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Abstract

In this work we propose a nonparametric estimator for parameters which
are embodied in given moment conditions. Here we are interested in small
samples problems. We analyze conditions under which it is possible to rep-
resent the distribution of data points conditional on their relative frequencies
as a multinomial distribution. We derive the posterior distribution for the rel-
ative frequencies of the observed data points via Bayes’ Law and specifying
a Dirichlet objective prior, the latter is obtained matching the prior modes
for unknown relative frequencies with the optimal weights computed under
a special form of the Empirical Likelihood estimator for the parameters of
interest. The prior specification proposed has an interesting interpretation
in terms of information-theoretic arguments. The estimators we construct
in this paper share the general idea with the Bayesian Bootstrap by Rubin
(1981), however its derivation starts from a different point o view, and also
the prior specification over the distribution function of the data is objectively
derived via Empirical Likelihood methods. We propose a Monte Carlo al-
gorithm to derive a distribution for the parameters of interest based on the
derived posterior for the relative frequencies of data points. A simulated toy
example shows that in small sample the estimation proposed is more ac-
curate than alternative non-bayesian nonparametric methods. Future works
will include an asymptotic analysis of the proposed estimator, as well as
more complex simulated validations for small samples.

Keywords

Empirical Likelihood, Generalized Method of Moments, Bayesian nonpara-
metric inference.
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1 Introduction

In social sciences empirical analysis we usually need to be very careful
about the specification of the model. Specification issues play an important
role in economics, where a little is known about the functional relationships
among the variables. The practice is to derive an estimating model from
the solution of a decision problem under assumptions on the primitives such
as preferences, utility, constraints etc. Under conditions that restrict prefer-
ences and physical constraints, optimal solutions are usually derived, and
these solutions are well known as the decision rules which are usually in
the form of a set of moment conditions. The role of the statistician is then
to use these moment equations and data to make inference on the para-
meters of interest. So, from the theory we have a set of equations of the
form E[g(d, β)] = 0, where g(d, β) is a known vector-valued possibly non-
linear function of the vector of observed data d taking value in Rq, and of
the parameter of interests β ∈ Rp. There is also need to avoid a complete
parametric specification of the data generating process since there is no ex-
perimental design such that we can not immagine any probabilistic model for
the data generated; thus we aim to reduce the possibly inconsistent speci-
fication of distributional assumptions. In the most part of real situations the
size of the data vector is limited, i.e. we have few observations. In these
critical situations inference is hard and limited in validity, so that possibly
sophisticated statistical methods are necessary. For example a common
situation is that we observe a finite sequence {yi, xi}n

i=1 , we have a solu-
tion of a decision problem as an equation of the form yi = g(xi, γ) + εi,
i = 1, 2, . . . , n, where γ is a parameter of the model, g(·) is a smooth real
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valued function and εi is an unobserved random variable. In general no dis-
tributional assumption can be made on εi and xi, in most cases ε has the
meaning of non systematic error component so that we are willing to assume
that E[ε] = 0 = E[y−γx], and {ε}n

i=1 is an i.i.d. sequence. Under random
sampling and some other assumption on the data generating process, from
the frequentist point of view, we can use the previous moment condition to
give an estimate of γ without any assumption on unknown distributions by
using one of the several methods described below.

Inference in such situations have been done using the generalised method
of moments (GMM) by Hansen (1982). Recently the GMM approach has
been successfully combined with the empirical likelihood approach (EL) (see
Owen, 1988; Qin & Lawless, 1994; Owen, 2001), the exponential tilting (ET)
(see Efron, 1981; Imbens, 1997; Kitamura & Stutzer, 1997; Imbens et al.,
1998), the generalised method of moments with continuous updating (see
Hansen et al., 1996), and generalised empirical likelihood (see Smith, 1997;
Newey & Smith, 2004). In GMM the vector of parameters is estimated solv-
ing the moment conditions if the model is just identified (i.e. p = q), or
via minimum distance methods when dealing with over-identifications (i.e.
q > p); Hansen (1982) showed that for large samples the GMM estimator
is consistent and asymptotically normal. On the other hand, EL estimation
defines a function which is an analogue to a parametric likelihood function
and yet enables inference that does not require distributional assumptions.
In large samples EL estimators have been shown to preserve many of the
features that maximum likelihood estimators have. Also Kitamura & Stutzer
(1997) showed that combining EL with moment conditions provides the most
efficient moment condition testing procedure. We should also remember
that the existence of GMM estimators, as well as other M-estimators, is
based on a set of assumptions which are based on the topological structure
of the parameter space, these assumption ore often not easy to verify.

An increasing number of properties that are known to hold for para-
metric likelihood have been shown to be steel valid for empirical likelihood.
It allows for the construction of likelihood ratio tests that are often Bartlett
correctable (DiCiccio et al., 1991; Lazar & Mykland, 1999). EL estimators
provide frequentist point estimators which after bias-corrections are higher-
order efficient (see Newey & Smith, 2004), emulating many of the properties
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of the parametric maximum likelihood estimators. The results about EL just
described are only valid for large samples. Though in small samples simu-
lations showed that the behaviour (in terms of bias) of the EL procedure is
better than the behaviour of the GMM, we still do not have any distributions
for the sufficient statistics of the parameters so that reasonable standard
classical inference would be impossible.

Bayesian statisticians have proposed some alternative methods which
enable us to derive posterior distributions for the parameters even when
the sample size is small. On the other hand, bayesian analysis without a
specified likelihood function is hard to interpret, and deriving methods of
inference based on emprical distributions of data alone is hard. The two
main proposals are: The Bayesian Methods of Moment (BMOM) proposed
by Zellner (1997) and recently the Bayesian Exponentially Tilted Empirical
Likelihood (Schennach, 2005). Despite the name, BMOM is not considered
a rigorous bayesian methods, it solves the moment conditions deriving the
so called “post-data” moments of the parameters, and than it uses these
moments as constraints to derive the posterior distributions for the para-
meters via maximum entropy. Bayesian Exponentially Tilted Empirical Like-
lihood (Schennach, 2005) tries to interpret the use of empirical likelihood
together with side moment conditions to derive posterior distributions for the
parameters of interests. This procedure was first conceptually proposed by
Lazar (2004) while in Shennach (2005) a formal interpretation of the empir-
ical likelihood has been given showing interesting properties. Lazar (2004)
introduced connections between EL and Bayesian Bootstrap, and he shows
that under the coverage probability criterion the inference derived using EL
leads to valid bayesian inference. While the BMOM does not require a prior
specification for the parameters of interest, the Exponentially Tilted Empir-
ical Likelihood does. The problem is that usually formulating reasonable
priors for these parameters is hard, in fact, very often these parameters are
reduced form parameters so that they do not have physical or economic
content, and specifying a distribution for them results to be questionable.

In this work will propose a non parametric estimator for parameters
which are embodied in given moment conditions. We will analyze conditions
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under which to represent the distribution of data points conditional on their
relative frequencies as a multinomial distribution then we will derive the pos-
terior distribution for the relative frequencies of the observed data points via
Bayes’ Law specifying a Dirichlet process objective priors obtained matching
the prior modes for unknown relative frequencies with the optimal weights
computed under a special form of the Empirical Likelihood estimator for the
parameters of interest. Trough a Monte Carlo algorithm we derive a distri-
bution for the parameters of interest based on the derived posterior for the
relative frequencies of data points. This estimation methods shares some
similarities with the bayesian bootstrap, but in Bayesian Bootstrap (see Ru-
bin, 1981) there is no derivation of an objective prior which take into account
the given moment condition.

2 The meaning of EL estimator in a nutshell

Given a sample dn = {d1, d2, . . . , dn} of i.i.d. observations, and a set
of specified moment conditions E[g(di, β)] = 0, where g(di, β) is a vector-
valued smooth and continuous function of the data and the parameter of
interest β ∈ Rp, the empirical likelihood estimator of β is defined as solving
the following problem:

max
{w1,w2,...,wn}

n∑

i=1

log(wi/n−1), (2.1)

s.t.
n∑

i=1

wig(di, β) = 0,

n∑

i=1

wi = 1, wi ∈ (0, 1);

where w1, w2, . . . , wn are the mass probabilities placed on the observa-
tions in dn. As we pointed out before this estimator has many desirable
asymptotic properties that make easy to derive a chi-square asymptotic like-
lihood ratio test for testing hypothesis, as well as asymptotic confidence in-
tervals. However these results are only valid in large samples analysis we
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want to stress that these results are only valid for infinite samples. We are
not interested in review the statistical properties of this estimator since our
problem is small sample inference, instead for now, we are interested in
understanding the geometrical properties of the EL estimator and why it im-
proves GMM estimator. As we see from (2.1), EL estimator of β is the value
of β which solves moment equations under probabilities for data given by
w∗1, w

∗
2, . . . , w

∗
n, which are obtained maximizing the empirical distribution

of the data under the moment constraints. In the GMM setup, the moment
equation would be n−1

∑n
i=1 g(di, β) = 0, that is the expectation of g(di, β)

is taken placing uniform probability masses over all data points. Obviously
this is not reasonable in small samples, in fact, while in an infinite number of
repetitions we expect that all the support of dn will be drawn so that putting
an equal probability mass over all the point observations will not affect the
approximation of the true distribution of the data, in a small sample we can-
not expect so. The improvement produced by the EL estimator consists in
the fact that it reweights data according with the actual observed proportions
and the given moment conditions.

Many particular versions of the empirical likelihood have been proposed.
In order to make easier our interpretation of the EL procedure, we prefer to
look at a particular version of (2.1). Changing the previous objective function
we have the Entropy Empirical Likelihood Estimator (EELE) which is the
value of β that solves

max
{w1,w2,...,wn}

n∑

i=1

−wi log(wi), (2.2)

s.t.
n∑

i=1

wig(di, β) = 0,

n∑

i=1

wi = 1, wi ∈ (0, 1);

This particular form of likelihood (see Efron, 1981; Lee & Young, 1999; Cor-
coran, 1998; Jing & Wood, 1996) has a nice interpretation in terms of in-
formation theoretic quantities. In fact the objective function in (2.2) is the
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entropy associated with probability mass function which assigns weights
{w1, w2, . . . , wn}. The EELE estimator will be the value of β which solves
the moment equations where moments are taken with the respect to the dis-
tribution of the data which maximizes the entropy. In the discrete case we
can definitively take the entropy as a measure of uncertainty, so that with the
EELE we are computing the value of β which is derived from the moment
conditions assuming maximum uncertainty in the distribution of the data.
Maximizing entropy, i.e. uncertainty, means also minimizing information, so
that the EELE computes the value of β assuming that the random sample
contents minimum information. This particular form of EL is also proposed
by Schennach (2005) to propose an interpretation of empirical likelihood in
bayesian methods, she also makes an interesting link between EL methods
ad Maximum Entropy methods in bayesian analysis.

These interpretation makes the use of the empirical likelihood machin-
ery compelling, and we want to use these interpretations to derive statisti-
cal methods which we can not classify as standard bayesian methods, but
they will still share important properties with the bayesian approach; that is
our approach is to make probabilistic judgement conditional on observables
even if we will not use the Bayes’ law as it is usual practice in bayesian
statistics.

3 A “quasi-bayeasian” inference

Our problem is to make inference on a finite sample. The object of our
analysis is the vector of parameters β for which we would like to derive a
distribution in order to make probability statements in the form of hypothesis
testing and confidence intervals. The bayesian way seems to be the most
reasonable approach to do this. As we pointed out before, we also need a
way to skip a full prior specification for the parameters as this specification
would be not straightforward. By “quasi-bayesian” we mean that the infer-
ence we will propose here shares some features with standard bayesian
methods, however it does not follows the usual structure of the bayesian
analysis.

We can summarize our problem as follows: a researcher observes a se-
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quence of n data points, with n finite; this data points are only k ≤ n distinct
values, in practice the researcher observes a set set dn = {d1, d2, . . . , dk}
of ordered distinct values; also he or she knows that there is an unknown
vector of parameters β such that it must obey to a given set of moment con-
ditions EF [g(d, β)] = 0, where the expectation is taken with respect to the
unknown probability distribution of the data F . A classical bayesian proce-
dure would be to specify a parametric likelihood P (dn|β), a prior π(β) for
β, and than deriving the posterior probability P (β|dn) ∝ P (dn|β)π(β) via
Bayes’ law. However we can not think to any reasonable statistical proba-
bility model for the data conditional on the the unknown parameter, so that
the specification of P (dn|β) is not feasible. Also this methods would not
take into account the moment condition E[g(d, β)] = 0 which represents
the most relevant bit of prior information we dispose. Notice that since we
want to treat the unknowns as random variables, in our approach we look at
β as an having a probability distribution. Resuming, we have two sources of
uncertainty: we do not know the probability distribution for the data, and we
do not know the probability distribution for the parameters of interest; on the
other hand we have two bits of information: we observed k distinct points
data drawn from an unknown F , and we know that the unknown parameter
should obey to the moment equation EF [g(d, β)] = 0. Also the true distri-
bution of the data is unknown. But as new data come, we revise our belief
about the true distribution of the data, and then looking at the moment con-
ditions E[g(d, β)] = 0 we revise our beliefs about β. Our idea is to derive
a reasonable posterior distribution for the distribution of data dn which fully
takes into account the main bit of information we have in term of moment
condition, and than to use this distribution to draw samples from it, at each
drawn we solve the moment condition under the derived posterior distribu-
tion for the data; this solution will give us a set of β which solve the moment
conditions at each drawn, and then we use Monte Carlo integration to com-
pute summary statistics and quantiles for β. Where EL is? We will use EL
to derive prior distribution for the data. This procedure will be understood
following next section.
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4 Representing the marginal data density

First of all, based on the data collected we want to derive a posterior
for the distribution of the data which takes into account the given moment
condition. We need some hypothesis to represent the marginal distribution
of the data. One way to ho is simply to assume that the observed data
points fall into k distinct categories, so that we can write the distribution of
these data points as multinomial distribution conditional on the multinomial
probabilities, this a common approach in nonparametric bayesian analysis.
Another way to go is to discuss more general conditions under which this
representation holds possibly for more general experimental design. A gen-
eral concept useful to generalize the idea of multinomial representation is
the the idea of exchangeability.

Let us consider a k−dimensional random vector xi whose jth compo-
nent xi,j takes value 1 if it belongs to the jth category of the k + 1 possible
categories. At most one of the component of xi can take value 1, and if all
take value 0 this means that the k + 1th takes value 1. So xi can be re-
garded as a 0-1 random vector. If we assume that the sequence x1, x2, . . .
is an infinite exchangeable sequence with a probability measure P , than the
extension of the De Finetti’s representation theorem (see De Finetti, 1930a;
1930b;) states that there exists a distribution function Q such that the joint
mass function p(x1, x2, . . . , xn) has the form

p(x1, x2, . . . , xn) =
∫

W

n∏

i=1

w
xi,1

1 · wxi,2

2 · · ·wxi,k

k


1−

k∑

j=1

wj




1−Pxi,j

dQ(w),

(4.1)
where,

W := {w = (w1,w2, . . . wk) ; wi ∈ [0, 1]} ,

Q(w) = lim
n→∞P [(x̄1,n 6 w1) ∪ . . . ∪ (x̄k,n 6 wk)],

and,

x̄i,n =
1
n

n∑

i=1

xi,j , wi = lim
n→∞ x̄i,n.

14



We are often more interested in the representation of the distribution of the
k-dimensional random variable dn =

∑n
i=1 xi whose jth component is total

number of occurrences of category j in n observations, from the previous
result it follows that p(dn,1, dn,2, . . . , dn,k) can be written as

∫

W

(
n

dn,1 · · · dn,k

)
w

dn,1

1 · wdn,2

2 · · ·wdn,k

k


1−

k∑

j=1

wj




n−P dn,k

dQ(w),

(4.2)
where Q(w) is defined as above. This is the same as saying that the joint
sampling distribution for a random samples {x1, x2, . . . , xn} can be rep-
resented as has a multinomial distribution with probability mass function
Multinomialk(xi|w, 1) together with a prior distribution Q over the multino-
mial parameter vector w, where Q(w) is the long run proportion of occur-
rences of each category, i.e wj is the long run limiting relative frequency of
the membership to the the jth category. On the other hand this leads to rep-
resent observed point data {d1, d2, . . . , dk} as arising from a multinomial
distribution with probability mass function given by a Multinomialk(dn|w, n),
with w distributed according to Q(w) as long run distribution of relative fre-
quencies.

In non parametric bayesian statistics such a representation is often used
for non parametric density estimation. We can think the set of the n ob-
served data as belonging to k distinct categories identified as the k possible
values {d1, d2, . . . , dk}, and we assume that the sequence observed is the
result of an exchangeable sequence. The problem is that we have finite
sample so in principle we are not allow to assume infinite exchangeability
so that the representation above is impossible since in this case we could
not approximate Q(w) with the long run proportions. However, in general if
we have a finite sequence (y1, y2, . . . , yn) ∈ S ⊆ Y n, where this sequence
can be seen as a subpart of o finite but larger exchangeable sequence of
observables it is possible to show (see Diaconis & Freedman 1980; Jaynes
1986) that it is still possible to represent the probability p(y1, y2, . . . , yn) as

PQ(y1, y2, . . . , yn) =
∫

Fn(E)dQ(F ), (4.3)
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where F is the long run limiting distribution of the empirical distribution func-
tion Fn, notice that this notation do not imply multinomial distribution for Fn,
here we are referring to the generalized representation theorem (see Chow
and Teicher; 1978) of which the multinomial representation above is a spe-
cial case. Under what assumption can we have the representation above?
If P (SN ) would be the corresponding probability assigned to an extended
sequence of N observations, with N > n,

sup
SN

‖P (SN )− PQ(y1, y2, . . . , yn)‖ ,

would be the deviation we face by assuming infinite exchangeability when
we only observe a finite sequence, comparing the finite sequence with the
larger one; for larger N this measure is more appropriate. Here the supre-
mum is taken with the respect of all possibile events of in the σ-field on the
power set Y n. The representation (4.3) holds when there exists Q and N
such that

sup
SN

‖P (SN )− PQ(y1, y2, . . . , yn)‖ ≤ nt(n)
N

,

where N is the length of the extended sequences and t(n) = # {Y n} if
Y n is finite and t(n) = (n− 1) otherwise.

Let us now come back to the possibility of assuming the multinomial rep-
resentation as in (4.2), since our sample is finite we can only assume finite
exchangeability, and to get the multinomial representation as in (4.2), we
need to assume that {x1, x2, . . . , xn} is a finite sequence of exchangeable
0-1 random vectors, also for {d1, d2, . . . , dk} ⊆ ∆N ⊆ dn

n, where N > n,
dn

n is the set of all possible samples with values in dn, and ∆N ⊆ dn
n is an

extended sample with size larger than n,

sup
∆N

‖P (∆N )− PQ(d1, d2, . . . , dk)‖ ≤ nt(n)
N

. (4.4)

Even if the mathematical machinery of such assumption seems to bee
too much to be assumed, coming back to the example at the beginning of
this writing everything will be more clear. In that example we observed data
(yi, xi), i = 1, 2, . . . , n. Let suppose that in our finite sample we observe k
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distinct pairs we label {d1, d2, . . . , dk}, the model implied yi = g(xi, γ)+εi

with E[εi] = 0 = E[yi − γxi] for each i. Now suppose we observe an infi-
nite sequence of data points, the realization of this sequence is determined
by two unknown components: γ and the i.i.d sequence {ε}n

i=1 which we
do not observe, in this situation exchangeability about the observables is
not too much to assume as it means complete ignorance about the data
generating process which we do not know. The problem is still that the rep-
resentation as in (4.2) holds if the condition (4.4) holds. Roughly speaking,
from the practical point of view condition (4.4) means that given our finite
sample, and given our prior Q(w) for the small sample, for any larger sam-
ple which takes values into dn

n we can always bound the distance between
the probability of the sample derived under the prior Q(w) and the probabil-
ity of the larger sample. That is the same as saying that we choose a prior
such that the derived probability of the sample computed on small number
of observations is such that its distance from the probability of the sample
computed on larger sample is bounded, and this bound depend on the size
of the sample and the size of the extended sample, for some given size n,
this bound become tighter as the size of the extended sample increases.

We believe that such assumptions are not too much demanding if com-
pared to the assumptions usually made in alternative settings. So under
the assumptions provided above, we will represent the distribution of the
data collected as in (4.2) specifying a Dirichlet conjugate prior density for
Q(w). We assume that conditions of representation theorem under finite
exchangeability hold, i.e. our Dirichlet prior approximates the probability of
the long run proportions of data points belonging to the k distinct categories.
The choice of the Dirichlet prior process here is shared with the Bayesian
Bootstrap, however our choice is made because it will allow for a construc-
tion of a prior which has a nice interpretation.
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5 Multinomial representation

We assume that k-distinct data points arise from a multinomial distri-
bution with probability mass function given by Multinomialk(dn|w, n), with
w distributed according to Q(w) which is our prior distribution for relative
frequencies. We will derive a Dirichlet prior for w, i.e. we will assume that
the probability mass function of the relative frequencies of the k distinct
values of the data is Dirichletk(w|α), where w = (w1, w2, . . . , wk) and
α = (α1, α2, . . . , αk+1) is the Dirichlet parameter vector, that is

p(dn|w) =
n!

∏k
j=1 dj !

(
n−∑k

j=1 dj

)
!

∏k

j=1
w

dj

j


1−

k∑

j=1

wj




n−Pk
j=1 dj

,

(5.1)
where n and k are given, and

p(w) =
Γ(

∑k+1
j=1 αj)∏k+1

j=1 Γ(αj)

k∏

j=1

w
αj−1
j


1−

k∑

j=1

wj




αk+1−1

, (5.2)

where the vector α is then specified. Our posterior distribution is computed
via Bayes’ law as p(w|dn, ) ∝ p(dn|w)p(w), and it is easy to verify that
p(w|dn) = Dirichletk(w|α′) where

α′ =
(

d1 + α1, d2 + α2, . . . , n−
∑k

j=1
dj + αk+1

)
.

6 A minimum discrepancy objective prior

How to specify a prior distribution for w? It should be specified so that
it will fully reflect the information we have, that is observed data and mo-
ment conditions. Here, we propose a method that uses the main idea of the
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empirical likelihood. Let us to reconsider (2.2), and we modify it slightly as

max
{w1,w2,...,wn}

n∑

i=1

−wi log
wi

1/n
, (6.1)

s.t.
n∑

i=1

wig(di, β) = 0,

n∑

i=1

wi = 1, wi ∈ (0, 1).

The objective function of the problem above is the Kullback-Liebler distance
function

KL
[{

n−1, n−1, . . . , n−1
} || {w1, w2, . . . , wn}

]
; (6.2)

taken with a minus sign. Despite its name, the Kullback-Liebler distance
is not a proper distance since it does not satisfy the triangular inequality,
but it can be interpreted as a measure of the discrepancy between two ran-
dom variables. From a geometrical point of view, (6.2) is a measure of the
distance between the probability mass function which assigns probabilities
{w1, w2, . . . , wn}, and the uniform probability mass function which assigns
probabilities

{
n−1, n−1, . . . , n−1

}
. In problem (6.1) such a discrepancy is

minimized, so that our estimator for β is the value of β which solves the
moment condition taken with respect to a distribution of the data which is
the nearest to the uniform one. Under ignorance about the true distribution
of the data, we should believe that the data come from a uniform distrib-
ution, on the other hand if we observe ties in the data this would be not
reasonable so that we look for the distribution which is the nearest possi-
bile to the uniform one. In terms of information-theoretic quantities, (6.2)
is the expected regret under the logarithm score loss function associated
with using the probability mass function which assigns uniform probabilities
when instead the data arise from a probability mass function which assigns
probabilities {w1, w2, . . . , wn} . Again, under ignorance about the true dis-
tribution of the data, we should believe that the data come from a uniform
distribution, but if this is not the case we would face a regret measured by
(6.2), so that we look for all those values of β which solve moment equations
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under that distribution which minimizes our regret.

Based on this, let ŵ = (ŵ1, ŵ2, . . . , ŵk) be the optimal estimated rel-
ative frequencies which solve (6.1). Then we construct the Dirichlet prior
p(w) imposing that Mode[wj ] = ŵj . This specification has two nice in-
terpretations. That is, our prior knowledge based on data and moment
conditions imposes that the highest probability for each of the distinct data
points is the value which minimizes the Kullback-Liebler distance between
the distribution of the data and the uniform distribution. Or alternatively, we
start being strongly uncertain about the distribution of the data thinking that
they are uniformly distributed, and then, after seeing ties in the data, we
seek the distribution which — according to the moment conditions — mini-
mizes the regret we would face if the true distribution was not uniform one.
The compelling features of such a machinery is that the prior specification
fully reflects our prior moment conditions, since optimal relative frequencies
are computed taking into account the moments as constraints. Under the
Dirichelet prior we impose,

Mode[wj ] = ŵj =
αj − 1∑k+1

j=1 αj − k − 1
, for j = 1, 2, . . . , k; (6.3)

these are k equations but we have k + 1 unknowns, fixing a prior value for
αk+1 is always problematic. Let us rewrite the kernel of the Dirichlet prior,
which is

p(w|α) ∝
k∏

j=1

w
αj−1
j


1−

k∑

j=1

wj




αk+1−1

, (6.4)

Observe that αk+1 − 1 is the prior weight we attach to 1 − ∑k
j=1 wj , in

our problem this is the probability that none of the k distinct values of the
sample occurs, since in (6.1) we imposed that

∑k
j=1 wj = 1, our prior

weight for this occurrence should be zero, that is we fix αk+1 = 1, then it
is to see that a solution of the k equations in (6.4) is takeing αj = ŵj + 1
for j = 1, 2, . . . , k. Our final prior for w is p(w) = Dirichletk(w|α̂) where
α̂ = (ŵ1 + 1, ŵ2 + 1, . . . , ŵk + 1, 1). Under the specified prior its kernel
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becomes

p(w) ∝
k∏

j=1

w
ŵj

j , (6.5)

the latter has a nice interpretation since it is the same as saying that we
weight each probability wj with its minimum discrepancy value as derived

in (6.1). The distribution on the data is then p(w|dn) = Dirichletk(w|α̂′)
where

α̂′ = (d1 + ŵ1 + 1, d2 + ŵ2 + 1, . . . ,

(
n−

∑k

j=1
dj

)
+ 1).

Also the the posterior p(w|dn) has a nice interpretation, in fact its kernel is

p(w|dn) ∝
k∏

j=1

w
dj+ŵj

j


1−

k∑

j=1

wj




n−Pk
j=1 dj

, (6.6)

that is the posterior probability, of each wj conditional on observed data, is
weighted considering our prior weights ŵj we computed with (6.1) according
to moment equations, and the actual number of occurrences in each of the
k distinct categories. Notice that under our assumptions the last component
of the kernel of the posterior will be one in computation. Notice that we now
have a continuum of posterior possible values for each marginal proportion.

7 A post-data density for parameters

As well as we now have a posterior distribution for the proportions of
observed data, i.e. we have a sort of “posterior histogram”, derived under
some objective criterion, we still need a distribution for the parameter of in-
terest β. Remember that our goal is to make inference on the parameter of
interest, i.e. we want to make probabilistic statements as well as computing
confidence sets and other summary statistics.
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However, we do not have any knowledge of the distribution of β, and we
are not willing to assign to it any prior distribution. In fact, as already pointed
out, in practical social sciences empirical analysis problems the parameters
do not have any physical meaning so that it would be extremely questionable
to impose prior distribution on them, on the other hand we want to get a
distribution for the parameters of interest that is conditional on observables.
The derivation of such a probability distribution p(β|dn) would be impossible
in principle. Here we propose abootstrap algorithm to derive the distribution
of β which does not make any use of the Bayes’ Law. We used the wording
“post-data” to mean that derived distribution make is based on data, however
it can not be interpreted as in the standard bayesian analysis.

The only bit of information about the parameter β is tat it should obey
to the moment condition E[g(dn, β)] where this expectation is taken with
the respect of the distribution of the data. In the previous section we run
a non parametric analysis deriving the posterior distribution of the data dis-
tribution, in fact, as we said before we derived a poster histogram for the
observed data which we based on an objective prior which agreed with the
given moment conditions. Here we make use of this posterior knowledge
together with moments to derive post-data distribution for the unknown pa-
rameter.

The Monte Carlo integration algorithm is as follows:

1. we use the posterior p(w|dn) to draw M i.i.d. samples for w, where
M is some large integer. At each iteration s = 1, 2, . . . , M we store

a vector of k posterior weights w(s) = (w(s)
1 , w

(s)
2 , . . . , w

(s)
k ) where

ws
k is the posterior proportion for the kth data cell at the sth drawn.

2. At each iteration we compute β(s) solving the moment conditions for
β, i.e. β(s) is such that

∑k
j=1 g(dj , β

(s)) = 0.

3. We now have an M -dimensional vector β(M) = (β(1), β(2), . . . , β(M));
then we use Monte Carlo integration to compute confidence intervals,
quantiles and so on.

Even if the model proposed implies a huge amount of computations, the
increased computational capability makes it viable to be run. In the next
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section we propose a simple toy and extreme example showing that in small
samples the model proposed exhibits better behaviour if compared with non
parametric classical inference methods such as GMM or EL methods.

8 A toy example and conclusions

In this example we propose an extreme situation and we compare our
model with GMM and EL methods. In the future we will also explore compar-
isons with Bayesian Bootstrap. Suppose we observe a sample of {yi, xi}14

i=1
and that based on some theoretical result these observations should obey to
the following model yi = γxi+εi, where {εi}14

i=1 is a sequence of unobserv-
able i.i.d. shocks for which our theory states that E[εi] = 0 for each i. This
model implicitly assumes the following moment condition E[yi − γxi] = 0
for each i.

In classical inference setting we would look at the parameter γ as fixed
and, assuming random sampling we derive the asymptotic distribution for a
sufficient statistic for γ or the asymptotic distribution for some test statistics.
By using GMM or EL methods this can be easily done. However in this case
we only have fourteen points observations, so that any asymptotic result for
GMM or EL methods is not valid and the derived inference would be doubt-
ful. There is a researcher who refuses to look at γ as an unknown random
quantity, and as result she or he has two alternatives: he or she can choose
to not make inference on the parameter of interest, or she or he will use as-
ymptotic results to make inference knowing in principle that the conclusions
he or she will derive are subject to possibly a tremendous bias.

On the other hand, γ is unknown and unobservable as the sequence
{εi}14

i=1 does. Another researcher starting from this consideration looks at
γ as a random variable, in principle he or she cannot say anything about
γ, but he or she wants to learn about it looking at the data. So she or
he decides to derive its post-data distribution as described in the previous
section.

We generated a {xi}14
i=1 of i.d. drawn from a discrete uniform distrib-
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ution with support [1, 14], then we generated the sequence {εi}14
i=1 of i.d.

from a continuous uniform distribution with support [−5, 5] which has zero
expectation as our theory states. Finally we fixed γ = 2 and we generated
the sequence {yi}14

i=1 where yi = 2xi + εi.

The first researcher using GMM would estimate γ̂ = 1.83474 and the
95%-confidence interval derived for γ̂ would be [1.637645, 2.031838], also
he or she knows that this confidence interval is derived under the asymptotic
normality of γ̂. He or she also tries an EL estimation, and the estimates of
γ is now better than before as it results to be γ̂ = 1.88273 with the 95%-
confidence being [1.843363, 2.029838]. The second researcher starts run-
ning the algorithm proposed in the previous section and using Monte Carlo
integration over 100 i.d. drawn from the posterior density of proportions for
the data he or she gets summary statistics for the post-data density of γ.
She or he computes Monte Carlo mean for γ which is 1.89702, and the me-
dian is 1.915013 and the 95%-confidence interval is [1.879363, 2.021638].

Even though this is a simple example, it shows that the method pro-
posed in the previous section offers better performances if compared with
other well known nonparametric non-bayesian procedures. Future analysis
should be devoted to assess the behaviour of this estimators in more com-
plicated estimating problems, also suitable computational methods have to
be studied to make computation viable in more complicated real empirical
problems. A fundamental issue is to compare our result with those of the
Bayesian Bootstrap.
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