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Introduction

A variety of observations suggests that the present universe is dominated
by some unknown components. The distribution and properties of these
components are the focus of modern cosmology and we are only beginning to
understand them. Gravitational lensing, the bending of light in the gravita-
tional �eld of a massive object, is one of the predictions of the general theory
of relativity. Especially with recent and coming advances in observational
data, the gravitational lensing is regarded as one of the most e�ective tools
for probing a number of interesting phenomena of the universe. Some of
these phenomena are the existence of various astrophysical objects like black
holes, super-dense neutron stars, exotic matter, wormholes, naked singular-
ities etc. The detection of these objects may eventually shed light on the
possible connection between the quantum theory and gravity. Inspired by
the latest result in the Sloan Digital Sky Survey Quasar Lens Search (SQLS)
there are a lot of theoretical works concerning exotic objects. With some
violation of the energy conditions, it is possible to combine scalar �elds or
other types of matter so as to build metrics that fall as 1/rn asymptoti-
cally. This thesis aims at exploiting the existing gravitational lensing theory
for non-Schwarzschild metrics to study a lensing system composed of two
objects whose gravitational potential asymptotically falls as 1/rn, whether
ordinary (n < 1) or exotic (n > 1).

Plan of Thesis

The light bending is of theoretical importance, in particular for studying
the null structure of a spacetime. Starting from the Schwarzschild solution of
Einstein's �eld equations that describes the geometry of space-time outside
a spherically symmetric matter distribution, in Chapter 1 are shown other
solutions able to represent physical particles in pure geometrical terms of
spacetime. These solutions should be singularity-free, in order to avoid the
divergence problem of particles in classical �eld theory. This Chapter pro-
vides a characterization of traversable wormholes and exotic objects describ-
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ing furthermore the implication of non-Schwarzschild metric from the point
of view of the energy-momentum tensor. A brief historical introduction to
the regimes of gravitational lensing (microlensing, weak lensing and strong
lensing) and the basic concepts are presented in Chapter 2. The de�ection
of light by massive bodies gives rise to many interesting phenomena that can
modify how the sources of radiation are seen by an observer. In addition to
magnifying the source, gravitational lensing ampli�es the luminosity of the
source, enabling the observation of objects too distant or intrinsically too
faint to be observed without lensing. In the following chapters we discuss
gravitational lensing e�ects by metrics falling as 1/rn. We need to distinguish
two regimes, depending on whether n is smaller or larger than 1. The �rst
case corresponds to galactic haloes, and the second case to exotic objects vio-
lating energy conditions. Chapter 3 describes some interesting results on the
physical problem of gravitational lensing by this kind of metrics, in particular
linked to the defocusing e�ect. What is asserted allows us to think that grav-
itational demagni�cation of light occurs because modi�ed lenses could act as
an e�ectively negative mass on a particular light ray. Then, a gravitational
demagni�cation of light might be used for hunting a clue of exotic matter
and energy. Chapter 4 introduces the binary lens equation for 1/rn objects
and investigates the properties of critical curves and caustics of this lens in
all ranges of parameters. Main results with suggestions for further research
are contained in the conclusions.
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Chapter 1

From Schwarzschild to exotic

metrics

1.1 The Schwarzschild solution

In 1916 Karl Schwarzschild discovered the �rst exact solution of Einstein's
�eld equations [1]. This solution describes the geometry of space-time outside
a spherically symmetric matter distribution. The most general spherically
symmetric metric is

ds2 = α(r, t)dt2 − β(r, t)dr2 − γ(r, t)dΩ2 − δ(r, t)drdt (1.1)

where dΩ2 = dθ2 + sin2θdφ2. We are using spherical polar coordinates. This
metric is isotropic, therefore invariant under rotations. The invariance group
of general relativity is formed by the group of general transformations of
coordinates of the form x′µ = fµ(x). This yields four degrees of freedom. Two
of these degrees have been used when adopting spherical coordinates. The
trasformations that do not break the central symmetry are r′ = f1(r, t) and
t′ = f2(r, t). With the two available degrees of freedom, we can choose two
metric coe�cients. The other two are determined by Einstein's equations.
Some possibilities are

Standard gauge

ds2 = c2A(r, t)dt2 −B(r, t)dr2 − r2dΩ2

Synchronous gauge

ds2 = c2dt2 − F 2(r, t)dr2 −R2dΩ2
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Isotropic gauge

ds2 = c2H2(r, t)dt2 −K2(r, t)
[
dr2 + r2(r, t)dΩ2

]
Adopting a static con�guration, that means a no dependence of the met-
ric coe�cients on t, and the standard gauge, we can get equations for the
coe�cients A and B of the standard metric

ds2 = c2A(r)dt2 −B(r)dr2 − r2dΩ2 (1.2)

Since we are interested in the solution outside the spherical mass distribution,
we only need to require the Ricci tensor to vanish: Rµν = 0. According to
the de�nition of the curvature tensor and the Ricci tensor, we have

Rµν = ∂νΓ
σ
µσ − ∂σΓσµν + ΓρµσΓσρν − ΓρµνΓ

σ
ρσ = 0

and the a�ne connection depends on the metric as

Γσµν =
1

2
gρσ(∂νgρµ + ∂µgρν − ∂ρgµν)

We have to solve a set of di�erential equations for the components of the
metric gµν . The metric coe�cients are

g00 = A(r)

g11 = −B(r)

g22 = −r2

g33 = −r2sin2θ

g00 = 1/A(r)

g11 = −1/B(r)

g22 = −1/r2

g33 = −1/r2sin2θ
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Only 9 of the 40 independent connection coe�cients are di�erent from zero
and they are

Γ1
01 = A′/(2A)

Γ1
22 = −r/B

Γ2
33 = −sinθcosθ

Γ1
00 = A′/(2B)

Γ1
33 = −(rsin2θ/B)

Γ3
13 = 1/r

Γ1
11 = B′/(2B)

Γ2
12 = 1/r

Γ3
23 = cotθ

Replacing in the expression for Rµν :

R00 = −A
′′

2B
+
A′

4B

(
A′

A
+
B′

B

)
− A′

rB

R11 =
A′′

2A
− A′

4A

(
A′

A
+
B′

B

)
− B′

rB

R22 =
1

B
− 1 +

r

2B

(
A′

A
− B′

B

)
R33 = R22sin

2θ

For the region of empty space, Einstein's �eld equations become

R00 = R11 = R22 = 0

and the fourth equation has no additional information. Multiplying the �rst
equation by B/A and adding the result to the second equation we get

A′B + AB′ = 0

from which AB = constant. We can write B = αA−1. Going to the third
equation and replacing B we obtain A+ rA′ = α or

d(rA)

dr
= α

The solution of this equation is

A(r) = α

(
1 +

k

r

)
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with k another integration constant.
For B we obtain

B(r) =

(
1 +

k

r

)−1

Now we consider the Newtonian limit

A(r)

c2
= 1 +

2Φ

c2

with Φ = −GM/r the Newtonian gravitational potential. We conclude that
k = −2GM/c2 and α = c2.
The Schwarzschild solution for a static mass M can be written in spherical
coordinates (t, r, θ, φ) as:

ds2 =

(
1− 2GM

rc2

)
c2dt2 −

(
1− 2GM

rc2

)−1

dr2 − r2(dθ2 + sin2θdφ2) (1.3)

This solution corresponds to the vacuum region exterior to the spherical ob-
ject of massM . Inside the object, space-time will depend on the peculiarities
of the physical object. Now we analyze the properties of this metric. We as-
sume that the mass M is concentrated at r = 0. There are two singularities
at which the metric diverges, one at r = 0 and the other at r = rs, the
Schwarzschild radius

rs =
2GM

c2

For a point mass, the Schwarzschild radius is in the vacuum region and
space-time has the structure given by Eq. (1.3). In general, we can write

rs ∼ 3
M

M�
Km

Some interesting things occur close to the Schwarzschild radius.

For the proper time we get

dτ =

(
1− 2GM

rc2

)1/2

dt (1.4)

or

dt =

(
1− 2GM

rc2

)−1/2

dτ (1.5)

When r →∞, t is interpreted as the proper time measured from an in�nite
distance. As the system with proper time τ approaches to rs, dt tends to
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in�nity according to Eq. (1.5). The object never reaches the Schwarzschild
surface when seen by an in�nitely distant observer. The closer the object is
to the Schwarzschild radius, the slower it moves for the external observer.

A direct consequence of the di�erence introduced by gravity in the local time
with respect to the time at in�nity is that the radiation that escapes from a
given radius r > rs will be redshifted when received by a distant and static
observer. Since the frequency, and hence the energy of the photon depends
on the time interval, we can write, from Eq. (1.5)

λ∞ =

(
1− 2GM

rc2

)−1/2

λ (1.6)

But, since the redshift is

z =
λ∞ − λ
λ

(1.7)

then

1 + z =

(
1− 2GM

rc2

)−1/2

(1.8)

As we see, when r → rs the redshift becomes in�nite. A photon needs in�-
nite energy to escape from inside the region determined by the Schwarzschild
radius. Events that occur at r < rs are disconnected from the rest of the uni-
verse. We call the surface determined by r = rs an event horizon. Whatever
crosses the event horizon will never return. This is the origin of the expres-
sion black hole, introduced by John A. Wheeler in the mid 1960s. The black
hole is the region of space-time inside the event horizon. We can see in Figure
1.1 what happens with the light cones as an event is closer to the horizon of
a Schwarzschild black hole. The shape of the cones can be calculated from
the metric (1.3) imposing the null condition ds2 = 0. Then

dr

dt
= ±

(
1− 2GM

r

)
(1.9)

with c = 1. Notice that when r → ∞, dr/dt → ±1, as in Minkowski
space-time. When r → 2GM , dr/dt→ 0, and light moves along the surface
r = 2GM , which is consequently a null surface. For r < 2GM , the sign of
the derivative is inverted. The inward region of r = 2GM is time-like for any
physical system that has crossed the boundary surface.
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Figure 1.1: Space-time diagram in Schwarzschild coordinates showing the
light cones of events at di�erent distances from the event horizon.

1.2 Birkho�'s Theorem

If we consider the isotropic but not static line element

ds2 = c2A(r, t)dt2 −B(r, t)dr2 − r2dΩ2

and substitute it into Einstein's empty-space �eld equations Rµν = 0 to
obtain the functions A(r, t) and B(r, t), the result would be exactly the same

A(r, t) = A(r) =

(
1− 2GM

rc2

)
B(r, t) = B(r) =

(
1− 2GM

rc2

)−1

This result is known as Birkho�'s theorem:

The space-time geometry outside a general spherically symmetric matter dis-
tribution is the Schwarzschild geometry.

Birkho�'s theorem implies that strictly radial motions do not perturb the
spacetime metric. In particular, a pulsating star, if the pulsations are strictly
radial, do not produce gravitational waves. The converse of Birkho�'s theo-
rem is not true. If the region of space-time is described by the metric given
by expression (1.3), then the matter distribution that is the source of the
metric does not need to be spherically symmetric [2].
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1.3 Wormholes and exotic objects

The �rst paper on wormhole solutions of Einstein's �eld equations was
published in 1935 by Einstein himself and Nathan Rosen [3]. Einstein and
Rosen used the word "bridge" to describe their solution. They were looking
for solutions able to represent physical particles in pure geometrical terms of
spacetime. These solutions should be singularity-free, in order to avoid the
divergence problem of particles in classical �eld theory.
A wormhole is a region of space-time with non-trivial topology. It has two
mouths connected by a throat. The mouths are not hidden by event horizons
and there is no singularity to avoid the passage of particles, or travelers, from
one side to the other. Wormholes are holes in space-time, i.e. their existence
implies a multiple-connected space-time. There are many types of wormhole
solutions of Einstein's �eld equations. Now we see the desired properties of
traversable wormholes and a general metric for the wormhole as shown by
Morris and Thorne in 1988 [4]:

(1) The metric should be both spherically symmetric and static (time indipen-
dent).

(2) The solution must everywhere obey the Einstein �eld equations.

(3) To be a wormhole the solution must have a throat that connects two
asymptotically �at regions of spacetime; i.e., an equatorial embedding dia-
gram must have qualitatively the form of Figure 1.2.

(4) There should be no horizon, since a horizon, if present, would prevent
two-way travel through the wormhole.

(5) The tidal gravitational forces experienced by a traveler must be bearably
small.

(6) A traveler must be able to cross through the wormhole in a �nite and
reasonably small proper time (e.g., less than a year) as measured not only
by herself, but also by observers who remain behind or who await her outside
the wormhole.

(7) The matter and �elds that generate the wormhole's spacetime curvature
must have a physically reasonable stress-energy tensor.
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(8) The solution should be perturbatively stable(especially as a spaceship passes
through).

(9) It should be possible to assemble the wormhole. For instance, the assembly
should require both much less than the mass of the universe and much less
than the age of the universe.

The starting ansatz for the wormhole metric is

ds2 = −e2Φc2dt2 +
dr2

1− b/r
+ r2(dθ2 + sin2θdφ2) (1.10)

where Φ = Φ(r) is the redshift function and b = b(r) is the shape function.
The metric is spherically simmetric and static. When imposing condition
that the metric must satisfy Einstein equations in every point of spacetime,
we obtain the relation between the functions Φ(r), b(r) and the stress-energy
tensor that produces the wormhole spacetime geometry. Outside the worm-
hole, the spacetime is considered asymptotically �at and has a line element
given by Schwarzschild metric (Eq. (1.3)). The junction conditions that
follow from the theory of general relativity are the continuity of the metric
components and the extrinsic curvature across the surface of juncture. To
obtain speci�c solutions, in wormhole studies it is usual to �x a spacetime
geometry and then use the Einstein equations to derive the matter distri-
bution needed to obtain the respective metric. The embedding diagram (an
embedding is an immersion of a given manifold into a manifold of lower di-
mensionality that preserves the metric properties) for this metric is given in
Figure 1.2. In contrast to the Schwarzschild metric, which is time-dependent
inside the horizon, the wormhole metric is static everywhere. Thus the em-
bedding diagram gives the properties at all times. An observer can travel
throught the trhoat and emerge at the other side in a �nite time. The space-
time has no horizon: a radial light ray can always escape to in�nity. There
are two region where the curvature tends to zero at large distances from the
wormhole. There is no restriction on travel between the two regions. In the-
ory, we can join spacetime creating a shorter route through the wormhole,
how we can see in Figure 1.2(b). Notice that the radial coordinate r has
special geometric signi�cance: 2πr is the circumference of a circle centered
on the wormhole's throath, and thus r is equal to the embedding-space radial
coordinate. A spacetime of special interest has the form

ds2 = −c2dt2 + dl2 + (b2
0 + l2)(dθ2 + sin2θdφ2) (1.11)

where the coordinates have the ranges −∞ < t < +∞, −∞ < l < +∞,
0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π and b0 is a constant. In this case the functions Φ(r)
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and b(r) are Φ = 0, b = b2
0/r. In this speci�c wormhole solution, the radial

coordiante l is related to r by

l = ±(r2 − b2
0)1/2 (1.12)

with + in the upper universe and − in the lower.

Then, r is non-monotonic:

- decreases from +∞ to a minimum value, b0, as one moves through the lower
universe of Figure 1.2 toward the wormhole and into the throath,

- increases from b0 back to +∞ as one moves out of the throath and into the
upper universe.

Figure 1.2: (a) Embedding diagram for a wormhole that connects two di�er-
ent universes. (b) Embedding diagram for a wormhole that connects two dis-
tant regions of our universe. Each diagram depicts the geometry of an equa-
torial (θ = π/2) slice through space at a speci�c moment of time (t = const).
M. S. Morris and K. S. Thorne [4].

9



The geometry of three-dimensional space at a �xed moment of time is very
interesting. Since geometry is spherically simmetric, we can con�ne attention
to an equatorial slice θ = π/2, without signi�cant loss of information.
The line element is obtained by setting t = const, θ = π/2 in Eq. (1.10)

ds2 =
dr2

1− b/r
+ r2dφ2 (1.13)

We wish to visualize this slice as removed from spacetime and embedded
in Euclidean space. We introduce cylindrical coordinates z, r and φ. The
Euclidean metric of the embedding space has the form

ds2 = dz2 + dr2 + r2dφ2 (1.14)

The embedded surface is axially symmetric and can be described by the single
function z = z(r). On that surface, the line element is

ds2 =

[
1 +

(
dz

dr

)2]
dr2 + r2dφ2 (1.15)

This line element is the same as that of our equatorial slice through the
wormhole (Eq. (1.13)) if we identify the coordinates of the embedding space
(r, φ) with the (r, φ) of the wormhole's spacetime, and if we require that the
function z(r), which describes the embedded surface satisfy

dz

dr
= ±

(
r

b(r)
− 1

)−1/2

(1.16)

The last equation describes how the function b = b(r) shapes the wormhole's
spatial geometry. The surface z = z(r) is pictured in Figure 1.2 (a).

Every wormhole must have a minimus radius, the wormhole throat, r = b0

at which its embedded surface is vertical. This means that the expression
(1.16) is divergent and that b(r) = r. We denote the common value of r
and b at this throat by b0. There exists a minimum radius r = b0 in the
wormhole and at r = b0, b = b0. The radial coordinate r is bad behaved near
the throat, but proper radial distance l(r) must be well behaved everywhere

l(r) = ±
∫ τ

b0

dr

[1− b(r)/r]1/2
(1.17)
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We must require that l(r) is �nite throughout spacetime, which implies that
1 − b/r ≥ 0 throughout spacetime. As we said, far from the throat, in
both radial directions, space must become asymptotically �at. From Eq.
(1.16), b/r → 0, as l→ ±∞. Equations (1.16) and (1.17) imply that for the
embedded wormhole

dz

dl
= ±

√
b

r

dr

dl
= ±

√
1− b

r

(1.18)

Figure 1.3 depicts a general wormhole shape and the geometrical meaning of
equations (1.18).

Figure 1.3: The embedding diagram for a general wormhole as seen in pro�le.
The diagram must be rotated around the vertical axis z to make it complete
(Figure 1.2). M. S. Morris and K. S. Thorne [4].

Our traversable wormholes do not posses any horizons. They are the physi-
cally nonsingular surfaces at which g00 ≡ −e2Φ → 0, vanishing proper time
lapse during any �nite coordinate time.
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1.4 Ellis wormhole

In 1973 Homer Ellis �nds a way to force open the Schwarzschild singular-
ity and then to connect on an additional chunk of space-time [5]. He replaces
the singularity with a special hole, the drainhole.

"The rationale for this name is that on the space-time manifold containing
the hole there is a vector �eld that can be interpreted as a velocity �eld for
an "ether" draining through the hole. The existence of the hole permits this
ether to be conserved in the sense that its streamlines, which are timelike
geodesics, never abruptly terminate".

The hypothetical ether provides a universal system of inertial observers:
every observer or test particle drifting with the ether, following its �ow, is
absolutely unaccelerated. The ether, pervading all of space-time, is more
than a mere inert medium for the propagation of electromagnetic waves.
In this frame, mass particles appear as sinks or sources of this �owing ether.

The general line element takes the spherically symmetric form

dτ 2 = dt2 − [dρ− f(ρ)dt]2 − r2(ρ)[dθ2 + sin2θdϕ2]

= dt2 − [dρ− f(ρ)dt]2 − r2(ρ)dΩ2 (1.19)

in which the function f with domain A and the nonnegative function r with
domain B are to be determined by the �eld equations. The coordinate ranges
are supposed given by

−∞ < t <∞,−∞ < ρ <∞, 0 < θ < π,−π < ϕ < π (1.20)

and ρ ∈ A ∩ B − r−1(0). Since r−1(0) is excluded from the range of ρ, the
line element is regular for all values of the coordinates.
When the functions f and r have been speci�ed, the line element may be con-
sidered to lie upon a manifold M. Note that the metric (1.19) is independent
of t. This means that all translation of M along the t curves are isometries.
Now we consider the cross section of M on which the time coordinate is
constant: Σt. In Σt, the Riemannian line element is given by

dσ2 = dρ2 + r2(ρ)dΩ2 (1.21)

If r(ρ) = ρ, the line element is of Euclidean 3-space E3. An interesting case
has r(ρ) = (ρ2 + n2)1/2, where n is a positive constant and is the radius of
the drainhole. The equatorial cross section of Σt is showed in Figure 1.4.

12



Figure 1.4: The equatorial cross section of the typical spatial cross section
Σt of the space-time manifold M in a special case. The line element of this
surface is given by dσ2 = dρ2 + (ρ2 + n2)dϕ2. The surface is isometric to
the catenoid {[x, y, z]|(x2 + y2)1/2 = ncosh(z/n)} in E3. The radius of the
central hole, where ρ = 0, is n. The surface is asymptotic to E2, both as
ρ→∞ and as ρ→ −∞. H. G. Ellis [5].

It is isometrically embeddable as a catenoid in E3

{[x, y, z]|(x2 + y2)1/2 = ncosh(z/n)} (1.22)

The surface is asymptotic to E2, both as ρ→∞ and as ρ→ −∞. To open
up the Schwarzschild singularity, Ellis introduces a device: a scalar �eld φ.
This �eld satisfy the scalar wave equation

�φ = 0 (1.23)

and is coupled to the metric of the manifold through the �eld equations

Rµν = 2φ,µφ,ν (1.24)

If φ = α(ρ), the wave equation (1.23) is equivalent to

[r2(f 2 − 1)α′]′ = 0 (1.25)

and the �eld equations (1.24) are equivalent to

r′′/r = α′2 (1.26)

[r2(f 2/2)′]′ = 0 (1.27)

[(r2/2)′(1− f 2)]′ = 1. (1.28)
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The equations (1.25)-(1.28) allow to obtain the following relations for r and
α

r2(ρ) = |ρ2 + n2 −m2|e(2m/n)α(ρ) (1.29)

α′ = − n

ρ2 + n2 −m2
(1.30)

where n is nonnegative. Requiring the boundary condition

lim
ρ→∞

φ ≡ lim
ρ→∞

α(ρ) = 0 (1.31)

the line element, re-written in an appropriate coordinate system, is asymp-
totic to a Schwarzchild vacuum line element with mass parameter m.
This boundary condition doesn't reduce the set of solution manifolds within
isometric equivalence: it has no e�ect on α′ and only α′ appears in the �eld
equations. In each manifold there is one side of the drainhole asymptotic
to a Schwarzschild manifold with positive mass parameter m and the other
side asymptotic to a Schwarzschild manifold with negative mass parameter
m. The two-sided particle attracts matter on the one side and repels it on
the other. This model provides that −m > m. The asymmetry between the
positive and the negative mass is expressed by

m

m
= −exp

[
mπ

(n2 −m2)1/2

]
(1.32)

e.g. ifm is of the order of a proton mass 1.2×10−52cm and n is of the order of
Planck's length 1.6×10−33cm, then −m/m ∼ 1+10−19. If n is of the order of
the classical electron radius ∼ 2.8× 10−13cm, then −m/m ∼ 1 + 10−39. The
ratios of total scalar �eld energy to m in these cases are 1019 and 1039. Here,
the universe expands because it contains more negative mass than positive.

The �rst physicist that investigated the e�ects of negative mass was Sir Her-
mann Bondi in 1957 [6]. Bondi pointed out that when General Relativity is
considered purely as a theory of gravity, mass never actually appears. It �rst
appears when the equations are solved in a way devised by K. Schwartzschild.
Then mass appears as a constant of integration. Bondi noticed that this mass
constant could be made either positive or negative. He was able to show that
when m is made negative, both the inertial and the gravitational mass e�ects
are reversed. The results of Bondi's calculations can be summarized as fol-
lows: a positive mass attracts all nearby masses whether positive or negative;
a negative mass repels all nearby masses whether positive or negative.
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But, there is an interesting corollary of this result. Consider a pair of equal
and opposite positive and a negative masses placed close to each other. The
negative mass is attracted to the positive mass, while the positive mass is
repelled by the negative mass. Thus the two masses will experience equal
forces and accelerations in the same direction (in violation of Newton's third
law) and the system of two particles will accelerate. The negative mass will
chase the positive mass with constant acceleration. Bondi doesn't speak di-
rectly about the mass-energy of a negative mass, but the answer is implied
by his calculations. A negative mass will have negative mass-energy. The
net mass-energy of equal positive and negative masses will be zero.
Nowadays, negative mass provides a possible explanations for the dark en-
ergy, which has antigravity element and is considered as the source of the
universe expansion and acceleration. It is also a valid explanation for dark
matter that generates the additional e�ect of centripetal force on objects
within galaxy and shows to become clustered outside galaxy.

1.5 The Stress-Energy Tensor

The search for the wormholes by studying the mirror images formed due
to the gravitational lensing is one of the most charming ways to prove the
existence of the exotic matter in nature. The idea that wormholes can act
as gravitational lenses and induce a microlensing signature on a background
source was �rst suggested by Kim and Cho [7]. Cramer et al. [8] carried
out more detailed analysis of negative mass wormholes and considered the
e�ects they can produce on background point sources, at non-cosmological
distances. The generalization to a cosmological scenario was carried out by
Torres et al. [9], although lensing of point sources was still used. The �rst
and only bound on the possible existence of negative masses, imposed us-
ing astrophysical databases, was given by Torres et al. [10]. These authors
showed that the e�ective gravitational repulsion of light rays from back-
ground gamma-ray emitting AGNs creates two bursts, which are individually
asymmetric under time reversal. Then Anchordoqui et al. [11] searched in
existent gamma-ray bursts databases for signatures of wormhole microlens-
ing. Although they detected some interesting candidates, no conclusive re-
sults were obtained. Peculiarly asymmetric gamma-ray bursts (Romero et
al. [12]), although highly uncommon, might be probably explained by more
conventional hypothesis, like precessing jets.
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Now we try to understand what kind of matter we need in order to create
the curvature of the wormhole metric. First of all, we must derive the Einstein
�eld equations. Then we calculate the Riemann and Einstein tensor for the
metric (Eq. (1.10)). We rewrite the metric in the form

ds2 = gαβdx
αdxβ, x0 = ct, x1 = r, x2 = θ, x3 = φ (1.33)

and we obtain the Christo�el symbols (connection coe�cients) Γαβγ and the
components of the Riemann curvature tensor Rα

βγδ as

Γαβγ =
1

2
gαλ(gλβ,γ + gλγ,β − gβγ,λ) (1.34)

Rα
βγδ = Γαβδ,γ − Γαβγ,δ + ΓαλγΓ

λ
βδ − ΓαλδΓ

λ
βγ (1.35)

where the comma denotes a partial derivative

gαβ,γ =
∂gαβ
∂xγ

(1.36)

The 24 nonzero components of the Riemann tensor are

Rt
rtr = −Rt

rrt = (1− b/r)−1e−2ΦRr
ttr

= −(1− b/r)−1e−2ΦRr
trt

= −Φ′′ + (b′r − b)[2r(r − b)]−1Φ′ − (Φ′)2,

Rt
θtθ = −Rt

θθt = r2e−2ΦRθ
ttθ = −r2e−2ΦRθ

tθt

= −rΦ′(1− b/r),
Rt
φtφ = −Rt

φφt = r2e−2Φsin2θRφ
ttφ

= −r2e−2Φsin2θRφ
tφt

= −rΦ′(1− b/r)sin2θ,

Rr
θrθ = −Rr

θθr = −r2(1− b/r)Rθ
rrθ

= r2(1− b/r)Rθ
rθr

= (b′r − b)/2r,
Rr
φrφ = −Rr

φφr = −r2(1− b/r)sin2θRφ
rrφ

= r2(1− b/r)sin2θRφ
rφr

= (b′r − b)sin2θ/2r,

Rθ
φθφ = −Rθ

φφθ = sin2θRφ
θφθ = −sin2θRφ

θθφ

= (b/r)sin2θ.
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Here, the prime denotes a derivative with respect to the radial coordinate
r and the basis vector (et, er, eθ, eφ) are associated with the coordinate sys-
tem ct, r, θ, φ. The components of the Riemann tensor can be simpli�ed by
choosing the proper reference frame. In this frame a set of observers remains
always at rest in the coordinate system (r, θ, φ constant)

et̂ = e−Φet, er̂ = (1− b/r)1/2er,

eθ̂ = r−1eθ, eφ̂ = (rsinθ)−1eφ.

The 24 nonzero components take the form

Rt̂
r̂t̂r̂ = −Rt̂

r̂r̂t̂ = Rr̂
t̂t̂r̂ = −Rr̂

t̂r̂t̂

= (1− b/r){−Φ′′ + (b′r − b)[2r(r − b)]−1Φ′ − (Φ′)2},

Rt̂
θ̂t̂θ̂

= −Rt̂
θ̂θ̂t̂

= Rθ̂
t̂t̂θ̂

= −Rθ̂
t̂θ̂t̂

= −(1− b/r)Φ′/r,

Rt̂
φ̂t̂φ̂

= −Rt̂
φ̂φ̂t̂

= Rφ̂

t̂t̂φ̂
= −Rφ̂

t̂φ̂t̂
= −(1− b/r)Φ′/r,

Rr̂
θ̂r̂θ̂

= −Rr̂
θ̂θ̂r̂

= Rθ̂
r̂θ̂r̂

= −Rθ̂
r̂r̂θ̂

= (b′r − b)/2r3,

Rr̂
φ̂r̂φ̂

= −Rr̂
φ̂φ̂r̂

= Rφ̂

r̂φ̂r̂
= −Rφ̂

r̂r̂φ̂
= (b′r − b)/2r3,

Rθ̂
φ̂θ̂φ̂

= −Rθ̂
φ̂φ̂θ̂

= Rφ̂

θ̂φ̂θ̂
= −Rφ̂

θ̂θ̂φ̂
= b/r3.

Now we can contract the Riemann tensor to calculate the Ricci tensor Rµ̂ν̂

and the scalar curvature R from the standard formulas

Rµ̂ν̂ = Rα̂
µ̂α̂ν̂

R = gµ̂ν̂Rµ̂ν̂

(1.37)

and we can compute the Einstein tensor that gets into the Einstein �eld
equations

Gµ̂ν̂ = Rµ̂ν̂ −
1

2
Rgµ̂ν̂ (1.38)

The nonzero components of the Einstein tensor are

Gt̂t̂ = b′/r2,

Gr̂r̂ = −b/r3 + 2(1− b/r)Φ′/r,

Gθ̂θ̂ = Gφ̂φ̂ =

(
1− b

r

)(
Φ′′ − b′r − b

2r(r − b)
Φ′ + (Φ′)2 +

Φ′

r
− b′r − b

2r2(r − b)

)
.

(1.39)

The stress-energy tensor is proportional to the Einstein Tensor. Then Tµ̂ν̂
must have the same algebraic structure as the Gµ̂ν̂ end the only nonzero
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components must be

Tt̂t̂ = ρ(r)c2

Tr̂r̂ = −τ(r)

Tθ̂θ̂ = Tφ̂φ̂ = p(r)

(1.40)

where ρ(r) is the total density of mass-energy, τ(r) is the tension per unit
area measured in the radial direction and p(r) is the pressure measured in
lateral directions (directions orthogonal to radial). An ordinary perfect �uid
has a stress-energy tensor that is a special case of equations (1.40): −τ = p.

The Einstein �eld equations

Gα̂β̂ = 8πGc−4Tα̂β̂ (1.41)

allow us to get three di�erential equations

b′ = 8πGc−2r2ρ (1.42)

Φ′ = (−8πGc−4τr3 + b)/[2r(r − b)] (1.43)

τ ′ = (ρc2 − τ)Φ′ − 2(p+ τ)/r (1.44)

relating �ve unknown function of r: b,Φ, ρ, τ and p. To solve these equations,
we would be to assume some speci�c type of matter or �eld for the source
of stress-energy tensor. After that, we can derive from the physics of this
source, the equations of state for the radial tension τ and for the lateral
pressure p as a function of mass-energy density: τ = τ(ρ), p = p(ρ).
Now, we have �ve equations for �ve unknown functions of r: the last two plus
the three �eld equations. Since we desire solutions with speci�c properties,
we must let the relationships between ρ, τ , and p �xed by the �eld equations
and we control the functions b(r) and Φ(r). We can rewrite equations (1.42)-
(1.44) in order to obtain ρ, τ and p with a suitable choice of b and Φ

ρ = b′/[8πGc−2r2] (1.45)

τ = [b/r − 2(r − b)Φ′]/[8πGc−4r2] (1.46)

p = (r/2)[(ρc2 − τ)Φ′ − τ ′]− τ (1.47)

Therefore, the constraints on the wormhole's shape function b(r) produces
constraints on the mass density ρ, radial tension τ and lateral pressure p.
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The requirement that the wormhole be connectible to asymptotically �at
spacetime implies that, at the throat, the embedding surface �ares outward
(see Figs. 1.2 (a), and 1.3). This constraint allows to �nd the �aring-out
condition, at or near the throat:

τ0 > ρ0c
2 (1.48)

where

τ0 =
1

8πGc−4b2
0

(1.49)

is the tension in throat. This condition says that in the throat the tension
must be so large as to exceed the total density of mass energy ρ0c

2.
Suppose that the observer is moving through the throat with radial velocity
close to the speed of light, γ � 1, where γ is the usual relativistic gamma
factor, γ = (1 − v2/c2)−1/2. This observer sees an energy density (the pro-
jection of the stress-energy tensor (Eqs. (1.40)) on her time basis vector
e0̂′ = γet̂ ∓ γ(v/c)er̂ ) given by

T0̂
′
0̂′ = γ2Tt̂t̂ ∓ 2γ2(v/c)2Tt̂r̂ + γ2(v/c)2Tr̂r̂

= γ2(ρ0c
2 − τ0) + τ0

(1.50)

So, if the observer moves su�ciently fast, the observer will see a negative
density of mass-energy. But the weak energy condition requires that no ob-
server should ever be able to measure negative energy density. Then, in the
wormhole spacetimes, the weak energy condition is violated. We call material
with a negative energy density (τ > ρc2 > 0) exotic matter. Clearly, it means
that the matter threading the wormhole must exert gravitational repulsion
in order to stay stable against collapse. Although there are known violations
of the energy conditions (e.g. the Casimir e�ect [13]), it is far from clear at
present whether large macroscopic amounts of exotic matter exist in nature.
If natural wormholes exist in the universe, then there should be observable
electromagnetic signatures of such objects. The observational data allow to
establish an upper bound on the total amount of exotic matter under the
form of wormholes of ∼ 10−36gcm−3. The production of this kind of matter
in the laboratory is completely out of the current technical possibilities.
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1.6 Alternative to Schwarzschild in the weak

�eld limit

The Ellis wormhole has provided the �rst example of a non-Schwarzschild
object within General Relativity. The drainhole model has in common with
the Schwarzschild manifold, the ability to reproduce the external gravita-
tional �eld of a massive, nonrotating, spherically symmetric body. While
in the Schwarzschild model the spatial cross sections Σt are �at, and the
capture e�ects can be attributed only to the gravitational �eld, in the drain-
hole model some of the credit must go to the curvature of space around the
drainhole. Note that Ellis wormhole does not asymptotize to Schwarzschild
metric: the deviations from Minkowski space do not fall as 1/r far from
the object, but decay as 1/r2. V. Bozza and A. Postiglione [14] investigate
particularly the implication of non-Schwarzschild metric from the point of
view of the energy-momentum tensor. They examine a more general metric
that fall asymptotically as 1/rq in the weak �eld limit. They introduce a
spherically symmetric metric in the form

ds2 = A(r)c2dt2 −B(r)dr2 − r2C(r)(dθ2 + sin2θdφ2) (1.51)

and take for the functions A(r), B(r) and C(r) the slowest decaying term in
a form of power-law as follows

A(r) = 1− α

rq
+ o

(
1

rq

)
(1.52)

B(r) = 1 +
γ

rq
+ o

(
1

rq

)
(1.53)

C(r) = 1 +
β

rq
+ o

(
1

rq

)
. (1.54)

This metric is equivalent to the Schwarzschild metric and to the Ellis worm-
hole with a suitable choice of the parameters q, α, β and γ

Schwarzschild metric q = 1, α = γ = 0, β = 0

Ellis wormhole q = 2, α = γ = 0, β = a2.

To simplify the analysis they use a trasformation for the radial coordinate

r̃ = r

(
1 +

ξ

rq

)
(1.55)

and set β = γ. It is important to understand now, how this metric is linked
to the components of the energy-momentum tensor.
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Putting the metric (Eq. (1.51)) in Einstein equations, the only non-zero
components at highest power in r that dominate at in�nity are

Gt
t =

q(1− q)γ
rq+2

= κρ (1.56)

Gr
r =

q(γ − α)

rq+2
= −κpr (1.57)

Gθ
θ = Gφ

φ =
q2(α− γ)

2rq+2
= −κpt (1.58)

with κ = 8πG/c4. Then, the nonzero components of the energy-momentum
tensor are

the energy density ρ = T tt
the radial pressure pr = −T rr
the tangential pressure pt = −T θθ = −T φφ .

Note that the empty Minkowski space, characterized by ρ = pr = pt = 0, is
obtained for q = 0 and the Schwarzschild metric for q = 1 and α = γ, which
corresponds to the only other possible vacuum solution: ρ = pr = pt = 0.
As we can see, all components of the energy-momentum tensor must be in
linear relation each other. Since the ratios of equations (1.56)-(1.58) are
all independent of the radial coordinate r and they can be used to derive
equations of state in the form pr = ωrρ, pt = ωtρ with

ωr =
γ − α
γ(q − 1)

, ωt =
q(α− γ)

2γ(q − 1)
(1.59)

The Figure 1.5 shows a graphical representation of the whole parameter space
by projecting the values of ρ, pr and pt at a given radial coordinate to a unit
sphere. The unit sphere with the dashed circles corresponding to di�erent
asymptotic behaviours r−q. Therefore, the only degeneracy arises in the case
q = 1, which necessarily implies that (Eq. (1.56)) the energy density is null:
the circle at q = 1 collapses to a line with ρ = 0 on the plane (pr, pt).
Bozza and Postiglione have identi�ed several interesting families of solutions
imposing one property on the metric or on the source equations of state and
derived the costraints on the other variables by Einstein equations. In the
Table 1.1 I summarize the zoology of these results.
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Figure 1.5: Graphical representation of the parameter space of generic met-
rics depending on the asymptotic ratios of energy density, radial and tan-
gential pressures. Dashed circles corresponding to di�erent asymptotic be-
haviours r−q of the metric are shown. Dust (pr = pt = 0) is on top of the
sphere, Ellis Wormhole (pr = pt = ρ) is shown as EW. As noted in the text,
the circle q = 1 actually collapses to a line on the plane (pr = pt = ρ = 0).
V. Bozza and A. Postiglione [14].
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FAMILY qqq ααα γγγ ρρρ prprpr ptptpt METRIC

EMPTY 0 ∀ ∀ 0 0 0 Minkowski
PF (a) 0 < q < 1 α = γ γ > 0 ρ > 0 0 0 dust halo
PF (b) q > 1 α = γ γ > 0 ρ < 0 0 0 exotic dust
PF (c) q > 1 α = γ γ < 0 ρ > 0 0 0 void
PF (d) 0 < q < 1 α = γ γ < 0 ρ < 0 0 0 exotic void
PF (e) -2 ∀ γ < 0 ρ > 0 ρ(α− γ)/3γ pr FRW, κ > 0
PF (f) -2 ∀ γ > 0 ρ < 0 ρ(α− γ)/3γ pr FRW, κ < 0
AS 1 ∀ ∀ 0 ∀ −pr/2 anis. stress
ρ = 0ρ = 0ρ = 0 ∀ ∀ 0 0 ∀ −qpr/2 no curvature
α = 0α = 0α = 0 ∀ 0 ∀ ∀ ρ/(q − 1) −qpr/2 no redshift
NL ∀ ∀ γ = −α ∀ 2ρ/(q − 1) −qpr/2 no lensing

Table 1.1: The zoology of non-Schwarzschild asymptotic solutions. Per-
fect Fluid PF includes the cases: q = 0, equivalent to Minkowski metric;
α = γ Extended Dust Distribution; the weak �eld limit with q = −2, equiv-
alent to Friedmann-Robertson-Walker (FRW) metric with curvature. Pure
Anisotropic stress family AS is the case q = 1. This metric at large radii
decays as 1/r as in Schwarzschild. Schwarzschild is included in this family
for the case α = γ. Zero spatial curvature, imposing γ = 0 has vanishing en-
ergy density ρ = 0ρ = 0ρ = 0 . Zero potential family is de�ned by α = 0α = 0α = 0 . This family
contains Ellis Wormhole for q = 2. Zero lensing family NL has α = −γ.
When α > 0, for an attractive potential, γ is negative and the energy density
can be kept positive, with q > 1.
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As we can see something exotic must happen: the energy density ρ can
be negative. In fact, in their asymptotic solution they have investigated
about energy conditions and found that these energy conditions allow a lot
of permissible space in the spherically symmetric asymptotic limits of General
Relativity. In particular, the positivity of the energy density is expressed by
the relation

q(1− q)γ ≥ 0 (1.60)

With positive energy density and with the spatial curvature γ > 0, the
exponent q can take values between 0 and 1. When q > 1, the energy density
must have positive or negative values as γ < 0 or γ > 0 respectively. This
is the case, for example of the Ellis Wormhole. In isotropic coordinates, EW
has: q = 2, α = 0 and γ = a2/2. Its source has negative energy density
with equations of state: pr = ρ and pt = −ρ (Eqs. (1.56), (1.59)). The weak
energy condition expressed by ρ+ pr ≥ 0 and ρ+ pt ≥ 0 becomes

q(α− qγ) ≥ 0 (1.61)

q[2γ − q(α + γ)] ≥ 0 (1.62)

The weak energy condition is satis�ed if and only if the energy density is
positive and α ≥ qγ (Eq. (1.61)).
Any asymptotic behavior r−q for the weak �eld metric, can be obtained by
a minimally coupled scalar �eld with a self-interaction potential SF of the
form V (ϕ) = V0ϕ

n, with n = 4/q + 2. They start from the action

S =

∫
d4x
√
−g
[
R

2κ
+ ε

(
1

2
∂µϕ∂

µϕ− V (ϕ)

)]
(1.63)

with ε = ±1 allowing for a change in the sign of the scalar �eld lagrangian
density. For a static spherically symmetric con�guration, ϕ is a function of
the radial coordinate r and the energy-momentum tensor gives

ρ = ε

[
ϕ′2

2

(
1− γ

rq

)
+ V (ϕ)

]
(1.64)

pr = ε

[
− ϕ′2

2

(
1− γ

rq

)
+ V (ϕ)

]
(1.65)

pt = −ρ (1.66)

where ϕ′ ≡ ∂ϕ/∂r. The e�ective equation of states can be obtained from the
energy-momentum tensor making the ansatz ϕ(r) = ϕ0/r

m with m > 0

pr =
n

2
− 1, pt = −1 (1.67)
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The exponent n assumes all possible values. These equations of state describe
the circle labelled by SF in Figure 1.6. The Ellis Wormhole is included in
this family with ε < 0 and n = 4.
For the strong energy condition instead, it is necessary to impose that the
trace of the tidal tensor (Tµν − gµνT/2)XµXν should be non negative, where
Xµ is any future pointing timelike vector. But, Xµ = (1, 0, 0, 0) and this
condition gives the relation

f ≡ (T00 − g00T/2) =
1

2
(ρ+ pr + 2pt) ≥ 0 (1.68)

that becomes

f =
1

4
q(1− q)(α + γ) ≥ 0 (1.69)

using Einstein equations (1.56)-(1.58). Therefore, when q > 1, the strong
energy condition is valid only if α + γ < 0.

Figure 1.6: Families of metrics with generic asymptotic behaviour projected
on the unit sphere in the space (pr, pt, %). EW is the Ellis wormhole, PF
stands for perfect �uid, ρ = 0ρ = 0ρ = 0 is the family with vanishing energy density,
AS is the pure anisotropic stress family corresponding to the degenerate
q = 1 slice, α = 0α = 0α = 0 is the family with vanishing Newtonian potential, NL is
the family with vanishing gravitational lensing, SF is the slice obtained with
minimally coupled scalar �elds. V. Bozza and A. Postiglione [14].
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Chapter 2

Gravitational Lensing

2.1 Early history of gravitational lensing

Gravitational lensing is a direct consequence of general relativity. In
1915, Einstein [15] calculated the de�ection angle of a light ray by a massive
compact object. If a photon passes near a compact massive object of mass
M, at an impact parameter u, the local curvature of space-time will cause
the photon to be de�ected by an angle

α̂ =
4GM

c2u
(2.1)

where G is Newton's gravitational constant and c is the speed of light, as
illustrated in Figure 2.1. Light from a distant star that just grazes the Sun's

Figure 2.1: De�ection of light by a massive compact object.

surface such that its impact parameter is equal to the radius of the Sun, R�,
should be de�ected by an angle

α̂ =
4GM�
c2R�

= 1.75 arcsecond1 (2.2)

11 arcsecond = 1 as = 1/60th of an arcminute, or 1/3600th of a degree
M� = 1.99× 1030kg, R� = 6.96× 105km
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In 1919, after Einstein predicted a de�ection of this magnitude, an eclipse
expedition led by Arthur Eddington photographed stars in the vicinity of the
Sun. The circular inset in Figure 2.2 shows that the expected apparent stel-
lar positions are farther from the lens than they would be in the absence
of lensing. Comparison of the eclipse photographs with photographs of the
same star �eld taken six months earlier revealed that the positions of the
stars were de�ected by the amount that Einstein predicted.

Figure 2.2: Graphical explanation of Eddington's experiment as it appeared
in Illustrated London News of November 22, 1919.

This result brought experimental support to the theory of general relativity
and it was the �rst observed example of gravitational lensing. This de�ection
angle has since been repeatedly con�rmed with high-precision VLBI measure-
ments in the radio regime [16]. Einstein's notebooks contain calculations of
the magni�cation of images and of the possibility of double images from a
single source. In Figure 2.3, the light de�ection due to lens galaxy between
an observer and a light source is illustrated. In the frame of the observer,
the wavefront propagates slower in the gravitational potential of the galaxy
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Figure 2.3: Wavefront propagation in a galaxy potential.

than outside. The central part lags behind, and the wavefronts on both sides
of the galaxy may even cross if the potential well of the galaxy is massive
enough. If the observer is close enough to the optical axis de�ned by source
and galaxy centre, three images of the same source may be seen: two images
from the wavefronts on either side, and a very weak (highly demagni�ed)
image in the middle coming from a wavefront that developed when the other
two parts of the wavefront crossed. Exactly on the optical axis, the source
would even appear as a so-called Einstein ring. The gravitational potential
of the galaxy acts as a medium with varying refractive index. The observer
would see the three images at positions on the sky that are shifted with
respect to the original source position without a lens. The light de�ection
from the straight path is given by Einstein's formula (2.1). In observed lens-
ing systems, the galaxy is normally not circularly symmetric. In this case,
�ve di�erent wavefronts can arrive at an observer close to the optical axis,
of which four images are observed while the �fth is usually too faint to be
detected. Lensing can produce multiple images in the strong lensing regime.
Lensing can also amplify the light curves of stars due to microlensing, or
it can lead to small distortions at the level of a few percent in the shapes
of distant galaxies in weak lensing. The distinction between these regimes
depends on the relative positions of the source, lens, and observer.
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2.2 Strong and weak lensing

Gravitational lensing e�ects can be divided into two regimes, strong and
weak lensing, depending on the alignment of the lens and source (Figure
2.4). Strong lensing occurs when the line of sight from the observer to source
is very close to the lens, a situation that gives rise to high magni�cations,
multiple images, arcs and rings in the lens plane. Weak lensing occurs when
the lens is located further away from the line of sight, resulting in small mag-
ni�cations and mild image distortions. Weak lensing is extremely common
in the cosmos (at some level, every single light source is a�ected) but incon-
spicuous, and can only be detected statistically by studying a large number
of lensed light sources. Strong lensing e�ects, on the other hand, are rare
but dramatic, and can readily be spotted in individual sources.

Figure 2.4: Weak and strong lensing. a) Weak lensing occurs when the lens
(here illustrated by a gray elliptical galaxy surrounded by a dark matter halo)
lies relatively far from the line of sight between the observer (eye) and the
background light source (star). In this case, only a single image is produced,
subject to mild magni�cation and distortion. The signatures of this are only
detectable in a statistical sense, by studying the weak lensing e�ects on large
numbers of background light sources. b) Strong lensing can occur when the
dense central region of the lens is well-aligned with the line of sight. The
light from the background light source may then reach the observer along
di�erent paths, corresponding to separate images in the sky. This case is
also associated with high magni�cations and strong image distortions. The
angular de�ection in this �gure, as in all subsequent ones, has been greatly
exaggerated for clarity.

Strong lensing has traditionally been divided into subcategories, depending
on the typical angular separation of the multiple images produced: macrolens-
ing (& 0.1 arcseconds), millilensing (∼ 10−3 arcseconds), microlensing (∼
10−6 arcseconds), nanolensing (∼ 10−9 arcseconds) and so on. When large
galaxies (M ∼ 1012M�) or galaxy clusters (M ∼ 1014 ÷ 1015M�) are respon-
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sible for the lensing, the image separation typically falls in the macrolensing
range, whereas individual solar-mass stars give image separations in the mi-
crolensing regime. Since all objects with resolved multiple images due to
gravitational lensing have image separations of & 0.1 arcseconds, the term
strong lensing is often used synonymously with macrolensing.
The �rst strong lensing observation was of the doubly imaged quasar QSO
0957+561 by Walsh, Carswell, and Weymann (1979). The quasar was one of
many quasar candidates found in a survey of radio sources made using the
MkIA radio telescope at Jodrell Bank. A pair of blue objects separated by
∼ 6 arcseconds was found within the �eld of the quasar in Palomar Obser-
vatory Sky Survey (POSS) images. The two blue objects were found to have
nearly identical spectra in subsequent observations using the 2.1 m telescope
at Kitt Peak National Observatory (KPNO). Observations from Mauna Kea
and Palomar showed a luminous galaxy almost in front of one quasar image
and a surrounding cluster that might also contribute to the lensing. The
quasar is at redshift z = 1.41 while the lensing galaxy is at redshift z =
0.355. An optical image of QSO 0957+561 taken by HST's WFPCII camera
is shown in Figure 2.5. The magni�cation produced by strong lensing a�ects

Figure 2.5: HST image of QSO 0957+561.

the observable properties of active galaxies, quasars, and any other lensed
sources. Strong lensing also may provide information for cosmology. Lens-
ing statistics are sensitive to cosmological parameters, with the frequency
of multiple imaging giving constraints on the cosmological constant and the
distribution of image splitting probing the amount of structure on galaxy
and cluster scales (Mollerach and Roulet 2002 [17], Dodelson 2003 [18]).
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2.3 The lens equation

The geometry of lensing is the same in all metric theories of gravity in
which light travels along null geodesics, but the relation to the sources of the
metric depends on the particular theory. Many of the applications of gravi-
tational lensing concern light from discrete sources bent in the gravitational
�elds of other discrete bodies. Some interesting and advanced mathematics
is needed to properly determine information on the numbers of images and
their magni�cations. Images formed by galaxies or clusters will be of more
distant galaxies, and both, sources and lenses, will be at cosmological dis-
tances. In these cases the lenses themselves are small compared with those
distances, and are thus often approximated as thin, i.e. lying in a plane.
These cosmological scales also imply that the comparison spacetime should
be curved, FLRW models being the �rst to study. Indeed, this e�ect is im-
portant in inferring the spatial curvature from CMB observations. Cases
involving strong curvatures may require the rigorous approach, which writes
spacetime position on the geodesic as a function of the observer's proper
time, angles on the observer's celestial sphere and a radial distance. But for
many cases, less accurate approximation treatments are adequate.

In a gravitational lens system, the distances to the source and the gravi-
tational lens play an important role. In the standard cosmological model,
distances are calculated by integrating over the line element ds in the so
called Robertson-Walker metric

ds2 = c2dt2 −R2(t)

[
dr2

1− κr2
+ r2(dθ2 + sin2θdφ2)

]
(2.3)

It is the metric of a space with spatially constant, but time-dependent curva-
ture K(t) = κ/R2(t), where κ may be taken to belong to the set {−1, 0,+1}
(for negative, zero, and positive curvature respectively) and R(t) is the cur-
vature radius that scales the spatial part of the metric. As always, (r, θ, φ)
are the spherical coordinates, t is the time and c is the speed of light.
If light is emitted it also expands with the universe, so that light with a
wavelength λe from a distant source that has been emitted at the time te is
redshifted by the expansion of the universe and has the wavelength λ0, when
it is observed at the time t0. This is expressed by the redshift z

1 + z =
λ0

λe
=
R(t0)

R(te)
(2.4)

The redshift z can be used to denote the time of emission te and is also often
used as a measure of the distance of the source.
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There are several ways one can calculate distances with the Robertson-Walker
metric. For the use in gravitational lensing, the relation between the sepa-
ration of two sources that subtends a speci�c angle and the distance of the
objects needs to be equal to the Euclidean formula

separation = angle × distance (2.5)

Distances for which this relation holds are called angular-diameter distances.
The angular-diameter distances will be given here only for a homogeneous
Ω = 1 (the total density parameter), Λ = 0 (the cosmological constant)
universe (for more general universes see [19] chapter 4 section 5).
In gravitational lensing the quantities that depend on the cosmology are
summed up in the normalization of the lensing masses (when we de�ne the
critical density Eq. (2.40)). The angular-diameter distance of a source at a
redshift of z is given as a solution of the Dyer-Roeder equation [20]

D =
2

(1 + z)2

c

H0

(1 + z −
√

1 + z) (2.6)

The angular-diameter distance between two objects at redshifts z1 and z2,
with z1 ≤ z2, along the same line of sight takes the form

D12 =
2c

H0

(1 + z1)[R1(z2)R2(z1)−R1(z1)R2(z2)] (2.7)

where

R1(z) =
1

1 + z
, R2(z) =

√
1 + z

(1 + z)2
(2.8)

so that in generalD12 6= D2−D1. Another distance measure is the luminosity
distance DL, de�ned such that the observed �ux F from an isotropic source
with intrinsic luminosity L is F = L/(4πD2

L). The measured �ux from a
source in an expanding universe is reduced compared to a static Euclidean
space. In the expanding universe fewer photons with less energy arrive at
the detector in a given time. If the total �ux of a source is to be calculated,
one has to use the corrected luminosity distance DL to calculate the area of
the hypersphere the luminosity of the source is passing through. Then DL

will be equal to (1 + z)2 times the angular-diameter distance.
So that, in a curved spacetime and hence in a cosmological applications of
gravitational lensing, the angular and luminosity distances do not coincide
and then their di�erences have to be taken into account.
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The geometry of a typical gravitational lens system with a single lens is
shown in Figure 2.6. The simplest situation corresponds to a point-like mass
M (the lens) located close to the line of sight to a source S. The angle θ
is the angle of the apparent (observed) position of the source image I and
β describes the actual (unobservable) position of the source with respect to
the optical axis, chosen along the lens direction. A light ray from the source

Figure 2.6: Diagram of a point-like lens system. Explanation of symbols is
given in the text. S. Mollerach, E. Roulet [17].

is de�ected by the gravitational lens at the distance DOL from the observer
by the angle α̂

θDOS = βDOS + α̂DLS. (2.9)

Then, introducing the de�ection angle as seen by the observer

α =
DLS

DOS

α̂ (2.10)

one obtains the lens equation in the simple form

β = θ − α. (2.11)

This is the fundamental equation of gravitational lensing. This relation con-
nects the source position β with the image position θ and the de�ection angle
α. According to Eq. (2.1) and using that the minimal distance of the light
ray to the lens is u = θDOL, the reduced de�ection angle becomes

α =
DLS

DOSDOL

4GM

c2θ
. (2.12)

In this case, the lens equation takes the form

θ2 − βθ − θ2
E = 0 (2.13)
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where θE is the Einstein angle de�ned as

θE ≡
√

DLS

DOSDOL

4GM

c2
. (2.14)

Thus, clusters of galaxies at cosmological distance (∼ Gpc2) with M ∼
1015M�, can result in lensing with Einstein radii of tens of arcseconds. For
lensing by single galaxies or groups of galaxies, with masses ranging from
1012 ÷ 1015M�, the Einstein radii would be correspondingly smaller, on the
order of 10 arcseconds or less. For a given source position and de�ection
�eld, you may have multiple image solutions. When the lens and the source
are perfectly aligned (β = 0), due to the symmetry of the lens con�guration,
the image is a ring of angular radius θE, as shown in Figure 2.7.

Figure 2.7: Einstein ring due to the gravitational lensing of a source perfectly
aligned with the lens. S. Mollerach, E. Roulet [17].

These kind of images are called Einstein rings. For a generic position of the
source, there will be two images with angular positions

θ± =
β

2
± θE

√
1 +

β2

4θ2
E

. (2.15)

As depicted in Figure 2.8, they lie both along the line in the sky determined
by the source and the lens positions and at opposite sides of the lens.
The angular separation between the two images is given by

∆θ = θ+ − θ− = 2θE

√
1 +

β2

4θ2
E

. (2.16)

When β < θE, the source departure from the optical axis is small compared to
the Einstein angle, and then the separation of the images is approximately

21 pc = 3.086× 1016m
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Figure 2.8: Position of the two images of a point-like lens. S. Mollerach, E.
Roulet [17].

twice the Einstein angle. When we consider the case of lensing by stars
within the Galaxy, the Einstein angle is of order of mas and the separation
among the images is unresolvable with the present optical telescope. When
lensing of quasars by individual stars in foreground galaxy is considered, the
distances involved are cosmological and the angular separations become of
order of µas. This is the case of microlensing: the separation between the
images is not resolved and only a change in the apparent source brightness
can be observed. Sources closer than θE to the optical axis experience strong
lensing in the sense that they are signi�cantly magni�ed. Sources well out-
side the Einstein radius are magni�ed very little.

If the lens is an extended object, the generalized lens equation becomes vec-
torial. The extent of the lens in the direction of the optical axis is usually
much smaller than the distances between observer and lens DOL, and be-
tween lens and source DLS. It can be assumed that the lens is thin when
compared with the whole light path. The mass distribution of the lens can
be replaced by the projected surface mass distribution on a plane, called the

lens plane. The surface mass density Σ(
−→
ξ ) corresponds to the projection of

the mass distribution ρ on a plane passing through its center and orthogonal
to the light ray direction

Σ
(−→
ξ
)

=

∫
dzρ(
−→
ξ , z) (2.17)

where
−→
ξ is the two dimensional vector indicating the positions in the lens

plane and z is the coordinate in the ortogonal direction. The gravitational
e�ect of the lens can be calculated by integrating over the surface elements
d2ξ, with the surface mass density Σ in the lens plane using Einstein's result
from equation (2.1) for the individual de�ection angles (see Figure 2.9).

For an extended mass distribution, the de�ection angle
−→
α̂ at the position

−→
ξ
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Figure 2.9: Extended lensing distribution. S. Mollerach, E. Roulet [17].

is given by the following generalization of Eq. (2.1)

−→
α̂
(−→
ξ
)

=
4G

c2

∫ (−→
ξ −
−→
ξ′
)
Σ
(−→
ξ′
)

|
−→
ξ −
−→
ξ′ |2

d2ξ′ (2.18)

The plane parallel to the lens plane at the distance DOS of the source from
the observer is called the source plane. For small angles we have

−→
θ DOS =

−→
β DOS +

−→
α̂ DLS (2.19)

where
−→
θ ≡

−→
ξ /DOL. Note that the small-angle approximation is valid in the

known cases of gravitational lensing (even in galaxy clusters the de�ection
angles are only of the order of 30 as). Then again, introducing the de�ection
angle as seen by the observer

−→α =
DLS

DOS

−→
α̂ (2.20)

the lens equation reads −→
β =

−→
θ −−→α . (2.21)

Now we consider a rescaled projected gravitational potential

Ψ ≡ 2

c2

DLS

DOSDOL

ψ (2.22)

where the projected potential is

ψ(
−→
ξ ) = 2G

∫
d2ξ′Σ(

−→
ξ ′)ln|

−→
ξ −
−→
ξ ′| (2.23)
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Using the de�ection angle (see Eq. (2.18))

−→
α̂ =

2

c2

−→
∇ξψ(

−→
ξ ) (2.24)

that shows the relation with the gradient of the projected gravitational po-
tential, we obtain that:

−→α =
−→
∇θΨ. (2.25)

Here the gradient is taken with respect to the angular variables. In this frame
the lens equation can be written as

−→
β =

−→
θ −
−→
∇θΨ(

−→
θ ) (2.26)

For each image position
−→
θ there is a unique source position

−→
β that satis�es

the lens equation. But this equation is non-linear in
−→
θ and for some source

positions it might be possible to �nd multiple solutions of the lens equations.
When the formation of multiple images appears, we are in the so called strong
lensing regime.

2.4 Ampli�cation

The gravitational lensing preserves surface brightness. This is due to
Liouville's theorem. The surface brightness I(ν) is de�ned as the �ux of
energy of a certain frequency ν, crossing a unit area perpendicular to the
direction of propagation, per unit time, per unit solid angle and per unit
frequency interval

I(ν) =
dE

dt dA dΩ dν
. (2.27)

We consider the radiation emitted by a source as a �ux of photons. This
source is characterized by a phase-space density

f(−→x ,−→p , t) =
dN

d3−→x d3−→p
(2.28)

which sets the number of photon in a given phase-space volume. The indi-
vidual photon energy satisfy Eγ = hν = cp, where p ≡ |−→p | is the photon mo-
mentum, and then the beam energy is dE = EγdN . Using that d3−→x = dAcdt
and that d3−→p = p2dpdΩ, we can write the phase-space density like

f(−→x ,−→p , t) =
dE

hcp3 dν dΩ dA dt
=
I(ν)

hcp3
. (2.29)
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The Liouville's theorem, applied to the photon beam requires that f be un-
changed during the photon propagation if no absorption or emission of photon
takes place [21]. This means that the ratio I(ν)/p3 has to be constant along
the trajectory and is not a�ected by the gravitational de�ection of light. The
momentum of the photon emitted by a source pS at redshift zS is related to
the observed photon momentum pO through the relation, pS = (1 + zS)pO.
Consequently, the surface brightness conservation in the expanding Universe
takes the form

IO(νO) =
IS(νS)

(1 + zS)3
(2.30)

where νS = (1 + zS)νO. If the expansion of the Universe can be neglected,
the photon momentum will be conserved as the photon propagates. This also
implies that the surface brightness will be conserved.
The �ux received from a source is the product of its surface brightness and
the solid angle it subtends. Since the surface brightness is conserved, but
the di�erential de�ection of light rays changes the shape and the solid angle
that the source subtends on the sky, the source luminosity will be ampli�ed
by the e�ect of gravitational lensing by the term

A =
dΩ

dΩ0

(2.31)

where dΩ is the observed solid angle and dΩ0 is the corresponding solid angle
in the absence of lensing (many derivations in this section follow the book
Gravitational Lensing and Microlensing by Mollerach and Roulet [17]). As

seen, for a point-like lens, a source with angular position
−→
β has two images

located at angular positions θ± given by Eq. (2.15). A source element dS,
subtending a solid angle dΩ0 = dS/D2

OS = βdφdβ, is observed in the image
positions subtending a solid angle dΩ± = dS±/D

2
OL = θ±dφdθ±, as shown in

Figure 2.10. The ampli�cation of each of the images can be written as

A± =
dΩ±
dΩ0

=
θ±dθ±
βdβ

. (2.32)

From Eq. (2.15) we obtain that

A± =
1

2
± β2 + 2θ2

E

2β
√
β2 + 4θ2

E

. (2.33)

The image at θ− has dΩ−/dΩ0 negative, meaning that the image is inverted,
and it is said to have negative parity. If the separation of the images is
large enough, they can be resolved and the relative ampli�cation A+/A−
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Figure 2.10: Light ray trajectories from a surface element of the source dS
in the presence of a point-like lens. The corresponding surface elements of
the images in the lens plane are dS±. S. Mollerach, E. Roulet [17].

of the images can be measured. If the images can not be resolved, we can
observe only the total �ux received from the source. In this case, its overall
ampli�cation is obtained by adding the absolute values of the magni�cation
of two images

A = A+ + |A−| =
β2 + 2θ2

E

β
√
β2 + 4θ2

E

. (2.34)

In general, the original source �ux is not known and the measure of this
ampli�cation from a single observation is not possible. However, if the lens
is moving with respect to the line of sight to the source, the ampli�cation will
change with time and then, we can measure the variation of the luminosity
of the images. For an extended lensing mass distribution with no axis of
symmetry, the lens equation (2.21) involves the two-dimensional vectorial
de�ection −→α . This equation can be interpreted as a two-dimensionalmapping
between the positions of the images

−→
θ and the actual source positions in the

sky
−→
β . By de�ning the Jacobian of this mapping

J = det
∂
−→
β

∂
−→
θ

(2.35)

we can relate a di�erential element of solid angle in the image plane, dΩ =

d
−→
θ1 ∧ d

−→
θ2 , with the corresponding one in the source plane, dΩ0 = d

−→
β1 ∧
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d
−→
β2, through the relation dΩ = J−1dΩ0. So that the magni�cation of the
corresponding image is given by

A = J−1. (2.36)

From equation (2.26) we can write the matrix of the mapping between the
angular coordinates as

Tij ≡
∂βi
∂θj

=

(
δij −

∂2Ψ

∂θi∂θj

)
(2.37)

in which the second right-hand term of the equation represents the Hessian
of the rescaled projected gravitational potential Ψ. Using the Poisson equa-
tion, the projected gravitational potential can be related to the surface mass
density distribution through

O2
ξψ
(−→
ξ
)

= 4πGΣ
(−→
ξ
)

(2.38)

and then we can write

Tr
∂2Ψ

∂θi∂θj
= O2

θψ = 2
Σ
(−→
θ
)

Σcrit

≡ 2κ
(−→
θ
)

(2.39)

where we have denoted the critical surface density3 by

Σcrit =
c2

4πG

DOS

DOLDLS

(2.40)

and the convergence by

κ
(−→
θ
)
≡

Σ
(−→
θ
)

Σcrit

. (2.41)

To describe the mapping two additional indipendent combinations of the
second derivatives of Ψ are necessary

γ1 =
1

2

(
∂2Ψ

∂θ2
1

− ∂2Ψ

∂θ2
2

)
γ2 =

∂2Ψ

∂θ1∂θ2

=
∂2Ψ

∂θ2∂θ1

(2.42)

3The critical surface density Σcrit(
DOLDLS

GpcDOS
) = 1.66× 103

M�

pc2
= 0.35

g

cm2
is a quanti-

tative idea of matter column density required to produce multiple images.
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Note that γ1, γ2 and κ are functions of
−→
θ . The matrix of the mapping can

be rewritten as

T =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
(2.43)

The convergence κ changes the size of the image of a source without modify-
ing its shape. The part of the matrix formed by γ1 and γ2 terms is called the
shear and it is the one responsible for the distortions in the image shape. The
matrix T is symmetric and then is no rotation of the image. By introducing
the modulus of the shear γ ≡

√
γ2

1 + γ2
2 , we can write the ampli�cation as

A = (detT )−1 =
1

(1− κ)2 − γ2
. (2.44)

The ampli�cation has two contributions: one comes from an isotropic fo-
cusing due to the local matter density in the lens plane, described by the
convergence κ, and the other one from an anisotropic focusing due to the
tidal gravitational e�ects, described by the modulus of the shear γ. The
eigenvalues of the mapping matrix are: 1− κ− γ and 1− κ + γ. The map-
ping T is diagonal when we choose a coordinate system coinciding with the

principal axes of the shear at
−→
θ ( the principal axes of the shear are obtained

by rotating the original ones by an angle φ, that satis�es: tan(2φ) = γ2/γ1).
We �nd that the image is streched by a factor (1− κ− γ)−1 in one direction
and by (1 − κ + γ)−1 in the other. If one of the factors has negative value
(negative partial parity), the image is inverted in that direction, and if both
eigenvalues are negative, the total parity of the image is positive and hence
it will not be inverted, but appears as if rotated by 180◦. The ampli�cation
for images having both partial parities positive is larger then one. Since for
these images both κ and γ are positive, we know that 1 > 1 − κ > γ, and
then 1 > (1 − κ)2 − γ2 > 0, which implies that A > 1. Notice that, the
presence of the lens a�ects the metric, reducing the area of the observer's
sphere and keeping constant the total �ux across it. We can also deduce that
the light from the images for which both partial parities are negative have
passed through a region with Σ > Σcr. Indeed for them 1 − κ < −γ < 0
and hence κ > 1. When multiple images appear, at least one of them has a
negative parity. A su�cient condition in order that a lensing distribution be
able to produce multiple images is that the surface density, at some point in
the lens plane, exceeds the critical value

Σ(
−→
θ ) > Σcr (2.45)

(i.e. κ(
−→
θ ) > 1). However, this condition is not actually a necessary one.

For the lens to be capable of forming multiple images it is enough that:
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κ > 1 − γ. Now we calculate the total ampli�cation of the image for a
circularly symmetric system. It is convenient to use polar coordinates with
the origin in the symmetry axis of the lens. From equations (2.24) and (2.38),
we have that the modulus of the de�ection angle is

α̂(ξ) =
4GM(ξ)

c2ξ
(2.46)

where M(ξ) is the mass enclosed inside a circle of radius ξ

M(ξ) = 2π

∫ ξ

0

dξ′ ξ′Σ(ξ) (2.47)

Consequently, the de�ection angle only depends on the total mass enclosed
inside the impact parameter ξ, but not on its radial pro�le. According to
equation (2.46), the lens equation becomes

β = θ − M(θ)

πD2
OLθΣcr

(2.48)

The Einstein angle, specifying the radius of the circular image of a source at
β = 0, has to satisfy the relation

M(θE) = π(DOLθE)2Σcr. (2.49)

This means that the average surface density inside the Einstein ring is just
the critical density Σcr. If the density is monotonically decreasing from the
center, the condition in order that the formation of the Einstein ring be
possible in the circularly symmetric potential (and hence also that multiple
images could be formed) is then that the density in the center should exceed
the critical density.
The mapping matrix for the symmetric lens is T = diag (dβ/dθ, β/θ), i.e.

T =

 1− 1

πD2
OLΣcr

∂

∂θ

[
M(θ)

θ

]
0

0 1− M(θ)

πD2
OLΣcrθ2

 (2.50)

The radial and tangential magni�cation of the image are given by

Ar ≡
(
dβ

dθ

)−1

(2.51)

At ≡
(
β

θ

)−1

(2.52)
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so that the factor Ar describes the change in the radial dimension of the
source due to the lensing, and the factor At describes the tangential magni-
�cation of the image, as a tangential length of the source βδφ is stretched in
the image to θδφ. The total ampli�cation of the image is

A = ArAt =
θ

β

dθ

dβ
. (2.53)

For a point-like lens, ∂M/∂θ = 0 and the mapping matrix becomes T =
diag (1 − γ, 1 + γ), where the shear is γ = −M/(πD2

OLΣcrθ
2). Since the

space around a point-like lens is empty, the convergence vanishes and then a
point-like lens is a pure shear system outside the central singular point.

2.5 Critical lines and caustics

The ampli�cation factor is a function of
−→
θ , determined by the de�ection

law
−→
β (
−→
θ ). The determinant of the Jacobian matrix may have either sign.

The images of the source for which the determinant is positive (negative)
are said to possess positive (negative) parity. A source can also have images
for which the determinant vanishes. Formally, one could assign the parity
0 to such critical images. The parity of an image determines its circulation
(orientation) relative to that of the unperturbed image. In the images of
positive parity, the direction of curvature is preserved, whereas in negative
parity images it is reversed. Regions in the lens plane where the Jacobian
determinant has opposite sign are separated by curves on which the latter
vanishes. These curves are termed critical curves. On these curves, the
ampli�cation factor diverges. However, this divergence does not mean that
the image of a source is actually in�nitely bright, because two additional
facts must be taken into account. First, real sources are extended. For such
sources, the ampli�cation is a weighted mean of Eq. (2.36) over the source.
This always leads to �nite ampli�cations. Second, even if a source were
point-like, the ampli�cation would still not be in�nite either, because of wave-
optics. The critical curves of a de�ection mapping are of great importance
for a qualitative understanding of its properties. Consider the images of the
critical curves under the lens mapping. These curves in the source plane
are called caustics. Given the positions of observer and lens, the number
of images in general varies with the source position. The number of images
changes by two if, and only if, the source crosses a caustic. Depending on the
direction of crossing, two images with opposite parity merge into one on the
critical curve and then disappear, or vice versa. Shortly before their fusion, or
after their creation, the images are very bright, since they are in the vicinity
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of the corresponding critical curve in the lens plane. If the locations of the
caustics are known, it is easy to determine the dependence of the number
of images on the position of the source, just by using the previous property.
The only additional information required is that for any transparent 4 matter
distribution with �nite mass, the number of images of a point source is one
if the source is su�ciently misaligned with the lens. Transparency of the
lens excludes mass distributions that have points of in�nite surface density.
In addition, from these arguments one can infer the validity of the odd-
number theorem: the total number of images produced by transparent lenses
has to be odd, a result known as Burke's theorem [22]. When the lens is
singular, Burke's theorem does not necessarily hold. For instance, for the
point-like lens there are always two images, with opposite parities, for any
source position. For non-singular lenses it is usually very hard to observe
all the images. Generally, one of them appears very demagni�ed and it is
located near the center of the lensing distribution, where a galaxy typically
lies. This demagni�ed central image is actually the one that would be missing
in the limit in which the lensing potential becomes singular.
The lens equation can also be expressed by Fermat's principle. We rewrite
the lens equation (Eq. (2.26)) as

−→
θ −
−→
β −−→O θ

−→
Ψ =

−→O θ

[
1

2
(
−→
θ −
−→
β )2 −Ψ

]
= 0 (2.54)

where the second term in the parenthesis is proportional to the gravitational
time delay. In fact, the projected gravitational potential is also useful to
express the gravitational time delay (or Shapiro delay [23]) caused by a given
mass distribution

δtgrav(
−→
ξ ) = − 2

c3
ψ(
−→
ξ ). (2.55)

We can also �nd that the geometrical time delay coming from the increment
in the path length of the de�ected ray with respect to the straight path, that
it would have followed in the absence of lenses, is given by

δtgeom =
DOSDOL

2cDLS

(
−→
θ −
−→
β )2. (2.56)

The total time delay will be given by the sum of the geometrical and gravi-
tational delays. Both of them are produced in the neighborhood of the lens
and hence when the distance to the lens is large, one has to take into account
that during the photon travel from the lens to the Earth, the Universe has
expanded by a factor (1 + zL), where zL is the redshift of the lens. The delay

4so that no images are obscured
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measured by an observer will then be stretched by the same factor, and from
Eqs. (2.22), (2.55) and (2.56) is

δt =
1 + zL
c

DOLDOS

DLS

[
1

2

(−→
θ −
−→
β
)2 −Ψ

]
. (2.57)

It follows from the lens equation (Eq. (2.54)) that

−→O θ(δt) = 0 (2.58)

For a �xed source position
−→
β , the images will appear along those directions−→

θ for which the time delay has an extreme, and hence the geometrical optics
approach used so far is actually equivalent to Fermat's principle. When
multiple images are formed, the light travel time for each image is in general
di�erent. Variations in the source intensity would arrive to the observer at
di�erent times and these time delays are in principle measurable. They can
be exploited to infer the expansion rate of the Universe. Since the angular-
diameter distances for known redshifts scale with H0, if one has a theoretical

model ψ
(−→
θ
)
for the system, the measurement of a time-delay between the

images of a multiple image gravitational lens system determines the Hubble
constant H0 [24].
One model for the mass distribution in galaxies assumes that the stars and
other mass components behave like particles of an ideal gas, con�ned by
their combined, spherically symmetric gravitational potential. This mass
distribution, called a singular isothermal sphere, can be written as

ρ(r) =
σ2

2πGr2
(2.59)

where ρ is the mass density distribution, σ is the velocity dispersion of the
stars, and r is the radius of the sphere. Notice that, since ρ ∝ r−2, the mass
M(r), increases with r. Therefore the circular velocity is

v2
c (r) =

GM(r)

r
= 2σ2 = constant. (2.60)

This simple model approximately produces the observed �at rotation curves
of galaxies. In the case of the circularly symmetric lens, the origin can be
shifted to the center of symmetry, reducing the problem to one dimension.
Projecting along the line of sight, the surface mass density is

Σ(θ) =
σ2

2GDOLθ
(2.61)
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and the mass enclosed inside a circle of angular radius θ is then

M(θ) =
πσ2DOLθ

G
. (2.62)

Narayan and Bartelmann [25] show that the de�ection angle corresponding
to this mass distribution is

α̂(θ) =
4πσ2

c2
(2.63)

The resulting Einstein radius of the singular isothermal sphere is

θE =
4πσ2DLS

c2DOS

=
DLS

DOS

α̂ = α. (2.64)

Therefore, due to circular symmetry, the lens equation for the singular isother-
mal sphere is one-dimensional. Multiple images are obtained only if the
source lies inside the Einstein ring, when β < θE. When this condition is
satis�ed, the lens equation has two solutions

θ± = β ± θE. (2.65)

The images at θ±, the source, and the lens lie on a straight line. Computing
the reduced projected potential for this lens one obtains

Ψ(
−→
θ ) = θE|

−→
θ |. (2.66)

The ampli�cation of the images is given by

A± =
θ±
β

= 1± θE
β
. (2.67)

Consider a circular galaxy behind a large lensing mass density with the ob-
server out of the page as shown in Figure 2.11a. Since the light rays are
de�ected by the lensing mass, we do not observe a circular image. The light
rays originating from the bottom of the source (the ones closer to the lens)
are bent more than those farther from the lens. The light rays are bent such
that the bottom appears farther away from the lens. Note that rays are
bent toward the lens, so that as you extrapolate backward, the more a ray is
bent toward the lens, the farther away the source appears to be. Images will
therefore be distorted as in Figure 2.11b. The net e�ect is to turn a circular
galaxy into the arc shown in Figure 2.11c (Dodelson 2003 [18]).
The location of an arc in a cluster provides a simple way to estimate the
projected cluster mass within a circle traced by the arc. For a circularly
symmetric lens, the radius of the circle traced by the arc gives an estimate
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Figure 2.11: Arc formation.(a) The circular source galaxy (blue) is located
behind the lens (red). The observer is out of the page so that the foreground
lens is between the observer and the source. (b) Light rays from the source
are de�ected as they pass near the lens. Rays traveling closest to the lens
get de�ected the most. (c) The resulting image is an arc.

of the Einstein radius. It follows that, for a softened isothermal sphere, with
mass distribution given by

ρ(r) =
σ2

2πG(r2 + r2
c )

(2.68)

where rc is the core radius, the mass enclosed inside a circle of radius θ, can
be estimated by

M(θ) =
πσ2DOL

G
(
√
θ2 + θ2

c − θc) (2.69)

with θc ≡ rc/DOL. The lens equation can be written as:

−→
β =

−→
θ

[
1− θ0

θ2

(√
θ2 + θ2

c − θc
)]

(2.70)

where the angle θ0 would correspond to the Einstein angle in the limit of
negligible core radius, Eq. (2.64). Critical lines are present whenever multiple
images can form. One critical line corresponds to the Einstein ring, having
an angular radius

θE = θ0

√
1− 2θc

θ0

(2.71)
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and being the image of a source located at the point-like caustic at β = 0.
Another critical line forms when dβ/dθ = 0 and has angular radius

θR =
√
θ0θc

[
1− θc

2θ0

(
1 +

√
1 +

4θ0

θc

)]1/2

(2.72)

which is smaller than the Einstein radius. The corresponding caustic is a
circle with angular radius βR = β(θR). The condition for the existence of
both critical lines is clearly that the central surface density be larger than
the critical density. The position of the images is obtained by solving the
lens equation (2.70), which can be rewritten as a cubic equation

θ3 − 2βθ2 + [β2 − θ0(θ0 − 2θc)]θ − 2βθ0θc = 0. (2.73)

This equation has one or three solutions (images) depending on the location
of the source. Sources located outside the circular caustic (β > βR) have
just one image while those located inside have three images. The additional
images of extended sources located in the vicinity of this caustic will look
elongated in the radial direction, since being dβ/dθ ' 0 in this case means
that the radial extent of the image is much larger than that of the source,
and this is why this caustic is named the radial caustic. Images of sources
close to the origin, near the point-like caustic, appear tangentially elongated,
forming large arcs near the location of the Einstein ring. This is illustrated
in Figure 2.12. The shapes of the image(s) of a circular source are drawn
for di�erent source positions. In the limit of small core radius all the results
of the singular model are recovered. Indeed, in this limit one has θE → θ0.
The radial critical line collapses to a point, according to θR '

√
θEθc, and

hence for small core radii the third image is lost, leaving only two images for
β < βR ' θE. The reduced projected gravitational potential in the softened
isothermal sphere model is given by

Ψ(
−→
θ ) = θ0[

√
θ2 + θ2

c − θcln(
√
θ2 + θ2

c + θc)]. (2.74)

Notice that in this example, the mass distribution has no singularities and
the number of images is odd, as expected from Burke's theorem.
Since each image direction corresponds to a unique position in the source
plane, the mapping from the image to the source plane is single valued.
When multiple images of source are formed, the mapping from the source
plane to the image plane becomes multiply valued. In order to visualize the
properties of multiply imaged system, we consider now the observer's sky,
the image plane, as if it were a deformable sheet, the sky sheet. The mapping
from the image plane to the source plane will transform this sheet, stretching
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Figure 2.12: Images of a circular source lensed by a non-singular isothermal
sphere, for four di�erent source locations, indicated in the smaller panel. The
source in the vertical is just outside the caustic (indicated with dashed lines)
and it has one image, also appearing along the vertical. The other sources
have three images. The one just inside the caustic has two new images
radially elongated, which are close to the radial critical line (smaller circle in
the main panel). As the source approaches the origin (the point-like caustic)
two of the images become very elongated tangentially around the location of
the Einstein ring (the bigger circle), while the third image is near the center
and very demagni�ed. S. Mollerach, E. Roulet [17].
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and eventually, if multiple imaging occurs, folding it but as long as the lenses
are nonsingular, without tearing it. Figure 2.13 shows a folded sheet in a one
dimensional example. For a given source position, the number of times the

Figure 2.13: Folded sheet representing the observer's sky projected back into
the source plane in a strong lensing situation. S. Mollerach, E. Roulet [17].

sky sheet is folded on top of the source location will determine the number
of images of the source. If no folds are present, just one image will be seen.
Every fold will add an additional pair of images, one of which will be inverted.
The mapping among these sheets can be performed by considering light rays

which arrive to the observer along directions forming a regular grid (in
−→
θ )

and following them back to the source plane. The original grid de�nes the
two-dimensional observer's sky (θ1,θ2). The image of this grid de�nes the
sheet projected into the source plane (β1,β2). The folds in the projected
surface will hence de�ne the caustics, and these will be closed lines in the
source plane which can be smooth or can eventually contain cusps where two
folds merge.

2.6 The binary lens

A natural generalization of the Schwarzschild lens is a lens consisting of
two point masses. This model can be used to describe microlensing by binary
stars or planetary systems. Furthermore, this lens model is su�ciently simple
that one can derive many properties analytically. The de�ection angle of the
light rays is given by the superposition of the vectorial de�ections produced
by the two individual lenses. If lenses are point-like, with masses MA and

MB, and are located in the lens plane forming angles
−→
θ A and

−→
θ B, with
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respect to the chosen optical axis, the lens equation can be written as

−→
β =

−→
θ − µA(

−→
θ −
−→
θ A)

θ2
E

|
−→
θ −
−→
θ A|2

− µB(
−→
θ −
−→
θ B)

θ2
E

|
−→
θ −
−→
θ B|2

(2.75)

where µA,B = MA,B/M , are the reduced masses, with M = MA + MB, the
total mass. The Einstein angle θE is obtained from the Eq. (2.14), using the
total mass M . As seen in the previous section, the presence of the second
lens component breaks the axial symmetry of the system. But, the resulting
lensing e�ect is much di�erent from the case of a single lens. First of all,
the lens becomes astigmatic. This results into a completely di�erent mag-
ni�cation pattern on the source plane and in the appearance of extended
caustics. In fact, caustics are lines that separate regions with di�erent image
multiplicities. When the source crosses a caustic during its motion relative
to the lens, new images are created or destroyed. As in the case of a single
point mass, the image separations are too small to allow to see them, but the
light curves are generally much more complicated and exhibit multiple peaks,
asymmetries, etc. Figure 2.14 shows how the projection of the image plane
into the source plane would appear for an asymmetric binary system, with
reduced masses µA = 0.25, µB = 0.75, and for di�erent values, in decreasing
order, of the distance between the lenses.

Figure 2.14: Sky sheet for a point-mass binary lens for decreasing values of
the distance between the lenses. S. Mollerach, E. Roulet [17].

In the �rst panel, in which the separation among the lenses is large, there
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are two diamond shaped caustics with four cusps (wide binary topology),
one associated to each lens. They can be interpreted as being the point-like
caustics of each lens which have been distorted by the shear induced by the
presence of the other lens. As the lenses are taken as point-like, the sky sheet
has a hole associated to each lens, and this has been stretched to in�nity. Far
from the lenses a source would have three images (two of them very demag-
ni�ed) and inside the diamonds it would have �ve. In the second panel (top
right), the lenses get closer. The two cusps which are closer to the center,
one from each diamond, approach each other and merge, leading to a six
cusp caustic (intermediate binary topology). For smaller values of the lens
separation, the six cusp caustic is stretched in the direction orthogonal to the
lens separation, as displayed in the third panel. Finally, in the last panel,
for even closer lenses, two pairs of fold caustics touch each other and break
apart, so that the six cusp caustic separates into a four cusp caustic and two
small triangular caustics (close binary topology). The changes in the caustic
shapes, which occur as the distance between the lenses changes, can also be
interpreted in the context of catastrophe theory. For instance, the transition
from two opposed cusps that merge leaving two folds, as happened between
the �rst and second panels or between the third and fourth ones, is known as
a beak-to-beak transition in this context. The lens separation is considered

Figure 2.15: Beak to beak transition. S. Mollerach, E. Roulet [17].

as a third control parameter, in addition to the two source coordinates β1

and β2, and in this three dimensional space the fold caustics in Figure 2.14
will sweep a surface and the cusps will follow lines as the lens separation is
varied. This is schematically illustrated in Figure 2.15, where the horizontal
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planes correspond to �xed lens separations and they are displaced vertically
as this separation is varied. From this theory arises the property that cusps
appear and disappear in pairs or their number is preserved. So that, a general
property of the caustics produced by a lens is that the total number of cusps
has to be even.
Now we consider the critical curves and caustics associated with a system
with two point-like lenses, where the angular variables are de�ned in the com-
plex lens plane, and normalized in terms of the Einstein angle θE associated
to the total mass M = MA +MB. We introduce source coordinates

ζ ≡ βx + iβy
θE

(2.76)

and image coordinates

z ≡ θx + iθy
θE

(2.77)

The lens equation (Eq. (2.75)) becomes

ζ = z − µA
z̄ − z̄A

− µB
z̄ − z̄B

(2.78)

where µj ≡Mj/M and zj are the location of the lenses, with j = A,B. The
ampli�cation of an image is given by

Ai = J−1|zi (2.79)

where zi is the position of the image and J is the Jacobian of the mapping
from the image to the source plane, and it is equivalent to

J(z, z̄) = det

(
∂ζ/∂z ∂ζ/∂z̄
∂ζ̄/∂z ∂ζ̄/∂z̄

)
=

∣∣∣∣∂ζ∂z
∣∣∣∣2 − ∣∣∣∣∂ζ∂z̄

∣∣∣∣2. (2.80)

From Eq. (2.78), ∂ζ/∂z = 1, and the Jacobian can be rewritten as

J = 1−
∣∣∣∣∂ζ∂z̄

∣∣∣∣2 (2.81)

with
∂ζ

∂z̄
=

µA
(z̄ − z̄A)2

+
µB

(z̄ − z̄B)2
. (2.82)

As we know the vanishing of the Jacobian of the mapping determines the
critical curves. From Eq. (2.81), this condition can be written as

∂ζ

∂z̄
= eiϕ, 0 ≤ ϕ < 2π (2.83)
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For simplicity, we put the origin of the coordinates at the midpoint between
the two lenses, so that zA = −zB and the real axis along the line joining the
lenses. Combining the last two equations, we can get a quartic equation for
the points de�ning the critical lines

z4 − z2(2z̄2
A + eiϕ)− zz̄A2(µA − µB)eiϕ + z̄2

A(z̄2
A − eiϕ) = 0. (2.84)

The four solutions of this equation give us the critical lines. By applying the
lens equation (2.78), from the critical lines, one can get the caustics. The
shape of the caustics depends on the mass ratio q = µA/µB and on the lens
separation in units of the Einstein angle, d ≡ |zA − zB| = 2|zA|. Thanks
to the large number of parameters involved, the analytical derivation of the
critical lines and caustics of binary lens systems is very complicated. Qual-
itatively, we can �nd the three regimes (wide, intermediate, close), which
are illustrated in Figure (2.16) for a binary lens system with mass parameter
µA = 0.25. When the two lenses are widely separated, they act like sin-
gle lenses which slightly feel the perturbation of the companion. The point
caustic becomes an asymmetric astroid with four cusps. The corresponding
critical line becomes an oval (top panel, wide). Once the separation of the two
lenses decreases, the critical lines and the corresponding caustics merge to-
gether. They �rst touch in one point, then, for further decreasing separations,
there is one single critical line and one single caustic, which is characterized
by six cusps (middle panel, intermediate). For even closer lens position, two
regions inside the critical line detach and the caustic breaks down into three
parts. These are a central diamond-shaped and two triangular-shaped caus-
tics. By reducing further the separation between the two components, the
two triangular caustics move away from the central one, which also shrink
(bottom panel, close). If the source is inside the caustic, it produces �ve
images: three are inside the critical line and two are outside it. When the
source crosses the caustic, two or three images merge together and disappear.
During the transition the images assume the usual arc-like shape. Their size
increases and therefore they are highly magni�ed. As the critical lines are
the set of points where J = 0, at the merging points also the gradient of
J has to vanish. The relation between the critical lens separation and the
associated mass ratio can be obtained, solving the system of equations J = 0
and ∂J/∂z̄ = 0. From J = 0, the equation (2.81) gives us the condition
|∂ζ/∂z̄| = 1 and from ∂J/∂z̄ = 0, we obtain that ∂2ζ/∂z̄2 = 0. This brings
us to the relation between the critical value of z̄ and µA, µB and zA

z̄ + zA = 2zA

[
1−

(
− µA
µB

)1/3]−1

. (2.85)
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Figure 2.16: The critical lines (left) and caustics (right) for a binary lens
system with mass parameter µA = 0.25. The crosses indicate the position
of the lenses, with the heavier one being to the left. The lens separations
are taken in decreasing value from top to bottom, with the second panels
corresponding to d = dWI and the fourth ones to d = dIC . S. Mollerach, E.
Roulet [17].
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From this last equation, we get three di�erent values for z̄. Inserting these
solutions into Eq. (2.82) and requiring that J = 0, we can obtain the �nal
expression for the lens separation at the transition points. The transition
from wide to intermediate lens systems (corresponding to the -1 root) occurs
at a separation

dWI = 2zA(WI) = (µ
1/3
A + µ

1/3
B )3/2. (2.86)

The other two roots, correspond to the two critical points in the transition
from the intermediate to close binary systems taking place at the separation

dIC = 2zA(IC) = (µ
1/3
A + µ

1/3
B )−3/4. (2.87)

In the limit of small mass ratios (q << 1), as would be the case for planetary
systems, one has dWI ' 1+1.5 q1/3 and dIC ' 1−0.75 q1/3. This means that
both transitions occur for angular separations among the binary lenses are
very close to the Einstein angle θE. By solving the lens equation (2.78), we
can determine the image positions for a given source location ζ. Replacing z̄
from the conjugate of the lens equation, we obtain a �fth order equation in
z

(z2 − z2
A)[z + zA(µA − µB) + (z2 − z2

A)(ζ̄ + zA(µA − µB))]−
(z − ζ)[(ζ̄(z2 − z2

A) + z + zA(µA − µB))2 − z2
A(z2 − z2

A)2] = 0 (2.88)

where the �ve solutions of this equation corresponds to the �ve images of
the source. A source outside the caustics has only three images, meaning
that two solutions of this equation will be spurious. These two solutions
correspond to complex values of θx and θy. We can eliminate these spurious
solutions using the lens equation (Eq. (2.78)) as a check.

2.7 Lensing by Binary Galaxies

The problem of lensing by binary galaxies has been studied by E.M. Shin
and N.W. Evans [31]. They consider a system of binary galaxies idealized
as two isothermal spheres and provide a theoretical treatment like a natural
extension of the problem of lensing by binary point masses (Schneider and
Weiss [32]). The singular isothermal sphere provides a limiting case for the
1/rn objects obtained when n tends to zero. Binary isothermal spheres di�er
qualitatively from the case of two point masses by having additional critical
curves and caustics and hence also di�erent multiple-imaging properties.
The model is constructed as follows. They use dimensionless source plane
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ξξξ = (ξ, η) and lens plane coordinates xxx = (x, y). The two isothermal spheres
are centred on the x-axis at ±a. The de�ection potential is de�ned as

ψ(x, y) = E1[r2
c1

+ (x+ a)2 + y2]1/2 + E2[r2
c2

+ (x− a)2 + y2]1/2 (2.89)

with rc1 and rc2 the core radii of the isothermal spheres. If the core radii
vanish, Eq. (2.89) reduces to the potential of two singular isothermal spheres
with Einstein radii E1 and E2. Without loss of generality they take E1 ≤ E2

and a > 0. The convergence κ is

κ(xxx) =
E1

2

2r2
c1

+ r2
1

(r2
c1

+ r2
1)3/2

+
E2

2

2r2
c2

+ r2
2

(r2
c2

+ r2
2)3/2

(2.90)

and the shear components γ1 and γ2 are

γ1(xxx) =
E1

2

y2 − (a+ x)2

(r2
c1

+ r2
1)3/2

+
E2

2

y2 − (a− x)2

(r2
c2

+ r2
2)3/2

(2.91)

γ2(xxx) = E2
(a− x)y

(r2
c2

+ r2
2)3/2

− E1
(a+ x)y

(r2
c1

+ r2
1)3/2

(2.92)

where r2
1 = (a + x) + y2 and r2

2 = (a − x) + y2. The Jacobian of the lens
mapping can be found from (see Section 2.4)

detAAA(xxx) = [1− κ(xxx)]2 − γ(xxx)2 (2.93)

where γ(xxx) =
√
γ1(xxx)2 + γ2(xxx)2 is the magnitude of the shear. For an isolated

singular isothermal sphere γ = κ and then detAAA = 1 − 2κ. In the binary
singular case we have

detAAA = 1− 2κ+ 4E1E2
a2y2

r3
1r

3
2

. (2.94)

Therefore on the axis of two singular isothermal spheres detAAA = 1−2κ. This
model can be used to describe lensing by two elliptical galaxies. A �ducial
elliptical galaxy lens has parameters: velocity dispersion σ = 250kms−1, core
radius rc1 = rc2 = 100pc and redshift zl = 0.46. They also take for the source
redshift zs = 2.15 and use a ΛCDM concordance cosmology. The corre-
sponding dimensionless Einstein radius is E ≈ 7.11 (with the lens scale of 1
kpc). The two �ducial isothermal spheres are placed at (−a, 0) and (a, 0).
Numerical simulations of critical curves and caustics are shown in Fig. 2.17.
They found four con�gurations for the critical curves and caustics from Type
0 to Type 3 as the parameter a is made smaller.
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Type 0. When a is large (top-most panels of Fig. 2.17), the critical curves
and caustics of the two lenses are disjoint. The outer tangential critical
curves are not circular (as they would be for a single such lens in isolation)
and the corresponding caustics are distorted astroids with four cusps. There
are small radial critical curves around each lens that map to large roundish
caustics.
Type 1. For a = 10.0, the tangential critical curves have merged into a single
outer critical curve, and the corresponding caustics have merged to form a
single six-cusp caustic.
Type 2. The six-cusp caustic elongates along the y-axis as a decreases fur-
ther, and two small three-cusp caustics split o�, as two small critical curves
(�bean� critical curves) pinch o� from the outermost critical curve, to leave
a single four-cusp astroid caustic (a = 5.6 and a = 5.4). At a = 4.0, the
three-cusp caustics have moved away from the origin and enlarged, whilst
the �bean� critical curves have moved towards the origin and enlarged.
Type 3b. Decreasing a still further, the two �bean� critical curves merge with
the two radial critical curves, creating two critical curves around the origin
(bottom-most panels). The inner one maps to a caustic with two butter�y
cusps, whilst the outer one maps to the outermost caustic. The outermost
critical curve still corresponds to an astroid caustic around the origin.

In a wide binary, each galaxy has individual tangential and radial caustics.
As the separation of the binary decreases, the caustics is subjected to three
metamorphoses. The �rst metamorphosis occurs when the tangential caustics
merge to form a single six-cusped caustic, lying interior to the radial caustics.
At smaller separations, the six-cusped caustic undergoes the second meta-
morphosis. It splits into a four-cusped caustic and two three-cusped caustics,
which shrink to zero size (an elliptic umbilic catastrophe) before they enlarge
again and move away from the origin perpendicular to the binary axis.
A third metamorphosis occurs as the threecusp caustics join the radial caus-
tics. This leaves an inner distorted astroid caustic enclosed by two outer
caustics. For two singular isothermal spheres (rc1 = rc2 = 0), the critical
curves and caustics, using the same terminology of the cored (rc1 , rc2 > 0)
case, can be of Type 0, 1, and 2. However the di�erence between the singu-
lar and cored cases is that the radial critical curves around the two galaxy
centres shrink to zero size as the core radii decrease to zero. There are no
radial caustics. Any core images move towards the centres of the isothermal
spheres as rc1 and rc2 tends to zero, their magni�cations diminishing, until
they disappear at the singularities. A source can produce either an odd or
an even number of images. This depends on the number of core images it
would produce if the core radii were not zero. The number of images changes
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Figure 2.17: Critical curves (left panels) and caustics (right panels) for
two identical �ducial isothermal spheres (with dimensionless Einstein radius
∼ 7.11) separated by dimensionless distance 2a. Colours of corresponding
critical curves and caustics match. The Type of the critical-curves or caustics
is de�ned in the text. E.M. Shin and N.W. Evans [31].
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by one (an image is created or destroyed at the centre of a singular isother-
mal sphere) when the source crosses a pseudocaustic. The pseudocaustic is
a closed curve in the source plane which is approached by the radial caus-
tics when rc1 and rc2 tends to zero. By considering the lens mapping on
small circles around the singularities, it is possible to �nd the positions of
the pseudocaustics. The lens equation, in vector form is

ξξξ = xxx− E1
xxx+ aaa

|xxx+ aaa|
− E2

xxx− aaa
|xxx− aaa|

(2.95)

with aaa = (a, 0). Consider a small circle of radius δ in the lens plane, centred
at the second singular isothermal sphere. When δ goes to zero, xxx → aaa and
(xxx + aaa) → (2a, 0), although E2(xxx − aaa)/|xxx − aaa| becomes E2 times a unit
direction vector. Then a circle around the singularity at aaa maps to a circle
in the source plane of radius E2, centred at (a− E1, 0). In the same way, it
is possible to derive the other pseudocaustic for the singularity at −aaa, as a
circle of radius E1, centred at (−a+ E2, 0).
The �bean� critical curves surround small regions of positive detAAA inside the
tangential critical curves, where detAAA is negative. These regions exist because
there are points where the shear is zero. In fact, if γ(xxx) = 0 at some xxx, then
detAAA > 0 (see Eq. (2.93)). Since the shears from the two isothermal spheres
cancel out, for the double isothermal sphere lens there are two points where
γ(xxx) = 0. It is possible to determine the position of the points of zero shear
for the isothermal spheres: if the isothermal spheres, singular or not, are
located at (±a, 0), the points of zero shear lie on a circle of radius a centred
at the origin. First of all they write the shear as the complex quantity

Γ = γ1 + iγ2 ≡ γe2iω (2.96)

with ω the angle of shear. Since the de�ection potential of two spheres is
the sum of their two separate de�ection potentials, the complex shear will be
the sum of two separate shears: Γ = Γ(1) + Γ(2). If the shear is zero at same
point xxx, we obtain

ω(2)(xxx) = ω(1)(xxx) +
(2k + 1)π

2
k ∈ Z. (2.97)

This last relation holds if
θ2 − θ1 = ±π

2
(2.98)

where θj is the direction of xxx from the centre of the j th isothermal sphere.
Then the line segment joining (−a, 0) to xxx is perpendicular to that joining
(a, 0) to xxx. The points xxx lie on the circle with the two galaxy centres as its
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Figure 2.18: The point of zero shear lies on the circle |r| = a. The centres of
the (singular or cored) isothermal speres are at ±a on the x-axis. E.M. Shin
and N.W. Evans [31].

diameter, |r| = a, as shown in Fig. 2.18.
The second metamorphosis is characterized by the elliptic umbilic catastro-
phe. This catastrophe occurs when the point of zero shear, is also a critical
point. To �nd the lens parameters at which the elliptic umbilic catastrophe
takes place, it is necessary to know the polar coordinates (a, θzs) of the point
of zero shear. On the circle |r| = a we have

r2
1 = 2a2(1 + cosθ), r2

2 = 2a2(1− cosθ) (2.99)

where r1 and r2 are the distances between a point rrr and the centres of the
isothermal spheres. For a single isothermal sphere, the magnitude of shear is

γ(j) =
1

2
Ej

r2
j

(r2
c + r2

j )
3/2

(2.100)

(where rj is the distance from its centre), and then the point of zero shear
for the double lens has

r1

r2

=
E1

E2

. (2.101)

Combining this last equation with (2.99) we obtain the relation

cosθzs =
E2

1 − E2
2

E2
1 + E2

2

(2.102)
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At the point of zero shear (see Eq. (2.93)) detAAA = (1 − κ)2, where the
convergence κ is

κ(r, θ) = κ(1) + κ(2) =
E1

2r1

+
E1

2r1

. (2.103)

Using Eqs. (2.99) and (2.102), and putting (2.103) into (1−κ)2 = 0 we have

a =
1

2

√
E2

1 + E2
2 . (2.104)

Therefore, from Eqs. (2.102) and (2.104) we have that the polar coordinates
(a, θzs) of the point of zero shear depend on the Einstein radii E1 and E2

of the isothermal spheres. As we have seen, binary isothermal spheres di�er
from the case of two point masses. They have additional critical curves and
caustics, or pseudocaustics in the case of singular isothermal spheres, and
hence di�erent multiple-imaging properties. If the isothermal spheres are
coreless, the number of images may be 1, 2, 3, 4 or 5. If the isothermal
spheres haves cores, the number of images can be 1, 3, 5 or 7, depending
on three parameters: the location of the source, the separation of the binary
and the velocity dispersions.
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Chapter 3

Gravitation 1/rn

A broad literature exists on lensing by any kind of non-Schwarzschild met-
rics [26, 27]. While these metrics predict strong deviation from Schwarzschild
in the strong de�ection regime, they typically reduce to Schwarzschild in the
weak �eld limit, leaving only subdominant tiny corrections in the most ex-
plored regime. However, there is a considerable exception: the Ellis wormhole
[66]. This metric, introduced so as to demonstrate the possibility to connect
two asymptotically �at regions by a non-singular throat, has the interesting
property of falling down as 1/r2 asymptotically. Thus, any observables de-
pending on the gravitational �eld is a�ected, even in the weak �eld limit.
Concentrating on the gravitational lensing e�ect, it has been proved that the
bending angle by an Ellis wormhole goes as 1/u2 instead of 1/u (where u is
the impact parameter) [28, 29, 30] and that it is possible to obtain a total
ampli�cation smaller than one. This implies that for certain geometries the
combined �ux of the images is smaller than the original �ux of the source
(defocusing e�ect), which is impossible to achieve in ordinary gravitational
lensing by isolated objects [29] (in the context of ordinary matter, demag-
ni�cation can only occur for lines of sight along underdense regions [63]).
Actually, defocusing is not an accident of the Ellis wormhole metric. Gravi-
tational lensing by metrics falling as 1/rn has been studied by Kitamura et
al. [33], who showed that the de�ection angle inherits the same exponent
as the metric: α̂ ∼ 1/un. They also showed that the defocusing e�ect is
generic for any metrics falling as 1/rn, with n > 1. The physical problem of
gravitational lensing by metrics falling as 1/rn has been deeply investigated
in a sequence of papers appeared in the last few years [34]. Metrics falling
as 1/rn were �rst studied in Ref. [33] as a phenomenological extension of
the Ellis wormhole case, while the implications for the energy-momentum
tensor supporting this kind of metrics were only considered in Ref. [14].
They prove that some violation of the weak energy density must necessarily

63



occur in order to have a metric falling faster than Schwarzschild (n > 1). As
a consequence, the observation of defocusing in some physical lenses would
provide a smoking gun for the existence of exotic matter. On the other hand,
many authors have proved that it is possible to obtain wormhole solutions
without exotic matter in modi�ed theories of gravity [68].

3.1 Demagni�cation condition

Following Kitamura et al. [33] we assume that an asymptotically �at,
static and spherically symmetric modi�ed spacetime could depend on the
inverse distance to the power of positive n in the weak �eld approximation.
They consider light propagating through a four-dimensional spacetime (in
this frame G = c = 1). The four-dimensional spacetime metric is

ds2 = −
(

1− ε1

rn

)
dt2 +

(
1 +

ε2

rn

)
dr2 + r2(dθ2 + sin2 θdφ2) +O(ε2

1, ε
2
2, ε1ε2)

(3.1)
where r is the circumference radius and ε1 and ε2 are small parameters in the
iterative calculations. These parameters may be either positive or negative,
respectively. Notice that negative ε1 and ε2 for n = 1 corresponds, in the
linearized Schwarzschild metric, to a negative mass. The light propagation
is not a�ected by the conformal transformation. Then, it is useful to make a
conformal transformation with a factor of (1− ε1/r

n)1/2. At the linear order
of ε1 and ε2, the spacetime metric takes the form

ds̄2 = −dt2 +
(

1 +
ε

Rn

)
dR2 +R2(dθ2 + sin2 θdφ2) +O(ε2) (3.2)

where ε ≡ nε1 + ε2 and R2 ≡ r2/(1 − ε1/r
n). Since the spacetime is spher-

ically symmetric, they focus on the equatorial plane (θ = π/2) and �nd the
de�ection angle of light at the linear order

α = 2

∫ ∞
R0

dφ(R)

dR
dR− π =

ε

bn

∫ π/2

0

cosn ψdψ +O(ε2) (3.3)

where R0 is the closest approach and b is the impact parameter, of the light
ray. The integral factor becomes∫ π/2

0

cosn ψdψ =
(n− 1)!!

n!!

π

2
(even n),

=
(n− 1)!!

n!!
(odd n),

=

√
π

2

Γ
(
n+1

2

)
Γ
(
n+2

2

) (real n > 0). (3.4)
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It is possible to rewrite the de�ection angle as

α(b) =
ε̄

bn
(3.5)

by absorbing the numerical constant into the ε̄ parameter. This de�ection
angle recovers the Schwarzschild (n = 1) and Ellis wormhole (n = 2) cases.
In the thin-lens approximation [19] the lens equation becomes

β =
b

DL

− DLS

DS

α(b). (3.6)

Here, as usual, β denotes the angular position of the source, DL, DS and
DLS are the distances from the observer to the lens, from the observer to
the source, and from the lens to the source, respectively. For a source in (or
near) the Einstein ring, we have a signi�cant magni�cation (or demagni�ca-
tion). As we saw in the previous chapter, the Einstein ring is de�ned by the
condition β = 0. From equation (3.6), we have for ε < 0 no positive roots
for β = 0 (because of the repulsive force in the particular gravity model).
Instead, for ε > 0 there is always a positive root corresponding to the Ein-
stein ring. In this last case, the lens equation can be rewritten, in units of
the Einstein ring radius as

β̂ = θ̂ − 1

θ̂n
(θ̂ > 0) (3.7)

β̂ = θ̂ +
1

(−θ̂)n
(θ̂ < 0) (3.8)

where β̂ ≡ β/θE and θ̂ ≡ θ/θE for the angular position of the image θ ≡
b/DL. For a general positive n, it is possible to �nd exact solutions for the
modi�ed lens equation. In gravitational microlensing, only the signi�cantly
ampli�ed images become detactable and these events occur when a source
(e.g. a distant star) crosses the Einstein ring. For the β̂ < 1 case, Equations
(3.7) and (3.8) are solved, in the Taylor series form with respect to β̂ < 1, to
obtain

θ̂+ = 1 +
1

n+ 1
β̂ +

1

2

n

(n+ 1)2
β̂2 +O(β3) (θ̂ > 0) (3.9)

θ̂− = −1 +
1

n+ 1
β̂ − 1

2

n

(n+ 1)2
β̂2 +O(β3) (θ̂ < 0). (3.10)

By using the last two equations, we derive the ampli�cation factor of each
image

A± =
1

β̂(n+ 1)
+O(β̂0). (3.11)
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Then, the total ampli�cation is

Atot ≡ A+ + A− =
2

β̂(n+ 1)
+O(β̂0). (3.12)

Note that for the Schwarzschild case (n = 1), the total ampli�cation is always
larger than unit for β̂ < 1, as we know. Demagnifying gravitational lenses
could appear when the impact parameter of light β̂ and the power n satisfy
the condition

β̂ >
2

n+ 1
(3.13)

in units of the Einstein ring radius under a large-n approximation. The
total demagni�cation could occur only when β̂ is small, but larger than the
critical value 2/(n+ 1). The compatibility of the assumption β̂ < 1 and Eq.
(3.13) implies that n > 1. Kitamura et al. performed a test of their analytic
result. Figure 3.1 shows the total ampli�cation factor of the lensed images
as a function of the source position for n = 1, 2, 3 and 10. They found a
good agreement for the analitical critical value β̂ = 2/11 = 0.182 with the
numerical one β̂ = 0.187. Figure 3.2 shows a numerical light curves for the
same minimum impact parameter of the light trajectory β̂0 = 0.1. Examples
of n = 3 and n = 10 show maximally ∼ 10 and ∼ 60 percent depletion
of the light, when the source position is β̂ ∼ 1.1 and β̂ ∼ 0.7, respectively.
What is asserted allows us to think that gravitational demagni�cation of light
occurs because modi�ed lenses could act as an e�ectively negative mass on a
particular light ray. Then, a gravitational demagni�cation of light might be
used for hunting a clue of exotic matter and energy.
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Figure 3.1: Total ampli�cation factor of the lensed images as a function of
the source position β̂ for n = 1, 2, 3 and 10. Top left, top right, bottom left,
and bottom right panels correspond to n = 1, 2, 3 and 10, respectively. In
the case of n = 10, the total ampli�cation factor is larger than unity for
β̂ < 0.187, whereas it is smaller forβ̂ > 0.187. For convenience, a thin (red)
line denotes Atot = 1. Kitamura et al [33].
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Figure 3.2: Numerical light curves for the same minimum impact parameter
of the light trajectory β̂0 = 0.1. The source star moves at constant speed and
the source position changes as β̂(t) = (β̂2

0 + t2)1/2, where time is normalized
by the Einstein ring radius crossing time. Top left, top right, bottom left,
and bottom right panels correspond to n = 1, 2, 3 and 10, respectively. For
convenience, a thin (red) line denotes Atot = 1. Kitamura et al. [33].
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3.2 Gravitational lensing shear by demagnify-

ing lens model

It was shown [36], in the weak �eld and thin lens approximations, that
images due to lens models for the gravitational pull on light rays are tan-
gentially elongated, whereas those by the other models for the gravitational
repulsion on light rays are always radially distorted. As a cosmological impli-
cation, it is suggested that cosmic voids might correspond to the parameters
κ < 0 and ε < 0, and hence they could produce radially elongated images.
So that, gravitational lensing shear measurements would be another tool
for studying voids. Lens objects cannot be directly seen except for visible
lens objects such as galaxies. Exotic lens models, that are discussed in this
section might be invisible. In the following calculations, the origin of the
two-dimensional coordinates is chosen as the center of the lens object. The
radial and tangential directions can be well de�ned. For a pair of radially
elongated images (ε < 0), they are in alignment with each other. For a pair
of tangentially elongated images (ε > 0), they are parallel with each other.
But, one can distinguish radial elongation from tangential one by measuring
such an image alignment in observations.

From the standard lens theory [19], it is possible to derive that the de�ection
angle of light (Eq. (3.5)) corresponds to a convergence (scaled surface mass
density)

κ(b) =
ε̄(1− n)

2

1

bn+1
. (3.14)

According to the last equation, the sign of the convergence κ is the same as
that of ε(1 − n). Note that the convergence vanishes when n = 1, i.e. for
the weak-�eld Schwarzschild case. As we have seen in the previous section,
for ε > 0 and n > 1, the e�ective surface mass density of the lens object
is interpreted as negative in the framework of the standard lens theory: the
matter and therefore the energy need to be exotic. Also when ε < 0 and
n < 1, the convergence is negative, and matter (and energy) need to be
exotic. If ε < 0 and n > 1, the convergence is positive everywhere except
for the central singularity and in this case exotic matter are not required in
the framework of the standard lens theory. For ε > 0, Eq. (3.6) has always
positive root corresponding to the Einstein ring for β = 0. The Einstein ring
radius is de�ned as [33]

θE ≡
(
ε̄DLS

DSDn
L

) 1
n+1

. (3.15)
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If ε < 0, there is no positive root for β = 0. In fact this case describes the
repulsive force. Anyway it is possible to de�ne the Einstein ring radius for
ε < 0 as

θE ≡
(
|ε̄|DLS

DSDn
L

) 1
n+1

(3.16)

that gives a typical angular size for these lenses. Now we discuss about the
ε > 0 case. Eqs. (3.7) and (3.8) can be rewritten in the vectorial form as

β̂̂β̂β = θ̂̂θ̂θ − θ̂̂θ̂θ

θ̂n+1
(θ̂ > 0) (3.17)

β̂̂β̂β = θ̂̂θ̂θ − θ̂̂θ̂θ

(−θ̂)n+1
(θ̂ < 0). (3.18)

There is always one image for θ̂ > 0 and the other image appears for θ̂ <
0. The lensing shear is generally de�ned through the magni�cation matrix
Aij ≡ ∂βi/∂θj [19]. The magni�cation matrix for θ > 0 can be diagonalized
by using its eigenvalues as

(Aij) =

(
1− κ− γ 0

0 1− κ+ γ

)
≡
(
λ− 0
0 λ+

)
. (3.19)

Here the x and y coordinates are chosen along the radial and tangential
directions and then, (θ̂i) = (θ, 0) and (β̂i) = (β, 0). The radial elongation
factor is 1/λ− and the tangential one, 1/λ+. The primary image (θ̂ > 0) has
eigenvalues (Eq. (3.17))

λ+ =
β̂

θ̂
= 1− 1

θ̂n+1
(3.20)

λ− =
dβ̂

dθ̂
= 1 +

n

θ̂n+1
. (3.21)

If and only if n > −1, one can show λ− > λ+, hence the primary image is
always tangentially elongated. From Eqs. (3.20) and (3.21), the convergence
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and the shear take the form

κ = 1− λ+ + λ−
2

=
1− n

2

1

θ̂n+1
, (3.22)

γ =
λ+ − λ−

2

= −1 + n

2

1

θ̂n+1
. (3.23)

Notice that n = 1, corresponding to the Schwarzschild lens, leads to κ = 0.
By using Eq. (3.18) one can show that also the secondary image (θ̂ < 0) is
tangentially elongated. In fact, if and only if n > −1, λ− > λ+. After an
expansion of Eqs. (3.20) and (3.21) around the Einstein ring (θ̂ ∼ 1), it is
possible to show that the arc shape appearing near θ̂ ∼ 1 depends on n as

λ−
λ+

=
1

θ̂ − 1
+

(
1− n

2

)
+O(θ̂ − 1). (3.24)

Then, for a given observed lens position θ̂, the elongation of images becomes
weaker when n becomes larger. This is also true for the secondary image.
For ε < 0 case, Eq. (3.6), in the units of the Einstein ring radius can be
rewritten as

β̂̂β̂β = θ̂̂θ̂θ +
θ̂̂θ̂θ

θ̂n+1
(θ̂ > 0) (3.25)

β̂̂β̂β = θ̂̂θ̂θ +
θ̂̂θ̂θ

(−θ̂)n+1
(θ̂ < 0). (3.26)

Assuming that β̂ > 0, Eq. (3.25) has at most two positive root, instead
Eq. (3.26) has no root satisfying θ̂ < 0. For a large impact parameter there
are two images on the same side with respect to the lens position, while for
small impact parameter no image appears. The two images can be studied
by using Eq. (3.25) such that

λ+ =
β̂

θ̂
= 1 +

1

θ̂n+1
(3.27)

λ− =
dβ̂

dθ̂
= 1− n

θ̂n+1
. (3.28)

If and only if n > 1, λ− < λ+: both images are everywhere radially elongated.
Figure 3.3 shows κ and λ± numerically calculated for n = 0.5, 1, 2 and 3.
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Figure 3.3: κ, λ+ and λ− for ε < 0.They are denoted by solid (blue in colors),
dotted (purple in colors) and dashed (red in colors) curves, respectively. The
horizontal axis denotes the image position θ in the units of the Einstein
radius. Top left: n = 0.5. Top right: n = 1. Bottom left: n = 2. Bottom
right:n = 3. Izumi et al. [36]
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The convergence is negative for n = 0.5 and positive for n = 2, 3. Then,
n = 1 corresponding to the negative-mass Schwarzschild lens leads to κ = 0.
For these four cases λ+ is always larger then λ−. It is possibile to calculate
the shear by using Eqs. (3.27) and (3.28)

γ =
λ+ − λ−

2

=
1 + n

2

1

θ̂n+1
(3.29)

A repulsive case might correspond to the lensing by a void-like mass distri-
bution. As a cosmological implication, the present model with κ < 0 might
correspond to an underdense region called a cosmic void. The cosmic void
is characterized by a local mass density below the cosmic mean density and
then, the density contrast is negative. The gravitational force on the light
rays by the surrounding region could be interpreted as repulsive (ε < 0). In
fact, the bending angle of light with respect to the center of the spherical
void might be negative. Notice that the positive convergence due to the cos-
mic mean density is taken into account in the de�nition of the cosmological
distances.

As we have seen (Eq. (3.14)) Izumi et al. found a relation between conver-
gence and energy. It is interesting to show now what Bozza and Postiglione
[14] got on the convergence in connection with energy-momentum tensor
components. Let us introduce the metric [33]

ds2 =
(

1− α

rn

)
c2dt2 −

(
1 +

γ

rn

) (
dr2 − r2dθ2 + sin2 θdφ2

)
, (3.30)

depending on the coe�cients α and γ. As shown in Ref. [14], in order to sup-
port such a metric, Einstein equations require precise relations between these
coe�cients and the energy-momentum tensor components. In particular, we
recall that the exponent n only depends on the ratio between tangential and
radial pressure n = −2pt/pr. The de�ection of light in such a metric was
�rst studied by Kitamura et al. [33]. They �nd

α̂ =

√
πΓ[(1 + n)/2]

Γ[n/2]

α + γ

un
, (3.31)

where Γ[z] is the Euler gamma function and u is the impact parameter of
the light ray. They also derived the so-colled convergence, de�ned as

κ =
1

2
∇ · ~̂α, (3.32)
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where ~̂α ≡ α̂~x/u is the vectorial form of the de�ection taking into account its
direction on the planr orthogonal to the line of sight (u = |~x| is the impact
parameter). Using Eq. (3.31) Bozza and Postiglione [14] obtain

κ =

√
πΓ[(1 + n)/2]

Γ[n/2]

(1− n)(α + γ)

un+1
(3.33)

which matches the result of Ref. [33].

In standard gravitational lensing, convergence is proportional to the mass
density projected along the line of sight

∫
ρdz. Kitamura et al. note that

n > 1 and attractive de�ection (α + γ > 0) imply a negative mass density
and then that exotic matter is needed. Bozza and Postiglione also establish a
�rmer bond between convergence and energy-momentum tensor components.
They get (see section 1.6 for coordinates and ansatz)

κ =
αG
2

∫
dz(T tt − T zz ) (3.34)

=
λG
2

∫
dz

[
ρ+ pt + (pr + pt)

z2

u2 + z2

]
where λG = 8πG/c4 is the gravitational coupling constant. As we can see
gravitational lensing is not only sensitive to the mass, but also to the pres-
sure of the sources. Light rays feel the energy density and the longitudinal
pressure encountered along their path. In order to have the integral of the
last equation negative, i.e. negative convergence, there must be at least some
region with ρ + pz < 0. This is a clear violation of the weak energy condi-
tion. In addition the authors of Ref. [14] note that a negative convergence
is equivalent to a violation of strong energy condition (see Eqs. (3.33) and
(1.69)).

Finally, starting from the eigenvalues written in Eqs. (3.27) and (3.28), it
is possible to show [37] what happens to the total magni�cation in the limit
β � θE. We can write the lens equation as

β = θ − θn+1
E

|θ|n
Sign(θ), (3.35)

where β is the source angular position with respect to the center of the lens,
θ = u/DL is the angular position at which the observer observes the image
and the modi�ed angular Einstein radius reads

θE =

[
DLS

Dn
LDS

√
πΓ[(1 + n)/2] (α + γ)

Γ[n/2]

]1/(n+1)

. (3.36)
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For n > 0 there are still two real images, whose position can be calculated
numerically. In the limit β � θE, the primary image is in θ+ ' β and the
secondary image is in θ− ' −(θn+1

E /β)1/n. In the singular isothermal sphere
(n = 0), the secondary image can only exist when the source is within the
Einstein radius β < θE. The emergence of a single image from the crossing
of the Einstein ring clearly violates the theorems on the number of images.
This is a consequence of the presence of the central singularity.
The radial and tangential magni�cations are respectively given by

µr =

(
∂β

∂θ

)−1

=

(
1 + n

θn+1
E

θn+1

)−1

(3.37)

µt =
θ

β
=

(
1− θn+1

E

θn+1

)−1

, (3.38)

with the total magni�cation given by µ = µrµt. As noted in Ref. [33], for
n > 1 there always exists some value of β leading to a total magni�cation
smaller than one (defocusing). This can be simply obtained by an expansion
of µ for θ ' β � θE and neglecting the contribution by the secondary image:

µ→ 1 + (1− n)

(
θE
β

)n+1

+ (1− n+ n2)

(
θE
β

)2n+2

+ o

(
θE
β

)2n+2

. (3.39)

The �rst deviation from unity is negative for any n > 1. For the Schwarzschild
case, the leading deviation is the second order, scaling as β−4 as well known.
In practice, images created by exotic lenses are as extended as Schwarzschild
ones tangentially, but are more compressed on the radial direction. While
the two deformations compensate at �rst order in Schwarzschild, this no
longer happens for exotic lenses. For what concerns ordinary matter distri-
butions (n < 1), the situation is reversed, with a radial compression that is
smaller than in the Schwarzschild case, allowing a higher total magni�cation
emerging at the 1/β2 level already.

3.3 Observational upper bound from SQLS

Although there are a lot of theoretical works concerning negative-mass
objects and the Ellis wormhole, observational studies have been very rare.
This is mainly due to the repulsive force by negative mass and Ellis wormhole
and to the no matter accretion result. Then it is unlikely to directly see them
as luminous objects. That's why today gravitational lensing has attracted
interest as an observational tool to probe such exotic dark objects. In this
section we report the results obtained by Takahashi and Asada [40] about the
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upper bound on the cosmic abundances of the negative-mass compact object
and the Ellis wormhole using the quasar lens sample in the Sloan Digital Sky
Survey Quasar Lens Search (SQLS) data based on SDSS II. They employ the
unit G = c = 1 and use the cosmological parameters of the Hubble constant
h = 0.7, the matter density Ωm = 0.28, and the cosmological constant ΩΛ =
0.72, which is in concordance with the latestWilkinson Microwave Anisotropy
Probe results [41]. For negative-mass compact object case, they obtain a
relation between the typical lens mass and the image angular separation (see
Eq. (2.14)) as

|M | ' 1× 1011h−1M�(θE/1
′′)2[(DLDS/DLS)/1h−1Gpc]. (3.40)

As a result, the sensitive mass range is |M | = (1011− 1014)M� for the image
separation of 1′′ − 20′′.
As we have seen in the �rst chapter, the Ellis Wormhole is characterized by
one parameter as its throat radius a and the line element takes the form

ds2 = dt2 − dr2 − (r2 + a2)(dθ2 + sin2θdφ2). (3.41)

For Ellis wormholes, the lens equation in the weak �eld approximation be-
comes

β = θ − θ3
E

θ

|θ|3
(3.42)

with the Einstein angular radius

θE =

(
πa2

4

DLS

D2
LDS

)1/3

. (3.43)

The two images form at the angular positions

x−1
± = ± 3

√
1/2 +

√
1/4± y3/27− 3

√
∓1/2±

√
1/4± y3/27 (3.44)

where x± = θ±/θE and y = β/θE [42]. The magni�cation for each image is

µ± = |(1∓ x−3
± )(2x−3

± ± 1)|−1. (3.45)

The typical throat radius for a given θE (see Eq. (3.43)) is estimated as

a ' 10h−1pc(θE/1
′′)3/2[(D2

LDS/DLS)/(1h−1Gpc)2]1/2. (3.46)

The sensitive throat radius falls in the range, a = (10 − 100)pc from the
image separation of 1′′ − 20′′. The throat radius is much smaller than the
corresponding Einstein ring radius

RE = θE ×DL ∼ 10kpc(θE/1
′′)(DL/1h

−1Gpc). (3.47)
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This means that the range of the radius is slightly wider, since the lensing
e�ects are dependent also on distance ratios.
The latest result in SQLS has set the �rst cosmological constraints on negative-
mass compact objects and Ellis wormholes. There are no multiple images
lensed by the above two exotic objects for ∼ 50000 distant quasars in the
SQLS data. But, an upper bound is put on the cosmic abundances of
these lenses. Figures 3.4 and 3.5 show the current upper bound on the
cosmological number of the negative-mass compact objects and on the El-
lis wormhole, respectively. The vertical axis in Figure 3.4 is the number
density n(h3Mpc−3) and the horizontal one, the absolute value of the mass
|M |(h−1M�). The two curves are the upper bounds at 68% and 95% con-
�dence levels. For |M | > 1014(1012)M�, the number density is less than
n < 10−7(10−5)h3Mpc−3. The blue dashed lines denote the absolute value of
the cosmological density parameter for the negative mass, |Ω| = 10−4, 10−2

and 1. The density parameter is de�ned as the mass density divided by the
cosmological critical density, Ω = Mn/ρcr. For galactic and cluster mass
scale |M | = (1012 − 1015)M�, the density parameter is less than Ω < 10−4.
Then the negative-mass compact object is less abundant than the galaxy
with typical luminosity L∗(ngal ≈ 10−2Mpc−3) and the galaxy cluster with
typical mass 1014M� (nclust ≈ 10−4Mpc−3), which correspond to Ωgal ≈ 0.2
for the galaxies and Ωclust ≈ 0.3 for the clusters [43].
The horizontal axis of Figure 3.5 is the throat radius a(h−1pc). For a =
(10 − 104)pc, the number density is n < 10−4h3Mpc−3. The Ellis wormhole
with a = (0.1−105)pc is much less abundant than a star (nstar ≈ 1010Mpc−3).
The upper-bound curves approach straight lines for very small a(� 0.1pc)
or large a(� 104pc). In the case of a very small a, the lens is very close to us
since a ∝ DL from Eq. (3.43) under the �xed θE and DS, while the lens for

a very large a is very close to the source since a ∝ D
−1/2
LS from Eq. (3.43).
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Figure 3.4: Upper bound on the cosmological number density of negative-
mass compact objects. The vertical axis denotes the density n (h3Mpc−3).
The horizontal axis denotes the absolute value of the mass |M | (h−1M�).
The two solid curves correspond to upper bounds of 68% and 95% con�dence
levels. The blue dashed lines denote the absolute value of the cosmological
density parameter for the negative mass, |Ω| = 10−4, 10−2 and 1. Takahashi
and Asada [40]

Figure 3.5: Same as Fig., but for the Ellis wormhole. The horizontal axis is
the throat radius a (h−1pc) Takahashi and Asada [40]
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Chapter 4

Caustics of 1/rn binary

gravitational lenses: galactic

haloes and exotic matter under

the same model

4.1 Gravitational lensing by non-Schwarzschild

objects

With all these recent studies motivating further investigation on the ob-
servational properties of non-Schwarzschild metrics, with the present work
we aim at extending the existing gravitational lensing theory for 1/rn met-
rics developed in Refs. [33, 34] to the binary case. Indeed, the defocusing
property common to such metrics and the non-trivial structure of the Jaco-
bian matrix found in the single-lens case incites to make the leap to a case in
which the spherical symmetry is broken and the critical structure of the lens
map becomes non-trivial. Do the caustics in an exotic binary lens have any
resemblance to the standard Schwarzschild case? Is the number of images the
same? Do we �nd any new mathematical features that cannot be reproduced
in the standard case? There are many ways to break the spherical symmetry.
We can consider the rotation of the source distribution [69], the presence of
an external shear [70], a binary system composed of a normal star orbiting
an exotic object or a binary system composed of two exotic condensates.
Indeed, any of these routes require its own amount of work, so, as a �rst
case study, we have decided to focus on the binary system composed of two
exotic objects. This kind of system has the advantage of being mathemati-
cally simpler than the mixed case (normal star - exotic object) since the two
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de�ection terms come with the same power of the impact parameters. The
absence of any standard terms in the lens equation also ensures that any new
phenomena can be ascribed to the 1/rn gravity without any contamination
from other terms. So, it represents an ideal case in which we can explore
a fully developed non-trivial caustic structure generated in a genuine 1/rn

framework. Besides mathematics, an astrophysical motivation for studying
binary wormholes or 1/rn objects comes from studies of dynamical forma-
tion of wormholes from an initial scalar �eld con�guration [71]. It is likely
that local inhomogeneities in this �eld may cause the formation of multiple
objects in the same way as a gas cloud collapses by Jeans instability gener-
ating stellar clusters. So, a wide-range investigation of exotic objects should
take into account the possibility that they form in binaries or clusters. The
standard binary lens caustic structure has been studied by Schneider and
Weiss [32] and by Erdl and Schneider [72]. They showed that, depending on
the projected distance between the two components, three di�erent topology
regimes exist. Interesting results on the magni�cation pattern were obtained
by Witt and Mao [73] and Asada [74]. Getting more closely to our work, Shin
and Evans discussed the critical curves and caustics of isothermal haloes with
and without a regular core [31]. Notably, the singular isothermal sphere pro-
vides a limiting case for the 1/rn objects obtained for n→ 0. Gravitational
potentials with n < 1 characterize dust (non-relativistic matter) distributions
whose 3-dimensional density pro�le falls as 1/rn+2. Since haloes of galaxies
may have di�erent pro�les depending on the amount of dark matter they
contain, our study has interesting applications to lensing by galaxy systems.
We may e.g. consider the gravitational lens formed by two galaxies with
spheroidal haloes declining as 1/rn+2. The structure of critical curves and
caustics is obviously a function of the exponent n. A complete understanding
of these mathematical curves in di�erent regimes may help modelling these
systems and �x the slope parameter in real astrophysical cases. This would
be useful to extend existing catalogues of unusual gravitational lenses [75]
beyond the basic isothermal pro�le. In de�nitive, we will have two regimes
for our investigation of binary 1/rn objects: n < 1 corresponding to galactic
haloes, n > 1 corresponding to exotic objects violating energy conditions.
The familiar Schwarzschild metric comes with n = 1 and represents the
divider between these two very di�erent classes. As we have seen, light de-
�ection is sensitive both to the energy density and the pressure, which is
non-negligible in our case. So, when introducing the binary lens case, we
will not refer to a �mass ratio� between the two components, but rather to
a �strength ratio�. This terminology perfectly applies to the ordinary matter
n < 1 case, where the coe�cients are determined by the local density nor-
malizations rather than the total masses of the haloes.
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From the lens equation introduced in Eq. (3.35) we note that when the source
is perfectly aligned behind the lens (β = 0), the image coincides with the
only tangential critical curve, the Einstein ring with radius θE. So, the caus-
tic structure of the single 1/rn lens is analogous to its standard cousin: one
tangential critical curve corresponding to the degenerate caustic point in the
origin. There are no radial critical curves in the 1/rn lenses studied in this
work. In the singular isothermal sphere (n = 0), actually the circle with ra-
dius θE divides the source plane in a region where we have a single image and
an internal region in which we have two images. The name pseudo-caustic
has been proposed [77, 31] for the curve with radius θE. This pseudo-caustic
becomes a real radial caustic whenever we allow for a central regular core,
where a third highly-demagni�ed image can live. It is interesting to note
that the angular Einstein radius in the standard Schwarzschild lens scales
as the square root of the mass. So, if one changes the mass by a factor q,
the Einstein radius scales as

√
q. In the general 1/rn case, if one changes

the energy-momentum distribution by scaling it by a factor q, the de�ection
angle at a �xed impact parameter scales as q, but the Einstein radius scales
as q1/(n+1), which recovers the Schwarzschild limit for n = 1. This di�erence
has another interesting consequence: while the area of the critical curve is
directly proportional to the mass in the Schwarzschild case, this is not true
for non-Schwarzschild objects. The area enclosed in the critical curve grows
more slowly with the lens strength.

4.2 Binary lenses

Now let us consider a lensing system composed of two objects whose grav-
itational potential asymptotically falls as 1/rn, whether ordinary (n < 1) or
exotic (n > 1). If the two objects are gravitationally bound, the distribu-
tion of the matter-source supporting either object would be warped by the
presence of the partner. The resulting distribution could only be obtained
by a consistent resolution of the Einstein equations with the hydrodynamical
equations of the source. We have no intention to tackle such a complicated
problem, since our focus is on all possible new e�ects on the gravitational
lensing sector. So, the only case in which we can consider the total light
de�ection as the sum of the contributions given by the two isolated objects
arises when the two objects stand far apart along the line of sight but per-
spectivally close enough so as to a�ect the light trajectory by their peculiar
gravitational potential. On the other hand, if we do not want to tangle
with multiple plane de�ection issues [47, 78, 79], we must still require that
the distance between the pair of lenses is much smaller than the source-lens
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and lens-observer distances. The mixed case, with a star orbiting the exotic
object is probably more physically appealing, but more complicated math-
ematically. Our study intends to climb a clear and simple �rst step in this
topic.
We then consider two non-Schwarzschild objects A and B whose reduced
de�ection angles are given by

αA,B(~θ) = εA,Bθ
n+1
E

(
~θ − ~θA,B

)
|~θ − ~θA,B|n+1

. (4.1)

The coordinates in the sky of the two objects are ~θA,B, the de�ection strengths
depend on the gravitational potentials of the two objects through Eq. (3.31).
Setting εA + εB = 1, the strength ratio is q ≡ εA/εB, while the order of
magnitude of the de�ection is set by the angular scale θE. This corresponds
to the angular radius of the Einstein ring of an isolated object with εi = 1.
As emphasized before, for each object, this radius scales with εn+1

i . At this
point, we can write down the lens equation taking these two contributions
into account

~β = ~θ − εAθn+1
E

(
~θ − ~θA

)
|~θ − ~θA|n+1

− εBθn+1
E

(
~θ − ~θB

)
|~θ − ~θB|n+1

. (4.2)

For the ordinary binary lens equation (n = 1) it is very useful to introduce
complex coordinates, as �rst envisaged by Witt [48]. We do the same in the
generic power n case as follows

ζ =
β1 + iβ2

θE
; z =

θ1 + iθ2

θE
. (4.3)

For simplicity, we take the origin of coordinates at the mid-point between the
two lenses zA = −zB with the real axis along the line joining the lenses. We
call the normalized angular separation between the lenses s, so that we can
set zA = −s/2 and zB = s/2. Then the lens equation (4.2) can be written as

ζ = z − εA

(z + s/2)
n−1
2 (z̄ + s/2)

n+1
2

− εB

(z − s/2)
n−1
2 (z̄ − s/2)

n+1
2

. (4.4)

The fortunate simpli�cation that removes z from the de�ection terms only
occurs for n = 1. Its presence in the general case severely complicates the
Jacobian determinant of the lens map, which in complex notations is given
by

J(z, z̄) =

∣∣∣∣∂ζ∂z
∣∣∣∣2 − ∣∣∣∣∂ζ∂z̄

∣∣∣∣2 . (4.5)
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In fact, the �rst term, which was just unity in the Schwarzschild case, now
becomes as involved as the second. In detail, the Jacobian is

J =

{
1 +

n− 1

2

[
εA

(z + s/2)
n+1
2 (z̄ + s/2)

n+1
2

+
εB

(z − s/2)
n+1
2 (z̄ − s/2)

n+1
2

]}2

−(n+ 1)2

4

∣∣∣∣∣ εA

(z + s/2)
n+3
2 (z̄ + s/2)

n−1
2

+
εB

(z − s/2)
n+3
2 (z̄ − s/2)

n−1
2

∣∣∣∣∣
2

.(4.6)

The critical curves of a lens model are de�ned by the condition J(z) = 0
[49]. Creation/destruction of the images can only occur on such points.
The corresponding points on the source plane, found by applying the lens
map, form the caustic curves. Caustic curves bound regions in which a
source gives rise to an additional pair of images. A source on a caustic point
produces (at least) two degenerate images on the corresponding critical point.
For all these properties, critical curves and caustics are generally su�cient
to understand the qualitative behavior of a lens system. They are widely
used for the interpretation of observations in all applications of gravitational
lensing. Our goal, achieved in the following sections, is a full numerical and
analytical exploration of critical curves and caustics of the generalized binary
lens with de�ections falling as 1/un.

4.3 Numerical exploration of Critical curves and

Caustics

We start from the symmetric equal-strength case and then move to the
asymmetric strength case. Following the notation introduced in the previous
section, we assume that the centers of the two lenses lie on the real axis
(using complex notations) and we choose the origin half-way between the
two lenses. The unit of measure is θE, i.e. the angular radius of the Einstein
ring that we would obtain for an isolated object with strength ε = 1. The
strengths ratio of the two object is q = εA/εB and their separation in units
of θE is s. In order to show the evolution from n = 1 to higher values of
n, we decided to plot the critical curves and caustics for n = 0, 0.5, 1, 2, 3.
n = 1 corresponds to two ordinary Schwarzschild lenses [32, 72], while n = 2
corresponds to two Ellis wormholes. A generic value of n can be obtained in
other cases, as explained e.g. in Ref. [14]. On the other side, galactic haloes
can be obtained with this model in the range 0 < n < 1, with the singular
isothermal sphere being the limit n = 0. The technique used to obtain
the critical curve is accurate contouring of the Jacobian determinant using
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Figure 4.1: Equal-strength binary. Close separation

Mathematica. The contours are then mapped through the lens equation to
obtain the corresponding caustics in the source plane.

4.3.1 Equal-strength binary q = 1

In the standard Schwarzschild binary lens, it is well-known that three
topologies exist, depending on the separation of the two masses [32, 72].
The close topology is obtained for s < 1/

√
2. It consists of a primary 4-

cusped caustic at the barycenter of the system generated by the common
critical curve enveloping the whole lens and a pair of small triangular caustics
generated by two symmetrical critical ovals close to the lenses containing
local maxima of the Jacobian. The intermediate topology exists in the range
1/
√

2 < s < 2 and is characterized by a single 6-cusped caustic obtained when
the two secondary caustics of the close topology merge with the primary one
removing two pairs of cusps by a beak-to-beak singularity. Finally, the wide
topology for s > 2 emerges when the intermediate caustic splits into two
4-cusped astroids along the lens axis; the two astroids become smaller and
smaller while the two critical curves tend to the Einstein rings of the two
isolated objects. For the singular isothermal sphere, the same topologies are
found [31], but with important additional features in the close regime. In
fact, the small ovals shrink to zero size at �nite separation s and then grow to
�nite size again (this singularity is called elliptic umbilic). Finally, these ovals
touch the two singular lenses, giving rise to degenerate caustics. We always
�nd the same three topology regimes in the generic n case, nicely joining and
generalizing the two known limits, but with notable di�erences in the sizes
and the shapes of critical curves and caustics, which can be heavily deformed
with respect to the known limits. In Fig. 4.1 we show the critical curves and
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Figure 4.2: The elliptic umbilic catastrophe shown for n = 0.5 and separa-
tions growing from s = 0.5 to s = 0.62 in steps of 0.02 from red to blue. The
elliptic umbilic occurs at s = 0.56.

caustics for s = 0.6, which is in the close regime for all values of n chosen.
In the standard n = 1 case, the close topology features three critical curves,
one resembling the Einstein ring of the lens obtained by summing the two
masses and two smaller critical curves inside the main one. Correspondingly,
there is a central astroidal caustic generated by the main critical curve and
two triangular caustics corresponding to the small critical curves. For the
singular isothermal sphere (n = 0), the two secondary critical curves become
tangentially elongated and the two caustics become smaller and closer to the
primary one. As anticipated, for separations closer than s = 0.25, the two
critical curves reach the two lenses, and the secondary caustics merge with
the circular pseudo-caustics [31]. The singular isothermal sphere represents a
limiting case for our analysis. Indeed, this degenerate behavior is only found
for n exactly equal to 0, but for any n > 0 the critical curves never touch
the lenses. On the other hand, we �nd that the elliptic umbilic catastrophe
distinguishing the singular isothermal sphere from the Schwarzschild case
is present in the whole range 0 ≤ n < 1. Since this feature is particularly
di�cult to catch in general plots, in Fig. 4.2 we propose a sequence of critical
curves and caustics at �xed n = 0.5 and growing separations. From s = 0.5
to s = 0.56 the oval (and so the corresponding caustic) shrinks to zero size
and then from s = 0.56 to s = 0.62 it opens up again. We will come back
to the description of this elliptic umbilic in the next section. Moving from 1
to higher n values, we still see the same three critical curves, but the inner
ones are severely elongated in the radial direction opposite to the barycenter
of the system. In the caustics, this di�erence causes the formerly small
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Figure 4.3: Equal-strength binary. Close-intermediate transition
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Figure 4.4: Equal-strength binary. Intermediate separation

triangular caustics to become bigger and bigger, quickly becoming huge in
size (note the scale of the right panel of Fig. 4.4). The consequence of this
di�erence is that it is much easier for exotic lenses to have a source inside
one of these giant caustics and then have two additional images close to
the corresponding critical curve. We can imagine that the strong elongation
of the inner critical curves will cause the transition from the close to the
intermediate regime to occur earlier than in the standard n = 1 case. Indeed,
this is what happens. In fact, in Fig. 4.3 we have chosen s = 1/

√
2 to pick

up the transition in the n = 1 case. At this separation, both the n = 2
and n = 3 critical curves are already in the intermediate regime, with one
single dumbbell-shaped curve and a corresponding 6-cusped caustic. Still the
size of these intermediate caustics is much larger than in the standard case.
Conversely, the n < 1 caustics are still in the close regime. The extension
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Figure 4.5: Equal-strength binary. Intermediate-Wide transition
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Figure 4.6: Equal-strength binary. Wide separation

of the intermediate caustics orthogonal to the lens-axis decreases gradually
as we go deeper into the intermediate regime. In Fig. 4.4, we still have
the n = 2 and n = 3 caustics larger than the n = 1 one, but they are all
comparable now. The n = 0.5 and n = 0 caustics are still smaller than the
n = 1 one. The transition between the intermediate and wide regime occurs
at s = 2. This is true not only for n = 1, but also for all values of n, as
is evident in Fig. 4.5. At this separation, the critical curve has a �gure-
eight shape with the beak-to-beak singularity. Finally, Fig. 4.6 illustrates
the wide regime with s = 2.4. The critical curves tend to become circular
as the lenses move far apart. However, we note that the curves remain more
distorted at lower n, since the tidal �eld of the perturbing body decays more
slowly. Correspondingly, the largest caustic is now the n = 0, with the others
becoming smaller and smaller at larger n. Another thing we should note is

87



-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

x1

x 2
Critical curves Hs = 0.6, q = 0.1L

n = 3
n = 2
n = 1
n = 0.5
n = 0

-10 -5 0 5 10

-10

-5

0

5

10

y1

y 2

Caustics Hs = 0.6, q = 0.1L

0.0 0.2 0.4 0.6
-0.4

-0.2

0.0

0.2

0.4

n = 3
n = 2
n = 1
n = 0.5
n = 0

Figure 4.7: Unequal-strength binary. Close separation

that the radius of the critical curves is not the same for all n. This is in
agreement with the discussion at the end of Section 4.1. Since either lens has
strength εi = 1/2, the angular Einstein ring of either lens tends to 1/21/(n+1),
which grows with n.

4.3.2 Unequal-strength binary q = 0.1

Now we move to the unequal strength case, starting with a moderate
strength ratio q = 0.1. In the close regime, shown in Fig. 4.7, we see the same
characteristics already discussed in the equal-strength case: the main critical
curve giving rise to the central caustic and the two smaller critical curves
inside the main one, giving rise to the triangular caustics. The asymmetry of
the lenses make the secondary critical curves move toward the weaker lens.
For ordinary matter distributions (n < 1), the critical curves rush toward
the weaker lens; the secondary caustics become smaller and closer to the
primary caustic. Going from the n = 1-lensing to higher n we see that the
inner critical curves become larger, drift toward the center of the system
and become radially elongated. The corresponding caustics become larger
and larger similarly to the equal-strength case. We also note that the main
critical curve is perturbed on the side of the weaker lens, which is again a
consequence of the scaling of the individual Einstein rings as ε

1/(n+1)
i . In Fig.

4.8 we have s = 0.769, corresponding to the transition from the close to the
intermediate regime in the n = 1 case. As already found in the equal-strength
case, the transition occurs earlier (smaller s) for n > 1 and later (larger s) for
n < 1. The n > 1 caustics are signi�cantly larger than the n = 1 one. Then
we have Fig. 4.9, with the intermediate regime s = 1. The caustics become
comparable in size. The transition between the intermediate and the wide
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Figure 4.8: Unequal-strength binary. Close-Intermediate transition
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Figure 4.9: Unequal-strength binary. Intermediate separation

regime occurs at s = 1.689 for n = 1 but is pushed to higher separations for
n > 1 and to lower separations for n < 1. So, contrarily to what happens in
the equal-strength case, also this transition is a�ected when we change n. In
general, the intermediate regime occupies a larger volume in the parameter
space for n > 1 and a smaller volume for n < 1. Finally, Fig. 4.11 shows
the wide regime s = 2. Note that the weaker lens critical curve has a radius
that strongly depends on n, since θE ∼ ε

1/(n+1)
i . The caustic of the weaker

lens, instead, remains of the same size and it moves toward the projected
lens position at higher n.
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Figure 4.10: Unequal-strength binary. Intermediate-Wide transition
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Figure 4.11: Unequal-strength binary. Wide separation

4.3.3 Extreme unequal-strength binary q = 0.001

Now we go deeper into the unequal-strength regime of the binary lens,
with εA � εB. In the standard n = 1 context, this regime is conventionally
called the �planetary� limit, as it naturally applies to the search for exoplan-
etary systems by the microlensing method. For n = 0, it may represent
gravitational lensing by a massive galaxy accompanied by a smaller satellite.
Fig. 4.12 shows the close regime for s = 0.6. The central caustic remains tiny,
as the main critical curve is very weakly perturbed by the weaker lens. The
small inner critical curves grow larger with n, as already noted in the pre-
vious subsection. The corresponding triangular caustics, become huge. This
contrasts with the n = 1 case, for which it is well known that the chance
of detecting planets is related to the probability that the source trajectory
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Figure 4.12: Extreme unequal-strength binary. Close separation
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Figure 4.13: Extreme unequal-strength binary. Close-Intermediate transition

crosses these very small caustics. In the n > 1 case, it is much easier to de-
tect a weaker component. The transition between the close and intermediate
regime occurs at s = 0.931 in the n = 1 case. For n > 1 we are already
in the intermediate regime here (Fig. 4.13), while we are still in the close
regime for n < 1, although the secondary critical curves and caustics are al-
most invisible. At s = 1 (Fig. 4.14), we are in the so-called resonant regime,
for which the n = 1 caustic assumes the largest size. Actually, for n > 1
the total size of the caustics is similar to that in the close regime, which is
dominated by the triangular caustics. At s = 1.153, the n = 1 caustic enters
the wide regime, while the n > 1 ones are still in the intermediate regime.
The caustics rapidly evolve but still the n > 1 ones remain larger (Fig. 4.15).
In general, the n < 1 caustics are extremely small. In the wide regime (Fig.
4.16), we have two separate critical curves. The weaker lens still has a larger
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Figure 4.14: Extreme unequal-strength binary. Intermediate separation
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Figure 4.15: Extreme unequal-strength binary. Intermediate-Wide transition

ring in the n > 1 case, as discussed before. The caustics tend to become of
similar size, as in the q = 0.1 case, although at s = 1.4 we still appreciate
that the n > 1 caustics are slightly larger than the n = 1 one and are closer
to the projected lens position.
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Figure 4.16: Extreme unequal-strength binary. Wide separation

4.4 Boundaries of the three topology regimes

In the standard Schwarzschild case (see Ref. [72]), the transition between
the close and intermediate regime occurs at a separation sCI,n=1 implicitly
given by the solution of the equation

q

(q + 1)2
=

(1− sCI,n=1)3

27s8
CI,n=1

, (4.7)

while the transition between the intermediate and wide regime falls at

sIW,n=1 =

(
q

1
3 + 1

) 3
2

(q + 1)
1
2

. (4.8)

Our numerical exploration has shown that the three topologies known in the
n = 1 cases (close, intermediate, wide) naturally propagate to the n > 1
case, with no change, save for the sizes and elongation of critical curves and
caustics. However, we have already noted how the region in the parameter
space corresponding to the intermediate regime widens with respect to the
standard case, with the only exception of the equal-strength case, for which
the intermediate-wide transition still occurs for s = 2 for any n. In the
n < 1 case, instead, the region corresponding to the intermediate regime
shrinks and we have an additional catastrophe (the elliptic umbilic) well
within the close regime. However, this catastrophe does not change the
overall caustic topology. In this section we aim at �nding the boundaries
of the three topology regimes in the parameter space for any n and the
position of the elliptic umbilic for n < 1. Transitions occur via higher order
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singularities of the lens map, namely beak-to-beak singularities in the binary
lens case. So, in order to �nd the values of the parameters q and s for
which such transitions occur, we need to impose that the Jacobian J and its
derivative ∂J/∂z simultaneously vanish. This quantity reads

∂J

∂z
=

1− n2

4

[
εA

(z + s/2)
n+3
2 (z̄ + s/2)

n+1
2

+
εB

(z − s/2)
n+3
2 (z̄ − s/2)

n+1
2

]
{

2 + (n− 1)

[
εA

(z + s/2)
n+1
2 (z̄ + s/2)

n+1
2

+
εB

(z − s/2)
n+1
2 (z̄ − s/2)

n+1
2

]}

−(n− 1)(n+ 1)2

8

∣∣∣∣∣ εA

(z + s/2)
n+1
2 (z̄ + s/2)

n+3
2

+
εB

(z − s/2)
n+1
2 (z̄ − s/2)

n+3
2

∣∣∣∣∣
2

+
(n+ 3)(n− 1)2

8

{[
εA

(z + s/2)
n+5
2 (z̄ + s/2)

n−1
2

+
εB

(z − s/2)
n+5
2 (z̄ − s/2)

n−1
2

]
[

εA

(z + s/2)
n−1
2 (z̄ + s/2)

n+3
2

+
εB

(z − s/2)
n−1
2 (z̄ − s/2)

n+3
2

]}
, (4.9)

which looks extremely complicated. However, we have managed to �nd the
simultaneous solution of the equations ∂J/∂z = 0 and J = 0 corresponding
to the intermediate-wide transition. Unfortunately, after many e�orts, we
have not been able to �nd the close-intermediate transition. Concerning the
intermediate-wide transition, we know that the beak-to-beak singularity oc-
curs along the line joining the two lenses. This can be expressed by requiring
z = z̄ in complex notations. Then we introduce a new variable

y =
s/2− z
s/2 + z

, (4.10)

replacing z in J and ∂J/∂z. We then solve ∂J/∂z = 0 in terms of y, obtaining

y =

(
εB
εA

) 1
2+n

(4.11)

Finally, we insert this expression for y in J and solve J = 0 for s. In this
way, we obtain:

sWI = (q + 1)−
1

n+1

(
q

1
n+2 + 1

)n+2
n+1

(4.12)

which reduces to the solutions already known (Eq. (4.8)) for n = 1 [72]
and for the n = 0 case [31]. For the Close-Intermediate transition, we are
unable to extend Eq. (4.7) to arbitrary values of n, but we can easily study
the transition numerically. Fig 4.17 plots sIC and sWI as functions of q for
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Figure 4.17: The critical values of the projected separation (in units of θE)
at which the caustics topology of a binary lens changes as a function of the
mass ratio q and the index n. The upper curves is sWI , i.e. the critical
value of s between the wide caustic and the intermediate or resonant caustic
topology. The lower curves correspond to sIC , the critical value between the
resonant caustic and close caustic topology.

n = (0, 0.5, 1, 2, 3). Note that for equal-mass binaries, q = 1 the critical value
of the intermediate-wide separation is always 2 for any index n, as already
anticipated in the previous section. In addition to the main topology tran-
sitions, we have discussed the existence of an elliptic umbilic catastrophe in
the close regime for n < 1. Shin and Evans [31] showed that this catastro-
phe should lie centered half-way between the two lenses and passing through
them. We �nd that their argument is still valid for any values of n and there-
fore look for simultaneous solutions of the equations J = 0 and ∂J/∂z = 0
along this circle. After setting z = seiθ/2, we introduce the variable t by the
equation

t
1

1+n ≡ tan
θ

2
. (4.13)

This considerably simpli�es the two equations and we obtain the angular
position of the elliptic umbilic as

t =
εB
εA
, (4.14)

and the critical value of the separation at which the catastrophe occurs

s = (1− n)
1

1+n

√
ε

2
1+n

A + ε
2

1+n

B , (4.15)
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which nicely matches the n = 0 limit already found in Ref. [31]. As shown
by this formula, for n→ 1 the elliptic umbilic occurs at zero separation and
is therefore unobservable from n = 1 on. In Fig. 4.17 the positions of the
elliptic umbilic in the parameter space are shown by dashed curves in the
cases n = 0 and n = 0.5.

4.5 Analytical approximation of Critical curves

and Caustics

Our numerical study of the critical curves and caustics of exotic lenses has
shown some interesting di�erences with respect to the standard Schwarzschild
case. In particular, the enormous size of the formerly small triangular caustics
in the close topology represents the most impressive novelty of the systems
explored in our investigation. These numerical results call for support by
analytical formulae describing the behavior of the caustics in some particular
limits. In the binary Schwarzschild lens, this kind of exploration has led to
several interesting analytical results in the close, wide and planetary limits
[50, 51, 52, 53, 54, 55, 56]. Some analytical results have also been obtained
for the n = 0 case [31]. In this section we extend these studies to a generic
value of the exponent n. By discussing the analytical approximations, we will
gain a much deeper understanding of the evolution of the caustic structure
with n.

4.5.1 Wide binary

First, let us consider the simplest limit: an isolated object whose de�ect-
ing potential is perturbed by another object at a distance much larger than
the Einstein radius. We place our lens at position zA = 0, and the perturbing
object at zB = −s, with s� 1. So the lens equation reads:

ζ = z − εA

z
n−1
2 z̄

n+1
2

− εB

(z + s)
n−1
2 (z̄ + s)

n+1
2

(4.16)

Their properties can be studied through the Jacobian determinant of the lens
map

J =

{
1 +

n− 1

2

[
εA

z
n+1
2 z̄

n+1
2

+
εB

(z + s)
n+1
2 (z̄ + s)

n+1
2

]}2

−(n+ 1)2

4

∣∣∣∣∣ εA

z
n+3
2 z̄

n−1
2

+
εB

(z + s)
n+3
2 (z̄ + s)

n−1
2

∣∣∣∣∣
2

. (4.17)
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Starting from an isolated point-lens, the presence of the other mass, that is
very far from the �rst one, deforms the circular critical curve. This defor-
mation can be recovered by a perturbative approach [50, 52]. Therefore, we
set

z = ρ(1 + δ)eiθ, (4.18)

with δ ∼ 1/sp, and the exponent p being �xed by the perturbative expansion.
At zero order, sending s to in�nity in Eq. (4.17), the equation J = 0 is solved
by

ρ = ε
1/(n+1)
A , (4.19)

which is the critical curve for a single lens. To �rst order in 1/s, the �rst
correction to the critical curve appears for δ ∼ 1/sn+1:

δ =
εB[1− n+ (n+ 1) cos(2θ)]

2(n+ 1)sn+1
. (4.20)

In the standard n = 1 case, this correction reduces to

δ =
εB cos(2θ)

2s2
, (4.21)

which matches what was found in previous studies [50, 52]. The deformation
of the circular critical curve is still given by cos(2θ) with the same amplitude
independent of n. However, the curve is slightly shrunk (or enlarged) by a
�xed term proportional to (1 − n)/(n + 1). By applying the lens equation
(4.16) and expanding we obtain:

Re[ζ(θ)] = −εB
sn

+
(n+ 1)ε

1/(n+1)
A εB cos3 θ

sn+1
(4.22)

Im[ζ(θ)] = −(n+ 1)ε
1/(n+1)
A εB sin3 θ

sn+1
(4.23)

For εB → 0 we return to the case of a point-lens, therefore the terms with εB
give the perturbation of the caustics. The �rst term in Re[ζ] is a shift −εB/sn
of the caustic in the direction toward the perturbing object. The shift decays
with the index n, in agreement with what we note in Figs. 4.6, 4.11, 4.16.
The other terms in ζ describe the shape of the caustics as cos3 θ + i sin3 θ,
which corresponds to the classic Chang-Refsdal 4-cusped astroid [70, 52].
This does not change from n = 1 to greater or smaller n. However, the size
of the caustic scales as (n + 1)/sn+1. At moderate separations, the caustics
at higher n are larger than in the n = 1 case, but in the deep wide limit
s� 1, the caustics become smaller and smaller.
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4.5.2 Close binary

The close binary regime poses the greatest challenge for any analytical
results, as we already experienced with our search for the boundary between
the close and intermediate regime. We will �rst discuss the central caustic
[50, 52] and then the �secondary� caustics [53], which for n > 1 give rise to
the huge triangular structures shown in our numerical investigation.

Central caustic

We leave the two masses at positions zA = −s/2 and zB = s/2 as in
the lens equation (4.2) and consider the Jacobian determinant in the form
of Eq. (4.6). The separation between the masses s modulate the deviations
from the Schwarzschild lens and constitute the perturbative parameter in our
expansion. We use the parameterization

z = ρ(1 + δ1 + δ2)eiθ, (4.24)

where δ1 is of order s, and δ2 is of order s2 . Substituting in equation (4.6)
and expanding in powers of s up to second order, we can solve for ρ, δ1 and
δ2 :

ρ = 1

δ1 =
1

2
(−εA + εB) cos θ s

δ2 =
1

16
{−1 + 4nεAεB + [1 + (16 + 4n)εAεB] cos(2θ)} s2 (4.25)

Note that, the dependence on n is only in the second order of the expansion.
Once known the perturbations to the critical curve, we can �nd the caustic
using the lens equation:

Re[ζ(θ)] =
(−εA + εB)

2(εA + εB)
s+

(n+ 1)εAεB cos3 θ

(εA + εB)
2n+3
n+1

s2 (4.26)

Im[ζ(θ)] = −(n+ 1)εAεB sin3 θ

(εA + εB)
2n+3
n+1

s2 (4.27)

The �rst order perturbations in Re[ζ] is simply a shift term that displaces the
caustic from the origin (median point between the two lenses) to the center of
strength (the wording �center of mass� should be reserved to n = 1 case only).
The dependence on n appears at the second order terms in ζ with the factor
(n+ 1). The denominator is just a power of (εA + εB), which has been set to
1 in our investigations. Then we learn that the central caustic scales linearly
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with the exponent n, something that can be appreciated in Fig. 4.12, in
particular, but occurs for all values of the strength ratio q. The shape of the
caustic is still the classical 4-cusped astroid as in the wide separation limit,
reminding us of the wide-close degeneracy [50], which plagues gravitational
lensing by binary systems.

Secondary caustics

The lens map is characterized by secondary critical curves that can ap-
pear in the form of small ovals near the center of strength of the system
(Fig. 4.1) [52, 53]. These secondary critical curves produce tiny caustics for
n < 1 and the huge triangular caustics far from the lens system for n > 1.
So, we are particularly interested in con�rming our numerical results by an
analytical approximation that makes us understand how this phenomenology
arises. Our starting point is still the Jacobian in the form Eq. (4.6). The
critical curves appear along a circle with radius s/2 centered in our origin.
Unfortunately, we are unable to achieve a full description of these small ovals
and we have to content ourselves with some partial yet valuable information.
By setting

z =
s

2
eiθ, (4.28)

we manage to obtain the two intersections of these ovals with the circle of
radius s/2. These two points are already enough to appreciate the size of
the ovals and then of the corresponding tiny (for n ≤ 1) or giant (for n > 1)
caustics. Inserting this parameterization in Eq. (4.6) and saving the zero
order in s only, we obtain an equation for θ:

−εAεBe2ınπ(n2+1) sin θ sinn(θ/2) cosn(θ/2)+2n[εA
2 sin2n+2(θ/2)+εB

2 cos2n+2(θ/2)] = 0.
(4.29)

This equation is satis�ed by the angles:

θ1 = 2 tan−1

[(
εB
nεA

) 1
n+1
]

(4.30)

θ2 = 2 tan−1

[(
nεB
εA

) 1
n+1
]
. (4.31)

These two angles represent the positions of the two intersections of the sec-
ondary critical curves with the circle of radius s/2. Note that the standard
case n = 1 is degenerate, in the sense that the two intersections coincide at
zero order. This is a warning that only in the special Schwarzschild lens the
secondary critical curves require an expansion to the next order in s of the
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Jacobian [53]. This is the root of the extreme di�erence in size we �nd when
we move from n = 1 to n > 1. At n > 1 the secondary critical curves open
up at �rst order already, while they remain pointlike at n = 1 and open up
at second order only. Having widened our horizons by our exploration of all
values of n, we learn that this fact is related to the presence of the elliptic
umbilic at n < 1, which collapses to s = 0 for n → 1. Therefore, in the
starting point of our expansion at small s, the n = 1 case is at the elliptic
umbilic, which makes secondary critical curves shrink to zero size. Setting
εA = εB in θ1 and θ2, we can easily see that θ2 − π/2 = π/2 − θ1, i.e. the
two intersections are symmetrical with respect to the vertical axis, as it is
expected in the equal-strength case. Using the lens equation, we can calcu-
late the position of the caustic points corresponding to these intersections.
We �nd

ζ =
(n−

2
1+n + 1)

n−1
2

2n
1

1+n sn

[(
n

n
1+n − n

1
1+n

)
− i(n+ 1)

]
(4.32)

The imaginary part of these caustic points gives us an idea of the distance of
the secondary caustic from the origin. The real part, instead, can be taken
as a measure of the transverse extension of the caustic. Note that the latter
is exactly zero in the limit n = 1, which means that the extension of the
caustic must be calculated at the next order in the power expansion in s
in the standard case. Indeed, from previous studies, [53] we know that the
transverse extension of the secondary caustic is proportional to s3 for the
standard binary Schwarzschild lens. When n > 1, the secondary caustic has
an extension comparable to its shift along the vertical axis, which is what we
have observed in Figs. 4.1, 4.7 and 4.12. More in detail, we can make a plot
of the real and imaginary parts of Eq. (4.32) at �xed separation as functions
of n, as shown in Fig. 4.18. This plot makes us appreciate the impressive
sizes reached by these giant caustics.

4.5.3 Extremely unequal-strength ratio limit

The limit εB � εA takes the form of the planetary limit in the n = 1
case [50, 51, 52]. This limit is also interesting because it is possible to fully
describe the huge triangular caustics of the close topology, con�rming our
previous partial results.

Central caustic

We consider the main lens at position zA = 0 accompanied by a weak
perturbing object placed at zB = −s. The lens equation and the Jacobian
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Figure 4.18: Real and imaginary parts of the caustic points calculated in Eq.
(4.32). The imaginary part is a measure of the distance of the secondary
caustics, while the real part is a measure of the transverse size. The graphic
is for s = 0.6.

determinant take the forms already calculated in the wide limit (4.16), (4.17).
We then introduce the parameterization

z = ε
1/(n+1)
A (1 + δ)eiθ, (4.33)

where δ is of order of εB � εA. Substituting in Eq. (4.17) and expanding in
power series about the point εB = 0, to �rst order in εB, we can solve for δ:

δ =
εB{2ε2/(n+1)

A + 4ε
1/(n+1)
A cos θ s+ [1− n+ (n+ 1) cos(2θ)]s2}

2(n+ 1)
[
ε

2/(n+1)
A + 2ε

1/(n+1)
A cos θ s+ s2

]n+3
2

(4.34)

Once determined δ, we can �nd the caustic by use of the lens equation:

ζ = −{4ε
2/(n+1)
A eıθ − ε1/(n+1)

A [n− 3− 2(n+ 3)e2ıθ + (n+ 1)e4ıθ] s+ 4eıθs2}εB s
4eıθ(ε

2/(n+1)
A + 2ε

1/(n+1)
A cos θ s+ s2)

n+3
2

(4.35)
to �rst order in εB. The size of the caustic is proportional to εB, as in the
standard n = 1 case. More precisely, the distance between the left and right
cusps (obtained with θ = π and θ = 0 respectively) is

∆ζ = εBs

[∣∣∣s− ε1/(n+1)
A

∣∣∣−n−1

−
∣∣∣s+ ε

1/(n+1)
A

∣∣∣−n−1
]
. (4.36)

While the size increases with n for s < 2 because of the �rst term, it decreases
for s > 2. It is �nally interesting to extend the famous wide/close degeneracy
for the central caustic of the "planetary" system to the case of arbitrary n
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[57, 50, 51]. Indeed, we �nd that the formula (4.35) is invariant under the
transformation

s→ ε
2/(n+1)
A

s
, εB → εB

(
ε

1/(n+1)
A

s

)n−1

. (4.37)

We remind that the radius of the critical curve of an isolated exotic object is
proportional to ε

1/(n+1)
A , which makes clear that the inversion of s is exactly

the same we �nd in the standard case. However, for n 6= 1, the transformation
must be complemented by a change in the strength of the perturbing object.

Caustics of the perturbing object

In order to study the caustics of the perturbing object, which reduce to
the planetary caustics in the n = 1 limit [51, 52], we put the main lens at
zA = −s and the secondary lens at zB = 0. The lens equation takes the form:

ζ = z − εA

(z + s)
n−1
2 (z̄ + s)

n+1
2

− εB

z
n−1
2 z̄

n+1
2

, (4.38)

and the Jacobian determinant is

J =

{
1 +

n− 1

2

[
εA

(z + s)
n+1
2 (z̄ + s)

n+1
2

+
εB

z
n+1
2 z̄

n+1
2

]}2

−(n+ 1)2

4

∣∣∣∣∣ εA

(z + s)
n+3
2 (z̄ + s)

n−1
2

+
εB

z
n+3
2 z̄

n−1
2

∣∣∣∣∣
2

. (4.39)

We write
z = ρ1/(n+1)ε

1/(n+1)
B eiθ, (4.40)

and substitute in the equation (4.39). The lowest order Jacobian is:

(n+ ρ)(ρ− 1)

ρ2
+

[(n− 1)(2ρ+ n− 1)− (n+ 1)2 cos(2θ)]εA
2ρsn+1

− nε2A
s2n+2

= 0.

(4.41)
Solving this last equation for ρ, we �nd two solutions:

ρ± =
{εA[(n+ 1)2 cos(2θ)− (n− 1)2] + (2− 2n)sn+1 ± (n+ 1)

√
∆}sn+1

4(sn+1 − εA)(sn+1 + nεA)

∆ = 4s2n+2 + 2εA{(4n− 4)sn+1 + εA[n2 − 6n+ 1− (n+ 1)2 cos(2θ)]} sin2 θ.(4.42)

Now, when the secondary object is outside of the main lens Einstein ring,
the critical curve assumes the shape of an elongated ring. When the planet
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is inside the main lens critical curve, the secondary object generates two
specular ovals. According to the double sign, two branches are present. For
external objects (s > 1) only the higher is real, while for internal objects
(s < 1) both branches are real in a small interval centered on θ = π/2 [51, 52].
So, we have fully analytical formulae describing the secondary critical curves
of the close topology in the extreme strength-ratio limit, something that was
not possible to achieve for arbitrary values of the strength ratio. Through
the lens equation, we can �nd the caustics

ζ =
εAε

1/(n+1)
B ρ[n+ 1 + (n− 1)e2ıθ]− 2εAρ

n/(n+1)eıθs+ 2ε
1/(n+1)
B e2ıθ(ρ− 1)sn+1

2ρn/(n+1)eıθsn+1
.

(4.43)
This formula gives a full description of the caustics in the εB � εA limit
for all values of s. It can be used to obtain general indications of the size
and the displacement of the secondary caustics from the main one. The
displacement along the axis joining the two lenses can be obtained as the
mid-point (ζ(0) + ζ(π))/2, which lies at the center of the secondary caustic
structure. Taking into account that here we have considered the secondary
object as the origin of the reference frame, the full displacement from the
main object is

ζcenter = s− εA
sn
, (4.44)

which reduces to the classical expression for the position of the planetary
caustic for n = 1 [50, 51]. The extension of the caustic in the wide case in
the direction parallel to the lens axis is simply given by (ζ(0)− ζ(π)), which
reads

∆ζ‖,wide = 2(1 + n)
εAε

1/(1+n)
B

sn (s1+n − εA)1/(1+n)
. (4.45)

In the vertical direction, orthogonal to the lens axis, (ζ(π/2)−ζ(−π/2)) gives

∆ζ⊥,wide = 2(1 + n)
εAε

1/(1+n)
B

sn (s1+n + nεA)1/(1+n)
. (4.46)

The astroid caustic is slightly elongated toward the main lens. By increasing
n, we have terms in the numerator that become larger and the sn+1 in the
denominator which tend to compensate and dominate at larger separations,
so that the size of the caustic tends to decrease in this regime. In the close
regime s < ε

1/(1+n)
A , we can easily pick the position of the outer cusp (the one

most distant from the lens axis). This is found by setting θ = π/2 in Eq.
(4.43) and choosing the positive sign for the square root in ρ in Eq. (4.42).
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Figure 4.19: Size and displacement of the secondary caustics in the extreme
strength ratio limit.

In fact, it can be easily veri�ed that dζ/dθ = 0 in this point, as it required
by the cusp condition. The distance of this cusp from the lens axis is

Im[ζ+(π/2)] = (1 + n)
εAε

1/(1+n)
B

sn (εA − s1+n)1/(1+n)
. (4.47)

The position of the remaining two cusps cannot be found analytically, but
the mid-point is again given by ζ(π/2) with the negative sign for the square
root of ρ in Eq. (4.42):

Im[ζ−(π/2)] = (1 + n)
ε

1/(1+n)
B

sn [n(εA − s1+n)]n/(1+n)
. (4.48)

The di�erence Im[ζ+(π/2)]−Im[ζ−(π/2)] is thus a measure of the transverse
size of the triangular secondary caustics. In Fig. 4.19 we show the trend of
the position and the size of the caustic for n ∈ [0, 5]. In the wide regime,
we note that the displacement of the secondary caustic from the perturbing
object rapidly decreases going toward higher n. The size of the caustic �rst
increases and then decreases at higher n. In the close regime, both the
displacement and size increase with n. In particular, we see that the size
reaches the same order of the displacement, giving rise to the huge caustics
we have seen throughout our investigation. For n < 1, the transverse size
(4.48) shrinks to zero for s = (1−n)1/(n+1), as prescribed by the correct limit
of the elliptic umbilic singularity (4.15), and then grows again.
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Discussion and Conclusions

The mathematical structure of the lens equation has inspired many stud-
ies in the past century, since it involves very spectacular aspects of the catas-
trophe theory [58]. Our study of the binary lens made up of two objects
with metric falling as 1/rn is not an exception in this picture. We have led
a full numerical exploration of all topology regimes in the parameter space
(s, q) where s is the separation of the two lenses and q is the strength ratio.
We have traced the boundaries of the three topology regimes and for the
occurrence of elliptic umbilics, and we have been able to derive analytical
approximations for all the extreme cases, in analogy with what has been
previously done for the standard binary lens with ordinary gravitational po-
tentials 1/r [52, 53]. Although we have not found any new topologies with
respect to the standard binary lens, all the positions and sizes of the caustics
are modi�ed by the power of the gravitational potential. In particular, the
formerly small triangular caustics of the close topology become huge in size
for n > 1, which comes as the most intriguing surprise of our study. Thanks
to our analytical approximations, we have been able to quantify the sizes
and displacements of caustics in all limits, con�rming the numerical study.
The by-products of these formulae have been barely explored in this thesis.
We can just mention the extension of the famous wide/close degeneracy of
the planetary limit [57] to the extreme strength ratio regime of the general
1/rn space. The applications of this study are two-fold. The regime n < 1
corresponds to a generic matter distribution with a density pro�le scaling as
rn+2. Our exploration provides a considerable extension of previous results
only known for the singular isothermal sphere (n = 0) [31]. We have con-
�rmed that an elliptic umbilic catastrophe occurs in the close regime, while
no critical curves ever reach the lens position as in the singular isothermal
sphere. On the other side of the Schwarzschild lens, for n > 1, we have
reached our goal of a �rst exploration of gravitational lensing by exotic 1/rn

objects in a non-trivial con�guration. Such objects can only be obtained
by some violation of the energy conditions. In our study we have focused
on a pair of objects of the same type, so as to understand all modi�cations
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of the standard binary case that have to be ascribed by the change of the
Schwarzschild potential rather than to mixing e�ects. A possible next step
would be the study of the mixed case with an ordinary Schwarzschild lens
around an 1/rn object. Indeed we might expect even more surprises from this
asymmetric situation. The caustic structure is the basis to understand the
full phenomenology of gravitational lensing. The much broader extension of
caustics in the close and intermediate topology we �nd in our study suggests
that it is much easier to form additional images for binary exotic lenses than
for ordinary Schwarzschild lenses. However, this e�ect has to be weighted
by the defocusing power which is known to appear with 1/rn potentials for
any n > 1. So, the application to astrophysical situations might set aside
even more interesting surprises. We can imagine that microlensing by such
binary lenses would feature incredibly long caustic crossings where they are
not expected to be, accompanied by depressed regions in which one or more
images are de-magni�ed. The existence of more signatures that might allow
the unambiguous identi�cation of exotic objects, including Ellis wormholes,
is indeed the primary goal of this kind of studies. Considering that searches
for Ellis wormholes in existing lensing databases have started [59], a full un-
derstanding of the interaction of these exotic objects with their environment
is important to achieve a fully correct interpretation of these data.
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