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3.3 Lukáš’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 PRNU Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 SVM Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 Using SVM to identify the camera . . . . . . . . . . . . . . . . . 29

4 Experimental analysis 33

4.1 Implementation of methods details . . . . . . . . . . . . . . . . . . . . . 33
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Introduction

Nowadays, taking and sharing digital pictures is becoming a very popular activity. This

is witnessed by the explosive growth of the digital cameras market: e.g., more than one

billion of digital cameras have been produced and shipped in 2010 (5). A consequence

of this trend is that also the number of crimes involving digital pictures increases, either

because pictures are part of the crime (e.g., exchanging pedopornographic pictures) or

because their analysis may reveal some important clue about the author of the crime.

The highly technical nature of computer crimes facilitated a wholly new branch of

forensic science called digital forensics. The Digital Forensic Science involves processes

such as acquisition of data from an electronic source, analysis of the acquired data,

extraction of evidence from the data, and the preservation and presentation of the

evidence. Digital Imaging Forensics is a specialization of the Digital Forensics which

deals with digital images. One of the many issues that the Digital Imaging Forensics

tries to deal with is the source camera identification problem, i.e., establish if a given

image has been taken by a given digital camera. Today this is a practical and important

problem aiming to identify reliably the imaging device that acquired a particular digital

image. Techniques to authenticate an electronic image are especially important in

court. For example, identifying the source device could establish the origin of images

presented as evidence. In a prosecution for child pornography, for example, it could

be desirable that one could prove that certain imagery was obtained with a specific

camera and is thus not an image generated by a computer, given that “virutal images”
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are not considered offense. As electronic images and digital video replace their analog

counterparts, the importance of reliable, inexpensive, and fast identification of the

origin of a particular image will increase.

The identification of a source camera of an image is a complex issue which requires

the understanding of the several steps involved in the creation of the digital photo-

graphic representation of a real scene. In particular, it is necessary to understand how

the digital images are created, which are the processes which create (and therefore

affect) the creation of the digital data, starting from the real scene. Moreover, it is nec-

essary to point out the factors which can be used to support the camera identification

and, may be even more important, which are the factors which can tamper the photos

and prevent (maliciously or not) the camera identification.

Many identification techniques have been proposed so far in literature. All these

techniques generally work by using the sensor noise (an unexpected variation of the

digital signal) left by a digital sensor when taking a picture as a fingerprint for iden-

tifying the sensor. These studies are generally accompanied with tests proving the

effectiveness of these techniques, both in terms of False Acceptance Rate (FAR) and

False Rejection Rate (FRR).

Unfortunately, most of these contributions do not take into consideration that,

in practice, the images that are shared and exchanged over the Internet have often

been pre-processed. Instead, it is a common practice to assume that the images to be

examined are unmodified or, at most, to ignore the effects of the pre-processing.

Even without considering the case of malicious users that could intentionally process

a picture in order to fool the existing identification techniques, this assumption is

unrealistic for at least two reasons. The first is that, as previously mentioned, almost

all current photo-managing software offers several functions for adjusting, sometimes

in a “magic” way (see the “I’m feeling lucky” function on Google Picasa (19)) different

characteristics of a picture. The second reason can be found in the way the images are
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managed by some of the most important online social network (OSN) and online photo

sharing (OPS) sites. These services usually make several modifications to the original

photos before publishing them in order to either improve their appearance or reduce

their size.

In this thesis we have first implemented the most prominent source camera identi-

fication technique, proposed by Lukáš et al. and based on the Photo-Response Non-

Uniformity. Then, we present a new identification technique that use a SVM (Support

Vector Macchine) classifier to associate photos to the right camera. Both our implemen-

tation of Lukáš et al. technique and our SVM technique have been extensively tested on

a test-sample of nearly 2500 images taken from 8 different cameras. The main purpose

of the experiments conducted is to see how these techniques performs in presence of

pre-processed images, either explicit modified by a user with photo management tools

or modified by OSNs and OPSs services without user awareness.

The results confirm that, in several cases, the method by Lukáš et al. and our

SVM technique is resilient to the modifications introduced by the considered image-

processing functions. However, in the experiments it has been possible to identify

several cases where the quality of the identification process was deteriorated because of

the noise introduced by the image-processing. In addition, when dealing with Online

Social Networks and Online Photo Sharing services, it has been noted that some of

them process and modify the uploaded pictures. These modifications make ineffective,

in many cases, the method by Lukáš et al. while SVM technique performs slightly

better.

In Chapter 1 some basic definitions about the forensic analysis and digital evi-

dences, with particular attention to digital imaging forensic, are provided. Chapter 2

describes the process of creating an image and the main types of noise. In Chapter 3.1

definitions about source camera identification problem are provided as well as a brief

review of the current literature on this topic. Moreover, details about the identification

3



technique presented by Lukáš et al. and the SVM classifier are introduced. In Chap-

ter 4 are explained the conditions under which the tests have been conducted, the kinds

and the methodology of experiments. Moreover, the results of several tests of the two

techniques are presented. In the experiments, the performance of the techniques, when

applied to the identification of the cameras used to take both modified and unmodi-

fied pictures, is compared. Finally, Chapter 5 presents some concluding remarks. In

Appendix A are presented the confusion matrices for all experiments conducted with

the SVM classifier. The MATLab source code for our software implementation are

published in Appendix B.
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Chapter 1

Forensic analysis and digital

evidences

Digital forensics is a branch of forensic science concerned with the use of digital in-

formation (produced, stored and transmitted by computers) as source of evidence in

investigations and legal proceedings. In the Digital Forensic Research Workshop, digital

forensics has been defined as

“The use of scientifically derived and proven methods toward the preser-

vation, validation, identication, analysis, interpretation, documentation

and presentation of digital evidence derived from digital sources for the

purpose of facilitating or furthering the reconstruction of events found

to be criminal, or helping to anticipate unauthorized actions shown to

be disruptive to planned operations.” (16)

Investigative process of digital forensics can be divided into four major stages:

• Preservation. The Preservation stage corresponds to freezing the crime scene. It

consists in stopping or preventing any activities that can damage digital informa-

tion being collected. Preservation involves operations such as preventing people

5



1.1 Digital evidences

from using computers during collection, stopping ongoing deletion processes, and

choosing the safest way to collect information.

• Collection. The Collection stage consists in finding and collecting digital infor-

mation that may be relevant to the investigation. Since digital information is

stored in computers, collection of digital information means either collection of

the equipment containing the information, or recording the information on some

medium. Collection may involve removal of personal computers from the crime

scene, copying or printing out contents of files from a server, recording of network

traffic, and so on.

• Examination. The Examination stage consists in an in-depth systematic search

of evidence relating to the incident being investigated. The output of the ex-

amination phase are data objects found in the collected information. They may

include log files, data files containing specific phrases, timestamps, and so on.

• Analysis. The aim of analysis is to draw conclusions based on evidence found.

The aims of preservation and collection are twofold. First, they aim to provide the

examination and analysis stages with as much relevant information as possible. Second,

they aim to ensure integrity of the collected information.

1.1 Digital evidences

Digital evidence is any probative information stored or transmitted in digital form that

a party to a court case may use at trial. Digital forensic evidence consists of exhibits,

each one consisting of a sequence of bits, presented by witnesses in a legal matter,

to help jurors to establish the facts of the case and then supporting or refuting legal

theories of the case. The exhibits should be introduced and presented and/or challenged

by properly qualified people using a properly applied methodology that addresses the

6



1.1 Digital evidences

legal theories at issue. Before accepting digital evidence a court will determine if the

evidence is relevant, whether it is authentic, if it is hearsay and whether a copy is

acceptable or the original is required (7).

The use of digital evidence has increased in the past few decades as courts have

allowed the use of e-mails, images, files stored on computer hard drive, digital video,

digital audio, network packets transmitted over local area network (33).

When a scientific evidence is given, it is possible that a qualified expert may have

based his findings on a novel scientific theory that lacks sufficient experimental support

to draw reliable conclusions. Then, it may be necessary to specify a number of non-

mandatory, non-exclusive criteria for determining scientific validity such as the following

ones:

• whether the theory or technique employed by the expert can be (and has been)

tested;

• the known or potential rate of error associated with the theory or technique;

• the existence and maintenance of standards controlling the technique’s operation;

• whether the theory or technique have been subjected to peer review and publi-

cation;

• whether the theory or technique enjoys widespread acceptance because, as said by

the Judge in (15) ,“a known technique that has been able to attract only minimal

support within the community, may properly be viewed with skepticism”.

Depending on what facts the digital evidence is supposed to prove, it can fall into

different classes of evidence:

• digital images or software presented in court to prove the fact of possession are

real evidence;

• e-mail messages presented as proof of their content are documentary evidence;

7



1.1 Digital evidences

• log files, file time stamps, all sorts of system information used to reconstruct

sequence of events are circumstantial evidence;

The use of digital information in legal disputes is complicated by a number of

technical problems, which reduce weight of computer based evidence or even make it

irrelevant. The following ones are some common problems:

Anonymity of digital information. Digital information generated, stored, and

transmitted between computing devices does not bear any physical imprints connecting

it to the individual who caused its generation.

Context of digital information. Digital information is a sequence of digits encod-

ing some knowledge. The encoding, and hence the meaning of digits is determined by

the context in which the information is produced and used. Before inferences can be

made, the context determining the meaning of information must be clarified.

Automated interpretation of digital information. Manual interpretation of the

digital information can be extremely labor consuming or even impossible. A precon-

dition for the use of any automated tool for interpreting digital information is the

assurance that the tool gives correct interpretation of the information.

Danger of damaged information. Digital information stored on magnetic and

optical media can be damaged by a variety of causes. Unlike other types of evidential

material, digital information is highly sensitive to minor changes. A single bit change

may cause dramatic change in its interpretation. At the same time, minor changes may

be very hard to detect in a large quantity of digital information, particularly if the

damaged information has valid interpretation.

8



1.2 Digital Imaging Forensic

1.2 Digital Imaging Forensic

In the analog world, photographic images have generally been accepted as proof of

occurrence of the depicted events. But today, the creation and manipulation of images

are made simple by digital processing tools that are widely available and easily to use.

As a result, we can no longer take the authenticity of any images, analog or digital, for

granted. This is especially true when they are used as digital evidence or photographic

evidence by law enforcement agencies. In this context, the field of image forensics is

concerned with uncovering underlying facts about an image: by using its techniques,

we attempt to provide authoritative answers to several questions about the content and

source of an image. Is this an “original”, or was it created by cut and paste operations

from different images? Was it captured by a camera manufactured by vendor X or

vendor Y? Did it originate from camera X as claimed? At time Y? At location Z? Does

this image truly represent the original scene or was it digitally altered? These are just

a few of the questions faced routinely by investigators and others in law enforcement.

A method to add information into images is through the digital watermarking : this

is the process of embedding information, visible or invisible, into a digital signal or file,

such as a image, in a way that is difficult to remove. Although digital watermarks have

been proposed as a tool to verify the authenticity of images, the enormous majority

of images captured today do not have one. This situation is likely to continue for

the foreseeable future, so in the absence of their widespread adoption, we believe it

is imperative to develop techniques that can generate definitive statements about the

origin, veracity, and nature of digital images. The past few years have seen a growth

of research in this area. Work in the field has focused mainly on solving two types of

problems: image source verification and tamper detection. The aim of the former is

to determine through what means a given image was generated (e.g., digital-camera,

computer graphics, scanner, etc.) and then associate the images with a class of sources

that have common characteristics, or match it to a specific source. Meanwhile, the goal
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1.2 Digital Imaging Forensic

of tamper detection is to determine whether a given image has undergone any form of

modification or processing since it was initially captured.

When the source of an image is identified as being a digital camera, the ability to

identify its make and model requires an understanding of the image formation process.

Although many of the details of the camera pipeline are considered proprietary infor-

mation by manufacturers, the basic structure remains the same in all digital cameras

and can be used to support the identification of the camera source, given an image.

Indeed, the identification of the camera which generated an image can be critical in

many trials.

Digital image forensic may allow the contrast with child pornography: the identifi-

cation of the camera that took the photo can help to punish authors of the materials,

determining whether the photo was altered can uncover if any detail has been hidden to

prevent the identification of the location where the shooting occurred. Another critical

point is determining if the image is real or virtual. Ultimately, defendants may claim

that pornographic images are of “virtual” children, thus requiring the government to

establish that the children shown in these digital images are real. In fact, if the image

is virtual, since it is a ’drawing’ and since there was no abuse of a minor, there is no

offense.
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Chapter 2

Digital imaging

As seen in the previous chapter, in digital forensics there is a growing need to perform

analysis on digital images to achieve information useful in trials. Before to face the

processes involved in the image analysis, it is necessary to introduce the image creation

phase. This chapter briefly explains how is formed a digital image, and what are the

possible problems that may make it less beautiful or mark an image.

Digital imaging is a process regarding the creation of digital images, typically from

a physical scene. Traditional cameras capture images onto film while digital cameras

use electronic chips known as a Charged Coupling Device (CCD) or Complementary

metaloxidesemiconductor (CMOS). During the digital acquisition process the real image

is converted into a series of electronic dots called pixels. Pixels is an acronym for picture

elements. After the image is converted in pixels, or digitized, it is stored on a memory

storage device which may be an hard drive or some sort of electronic storage device

such as a memory stick. The pixels are stored, if necessary, in a compressed format

to save storage space. Once each pixel is created, it is assigned a colour value, called

tonal value, which can be black, white or shades of grey. Image sensors are essentially

monochrome devices, i.e. they detect the amount of light incident on each pixel but

cannot distinguish the colour of the incident light. To see the image with colors, the
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2.1 Capturing the light

pixels must be processed in order and with the use of the Bayer Array (a filter that

passes either red, green, or blue light, as explained in details in sec. ADD SECTION

REF).

These digital values are then stored on the cameras memory storage device. When

these digital values are recalled by software, and displayed on a screen, they repro-

duce the image that was originally captured by the camera or digital input device.

Indeed, before the actual image is recorded and transferred from the digital device,

various causes can degrade the image therefore introducing noise in the images. The

noise deteriorates imaging performance and determines the sensitivity of an image sen-

sor. Therefore, the term noise in image may be defined as any signal variation that

deteriorates an image.

In the following sections we explore in detail the images digital acquisition process,

describing the issues in capturing the light and the problems which create noise in the

images.

2.1 Capturing the light

As described above, there are two main types of sensor chips currently used in digital

image capture devices: Bayer array charge coupled devices (CCD), and Bayer array

complimentary metal on silicon (CMOS) chips. They vary in the arrangement and

technology used to capture light from different portions of the image and how they

then process that information.

All the digital light sensors commonly used in digital imaging devices are the same in

that they comprise small tiles called pixels. All the pixels are part of a larger integrated

circuit chip, referred to as a sensor chip. It is usually made on a silicon-based crystal.

A pure silicon crystal is composed of silicon atoms in a regular array. Each silicon

nucleus has a fixed location in a regular matrix and the electrons of each atom serve to

bind the nuclei together. Silicon has a valence of four, and so each atom is bonded to
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2.1 Capturing the light

four surrounding atoms. In the absence of radiation, the crystal does not support the

movement of electrical carriers, such as electrons.

In the case of silicon, when a photon of the right wavelength is absorbed, it will

energize an electron to the point of being set free from the matrix. Once loose, the

electron is relatively free to move around the crystal. The electron carries a negative

electrical charge and is called a negative carrier. The movement of electricity in a

copper wire is composed of the movement of electrons. In a silicon crystal, called a

semiconductor, the release of an electron from its place in the matrix leaves behind

a hole in the matrix. This is referred to as a hole and it, too, is somewhat free to

move by a sequential substitution process. In the aggregate, the holes appear to be

positive electrical carriers. If an electrical voltage is applied across the crystal, the

negative carriers will move in one direction and the positive ones in the other. In

summary, a silicon crystal is an insulator in the dark and a conductor in the light.

The amount of charge that moves is equal to the number of photons absorbed and,

therefore, proportional to the amount of incident light but not all the incident photons

will be absorbed. The amount of charge released divided by the number of incident

photons is referred to as the quantum efficiency of the crystal. The result is that the

amount of charge left on the plates of the pixel when the exposure is stopped is linearly

proportional to the illumination. The basic light gathering process starts out as an

analog signal.

At very low light levels, some charge will flow just due to the fact that the chip

is at some finite temperature. So there is a low limit of charge, which is variable and

not due to light. This is noise. At very high light levels, more charge is created than

the capacitor can hold, and the excess spills over to other circuit elements. This is

saturation. At light levels below the noise limit and above the saturation limit, the

photo sensor does not operate as a true indicator of light.
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2.1 Capturing the light

2.1.1 Bayer Array

The Bayer array is a Colour Filter Array (CFA) that comprises a repeating rectangular

array of pixels, with each one covered by a filter as shown in Figure 2.1. A CFA is a

mosaic of tiny color filters placed over the pixel sensors of an image sensor to capture

color information. Each pixel is a light-sensitive portion of the main chip and is covered

by a filter that passes either red, green, or blue light. Below the filters, each pixel is

like all the others. The array pattern is what is referred to as the Bayer array. In this

pattern half of all the pixels are green because this color is aligned most closely with the

luminance of an image and is therefore the most significant contributor to the visual

impression of sharpness. The green record must have the best resolution if the images

are to appear sharp. The human eye also has an overabundance of green sensitive cones

(i.e., the green receptors). The remaining half part of pixels is divided equally into red

and blue pixels. The red pixels will be in one row interspersed by green, and the next

row will have blue pixels interspersed with green. The same arrangement is maintained

vertically. The result is that every blue pixel is surrounded by four green pixels and

four red ones. Likewise, every red pixel is surrounded by four green pixels and four

blue ones. All green pixels are diagonally surrounded by four other green pixels and at

least two of each of the red and blue pixels.

The important properties of the Bayer array are that:

• each pixel captures light from only one of the three additive primary colors of

red, green, and blue as shown in Figure 2.2;

• the highest sampling of the image is done in the green portion of the spectrum;

• there is close proximity of each pixel color to the other two colors.

The digital signal coming from a Bayer array chip is a string of numbers in which

the value of each number is an indication of the amount of light that the particular

pixel captured, and its location in the string is an indication of where that pixel was in
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2.1 Capturing the light

Figure 2.1: Bayer Array Pattern. Most digital still cameras utilize the Bayer array

pattern, which places either a red, green, or blue filter on top of each pixel.

the original array. The color of the light which a pixel saw is inferred from its location

in the original array. These data are just raw information: it is not a viewable image.

The viewable image must be computed from this raw data and certain other indicators

from the camera. In Figure 2.3, published in (4), is shown as the camera sees a physical

scene.

All pixels have certain inherent properties that are important considerations in the

design of a sensor chip. First of all, the larger the area of the pixel, the more sensitive it

is. It is responding to photons per unit area, and the bigger the area, the more photons

it will capture, all other things being equal. All pixels have a certain amount of dark

current. The silicon is not supposed to generate carriers in the dark, but there is always

some generation. This results in noise in the image in the form of a speckle pattern in

the dark areas as we can see in the next section. The result is that chips with larger

pixels have more signal and (usually) proportionately lower noise. Inevitably there will

be a few defects in a chip. This can result in pixels that are too sensitive or not sensitive

enough, compared to others on the chip. Testing and conditioning of the signal can

minimize the impact of these defective pixels. Also, the process of passing the charge to
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2.1 Capturing the light

Figure 2.2: Bayer Array Pattern. Color discrimination with the colour filters on top of

the sensor.

be read is not loss-less and totally consistent and produces noise. Again this noise will

be most evident at low light levels. Silicon has a relatively low native sensitivity to the

shorter wavelengths (blue) and a higher sensitivity to longer wavelengths (red). The

result is that the dark current noise is more pronounced in the blue record. Fortunately

people are not so sensitive to the blue record. But in order to keep a reasonable balance

among the three records, the sensitivities of the green and red pixels are held back to

be consistent with the blue ones. The final result is that the performance of the blue

pixels tends to limit the overall performance of a chip.

Defects in a chip are due not only to the cost of the materials but are impacted

by the incidence of defects on the wafer from which the chips are taken. If the wafer

has, let’s say, three defects, and a single chip is taken from that wafer, there are good

chances that the chip will have at least two of those defects. If it was possible to

work with chips that were half size on each side, then we could get four chips from the

same wafer. It is now almost certain that one, and possibly two, of the chips will be

defect free. The result is that smaller chips tend to have a higher yield-per-wafer and

are therefore cheaper to produce. This is in addition to the reduced cost of the basic

material. Given that larger pixels are desirable from a sensitivity and noise reduction
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2.1 Capturing the light

Figure 2.3: Bayer Array Pattern. As the camera sees a physical scene.

standpoint, but that smaller chips are cheaper to produce, there is a constant struggle

between these two factors.

2.1.2 CCD and CMOS chips

CCD and CMOS chips have different structures but, performance-wise, they differ

primarily in how the analog values from the pixels are converted to digital signals and

how those signals are extracted from the chip. Except for battery life, most of the

differences will not be noticeable to the user of a camera.

CCD chips operate by moving electrical charge, and the movement of electrical

charge is, by definition, electrical current. In other words, CCD chips are current-based

devices and consume significantly more power, so in comparison to CMOS devices, the

batteries will last a bit less than those in a CMOS camera. CCD have a single ADC

(a built-in Analogy-to-Digital Converter which turns the stored electrical value into

a digital value) and there is only a minimum of circuitry on the image-sensing area,

instead CMOS cameras have a large amount of control and access circuitry attached to

each pixel, and this takes up valuable space on the sensory portion of the sensor chip.
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2.2 Image noise

The result is that CCD chips use a larger proportion of the area of the light-sensitive

portion of the chip for pixels. This means that they tend to have lower noise and

higher sensitivity. Also, with the CCD array, the adjacent sensitive areas of the pixels

are closer to each other. This means that there are fewer gaps in the sampling of the

image.

2.2 Image noise

Before the actual image is recorded and transferred from the digital device, various noise

sources degrade the image. Noise deteriorates imaging performance and determines the

sensitivity of an image sensor. Therefore, the term noise in image may be defined as any

signal variation that deteriorates an image. Some of these noise sources are temporal,

some of these are spatial and others are a combination of these. An image sensor

reproduces two-dimensional image (spatial) information.

Noise appearing in a reproduced image, which is “fixed” at certain spatial positions,

is referred to as fixed-pattern noise (FPN). Because it is fixed in space, FPN at dark can

be removed, in principle, by signal processing. Noise fluctuating over time is referred

to as “random” or “temporal” noise.

2.2.1 Fixed-pattern noise

The primary FPN component in a CCD image sensor is dark current non-uniformity.

Although it is barely noticeable in normal modes of operation, it can be seen in images

that have long exposure times or that were taken at high temperatures. If the dark

current of each pixel is not uniform over the whole pixel array, the non-uniformity is

seen as FPN because the correlated double sampling (CDS) cannot remove this noise

component. In CMOS image sensors, the main sources of FPN are dark current non-

uniformity and performance variations of an active transistor inside a pixel.

Some of the variations due to dark current are somewhat systematic: the spatial
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2.2 Image noise

pattern of these variations remains constant. Because of fabrication and material prop-

erties, this fixed pattern noise (FPN) is a flat field uncertainty due to device response

when the sensor is not illuminated. Crystal defects, impurities and dislocations present

in the silicon may contribute to the size of the fixed pattern noise. In CMOS image

sensors additional sources are present, and can be thought of as composed of a col-

umn component (shared between all pixels in a certain column) and an individual pixel

component. As FPN is added to all frames or images produced by a sensor, and is

independent of the illumination, it can be easily removed by subtracting a dark frame

from the image.

A source somewhat similar in characteristics to FPN is PRNU (Pixel Response

Non-Uniformity), the variation in pixel response when the sensor is illuminated. This

variation comes e.g. from non-uniform sizes of the active area where photons can be

absorbed. This is a linear effect. For example, when the size of the active area is

increased with a factor x, the number of photons detected will also increase with factor

x. This illustrates the multiplicative characteristic of the PRNU: when the illumination

increases, the effect of this source increases as well. Another possibility is the presence

of non-uniform potential wells giving a varying spectral response. Therefore, the PRNU

is also wavelength dependent. The multiplicative nature of the PRNU makes it more

difficult to remove this type of non- uniformity, as simply subtracting a frame does

not take this illumination dependent nature into account. In principle it is possible to

remove the PRNU, or even add the pattern of a different camera. It is also possible to

reduce the PRNU inside the camera by a form of non-uniformity correction.

FPN together with PRNU form the pattern noise and is always present, though in

varying amount due to the varying illumination between successive frames.
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2.2 Image noise

2.2.2 Temporal noise

Temporal noise is a random variation in the signal (which is assumed to be constant),

that fluctuates over time. Three types of fundamental temporal noise mechanisms exist

in optical and electronic systems: shot noise, termal noise, and flicker noise. All of these

are observed in CCD and CMOS image sensors.

Temporal noise in image sensors is mainly due the shot noise that is inherent to the

nature of light and to a lesser extent to the thermal noise due the thermal generation of

charge carriers in the silicon substrate of the image sensor. As the camera has no way of

differentiating the signal charge from the spurious electrons generated, these unwanted

electrons are added to the output and represent a noise source. Flicker noise is also a

temporal noise source, in which charges are trapped in surface states and subsequently

released after some time in the charge to voltage amplifier. In CMOS active pixel

sensors additional sources are present due the various transistors integrated on each

pixel. As this temporal noise is a purely statistical phenomenon, averaging multiple

frames will reduce the amount of temporal noise.

2.2.3 Other types of noise

There are also noise sources that do not find their origin on the image sensor but

are added further down the pipeline, i.e. when the digital signal is processed. The

most obvious source of this type of noise is the quantisation noise introduced when the

analogue information from the sensor (the potential change detected for each pixel)

is digitised in the analogue-to-digital converter. Another effect that occurs in the

processing stage is the demosaicing of the signal. The demosaicing is the process where

the full color image is reconstructed by interpolation from the incomplete color samples

output obtained with the CFA on the image sensor. This interpolation gives small but

detectable offsets, and can be seen as a noise source. Also, dust present on the lens

may contribute to the pattern noise, as well as possible optical interference in the lens
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2.2 Image noise

system.
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Chapter 3

Camera Identification

As described in the chapter Digital Image every digital picture contains a random com-

ponent of noise as well as a deterministic component, the pattern noise, that depends

on the sensor used to shoot the picture. The pattern noise is “very” similar within all

the pictures taken by the same sensor and can be used to identify the camera.

The problem of digital camera identification concerns with the identification of the

camera that has been used to generate a digital picture, by examining the pattern

noise in the picture. This technique is called source camera identification and should

not be confused with the more general digital camera model identification problem,

in which there is only interest in establishing which camera model has been used to

take a certain picture. In this chapter we present the generic problem of the source

camera identification and a brief survey of the approaches existing in literature, with

particular attention to the Lukáš et al. approach, which currently results as one of

the most effective. However, in some case this method presents difficult to correctly

associate images to the rigth source camera. Consequently, our aim was to improve this

method by adopting a SVM (Support Vector Machine) classifier, technique supporting

classification and regression analysis based on supervised machine learning.
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3.1 Source Camera Identification

3.1 Source Camera Identification

As a matter of fact different imaging devices have different characteristics due to the

use of different physics apparatus, different image processing, and different parameters

applied inside the imaging devices, etc. Thus it would lead to different patterns of the

output images, so these patterns can be used as inherent fingerprints of the imaging

devices to identify the source of the image.

Figure 3.1: Generic image source identification

In the generic problem to match an image with its source camera, we suppose to

have an image to be detected and a set of candidates of source camera, and the aim is to

associate the image with the right source camera. This scheme is illustrated in Figure

3.1. The image X is to be detected, and may come from one of the candidate imaging

devices. The identification process is as follows. Firstly, the features from X and the

patterns from the imaging devices are extracted mainly using the knowledge of image

acquisition model. Then the similarities between these patterns and the characteristic

features are measured. Lastly, a confidence measure for each imaging device to identify

the source of the image X is given. In literature, this generic scheme has been followed

by several approaches, and a brief survey is presented in the next section.
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3.2 State of the art

3.2 State of the art

Up until now, three main approaches were proposed in literature to deal with the

source camera identification problem. These approaches differ in the type of pattern

noise used.

• The first approach uses the Photo-Response Non-Uniformity (PRNU) noise, i.e.,

the noise produced by the sensor due to the inhomogeneity of the silicon wafers

used to build it. Lukáš et al. (29) and Chen et al. (11) proposed two methods to

identify the source camera based on the PRNU. These techniques can be used to

isolate and extract the noise pattern from a set of pictures taken with the same

camera, using this pattern to match or not the cameras with the photos under

investigation. Their results show that these methods have high detection rates.

Goljan et al in (18) used a refinement of the method of Chen to run a digital

camera identification test on a massive database of digital pictures downloaded

from the Internet.

• The second approach uses the lens radial distortion that causes straight lines to

appear as curved lines on the output images. Choi et al. have tried this method

in (12). They discovered that this method failed to measure the radial distortion

except when there are explicit straight lines in the picture to be processed.

• The last approach relies on the Color Filter Array (CFA) interpolation, which is

a technique used by digital cameras after a picture has been taken in order to de-

termine the colors of the scene. This technique produces small non-uniform color

zones that can be seen as a noise source. Every camera has its own interpolation

algorithms and produces a small degree of noise that, generally, changes slightly

from one camera to another. Bayram et al. in (2) explored the CFA interpolation

process to determine the correlation structure present in each color band which

can be used for image classification. In this direction, Kharrazi et al. in (25) and
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3.3 Lukáš’s method

Long and Huang in (28) proposed two methods. The first method identifies a

set of image features that can be used to uniquely classify a camera model. The

accuracy of this method decreases as the number of cameras increases. The sec-

ond method obtains a coefficient matrix from a quadratic pixel correlation model

where spatially periodic inter-pixel correlation follows a quadratic form. The re-

sults seem to suggest that these two methods work better for the problem of

camera model identification rather than for that of source camera identification.

3.3 Lukáš’s method

We have focused our attention on the approach proposed by Lukáš et al. since it is

one of the most effective method, as well as inexpensive in terms of hardware resources

unlike other similar methods such as the one proposed by Goljan in (18).

The approach by Lukáš et al. works in two stages. In the first stage, the PRNU

associated with a CCD sensor is determined by analyzing a batch of images taken with

the sensor. In the second stage, given a picture, the procedure evaluates the correlation

between the noise in the picture and the pattern noise evaluated in the previous stage

in order to distinguish whether the picture has been taken using that CCD sensor or

not.

The extraction of the PRNU from an image is performed by denoising the image

using a wavelet-based algorithm. The denoised image is subtracted from the original

image giving as output a new image containing several components: the CCD sensor

noise, the random noise and various contributions from the image signal. Thus, in order

to eliminate the random component of the noise, the denoising procedure is applied to

a set of images (captured by the same camera) and the corresponding noise residues

are averaged to obtain the reference pattern of a given digital camera.

In practice the PRNU acts as a device signature and it is used as the unique charac-

teristic. PRNU presents itself as a visually invisible pattern that is present in all images
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3.3 Lukáš’s method

or videos a camera produces. However, the degree in which this pattern is available de-

pends on the illumination; in well illuminated segments of an image the PRNU can be

more reliably estimated than in segments with low intensities. With the use of filters,

these characteristic patterns can be extracted from images, or from individual frames

from videos.

Afterwards, to determine whether a given image is captured by a digital camera, the

noise pattern extracted from the given image is correlated with the reference pattern

of the camera. If the correlation value exceeds a pre-determined threshold, then the

image was taken with that camera. In order to estimate the accuracy of the method as

well as to compute the thresholds, the Neyman-Pearson criterion was used, specifying

a bound on the FAR.

3.3.1 PRNU Filter

The PRNU noise is induced by intrinsic inhomogeneities over the silicon wafer and

imperfections generated during sensor manufacturing process of CCD/CMOSs. The

PRNU is used as sensor fingerprint and it is commonly employed to solve the problem

of digital camera sensor identification. The extraction of PRNU noise happens through

a denoise filtering operation from a set of digital images taken by a camera.

Figure 3.2: PRNU sample. Real image taken with camera

There are many image denoising filters. The purpose of the denoising filter is to

obtain an approximation to the pixel non-uniformity noise and to remove the influence

of the image scene. A general-purpose denoising filter is described in (26). This filter
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3.4 SVM Classification

Figure 3.3: PRNU sample. (a) PRNU pattern extracted from test image. (b) PRNU

extracted pattern (variantions in greylevels in colour)

extract from the image a Gaussian noise with known variance (an input parameter to

the filter), based on the assumption that, in wavelet domain, the image and the noise

form on addictive mixture of a non-stationery Gaussian signal with a known variance.

Experiments show that the value 5 for the variance gives the best overall performance

across all devices.

3.4 SVM Classification

Support vector machines (SVMs) are a set of related supervised learning methods that

analyze data and recognize patterns, used for classification and regression analysis.

Supervised learning is the machine learning task of inferring a function from supervised

training data. The training data consist of a set of training examples. In supervised

learning, each example is a pair consisting of an input object (typically a vector) and a

desired output value, the supervisory signal. A supervised learning algorithm analyzes

the training data and produces an inferred function, which is called a classifier (if the

output is discrete, see classification) or a regression function (if the output is continuous,

see regression). The inferred function should predict the correct output value for any

valid input object. This requires the learning algorithm to generalize from the training

data to unseen situations in a “reasonable” way.
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3.4 SVM Classification

As describe above, SVM are a useful technique for data classification. A classifica-

tion task usually involves separating data into training and testing sets. Each instance

in the training set contains one “target value” (i.e. the class labels) and several “at-

tributes” (i.e. the features or observed variables). The goal of SVM is to produce a

model, based on the training data, which predicts the target values of the test data

given only the test data attributes.

SVM requires that each data instance is represented as a vector of real numbers.

Hence, if there are categorical attributes, we first have to convert them into numeric

data. A best practice to this is to use m numbers to represent an m-category attribute.

Only one of the m numbers is one, and others are zero. For example, a three-category

attribute such as red, green, blue can be represented as (0,0,1), (0,1,0), and (1,0,0). If

the number of values in an attribute is not too large, this coding might be more stable

than using a single number. Scaling before applying SVM is very important. The main

advantage of scaling is to avoid attributes in greater numeric ranges dominating those

in smaller numeric ranges. Another advantage is to avoid numerical difficulties during

the calculation. Because kernel values usually depend on the inner products of feature

vectors large attribute values might cause numerical problems. Of course the same

method to scale both training and testing data must be used.

3.4.1 Using SVM to identify the camera

All the tests confirmed that the pixel non-uniformity noise could be successfully used

to identify the image source but for some specific camera models we got a sort of

pattern clash and many images produced low correlation values with more than one

reference pattern previously extracted from the cameras under investigation including

the true source. In these cases the values were also too close to the rejection threshold.

This has been considered an important issue to adopt the Lukáš et al. approach

for digital image forensics. Moreover the process to define the acceptance threshold
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3.4 SVM Classification

based on the Neyman- Pearson approach, which has been originally employed to define

the acceptance threshold t minimizing the false reject rate (FRR), resulted too time

consuming and not enough flexible because the necessary accuracy can be reached only

if the system can learn from the analysis of a considerable number of images from a

known source and when the camera set or the input image set change all the threshold

t must be recomputed.

So we decide to use SVM to associate an image to a camera. We first define a set

S of candidate digital cameras, than we extract the sensor noise reference pattern for

each camera. Then we take a small set of randomly chosen pictures for each camera.

For each image we calculate the correlation factor against the reference pattern of

each camera. Finally we use these values as training set for a SVM classifier (Support

Vector Machine) with a number of input attributes equal to the cardinality of the set S.

Similarly we defined a test set to verify the result of the training. In fact we recalculate

the correlation with all the reference patterns and we give the resulting values as input

to the SVM which can provide us with the source camera identification. We have

extensively tested the approach we propose and, as shown in the chapter Experimental

Analysis, it led us to a double improvement:

1. on one hand our approach improved the accuracy of the final result especially

in the case of cameras with sensor noise patterns which produces low correlation

values or simply too close to be considered distinct. In facts, the SVM can

identify the source discriminating these values considering the correlation values

produced by the patterns of the other cameras of the set S instead of comparing

each correlation value against a single predefined threshold value.

2. on the other hand our approach produced a considerable speed up of the whole

process for source camera identification, reducing the amount of the images nec-

essary to train the system establishing the threshold of acceptance. This becomes

even more meaningful if is considered that during the investigation often we had
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3.4 SVM Classification

to work with a set of hundred candidate cameras, and many of these belong to

the same producer/model.
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Chapter 4

Experimental analysis

In this section will be presented the tests conducted on two source camera identification

methods. The first is our implementation of the Lukáš et al. technique and the second

the technique we have developed where SVM is used to associate images to the right

camera. The Lukáš et al. technique has been implemented by us as it is not publicly

available and the behaviour of our implementation is in line with their results (29). Both

the methods needs an images dataset, which was split in two sets: one to compute the

reference patterns (or fingerprint) of the camera, and one to check the effectiveness of

the techniques. After the creation of an images dataset, several tests will be conducted

with both of methods in order to verify the correctness and to identify which performs

better.

4.1 Implementation of methods details

In the next subsections will be provided some information about the implementation

of the methods.
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4.1.1 Method proposed by Lukáš et al.

In the Lukáš et al.́s method the device identification works through the extraction of

the noise pattern from the image to be detected, the extraction of the reference noise

patterns for each source camera candidate and therefore it performs the comparison

among the image noise pattern and the reference patterns:

• The noise pattern is extracted from the questioned image and denoted as the

natural pattern;

• Reference patterns are generated for each source camera candidate by making

flatfield images: images that do not contain scene content and have an (approx-

imate) uniform illumination. The PRNU patterns are then extracted from each

of these flatfield images, to generate a reference pattern for each camera.

• If the natural pattern and one of the reference patterns have a high degree of

similarity, it is an indication that the natural image originates from this camera.

Of course, the natural pattern and the reference patterns need to have the same

size.

We have implemented the method proposed by Lukáš et al. by using the Matlab

software (31). This software was used due to it being efficient as well as providing

several pre-implemented components (e.g. wavelets functions) which are useful in the

implementation of the various identification techniques.

Concerning the implementation, the main element of the method proposed by Lukáš

et al. is the PNRU filter used in the extraction of the noise patterns. This filter

simulates the behaviour of the Wiener filter in the wavelet domain and it has been

suggested in (26). The Wiener filter is based on a statistical approach and aims to

filter the noise of an image.

There are several families of wavelets, each one suitable for different applications,

differing in the number of coefficients they use. In the early stages of the tests, several
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combinations were tried, with the optimal choice being 4-levels and 8-levels Daubechies

wavelets.

4.1.2 Method based on SVM

In this method device identification is based on PRNU and noise pattern extraction,

as the method of Lukáš et al. but we use a different policy to associate an image to

a camera. The association is not based on a threshold but on a SVM classifier. The

method works as follows:

• Reference Patterns (RP) are generated by making flatfield images likes in the

method of Lukáš et al. ;

• The noise pattern is extracted from a number of, randomly chosen, images for

each camera of the dataset. For each image is computed the correlation factor

against the reference pattern of each camera and these constitutes the pattern to

be used for the training of the SVM. Finally these values were used as training

set for the classifier. The training set is composed in the following manner. Let

N the number of cameras and K the number of pictures chosen for the training

for each camera. Let Mj the camera number j (1 <= j <= N). Let Pi,Mj the

picture number i taken with the camera number j (1 <= i <= K, 1 <= j <= N).

Let RP (x) the function that computes the reference pattern on camera x, RN(y)

the residual noise on the pictures y and Cor(x, y) the correlation factor between

the images x and y. The training set file is composed, except the emphasized text

used only for description, as indicated in the following table. For clearness of the

table indicate C(Mi, Pj,Mp) instead of Cor(RP (Mi, RN(Pj,Mp)

• Similarly a test set was defined to verify the result of training.

There are various software packages implementing Support Vector Machines. In

our experiments we use LIBSVM (10). LIBSVM is an integrated software for classifica-
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class label RP (1) RP (2) . . . RP (N)

1 1 : C(M1, P1,M1) 2 : C(M2, P1,M1) . . . N : C(MN , F1,M1)

1 1 : C(M1, P1,M1) 2 : C(M2, P1,M1) . . . N : C(MN , F1,M1)

. . .

1 1 : C(M1, P1,M1) 2 : C(M2, P1,M1) . . . N : C(MN , F1,M1)

2 1 : C(M1, P1,M2) 2 : C(M2, P1,M2) . . . N : C(MN , F1,M2)

2 1 : C(M1, P1,M2) 2 : C(M2, P1,M2) . . . N : C(MN , F1,M2)

. . .

2 1 : C(M1, P1,M2) 2 : C(M2, P1,M2) . . . N : C(MN , F1,M2)

. . .

N 1 : C(M1, P1,MN
) 2 : C(M2, P1,MN

) . . . N : C(MN , F1,MN
)

N 1 : C(M1, P1,MN
) 2 : C(M2, P1,MN

) . . . N : C(MN , F1,MN
)

. . .

N 1 : C(M1, P1,MN
) 2 : C(M2, P1,MN

) . . . N : C(MN , F1,MN
)

tion, regression, and distribution estimation. The classification methods supported by

LIBSVM include C-SVC and nu-SVC, and the former one was selected for these work.

4.2 Experimental settings

Experimental settings describe the image dataset used and how this is arranged.

Seven different camera models were considered, resulting in eight cameras (as shown in

Table 4.1). In order to stress the identification methods as well as cover a wider range

of hardware, cameras belonging to different market sectors and different manufactures

were chosen. Looking at Table 4.1, cameras with ID 1 and 2 were chosen because they

have the same image sensor size as well as the same CMOS sensor (6). Cameras with
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Table 4.1: Cameras used in the tests.

ID Model Sensor Image size

1 Canon EOS 400D CMOS 3888x2592

2 Canon EOS 1000D CMOS 3888x2592

3 Canon PowerShot A400 instance A CCD 2048x1536

4 Canon PowerShot A400 instance B CCD 2048x1536

5 Panasonic Lumix DMC-FZ20 CCD 2048x1536

6 Panasonic Lumix DMC-FS5 CCD 3648x2736

7 Kodak EasyShare CX 7530 CCD 2560x1920

8 HP PhotoSmart E327 CCD 2560x1920

ID 3 and 4 share the same brand and model. The other four cameras are a mix of

common cameras.

For each camera model c ∈ C = {1, 2, . . . , 8} two sets of images were collected:

the Images for Reference Pattern (IRP) and the Images for Testing (IT). IRPc / ITc

denotes the IRP / IT sets for the camera c. The IRPc set is composed of 128 images

collected by taking pictures of a uniform white surface. The images were taken on a

tripod, with no flash, auto-focus, no-zoom, best JPEG compression quality, and with

all the other options set to their default values. The ITc set is made up of 180 images

portraying different types of subjects. In this case, the images were taken using different

types of settings, with the exception of the JPEG compression quality as well as the

image size, which were always set to maximum. In Figure 4.1 there are a sample of

images collected for IT set.

As the SVM classifier needs a set of test images and a set of training images, we

split, for each camera c the dataset ITc into two new sets: ITtra,c and ITtes,c. The ITtra,c

set is composed of 30 images chosen randomly from the origin dataset ITc, while the

remaining part of the ITc set was used to populate the ITtes,c set.

The effectiveness of the identification was measured by counting the number of

pictures erroneously rejected by the identification techniques over the total number of
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Figure 4.1: Some pictures of the image dataset.

pictures taken with a certain camera. Moreover, in all the tests, the decision thresholds

for the method of Lukáš et al. were set in such a way to keep to 0 the total number of

pictures erroneously classified as taken with a certain camera. All the tests were run on

a server equipped with two 4-core Intel Xeon X7350 processors at 2.93GHz and using

the Linux Ubuntu operating system.
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4.3 Experimental explanation

All the following tests have been conducted on a data set composed of images that have

been knowingly modified in order to test the effectiveness of the identification tecniques

by Lukáš et al. and of SVM classifier.

Three kinds of experiments have been planned. In the first experiment, the effec-

tiveness of the identification methods when applied to the camera identification for

unmodified digital pictures was assessed. The second experiment and the third exper-

iment regards, respectively, the identification of images processed with some software

of photo editing and of images published on online social network and photo sharing

sites.

4.3.1 How to correlate images of different size?

A preliminary problem to be faced in the computation of the correlation between two

images is to ensure that the two images t (i.e., the image reference pattern and the

image to be identified) have the same size. This condition can be easily met in three

different ways:

• Extract from both images two sub-images of the same size (Sub). In our case,

extract two images originating at point (0, 0) and having size 512x512;

• Crop the larger image to match the smaller image (Crop);

• Resize the larger image to match the smaller image (Resize).

The original method proposed by Lukáš et al. uses the Crop approach. In this

study, it was decided to also test the other two approaches in order to determine which

one performs better.
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4.3.2 Photo editing

This experiment was intended to assess the resilience of the identification methods when

used for classifying pictures that have been subjected to some sort of pre-processing.

This experiment were organized in two phases. In the first phase, the original set of

pictures were initially pre-processed using several types of image-processing functions,

with identification process then being repeated, using the decision thresholds and the

training model established during the first experiment according to non pre-processed

images. In an second phase, the previous tests with pre-processed images were repeated,

using the decision thresholds and a new training model that have been recalculated from

pre-processed images.

The experiment was organized by first applying six different commonly-used image

processing operations to the data set described in Experimental settings. Then, the

identification method on the resulting data sets was applied, using, for each camera,

the same reference pattern and decision threshold or training model established in the

experiment that establish the best approach to correlate two images of different size.

Finally, the resulting classification was compared with the results of the classification

on the original (i.e., not pre-processed) pictures. The operations that were considered

in the experiment, as implemented by the Adobe Photoshop software (1), are:

• Auto Level Adjustment (ALA): this function automatically corrects the high-

lights and shadows in a picture and adjusts the tones so that the lowest level in

the picture is completely black and the brightest white is full white. Auto Levels

tunes each color channel individually, and this may remove or introduce color

casts;

• Auto Contrast (ACS): this function adjusts the overall contrast and mixture of

colors in an image, without introducing or removing color casts, and permits to

create a more accurate tonal and color-correction;
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• Auto Color (ACO): this function adjusts contrast and color of an image by

neutralizing the midtones and clipping the white and black pixels;

• Resizing (R75, R50, R25): this operation rescales the image to match a smaller

size; the interpolation algorithm is bi-cubic which produces noticeably sharper

images than other methods such as bilinear or nearest neighbour, and it is a good

balance between processing time and output quality. The images were processed

with this operation by changing the scale factor. Pictures with the image size of

75%, 50% and 25% of its original sizes were obtained.

4.3.3 Online photo sharing

All the previous experiments have been conducted on unmodified pictures or on pictures

that have been intentionally modified by the end-user, using photo-editing tools. In the

real world, it is quite usual to upload digital pictures on online photo sharing (OPS) or

online social networks (OSN) websites, without any prior modification. This could lead

to the wrong conclusion that the pictures found on these sites retain the same properties

of their original counterparts and, so, that can be used for the digital identification

process. Instead, OSNs and OPSs websites usually process uploaded pictures in order

to reduce their size and to speed-up their handling. The arising question is: does this

pre-processings puts at risk the effectiveness of the Lukáš et al. and SVM identification

technique when applied to pictures retrieved from one of these sites?

This preliminary test was aimed at determining which OSNs and OPSs modify

pictures uploaded by users. This has been done, first of all, by choosing a set of

OSNs and OPSs according to their popularity. Then, several sets of pictures have been

uploaded and downloaded from all these sites. The downloaded pictures have been

analyzed in order to understand if, and how, they have been modified.

In Table 4.2 the results of one of these experiments, carried out with a sample

picture of 3.888x2.592 pixels and size of 2.275 kilobytes, are presented. For each site,
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it has been checked if the picture was modified or not and, in the former case, it has

been measured the size and the resolution of the modified picture.

These experiments show that only the following OSNs and OPSs, among the con-

sidered ones, process and modify uploaded pictures.

Table 4.2: Modifications performed by several OSN / OPS sites on a target image of

resolution 3.888x2.592 pixels and size 2.275 kilobytes.

Service Modified Modified image resolution Modified image size

Facebook Yes 720x480 53 Kb

Flickr No 3.888x2.592 2.275 Kb

MySpace Yes 600x399 33 Kb

PhotoBucket Yes 1.023x682 131 Kb

Picasa No 3.888x2.592 2.275 Kb

Twitpic No 3.888x2.592 2.275 Kb

Facebook (FAC) is currently the most used OSN in the world, with more than 500

million active users. It offers a relatively simple support for uploading and sharing

photos. No limit is apparently put on the size of the pictures that can be uploaded.

Currently, service administrators do not disclose any information about the way

images are processed and stored on their servers. However the experiments revealed

a strong compression, via downsampling, of all the pictures uploaded with a standard

resolution of 720 pixels on the long edge. This is evidently done in order to cope with

the huge amount of pictures uploaded daily.

Recently, service administrators have announced an upgrade on the maximum size

of the images stored in the Facebook database. According to this new setting, it will

be possible to upload also high-resolution images, with a maximum size of 2.048 pixels

on the long edge.
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Photobucket (PHB) is one of the most popular OPS with a massive audience of

more than 23 million monthly unique users in the U.S., and over four million images

uploaded per day from the web and smartphones (34). Photobucket offers a simple

support for uploading and dowloading and sharing photos. Like in the Facebook case,

no information is disclosed about the way pictures are stored on their servers. However,

the experiments revealed a compression process, albeit less aggressive than the one used

by Facebook.

MySpace (MSP) is a OSN where users can share music, videos and pictures. No

limit is put on the number and on the size of the uploadable pictures. However, even in

this case, the experiments revealed a strong compression of the uploaded images, both

in terms of size and downsampling.

As for the second experiment, also this were organized in two phases. In the first

phase, the Lukáš et al. and SVM identification techniques has been experimented by

applying it on pictures previously uploaded on each of these websites. This experi-

mentation has been first conducted by using the same decision threshold and training

model computed in experiment 1 of the previous section (see 4.3.1).

In the second phase, the Lukáš et al. and SVM identification techniques has been

experimented again on the same set of pictures of the previous test by using, this time,

thresholds computed by means of images stored and retrieved from the considered

OSNs/OPSs.

4.4 Experimental analysis of the Lukáš identification

technique

In this section we are going to present the results of experiments described in 4.3 by

using the Lukáš identification technique.
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4.4.1 Experiment 1 - How to correlate images of different size?

According to the results, presented in Table 4.3 (Lukáš et al. ) the best approach seems

to be Resize while the worst is Sub. The reason for such a bad performance is likely

to be due to the elimination of a large part of the original image, when processing large

pictures. The average resolution of the pictures used in the tests is near 2560x1920. As

a consequence of this, the cropped image, whose size is fixed to 512x512, retains only

the 5% of the original image as well as its signature, and thus is subject to a worse

correlation. In all the remaining experiments presented in this thesis, when needed,

the Resize technique will be used.

Table 4.3: Decision thresholds, FRR and number of images rejected on the red channel

for the tests Sub, Crop and Resize.

Sub Crop Resize

ID Decision

threshold

Images re-

jected (FRR)

Decision

threshold

Images re-

jected (FRR)

Decision

threshold

Images re-

jected (FRR)

1 0,021 20 (0,111) 0,008 — 0,008 —

2 0,021 29 (0,161) 0,007 — 0,007 —

3 0,024 18 (0,1) 0,018 9 (0,05) 0,018 9 (0,05)

4 0,024 6 (0,033) 0,025 — 0,025 —

5 0,052 1 (0,005) 0,046 1 (0,005) 0,035 —

6 0,026 5 (0,027) 0,018 — 0,018 —

7 0,013 156 (0,866) 0,003 138 (0,766) 0,003 2 (0,011)

8 0,037 5 (0,027) 0,022 3 (0,016) 0,014 —

Tot. 240 151 11

Figure 4.2 presents the scatter plot of the correlations between all the images of

the data set and the reference pattern of the Canon PowerShot A400 instance A (the

camera with ID 3).
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Figure 4.2: Scatter plot of the correlations between all the images of the data set and

the Image Reference Pattern of the camera with ID 3.

4.4.2 Experiment 2 - Photo editing

As described in section 4.3.2 the experiment was conducted in two phases. In the first

one, we have used the thresholds computed in the experiment section 4.4.1 and in the

second one the thresholds are recalculated on the processed images.

Confidence measure of experiment 1

The results of this experiment, presented in Table 4.4, are noteworthy. A small increase

in the number of erroneously rejected images can be observed when considering the

pictures processed with the ALA, ACS and ACO operations. This increase is much

more significant when considering the resized images. Here, the number of rejected

images is high and grows linearly with the resize factor.

By examining in details these results, it is worth noting that there are some camera
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Operation

ID No ALA ACS ACO R75 R50 R25

1 — — — — — — 2

2 — 4 4 3 2 2 14

3 9 11 11 11 11 15 49

4 — 3 3 3 3 7 51

5 — 1 1 1 — 1 108

6 — 7 7 7 10 12 97

7 2 2 2 2 2 2 2

8 — 1 1 1 2 2 40

Tot. 11 29 29 28 30 41 363

Table 4.4: Number of images rejected on manipulating pictures with thresholds computed

in Experiment 1 (Resize, 4.4.1).

models where the identification method performs very poorly when used with resized

images. It is the case of models 3, 4, 6, and, especially, model 5. This seems to suggest

either that the resize operation may have a very strong influence on the correlation

between the picture and the reference pattern noise, and that this influence may vary

greatly according to the camera being used, even for different cameras of the same

model. Moreover, it can ben noted that if the decision thresholds are chosen using,

as a reference, pictures that have not been previously pre-processed, the identification

method may likely fail.

Confidence measure recalculated

In the previous test, it can be observed that when trying to classify pre-processed

pictures using a classifier that has been tuned for unmodified pictures, the identification

method by Lukáš et al. may fail, in some cases, with a very high probability. These

failures are mostly due to the alteration of the pattern noise existing in a processed

picture. This alteration implies a smaller correlation with the reference pattern noise. A

natural solution to this problem consists in lowering the decision threshold used during
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the classification, so as to also correctly identify pictures with smaller correlations.

ALA ACS ACO

ID Decision

threshold

Images re-

jected (FRR)

Decision

threshold

Images re-

jected (FRR)

Decision

threshold

Images re-

jected (FRR)

1 0,008 — 0,008 — 0,009 —

2 0,004 2 (0,011) 0,004 2 (0,011) 0,005 2 (0,011)

3 0,022 11 (0,061) 0,019 11 (0,061) 0,019 11 (0,061)

4 0,019 2 (0,011) 0,02 2 (0,011) 0,02 2 (0,011)

5 0,035 — 0,035 — 0,0352 —

6 0,001 7 (0,038) 0,003 7 (0,039) 0,0019 7 (0,039)

7 0,003 2 (0,011) 0,003 2 (0,011) 0,003 2 (0,011)

8 0,014 — 0,014 — 0,014 —

Table 4.5: Decision thresholds, FRR and number of images rejected on the red channel

for the tests ALA, ACS and ACO.

R75 R50 R25

ID Decision

threshold

Images re-

jected (FRR)

Decision

threshold

Images re-

jected (FRR)

Decision

threshold

Images re-

jected (FRR)

1 0,011 — 0,01 — 0,009 2 (0,011)

2 0,004 2 (0,011) -0,001 — 0,0067 9 (0,05)

3 0,011 11 (0,061) -0,002 — 0,009 11 (0,061)

4 0,013 2 (0,011) 0,009 2 (0,0111) 0,007 2 (0,011)

5 0,037 — 0,033 — 0,017 —

6 0,002 7 (0,039) 0,003 7 (0,0389) 0,005 13 (0,072)

7 0,004 2 (0,011) 0,006 2 (0,0111) 0,009 2 (0,011)

8 0,013 — 0,009 — 0,007 5 (0,028)

Table 4.6: Decision thresholds, FRR and number of images rejected on the red channel

for the tests R75, R50 and R25.

The results, documented in Table 4.5, show a significant improvement in the quality

of the classification, with respect to the previous test. In this case, it has been possible

to obtain FRR rates which are very similar to those experienced with the first test.

However, such a result comes at a cost. The new decision thresholds are, in some cases,
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much lower than the original ones. For example, the decision threshold relating to

camera 5 had to be lowered to more than 90% of its original value, thus raising the

possibility of wrong classifications on larger data sets.

The same behaviour can be noted when using the R75, R50, and R25 operations. As

shown in Table 4.6, even for these operations, the thresholds change without any cor-

relation with the percentage of resize. In other words, what should have been expected

with this test is that reducing the image size would decrease the correlation index. This

happens only in some cases like for example in the case with camera ID 8. A graphical

representation of the updated decision thresholds is available in Figure 4.3).

Figure 4.3: Thresholds values used according to the photo editing operations being tested.

4.4.3 Experiment 3 - Online photo sharing

In this experiment, the Lukáš et al. identification technique has been experimented by

applying it on pictures previously uploaded on each of OSNs websites. As described
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in section 4.3.3 the experiment was conducted in two phases. In the first one, we have

used the thresholds computed in the experiment section 4.4.1 and in the second one

the thresholds are recalculated on the downloaded images.

Confidence measure of experiment 1

The results, presented in Table 4.7, show a substantial failure of the identification

technique. On a side, this was expectable because, as already noted in the previous

section, thresholds evaluated using unmodified images imply bad performance when

classifying modified pictures.

On the other side, however, it is worth to note that these bad performances are also

much worser than the one experienced on resized pictures in experiment 1 (see 4.4.1)

and experiment 2 (see 4.4.2), especially when processing pictures retrieved from FAC

and MSP. This seems to suggest that the reason of this behavior is not only the resizing

of the processed images but also to other factors such as, for example, compression tricks

of the images retrieved from the considered OSNs/OPSs.

OSN / OPS service

ID No FAC PHB MSP

1 — 178 96 180

2 — 176 80 180

3 9 171 40 180

4 — 159 46 180

5 — 180 104 180

6 — 180 178 180

7 2 2 2 20

8 — 178 22 180

Tot. 11 1224 568 1280

Table 4.7: Number of images rejected on pictures previously uploaded on a OSN / OPS

with thresholds computed as in Experiment 1 (Resize, 4.4.1 ) .
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Confidence measure recalculated

The results, shown in Table 4.8, confirm a strong improvement of the identification

technique with respect to the previous test when analyzing pictures retrieved from

FAC and PHB. This is especially the case of pictures taken using camera with ID 3 and

4. A fair improvement is also evident for pictures taken using cameras with ID 5, 6 and

8. Instead, the identification is mostly uneffective when processing pictures retrieved

from MSP. These differences are probably due to the different compression strategies

employed by the considered OSNs/OPSs when uploading pictures. MSP is likely to be

the service that adopts the most aggressive strategy, as witnessed by results presented

in Table 4.2.

FAC PHB MSP

ID Decision

threshold

Images

rejected

(FRR)

Decision

threshold

Images

rejected

(FRR)

Decision

threshold

Images

rejected

(FRR)

1 0,0062 165 (0,9133) 0,0057 36 (0,2000) 0,0118 180 (1)

2 0,0076 175 (0,9667) 0,0090 105 (0,5833) 0,0069 179 (0,9944)

3 0,0063 18 (0,0933) 0,0067 11 (0,0611) 0,0073 152 (0,8444)

4 0,0062 2 (0,0133) 0,0073 2 (0,0111) 0,0098 168 (0,9333)

5 0,0061 14 (0,0600) 0,0193 — 0,0062 160 (0,8888)

6 0,0040 84 (0,4867) 0,0035 10 (0,0556) 0,0049 179 (0,9944)

7 0,0072 4 (0,0200) 0,0070 2 (0,0111) 0,0078 90 (0,5000)

8 0,0069 68 (0,3867) 0,0080 2 (0,0111) 0,0112 180 (1)

Tot. 530 168 1288

Table 4.8: Decision thresholds, FRR and number of images rejected on the red channel

for the tests FAC, PHB and MSP.
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4.5 Experimental analysis of the SVM identification

technique

In this section we are going to present the results of experiments described in 4.3 by

using the SVM identification technique.

4.5.1 Experiment 1 - How to correlate images of different size?

In the Table 4.9 we present the confusion matrix of the experiment SVM-SUB. The

confusion matrix is a matrix used to represent errors in assigning classes to observed

patterns in which the element in the row i and column j represents the number of

samples from class i which were classified as class j. Since there are a lot of confusion

matrices, for readability are published in Appendix A and in this section we presents

the results for each experiment in terms of images wrongly identified by the classifier.

Predicted

ID 1 2 3 4 5 6 7 8

Actual

1 144 — — — — — 6 —

2 — 147 1 — — — 2 —

3 — — 150 — — — — —

4 — — 7 143 — — — —

5 — — — — 150 — — —

6 — 4 5 — — 140 1 —

7 — — — — — — 150 —

8 — 1 3 — — — — 146

Accuracy: 97,5% (1170 on 1200)

Table 4.9: Confusion matrix for experiment SVM-Sub.

As shown in Table 4.10 also with this identification technique the best approach

to make two images of the same size is the Resize while the worst is Sub. The

reasons for this performance are the same as presented in the section 4.4.1, namely

the elimination of a large part of the original image, when processing large pictures.
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In all the remaining experiments presented in this thesis with the SVM identification

technique, when needed, the Resize technique will be used.

ID SVM-Sub SVM-Crop SVM-Resize

1 6 4 —

2 3 — —

3 — 1 —

4 7 — —

5 — — —

6 10 6 6

7 — — —

8 4 4 1

Tot. 30 15 7

Table 4.10: Number of images classified erroneously for experiments SVM-Sub, SVM-

Crop and SVM-Resize.

4.5.2 Experiment 2 - Photo editing

As described in section 4.3.2 the experiment was conducted in two phases. In the first

one, we have used the training model computed in the experiment section 4.5.1 and in

the second one the training model recalculated on the processed images.

Confidence measure of experiment 1

The results of this experiment, presented in Table 4.11, are notable. A small increase in

the number of erroneously identified images can be observed when considering pictures

processed with the ALA, ACS and ACO operations. This increase is much more signif-

icant when considering the resized images as shown in Table 4.12. In this second group

of operations, the number of wronged identified pictures is high and grows linearly with

the resize factor.

By examining in details these results, it is worth noting that there are some camera

models where the identification method performs very poorly when used with the re-
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ID SVM-ALA SVM-ACS SVM-ACO

1 1 — —

2 2 2 2

3 — — —

4 2 2 2

5 — — —

6 13 13 14

7 — — —

8 4 4 4

Tot. 22 21 22

Table 4.11: Number of images classified erroneously for experiments SVM-ALA, SVM-

ACS and SVM-ACO with training set of experiment SVM-Resize.

ID SVM-R75 SVM-R50 SVM-R25

1 — — 5

2 2 2 3

3 3 7 7

4 2 2 18

5 — 1 135

6 16 28 148

7 — — —

8 1 6 69

Tot. 24 46 385

Table 4.12: Number of images classified erroneously for experiments SVM-R75, SVM-R50

and SVM-R25 with training set of experiment SVM-Resize.

sized images such as the models 5, 6 and 8. It can be noted that if the training model is

based on pictures that have not been previously processed, the identification technique

may likely fail.
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Confidence measure recalculated

In the previous test, it can be observed that when trying to classify processed pic-

tures using a classifier that has been tuned for unmodified pictures, the identification

technique may fail. The failures are mostly due to the alteration of the pattern noise

existing in a processed image. This alteration implies a wrong classification. A natu-

ral solution to this problem consists in re-train the classifier using as training set the

processed images.

The results, presented in Table 4.13, are similar to the results shown in the previous

test. This results shows how the ALA, ACS and ACO operations did not influence the

classification by the SVM.

ID SVM-ALA SVM-ACS SVM-ACO

1 1 — —

2 2 2 2

3 — — —

4 2 2 2

5 — — —

6 13 13 13

7 — — —

8 4 4 4

Tot. 22 21 21

Table 4.13: Number of images classified erroneously for experiments SVM-ALA, SVM-

ACS and SVM-ACO with training set recalculated

The results of the identification technique, documented in Table 4.14 with a re-

trained classifier on resized images show a significant improvement in the quality of the

classification, with respect to the previous test over these images. Note that in this

test the R25 operation shows the best improvement with respect to previous test.
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4.5 Experimental analysis of the SVM identification
technique

ID SVM-R75 SVM-R50 SVM-R25

1 — — —

2 2 2 2

3 — — 7

4 2 2 —

5 — — —

6 12 12 15

7 1 1 3

8 1 3 11

Tot. 18 20 38

Table 4.14: Number of images classified erroneously for experiments SVM-R75, SVM-R50

and SVM-R25 with training set recalculated

4.5.3 Experiment 3 - Online photo sharing

As described in section 4.3.3 the experiment was conducted in two phases. In the first

one, we have used the training model computed in the experiment section 4.5.1 and in

the second one the training model recalculated on the processed images.

Confidence measure of experiment 1

The results, presented in Table 4.15, show a considerable failure of the identification

technique, especially when processing pictures retrieved from FAC and MSP.

Confidence measure recalculated

The results, documented in Table 4.16, confirm a strong improvement of the identifi-

cation technique with respect to the previous test when analyzing pictures retrieved

from FAC and PHB. This is especially the case of pictures taken using camera with ID

5, 6 and 8. Instead, the identification is mostly uneffective when processing pictures

retrieved form MSP.
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4.5 Experimental analysis of the SVM identification
technique

ID SVM-FAC SVM-PHB SVM-MSP

1 150 107 150

2 92 7 135

3 25 7 130

4 114 3 150

5 150 140 150

6 150 150 150

7 — — —

8 150 89 150

Tot. 831 503 1015

Table 4.15: Number of images classified erroneously for experiments SVM-FAC, SVM-

PHB and SVM-MSP with training set of experiment SVM-Resize.

ID SVM-FAC SVM-PHB SVM-MSP

1 7 — 58

2 15 — 71

3 6 3 26

4 — 2 31

5 1 — 31

6 10 9 29

7 3 1 27

8 4 1 56

Tot. 46 16 329

Table 4.16: Number of images classified erroneously for experiments SVM-FAC, SVM-

PHB and SVM-MSP with training set recalculated
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4.6 Comparison of the identification techniques

4.6 Comparison of the identification techniques

In this section we compare the performance of the SVM classifier against the method

of Lukáš . As the testing of the SVM classifier is executed on 150 images, to properly

compare the results we exclude from the image dataset of the Lukas method the 30

images, for camera, used for create the training sets of the SVM classifier, following we

recalculate the thresholds and the number of images rejected.

4.6.1 Experiment 1 - How to correlate images of different size?

In the Table 4.17 are compared the performance of the identification techniques for the

experiment 1. In the Sub and Crop tests SVM performs better particularly for camera

with ID 7. In the Resize test, results of the SVM technique are inline with the results

obtained by using method of Lukáš Ṅote that all, even if the total is similar, radically

changes the camera that gets worse with both a technique and with the other.

Sub Crop Resize

ID Lukáš SVM Lukáš SVM Lukáš SVM

1 14 6 — 4 — —

2 20 3 — — — —

3 13 — 6 1 7 —

4 3 7 — — — —

5 — — 1 — — —

6 5 10 — 6 — 6

7 144 — 126 — 1 —

8 4 4 2 4 — 1

Tot. 203 30 135 15 8 7

Table 4.17: Number of images classified erroneously with the method of Lukáš et al. and

the SVM classifier for experiment 1 (see 4.3.1).
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4.6 Comparison of the identification techniques

4.6.2 Experiment 2 - Photo editing

In the Table 4.18 and Table 4.19 are compared the performance of the identification

techniques for ALA, ACS and ACO operations of the experiment 2. In the first one

the identification is performed using the thresholds and the training model computed

in the experiment 1 with Resize. In the second one the thresholds and the training

model is recalculated by using the modified images.

ALA ACS ACO

ID Lukáš SVM Lukáš SVM Lukáš SVM

1 — 1 — — — —

2 3 2 3 2 3 2

3 8 — 11 — 10 —

4 2 2 2 2 3 2

5 — — — — 1 —

6 8 13 5 13 7 14

7 1 — 2 — 1 —

8 — 4 1 4 1 4

Tot. 22 22 24 21 26 22

Table 4.18: Number of images classified erroneously with the method of Lukáš et al. and

the SVM classifier for experiments 2 (see 4.3.2, ALA, ACS and ACO) with thresholds and

training model computed in experiment 1 (see 4.3.1, Resize)

.

In both cases, the total number of images correctly identified by both techniques

are in line and recalculation of the confidence measure is useless.

The performance of the identification techniques for R75, R50 and R25 operations,

shown in tables 4.20 and 4.21, seen the SVM in slightly difficulty to maintain the same

number of recognitions but the wrong number of errors is very close. Both techniques

show us that the number of wronged identified pictures grows linearly with the resize

factor.
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4.6 Comparison of the identification techniques

ALA ACS ACO

ID Lukáš SVM Lukáš SVM Lukáš SVM

1 — 1 — — — —

2 2 2 2 2 2 2

3 9 — 9 — 9 —

4 1 2 1 2 1 2

5 — — — — — —

6 5 13 5 13 5 13

7 1 — 1 — — —

8 — 4 — 4 — 4

Tot. 18 22 18 21 17 21

Table 4.19: Number of images classified erroneously with the method of Lukáš et al. and

the SVM classifier for experiments 2 (see 4.3.2, ALA, ACS and ACO) with thresholds and

training model recalculated on processed images

.

R75 R50 R25

ID Lukáš SVM Lukáš SVM Lukáš SVM

1 — — — — 2 5

2 2 2 2 2 13 3

3 9 3 14 7 46 7

4 3 2 7 2 50 18

5 — — 1 1 103 135

6 9 16 10 28 94 148

7 1 — 2 — 2 —

8 2 1 2 6 37 69

Tot. 26 24 38 46 347 385

Table 4.20: Number of images classified erroneously with the method of Lukáš et al. and

the SVM classifier for experiments 2 (see 4.3.2, R75, R50 and R25) with thresholds and

training model recalculated in experiment 1 (see 4.3.1, Resize).
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4.6 Comparison of the identification techniques

R75 R50 R25

ID Lukáš SVM Lukáš SVM Lukáš SVM

1 — — — — 2 —

2 2 2 — 2 7 2

3 9 — — — 8 7

4 1 2 1 2 2 —

5 — — — — — —

6 5 12 6 12 11 15

7 1 1 1 1 1 3

8 — 1 — 3 4 11

Tot. 18 18 8 20 35 38

Table 4.21: Number of images classified erroneously with the method of Lukáš et al. and

the SVM classifier for experiments 2 (see 4.3.2, R75, R50 and R25) with thresholds and

training model recalculated on processed images

.
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4.6 Comparison of the identification techniques

4.6.3 Experiment 3 - Online photo sharing

In the Tables 4.22 and 4.23 are compared the performance of the identification tech-

niques for FAC, PHB and MSP online social networsk. In the first one the identification

is performed using the thresholds and the training model computed in the experiment

1 with Resize. In the second one the thresholds and the training model is recalculated

by using the downloaded images.

FAC PHB MSP

ID Lukáš SVM Lukáš SVM Lukáš SVM

1 149 150 78 107 150 150

2 146 92 65 7 150 135

3 143 25 32 7 150 130

4 130 114 31 3 150 150

5 150 150 78 140 150 150

6 150 150 148 150 150 150

7 1 — 1 — 17 —

8 148 150 19 89 150 150

Tot. 1017 831 452 503 1067 1015

Table 4.22: Number of images classified erroneously with the method of Lukáš et al. and

the SVM classifier for experiments 3 (see 4.3.3, FAC, PHB and MSP) with thresholds and

training model computed in experiment 1 (see 4.3.1, Resize)

Results shows that SVM technique performs better than Lukáš et al. on images

strongly decreased in quality as those downloaded from FAC and MSP. This trend is

more noticeable in the test with the thresholds and training model recalculated. Here

the results are fine when compared to the SVM method Lukas.

The bad performance of the identification techniques on pictures retrieved from

OSNs/OPSs may also be due to other reasons, apart from the image compression.

As a matter of fact, it can not be excluded that OSNs/OPSs may add some kind of

“watermarking” to all the photos that flow on their websites. Such possibility could

have two opposite effects from the Image Forensics point of view. On the one hand,
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4.6 Comparison of the identification techniques

FAC PHB MSP

ID Lukáš SVM Lukáš SVM Lukáš SVM

1 137 7 30 — 150 58

2 145 15 84 — 149 71

3 14 6 7 3 126 26

4 2 — 2 2 143 31

5 9 1 — — 134 31

6 73 10 9 9 149 29

7 3 3 1 1 76 27

8 58 4 1 1 150 56

Tot. 441 46 134 16 1077 329

Table 4.23: Number of images classified erroneously with the method of Lukáš et al. and

the SVM classifier for experiments 3 (see 4.3.3, FAC, PHB and MSP) with thresholds and

training model recalculated on processed images

the inscription of a watermark on a picture could alter its inner structure and fool the

identification process, thus leading to a wrong classification. On the other hand, if the

pictures have been previously “watermarked” by the OSNs/OPSs, the eventual “dis-

covery” of the adopted watermarking technique could give useful hints in the direction

of establishing which is the OSN/OPS service that hosted the image under scrutiny.

In this case, what will be assessed is the OSN/OPS that processed the image and not

which camera model were adopted to shoot the photo.
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Chapter 5

Conclusions

In this thesis we present our work about the problem of the source camera identification.

This problem is especially relevant in the digital forensic science, where determining

the source of a given digital image can be critical in many trials.

The source camera identification requires to understand the processes involved in

the creation of the digital images as well as the identification of the factors which

could support or prevent the source camera identification. In particular, a key factor

supporting the camera identification is the image noise, a variation of the digital signal

characteristic of each camera. On the other hand, a critical issue able to prevent the

source camera identification is the tampering of the image, which can alter the data

enough to make the identification process ineffective.

In this thesis is presented an extended experimental evaluation of one of the most

effective source camera identification techniques proposed so far, by Lukáš et al.; more-

over, here is presented a new technique for classification of images to the right source

camera via an SVM classifier. Both methods uses the characteristic noise left by the

sensor on a digital picture as a fingerprint in order to identify the source camera used

to take the picture.

The aim of the experiments is to assess the effectiveness of this techniques when
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used with images previously modified using several common image-processing functions

coming with photo-editing tools. Moreover, the techniques are applied to photos passed

through Online Social Networks (OSN) or Online Photo Sharing (OPS) websites, with-

out any human modification but only elaborated by such Web 2.0 tools.

The results confirm that, in several cases, the methods are resilient to the mod-

ifications introduced by the considered image-processing functions. However, in the

experiments it has been possible to identify several cases where the quality of the

identification process was deteriorated because of the noise introduced by the image-

processing. In addition, when dealing with Online Social Networks and Online Photo

Sharing services, it has been noted that some of them process and modify the uploaded

pictures. These modifications make ineffective, in many cases, the methods. However,

the results of the tests show that the classification of the altered images may perform

very poorly if the classifiers have been tuned using unmodified images. This problem

can be fixed by tuning the classifiers according to a data set of altered images. Con-

sequently, in the method of Lukáš et al. by lowering the decision thresholds used to

establish whether a picture has been taken with a given camera while ,in the SVM

method, by defining a new training model. In this new configuration, the methods

confirms their effectiveness, even when processing altered images. However, there are

processing operations, such as resizing and/or increasing the compression factor of a

JPEG picture, which seems to have a negative effect on the results of the classification.

As a side effect of the tests, it was noticed that the use of a Resize operation seems

to be preferable to a Crop one when calculating the correlation between two images of

different sizes.

The decrease of the threshold involves, nonetheless, several problems while choosing

which one to use during a real investigation on a photographic exhibit. In fact, if the

threshold computation is performed on a set of “unaltered” images, then the obtained

threshold will be greater than the correlation index of a given, altered, image under
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scrutiny. Otherwise, if the computation of the decision threshold is computed on a set

of altered images then the FRR is increased.

The research also investigates if and how OSN/OPS services modify the images that

transit on their websites, and tries to establish if the methods presented in this thesis

are able to correctly identify images modified in this way. The investigation has been

conducted by means of three tests. The first determines which OSN/OPS, among a set

of them containing some of the most popular ones, alters the pictures.

In the second test, the source camera identification methods are applied on photos

that have been previously uploaded on the OSNs/OPSs scrutinized in the above step.

The results show a significant inadequacy of the identification methods when using the

same decision threshold, and training model, computed for original images.

The last test performed on the OSN/OPS systems has been conducted on the same

data set of the second test, but using threshold values and training model computed on

images stored and downloaded from the examined OSNs/OPSs. The results validate

and confirm the expectations that the identification technique behaves better, especially

the SVM method, when using a threshold or training model that have been extracted

in the “correct” way. Despite this, the identification revealed to be unsuccessful in

many cases, mostly because of the compression strategies employed by the considered

OSNs/OPSs in order to reduce the size of uploaded images.

Another factor, that can be further analyzed in a future work, is that the OS-

Ns/OPSs could watermark in some way the images that flow on their websites. The

watermarking operations while from one hand could contribute to the bad performance

of the Lukáš et al. method, on the other hand could give useful hints in the direction

of establishing the OSN/OPS that handled a given photo. In a few words, it would

be possible to distinguish if a given photo under investigation has been posted to an

OSN/OPS website just analyzing some “hidden” characteristics of the photo without

relying on its “evident” origin.

63



References

[1] Adobe Photoshop Web Site. http://www.adobe.com/products/photoshop/,

June 2010. 40

[2] Sevinc Bayram, Husrev T. Sencar, Nasir D. Memon, and Ismail Av-

cibas. Source Camera Identification Based on CFA Interpolation. In

ICIP (3), pages 69–72, 2005. 25

[3] H. Blitzer, K. Stein-Ferguson, and J. Huang. Understanding Forensic

Digital Imaging. Academic Press, 2008.

[4] Cambridge In Colour - Understanding digital camera sensors. http://

www.cambridgeincolour.com/tutorials/camera-sensors.htm, April 2011. 15

[5] Camera Imaging Products Association. http://cipa.jp/english/index.

html, January 2011. 1

[6] Camera Labs. http://www.cameralabs.com/reviews/Canon_EOS_1000D_

Rebel_XS/verdict.shtml, June 2010. 36

[7] Eoghan Casey. Digital Evidence and Computer Crime: Forensic Science, Com-

puters, and the Internet with Cdrom. Academic Press, Inc., Orlando, FL, USA,

1st edition, 2000. 7

64

http://www.adobe.com/products/photoshop/
http://www.cambridgeincolour.com/tutorials/camera-sensors.htm
http://www.cambridgeincolour.com/tutorials/camera-sensors.htm
http://cipa.jp/english/index.html
http://cipa.jp/english/index.html
http://www.cameralabs.com/reviews/Canon_EOS_1000D_Rebel_XS/verdict.shtml
http://www.cameralabs.com/reviews/Canon_EOS_1000D_Rebel_XS/verdict.shtml


REFERENCES

[8] Aniello Castiglione, Giuseppe Cattaneo, Maurizio Cembalo, and Um-

berto Ferraro Petrillo. Source Camera Identification in Real Practice:

A Preliminary Experimentation. In BWCCA, pages 417–422, 2010.

[9] Aniello Castiglione, Giuseppe Cattaneo, Maurizio Cembalo, and Um-

berto Ferraro Petrillo. Experimentations with Source Camera Iden-

tification and Online Social Networks. 2011.

[10] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector

machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/

libsvm. 35

[11] Mo Chen, Jessica J. Fridrich, Miroslav Goljan, and Jan Lukás. Deter-

mining Image Origin and Integrity Using Sensor Noise. IEEE Transactions

on Information Forensics and Security, 3(1):74–90, 2008. 25

[12] K. S. Choi, E. Y. Lam, and K. K. Y. Wong. Source camera identification

using footprints from lens aberration. In Proceedings of the SPIE, pages

69–72, 2006. 25

[13] Chris Putnam. http://blog.facebook.com/blog.php?topic_id=

185341929641, June 2010.

[14] Frederick B. Cohen. Fundamentals of Digital Forensic Evidence. In

Handbook of Information and Communication Security, pages 789–808. 2010.

[15] Daubert v. Merrell - Dow Pharmaceuticals Inc., . http://www.law.

cornell.edu/supct/html/92-102.ZO.html, 1993. 7

[16] DFRWS. A roadmap for digital forensics research. Technical report, Dig-

ital Forensic Research Workshop, November 2001. Report From the First Digital

Forensic Research Workshop (DFRWS). 5

65

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://blog.facebook.com/blog.php?topic_id=185341929641
http://blog.facebook.com/blog.php?topic_id=185341929641
http://www.law.cornell.edu/supct/html/92-102.ZO.html
http://www.law.cornell.edu/supct/html/92-102.ZO.html


REFERENCES

[17] Miroslav Goljan. Digital Camera Identification from Images - Estimat-

ing False Acceptance Probability. In IWDW, pages 454–468, 2008.

[18] Miroslav Goljan, Jessica J. Fridrich, and Tomas Filler. Large Scale

Test of Sensor Fingerprint Camera Identification. Proc. SPIE, Electronic

Imaging, Media Forensics and Security XI, 2009. 25, 26

[19] Google Picasa. http://picasatutorials.com/2009/04/

picasa-tip-im-feeling-lucky/, June 2010. 2

[20] Hitwise Intelligenze - MySpace moves into first position .

http://weblogs.hitwise.com/bill-tancer/2006/07/myspace_moves_into_

1_position.html, March 2011.

[21] Gerald C. Holst. CCD arrays, cameras, and displays. JCD Pub. ; SPIE Optical

Engineering Press, 1996.

[22] C. Holt. Two-channel likelihood detectors for arbitrary linear chan-

nel distortion. Acoustics, Speech and Signal Processing, IEEE Transactions on,

35(3):267 – 273, 1987.

[23] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A Practical Guide

to Support Vector Classification, 2000.

[24] James R. Janesick and Morley Blouke. Scientific Charge-Coupled De-

vices: Past, Present, & Future. Opt. Photon. News, 6(4):16–20, 1995.

[25] Mehdi Kharrazi, Husrev T. Sencar, and Nasir D. Memon. Blind Source

Camera Identification. In ICIP, pages 709–712, 2004. 25

[26] M. Kivanc Mihcak, I. Kozintsev, and K. Ramchandran. Spatially Adap-

tive Statistical Modeling of Wavelet Image Coefficients and its Appli-

cation to Denoising. In ICASSP ’99: Proceedings of the Acoustics, Speech, and

66

http://picasatutorials.com/2009/04/picasa-tip-im-feeling-lucky/
http://picasatutorials.com/2009/04/picasa-tip-im-feeling-lucky/
http://weblogs.hitwise.com/bill-tancer/2006/07/myspace_moves_into_1_position.html
http://weblogs.hitwise.com/bill-tancer/2006/07/myspace_moves_into_1_position.html


REFERENCES

Signal Processing, IEEE International Conference, pages 3253–3256, Washington,

DC, USA, 1999. IEEE Computer Society. 27, 34

[27] Tran Van Lanh, Kai-Sen Chong, Sabu Emmanuel, and Mohan S.

Kankanhalli. A Survey on Digital Camera Image Forensic Methods.

In ICME, pages 16–19, 2007.

[28] Yangjing Long and Yizhen Huang. Image Based Source Camera Iden-

tification using Demosaicking. In Multimedia Signal Processing, 2006 IEEE

8th Workshop on, pages 419 –424, 2006. 26

[29] Jan Lukás, Jessica J. Fridrich, and Miroslav Goljan. Digital Camera

Identification from Sensor Pattern Noise. IEEE Transactions on Information

Forensics and Security, 1(2):205–214, 2006. 25, 33

[30] Weiqi Luo, Zhenhua Qu, Feng Pan, and Jiwu Huang. A of passive

technology for digital image forensics. Frontiers of Computer Science in

China, 1(2):166–179, 2007.

[31] MathWorks MATLAB Web Site. http://www.mathworks.com/products/

matlab/, June 2010. 34

[32] M. Kivan Mihak, Igor Kozintsev, and Kannan Ramchandran. Spatially

Adaptive Statistical Modeling Of Wavelet Image Coefficients And Its

Application To Denoising. In in Proc. IEEE Int. Conf. Acoust., Speech, and

Signal Proc, pages 3253–3256, 1999.

[33] Kara L. Nance and Daniel J. Ryan. Legal Aspects of Digital Forensics:

A Research Agenda. In HICSS, pages 1–6, 2011. 7

[34] Photobucket About us page . http://photobucket.com/about, March 2011.

43

67

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://photobucket.com/about


REFERENCES

[35] Royal Pingdom. http://royal.pingdom.com/2010/01/22/

internet-2009-in-numbers/, June 2010.

[36] H. T. Sencar and N. Memon. Overview of State-of-the-Art in Digital

Image Forensics.

68

http://royal.pingdom.com/2010/01/22/internet-2009-in-numbers/
http://royal.pingdom.com/2010/01/22/internet-2009-in-numbers/


Appendix A

Confusion matrices of SVM

experiments

In this appendix we present all the confusion matrices of the SVM experimental analysis

described in section 4.5.

A confusion matrix is an n-dimensional square matrix, where n is the number of dis-

tinct target values. The row indexes of a confusion matrix correspond to actual values

observed and used for model testing. The column indexes correspond to predicted val-

ues produced by applying the model to the test data. For any pair of actual/predicted

indexes, the value indicates the number of records classified in that pairing.

A.1 Experiment 1 - How to correlate images of different

size?
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A.1 Experiment 1 - How to correlate images of different size?

Predicted

ID 1 2 3 4 5 6 7 8

Actual

1 144 — — — — — 6 —

2 — 147 1 — — — 2 —

3 — — 150 — — — — —

4 — — 7 143 — — — —

5 — — — — 150 — — —

6 — 4 5 — — 140 1 —

7 — — — — — — 150 —

8 — 1 3 — — — — 146

Accuracy: 97,5% (1170 on 1200)

Table A.1: Confusion matrix for experiment SVM-Sub.

Predicted

ID 1 2 3 4 5 6 7 8

Actual

1 146 — — — — — 4 —

2 — 150 — — — — — —

3 — — 149 — — — 1 —

4 — — — 150 — — — —

5 — — — — 150 — — —

6 — 4 — — — 144 2 —

7 — — — — — — 150 —

8 — 4 — — — — — 146

Accuracy: 98,75% (1185 on 1200)

Table A.2: Confusion matrix for experiment SVM-Crop.

Predicted

ID 1 2 3 4 5 6 7 8

Actual

1 150 — — — — — — —

2 — 150 — — — — — —

3 — — 150 — — — — —

4 — — — 150 — — — —

5 — — — — 150 — — —

6 — — — — — 144 6 —

7 — — — — — — 150 —

8 — — — — — — 1 149

Accuracy: 99,4166% (1193 on 1200)

Table A.3: Confusion matrix for experiment SVM-Resize.
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A.2 Experiment 2 - Photo editing

A.2 Experiment 2 - Photo editing

Confidence measure of experiment 1

Predicted

ID 1 2 3 4 5 6 7 8

Actual

1 149 — — — — — 1 —

2 — 148 — — — — 2 —

3 — — 150 — — — — —

4 — — 2 148 — — — —

5 — — — — 150 — — —

6 — — — — — 137 13 —

7 — — — — — — 150 —

8 — — — — — — 4 146

Accuracy: 98,1667% (1178 on 1200)

Table A.4: Confusion matrix for experiment SVM-ALA with training set of experiment

SVM-Resize.

Predicted

ID 1 2 3 4 5 6 7 8

Actual

1 150 — — — — — — —

2 — 148 — — — — 2 —

3 — — 150 — — — — —

4 — — 2 148 — — — —

5 — — — — 150 — — —

6 — — — — — 137 13 —

7 — — — — — — 150 —

8 — — — — — — 4 146

Accuracy: 98,25% (1179 on 1200)

Table A.5: Confusion matrix for experiment SVM-ACS with training set of experiment

SVM-Resize.
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A.2 Experiment 2 - Photo editing

Predicted

ID 1 2 3 4 5 6 7 8

Actual

1 150 — — — — — — —

2 — 148 — — — — 2 —

3 — — 150 — — — — —

4 — — 2 148 — — — —

5 — — — — 150 — — —

6 — — — — — 136 14 —

7 — — — — — — 150 —

8 — — — — — — 4 146

Accuracy: 98,1667% (1178 on 1200)

Table A.6: Confusion matrix for experiment SVM-ACO with training set of experiment

SVM-Resize.

Predicted

ID 1 2 3 4 5 6 7 8

Actual

1 150 — — — — — — —

2 — 148 — — — — 2 —

3 — — 147 — — — 3 —

4 — — — 148 — — 2 —

5 — — — — 150 — — —

6 — — — — — 134 16 —

7 — — — — — — 150 —

8 — — — — — — 1 149

Accuracy: 98% (1176 on 1200)

Table A.7: Confusion matrix for experiment SVM-R75 with training set of experiment

SVM-Resize.

Predicted

ID 1 2 3 4 5 6 7 8

Actual

1 150 — — — — — — —

2 — 148 — — — — 2 —

3 — — 143 — — — 7 —

4 — — — 148 — — 2 —

5 — — — — 149 — 1 —

6 — — — — — 122 28 —

7 — — — — — — 150 —

8 — — — — — — 6 144

Accuracy: 96,1667% (1154 on 1200)

Table A.8: Confusion matrix for experiment SVM-R50 with training set of experiment

SVM-Resize.
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A.2 Experiment 2 - Photo editing

Predicted

ID 1 2 3 4 5 6 7 8

Actual

1 145 — — — — — 5 —

2 — 147 — — — — 3 —

3 — — 143 — — — 7 —

4 — — 10 132 — — 8 —

5 — 1 — — 15 — 134 —

6 — — — — — 2 148 —

7 — — — — — — 150 —

8 — — — — — — 69 81

Accuracy: 67,9167% (815 on 1200)

Table A.9: Confusion matrix for experiment SVM-R25 with training set of experiment

SVM-Resize.
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A.2 Experiment 2 - Photo editing

Confidence measure recalculated

Predicted

ID 1 2 3 4 5 6 7 8

Actual

1 149 — — — — — 1 —

2 — 148 — — — — 2 —

3 — — 150 — — — — —

4 — — 2 148 — — — —

5 — — — — 150 — — —

6 — — — — — 137 13 —

7 — — — — — — 150 —

8 — — — — — — 4 146

Accuracy: 98.1667% (1178 on 1200)

Table A.10: Confusion matrix for experiment SVM-ALA with training set recalculated.

Predicted

ID 1 2 3 4 5 6 7 8

Actual

1 150 — — — — — — —

2 — 148 — — — — 2 —

3 — — 150 — — — — —

4 — — 2 148 — — — —

5 — — — — 150 — — —

6 — — — — — 137 13 —

7 — — — — — — 150 —

8 — — — — — — 4 146

Accuracy: 98.25% (1179 on 1200)

Table A.11: Confusion matrix for experiment SVM-ACS with training set recalculated.

Predicted

ID 1 2 3 4 5 6 7 8

Actual

1 150 — — — — — — —

2 — 148 — — — — 2 —

3 — — 150 — — — — —

4 — — 2 148 — — — —

5 — — — — 150 — — —

6 — — — — — 137 13 —

7 — — — — — — 150 —

8 — — — — — — 4 146

Accuracy: 98.25% (1179 on 1200)

Table A.12: Confusion matrix for experiment SVM-ACO with training set recalculated.
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A.2 Experiment 2 - Photo editing

Predicted

ID 1 2 3 4 5 6 7 8

Actual

1 150 — — — — — — —

2 — 148 2 — — — — —

3 — — 150 — — — — —

4 — — 2 148 — — — —

5 — — — — 150 — — —

6 — — 10 — — 138 2 —

7 — — 1 — — — 149 —

8 — — — — — — 1 149

Accuracy: 98.5% (1182 on 1200)

Table A.13: Confusion matrix for experiment SVM-R75 with training set recalculated.

Predicted

ID 1 2 3 4 5 6 7 8

Actual

1 150 — — — — — — —

2 — 148 2 — — — — —

3 — — 150 — — — — —

4 — — 2 148 — — — —

5 — — — — 150 — — —

6 — — 12 — — 138 — —

7 — — 1 — — — 149 —

8 — — 3 — — — — 147

Accuracy: 98.3333% (1180 on 1200)

Table A.14: Confusion matrix for experiment SVM-R50 with training set recalculated.

Predicted

ID 1 2 3 4 5 6 7 8

Actual

1 150 — — — — — — —

2 — 148 — 2 — — — —

3 — — 143 7 — — — —

4 — — — 150 — — — —

5 — — — — 150 — — —

6 — 1 5 9 — 135 — —

7 — — 2 1 — — 147 —

8 — 1 3 7 — — — 139

Accuracy: 96.8333% (1162 on 1200)

Table A.15: Confusion matrix for experiment SVM-R25 with training set recalculated.
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A.3 Experiment 3 - Online photo sharing

A.3 Experiment 3 - Online photo sharing

Confidence measure of experiment 1
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A.3 Experiment 3 - Online photo sharing

Predicted

ID 1 2 3 4 5 6 7 8

Actual

1 0 2 — — — — 148 —

2 — 58 — — — — 92 —

3 — — 125 — — — 25 —

4 — 1 27 36 — — 86 —

5 — — — — 0 — 150 —

6 — — — — — 0 150 —

7 — — — — — — 150 —

8 — — — — — — 150 0

Accuracy: 30,75% (369 on 1200)

Table A.16: Confusion matrix for experiment SVM-FAC with training set of experiment

SVM-Resize.

Predicted

ID 1 2 3 4 5 6 7 8

Actual

1 43 — — — — — 107 —

2 — 143 — — — — 7 —

3 — — 143 — — — 7 —

4 — — 1 147 — — 2 —

5 — 5 56 — 10 — 79 —

6 — — — — — 0 150 —

7 — — — — — — 150 —

8 — — — — — — 89 61

Accuracy: 58,0833% (697 on 1200)

Table A.17: Confusion matrix for experiment SVM-PHB with training set of experiment

SVM-Resize.
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A.3 Experiment 3 - Online photo sharing

Predicted

ID 1 2 3 4 5 6 7 8

Actual

1 0 — — — — — 150 —

2 — 15 1 — — — 134 —

3 — 2 20 — — — 128 —

4 — 2 1 0 — — 147 —

5 — — — — 0 — 150 —

6 — — — — — 0 150 —

7 — — — — — — 150 —

8 — 1 — — — — 149 0

Accuracy: 15,4167% (185 on 1200)

Table A.18: Confusion matrix for experiment SVM-MSP with training set of experiment

SVM-Resize.
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A.3 Experiment 3 - Online photo sharing

Confidence measure recalculated

Predicted

ID 1 2 3 4 5 6 7 8

Actual

1 143 5 — — 1 — — 1

2 12 135 — — — 2 — 1

3 5 1 144 — — — — —

4 — — — 150 — — — —

5 — 1 — — 149 — — —

6 9 — — — — 140 — 1

7 3 — — — — — 147 —

8 1 2 — — — 1 — 146

Accuracy: 96.1667% (1154 on 1200)

Table A.19: Confusion matrix for experiment SVM-FAC with training set recalculated.

Predicted

ID 1 2 3 4 5 6 7 8

Actual

1 150 — — — — — — —

2 — 150 — — — — — —

3 1 2 147 — — — — —

4 — 2 — 148 — — — —

5 — — — — 150 — — —

6 1 7 1 — — 141 — —

7 — 1 — — — — 149 —

8 1 — — — — — — 149

Accuracy: 98.6667% (1184 on 1200)

Table A.20: Confusion matrix for experiment SVM-PHB with training set recalculated.

Predicted

ID 1 2 3 4 5 6 7 8

Actual

1 92 33 1 1 8 10 1 4

2 10 79 2 6 7 29 1 16

3 8 5 124 — — 7 — 6

4 4 5 1 119 4 15 — 2

5 9 1 — — 119 18 — 3

6 8 5 1 — 7 121 — 8

7 5 7 — — 5 4 123 6

8 15 19 1 1 3 17 — 94

Accuracy: 72.5833% (871 on 1200)

Table A.21: Confusion matrix for experiment SVM-MSP with training set recalculated.
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Appendix B

MATLAB code

B.1 ComputePRNU.m

This file implements the extraction of the PRNU from an image.

1 func t i on [ f i l t e r e d Img ]=ComputePRNU( img , sigma0 )

2 s i z e img=s i z e ( img ) ;

3 [ row , c o l ]= s i z e ( s i z e img ) ;

4 i f ( c o l == 2)

5 nChannels=1;

6 e l s e

7 nChannels=3;

8 end

9 % Star t

10 f o r num Channel=1: nChannels

11 imgNoiseChannel=img ( : , : , num Channel ) ;

12 [C, S]=wavedec2 ( imgNoiseChannel , 4 , ’ db8 ’ ) ;

13 f p r i n t f ( ’Compute PRNU (db8 ) : wa i t ing . . .

14 Star t func t i on on channel %d\n ’ , num Channel ) ;

15 f o r numLevel=1:4

16 [ cH , cV , cD]= det coe f 2 ( ’ a l l ’ ,C, S , numLevel ) ;

17 cH2=cH . ˆ 2 ;

18 cV2=cV . ˆ 2 ;
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B.1 ComputePRNU.m

19 cD2=cD . ˆ 2 ;

20 f o r numKernel=1:4

21 ke rne l=f s p e c i a l ( ’ average ’ ,

22 [ numKernel+numKernel+1 numKernel+numKernel +1 ] ) ;

23 cHsigma2 ( : , : , numKernel)= im f i l t e r ( cH2 , kerne l , ’ r e p l i c a t e ’ ) ;

24 cVsigma2 ( : , : , numKernel)= im f i l t e r ( cV2 , kerne l , ’ r e p l i c a t e ’ ) ;

25 cDsigma2 ( : , : , numKernel)= im f i l t e r (cD2 , kerne l , ’ r e p l i c a t e ’ ) ;

26 cHsigma2 ( : , : , numKernel)=cHsigma2 ( : , : , numKernel)−( sigma0 ˆ2 ) ;

27 cVsigma2 ( : , : , numKernel)=cVsigma2 ( : , : , numKernel)−( sigma0 ˆ2 ) ;

28 cDsigma2 ( : , : , numKernel)=cDsigma2 ( : , : , numKernel)−( sigma0 ˆ2 ) ;

29 [ r , c , v]= f i nd ( cHsigma2 ( : , : , numKernel ) < 0 ) ;

30 f o r m=1: l ength ( r )

31 cHsigma2 ( r (m) , c (m) , numKernel )=0;

32 end

33 [ r , c , v]= f i nd ( cVsigma2 ( : , : , numKernel ) < 0 ) ;

34 f o r m=1: l ength ( r )

35 cVsigma2 ( r (m) , c (m) , numKernel )=0;

36 end

37 [ r , c , v]= f i nd ( cDsigma2 ( : , : , numKernel ) < 0 ) ;

38 f o r m=1: l ength ( r )

39 cDsigma2 ( r (m) , c (m) , numKernel )=0;

40 end

41 end

42 MinVarianzaCH= MinimumVariance ( cHsigma2 ( : , : , 1 ) ,

43 cHsigma2 ( : , : , 2 ) ,

44 cHsigma2 ( : , : , 3 ) ,

45 cHsigma2 ( : , : , 4 ) ) ;

46 MinVarianzaCV= MinimumVariance ( cVsigma2 ( : , : , 1 ) ,

47 cVsigma2 ( : , : , 2 ) ,

48 cVsigma2 ( : , : , 3 ) ,

49 cVsigma2 ( : , : , 4 ) ) ;

50 MinVarianzaCD= MinimumVariance ( cDsigma2 ( : , : , 1 ) ,

51 cDsigma2 ( : , : , 2 ) ,
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B.2 getResidulaNoise.m

52 cDsigma2 ( : , : , 3 ) ,

53 cDsigma2 ( : , : , 4 ) ) ;

54 cHden=cH . ∗ ( MinVarianzaCH . / ( MinVarianzaCH+(sigma0 ˆ 2 ) ) ) ;

55 cVden=cV . ∗ ( MinVarianzaCV . / ( MinVarianzaCV+(sigma0 ˆ 2 ) ) ) ;

56 cDden=cD . ∗ ( MinVarianzaCD . / ( MinVarianzaCD+(sigma0 ˆ 2 ) ) ) ;

57

58 C=getModifyC (C, cHden , cVden , cDden , S , numLevel ) ;

59 c l e a r cHsigma2 cVsigma2 cDsigma2 ke rne l MinVarianzaCH MinVarianzaCV

60 MinVarianzaCD cHden cVden cDden cH2 cV2 cD2 cH cV cD r c v ;

61 end

62 f i l t e r e d Img ( : , : , num Channel)=waverec2 (C, S , ’ db8 ’ ) ;

63 end

64

65 func t i on [ minvar ]=MinimumVariance (A,B,C,D)

66 minvar =min (A,B) ;

67 minvar =min (minvar ,C) ;

68 minvar =min (minvar ,D) ;

69 end

B.2 getResidulaNoise.m

This function returns, give an image, the image filtered with the PRNU filter and the

residual noise.

1 func t i on [ r e s i d u a l n o i s e , f i l t e r im a g e ]= getRes idua lNo i s e ( Image )

2 % Gives an image , t h i s f unc t i on r e tu rn s the image f i l t e r e d with the PRNU

3 % f i l t e r and the r e s i d u a l no i s e .

4

5 f i l t e r im a g e=ComputePRNU( Image , 5 ) ;

6 r e s i d u a l n o i s e=double ( Image)−double ( f i l t e r im a g e ) ;
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B.3 ComputeReferencePattern.m

B.3 ComputeReferencePattern.m

This function returns an image representing the residual noise that is the average of

several residual noise obtained with the function getResidualNoise.

1 func t i on [ r e f e r en c ePa t t e rn ]=ComputeReferencePattern ( path , numbersOfImages )

2

3 % Return the average o f the r e s i d u a l no i s e

4 % on #numbersOfImages images in the d i r e c t o r y path

5

6 f l a g =0;

7 numeroImmagini=0;

8 d i r e c t o r y = d i r ( path ) ;

9 f i l e s = { d i r e c t o r y . name } ;

10

11 f o r i = 1 : l ength ( f i l e s )

12

13 i f i > ( numbersOfImages+2)

14 break ;

15 end

16

17 i f ˜ d i r e c t o r y ( i ) . i s d i r

18 numeroImmagini=numeroImmagini+1;

19 i f ( f l a g==0)

20 f p r i n t f ( ’Compute Photo %d\n ’ , i −2);

21 img=imread ( s t r c a t ( percorso , char ( f i l e s ( i ) ) ) ) ;

22 [ r e s i d u a l n o i s e ]= getRes idua lNo i s e ( img ) ;

23 immagineMedia=r e s i d u a l n o i s e ;

24 f l a g =1;

25 c l e a r img r e s i d u a l n o i s e ;

26 e l s e

27 f p r i n t f ( ’Compute Photo %d\n ’ , i −2);

28 img=double ( imread ( s t r c a t ( percorso , char ( f i l e s ( i ) ) ) ) ) ;

29 [ r e s i d u a l n o i s e ]= getRes idua lNo i s e ( img ) ;

83



B.4 correlation.m

30 immagineMedia=immagineMedia+r e s i d u a l n o i s e ;

31 c l e a r img r e s i d u a l n o i s e ;

32 end

33 end

34 end

35 immagineMedia=immagineMedia . / numeroImmagini ;

36 r e f e r en c ePa t t e rn=immagineMedia ;

B.4 correlation.m

This file computes the correlation pixel-by-pixel between two images of the same di-

mension.

1 func t i on [ co r r ] = c o r r e l a t i o n ( img , patt )

2 % Computes the c o r r e l a t i o n between two images ( matrix )

3

4 img=double ( img ) ;

5 patt=double ( patt ) ;

6

7 % check same dimensions

8 i f s i z e ( img ) ˜= s i z e ( patt )

9 d i sp ( ’ d imes ions not equal ’ ) ;

10 re turn

11 end

12

13 [ r1 , c1 , nc1 ]= s i z e ( img ) ;

14 [ r2 , c2 , nc2 ]= s i z e ( patt ) ;

15

16 i f ( r1˜=r2 | | c1˜=c2 | | nc1˜=nc2 )

17 d i sp ( ’ d imes ions not equal ’ ) ;

18 end ;

19

20 s i z e img = s i z e ( img ) ;
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B.4 correlation.m

21 [ row , c o l ] = s i z e ( s i z e img ) ;

22 i f ( c o l == 2)

23 nCanali = 1 ;

24 e l s e

25 nCanali = 3 ;

26 end

27 co r r = ze ro s (1 , nCanali ) ;

28 f o r cana l e = 1 : nCanali

29 media img = mean(mean( img ( : , : , cana le ) ) ) ;

30 media patt = mean(mean( patt ( : , : , cana l e ) ) ) ;

31

32 somma = 0 ;

33 f o r i = 1 : s i z e ( img , 1 )

34 f o r j = 1 : s i z e ( img , 2 )

35 somma = somma + ( img ( i , j , cana l e ) − media img ) ∗

36 ( patt ( i , j , cana l e ) − media patt ) ;

37 end

38 end

39

40 somma1 = 0 ;

41 somma2 = 0 ;

42 f o r i = 1 : s i z e ( img , 1)

43 f o r j = 1 : s i z e ( img , 2)

44 somma1 = somma1 + ( img ( i , j , cana l e ) − media img ) ˆ2 ;

45 somma2 = somma2 + ( patt ( i , j , cana le ) − media patt ) ˆ 2 ;

46 end

47 end

48 den = sq r t (somma1) ∗ s q r t (somma2 ) ;

49 co r r (1 , cana le ) = somma / den ;

50 end
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B.5 ComputeCorrelations.m

B.5 ComputeCorrelations.m

This script computes the correlation between all the images found in a given direc-

tory folder and its subdirectory and the reference pattern of the cameras previously

computed. It produces a comma separated value formatted file.

1 func t i on computeCorre lat ions ( )

2 % input f o l d e r

3 f o l d e r=’ /img/ALA/ ’

4 NUMFILES=180;

5 TESTNAME=’ Cor r e l a t i on s ALA’ ;

6 BRIEFNAME=’CORRESALA’ ;

7

8 % r e f e r e n c e pattern f o l d e r

9 RPFolder = ’ /img/RP/ ’ ;

10 RPname = { ’ RP 01 Canon EOS 400D.mat ’ ;

11 ’RP 02 Canon EOS 1000D.mat ’ ;

12 ’RP 03 Canon Powershot A400 i s t an c e A.mat ’ ;

13 ’RP 04 Canon Powershot A400 i s t an c e B.mat ’ ;

14 ’ RP 05 Panasonic Lumix DMC−FZ20 .mat ’ ;

15 ’ RP 06 Panasonic Lumix DMC−FS5 .mat ’ ;

16 ’RP 07 Kodak EasyShare Cx7530 .mat ’ ;

17 ’RP 08 HP Photosmart E327 .mat ’

18 } ;

19 RPStr = { ’RP(01−CanonEOS400D) ’ ;

20 ’RP(02−CanonEOS1000D) ’ ;

21 ’RP(03−CanonPS A400 ist A ) ’ ;

22 ’RP(04−CanonPS A400 ist B ) ’ ;

23 ’RP(05−PanasonicDMC−FZ20) ’ ;

24 ’RP(06−PanasonicDMC−FS5) ’ ;

25 ’RP(07−KodaxCX7530) ’ ;

26 ’RP(08−HPE327) ’

27 } ;

28 RPID = { ’ 1 ’ ; ’ 2 ’ ;
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B.5 ComputeCorrelations.m

29 ’ 3 ’ ; ’ 4 ’ ;

30 ’ 5 ’ ; ’ 6 ’ ;

31 ’ 7 ’ ; ’ 8 ’

32 } ;

33

34 DirIMAGES=f o l d e r ;

35

36 fileLOG=s t r c a t ( f o l d e r , ’ logALA . txt ’ ) ;

37 FileLOG=fopen ( fileLOG , ’ a+’ ) ;

38 FileTIMINGCorr=fopen ( s t r c a t ( f o l d e r , ’CORRALA timing . txt ’ ) , ’ a+’ ) ;

39 f p r i n t f ( FileTIMINGCorr , ’RP; RN; TIMECorr ;\n ’ ) ;

40

41 FileTIMINGLoad=fopen ( s t r c a t ( f o l d e r , ’LOADALA timing . txt ’ ) , ’ a+’ ) ;

42 f p r i n t f (FileTIMINGLoad , ’FILE ; TIMELoad ;\n ’ ) ;

43

44 f p r i n t f (FileLOG , ’%s : \n\ nStart %s (%s )\n ’ , da t e s t r (now) ,TESTNAME, BRIEFNAME) ;

45 righeRP = ze ro s ( s i z e (RPID, 1 ) , 1 ) ;

46 colonneRP = ze ro s ( s i z e (RPID, 1 ) , 1 ) ;

47 % load r e f e r e n c e pat t e rns

48 f o r i =1: s i z e (RPID, 1 )

49 id = char (RPID( i ) ) ;

50 rpStr=char (RPStr ( i ) ) ;

51 t0=cputime ;

52 s=s p r i n t f ( ’ load %s \n ’ , rpStr ) ;

53 logEntry (FileLOG , s ) ;

54 f i l eRP = s t r c a t (RPFolder , char (RPname( i ) ) ) ;

55 load ( f i leRP , ’ r e s i dua lNo i s e ’ ) ;

56 eva l ( s p r i n t f ( ’ rpID %s = re s i dua lNo i s e ; ’ , id ) ) ;

57 [ righeRP ( i ) , colonneRP ( i ) , c ana l i ] = eva l ( s p r i n t f ( ’ s i z e ( rpID %s ) ’ , id ) ) ;

58 c l e a r r e s i dua lNo i s e c ana l i

59 t1=cputime−t0 ;

60 s = s p r i n t f ( ’%s ; %d ;\n ’ , char (RPStr ( i ) ) , t1 ) ;

61 f p r i n t f (FileTIMINGLoad , s ) ;
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B.5 ComputeCorrelations.m

62 end

63 c l e a r RPFolder f o l d e r ans f i l eRP i id rpStr s t0 t1

64

65 logEntry (FileLOG , ’ S ta r t i t e r a t i o n over images ’ ’ f o l d e r ’ ) ;

66 d i r e c t o r y = d i r (DirIMAGES ) ;

67 f i l e s = { d i r e c t o r y . name } ;

68 f o r i = 1 : l ength ( f i l e s )

69 i f d i r e c t o r y ( i ) . i s d i r

70 % sk ip . and . .

71 i f ( strcmp ( char ( f i l e s ( i ) ) , ’ . ’ )==1)

72 cont inue ;

73 end

74 i f ( strcmp ( char ( f i l e s ( i ) ) , ’ . . ’ )==1)

75 cont inue ;

76 end

77 i f ( strcmp ( char ( f i l e s ( i ) ) , ’ . DS Store ’ )==1)

78 cont inue ;

79 end

80 i f ( strcmp ( char ( f i l e s ( i ) ) , ’Thumbs . db ’ )==1)

81 cont inue ;

82 end

83 model=char ( f i l e s ( i ) ) ;

84 s=s t r c a t ( ’ S ta r t c o r r e l a t i o n f o r camera ’ , model ) ;

85 logEntry (FileLOG , s ) ;

86

87 d i rS=s t r c a t (DirIMAGES , ’ / ’ ,model , ’ / ’ ) ;

88 f o r z=1: s i z e (RPID, 1 )

89 id = char (RPID( z ) ) ;

90 rpStr=char (RPStr ( z ) ) ;

91 s=s p r i n t f ( ’ Creat ing c o r r e l a t i o n f i l e %s ’ , rpStr ) ;

92 logEntry (FileLOG , s ) ;

93 s t r=s t r c a t ( ’CorALA ’ , rpStr , ’ MOD ’ ,model ) ;

94 eva l ( s p r i n t f ( ’ F i l eCor ID %s = fopen ( ’ ’%s/%s . txt ’ ’ , ’ ’ a+’ ’ ) ; ’ ,
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B.5 ComputeCorrelations.m

95 id , dirS , s t r ) ) ;

96 eva l ( s p r i n t f ( ’ e n t r yF i l e ( F i l eCor ID %s ) ’ , id ) ) ;

97 end

98 c l e a r rpStr s s t r z id

99

100 logEntry (FileLOG , ’ Sta r t i t e r a t i o n over images ’ ) ;

101 checkDir=d i r ( d i rS ) ;

102 f i l e s D i r = { checkDir . name } ;

103 cnt=0;

104

105 f o r j = 1 : l ength ( f i l e s D i r )

106 f i l ename=char ( f i l e s D i r ( j ) ) ;

107 dot = regexp ( f i l ename , ’ \ . ’ ) ;

108 switch ( f i l ename ( dot+1:end ) )

109 case { ’ jpg ’ , ’ jpeg ’ , ’JPG ’ , ’JPEG ’ }

110 ; % ok

111 otherw i s e

112 cont inue ;

113 end

114

115 cnt = cnt+1;

116 f p r i n t f ( ’Compute Photo %d <<%s>> \n ’ , cnt , f i l ename ) ;

117 s=s p r i n t f ( ’Compute Photo : %s ’ , f i l ename ) ;

118 logEntry (FileLOG , s ) ;

119 img=imread ( s t r c a t ( dirS , f i l ename ) ) ;

120 c l e a r img ;

121

122 % check i f the c o r r e l a t i o n has been p r ev i ou s l y made

123 loadRN = f a l s e ;

124 f o r z=1: s i z e (RPID, 1 )

125 id = char (RPID( z ) ) ;

126 f i l e T e s t = s p r i n t f ( ’%s%s .RP %s .CORALAOK’ , dirS , f i l ename , id ) ;

127 i f ˜( e x i s t ( f i l eT e s t , ’ f i l e ’ )==2)
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B.5 ComputeCorrelations.m

128 loadRN = true ;

129 break ;

130 end

131 end

132

133 i f ( loadRN)

134 t t0=cputime ;

135 [ r e s i d u a l n o i s e img ]= getLoca lSavedRes idua lNoise ( dirS , f i l ename ) ;

136 t t1=cputime−t t0 ;

137 f p r i n t f (FileTIMINGLoad , ’%s ; %d ;\n ’ , f i l ename , t t1 ) ;

138 f o r z=1: s i z e (RPID, 1 )

139 id = char (RPID( z ) ) ;

140 f i l eOk = s p r i n t f ( ’%s%s .RP %s .CORALAOK’ , dirS , f i l ename , id ) ;

141 i f ˜( e x i s t ( f i l eOk , ’ f i l e ’ )==2)

142 t0=cputime ;

143 eva l ( s p r i n t f ( ’ [ corrR corrG corrB ] = ’

144 ’ computeCorre lat ions ( ’

145 ’ r ighe , colonne , righeRP ( z ) , ’

146 ’ colonneRP ( z ) , rpID %s , r e s i dua l no i s e img , ’

147 ’ s t r c a t ( dirS , f i l ename ) ) ; ’ , id ) ) ;

148

149 strData = s p r i n t f ( ’%s ; RN(%s ) ; %s ; %s ; %s ’ , char (RPStr ( z ) ) ,

150 f i l ename , corrR , corrG , corrB ) ;

151 s1 = s p r i n t f ( ’ f p r i n t f ( F i l eCor ID %s , ’ , id ) ;

152 eva l ( s p r i n t f ( ’%s ’ ’%s \\n ’ ’ ) ; ’ , s1 , strData ) ) ;

153

154 F = fopen ( f i l eOk , ’wt ’ ) ;

155 f c l o s e (F ) ;

156 c l e a r F f i l eOk ;

157 t1=cputime−t0 ;

158 f p r i n t f ( FileTIMINGCorr , ’%s ; RN(%s ) ; %d ;\n ’ ,

159 char (RPStr ( z ) ) , f i l ename , t1 ) ;

160 s=s p r i n t f ( ’ Co r r e l a t i on %s − Photo (%s ) computed . Time : %d ’ ,
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161 char (RPStr ( z ) ) , f i l ename , t1 ) ;

162 logEntry (FileLOG , s ) ;

163 e l s e

164 s=s p r i n t f ( ’ Co r r e l a t i on %s − has been p r ev i ou s l y made . ’ ,

165 char (RPStr ( z ) ) , f i l ename ) ;

166 logEntry (FileLOG , s ) ;

167 end

168 end

169 e l s e

170 s=s p r i n t f ( ’ A l l c o r r e l a t i o n − Photo (%s ) has been p r ev i ou s l y made . ’ ,

171 f i l ename ) ;

172 logEntry (FileLOG , s ) ;

173 end

174 c l e a r r e s i d u a l n o i s e img ;

175 i f ( cnt==NUMFILES)

176 break ;

177 end

178 end

179 end

180 end

181 f o r z=1: s i z e (RPID, 1 )

182 id = char (RPID( z ) ) ;

183 eva l ( s p r i n t f ( ’ f c l o s e ( F i l eCor ID %s ) ; ’ , id ) ) ;

184 end

185 logEntry (FileLOG , ’ end c o r r e l a t i o n s ’ ) ;

186 end

187

188

189 func t i on [ corrR corrG corrB ]= computeCorre lat ions ( r ighe , colonne , righeRP , colonneRP ,

rpInput , rnImg , pathImg )

190

191 i f ˜ ( ( r i ghe==righeRP)&&(colonne==colonneRP ) )

192 minRighe=min ( r ighe , righeRP ) ;
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193 minColonne=min ( colonne , colonneRP ) ;

194 rp = imre s i z e ( rpInput , [ minRighe minColonne ] ) ; %r e s i z e

195 rnImg = imre s i z e ( rnImg , [ minRighe minColonne ] ) ; %r e s i z e

196 end

197 r e s u l t c o r r =c o r r e l a t i o n ( rp , rnImg ) ;

198 c l e a r rp rnImg ;

199 [ corrR ] = replaceSTR ( s p r i n t f ( ’%g ’ , r e s u l t c o r r ( 1 ) ) ) ;

200 [ corrG ] = replaceSTR ( s p r i n t f ( ’%g ’ , r e s u l t c o r r ( 2 ) ) ) ;

201 [ corrB ] = replaceSTR ( s p r i n t f ( ’%g ’ , r e s u l t c o r r ( 3 ) ) ) ;

202 end

203

204 func t i on logEntry ( f i l e , s t r )

205 f p r i n t f ( f i l e , ’%s : %s \n ’ , da t e s t r (now) , s t r ) ;

206 f p r i n t f ( ’%s \n ’ , s t r ) ;

207 end

208

209

210 func t i on [ r e s i d u a l n o i s e , f i l t e r im a g e ]= getLoca lSavedRes idua lNoise ( percorso , nomeFile )

211 % Load a r e s i d u a l no i s e i f a v a i l a b l e

212 nomeFileRN=s t r c a t ( ’RN ’ , nomeFile ) ;

213 nomeFileRN=s t r c a t ( nomeFileRN , ’ . mat ’ ) ;

214

215 % Cerca a l l ’ i n t e rno d e l l a c a r t e l l a dove pre s ente i l f i l e JPG.

216 RN FILE=s t r c a t ( percorso , nomeFileRN ) ;

217 i f ( e x i s t (RN FILE , ’ f i l e ’ )==2)

218 load (RN FILE ) ;

219 %r e s i d u a l n o i s e =0;

220 return

221 end

222

223 % Not av a i l a b l e . Compute and save i t

224 img=imread ( s t r c a t ( percorso , nomeFile ) ) ;

225 f i l t e r im a g e=f i l t ro PNU ( img , 5 ) ;
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226 r e s i d u a l n o i s e=double ( img)−double ( f i l t e r im a g e ) ;

227 f i l t e r im a g e = 0 ;

228 save (RN FILE , ’ r e s i d u a l n o i s e ’ , ’ f i l t e r im a g e ’ ) ;

229 end

93



Declaration

I herewith declare that I have produced this work without the prohibited

assistance of third parties and without making use of aids other than those

specified. Notions taken over directly or indirectly from other sources have

been identified as such. Some results in this Thesis are present in the

following papers.

• M. Cembalo, A. Castiglione, G. Cattaneo, U. Ferraro Petrillo, Ex-

perimentations with Source Camera Identification and Online Social

Networks, (to appear).

• M. Cembalo, A. Castiglione, G. Cattaneo, U. Ferraro Petrillo, Source

Camera Identification in Real Practice: A Preliminary Experimenta-

tion, In BWCCA, pages 417-422, 2010.

Fisciano (SA), Italy


	List of Figures
	List of Tables
	Introduction
	1 Forensic analysis and digital evidences
	1.1 Digital evidences
	1.2 Digital Imaging Forensic

	2 Digital imaging
	2.1 Capturing the light
	2.1.1 Bayer Array
	2.1.2 CCD and CMOS chips

	2.2 Image noise
	2.2.1 Fixed-pattern noise
	2.2.2 Temporal noise
	2.2.3 Other types of noise


	3 Camera Identification
	3.1 Source Camera Identification
	3.2 State of the art
	3.3 Lukáš's method
	3.3.1 PRNU Filter

	3.4 SVM Classification
	3.4.1 Using SVM to identify the camera


	4 Experimental analysis
	4.1 Implementation of methods details
	4.1.1 Method proposed by Lukáš et al. 
	4.1.2 Method based on SVM

	4.2 Experimental settings
	4.3 Experimental explanation
	4.3.1 How to correlate images of different size?
	4.3.2 Photo editing 
	4.3.3 Online photo sharing 

	4.4 Experimental analysis of the Lukáš  identification  technique
	4.4.1 Experiment 1 - How to correlate images of different size?
	4.4.2 Experiment 2 - Photo editing 
	4.4.3 Experiment 3 - Online photo sharing 

	4.5 Experimental analysis of the SVM identification technique
	4.5.1 Experiment 1 - How to correlate images of different size?
	4.5.2 Experiment 2 - Photo editing 
	4.5.3 Experiment 3 - Online photo sharing 

	4.6 Comparison of the identification techniques
	4.6.1 Experiment 1 - How to correlate images of different size?
	4.6.2 Experiment 2 - Photo editing 
	4.6.3 Experiment 3 - Online photo sharing 


	5 Conclusions
	References
	A Confusion matrices of SVM experiments
	A.1 Experiment 1 - How to correlate images of different size?
	A.2 Experiment 2 - Photo editing 
	A.3 Experiment 3 - Online photo sharing 

	B MATLAB code
	B.1 ComputePRNU.m
	B.2 getResidulaNoise.m
	B.3 ComputeReferencePattern.m
	B.4 correlation.m
	B.5 ComputeCorrelations.m


