

Facoltà di Ingegneria

Dipartimento di Ingegneria dell'Informazione, Ingegneria Elettrica e
Matematica Applicata

Dottorato di Ricerca in Ingegneria dell’Informazione

XIV Ciclo – Nuova Serie

TESI DI DOTTORATO

Innovative Algorithms and
Data Structures for Signal

Treatment applied to
ISO/IEC/IEEE 21451

Smart Transducers

CANDIDATO: FRANCESCO ABATE

COORDINATORE: PROF. MAURIZIO LONGO

TUTOR: PROF. VINCENZO PACIELLO

Anno Accademico 2014 – 2015

UNIVERSITÀ DEGLI

STUDI DI SALERNO

Summary

Summary... 2
Introduction .. 4
Chapter 1 Networking Measurement for an Interconnected World 6

1.1 The Internet of Things .. 6
1.1.1 An overview ... 6

1.1.2 Obstacles to be overcome ... 9
1.2 Smart Sensors ... 13
1.3 An example: CAN bus protocol ... 14

1.3.1 CANopen and CiA ... 19
Chapter 2 A Standard Approach for Smart Transducers 20

2.1 A family of standards ... 21

2.1.1 Advantages ... 25
2.2 Existing Standards .. 26

2.2.1 IEEE 1451.0 ... 26

2.2.1.1 TEDS – Transducer Electronic Data Sheet 27
2.2.2 IEEE 1451.1 ... 29

2.2.3 IEEE 1451.2 ... 30
2.2.4 IEEE 1451.3 ... 30

2.2.5 IEEE 1451.4 ... 32
2.2.6 IEEE 1451.5 ... 32

2.2.7 IEEE p1451.6 ... 33
2.2.8 IEEE 1451.7 ... 35

2.3 Issues regarding consistency and interoperability 35

Chapter 3 The ISO/IEC/IEEE 21451.001 proposal, based on a

segmentation and labeling algorithm.. 36
3.1 A novel approach to signal preprocessing 38
3.2 A real time segmentation and labeling algorithm 40

3.2.1 Segmentation Step .. 40

3.2.2 Labeling Step .. 44
3.3 Draft proposal for a recommended practice 45
3.4 First layer algorithms .. 46

3.4.1 Exponential Pattern Detection .. 46
3.4.2 Noise Detection .. 49
3.4.3 Impulsive Noise Detection ... 50
3.4.4 Sinusoidal Pattern Detection .. 52
3.4.5 Tendency Estimation .. 54

3.4.6 Mean Estimation ... 54

3.5 Second layer algorithms ... 55
3.5.1 Steady state value estimation ... 55
3.5.2 Smart Filtering .. 56

3.5.3 Compression ... 59
3.5.4 User Defined Application Code 61

Chapter 4 RTSAL algorithm: characterization and microcontroller

implementation ... 62

4.1 Comparison among different strategies 62
4.1.1 Reconstruction .. 65
4.1.2 Memory requirements .. 67

4.1.3 Execution times .. 68
4.1.4 Frequency analysis ... 69

4.2 Implementing RTSAL algorithm on a microcontroller 72
4.2.1 Exponential Pattern Detection .. 73

4.2.2 Noise Detection .. 74
4.2.3 Sinusoidal Pattern Detection .. 74
4.2.4 Tendency Estimation .. 75

4.2.5 Mean Estimation .. 76
Chapter 5 Applications of a RTSAL technique 77

5.1 Period Measurement ... 78
5.1.1 Maximum search .. 81

5.1.2 Simulation of period computation 84
5.1.3 Experimental results for period computation 94

5.1.4 A comparison with another sensor signal preprocessing

techniques: compressive sampling ... 96
5.1.5 Period measurement with an ARM microcontroller 106

5.2 Mean estimation with RTSAL algorithm 107
5.3 Analysis of vibrations signals from faulty bearing 112

Conclusions .. 116
Acknowledgements .. 117
References .. 118

Introduction

 Technologies and, in particular sensors, permeate more and more

application sectors. From energy management, to the factories one, to

houses, environments, infrastructure, and building monitoring, to

healthcare and traceability systems, sensors are more and more

widespread in our daily life. In the growing context of the Internet of

Things capabilities to acquire magnitudes of interest, to elaborate and

to communicate data is required to these technologies. These

capabilities of acquisition, elaboration, and communication can be

integrated on a unique device, a smart sensor, which integrates the

sensible element with a simple programmable logic device, capable of

managing elaboration and communication.

 An efficient implementation of communication is required to these

technologies, in order to better exploit the available bandwidth,

minimizing energy consumption. Moreover, these devices have to be

easily interchangeable (plug and play) in such a way that they could be

easily usable.

 Nowadays, smart sensors available on the market reveal several

problems such as programming complexity, for which depth knowledge

is required, and limited software porting capability.

 The family of standards IEEE 1451 is written with the aim to define

a set of common communication interfaces. These documents come

from the Institute of Electric and Electronic Engineers (IEEE) with the

aim to create a standard interface which allows devices interoperability

produced from different manufacturers, but it is not concerned with

problems related to bandwidth, management, elaboration and

programming. For this family of standards, now under review, it is

expected a further development, with the aim to renew applicable

standards, and to add new layers of standardization.

 The draft of the ISO/IEC/IEEE 21451.001 proposes to solve

problems related to the bandwidth and the elaboration management,

relocating a part of processing in the point of acquisition, taking

advantage of elaboration capabilities of smart sensors. This proposal is

based on a Real Time Segmentation and Labeling algorithm, a new

sampling technique, which allows to reduce the high number of samples

to be transferred, with the same information content. This algorithm

returns a data structure, according to which the draft expects two

elaboration layers: a first layer, in order to elaborate basic information

of the signal processing, and a second layer, for more complex

elaboration.

 In this thesis is presented this integration of the IEEE 1451 family of

standard, and it is organized as follows:

 in the first chapter the state of art and outlook development is

shown, in the context of the Internet of Things;

 in the second chapter the actual smart sensor family of standards

is shown, and their own problems are underlined;

 in the third chapter the proposed algorithm for the

standardization is shown, with the related signal processing

algorithms of the first and the second layer;

 in the fourth chapter RTSAL algorithm characteristics are

analyzed, and a feasible implementation of the first layer

algorithms on a microcontroller is shown;

 in the fifth chapter RTSAL algorithm results are shown, used

for period and mean computation applications, and an

application of this technique for the analysis of vibrations

signals from faulty bearing.

Chapter 1 Networking Measurement for an Interconnected World

Chapter 1

Networking Measurement for an

Interconnected World

 Everyday information demand increases, many data of all kinds are

available in many different fields. The Internet, indeed, allowed to

create a powerful informative network, by means of which more and

more services are spread: from information to communication, from

banking services to goods purchasing.

 Nowadays, the number of devices connected to the Internet

overtakes the world’s human population, and the forecast says this

tendency is growing [1]. As for sensor networks, more and more

devices and machines are interconnected, in order to acquire and

exchange information and to take decisions. In this sense, the so-called

concept of the Internet of Things is growing.

1.1 The Internet of Things

1.1.1 An overview

 The term “Internet of Things” was coined by Kevin Ashton in 1999

[2] and it meant a network which allows communication among

machine (M2M: machine to machine communication). Now the

concept of the Internet of Things is different from just the M2M

communication: the machine to machine communication is focused on

connecting machines, and it could be well implemented mainly with

proprietary closed systems, whereas, the Internet of Things is about the

way humans and machines connect, using common public services [3].

More in depth, with this kind of network, a way to digitize the physical

world will be implemented, in order to interact with near or far objects,

Smart Sensors 7

creating services and application in any branch. Moreover, it has the

potential to radically shift the way people interact with their

surroundings. The abilities to monitor and to manage with objects in the

physical world, and to interact with them by means of an electronic

interface, makes possible to bring data-driven decision making to new

field of applications of human activity, optimizing the performance of

systems and processes, saving time for people and business, and

improving the quality of life.

 The term “Things” could refer to a wide variety of physical smart

objects; in other words, an object would be able to acquire data from

the environment, process and communicate them to other objects of the

same environment: those things have to be embedded with electronics,

software, sensors and communication capabilities. As the Internet of

Things evolves, existing networks, and many others, will be connected

with added security, analytics, and management capabilities (Fig. 1.1).

This will allow the Internet of Things to become even more powerful

in what people can achieve through it.

Fig. 1.1 IoT can be viewed as a network of networks.

8 Chapter 1

 Some examples of existing devices are the RFID transponder on

farm animals or for stocks management to implement traceability

strategies and to acquire useful data, or vehicles with built-in sensors.

In the future, the Internet of Things systems could also be responsible

for performing actions: several important research fields now are about:

 Energy management, like the Advanced Metering

Infrastructure (AMI), thought to integrate sensing and actuation

systems for a smart grid system, able to communicate with the

supply or distributor company in order to balance power

generation and energy usage [4].

 Factories and Worksites management, in order to improve

productivity and safety, optimizing the equipment use and

inventory management, operating on the efficiencies, predicting

maintenance, etc.…

 Domotics or, more broadly, in building automation, to directly

control and regulate lighting, heating, ventilating and air

conditioning (HVAC) or home security devices, depending on

sensing of the home environment, or a remote commanding [5 -

7].

 Road safety and auxiliary services for drivers and traffic

management, sensing the road with different kind of sensors,

integrated in the asphalt road or in the guardrail [8], and giving

important information about an accident or traffic presence.

Also by means of micro systems inside moving vehicles

(including cars, trucks, ships, aircraft, and trains) to monitor

conditions which could require maintenance, or pre-sale

analysis.

 Environmental sensing and monitoring to assist in

environmental protection, by keeping under observation air [9]

or water quality, atmospheric or soil condition [10].

 Infrastructure and building applications to monitor and

control operations of urban and rural infrastructures like

bridges, railway tracks, on and off-shore wind farms, and

buildings [11]. Those applications would be useful to monitor

critical structural conditions, or to scheduling repair and

maintenance activities, communicating the acquired data and

taking decisions.

Smart Sensors 9

 Healthcare systems to remote monitoring customers health, by

means of big machineries, smart sensors, wearable devices, and

even ingestible devices, connected to the Internet of Things

[12].

 Traceability systems to keep track of products during all the

production chain, or to manage and organize stocks or archives

[13, 14].

 A recent study made by the McKinsey Global Institute predicts the

huge development of the market with all the activity related to create

and to implement this “Internet of Things”: to realize the full potential

from possible IoT applications, technology will need to continue to

evolve, providing lower costs and more robust data models. In almost

all organizations, taking advantage of the IoT opportunity will require

to truly embrace data-driven decision making [15]. In this way, this

study, analyzing more than 150 IoT use cases across the global

economy, and using detailed bottom-up economic model, estimates the

economic impact of these applications by the potential benefits they can

generate (including productivity improvements, time savings, and

improved asset utilization), as well as an approximate economic value

for reduced disease, accidents and deaths. Applying those concepts to

possible future applications in different environments, such as homes,

offices and factories, and considering as the key insight of the IoT

applications benefits the critical contribution made by interoperability

among different IoT systems (“On average, interoperability is

necessary to create 40 percent of the potential value that can be

generated by the Internet of Things in various settings”), the McKinsey

global Institute estimates the total potential economic impact included

from $3.9 trillion to $11.1 trillion per year in 2025.

1.1.2 Obstacles to be overcome

 In this future scenery, expected to be really complex, there is much

to implement to achieve this interconnected system. Achieving a huge

level of impact on daily life and economics will require overcoming

different technical and methodological boundaries.

10 Chapter 1

 For a successful implementation of a unique and global platform like

the “Internet of Things” there are several essential and fundamental

technical requirements:

 Communication Protocols: they allows data communication

among electronic devices, following a procedure that,

depending on the case, specifies more or fewer details of the

ISO/OSI model (Fig. 1.2). There are hundreds of different

protocols to transmit data, which differ in physical medium,

frequencies, format and standard, at a different level of the

ISO/OSI model.

The interoperability is one of the key feature for the future of

the Internet of Things: the ability of devices and systems to work

together is critical for realizing the full value of the IoT

applications; without this property, several benefits figured out

for those applications could not be implemented. Adopting open

standards, or implementing system or platform that enable

different IoT system to communicate with one another could be

used in order to develop this kind of common network.

Fig. 1.2 ISO/OSI model.

Smart Sensors 11

 Bandwidth: for an efficient and widespread diffusion of the

Internet of Things, it will be necessary to guarantee

management of an enormous amount of data. So, appropriate

networks and infrastructures, in terms of bandwidth, or efficient

management of information and bandwidth would be necessary.

 The addressability is necessary to univocally identify objects,

devices or machineries, into the network. Several solutions are feasible

like, for an example, EPC (Electronic Product Code), which is a

universal identifier that provides a unique identity for every physical

object anywhere in the world, already implemented for the RFID

technology (it could be written in the memory of the transponder) [16,

17]. The next generation of devices connected to the internet using

protocol version 6 (IPv6) would be able to communicate with devices

attached to virtual or physical objects, because of the extremely large

address space of the IPv6. The Internet Protocol version 4, IPv4, would

not be able to address the big amount of devices expected for the

Internet of Things. A combination of these ideas can be found in the

current EPC Information Services (EPCIS) specifications [18].

 The physical or geographic location of things will be critical. Now,

the internet processes mainly information, but in the Internet of Things,

the position of a sensor would be important, to localize other sensors,

gateway or concentrator, in order to handle neighbor operations.

 Security and privacy will be handled, because of the big amount of

data collected and managed by the Internet of Things. “User consent”

and “anonymity” are some examples of how it complex could be to

acquire and handle different kind of data [19]. The types, amount, and

specificity of data gathered by billions of devices will create concerns

among individuals about their privacy and among organizations about

the confidentiality and integrity of their data. Providers of IoT devices

or services will have to ensure transparency of data usage and protection

of personal and private data. A complex system like the Internet of

Things have to guarantee security: it is a network where all sensors and

the actuators are interconnected, so, the case in which unauthorized

users could exploit those things remotely must be prevent. The Internet

of Things could introduce new categories of risks, because it extend the

information technology systems to many devices, which could be

considered as potential breaches; it will manage and control physical

assets: consequences associated with a breach in security overtake the

12 Chapter 1

simple needs of sensitive data, because they could potentially cause

physical harm.

 Moreover, for a widespread adoption of the Internet of Things, many

other barriers have to be overcome, such as technology, intellectual

property, and organization.

 The cost of basic technology must continue to decrease. Low cost

and low power sensors are essential. The price of MEMS (micro-

electromechanical systems), which are already widely used for

smartphones, has dropped by 30 to 70 percent in the last five years; a

similar trajectory is needed for radio-frequency identification (RFID)

tags, and other possible technology solutions to make tracking and

identification practical for low-value items. Moreover, progress for

low-cost battery power is also needed to keep distributed sensors and

active tags operating. In almost all applications, low cost data

communication links are essential, and the cost of computing and

storage must also continue to decrease, in addition to a general

development of analysis and visualization software.

 The intellectual property of this huge amount of data, and the related

ownership rights, is an important topic, in order to unlock the full

potential of IoT. Data will be acquired from sensors, produced by a

manufacturing company, will be a part in a solution, projected by

another company, in a setting owned by a third party: who has the rights

to the data has to be clarified.

 The organization is critical: IoT combines the physical and digital

worlds, changing conventional notions that we know about

organization. Just now, information technologies application operate on

the product, or managing the information about the product, in the retail

shops or in stocks. In an IoT world, information technologies will be

embedded in physical assets and inventory, and directly affects the

business metrics against which the operations are measured, so these

functions will have to be much more closely aligned. Furthermore,

companies need the capability and mindset to use the Internet of Things

to guide data-driven decision-making, as well as the ability to adapt

their organizations to new processes and business models.

Smart Sensors 13

1.2 Smart Sensors

 One of the technological development fields of our time, in the field

of sensor networks or, in a wider and futuristic view, in the field of the

Internet of Things, is the field of smart sensors.

 “Smart Sensor” means a complex device, equipped with several

function blocks: there is not only the sensing element, but also

electronics and interfaces that handle signal conditioning, analog to

digital conversion, and communication, integrating everything on a

single device, and returning, to an application level, the digital version

of the acquired signal. The term “smart” is added for those kinds of

sensors equipped with an “intelligent” device, like microcontroller units

(MCU), digital signal processors (DSP), and application-specific

integrated circuits (ASIC) [20]. Modern technology advancement is

allowing production of ever smaller, low power consuming and

accurate devices.

 Therefore, smart sensors must have a sensible element, from which

would be possible to obtain an electric signal, proportional to the

physical magnitude to be measured (temperature, pressure, flow, etc...).

Feasible technologies are many, from traditional sensors, to the modern

MEMS (micro electromechanical system [21]), created using

semiconductor manufacturing processes. Smart sensors, including also

the conditioning electronic, for the attenuation or amplification of the

sensor output signal, and the electronic devices needed to the analog to

digital conversion, modify a classical acquisition system structure, in

which even the electronic dedicated to these kinds of operations is

relocated in the point of acquisition (Fig. 1.3). Consequently, all the

acquisition points, where a smart sensor could be used, has to be

connected to a power source: typical supply voltages are 5V or 3.3V

and even lower voltages. For several systems, demand of different

supply voltages poses challenges that are not typically associated with

sensors, and adds complexity to the system and sensor. In addiction,

energy efficiency is an important task to manage for every smart

sensors, and, in particular, for wireless ones. In fact, transmission is the

most power consuming task among all of a wireless sensor. Several

approaches propose protocols that are developed to provide energy

saving [22-23].

14 Chapter 1

 To use a unique device, which acquires a physical magnitude and

communicates acquired data in digital format to the application level is

an innovative idea, which will allow several advantages in the future:

 means to remote control of sensor nodes, equipped with a

programmable logic;

 simplification of sensors replacement in complex systems:

wanting to replace a sensor with another which acquires the

same physical magnitude, problems could be manifold, such as

the operating voltage range, the power absorption, the transfer

function, etc.… With a smart sensor, all of these operations

would be simplified, without requiring modifications of the

acquisition system [24].

 For a further development of smart sensors, in order to have a better

interoperability and the employment of these kind of sensors in a

complex system as the Internet of Things, reference standards are

essential, to make sure that smart sensors would allow communication

on different level, following common reference rules.

1.3 An example: CAN bus protocol

 As an example, a communication protocol is reported, already

popular in the automotive environment: the CAN-Bus (Controller Area

Network). This communication protocol, which at first was proprietary,

has become an international official standard afterwards (ISO standard

[25]) allows to implement a micro network within the car or, generally,

within an industrial process or a production line. For this type of

Fig. 1.3 Smart Sensor block diagram.

Smart Sensors 15

network, each node is equipped with a programmable logic device

(usually microcontrollers) which acquires and manages information of

interest, and it sends it, thus implementing the concerned protocol.

 This protocol was created by Robert Bosch GmbH during the first

part of the 80s, for automotive applications, and, as time went by, for

reliability features and characteristics, it has increasingly established

itself as protocol for industrial automotive field buses and across

industries (aerospace, naval, and railway).

 CAN-Bus [25] has allowed to radically modify the project

philosophy of the control nodes in all of the systems where it is applied.

It differs from most of the existing control systems until then: those

systems were composed by a central elaboration system, with high

computational capabilities, and were interconnected with other sensors

and actuators. Usually, the central system had the task to monitor every

sensors, and the task to elaborate all the control strategies. Therefore,

the grid required a complex wiring system distributed on the process,

which required significant modification to the system for each change

(substitution or addition of other nodes).

 In particular, in automotive field, tendency was to divide systems

into closed smaller subsystems, which did not share any kind of data,

so as to manage each subsystem with its own control system.

 The basic idea behind the CAN-Bus is to distribute computational

capabilities across the grid, among different nodes, and to keep in

communication, in a unique network, all controllers, in order not to use

the same element duplicated in different systems, because they are no

longer isolated among each other. This idea has become technologically

possible, thanks to the spread and the cost reduction of

microcontrollers.

16 Chapter 1

 In fact, CAN Bus allows the communication among smart devices,

sensors and actuators able to produce data independently, and then give

them to the transmission channel. They perform different tasks:

amplification of the signal given by the sensing element, translation of

the signal in an appropriate range for the analog to digital conversion,

elaboration of data, and emission of data on the channel. This is a serial

bus protocol, and it implements a broadcast digital communication. It

allows a distributed real-time control, with a very high level of

reliability.

 General acceptance of CAN protocol is due to noteworthy

advantages that it offers:

 Strict response time: fundamental specification in process

control. CAN technology expects many hardware and software

instruments and development systems for high level protocols,

which allow to connect a large number of devices, keeping

strictly time constraints.

 Simplicity and flexibility of wiring: CAN is a serial bus typically

implemented on a twisted pair (shielded or not depending on the

requirements, Fig. 1.5). Nodes have no address which identify

themselves, so they could be added or removed without

reorganizing the whole system, or part of it.

Fig. 1.4 Example of CAN network inside a car.

Smart Sensors 17

 Good noise rejection: the ISO11898 standards recommend that

interface devices could continue to communicate even under

extreme conditions, like the interruption of one of the cables or

a short circuit of one of them with ground or power source.

 High reliability: error detections and retransmission requests are

managed directly by the hardware with 5 different methods (two

of them on bit layer, while the other three on message layer)

 Error isolation: each node is able to detect its own fault and to

exclude itself from the communication bus if it persists. This is

one of the working principles that allows this technology to

maintain the timing constraints, preventing that a single node

could undermine the whole system.

 Ripeness of the standard: widespread of CAN protocol in the

last twenty years has entailed the wide availability of rice-

transmitter devices, a microcontroller that integrates CAN

gates, development tools, beyond the substantial cost decrease

of these systems. This is important to ensure that a standard

asserts itself in the industrial field.

 Essentially, on the vehicle systems it is common to choose a

distributed system of sensors, instead of a centralized one, substituting

complex wiring and redundant sensors systems, with a digital network

inside the vehicle. Moreover, this network has become a reference

standard, and more and more car industries use this communication

protocol, instead of a proprietary protocol, as in the past.

Fig. 1.5 A twisted-pair copper cable usually realizes the physical transmission.

18 Chapter 1

 ISO 11898 directives establish only the first two layers of the

ISO/OSI model for communication protocols: physical layer and data

link layer. The data link layer is divided by the standard into two sub

layers: the Logical Link Control (LLC), which manages data

exchanges, and the Media Access Control (MAC), which checks errors

and manages the enclosure of data in the format required.

 Therefore, this protocol, already requiring a smart sensors network,

does not manage data above the data link layer, then the format of

information is not established, and the communication at an application

layer is not generalized. Thus, it is needed to arrange an ad-hoc format

for data, to manage the upper layer of the ISO/OSI model, and to

conveniently program all the network nodes.

 An additional level of standardization could allow to use this type

of communication in an easier way, not requiring details, setting up a

network, related to higher layers of the ISO/OSI model.

Fig. 1.6 ISO/OSI model for CAN-Bus.

Smart Sensors 19

1.3.1 CANopen and CiA

 CANopen is a CAN-based communication system, which

comprises higher-layer protocols and profile specifications, developed

by the CAN in Automation (CiA) [26], a non-profit international users’

and manufacturers’ group. The CANopen standard consists of an

addressing scheme, several small communication protocols and an

application layer defined by a device profile. The communication

protocols have support for network management, device monitoring

and communication between nodes, including a simple transport layer.

The lower lever protocol implementing the data link and physical layers

is usually Controller Area Network (CAN), according to ISO 11898-1

and ISO 11898-2.

 Standardized CANopen devices and application profiles simplify

the task of integrating a CANopen system, to achieve “plug-and-play”

capability for CANopen devices in a CANopen network. This standard

unburdens the developer from dealing with CAN hardware-specific

details such as bit timing and acceptance filtering.

 From a broader point of view, this is the purpose of the family of

standard IEEE 1451, which proposes a unique platform for smart

sensors, standardizing also the application layer. This would make

smart sensors usable as plug and play devices, allowing an easier

interfacing among them through the network.

 Standards, protocols, procedures or platforms like these are building

the technical and organizational foundation for the development of the

Internet of Things.

Chapter 2 A Standard Approach for Smart Transducers

Chapter 2

A Standard Approach for Smart

Transducers

 A network could connect many different sensors or actuators (in

general transducers, which include both), by means of a digital wired

or wireless implementation of these types of communication, network

and transducers digital incompatible protocols are in use by sensor

manufacturers and industries products. Some of those are standards,

others are proprietary, and for this reason, an integration on a unique

network, as expected for the Internet of Things technologies, is really

complex.

 Nowadays, on a distributed smart sensor network, smart nodes are

network and transducer specific with manufacturer specific data and

control models. Any sensor could speak a different language: an

integration would require many conversion layers, different for each

specific device.

 Therefore, in order to manage communications among transducers

in a common, easier, faster, cheaper and simpler way, an agreement is

strongly needed. The adoption of well-defined and widely accepted

standards for sensor communication and description is a preferable

approach.

 To solve these problems, the Institute of Electrical and Electronic

Engineers (IEEE) Instrumentation and Measurement Society’s (IMS)

Technical Committee on Sensor Technology supported a series of

projects, indicated with the abbreviation IEEE 1451, with the aim of

developing standard software and hardware for smart transducers, and

for their integration on a network. These projects would simplify

communication capabilities, without restrictions on the electronic

device to be used. A common standard could be referred to develop

network independent and manufacturer independent transducer

interfaces, reducing configuration steps for each different device [27].

IEEE 1451 21

2

2.1 A family of standards

 The family of standards IEEE 1451 is edited with the aim of

defining a set of common communication interfaces. So, this family of

reference standards, establishes the sensor network implementation, in

which those devices could communicate, regardless of the

communication physical channel, of the specific characteristics of each

device, of the communication protocol implemented by manufacturing

companies. Purposes are different:

 Utilization of sensors in an open manner on the hardware and

software specifications, without the need to install drivers,

remove and update devices (Plug-and-Play). A major problem

with sensor networking applications is network configuration

management. Any kind of network uses its own connections

and protocols, and, in addition, configurations, nodes and

connections could change while they operate. The concept of

plug-and-play sensors addresses two main problems: a

standardized electrical interface to the network, allowing a

wide variety of sensor types to be used, and a self-identification

protocol, allowing the network to configure dynamically and

describe itself [28].

 Communication with different physical channels (both wired

and wireless), due to the definition of various communication

standards. “Recognizing that no single sensor bus or network is

likely to dominate in the foreseeable future, the IEEE 1451 set

of standards was developed to unify the diverse standards and

protocols by providing a base protocol that allows

interoperability between sensor/actuator networks and buses.

A key feature of the IEEE 1451.0 standard is that the data […]

of all transducers are communicated on the Internet with the

same format, independent of the sensor physical layer (wired

or wireless)” [29].

 Definition of the Transducer Interface Data Sheets (TEDS),

which includes all the information related to codification,

communication and control of transducer information and

22 Chapter 2

acquired data. Therefore, TEDS contains the calibration and

operating data necessary to create a calibrated result in standard

SI units, additional information necessary to uniquely identify

the Transducer Interface Module (TIM), and it provides

supplemental information to the application.

 Integration capabilities for the sensible element with

conditioning, acquiring, elaboration and communication

electronic in a unique device, hence making easy to implement

a sensor network with distributed intelligence, helping

operations of sensor network management and, thus, the

needed actions for replacement.

These documents are meant to be applied on new technology

sensors, the so-called “smart sensors” (see paragraph 1.2). The term

smart sensor was employed supposing a device that has not simply its

own elaboration unit integrated, but it would be also easy to integrate

in a network. IEEE 1451 transducers would have capabilities of self-

identification, self-description, self-diagnosis, self-calibration, location

awareness, time awareness, data processing, data fusion, alert

notification, communication protocols, standard based data format. So,

a smart transducer needs the integration of an analog or digital sensor

or actuator element, a processing unit, and a communication interface.

Based on this premise, a general smart transducer model has been

already shown in Fig. 2.1.

IEEE 1451 smart transducer architecture differs from this general

architecture because of the partition of the system into two major

components: a Network Capable Application Processor (NCAP), a

Transducer Interface Module (TIM) and a Transducer Independent

Interface (TII) between the NCAP and the TIM.

IEEE 1451 23

 TIM (Transducer Interface Module) is the module to which

sensors and actuators management is entrusted, data

conditioning, and their transmission to the elaboration system.

This module is composed of several blocks, including sensors

and actuators, microcontroller and the electronic dedicated to

the conditioning system, acquisition and pre-elaboration of data,

memory blocks used to store the transducer electronic data

sheets, and the communication interface to manage the data

transfer towards the NCAP.

Fig. 2.1 IEEE 1451 block diagram.

24 Chapter 2

 NCAP (Network Capable Application Processor) is the device

located, in this architecture, between the TIM and the network.

It has the purpose to manage data to and from the TIM and the

external network, and to make available data acquired by

sensors for a network, on an application layer. Carrying out the

task of a gateway in a sensor network, once received the

electronic data sheet from the TIM, this device sets the

maximum bit rate supported by communication module in

transmission, how many channels it contains, and data format

of each transducer. Moreover, depending on the operation mode

of the smart sensor, the NCAP could start the acquisition,

sending a trigger event to the TIM, and it could manage

communication with an appropriate protocol, in order to

manage errors as well (hardware errors, calibration errors,

anomaly, etc...).

Fig. 2.2 IEEE 1451 architecture, NIST architecture for 1451 [30].

IEEE 1451 25

 TTI (Transducer Independent Interface) defines a

communication medium and a protocol for transferring sensors

information. This interface provides a set of operations, such as

read, write, read and write message, read and write response,

etc.

The other main difference from the general architecture, a key

feature of an IEEE 1451 smart transducer is the specification of the

standardized, Transducer Electronic Data Sheet (TEDS), and their

formats. The TEDS attached to the transducer is like an identification

card: it stores manufacturer related information for the transducer, such

as manufacturer identification, measurement range, accuracy,

calibration data and timing constraint, similar to a real datasheet content

normally provided by the manufacturer.

2.1.1 Advantages

 The main advantages that an IEEE 1451 compliant smart transducer

offers, due to this architecture choice, and to the introduction of TEDS,

are:

 Auto-identification capability: a sensor or actuator, equipped

with the IEEE 1451 TEDS can identify and describe itself to the

host or network, by sending the TEDS information.

 Self-documentation: the TEDS in the sensor can be updated and

store information, such as the location of the sensor,

recalibration date, or any type of information in a custom

format.

 Automatic configuration of sensor parameter, like calibration

curve (data stored in TEDS), reducing error due to entering

sensor parameter by hands.

 “Plug-and-Play” sensors: this means ease installation, upgrade

and maintenance of sensors. A TIM and a NCAP, based on the

same standard version, are able to be connected with a

standardized physical communication media and are able to

operate without any change to the system software. In this way,

different TIM from different manufacturers could “plug-and-

26 Chapter 2

play” among them, and with different NCAP, with no need to

reconfigure anything.

Moreover, this family of standards is comprehensive enough to cover

nearly all sensors and actuators in use today; it has many operating

modes (buffered, streaming, timestamp, grouped sensors, etc...)

managing efficiently binary protocols. In addition, it is compatible with

many wired and wireless sensor buses and networks.

2.2 Existing Standards

 In this paragraph, a brief analysis of the document of the IEEE 1451

family of standard is shown.

2.2.1 IEEE 1451.0

The goal of IEEE 1451.0 is to achieve data level interoperability for

the IEEE 1451 family. In this document [31], the network general

structure expected by this architecture, services that TIMs and NCAPs

have to provide, data types, functional specifications and commands are

defined. Moreover, this document establishes common features and

defines:

 transduction channel, with the classification of sensors, event

sensors and actuators;

 data structure, used to store and to transmit acquired data from a

sensor node, or to send to an actuator;

 sampling modes with which it acquires data from a sensor;

 transmission modes of data sets;

 trigger mechanisms and the needed strategies for synchronization;

 TEDS content and structure.

These functionalities are all physical communication media

independent (1451.X).

IEEE 1451 27

2.2.1.1 TEDS – Transducer Electronic Data Sheet

 Transducer electronic data sheets are blocks of information,

preferably stored in non-volatile memory of the TIM, whose format is

specified in the family of standard. In several applications, where it is

not possible to store TEDS on the device, the standard allows storing

TEDS in other memory location of the user’s system. When TEDS are

stored in another memory location, other than internal memory, they

are called “virtual” TEDS: transducer manufacturer has to provide these

virtual TEDS on an appropriate different media. Therefore, the user of

the system in which the smart sensor will work is responsible for

specifing the connection among the TIMs, identified by means of a

universally unique identifier (UUID), and the location where virtual

TEDS are stored. The NCAP has the task to manage this service, where

it is necessary. The TIM will provide, answering to the query from the

NCAP for electronic data sheets, a flag that indicates if these data sheets

are supported, or if they are virtual. There are four mandatory fields for

TEDS IEEE 1451.0 compliant, whereas all the others are optional.

Required TEDS are:

 Meta-TEDS: it gives critical timing parameters of the TIM,

which are read by the NCAP to define time-out values, in order

to understand when the TIM is not answering.

 TransducerChannel TEDS: it gives detailed sensor

information in the TIM, about the physical measured or

controlled unit, sensors or actuators working range, digital

communication detail, operating mode, and timing, acquisition

and communication information.

 User’s Transducer Name TEDS: it stores the name by which

the TIM could be identified in a network. The structure of this

TEDS is simply suggested in the standard, but it could be

defined from the user.

 PHY TEDS: this TEDS depends on the communication

physical channel used to interconnect TIM and NCAP. It make

available at the interface all of the information needed to gain

access to any channel, plus the information common to all

28 Chapter 2

channels. It is not described any further in this document of the

family of standards.

Whereas, optional TEDS are:

 Calibration TEDS: it include calibration constants needed to

convert sensor output into the appropriated measurement unit.

Two methods are supported: one is linear, which uses the

generic formulation y = mx + b, while the other one considers a

completely generic formulation, which can support nearly all

necessary characteristics.

 Frequency Response TEDS: it includes a table to find out the

frequency response of the sensor.

 Transfer Function TEDS: it provides a series of constants that

can be used to describe the transfer function of the transducer.

 Text-based TEDS: it includes information on TIM in a text

format, and it can be in different languages. It is about a

directory that simplifies access to specific sub block of TEDS,

followed by XML defined blocks.

 Commands TEDS: it allows manufacturers to specify

additional commands, which are not considered from the

standard. These commands are in a textual format. These ones

have to be inserted, mainly, in order to implement commands

needed to tuning sensors or conditioning blocks.

 Identification TEDS: this TEDS was used to give textual

information about the smart sensor, the transduction channel,

and the calibration. Now this information is included in different

specific TEDS, as established by the IEEE 1451.2, and these

kinds of information are included in the Text-based TEDS.

 Geographic location TEDS: it stores statistic information

about geographic position, in textual format. The user would

write this information in order to indicate position in which the

smart sensor is placed. The geographic position should be stored

in the Geography Markup Language (GML), developed by the

Open Geospatial Consortium (OGC) and specified in the

ISO/DIS 19136.

 Units extension TEDS: this TEDS allows to give information

about measurement units, in textual format. There could be

IEEE 1451 29

some cases in which it is not possible to state the physic quantity

measured, even in a complex way, with an SI unit. As an

example, for chemical sensors, which has the task to sense to a

percentage of a concentration, result is a unit ratio (moles).

 End User Application Specific TEDS: memory block reserved

to the end user, in which any information can be stored, with no

restriction on the format.

 Manufactured-defined TEDS: these are constructor defined

TEDS, for the purpose of giving specific information in

additional TEDS, which are not defined by the standard. They

are not needed by the standard specification; the manufacturer

defines use and structure completely.

According to the standard IEEE 1451.0 specifications, TEDS must

be structured in the TLV format, which is the data structure

Type/Length/Value, as reported in Table 2.1.

Table 2.1 – Generic format for any TEDS

Field Description Type # octet

--- TEDS length UInt32 4

1 to N Data block Variable Variable

--- Checksum UInt16 2

2.2.2 IEEE 1451.1

 The purpose of this document [32] is to provide a network-neutral

application model that will reduce the effort in interfacing smart sensors

and actuators to a network.

 This document defines an interface to connect network capable

processors to control network through the development of a common

control network information model for smart sensors and actuators. The

object model specifies the software component type used to implement

application systems, and it includes definitions of transducer functions

and NCAP blocks. The data model specifications include types and

30 Chapter 2

form of the information in both local and remote communication by the

object interfaces. Eventually, the network communication models are

specified as two way to interface the communication network and the

application objects.

2.2.3 IEEE 1451.2

 This document [33] has the purpose to specify an independent

digital communication interface for point-to-point communication.

This interface provides a minimum implementation subset that allows

self-identification and configuration of sensors and actuators, and also

it allows extensibility by vendors to provide growth and product

differentiation. It provides all the specifications needed to implement

the Transducer Independent Interface (TII): line definition, protocols,

timing, electrical and physical specifications. It does not specify signal

conditioning, signal conversion, or how the TEDS data is used in

applications. This standard is being revised to interface with IEEE

1451.0 and to support two popular serial interfaces: UART and

Universal Serial Interface.

2.2.4 IEEE 1451.3

 The purpose of this document [34] is to define an independent

standard for interfacing multiple physically separated transducers,

which allows time synchronization of data. This standard provides a

minimum implementation that allows multidrop, hot swapping, self-

identification and configuration of transducers that may not be located

in the same enclosure, but are confident to a relatively small space. So,

it allows transducers to be arrayed as nodes, on a multidrop transducer

network, sharing a common pair of wires. It acts from the third to the

fifth layer of the ISO/OSI model (Network, Transport and Session

layers), as shown in Fig. 2.3, in a physical network wired as shown in

Fig 2.4 (TBIM is the acronyms for Transducer Bus Interface Module).

IEEE 1451 31

Fig. 2.3 Model of the protocol stack.

Fig. 2.4 Physical context for the smart transducer interface.

32 Chapter 2

2.2.5 IEEE 1451.4

 This document [35] defines a mixed-mode transducer interface

(MMI) for analog transducers with analog and digital operating modes.

The standard provides two classes of communications for this Mixed-

Mode:

 class 1: it sequentially transfers either a transducer signal or

digital data;

 class 2: it uses separate connections to transfer transducer

signals and digital data.

The TEDS model is also refined to allow above minimum of pertinent

data to be stored in a physically small memory device, as required by

tiny sensors.

2.2.6 IEEE 1451.5

 The main purpose of this standard [36] is to define an open wireless

transducer communication standard, which would accommodate

various existing wireless technologies. Nowadays, wireless connections

among electronic devices are increasingly used [37], so this document

would enhance and support the acceptance of the wireless technology

for transducers connectivity. It specifies radio specific protocols, thus,

it requires a specific architecture, in which the NCAP and the WTIM

(Wireless Transducer Interface Module) are equipped with one or more

radio modules; the basic architecture is shown in Fig 2.5.

IEEE 1451 33

 This standard specifies protocols for achieving this wireless

interface: wireless standards such as 802.11 (WiFi) [38-41], 802.15.1

(Bluetooth) [42], 802.15.4 (ZigBee) [43], and 6LoWPAN [44-45]. It

adopts necessary wireless interfaces and protocols to facilitate the use

of technically differentiated, existing wireless technology solutions.

2.2.7 IEEE p1451.6

 This is the project for edit the draft of the standard [46], which

proposes a high-speed CAN open based Transducer Network Interface

for Intrinsically Safe and non-Intrinsically Safe (IS) applications

(Fig. 2.6). The proposed IEEE p1451.6 is a developing standard that

defines a transducer-to-NCAP interface and TEDS. It adopts the

CANopen device profile for measuring devices and closed-loop

controllers. The application layer may be implemented free of licenses

and royalties.

Fig. 2.5 Functional context for the radio sub-specifications for IEEE 1451.5 services.

34 Chapter 2

Fig. 2.6 Proposed architecture of the IEEE p1451.6.

IEEE 1451 35

2.2.8 IEEE 1451.7

 This standard [47] opens new opportunities for sensor and RFID

system manufacturers by providing sensors information in supply-chain

reporting. Integration of Radio Frequency Identification in a sensor

network is a necessary result for information technology and

applications development [48]. This document provides methods for

interfacing transducers and RFID tags, and for reporting transducer data

within the RFID infrastructure. This standard will reduce the cost and

time required to integrate transducer and RFID systems, as well as it

will provide a means for device and equipment interoperability.

2.3 Issues regarding consistency and

interoperability

 There are some limitations in the standards and in the process of

harmonizing the standards. “The main concern with regard to the

limitations is the consistency of standards, in terms of maintenance and

management. It is a non-functional consideration, but crucial to

determining whether a standard like IEEE 1451 can be more widely

accepted and adopted by manufacturers” [49]. Other issues are related

to memory management, regarding, for example, storage of TEDS on

tiny and low resources TIM.

 In the last few years, these regulations of family of standards are

being reviewed. Moreover, new standard versions will be also ISO

(someone is already an active standard [50-51]), new projects are

developing documents for other layers and, in the whole architecture,

there is free space to allow new layers for other standardization

proposals.

Chapter 3 The ISO/IEC/IEEE 21451.001 proposal, based on a

segmentation and labeling algorithm

Chapter 3

The ISO/IEC/IEEE 21451.001 proposal,

based on a segmentation and labeling

algorithm

 The IEEE 1451 family of standards is now evolving in the

ISO/IEC/IEEE 21451 family of standards. In order to meet industry’s

needs, this family of standards, responsible for the developing

technology for smart transducers, is growing: some of the old IEEE

1451 standard versions are under revision, whereas new members are

being developed. Currently working groups are convened to revise the

21451-1, 21451-2 and 21451-4, whereas other working groups are

developing new layers not envisaged in the old version of the family of

standards. These renewal and integration operations of new layers are

made necessary by the will to enhance and facilitate device and data

interoperability of distributed sensor networks.

 As refers to a distributed sensor network, different considerations

should be done to understand the complexity of this kind of system:

main problems being generally reliability, communication bandwidth,

and the big amount of data, with the related problem of flooding the

central elaboration system with more information than it can process.

 In a distributed sensing system, each sensor provides information

about its surroundings to the central system. In different applications,

the number of sensing elements in a network changes dynamically: the

computational capabilities demand for the central elaboration system

would increase with the number of sensors connected to the network. It

would be better to manage a sensor network, with a variable number of

connected nodes, without changing the computational requirements for

the central system. So, in many applications, a part of the data

processing is moved from the central elaboration unit, to the sensor

ISO/IEC/IEEE 21451.001 37

units, in such a way that allows sensors to pre-process data in the point

of acquisition, giving as an output less data.

 The challenge is to develop distributed and collaborative methods,

in order to reduce the communication bandwidth required, and to

increase reliability. However, the fusion central system in decentralized

networks only receives condensed information from the sensors: the

performance of such systems is suboptimal, in comparison with a

completely centralized processing scheme, due to the loss of

information in the local process [52]. Depending on the specific

application and the hardware platform, methods could be optimized,

quantifying data losses and comparing the performance versus the

communication trade off, and, in literature, there are a large number of

different examples of algorithms for clustering and classification

[53-55].

 On the other hand, to optimize an algorithm for the particular

application or hardware is totally in contrast with the main goal of the

family of standard for smart transducers: to achieve device and data

interoperability. Moreover, “the distributed measurement and control

(DMC) industry is migrating away from proprietary hardware and

software platforms, in favor of open systems and standardized

approaches” [56]. In order to propose a common preprocessing

technique that will reduce problems, related to channel bandwidth and

reliability, without requiring big computational capabilities, the

Institute of Electrical and Electronic Engineers (IEEE)

Instrumentation and Measurement Society’s (IMS) Technical

Committee on Sensor Technology has developed a new document to

standardize this procedure. This document, identified with the code

21451.001 is now in the final step of developing before balloting and

becoming a member of the ISO/IEC/IEEE 21451 family of standards.

With this standard, smart transducers will ensure interoperability, using

a common preprocessing technique and data structures.

38 Chapter 3

3 ISO/IEC/IEEE 21451.001

3.1 A novel approach to signal preprocessing

ISO/IEC/IEEE 21451.001 is such a standard to regulate algorithms

running on a transducer, a sensor or an actuator. The purpose is to

facilitate the flow from sensor raw data processing to sensor

information extraction and fusion, promoting and enhancing

preprocessing on smart transducers.

The role of this preprocessing technique is to share part of the

computational load needed in a sensor network among the nodes of the

network, facing a smart transducer resource constrains, such as:

 low computational capabilities;

 limited storage;

 short battery life;

 inadequate communication ability.

Moreover, needed algorithms must be flexible, depending on the

sensors and the specific application.

So, the standard is structured in order to make different

configurations possible:

1) the classic configuration where there is no data processing on

sensors, and all the data are sent to the central system for

processing. In this configuration there are low computational

load constrains on sensors, whereas there is big traffic load of

data in the network (Fig. 3.1 sensor 1).

2) A configuration where data are processed by sensors, and only

results are used, sending them directly to a cloud or a fusion

center. In this configuration there is a big computational load

for sensors (which generally entails cost and complexity) but a

lightened load for the network (Fig. 3.1 sensor 2).

3) Another configuration, where data are pre-processed by sensors

and post-processed by central systems, which mitigate both the

computational load required for sensors and the network traffic

load (Fig. 3.1 sensor 3).

ISO/IEC/IEEE 21451.001 39

Using the hardware needed by the IEEE 21451 Transducer Interface

Module, which requires a system based on a micro-controller, it is

possible to implement, outside or directly on the TIM, data treatment

services, providing extracted features rather than raw data for further

analysis and processing.

The purpose of this preprocessing technique is to extract basic

information from the raw signal, the same information that a human

being could provide looking at the signal [57, 58]. This technique

emulates a human observer, in the sense that it relates samples to infer

a global behavior, detecting, for example, a minimum or a maximum,

or inferring signal shape parameters.

The basis of this technique is the real-time segmentation and labeling

(RTSAL) algorithm, which derives a data structure from the raw

data [59].

Fig. 3.1 Different configuration for a smart transducers network.

40 Chapter 3

3.2 A real time segmentation and labeling

algorithm

The basic idea of this algorithm is that it would describe the input

signal as a human being could do: he would not enumerate all the

acquired samples, but he would describe the shape of the signal, with

only some noteworthy samples. This technique bases its analysis on the

hypothesis that the needed information is not in any single sample, but

it is contained in the relation among them. The aim of this technique is

to store several meaningful samples, with which it is possible to keep

several information about the signal, and from which is possible to

extract several simple features. In this way, it is possible to have the

same informative content, removing the redundancy of an oversampled

input signal. Moreover, it implements a classification of the acquired

raw samples, describing the signal trend.

The algorithm is described in the following paragraphs, divided into

two parts: the segmentation and labeling phase.

3.2.1 Segmentation Step

 In this first step, the algorithm chooses the samples, to be saved

from the raw samples, acquired with a constant sampling time. It works

according to an input parameter, which is a kind of threshold for the

algorithm: the interpolation error. Once it starts, it acquires the first

three samples, and it linearly interpolates the first and the third sample,

in order to calculate the amplitude the sample in the middle would have,

if the signal were strictly linear. Then the algorithm calculates the

difference between the amplitude of the interpolated sample and the

amplitude of the sample acquired in that instant of time (Fig. 3.2).

ISO/IEC/IEEE 21451.001 41

 At this point, the difference (d) is compared with the interpolation

error, defined as a percentage value of the maximum value of the signal:

if this difference does not exceed the interpolation error, the algorithm

does not store the sample, and, once acquired two more samples, it

interpolates the first and the fifth sample, computing the value of the

third middle sample, to be compared with the real acquired sample. This

algorithm goes on like this (Fig. 3.3, 3.4), increasing the interval in

which it searches an important sample, until it finds a new one, or a

maximum limit of comparisons is reached.

Fig. 3.2 The RTSAL algorithm makes linear interpolations and comparisons.

Fig. 3.3 Example of RTSAL algorithm comparison, on an interval of five samples.

42 Chapter 3

 Whereas if d is bigger than the interpolation error, the algorithm

stores the amplitude and the time position of the sample, considering

this sample as important. These two values are stored in two different

vectors (called “M”, for amplitude, and “T”, for time). When it stores

a new sample, it begins again, starting from the last stored sample.

Required operation for this algorithm are only sums, subtractions, and

just one division by two for each iteration.

 In Fig 3.5 there is the flowchart with an example version of the

algorithm [59], where the interpolation error is compared with the

parameter d computed as in (1), where i and k are two different

counters, the first increased by one every time a new point is stored,

whereas k is increased by two when a new point is not stored, to increase

the interval.

d = |
𝐒(𝑖)+𝐒(𝑖+𝑘)

2
− 𝐒(𝑖 +

𝑘

2
)| (1)

 The interpolation error could be interpreted in different ways: it is

a threshold for amplitude values, so it could be specified whether in the

unit of the acquired signal, or coded to be compared directly with the

output of the analog to digital converter (an entire number), or as a

relative value. In the following paragraphs, the interpolation error

value will be stated as a relative value of the full scale value of the

sensor, except where expressly indicated (for the same reasoning, in

simulations, signals have unitary maximum value).

Fig. 3.4 Example of RTSAL algorithm comparison, on an interval of five samples.

ISO/IEC/IEEE 21451.001 43

Fig. 3.5 Segmentation algorithm flowchart.

44 Chapter 3

3.2.2 Labeling Step

 This step starts only when a new segment is saved. In this phase, the

algorithm chooses a class in order to label the shape of the signal

between two consecutive stored samples.

 During the first phase, the algorithm saves also the sign of each

computed difference d. When a new sample is stored, the tendency of

the signal between this sample and the previous one is evaluated

depending on the difference between these values, and on the majority

of error sign accumulation. It uses ‘d’, ‘e’, ‘f’ and ‘g’ or ‘h’. If the

algorithm saves a new value because the maximum length is reached, it

uses linear classes ‘a’, ‘b’ and ‘c’, depending on the slope. A graph of

labeling process is shown in Fig. 3.6.

 For each sample, the class is stored in a third vector, called “C”: in

this vector all information about the signal shape is saved. Several

signal parameters could be easily extracted by processing the elements

of this vector [59]; it has not any relation with amplitude or time scales,

it stores only a qualitative information. The most common classes are

Fig. 3.6 Labeling scheme of comparisons.

ISO/IEC/IEEE 21451.001 45

‘d’, ‘e’, ‘f’ and ‘g’, and the sequence of these classes gives additional

information on the signal trend; the occurrence of classes ‘a’, ‘b’, ‘c’,

and ‘h’ is reduced, increasing the sampling frequency, compared to the

frequency of the input signal (a condition called oversampling), and/or

decreasing the interpolation error value. As an example, maxima

occurrences can be located with sequences of classes ‘df’, ‘de’, ‘gf’ and

‘ge’, whereas minima with sequences of classes ‘eg’, ‘ed’, ‘fg’ and ‘fd’.

An exponential shape can be found checking the repetition of the same

class ‘d’, ‘e’, ‘f’ or ‘g’, and even other simple features could be

identified by a specific pattern of consecutive classes.

 The set of three values stored in M, C and T arrays are also called

segments: for each set, one input sample is stored, with its temporal

position and class.

 The RTSAL algorithm requires only few operations: one sum, one

subtraction, and one division by two (which could be easily

implemented as a shift in a binary register) each iteration. So, it is easy

to implement on micro-controllers and can run in real time.

3.3 Draft proposal for a recommended practice

The set of vectors mark, class and time, in short MCT, is the basic

structure on which are grounded algorithms proposed by the draft of

this recommended practice. The dimension of a single variable is fixed,

whereas the size of the vectors depends on the RAM dedicated for this

practice.

The amplitude value, stored in the mark vector, could be an unsigned

integer, if it contains the output value of the analog to digital converter

(2 bytes, UInt16). The class value, stored in the class vector, as already

explained in the previous paragraph, can be only one of eight different

values (1 byte, UInt8). The time stamp, stored in the time vector, works

as a time reference (millisecond from midnight, 4 bytes variable,

UInt32). These vectors could be continuously generated and stored in

circular buffer structures.

Algorithms included in this recommended practice are divided in

two layers: the first layer algorithms take the MCT structure as an input,

whereas the second layer algorithms also take results of the first layer

algorithms as an input. The algorithms in the first layer are for the

extraction of simple and basic properties or parameters: these

46 Chapter 3

algorithms are the exponential detection, the noise detection, the

impulsive noise detection, the sinusoidal pattern detection, the tendency

estimation and the mean estimation. The algorithms in the second layer

are conceived for the computation of complex parameters: these

algorithms are the steady state value estimation, smart filtering and

compression. There is also a user defined application code block, which

allows manufactures or users to include their own algorithms based on

MCT vectors and/or first layer algorithms. This structure (Fig. 3.7) is

flexible, meaning that it could be implemented on different levels,

choosing layers to be implemented, depending on the hardware and

other constraints.

3.4 First layer algorithms

3.4.1 Exponential Pattern Detection

 The aim of this function is to detect an exponential shape, with a

fixed number of consecutive segments, using MCT vectors. The

exponential detection function searches through the class vector,

looking for consecutive equal classes. The number of times that a class

has to be consecutively found is the only input parameter for this

Fig. 3.7 Algorithms based on MCT structure.

ISO/IEC/IEEE 21451.001 47

algorithm. When it finds a fixed number of consecutive segments of the

same class, it stores the starting point and continues, until the class of

the following segment is the same as the previous one. It returns the

class detected, as information on the shape of the exponential signal,

and the time interval in which the pattern is detected. Below, an

example flowchart for this algorithm (Fig. 3.8) and examples of

Matlab® simulations are shown (Fig. 3.9 and 3.10).

Fig. 3.8 Example of flow chart for the exponential detection function.

48 Chapter 3

Fig. 3.9 Example of exponential patter detection, class ‘g’ (interpolation error 0.03). On the

left the acquired signal, on the right, in red dots, the segments stored in the MCT structure.

Fig. 3.10 Example of exponential patter detection, class ‘d’ (interpolation error 0.03). On the

left the acquired signal, on the right, in red dots, the segments stored in the MCT structure.

ISO/IEC/IEEE 21451.001 49

3.4.2 Noise Detection

 This function detects noise computing the distance between maxima

and minima. For this type of labeling, a maximum is always followed

by a minimum, and vice versa. The algorithm has three input

parameters: the NoisyPeriod, AmountNoisy, and

ThresholdPeriodicDetection. This algorithm compares the time interval

between a maximum and its following minimum, or between a

minimum and its following maximum, with the NoisyPeriod, an input

parameter for the maximum time interval, as well as counting the

number of times that the MCT version of the signal is smaller than this

minimum interval consecutively. If this count is bigger than the

AmountNoisy, the algorithm return a flag that indicates detection of

noise. Moreover, it could be possible to implement a periodic noise

detection: standard deviation of the noise is an indicator of random

noise. Computing the mean and the standard deviation of periods

observed in the temporal window, the algorithm calculates the ratio, and

compares this value with the input parameter

ThresholdPeriodicDetection. If this ratio is lower than the fixed

threshold level, the algorithm calculates the period of the signal, and it

returns this value as an output. Below some examples of different

Matlab® simulation are shown (Fig. 3.11 and 3.12).

Fig. 3.11 Example of sinusoidal waveform, not flagged as “Noisy” (interpolation error = 0.1,

signal frequency = 30 Hz, NoisyPeriod = 1ms, AmountNoisy = 5, SNR = 40 dB).

50 Chapter 3

3.4.3 Impulsive Noise Detection

 This function considers as an impulsive noise a significant change

of the amplitude in two consecutive segments: when it finds a minimum

or a maximum, it computes the amplitude change, taking into account

the amplitude of the segment before the minimum or the maximum.

Input parameter for this function is the ImpulseThreshold, which

defines a threshold for the amplitude differences. The Impulsive Noise

Detection function browses the entire class vector, looking for maxima

and minima and, when it finds one, it computes the amplitude difference

between this value and the previous one, and then compares this last

value with the threshold. This algorithm could return several different

information about the impulse, like position in the time vector,

amplitude, duration or area. As an example, different simulation results

are reported (Fig. 3.13 and 3.14)

Fig. 3.12 Example of sinusoidal waveform, flagged as “Noisy” (interpolation error = 0.1,

signal frequency = 30 Hz, NoisyPeriod = 1ms, AmountNoisy = 5, SNR = 20 dB).

ISO/IEC/IEEE 21451.001 51

Fig. 3.13 Example of sinusoidal waveform with an impulse added (interpolation error = 0.1,

signal frequency = 15 Hz, ImpulsiveThreshold = 0.3).

Fig. 3.14 Example of exponential waveform with periodic impulses added. (interpolation

error = 0.1, signal frequency = 15 Hz, ImpulsiveThreshold = 0.3).

52 Chapter 3

3.4.4 Sinusoidal Pattern Detection

 The sinusoidal pattern detection algorithm is based on the pattern of

classes shown by a sinusoidal waveform, saved in the MCT structure

with the segmentation and labeling algorithm. The sinusoidal pattern of

classes is composed of segments ‘g-e-f-d’: the classes has to be in this

order to assume that the input signal is a sinusoidal waveform. The

algorithm search through the class vector and, if the pattern of classes

is correct, it returns the period of the sine, computed using the value of

the time vector of two consecutive maximum segments, and it checks

if the input signal has damped or undamped oscillations. An example

of Matlab® simulation is shown (Fig. 3.15).

 In order to clarify the role of the interpolation error on the

conversion in MCT by the segmentation and labeling algorithm, results

of the sinusoidal pattern detection function are shown in the top of the

Fig. 3.16. In this chart, red dots are for a correct pattern labeled by the

algorithm, whereas blue dots are for an incorrect pattern for a sinusoidal

waveform: this analysis is carried fixing the input signal, varying the

interpolation error used to segment the input signal, and the signal to

noise ratio with which the signal is generated. As an example, in the

center and in the bottom of Fig. 3.16, two different cases of

Fig. 3.15 Segments saved by the segmentation and labeling algorithm of an ideal sinusoidal

waveform, with interpolation error equal to 0.06 (signal frequency = 60).

ISO/IEC/IEEE 21451.001 53

segmentation of the same sinusoidal signal are shown, with

interpolation error of 0.2 and 0.05, respectively.

Fig. 3.16 Red dots, in the upper picture, point out cases in which the right sequence of

classes is stored, as a function of signal to noise ratio and interpolation error.

54 Chapter 3

3.4.5 Tendency Estimation

 Tendency of input signal is computed processing only maximum

and minimum segments: the algorithm applies formula (2) on a vector

made by maximum segments, and formula (3) on a vector made by

minimum segments. The number of segments taken into account

depends on application: it is possible to run this algorithm when the

MCT buffer is full, or it is possible to run this algorithm on the

segments acquired in a fixed time window. These formulas return a

normalized factor which gives information about trends, and their span

is from -1 to +1. If the tendency of maxima is positive and the tendency

of minima is negative, the signal grows its peak to peak amplitude

(example: unstable oscillations), whereas, if the tendency of maxima is

negative and the tendency of minima is positive, the signal diminishes

(example: damped oscillations). In addiction, the average of these two

factors returns information about the global tendency of the signal.

Trendmax =
∑ (𝑇𝑥+1−𝑇𝑥)(𝑀𝑥+1−𝑀𝑥)𝑚𝑎𝑥

∑ (𝑇𝑥+1−𝑇𝑥)|𝑀𝑥+1−𝑀𝑥|𝑚𝑎𝑥
 (2)

Trendmin =
∑ (𝑇𝑥+1−𝑇𝑥)(𝑀𝑥+1−𝑀𝑥)𝑚𝑖𝑛

∑ (𝑇𝑥+1−𝑇𝑥)|𝑀𝑥+1−𝑀𝑥|𝑚𝑖𝑛
 (3)

3.4.6 Mean Estimation

 One of the most important algorithms, in different applications, is

the mean computation. This function could be implemented in different

ways: the mean of the vector M of the MCT structure, take into account

even values of the vector T, because samples stored in the MCT

structure are not equally spaced in time (see par. 4.2.5). Even in this

case, the number of segments taken into account depends on the

application (running this algorithm when the MCT buffer is full, or

when segments acquired in a fixed time window are stored).

ISO/IEC/IEEE 21451.001 55

3.5 Second layer algorithms
3.5.1 Steady state value estimation

 The aim of this second layer function is to estimate the steady state

value of an exponential signal. When an exponential signal is detected,

using the first layer function shown in paragraph 3.4.1, the steady state

value of this signal can be estimated, using values stored in the MCT

vectors. For example, if a class ‘g’ exponential signal is detected

(Fig. 3.17), the steady state value can be estimated. The formula (4)

gives the general function for this kind of signals, where XM is the steady

state value, and X0 is the starting value.

x(t) = 𝑋𝑀 - [𝑋𝑀 − 𝑋0]𝑒−𝑡
𝑇⁄ (4)

Fig. 3.17 The steady state value is estimated, using an approximation of the signal slope.

56 Chapter 3

The idea is to approximate the shape of the exponential between two

consecutive segments in the MCT structure with a linear shape: the

samples stored in the MCT structure are on the exponential curve,

whereas the value of XM, the steady state value, and T, the time constant,

are unknown. The derivate of x(t) at t=0 is:

𝑑𝑥

𝑑𝑡
|t=0 =

𝑋𝑀− 𝑋0

𝑇
 (5)

The derivate can be approximated with the slope of segments at the

starting points. Considering:

𝑋𝑀−𝑀[1]

𝑇
 =

𝑀[2]−𝑀[1]

𝑇[2]−𝑇[1]
 = 𝑀𝑎 (6)

𝑋𝑀−𝑀[2]

𝑇
 =

𝑀[3]−𝑀[2]

𝑇[3]−𝑇[2]
 = 𝑀𝑏 (7)

where Ma and Mb are slopes in the starting point. Solving (6) and (7) for

XM:

𝑋𝑀 =
𝑀𝑎𝑀[2]− 𝑀𝑏𝑀[1]

𝑀𝑎−𝑀𝑏
 (8)

The steady state value XM can be estimated, without knowing time

constant T.

3.5.2 Smart Filtering

 Basing on the MCT data structure, it is possible to reconstruct an

approximation of the sampled signal. The starting acquired signal is

included in an interval smaller than the interpolation error value used

in the segmentation step. The reconstructed signal is a combination of

a scaled and shifted version of two generating functions:

x(t) = ∑ 𝑎𝑘𝜑(𝑡 𝑎𝑘 − 𝑖)⁄ (9)

ISO/IEC/IEEE 21451.001 57

where φ(t) is the normalized generating function for each subspace, as

shown in Fig 3.18.

 Segments are input signal samples stored, the reconstruction of the

signal has to assume values of these essential samples. Spline

polynomials can be used to reconstruct the signal within the segment.

The two generating functions converge to a straight line between

essential samples, in case of linear interpolation reconstruction.

 A low pass filtering effect can be achieved, applying repeatedly the

RTSAL algorithm on an acquired signal: once obtained the MCT

structure, from the input samples, it is possible to reconstruct the signal

using a linear interpolation, and then, applying the RTSAL on this

reconstructed signal, it is possible to obtain a new MCT structure. This

new set of vectors, M’C’T’, has lost part of the high frequency content,

and this principle can be iterated, in order to remove some unwanted

high frequency components or noise.

 Applying RTSAL algorithm, the number of local minima and

maxima on a fixed time window can be used as a control variable for

the number of iteration. In the following picture (Fig. 3.19), a flow chart

of the proposed method is shown. The variable N is the total number of

minima and maxima of the time window analyzed by the RTSAL

algorithm in the current iteration, whereas N’ is the total number of

minima and maxima in the previous one. This procedure generates an

MCT data structure for the input signal, after that it reconstructs the

signal with a linear interpolation, with the same time step with which

the input signal is acquired, and then it computes the value of R (R =

(N – N’)/N’). If R is smaller than 0.1, the procedure is repeated. An

example of application is reported in Fig. 3.20, with a Matlab®

simulation.

Fig. 3.18 Normalized generating functions for segments.

58 Chapter 3

Fig. 3.19 Flowchart for low pass filtering.

ISO/IEC/IEEE 21451.001 59

3.5.3 Compression

 The RTSAL algorithm achieves a conversion of the input vector of

samples in a data structure, but it does not mean that there are benefits

in all the cases. A correct choice of the interpolation error could allow

both enough information and data size reduction, but it requires to know

the typical input signals. In order to obtain a compression, even when

the domain of the input signal is unknown, an automatic procedure to

make a reasonable choice of the interpolation error is needed. A large

Fig. 3.20 Filtering: input signal (top), reconstructed signal after 3 iterations (middle), and

reconstructed signal after 8 iteration (bottom).

60 Chapter 3

value of the interpolation error leads to high compression rate and

compression error, whereas smaller value of the interpolation error

results in lower compression rate and error. Input parameter for this

procedure are l, the changing step for the interpolation error value, and

the Rmin, lower bound for the correlation coefficient. This procedure

starts applying the RTSAL algorithm with a relative high interpolation

error value, it process the MCT output in order to reconstruct the signal

(for example with a linear interpolation), and then it computes the

correlation between the input signal and the reconstructed one. If this

correlation is smaller than the value of Rmin, it reiterates this procedure,

once decreased the interpolation error of a value equal to l. When the

correlation is appropriate, it returns the new data structure M’C’T’. A

flow chart of this procedure is reported (Fig. 3.21).

Fig. 3.21 Flowchart for interpolation error selection.

ISO/IEC/IEEE 21451.001 61

3.5.4 User Defined Application Code

 Producers or end users could want to apply their own algorithms or

procedures, based on the MCT data structure. In the second layer some

space is left, to allow to charge the custom code.

Chapter 4 RTSAL algorithm: characterization and microcontroller

implementation

Chapter 4

RTSAL algorithm: characterization

and microcontroller implementation

 The segmentation and labeling algorithm can be implemented in

different ways. Several simulations, as those shown in the previous

chapter, are carried out implementing the algorithm on a fixed time

window and saving the central sample of the segmentation interval, the

sample for which the interpolation error threshold is exceeded. In this

chapter, different possible implementation strategies are analyzed for

this algorithm, characterizing it in terms of data size reduction,

execution time, reconstruction capabilities, harmonic distortion.

Moreover, first layer algorithms are shown, developed to run in real

time on a microcontroller.

4 RTSAL algorithm

4.1 Comparison among different strategies

 This algorithm, as already seen in the previous chapter,

segments input signal samples, depending on a threshold level and on

the trend of the specific signal. Different choices and strategies could

be made and planned on the practical implementation of this algorithm,

in particular on the selection of the sample to be stored:

1) “saving the final sample of the segmentation interval” is the

implementation strategy which favors the execution time. This

implementation is preferable when the sampling frequency is

really higher than the acquired signal frequency (condition

called “oversampling”), since the algorithm saves the final

sample of the interval in the MCT data structure. The

implementation is simple, and it requires less operation

RTSAL algorithm 63

compared to the other two, but it is also the less accurate. In the

following tests, this implementation is referred as testMCT2

(Fig. 4.1).

2) “saving the central sample of the segmentation interval” is the

implementation strategy which stores the middle sample, the

one that exceeds the threshold limit. The choice of storing this

sample requires reanalyzing some samples, restarting the

algorithm from this sample. In the following tests, this

implementation is referred as testMCT3 (Fig. 4.2).

Fig. 4.1 The RTSAL algorithm saves the final sample of the analyzed interval.

Fig. 4.2 The RTSAL algorithm saves the central sample of the analyzed interval.

64 Chapter 4

3) “double comparison” is the implementation strategy which

makes two comparisons for each iteration. In either previous

cases, several signal samples are never compared with the

linearized signal (for example, in Fig. 3.3, if sample x3 is stored,

the fourth sample is never taken into account). If the sampling

frequency is not so higher than the signal frequency, many

important samples could be missed: this technique is better for

acquired signals for which all the samples could have a

significant informative content. This technique implements a

second comparison in the second half of the comparison range.

In the following tests, this implementation is referred as

testMCT4 (Fig. 4.3).

In this part of the thesis work, a preliminary analysis of each strategy

is tackled, highlighting properties, advantages and disadvantages. The

comparison is done in Matlab® simulations fixing the input signal,

implying the simulated acquired samples are the same (the goal is to

compare the algorithm) and fixing the interpolation error for all the

different strategies. In Fig. 4.4 the input signal is shown in blue, a

sinewave of 1 kHz, declared with 1000 samples for each period (to

emulate a sampling frequency of 1 MHz), and a signal to noise ratio of

30 dB (additive white Gaussian noise). Moreover, three different

signals are shown, which are reconstructed from the output MCT data

structures; these signals are reconstructed using a linear interpolation

between consecutive segments of the MCT data structures, using the

Fig. 4.3 The RTSAL algorithm makes two comparisons for each interval.

RTSAL algorithm 65

same time step of the input signal. The signal, reconstructed linearly

interpolating output MCT data structure segments of the strategy called

testMCT2, is shown in green; the signal, reconstructed linearly

interpolating output MCT data structure segments of the strategy called

testMCT3, is shown in red; the signal, reconstructed linearly

interpolating output MCT data structure segments of the strategy called

testMCT4, is shown in black.

In the following paragraphs, several results are shown in order to

compare these three processing strategies.

4.1.1 Reconstruction

 In this paragraph, a comparison among reconstructing capabilities

of these three strategies is shown, varying the interpolation error value.

The main goal of the RTSAL algorithm, as already said, is to select

only meaningful samples, from which it is possible to extract basic

information; it is not the best technique if the final goal is to reconstruct

the signal. Therefore, this analysis is done to compare results among

different implementation strategies.

Fig. 4.4 Comparison among different strategies of RTSAL.

66 Chapter 4

 Defining, as reconstruction error, the difference between the input

signal and the signal reconstructed from the MCT data structure:

e = 𝑥𝑖𝑛 − 𝑥𝑟𝑖 (10)

the ratio between the root mean square value of this error, and the root

mean square value of the input signal is computed, as an estimator of

the reconstruction capabilities of these techniques.

𝑅 =
√

1

𝑁
∑ (𝑥𝑖𝑛−𝑥𝑟𝑖)2𝑁

𝑖=1

√
1

𝑁
∑ 𝑥𝑖𝑛

2𝑁
𝑖=1

 (11)

In Fig. 4.5, values computed for this ratio are graphed, as a function

of the interpolation error value.

Fig. 4.5 RMS reconstruction error to RMS signal ratio, as a function of the interpolation

error value.

RTSAL algorithm 67

4.1.2 Memory requirements

 The RTSAL algorithm aims to reduce necessary samples to extract

specific information from the input signal. These three different

implementation strategies store a different amount of input samples,

with the same interpolation error. In Fig. 4.6 the stored samples number

is graphed for the three strategies, as a function of the interpolation

error.

In order to better understand what this number of samples means, in

the perspective of the MCT data structure memory requirements, it is

necessary to underline that one sample stored in this structure requires

more memory than a normal sample, because it is necessary to store its

class and time position too. As mentioned in paragraph 3.3, if two bytes

are dedicated to the output value of the analog to digital converter of

the smart sensor, one element of the mark vector also needs two bytes.

In addition, one element of the class vector needs one byte, and one

element of the time vector needs four bytes (saving the time stamp as

millisecond from midnight). Therefore, storing a sample in this data

structure means to allocate seven bytes instead of two. In the following

Fig. 4.6 Comparison among different strategies on the number of stored samples (the same

input signal as in Fig. 4.4, input vector of 106 samples).

68 Chapter 4

tables (Tab. 4.1 and 4.2) memory requirements are shown for the same

simulation of Fig. 4.6. In Tab. 4.1 memory allocation is shown as a

function of the interpolation error, whereas, in Tab. 4.2, the percentage

of memory allocated, compared to the memory required to store the

entire input signal of one thousand samples, is shown.

int.

err.
testMCT2 testMCT3 testMCT4 testMCT2 testMCT3 testMCT4

0.01 2.78 MB 5.64 MB 5.85 MB 139.33% 282.38 % 292.89 %

0.05 684.9 kB 1.73 MB 2.65 MB 34.24 % 86.56 % 132.47 %

0.10 80.2 kB 188.2 kB 397.8 kB 4.01 % 9.41 % 19.89 %

0.15 36.2 kB 69.8 kB 152.4 kB 1.81 % 3.49 % 7.62 %

0.20 28.0 kB 56.0 kB 103.9 kB 1.40 % 2.80 % 5.19 %

0.25 24.2 kB 47.7 kB 80.4 kB 1.21% 2.39 % 4.02 %

0.30 14.2 kB 42.0 kB 66.3 kB 0.71% 2.10 % 3.31 %

Applying this segmentation and labeling algorithm is not always

convenient: in fact, using a small interpolation error value will lead to

store many samples, allocating much memory than storing the acquired

vector of samples, which would make this technique useless.

4.1.3 Execution times

 These three different implementation strategies of the RTSAL

algorithm have different complexity. Strategies testMCT2 and

testMCT3 perform the same operations for each iteration: they acquire

two samples, calculate linear interpolation, which means a sum and a

division by two, and they compare the values, which implies a

subtraction and a comparison. They differ in the management of the

intervals: testMCT3 starts from the last stored sample, so it analyzes,

at least, twice the second half of the interval, whereas testMCT2 always

goes afterwards, starting from the last point. The strategy testMCT4

does two interpolations and two comparisons for the same interval

instead. A comparison of execution times of Matlab® simulations is

reported in Fig. 4.7: this comparison is made on the same signal as the

previous simulation, as a function of the interpolation error, and the

simulations are executed on the same machine.

Tab. 4.1 Memory requirements comparison
Tab. 4.2 Percentage memory requirements

comparison

RTSAL algorithm 69

4.1.4 Frequency analysis

 In order to understand the harmonic distortion, which this

reconstructing technique introduces linearly interpolating stored

segments, this analysis is carried out comparing the input signal

spectrum, computed with the fast Fourier transforms, with spectra of

reconstructed signals with these three different strategies. Signals are

reconstructed, padding the interval between consecutive segments with

values that lay on the linear interpolation, with the same interval as the

input signal. Therefore, the reconstructed signals have the same number

of points as the input signal. In the following figure (Fig. 4.8) fast

Fourier transforms are shown.

Fig. 4.7 Comparison among different strategies on the execution time (the same input signal

as in Fig. 4.4, input vector of 106 samples).

70 Chapter 4

Simulations result in an attenuation of more than 3 dB of the

fundamental harmonic for testMCT2, 0.4 dB for testMCT3, and a gain

of almost 0.05 dB for testMCT4. On the other hand, there is a distortion

effect of this technique, due to the linear interpolation, which introduces

odd harmonics. The third harmonic of the signal reconstructed from the

testMCT2 segments is at -60 dB, the one of the signal reconstructed

from the testMCT3 segments is at -87 dB, and the one of the signal

reconstructed from the testMCT4 segments is at -92 dB. Moreover, the

floor level of the reconstructed signals differ significantly from the

input signal one: the floor level is lower than -170 dB for the input

signal, whereas, for the three different approaches, the floor level is

around -120 dB near the first harmonic, and it decreases for bigger

frequencies. In addition, even the main lobe width is bigger than the

main lobe of the input signal transform.

Fig. 4.8 FFT of the input signal (blue) and FFT of signals reconstructed linearly interpolating

output segments of the testMCT2 (green), testMCT3 (red), testMCT4 (black).

RTSAL algorithm 71

Summarizing, the strategy called testMCT2 stores fewer samples,

so it requires less memory allocation or fewer data to send; it is also

faster, in terms of execution time, but it is also the worst in terms of

accuracy. On the other hand, testMCT4 is the more accurate strategy,

but it pays this accuracy with a more complex strategy than the other

ones, storing more samples and requiring more execution time.

Eventually, testMCT3 has been considered the best solution among

them, because it gives a better accuracy than the testMCT2 strategy,

without increasing the computational and the memory requirements as

the testMCT4 does. Who wants to use the RTSAL algorithm can

choose the best technique and the proper interpolation error value for

the specific input signal. In the following, the testMCT3 strategy is

used in all cases.

Fig. 4.9 FFT of the input signal (blue) and FFT of signals reconstructed linearly interpolating

output segments of the testMCT2 (green), testMCT3 (red), testMCT4 (black) around 1 kHz.

72 Chapter 4

4.2 Implementing RTSAL algorithm on a

microcontroller

 In this paragraph a feasible implementation strategy of the

RTSAL algorithm and of the first layer algorithms, based on the MCT

data structure, is proposed, in order to implement this technique on a

microcontroller. The goal, implementing these algorithms on a

microcontroller, is to test real time processing capabilities: in fact, the

main reason for these strategies is to implement basic standardized

processing capabilities on smart transducer, which is based on a

microcontroller. This implementation is developed for an STM32F103,

an ARM Cortex-M3 based microcontroller, which integrates the analog

to digital conversion, the MCT data structure development, and the first

layer algorithms processing strategies. In the following, several

algorithms are shown, developed in C code with Keil [60]; they are

tested using a development board from ETT.

 The RTSAL algorithm in this implementation differs, in

samples and memory management, from those implemented in

Matlab® simulations (referring to the testMCT3 implementation,

shown in paragraph 4.1). In simulations, it takes a vector of samples of

a fixed size, and then it processes samples; whereas, in this

implementation on microcontroller, the function that has the task to

segment and store samples is called once each two acquired samples. It

manages samples in a manner of keeping them into a temporary

memory, until the storage of a new segment in the MCT data structure.

When a new segment is stored, the segmentation step, for the next

segment search, begins with an interval equal to half the previous one,

plus the following one or two new acquired samples, depending on the

size of the last interval. In fact, to compute the linear interpolation value

between samples on the edge of the interval, and compare this value

with the acquired value for that sampling time, an interval of an odd

number of samples is needed. This microcontroller has a 12-bit ADC

converter: the output value of the converter is not converted in any

format, and the interpolation error is given as a number of levels.

 Several algorithms are called every time a new segment is stored

in the MCT data structure, whereas others, which must be applied on

more segments, are called when the dedicated buffer is complete. In

order to process data in the buffer, without stopping acquisition, the

RTSAL algorithm 73

storage of the RTSAL algorithm has been implemented with a double

buffer structure (Fig. 4.10).

4.2.1 Exponential Pattern Detection

 The exponential pattern detection function is developed with a state

machine structure, as shown in Fig. 4.11. The goal of this function is to

count the number of consecutive segments of the same class. This

function is called each time a new segment is stored. The starting case

is state 0: the algorithm is in this state if the class of the last segment

differs from the class of the previous one, or if there is an ‘a’, ‘b’, ‘c’

or ‘h’ class. The state changes to one when it finds a segment of ‘g’, ‘f’,

‘e’ or ‘d’ class, and if the class of the new segment is equal to the class

of the previous one. In this manner is possible to count consecutive

segments with the same class, and manage simple operations.

M C T

M C T

M C T

M C T

M C T

M C T

M C T

M C T

M C T

M C T

M C T

M C T

M C T

M C T

M C T

M C T

TIMESTAMP A TIMESTAMP B

F
IL

L
 O

R
D

E
R

F
IL

L
 O

R
D

E
R

BUFFER A BUFFER B

Fig. 4.10 Buffer structure for MCT data structure.

Fig. 4.11 State machine of the Exponential Pattern Detection algorithm.

74 Chapter 4

4.2.2 Noise Detection

 The noise detection function is developed with a state machine

structure, as shown in Fig. 4.12. This function detects noise computing

the distance between maxima and minima. This function is called each

time a new segment is stored, and the code related to the actual state is

executed. Starting from state 0, after the first segment the algorithm

goes into state 1 or 2, depending on the class, where it stays until the

first minimum or maximum is found. Once found the first, it continues

to look for minima and maxima and to compute time interval between

two consecutives of themselves, in state 10 and 20. If this time interval

is smaller than the NoisyPeriod for more than AmountNoise time, the

signal is considered noisy. If a class ‘a’, ‘b’, ‘c’ or ‘h’ is found, the

algorithm returns in state 0.

4.2.3 Sinusoidal Pattern Detection

 The sinusoidal pattern detection function is developed with a state

machine structure, as shown in Fig. 4.13, which allows the detection of

the pattern of classes ‘g’-‘e’-‘f’-‘d’. This function is called each time a

new segment is stored, and the code related to the actual state is

executed. Starting from state 0, if one of these classes is found, the

algorithm changes the state variable, in one state related to this class

(state 1 stands for class ‘g’, state 2 for class ‘e’, state 3 for class ‘f’ and

state 4 for class ‘d’). When it is in one of these four states, and if the

Fig. 4.12 State machine of the Noise Detection algorithm.

RTSAL algorithm 75

following segment is of the same class as the previous one, the state is

still the same. If the following segment is the one that is expected for

this specified pattern, the state changes to the following one, whereas if

the next segment class differs from the previous class or the expected

one, the state returns to 0. For example, if a class ‘g’ segment is

followed by another ‘g’ segment, the state remains the same; if it is

followed by an ‘e’ class segment, the state changes from state 1 to state

2, whereas if it is followed by one of the other possible classes, the state

returns to 0. In this algorithm are implemented all the functionalities

already described in the paragraph 3.4.4.

4.2.4 Tendency Estimation

 The Tendency Estimation function operates only on maxima and

minima of the signal, in a specific time window. So, this algorithm has

to extract only these values, and to apply the formula for the Tendency

Estimation (see par. 3.4.5), taking into account only maxima and

minima included in the specified time window. This function is

developed with a state machine structure, as shown in Fig. 4.14, which

allows the detection of maxima and minima. This function is called

each time a new segment is stored, it saves maxima and minima in a

separate buffer, and it computes tendency parameters. It starts with state

0, and it returns to this state only in case of classes ‘a’, ‘b’, ‘c’ or ‘h’.

Fig. 4.13 State machine of the Sinusoidal Pattern Detection algorithm.

76 Chapter 4

Other two states, state 1 and 2, are for maxima and minima search

respectively.

4.2.5 Mean Estimation

 The mean estimation function is called each time one of the two

buffers of the data structure for the MCT vectors is complete. It takes

this entire structure and

computes an estimation of the

mean, using a set of samples

which are not separated by the

same time interval (Fig. 4.15).

The MCT data structure gives

amplitudes and positions,

therefore, it is possible to

compute an estimation of the

mean, basing on the trapezoidal

area computation formula (12).

�̅� =
1

2(𝑇𝑁−𝑇1)
∑ (𝑀𝑖+1 + 𝑀𝑖)(𝑇𝑖+1 − 𝑇𝑖)𝑁−1

𝑖=1 (12)

Fig. 4.14 State machine of the Tendency Estimation algorithm.

Fig. 4.15 Three samples stored by the RTSAL

algorithm.

Chapter 5 Applications of a RTSAL technique

Chapter 5

Applications of a RTSAL technique

 The RTSAL algorithm can be used in different applications: in this

chapter several uses of MCT data structure, generated with this

algorithm, are shown. This technique is used in order to extract several

parameters from the analyzed signals, like the period, the amplitude, the

mean, and so on. The thesis shows results of these algorithms

compared, in simulations and on real signals, with other techniques.

Comparisons in simulations are done in Matlab®, and those algorithms

are charged on the oscilloscope, in order to test same algorithms with

acquired samples. This chapter consist of three main parts:

 an in-depth properties examination of the period measurement

capability; the working principle of the algorithm and problems

related to the maximum search, based on the MCT data

structure are analyzed. Moreover, results of simulations are

shown for different signals, varying the interpolation error

value, sampling frequency and signal to noise ratio. Therefore,

these strategies are implemented utilizing an on board Matlab®

on an oscilloscope. In addition, this technique is also compared

with the compressive sensing. Furthermore, this algorithm is

tested on microcontroller, in order to test functionality and

execution times.

 an analysis of mean estimation algorithm results.

 the RTSAL algorithm is exploited to analyze vibrations signals

from faulty bearing.

5 Applications

78 Chapter 5

5.1 Period Measurement

 A period is the time duration of one cycle in a repeating event.

Searching through the class vector, it is possible to identify maxima and

minima as a determined sequence of classes: a maximum can be located

when there is a ‘g’ or ‘d’ class, followed by an ‘e’ or ‘f’ class, whereas

a minimum can be located when there is an ‘e’ or ‘f’ class, followed by

a ‘g’ or ‘d’ class. The period can be determined as the time interval

between the position of two following maxima (Fig. 5.1), whose

amplitude values fall in the same range of twice the interpolation error

(to avoid coarse errors due to higher order harmonics or noise).

 This means that, by the interpolation error value, the sensitivity

to the amplitude variations of the signal can be regulated and, as a

consequence, the number of samples saved in the structure of the three

arrays. For small values of interpolation error, comparable to the noise

amplitude, the position of signal maxima on the time axis can be

characterized by jitter. Moreover, many input samples would be stored,

increasing the computational load and requiring more memory. On the

contrary, increasing the interpolation error, the noise susceptibility

decreases, the number of stored samples decreases, together with the

number of stored samples. A simple flow chart of the algorithm for

Fig. 5.1 Evaluation of period on a signal processed with the real time segmentation and

labeling algorithm.

Applications of a RTSAL technique 79

period computation is shown in Fig. 5.2: inputs are the vector of the

MCT data structure, and the interpolation error value (E), whereas

outputs are period and maximum amplitude values. The resolution is

related to the sampling frequency, whereas the precision of this type of

algorithm is also related to the chosen interpolation error, which

depends on the signal amplitude.

80 Chapter 5

Fig. 5.2 Flow chart of period computation function based on the segmentation and labeling

algorithm.

Applications of a RTSAL technique 81

5.1.1 Maximum search

 Several simulation tests were carried out in order to evaluate the

residual error and the uncertainty in the period evaluation. To this aim

at first the uncertainty in the maximum position identification is

quantified. In the following, several simulations will be described,

implemented on a personal computer with Matlab® software. For

example, different cases of maximum search are shown in the following

graph (Fig. 5.3-5.4). Simulations employ the same maximum research

and a signal is declared with the same sampling frequency. In Fig. 5.3

are reported, for the same ideal input signal, in the same observation

window, the ideal maximum position, the maximum position identified

by the algorithm, and the related error, in number of samples, with

different interpolation error values. In Fig. 5.4 are reported, for the same

input waveform, in the same observation window, the ideal maximum

position, the maximum position identified by the algorithm, and the

related error, with different interpolation error. Additive noise of 30 dB

has been considered by means of the Matlab® command awgn.

Fig. 5.3 Maximum search, with interpolation error of 0.01 (a), and 0.1 (b). The input samples of an ideal

sinusoidal waveform are in blue, whereas stored segment are in red (classes are not reported).

(a) (b)

82 Chapter 5

 In the maximum search using real time segmentation and labeling

algorithm, many parameters could influence the result accuracy: the

interpolation error value, the starting point of segmentation, the signal

to noise ratio, the sampling frequency, and the signal amplitude.

 In the following graph, results are reported, obtained plotting mean

and standard deviation of the relative error done identifying the

maximum position, varying the interpolation error value. The input

signal is a sinusoidal waveform of unitary amplitude, and the

interpolation error value is considered as percentage value of the input

sine amplitude. The mean and standard deviation of the relative error

are computed, varying the interpolation error with a step of 0.05, on one

hundred repeated simulations (N=100), for which is randomly varied,

the starting point for the segmentation algorithm, in a neighborhood of

the minimum equal to the fifteen percent of the input sine period. The

input sine has a frequency of 50 Hz, with a signal to noise ratio of 30

dB, whereas the sampling frequency is equal to 100 kHz. In Fig. 5.5

results are shown.

Fig. 5.4 Maximum search, with interpolation error of 0.1 (a), and 0.2 (b). The input samples of a
sinusoidal waveform with a signal to noise ratio of 30 dB are in blue, whereas stored segment are in red

(classes are not reported).

(a) (b)

Applications of a RTSAL technique 83

Fig. 5.5 Mean and standard deviation of relative error computing the position of the maximum of an input
sinusoidal waveform of 50 Hz (signal to noise ratio 30 dB, sampling frequency 100 kHz). Results are shown

as a function of the interpolation error, evaluated on 100 repeated simulations for each step.

Fig. 5.6 Mean and standard deviation of relative error computing the position of the maximum of an input
sinusoidal waveform (signal to noise ratio 30 dB, interpolation error 0.05). Results are shown as a function of

the signal frequency to sampling frequency ratio, evaluated on 100 repeated simulations for each step. Blue

for synchronous sampling and green for asynchronous sampling.

84 Chapter 5

 Moreover, in order to show the effect of the ratio between sampling

frequency and the input signal frequency for the same input signal, in

Fig. 5.6 the mean and standard deviation of the relative error are shown,

as a function of the ratio between sampling frequency and the input

signal frequency. The interpolation error value for these simulations is

0.05; blue forks are for synchronous sampling frequencies, whereas

green forks are for asynchronous sampling frequencies: results are not

affected by an asynchrony between signal and sampling frequencies.

5.1.2 Simulation of period computation

The Matlab® software has been used for simulations that were made

in order to evaluate residual error and uncertainty in period calculation,

with reference to canonic waveforms as sine, square wave or multi-

tone.

 Based on the selection of the stored samples, and based on maxima

found by searching through the classes of the class vector, it is possible

to implement the period calculation as the difference of temporal

position between the segments that identifies two consecutive maxima.

Respect to other algorithms, like the “zero crossing”, that need two

trigger level crossing to estimate the signal period, the real time

segmentation and labeling algorithm more easily returns the time

positions of local maxima and minima. Of course, due to the null slope

of maxima and minima, the proposed algorithm should be more

susceptible to noise, compared with algorithms that can chose suitable

trigger levels. Then the simulations have made with the aim of

evaluating the influence of the interpolation error on the noise

susceptibility of the period measurements based on MCT vectors. It has

to be noted that, in this case, the quantity to be measured is the time

distance between two consecutive maxima. As a further explanation, in

Fig. 5.7 same cases of the segmentation process on a periodic

waveform, with different interpolation error values, are shown. As a

result, for a determined signal period, the bigger the interpolation error,

the fewer the MCT vector elements. However these results confirm that,

even if the amplitude error increases, the signal period error decreases

because the time interval between two consecutive maxima should be

less affected by noise.

Applications of a RTSAL technique 85

 As it can be observed, even if a small interpolation error grants a

more detailed waveform reconstruction in the time domain, it leads to

higher errors in period calculation. As a matter of fact, a small

interpolation error leads to higher sensitivity to noise in a way that

depends on the signal to noise ratio. For example, different cases of

period computation are shown in the following figures (Fig. 5.8-5.9).

Simulations employ a signal of 50 Hz, which is declared with sampling

frequency of 100 kHz and 30 dB of signal to noise ratio. In Fig. 5.8 an

example of stored samples from this signal by the segmentation and

labeling algorithm is reported, for an interpolation error of 8%, whereas,

in Fig. 5.9, for the same input signal, an example of stored samples for

an interpolation error of 20% is reported.

 So, searching for maxima in the class vector, all the class sequences

classified as maxima are taken into account, and those ones whose

amplitude values fall in the same range of twice the interpolation error

are used to compute the period. This segmentation and labeling

technique acts to extract a global information from the signal: a right

interpolation error choice is fundamental to obtain good results, both in

terms of memory saving and global behavior understanding. The

interpolation error value has to be used like the LSB of an ADC: with a

small interpolation error (lower than the noise amplitude) the algorithm

stores many samples, which do not contain significant information

Fig. 5.7 Examples of segmented sinusoidal waveform with several different interpolation error values.

86 Chapter 5

content, whereas, with a bigger one (value near the noise amplitude) it

stores only meaningful samples in the MCT data structure, which are

free from this redundancy.

Fig. 5.9 Example of stored samples by the RTSAL algorithm. Input sinusoidal signal of 50 Hz, sampling

frequency 100 kHz, SNR 30 dB, interpolation error 20%.

Fig. 5.8 Example of stored samples by the RTSAL algorithm. Input sinusoidal signal of 50 Hz, sampling

frequency 100 kHz, SNR 30 dB, interpolation error 8%.

Applications of a RTSAL technique 87

 In the following figures, some results of the simulations are shown:

as for in the computation of the period, the systematic error and its

standard deviation versus the interpolation error are reported. Mean and

standard deviation are computed, varying the interpolation error with a

step of 0.01, in one thousand repeated simulations (N=1000), for which

the starting point for the segmentation algorithm is randomly varied, in

the neighborhood of the minimum equal to the 15% of the input signal.

The following three figures are for different input signals: a sinusoidal

signal (Fig. 5.10), a 2-tone signal (Fig. 5.11), and a square wave signal

(Fig. 5.12). All the signals have a fundamental harmonic at 50 Hz, they

are acquired with the same sampling frequency of 100 kHz, and have a

signal to noise ratio of 30 dB.

Fig. 5.10 Mean and standard deviation of relative error computing the period of an input sinusoidal
waveform of 50 Hz (signal to noise ratio 30 dB, sampling frequency 100 kHz). Results are shown as a

function of the interpolation error, evaluated on 1000 repeated simulation for each step.

88 Chapter 5

Fig. 5.11 Mean and standard deviation of relative error computing the period of an input two tone

waveform, with fundamental of 50 Hz (signal to noise ratio 30 dB, sampling frequency 100 kHz). Results

are shown as a function of the interpolation error, evaluated on 1000 repeated simulations for each step.

Fig. 5.12 Mean and standard deviation of relative error computing the period of an input square wave
signal, with fundamental frequency of 50 Hz (signal to noise ratio of 30 dB, sampling frequency 100 kHz).

Results are shown as a function of the interpolation error, evaluated on 1000 repeated simulations for each

step.

Applications of a RTSAL technique 89

 Furthermore, an error analysis is made fixing the interpolation error

value, and varying the sampling frequency. The interpolation error

selected is equal to 20% of the maximum value: this value is selected

based on the results of the previous simulations. Around this value, the

error made calculating period is smaller than the error computed for

other values for the analyzed input signal: this value has to be chosen

for the specific application, and for the specific signal. The range of

sampling frequencies analyzed is from 10 kHz to 1 MHz. The input

signal is still a sinusoidal waveform: with a signal to noise ratio of

30 dB in the first figure (Fig. 5.13), and with a signal to noise ratio of

40 dB in the second figure (Fig. 5.14). In addition, in those simulations

the starting point for the segmentation algorithm is varied randomly, in

a neighborhood of the minimum equal to the fifteen percent of the input

sine period. Means and standard deviations are computed on one

hundred repeated simulations (N=100). In these figures, blue forks

stand for synchronous sampling frequencies, whereas green forks stand

for asynchronous sampling frequencies, in order to underline that

results are not affected by an asynchrony between signal and sampling

frequencies. Error results are shown in relative values, computed

relating to the period of the input waveform, in order to simplify the

reading. The error is smaller at higher sampling frequencies.

Fig. 5.13 Mean and standard deviation of relative error, computing the period of a sinusoidal waveform, with

frequency of 1 kHz (signal to noise ratio 30 dB, interpolation error 20 % of the input maximum value). Results
are shown as a function of the sampling frequency, evaluated on 100 repeated simulations for each step. Blue

for synchronous sampling and green for asynchronous sampling.

90 Chapter 5

 Every real signal is affected by noise, depending on the type of

sensors and applications, varying the type and the amount of noise.

Several simulations implemented in Matlab® have been done in order

to evaluate the performances of this period computation based on the

RTSAL algorithm as a function of the signal to noise ration. A

sinusoidal waveform is stated on Matlab®, with a period of 0.02 s and

a sampling period of 10 µs (2000 samples per period are taken) on a

temporal window of 0.2 s. Fig. 5.15 shows the computed period error

tendency related to the nominal period, as a function of the interpolation

error value, and as a function of the signal to noise ratio for the input

signal. The minimum interpolation error parameter to be chosen (for

which good results for the period error are achieved), increases with

signal to noise ratio decreasing. Furthermore, Fig. 5.16 and 5.17 show

the period and the amplitude calculated as a function of the sampling

frequency (from 1 kHz to 100 kHz), with the interpolation error

parameter fixed for the RTSAL algorithm. The input signal for these

two simulations is still a sinewave with a period of 0.02 s, on an

observation temporal window of 0.04 s (in order to have only two

maxima in this window).

Fig. 5.14 Mean and standard deviation of relative error, computing the period of a sinusoidal waveform,
with frequency of 1 kHz (signal to noise ratio of 40 dB, interpolation error 20 % of the input maximum

value). Results are shown as a function of the sampling frequency, evaluated on 100 repeated simulations

for each step. Blue for synchronous sampling and green for asynchronous sampling.

Applications of a RTSAL technique 91

Fig. 5.15 Relative period error (referred to the nominal period) as a function of interpolation error and

signal to noise ratio.

Fig. 5.16 Period as a function of sampling frequency. Four different colours are for different value of the

signal to noise ratio simulated, as reported in the legend (for these graphs the interpolation error parameter

is 0.35)

Sampling Frequency [kHz]

P
er

io
d

 [
m

s]

92 Chapter 5

Fig. 5.17 Amplitude as a function of the sampling frequency. Four different colours for different value of

the signal to noise ratio simulated, as reported in the legend (for these graphs the interpolation error value

is 0.35).

Sampling Frequency [kHz]

A
m

p
li

tu
d
e

[V
]

Applications of a RTSAL technique 93

 Every real signal is affected by noise, depending on the type of

sensors and applications, varying the type and the amount of noise.

Once a sinusoidal waveform has been chosen as input, the error analysis

has been made by varying the signal to noise ratio. In the Fig. 5.18, the

mean and the standard deviation of the relative period error is graphed,

computed on 1000 repeated simulations, for a sinusoidal signal of 50

Hz, acquired with a sampling frequency of 100 kHz. Results are shown

for interpolation error value of 15% of the maximum value (in red), and

for interpolation error value of 20% (in black). The slight difference

between the two curves once again evidences the different behavior of

the period calculation algorithm if the interpolation error changes. In

particular, the higher the noise level, the higher the interpolation error,

to reduce noise susceptibility. However, the interpolation error must be

lower in absence of noise, to reduce errors and dispersion of period

measurements.

Fig. 5.18 Relative error of computed period on 100 repeated simulations, graphed as a function of the signal

to noise ratio. Input sinusoidal waveform of 50 Hz, sampling frequency 50 kHz, results are for different

interpolation error value.

94 Chapter 5

5.1.3 Experimental results for period computation

 The proposed algorithm for period measurement is tested on real

signals: the oscilloscope LeCroy WaveMaster 8620A is used, running

the Matlab® algorithm directly on the oscilloscope, with a Tektronix

AWG2020 signal generator, in order to compare results of the period

measurement of the oscilloscope, with results of the algorithm for

period measurement based on the RTSAL algorithm. The algorithm

implemented on the oscilloscope is zero crossing. Repeated measures

are performed, varying input signal frequency, sampling frequency,

dedicated record length of the oscilloscope, and interpolation error. As

an input of the two algorithms on the oscilloscope, a sinusoidal

waveform is stated on the AWG2020 signal generator, with amplitude

of 1 V, and without offset. In order to let the algorithm work correctly

a time window which contain at least two period must be selected,

because the input vector for the Matlab® algorithm is the vector of

waveform points acquired by the oscilloscope (WformIn1). Results of

the period measurement algorithm of the oscilloscope are taken directly

from the graphic interface of the oscilloscope, whereas the period

measures based on the RTSAL algorithm are obtained utilizing the on-

board Matlab®. In Tab. 5.1 and 5.2 the comparison of the two technique

is shown. Data shown are referred to 25 repeated measures for each

type, fixing all the parameters. A new acquisition of the input waveform

is performed each time, and the two algorithm are applied on the new

waveform points. Results are consistent: the technique based on the

RTSAL algorithm, in the best case, has a standard deviation bigger than

the one obtained with the other technique of one order of magnitude.

Moreover, results are not affected by systematic effects, and they are

always compatible with results of the zero crossing; results of period

measures depend on the interpolation error value.

Applications of a RTSAL technique 95

TABLE 5.1. PERIOD MEASUREMENTS (ON ONE THOUSAND SAMPLES)

Input

Freq

Record length: 1kS

Sampling

Freq

Interpolation

Error
 T-Scopea T-S&La

50 Hz 20 kHz

0.06
mean 19.991 20.08

std 0.023 0.84

0.07
mean ---b 19.98

std --- 0.79

0.08
mean --- 20.3

std --- 1.2

1 kHz 500 kHz

0.06
mean 0.999 0.999

std 0.001 0.045

0.07
mean --- 1.017

std --- 0.041

0.08
mean --- 1.029

std --- 0.050

a. Results are in milliseconds
b. Results for the oscilloscope measurement are the same, changing only the interpolation error

TABLE 5.2. PERIOD MEASUREMENTS (ON FIFTY THOUSAND SAMPLES)

Input

Freq

Record length: 50kS

Sampling

Freq

Interpolation

Error
 T-Scopea T-S&La

50 Hz 1 MHz

0.105
mean 20.008 20.12

std 0.053 1.44

0.110
mean ---b 19.84

std --- 0.62

0.115
mean --- 19.66

std --- 0.87

1 kHz 25 MHz

0.105
mean 1.0001 1.021

std 0.0027 0.037

0.110
mean --- 1.015

std --- 0.042

0.115
mean --- 1.033

std --- 0.047

a. Results are in milliseconds

b. Results for the oscilloscope measurement are the same, changing only the interpolation error

96 Chapter 5

5.1.4 A comparison with another sensor signal

preprocessing techniques: compressive sampling

Reducing the amount of data to be transmitted on a sensor network,

whether wired or wireless, is a useful choice. In communication, the

need for transferring less data means consuming less energy and using

a smaller bandwidth for the data links.

The RTSAL algorithm is not the only possible strategy to achieve

this goal: the objective of various signal processing algorithms is the

reduction of the amount of data to be transmitted. In fact, there are a lot

of possible algorithms, some of them computationally simpler, others

more complex, and, generally, the complex ones require a high

computational loads for obtaining the compression of the data, and

simple ones require lower computational loads [61]. In this paragraph,

a comparison with the compressive sensing [62-64] is shown, in order

to compare period and amplitude calculation, as well as execution times

and amount of data required for these algorithms.

The compressive sensing technique is based on an algorithm that

takes a fixed number of samples from a signal. Therefore, from this

point of view, it is a technique which allows to reduce the data amount

to be transmitted, sending only several acquired samples, and allowing

reconstruction of the input signal.

This algorithm is based on the signal transformation in other domains

where this signal is represented by a lower quantity of samples,

acquired with a casual step of sampling (Fig. 5.19).

Fig. 5.19 Samples acquired following the Nyquist theorem (b) and the Compressive Sensing directives (c)

on the same signal (a).

Applications of a RTSAL technique 97

For example, a sinusoidal signal, or even a signal including various

frequency components, has a Fourier transform such that only a few of

those are substantial. When a signal has such a property it is said to be

S-sparse. In order to apply the compressive sensing technique it would

be necessary to choose the right expansion basis for the class of signals

in which it would be used. Those signals would be represented, in their

destination domain, by almost all zero samples and only few

meaningful samples, which carry all the information contents.

For this algorithm, it is necessary to take random samples. Sampling

mechanics in time domain can be expressed as:

𝑦 = 𝛷 ∙ 𝑥 (13)

where 𝑦 𝜖 ℝ𝑚is the vector of measures, 𝑥 𝜖 ℝ𝑛 is the input signal and Φ

is the sampling matrix. The number of acquired samples, m, is reduced

by this algorithm but is sufficient for reconstruction (𝑚 ≪ 𝑛). The

compressive sensing is an algorithm which can reduce the size of the

transferred data while still having the same information content. The

considered data compression is possible because there is a wide set of

signals that have a sparse representation. Let us express x as:

𝑥 = 𝛹 ∙ 𝑠 (14)

where 𝑠 𝜖 ℝ𝑛 is a sparse representation of the signal x in the orthonormal

basis 𝛹 [𝑛 × 𝑛]. Combining the previous equations, the vector of the

acquired samples can be expressed as a function of the sparse

representation of the signal 𝑥:

𝑦 = 𝐴 ∙ 𝑠 = 𝛷 ∙ Ψ ∙ 𝑠 (15)

This equation system is characterized by infinite solutions. To make

compressive sensing work with success, a further condition has to be

met. The sensing matrices 𝛷 and the orthonormal basis matrix 𝛹 have

to be incoherent. Eventually, if the s vector is sufficiently sparse, the

system is solved by an L1-norm minimization algorithm, which gives,

under suitable conditions, the input signal as a unique solution [65-66].

98 Chapter 5

 Therefore, the sinusoidal signal has a sparse representation in the

frequency domain, in which the fundamental frequency, and its

amplitude value, can be located, implementing a search for the

maximum value. In the following, Matlab® simulation results are

shown: to calculate the fundamental period and amplitude of a

sinusoidal signal, in order to obtain a random sampling of the

waveform, a signal with equidistant samples is declared and a fixed

number of samples are taken randomly (m).

 The samples are located with a related

definition of the sensing basis matrix

𝛷 [𝑚 × 𝑛], and also the coefficients of the

Fourier transform are considered in the signal

basis matrix 𝛹 [𝑛 × 𝑛]. The L1-norm

minimization is implemented with the

Matlab® toolbox cvx. A simple search for

the maximum values is done on the s vector

and some processing are done on the value of

the maximum. In order to obtain the

fundamental period, it calculates the ratio

between the number of the signal samples

and the position of the maximum in the array

of complex coefficients of the Fourier

transform, and it multiplies by the inverse

ratio of the sampling frequency. On the other

hand, the amplitude of the fundamental is

calculated from the absolute value of the

maximum. A simple chart is shown in

Fig. 5.20.

 Several simulations have been executed

in order to evaluate the performance of the

compressive sensing algorithm. The same

type of signal, as mentioned in the previous

paragraph, is stated in the simulation

program, in order to give it as an input to the

algorithm, which returns as output the signal

period and amplitude. Fig. 5.21 shows the

period calculated based on compressive

sensing, as a function of the sampling

Fig. 5.20 Flow chart of period
computation function based on the

compressive sensing algorithm.

Applications of a RTSAL technique 99

frequency derived from the equidistant samples of the sine waveform.

The number of samples taken casually for the compressive sensing is

20, called m. Raising the sampling frequency, but taking the same

number of samples with a fixed observation temporal window for the

signal, the error decreases (it is as if the samples are taken more

casually).

These kinds of algorithms, this RTSAL algorithm and the

compressive sensing, could be useful to reduce the data transferred or

stored, starting from the raw samples, having the same information

content. Therefore, these two algorithms are compared from this point

of view. The first comparison shows the main differences between the

results: Tables 5.3 and 5.4 show the period and the amplitude calculated

by the algorithms, for the same input signal simulated in Matlab® (a

sinusoidal waveform whose amplitude is 1 V, frequency is 50 Hz, in a

fixed temporal window of 0.2 s, and with a signal-to-noise ratio of 40

dB of white Gaussian noise added). For the RTSAL algorithm, are

reported the interpolation error value used, the mean and the standard

deviation of the period, and the mean and the standard deviation of the

Fig. 5.21 Calculated period with compressive sensing as function of the sampling frequency.

Sampling Frequency [kHz]

P
er

io
d

 [
m

s]

100 Chapter 5

amplitude, because it returns a period value for each period found in the

analyzed temporal window and an amplitude value for each maximum

found. For the compressive sensing the number of samples taken

casually, m, is fixed at 30, and the calculated period and amplitude are

reported in the corresponding table.

TABLE 5.3. PERIOD MEASUREMENT

Sampling

Frequency

[kHz]

Interpolation

Error

Period Mean

(RTSAL)

[ms]

Period

Standard

Deviation

(RTSAL)

[ms]

Period

(CS)

[ms]

1 0.01 30 15 22.33

1 0.15 20.00 0.01 22.33

1 0.20 20.00 0.01 22.33

1 0.30 22.9 7.6 22.33

1 0.40 20.0 1.1 22.33

1 0.50 20.00 0.01 22.33

5 0.01 25.7 9.5 22.24

5 0.15 20.00 0.28 22.24

5 0.20 20.15 0.30 22.24

5 0.30 20.00 0.21 22.24

5 0.40 19.95 0.14 22.24

5 0.50 19.95 0.14 22.24

10 0.01 26 19 22.23

10 0.15 19.98 0.16 22.23

10 0.20 20.05 0.35 22.23

10 0.30 20.00 0.11 22.23

10 0.40 19.98 0.17 22.23

10 0.50 19.93 0.21 22.23

50 0.01 7.6 9.4 22.22

50 0.15 19.99 0.12 22.22

50 0.20 19.98 0.07 22.22

50 0.30 20.02 0.09 22.22

50 0.40 20.00 0.09 22.22

50 0.50 19.96 0.13 22.22

Applications of a RTSAL technique 101

TABLE 5.4. AMPLITUDE MEASUREMENT

Sampling

Frequency

[kHz]

Interpolation

Error

Amplitude

Mean

(RTSAL)

[V]

Amplitude

Standard

Deviation

(RTSAL)

[V]

Amplitude

(CS)

[V]

1 0.01 0.9641 0.0045 0.9774

1 0.15 0.9479 0.0057 0.9660

1 0.20 0.9494 0.0051 0.9634

1 0.30 0.9485 0.0074 0.9566

1 0.40 0.724 0.081 0.9923

1 0.50 0.5883 0.0068 0.9489

5 0.01 0.9954 0.0048 0.9837

5 0.15 0.981 0.011 0.9574

5 0.20 0.972 0.016 0.9836

5 0.30 0.940 0.016 0.9888

5 0.40 0.899 0.014 0.9741

5 0.50 0.841 0.017 0.9711

10 0.01 0.76 0.50 0.9848

10 0.15 0.9688 0.0079 0.9893

10 0.20 0.983 0.016 0.9905

10 0.30 0.9499 0.0068 0.9848

10 0.40 0.9048 0.0095 0.9943

10 0.50 0.844 0.018 0.9905

50 0.01 0.92 0.29 0.9833

50 0.15 0.9678 0.0041 0.9857

50 0.20 0.9835 0.0078 0.9814

50 0.30 0.9473 0.0068 0.9870

50 0.40 0.9074 0.0087 0.9845

50 0.50 0.858 0.011 0.9807

Looking at this table, it is clear that periods and amplitudes, computed

by the RTSAL algorithm, change depending on the value of the

interpolation error parameter.

Table 5.5 compare, for the same signal mentioned before, the number

of bytes necessary to be transferred and the execution times, for a fixed

interpolation error value. Regarding the memory allocation for the

output of the algorithms, for the RTSAL algorithm it is a total of 7 bytes

for each sample: one byte for the amplitude value M, one for the class

C, and four bytes for the time T (in seconds to midnight). Whereas, for

the compressive sensing, fixed 30 samples casually taken, for each

sample are considered 5 bytes, one for the amplitude value, and another

four bytes for the time instant.

102 Chapter 5

TABLE 5.5. NUMBER OF BYTES AND EXECUTION TIME

Sampling

Frequency

[kHz]

Interpolation

Error

Number of

bytes to

send

(RTSAL)

Number of

bytes to

send

(CS)

Execution

Time

(RTSAL)

[ms]

Execution

Time

(CS)

[s]
1 0.01 595 150 22.81 1.08521

1 0.15 147 150 23.38 1.06306

1 0.20 147 150 22.35 1.04783

1 0.30 147 150 22.07 1.04555

1 0.40 140 150 22.07 1.05290

1 0.50 140 150 22.43 1.05705

5 0.01 1771 150 24.66 1.35985

5 0.15 287 150 23.31 1.41131

5 0.20 175 150 24.51 1.40717

5 0.30 147 150 23.85 1.35811

5 0.40 147 150 23.83 1.36800

5 0.50 147 150 23.75 1.34012

10 0.01 2912 150 29.43 1.93774

10 0.15 287 150 26.36 1.84686

10 0.20 224 150 26.76 1.84195

10 0.30 147 150 26.32 1.88189

10 0.40 147 150 25.92 1.79951

10 0.50 147 150 26.45 1.78880

50 0.01 14560 150 60.08 8.72041

50 0.15 287 150 44.78 9.32604

50 0.20 287 150 45.16 8.77634

50 0.30 147 150 47.79 8.92872

50 0.40 147 150 49.79 8.19088

50 0.50 147 150 45.96 11.58102

There are enormous differences between the times needed by these

algorithms: the compressive sensing is complex because it involves a

minimization method; on the contrary, the RTSAL algorithm involves

only sum operations, comparisons, and a division by two (which could

be implemented with a simple register shift).

This means that the RTSAL algorithm can be implemented easily on

devices with limited hardware resources, like smart sensors, and it

could work in real-time while acquiring the samples. Furthermore,

compressive sensing requires keeping in memory the matrix A, which

could be very large.

In the event when it is useful not to process the samples directly, and

it is possible to process these data on a remote, more powerful device,

the compressive sensing could be implemented, transferring only the

casually acquired samples and their position.

Applications of a RTSAL technique 103

Eventually, experimental results of the implemented algorithms are

reported: these algorithms are applied on the acquired signal with the

LeCroy WaveMaster 8620A oscilloscope. Some results are reported, in

Tables 5.6, 5.7, 5.8 and 5.9, with sinusoidal, triangular, and square

waveforms as inputs. Period, amplitude and reconstruction percentage

error of the two algorithms are reported and compared. These results

are similar to those obtained with the simulated signals. It must be

considered that, for the compressive sensing, the same vector Ψ is

utilized. Then, the reconstruction percentage error, for other types of

signals, has increased considerably. Depending on the type of signals it

is necessary to select the proper vector, in order to obtain a sparse

representation of the acquired signal.

TABLE 5.6. EXPERIMENTAL TESTS – SINUSOIDAL WAVEFORM INPUT SIGNAL

Signal
Freque

ncy

[Hz]

Samplin

g

Freque
ncy

[kHz]

Interpol

ation
Error

Period
Mean

(RTSA

L) [s]

Period

(CS) [s]

Amplitu

de

Mean
(RTSA

L) [V]

Amplitu
de

(CS)

[V]

Mean of

Reconst
ruction

Percent

age
Error

(RTSA

L)
[%]

Mean of

Reconst

ruction
Percent

age

Error
(CS)

[%]

50 5 0.01 0.016 0.02500 0.8132 0.95394 2.5 3.7

50 5 0.10 0.0206 0.02500 0.9281 0.93286 6.8 3.9

50 5 0.20 0.0200 0.02500 0.9447 0.93917 15 3.6

50 100 0.01 0.0022 0.02500 0.513 0.91970 2.5 4.3

50 100 0.10 0.0203 0.02500 0.9170 0.71230 6.4 8.4

50 100 0.20 0.0200 0.02500 0.9060 0.88270 11 6.8

1000 100 0.01 0.002 0.00111 0.8088 0.91891 2.5 4.4

1000 100 0.10 0.0010 0.00111 0.9207 0.93279 7.2 4.7

1000 100 0.20 0.0010 0.00111 0.9256 0.94573 18 3.6

1000 500 0.01 0.0005 0.00111 0.825 0.93059 2.5 4.5

1000 500 0.10 0.0009 0.00111 0.8698 0.89438 5.3 5.4

1000 500 0.20 0.0010 0.00111 0.9305 0.94352 12 4.4

104 Chapter 5

TABLE 5.7. EXPERIMENTAL TESTS – TRIANGULAR WAVEFORM INPUT SIGNAL

Signal

Freque

ncy

[Hz]

Samplin
g

Freque

ncy
[kHz]

Interpol

ation

Error

Period

Mean

(RTSA

L) [s]

Period

(CS) [s]

Amplitu
de

Mean

(RTSA

L) [V]

Amplitu

de

(CS)

[V]

Mean of

Reconst

ruction
Percent

age

Error
(RTSA

L)

[%]

Mean of
Reconst

ruction

Percent

age

Error

(CS)
[%]

50 1 0.01 0.260 0.02083 0.8397 0.74863 3.8 5.2

50 1 0.20 0.0242 0.02083 0.6669 0.73011 29 4.7

50 1 0.40 0.0200 0.02083 0.2978 0.75222 37 4.2

50 100 0.01 0.001 0.02500 0.5545 0.70646 2.2 9.2

50 100 0.20 0.0201 0.02500 0.7678 0.60910 15 11

50 100 0.40 0.0202 0.02500 0.5082 0.69162 28 8.7

1000 100 0.01 0.001 0.00111 0.8231 0.70800 2.5 6.5

1000 100 0.20 0.0010 0.00111 0.7193 0.74052 18 4.4

1000 100 0.40 0.0010 0.00111 0.4833 0.73615 32 5.6

1000 500 0.01 0.0007 0.00111 0.2375 0.66437 2.7 8.2

1000 500 0.20 0.0010 0.00111 0.7218 0.75929 17 5.1

1000 500 0.40 0.0010 0.00111 0.5131 0.69472 29 6.3

TABLE 5.8. EXPERIMENTAL TESTS – SQUAREWAVE (DUTY 50%) INPUT SIGNAL

Signal

Freque
ncy

[Hz]

Samplin
g

Freque

ncy
[kHz]

Interpol

ation

Error

Period

Mean
(RTSA

L) [s]

Period
(CS) [s]

Amplitu
de

Mean

(RTSA

L) [V]

Amplitu

de
(CS)

[V]

Mean of

Reconst

ruction
Percent

age

Error
(RTSA

L)

[%]

Mean of
Reconst

ruction

Percent
age

Error

(CS)
[%]

50 1 0.01 0.012 0.02083 0.9909 1.17890 17 37

50 1 0.10 0.0230 0.02083 1.0010 0.93221 78 39

50 1 0.20 0.0200 0.02083 0.9838 1.07043 89 38

50 100 0.01 0.003 0.02500 0.4683 0.68253 3.3 55

50 100 0.10 0.0025 0.02500 0.9837 0.78738 10 53

50 100 0.20 0.0200 0.02500 1.0165 0.84215 115 46

1000 100 0.01 0.0017 0.00111 0.0552 0.60818 5.9 61

1000 100 0.10 0.0009 0.00111 1.0054 0.58141 57 56

1000 100 0.20 0.0010 0.00111 0.9889 0.67602 112 49

1000 500 0.01 0.0001 0.00111 0.9092 0.84250 3.7 46

1000 500 0.10 0.0017 0.00111 0.5561 0.75593 27 56

1000 500 0.20 0.0010 0.00111 1.0027 0.70866 116 49

Applications of a RTSAL technique 105

TABLE 5.9. EXPERIMENTAL TESTS – SQUAREWAVE (DUTY 15%) INPUT SIGNAL

Signal
Freque

ncy

[Hz]

Samplin

g

Freque

ncy

[kHz]

Interpol

ation

Error

Period
Mean

(RTSA

L) [s]

Period

(CS) [s]

Amplitu

de

Mean

(RTSA

L) [V]

Amplitu
de

(CS)

[V]

Mean of

Reconst
ruction

Percent

age

Error

(RTSA

L)
[%]

Mean of

Reconst

ruction
Percent

age

Error
(CS)

[%]

50 1 0.01 0.053 0.02083 1.0054 0.67681 10 32

50 1 0.10 0.0200 0.02083 0.9760 0.34214 117 40

50 1 0.20 0.0200 0.02083 0.9769 0.53154 155 19

1000 100 0.01 0.0015 0.00111 0.8839 0.44719 8.3 64

1000 100 0.10 0.0010 0.00111 0.8888 0.30100 101 56

1000 100 0.20 0.0010 0.00111 0.9695 0.44268 172 47

1000 500 0.01 0.0007 0.00111 0.6526 0.34938 5.5 50

1000 500 0.10 0.0007 0.00111 0.6526 0.54401 5.5 53

1000 500 0.20 0.0010 0.00111 0.9999 0.33524 173 58

A comparison between two different methods for extracting fewer

data, but acquiring the same information is shown. Compressive

sensing is characterized by a greater complexity, but it is an algorithm

with which, knowing the domain of the analyzed signal, it is possible

to reconstruct the input signal. The segmentation and labeling algorithm

is less complex, it allows a worse signal reconstruction and it is less

immune to noise, because the selection criteria for the samples is related

to the amplitude.

Then, in some cases, the algorithm which gives minimal use of the

bus would be chosen: in fact, compressive sensing needs a fixed number

of samples. The RTSAL algorithm needs even more samples, if the

signal has to be reconstructed. In other cases, it should select the

algorithm which needs fewer operations, or less processing time. The

RTSAL algorithm, unlike the compressive sensing, could work in real

time, because it is not so complex, it would need a little memory, and it

could even be possible to directly communicate the extracted

parameters of interest (period, amplitude, etc…), rather than the MCT

data structure.

106 Chapter 5

5.1.5 Period measurement with an ARM microcontroller

 In this paragraph, a basic implementation on an ARM

microcontroller is shown, based on the shown period computation

technique. This analysis highlights the performance of the technique in

terms of execution time.

 Experimental results obtained for the period measurement with a

microcontroller are shown in this section. A development board from

ETT for a STM32F103 ARM Cortex-M3 is used for testing the

algorithm, with an AWG2020

waveform generator. The

microcontroller acquires a fixed

number of points (256) with a

fixed sampling frequency, it

applies the RTSAL algorithm,

and it elaborates the MCT data

structure, calculating the period of

the sinusoidal waveform

(Fig. 5.22).

 The results, in Table 5.10, are

reported in milliseconds, as a

function of nominal frequency of the input waveform, and as a function

of sampling frequency for the ADC. In order to acquire the input signal

correctly, some constraints have to be observed:

 This technique selects the most significant samples of a signal,

sampled with a high sampling frequency. It is not useful to apply

a technique that selects samples, on a signal that has 2 points for

period, as the strictly minimum of Nyquist condition says. In

those measures, taking 10 samples for each period, could be an

acceptable minimum;

 Temporal window must include, at least, two periods of the

input waveform. For the correct operating condition of the

technique based on the segmentation and labeling algorithm, it

is needed to have at least two periods, in order to calculate the

time interval between two consecutive maxima.

Fig. 5.22 Period measurement with an ARM

microcontroller.

Applications of a RTSAL technique 107

TABLE 5.10. PERIOD MEASUREMENT (ON MICROCONTROLLER)

Input

Freq
50 Hz 100 Hz

200

Hz

500

Hz
1 kHz

Sampling

Freq

500 Hz 20.00 --- --- --- ---

1 kHz 20.00 9.20 --- --- ---

2 kHz 19.00 10.00 5.00 --- ---

5 kHz 18.00 10.00 4.80 2.00 ---

10 kHz --- 10.60 5.00 2.00 1.00

20 kHz --- --- 4.80 2.00 1.00

50 kHz --- --- --- 1.72 0.92

Results are in milliseconds (max percentage standard deviation of 3%)

 This table reports means value of 20 measures for segmentation and

labeling algorithms. The maximum of the percentage standard

deviation for these measures is about 3%.

 Eventually, the execution time of this technique is evaluated: it

takes between 0.23 ms and 0.69 ms to run. It takes into account the

acquisition time needed to capture the waveform and to execute the

measuring task. This algorithm could be good with different acquisition

systems, especially in distributed system, like sensor networks, where

computational load is generally a big issue. In fact, in a sensor network,

a typical node does not have many computational capabilities.

5.2 Mean estimation with RTSAL algorithm

 With only several samples, not equally spaced in time, other

techniques to compute the mean value have to be applied, in order to

take into account the temporal position of the stored samples. Mean

value estimation could be implemented, assuming the shape of the

signal as linear between two stored samples, and computing the

trapezoid area under the assumed linear signal. So, to compute the area

under the line that connects two consecutive stored samples, an

acceptable approximation is to compute the area of a trapezoid for each

time interval (Fig. 5.23).

108 Chapter 5

 Therefore, the formula (1) (MTA, mean trapezoid area) is

applied, instead of applying the (2) (SM, standard mean) on the stored

samples.

 An application of the algorithm, within simulations and real

signals, is analyzed. At first, the algorithm is tested on simulated signal,

implementing the algorithm in Matlab® on a personal computer, and

formulas for mean value computations are applied. Then, this algorithm

is tested on real acquired signal with real instrumentation. The

oscilloscope LeCroy WaveMaster 8620A is used, running the Matlab®

algorithm directly on the oscilloscope, with a Tektronix AWG2020

signal generator, in order to compare the results of the mean

measurement of the oscilloscope, with the results of the algorithm for

the same parameter, based on the RTSAL technique. Simulations done

in Matlab® are reported in Table 5.11.

Fig. 5.23 Trapezoidal rule. Stored samples are not equally spaced, so the region under the graph are

approximated as a trapezoid.

Applications of a RTSAL technique 109

 The proposed techniques, used for the mean value in (16), are

compared with results of the (17) applied on the segments. The input

signal is a sinusoidal waveform of unitary amplitude, and no offset, and

these tests are done varying the input frequency, the sampling

frequency, the interpolation error value and the SNR. The RTSAL

algorithm is applied to this signal, and then these formulas are applied

to the MCT data structure. In this table are also reported the execution

time needed by the two different computation, and the number of stored

samples, which directly depend on the interpolation error value.

TABLE 5.11. MEAN VALUE ESTIMATION (SIMULATIONS)

500Hz

SNR=30dB

Sampling Frequency - (Number of samples)

10 kHz (500 S) 100 kHz (5000 S) 1 MHz (50000 S)

MTA (16) SM(17) MTA(16) SM(17) MTA(16) SM(17)

Interpolation

Error = 0.01

0.13 V 0.15 V 0.13 V 0.14 V 0.13 V 0.13 V

Execution time 13.66 µs 5.99 µs 120.60 µs 50.30 µs
1194.68

µs
500.72 µs

Stored Segment 390 S 4013 S 40274 S

Interpolation
Error = 0.05

0.12 V 0.09 V 0.13 V 0.12 V 0.13 V 0.13 V

Execution time 6.66 µs 3.33 µs 38.31 µs 16.32 µs 377.79 µs 167.57 µs

Stored Segment 128 S 1219 S 12428 S

Interpolation

Error = 0.10

0.059 V 0.13 V 0.13 V 0.26 V 0.13 V 0.14 V

Execution time 2.99 µs 1.66 µs 5.66 µs 2.66 µs 40.98 µs 17.66 µs

Stored Segment 30 S 104 S 1284 S

Interpolation

Error = 0.15

0.068 V 0.12 V 0.09 V 0.18 V 0.11 V 0.12 V

Execution time 2.66 µs 1.66 µs 3.33 µs 1.99 µs 4.99 µs 2.33 µs

Stored Segment 21 S 26 S 58 S

Interpolation

Error = 0.20

0.027 V 0.027 V 0.07 V 0.10 V 0.11 V 0.12 V

Execution time 2.66 µs 1.66 µs 3.66 µs 1.99 µs 5.33 µs 2.33 µs

Stored Segment 18 S 21 S 50 S

Interpolation

Error = 0.25

0.043 V 0.086 V 0.028 V 0.029 V 0.096 V 0.103 V

Execution time 2.66 µs 1.33 µs 3.66 µs 1.99 µs 4.33 µs 1.99 µs

Stored Segment 16 S 18 S 49 S

110 Chapter 5

 With formulas (1), which take into account the time position of

the stored samples, the execution time is always bigger than the time

required for the formulas (2), because it needs multiply operations, for

the mean value computation. The error of the formulas varies,

depending on how many samples for each period are acquired, and how

many samples are stored by the segmentation and labeling algorithm,

to which these formulas are applied. Using this technique, the aim must

be to reduce the number of stored or sent samples, so the choice of the

sampling frequency and the interpolation error for the specific

application is a complex issue.

 Results of the mean estimation algorithm of the oscilloscope are

taken directly from the oscilloscope, whereas the measures based on the

RTSAL algorithm are obtained utilizing the on-board Matlab®. The

input vector for the Matlab® algorithm is the vector of waveform point

acquired by the oscilloscope (WformIn1).

Fig. 5.24 Mean computed with formulas (16) and (17) on the MCT data structure, with input frequency

signal of 50 Hz, 100 Hz and 500 Hz.

Fig. 5.25 Mean computed with formula (16) on MCT data structure, with input frequency signal of 500

Hz, and sampling frequency of 10 kHz, with SNR of 40, 30 and 20 dB.

Applications of a RTSAL technique 111

 In Table 5.12, the comparison of the two techniques is shown.

Data shown are referred to 20 repeated measures for each interpolation

error, fixing all the other parameters. A new acquisition of the input

waveform is performed each time, and the algorithms are applied on the

acquired waveform points. Results are consistent, the technique based

on the RTSAL algorithm, in the best case, always has a standard

deviation bigger than the one obtained with the oscilloscope. Thus,

results of measures are strongly affected by the interpolation error

value, and are less accurate.

TABLE 5.12. MEAN VALUE ESTIMATION (OSCILLOSCOPE)

fi = 500 Hz fs =10 kHz (500 S)

Interpolation

Error

Mean-Scope

[mV]

MTA

[mV]

Saved Samples

[S]

0.05

Mean -5.4 -16.9 124.6

Standard
Deviation

1.7 5.2 3.1

0.10

Mean -5.4 -8 97.5

Standard

Deviation
1.7 10 3.4

0.15

Mean -5.4 -13 70

Standard
Deviation

1.7 13 17

112 Chapter 5

5.3 Analysis of vibrations signals from faulty

bearing

 The RTSAL algorithm has been tested also for processing

vibration signals to detect and isolate bearing faults. The database of

the Case Western Reserve University Bearing data center was used in

these tests [67]. Test signals are all sampled at a frequency of 48 kHz.

Fig. 5.26 shows the accelerometer signal in unfaulty conditions. On the

right, the signal is zoomed to evidence the waveform.

 Signals related to single point bearing faults made by using electro-

discharge machining are available in the same database as well. For

example, in this paper signal concerning fault diameters of 7 mils, 14

mils and 21 mils (1 mil=0.001 inches) are used to test algorithms.

 In the upper frame of Fig. 5.27 a signal obtained with an inner race

defect of seven mils is represented, whereas, in the lower frame a zoom

of a signal segment is shown. Note that the signal looks like being a

modulated impulsive carrier, and the modulation would be evident by

enveloping the amplitudes of the local maxima. As a consequence, the

local maxima obtainable after a single iteration of the RTSAL

algorithm, can be used to detect the signal modulation.

 Fig. 5.28 shows the local maximum signal corresponding to the

signal of Fig. 5.27.

Fig. 5.26 Left: Normal accelerometer signal (no defect). Right: Zoom of 30 milliseconds.

Applications of a RTSAL technique 113

Fig. 5.27 Upper: vibration signal for an inner race defect of 0.007’’. Lower: Zoom of a 50 ms time window.

Sampling frequency: 48 kHz.

Fig. 5.28 Envelope using maximum points for the inferior signal in Fig. 5.27.

114 Chapter 5

 The steps of a procedure based on the RTSAL algorithm, which

could be able to detect and isolate faults through a signal classification,

are the following:

1. Apply the RTSAL algorithm on the buffer of samples;

2. Compute mean value of the signal built with only the samples

that belong to a local maximum, called “NewSignal”. This

random variable is named MeanMaxMCT;

3. Apply the RTSAL algorithm to “NewSignal”, and repeat step 2

calling the outputs “NewMaxSignal” and MeanNewMaxMCT

respectively;

4. Compute variance of NewMaxSignal. This random variable is

named VarMaxMCT.

5. Graph a point in a Cartesian plane where MeanMaxMCT values

are on x axis and VarMaxMCT values are on y axis.

 The position of this point on the Cartesian plane can help to

recognize the bearing status.

 To this aim, in Fig. 5.29 the points related to inner race defective

signals for different intensities, and the ones related to unfaulty signals,

are shown. Whereas, in Fig. 5.30, the points related to inner race

defective signal for different types of defect are shown with the points

related to unfaulty signals.

Fig. 5.29 Classification graph for an inner race defective signal of 7, 14 and 21 mils.

Applications of a RTSAL technique 115

 The relationship between MeanMaxMCT and VarMaxMCT

provides information about the type of defect. The distance from the

origin, i.e. module, provides information about the damage intensity. In

addition, the MeanMaxMCT is information about the amount of

organized patterns that reflects the defect, whereas from the signal

“NewMaxSignal” it is possible to extract information about the

envelope shape. For example, for an inner race defective signal as

shown in Fig. 5.27, there are big differences among results of different

inner race sizes. Signals of a normal bearing are the nearest to the origin,

with a mean of almost 0.06 and no variance; whereas, for inner race of

7 mils, the smallest mean is 0.25, and for inner race of 14 mils, the

biggest mean is 0.21.

Fig. 5.30 Classification graph for defective signals of balls, inner race and outer race of 14 mils.

Conclusions

 This thesis shows an in depth analysis of the RTSAL algorithm

performance, in different application contexts. Firstly, this algorithm

was analyzed, in order to evaluate differences of the various

implementation techniques, underlining advantages and disadvantages

of each one. Moreover, this algorithm, together with the other ones of

the first layer expected from the draft, was implemented on a

microcontroller, in order to verify the real time implementation

effective simplicity and to demonstrate the functional capability of a

sensor network node, based on a microcontroller, which implements

this technique. Period and mean results based on the data structure

returned by this technique, were analyzed, both in simulations and on

real hardware. Furthermore, the proposed technique was compared with

compressive sampling, highlighting differences. From these analyses,

it is possible to understand how results strongly depend on the

interpolation error choice, both in terms of accuracy and in terms of

number of data to be managed. Eventually, an application example of

the algorithm for signal processing was shown for the analysis of

vibrations signals from faulty bearing.

 Utilizing this technique is fundamental: the application of this

algorithm, even in other contexts, is important for a widespread use of

this practice. This technique could have significant results improving

the bandwidth and the energy management in distributed sensor

networks, and therefore even lightening the large amounts of data to be

analyzed by the central elaboration systems. These benefits may be

achieved only if this technique will be widely accepted and used by

smart sensor manufacturers.

 In the context of the Internet of Things, where data to be exchanged

and communicated are one of the main problems, the reduction of data

at the root, that is in the point of acquisition, without information losses,

is the best way to facilitate the development of this network, which will

interconnect all the objects in the future.

Acknowledgements

This thesis is written within the agreement “Avviso Pubblico destinato

a giovani campani, tipologia progettuale: dottorati in Azienda”, by the

Campania region, with P.O.R. Campania F.S.E. 2007/2013 funds. This

agreement was taken between the “Università degli Studi di Salerno”

and the “Italdata S.p.A.”, and the research activities are done in the

research and development laboratories of Italdata in Avellino, and the

measurement laboratories of the DIIn at the University of Salerno.

References

[1] D. Evans, “The Internet of Things: How the Next Evolution of the Internet Is

Changin Everything”. White Paper, Cisco IBSG, April 2011 (Retrieved 4

September 2015).

[2] A. Wood, “The internet of things is revolutionizing our lives, but standards

are a must”, The Guardian. Retrieved 31 March 2015.

[3] Texas Instruments “The Internet of Things: Opportunities & Challenges”,

2014. Available at: www.ti.com/ww/en/internet_of_things/pdf/14-09-17-

IoTforCap.pdf.

[4] S. Jain, N. V. Kumar, A. Paventhan, V.K. Chinnaiyan, V. Arnachalam, M.

Pradish, “Survey on Smart Grid Technologies-Smart Metering, IoT and

EMS” IEEE Electrical, Electronics and Computer Science (SCEECS), 2014.

[5] D. Kyriazis, T. Varvarigou, A. Rossi, D. White, J. Cooper, “Sustainable

smart city IoT applications: Heat and electricity management & Eco-

conscious cruise control for public transportation”, IEEE 14th International

Symposium and Workshops on a World of Wireless, Mobile and Multimedia

Networks (WoWMoM), 2013.

[6] M. Feldmeier, J.A. Paradiso, “Personalized HVAC Control System”, IEEE

Internet of Things Conference, 2010.

[7] D. Brunelli, I. Minakov, R.Passerone, M. Rossi, “Smart monitoring for

sustainable and energy-efficient buildings: a case study”, IEEE Workshop

on Environmental, Energy, and Structural Monitoring Systems (EESMS),

Trento, 2015.

[8] G. Caliano, L. De Vito, F.P. Di Candia, G. Mazzilli, F. Picariello,

“Architecture of the Monitoring System designed for an Active Guard Rail”,

20th IMEKO TC4 International Symposium and 18th International Workshop

on ADC Modelling and Testing, Research on Electric and Electronic

Measurement for the Economic Upturn, Benevento, Italy, September 15-17,

2014.

[9] D. Spirijakin, A. Baranov, A. Karelin, A. Somov, “Wireless Multi-Sensor

Gas Platform for Environmental Monitoring” IEEE Workshop on

Environmental, Energy, and Structural Monitoring Systems (EESMS),

Trento, 2015.

[10] S. Li, H. Wang, T. Xu, G. Zhou, “Application Study on Internet of Things in

Environment Protection Field” Lecture notes in Electrical Engineering

Volume 113, 2011.

[11] E. Bassoli, L. Vincenzi, M. Bovo, C. Mazzotti, “Dynamic identification of

an ancient masonry bell tower using a MEMS-based acquisition system”,

IEEE Workshop on Environmental, Energy, and Structural Monitoring

Systems (EESMS), Trento, 2015.

[12] S. Amendola, R. Lodato, S. Manzari, C. Occhiuzzi, G. Marrocco, “RFID

Technology for IoT-Based Personal Healthcare in Smart Spaces”, IEEE

Internet of Things Journal, vol.1, issue.2, pp. 144-152, March 2014, doi:

10.1109/JIOT.2014.2313981.

References 119

[13] F. Abate, G. Di Leo, A. Paolillo, V. Paciello, “An Advanced traceability

system based on semi-active RFID devices”, 20th IMEKO TC4 International

Symposium and 18th International Workshop on ADC Modelling and

Testing, Research on Electric and Electronic Measurement for the Economic

Upturn, Benevento, Italy, September 15-17, 2014.

[14] L.B. Campos, C.E. Cugnasca, “Towards an IoT-Based Architecture for Wine

Traceability”, International Conference on Distributed Computing in Sensor

Systems (DCOSS), Fortaleza, June 2015.

[15] J. Manyika, M. Chui, P. Bisson, J. Woetzel, R. Dobbs, J. Bughin, D. Aharon,

“The Internet of Things, mapping the value beyond the hype”, McKinsey

Global Institute, June 2015.

[16] F. Thiesse, C. Floerkemeier, M. Harrison, F. Michahelles, “Technology,

Standards, and Real-World Deployments of the EPC Network”, IEEE

Internet Computing, vol. 13, issue 2, pp. 36-43, April 2009, doi:

10.1109/MIC.2009.46.

[17] Z. Liu, D. Liu, L. Li, H. Lin, Z. Yong, “Implementation of a New RFID

Authentication Protocol for EPC Gen2 Standard”, vol. 15, issue 2, pp. 1003-

1011, September 2014, doi: 10.1109/JSEN.2014.2359796.

[18] “EPCIS – EPC Information Services Standard”, GS1. Available at:

www.gs1.org/epcis/epcis/latest.

[19] C. Perera, R. Ranjan, L. Wang, S.U. Khan, A.Y. Zomaya, “Big Data Privacy

in the Internet of Things Era”, IEEE IT Professional Magazine: Special Issue

Internet of Anything 2015 (to be published).

[20] R. Frank, “Understanding Smart Sensors”, 2nd Ed., Artech House, Norwood,

MA 02062, 2000.

[21] S. Gervais-Ducouret, “Next smart sensors generation”, IEEE Sensors

Applications Symposium (SAS), San Antonio, TX, 2011, doi:

10.1109/SAS.2011.5739775.

[22] W.B. Heinzelman, A.P. Chandrakasan, H. Balakrishnan, “An Application-

Specific Protocol Architecture for Wireless Microsensor Network”, IEEE

Transactions on Wireless Communications, vol. 1, issue. 4, pp. 660-670, Oct.

2002, doi: 10.1109/TWC.2002.804190.

[23] N. Amini, M. Fazeli, S.G. Miremadi, M.T. Manzuri, “Distance-Based

Segmentation: An Energy-Efficient Clustering Hierarchy for Wireless

Microsensor Networks”, Fifth Annual Conference on Communication

Networks and Services Research (CNSR), Frederlcton, NB, pp. 18-25, 14-

17 May 2007, doi: 10.1109/CNSR.2007.27.

[24] Y. Zhang, Y. Gu, V. Vlatkovic, X. Wang, “Progress of Smart Sensor and

Smart Sensor Network”, IEEE Fifth World Congress on Intelligent Control

and Automation, (WCICA), Hangzhou, P.R. China, 2004, doi:

10.1109/WCICA.2004.1343265.

[25] ISO 11898-1:2003, “Road vehicles – Controller area network (CAN) – Part

1: Data link layer and physical signaling”.

[26] CiA 301 “CANopen application layer and communication profile”

specification, available at: www.can-cia.org/standardization/specifications.

120 References

[27] K. Lee, R. Schneeman, “Distributed measurement and control based on the

IEEE 1451 smart transducer interface standards”, IEEE Transaction on

Instrumentation and Measurement, vol.49, (no. 3), pp. 621-627, Jun 2000.

[28] M. Dunbar, “Plug-and-play sensors in wireless networks”, IEEE

Instrumentation & Measurement Magazine, vol. 4, no. 1, pp. 19-23, Mar

2001, doi: 10.1109/5289.911169.

[29] D. Wobschall, “Networked sensor monitoring using the universal IEEE 1451

Standard”, IEEE Instrumentation & Measurement Magazine, vol. 11, no. 2,

pp.18-22, April 2008, doi: 10.1109/MIM.2008.4483729.

[30] National Institute of Standards and Technology (NIST), “IEEE 1451 Smart

Transducer Interface Standard”. Available at:

http://www.nist.gov/el/isd/ieee/ieee1451.cfm.

[31] Standard for a Smart Transducer Interface for Sensors and Actuators –

Common Functions, Communication Protocols, and Transducer Electronic

Data Sheet (TEDS) Formats, IEEE STD 1451.0-2077, IEEE Instrumentation

and Measurement Society, TC-9, The Institute of Electrical and Electronics

Engineers, Inc., New York, NY, October 5, 2007.

[32] Standard for a Smart Transducer Interface for Sensors and Actuators –

Network Capable Application Processor (NCAP) Information Model, IEEE

STD 1451.1-1999, IEEE Instrumentation and Measurement Society, TC-9,

The Institute of Electrical and Electronics Engineers, Inc., New York, NY,

June 26, 1999.

[33] Standard for a Smart Transducer Interface for Sensors and Actuators –

Transducer to Microprocessor Communication Protocols and Transduer

Electronic Data Sheet (TEDS) Formats, IEEE STD 1451.2-1997, IEEE

Instrumentation and Measurement Society, TC-9, The Institute of Electrical

and Electronics Engineers, Inc., New York, NY, September 25, 1998.

[34] Standard for a Smart Transducer Interface for Sensors and Actuators –

Digital Communication and Transducer Electronic Data Sheet (TEDS)

Formats for Distributed Multidrop Systems, IEEE STD 1451.3-2003, IEEE

Instrumentation and Measurement Society, TC-9, The Institute of Electrical

and Electronics Engineers, Inc., New York, NY, March 31, 2004.

[35] Standard for a Smart Transducer Interface for Sensors and Actuators –

Mixed-Mode Communication Protocols and Transducer Electronic Data

Sheet (TEDS) Formats, IEEE STD 1451.4-1994, IEEE Instrumentation and

Measurement Society, TC-9, The Institute of Electrical and Electronics

Engineers, Inc., New York, NY, December 15, 2004.

[36] Standard for a Smart Transducer Interface for Sensors and Actuators –

Wireless Communication and Transducer Electronic Data Sheet (TEDS)

Formats, IEEE STD 1451.5-2007, IEEE Instrumentation and Measurement

Society, TC-9, The Institute of Electrical and Electronics Engineers, Inc.,

New York, NY, October 5, 2007.

[37] L. Ferrigno, V. Paciello, A. Pietrosanto, “A Bluetooth-based proposal of

instrument wireless interface”, IEEE Trans. Instrum. Meas., vol. 54, pp. 163-

170, 2005.

References 121

[38] K. Lee, E. Song, “Wireless Sensor Network Based on IEEE 1451.0 and IEEE

1451.5-802.11”, 8th International Conference on Electronic Measurement

and Instruments (ICEMI) 2007, Xi’an, pp. 4-7,4-11, 16-18 Aug., 2007, doi:

10.1109/ICEMI.2007.4351239.

[39] E. song, K. Lee, “An interoperability test system for IEEE 1451.5-802.11

Standard,” IEEE Sensors Applications Symposium (SAS) 2010, Limerick,

pp. 183-188, 23-25 Feb., 2010, doi: 10.1109/SAS.2010.5439406.

[40] E. Song, K. Lee, “An IEEE 1451.5-802.11 standard-based wireless sensor

network with embedded WTIM,” IEEE Instrum. Meas. Tech. Conference

(I2MTC) 2011, Binjiang, pp. 1-6, 10-12 May, 2011, doi:

10.1109/IMTC.2011.5944344.

[41] E. Song, K. Lee, “Testing system for IEEE 1451.5-802.11 standard-based

wireless sensors,” IEEE Instrum. Meas. Tech. Conference (I2MTC) 2014,

Montevideo, pp. 862-867, 12-15 May, 2014, doi:

10.1109/I2MTC.2014.6860865.

[42] J.M. Larrauri, B.A. Larrinaga, M.L. Lopez, J.S. Cubillo, “A Bluetooth sensor

network based on the IEEE 1451 standard: A sensor network solution to

evaluate the wellbeing of the passenger and improve safety in cars,” Int.

Wireless Information Networks and Systems (WINSYS) 2010, Athens, pp.

1-6, 26-28 July, 2010.

[43] V.S. Harikrishnan, S. Irene, R. Pitchiah, “Implementation of transducer

electronic data sheet for ZigBee wireless sensors in smart building,” 7th

International Conference on Sensing Technology (ICST) 2013, Wellington,

pp. 906-911, 3-5 Dec, 2013, doi: 10.1109/ICSensT.2013.6727781.

[44] R. Seng, K. Lee, E. Song, “An implementation of a wireless sensor network

based on IEEE 1451.0 and 1451.5-6LoWPAN standards,” IEEE Instrum.

Meas. Tech. Conference (I2MTC) 2011, Binjiang, pp. 1-6, 10-12 May, 2011,

doi: 10.1109/IMTC.2011.5944334.

[45] J.E. Higuera, J. Polo, “IEEE 1451 Standard in 6LoWPAN Sensor Networks

Using a Compact Physical-Layer Transducer Electronic Datasheet,” IEEE

Trans. on Instrum. Meas., vol. 60, no. 8, pp. 2751-2758, 2011, doi:

10.1109/TIM.20112129990.

[46] IEEE P1451.6-Proposed Standard for a High-Speed CANopen-Based

Transducer Network Interface for Intrinsically Safe and Non-Intrinsically

Safe Applications, (2007, May 25) [Online] Available

http://grouper.ieee.org/groups/1451/6.

[47] Standard for A Smart Transducer Interface for Sensors and Actuators –

Transducers to Radio Frequency Identification (RFID) systems

Communication Protocols and Transducer Electronic Data Sheet (TEDS)

Formats, IEEE STD 1451.7-2010, IEEE Instrumentation and Measurement

Society, TC-9, The Institute of Electrical and Electronics Engineers, Inc.,

New York, NY, June 26, 2010.

[48] W. Luo, P. Han, R. Zhao, “Study on Design and Application of Wireless

sensor Network Based on Communication of Radio Frequency Identification

System,” 5th International Conference on Wireless Communications,

122 References

Networking and Mobile Computing (WiCom) 2009, Beijing, pp. 1-6, 24-26

Sept., 2009, doi: 10.1109/WICOM.2009.5303533.

[49] H. Peizhao, R. Robinson, J. Indulska, “Sensor Standards: Overview and

Experiences,” International Conference on Intelligent Sensors, Sensor

Networks and Information (ISSNIP) 2007, Melbourne, pp. 485-490, 3-6

Dec., 2007, doi: 10.1109/ISSNIP.2007.4496891.

[50] ISO/IEC/IEEE 21451-1:2010 Information technology – Smart transducer

interface for sensors and actuators – Part 1: Network Capable Application

Processor (NCAP) information model, IEEE Instrumentation and

Measurement Society, TC-9, The Institute of Electrical and Electronics

Engineers, Inc., New York, NY, May 15, 2010.

[51] ISO/IEC/IEEE 21451-4:2010 Information technology – Smart transducer

interface for sensors and actuators – Part 4: Mixed-mode communication

protocols and Transducer Electronic Data Sheet (TEDS) formats, IEEE

Instrumentation and Measurement Society, TC-9, The Institute of Electrical

and Electronics Engineers, Inc., New York, NY, May 15, 2010.

[52] R.R. Tenney, N.R. Sandell, “Detection with Distributed Sensors”, IEEE

Transaction on Aerospace and Electronic Systems, vol. 17, no. 4, pp. 501-

510, July 1981.

[53] N.R. Sandell, P. Varaiya, M. Athans, M.G. Safonov, “Survey of

decentralized control methods for large scale systems”, IEEE Transaction on

Automatic Control, vol 23, no. 2, pp. 108-128, April 1978, doi:

10.1109/TAC.1978.1101704.

[54] E.J. Keogh, M.J. Pazzani, “An Enhanced Representation of Time Series

which Allows Fast and Accurate Classification, Clustering and Relevance

Feedback”, Fourth International Conference on Knowledge Discovery and

Data Mining, 1998, New York, 27-31 August, 1998.

[55] J.F. Chamberland, V.V. Veeravalli, “Decentralized detection in sensor

networks”, IEEE Transactions on Signal Processing, vol. 51, no. 2, pp. 407-

416, February 2003, doi: 10.1109/TSP.2002.806982.

[56] B.L. Kang, R.D. Schneeman, “Distributed Measurement and Control Based

on the IEEE 1451 Smart Transducer Interface Standards”, IEEE

Transactions on Instrumentation and Measurement, vol. 49, no. 3, pp. 621-

627, June 2000, doi: 10.1109/19.850405.

[57] G. Monte “Sensor signal preprocessing techniques for analysis and

prediction” IEEE Industrial Electronics 34th Annual Conference, 2008.

IECON 2008, pp. 1788-1793, 10-13 November 2008, Orlando (FL), doi:

10.1109/IECON.2008.4758225.

[58] G. Monte, V.K. Huang, P. Liscovsky, D. Marasco, “Standard of things, first

step: Understanding and normalizing sensor signals”, IEEE Industrial

Electronics Society 39th Annual Conference, 2013. IECON 2013, pp. 118-

123, 10-13 November 2013, Vienna, doi: 10.1109/IECON.2013.6699121.

[59] G. Monte, Z. Liu, F. Abate, V. Paciello, A. Pietrosanto, V. Huang,

“Normalizing Transducer Signals: An Overview of a Proposed Standard”,

IEEE International Instrumentation and Measurement Technology

References 123

Conference (I2MTC) 2014, pp. 614-619, 12-15 May 2014, Montevideo, doi:

10.1109/I2MTC.2014.6860817.

[60] Keil Microcontroller Tools. Available at: www.keil.com.

[61] L. Klein, “Sensor and Data Fusion Concepts and Applications”, SPIE

Society of Photo-Optical Instrumentation Engineers, WA, 1999.

[62] D.L. Donoho, “Compressed Sensing”, IEEE Transaction on Information

Theory, vol. 52, no. 4, pp. 1289-1306, 2006.

[63] E.J. Caldès, M.B. Wakin, “An Introduction to Compressive Sampling,” IEEE

Signal Processing Magazine, March 2008, pp. 21-30.

[64] F. Bonavolontà, M. D’Arco, G. Ianniello, A. Licciardo, R. Schiano, L.

Moriello, L. Ferrigno, M. Laracca, G. Miele, “On the Suitability of

Compressive Sampling for the Measurement of Electrical Power Quality”,

Instrumentation and Measurement Technology conference (I2MTC), 2013,

pp.126-131, Minneapolis 6-9 May 2013.

[65] E.J. Caldès, T. Tao, “Decoding by linear programming”, IEEE Transaction

on Information Theory, vol. 51, no.12, pp. 4203-4215, December 2005.

[66] E.J. Caldès, T. Tao, “Near-optimal signal recovery from random projections:

Universal encoding strategies?” IEEE Transaction on Information Theory,

vol 52, no. 12, pp. 5406-5425, Dec. 2006.

[67] http://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-

reserve-university-bearing-data-center-website.

