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Abstract 
 
In this note we consider some notions of well-posedness for scalar 
and vector variational inequalities and we recall their connections 
with optimization problems. Subsequently, we investigate similar 
connections between well-posedness of a vector optimization 
problem and a related variational  inequality problem and we 
present an result obtained with scalar characterizations of vector 
optimality concepts. 
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Introduction  
 
The notion of well-posedness is significant for several 
mathematical problems and in particular it plays a crucial role in 
the stability theory for optimization problems. It is also important in 
establishing convergence of algorithms for solving scalar 
optimization problems and, in fact, it has been studied in different 
areas of scalar optimization, such as mathematical programming, 
calculus of variations and optimal control. 
Two different concepts of well-posedness are known. The first, due 
to J. Hadamard, requires existence and uniqueness of the optimal 
solution and studies its dependence from the data of the 
considered optimization problem. The second approach, 
introduced by A. N. Tykhonov, in 1966, requires, instead, besides 
existence and uniqueness of the optimal solution, the convergence 
of every minimizing sequence to the unique minimum point. The 
two notions (well-posedness in the sense of Hadamard and of 
Tykhonov) are equivalent at least for continuous objective 
functions [2].The links between Hadamard and Tykhonov well-
posedness have been studied by Lucchetti and Patrone [13],[15] 
and by Revalski [17],[18]. There, besides uniqueness, additional 
structures are involved: in [13], for example, basic ingredient is 
convexity. We will deal with well-posedness of Tykhonov type.  
The notion of well-posedness for a vector optimization problem is, 
instead, less developed; there is not a commonly accepted 
definition of well-posed problem, in vector optimization. Some 
attempts in this direction have been already done (see [3],[12]) and 
have been made some comparisons with their scalar counterparts 
[16]. 
In the present paper, we recall some basic aspects of the 
mathematical theory of well-posedness in scalar optimization and, 
subsequently, in vector optimization. Moreover, in this note, we 
establish basic well-posedness results for scalar and vector 
variational inequalities. The paper is organized as follows. 
In section 2 we review, first, some results on well-posedness for a  
scalar optimization problem, and, then, for a scalar variational 
inequality of differential type. In section 3 we present and 
investigate the notion of well-posedness in vector optimization ( in 
particular a type of pointwise  well-posedness and strong pointwise 
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well-posedness for vector optimization problems) and, 
subsequently, the notion of well-posedness for a vector variational 
inequality. Finally, section 4, is devoted to the main results of our  
paper obtained by means of scalar characterizations of vector 
optimality concepts. 
 
1. Tykhonov well-posedness of scalar optimization problems 
and variational inequalities. 
 
To study the well-posedness of an optimization problem means to 
investigate the behaviour of the variable when the corresponding 
objective function value is close to the optimal value. In this section 
we give a characterization of Tykhonov well-posedness for the 
problem of minimizing a function f  on a closed, convex set K  
and we summarize some known results. Let RRf n →:  be a real-
valued function and let K  be a nonempty, closed and convex 
subset of nR . We consider the scalar optimization problem: 

( )xf
Kx∈

min  

which we denote by ( )KfP ,  and which consists in finding Kx ∈*  
such that  

)( *xf ( ) } ( ){ xfKxxf Kinf,inf =∈=  
In the theory of optimization are interesting the following properties 
of the minimization problem ( )KfP , : 
a) existence of the solution, (i.e. ( )KfP ,  has a solution) 
b) uniqueness of the solution,(i.e. the solution set for ( )KfP ,  is a 
singleton) 
c) *x is a good approximation of the solution of ( )KfP , , if )( *xf  is 
close to ( )xfKinf  
If the problem ( )KfP ,  satisfies together the properties a) and c) is 
said well-posed. More precisely: 
The problem ( )KfP ,  is said Tykhonov well-posed if there exist 
exactly one Kx ∈* such that ( )xfxf ≤)( *  for all Kx∈ , and if 
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*xxn →  for any sequence }{ Kxn ⊂  such that  )()( *xfxf n →  ( 
i.e. ( ) ( )xfxf Kn inf→ ). 
 
Recalling that a sequence }{ Kxn ⊆  is a minimizing sequence for 
problem ( )KfP ,  when ( ) ( )xfxf Kn inf→  as +∞→n , the 
previous definition can be rephrased, in equivalent way, so:  
 
Definition 2.1: The problem ( )KfP ,  is said Tykhonov well-posed 
if f  has, on K , a unique global minimum point, *x , and every 
minimizing sequence for ( )KfP ,  converges to *x . 
 
Definition 2.1 is motivated by since usually  every  numerical  
method  for  solving  
( )KfP ,  provides iteratively some minimizing sequences }{ nx  for 
( )KfP ,  and therefore one wants to be sure that the approximate 

solutions nx  are not far from the (unique) minimum *x . The idea 
of the behaviour of the minimizing sequences was used by 
different authors to extend this concept in two directions: first, 
introducing strengthened notions and, second, considering the 
case in which the optimal solutions are not unique.  
Remarks 2.1: 
a) It is easy to see that if K  is compact and f  is lower 
semicontinuous, then ( )KfP ,  is Tykhonov well-posed if it has a 
unique solution.  
b) For a continuous function f  Tykhonov well-posedness of 
( )KfP ,  simply means that every minimizing sequence is 

convergent. 
c) When K is compact, the uniqueness of the solution of a 
minimization problem is enough to guarantee its well-posedness 
but there are however simple examples when uniqueness of the 
solution of ( )KfP ,  is not enough to guarantee its Tykhonov well-
posedness even for continuous function. Take e.g. RK =  and 
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( ) 1/ 42 += xxxf .Obviously, ( )KfP ,  has a unique solution  at 
zero while }{ nxn =  provides a minimizing sequence which does not 
converge to this unique solution. Hence ( )KfP ,  is not Tykhonov 
well-posed.  
 
Tykhonov well-posedness of ( )KfP ,  is often stated, equivalently, 
as strong uniqueness of ( )Kf ,minarg  where with ( )Kf ,minarg  
let we denote the set, possible empty, of solutions of the 
minimization problem ( )KfP , . 
Problems which are non well-posed will be called ill-posed. 
Sometimes they are referred to as improperly posed. 
 
The well-posedness of the minimization problem ( )KfP ,  in the 
sense  of Tykhonov concerns the behaviour of the function f  in 
the set K  but it does not  take into account the behaviour 
of f outside K  [26]. Of course, often, one can come across with 
minimizing sequences that do not lie necessarily in K  and one 
wants to control the behaviour of these minimizing sequences, as 
well. Levitin and Polyak in [18] considered such kind of sequences. 
Definition 2.2 : The sequence }{ nx  is said a Levitin-Polyak 
minimizing sequence for minimization problem ( )KfP ,  if 
( ) fxf Kn inf→ and, moreover, ( ) 0, →Kxd n  where  

( ) yxKxd nKyn −= ∈inf, . 
 
Definition 2.3: The problem ( )KfP ,  is called Levitin-Polyak well-
posed if it has unique solution Kx ∈*  and, moreover, every 
Levitin-Polyak minimizing sequence for ( )KfP ,  converges to *x . 
This definition is stronger than the Tykhonov one since requires 
the convergence to the unique solution of each sequence 
belonging to a larger set of minimizing sequence than in the 
Tykhonov case. 
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In the above definitions is required the existences and the 
uniqueness of solution towards which every minimizing sequence 
converges. They, however, admit generalizations which do not 
require uniqueness of the solution. In other words, the uniqueness 
requirement can be relaxed and well-posed minimum problems 
with several solutions can be considered.  
Unlike the requirements of existence and stability a), c), the 
uniqueness is therefore a condition more debatable. In fact, many 
problems in linear and quadratic programming or many 
optimization problems are usually considered as well-posed 
problems, although uniqueness is usually not satisfied [2]. In order 
to weaken the requirement of uniqueness of the solution, other 
more general notions of well-posedness have been introduced, 
depending on the hypotheses made on f ( and K ). We recall the 
concept of well-setness introduced in [2]. 
 
Definition 2.4: Problem   ( )KfP ,    is   said  to   be   well-set   
when, for  every  minimizing  sequence }{ Kxn ⊆ , we have 
( ,nxd ( )) 0,minarg →Kf  where ( )Kxd ,  is the distance of the 

point x  from  the set K . 
 
The following definition gives a generalized version of the 
Tykhonov well-posedness where the uniqueness of the solution is 
dropped. 
 
Definition 2.5: Problem ( )KfP ,  is said Tykhonov well-posed in 
the generalized sense when every minimizing sequence for 
( )KfP ,  has some subsequence that converges to solution of 
( )KfP ,  i.e. to an element of ( )Kf ,minarg . 

 
From the definition follows that if ( )KfP ,  is well-posed in the 
generalized Tykhonov sense, then ( )Kf ,minarg  is nonempty and 
compact. Moreover, when ( )KfP ,  is  well-posed in the 
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generalized sense and ( )Kf ,minarg  is a singleton (i.e. its 
solution is unique), then ( )KfP ,  is Tykhonov well-posed.  
The corresponding generalization of Levitin-Polyak well-posedness 
follows: 
 
Definition 2.6: The minimization problem ( )KfP ,  is called 
generalized Levitin-Polyak well-posed if every Levitin-Polyak 
minimizing sequence }{ nx  for ( )KfP ,  has a subsequence 
converging to a solution of ( )KfP , .  
 
Of course, if at any of the notions of generalized well-posedness is 
added  the uniqueness of the solution, one obtains the 
corresponding non generalized notion. 
Different characterizations of Tykhonov well-posedness for 
minimization problems determined by convex functions in Banach 
spaces can be found in the paper of Lucchetti and Patrone [23]. 
We, now, recall the next results : 
Proposition 2.1 [6]: Let RRKf n →⊆:  be a convex function and  
let K  be a convex set. If f  has a unique global minimizer onK , 
then ( )KfP , is Tykhonov  well-posed.  
 
Proposition 2.2 [10]: If K  is closed, f is lower semicontinuous, 
bounded from below and uniformly quasiconvex on K , then 
( )KfP ,  is Tykhonov well-posed.  

 
A function RRKf n →∈:  is uniformly quasiconvex [10] if there 
exists an increasing function [ [ [ [+∞→+∞ ,0,0:g  such that 
( ) ( ) 0,00 >= tgg  whenever 0>t  and   

( ) ( )}{ ( )yxgyfxfyxf −−≤





 + ,max

2
      Kyx ∈∀ , .          

 
The following  theorem  gives  an  alternative  characterization  of 
Tykhonov well-posedness: it uses the set of −ε optimal solutions. 
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Theorem 2.1 [10]:  If ( )KfP ,  is Tykhonov well-posed, then:  
(1)                                 ( )}{ 0,minarg →− Kfdiam ε                               
for 0→ε                  
where ( ) ( ) ( )}{ xfxfKxKf Kinf::,minarg +≤∈=− εε  is the set 
of −ε minimizers of f  over K  and diam denotes the diameter of 
given set. 
Conversely, if f  is lower semicontinuous and bounded from below 
on K , then condition (1) implies Tykhonov well-posedness of 
( )KfP , . 

 
When K  is closed and f  is lower semicontinuous, we can use 
the sets: 
                      ( ) ( ){ ( ) εε +≤∈= KfxfRxL fK ,inf:,  and 

( ) }ε≤Kxd ,            0>ε  
to introduce the equivalent notion of well-posedness of ( )KfP , . 
 
Definition 2.7: Let K  be closed and let RKf →:  be lower 
semicontinuous. The minimization problem ( )KfP ,  is said to well-
posed if: 

( ) }{ 00,inf , =>εεfKLdiam  
 

It is well known that there is a very close connection between 
optimization problems and variational inequalities. In other words, 
the well-posedness of a scalar minimization problem is linked to 
that of a scalar variational inequality and, in particular, to a 
variational inequality of differential type (i.e. in which the operator 
is the gradient of a given function). The links between variational 
inequalities of differential type and corresponding optimization 
problems have been studied in  [17]. Furthermore, by means of 
Ekeland’s variational principle [11], that, as it is well known, is an 
important tool to prove some results in well-posedness for 
optimization, a notion of well-posed scalar variational inequality 
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has been introduced and its links with the concept of well-posed 
optimization problem have been investigated [23]. 
We shall deal with variational inequalities of Stampacchia type. 
We recall that a point Kx ∈*  is a solution of a variational 
inequality of Stampacchia type when: 

( )KFSVI ,                             ( ) 0, ** ≥>−< xyxF                                      
Ky∈∀  

where nn RRKF →⊆:  while K  is closed and convex .  
This problem, introduced by G. Stampacchia, has been recently 
studied by many authors (see for example [1]), since it describes 
many economic or engineering problems and it is an efficient tool 
for investigating vector optimization problems. In many 
applications, the problems ( )KFSVI ,  do not always have a 
unique solution. It is well known that it  has a unique solution if the 
operator F is strongly monotone and hemicontinuous.  
If RRf n →: is differentiable an a open set containing the convex 
set K , we can consider the variational inequality of differential 
type, ),( KfSVI ′  where f ′  denotes the gradient of f  ( f  is a 
primitive of F , i.e. fF ′= ). It is known that, under these 
hypotheses, ),( KfSVI ′  is a necessary optimality condition for 
problem ( )KfP , . The following definition gives the notion of well-
posed variational inequality of differential type [10]. 
 
Definition 2.8:The variational inequality ),( KfSVI ′  is well-posed 
when: 
i) ( ) 0/≠εT         0>∀ε  
ii) diam ( ) 0→εT            if 0→ε  
where ( ) ( ) }{ KyxyyxxfKxT ∈∀−≤>−′<∈ εε ,::  is the 

approximate solutions set of ( )KfP , . 
 
We can see that ( )εT  is closed for every ε . It is obvious that the 
set of solutions of SVI  is exactly ( )ε

ε
T

0>
∩ . Then, if the variational 
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inequality is well-posed, ( ) 0→εTdiam  and so the intersection of 
)(εT  is nonempty and shrinks to a single point. Therefore:  

 
Proposition 2.3 [10] [23]:  If f  is hemicontinuous and lower 
semicontinuous and if the variational inequality ),( ' KfSVI  is well-
posed, then ),( ' KfSVI  has an unique solution.  
The converse of proposition 2.3 holds under monotonicity 
assumptions on f . 
 
Proposition 2.4 [10] [19]:  If f  is hemicontinuous and monotone 
on K  and if the variational inequality has exactly one solution, 
then it is well-posed.  
The following theorem states that the boundedness of ( )εT  gives 
an existence result  for variational inequalities [10]. 
 
Theorem 2.2: If f  hemicontinuous on K  and ( ) 0/≠εT  for all ε  
and bounded for at least some ε , then the variational inequality 

( )KfSVI ,′ has solutions.  
 
The next theorem gives, instead, the link between Tykhonov well-
posedness of ( )KfP ,  and well-posedness of ( )KfSVI ,′ . 
 
Theorem 2.3 [10],[23]: Let f  be bounded from below and 
differentiable on an open set containing K. If ( )KfSVI ,′  is well-
posed, then problem ( )KfP ,  is Tykhonov well-posed. The 
converse is true if f  is convex.  
 
2. Well-posedness of vector optimization problems and of 
vector variational inequalities 
 
In scalar optimization the different notions of well-posedness are 
based either on the behaviour of “ appropriate” minimizing 
sequences or on the dependence of optimal solution with respect 
to the data of optimization problems.  
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In vector optimization, instead, there is not a commonly accepted 
definition of well-posedness but there are different notions of well-
posedness of vector optimization problems. For a detailed survey 
on these problems it is possible to refer to [2],[3], [9], [20], [21]. In 
this section, we propose some of these definitions of well-
posedness for a vector optimization problem. 
We consider the vector optimization problem: 

( )KfVP ,                                         ( )xfCmin                                             
Kx∈  

whereK is a nonempty, closed, convex subset of 
nR , ln RRKf →⊆:  is a continuous function and lRC ⊆  is a 

closed, convex, pointed cone and with nonempty interior. Denote 
by int C  the interior of C . 
The cone C  gives an order relation on lR , in the following way 

Cyyyy C ∈−⇔≤ 1221  
                                              Cyyyy C int1221 ∈−⇔<  

We recall that a point Kx ∈*  is said to be an efficient solution or 
minimal solution of problem ( )KfVP ,  when: 

                                          ( ) ( ) }{0\* Cxfxf −∉−                                    
Kx∈∀  

If, in the above definitions, instead of the cone C we use the cone 
}{ CC int0~
∪= , *x is said weak minimal solution. Then, a point 

Kx ∈*  is said to be a weakly efficient solution or weak minimal 
solution of problem ( )KfVP ,  when:  

   ( ) ( ) Cxfxf int* −∉−  
We denote by ( )fKEff ,  the set of all efficient solutions (minimal 
solutions) of problem ( )KfVP ,  while by ( )fKWEff ,  the set of 
weakly efficient solutions (weak minimal solutions) of ( )KfVP , . 
Moreover, every minimal is also a weak minimal solution but the 
converse is not generally true. 
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The image of the set ( )KfEff , , under the function f , is denoted 
by ( )KfMin ,  and its elements are called minimal values of 

( )KfVP ,  Therefore : 
     ( ) ( )[ ]fKEfffKfMin ,, = .   

Unlike the scalar case, in vector optimization one can hardly 
expect that the set ( )KfMin ,  be a singleton. 
Analogously:                       ( ) ( )[ ]fKWEfffKfWMin ,, =  
In this section we recall a notion of well-posedness that considers 
a single point (a fixed efficient point) and not the whole solution 
set: a particular type of pointwise well-posedness and strong 
pointwise well-posedness for vector optimization problems. This 
definition can be introduced considering, as in the scalar case, the 
diameter of the level sets of the function f . 
Generalizing Tykhonov’s definition of well-posednes, for a scalar 
optimization problem, in [9] are introduced the notions of well-
posedness and of strong well-posedness of vector optimization 
problem ( )KfVP ,  at a point  ( )fKEffx ,* ∈  and  are provided, 
also, some conditions to guarantee well-posedness according to 
these definitions. 
 
Definition 3.1:The vector optimization problem ( )KfVP ,  is said to 
be pointwise well-posed at the efficient solution Kx ∈*  or 
Tykhonov well-posed at a point ( )fKEffx ,* ∈ , if: 
                                            ( ) 0,,inf * =αkxLdiam                    

0>∀∈∀ αCk  
where Ldiam  denotes the diameter of the set:  

  
( ) ( ) ( ) }{ ( ) ( ) }{ CkxfxfKxkxfxfKxkxL C −+∈∈=+≤∈= ααα *** ::,,
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Definition 3.2: The vector optimization problem ( )KfVP ,  is said 
to be strongly pointwise well-posed at the efficient solution *x , or 
Tykhonov strongly well-posed at a point ( )fKEffx ,* ∈ , if : 
                                            ( ) 0,,inf * =αkxLdiam s                                   

Ck∈∀  
where sLdiam  denotes the diameter of the set :  

( ) ( ) ( ) ( ) }{ ααα ≤+≤∈= KxdandkxfxfKxkxL Cs ,:,, **  
 
For the sake of completeness, we recall that it is also possible to 
introduce another type of well-posedness of the vector optimization 
problem ( )KfVP ,  at a point ( )fKEffx ,* ∈  [16]. 
 
Definition 3.3:  The vector optimization problem ( )KfVP ,  is said 
to be H-well-posed at a point ( )fKEffx ,* ∈  if *xxn →  for any 

sequence }{ Kxn ⊆ , such that ( ) ( )*xfxf n → . 
 
Definition 3.4: The vector optimization problem ( )KfVP ,  is said to 
be strongly H-well-posed at a point ( )fKEffx ,* ∈  if *xxn → for 

any sequence }{ nx  such that ( ) ( )*xfxf n →   with ( ) 0, →Kxd n . 
 
Remark 3.1 : 
If 0int /≠C , then well-posedness at a point ( )fKEffx ,* ∈  of the 
vector optimization problem ( )KfVP ,  according to definition 3.1 
[resp. to def. 3.2]  implies well-posedness according to definition 
3.3 [ resp. to def. 3.4] 
It is easy realize that the pointwise well-posedness of type 3.1 is 
weaker than pointwise well-posedness of type 3.3 [16]. 
 
An useful tool in the study of vector optimization problems is 
provided by the vector variational inequalities. They, introduced 
first by Giannessi in 1980 [12], have been studied intensively 
because they can be efficient tools for investigating vector 
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optimization problems and also because they provide a 
mathematical model for equilibrium problems. In this section we 
deal with vector variational inequalities of differential type. 
Let  ln RRf →:  be a function differentiable on an open set 
containing the closed convex set nRK ⊆ . The vector variational 
inequality problem of differential type consists in finding a point 

Kx ∈*  such that: 
( )KfSVVI ,′                          ( ) Cxyxf l int, ** −∉>−′<                             
Ky∈∀  

where f ′denote the Jacobian of f  and ( ) lxyxf >−′< ** ,  is the 
vector whose components are the l  inner 
products ( ) >−′< ** , xyxfi . 

It is well known that ( )KfSVVI ,′  is a necessary condition for *x  
to be an efficient solution of ( )KfVP , . It is, instead, a sufficient 
condition for *x  to be an efficient solution of ( )KfVP ,  if f  is 

−Cint convex  while, if f  is C-convex, ( )KfSVVI ,′  is a 
sufficient condition for *x  to be an weakly efficient solution of 

( )KfVP , . These remarks underline the links between optimal 
problems and variational inequalities also for vector case. This is a 
further reason for a suitable definition of well-posedness for a 
vector variational inequality which could be compared and related 
to the given definition for vector optimization. We take the 
condition  0)( →εT  for 0→ε  as an expression of the 
convergence of the set )(εT  to the set of solutions of the 
variational inequality ( and consequently of the minimum problem). 
Then, we introduce a notion of well-posedness for the vector 
variational inequality problem ( )KfSVVI ,′ , obtained by 
generalizing definition 2.8. We define the following set: 

( ) }{ KyCcxyxyxfKxT lc
∈∀−−−∉>−′<∈= ,int,::)( 0

0 εε  
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where 0>ε  and Cc int0 ∈ . )(0 εc
T  is a directional generalization 

of the set )(εT  of Section 2, i.e. when 1=l , the set )(0 εc
T  

reduces to the set )(εT . 
 
Definition 3.11: The variational inequality ( )KfSVVI ,′  is well-
posed when, for every Cc int0 ∈ ,  e ( ( )ε0c

T , ( )fKWeff , ) 0→   

where ( ) ( )AAdAAe i
AAi

K
K

,sup,
∈

= . 

The following result states the relationship between well-posed 
optimization problem and a well-posed variational inequality, in the 
vector case [27].  
 
Theorem 3.2: If the variational inequality ( )KfSVVI ,'  is well-
posed, then problem ( )KfVP , is well-posed.  
 
For C-convex functions, in particular, well-posedness of ( )KfVP ,  
and ( )KfSVVI ,′  substantially coincide. To show that, we assume 
that f  is differentiable on an open set containing K  and we 
observe that: 
 
Lemma 1 [6]: If ln RRf →: is −C convex, then: 
               

{ } }{ ( ) ( ) }{ CcxyxfyfKxZT
cc

int:: 0
00 −−−∉−∈== εεε  

 
Definition 3.12: The function ln RRKf →⊆:  is said to be 
−C convex when: 

           ( )( ) ( ) ( ) ( )[ ] Cyfxfyxf −∈−+−−+ λλλλ 11        Kyx ∈∀ , , 
[ ]1,0∈∀λ  
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Theorem 3.3 [6]: Let f  be a −C convex function. Assume that 
Cc int0 ∈ , and that  { }ε0c

T  is bounded for some 0>ε . Then 

( )KfSVVI ,′  is well-posed. 
 
Therefore, if f  is a −C convex function, the well-posedness of  

( )KfSVI ,′  is  ensured and, that is, by theorem 3.2, substantially 
coincide with well-posedness of ( )KfVP , . 
 
 
3. Main results 
 
In this section we introduce a generalized variational inequality 
problem and we link the well-posedness of this problem to 
pointwise well-posedness of ( )KfVP , . Throughout this section we 
assume that ln RRf →: is differentiable on an open set 
containing the closed convex set nRK ⊆ . 
Definition 4.1: For a set lRA⊆ ,  let }{ ∞±∪→∆ RRlA :  be  
defined as: 

( ) ( ) ( )cA AydAydy ,, −=∆  
where ( ) ayyd AaA −= ∈inf  is the distance from the point y  to the 
set A .  
 
Function ( )yA∆  is  called the oriented distance from the point y  to 
the set A  and it has been introduced in the framework of 
nonsmooth scalar optimization. While ( ) 0=ydA  when 

Acly∈ (the closure of A) and positive elsewhere, ( ) 0<∆ yA  for 
Ay int∈  (the interior of A), ( ) 0=∆ yA  for Abdy∈  (the boundary 

of A) and positive elsewhere.  
The main properties of function A∆  are gathered in the following: 
Theorem 4.1 [30]: 
i) if 0/≠A  and lRA ≠ then A∆  is real valued; 
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ii) A∆  is 1-Lipschitzian;  
iii) ( ) 0<∆ yA ( ) 0,int =∆∈∀ yAy A  Abdy∈∀  and ( ) 0>∆ yA  

cAy int∈∀ ; 
iv) if A is closed, then it holds ( ) }{ 0: ≤∆= yyA A ; 
v) if A is convex, then A∆  is convex; 
vi) if A is a cone, then A∆  is positively homogeneous; 
vii) if A is a closed convex cone, then A∆  is non increasing with 
respect to the ordering relation induced on lR , i.e. the following is 
true:  
if       lRyy ∈21,                    then            

( ) ( )2121 yyAyy AA ∆≤∆⇒∈−  
if    A has nonempty interior, then       

( ) ( )2121 int yyAyy AA ∆<∆⇒∈−  
 
The oriented distance function A∆ , used also to obtain a 
scalarization of a vector optimization problem [5],[15],[25], allows 
to establish a parallelism between the well-posedness of the 
original vector problem and the well posedness of  the associate 
scalar problem. More precisely, in [25] is shown that every notion 
of well-posedness in vector optimization can  be rephrased as a 
suitable well-posedness of a corresponding scalar optimization 
problem. 
It has been proved, in [13], that when A  is closed, convex, pointed 
cone, then we have: 

( ) yy
SAA ,max

'
ξ

ξ ∩∈− =∆  

where }{ AaaxRxA l ∈∀≥∈=′ ,0,|:  is the positive polar of  the 

cone of A and S   the unit sphere in lR . 
 
We use function A−∆  in order to give scalar characterizations of 
some notions of efficiency for problem ( )KfVP , . Furthermore, 
some results characterize pointwise well-posedness of problem 

( )KfVP ,  through function A−∆  [9]. 
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Given a point Kx ∈* , we consider the function: 
    )()(,max)( *

'* xfxfx
SCx

−=
∩∈

ξϕ
ξ

 

where C′  denotes the positive polar of C  and S  the unit sphere 
in lR . Clearly 

( ))()()( *
* xfxfx Cx

−∆= −ϕ  

The function *x
ϕ  is directionally differentiable [8] and hence we 

can consider the directional derivative 

( ) ( ) ( )
t

xtdx
dx xx

tx

**

*
0

lim;
ϕϕ

ϕ
−+

=′
+→

 

and  the generalized problem: find Kx ∈* , such that: 
( )KSVVI
x

,*ϕ′                                  ( ) 0; **
* ≥−′ xyxxϕ                                

Ky∈∀  
 
The solutions of problem ( )KSVVI

x
,*ϕ′  coincide with the solutions 

of ( )KfSVVI ,′  
 
Proposition 4.1 [7]: Let K  be a convex set. If Kx ∈*  solves 
problem ( )KSVVI

x
,*ϕ′  for some Kx ∈* , then *x  is a solution of 

( )KfSVVI ,′ . Conversely, if Kx ∈*  solves ( )KfSVVI ,′ , then *x  
solves problem ( )KSVVI

x
,*ϕ′ . 

 
Definition  4.2:  ( )KfSVVI ,′  is pointwise well-posed at Kx ∈* , 
when: 
i) ( ) 0* /≠ε

x
T                       Ky∈∀  

ii) ( ) ,0* →ε
x
Tdiam              if  0→ε  

where                ( ) ( ) }{ KyyxxyxKxT xx ∈∀−≥−∈= ,,: '
** εϕε  

 
The scalar problem associated with the vector problem ( )KfVP ,  
is: 
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( )KP
x

,*ϕ                                       ( )x
x*minϕ                                             

Kx∈  
The relations among the solutions of problem ( )KP

x
,*ϕ  and those 

of problem ( )KfVP ,  are investigated in [14],[30]. We here refer 
only to the characterization of weak efficient solution. 
Proposition 4.2: The point Kx ∈*  is a weak efficient solution  of  

( )KfVP ,  if  and only  if  *x  is  a  solution of ( )KP
x

,*ϕ . 
The proof is omitted and we refer to [6] for details. 
 
Also well-posedness of ( )KfVP ,  can be linked  to that of 
( )KP
x

,*ϕ . 
 
Proposition 4.3 [6]:  Let f  be a continuous function and let 

Kx ∈*  be an efficient solution of ( )KfVP , . Problem ( )KfVP ,  is 
pointwise well-posed at *x if and only if problem ( )KP

x
,*ϕ  is 

Tykhonov well-posed. 
 
Next proposition links the well-posedness of ( )KSVVI

x
,*ϕ′  to 

pointwise well-posedness of ( )KfVP , . We need to recall 
Ekeland’s variational principle[4]: it say that there is a “nearby 
point” which actually minimizes a slightly perturbed given 
functional. More precisely it asserts that a particular optimization 
problem can be replaced by other which is near the original and 
has a unique solution [26]. In fact, often the mathematical model of 
a phenomenon is so complicated that is necessary replace it by 
other model which has a solution “near” the original one.  
 
The Ekeland’s variational principle 
Let V  be a complete metric space with associated metric ∆ , and 
let ( )∞+∪→ RVF :  be a lower semicontinuous function which is 
bounded below 
If  u is a point in  V  satisfying 

( ) ε+≤ FuF inf  
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for some 0>ε , then, for every 0>λ there exists a point v in V  
such that: 
i) ( ) ( )uFvF ≤  
ii) ( ) λ≤∆ vu,  
iii) For all vw ≠  in V , one has ( ) ( ) ( ) ( )vwwFvF ,/ ∆+< λε  
 
Proposition 4.4: If ( )KSVVI

x
,*ϕ′  is pointwise well-posed at 

Kx ∈* , then problem ( )KfVP ,  is pointwise well-posed at *x . 
 
Proof:  We know that the vector optimization problem: 

( )KfVP ,                                           ( )xfCmin                                           
Kx∈∀   

is pointwise well-posed at Kx ∈*  if and only if problem:   
( )KP
x

,*ϕ                                          ( )x
x*minϕ                                           

Kx∈∀  
is Tykhonov well-posed. 
Then, we prove now that if ( )KSVVI

x
,*ϕ′  is pointwise well-posed at 

*x , then problem ( )KP
x

,*ϕ  is Tykhonov well-posed. 

In fact, for every 0>ε  and −∈εx ( )K
x

,minarg *ϕ , by Ekeland’s 
variational principle, there exist x  such that: 
                ε≤− xx       and            ( ) ( ) yxyx

xx
−+≤ εϕϕ **             

Ky∈∀ . 
If we introduce the set 

 ( ) ( ) ( ) }{ KyyxyxKxZ
xx

∈∀−+≤∈= ,: ** εϕϕε  
then, we have  

( ) ( ) BZK
x

εεϕε +⊆− ,minarg * . 

We get, then, that ( )Ku
x

,minarg *ϕε −∈∀  there exist x  such that 

ε≤− xu  and  
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( ) ( ) Kytxytxxytx

xx
∈<<−−≥−+ ,10,)( ** εϕϕ  

Since ( ) xyxyx
x

−−≥−′ εϕ ,* ,  follows ( )ε*x
Tx∈  and  so:     

                                     ( ) ( ) BTK
xx

εεϕε +⊆− ** ,minarg  

Since diam ( ) 0* →ε
x
T  as 0→ε , then we have that *x

ϕ  is 
Tykhonov  well-posed. 
 
Now we prove that the converse of the previous proposition is true 
if f  is −C convex. Before, we  need the following Lemma: 
 
Lemma 4.1 [7]: If ln RRf →:  is  −C convex  function, then the  
function ( )x

x*ϕ , is convex Kx∈∀ . 
 
Proposition 4.5: Let f  be  −C convex  and assume f  is 
pointwise  well  posed  at  Kx ∈* .  
Then  ( )KSVVI

x
,*ϕ′   is pointwise well-posed at *x . 

 
Proof : Since f  is pointwise well-posed, then *x solves problem 

( )KfVP ,  and *x  is a solution of the ( )KSVVI
x

,*ϕ′ . It follows that 

( ) 0* ≠ε
x
T   0>∀ε . 
Assuming, ab absurdo, that ( )KSVVI

x
,*ϕ′  is not pointwise well-

posed at *x , follows that exist 0>a  and 0→nε , with 
( ) aTdiam nx

2* >ε  and one can find some ( )nxn Tx ε*∈ , with 

axn ≥ .  

Without loss of generality we put 0* =x . Since *x
ϕ  is convex , we 

have: 
( ) ( ) ( )nnxnxx yyy −′≥− ,0 *** ϕϕϕ  
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where 
n

n
n x

xay = . The boundedness of ny  implies we can 

assume Kyyn ∈→  (here we need K  closed). Further, since 
( )nxn Tx ε*∈ , we have                   

( ) nnnnx xxx εϕ −≥−′ ,*  
Since  

( ) ( ) ( ) ( )( )( ) ( )
=

−

−−+
−=

−−
=−′

++ →→ t
xxtx

t
xtxx

xx nxnnx

t

nxnnx

t
nnx

****

*
00

limlim,
ϕϕϕϕ

ϕ

                        
                    ( )nnx

xx ,*ϕ′−=  
and  

( ) ( )nnxnnx
yyyy ,, ** ϕϕ ′−=−′ , 

from the continuity  of *x
ϕ  we have 

( ) ( )nnx
n

n
n

n
x

nn

n

n

n
xnnx

xx
x
ax

x
ax

x
a

x
ax

x
axyy ,,,, **** ϕϕϕϕ ′≤










′≤










′=′  

The last  inequality follows from the convexity of  *x
ϕ′  [29] . 

Hence 

( ) ( )nnx
n

nnx xx
x
ayy ,, ** ϕϕ ′≤−′−  

it follows                           ( ) ( )nnxnnx
n

yyxx
x
a

−′≤−′ ,, ** ϕϕ   

and so                           ( ) ( ) ( ) nnnx
n

nxx axx
x
ay εϕϕϕ −≥−′≥− ,0 ***  

Sending n  to ∞+  we obtain ( ) ( ) 00 00 ≥− y
xx

ϕϕ  which contradicts  
to Tykhonov  well-posedness. 
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