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Introduction

The thesis is divided in two parts: the �rst part regards MV-semirings, in-
volutive semirings and semimodules over them with particular attention to
injective and projective semimodules; the second part of the thesis is focused
on the tropical semiring and has the purpose to characterize the sets which
arise as images of retractions that are nonexpansive with respect to a hemi-
norm which plays a key role in tropical geometry.

Semirings and semimodules, and their applications, arise in various bran-
ches of Mathematics, Computer Science, Physics, as well as in many other
areas of modern science (see, for instance, [30]). MV-algebras arose in
the literature as the algebraic semantics of �ukasiewicz propositional logic,
one of the longest-known many-valued logic. A connection between MV-
algebras and a special category of additively idempotent semirings (called
MV-semirings or �ukasiewicz semirings) was �rst observed in [18]. On the
one hand, every MV-algebra has two semiring reducts isomorphic to each
other by the involutive unary operation ∗ of MV-algebras (see, e.g., [21,
Proposition 4.8]); on the other hand, the category of MV-semirings de�ned
in [21] is isomorphic to the one of MV-algebras. The term equivalence be-
tween MV-algebras and MV-semirings allows us to import results and tech-
niques of semiring and semimodule theory in the study of MV-algebras as
well to use properties and theorems regarding MV-algebras in the study of
semimodules over MV-semirings.

Indeed, as the theory of modules is an essential chapter of ring theory, so
the theory of semimodules is a crucial aspect in semiring theory and two of
the most important objects in semimodule theory are projective and injective
semimodules.

Although, in general, describing the structure of projective and injective
semimodules seems to be a quite di�cult task, we shall give a criterion
for injectivity of semimodules over additively idempotent semirings which
we shall use to describe the structure of injective semimodules over MV-
semirings with an atomic Boolean center, i. e. the boolean elements of the
MV-semiring form an atomic lattice.

In the �rst three sections we shall provide all necessary notions, facts and
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examples on semirings and MV-algebras. The aforementioned term equi-
valence between MV-algebras and MV-semirings shall be recalled as well as
the one between MV-semirings and coupled semirings originally presented in
[18].
In Section 1.4 we shall discuss congruences and ideals in MV-semirings. Con-
trarily to what happens for MV-algebras congruences and ideals are not in
bijection in MV-semirings and while congruence simple MV-semirings coin-
cide with simple MV-algebras, the only ideal simple MV-semiring is the
boolean semi�eld {0, 1}.

In Chapter 2 we shall investigate the semiring of polynomials in the variable
x over the boolean semi�eld {0, 1} evaluated on the standard MV-semiring
([0, 1],∨,�, 0, 1) and we shall denote such semiring as B[x]. In particular,
we shall prove that it coincides with the semiring of nondecreasing convex
McNaughton functions over [0, 1] with pointwise operations and that it is
also isomorphic to the semiring (N ∪ {∞},min,+,∞, 0).

In Chapter 3 we shall present a term equivalence between involutive residua-
ted lattices and a special class of semirings called involutive semirings which
can be seen as a generalization of the one between MV-algebras and MV-
semirings since the variety of involutive residuated lattices strictly contains
the one of MV-algebras. The semiring perspective helps us �nd a necessary
and su�cient condition for the interval [0, 1] to be a subalgebra of an invo-
lutive residuated lattice. This result is meaningful because with 0 and 1 we
don't mean the top and bottom elements of the involutive residuated lattice:
0 is an additional constant and 1 is the neutral element of the multiplication.
In particular, we show that [0, 1] is a subalgebra of an involutive residuated
lattice if and only if 0 is a multiplicatively idempotent element. This chapter
is based on a joint paper with Peter Jipsen titled �Injective and projective
semimodules over involutive semirings� which is currently revised and resub-
mitted.

Chapter 4 is about injective and projective semimodules. First, we shall
provide all the basic notions and results about semimodules and then we
shall give the de�nitions of injective and projective semimodules. While for
modules over rings, we have various equivalent de�nitions of injective and
projective modules (see [59]), unfortunately this is not the case for semimo-
dules over semirings because the di�erent de�nitions of injective and proje-
ctive semimodules analogous to the ones for modules don't lead to the same
class of semimodules. Through the thesis we shall always refer to the cate-
gorical de�nition of injective and projective semimodules (i. e. injective and
projective objects in the category of semimodules over a given semiring).
One of the main results presented in Chapter 4 is the following criterion
for injectivity of semimodules over additively idempotent semirings, i. e.
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semirings for which the sum is idempotent:

Theorem. Let S be an additively idempotent semiring and M a left S-
semimodule. Then M is injective if and only if there exists a set X such
that M is a retract of the left S-semimodule HomB(S,B)X , where B is the
Boolean semi�eld.

The boolean semi�eld B is the two-element semiring {0, 1} and

HomB(S,B)X

is the set of morphisms from S to B seen as B-semimodules or, equivalently,
join-semilattices.

We shall also prove that the same criterion can be restated in terms of
ideals of join-semilattices.

Regarding projective semimodules, it is well-known that in any variety
of algebras the projective objects are the retracts of free objects. In the
category of semimodules over a semiring S, the free object over a set X is
the set of functions from X to S with �nite support, i. e. S(X) = {f :
X → S | f(x) = 0 for all but �nitely many x ∈ X} ([21]). So, we obtain the
following characterization of projective semimodules.

Theorem. Let S be a semiring. An S-semimodule P is projective if and
only if it is a retract of the semimodule S(X) for some set X.

The results of this chapter come both from the aforementioned joint paper
with Peter Jipsen and from the paper �On injectivity of semimodules over ad-
ditively idempotent division semirings and chain MV-semirings� (joint work
with Antonio Di Nola, Giacomo Lenzi and Tran Giang Nam, published in
2019).

In Chapter 5, using the aforementioned criteria, we characterize self-
injective MV-semirings with an atomic Boolean center. In the following
theorem we denote with A∨� one of the two isomorphic semiring reducts
of the MV-algebra A; in particular the semiring A∨� has the set A as its
universe and the MV-algebra operations ∨ and � as its semiring operations.

Theorem. For any MV-algebra A with an atomic Boolean center, the fol-
lowing conditions are equivalent:

(1) The semiring A∨� is self-injective;

(2) All �nitely generated projective A∨�-semimodules are injective;

(3) All cyclic (generated by one element) projective A∨�-semimodules are
injective;
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(4) A is a complete MV-algebra.

We also give a description of (�nitely generated) injective semimodules
over �nite MV-semirings. In particular we have that over a �nite MV-
semiring �nitely generated projective and injective semimodules coincide.

Finally, we show that complete Boolean algebras are precisely the MV-
semirings in which every principal ideal is an injective semimodule. This
chapter is based on the aforementioned joint paper with Di Nola et al.

Then, in Chapter 6, analogously to what we do for MV-semirings, we
investigate injective and projective semimodules over involutive semirings
and we shall generalize some of the results regarding semimodules over MV-
semirings. Indeed, many of the results regarding MV-semimodules can be
proven taking into account only the involutive property of MV-semirings
and not their isomorphism to MV-algebras. So, it was natural to genera-
lize these results to a broader class of semirings (which are involutive) and
that contains MV-semirings as special cases. We show for example that,
also for �nite commutative involutive semirings, �nitely generated injective
and projective semimodules coincide. This result could make us wonder if,
removing the hypothesis of involution, the coincidence of �nitely generated
injective and projective still holds. The answer is no and we shall provide a
counterexample. It leads us to observe that, even if the involution appears
only in the semiring and it doesn't a�ect at all the structure of the semimo-
dule, it still plays a fundamental role in the study of injective and projective
semimodules.
In Section 6.1 we shall recall the de�nition of strong MV-semimodules and
generalize it to semimodules over involutive semirings. Furthermore, we shall
prove that strong semimodules coincide with faithful semimodules, where the
notion of faithful semimodule is a generalization of the one of faithful modu-
le. The interesting thing is that, despite the fact that strong semimodules
can be de�ned only for particular semirings such as MV or involutive semi-
rings, they coincide with faithful semimodules which, on the contrary, can
be de�ned on every semiring. This chapter is based on the aforementioned
joint work with Peter Jipsen.

The second part of the thesis is devoted to a special class of semimodules
over the zero-free semiring R called ambitropical cones and their applications
to game theory. They di�er from the standard de�nition of semimodules
since they have a lattice structure. In particular we shall prove that they
coincide with the retractions of a class of maps called Shapley operators
which are operators that describe the evolution of the value function of a
zero-sum game as a function of the horizon.

Before giving the de�nition of Shapley operators we shall brie�y explain
the class of games to which they apply. We shall consider two-player zero-
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sum repeated games with a �nite state space [n] = {1, . . . , n}. We shall
denote the two players MIN and MAX and their sets of actions dependent
on the state i, respectively, Ai and Bi. Let a ∈ Ai and b ∈ Bi be the actions
selected by the two players, then rabi represents the transition payment (that
player MIN pays to player MAX) and the vector (P abij )j∈[n] represents the
transition probability (from a state to another state). Note that both these
quantities depend on the current state of the game i and on the actions of
the two players.

For this class of games the value vector (of Rn), if it exists, satis�es the
following recursive formula:

v0 = 0 vk = T (vk−1)

where T is an operator from Rn to Rn whose ith coordinate is given by

Ti(x) = min
a∈Ai

max
b∈Bi,a

(
rabi +

∑
j∈[n]

P abij xj

)
(1)

The vector vk = (vki )i∈[n] = T k(0), where T k denotes the kth of T , gives
the value of the game in horizon k, as a function of the initial state i. A
central problem in the theory of zero-sum game is to characterize the mean
payo� per time unit, i.e., the vector limk→∞ T

k(0)/k. This is studied by
means of the ergodic eigenproblem, which consists in �nding u ∈ Rn, the
�ergodic eigenvector�, and λ ∈ R, the �ergodic eigenvalue�, such that

T (u) = λen + u

where en denotes the vector of Rn whose entries are identically 1. Then,
the mean payo� vector does exist, and is of the form λen, meaning that the
mean payo� is equal to λ, for all choices of the initial state.Therefore, it is
of interest to characterize the set of eigenvectors of T . By replacing T by
−λen+T , this is equivalent to characterizing the �xed point sets of operators
of the form 1.

Since the operators for repeated games of the form of 1 coincide with
monotone and additively homogeneous operators from Rn to Rn ([40]), we
can investigate �xed point sets of these operators that we shall call �abstract�
Shapley operators. This motivates the following de�nition:

De�nition. A Shapley operator is a map T : Rn → Rn that satisfy

1. x 6 y implies T (x) 6 T (y);

2. T (λen + x) = λen + T (x),

The interest in Shapley retractions is also motivated by reasons related
to the concept of convexity.

Indeed, let us consider the following result from convex analysis:
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Theorem. A subset C ⊂ Rn is closed and convex if and only if it is the
image of a nonexpansive retraction in a Euclidean norm.

In the light of Theorem 7.1 we can investigate a generalized notion of
convexity. Indeed, we can study the sets which arise as images of retractions
that are nonexpansive with respect not only to Euclidean norms but also to
other families of norms or hemi-norms.

We recall that a hemi-norm is a function f from a real vector space X
to R such that: it is subadditive, i. e. f(x+ y) 6 f(x) + f(y) ∀x, y ∈ X and
positively homogeneous, i. e. f(αx) = αf(x) ∀α ∈ R, α > 0, ∀x ∈ X.

We will be especially interested in the hemi-norm

t(x) := max
i∈[n]

xi

Shapley operators are linked to the hemi-norm t through the following
result ([32])

Proposition. T is a Shapley operator if and only if it is nonexpansive in
the �t� hemi-norm:

t(T (x)− T (y)) 6 t(x− y) .

So, the sets which arise as images of retractions that are nonexpansive
with respect to the hemi-norm t coincide with Shapley retracts (images of
idempotent Shapley operators).

One of the main results of Chapter 7 shows that these sets are closed
(with respect to Euclidean topology) ambitropical cones, i. e. additive cones
which are also lattices wrt the componentwise order on Rn.

In the �rst two sections of 7 we shall provide motivation for our work,
basic de�nitions and results.
Section 7.3 contains de�nitions and results regarding Shapley operators.
In Section 7.4 we have the two main results of the chapter. The �rst one
characterizes Shapley retracts in terms of lattice properties (indeed, an am-
bitropical cone is closed if and only if it is a conditionally complete lattice):

Theorem. Let E be a subset of Rn. The following assertions are equivalent:

1. E is a closed ambitropical cone;

2. E is a Shapley retract of Rn;

3. E is the �xed point set of an idempotent Shapley operator T .

The second one gives a geometric characterization of Shapley retracts in
terms of sets of existence of best tropical co-approximation; where a set of
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existence of best co-approximation is a subset E of a Banach space (X, ‖ · ‖)
such that, for all z ∈ X, the set

B
‖·‖
E (z) := {x ∈ X | ‖y − x‖ 6 ‖y − z‖, ∀y ∈ E}

contains an element of E.
In the following theorem we denote by Pmax

E the operator from Rn to Rn
de�ned by

Pmax
E (x) := sup{y ∈ Emax | y 6 x}

where E is a nonempty subset of Rn and Emax is the set of elements of the
form

sup{λf + f | f ∈ E} (2)

where λf + f denote the vector of (λf + fi)i∈[n] and λf ∈ Rmax are such
that the family of elements (λf + f)f∈E is bounded from above and the λf
are not identically −∞. The operator Pmin

E and the set Emin are de�ned
analogously.

Theorem. Let E be a subset of Rn. The following assertions are equivalent:

1. E is a Shapley retract of Rn;

2. E is a set of existence of best tropical co-approximation;

3. for all z ∈ Rn, [Pmax
E (z), Pmin

E (z)] ∩ E 6= ∅;

4. Pmin
E (z) ∈ E holds for all z ∈ Emax;

5. Pmax
E (z) ∈ E holds for all z ∈ Emin;

6. E is the �xed point set of the operator Q̄+
E = Pmax

E ◦ Pmin
E ;

7. E is is the �xed point set of the operator Q̄−E = Pmin
E ◦ Pmax

E .

In Section 7.5, we show that several canonical classes of sets in tropical
geometry are special cases of ambitropical cones, that can be characterized
through Shapley operators by suitable strengthening of the previous results.

Chapter 8 contains a generalization of the two previous theorems to order
preserving maps over conditionally complete lattices. The second part of the
thesis (Chapter 7 and Chapter 8) is based on a joint work with Stéphane
Gaubert and Marianne Akian which is going to be submitted soon.

Appendix A is the Proof of 7.1; appendix B consists of an example of an
ambitropical polyhedron.
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Chapter 1

MV-semirings

In this chapter we shall provide all the necessary notions about MV-semirings
and MV-algebras and we shall recall the well-known categorical isomorphism
between the two aforementioned categories. For insights about MV-algebras
and MV-semirings we refer the reader respectively to [11] and [21], whereas
for all the de�nitions and notions about arbitrary semirings we refer to [30].
For all the basic notions about category theory we refer the reader to [48]:

1.1 Basic notions

De�nition 1.1 (Semiring). A semiring S is an algebra (S,+, ·, 0, 1) of type
(2,2,0,0) such that:

1. (S,+, 0) is a commutative monoid;

2. (S, ·, 1) is a monoid;

3. x · (y+z) = x ·y+x ·z and (y+z) ·x = y ·x+z ·x, for every x, y, z ∈ S.

4. 0 · s = 0 = s · 0, for each s ∈ S.

Examples 1.1 (Semirings). 1. we can think of semirings as unitary rings
without an additive inverse. Obviously, rings are special examples of
semirings;

2. bounded distributive lattices are semirings;

3. starting from the ring of real numbers (R,+, ·, 0, 1) we can construct
a semiring by taking only the nonnegative elements of R, in a similar
way we can obtain semirings starting from Q or Z;

4. more generally, if we have a ring (R,+, ·, 0, 1) with a partial order
satisfying for all a, b ∈ R: if 0 6 a and 0 6 b then 0 6 a + b and
0 6 a · b we can obtain a semiring from R by taking its �positive part�,
i. e. the subset {r ∈ R | 0 6 r};
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5. a prominent example of semiring is given by max tropical semiring
Rmax := (R ∪ {−∞},max,+,−∞, 0), it is obtained by extended real
numbers substituting + by max and · by +. Similarly we can de�ne
the min tropical semiring Rmin := (R∪{+∞},min,+,+∞, 0), tropical
semirings have various applications and they form the basis of tropical
geometry (see [47]);

6. another important example of semiring is the boolean semiring B :=
({0, 1},+, ·, 0, 1); in this semiring it holds 1 + 1 = 1.

De�nition 1.2. A semiring S is additively idempotent if for every s ∈ S,
s+ s = s.
A semi�eld is a semiring in which all non-zero elements have a multiplicative
inverse.
A semiring S is commutative if (S, ·) is a commutative monoid.

Examples 1.2. 1. Both the tropical semirings and the boolean semiring
are additively idempotent semi�elds;

2. a bounded distributive lattice (L,∨,∧, 0, 1) is an additively idempotent
semiring but it is a semi�eld if and only if L = {0, 1}.

De�nition 1.3. For any additively idempotent semiring S, there exists a
natural order given by

s 6 t ⇐⇒ s+ t = t;

with s, t ∈ S. In this case + is denoted by ∨ and (S,∨) is a join-
semilattice.

Furthermore, it is possible to de�ne a natural order on any semiring
(S,+, ·, 0, 1) in the following way:

a 6 b ⇐⇒ b = a+ c for some c ∈ S

Note that the two orders coincide on additively idempotent semirings.

De�nition 1.4 (MV-semiring). Let S = (S,∨, ·, 0, 1) be a commutative,
additively idempotent semiring. S is a MV-semiring i� there exists a map
∗ : S → S, called negation, such that:

1. a · b = 0 i� b 6 a∗;

2. a ∨ b = (a∗ · (a∗ · b)∗)∗.

From now on we shall include the negation symbol in the signature of
the MV-semiring, denoting S with (S,∨, ·, 0, 1,∗ ).
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Examples 1.3. 1. The interval [0, 1] where the operations ∨, � and ∗ are
de�ned respectively by x ∨ y = max{x, y}, x � y = max{x + y − 1, 0}
and x∗ = 1 − x for all x, y ∈ [0, 1], this MV-semirings is called �the
standar MV-semiring�;

2. let n > 2 be an integer, consider the subset

Ln = {0, 1/(n− 1), · · · , (n− 2)/(n− 1)}

of rationals with the operations ∨, ·and ∗ de�ned as the restriction of
these operations de�ned in [0, 1]. These are examples of MV-semirings.

Remark 1.1. Note that for an arbitrary additively idempotent semiring 1
is not in general the top element with respect to the natural order of the
additively idempotent semring, whereas 1 is the top element for any MV-
semiring; indeed

1 = 1 ∨ 1 = (1∗ · (1∗)∗)∗ = 0∗

since a∗ · (a∗)∗ = 0 ⇐⇒ (a∗)∗ 6 (a∗)∗ and

a 6 0∗ ⇐⇒ 0 · a = 0.

Semiring and MV-semiring morphism are de�ned in the standard way,
for the sake of completeness we shall recall the de�nitions.

De�nition 1.5 (Semiring morphism). Let R and S be semirings. A semiring
morphism between R and S is a map f : R→ S such that:

1. f(r + r′) = f(r) + f(r′);

2. f(r · r′) = f(r) · f(r′);

3. f(0) = 0 and f(1) = 1;

for all r, r′ ∈ R.

De�nition 1.6 (MV-semiring morphism). Let R and S be MV-semirings.
A MV-semiring morphism between R and S is a map f : R → S such that
f is a semiring morphism and f(r∗) = f(r)∗, for every r ∈ R.

We indicate by MVS the category whose objects are MV-semirings and
whose arrows are MV-semiring morphisms.

De�nition 1.7 (MV-algebra). An MV-algebra is an algebra (A,⊕,∗ , 0) of
type (2,1,0) such that, for every x, y ∈ A we have:

1. (x⊕ y)⊕ z = x⊕ (y ⊕ z);

2. x⊕ y = y ⊕ x;
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3. x⊕ 0 = x;

4. (x∗)∗ = x;

5. x⊕ 0∗ = 0∗;

6. (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x.

Examples 1.4. 1. The interval [0, 1] is a prominent example of MV-
algebra, called the standard MV-algebra. The operations ⊕, ∗ are de-
�ned respectively by x ⊕ y = min{x + y, 1} and x∗ = 1 − x for all
x, y ∈ [0, 1];

2. let n > 2 be an integer, consider the subset

Ln = {0, 1/(n− 1), · · · , (n− 2)/(n− 1), 1}

of rationals with the operations ⊕ and ∗ de�ned as the restriction of
the standard MV-algebra of these operations. These are examples of
MV-algebras;

3. for any Boolean algebra (B,∨,∧,′ , 0, 1), the structure (B,∨,′ , 0) is an
MV-algebra.

De�nition 1.8. On every MV-algebra A, it is possible to de�ne another
constant 1 := 0∗ and the operation x � y := (x∗ ⊕ y∗)∗. From now on
we shall include these in the signature of the MV-algebra, denoting A with
(A,⊕,�,∗ , 0, 1).

Remark 1.2. Note that x⊕ y = (x∗ � y∗)∗.

De�nition 1.9. For any MV-algebra A, there exists a natural order given
by:

x 6 y ⇐⇒ x∗ ⊕ y = 1,

for every x, y ∈ A.
The natural order determines a structure of bounded distributive lattice

on A, with 0 and 1 respectively bottom and top element and the operations
of sup and inf de�ned by:

x ∨ y := (x� y∗)⊕ y

and
x ∧ y := (x∗ ∨ y∗)∗.

De�nition 1.10 (MV-algebras morphisms). Let A and B be MV-algebras.
A MV-algebra morphism between A and B is a map f : A→ B such that:

1. f(x⊕ y) = f(x)⊕ f(y);
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2. f(x∗) = f(x)∗;

3. f(0) = 0;

for all x, y ∈ A.

We indicate by MV the category whose objects are MV-algebras and
whose arrows are MV-algebra morphisms.

De�nition 1.11. An MV-algebra A is called an MV -chain if the natural
order of A is total; and the MV-algebra A is called complete if it is complete
as a lattice.

Examples 1.5. The MV-algebras [0, 1] and Ln for any n > 2 are examples
of complete MV-chains.

De�nition 1.12 (Partially ordered abelian groups). A partially ordered
abelian group is an abelian group (G,+,−, 0) endowed with a partial or-
der relation 6 that is compatible with addition; i. e.

x 6 y =⇒ t+ x 6 t+ y

for all x, y, t ∈ G.
A lattice-ordered abelian group (l - group for short) is a partially ordered

abelian group in which the partial order relation de�nes a lattice structure.

Proposition 1.1. In any l - group we have

t+ (x ∨ y) = (t+ x) ∨ (t+ y)

and

t+ (x ∧ y) = (t+ x) ∧ (t+ y)

De�nition 1.13. A strong order unit in a lattice-ordered abelian group G
is an element 0 6 u ∈ G such that for any x ∈ G, there exists a positive
integer n such that x 6 nu.

In [49] Mundici constructed a categorical equivalence between the cate-
gory MV of MV-algebras with MV-algebra homomorphisms and the cate-
gory Lu of lattice-ordered Abelian groups with a distinguished strong order
unit whose morphisms are lattice-ordered group homomorphisms which pre-
serve the distinguished strong unit. The two functors of the equivalence are
usually denoted by Γ : Lu −→ MV and Ξ : MV −→ Lu; while the former
is very easy to present and shall be recalled hereafter, the latter requires
more work and the details of its construction are not really relevant to our
discussion.
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Let G = (G,+,−,6,∨,∧, 0, u) be a lattice-ordered Abelian group with
a distinguished strong order unit u. Then the MV-algebra Γ(G, u) is

([0, u] := {x ∈ G | 0 6 x 6 u}, ⊕, ∗, 0)

with x⊕ y = (x+ y)∧u and x∗ = u−x for all x, y ∈ [0, u]. In this case, the
operation � in Γ(G, u) is de�ned by x�y = (x∗⊕y∗)∗ = u− (2u−x−y)∧u
for all x, y ∈ [0, u].

In the light of categorical equivalence between MV-algebras and lattice-
ordered abelian groups with a distinguished strong order unit we can review
some of the main examples of MV-algebras.

Examples 1.6 (MV-algebras). 1. Let R be the additive groups of reals
with the natural order. Then Γ(R, 1) = [0, 1] is the standard MV-
algebra. In the standard MV-algebra the order relation (and therefore
the lattice structure) is the usual one of real numbers; the operations
⊕, ∗ and � are de�ned respectively by x⊕y = min{x+y, 1}, x∗ = 1−x
and x� y = max{x+ y − 1, 0} for all x, y ∈ [0, 1].

2. Let Z be the additive group of integers and n > 2 an integer. Consider
the subgroup Z 1

n−1 = { z
n−1 | z ∈ Z} of the additive group of rationals

with denominator n− 1 with the natural order. Then

Ln := Γ
(
Z

1

n− 1
, 1
)

= {0, 1/(n− 1), · · · , (n− 2)/(n− 1), 1}

yields an MV-chain with the operations de�ned as the restriction of the
standard MV-algebra of these operations.

1.2 MV-algebras and MV-semirings

Proposition 1.2. Let A be an MV-algebra. Then A∨� = (A,∨,�, 0, 1) and
A∧⊕ = (A,∧,⊕, 1, 0) are semirings and the involution ∗ : A → A is an
isomorphism between them. In particular A∨� and A∧⊕ are MV-semirings
with negation ∗.

Proposition 1.3. If (A,+, ·, 0, 1,∗ ) is an MV-semiring, the structure
(A,⊕, ·,∗ , 0, 1) with, for all x, y ∈ A

x⊕ y = (x∗ · y∗)∗

is an MV-algebra.

Proposition 1.4. Let A and B be two MV-algebras and h : A→ B a map.
Then h is an MV-algebras morphism if and only if it is an MV-semirings
morphism.

Proof. It comes from the fact that the two varieties are term-equivalent.
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The two previous propositions shows that MV-algebras and MV-semirings
are two term-equivalent varieties. Since the morphisms of the two categories
coincide it is straightforward to show that the two corresponding categories
are isomorphic, so we have

Theorem 1.1. MVS and MV are isomorphic categories.

1.3 Coupled semirings

In this section, to complete the picture of term-equivalences between MV-
algebras and classes of semirings, we shall present the term-equivalence
between MV-algebras and coupled semirings, for insights we refer the reader
to [18].

De�nition 1.14. A semiring (S,+, ·, 0, 1) is lattice-ordered i� it has also a
lattice-structure such that

1. a+ b = a ∨ b;

2. a · b 6 a ∧ b;

for all a, b ∈ S.

A semiring (S,+, ·, 0, 1) is dual lattice-ordered i� it has also a lattice-
structure such that

1. a+ b = a ∧ b;

2. a · b > a ∨ b;

for all a, b ∈ S.

Lattice-ordered semirings and dual-lattice ordered semirings are addi-
tively idempotent. In the following we shall use the name lc-semiring for a
lattice ordered commutative semiring and dual lc-semiring for a dual-lattice
ordered commutative semiring.

De�nition 1.15. A coupled semiring S is a triple (S1, S2, α) such that

1. S1 = (A,∨, ·, 0, 1) and S2 = (A,∧′, ·′, 0′, 1′) are respectively a

lc-semiring and a dual lc-semiring ;

2. 0′ = 1 and 1′ = 0;

3. α : A→ A is a semiring isomorphism from S1 onto S2;

4. α(α(x)) = x, for every x ∈ A;

5. x ∨ y = x ·′ (α(x) · y).
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De�nition 1.16 (Coupled semirings morphisms). Let (S1, S2, α) and
(S′1, S

′
2, α
′) be coupled semirings. Then, they will be of the form

(S1, S2, α) = ((A,∨A, ·A, 0A, 1A), (A,∧′A, ·′A, 0′A, 1′A), α)

and

(S′1, S
′
2, α
′) = ((B,∨B, ·B, 0B, 1B), (B,∧′B, ·′B, 0′B, 1′B), α′).

A coupled semiring morphism between (S1, S2, α) and (S1, S2, α) is a semi-
rings morphism f : A→ B such that

1. f(a ∨A a′) = f(a) ∨B f(a′);

2. f(a ∧′A a′) = f(a) ∧′B f(a′);

3. f(a ·A a′) = f(a) ·B f(a′);

4. f(a ·′A a′) = f(a) ·′B f(a′);

5. f(0A) = 0B;

6. f(1A) = 1B;

7. f(0′A) = 0′B;

8. f(1′A) = 1′B;

9. f ◦ α = α′ ◦ f .

We indicate by CS the category whose objects are coupled semirings and
whose arrows are coupled semirings morphisms.

Proposition 1.5. Let A = (S1, S2, α) be a coupled semiring, where S1 =
(A,∨, ·, 0, 1) and S2 = (A,∧′, ·′, 0′, 1′). Then (A, ·′, ·, α, 0, 1) is an MV-
algebra.

Note that in de�nition 1.15 it is not stated that (A,∨,∧′) is a lattice, i. e.
∨ and ∧ could come from two di�erent lattice structures. We shall now prove
that this is not the case and that (A,∨,∧′) is a lattice using proposition 1.5.

Proposition 1.6. Let (S1, S2, α) = ((A,∨A, ·A, 0A, 1A), (A,∧′A, ·′A, 0′A, 1′A), α)
be a coupled semiring, then (A,∨,∧′) is a lattice.

Proof. Let A be the universe of a coupled semiring(S1, S2, α). We shall
denote by ∨MV and ∧MV the lattice operation of the MV-algebra obtained
from the coupled semiring. Since in the coupled semiring x∨y = x·′ (α(x)·y)
by de�nition, a moment of re�ection shows us that x ∨ y = x ∨MV y. Since
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α is a semiring isomorphism from S1 to S2 and from S2 to S1 (note that α
is the inverse of itself) we have that

α(x ∧′ y) = α(x) ∨ α(y)

and applying α again we obtain

x ∧′ y = α(α(x) ∨ α(y))

By [18, Lemma 3.4] we know that α(α(x) ∨ α(y)) = x · (α(x) ·′ y) and it
is easy to see that x · (α(x) ·′ y) = x ∧MV y.

So, since ∨ and ∧′ represent the two lattice operation of the MV-algebra
obtained from the coupled semiring we have that (A,∨,∧′) is a lattice.

Proposition 1.7. Let (A,⊕,�,∗ , 0, 1) be an MV-algebra. Then,
S∨A = (A,∨,�, 0, 1) and S∧A = (A,∧,⊕, 1, 0) form a coupled semiring (S∨A, S

∧
A,
∗ ).

Remark 1.3. Similar to remark 1.4, we have that if A and B are two MV-
algebras and h : A → B is a map between them, then h is an MV-algebras
morphism if and only if it is a coupled semirings morphism.

The two previous propositions show that MV-algebras and coupled semi-
rings are two term-equivalent varieties. Since the morphisms of the two
categories coincide it is straightforward to show that the two corresponding
categories are isomorphic, so we have

Theorem 1.2. CS and MV are isomorphic categories.

The isomorphism between coupled semirings and MV-algebras can be
revisited in the light of [28] and [24]; where it is proven that MV-algebras
are isomorphic to a full subcategory of 	-algebras. 	-algebras are parti-
cular double quasioperator algebras; where these last ones are expansions of
distributive lattices. The double quasioperator algebras approach to MV-
algebras is motivated by the intention of proving a suitable extension of
Priestley duality for MV-algebras. For the de�nitions and facts regarding
double quasioperator alegbras and 	-algebras we refer to [28] and [24]. We
shall revisit Theorem 1.2 by introducing particular double quasioperator al-
gebras that we shall call �− α algebras.

De�nition 1.17 (�−α algebras). A �−α algebra is a bounded distributive
lattice (A,∨,∧,�, α, 0, 1) with a binary operation � and a unary operation
α satisfying:

1. � is a double quasioperator of type (1,1). That is, for all a, b, c ∈ A,

(a ∧ b)� c = (a� c) ∧ (b� c) and (a ∨ b)� c = (a ∨ c)� (b ∨ c)
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a� (b ∧ c) = (a� b) ∧ (a� c) and a� (b ∨ c) = (a ∨ b)� (a ∨ c)

2. α is a double quasioperator of type op. That is, for all a, b ∈ A,

α(a ∨ b) = α(a) ∧ α(b) and α(a ∧ b) = α(a) ∨ α(b)

In the previous de�nition we stated that the double quasioperator �
preserves both meets and joins in both coordinates and that the double
quasioperator α interchanges meets and joins. Furthermore, on any � − α
algbera it is possible to de�ne another operation ⊕ in the following way:

a⊕ b = α(α(a)� α(b))

for every a, b ∈ A.

Proposition 1.8. Let (A,∨,∧,�, α, 0, 1) be a �−α algebra. The following
are equivalent:

1. (A,⊕, α, 0) is an MV-algebra.

2. For all a, b ∈ A,

a� 1 = 1� a = a; (1.1)

α(α(a)) = a; (1.2)

a ∨ b = a⊕ (α(a)� b). (1.3)

Proof. We shall proof that �−α algebras for which 1.1, 1.2 and 1.3 hold are
term equivalent to coupled semirings and the proposition shall follow from
Theorem 1.2.

In particular we shall prove that, if (A,∨,∧,�, α, 0, 1) is a �−α algebra,
then

((A,∨,�, 0, 1), (A,∧,⊕, α(0), α(1)), α)

is a coupled semiring.

Since a�1 = 1�a = 1, we have that a�b = a�(b∧1) = (a�b)∧(a�1) =
(a� b)∧a which implies a� b 6 a; in the same way we obtain that a� b 6 b
and then a� b 6 a ∧ b proving that (A,∨,�, 0, 1) is an lc-semiring. Since α
interchanges meets and joins we have that x 6 y ⇐⇒ α(x) > α(y) and we
easily obtain that (A,∧,⊕, 1, 0) is a dual lc-semiring. It is easy to see that α is
a semiring isomorphism between (A,∨,�, 0, 1) and (A,∧,⊕, α(0), α(1)), we
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shall only prove that α is injective. Suppose α(a) = α(b) for some a, b ∈ A;
then

α(a ∨ b) = α(a) ∧ α(b) = α(a)

so α(a ∨ b) = α(a) which implies a ∨ b = a. In the same way we can
obtain a ∨ b = b and consequently a = b. To prove that α(0) is equal to 1,
we observe that α(0) = α(0∧ a) = α(0)∧α(a) and so α(0) > α(a) for every
a ∈ A so α(0) is the top element of A, hence 1 and so α(1) = α(α(0)) = 0.

Viceversa, given a coupled semiring ((A,∨, ·, 0, 1), (A,∧, ·′, 0′, 1′), α), we
have that (A,∨,∧, ·, α, 0, 1) is a � − α algebra. First of all, by proposition
1.6 we have that (A,∨,∧, 0, 1) is a bounded distributive lattice; indeed the
join and meet coincide with the lattice operations on the corresponding MV-
algebra and this implies the distributivity of A. Since (A,∨, ·, 0, 1) is an
lc-semiring, we have that a = a ·1 6 a∧1 which implies a 6 1 for any a ∈ A,
hence 1 is the top element of the lattice. The fact that · preserves joins in
both coordinates come from the de�nition of semiring. We shall prove that

(a ∧ b) · c = (a · c) ∧ (b · c)

First of all, since α is a semiring ismorphism, we have that α(a · b) =
α(a) ·′ α(b) which implies a · b = α(α(a) ·′ α(b)).

Recalling that α is a semiring isomorphism and that ·′ distributes over
join on both sides, we have:

(a ∧ b) · c = α(α(a ∧ b) ·′ α(c)) = α[(α(a) ∨ α(b)) ·′ α(c)] =

α[(α(a) ·′ α(c)) ∨ (α(b) ·′ α(c))] = α[α(a · c) ∨ α(b · c)] = (a · c) ∧ (b · c)

The proof of a · (b ∧ c) = (a · b) ∧ (a · c) is similar.
1.1 and 1.2 are obviously satis�ed by the coupled semiring. In order to

prove that 1.3 holds it is su�cient to observe that, since α is an idempotent
semiring isomorphism a ·′ b = α(α(a) · α(b)) and the proof is complete.

1.4 Congruences and Ideals in MV-semirings

The notion of congruence comes from universal algebra. For the sake of
convenience we shall write the de�nition for the case of MV-semirings.

De�nition 1.18 (Congruence on MV-semirings). Given an MV-semiring
(A,∨, ·, 0, 1,∗ ) we de�ne a congruence ≡ on it as an equivalence relation
such that the following hold for every a, b, a1, a2,∈ A:

1. If a ≡ b and a1 ≡ b1 then a ∨ a1 ≡ b ∨ b1 and a · a1 ≡ b · b1;

2. If a ≡ b then a∗ ≡ b∗.
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The notion of ideal instead doesn't come from universal algebra, so to
de�ne ideals in MV-semirings we shall use the notion of ideal of an arbitrary
semiring.

De�nition 1.19 (Left ideal). Let (S,+, ·, 0, 1) be a semiring. A left ideal I
of the semiring S is a subset of S satys�ng the following conditions:

1. If a, b ∈ I, then a+ b ∈ I;

2. If a ∈ I and s ∈ S, then sa ∈ I.

De�nition 1.20. A right ideal of S is de�ned in the analogous manner and
an ideal of S is a subset which is both a left ideal and a right ideal. An ideal
I is proper if I 6= S.

Remark 1.4. Note that for commutative semirings we can simply talk about
ideals since right and left ideals coincide.
Note that 0 ∈ I for every ideal I.

Note that, since the set Id(S) of ideals of a semiring S is closed by
intersection we can de�ne in a standard way the ideal generated by a subset
M ⊆ S, in particular

Example 1.1. Let S be a commutative semiring and x an element of S. Then
the ideal generated by x is Sx = {sx | s ∈ S}.

De�nition 1.21. The semiring ideals generated by a single element are
called principal ideals.

We shall now specialize the de�nition of ideals to the case of MV-semirings.

De�nition 1.22 (Ideals in MV-semirings). Given an MV-semiring
(A,∨, ·, 0, 1,∗ ) we de�ne an ideal of it as a subset I of A such that
the following hold:

1. For every i, j ∈ I, i ∨ j ∈ I;

2. a · i ∈ I, for every a ∈ A and i ∈ I;

Remark 1.5. Since MV-semirings are commutative we shall consider simply
ideals instead of left and right ideals.

De�nition 1.23 (Ideal-simplicity). An MV-semiring (A,∨, ·, 0, 1,∗ ) is ideal-
simple if its only proper ideal is {0} (the trivial one).

Examples 1.7. Note that the only ideal-simple MV-semiring is the commu-
tative semiring ({0, 1},∨, ·, 0, 1,∗ ) that consists of only two elements, (in this
semiring we have that 1 ∨ 1 = 1, 1∗ = 0 and 0∗ = 1). Otherwise, let x be an
element of an MV-semiring such that 0 < x < 1, then the downward closure
of x is a proper, non trivial ideal of the MV-semiring.



Chapter 1. MV-semirings 13

For completeness we also recall the de�nition of an ideal of an MV-
algebra.

De�nition 1.24 (Ideal of an MV-algebra). An ideal of an MV-algebra A is
a subset I of A satisfying the following conditions:

1. 0 ∈ I;

2. if x ∈ I, y ∈ A and y 6 x then y ∈ I;

3. if x ∈ I and y ∈ I then x⊕ y ∈ I.

De�nition 1.25 (Congruence-simplicity). An MV-semiring (A,∨, ·, 0, 1,∗ )
is congruence-simple if its only congruence are the diagonal one and the total
one.

Examples 1.8. The MV-semiring L3 =
{

0, 12 , 1
}
is congruence simple. Let

denote with 4L3 and ∇L3 respectively the diagonal and total congruence on
L3 and suppose that θ is a congruence di�erent from both of them.
We recall that the diagonal congruence is given by the set of ordered pairs of
identical elements and the total congruence is given by the set of all possible
ordered pairs, i.e. 4L3 = {(a, a) | a ∈ L3} and ∇L3 = {(a, b) | a, b ∈
L3}. The diagonal congruence is contained in any other congruence and any
congruence is contained in the total one.
Now suppose that θ is a congruence on L3 di�erent both from the diagonal
and the total. So, it contains 4L3 and at least one other couple of di�erent
elements of the semiring but it doesn't contain all the ordered pairs. Suppose
that

(
0, 12
)
∈ θ then

(
0∗, 12

∗)
=
(
1, 12
)
∈ θ but this implies (0, 1) ∈ θ and the

congruence is total. The same reasoning applies starting from
(
1, 12
)
∈ θ.

Suppose now that (0, 1) ∈ θ, then (0, 1)∨
(
1
2 ,

1
2

)
=
(
0∨ 1

2 , 1∨
1
2

)
=
(
1
2 , 1
)
∈ θ

and we can apply the previous argument.

Proposition 1.9. Let (A,∨, ·, 0, 1,∗ ) be an MV-semiring. The natural order
of an MV-semiring is the same as the order of the MV-algebra associated to
it. In particular, we have that a 6 b i� ∃z ∈ A such that a = b · z.

Proof. Let (A,⊕,�,∗ , 0, 1) be an MV-algebra and a, b ∈ A. From [11,
Lemma 1.1.2] we have that a 6 b if and only if there is an element z ∈ A such
that a⊕z = b and from [11, Lemma 1.1.4] we have that a 6 b ⇐⇒ b∗ 6 a∗.
So, a 6 b ⇐⇒ b∗ 6 a∗ ⇐⇒ b∗ ⊕ z = a∗ for some z ∈ A. Now
b∗ ⊕ z = a∗ ⇐⇒ b∗ ⊕ (z∗)∗ = a∗ ⇐⇒ (b∗ ⊕ (z∗)∗)∗ = a ⇐⇒ b � z∗ = a
and the proposition is proved.

De�nition 1.26 (Principal ideals). Let (A,∨, ·, 0, 1,∗ ) be an MV-semiring
and a ∈ A. A principal ideal of A is an ideal of the form A∨·a = {x ∈ A|x 6
A} (the principal ideal generated by the element a).
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As regards additively idempotent semirings it is known that every ideal
induces a congruence relation on the semiring. Indeed, let (S,+, ·, 0, 1) be an
additively idempotent commutative semiring and let I be one of its ideals.
Then the relation ≡I de�ned by a ≡I b i� exists i ∈ I such that a+ i = b+ i
is a congruence on S such that I ⊆ [0]≡I .

Instead, if we consider an MV-semiring A and an ideal I of A, the rela-
tion ≡I de�ned above doesn't necessarily de�ne a congruence. For example,
let us consider the standard MV-semiring ([0, 1],∨, ·, 0, 1,∗ ) and its ideal
I = [0, 1/2]. We have that 0 ≡I 1/2 since 0 ∨ 1/2 = 1/2 ∨ 0 but 1 = 0∗ is
not in relation with 1/2 = 1/2∗.

It is easy to see that a congruence on an MV-algebra A is also a con-
gruence on the MV-semiring reduct A∨· and that a congruence on an MV-
semiring is also a congruence on the MV-algebra associated to it. So there is
a one-to-one correspondence between congruences on MV-algebras and con-
gruences on their reduct MV-semirings but, contrarily to what happened in
MV-algebras there is no bijection between ideals and congruences over MV-
semirings. Indeed, the fact that L3 is congruence simple as an MV-semiring
could be also obtained observing that it is ideal simple as an MV-algebra.
For insights about ideals in MV-semirings and in MV-algebras we refer the
reader to [22].

A semiring is usually de�ned simple when it is both congruence-simple
and ideal-simple. We prefer to follow universal algebra and since congruences
can be de�ned in a universal algebra approach we shall call simple those
MV-semirings which are congruence simple. In this way, from the previous
remark, we have a correspondence between simple MV-algebras and simple
MV-semirings.



Chapter 2

The polynomial semiring B[x]

2.1 The polynomial semiring B[x]

In this section we shall investigate the semiring of polynomials in one varia-
ble over the over the boolean semi�eld {0, 1} that we shall denote B[x]. Since
B is a subsemiring of the standard MV-semiring ([0, 1],∨,�, 0, 1), it makes
sense to evaluate the elements of B[x] on the standard MV-semiring; we shall
denote the set of these evaluations with B[0,1][x]. Starting from the repre-
sentation of the free MV-algebra over one variable in terms of McNaughton
functions we shall prove that the set B[0,1][x] can be described in terms of a
suitable subset of McNaughton functions over one variable. In particular, we
shall prove (Theorems 2.1 and 2.3) that it is a semiring that coincides with
the semiring of non-decreasing convex McNaughton functions over [0, 1] with
pointwise operations ∨ and � and that it is also isomorphic to the semiring
(N ∪ {∞},min,+,∞, 0).

Analogously to the de�nition of polynomials over a ring, we can give the
de�nition over polynomials over semirings. We shall focus our attention on
polynomials over semiring in one variable.

De�nition 2.1 (Polynomials over semirings). Let (S,+, ·, 0, 1) be a semi-
ring, and x a variable.

The semiring of polynomials over S in the variable x is given by the set{
n∑
i=0

six
i | n ∈ N, si ∈ S ∀i ∈ {0, 1, . . . , n}

}
Evaluating the semiring of polynomials B[x] over the standard MV-

semiring ([0, 1],∨,�, 0, 1) we obtain the set of functions from [0, 1] to [0, 1]
of the form: ∨

i∈I
xi
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where
xi = x� · · · � x︸ ︷︷ ︸

i times

and I is a �nite subset of the natural numbers plus the

constant functions 0 and 1.

Recalling that on the MV-semiring [0, 1] we have that x � x 6 x, the
set of evaluations B[0,1][x] amounts to the set of functions from [0, 1] to [0, 1]

of the form xmin I for some �nite subset of the natural numbers I plus the
constant functions 0 and 1 (we are implicitly identifying the functions that
coincide on any value of [0, 1]) .

So, B[0,1][x] = {xn | n ∈ N} ∪ {0, 1}.

We can now show the �rst theorem of the chapter.

Theorem 2.1. On the set B[0,1][x] it is possible to de�ne a structure of
additively idempotent and commutative semiring and it is isomorphic to the
semiring (N ∪ {∞},min,+,∞, 0).

Proof. Recall that the set B[0,1][x] is given by all the functions xn : [0, 1]→
[0, 1] for all n ∈ N, n > 1, plus the constant function 0 and 1.

We de�ne

xn ∨ xm = xmin{n,m}

and

xn � xm = xn+m.

for all n,m ∈ N>1. The 0 and the 1 are given by the corresponding
constant function and we have that 1 ∨ xn = 1, for all natural n > 1.

To prove that the semiring (B[0,1][x],∨,�, 0, 1) is isomorphic to (N ∪
{∞},min,+,∞, 0) it is su�cient to consider the semiring isomorphism

Φ : B[0,1][x]→ (N ∪ {∞},min,+,∞, 0)

given by

Φ(xn) = n

for any n ∈ N, n 6 1 and

Φ(0) =∞, Φ(1) = 0.
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De�nition 2.2. Let n > 1 be an integer. Then a function

f : [0, 1]n → [0, 1]

is called a McNaughton function over [0, 1]n i� it satis�es the following
conditions:

1. f is continuous with respect to the natural topology of [0, 1]n;

2. there are linear polynomials p1, . . . , pk with integer coe�cients,

pi(x0, . . . , xn−1) = bi +mi0x0 + · · ·+mi(n−1)xn−1,

(bi,mit ∈ Z) such that for each point y = (y0, . . . , yn−1) ∈ [0, 1]n there
is an index j ∈ {1, . . . , k} with f(y) = pj(y).

We shall call the linear polynomials associated to a function f the �linear
components� of the function.

Theorem 2.2. (Theorem 9.1.5 [11]) Let n be an integer. The free MV-
algebra over n generators Freen coincides with the MV-algebra of McNaughton
functions over [0, 1]n with the pointwise operations ∨ and �.

Since any function xn : [0, 1]→ [0, 1] and the constant functions 0 and 1
are elements of the free MV-algebra over one variable, they are McNaughton
functions. So, it is clear that the set B[0,1][x] is a subset of the set of Mc-
Naughton functions over one variable, in particular we can wonder if the
semiring B[0,1][x] can be fully described by a suitable subset of McNaughton
functions over one variable.

It is straightforward that the functions xn for any n ∈ N>1 and the con-
stant functions 0 and 1 are all convex non-decreasing McNaughton functions
of one variable so the semiring B[0,1][x] is contained in the set of convex non-
decreasing McNaughton functions of one variable. We can now wonder if it
the reverse inclusion is true.

We shall answer the question positively by describing all the convex non-
decreasing McNaughton functions of one variable in terms of their linear
components.

Lemma 2.1. If a non-decreasing convex McNaughton function has only one
linear component it is equal to 0, 1 or x.

Proof. Let f be a non-decreasing convex McNaughton function from [0, 1] to
[0, 1] such that f(x) = ax + b for some a, b ∈ Z and for all x ∈ [0, 1]. First
of all observe that a > 0, since the function is non-decreasing. If a = 0 the
only two possibilities are f = 0 or f = 1. Let us consider the case a > 0;
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Figure 2.1

since a and b are integers we have that the value f(1) must be an integer
number and, since the function is not constant and non-decreasing, the only
possibility is f(1) = 1 which implies b = 1 − a anf f(x) = ax + (1 − a) for
some a ∈ N. Suppose a > 2 then f(0) = 1 − a < 0 which is absurd. So, if
a > 0, then a = 1 and f(x) = x.

Lemma 2.2. Let f be a non-decreasing convex McNaughton function with
two linear components; then, it is equal to max{0, nx + 1 − n}n∈N,n>1 for
some n ∈ N, n > 0.

Proof. By hypothesis we have that

f(x) =

{
ax+ b if x ∈ [0, z]

cx+ d if x ∈ [z, 1]

for some a ∈ N (every component must have a positive slope since the
function is non-decreasing), b ∈ Z and for some z ∈ (0, 1).

Claim 2.1. None of the linear components can be the constant 1.

If ax + b = 1 for every x ∈ [0, z], then cx + d = 1 for every x ∈ [z, 1],
since the function is non-decreasing; but in this case we would have that f
has only one linear component (f = 1). If cx+ d = 1 for every x ∈ [z, 1], we
would have a con�guration similar to the one represented in �gure 2.1a, and
we can see that in this case the function is not convex.

Claim 2.2. It is not possible that both a and c are strictly greater than 0.

Suppose that a and c are strictly greater than 0; then, we have to consider
the two possibilities a < c or a > c. If a > c; we would have an arrangement
similar to the one in �gure 2.2a, but in this case the function is not convex.
Suppose now that a < c (see �gure 2.2b). As we observed before, a1 + b is
an integer number (a and b are integers) and it is > 1 (ax + b is increasing
since a > 0 by hypothesis). Since cx + d is strictly greater than ax + b for
any x ∈ (z, 1] we have that cz1 + d = 1 for some z1 ∈ (z, 1) but in this case
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we would have that f(x) = 1 for every x ∈ [z1, 1] i. e. f has the constant 1
as the third linear component which is absurd.

So, it can be concluded that if a convex non-decreasing McNaughton
functions has two linear components, one of them is the constant 0 and the
other one is equal to ax + b for some a ∈ N>0 and b ∈ Z. In particular we
have that b = 1 − a (recall that f(1) = 1) and the point in which the two
linear components join is a−1

a ; so

f(x) = max{0, ax+ 1− a}a∈N,a>1

Lemma 2.3. A non-decreasing convex McNaughton function cannot have
more than two linear components.

Proof. Let be {f1, . . . , fk} with k > 2 the k linear components of a non-
decreasing convex McNaughton function f . In the light of Lemma 2.1, it is
easy to see that none of the linear components can be equal to the constant
1. Furthermore, since the function is non-decreasing, there can be at most
one linear component equal to the constant function 0 and it would be f1.
A reasoning similar to the one of Lemma 2.2 leads to the conclusion that
there cannot be two consecutive linear components fi and fi+1 with strictly
positive slopes.

Summarizing, we have

Proposition 2.1. Every non-decreasing convex McNaughton functions has
either one linear component (and in this case it is equal to 0, 1 or x) or two
linear components and in this case it is equal to max{0, nx+1−n} for some
n ∈ N, n > 2. So the set non-decreasing convex McNaughton functions is
{0, 1} ∪ {max{0, nx+ 1− n}}n∈N,n>1.



20 2.1. The polynomial semiring B[x]

1

1

Figure 2.3

See �gure 2.3 for a representation of the non-decreasing convex Mc-
Naughton functions of one variable corresponding to n = 3.

We can now present the main result of the chapter.

Theorem 2.3. The set of non-decreasing convex McNaughton functions over
[0, 1] with the pointwise operations ∨ and � of the standard MV-semiring and
the constant functions 0 and 1 is an additively idempotent and commutative
semiring that coincides with (B[0,1][x],∨,�, 0, 1).

Remark 2.1. Observe that we denote with the same symbols ∨ and � di�e-
rent operations.

As regards McNaughton functions ∨ and � denote the pointwise opera-
tions of the standard MV-semring, i. e.

(f ∨ g)(x) = f(x) ∨ g(x) = max{f(x), g(x)}

and

(f � g)(x) = f(x)� g(x) = max{0, f(x) + g(x)− 1}

whereas for the semiring B[0,1][x] the operations are the ones de�ned in
Theorem 2.1. Even if in the context of Theorem 2.3 we shall prove that these
operations coincide this remark is necessary in order to avoid confusion.

Proof. In order to prove that the above semiring coincide with B[0,1][x] we
have to prove (by induction) that

xn = max{0, nx+ 1− n}

for all the integers n > 1 and for all x ∈ [0, 1].
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We have that x = max(0, x) so the basic step is proved.
Assume xn = max{0, nx + 1 − n} and we shall prove that xn+1 =

max{0, (n+ 1)x+ 1− n− 1} = max{0, nx+ x− n}.

xn+1 = xn�x = max{0, nx+1−n}�x = max{0,max{0, nx+1−n}+x−1}

Suppose max{0, nx + x − n} = nx + x − n, so 0 6 nx + x − n, then
0 6 nx+1−n (x 6 1) and max{0,max{0, nx+1−n}+x−1} = max{0, nx+
1− n+ x− 1} = max{0, nx− n+ x} = nx+ x− n.

Now suppose max{0, nx+ x− n} = 0, so nx+ x− n 6 0. We have now
two cases:

1. nx+ 1−n 6 0, then max{0,max{0, nx+ 1−n}+x−1} = max{0, x−
1} = 0;

2. nx+1−n > 0, then max{0,max{0, nx+1−n}+x−1} = max{0, nx+
1− n+ x− 1} = max{0, nx− n+ x} = 0.

In both cases we have that max{0, nx + x − n} = max{0,max{0, nx +
1− n}+ x− 1}.

We have now to prove that the McNaughton functions operations and
the operations of B[0,1][x] coincide.

Let m, n be two natural numbers di�erent from 0 and x be an arbitrary
point of [0, 1]; then

max(max(0, nx+ 1− n),max(0,mx+ 1−m)) =

= max(0,min{m,n}x+ 1−min{m,n}) = xmin{n,m} = xn ∨ xm

and

max(0,max(0, nx+ 1− n) + max(0,mx+ 1−m)− 1) =

=

{
0 if x 6 m+n−1

m+n

(m+ n)x+ 1− (m+ n) if x > m+n−1
m+n

=

= max(0, (m+ n)x+ 1− (m+ n)) = xm+n = xm � xn

This result leads to a new interpretation of theorem 2.2 in terms of slopes.
Indeed, we can think of the function Φ as the function which sends every
function to the slope of its non-constant linear component.
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2.2 The polynomial semiring B′[x]

We have a mirror situation considering the semiring of polynomials in the
variable x over the boolean semi�eld {0, 1} evaluated on the MV-semiring
([0, 1],∧,⊕, 0, 1) and I shall denote such semiring of evaluations as B′[0,1][x].

The elements of B′[0,1][x] will be functions from [0, 1] to [0, 1] of the fol-
lowing form: ∧

i∈I
ix

where

ix = x⊕ · · · ⊕ x︸ ︷︷ ︸
i times

and I is a �nite subset of the natural numbers.

Recalling that in the standard MV-semiring ([0, 1],∧,⊕, 1, 0) x 6 x ⊕ x
the set of evaluations B′[0,1][x] amounts to the set of functions from [0, 1] to

[0, 1] of the form (min I)x for some �nite subset of the natural numbers I
plus the constant functions 0 and 1 (we are again implicitly identifying the
functions that coincide on any value of [0, 1]) .

So, B′[0,1][x] = {nx | n ∈ N} ∪ {0, 1}.

It is easy to see that the map

∗ : B[0,1][x]→ B′[0,1][x]

that sends xn to nx, 0 to 1 and 1 to 0 is a semiring isomorphism.

From this it follows that

• the semirings B′[0,1][x] and (N ∪ {∞},min,+,∞, 0) are isomorphic;

• the semiring B′[0,1][x] coincides with the semiring of non-decreasing con-

cave McNaughton functions over [0, 1] with the pointwise operations ∧
and ⊕ of the MV-semiring [0, 1]∧⊕;

indeed the isomorphism ∗ sends non-decreasing convex to non-decreasing
concave McNaughton functions.

See 2.4 for a representation of the non-decreasing concave McNaughton
function 3x.

We shall conclude this chapter leaving some open questions:



Chapter 2. The polynomial semiring B[x] 23

1

1

Figure 2.4

Questions Let n be an integer greater than 1. Is it true that the semiring
of the evaluations of polynomials in the variable x over the boolean semi�eld
{0, 1} on the standard MV-semiring ([0, 1]n,∨,�, 0, 1) coincides with the
semiring of non-decreasing convex McNaughton functions over [0, 1]n with
the pointwise operations ∨ and �?

Does then exist a semiring isomorphism between the semiring of non-decreasing
convex McNaughton functions over [0, 1]n and a numerical semiring similar
to the one we have for the one variable case?

As regards the �rst, we already have one inclusion indeed all the functions
of the form

m∨
i=0

xj1i1 . . . xjnin

where m and jki are integers for any k ∈ {1, . . . , n} and i ∈ {0, . . . ,m}
are non-decreasing convex McNaughton functions over [0, 1]n (the ope-

ration ∨ and � are both non-decreasing and the sup of a collection of convex
functions is convex) but whether the reverse inclusion holds or not is a que-
stion still open.
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Chapter 3

Involutive semirings

In this chapter, we shall present a categorical isomorphism between involutive
residuated lattices and a special class of semirings called involutive semirings.
That isomorphim can be seen as a generalization of the one between MV-
algebras and MV-semirings since the variety of involutive residuated lattices
strictly contains the one of MV-algebras. Since arbitrary involutive residua-
ted lattices are not required to be bounded we shall �rst consider zero-free
semirings. The results contained in this chapter are part of a joint work
with Peter Jipsen ([36]). For all the de�nitions and results about involutive
residuated lattices we refer to [25].

3.1 Basic notions

De�nition 3.1. A 0-free semiring is an algebra (A,+, ·, 1) of type (2, 2, 0)
such that

1. (A,+) is a commutative semigroup,

2. (A, ·, 1) is a monoid and

3. a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ A

Example 3.1. We can obtain zero-free semirings from the tropical semi�elds
by dropping −∞ or +∞ respectively, for example

(R,max,+, 0) is a zero-free semiring that shall play an important role in
the last chapter of the thesis.

De�nition 3.2. An involutive semiring is an algebra (A,∨, ·, 1,∼,−) of type
(2, 2, 0, 1, 1) such that

1. (A,∨, ·, 1) is a 0-free additively idempotent semiring and

2. x 6 y ⇐⇒ x · ∼y 6 −1 ⇐⇒ −y · x 6 −1 for all x, y ∈ A.
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De�nition 3.3 (Join-semilattice). A join-semilattice is an algebraic stru-
cture (M,∨) consisting of a set M with a binary operation ∨ such that the
following conditions hold for all x, y, z ∈M :

1. x ∨ (y ∨ z) = (x ∨ y) ∨ z;

2. x ∨ y = y ∨ x;

3. x ∨ x = x.

If the symbol ∧ replaces ∨ in the de�nition just given, the structure is
called a meet-semilattice.

De�nition 3.4. Let (M,∨) be a join-semilattice, M has a bottom element
0 if x ∨ 0 = x for all x ∈M .

Observe that any additively idempotent semiring has an underlying stru-
cture of join-semilattice. The element −1 is denoted by 0, although it need
not be the bottom element of the join-semilattice.

De�nition 3.5 (Involutive semirings morphisms). LetA andB be involutive
semirings. A semiring morphism between A and B is a map f : A→ B such
that:

1. f(x ∨ y) = f(x) ∨ f(y);

2. f(x · y) = f(x) · f(y);

3. f(1) = 1;

4. f(∼x) = ∼f(x);

5. f(−x) = −f(x).

for all x, y ∈ A.

De�nition 3.6 (Residuated lattice). A residuated lattice is an algebra
(A,∨,∧, ·, 1, \, /) of type (2, 2, 0, 2, 2) such that

1. (A,∨,∧) is a lattice,

2. (A, ·, 1) is a monoid and

3. (res) xy 6 z ⇐⇒ x 6 z/y ⇐⇒ y 6 x\z holds for all x, y, z ∈ A.

De�nition 3.7. A pointed residuated lattice (A,∨,∧, ·, 1, \, /, 0) is a residua-
ted lattice with an additional constant 0. Note that this constant needs not
be the least element of the lattice.

De�nition 3.8. On a pointed residuated lattice we can de�ne two order-
reversing operations ∼,− as ∼x = x\0 and −x = 0/x. They are called
respectively left and right linear negation.
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De�nition 3.9 (Involutive residuated lattice). An involutive residuated lat-
tice is a pointed residuated lattice that satis�es ∼−x = x = −∼x for all
x ∈ A.

De�nition 3.10 (Involutive residuated lattices morphisms). Let A and B
be involutive residuated lattices. A involutive residuated lattices morphism
between A and B is a map f : A→ B such that:

1. f(x ∨ y) = f(x) ∨ f(y);

2. f(x ∧ y) = f(x) ∧ f(y);

3. f(x · y) = f(x) · f(y);

4. f(x\y) = f(x)\f(y);

5. f(x/y) = f(x)/f(y);

6. f(1) = 1;

7. f(0) = 0.

for all x, y ∈ A.

Remark 3.1. If · is commutative then x\y = y/x, hence ∼x = −x.

Examples 3.1. 1. The variety of involutive residuated lattices strictly
contains the variety of MV-algebras so, every MV-algebra is an example
of involutive residuated lattice. In particular, an MV-algebra is a 1-
bounded (i. e. 1 is the top element), commutative involutive residuated
lattice that satis�es x ∨ y = (x/y)\x.

2. The chain in the picture is an example of an involutive residuated lattice
which is not an MV-algebra. Indeed there are only two examples of 4-
element MV-algebras: the chain L4 and the product of chains L2×L2.
The chain in the picture can't be L4 because the only multiplicatively
idempotent elements of L4 are 0 and 1.

1

b b2 = b

a a2 = 0

0

Remark 3.2. Note that residuated lattices which has the multiplicative unit
1 as the greatest element are usually called integral. However, since the
term �integral� has a di�erent meaning in semiring theory, we preferred to
substitute �integral� with �1-bounded� in order to avoid confusion.
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The residuation equivalences (res) can be replaced by four identities,
hence involutive residuated lattices form a variety, denoted by InRL.

It is well known (see [25], Lemma 3.17 and Lemma 3.18) that \, /, 0 can
be expressed by the linear negations and the monoid operation:

x\y = ∼((−y)x), x/y = −(y(∼x)) and 0 = ∼1 = −1.

Consequently, we have that an involutive residuated lattice

(A,∨,∧, ·, 1, \, /, 0)

can be equivalently represented trough the signature (A,∨,∧, ·, 1,∼,−) (we
shall use this signature from now on to denote involutive residuated lattices).
It is straightforward that involutive residuated lattices morphisms remain the
same.

Since residuation also implies that · distributes over ∨ (see [25, Lemma
2.6]), hence (A,∨, ·, 1) is a 0-free idempotent semiring, i. e. the 0-free semi-
ring reduct of the involutive residuated lattice.

3.2 Involutive residuated lattices and semirings

Below we show that the main result of the chapter, i. e. the term equivalence
between involutive residuated lattices and involutive semirings. The general
term-equivalence was �rst shown between generalized coupled semirings and
involutive residuated lattices in [35].

Lemma 3.1. Let (A,∨, ·, 1,∼,−) be an involutive semiring, then ∼−x =
x = −∼x.

Proof.

Claim 3.1. ∼− x 6 x

Proof. To prove the inequality ∼−x 6 x, note that −x 6 y ⇐⇒ −x · ∼y 6
0 ⇐⇒ ∼y 6 x, these equivalences are obtained applying property (2) of
the de�nition 3.2 and recalling that 0 = −1.

We can substitute y by −x in the �rst and last terms of the previous
equivalence and we get −x 6 −x ⇐⇒ ∼−x 6 x, so we obtain ∼−x 6 x.

Claim 3.2. x 6 ∼− x

Proof. Substituting x by ∼−x in the inequality obtained in claim 3.1 we
get ∼−∼−x 6 ∼−x 6 x. This is equivalent to −x 6 −∼−x (recall that
−x 6 y ⇐⇒ ∼y 6 x).
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Similarly, in −x 6 y ⇐⇒ ∼y 6 x we can now substitute x by ∼y
obtaining −∼y 6 y, and replacing y by −x we have −∼−x 6 −x, hence the
identity −x = −∼−x holds.

Now x 6 x implies −x · x 6 0, hence −0 · (−x · x) 6 0 (applying
property (2) of the de�nition 3.2 and recalling that 0 = −1). From the
identity −x = −∼−x it follows that −∼−0 · (−∼−x · x) 6 0, which implies
−∼−x · x 6 ∼−0 6 0 (by property (2) of the de�nition 3.2) and therefore
x 6 ∼−x (also, by property (2)). So we have shown that the identity
∼−x = x holds, and −∼x = x is proved similarly.

Theorem 3.1. Involutive residuated lattices are term-equivalent to involu-
tive semirings.

Proof. Let (A,∨,∧, ·, 1,∼,−) be an involutive residuated lattice, we want
to prove that its 0 - free semiring reduct (A,∨, ·, 1,∼,−) is an involutive
semiring.

Claim 3.3. (A,∨, ·, 1,∼,−) is an involutive semiring

Proof. In particular we have to prove the condition (2) of the de�nition
3.2. We shall now prove x 6 y ⇐⇒ x · ∼y 6 −1. Since A is an involutive
residuated lattice we know that y = −∼y, so x 6 y is equivalent to x 6 −∼y.
By the de�nition 3.8 we have that −∼y = 0/∼y, so x 6 y ⇐⇒ x 6
−∼y ⇐⇒ x 6 0/∼y. The last is equivalent to x · ∼y 6 0 by (res) but
since 0 = −1 this is equivalent to x · ∼y 6 −1. Through this chain of
equivalences we obtained that x 6 y ⇐⇒ x · ∼y 6 −1. The equivalence
x 6 y ⇐⇒ −y · x 6 −1 is proved similarly, showing that any involutive
residuated lattice is an involutive semiring.

Conversely, let (A,∨, ·, 1,∼,−) be an involutive semiring. To show that
this is an involutive residuated lattice we have to de�ne ∧ in a suitable way.
So, we de�ne x∧y = ∼(−x∨−y). We have to prove that with this de�nition
of ∧ (A,∨,∧) is actually a lattice and that (res) holds.

Claim 3.4. ∼ and − are order-reversing

Proof. Next, observe that x 6 y ⇐⇒ −y · x 6 0 ⇐⇒ −y · ∼− x 6 0 ⇐⇒
−y 6 −x (applying property (2) and Lemma 6.1). A similar calculation
for ∼ shows that the unary operations in an involutive semiring are order-
reversing inverses of each other.

Since (A,∨) is a join-semilattice, the operation ∧ that we de�ned inherits
from ∨ the property of commutativity, associativity and idempotence. To
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show that (A,∨,∧) is a lattice we only need to prove the absorption laws.

Claim 3.5. Absorption laws

Proof. We now prove the absorption laws: x ∧ (x ∨ y) = ∼(−x ∨ −(x ∨ y))
(by the de�nition of ∧). We have that x 6 x ∨ y and, since − is order-
reversing we will have −(x ∨ y) 6 −x, which implies −x ∨ −(x ∨ y) = −x.
So, x ∧ (x ∨ y) = ∼(−x ∨ −(x ∨ y)) = ∼−x = x. Similarly x ∨ (x ∧ y) =
x ∨ ∼(−x ∨ −y) = x since −x 6 −x ∨ −y implies ∼(−x ∨ −y) 6 x. Hence
(A,∨,∧) is a lattice.

Claim 3.6. Proof of (res)

Proof. Finally we prove that if the residuals are de�ned as x\z = ∼(−z · x)
and z/y = −(y · ∼z) then (res) holds:

y 6 ∼(−z · x)⇔ −z · x 6 −y ⇔

(applying − to both sides and recalling that − is order-reversing)

⇔ −z · x · y 6 −1⇔

(applying (2) and the identity ∼− y = y)

⇔ −z 6 −(x · y)⇔

(writing x · y as ∼− (x · y) and then applying (2))

⇔ xy 6 z.

(− is order-reversing). The second equivalence of (res) is proved similarly,
hence any involutive semiring determines an involutive residuated lattice.

Remark 3.3. Similar to remark 1.4, we have that if A and B are two invo-
lutive residuated lattices and h : A → B is a map between them, then h is
an involutive residuated lattices morphism if and only if it is an involutive
semirings morphism.

The two previous propositions show that involutive residuated lattices
and involutive semirings are two term-equivalent varieties. Since the mor-
phisms of the two categories coincide it is straightforward to show that the
two corresponding categories are isomorphic, so we have

Theorem 3.2. Involutive residuated lattices and involutive semirings are
isomorphic categories.
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In the next result we shall see how the semiring perspective may help us
answer an open question about involutive residuated lattices. In particular
we shall �nd a necessary and su�cient condition in order for the interval
[0, 1] = {a | 0 6 a 6 1} to be a subalgebra of an involutive residuated
lattice.

Theorem 3.3. In any involutive semiring (equivalently involutive residuated
lattice) the interval [0, 1] is a subalgebra if and only if 0 is a multiplicative
idempotent element, i. e., 0 · 0 = 0.

Proof. (⇒) Assume [0, 1] is a subalgebra of an involutive semiring. Since
any subalgebra of an involutive semiring can't be empty (it must contain at
least the element 1), then 0 6 1. We also have that 0 6 1 ⇐⇒ 0 · 0 6 0
(applying (2) of def. 3.2 and recalling that ∼1 = −1 = 0). Since 0 belongs
to the subalgebra [0, 1], then 0 · 0 must belong to the subalgebra too (it is
closed under the operations). So, 0 · 0 ∈ [0, 1] implies the reverse inequality
0 6 0 · 0, hence we obtain 0 · 0 = 0.
(⇐) Conversely, assume 0 · 0 = 0. The equivalence 0 · 0 6 0 ⇐⇒ 0 6 1
shows that the interval [0, 1] is not empty and that 0 and 1 belong to it. The
interval is certainly closed under joins.

The closure under ∼ follows from

0 6 a 6 1 ⇐⇒ 0 = ∼1 6 ∼a 6 ∼0 = 1.

The argument for closure under − is the same. As regards the closure under
multiplication we have that if a, b ∈ [0, 1] then ab 6 a, b (indeed ab ∨ a =
a · (b∨ 1) = a) and in particular ab 6 1. Observe that if a 6 b and c 6 d, we
have that ac 6 bd (indeed ac∨ad = a(c∨d) = ad and ad∨bd = (a∨b)d = bd,
so 0 6 a, b implies 0 · 0 6 ab. Since we assume 0 · 0 = 0 we have that 0 6 ab,
hence a, b ∈ [0, 1].

In order to study semimodules over involutive semirings we have to re-
strict our attention to those involutive semirings for which 0 is the bottom
element or equivalently the additive identity. So, 1 is the top and from (res) ,
it follows that x0 = 0 = 0x. For these reasons such semirings can be de�ned
as follows:

De�nition 3.11. An 1 - bounded involutive semiring is an algebra
(A,∨, ·, 0,∼,−) of type (2, 2, 0, 0, 1, 1) such that

1. (A,∨, ·, 0, 1) is an additively idempotent semiring and

2. x 6 y ⇐⇒ x · ∼y = 0 ⇐⇒ −y · x = 0.

Note that in this case 1 can be de�ned as ∼ 0 = −0. These semi-
rings are bounded from below by 0 and from above by 1 and so shall be the
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corresponding involutive residuated lattices. Therefore, the previous isomor-
phisms still holds between 1-bounded involutive semirings and 1-bounded in-
volutive residuated lattices. Semirimodules over 1-bounded involutive semi-
rings shall be the main topic of Chapter 6.

The next diagram shows the relevant isomorphisms between special classes
of semirings and the algebraic structures considered in this thesis; the vertical
lines read upwards indicate the relation �being a subvariety of�.

InRL

1− bInRL

MV MV S

1− bInS

InS

InRL = involutive residuated lattices;
1− bInRL = 1-bounded involutive residuated lattices;
MV = MV-algebras;
InS = involutive semirings;
1− bInS = 1-bounded involutive semirings;
MV S = MV-semirings.



Chapter 4

Injective and projective

semimodules

The two categorical isomorphisms (Theorem 1.1 and the 1-bounded version
of Theorem 3.1) presented in the previous chapters allow us to import some
results and technique of semiring theory in the study of MV-algebras and
involutive residuated lattices. One of the main topic in semiring theory
is semimodule theory, in particular we focused on the characterization of
injective and projective semimodules over the two aforementioned classes
of semirings. First of all, we shall provide some de�nitions and results for
injective and projective semimodules over additively idempotent semirings.
For the de�nitions and basic results about semimodules we refer to [30],
whereas for all the de�nitions regarding lattice theory we refer to [31].

4.1 Basic notions

De�nition 4.1 (Semimodule). Let S be a semiring. A (left) S-semimodule
is a commutative monoid (M,+, 0) with a scalar multiplication · : (a, x) ∈
S ×M → a · x ∈M , such that the following conditions hold for all a, b ∈ S
and x, y ∈M :

1. (ab) · x = a · (b · x);

2. a · (x+ y) = (a · x) + (a · y);

3. (a+ b) · x = (a · x) + (b · x);

4. 0S · x = 0M = a · 0M ;

5. 1 · x = x.

The de�nition and properties of right S-semimodules are completely
analogous. From now on, we will refer generically to semimodules without
specifying left or right and we will use the notations of left semimodules.
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Example 4.1. Let S = (S,+, ·, 0, 1) be a semiring.

1. Its additive monoid reduct (S,+, 0) is a semimodule over S where the
scalar multiplication is the semiring multiplication;

2. if n is an integer (Sn,+, 0) is a semimodule over S with + and the
scalar multiplication de�ned coordinate-wise;

3. Let x be an element of S, then the principal ideal Sx is a semimodule
over S.

De�nition 4.2 (Subsemimodule). Let S be a semiring and M = (M,+, 0)
an S-semimodule. An S-subsemimodule N of M is a subset of M for which
the following conditions hold for all a, b ∈ N and s ∈ S:

1. a+ b ∈ N ;

2. 0 ∈ N ;

3. s · a ∈ N .

De�nition 4.3. Since the intersection of any family of S-subsemimodules
of a S-semimodule M is still a subsemimodule of M we can de�ne the S-
subsemimodule generated by an arbitrary subset X of M as the intersection
of all the S-sebsemimodules containing X. We will denote this object with
〈X〉. It is obvious that 〈X〉 = S ·X = {

∑n
i=1 ai · xi|ai ∈ S, xi ∈ X,n ∈ N},

i. e. the set of all the linear combinations of elements of X.

De�nition 4.4. An S-semimodule is called cyclic if it is generated by a
single element v, such a semimodule shall be denoted by S · v.

Example 4.2. 1. Let x be an element of S, then the principal ideal gene-
rated by x, Sx = {sx | s ∈ S}, with x ∈ S is a cyclic semimodule;

2. the additive monoid reduct of a semiring (S,+, 0) is the cyclic semi-
module generated by the element 1 of the semiring.

The product of a family of semimodules and the power of a semimodule
are de�ned in the standard way.

Recall that any additively idempotent semiring has an underlying stru-
cture of join-semilattice and, in this case, we write ∨ for the semiring addi-
tion.

Proposition 4.1. If (M,+, 0) is a semimodule over an additively idempotent
semiring, then it is a join-semilattice with bottom element 0.

Proof. The only thing we need to show is that the operation + is idempotent.
Let x ∈ M , we have x = 1x = (1 ∨ 1)x = 1x+ 1x = x+ x which completes
the proof.
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Remark 4.1. Note that in this case we have a partial order relation 6 called
the natural order on M de�ned for any m,m′ ∈ M by m 6 m′ ⇐⇒
m+m′ = m′.

From now on, for semimodules over additively idempotent semirings (so,
in particular, for MV-semimodules) we shall use the notation (M,∨, 0) in-
stead of the one with +.

De�nition 4.5. Let S be a semiring and M,N two left S-semimodules. A
map f : M → N is an S-semimodule homomorphism if f(x+y) = f(x)+f(y)
for any x, y ∈M , and f(a · x) = a · f(x), for all a ∈ S and x ∈M .

De�nition 4.6. Given a semiring S, de�ne the category SM of left S-
semimodules whose object are left S-semimodules and whose arrows are the
homomorphisms de�ned above.

4.2 Injective semimodules

In this section we shall provide all the necessary de�nitions and notions about
injective and projective semimodules. As regards modules over rings we have
various equivalent de�nitions of injective and projective modules (see [59]),
unfortunately this is not the case for semimodules over semirings because
the di�erent de�nitions of injective and projective semimodules analogous
to the ones for modules don't lead to the same class of semimodules. For
insights over the di�erent de�nitions of injective and projective semimod-
ules and relations between them we refer to [2] and [3]. Through the thesis
we shall always refer to the categorical de�nition of injective and projective
semimodules (i. e. injective and projective objects in the category of semi-
modules over a given semiring). The results contained in this and the next
section are part of the two papers [19] and [36].

De�nition 4.7. Let S be a semiring. A left S-semimodule E is injective if,
given a left S-semimoduleM and a subsemimoduleN , any S-homomorphism
from N to E can be extended to an S-homomorphism from M to E.

The de�nition is equivalent to say that, given ι the inclusion of N in M ,
for any α : N → E homomorphism, there exists β such that the following
diagram commutes.

N E

M

ι

α

β

De�nition 4.8. A semiring S is called self-injective if the regular S-semimodule
S is injective.
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We shall now provide a su�cient and necessary condition for the inje-
ctivity of semimodules over additively idempotent semirings. First of all, we
shall recall the de�nition of retract in a category.

De�nition 4.9 (Retract). An object A in a category is called a retract of
an object B if there are morphisms i : A → B and r : B → A such that
r ◦ i = idA.

Recalling that in any category injectivity is preserved by retraction we
have that

Lemma 4.1. For any semiring S, any retract of an injective left S-semimodule
is injective.

De�nition 4.10. Let π : T −→ S be a semiring homomorphism. S is
canonically a left T -semimodule where the scalar multiplication is de�ned
by t · s = π(t)s for all t ∈ T and s ∈ S. Let M be a left T -semimodule.
Ler HomT (S,M) denote the set of T -semimodule morphisms from S to
T . Then, HomT (S,M) is a left S-semimodule with respect to component-
wise addition and scalar multiplication given by: (s′α)(s) = α(ss′) for all
α ∈ HomT (S,M) and s, s′ ∈ S.

We recall that with B we mean the two-element semi�eld ({0, 1},+, ·, 0, 1).

Lemma 4.2. ([56, Lemma 1]) B is an injective semimodule over itself.

The Lemma is proved in [56], we report here below the proof for the
reader's convenience.

Proof. Let N be a subsemimodule of a B-semimodule M and let φ : N → B
be a B-semimodule morhpism. Let ψ : M → B be the function de�ned by

ψ(c) =

{
0 if φ(a+ c) = 0 for some a ∈M
1 otherwise

We claim that ψ is a B-semimodule morphism.

Let c1, c2 be elements ofM . If ψ(c1+c2) = 0, then there exists an element
a ∈M such that φ(c1+c2+a) = 0; then, φ(c1+(c2+a)) = 0 = φ(c2+(c1+a))
and so ψ(c1) = 0 = ψ(c2). Hence ψ(c1+c2) = ψ(c1)+ψ(c2). If ψ(c1+c2) = 1
then we must have ψ(c1) = 1 or ψ(c2) = 1 for otherwise if ψ(c1) = ψ(c2) = 0
there would exist a1, a2 ∈ M such that φ(c1 + a1) = 0 = φ(c2 + a2) and so
φ(c1+c2+a1+a2) = 0, implying that ψ(c1+c2) = 0, which is a contradiction.
Therefore, in any case ψ(c1 + c2) = ψ(c1) + ψ(c2).

Lemma 4.3. For any additively idempotent semiring S, the left S-semimodule
HomB(S,B) is injective.
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Proof. Let S be an additively idempotent semiring. We then have that Bmay
be considered as a subsemiring of S; hence, every left S-semimodule is also a
B-semimodule. Let N be a subsemimodule of a left S-semimoduleM and let
α : N −→ HomB(S,B) be an S-homomorphism. Notice that N is also a B-
subsemimodule ofM . De�ne a map θ : N −→ B by setting θ(n) = (α(n))(1)
for all n ∈ N . Then θ is a B-homomorphism. Indeed, if n, n′ ∈ N then
θ(n + n′) = (α(n + n′))(1) = (α(n) + α(n′))(1) = (α(n))(1) + (α(n′))(1) =
θ(n) + θ(n′).

By Lemma 4.2 B is an injective B-semimodule, and so there exists a
B-homomorphism φ : M −→ B such that φθ = idN . De�ne a map β :
M −→ HomB(S,B) by setting (β(m))(s) = φ(sm) for all m ∈M and s ∈ S.
We show that β is an S-homomorphism. Indeed, for all m1,m2 ∈ M and
s1, s2 ∈ S we have

(β(s1m1 + s2m2))(s) = φ(s(s1m1 + s2m2)) = φ(s(s1m1) + s(s2m2)) =

= φ(s(s1m1)) + φ(s(s2m2)) = φ((ss1)m1)) + φ((ss2)m2)) =

= (β(m1))(ss1) + (β(m2))(ss2) = (s1β(m1)(s) + (s2β(m2)(s) =

= (s1β(m1) + s2β(m2))(s)

for all s ∈ S. This implies that β is an S-homomorphism. Furthermore, β
extends α since for each n ∈ N and s ∈ S we have (β(n))(s) = φ(sn) =
θ(sn) = (α(sn))(1) = (sα(n))(1) = (α(n))(s). Thus, HomB(S,B) is an
injective left S-semimodule, �nishing the proof.

We are now able to give a necessary and su�cient condition for the inje-
ctivity of semimodules over additively idempotent semirings. The argument
of the following theorem is based on the proof of [38, Theorem 4.2].

Theorem 4.1. Let S be an additively idempotent semiring and M a left
S-semimodule. Then, M is injective if and only if there exists a set X such
that M is a retract of the left S-semimodule HomB(S,B)X , where B is the
Boolean semi�eld.

Proof. (=⇒). Let M be an injective left S-semimodule. We then have that
HomB(HomB(M,B),B) is a left S-semimodule, where the scalar multiplica-
tion de�ned by: (s ·β)(α) = β(α ·s) for all β ∈ HomB(HomB(M,B),B), α ∈
HomB(M,B) and s ∈ S. Note that HomB(M,B) is a right S-semimodule,
where the scalar multiplication de�ned by (α · s)(m) = α(sm) for all α ∈
HomB(M,B), s ∈ S and m ∈M .

Claim 4.1. The map φ : M −→ HomB(HomB(M,B),B), de�ned by φ(m)(f) =
f(m) for all m ∈M and f ∈ HomB(M,B), is an S-homomorphism
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Proof. Indeed, for all s, s′ ∈ S and m,m′ ∈M we have (φ(sm+ s′m′))(f) =
f(sm+ s′m′) = f(sm) + f(s′m′) = (f · s)(m) + (f · s′)(m′) = (φ(m))(f · s) +
(φ(m′))(f · s′) = (s · φ(m))(f) + (s′ · φ(m′))(f) = (s · φ(m) + s′ · φ(m′))(f)
for all f ∈ HomB(M,B), thus the claim is proved.

Claim 4.2. φ is injective

Proof. Indeed, we �rst note that since S is an additively idempotent semi-
ring, the semimodule M is additively idempotent. By Remark 4.1, the
monoid (M,+, 0) is a join-semilattice with the partial ordering 6 on M
de�ned for any two elements m,m′ ∈M by m 6 m′ if m+m′ = m′.

Let m,m′ ∈ M such that m 6= m′. We then must have that m 
 m′

or m′ 
 m. Without loss of generality we may assume that m 
 m′. We
consider the B-homomorphism f : M −→ B, de�ned by: for all x ∈M ,

f(x) =

{
0 if x 6 m′,
1 otherwise

.

We then have that

φ(m)(f) = f(m) = 1 6= 0 = f(m′) = φ(m′)(f),

that means, φ(m) 6= φ(m′). This implies that φ is injective.

For the right S-semimodule HomB(M,B), by [30, Proposition 17.11],
there exists a surjective S-homomorphism θ :

⊕
x∈X Sx −→ HomB(M,B)

from a free right S-semimodule
⊕

x∈X Sx, Sx
∼= S as right S-semimodules

for all x ∈ X, where X is any set of generators for the right S-semimodule
HomB(M,B). This surjection induces an injective S-homomorphism

θ∗ : HomB(HomB(M,B),B) −→ HomB(
⊕
x∈X

Sx,B),

de�ned by θ∗(β) = βθ, for all β ∈ HomB(HomB(M,B),B). Therefore, we
obtain an injective S-homomorphism θ∗φ : M −→ HomB(

⊕
x∈X Sx,B).

Consider for x ∈ X the natural injection ιx : Sx −→
⊕

x∈X Sx. We then
have an S-isomorphism

HomB(
⊕
x∈X

Sx,B) −→
∏
x∈X

HomB(Sx,B),

by the map f 7−→ (fιx)x∈X , and so we have an injective S-homomorphism µ :
M −→ HomB(S,B)X . SinceM is injective, there exists an S-homomorphism
η : HomB(S,B)X −→M such that ηµ = idM ; that means, M is a retract of
the left S-semimodule HomB(S,B)X .

(⇐=). By Lemma 4.3, the left S-semimodule HomB(S,B) is injective,
and so HomB(S,B)X is also an injective left S-semimodule, by [30, Proposi-
tion 17.23 (1)]. Then, by Lemma 4.1, we immediately get thatM is injective,
�nishing our proof.



Chapter 4. Injective and projective semimodules 39

The previous theorem can be restated in terms of ideals of the join-
semilattice reduct of the semiring, we shall now provide the de�nition.

De�nition 4.11. An ideal of a join-semilattice (S,∨, 0) is a subset I of S
such that

1. if a, b ∈ I, then a ∨ b ∈ I;

2. if a ∈ I, b ∈ S and b 6 a, then b ∈ I.

Remark 4.2. For an additively idempotent semiring S, an element s ∈ S and
an ideal I ⊆ S, de�ne scalar multiplication by s ·I = {x ∈ S | xs ∈ I}. Then
s · I is also an ideal of S, and it is straightforward to check that (Id(S),∩, I)
is an S-semimodule (ordered by reverse inclusion). Recall also that for a
semiring homomorphism f : S → B, Ker(f) = {x ∈ A | f(x) = 0}, and this
is a member of Id(S).

Proposition 4.2. Let S be an additively idempotent semiring. Then HomB(S,B)
and Id(S) are isomorphic as S-semimodules.

Proof. As noted above, Ker is a map from HomB(S,B) to Id(S), and since
a function f : S → B is determined by the preimage of {0}, the map Ker is
a bijection. For f, g ∈ HomB(S,B) and s ∈ S we have

Ker(f ∨ g) = {x ∈ S | (f ∨ g)(x) = 0} = Ker(f) ∩Ker(g) and

Ker(s · f) = {x ∈ S | (s · f)(x) = 0} = {x ∈ S | f(xs) = 0},

which agrees with s ·Ker(f) = {x ∈ S | xs ∈ Ker(f)}.

With this result we can restate Theorem 4.1.

Corollary 4.1. Let S be an additively idempotent semiring and M an S-
semimodule. Then, M is injective if and only if M is a retract of Id(S)X

for some set X.

As an application of Corollary 4.1, we obtain a necessary condition for
injectivity of a semimodule over an additively idempotent semiring.

De�nition 4.12. A frame is a complete lattice L satisfying the distributivity
law (∨

A
)
∧ b =

∨
{a ∧ b | a ∈ A}

[Coframe]([52]) A coframe is a complete lattice L satisfying the distribu-
tivity law (∧

A
)
∨ b =

∧
{a ∨ b | a ∈ A}
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De�nition 4.13. A join-semilattice (S,∨, 0) is join-distributive if for any a,
b0 and b1 elements of S such that a 6 b0 ∨ b1, then there exist a0, a1 ∈ S
such that a0 6 b0, a1 6 b1 and a = a0 ∨ a1.

The following result is well known from lattice theory.

Lemma 4.4. Let S be a join-semilattice. Then the lattice of ideals

(Id(S),∩,∧)

ordered by reverse inclusion, is complete. If S is join-distributive, then Id(S)
is a coframe (i. e. J ∩

∧
i∈I Ji∈I =

∧
i∈I(J ∩ Ji∈I), for any J, Ji ∈ Id(S)).

Proof.

Claim 4.3. Id(S) is complete

Proof. For the completeness it is su�cient to observe that for any Ji ∈ Id(S)
we have that

∨
i∈I Ji =

⋂
i∈I Ji and since the set of ideals of a lattice is closed

under arbitrary intersections we have that the lattice is complete.

Claim 4.4. Id(S) is a coframe

Proof. For the second part, observe that∧
i∈I

Ji = {∨nk=1aik | aik ∈ Jik , {i1, . . . , in} ⊆ I, n ∈ N}

This set is obviously closed under joins, to see that it is downward closed
consider an element x 6 a ∈

∧
i∈I Ji, then a = ai1 ∨ · · · ∨ ain where aik ∈

Jik , for some Jik ∈ Id(S) for every k = 1, . . . , n. Then, since S is join-
distributive, we have that there exist elements a′i1 , . . . , a

′
i1
such that a′ik 6

aik for every k ∈ {1, . . . , n} and x = a′i1 ∨ · · · ∨ a
′
in
. Since any ideal Jik

is downward closed we have that a′ik ∈ Jik for every k ∈ {1, . . . , n}, so
x ∈

∧
i∈I Ji. It is now straightforward to see that J∩(

∧
i∈I Ji) =

∧
i∈I(J∩Ji)

and the proof is complete.

Lemma 4.5. Let (B,∨, 0) and (M,∨, 0) be two semimodules over an addi-
tively idempotent semiring S and suppose that M is a retract of B. If B is
a coframe then M is also a coframe.

Proof. Let α : M → B and β : B → M be the two homomorphisms which
determine the retraction. We prove that M is a complete semimodule and
that

∧
i∈I mi = β(

∧
i∈I α(mi)).

Claim 4.5. M is complete
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Proof. Indeed, we �rst note that

mi = βα(mi) > βα(
∧
i∈I

mi)

for all i ∈ I. If m′ ∈ M and mi > m′ for all i ∈ I, then we have that
α(mi) > α(m′) for all i ∈ I, and hence

∧
i∈I α(mi) > α(m′). This implies

that β(
∧
i∈I α(mi)) > β(α(m′)) = m′. Therefore,

∧
i∈I mi exists in M and

is equal to β(
∧
i∈I α(mi)). So, M is a complete.

Claim 4.6. M satis�es is a coframe

Proof. Since B is a coframe, we have

m ∨
∧
i∈I mi = β(α(m)) ∨ β(

∧
i∈I α(mi)) = β(α(m) ∨

∧
i∈I α(mi))

= β(
∧
i∈I(α(m) ∨ α(mi))) = β(

∧
i∈I α(m ∨mi))

=
∧
i∈I(m ∨mi),

so, M is a coframe and the statement is proved.

Theorem 4.2. Let S be an additively idempotent semiring whose join-semilat-
tice reduct is join-distributive and M an injective semimodule over S. Then
M is a coframe.

Proof. We know that M is injective if and only if it is a retract of Id(S)X

for some set X. Since Id(S) is a coframe by theorem 4.4 and this property
is preserved by retraction, we have that M is a coframe.

Remark 4.3. Note that the previous theorem can be useful as a �negative�
criterion to establish if a semimodule is injective. For example, if the semi-
module is not complete as a lattice it can't be injective.

It seems useful to compare the previous result with the one of Bruns
and Lakser (Theorem 1, [8]) which states that injective meet-semilattices
are precisely frames. If we consider the boolean semi�eld B, by the mirror
version of Bruns and Lakser's result we have that injective semimodules
over B are precisely coframes (semimodules over B being join-semilattices).
Instead, given an arbitrary semiring S and an arbitrary coframeM , we don't
know ifM is an injective semimodule over S since Theorem 4.2 don't provide
a necessary and su�cient condition for a semimodule to be injective; whether
the converse implication of Theorem 4.2 holds is indeed an interesting open
problem to address.
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4.3 Projective semimodules

De�nition 4.14. Let S be a semiring. An S-semimodule P is projective if
the following condition holds: if ϕ : M −→ N is a surjective S-homomorphism
of S-semimodules and if α : P −→ N is an S-homomorphism then there
exists an S-homomorphism β : P −→M satisfying ϕβ = α.

The de�nition is equivalent to say that, given any surjective homomor-
phism ϕ and any homomorphism α, there exists a homomorphism β such
that the following diagram commutes.

M

P N

ϕ
β

α

It is well-known that in any variety of algebras the projective objects
are the retracts of free objects. In the category of semimodules over a
semiring A, the free object over a set X is S(X) = {f : X → S | f(x) =
0 for all but �nitely many x ∈ X} ([21]). So, we obtain the following chara-
cterization of projective semimodules.

Theorem 4.3. Let S be a semiring. An S-semimodule P is projective if and
only if it is a retract of the semimodule S(X) for some set X.



Chapter 5

Semimodules over

MV-semirings

In this chapter, we give a criterion for self-injectivity of an MV-semiring
with an atomic Boolean center, and give a complete description of (�nitely
generated) injective semimodules over a �nite MV-semiring. Also, we show
(Proposition 5.3) that complete Boolean algebras are precisely the MV-
semirings in which every principal ideal is injective. The results contained
in this section come from the paper [19].

Since the two semiring reducts of an MV-algebraA, A∨� := (A,∨,�, 0, 1)
and A∧⊕ := (A,∧,⊕, 1, 0) are isomorphic to each other by the involutive
unary operation ∗ of A we are allowed to limit our attention to one of these
two semiring reducts of A; therefore, whenever not otherwise speci�ed, we
will refer only to A∨�, all the results holding also for A∧⊕ up to the appli-
cation of ∗.

As an application of Corollary 4.1, we obtain a necessary condition for
injectivity of semimodules over MV-semirings.

Proposition 5.1. Let A be an MV-algebra andM an injective A∨�-semimo-
dule. Then M is a coframe.

Proof. By [11, Propositions 1.1.5 and 1.5.1], the natural order determines a
structure of distributive lattice on the semiring A∨�, which implies that the
join-semilattice reduct of A is join-distributive. So, M is a coframe.

In [23, Theorem 4] Fofanova showed that a semimodule over a Boolean al-
gebra is injective if and only if it is a coframe. It is also well-known (see, e.g.,
[49, Corollary 1.5.5]) that Boolean algebras are precisely the MV-algebras
satisfying the additional equation x⊕x = x. In the light of these results and
Theorem 4.2, it is natural to pose the following question.

Problem 1. In the previous proposition we proved that every injective
semimodule over an MV-semiring is a coframe so we could wonder if the
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converse is true. Is it true that every semimodule which is a coframe over
an MV-semiring is injective?

De�nition 5.1 (Atom). Let A be a partially ordered set with least element
0 and a an element of A. Then a is called an atom if 0 < a and there is no
x ∈ A such that 0 < x < a.

De�nition 5.2. An element a of an MV-algebra A is called idempotent if
a⊕ a = a.

Remark 5.1. Note that we use the term �idempotent� in di�erent contexts
and with di�erent meanings. As regards semirings, we have two notions: ad-
ditively idempotent (the operation + is idempotent and it is denoted by ∨)
and multiplicatively idempotent (the operation · is idempotent). In this the-
sis we are not considering multiplicatively idempotent semirings but some-
times we deal with multiplicative idempotent elements of them. When we
use the term �idempotent� in the context of MV-algebras, as in the previous
de�nition, we mean that the operation ⊕ is idempotent.

De�nition 5.3. The set B(A) of all idempotent elements of an MV-algebra
A is a Boolean algebra, usually called the Boolean center of the MV-algebra
A.

De�nition 5.4. An atom of an MV-algebra A is an atom of the lattice A
for the natural order.

We say that A is atomic if for each nonzero element x ∈ A there exists
an atom a ∈ A with a 6 x.

In the following theorem we provide criteria for an MV-semiring with an
atomic Boolean center to be self-injective, which solves a part of Problem 1.
To do this, we need the following useful lemmas.

Lemma 5.1. (1) For each integer n > 2, L∨�n
∼= HomB(L∨�n ,B) as L∨�n -

semimodules. Consequently, L∨�n is a self-injective semiring.
(2) [0, 1]∨� is a self-injective semiring.

Proof. Let G = (G,+,−,6,∨,∧, 0, u) be a lattice-ordered Abelian group
with a distinguished strong order unit u. To avoid confusion we denote the
additive operation in the Γ(G, u)∨�-semimodule HomB(Γ(G, u)∨�,B) by the
notation �.

For each x ∈ Γ(G, u)∨�, we de�ne fx ∈ HomB(Γ(G, u)∨�,B) as follows:

fx(t) =

{
0 if 0 6 t 6 x,
1 otherwise.

Claim 5.1. The map φ : Γ(G, u)∨� −→ HomB(Γ(G, u)∨�,B), de�ned by
φ(x) = f(u−x) for all x ∈ Γ(G, u)∨�, is an injective Γ(G, u)∨�-homomorphism
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Proof. Indeed, let x, y ∈ Γ(G, u)∨�. We have that for all t ∈ Γ(G, u)∨�,

t 6 u− x & t 6 u− y ⇐⇒ x 6 u− t & y 6 u− t
⇐⇒ x ∨ y 6 u− t⇐⇒ t 6 u− (x ∨ y),

so f(u−(x∨y)) = f(u−x) � f(u−y), that means, φ(x ∨ y) = φ(x)� φ(y).

Let x, y ∈ Γ(G, u)∨�. We then have that x � y = u − (2u − x − y) ∧ u
and φ(y � x) = f(2u−x−y)∧u. On the other hand, for any t ∈ Γ(G, u)∨�, we
have that

(yφ(x))(t) = (yf(u−x))(t) = f(u−x)(y � t) = f(u−x)(u− (2u− y − t) ∧ u)

and

u− (2u− y − t) ∧ u 6 u− x ⇐⇒ x 6 (2u− y − t) ∧ u
⇐⇒ x 6 2u− y − t (since x 6 u)
⇐⇒ t 6 2u− x− y
⇐⇒ t 6 (2u− x− y) ∧ u (since t 6 u),

so (yφ(x))(t) = 0 if and only if f(2u−x−y)∧u(t) = 0. This implies that
yφ(x) = f(2u−x−y)∧u = φ(y�x). Therefore, φ is a Γ(G, u)∨�-homomorphism.
Similarly to the proof of [19, Theorem 3.12], we get that φ is injective, pro-
ving the claim.

(1) Consider the case that G = Z 1
n−1 and Ln := Γ(Z 1

n−1 , 1). Take any

f ∈ HomB(L∨�n ,B). Since Ker(f) is a lower subset of the lattice L∨�n for
the natural order, Ker(f) = {x ∈ L∨�n | 0 6 x 6 i/(n−1)} for some 0 6 i 6
n−1, so f = fi/(n−1). We then have that φ((n−i−1)/(n−1)) = fi/(n−1) = f ,
and so φ is surjective. Therefore, φ is an isomorphism of L∨�n -semimodules,
giving the statement (1).

(2) Consider the case that G = R and Γ(R, 1) = [0, 1]. We shall now
prove that the map θ : HomB([0, 1]∨�,B) −→ [0, 1]∨� de�ned by θ(f) =
1−

∨
t∈Ker(f) t for all f ∈ HomB([0, 1]∨�,B), is a [0, 1]∨�-homomorphism.

Indeed, let f and g ∈ HomB([0, 1]∨�,B). Then, for any t ∈ [0, 1]∨�,
(f �g)(t) = 0⇐⇒ f(t)∨g(t) = 0⇐⇒ f(t) = 0 = g(t), and so Ker(f �g) =
Ker(f) ∩Ker(g).

Let x :=
∨
t∈Ker(f) t and y :=

∨
t∈Ker(g) t. Since [0, 1]∨� is an MV-chain,

one of the two lower subsets Ker(f) and Ker(g) is included in the other, so∨
{t ∈ Γ(G)∨� | t ∈ Ker(f) ∩ Ker(g)} = x ∧ y. Also, since Γ(G)∨� is an

MV-chain, 1− (x ∧ y) = (1− x) ∨ (1− y). This implies that

θ(f � g) = 1− (x ∧ y) = (1− x) ∨ (1− y) = θ(f) ∨ θ(y).
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Let y ∈ [0, 1]∨� and f ∈ HomB([0, 1]∨�,B). Then, for each t ∈ [0, 1]∨�,
we have that

(yf)(t) = f(y � t) = f(1− (2− y − t) ∧ 1) = f((t+ y − 1) ∨ 0).

We show that ∨
t∈Ker(yf)

t = (1 + x− y) ∧ 1,

where x :=
∨
t∈Ker(f) t.

Claim 5.2.
∨
t∈Ker(yf) t 6 (1 + x− y) ∧ 1

Proof. Indeed, for any t ∈ [0, 1]∨� with (yf)(t) = 0, we have that f((t +
y − 1) ∨ 0) = 0, so (t+ y − 1) ∨ 0 6 x. We also note that (t+ y − 1) ∨ 0 6
x =⇒ t+ y − 1 6 x =⇒ t 6 1 + x− y =⇒ t 6 (1 + x− y) ∧ 1 (since t 6 1).
Therefore,

∨
t∈Ker(yf) t 6 (1 + x− y) ∧ 1.

Claim 5.3.
∨
t∈Ker(yf) t > (1 + x− y) ∧ 1

Proof. Take any a ∈ [0, 1]∨� with a < (1 + x − y) ∧ 1. We have that
a < 1 +x− y, that is, a+ y− 1 < x. If x ∈ Ker(f) then (a+ y− 1)∨ 0 6 x,
so (yf)(a) = f((a+y−1)∨0) = 0, sinceKer(f) is a lower subset of the lattice
[0, 1]∨�. Otherwise, we have that 0 < x, and so (a+ y − 1) ∨ 0 < x. Then,
since x =

∨
t∈Ker(f) t, there exists t ∈ Ker(f) such that (a+ y − 1) ∨ 0 < t,

which shows that (yf)(a) = f((a + y − 1) ∨ 0) = 0, since Ker(f) is a
lower subset of [0, 1]∨�. In any case we have that a ∈ Ker(yf), and so∨
t∈Ker(yf) t = (1 + x− y) ∧ 1.

From this observation, we get that

θ(yf) = 1− (1 + x− y) ∧ 1 = y � (1− x) = y � θ(f).

Therefore, θ is a [0, 1]∨�-homomorphism, proving the claim. Furthermore,
for any x ∈ [0, 1]∨�, we have that θφ(x) = θ(f1−x) = 1 − (1 − x) = x =
id[0, 1]∨�(x), that is, θφ = id[0, 1]∨� , and so [0, 1]∨� is a retract of the [0, 1]∨�-
semimodule HomB([0, 1]∨�,B). Then, by Theorem 4.1, we get that [0, 1]∨�

is a self-injective semiring, giving the statement (2), thus the proof is com-
plete.

The following lemma is an analog of [41, Corollary 3.11B] for our semiring
setting.

Lemma 5.2. (cf. [41, Corollary 3.11B]) Let S =
∏
i∈I Si be a direct product

of semirings Si. Then S is left self-injective if and only if each Si is left
self-injective.
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Proof. We �rst note that every left Si-semimodule may be viewed as a left
S-semimodule via the natural projection S −→ Si. This provides that for
each i ∈ I the left Si-semimodule Si is viewed as a left S-semimodule. We
then have that S ∼=

∏
i∈I Si as left S-semimodules. By the dual of [30,

Proposition 17.19], S is left self-injective if and only if each Si is injective
left S-semimodule.

Claim 5.4. Si is injective left S-semimodule if and only if Si is left self-
injective

Proof. Indeed, suppose Si is injective left S-semimodule. Let f : A −→ B
be an injective Si-homomorphism and g : A −→ Si an Si-homomorphism.
Then, by the above note, f and g may be viewed as S-homomorphisms.
Since Si is injective left S-semimodule, there exists an S-homomorphism
h : B −→ Si such that hf = g, giving that Si is left self-injective.

Conversely, suppose Si is left self-injective. Let f : A −→ B be an
injective S-homomorphism and g : A −→ Si an S-homomorphism. Write
S = Si × Sci , where Sci =

∏
j∈I,j 6=i Sj . We then have that A = SiA ⊕ SciA

and A = SiB ⊕ SciB. By f and g are S-homomorphisms, we have that
f(SiA) = Sif(A) ⊆ SiB, f(SciA) = Sci f(A) ⊆ SciB and g(SciA) = Sci g(A) ⊆
SciSi = 0. Since Si is left self-injective, there exists an Si-homomorphism
h : SciB −→ Si such that h ◦ g|SiB = f |SiA. We extend h to h′ : B −→ Si by
taking h′|Sc

iB
. We then get that h′f = g. This implies that Si is an injective

left S-semimodule, proving the claim.

From these observations we immediately get that S is left self-injective
if and only if each Si is left self-injective.

Theorem 5.1. For any MV-algebra A with an atomic Boolean center, the
following conditions are equivalent:

(1) The semiring A∨� is self-injective;

(2) All �nitely generated projective A∨�-semimodules are injective;

(3) All cyclic projective A∨�-semimodules are injective;

(4) A is a complete MV-algebra.

Proof. (1)=⇒(2). Suppose A∨� is a self-injective semiring andM is a �nitely
generated projective A∨�-semimodule. Then, by [30, Proposition 17.16], M
is a retract of a free A∨�-semimodule (A∨�)X with a �nite set X. Since
A∨� is a self-injective semiring and by [30, Proposition 17.23 (1)], (A∨�)X

is an injective A∨�-semimodule, so M is also an injective A∨�-semimodule,
by Lemma 4.1.

(2)=⇒(3). Since every cyclic semimodule is �nitely generated, the state-
ment is obvious.
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(3)=⇒(4). Since A∨� is a cyclic projective semimodule over itself, and by
hypothesis (3), A∨� is a self-injective semiring. From this and Proposition
5.1, we get that A is a complete lattice for the natural order, so A is a
complete MV-algebra.

(4)=⇒(1). Since A is a complete MV-algebra with an atomic Boolean
center B(A), A is a direct product of complete MV-chains, by [11, Theorem
6.8.1]. Also, by [11, Theorem 6.8.5], every complete MV-chain is either a
�nite MV-chain or isomorphic to the standard MV-algebra. From these ob-
servations, Lemmas 5.1 and 5.2, we immediately get the statement, �nishing
the proof.

Remark 5.2. Note that the previous theorem is the corrected version of [19,
Theorem 4.7] since it contains a mistake in the proof of the implication
(4)=⇒(1).

In [58] Wilding, Johnson and Kambites introduced exact semirings, de-
�ned in terms of a Hahn-Banach-type separation property on semimodules
arising in the tropical case from the phenomenon of tropical matrix duality
(see, e.g., [14], [13], [15] and [33]).

We write Mm×n(S) for the additive monoid of m row, n column ma-
trices with entries in a semiring S, where m,n ∈ N. Matrix addition
is the component-wise addition and it is an internal operation for �xed
m,n ∈ N. Instead matrix multiplication AB is de�ned if A ∈Mm×n(S) and
B ∈Mn×r(S) for some m,n, r ∈ N. In this case the matrix AB ∈Mm×r(S)
so matrix multiplication is not an internal operation for �xed m,n ∈ N. Ma-
trix multiplication behaves in the usual ways: where de�ned it is associative
and distributes over matrix addition.

For each A ∈ Mm×n(S) has an associated row space Row(A) = {x ∈
M1×n(S) | x = uA for some u ∈M1×m(S)} and an associated column space
Col(A) = {y ∈Mm×1(S) | y = Au for some u ∈Mn×1(S)}.

De�nition 5.5 ([58, De�nition 3.1]). A semiring S is exact if for every
matrix A ∈ Mm×n(S), (i) any matrix x ∈ M1×n(S) \ Row(A) there exist
t and u ∈ Mn×1(S) satisfying At = Au, but xt 6= xu; and (ii) any matrix
y ∈Mm×1(S) \Col(A) there exist v and w ∈M1×m(S) satisfying vA = wA,
but vy 6= wy.

De�nition 5.6. A left S-semimoduleM is FP-injective if every S-homomor-
phism f : X −→M from a �nitely generated left subsemimodule X of a free
S-semimodule F can be extended to F . A semiring S is left (resp. right)
FP-injective if the regular left (resp. right) S-semimodule S is FP-injective.
The semiring S is called FP-injective if S is both left and right FP-injective.

In [37, Lemma 3.1], Johnson and Nam noted that a semiring S is exact
if and only if it is FP-injective. In [53] Shitov proved the interesting result
that a semi�eld S is exact if and only if S is either a �eld or an additively
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idempotent semi�eld. As immediate corollary of Theorem 5.1, we get the
following result, which provides us with many examples of exact semirings.

Corollary 5.1. Every complete MV-semiring with an atomic Boolean center
is an exact semiring.

Proof. Let S be a complete MV-semiring with an atomic Boolean center. By
Theorem 5.1, S is a self-injective semiring, and so it is FP-injective. Then, by
[37, Lemma 3.1], we get that S is an exact semiring, �nishing the proof.

The following theorem gives the structure of injective semimodules over
�nite MV-semirings.

Theorem 5.2. Let A be a �nite MV-algebra and M a A∨�-semimodule.
Then M is injective if and only if there exists a set X such that M is a
retract of the A∨�-semimodule (A∨�)X .

Proof. By Theorem 4.3, an A∨�-semimodule M is injective if and only
if there exists a set X such that M is a retract of the A∨�-semimodule
HomB(A∨�,B)X . By [11, Proposition 3.6.5], A ∼= Ln1 × · · · × Lnd

(as MV-
algebras) for some integers 2 6 n1 6 · · · 6 nd, and so the semiring A∨� is
isomorphic to

∏d
i=1 L

∨�
ni

. For each 1 6 i 6 d, L∨�ni
may be viewed as an

A∨�ni
-semimodule via the natural projection A∨�ni

−→ L∨�ni
. We then have

that A∨� ∼=
∏d
i=1 L

∨�
ni

as A∨�-semimodules, and

HomB(A∨�,B) ∼= HomB(
∏d
i=1 L

∨�
ni
,B) ∼=

∏d
i=1HomB(L∨�ni

,B)

as A∨�-semimodules. By Lemma 4.5 (1), we get that HomB(L∨�ni
,B) ∼= L∨�ni

as A∨�-semimodules, and so

HomB(A∨�,B) ∼=
∏d
i=1HomB(L∨�ni

,B) ∼=
∏d
i=1 L

∨�
ni
∼= A∨�

as A∨�-semimodules. This implies thatHomB(A∨�,B)X ∼= (A∨�)X as A∨�-
semimodules, so the statement is proved, �nishing the proof.

The following theorem provides us with the structure of �nitely generated
injective semimodules over �nite MV-semirings.

Theorem 5.3. Let A be a �nite MV-algebra and M a �nitely generated
A∨�-semimodule. Then the following statements are equivalent:

(1) M is injective;

(2) M is FP-injective;

(3) M is a retract of a A∨�-semimodule (A∨�)X for some �nite set X;

(4) M is projective.
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Proof. (1)=⇒(2). It is obvious.

(2)=⇒(3). As in the proof of Theorem 3.3, there always exists an injective
A∨�-homomorphism µ : M −→ HomB(A∨�,B)X , where X is any set of
generators for the A∨�-semimodule HomB(A∨�,B). Since A∨� is �nite,
the A∨�-semimodule HomB(A∨�,B) is �nitely generated, so we can pick
X which is a �nite set. Similar to the proof of Theorem 5.2 we have that
HomB(A∨�,B)X ∼= (A∨�)X as A∨�-semimodules. Therefore, we get an
injective A∨�-homomorphism µ : M −→ (A∨�)X . Since M is both �nitely
generated and FP-injective, there exists a surjective A∨�-homomorphism
θ : (A∨�)X −→ M such that θµ = idM ; that means, M is a retract of the
A∨�-semimodule (A∨�)X .

(3)=⇒(4). Since X is �nite, A∨�-semimodule (A∨�)X is free, so the
statement follows from [30, Proposition 17.16].

(4)=⇒(1). Since M is both �nitely generated and projective, M is a
retract of a free A∨�-semimodule F with a �nite basis set X, by [30, Propo-
sition 17.16]. Now applying Theorem 5.2, we get the statement, �nishing the
proof.

As shown in [34, Corollary 3.2], every semimodule can be represented, in
a canonical way, as a colimit of its cyclic subsemimodules. This observation
motivates the study of semirings over which any semimodule is a colimit
of cyclic semimodules possessing some special properties (see, e.g. [1] and
[34]). Thus, it is quite natural to present complete characterizations of MV-
semirings in terms of the injectivity of cyclic semimodules. Notice that as a
corollary of [1, Theorem 4.6], we obtain that all cyclic S-semimodules over
an MV-semiring S are injective if and only if S is a �nite Boolean algebra.
The following result shows that complete Boolean algebras are precisely the
MV-algebras in which every principal ideal is injective. Before doing so,
we need the following notion and simple fact. A semiring S is called von
Neumann regular if for any x ∈ S there exists y ∈ S such that x = xyx.

Lemma 5.3. If S is a semiring in which every principal left ideal is injective
then S is left self-injective and von Neumann regular.

Proof. Let S be a semiring in which every principal left ideal is injective.
Since S is a principal left ideal of S generated by 1, S is left self-injective, by
the hypothesis. Take any x ∈ S. Then, by the hypothesis, Sx is an injective
left S-semimodule, and so there exists an A-homomorphism f : S −→ Sx
such that f |Sx = idSx. It implies that x = f(x) = f(x.1) = xf(1). Since
f(1) ∈ Sx, there exists y ∈ S such that f(1) = yx, and so x = xyx. Thus,
S is von Neumann regular, �nishing the proof.

De�nition 5.7. A semiring S is multiplicatively idempotent if x · x = x for
every x ∈ S.
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Proposition 5.2. Let A be an MV-semiring. Then A is von Neumann
regular if and only if A is multiplicatively idempotent.

Proof. (⇒) We know that a · a 6 a, for any a ∈ A. Suppose that A is von
Neumann regular, so a∨ (a · a) = (a · b · a)∨ (a · 1 · a) = a · (b∨ 1) · a = a · a.
Since a · a 6 a, we have that a · a = a.

(⇐) Suppose A is multiplicatively idempotent, then a = a·a = a·1·a.

Proposition 5.3. For every MV-algebra A, the following statements are
equivalent:

(1) Every principal ideal of A∨� is injective;
(2) A∨� is a self-injective and von Neumann regular semiring;
(3) A is a complete Boolean algebra.

Proof. (1)=⇒(2). It follows from Lemma 5.3.
(2)=⇒(3). Since A∨� is a self-injective semiring and by Theorem 4.2,

the lattice A is complete. Since A∨� is a von Neumann regular semiring,
by the previous proposition we have that it is multiplicatively idempotent.
Thus A is a complete Boolean algebra.

(3)=⇒(1). Suppose A is a complete Boolean algebra. Then, by [11,
Theorem 1.5.3], the semiring A∨� is also a complete Boolean algebra. By
[23, Corollary 2], A∨� is a self-injective semiring. Take any a ∈ A. We have
that a � a = a. De�ne two A∨�-homomorphisms α : A∨�a −→ A∨� and
β : A∨� −→ A∨�a by setting α(b � a) = b � a and β(b) = b � a for all
b ∈ A. It is obvious that βα = idA∨�a; that means, A∨�a is a retract of the
A∨�-semimodule A∨�. Since A∨� is self-injective and by Lemma 4.1, A∨�a
is an injective A∨�-semimodule, and so statement (1) is proved, �nishing the
proof.

As was mentioned above, Boolean algebras are precisely the MV-algebras
satisfying the additional equation x ⊕ x = x; that means, Boolean algebras
form a subvariety of the variety of MV-algebras which is generated by L2.
In the light of this remark and Lemma 5.3, we end this chapter by posing
the following problem.

Problem 2. We showed that the condition that all the principal ideals of
an MV-semiring are injective as semimodules characterizes complete Boolan
algebras among MV-algebras. So, we can wonder: could one describe other
subvarieties of the variety of MV-algebras (as, for example the one generated
by Ln) in terms of the injectivity and projectivity of semimodules?
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Chapter 6

Semimodules over involutive

semirings

In this chapter we shall restrict our attention to 1-bounded involutive semi-
rings, since all the de�nitions and notions about semimodules are in refe-
rence to semirings with zero. We shall present some generalizations of the
results about injective and projective semimodules over MV-semirings that
are shown in the previous chapter. Indeed, we shall show (Theorem 6.2) that
the involution of a semiring plays a crucial role in the characterization of in-
jective semimodules over it, for example an analogous of Theorem 5.2 shall
be proved without using MV-algebra representation theorems in the more
general context of 1-bounded involutive semirings. In particular, we prove
that involution is a necessary and su�cient condition in order for projective
and injective semimodules to coincide. Indeed, we shall provide an example
(Example 6.1) of a non involutive semiring and a �nitely generated semimo-
dule over it which is projective but not injective whereas this can't happen
for semirings with an involution. The results contained in this section come
from the preprint [36].

The theorem 5.3 shows that over a �nite MV-semiring �nitely generated
injective and projective semimodules coincide, we shall see that this is still
true for �nite 1-bounded involutive semirings. As an intermediate step, we
shall prove the following fact which we state as a theorem since it is inte-
resting in itself.

Theorem 6.1. Let A be a �nite 1-bounded pointed residuated join-semilattice.
Then A is an involutive semiring if and only if A and Id(A) are isomorphic
as A-semimodules via the map Φ(a) = ↓−a.

Proof.

Claim 6.1 (⇒).
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Proof. By Proposition 4.2 we can consider Id(A) in place of HomB(A,B).
First, assume A is a �nite 1-bounded involutive semiring and de�ne a map
Φ : A→ Id(A) by Φ(a) = ↓−a = {x ∈ A | x 6 −a}, where −a = 0/a. Since
every ideal of a �nite join-semilattice is principal, and since − is a bijection,
this map is also bijective. It is order-preserving since − is order-reversing
and Id(A) is ordered by reverse inclusion, hence Φ(a∨b) = Φ(a)∩Φ(b). The
following calculation shows that Φ preserves scalar multiplication:

b · Φ(a) = {x ∈ A | xb 6 −a} = {x ∈ A | xba 6 0} =

= {x ∈ A | x 6 −(ba)} = Φ(ba).

Claim 6.2 (⇐).

Proof. Conversely, assumeA is a �nite 1-bounded residuated join-semilattice,
and A, Id(A) are isomorphic as A-semimodules via the map Φ(a) = ↓−a,
where −a = 0/a and 0 is the bottom element of A. Let f(a) =

∨
Φ(a) = −a.

Since A and Id(A) are assumed to be isomorphic, f is a bijection. From
residuation it follows that x 6 0/y ⇐⇒ xy 6 0 ⇐⇒ y 6 x\0, hence
−,∼ form a Galois connection, hence −∼ and ∼− are closure operators
and −∼−x = −x. Since f(x) = −x is a bijection, we get ∼−x = x and
−∼x = x, so A is an involutive semiring by Theorem 3.1.

The previous theorem together with Corollary 4.1 gives the following
result.

Corollary 6.1. Let A be a �nite 1-bounded involutive semiring and M a
semimodule over A. Then M is injective if and only if it is a retract of AX

for some set X.

Theorem 6.2. Let A be a �nite 1-bounded involutive semiring and M a
�nitely generated A-semimodule. Then, M is injective if and only if it is
projective.

Proof. Since A ∼= HomB(A,B) as A-semimodules, we have that retracts of
AX for some �nite set X (projective semimodules) are exactly the retracts
of HomB(A,B)X (injective semimodules).

We can wonder in which cases injective and projective semimodules coin-
cide and in particular if we can weaken the hypothesis of involution of the
semiring assumed in the above theorem. The answer is no and we shall
provide an example.
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Example 6.1. Consider the three-element idempotent semiring A = {0, a, 1}
with 0 < a < 1 and a ·a = a, then injective and projective semimodules over
this semiring don't coincide. First of all observe that Id(A) = {0, ↓a,A}.
We know that A is a projective semimodule over itself. We shall now prove
that A can't be injective. Suppose that A is self-injective, so it should be
a retract of Id(A)n for some �nite n ∈ N since A is �nitely generated. In
this case, we should have an A- semimodule morphism Φ : Id(A)n → A such
that Im(Φ) = A, if Φ({0}, {0}, . . . , {0}) is a or 0, then |Im(Φ)| 6 2 (Φ is
order-preserving), in particular Im(Φ) 6= A, so Φ({0}, {0}, . . . , {0}) = 1, but
in this case

1 = Φ({0}, . . . , {0}) = Φ(a · ({0}, . . . , {0})) = a · Φ({0}, . . . , {0}) = a · 1 = a

which is absurd.

We shall now show that also proposition 5.3 can be generalized in the
variety of 1-bounded involutive semirings. To do this, we shall need the
following proposition that involves Heyting algebras and whose de�nition we
recall here below.

De�nition 6.1 (Heyting algebras). A Heyting algebra (H,∨,∧,→, 0, 1) is
an algebra of type (2, 2, 2, 0, 0) that satis�es:

• (H,∨,∧) is a distributive lattice;

• x ∧ 0 = 0 and x ∨ 1 = 1;

• x→ x = 1;

• (x→ y) ∧ y = y; x ∧ (x→ y) = x ∧ y;

• x→ (y ∧ z) = (x→ y) ∧ (x→ z); (x ∨ y)→ z = (x→ z) ∧ (y → z).

In particular, a Heyting algebras is a 1-bounded, commutative, multi-
plicatively idempotent and distributive residuated lattice with x · y = x ∧ y
and x\y = y/x = x → y. The constant 0 is the bottom element (so, multi-
plicatively absorbing) and the negation ¬ is de�ned by ¬x = x→ 0; Boolean
algebras are the subclass of Heyting algebras that satisfy: ¬¬x = x.

Proposition 6.1. A 1-bounded involutive semiring A is multiplicatively
idempotent if and only if A is a Boolean algebra.

Proof. From xx = x 6 1 it follows that x · y = x ∧ y, so the semiring is
commutative and, in particular, −x = ∼x. De�ning x→ y as ∼((−y) · x) =
−((−y) · x), we obtain that (A,∨,∧,→, 0, 1) is a Heyting algebra. We have
¬x de�ned as x→ 0 and so ¬¬x = (x→ 0)→ 0 = −(1 · (−x))− (−x) = x.
Therefore the Heyting algebra is a Boolean algebra.



56

Theorem 6.3. For a 1-bounded involutive semiring A, the following state-
ments are equivalent:

1. Every principal semiring ideal Aa of A is injective as a semimodule;

2. A is a self-injective von Neumann regular semiring;

3. A is a complete Boolean algebra.

Proof. (1)⇒(2). By lemma 5.3
(2)⇒(3). Since A is a self-injective semiring and applying Theorem 4.2,

the lattice A is complete.
From proposition 5.2 we know that A is multiplicatively idempotent and

consequently, by the previous proposition, a Boolean algebra.
(3)⇒(1). Verbatim from proposition 5.3.

We can generalize the de�nitions of von Neumann regular and multiplica-
tively idempotent semirings.

De�nition 6.2. Let A be a 1-bounded involutive semiring. For a n ∈ N, a
semiring A is n-von Neumann regular if for every a ∈ A, there exists b ∈ A
such that an = an · b · an.

De�nition 6.3. A semiring A is n-potent if an = an+1 for every a ∈ A.

Proposition 6.2. Let A be a 1-bounded multiplicatively idempotent semiring
and n ∈ N. Then A is n-von Neumann regular if and only if A is n-potent.

Proof. By proposition 5.2 we already have the result for n = 1.
Now let n ∈ N, n > 1. From the two implications proved above, we have

that A is n-von Neumann regular i� a2n = an. Since a2n 6 an+1 6 an, this
implies an+1 = an. Obviously an = an+1 implies a2n = an for any a ∈ A.

Theorem 6.4. Let A be a 1-bounded semiring. Then, for a �xed n ∈ N, the
following statements are equivalent:

1. for every a ∈ A the cyclic semimodule generated by an is injective as
a semimodule on A;

2. A is self-injective and n-potent.

Proof. (1)⇒ (2) Obviously A is self-injective since it is generated by 1n. If
A · an is injective, then exists a A - homomorphism f : A→ A · an such that
f |A·an = idA·an . It implies that an = f(an) = f(an · 1) = an · f(1). Since
f(1) ∈ A · an, we have that exists an element b ∈ A such that f(1) = b · an,
so an = an · b · an.

We then get that A is n-von Neumann regular and for a previous remark
an = an+1, for every a ∈ A.
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(2)⇒ (1) De�ne α : A · an → A by α(b · an) = b · an and β : A→ A · an
by β(b) = b · an. We then have that βα(b · an) = b · a2n. Since an = an+1

implies a2n = an and consequently b ·a2n = b ·an, we have that βα = idA·an .
So, A · an is a retract of A which is self-injective. This implies that A · an is
injective too.

Example 6.2. Let us consider any MV-chain Ln+1 for n > 1, we know that
this chains are self-injective and n-potent but we also know that an = 0 for
every a ∈ Ln+1, a 6= 1 so the cyclic semimodules generated by an are only
the semiring itself and {0}, therefore the previous theorem isn't interesting
in this context.
On the contrary, we can usefully apply it in the context of �nite involutive
linearly-ordered 1-bounded involutive semiring. As an example, consider the
�nite commutative involutive linearly-ordered 1-bounded involutive semiring
C = {0, a, b, 1} where 0 < a < b < 1, a · a = 0 and b · b = b.

1

b b2 = b

a a2 = 0

0

It is easy to see that C is 2-potent and we know that C is self-injective
since it is a projective C-semimodule and therefore injective by Theorem 6.2.
Hence all the cyclic semimodules of the form Ccn for some c ∈ C are injective
and projective. In particular we have that the semimodules {0}, Cb and C
are injective and, using Theorem 6.2 again, also projective.

6.1 Strong semimodules

The de�nition of strong semimodules was given in the paper [21] for semi-
modules over MV-semirings

De�nition 6.4 (Strong MV-semimodules). Let A be an MV-semiring with
negation ∗ and M an A-semimodule. M is said to be a strong semimodule
if for all a, b ∈ A we have that:

a · x = b · x for all x ∈M implies a∗ · x = b∗ · x for all x ∈M .

This de�nition can be extended to semimodules over involutive semirings
as follows

De�nition 6.5. A semimodule M over an involutive semiring A is strong if
for all a, b ∈ A

∀m ∈M (a ·m = b ·m) =⇒ ∀m ∈M (−a ·m = −b ·m and ∼a ·m = ∼b ·m).
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We shall see that the de�nition of strong semimodule is related to the
one of faithful semimodule.

De�nition 6.6. A semiring A is called nilpotent if for every a ∈ A, a 6= 1,
there exists a n ∈ N such that an = 0.

The notion of strong semimodule is not a standard de�nition of semi-
module theory since it is requires an additional unary operation besides the
semiring operations. The interesting thing is that, under the assumption
of the nilpotency of the semiring, strong semimodules coincide with faith-
ful semimodules and that these last ones can be, instead, de�ned over an
arbitrary semiring.

De�nition 6.7. An A-semimodule M is faithful if the action of each a 6= 0
in A on M is nontrivial, i. e. a · x 6= 0 for some x ∈M .

Theorem 6.5. Let A be a nilpotent 1-bounded involutive semiring and M a
nontrivial A-semimodule. Then M is a strong semimodule if and only if M
is faithful.

Proof.

Claim 6.3 (⇐).

Proof. Note that for any a ∈ A we have that a · (∼a) = (−a) · a = 0.
Suppose M is faithful and let a · x = b · x, for all x ∈ M . Then we have
0 = ((−a)a) · x = ((−a)b) · x for all x ∈ M and also ((−b)a) · x = 0 for
all x ∈ M . Since M is faithful we have (−a)b = (−b)a = 0, which implies
respectively that b 6 a and a 6 b. Consequently we have a = b and obviously
−a · x = −b · x and ∼a · x = ∼b · x for all x ∈M .

Claim 6.4 (⇒).

Proof. Viceversa, suppose M is strong and that a · x = 0 = 0 · x for all
x ∈ M , for some 0 6= a in A. Then we have −a · x = −0 · x = 1 · x = x
for all x ∈ M , which implies (−a)n · x = x for all x ∈ M and n ∈ N. But,
since A is nilpotent, we have that −a = 1 and so a = 0, which contradicts
the hypothesis.

Examples 6.1. • Any 1-bounded involutive semiring A is a strong semi-
module over itself (where the action is the semiring multiplication).

Indeed a ·x = b ·x for every x ∈ A implies, in particular that a = a ·1 =
b · 1 = b and from this it follows that −a = −b and ∼a = ∼b.
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• Consider the standard MV-semiring [0, 1] and the real interval [0, 1/2]
as a semimodule over it. In this case the semimodule operation is the
max and the action is given by the MV-algebra multiplication. It is
easy to see that [0, 1/2] is not a strong semimodule, indeed

1

2
� x =

1

3
� x = 0 for every x ∈ [0, 1/2]

but

1
2

∗ � x = 1
2 � x = 0 for every x ∈ [0, 1/2] and 1

3

∗ � x = 2
3 � x 6= 0 for

every 1
3 < x 6 1

2 .

We shall conclude the �rst part of the thesis with some considerations
regarding the results we have presented so far.

Characterizing injective and projective semimodules is one of the main
question of semimodule theory and hard to address when we refer to semi-
modules over arbitrary semirings. Restricting our attention to additively
idempotent semirings we obtained some interesting results in this direction
and considering in particular MV-semirings among additively idempotent
semirings we obtained a criterion for self-injectivity of an MV-semiring with
an atomic Boolean center, and we gave a complete description of (�nitely
generated) injective semimodules over a �nite MV-semiring. This last de-
scription had been later generalized in the context of involutive semirings.
Summing up, it seems that considering semirings with additional properties
could lead to interesting results regarding injective and projective semimo-
dules. This can be seen as a starting point to investigate semimodules over
particular semirings which hopefully shall be proved to be isomoprhic to some
interesting algebraic structures and, in particular, to the algebraic semantics
of some non-classical logic.

On the other hand, Proposition 5.3 (and its generalization to involutive
semirings), in which it is shown that complete Boolean algebras are precisely
the MV-semirings in which every principal ideal is injective, gives the intu-
ition that subvarieties of semirings can be characterized in terms of properties
of semimodules over them. In particular, the property that every principal
ideal is injective as a semimodule characterizes boolean algebras among both
MV-semrings and involutive semrings. So, we could wonder if there exists,
for example, an assertion regarding semimodules that characterizes precisely
MV-algebras among involutive semirings.

So, it seems that semimodule theory could represent a promising yet
unexplored tool in the study of algebraic structures which are isomorphic to
classes of semirings.
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Chapter 7

Ambitropical convexity

The tropical semi�eld, Rmax, is the set R∪{−∞} equipped with the addition
(x, y) 7→ x∨ y := max(x, y) and with the multiplication (x, y) 7→ x+ y. The
min-plus version of the tropical semi�eld, Rmin is the set R∪{+∞} equipped
with the addition (x, y) 7→ x ∧ y := min(x, y) and with the multiplication
(x, y) 7→ x+ y. The semi�elds Rmax and Rmin are isomorphic.
A simple example of semimodule over Rmax is the n-fold Cartesian product
of Rmax, (Rmax)n in which the internal law is (x, y) 7→ x∨ y := (xi ∨ yi)i∈[n],
(where [n] = {1, 2, . . . , n}), for x, y ∈ (Rmax)n, and the action of Rmax on
(Rmax)n is de�ned by (λ, x) 7→ (λ+ xi)i∈[n], for λ ∈ Rmax and x ∈ (Rmax)n.

We shall now consider the zero-free reduct of the semiring (Rmax)n, i. e.
(Rmax)n without {−∞}. From now on with Rn we shall denote the zero-free
tropical semi�eld, for any n integer. In this chapter we shall investigate a
class of objects called ambitropical cones. They are a special class of semi-
modules over the zero-free semiring R since they have a lattice structure. In
particular we shall prove (Theorem 7.4) that they coincide with the retrac-
tions of a class of maps called Shapley operators. The interest in Shapley
retractions is motivated by reasons related to game theory and tropical geo-
metry, in particular to the concept of convexity.
The de�nitions and results of this chapter come from a paper in prepara-
tion with Stephane Gaubert and Marianne Akian. In the �rst section we
shall discuss the motivation of our work. For all the de�nitions and results
regarding tropical geometry and its applications we refer the reader to [47].

7.1 Motivation

De�nition 7.1 (Nonexpansive map). We say that a map T : Rn → Rn is
nonexpansive wrt a norm ‖ · ‖ if

‖T (x)− T (y)‖ 6 ‖x− y‖ .
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De�nition 7.2 (Nonexpansive retraction). Nonexpansive retractions are
nonexpansive maps T : Rn → Rn such that T 2 = T .

De�nition 7.3 (Euclidean norm). A Euclidean norm is a norm arising from
a scalar product on a vector space.

The present work is inspired by the following observation from convex
analysis.

Theorem 7.1. A subset C ⊂ Rn is closed and convex if and only if it is the
image of a nonexpansive retraction in a Euclidean norm.

Indeed, if C is closed and convex, the map T which associates to x ∈ Rn
the unique point y ∈ C which minimizes the Euclidean distance between x
and y is nonexpansive wrt this Euclidean distance, see [29, Th. 3.6]. The
converse implication in 7.1 is less known, it holds more generally in any
strictly convex Banach space, we provide the proof in appendix. Theorem
7.1 raises the issue of studying the sets which arise as images of retractions
that are nonexpansive with respect to other families of norms or hemi-norms,
thinking these norms will give raise to new structures of convexity.
As regards the link between non-expansive maps and non-linear Perron-
Frobenius Theory we refer the reader to [44]and [43].

De�nition 7.4 (Hemi-norm). ([50, 27]) A hemi-norm is a function f from
a real vector space X to R such that:

1. f(x+ y) 6 f(x) + f(y) ∀x, y ∈ X (subadditive);

2. f(αx) = αf(x) ∀α ∈ R, α > 0, ∀x ∈ X.

We will be especially interested in the �top� hemi-norm.

De�nition 7.5 (�Top� hemi-norm). The �top� hemi-norm is the map from
Rn to R de�ned by

t(x) := max
i∈[n]

xi

Hemi-norms are sometimes called weak Minkowski norms [50, 27]. This
map is also a special case of the �Funk metric� studied in Hilbert's ge-
ometry [50, 55]. The hemi-norm t is asymmetric since it doesn't satisfy
t(x) = t(−x) but it can be symmetrized in two ways:

x 7→ t(x) ∨ t(−x) = ‖x‖∞ := max
i∈[n]
|xi|

yields the sup-norm, whereas

x 7→ t(x) + t(−x) = ‖x‖H := max
i∈[n]

xi − min
j∈[n]

xj
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yields a map called Hopf oscillation or Hilbert's semi-norm. The t hemi-norm
appears in game theory. In this context, one considers Shapley operators, i.e.
dynamic programming operators for zero-sum games with state space [n],
without discount described in the introduction.

De�nition 7.6. We denote by 6 the partial order of (R ∪ {±∞})n, and
by en the vector of Rn whose entries are identically 1. We also denote by
∨ the supremum of vectors of (R ∪ {±∞})n, so that x ∨ y is the entrywise
maximum of the vectors x and y. Similarly, ∧ denote the in�mum of vectors.

De�nition 7.7 (Shapley operators). Shapley operators are maps T : Rn →
Rn that satisfy

1. x 6 y implies T (x) 6 T (y);

2. T (λen + x) = λen + T (x),

where en denotes the vector of Rn whose entries are identically 1.

We shall refer to an (abstract) Shapley operator for a map T satisfying
these two axioms. Nonexpansiveness properties of Shapley operators play a
fundamental role in the theory of zero-sum games [17]. In particular, it was
observed in [32] that T is a Shapley operator if and only if it is nonexpansive
in the �t� hemi-norm:

t(T (x)− T (y)) 6 t(x− y) .

Maps which are nonexpansive in the �t� hemi-norm are called topical fun-
ctions ([45]). Shapley operators, the t hemi-norm, and Hilbert's semi-norm
play a key role in tropical geometry [4], in particular, these weak norms
provide the tropical analogous of classical Euclidean structure, the proje-
ction in the sense of Hilbert's semi-norm being an analogous of the Euclidean
projection.

De�nition 7.8. We shall say that T is a Shapley retraction if T is a Shapley
operator and T = T 2. The image of a Shapley retraction T is a Shapley
retract.

In view of the latter remarks, a Shapley retraction is precisely a non-
expansive retraction in the t weak norm. In view of 7.1, we may ask the
following question:

Question 7.1. How can we characterize the sets which arise as images of
nonexpansive retractions with respect to the t weak-norm?
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7.2 Basic notions

De�nition 7.9. A tropical cone of Rn is a subset C of Rn such that

1. x, y ∈ C =⇒ x ∨ y ∈ C

2. x ∈ C, λ ∈ R =⇒ λen + x ∈ C.

A dual tropical cone is de�ned similarly, by requiring that (2) holds and, that
x, y ∈ C =⇒ x ∧ y ∈ C, instead of (1).

De�nition 7.10 (Root system). Let E be a �nite-dimensional Euclidean
vector space. A root system Φ in E is a �nte set of non-zero vectors (called
roots) that satisfy the following conditions:

1. The roots span E;

2. the only scalar multiples of a root α ∈ Φ that belong to Φ are α itself
and −α;

3. for every root α ∈ Φ, the set Φ is closed under re�ection through the
hyperplane perpendicular to α;

4. if α and β are roots in Φ, then the projection of β onto the line through
α is an integer or half-integer multiple of α.

Example 7.1. An important class of tropical cones and dual tropical cones
consists of alcoved polyhedra. The latter were introduced in [42]: in general,
an acolved polyhedron associated to a root system is a polyhedron whose
facets have normals that are proportional to vectors of this root system.
Here, the root system is An, the collection of vectors {ei − ej | i, j ∈ [n], i 6=
j}. Note that here the vector ei and ej are the vector of the canonical basis
of Rn and not the vectors whose entries are identically 1.

De�nition 7.11. An alcoved polyhedron [42] is a polyhedron of the form

A(M) = {x ∈ Rn | xi >Mij + xj , ∀1 6 i, j 6 n} (7.1)

for some matrix M = (Mij) ∈ (Rmax)n×n.

De�nition 7.12. Order polyhedra are remarkable examples of alcoved polyhe-
dra. These are of the form {x ∈ Rn | xi > xj if (i, j) ∈ E} where E ⊂ [n]×[n]
is a partial order relation on the set [n].

De�nition 7.13. Intersection of order polyhedra with the hypercube [0, 1]n

are known as order polytopes, they were studied by Stanley [54].
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De�nition 7.14 (Operations on matrices). We shall denote by ∨ the tropical
addition of matrices, so that, for all A,B ∈ (Rmax)m×n, (Aij) ∨ (Bij) :=
(Aij ∨ Bij) ∈ (Rmax)m×n. The tropical multiplication of matrices will be
denoted by concatenation, i.e, for A ∈ (Rmax)m×n and B ∈ (Rmax)n×p,
AB ∈ (Rmax)m×p is the matrix with (i, j)-entry ∨k∈[n](Aik + Bkj). Then,
whenm = n, for all r, the rth tropical power of A is denoted by Ar := A · · ·A
(A is repeated r times).

There are well known relations between alcoved polyhedra and operations
of metric closures which we next recall.

De�nition 7.15. The tropical Kleene star of a matrix M is de�ned by

M∗ = I ∨M ∨M2 ∨ · · · ,

This supremum may be in�nite, i.e., in general (M∗)ij may take the value
+∞.

De�nition 7.16. A directed graph (or digraph) is an ordered pair G = (V,A)
where V is the set of the vertices of the graph and A is a set of ordered pairs
of vertices, called edges.

A graph is weighted if a number (the weight) is associated to each edge.

A path of a graph is a �nite or in�nite sequence of edges which join a
sequence of vertices; a circuit is a path for which the initial and the �nal
vertices coincide.

The weight of a path is the sum of the weights of the traversed edges.

Recall that to a matrix M ∈ (Rmax)n×n it is possible to associate a
weighted digraph in the following way. The set of nodes is [n] and the set
of edges is given by {(i, j) ∈ [n]2 |Mij > −∞}; an edge i→ j has weightMij .

From Prop 2.2 of [5] we have that (Mn)ij yields the maximal weight of a
path of length n from i to j, and (M∗)ij yields the supremum of the weights
of paths from i to j, of arbitrary length. We have (M∗)ij < +∞ for all i, j if
and only if there is no circuit with positive weight in the digraph associated
to M .

De�nition 7.17. The critical circuits of the matrix M∗ are the circuits in
the digraph associated to M∗ with weight 0.

De�nition 7.18. The union of the critical circuits consitutes the critical
digraph.

The following result is a special case of the characterization of the eigen-
space in max-plus spectral theory, see e.g. [6, 5]. We provide details for
completeness.
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Lemma 7.1. The polyhedron A(M) is non-empty if and only there is no
circuit of positive weight in the digraph associated to M . Then,

M∗ = M0 ∨ · · · ∨Mn−1 (7.2)

where n is the number of nodes of the graph associated to M , and

A(M) = {M∗y | y ∈ Rn} = {x ∈ Rn |M∗x 6 x} = {x ∈ Rn |M∗x = x} .
(7.3)

Proof.

Claim 7.1. The polyhedron A(M) is non-empty if and only there is no circuit
of positive weight in the digraph associated to M

Proof. If x ∈ A(M), summing the relations xi2 >Mi2i1 + xi1 , xi3 >Mi3i2 +
xi2 , . . .xi1 > Mi1ik + xik in 7.1 and cancelling xi1 + · · · + xik , we deduce
that 0 > Mi1ik + · · · + Mi3i2 + Mi2i1 , which shows that the circuit (ik →
· · · → i2 → i1 → ik) has a nonpositive weight. The same argument can
be applied to any other circuit in the diagraph associated to M and so we
obtain that there is no circuit of positive weight. If there is no circuit of
positive weight, the maximum of the weight of a path from i to j is achieved
by a path of length at most n− 1, which gives (7.2). This formula implies in
particular that no entry of M∗ is equal to +∞. Note also that the diagonal
entries of M∗ are equal to 0. We deduce that the vector x := M∗e, where
concatenation denotes the tropical matrix-vector product, is �nite. Since
MM∗ = ∨k>1Mk 6 M∗ = ∨k>0Mk, we deduce that Mx 6 x, and so,
x ∈ A(M).

This shows the �rst part of the proposition.

We now show the second part.

Claim 7.2. The following assertions are equivalent

i. Mx 6 x

ii. M∗x 6 x

iii. M∗x = x

Proof. (i)⇒(ii) Indeed, the inequality Mx 6 x implies Mkx 6 x for all k,
and taking the sup we get M∗x 6 x, hence the implication.

(ii)⇒(iii) Since M∗ > I.

(iii)⇒(i) Since M∗ >M .
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It follows that A(M) = {x ∈ Rn | M∗x 6 x} = {x ∈ Rn | M∗x = x} ⊂
{M∗y | y ∈ Rn}. Moreover, since MM∗ 6M∗, and from the fact that M∗y
is �nite for all y ∈ Rn, because there is no circuit of positive weight in G(M),
{M∗y | y ∈ Rn} ⊂ A(M).

De�nition 7.19. A topological semimodule over a semiring S is a semimo-
dule with a topology such that the semimodule operation + : M ×M →M
and the semiring multiplications {fs}s∈S : M → M are continuos with
respcect to the topology of M , where on M ×M we consider the Tychono�
topology induced by the topology of M .

We equip Rmax with the topology de�ned by the metric

(a, b) 7→ |ea − eb|

The semimodule (Rmax)n, equipped with the topology of the metric d∞(x, y) =
maxi,j∈[n] |exi − exj | is a topological semimodule. Observe that the induced
topology on Rn ⊂ (Rmax)n is the Euclidean topology. Dual considerations
apply to (Rmin)n. Note that here we indicate with �e� the mathematical
constant known as Euler's number.

De�nition 7.20. Given a subset C ⊂ Rn, we de�ne the lower closure of
clo↓C ⊂ (Rmax)n to be the set of limits of nonincreasing sequences of ele-
ments of C. Similarly, we de�ne the upper closure clo↑C to be the set of
limits of nondecreasing sequences of elements of C.

Example 7.2. For instance, if C = {x ∈ R2 | |x1 − x2| 6 1}, clo↓C =
C ∪ {(−∞,−∞)}, whereas if C = {x ∈ R2 | x1 > x2}, clo↓C = {x ∈
(Rmax)2 | x1 > x2}.

De�nition 7.21. The support of a vector y ∈ (Rmax)n is supp y := {i ∈
[n] | yi > −∞}.

The following proposition shows that closed tropical cones are in one-to-
one correspondence with closed tropical semimodules that contain vectors
with �nite entries.

Proposition 7.1. The map C 7→ V := clo↓C establishes a bijective corre-
spondence between the nonempty closed tropical cones C ⊂ Rn and the closed
subsemimodules V of (Rmax)n such that V ∩ Rn 6= ∅. The inverse map is
given by V 7→ V ∩ Rn.

The dual property, concerning clo↑C and (Rmin)n instead of clo↓C and
(Rmax)n, also holds.

Proof.
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Claim 7.3. Any closed tropical cone contained in Rn is a closed subsemi-
module of (Rmax)n.

Proof. Suppose C ⊂ Rn is a closed tropical cone. Since (Rmax)n is a topo-
logical semimodule, clo↓C is a semimodule over Rmax. We next show that
clo↓C is closed. Let xk denote a sequence of elements of clo↓C converging
to an element x ∈ (Rmax)n. Let εk denote an arbitrary sequence of posi-
tive numbers decreasing to 0. Let yk := xk + εke ∈ clo↓C. Observe that
ηk := d∞(xk, yk) = (eεk − 1) maxi∈[n] e

xki → 0 as k →∞. Moreover, by de�-

nition of clo↓C, we can �nd zk ∈ C such that Y k 6 zk and d∞(yk, zk) 6 ηk.
It follows that the sequence zk also converges to x. We claim that there is a
subsequence znk of zk that is nonincreasing. Indeed, suppose by induction
that zn1 > · · · > znk have already been selected. Let I := suppx. Since
zl → x as l→∞, we get zli → xi ∈ R for i ∈ [n], and zli → −∞ for i ∈ [n]\I.
However, by construction, znk > εnk

e+x, and so znk
i > εnk

+xi for all i ∈ I.
We deduce that there is an index l such that zl 6 znk , and we set nk+1 := l.
This shows that x ∈ clo↓C, and so, clo↓C is closed.

Claim 7.4. Reverse inclusion

Proof. Conversely, suppose that V is a closed subsemimodule of (Rmax)n.
Then, it is immediate to see that V ∩ Rn is a closed tropical cone.

Claim 7.5. The correspondence is bijective

Proof. It remains to show that the correspondence is bijective. We have
trivially clo↓C ∩ Rn = C for all nonempty closed tropical cones C ⊂ Rn.
Conversely, if V is a closed tropical semimodule of (Rmax)n such that V ∩Rn is
nonempty, we must show that V = clo↓(V ∩Rn). Let x ∈ V , and let us choose
an arbitrary element y ∈ V ∩Rn. Then, the path λ 7→ γ(λ) := x ∨ (λe+ y),
de�ned for λ ∈ [−∞, 0] is such that γ(λ) ∈ V ∩ Rn for all λ > −∞, and
infλ>−∞ γ(λ) = x. It follows that x ∈ clo↓(V ∩Rn), hence, V ⊂ clo↓(V ∩Rn).
The other inclusion is immediate.

De�nition 7.22. Recall that an element u of a tropical subsemimodule
A ⊂ (Rmax)n is an extreme generator of A if u = v∨w with v, w ∈ A implies
that u = v or u = w.

De�nition 7.23. A tropical linear combination of elements of A is a vector
of the form ∨i∈I(λi + ai) where (λi)i∈I ⊂ Rmax and (ai)i∈I ⊂ A are �nite
families.

De�nition 7.24. We say that G ⊂ A is a tropical generating set if every
element of A is a tropical linear combination of a family of elements of G.
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De�nition 7.25. We say also that two vectors are tropically proportional if
they di�er by an additive constant.

The next result summarizes results from [26, 10]; it shows that a closed
tropical subsemimodule of (Rmax)n is generated by its extreme rays.

Theorem 7.2 (See Theorem 3.1 in [26] or Theorem 14 in [10]). Suppose
that A is a closed tropical subsemimodule of (Rmax)n. Then, every element
of A is a tropical linear combination of at most n extreme generators of
A. Moreover, these extreme generators are characterized as follows. For all
i ∈ [n], let Ai := {x ∈ A | xi = 0}, and let MinAi denote the set of minimal
elements of Ai. Then, every extreme generator of A is tropically proportional
to an element of ∪i∈[n] MinAi.

This is reminiscent of the classical Carathéodory theorem for closed con-
vex pointed cones that we shall recall. Note that the following theorem
comes from classical geometry so, only in this case, R is the classical ring of
real numbers.

Theorem 7.3 (Caratheodory theorem (classical geometry)). If a point x ∈
Rd lies in the convex hull of a set P , then x can be written as the convex
combination of at most d+ 1 points in P .

7.3 Shapley operators

De�nition 7.26 (Order additive cone). An ordered additive cone is a par-
tially ordered set (E,6), equipped with an action of (R,+), (λ, x) 7→ λ+ x,
which is such that:

1. x 6 y =⇒ λ+ x 6 λ+ y,

2. λ 6 µ =⇒ λ+ x 6 µ+ x, for all x, y ∈ E and λ, µ ∈ R.

De�nition 7.27. A additive cone of Rn is a subset of Rn, equipped with
the order induced by the standard partial order on Rn, and with the action
(λ, x) 7→ λen + x.

Note that an additive cone of Rn which is closed by taking suprema is
a semimodule over the zero-free semiring R. Indeed it is straightforward
to see that it respects all the properties of the de�nition of semimodule
except, obviously, the one involving the zero of the semiring. However we
are interested in the study of additive cones of Rn considering a broader class
of functions than the one of morphisms between semimodules. Indeed when
dealing with tropical semimodules, the canonical choice of maps to consider
consists of tropically linear maps (maps that commute with the supremum
and with the addition of a constant, i.e., morphisms of semimodules) but
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since, for the reasons explained in the �rst section, we are interested in
considering Shapley operators and we ignore the lattice structure of Rn and
consider it as just a partially ordered set.

The following observation, made in [32, Prop. 1.1], shows that Shapley
operators are characterized by a nonexpansiveness property. Recall that
t(x) := maxi∈[n] xi denotes the �top� hemi-norm of a vector x ∈ Rn. It will
also be convenient to use the notation b(x) := −t(−x) = mini∈[n] xi.

Proposition 7.2 ([32]). Let T : Rn → Rn. The following assertions are
equivalent:

i. T is a Shapley operator;

ii. t(T (x)− T (y)) 6 t(x− y) for all x, y ∈ Rn;

iii. b(T (x)− T (y)) > b(x− y) for all x, y ∈ Rn.

This fact will be used systematically and so we provide the proof for com-
pleteness. We shall prove the equivalence between i and ii, the equivalence
between i and iii is straightforward.

Proof.

Claim 7.6 (i ⇒ ii).

Proof. Observe �rst that x 6 y + t(x− y)en holds for all x, y ∈ Rn. Hence,
if T is a Shapley operator, we deduce that T (x) 6 T (y) + t(x− y)en, and so
t(T (x)− T (y)) 6 t(x− y), showing the implication.

Claim 7.7 (ii ⇒ i).

Proof. Conversely, suppose that (ii) holds. Consider y = x+λen with λ ∈ R.
Then, t(T (x)− T (y)) 6 t(x− y) = −λ, and t(T (y)− T (x)) 6 t(y − x) =
λ. Hence, T (x) − T (y) 6 −λen, and T (y) − T (x) 6 λen, implying that
T (y) = T (x) + λen. Thus, property (2) of 7.7 holds.

Suppose now that x 6 y. Then t(T (x)− T (y)) 6 t(x− y) 6 0, showing
that T (x) 6 T (y). Thus, property (1) of 7.7 holds.

Proposition 7.3. A Shapley operator T : Rn → Rn admits a unique conti-
nuous extension T− : (Rmax)n → (Rmax)n, given by

T−(x) = inf{T (y) | y > x, y ∈ Rn} .

Similarly, T has a unique continuous extension (Rmin)n → (Rmin)n, given by

T+(x) = sup{T (y) | y 6 x, y ∈ Rn} .
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Proof. Theorem 3.10 of [9] shows that any order preserving homogeneous
map f from Rn>0 to Rn>0 has a unique continuous extension from Rn>0 to
Rn>0, given by f(x) = inf{f(y) | y > x, y ∈ Rn>0}. The statement of
the proposition is gotten by applying this theorem to the maps f(x) =
expT log(x) and f(x) = exp(−T (− log x)), the operations log and exp being
understood entrywise.

Remark 7.1. 7.3 provides only one-sided extensions of T , either to (R ∪
{−∞})n or to (R ∪ {+∞})n. A Shapley operator de�ned on Rn generally
does not extend canonically to (R ∪ {±∞})n (consider n = 2 and T (x) =
((x1 + x2)/2)e).

De�nition 7.28. A Shapley operator is said to be tropically linear if T (x∨
y) = T (x) ∨ T (y) holds for all x, y ∈ Rn.
It is said to be dually tropically linear if T (x ∧ y) = T (x) ∧ T (y).

7.4 Ambitropical Cones

De�nition 7.29 (Conditionally complete lattice). A lattice L is said con-
ditionally complete if every nonempty subset of L that has an upper bound
has a join (a least upper bound), and if every nonempty subset of L that has
a lower bound has a meet (a greatest lower bound).

De�nition 7.30. An ambitropical cone is a non-empty subset C of Rn such
that:

1. C is a lattice in the induced order;

2. for all x ∈ C and λ ∈ R, λen + x ∈ C.

De�nition 7.31. An ambitropical polyhedron is an ambitropical cone that
is a �nite union of alcoved polyhedra.

Thus, a subset C ⊂ Rn is an ambitropical polyhedron if it is an ambi-
tropical cone that can be written as a �nite union

C =
⋃
k∈[K]

A(Mk)

for some matrices M1, . . . ,MK ∈ (Rmax)n×n. Observe that an ambitropical
polyhedron is closed.

In the second appendix we shall present a graphic example of an ambi-
tropical polyhedron.

In this section we shall prove the main results of the chapter, i. e. the
characterization of Shapley retracts of Rn in terms both of lattice theoretic
properties and geometric properties.
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Lemma 7.2. Let C be an ambitropical cone. A subset of Rn is bounded
from above by an element of Rn if and only if it is bounded from above by an
element of C. The dual statement holds for subsets bounded from below.

Proof. (⇒) Let X be a subset of Rn bounded by an element of Rn, i. e.
there exists u ∈ Rn such that x 6 u holds for all x ∈ X. Let y be an
arbitrary element of the ambitropical cone C and consider the element z :=
y + t(u − y)en. Since C is a cone and y ∈ C we have that z ∈ C, therefore
u 6 z which implies x 6 z for all x ∈ X and the implication follows.
(⇐) the converse implication is obvious.
The dual statement holds for subsets bounded from below considering the
hemi-norm b.

We shall denote by supC X the supremum of a non-empty subset X of
C that has an upper bound when this supremum exists. Similarly, we shall
denote by infC X the in�mum of a non-empty subset X of C that has a
lower bound when this in�mum exists. We shall also use the in�x notation
∨C ,∧C for the lattice laws of (C,6), i.e.,

x∨Cy = infC{z ∈ C | z > x, z > y}, x∧Cy = supC{z ∈ C | z 6 x, z 6 y},

for all x, y ∈ C. It is essential to note that the lattice laws of C may di�er
from the lattice laws ∨ and ∧ of (Rn,6).

Proposition 7.4. An ambitropical cone is a conditionally complete lattice
if and only if it is closed in the Euclidean topology.

Proof.

Claim 7.8 (⇐).

Proof. Suppose that the ambitropical cone C is closed in the Euclidean topo-
logy, and let X ⊂ C be a nonempty set bounded from above by some element
y ∈ C. Let Pf (X) denote the set of nonempty �nite subsets of X. For
all F ∈ Pf (X), let uF := supC F . Then, (uF )F∈Pf (X) is a nondecreasing
net of elements of C, bounded from above by y. Since C is closed in the
Euclidean topology, the limit of a net of elements of C belongs to C, and so
u := limF uF ∈ C. By construction, u > x holds for all x ∈ X. Moreover,
if z ∈ C is an upper bound of X, we get z > uF for all F ∈ Pf (X), and so
z > u. This shows that u is the least upper bound of X. A dual argument
works for greatest lower bounds. Hence, C is a conditionally complete lattice.

Claim 7.9 (⇒).
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Proof. Conversely, suppose that C is a conditionally complete lattice. Obser-
ve that for every bounded sequence (xk) of elements of C, the following
�liminf� and �limsup� constructions both de�ne elements that belong to C:

limsupCk→∞ xk := infCk>1 supC`>k x`, liminfCk→∞ xk := supCk>1 infC`>k x` .

We shall use the fact that limsupCk→∞ xk > liminfCk→∞ xk. This inequality,
which is standard when C = Rn, is still valid in general. Indeed, for all
k,m > 1, we have supC`>k x` > infC`>m x`, and so

supC`>k x` > supCm>1 inf
`>m

x` = liminfCr→∞ xr.

Hence,

limsupCk→∞ xk = infCk>1 supC`>k x` > liminfCr→∞ xr . (7.4)

Suppose that the sequence (xk)k>1 of elements of C converges to x ∈ Rn.
Then, for all ε > 0, there exists an index m such that ‖x` − x‖ 6 ε for
all ` > m. In particular, x` 6 xm + ‖x` − xm‖e 6 xm + 2εe. We deduce
that limsupC`→∞ x` 6 xm + 2εe 6 x + 3εe. Since the latter inequality holds
for all ε > 0, we deduce that limsupC`→∞ x` 6 x. A dual argument shows
that liminfC`→∞ x` > x. Using (7.4), we conclude that x = limsupC`→∞ x` =
liminfC`→∞ x` ∈ C, showing that C is closed in the Euclidean topology.

Remark 7.2. In the sequel, when writing that an ambitropical is closed, we
shall always refer to the Euclidean topology.

De�nition 7.32. We de�ne, for all closed ambitropical cones C, and for all
x ∈ Rn, the following �projection� maps:

Q−C(x) := supC{y ∈ C | y 6 x} , Q+
C(x) := infC{y ∈ C | y > x} .

(7.5)

We shall denote by Im f := {f(x) | x ∈ X} the image or range of a map
f : X → Y .

Proposition 7.5. Suppose that C is a closed ambitropical cone of Rn. Then,
Q−C is an idempotent Shapley operator, i.e., (Q−C)2 = Q−C , and the range of
Q−C is C. The same is true for Q+

C .

Proof. Since C is conditionally complete, for all x ∈ Rn, Q−C(x) is well
de�ned and Q−C(x) ∈ C. Moreover, Q−C trivially �xes C, implying that
ImQ−C = C and (Q−C)2 = Q−C . We also have, for all x ∈ Rn and λ ∈ R,
Q−C(λen + x) = supC{y ∈ C | y 6 λen + x} = supC{y ∈ C | −λen + y 6
x} = supC{λen + z ∈ C | z 6 x} = λen + Q−C(x). The operator Q−C is
trivially order preserving, hence it is a Shapley operator. Dual arguments
applies to Q+

C .
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If C is a closed tropical cone, then C is closed under tropical linear com-
binations, and it is also closed under taking the supremum of nondecreasing
sequences, it follows that the supremum supC relative to C coincides with
the supremum law sup of Rn. We deduce the following result.

Lemma 7.3. If C is a closed tropical cone, then Q−C 6 I. Similarly, if C is
a closed dual tropical cone, then Q+

C > I.

Proof. If C is a closed tropical cone, then for all x ∈ Rn, Q−C(x) = supC{y ∈
C | y 6 x} = sup{y ∈ C | y 6 x} 6 x. The proof of the property concerning
Q+
C is dual.

Consider the set of additive cones of Rn. First of all, we can consider ad-
ditive cones of Rn closed by taking suprema which are, as already observed,
semimodules over the zero - free semiring R (it is shown in [46] and [13] that
appropriate tropical analogous of Hilbert's spaces are obtained by conside-
ring spaces that are closed by taking suprema).
If we consider order additive cones of Rn which are conditionally complete as
lattices and that have the zero (in this case−∞) we obtain conditionally com-
plete semimodules over (Rmax)n, (this reminds of the notion of b-complete
idempotent space in [46]).
Allowing inconditional suprema leads to the notion of complete semimodules
over (Rmax)n [13].

Hence, we shall perform a (one sided) conditional completion which al-
lows us to construct from an arbitrary nonempty subset of Rn a closed tro-
pical cone and then, by taking the lower closure of it, a closed subsemimodule
of (Rmax)n.

If E is a nonempty subset of Rn, we shall denote by Emax the set of
tropical linear combinations of in�nite families of elements of E, i.e., the set
of elements of the form

sup{λfen + f | f ∈ E} (7.6)

where the λf ∈ Rmax such that the family of elements (λfen + f)f∈E is
bounded from above and the λf are not identically −∞. Up to the adjun-
ction of a bottom element, the set Emax is the b-complete idempotent space
generated by E in the sense of [46].

We shall also need to consider the Rmax-semimodule obtained by taking
the lower closure of Emax, a notion already introduced in 7.20:

Ēmax := clo↓Emax .

Similarly, we shall denote by Emin the set of elements of the form inf{λfen+
f | f ∈ E} where the λf ∈ Rmin are such that the family of elements
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(λfen + f)f∈E is bounded from below, and the λf are not identically +∞..
We also set Ēmin := clo↑Emin.

Proposition 7.6. Let C ⊂ Rn be an additive cone. Then, the following
statements are equivalent:

1. C is closed;

2. C is stable by limits of bounded nondecreasing sequences;

3. C is stable by limits of bounded nonincreasing sequences.

Proof.

Claim 7.10 (1⇒ 2).

Proof. trivial.

Claim 7.11 (2)⇒ 3).

Proof. Let xk be a bounded nonincreasing sequence of elements of C con-
verging to x ∈ Rn. Consider the sequence yk := xk − 2‖x− xk‖∞e ∈ C. We
have yk 6 −‖x − xk‖∞e + x. Moreover, yk also converges to x. It follows
that for all k, we can �nd an index l > k such that yl > yk. Hence, we can
construct a nondecreasing subsequence ynk

converging to x. Applying (2),
we conclude that x ∈ C.

Claim 7.12 (3⇒1).

Proof. Suppose xk is a sequence of elements of C converging to x ∈ Rn.
Consider now yk := xk + 2‖x − xk‖∞e. Then, arguing as in the proof of
the previous implication, we deduce that we can construct a nonincreasing
subsequence ynk

still converging to x. Applying (3), we conclude that x ∈
C.

Corollary 7.1. Let E denote a non-empty subset of Rn. Then, Emax is a
closed tropical cone. Similarly, Emin is a closed dual tropical cone.

Proof. By de�nition, Emax is a tropical cone. Let us consider a bounded
nondecreasing sequence xk ∈ Emax. We can write xk = sup{λkfen + f |
f ∈ E} where for each k, the family (λkf )f∈F is not identically −∞. Let

x := limk xk = supk xk ∈ Rn. From λkf + f 6 xk 6 x, we deduce that

λkf 6 b(x− f). So, the sequence (λf )k>1 is bounded from above. It follows

that λf := sup{λkf | k > 1} < +∞. Moreover, using the associativity of the
supremum operation, we get x = supxk = sup{λfen + f | f ∈ E} ∈ Emax.
Hence, Emax is stable under limits of nondecreasing sequences. It follows
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from 7.6 that Emax is closed in the Euclidean topology. A dual argument
applies to Emin.

Corollary 7.2. Let E denote a non-empty subset of Rn. Then, Ēmax is a
closed subsemimodule of (Rmax)n. Similarly, Ēmin is a closed subsemimodule
of (Rmin)n

Proof. By de�nition, Emax is a tropical cone, and by 7.1, it is a closed
subset of Rn. Then, it follows from 7.1 that Ēmax = clo↓Emax is a closed
subsemimodule of (Rmax)n.

De�nition 7.33. For all nonempty subsets E of Rn, and for all x ∈ Rn, we
de�ne

Pmax
E (x) := sup{y ∈ Emax | y 6 x} , Pmin

E (x) := inf{y ∈ Emin | y > x} .

This is a specialization of the notion of projectors Q−C and Q+
C to C =

Emax or C = Emin, introduced in (8.1). Indeed, if C = Emax, the operation
supC coincides with the ordinary supremum sup of Rn. The dual property
holds for C = Emin.

The next proposition tabulates elementary properties of these projectors.

Proposition 7.7. Let E be a nonempty subset of Rn. Then, Pmax
E and Pmin

E

are Shapley operators from Rn → Rn such that:

Pmax
E 6 I, Pmin

E > I . (7.7)

ImPmax
E = Emax, ImPmin

E = Emin (7.8)

and

Pmax
E = (Pmax

E )2, Pmin
E = (Pmin

E )2 . (7.9)

Furthermore, Pmax
E and Pmin

E �x E.

Proof. The inequalities (7.7) follow from 7.3. By de�nition, Pmax
E �xes Emax,

and Pmax
E (Rn) ⊂ Emax, so Pmax

E = (Pmax
E )2. The same property holds for

Pmin, showing (7.9). (7.8) follows from the fact that Pmax
E �xes Emax and

that Pmin
E �xes Emin.

The maps Q̄−E and Q̄+
E de�ned in the next proposition will play a key

role.

Proposition 7.8. Let E be a nonempty subset of Rn. Then, the maps

Q̄−E := Pmin
E ◦ Pmax

E , and Q̄+
E := Pmax

E ◦ Pmin
E

are such that
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i. Q̄−E; Q̄
+
E are Shapley operators;

ii. Q̄−E and Q̄+
E �x E;

iii. (Q̄−E)2 = Q̄−E;

iv. (Q̄+
E)2 = Q̄+

E;

v. Q̄+
E ◦ Q̄

−
E ◦ Q̄

+
E = Q̄+

E;

vi. Q̄−E ◦ Q̄
+
E ◦ Q̄

−
E = Q̄−E;

vii. Q̄+
E 6 Q̄

−
E ◦ Q̄

+
E

viii. Q̄−E > Q̄
+
E ◦ Q̄

−
E.

Proof. (i). We showed in 7.7 that Pmin
E and Pmax

E are both Shapley operators
and the collection of Shapley operators is stable by composition.

(ii). This follows from the fact that Pmin
E and Pmax

E both �x E (7.7).

(iii). Using the second inequality in 7.7, and the �rst equality in 7.9, we
get (Q̄−E)2 = Pmin

E ◦Pmax
E ◦Pmin

E ◦Pmax
E > Pmin

E ◦Pmax
E ◦Pmax

E = Pmin
E ◦Pmax

E .
Using now the �rst inequality in 7.7, and the second equality in 7.9, we get
Pmin
E ◦ Pmax

E ◦ Pmin
E ◦ Pmax

E 6 Pmin
E ◦ Pmin

E ◦ Pmax
E = Pmin

E ◦ Pmax
E , showing

that (Q̄−E)2 = Q̄−E .

(iv). Argument dual to (iii).

(v). Using 7.9, we get Q̄+
E ◦Q̄

−
E ◦Q̄

+
E = Pmax

E ◦Pmin
E ◦Pmin

E ◦Pmax
E ◦Pmax

E ◦
Pmin
E = Pmax

E ◦ Pmin
E ◦ Pmax

E ◦ Pmin
E = (Q̄+

E)2 = Q̄+
E , by (iv).

(vi). Argument dual to (v).

(vii). We have that Q̄−E ◦ Q̄
+
E = Pmin

E ◦ Pmax
E ◦ Pmax

E ◦ Pmin
E = Pmin

E ◦
Pmax
E ◦ Pmin

E > Pmax
E ◦ Pmin

E (z) = Q̄+
E , using P

min
E > I.

(viii). Argument dual to (vii).

The next proposition motivates the introduction of the operators Q̄− and
Q̄+. It shows that when C is a closed ambitropical cone, Q−C is obtained by
composing the projection on the tropical cone Cmax with the projection on
the dual tropical cone Cmin.

Proposition 7.9. For all closed ambitropical cones C, we have

Q−C = Q̄−C and Q+
C = Q̄+

C

Proof. Suppose C is a closed ambitropical cone.

Claim 7.13. For all z in Rn,

Pmax
C (z) = sup{x ∈ C | x 6 z} . (7.10)
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Proof. Indeed, Pmax
C (z) = sup{x ∈ Cmax | x 6 z} > sup{x ∈ C | x 6 z}.

However, an element u 6 z of Cmax can be written as u = ∨y∈C(λyen + y)
with λy ∈ Rmax, and λyen + y 6 z. So, λyen + y 6 sup{x ∈ C | x 6 z}, and
so, u 6 sup{x ∈ C | x 6 z}, which entails (8.2). Dually, Pmin

C (z) = inf{x ∈
C | x > z}.

Using (8.2), and the dual property, we get

Q̄−C(x) = Pmin
C ◦ Pmax

C (x) = inf{y ∈ C | y > Pmax
C (x)}

= inf{y ∈ C | y > sup{z ∈ C | z 6 x}}
= inf{y ∈ C | (z 6 x, z ∈ C) =⇒ z 6 y}
= supC{z ∈ C | z 6 y} = Q−C(x) .

The proof that Q̄+
C = Q+

C is dual.

We shall now present one of the main results of the chapter. It states
that Shapley retracts of Rn coincide with closed ambitropical cones.

Theorem 7.4. Let E be a subset of Rn. The following assertions are equi-
valent

1. E is a closed ambitropical cone;

2. E is a Shapley retract of Rn;

3. E is the �xed point set of a Shapley operator T .

Proof. (1) ⇒ (2). If E is a closed ambitropical cone, then, by 7.5, E is the
image of Q−E and Q−E is an idempotent Shapley operator.

(2)⇒ (3) Choose T as the idempotent Shapley operator which gives rise
to the retraction in 2.

(3) ⇒ (1). SinceE is the �xed point set of a Shapley operator T , E is a
closed cone. We shall now show that it is also a lattice in the induced order.
Let x, y ∈ E and we claim that x ∨E y = limn→∞ T

n(x ∨Rn y). We have
that x, y 6 x ∨Rn y, so x = T (x) 6 T (x ∨Rn y) and y = T (y) 6 T (x ∨Rn y).
Applying again T to these inequalities and passing to the limit, we obtain
that limn→∞ T

n(x∨Rn y) is an upper bound of x and y. Let z ∈ E such that
x, y 6 z. Then x∨Rn y 6 z and T (x∨Rn y) 6 T (z) = z; applying again T to
this inequality and passing to the limit, we obtain that limn→∞ T

n(x∨Rny) 6
z. We have now to prove that limn→∞ T

n(x∨Rn y) ∈ E. T (limn→∞ T
n(x∨Rn

y)) = limn→∞ T
n(x ∨Rn y) by de�nition. So, limn→∞ T

n(x ∨Rn y) is a �xed
point of T and it belongs to E. The case of inf is dual.

In order to state the theorem that characterizes Shapley retracts in terms
of best co-approximation and projections Pmax

E and Pmin
E , we shall now pro-

vide some de�nitions.
We take inspiration from a notion introduced by Papini and Singer in

the theory of best approximation in Banach spaces [51].
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De�nition 7.34. If E is a subset of a Banach space (X, ‖ · ‖), E is said to
be a set of existence of best co-approximation if, for all z ∈ X, the set

B
‖·‖
E (z) := {x ∈ X | ‖y − x‖ 6 ‖y − z‖, ∀y ∈ E}

contains an element of E.

It is immediate that if E is a nonexpansive retract of X, then E is a set
of existence of best co-approximation. The converse is known to hold in Lp

spaces with 1 6 p <∞, see [57] and the references therein. Here we shall be
interested in Shapley retracts of Rn. By 7.2, these are precisely the images
of Rn by idempotent maps that are nonexpansive in the �top� hemi-norm
tx = maxi∈[n] xi. We shall now introduce the following analogous of the set

B
‖·‖
E (z).

De�nition 7.35. Let E be a subset of Rn. For any y, z ∈ Rn we de�ne
B(y, z) = {x ∈ Rn | y + b(z − y)en 6 x 6 y + t(z − y)en} where t(x) =
maxi∈[n] xi and b(x) = mini∈[n] xi for any x ∈ Rn. Then, we de�ne BE(z) =
∩y∈EB(y, z).

De�nition 7.36. Let E be a subset of Rn, we say that E is a set of existence
of best tropical co-approximation if BE(z) ∩ E 6= ∅ for every z ∈ Rn.

Lemma 7.4. We have BE(z) = {x ∈ Rn | Pmax
E (z) 6 x 6 Pmin

E (z)}.

Proof. We shall prove that supy∈E(b(z − y)en + y) = Pmax
E (z) = sup{x ∈

Emax | x 6 z}. Let x ∈ Emax, x = supy∈E λen + y. Suppose x 6 z, then
we have that λen 6 b(x− y)en 6 b(z − y)en. In a similar way, we see that
Pmin
E (z) = infy∈E t(z − y)en + y.

Lemma 7.5. If C is closed and ambitropical, we have that Q−C(x) 6 Q+
C(x)

for any x ∈ Rn.

Proof. Let z ∈ C be such that x > z. Then, y ∈ C and y > x implies z 6 y.
In particular z 6 infC{y ∈ C | y > x} = Q+

C(x). Since this holds for any z ∈
C such that x > z, we have that Q−C(x) = supC{z ∈ C | z 6 x} 6 Q+

C .

Lemma 7.6. Let E be a subset of Rn. If E is a set of existence of best
tropical co-approximation, then B̄E(z) := [Q̄−E(z), Q̄+

E(z)] ∩ E 6= ∅ for any
z ∈ Rn.

Proof. We know that, if E is a set of best tropical co-approximation then
for any z ∈ Rn, there exists u ∈ E such that Pmax

E (z) 6 u 6 Pmin
E (z).

Composing the �rst inequality by Pmin
E , and composing the second inequality

by Pmax
E , we get Q̄−E(z) = Pmin

E ◦Pmax
E (z) 6 Pmin

E (u) = u, and u = Pmax
E (u) 6

Pmax
E ◦ Pmin

E (z) = Q̄+
E(z).
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Theorem 7.5. Let E be a subset of Rn. The following assertions are equi-
valent

1. E is a Shapley retract of Rn;

2. E is a set of existence of best tropical co-approximation;

3. for all z ∈ Rn, [Pmax
E (z), Pmin

E (z)] ∩ E 6= ∅;

4. Pmin
E (z) ∈ E holds for all z ∈ Emax;

5. Pmax
E (z) ∈ E holds for all z ∈ Emin;

6. E is the �xed point set of the operator Q̄+
E = Pmax

E ◦ Pmin
E ;

7. E is is the �xed point set of the operator Q̄−E = Pmin
E ◦ Pmax

E .

Proof. 1 ⇒ 2. Suppose E = P (Rn) where P = P 2 is a Shapley operator.
Then, for all y ∈ E, and for all z ∈ Rn, t(P (z)− y) = t(P (z)− P (y)) 6
t(z − y), i.e., P (z) 6 y + t(z − y)en, and dually, P (z) > y + b(z − y)en,
showing that P (z) ∈ B(z) ∩ E.

2 ⇒ 3. This follows from 7.4.
3 ⇒ 4. As a preliminary result we prove that

∀z ∈ Rn, [Pmax
E (z), Pmin

E (z)] ∩ E 6= ∅ ⇒ ∀z ∈ Emax, [z, Pmin
E (z)] ∩ E 6= ∅

(7.11)

Let z ∈ Emax, then [Pmax
E (z), Pmin

E (z)] = [z, Pmin
E (z)].

Now, the condition [z, Pmin
E (z)] ∩ E 6= ∅ is equivalent to: ∃u ∈ E such

that z 6 u 6 Pmin
E (z). However, Pmin

E (z) is the minimal element v ∈ Emin

such that v > z, it follows that Pmin
E (z) 6 u, and so Pmin

E (z) = u ∈ E.
4⇒ 5. By hypothesis, we have that for any z ∈ Emax, Pmin

E (z) ∈ E, so in
particular [z;Pmin

E (z)]∩E 6= ∅. Consider an arbitrary z ∈ Rn. Then, we have
that Pmax

E (z) ∈ Emax and, consequently [Pmax
E (z), Pmin

E (Pmax
E (z))] ∩ E 6= ∅.

Recalling that [Pmax
E (z), Pmin

E (Pmax
E (z))] ⊆ [Pmax

E (z), Pmin
E (z)] since Pmax

E 6
I, we have that for any z ∈ Rn, [Pmax

E (z);Pmin
E (z)]∩E 6= ∅. In particular, let

z ∈ Emin, then we have that [Pmax
E (z), z]∩E 6= ∅ and by the dual argument

of the previous implication we obtain that Pmax
E (z) ∈ E.

5 ⇒ 6. We will denote with Fix(Q̄+
E) the �xed points set of Q̄+

E . Since
any element of E is �xed by Q̄+

E , E ⊆ Fix(Q̄+
E). We shall now prove the other

inclusion. Let z ∈ Rn such that Pmax
E (Pmin

E (z)) = z. Since Pmin
E (z) ∈ Emin,

z = Pmax
E (Pmin

E (z)) ∈ E.
6 ⇒ 7. The fact that E is the �xed points set of Q̄+

E implies that for
any y ∈ Emin, Pmax

E (y) ∈ E. As in the previous implication we know that
E ⊆ Fix(Q̄−E) and we shall now prove the other inclusion. Let z ∈ Rn such
that Pmin

E (Pmax
E (z)) = z, so z ∈ Emin an, by hypothesis Pmax

E (z) ∈ E. Since
E is �xed by Pmin

E , we have that z = Pmin
E (Pmax

E (z)) ∈ E.
7 ⇒ 1. This follows from 7.8, (iii).
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Corollary 7.3. Let E be a non-empty subset of Rn, included in a closed
ambitropical cone F . Then, Emax ∩ Emin ⊆ F .

Proof. The set Emax ∩ Emin is �xed both by Pmax
E and Pmin

E . If E ⊆ F ,
the �xed point set of Pmax

E is included in the �xed points set of Pmax
F . The

same is true for F . So, Emax ∩ Emin is included in the �xed points set of
Pmin
F ◦ Pmax

F , which by 7.5,(7), coincides with F .

Corollary 7.4. Suppose C is a closed ambitropical cone. Then C = Cmax∩
Cmin.

Proof. The inclusion Cmax∩Cmin ⊆ C follows from 7.3. The other inclusion
is trivial.

If E ⊂ Rn, the set Emax ∩ Emin is generally not an ambitropical cone
(it can be disconnected). Moreover, the intersection of ambitropical sets
is generally not ambitropical, so the notion of ambitropical hull of a set E
cannot be de�ned in the naïve manner, as the intersection of ambitropical
sets containing E. However, the next results show that there is a proper
notion of ambitropical hull.

Corollary 7.5. For each nonempty subset E ⊂ Rn, the sets Im Q̄−E and
Im Q̄+

E are closed ambitropical cones containing E that are isomorphic.

Proof. If E ⊂ Rn is non-empty, the operator Q̄−E maps Rn to Rn, and it
follows from its de�nition that it satis�es the axioms of Shapley operators
(7.7). Moreover, we have seen in 7.8, (iii) that Q̄−E is idempotent. It follows
that Im Q̄−E = Q̄−E(Rn) is a Shapley retract, and so Im Q̄−E is ambitropical.
Moreover, Im Q̄−E ⊇ E. By duality, the same is true for Im Q̄+

E .

7.5 Special classes of ambitropical cones

In this section, we show that several canonical classes of sets in tropical
geometry are special cases of ambitropical cones, that can be characterized
through Shapley operators by suitable reinforcements of 7.4.

The simplest examples of ambitropical cones consist of alcoved polyhedra,
discussed in the second section. Actually, the following result shows that
alcoved polyhedra are characterized by the property of being sublattices
of Rn. Observe that all properties but one do not assume polyhedrality,
polyhedrality comes as a consequence in a perhaps unexpected way.

Proposition 7.10. Let C ⊂ Rn. The following statements are equivalent:

1. C is an alcoved polyhedron;

2. C is a closed tropical cone and a closed dual tropical cone,
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3. C is a closed ambitropical cone in which the in�mum and supremum
laws coincide with the ones of Rn.

4. There is a tropically linear Shapley operator T such that C = {x ∈
Rn | T (x) 6 x}.

5. There is a dually tropically linear Shapley operator P such that C =
{−x ∈ Rn | P (x) > x}.

Proof of 7.10.

Claim 7.14. 1, 2 and 3 are equivalent

Proof. ( (1) implies (2)) An alcoved polyhedron is stable by pointwise supre-
mum and pointwise in�mum of vectors.
( (2) implies (3)) Trivially.

( (3) implies (1)) Suppose now that (3) holds. Then, by 7.4, C is a con-
ditionally complete lattice, and the lattice operations of C are the pointwise
supremum and pointwise in�mum of vectors. De�ne, for all i, j ∈ [n],

Mij := sup{λ | vi > λ+ vj , ∀v ∈ C}

The latter set is noempty, it is closed and bounded from above, so the supre-
mum is achieved. In particular, we have Mij ∈ Rmax. By construction,
C ⊂ A(M), and Mij = M∗ij . Observe also that the inequality vi > λen + vj ,
is equivalent to wi > λ where w := v−vjδj ∈ C is such that wj = 0, denoting
by δj = (0, . . . , 0, 1, 0, . . . 0) the j-th vector of the canonical basis of Rn.

It follows that:

Mij = inf Cij , where Cij := {vi | v ∈ Cj} and Cj := {v ∈ C | vj = 0} .

Denoting by uj the jth column of the matrix M , we deduce that

uj = inf Cj ∈ clo↓C .

De�ne, Aj := {v ∈ clo↓C | vj = 0}. Since C is a conditionally complete
lattice, the set Aj ⊂ clo↓C is stable by taking in�ma. Hence, the set MinAj
consists of a single point, uj . By 7.2, every element of C is a tropical linear
combination of vectors uj . This implies that A(M) = {M∗y | y ∈ Rn} = C.

Claim 7.15. (4) is equivalent to the �rst three conditions

Proof. ( (1) implies (4)) If C = A(M) is an alcoved polyhedron, it follows
from (7.3) that C = {x ∈ Rn | T (x) 6 x} where T (x) = M∗x is a Shapley
operator. So (7.3) implies (4).
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( (4) implies (3)) Conversely, if C = {x ∈ Rn | T (x) 6 x} for some
tropically linear Shapley operator, then, for all x, y ∈ C, since T is order
preserving, T (x ∧ y) 6 T (x) ∧ T (y) 6 x ∧ y, and since T is tropically linear,
T (x ∨ y) = T (x) ∨ T (y) 6 x ∨ y, showing that x ∧ y and x ∨ y belong to
C. Moreover, C is closed, since T is continuous (in fact, T is sup-norm
nonexpansive).

Claim 7.16. (4) and (5) are equivalent.

Proof. It is su�cient to observe that given a tropically linear (dually tro-
pically linear) Shapley operator T , we can de�ne a dually tropically linear
(tropically linear) Shapley operator P by posing

P (x) = −T (−x)

and observing that

x 6 P (x) ⇐⇒ T (−x) 6 −x

Tropical cones, and dual tropical cones, are also remarkable ambitropical
cones.

Proposition 7.11. Let C ⊂ Rn. The following statements are equivalent:

1. C is a closed tropical cone;

2. C is a closed ambitropical cone in which the supremum law coincides
with the one of Rn;

3. there is a Shapley operator T such that C = {x ∈ Rn | T (x) > x}.

Proof. 1⇒2. Suppose that C is a closed tropical cone, and let X denote a
non-empty subset of C bounded from above by an element of Rn. Then,
for all �nite subsets F ∈ Pf (X), supF belongs to C, because C is stable
by supremum, and supX = limF∈Pf (X) supF ∈ C because C is closed. It
follows that X has a supremum in C which coincides with its supremum in
Rn. Suppose now that X is bounded from below by an element z of Rn.
Consider Y := {y ∈ C | y 6 x,∀x ∈ C}. Then, Y is non-empty and it is
bounded from above. It follows from the previous observation that supY is
the supremum of Y , in C. Moreover, supY is precisely the in�mum of Y in
C, showing that C is ambitropical.

2⇒3. Since C is a closed ambitropical cone, then, it is the �xed points
set of z 7→ Q−C(z) = sup{x ∈ C | x 6 z}, and Q−C 6 I. So, C = {z ∈ Rn |
Q−C(z) = z} = {z ∈ Rn | Q−C(z) > z}.
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3⇒1. Suppose that C = {x ∈ Rn | T (x) > x}. Since T is continuous, C
is closed. Moreover, since T is order preserving, for all x, y ∈ C, T (x ∨ y) >
T (x)∨T (y) > x∨y. Since T commutes with the addition of constant vectors,
we conclude that C is a closed tropical cone.

We state the following dual version of 7.11.

Proposition 7.12. Let C ⊂ Rn. The following statements are equivalent:

1. C is a closed dual tropical cone;

2. C is an ambitropical cone in which the in�mum law coincides with the
one of Rn;

3. there is a Shapley operator T such that C = {x ∈ Rn | T (x) 6 x}.

To describe a fourth special class of ambitropical cones, a de�nition is in
order.

De�nition 7.37. An ambitropical cone C is homogeneous if for all α > 0
and for all x ∈ C, αx ∈ C. A Shapley operator T : Rn → Rn is homogeneous
if T (αx) = αT (x) holds for all α > 0 and for all x ∈ Rn.

Remark 7.3. For all α > 0, the self-map x 7→ αx of Rmax is natural from the
tropical perspective. Indeed, it is a semi�eld automorphism, which is the
tropical analogous of the Frobenius map [16].

Proposition 7.13. Let C ⊂ Rn. The following statements are equivalent:

1. C is a closed homogeneous ambitropical cone;

2. there is an idempotent homogeneous Shapley operator whose �xed points
set is C;

3. there is an homogeneous Shapley operator whose �xed points set is C.

Proof. (1⇒2) If C is a closed homogeneous ambitropical cone, we know
from 7.4 that C is the range of the idempotent Shapley operator Q̄−C = Q−C .
Observe that, for all α > 0 and x ∈ Rn, Q−C(αx) = supC{y ∈ C | y 6 αx} =
supC{αα−1y | y ∈ C, α−1y 6 x} = supC{αz | z ∈ C, z 6 x} = αQ−C(x)
since y 7→ α−1y is a bijection from C to C, which is order preserving and
whose inverse also preserves the order. This shows the implication.
(2⇒3) The implication is immediate.
(3⇒1) If C is the �xed points set of an homogeneous Shapley operator T ,
then, we know from 7.4 that C is an ambitropical cone, and it follows from the
homogeneity of T that C is homogeneous. This shows the implication.



Chapter 8

A generalization to

conditionally complete lattices

It is instructive to observe that the main result of the previous chapter
has an analogous which applies to order preserving maps over conditionally
complete lattices.

In this section L is a conditionally complete lattice.

De�nition 8.1. We say that a non-empty subset E ⊂ L is archimedean if
every nonempty subset X of E that is bounded from above by an element of
L, is bounded from above by an element of E, and if every nonempty subset
X of E that is bounded from below by an element of L is bounded from
below by an element of E.

We observed in 7.2 that this property is automatically satis�ed when
L = Rn and E is an ambitropical cone. A special case, which we shall
encounter in the sequel, arises when L is a complete lattice. Then, any
subset E ⊂ L which contains the top and bottom elements of L is trivially
archimedean.

De�nition 8.2. If E is a non-empty subset of L, we now de�ne Emax to be
the set of elements of the form supF where F is a non-empty subset of E
bounded from above. The set Emin is de�ned in the dual way.

Remark 8.1. Observe that this is similar to (7.6), under the replacement of
Rmax by the Boolean semi�eld.

De�nition 8.3. Recall that a family (uf )f∈F of elements of a partially
ordered set is �ltered if for all f1, f2 ∈ F , there exists f3 ∈ F such that
uf3 6 uf1 and uf3 6 uf2 ; directed families are de�ned in a dual manner.

De�nition 8.4. We now de�ne Ēmax := clo↓Emax as the set of in�ma of
�ltered families of elements of Emax, and Ēmin := clo↑Emin as the set of
suprema of directed families of elements of Emin.
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Taking into account these new de�nitions of Emax and Emin we can de�ne

De�nition 8.5. For any archimedean subset E of a conditionally complete
lattice L, and for all x ∈ L, we de�ne

Pmax
E (x) := sup{y ∈ Emax | y 6 x} , Pmin

E (x) := inf{y ∈ Emin | y > x} .

and

De�nition 8.6.

Q̄−E := Pmin
E ◦ Pmax

E , and Q̄+
E := Pmax

E ◦ Pmin
E

The operators Pmax
E , Pmin

E , Q̄−E and Q̄+
E satisfy the same properties of

propositions 7.7 and 7.8.

Remark 8.2. In order to de�ne Q−E and Q+
E as in the previous chapter we

have to restrict ourselves to the special case in which E is a conditionally
complete lattice in the induced order of L.

De�nition 8.7. Let E be an archimedean subset E of a conditionally com-
plete lattice L which is a conditionally complete lattice in the induced order
of L, then for all x ∈ L, we can de�ne the following �projection� maps:

Q−E(x) := supE{y ∈ E | y 6 x} , Q+
E(x) := infE{y ∈ E | y > x} .

(8.1)

The following is an analogous of proposition 7.5 and the proof is similar

Proposition 8.1. Suppose that L is a conditionally complete lattice and E
is an archimedean subset of L which is a conditionally complete lattice in the
induced order of L, then Then, Q−E is an idempotent order preserving map,
i.e., (Q−E)2 = Q−E, and the range of Q−E is E. The same is true for Q+

E.

We can now prove the analogous of proposition 7.9

Proposition 8.2. For all archimedean subsets E of a conditionally complete
lattice L which are conditionally complete lattices in the induced order of L,
we have

Q−E = Q̄−E and Q+
E = Q̄+

E

Proof. Suppose E is archimedean. Observe �rst that for all z in L,

Pmax
E (z) = sup{x ∈ E | x 6 z} . (8.2)

Indeed, Pmax
E (z) = sup{x ∈ Emax | x 6 z} > sup{x ∈ E | x 6 z}.

However, an element u 6 z of Emax is an element of the form u = supF
with F a nonempty subset of E bounded from above. Since u 6 z it follows
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that F 6 z, i. e. any element of F is less or equal than z. So, u = supF 6
sup{x ∈ E | x 6 z}.

Using (8.2), and the dual property, we get

Q̄−E(x) = Pmin
E ◦ Pmax

E (x) = inf{y ∈ E | y > Pmax
E (x)}

= inf{y ∈ E | y > sup{z ∈ E | z 6 x}}
= inf{y ∈ E | (z 6 x, z ∈ E) =⇒ z 6 y}
= supC{z ∈ E | z 6 y} = Q−E(x) .

The proof that Q̄+
E = Q+

E is dual.

Theorem 8.1. Let L be a conditionally complete lattice and let E be an
archimedean non-empty subset of L. The following statements are equivalent:

1. E is a conditionally complete lattice in the induced order of L;

2. E = P (L) for some order-preserving map P : L→ L such that P = P 2,
i.e. E is an order-preserving retract of L;

3. E is the �xed points set of an order-preserving map T : L→ L.

The proof is similar to the one of 7.4.

Proof. (i) ⇒ (2) E is the image of Q−E and Q−E is an idempotent order-
preserving map.

(2) ⇒ (3) Choose T = P .

(3)⇒(i). Let X be a family of elements of E bounded by some element
z ∈ E, in particular z > supLX and T (z) = z. Since T is order-preserving we
have that z = T (z) > T (supX) > supT (X) = supX. Setting u := supX,
we get T (u) > u. Then, we de�ne inductively, for all ordinal α, Tα(u) as
follows: T 0(u) = u, T β(u) = T (Tα(u)) if β = α + 1 is a successor ordinal,
and T β(u) = limα↑β,α<β T

α(u) if β is a limit ordinal. There must exist an
ordinal α such that Tα+1(u) = Tα(u). Then, Tα(supX) is an element of E
and it is precisely supE X.

All the properties of 7.5, but the one concerning best coapproximation,
carry over to the setting of conditionally complete lattices. The proof is
similar to the one of 7.5, we shall only show the implications that are dif-
ferent. The proof is similar to the one of Theorem 7.4. We only provide the
arguments which need to be adapted.

Theorem 8.2. Let L be a conditionally complete lattice and let E be an
archimedean non-empty subset of L. The following statements are equivalent:
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i. E = P (L) for some order-preserving map P : L→ L such that P = P 2,
i.e. E is an order-preserving retract of L;

ii. for all z ∈ L, [Pmax
E (z), Pmin

E (z)] ∩ E 6= ∅;

iii. Pmin
E (z) ∈ E holds for all z ∈ Emax;

iv. Pmax
E (z) ∈ E holds for all z ∈ Emin;

v. E is the �xed point set of Q̄+
E = Pmax

E ◦ Pmin
E ;

vi. E is the �xed point set of Q̄−E = Pmin
E ◦ Pmax

E .

Proof. (i)⇒ (ii) By 8.1 we have that E is a conditionally complete lattice in
the induced order of L and so E is the image of Q̄−E(x). Since Pmax

E 6 I and
Pmin
E > I, we have that for all z ∈ L Pmax

E (z) 6 Pmin
E (Pmax

E (z)) 6 Pmin
E (z),

so Pmin
E (Pmax

E (z)) ∈ [Pmax
E (z), Pmin

E (z)] ∩ E.
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Appendix A

Proof of 7.1

As said at the beginning of Chapter 7, we only need to prove the �if� part.
If T = T 2 is idempotent and nonexpansive in a Euclidean norm ‖ · ‖ and
if C = T (Rn), then C = {x ∈ Rn | x = T (x)} is closed. It remains
to check that C is convex. We have, for all x, y ∈ C, 0 < α < 1 and
z = αx+(1−α)y ‖x−T (z)‖+‖T (z)−y)‖ = ‖T (x)−T (z)‖+‖T (z)−T (y)‖ 6
‖x− z‖+ ‖z − y‖ = ‖x− y‖. Observe that the euclidean geodesic between
x and y is unique and that it is precisely the segment [x, y] (this is valid
more generally in any Banach space with a strictly convex norm). Then, the
inequality ‖x− T (z)‖+ ‖T (z)− y)‖ 6 ‖x− y‖ implies that T (z) lies on this
geodesic. So, T sends [x, y] to itself.

In particular, T (z) = βx + (1 − β)y for some 0 6 β 6 1. Since (1 −
β)‖y − x‖ = ‖T (z) − x‖ = ‖T (z) − T (x)‖ 6 ‖z − x‖ = (1 − α)‖y − x‖, we
deduce that 1 − β 6 1 − α. By exchanging the roles of x and y, we deduce
that β 6 α. Hence, α = β, showing that T (z) = z. Hence, z ∈ C, which
shows 7.1.
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Appendix B

An example of ambitropical

polyhedron

x1 x2

x3

g1g2·

h

f1

f2

x1 x2

x3

g1g2·

h

f1

f2

x1 x2

x3

g1g2·

h

f1

f2

Figure B.1: An ambitropical polyhedron E consisting of two alcoved polyhe-
dra (left). The tropical polyhedral cones Emax (right) and Emin (center).

Example B.1. Consider the ambitropical polytope E in Figure B.1. We have
that in this case
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Q−E

xy
z

 =

(x ∧ y ∧ (1 + z)) ∨ (x ∧ (1 + y) ∧ z) ∨ (y ∧ z ∧ (1 + x))
y ∧ (1 + x) ∧ (1 + z)
z ∧ (1 + y) ∧ (1 + x)


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