8, in which Rµ is the resistance,
L the inductance and C the capacitance.



106 3. 1-D model for the cardiovascular system

Figure 3.8 Representation of the electric circuit governed by 0-D equations
(3.7.120).

The windkessel model

If L = 0, the system (3.7.120) becomes

{
C dpin

dt
+Qout −Qin = 0,

Qout = pout−pin
Rµ

,
(3.7.121)

which leads to the differential equation

dpin
dt

+
pin
RµC

=
Qin

C
+

pout
RµC

, (3.7.122)

which governs the classic windkessel model described by Hales
(Figure 3.9). This model can be used to simulate the all tree of
the systemic arteries, if it is considered that C = CT and Rµ = RµT

are the total compliance and resistance of the system, Qin is the
outflow from the left ventricle, Qout is the outflow from the venous
system, pout is the pressure at which flow from the arteries to the
veins ceases and pin = pwk is an appropriate mean pressure in all
the systemic arteries, called windkessel pressure.
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Figure 3.9 Diagram of the windkessel effect described by Hales in 1733. The
pulse inflow at the aortic valve (AK), caused by the contraction of the left
ventricle (LV) while the mitral valve (MK) is close, in transformed into a more
regular outflow from the compliance of the arterial system represented by an
air chamber. The left atrium (LA) is represented by a water tank. (From the
notes published by IBITECH [36]).

The general solution of the equation (3.7.122) with this new no-
tation is

pwk−pout = (pwk0 − pout) e
−t

RµT
CT +

1

CT
e

−t
RµT

CT

∫ t

0

Qin(t′)e
t′

RµT
CT dt′,

(3.7.123)
where pwk0 is the pressure at the moment of the appearance of the
ventricular ejection, that is the windkessel pressure once that the
aortic valve is close.
During the diastole there is Qin = 0 and (3.7.123) is reduced to

pwk − pout = (pwk0 − pout) e
−t

RµT
CT , (3.7.124)

and Qout becomes

Qout =
(pwk0 − pout)

RµT

e
−t

RµT
CT . (3.7.125)
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According to Wang [48], the pulse waves are quite minimal dur-
ing the last two thirds of the diastole. So, during this time, the
pressure in the systemic arteries must be approximated with pwk.
The compliance of the system has a bigger flow rate during the
diastole with the increase of the pressure pwk0 .
An integration of the equation (3.7.122) (using the new notation)
on a time interval [t′, t′ + T ]∫ t′+T

t′

dpwk
dt

dt+

∫ t′+T

t′

pwk
RµTCT

dt =

∫ t′+T

t′

Qin

CT
dt+

∫ t′+T

t′

pout
RµTCT

dt,

leads to

pwk (t′ + T )− pwk (t′) =
T

CT

(
Qin −

pwk − pout
RµT

)
=

=
T

CT

(
Qin −Qout

)
, (3.7.126)

where

pin ≡
1

T

∫ t′+T

t′
pwkdt, Qin ≡

1

T

∫ t′+T

t′
Qindt,

and

Qout ≡
1

T

∫ t′+T

t′
Qoutdt,

are, respectively, the mean pressure and the inflow and outflow
rates in the interval [t′, t′ + T ]. If pwk is periodic of period T , then
pwk (t′ + T ) = pwk (t′) and (3.7.126) is reduced to

Q =
pwk − pout
RµT

, (3.7.127)

with Q ≡ Qin = Qout.

Terminal reflection coefficient

The boundary terminal condition refers to the forward character-
istic information, Wf , leaving the outlet of an arterial domain,
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with the backward characteristic information Wb, that is reflected
by the terminal model through

Wb = −RtWf ,

where −1 ≤ Rt ≤ 1 is the terminal reflection coefficient. So, the
solution of the Riemann problem for the velocity at the terminal
outlet, given by the equation (3.6.63), can be written as

Uu =
Wf (AL, UL)

2
(1−Rt) . (3.7.128)

Using the equation (3.7.72) with Ubc = Uu (AR = AL should be
assumed), the inlet specific velocity is obtained as

UR = Wf (1−Rt)− UL. (3.7.129)

In the linear formulation, this boundary terminal condition is ap-
plied through ∆uR = ∆Wf (1−Rt) −∆uL, and, in addition, the
following physic interpretation can be given: if the pulse wave
which travels toward the terminal model, is a forward wave with
pressure ∆pL and velocity ∆uL, then

∆uL =
1

ρc0L

∆pL, (3.7.130)

as previously explained (c0L is the velocity of the pulse wave at
the final point of the artery). If the reflected pressure is δpL and
the reflected velocity is δuL, then

δuL −
1

ρc0L

δpL = ∆Wb = −Rt∆Wf = −Rt

(
∆uL +

1

ρc0L

∆pL

)
.

(3.7.131)
Along the forward characteristic curve, there is

δuL −
1

ρc0L

δpL = ∆uL +
1

ρc0L

∆pL. (3.7.132)

A combination of the relations (3.7.130)-(3.7.132) provides

δpL = ∆pL (1 +Rt) , (3.7.133)
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δuL = ∆uL (1−Rt) . (3.7.134)

These latest two equations show that Rt = 1 represent a blockage
or a full reflection of the incoming wave (δpL = 2∆pL and δuL =
0), Rt = 0 represents a non-reflecting or absorbing inflow (δpL =
∆pL and δuL = ∆uL), and Rt = −1 represents an inflow with an
open extremity (δpL = 0 and δuL = 2∆uL).

Terminal resistance

A terminal reflection coefficient can also be considered as a model
with lumped parameters composed by a resistance Rµ, as shown
in Figure 3.10, (a).

Figure 3.10 Representation of electrical circuits similar to the considered ter-
minal models with lumped parameters: (a) trminal resistance, (b) windkessel
model with two elements (RC), (c) windkessel model with three elements
(RCR), (d) windkessel model with four elements (RCLR).
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Assuming C = L = 0, the system (3.7.120) is reduced to{
Qout = Qin = Q,

RµQout + pout − pin = 0,
(3.7.135)

which leads to

Q =
pin − pout

Rµ

. (3.7.136)

The terminal resistance Rµ is connected to the 1-D formulation,
imposing that (Au, Uu) satisfies the equation (3.7.136), so that

Qu = AuUu =
p (Au)− pout

Rµ

, (3.7.137)

with p (Au) expressed by the tube law (3.2.11). The invariance of
Wf is also assumed at the final point of the terminal artery,

Wf (AL, UL) = Wf (Au, Uu) , (3.7.138)

which is combined with (3.7.137) to obtain a non-linear equation
in Au, given by

z (Au) = RµW̃fA
u − 4Rµ

√
βL

2ρA0L

(Au)
5
4 +

−p0 −
βL
A0L

(√
Au −

√
A0L

)
+ pout = 0, (3.7.139)

with W̃f = UL + 4
√

βL
2ρA0L

(AL)
1
4 . The equation (3.7.139) can be

solved with respect to Au using the Newton method (with Au = AL
has initial hypothesis), and Uu is computed by (3.7.137) as

Uu =
p (Au)− pout

RµAu
. (3.7.140)

The terminal boundary condition is defined through (3.7.72) with
Ubc = Uu and assuming AR = AL.
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In the linear formulation Rµ is connected to Rt. A substitution of
(3.5.42) and (3.5.43) in Rt = −∆Wb/∆Wf leads to

Rt =
−∆u+

c0L
A0L

∆a

∆u+
c0L
A0L

∆a
.

Expressing ∆a in terms of ∆p using (3.5.41), and multiplying nu-
merator and denominator for

ρc0L
A0L

∆u
,

Rt =
Rµ −

ρc0L
A0L

Rµ +
ρc0L
A0L

, (3.7.141)

is obtained, with Rµ = ∆p
A0L

∆u
.

Windkessel model with two elements (RC)

In this model a compliance C is added at the model with Rµ

showed in Figure 3.10, (a). The electric circuit of the resulting
model with lumped parameters is shown in Figure 3.10, (b), and
the 0-D governing equations follows from (3.7.120) considering L =
0, {

C dpin
dt

+Qout −Qin = 0,
RµQout + pout − pin = 0.

(3.7.142)

These lead to

C
dpin
dt

+
pin − pout

Rµ

−Qin = 0, (3.7.143)

which can be written in the discrete form using a first-order finite
difference approximation in time, such that

p (Anin) = p
(
An−1
in

)
+

∆t

C

(
Qn−1
in −

p
(
An−1
in

)
− pout

Rµ

)
. (3.7.144)

A substitution of the tube law (3.2.11) in (3.7.144) gives√
Anin =

√
An−1
in +

∆tA0L

CβL

[
Qn−1
in +

1

Rµ

(pout − p0+

− βL
A0L

(√
An−1
in −

√
A0L

))]
. (3.7.145)
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This relation is connected to the 1-D formulation considering (Au)n

= Anin, (Au)n−1 = An−1
in and UR = UL. For the first temporal step

(n = 1), A0
in is equal to the referring area at the final point of the

1-D arterial domain. The boundary condition is defined by the
(3.7.71) with Abc = (Au)n.

Windkessel model with three elements (RCR)

The RC model showed in the previous paragraph produces os-
cillations of pressure and flow which disappears when a second
resistance in front of C is added. This leads to a model with two
resistances, Rµ1 and Rµ2 , and a compliance C (Figure 3.10, (c)).
This model is constitute by two coupled compartments: a model
with one resistance (Rµ1) coupled with the 1-D terminal branch,
followed by a Rµ2C model. The first resistanceRµ1 is governed by
the equation

Qin =
pin − pC
Rµ1

, (3.7.146)

and the system Rµ2C by the equations{
C dpC

dt
+Qout −Qin = 0,

Rµ2Qout + pout − pC = 0,
(3.7.147)

with pC representing the pressure through C. The RCR model
is coupled with the 1-D terminal branch assuming that the state
(Au, Uu) satisfies the equations (3.7.137)-(3.7.140), with Rµ = Rµ1

and pout = pC . The value of Au is obtained by (3.7.139) and
the once of Uu by (3.7.140). The boundary condition is defined
through the (3.7.72) with Ubc = Uu and assuming AR = AL.
At each time step n, pC is determined by the resolution of a first-
order time discretization of the mass conservation in (3.7.147),

pnC = pn−1
C +

∆t

C

(
Qn−1
in −Qn−1

out

)
, (3.7.148)

with Qn−1
in = (Au)n−1 (Uu)n−1 and Qn−1

out =
pn−1
C −pout
Rµ2

. The pressure

pn−1
C is assumed to be null for n = 1.
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Since the resistance Rµ1 has been added in order to eliminate the
oscillations of the Rµ2C model, the wave coming from the 1-D
terminal branch can reach C and Rµ2 , without been reflected in
Rµ1 . This is obtained considering Rt = 0 in the compartment of
Rµ1 , based on the (3.7.141), which leads to

Rµ1 =
ρc0L

A0L

. (3.7.149)

The same algorithm is used to couple the 1-D linear formulation to
a RCR windkessel model, even though the equation (3.7.139) has
an analytic solution. According to (3.5.41), the equation (3.7.146)
becomes

Qu = AuUu =

ρ(c0L)
2

A0L
(Au − A0L)− pC

Rµ1

, (3.7.150)

and for the (3.5.42), the equation (3.7.138) takes the form

∆Wf (AL, UL) = Uu +
c0L

A0L

(Au − A0L) , (3.7.151)

with ∆Wf (AL, UL) = UL +
c0L
A0L

(Au − A0L). A combination of

(3.7.150) and (3.7.151) gives

Rµ1

c0L

A0L

(Au)2 +

(
ρ (c0L)2

A0L

−Rµ1 (∆Wf + c0L)

)
Au+

−
(
ρ (c0L)2 + pC

)
= 0. (3.7.152)

Windkessel model with four elements (RCLR)

The last model considered includes the compliance of the wall, the
fluid resistance and the inertia of the vessels beyond the terminal
artery (Figure 3.10, (d)). The initial resistance Rµ1 is governed by
the equation (3.7.146), and the system Rµ2CL by the equations{

C dpC
dt

+Qout −Qin = 0,

LdQout
dt

+Rµ2Qout + pout − pC = 0,
(3.7.153)
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with pC the pressure across C. At the time step n, the equation
(3.7.146) takes the form

Qn
in =

pnin − pnC
Rµ1

. (3.7.154)

The mass conservation equation in (3.7.153) is expressed with re-
spect to the time in the first-order form as

pnC = pn−1
C +

∆t

C
(Qn

in −Qn
out) , (3.7.155)

and the momentum equation as

Qn
out =

(
1− ∆tRµ2

L

)
Qn−1
out +

∆t

L

(
pn−1
C − pout

)
. (3.7.156)

Replacing (3.7.155) in (3.7.154), whit Qn
out expressed by (3.7.156),

there is

Qn
in =

1

Rµ1 + ∆t
C

[
pnin + pn−1

C

(
∆t2

LC
− 1

)
+

+Qn−1
out

(
1− ∆tRµ2

L

)
∆t

C
− pout

∆t2

CL

]
. (3.7.157)

It is possible to verify that the state (Au, Uu) satisfies the (3.7.157)
with Qn

in = (Au)n (Uu)n and pnin = p ((Au)n), according to the
(3.2.11). A combination of (3.7.138) and (3.7.157) leads to a
non-linear equation in Au which can be solved using the Newton’s
method (with Au = AL as initial hypothesis). Later, (Uu)n is com-
puted using (3.7.138). The boundary condition is defined through
the (3.7.72) with Ubc = Uu and assuming AR = AL. The value
of Qn

out is updated at each time step, using the (3.7.156). Once
that Qn

out is known, pnC is updated through the (3.7.155), with
Qn
in = (Au)n (Uu)n.

In the linear formulation, the equations (3.7.151) and (3.7.157) are
combined to obtain a relation with Au as unknown, with an ana-
lytic solution. The rest of the algorithm follows by the non-linear
formulation.
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3.8 Estimation of peripheral resistance,

inertia and compliance

In this paragraph a technique based on scaling laws is proposed,
in order to estimate the resistance, the flow inertia and the wall
compliance of neglected vessels perfused by the terminal branches
of the 1-D model. This technique assumes the radii constant and
ignores the lengths of the neglected vessels (even though they vary
in each junction), and it is supposed that the vessels are in a tree of
junctions without the anastomosis present in the network formed
by the peripheral vessels.
According to the researches of Papageorgiou and Jones [27], the
radii and the length of the next generations of bifurcations can
be approximated by geometrical series, that is, if R0 is the initial
radius and l0 is the length of the terminal artery, then the radius
R1 and the length l1 of its two daughters are given by

R1 = ϕR0, l1 = λl0,

with ϕ and λ constant scaling factors. Following the same pro-
cedure, the radius R2 and the length l2 of each of the four vessel
generated after the second bifurcation can be expressed as

R2 = ϕR1, l2 = λl1.

Generalizing, for the nth bifurcation there is

Rn = ϕRn−1, ln = λln−1, (3.8.158)

with Rn and ln the radius and the length of each of the 2n vessels
after the nth bifurcation. These values are connected to R0 and l0
through

Rn = ϕnR0, (3.8.159)

ln = λnl0. (3.8.160)

Hence, the cross-sectional area of each vessel after the nth bifur-
cation is

An = πR2
n = ϕ2nA0, (3.8.161)
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with A0 the cross-sectional area of the terminal artery at the ref-
erence state (A, p, U) = (A0, p0, U0). The sum of the areas An of
the 2n vessels after the nth bifurcation, ATn , is

ATn = 2nAn =
(
2ϕ2
)n
A0. (3.8.162)

Similarly, the volume of the 2n vessels after the nth bifurcation,
VTn , is

VTn = 2nAnln =
(
2λϕ2

)n
V0, (3.8.163)

with V0 = A0l0. The lateral surface of the 2n vessels after the nth

bifurcation, STn , is

STn = 2n2πRnln = (2ϕλ)n S0, (3.8.164)

with S0 = 2πR0l0.
The value of ϕ and λ can be limited assuming that:

1. The radius of each vessel decreases after each bifurcation,
that is ϕ < 1.

2. The length of each vessel decreases after each bifurcation,
that is λ < 1.

3. The total cross-sectional area increases after each bifurcation
to the capillaries, that is 2ϕ2 > 1.

4. The total volume decreases after each bifurcation, that is
2λϕ2 < 1.

5. The total lateral surface increases after each bifurcation, that
is 2λϕ > 1.

The latest two conditions aim to providing blood perfusion in a
vessel with a small volume and a big lateral surface, the Figure
3.11 shows these conditions in the space (ϕ, λ). The shaded area
contains the set of values of ϕ and λ which satisfy all constraints.
The choice of a valid couple of values of ϕ and λ is bounded to a
small region. For a given ϕ, λ is bounded by

1

2ϕ
< λ <

1

2ϕ2
. (3.8.165)



118 3. 1-D model for the cardiovascular system

Figure 3.11 The scaling factors ϕ and λ, used to estimate the radius and
the length of the blood vessels perfused by the 1-D terminal branches, are
bounded to the shaded region, for the constrained described in the text.

In the next paragraphs the scaling law just proposed will be used
to estimate total resistance, inertia and compliance of the vessels
neglected by the 1-D model.

3.8.1 Resistance

In each vase, supposing to treat a Poiseuille’s flow, the gradient
of pressure ∆pn after the nth bifurcation is connected to the flow
rate, Qn, through

∆pn =
8µln

π (Rn)4Qn. (3.8.166)

It is possible to observe that the Poiseuille’s flow is an approx-
imation of the pulse flow observed in small arteries and of the
non Newtonian behavior of the blood in arterioles and capillaries.
The flow rate is assumed to be the same in each of the 2n vessels,
then Qn = Q0

2n
, where Q0 is the mean flow at the extremity of the

terminal artery. Therefore, replacing the relations (3.8.159) and
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(3.8.160) in (3.8.166) leads to

∆pn =

(
λ

2ϕ4

)n
8µl0

π (R0)4Q0 =

(
λ

2ϕ4

)n
∆p0, (3.8.167)

with ∆p0 the gradient of the mean pressure in the 1-D terminal
artery.
According to (3.8.167), the gradient of the pressure is the same in
all vessels after the nth bifurcation. So, in a network with N gen-
erations of bifurcations, the gradient of the pressure between the
outlet of the terminal artery and the ones of the vessels after the
N th bifurcation, ∆pT , is the sum of the gradients of the pressure
∆pn after each bifurcation across the network, starting from the
outlet of the terminal artery, that is

∆pT =
N∑
n=1

∆pn = ∆p0

N∑
n=1

(
λ

2ϕ4

)n
. (3.8.168)

Dividing ∆pT for Q0, the resistance RµTN
of a network with N gen-

erations of bifurcations related to the terminal artery is obtained
by

RµTN
= Rµ0

N∑
n=1

(
λ

2ϕ4

)n
, (3.8.169)

with Rµ0 = ∆p0
Q0

. It is possible to observe that λ
2ϕ4 is not always

smaller than 1. If it is true, then RµTN
converges to RµT when N

goes to infinity, with

RµT =

(
1

1− λ
2ϕ4

− 1

)
Rµ0 =

(
λ

2ϕ4 − λ

)
Rµ0 . (3.8.170)

3.8.2 Inertia

According to (3.7.118), the inertia Ln of the blood in a vessel after
the nth bifurcation is

Ln =
ρln
An

. (3.8.171)



120 3. 1-D model for the cardiovascular system

A substitution of (3.8.160) and (3.8.161) in (3.8.171) gives

Ln =

(
λ

ϕ2

)n
L0, (3.8.172)

with L0 = ρl0/A0. Since the inductances (or inertias) can be
summed in the same way of the resistances, the total inertia LTn
of the 2n vessels after the nth bifurcation is

LTn =
Ln
2n

=

(
λ

2ϕ2

)n
L0. (3.8.173)

The inertia LT of the entire network related to the terminal artery
is the sum of the LTn after each bifurcation (except for L0). Since
λ < 1 and ϕ2 > 1

2
(see figure 3.11), then λ

2ϕ2 < 1 and LT converges
to

LT =
∞∑
n=1

LTn =

(
1

1− λ
2ϕ2

− 1

)
L0 =

(
λ

2ϕ2 − λ

)
L0. (3.8.174)

3.8.3 Compliance

According to (3.3.25), c0 is proportional to A
−1/4
0 . If cn is assumed

to be proportional to A
−1/4
n for each generation of bifurcations,

then from the (3.8.161),

cn = ϕ−n/2c0, (3.8.175)

is obtained. For the (3.7.119), the compliance of a vessel after the
nth bifurcation is

Cn =
Anln

ρ (cn)2 . (3.8.176)

Replacing (3.8.160), (3.8.161) and (3.8.175) in (3.8.176) there is

Cn =
(
λϕ3

)n
C0, (3.8.177)

with C0 = A0l0
ρ(c0)2

. The total compliance CTn of the vessels after the

nth bifurcation is

CTn = 2nCn =
(
2λϕ3

)n
C0. (3.8.178)
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The compliance CT of the whole network related to the terminal
artery is obtained by summing the compliances CTn after each
bifurcation (except for C0). Since ϕ < 1 and 2λϕ2 < 1 (see Figure
3.11), there is 2λϕ3 < 1 and CT converges to

CT =
∞∑
n=1

CTn =

(
1

1− 2λϕ3
− 1

)
C0 =

(
2λϕ3

1− 2λϕ3

)
C0.

(3.8.179)
This convergence is obtained after few generations, and so, the
smallest arteries, arterioles and capillaries give a little contribution
to the total peripheral compliance, which justifies the assumption
of a pulsatile flow in its determination.

3.9 Optimal control of mean arterial

pressure

In this paragraph the optimal control problem of achieving a pre-
scribed mean arterial pressure by allowing for variable terminal
resistance Rt = R during the time period [t0, t0 + Tpulse] of one
heart beat, Tpulse = 60/HR , is considered. Note that the opti-
mization on the heart rate HR is not performed, since the HR
can be controlled separately.

The optimal control problem is formulated using the system:

∂U

∂t
+
∂F(U)

∂x
= S(U), (3.9.180)

and it is written as an initial value problem in the Hilbert space
X = L2([0,M ])× L2([0,M ]):

U′(t) = G(t,U(t), y), U(0) = U0

where G(t,U, y) = −Ay(U) + S(U) and Ay is an unbounded op-
erator on X

Ay(U) =
∂F(U)

∂x
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with domain

D(Ay) = {U = (A;U) ∈ X = L2([0, L])×L2([0, L]) : Wb = −yWf}

encodes the boundary conditions in terms of the control variable
y (expressed as boundary control). In this application y = Rt is
the terminal reflection coefficient which is allowed to vary during
the time period of one heart beat T = 60/HR.
The optimization task is defined as follows: determine the optimal
terminal resistance that achieves the desired mean pressure. This
is a nontrivial fact, since the external pressure is assumed variable
(possibly due to a sudden drop or rise in pressure), the system
tries to find the optimal value of the heart rate that achieves the
desired goal.
The optimal control problem is to find y = y(t) that minimizes
the integral

J1 =

∫ T

0

|Pavg(t)− Pref |2 dt =

∫ T

0

∣∣∣∣ 1

M

∫ M

0

P (x, t) dx− Pref
∣∣∣∣2 dt.

Due to the non-standard nature of the Dirichlet boundary control
problem posed, it is expected that the full PDE boundary control
will lead to an adjoint formulation of the optimal control problem
involving integral formulation of the necessary condition for opti-
mality (see [23]). This will be pursued elsewhere. In the sequel it
is turned to a pseudo spectral discretization of the optimal control
problem [24], [35]. The discretization uses the same framework as
the numerical scheme already discussed, using Legendre polynomi-
als and Legendre Gauss nodes. For simplicity, this discretization
procedure on an optimal control problem for the Dirichlet bound-
ary control for the viscous Burgers equation is described:


ut + uux − νuxx = f, x ∈ [0,M ], t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ [0,M ],

u(0, t) = g(t), u(M, t) = h(t), t ∈ [0, T ],
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with g and h the controls, and cost functional to be minimized

J(g, h) =

∫ T

0

∫ M

0

|u(x, t)− uref (x, t)|2 dxdt,

where uref is a reference (desired) profile for the solution.
The Legendre-Gauss-Lobatto (LGL) points −1 = x0 < x1 <
. . . xN−1 < xN = 1, (cf. [35]) have been chosen, where x1, . . . xN−1

are the zeros of L′N , the derivatives of the Legendre polynomial of
degree N and the function u is approximated using the Lagrange
interpolants for the points (xj, u(xj)). Then the approximate so-
lution is introduced:

uN(ξ) =
N∑
k=0

ûkLk(ξ),

and the optimal PDE control problem is converted to the optimal
ODE control problem:

Minimize

∫ T

0

K∑
k=0

|ûk − ûref k|2dt,

subject to
dûk

dt
= Fk(û

1, . . . , ûK ; g, h). (3.9.181)

Here the right-hand side is obtained from the variational formula-
tion of the PDE:

d

dt
(u, φ)L2 − 1/2(u2, φx)L2 + ν(ux, φx)L2 = (f, φ)L2 .

If the test functions are restricted to polynomials of degree N or
less, then

d

dt
(uN , Lk)L2 − 1/2((uN)2, (Lk)x)L2 + ν(uNx , (Lk)x)L2 = (f, Lk)L2 ,

or

d

dt
ûk + 1/2

(
((uN)2)x, Lk

)
L2 − ν

(
uN , (Lk)xx

)
L2 +Bk = (f, Lk)L2 ,
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is obtained. Here the boundary contribution is

Bk = −1/2(uN)2Lk + ν(uNL′k)
∣∣x=M

x=0
.

This leads to the expression for the right hand side in (3.9.181):

Fk(û
1, . . . , ûK ; g, h) =

= −1/2
(
((uN)2)x, Lk

)
L2 + ν

(
uN , (Lk)xx

)
L2 −Bk + (f, Lk)L2 .

Note that Bk can be written in terms of the boundary control as:

Bk = g(t)2/2− h(t)2/2 + ν(h(t)L′k(M)− g(t)L′k(0)).

Applying Pontryagin minimum principle an adjoint problem for
the adjoint variables λk, k = 0, . . . , K is obtained

dλk

dt
= −∂H

∂ûk
, (3.9.182)

where

H =
K∑
k=0

|ûk − ûref k|2 −
K∑
k=0

λkFk(û
1, . . . , ûK ; g, h),

is the Hamiltonian. A necessary optimal condition is then∇g,hH =
0, for each fixed time t, which yields the optimal values g∗(t) and
h∗(t).
A similar construction can be carried out for the inviscid Euler
system (3.9.180), which yields, upon discretization using the same
Gauss Legendre Lobatto points, the system

dÛk
i

dt
= Fki (Û ; g), i = 1, 2 k = 0, . . . , K.

The adjoint system takes the form

dΛ̂k
i

dt
= − ∂H

∂Ûk
i



3.9. Optimal control of mean arterial pressure 125

where the Hamiltonian function is

H(Û ,Λ; g) = F0(Û)− Λk
iF

k
i (Û ; g).

Applying of the Pontryagin minimum principle leads to the com-
putation of the optimal g∗(t). It is possible to remark that while
this is a nonstandard application of the Pontryagin minimum prin-
ciple, it follows the same steps as the traditional principle where
pure Dirichlet boundary conditions are involved.





Chapter 4

Numerical results

In this chapter several simulation results are discussed, considering
different formulations of the model and different types of networks.
In particular in the first paragraph the algebraic formulation for
the pressure and four optimization scenarios on artificial networks
are presented. As inflow condition a periodic flow is prescribed,
in order to mimic the behavior of the cardiac valve. In the second
paragraph, the algebraic formulation for the pressure is still used,
but the tilt table test is performed, considering the 55-edge tree
with the main arteries of the cardiovascular system. In this case
the cardiac valve is modeled, taking into consideration the relation
between the aortic pressure and the left ventricular pressure. In
the last paragraph the convective term in the mathematical for-
mulation is added and an optimization scenario is proposed. The
aortic valve is modeled in this case too.

4.1 Optimization scenarios on artificial

networks

In this section some simulation results addressing several scenarios
are presented: (1) the effect that truncation in a fractal network
has to the flow in the root edge; (2) the effect that adding or
subtracting an edge has to the network dynamics; (3) the effect
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that growth of a given network has on the dynamics when a desired
total outflow is obtained and (4) optimization of the heart rate
in the event of a blockage/unblockage of an edge or of an entire
subtree.
The model considered is the following:

∂A

∂t
+
∂(AU)

∂x
= 0, (4.1.1)

∂U

∂t
+ U

∂U

∂x
+
∂p

∂x
= f, (4.1.2)

with

p = pext +
β
√
π

A0

(
√
A−

√
A0) (4.1.3)

and f = f(x, t) is a friction force, usually taken to be f =
−22µπU/A, where µ is the fluid viscosity.
Figure 4.1 illustrates a fractal tree with n = 10 generations, al-
though in the sequel the simulations will be restricted to fractal
trees with smaller number (n ≤ 3) of generations.

Figure 4.1 3D fractal tree with 10 generations.



4.1. Optimization scenarios on artificial networks 129

For the simulations, a periodic inflow (at the root of the network)
is prescribed, with period T = 60/HR, as Q = Qbc(t) in liters/sec,
where

Qbc(t) =

 6.75× 10−4 sin

(
πt

τ

)
, for t ∈ [0, τ ],

0, for t ∈ [τ, T ]

with τ = T/4 is a quarter of the heart beat period. The following
parameter values are used throughout the sequel: µ = 4×10−3 Pa
(viscosity of the blood), ρ = 1050 Kg/m3 (blood density), p0 =
1862 Pa (external pressure).
Multiple runs were performed for various values of the resistance
in an asymmetric tree with 2 generations (Rt = 0.3, Rt = 0.8, Rt =
1). The case Rt = 1 corresponds to zero outflow boundary con-
dition (clamped terminal edges). In the case of low resistance no
(or little) pressure build-up is observed, while for high resistance
there is noticeable build up (see Figure 4.2). There is an almost
linear buildup of the mean arterial pressure in the system, which
continues until the rate of outflow balances the rate of inflow, at
which time the pressure stabilizes.

Figure 4.2 Oscillations in time (Rt = 0.8), during pressure build-up, with
time step 10−4. The blue line represents the pressure (scaled) and red line
represents the flow velocity.
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Even in artificial networks such as the ones considered here, one
notices an oscillatory behavior of the flow (in the presence of the
pressure build-up), in this case with a period of about 10 seconds.
This resembles the physiological phenomenon of the Mayer waves
present in the vascular system, although the 10sec period may be
only coincidental. Mayer waves are oscillations at a much slower
frequency (0.1 Hz) than the heart beat or even respiration (0.25-
0.3 Hz), and are partly responsible for the variability of the heart
rate, manifested in the autoregulation mechanism. Mayer’s waves
are sometimes attributed to the action of the nervous system, but
these oscillations may be in part due to the spatial network itself,
by triggering network-induced oscillations.

4.1.1 Effect of truncation of the network

The effect of truncation (by considering fewer generations of the
same network) to the flow in the root edge is studied. This may
suggest the effectiveness of modifications in the terminal condi-
tions for the simplified tree in order to mimic the behavior in the
larger tree.
A simple junction (3-edge tree) with root edge of length l1 = 1m
and radius r1 = 10mm and children edges of lengths l2 = 0.9m
and l3 = 0.8m and radii r2 = 9mm and r3 = 8mm, respectively
is considered to begin. A 2-generation self-similar tree based on
this junction (see Figure 4.3) in built and the simulation is run
using outflow conditions with Rt = 0.8.
For the truncation a 3-edge tree that has the same length and
radii for the root edge (l̃1 = 1m, r̃1 = 10mm) is used, while the
lengths of the children edges l̃2 = 2.439m and l̃3 = 1.952m are
chosen to match the lengths of the longest path and shortest path,
respectively. The radii in the children edges are r̃2 = 9mm and
r̃3 = 8mm, respectively.
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Figure 4.3 The junction (0-gen tree) (left); and the 2-gen fractal tree (right).

Firstly the flow in the middle of the root edge is recorded, when
the number of generations of the self-similar network change (from
0 to 2), using the same outflow conditions (Rt value for the ter-
minal resistance). The reference flow profile in the root edge was
obtained for terminal resistance Rt = 0.3. In Figures 4.4-4.5 tem-
poral recordings for 0-generations and 2-generations are included
respectively.

Figure 4.4 Temporal recordings for 0 generations tree.
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Figure 4.5 Temporal recordings for 2 generations tree.

Notable differences are due to the change in the reflected waves.
Even though there is some pressure increase from beat to beat,
the flow is close to being periodic and therefore the comparisons
can be made even at these stages of the simulation.
Next a numerical optimization on the value of the terminal resis-
tance Rt is performed to be used for the outflow conditions in the
simplified tree in order to best match (in least square sense) the
flow in the root edge of the simplified tree with the flow in the
root edge of the larger tree.
The result of the optimization, which are performed using MAT-
LAB’s minsearch implementation of the derivative-free Nelder-
Mead algorithm, shows that the optimal value for the resistance
in the simplified tree is R∗t = −0.25, as shown in Figure 4.6 (right).
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Figure 4.6 Optimization of the terminal reflection coefficient Rt.

Negative values of R∗t indicates that in the truncated tree the
optimal terminal conditions are in such a way that there is no
reflected backward characteristics, hence the resistance to flow out
is much smaller than in the referenced 2-gen tree.

4.1.2 Effect of adding/removing edges in a net-
work

The effect of adding or subtracting an edge to a given network
is investigated. In physiology this phenomenon has been observed
(see e.g. [9]). The “efficiency” of the resulting network by measur-
ing the total outflow of the network during a given period of time
is studied here. For the simulations, a 7-edge network with cycles
(see Figure 4.7) is used, and then the middle edge (see Figure 4.8)
is removed.
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Figure 4.7 Flow and pressure in a network with cycle.
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Figure 4.8 Flow and pressure in a network without cycle.

For this very simple network, a total outflow of 0.9552 cm3 is
computed in the presence of the central edge (Figure 4.7), while
in its absence (Figure 4.8) the total outflow is increased to 1.0435
cm3. The inflow during the 3 sec simulation was 3.0706 cm3.
These numerical values are obtained by integrating in time (over
the 3 sec time interval) the flow Q = AU . Note that the outflow in
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both cases is roughly one third of the inflow, the difference being
accounted in the volume of fluid that has been “stored” in the
network itself, which caused the pressurization of the network at
equilibrium.
The results of simulation show that the flow through the network is
enhanced when fewer edges (cycles) are present, similar to Braess’s
paradox in traffic flow, which states that adding extra capacity to
a network can in some cases reduce overall performance.

4.1.3 Growth effects on the network dynamics

The effects of a growing network (in size, length and radii) on the
heart rate is studied, assuming that this needs to adapt for deliv-
ering a desired outflow (per unit volume).
Here it is assumed that the network grows in time (s) at the fol-
lowing rates:

l(s) = s1/3l0, r(s) = s1/6r0.

It is imposed that the desired outflow grows linearly with s:

Qout(s) = sQout
0 ,

which indicates that the body mass also grows linearly in time s.
The desired outflow is taken proportional to the body mass, in
order to deliver the same amount of blood per unit volume. The
optimization parameter is taken to be the frequency (heart rate
HR) of the inflow pulse (analog of the heart rate), measured in
beats/minute. A relationship between the amplitude of the inflow
and the HR is assumed (see Figure 4.9) to have a peak value at
HR = 150 and behave quadratically on the range 50 < HR < 250
(see [18])

φ(HR) = 1− 0.4

(
HR− 150

150

)2

.
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Figure 4.9 Percent of the cardiac output with respect to the atrial pacing
rate.

This pacing-dependent amplitude can be attributed to the fact
that at the inflow we normally have a valve (the aortic valve) and
that the cardiac output is determined dynamically by the aortic
pressure and the left ventricular pressure. Here a model of the
valve is not included, instead the relationship above to mimic the
same effect is used.
The inflow condition during one period of the pulse is chosen as

Qroot = φ(HR) ∗Qroot
0 .

The simulation performs a search for the optimal HR value that
achieves the desired Qout(s) at the terminal edge(s) of the network.
The network with 7 edges with cycles is used, so that there is
only one outlet. The simulation is performed with different values
of Rt. Figure 4.10 shows the results obtained using MATLAB’s
minsearch.For each value of s, several iterations are performed
in order to find the optimal value of HR. When s is increased,
the research starts from the optimal value of HR obtained for the
previous value of s.
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Figure 4.10 Optimization of the outflow to reach desired values using HR
as the parameter, for successive values of s = 1.1, 1.2, . . . , 2.

As the network grows from s = 1 to s = 2, (with Rt = 0.5) the
optimal HR displays a piece-wise decreasing pattern, with discon-
tinuities at s = 1.3 and s = 1.7 (Figure 4.10). This suggests that
as the network grows in size, the set demand for outflow has a sig-
nificant influence on the pacing of the pumping. A higher pacing
does not necessarily translate into a higher output, partly due to
the wave reflections and their timing, partly due to our design of
the experiment. In fact, the contrary may true (for certain ranges
of s): higher pacing leads to lower output. This decrease in HR
is also witnessed in humans, as reported in Table 4.1. In growing
vascular systems the optimal HR may actually decrease in time,
due to the shift in the relationship of the HR and pump output.
These simulation keeps this relationship fixed in time, and the
results show a gradual increase in HR as time evolves (simula-
tion runs over a 10 sec period). Another possible improvement of
this model would include the baroreceptor control (which lowers
the HR when the arterial pressure is elevated), which could also
account for the overall decrease in HR, present in physiological
growing networks.
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4.1.4 Effect of blockages in a network on the
flow

Here the time-optimal problem of returning to basal flow and
pressure conditions on a network after a temporary blockage of
a subnetwork has been removed is investigated. As network the
fractal tree with 15 edges (2-generation tree) is considered again.
A 20 − sec simulation is run for the flow in the entire network
before any blockage is applied (see Figure 4.11), with a terminal
resistance model and Rt = 0.8 for each of the terminal edges.

Figure 4.11 Pressure (left) and flow velocity (right) distributions in the
network at a fixed time.

The transition time for the flow to settle varies slightly with the
heart rate, but it is significantly less than the 20 seconds; e.g.
for constant heart rate of HR = 75 beats/min, the periodic state

Table 4.1 HR values in human growth.

HR range
Newborn: 100− 140

One month: 105− 185
One year: 108− 170

1− 3 years: 90− 150
3− 5 years: 72− 137
5− 8 years: 65− 132
8− 12 years: 62− 130
12− 16 years: 62− 120
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settles after roughly the first 5 seconds.
Exactly at 20 seconds, an instantaneous blockage at the end of
edge 3 is introduced (hence the subnetwork having edge 3 as root
is also blocked off - see Figures 4.12). This makes edge 3 a terminal
edge (with Rt = 1), while the other terminal edges remain at
Rt = 0.8. A 5− sec simulation is run with this modified network,
keeping the heart rate the same as before blockage.

Figure 4.12 Network before and after blockage (left) and during blockage
(right).

Finally, after 5 seconds of blockage is over (so at second 25 in the
total simulation), the blockage is instantaneously removed and an-
other 15-sec simulation on the original network is run. A return to
the previous equilibrium in a certain amount of time is observed,
which it is possible to call the recovery time. This is defined as
the time that the system take to return at its initial state when
the blockage is removed. For HR = 75, note that the recovery
time is slightly higher than 5 seconds.
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Figure 4.13 Pressure and flow before and after blockage removal in edge 1.

The entire 40-sec sequence of the pressure and flow dynamics in
the middle of edge 1 (for HR = 75) is included above (see Fig-
ure 4.13) and in the middle of a few other edges - 3, 4, 8 - (see
Figures 4.14–4.16). Note that during the blockage/unblockage se-
quence, pressure and flow behave differently in different parts of
the network. Most notably, it is possible to see that the blockage
happens during the diastolic period, and since it is instantaneous
(like a clamping), all the fluid mass past edge 3 is lost and no
backflow is generated, hence the upstream pressure (of edge 1) is
elevated only for the next systolic period, after which the pressure
settles around its new equilibrium value (in this case lower for edge
1). This decrease in steady state pressure values may be different
than what is observed in the real vascular system. In that case, an
amputation of the distal sub-network causes a significant increase
in pressure in the upstream vessels [15].
In edge 3 (see below) the systolic pressure increases during the
entire blockage, while in other edges (e.g. No. 4 & No. 8) there is
a sustained decrease in systolic pressure. This is consistent with
the fact that edge 3 is a terminal edge during the 5-sec blockage.
Also, the fact that the bulk of the network is now past edge 4 ex-
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plains why the new equilibrium pressures in the new network are
lower while the flow is higher. This also suggests that the pres-
ence of significant bifurcations more distal is creating less pressure
buildup in the upstream vessels.

Figure 4.14 Pressure and flow before and after blockage removal in edge 3.

Figure 4.15 Pressure and flow before and after blockage removal in edge 4.
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Figure 4.16 Pressure and flow before and after blockage removal in edge 8.

An optimization on the HR parameter is now performed, in order
to minimize the recovery time. After 15 iterations fminsearch re-
sulted in an optimal value of the parameter HR = 72.2 beats/min
with a recovery time of 3.5 sec as reported in Figure 4.17.

Figure 4.17 Optimization of the HR parameter value, for minimizing re-
covery time after removal of blockage

Note that values of HR below 70 or above 75 gave much longer
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recovery times. In these simulations the mean pressure AMP
was computed using a physiologically-inspired formula: AMP =
(Ph + 2 ∗ Pl)/3, where Ph and Pl are the highest and the lowest
value of the pressure. The recovery time was computed when the
mean pressure returned to the pre-blockage values.
This result indicates that increasing HR (hence cardiac output)
does not necessarily translate to a quicker recovery time, which can
be attributed to the reflections at junctions and at the terminal
sites. The flows in edge 1 & 3 show an increase in magnitude of
the reflected waves.

4.2 Tilt talbe test

In this section numerical results obtained by considering the 55-
edge network representing the large arteries in a human are de-
scribed, in order to simulate the tilt table test.
This test is a medical procedure often used to diagnose dysautono-
mia or syncope. A tilt table test consists of a table, on which the
patient lies monitored in pressure, pulse, electrocardiogram and
blood oxygen saturation. The table is suspended at an angle of
about 90 degrees. Sometimes, the patient will be given a drug,
such as Glyceryl trinitrate (nitroglycerin) or isoproterenol, to cre-
ate further susceptibility to the test. The test either ends when
the patient faints or develops other significant symptoms, or after
a set period (usually from 20 to 45 minutes, depending on the
facility or individualized protocol). The considered model is still
given by 4.1.1, 4.1.2, 4.1.3. As inflow condition the valve model
proposed in 3.7.1 is used, where the left ventricular pressure is
prescribed equal to

pLV (t) = pext + 3.75
HR

75
10−4 sin

πt

τ
,

with HR representing the heart rate and τ the duration of the
systole, taken to be a quarter of the heart beat (τ = 15/HR).
This model accounts for the fact that peak amplitude of the left
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ventricular pressure depends on the heart rate. The terminal re-
flection coefficient has been chosen as terminal condition.
The labeling of the edges is taken from [1].

Figure 4.18 The spatial domain is a 55-edge network.

Input data, such as length, radius, terminal coefficient and β for
each edge have been taken from the following table [15].
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Table 4.2 Data used in the computational model of the 55 arteries.

# Name of artery Length (cm) Area (cm2) β (Kg/s2) Rt
1 Ascending Aorta 4.0 5.983 388 -
2 Aortic Arch I 2.0 5.147 348 -
3 Brachiocephalic 3.4 1.219 932 -
4 R. Subclavian I 3.4 0.562 1692 -
5 R. Carotid 17.7 0.432 2064 -
6 R. vertebral 14.8 0.123 10360 0.906
7 R. Subclavian II 42.2 0.510 1864 -
8 R. Radial 23.5 0.106 11464 0.82
9 R. Ulnar I 6.7 0.145 8984 -
10 R. Interosseus 7.9 0.031 51576 0.956
11 R. Ulnar II 17.1 0.133 9784 0.893
12 R. Internal Carotid 17.6 0.121 10576 0.784
13 R. External Carotid 17.7 0.121 9868 0.79
14 Aortic Arch II 3.9 3.142 496 -
15 L. Carotid 20.8 0.430 2076 -
16 L. Internal Carotid 17.6 0.121 10576 0.784
17 L. External Carotid 17.7 0.121 9868 0.791
18 Thoracic Aorta I 5.2 3.142 496 -
19 L. Subclavian I 3.4 0.562 1664 -
20 Vertebral 14.8 0.123 10360 0.906
21 L. Subclavian II 42.2 0.510 1864 -
22 L. Radial 23.5 0.106 11464 0.821
23 L. Ulnar I 6.7 0.145 8984 -
24 L. Interosseus 7.9 0.031 51576 0.956
25 L. Ulnar II 17.1 0.133 9784 0.893
26 Intercostals 8.0 0.196 35.40 0.627
27 Thoracic Aorta II 10.4 3.017 468 -
28 Abdominal I 5.3 1.911 668 -
29 Celiac I 2.0 0.478 1900 -
30 Celiac II 1.0 0.126 7220 -
31 Hepatic 6.6 0.152 4568 0.925
32 Gastric 7.1 0.102 6268 0.921
33 Splenic 6.3 0.238 3324 0.93
34 Superior Mesenteric 5.9 0.430 2276 0.934
35 Abdominal II 1.0 1.247 908 -
36 L. Renal 3.2 0.332 2264 0.861
37 Abdominal III 1.0 1.021 1112 -
38 R. Renal 3.2 0.159 4724 0.861
39 Abdominal IV 10.6 0.697 1524 -
40 Inferior Mesenteric 5.0 0.080 7580 0.918
41 Abdominal V 1.0 0.578 1596 -
42 R. Common Iliac 5.9 0.328 2596 -
43 L. Common Iliac 5.8 0.328 2596 -
44 L. External Iliac 14.4 0.252 5972 -
45 L. Internal Iliac 5.0 0.181 12536 0.925
46 L. Femoral 44.3 0.139 10236 -
47 L. Deep Femoral 12.6 0.126 10608 0.885
48 L. Posterior Tibial 32.1 0.110 23232 0.724
49 L. Anterior Tibial 34.3 0.060 36972 0.716
50 R. External Iliac 14.5 0.252 5972 -
51 R. Internal Iliac 5.1 0.181 12536 0.925
52 R. Femoral 44.4 0.139 10236 -
53 R. Deep Femoral 12.7 0.126 10608 0.888
54 L. Posterior Tibial 32.3 0.110 23232 0.724
55 R. Anterior Tibial 34.4 0.060 36972 0.716
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A 4-second simulation of the entire 55-edge network with variable
external pressure (to account for respiration) is performed. The
timing of the heart beat and respiratory cycle are taken from real
data collected on a healthy individual in the physiology lab at
University of Colorado (see Figure 4.19).

Figure 4.19 Real data for EKG (black), middle cerebral artery flow velocity
in cm/s (red) and arterial blood pressure in mmHg (blue).

Since pressure and flow data are collected only at two sites in the
network (radial artery for pressure and middle cerebral artery for
flow), the simulation accomplishes to describe the dynamics in all
other edges, hence completing the picture of the entire network.
While the focus was on developing a working model, no data fitting
was done for pressure and flow.

Figure 4.20 Simulated data in edge 1 (ascending aorta). Red line is the
flow velocity (cm/s), blue is the arterial pressure (mmHg) and green line is
the left ventricular pressure.
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Figure 4.21 Simulated data in edge 11 (right ulnar artery), 18 (thoracic
aorta), 26 (intercostal artery) and 49 (anterior tibial artery). Red line is the
flow velocity (cm/s), blue is the arterial pressure (mmHg) and green line is
the left ventricular pressure.

In the root edge (edge 1) the valve in action is showed: the valve
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is closed hence zero flow goes through it when the left ventricular
pressure is lower than the aortic pressure; the valve opens when
the left ventricular pressure exceeds the aortic pressure. The tim-
ing of the opening of the valve is important, since it determines
the total amount of cardiac output. At the other extreme, in edge
49, the pulsatility of the flow is minimal, but still the influence of
the respiratory cycle is evident.
There are several noticeable features in this simulation results.
The edges depicted in Figures 4.2-4.2 are chosen to illustrate the
various aspects of the dynamics. Firstly, the slow variation of the
left ventricular pressure (e.g. due to respiration) causes visible
variation in the systolic pressure. Secondly, the characteristics of
the pressure and flow dynamics is significantly different across the
network: in some parts of the network there is small amount of
backflow (e.g. edge 11, 18) while in others there is no backflow,
(e.g. edge 26). In fact backflow is significant in edges 4, 7, 19
and 21 (only edge 4 is depicted below). Backflow is known to be
physiological.

Figure 4.22 Simulated data in edge 4 (subclavian artery). For the color
coding we refer to Figures 4.2-4.2.

For the remaining of this section, the numerical model to a dif-
ferent scenario is applied, that is a tilt table test: the body is
initially on a horizontal bed, with no orthostatic pressure differ-
ences throughout the network. After 2 seconds, a tilt of the table
is performed, in such a fashion that the level of the heart remains
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the same. This means that the majority of the body is sent down-
ward with the exception of the head and shoulders, creating an
added orthostatic pressure value in most parts of the network.
Mathematically, this translates to a modification of the external
pressure in the working model, to account for the gravitational
effect (orthostatic pressure) as it appears during the tilt table test
(see e.g. [26]).

pext = pext(t) = ρgh(t) = ρg∆h sinαt

where α = π
2

is the angular velocity, chosen in such a way that after
1 second the tilt table is in upright position, g = 9.8m/s2 is the
gravitational constant. ∆h is elevation change between the middle
of the edge and the heart when the person is upright. ∆h can be
positive (if the edge is below the heart) or negative (for edges that
lie above the heart level.) Depending on what the center of the
tilt is, ∆h values would have more negative values.

Figure 4.23 Comparison between the simulated pressure data (in mmHg)
in normal conditions (blue) and in presence of the tilt (magenta) in edge 1
(ascending aorta) and 11 (right ulnar artery).
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Figure 4.24 Comparison between the simulated pressure data (in mmHg)
in normal conditions (blue) and in presence of the tilt (magenta) in edge 18
(thoracic aorta), 26 (intercostal artery) and 49 (anterior tibial artery)

Next the simulated data for the flow velocity for both horizontal
position and during and after tilt are displayed, choosing the same
edges as for pressure.
The tilt is performed for 1 second (seconds 2-3 after the beginning
of the simulations), time in which the table is raised from horizon-
tal to vertical positions. Then the table is left at that level.
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Figure 4.25 Comparison between the simulated flow velocity data (in cm/s)
in normal conditions (blue) and in presence of the tilt (magenta) in edges 1,
11, 18 and 26.
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Figure 4.26 Comparison between the simulated flow velocity data (in cm/s)
in normal conditions (blue) and in presence of the tilt (magenta) in edge 49.

Note that several edges come with negative external pressure.
Nevertheless, the simulated data shows an increase of diastolic
pressure throughout the board. At the same time, the picture
with the flow pattern is much more diverse, several edges exhibit-
ing a drop in flow velocity. The simulations are done without
changing the heart rate calculations, for clarity of the comparison.
In reality there is a response of the HR to the change in pressures
(baroreceptor control), which would further alter the flow pattern.
But even in absence of this complexity, it is possible to see that
the systolic pressure is decreased immediately after the end of the
tilt period, while the diastolic pressure is increased.

4.3 Optimization of mean arterial pres-

sure

In this paragraph, the model considered is always the some (4.1.1,
4.1.2, 4.1.3), but a different choice for the pressure is done. The
inertial effect of the wall motion is included, described by the wall
displacement η = η(x, t):

η = r − r0 =
1√
π

(
√
A−

√
A0). (4.3.4)
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and hence the pressure is (see [8], [14])

p = pext+
β

r2
0

η+ρωh
∂2η

∂t2
= pext+

β

A0

(
√
A−

√
A0)+m

∂2A

∂t2
, (4.3.5)

where r(x, t) is the radius, r0 = r(x, 0), A0 = A(x, 0), pext is the
external pressure, β = E

1−σ2h, σ is the Poisson ratio (usually

taken to be σ = 1
2
), E is Young modulus, h is the wall thickness,

m = ρωh
2
√
πA0

, ρω is the density of the wall.
As inflow condition, the valve model presented in the previous
chapter is considered, and the terminal reflection coefficient is used
for the terminal condition.
Because of the addition of this extra term, the following system:

At + (Au)x = 0,(
u− ρωhr0

2ρ
uxx

)
t
+
(

1
2
u2 + Eh

ρr20

(√
A−
√
A0

))
x

= f,
(4.3.6)

is obtained, which can be written in compact form:

∂U

∂t
+
∂F(U)

∂x
= S(U), (4.3.7)

where

U =

(
A
v

)
, F(U) =

(
Au

1
2
u2 + Eh

ρr20

(√
A−
√
A0

) )
,

S(U) =

(
0
f

)
, (4.3.8)

and u = D−1v is the solution of the boundary value problem

u− ρωhr0

2ρ
uxx = v, (4.3.9)

together with boundary conditions that are indicated above.
To approximate the second order derivative of u, it is used the
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spectral method involving Chebyshev differentiation matrixes, de-
fined for the Chebyshev collocation points {xj}j=0,...,N as follows
(see [45]):

(DN)00 =
2N2 + 1

6
, (DN)NN = −2N2 + 1

6
,

(DN)jj = − xj
2(1− x2

j)
, j = 1, ..., N − 1,

(DN)ij =
ci
cj

(−1)i+j

(xi − xj)
, i 6= j, i, j = 0, ..., N − 1,

where

ci =

{
2, i = 0 or N,
1, otherwise.

This discretization can be coupled with the discontinuous Galerkin
scheme described above, by matching the solution at Chebyshev
points, performing the derivative using these points, then return-
ing back to the Legendre points.
The numerical model just developed is used to perform an op-
timization scenario. The goal is to maintain the mean arterial
pressure close to a prescribed reference value (Pref ), in presence
of external pressure changes. The external pressure pext is taken
to vary with time, to mimic the respiratory cycle, according to

pext(t) = 14 + 7.5 sin 2t (mmHg).

Here an arterial segment of length 0.5 m is considered. The follow-
ing parameter values are used throughout the sequel: µ = 3×10−5

mmHg (viscosity of the blood), ρ = 1050 Kg/m3 (blood den-
sity), Pref = 100 mmHg and the total time of the simulation is
tfinal = 10 sec.
The goal is to find the optimal HR (and later also terminal resis-
tance Rt - assumed constant during one heartbeat) which leads to
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the minimization of the following cost functional

J =

∫ t0+Tpulse

t0

|Pavg(t)− Pref |2 dt =

=

∫ t0+Tpulse

t0

∣∣∣∣ 1L
∫ L

0

p(x, t) dx− Pref
∣∣∣∣2 dt.

Here the integration is done using an entire heartbeat, with du-
ration Tpulse = 60/HR. The systolic period is taken to be consis-
tently one quarter of Tpulse.
Upon optimization on HR alone, the following 10− sec recording
of the aortic pressure is obtained, plotted together with the left
ventricular pressure. The first heartbeat has not been included
in the plot, since the initial condition is anomalous and does not
affect the subsequent dynamics.

Figure 4.27 10-second recording of pressure and velocity with optimal HR.

Figure 4.28 Optimal HR for maintaining constant mean pressure at 100
mmHg (Rt = 0.9).
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When including the terminal resistance as one of the optimization
parameters, it is possible to notice a different pattern of the opti-
mal HR, which is to be expected. The variability of the HR and
terminal resistance Rt are shown in the figures below:

Figure 4.29 Optimal HR and Rt for maintaining constant mean pressure
at 100 mmHg.

Observe that the terminal resistance Rt is close to 1, which means
that there is almost a complete reflection of the characteristic
waves and almost complete blockage in the terminal site. HR
varies in sync with the respiratory cycle, but the presence of pe-
ripheral resistance mechanism is breaking the periodicity of the
HR variability, which is what is observed in the real system. Also
note that comparing this range ofHR with the results above (when
only HR was used in optimization, keeping Rt = 0.9 fixed), can
lead to the conclusion that in order to maintain a prescribed mean
pressure over one heart beat increasing the Rt (even to its max-
imal value) is more efficient than increasing the HR. Naturally,
the consideration of a single arterial segment (aorta) avoids the ef-
fects of the complexity of the vascular network, which would add
additional irregular behavior in the HR variability.

Using this method, it is also possible to compare dispersion (ρw >
0) and dispersionless (ρw = 0) models. A rather high density for
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the wall is chosen, in order to underline the difference. The result
of the simulation is given below:

Figure 4.30 Comparison between aortic pressure in absence of dispersion
(green) and aortic pressure in presence of dispersion (red).

Observe that for the dispersionless case, the multiple peaks be-
tween heartbeats indicate that the waves which originate during a
systole reflect off the boundaries and travel back and forth (with
decreased amplitudes) during the diastole. These can be used to
compute the speeds of the pulse waves in relation to the heart
rates, similar to [20].
In the dispersive case, the pressure waves have much fewer oscil-
lations than in the dispersionless one. This can be explained by
the higher density of the wall, hence higher wall inertia, and con-
sequently fewer transversal oscillations. Since these are temporal
recordings at one spatial location, these show an averaging effect
due to dispersion of flow along the vessel, and not a dampening of
the waves. In simulations a greater degree of the averaging is also
witnessed, when the wall density increase. If on the other hand
we keep all the parameters (e.g. wall density etc) but we consider
a shorter length of the vessel M , then by rescaling the spatial
variable x̃ = x/M , one obtains a similar effect - of increasing
the value of the wall density, and hence of averaging the pressure
pulses originating from the left ventricle. Another effect which
can be captured in our numerical model is the variable (along the
vessel length) radii and elasticity.



Conclusions

Simulations of the mathematical models involving partial differ-
ential equations on networks such as those presented here reveal
macroscopic phenomena that cannot be anticipated by looking
at individual edge dynamics. The nature of phenomena such as
appearance of low frequency oscillations in the network, time of
recovery after blockage in a network is removed, truncation of a
fractal tree network are revealed through these simulations and can
help further study of the real phenomena observed in physiological
conditions. Interpreting physically correct boundary conditions
remains crucial for modeling long term behavior of the network
dynamics. The numerical model, which has been developed here
to simulate variable external conditions and their effect on the
cardiovascular system, is presented in certain realistic physiolog-
ical situations. The model includes a valve at the inflow, which
accounts for change in the systolic pressure, while the variability
of the diastolic pressure is due primarily to the external condi-
tions. The focus has been on comparing the dynamics in various
parts of the network in presence and absence of the changes. In
addition, the obtained numerical optimization results are relevant
for understanding how boundary control affects the dynamics of
the pressure and flow in an arterial segment, via the valve model
at the root of the vascular network and via peripheral resistance
model at the outflow. The consideration of a single edge can be
viewed as certainly restrictive from a physiological point of view,
but can help in further studies where the entire vascular network
is considered. The models described in this thesis can have other
applications. The 1-D formulation can contribute to determine
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the effects of medications, which changes the hemodynamic pro-
prieties of the arterial system, on the shape of the pulse waves. It
is possible to conduct such investigations supposing that this med-
ications determines some changes in compliance, geometry and/or
peripheral resistance of the arterial system, and compare the wave
form given by the 1-D simulation with the ones measured in vivo.
In addition, the introduced model can also be applied to study
the effect of some cardiovascular pathologies of the blood flow in
the arteries. For example, it is possible to analyze the effects of
arterial bleedings on the propagation of the pulse wave consider-
ing a 1-D model of the most wide arterial domain, simulating a
bleeding as a 1-D artery bifurcated from the point of the bleeding,
and finishing with a negative terminal reflection coefficient.
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