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Dottorando:

Luca Paolillo
Coordinatore del Dottorato:

Prof. Carmine Attanasio

Tutor:

Prof. Antonio Di Crescenzo

Anno Accademico 2019-2020

 

La Leila



2



Abstract

The study of the information measures gives rise to different measures according to the

contests in which it is applied. In the contest of reliability theory and survival analysis, an

ever-growing interest is given by the entropy applied to continuous random variables.This

quantity gives the expectation of the information content and is known as differential

entropy. Another quantity, the differential varentropy is the variance of the information

content. Differential entropy and differential varentropy are mainly applied to the study

of brand-new item.

Other measures of interests in reliability contests are the dynamical measures of infor-

mation. In this thesis a particular attention is devoted to residual entropy and residual

varentropy, that are the expectation and the variance of the information content of a

residual lifetime distribution. They can be very useful in the cases in which the item has

a finite age. In particular, the residual varentropy is a largely unexplored subject and a

focus on this quantity constitute the central part of the thesis.

Stimulated by the need of describing useful notions related to the quantity described

above, we introduce the ‘pdf-related distributions’. These are defined in terms of transfor-

mation of absolutely continuous random variables through their own probability density

functions. We investigate their main characteristics, with reference to the general form

of the distribution, the quantiles, and some related notions of reliability theory. This

allows us to obtain a characterization of the uniform distribution based on pdf-related

distributions of exponential, Laplace and power type as well. We also face the problem

of stochastic comparing the pdf-related distributions by resorting to suitable stochastic

orders. Finally, the given results are used to analyse properties and to compare some
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ii Abstract

useful information measures, such as the differential entropy and the varentropy.

This work of thesis covers different arguments in the contest of information for con-

tinuous random variables. Firstly, mathematical properties of residual varentropy are

discussed, such as conditions for which it is constant or monotonic and the determination

of the upper and the lower bound. Another theoretical aspect that will be discussed con-

cerns the properties of entropy and varentropy for stochastically ordered distributions. In

addition, some applications of residual varentropy are proposed. The first, the propor-

tional hazards model gives an example of application of the varentropy in the context of

reliability theory and survival analysis. The second is an application to stochastic process.

More specifically, residual varentropy is applied to the first passage-time of an Ornstein–

Uhlenbeck jump-diffusion process. A kernel-type estimation of the residual varentropy is

finally proposed, as a further application to real data. The last part of the thesis concerns

the “covarentropy”, that is a new measure introduced in order to study the correlations

between the information contents of two random variables.
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Introduction

The information theory has fundamental contribution in communication theory, but also

in different areas as statistical physics, computer science, statistical inference. The pioneer

was Shannon [68] who introduced the entropy, also called Shannon entropy, that was

already used in thermodynamics. Let X be a random variable defined on a probability

space (Ω,F ,P). If X is a discrete variable defined on a support SX = {xi; i ∈ I} and

IC(X) is the information content is defined as the random variable

IC(X) = − log p(X) (1)

In the (1) the quantity p(x) = P(X = x) is the discrete density function of X calculated

at point x. In the information theory the information content is the number of bits needed

to represent X by a coding scheme that minimizes the average code lengths (see [68]).

The Shannon entropy is defined as

H(X) = E[IC(X)] = −
∑
i∈I

p(xi) log p(xi) (2)

where “log” is the natural logarithm, we set 0 log 0 = 0 by convention and we denote

with E[·] the expectation. In information theory, entropy is the minimum descriptive

complexity of a random variable and can be introduced together with its related quantities

as for example relative entropy and mutual information (for a comprehensive discussion

see Cover and Thomas [17]) in order to give an extensive interpretation to problems in

data information and communication.
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In mathematics, the fundamental quantities of information theory are defined as func-

tionals of probability distributions. In turn, they characterize the behaviour of long

sequences of random variables and allow us to estimate the probability of rare events

(large deviation theory) and to find the best error exponent in hypothesis test.

Kolmogorov, Chaitin and Solomonoff put forth the idea that the complexity of a string

of data can be defined by the length of the shortest binary program for computing the

string. Thus the complexity is the minimal description length. Kolmogorov complexity

lays the foundation for the theory of the descriptive complexity and is approximately

equal to the Shannon entropy if the sequence is drawn at random from a distribution that

has the given entropy.

In addition to the computational complexity, we need also to know the distribution

about where the information arises. Supplementary measures for distributional spread

and asymmetry can be derived in terms of effective concentration of entropic mass, such

the given distribution is formally equivalent to bipolar outcomes, for example, as ‘good’

or ‘bad’. This kind of measure is object of investigation when the partition theory is

examined (for a comprehensive discussion see Bowden [14]) and allows to compare the

different distributions from an information point of view. An alternative way to carry out

this analysis consists in studying the dispersion around the mean value of the information

content. This measure is called “varentropy” and it is able to highlight some characteristic

of the distributions, as we will show in the course of this thesis.

The comparison of the information content of two random variables can also be done

in a bivariate distribution contest. For such a measure we can introduce a new kind of

measure that gives the covariance of the information content of two random variables

and is called “covarentropy”. The covarentropy is an information measure that takes

into account the presence of correlations between random variables and is the object of

Chapter 4.

If X is absolutely continuous with probability density function (pdf) f(t), we can
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introduce the random variable

IC(X) = − log f(X) (3)

The Equation (3) is often referred as the random information content of X. IC(X) is

the natural counterpart of the number of bits needed to represent X in the discrete case

by a coding scheme that minimizes the average length code (see [68]). The differential

entropy H(X) of a continuous random variable X with a density f(x) is a very common

uncertainty measure and is defined as

H(X) := E[IC(X)] = −
∫ ∞
−∞

f(x) log f(x) dx, (4)

As we see from (4), differential entropy does not depend on the random variable but only

on its pdf. Intuitively, H(X) measures the expected uncertainty contained in f(x) about

the predictability of an outcome of X. H(X) may or may not exist (in the Lebesgue

sense). The differential entropy is also related to the evaluation of the size of the smallest

set containing the realizations of typical random samples taken from X (see Chapter 9

of [17]). Moreover, as in the discrete case, the differential entropy depends only on the

probability density function of the random variable. When the differential entropy exists,

differently from the entropy of discrete random variables, it takes values in the extended

real line [−∞,∞]. Other incongruities have been pointed out in various investigations

(see for instance, [19] and [65]). In information theory, large attention is given to the

so-called entropy power of a continuous random variable X, which is a positive quantity

expressed in terms of H(X). Rather than in stochastic modeling, it is usually adopted

to compare the differential entropy of a sum of independent random variables with their

differential entropies, and with the entropy of a suitable random variables (see Chapter

16 of [17] and [52] also for its connection to the Fisher information). Hence, the entropy

power is useful to analyze stochastic systems governed by unbounded random variables

that are comparable to random variables.
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The problem of the independence between random variables is very crucial in the

study of the information measures. In Probability Theory and Statistics two events are

said independent when “the occurrence of one event does not increase neither decrease the

probability of the other event occurring” (T. Bayes, 1763). Today, while the notion of “in-

dependence” is well-formalized, the complementary notion of “dependence” is much less

well understood. The investigation about the “measures” and the dependence “models”

was started with the pioneering works of Pearson (at the end of XIX century) about cor-

relation coefficients and their variations and is going on nowadays. These investigations

have been developed according to three different approaches:

• measures of association giving a numerical evaluation of the “degree of dependence”

between the random variables;

• multivariate (especially Gaussian) models that quantify the relations of dependence

in a functional form;

• stochastic orderings that provide a criterium to compare random objects.

Along this lines of research, the project of thesis was oriented to the study of the

properties of new indexes appropriate to the measure of the variability in random phe-

nomena and to individuate new instruments in order to compare random variables. The

investigation is motivated by the need to obtain theoretical instruments in order to evalu-

ate their dependence. As a starting point, we individuate mathematical properties of the

variance of residual lifetimes. The problem of varentropy of residual lifetime or residual

varentropy is introduced initially as a dynamical measure of the variability of the infor-

mation content of the stochastic system that are conditioned to survival. Our attention

is devoted to disclose properties of varentropy of residual lifetimes. We give special at-

tention to the conditions such that it is constant. We also discuss the effect of linear

transformations, we provide suitable lower and upper bounds. Moreover, we focus on cer-

tain applications involving the proportional hazards model and the first-passage times for

Ornstein–Uhlenbeck jump-diffusion processes. Finally, as an example of application of the
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varentropy to real data, we deal with the problem of the kernel estimation of the residual

varentropy. Another problem related to the distribution of the entropic mass is addressed

making use of effective probabilistic and statistical tools for assessing the above men-

tioned information measures, introducing the so-called ‘pdf-related distributions’. These

are constructed by means of transformation of absolutely continuous random variables

through their own pdf’s.

In order to consider these aspects, in the second part of the thesis we investigate the

main properties of the pdf-related distributions, with special reference to (i) the general

form of their distribution functions, (ii) the connections with various notions of interest

in reliability theory (such as the residual lifetime), (iii) the determination of quantiles.

We analyse pdf-related distributions generated by general distributions. However, special

attention is devoted to the case when the underlying distributions possess monotone or

unimodal pdf’s. Here, unimodality refers to strictly decreasing pdf’s or to pdf’s that are

first strictly increasing and then strictly decreasing.

The special form that is involved in their definition, allows to tackle the problem of

comparing the pdf-related distributions by resorting to suitable stochastic orders, such as

the usual stochastic order, the dispersive order, the convex trasform order, the star order

and the kurtosis order. Hence, in this framework the main results involve both location

and variability orderings, and are obtained by techniques based on mapping of quantiles,

convexity and rearrangement of pdf’s.

As main application, the pdf-related distributions are finalized to construct a stochas-

tic framework aimed to compare the basic information measures for absolutely continuous

random variables.

The last part of the thesis concerns the covariance between information contents. The

investigation is carried out both for discrete and continuous random variable. In order to

acquire more insight on this quantity, we focus on the relation between covarentropy and

covariance of random variables.

The thesis is organized as follows. We start with a mathematical background (Chapter
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1), where we discuss about random lifetime distributions and residual entropy (Section

1.1), kernel density estimation (Section 1.2) and Ehrenfest model (Section 1.3). In Chap-

ter 2 we introduce the varentropy and in particular the varentropy of residual lifetimes.

Firstly, we investigate the mathematical properties (Section 2.2), constant residual varen-

tropy conditions and some bounds for the residual varentropy. The applications (Section

2.4) are the proportional hazard model and the reliability analysis of series system, the

Ornstein-Uhlenbeck jump-diffusion process arising form the Ehrenfest model subject to

catastrophes and a kernel approach for the estimation of the residual varentropy. Chap-

ter 3 gives an analysis of entropy and varentropy as related to stochastic comparisons

between pdf-related random variables. As a starting point, a description of quantiles for

unimodal distributions (Section 3.2) is given in order to introduce the pdf-related distri-

butions (Section 3.3). Some useful results about the stochastic order are given in Section

3.4. In Section 3.5 the previous notion are applied to information content and in Section

3.6 some conditions are given in order to compare entropy and varentropy. Finally, in

Chapter 4 the covarentropy of two random variables is discussed. This chapter includes

general theorems that provide conditions in order to give a connection between covaren-

tropy and covariance but also some applications to specific distributions. The analysis is

carried out both for discrete (Section 4.2) and for absolutely continuous random variables

(Section 4.3).

The investigation concerning this thesis was part of the Innovative Doctorates with

Industrial characterization funded by European Social Fund PON 2014/2020 and per-

formed in collaboration with Nexsoft S.p.A. (Salerno) and Departamento de Estad́ıstica

e Investigación Operativa of Universidad de Cádiz (Spain).

Throughout the thesis we refer to the following papers.

• Di Crescenzo, A., & Paolillo, L. Analysis and applications of the residual var-

entropy of random lifetimes. Probab. Engrg. Inform. Sci. pp. 1–19. doi:
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10.1017/S0269964820000133 (2020).

• Di Crescenzo, A., Paolillo, L., & Suárez-Llorens, A. Stochastic comparisons, dif-

ferential entropy and varentropy for distributions induced by probability density

functions. 21 pp. (2021). arXiv:2103.11038v1. Submitted for publication.



xiv Introduction



Chapter 1

Mathematical background

The aim of this chapter is to give some mathematical instruments that are useful to the

study of mathematical properties and applications of the residual varentropy. Section 1

is concerned about the random lifetimes, that are useful to a statistical description of the

life of an item that can be also conditional to the survival until a given time t (residual

lifetime distributions) and the properties of the entropy of residual lifetime distributions,

or alternatively, residual entropy. Section 2 is focused on the description of the kernel

density estimation. In Section 3 a brief description of the continuous time Eherefest

model with catastrophes is given. This model is one of the applications to the residual

varentropy that we will analyse in Chapter 2.

1.1 Notions on lifetimes distributions and residual

entropy

Let X be an absolutely nonnegative continuous random variable with pdf f(x) and let

the interval SX ⊆ R be its support. Let F (x) = P(X ≤ x), x ∈ R, be the cumulative

distribution function (cdf) and F (x) = 1−F (x) the complementary distribution function,

1



2 Mathematical background

also known as survival function, then the residual lifetime Xt is given by

Xt = [X − t|X > t], t ∈ SX . (1.1)

where SX = (0, b), for 0 < b ≤ ∞. Here, notation [X|B] is adopted for a random variable

whose distribution is identical to that of X conditional on B. Clearly, Xt denotes the

system lifetime conditioned to the survival of the system at time t. In order to give

an interpretation in the contest of reliability theory, let us consider a system (such as

an item or a living organism) that starts its activity at time 0 and works regularly up

to its failure time. We can introduce a random variable X that describes the random

lifetime of such a system. Hence, as a consequence of (1.1), the residual lifetime Xt has

the significance of the system lifetime conditioned to the survival of the system at time t.

Useful applications of residual lifetime distributions in actuarial science can be found in

Sachlas and Papaiannou [64].

If X is a nonnegative random lifetime, with support SX = (0, b), for 0 < b ≤ ∞, then

the random variable Xt given by (1.1) describes the residual lifetime of X at age t. Then,

the cdf, survival function and pdf of Xt, for x ∈ (0, b− t) and t ∈ SX are given by:

Ft(x) = P(Xt ≤ x) =
F (x+ t)− F (t)

F (t)
,

F t(x) = 1− Ft(x) =
F (x+ t)

F (t)
, (1.2)

ft(x) =
dFt(x)

dx
=
f(x+ t)

F (t)
. (1.3)

The conventional approach used to characterize the failure distribution of X is either by

its (instantaneous) hazard rate function

λ(t) =
f(t)

F (t)
= lim

h→0+

1

h
P[X ≤ t+ h|X > t], t ∈ SX , (1.4)
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or by its mean residual lifetime function, defined as

m(t) = E(Xt) = E[X − t|X > t] =
1

F (t)

∫ ∞
t

F (x) dx, t ∈ SX . (1.5)

We recall also the cumulative hazard rate function of X,

Λ(t) = − logF (t) =

∫ t

0

λ(x) dx, t ∈ SX , (1.6)

which plays a relevant role in numerous contexts.

Moreover, it is known that each of the functions F , λ and m uniquely determines the

other two. More specifically, for t ∈ SX we have

F (t) = exp

{
−
∫ t

0

λ(x) dx

}
=
m(0)

m(t)
exp

{
−
∫ t

0

1

m(x)
dx

}
, λ(t) =

m′(t) + 1

m(t)
.

Another useful quantity is the variance of Xt (called also “variance residual life function”)

that is

σ2(t) := Var(Xt) = Var[X − t | X > t] =
2

F (t)

∫ ∞
t

dx

∫ ∞
x

F (y) dy − [m(t)]2, (1.7)

with t ∈ SX and m(t) defined in (1.5). For instance, see Gupta [36] for characterization

results and properties of σ2(t). The vitality function of X is

δ(t) := E[X|X > t] = m(t) + t, t ∈ SX . (1.8)

Namely, since X denotes the random lifetime of a system, δ(t) can be interpreted as the

average life span of a system whose age exceeds t. The generalized hazard rate of X (see

Schweizer and Szech [66]) can be expressed by

λα(t) =
f(t)

[F (t)]1+α
, α ∈ R, t ∈ SX . (1.9)
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and reduces to λ when α = 0. Clearly, recalling (1.4) one has λ0(t) = λ(t) for all t.

Other parameterizations of λα(t) have been treated in Bieniek and Szpak [12] as a special

case of the generalized failure rate defined by Barlow and van Zwet [7]. Further forms

of generalized hazard rates have been considered in the past. For instance, Lariviere and

Porteus [47], and Maoui et al. [54] considered t λ(t) as generalized hazard rate. Moreover,

a different version has been treated in Li and Tewari [49].

1.1.1 An application: Cox proportional hazards model

Consider a family of absolutely continuous nonnegative random variables {X(a); a > 0},

where the survival function and the pdf of X(a) are expressed, respectively, as

F
(a)

(t) = P[X(a) > t] = [F (t)]a, f (a)(t) = a[F (t)]a−1f(t), t > 0, (1.10)

where F (t) a suitable baseline survival function and f(t) = − d
dt
F (t) the associated pdf.

As a function of (1.10) we can write the hazard function as

λ(a)(t) =
f (a)(t)

F
(a)

(t)
= a λ(t), t > 0, (1.11)

where

λ(t) =
f(t)

F (t)
.

and moreover applying Equation 1.6

Λ(a)(t) = − logF
(a)

(t) = aΛ(t), t > 0. (1.12)

As we can see from Equations (1.11) and (1.12) the hazard rate and the cumulative hazard

function are proportional to their respective baseline function. Due to this characteristic

model is known as the proportional hazards model, see Cox [18].

Let us consider a system of n devices connected in series, whose component i has
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survival functions F i(t) and pdf fi(t) for all t > 0. Let F S(t) the survival function of a

series system, then we have

F S(t) =
n∏
i=1

F i(t), t > 0 i = 1, . . . , n.

As a consequence of (1.6) we can easily prove that the hazard rate of the system λS(t)

can be written in terms of the hazard rate of each component λi(t) = fi(t)

F i(t)
as

λS(t) =
n∑
i=1

λi(t), t > 0.

When the components are identical

F i(t) ≡ F (t), fi(t) ≡ f(t), λi(t) =
f(t)

F (t)
≡ λ(t), t > 0 i = 1, ..., n.

where and then

F S(t) = [F (t)]n, t > 0

and

λS(t) = nλ(t), t > 0

1.1.2 Residual entropy

Now, we assume that X is a nonnegative absolutely continuous random variable that

describes the random lifetime of such a system. Hence, H(X) is a suitable measure of

uncertainty of the failure time. However, the use of H(X) is adequate for a brand new

system, whereas is somewhat unrealistic whenever the initial age of the considered system

is non-zero. To this aim, Ebrahimi [27], Ebrahimi and Pellerey [29] and Muliere et al.

[57] proposed to use the residual lifetime Xt in place of X in the expression (4). Let X
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be an absolutely continuous random variable, then the quantity

H(Xt) = E[IC(Xt)] = −
∫ ∞
t

f(x)

F (t)
log

f(x)

F (t)
dx, t ∈ SX , (1.13)

is called entropy of residual lifetime or residual entropy, for short. After the component has

survived up to time t, H(Xt) basically measures the expected uncertainty contained in the

conditional density of (X − t) given that X > t about the predictability of the remaining

lifetime. More information about residual entropy are given in reff. [27, 28, 29, 57].

1.1.3 Alternative forms of the residual entropy

Alternative forms of the residual entropy (1.13) (see Equations 2.2 of Ebrahimi [27]) are

given by

H(Xt) = −Λ(t)− 1

F (t)

∫ ∞
t

f(x) log f(x) dx, (1.14a)

H(Xt) = 1− 1

F (t)

∫ ∞
t

f(x) log λ(x) dx, (1.14b)

where λ(x) is the failure rate function of X (1.4) and Λ(t) is the cumulative hazard

function of X (1.6).

1.1.4 Residual entropy for linear transformations

Let X and Y two random lifetime distributions related by a linear transformation accord-

ing to the relation

Y = aX + b, a > 0, b ≥ 0, (1.15)

then the residual entropy of X and Y are related by (see Eq. (2.6) of Ebrahimi and

Pellerey [29])

H(Yt) = H
(
X t−b

a

)
+ log a, ∀ t. (1.16)
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1.1.5 Derivative of the residual entropy

The monotonicity of the residual varentropy was object of investigation by different au-

thors (see for example Ebrahimi [27] and Belzunce et al. [11]). In order to study the

monotonicity of the residual entropy it can be useful to express its derivative with respect

to t in terms of other known quantities. Let us denote with g′ the derivative of a given

function g. As the residual entropy H(Xt) can be viewed as a function of t, say Φ(t),

the derivative H ′(Xt) will be the derivative Φ′(t). The result found for H ′(Xt) is the

following. For the residual entropy of a random variable X we have (see, e.g. Eq. (2.4) of

[27])

H ′(Xt) = λ(t)[H(Xt)− 1 + log λ(t)]. (1.17)

where λ(t) is the hazard rate of X (see Equation (1.4)). A consequence of increasing

residual entropy distributions was provided by Belzunce et al.[11]. They proved that if X

has an absolutely continuous distribution and an increasing residual entropy H(Xt), then

the underlying distribution is uniquely determined.

1.1.6 Weighted version of the residual entropy

A weighted version of the residual entropy (1.13) is given by (see Di Crescenzo and

Longobardi [21] for details)

Hw(Xt) =−
∫ ∞
t

x
f(x)

F (t)
log

f(x)

F (t)
dx

=− 1

F (t)

∫ ∞
t

x f(x) log f(x)dx− Λ(t)

F (t)

∫ ∞
t

x f(x)dx, t ∈ SX . (1.18)
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1.2 Kernel density estimation

Starting from a random sample X1, X2, . . . , Xn from a population with density function

f a kernel density estimator is given by the quantity

f̂(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, x ∈ R,

or the leave-one-out kernel estimator obtained excluding Xi in the calculation of the

density function:

f̂i(Xi) =
1

n− 1

n∑
j=1
j 6=i

1

h
K
(Xi −Xj

h

)
, i = 1, 2, . . . , n. (1.19)

where h is a smoothing parameter or bandwidth and K is the kernel function. K is a

smooth symmetric kernel function satisfying

∫
K(x) dx = 1

∫
xK(x) dx = 0∫
x2K(x) dx <∞

1. Uniform

K(x) =
1

2
1{|x|<1}

2. Triangular

K(x) = (1− |x|)1{|x|<1}

3. Gaussian

K(x) =
1√
2π

exp

{
−x

2

2

}
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4. Parabolic

K(x) =
3

4
(1− x2)1{|x|<1}.

Let X1, . . . , Xn be a random sample from a population with cdf F (x) and pdf f(x).

Two typical estimators R̂(t) of the survival function F (t) are:

(i) Empirical estimator

R̂(t) = R̂e(t) :=
1

n

n∑
i=1

1{Xi>t}. (1.20)

(ii) Kernel estimator (cf. Azzalini [6], for instance)

R̂(t) = R̂h(t) :=
1

n

n∑
i=1

S
(t−Xi

h

)
. (1.21)

where h > 0 is a smoothing parameter, named bandwidth, and

S(t) =

∫ ∞
t

K(x) dx (1.22)

is the survival function associated to the kernel function K(x).

1.3 Continuous-time Ehrenfest model with catastro-

phes

Let us consider a system subject to catastrophes, described by a stationary Markov chain

{M(t), t ≥ 0} defined by a stationary Markov chain {M(t), t ≥ 0} defined on the state-

space S = {−N,−N + 1, . . . ,−1, 0, 1, . . . , N}, with N a positive integer. Let us suppose

that the catastrophes occur according to a Poisson process with intensity ξ. Denoting by

r(k, n) = lim
h→0+

1

h
P[M(t+ h) = n|M(t) = k], k, n ∈ S
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the transition rate function of M(t), we assume that the allowed transitions occur accord-

ing to the following scheme (for a complete discussion see Dharmaraja et al. [20]):

r(−1, 0) = λ(N + 1) + ξ, r(n, n+ 1) = λ(N − n), ∀n ∈ S \ {−1}; (1.23)

r(1, 0) = µ(N + 1) + ξ, r(n, n− 1) = µ(N + n), ∀n ∈ S \ {−1}; (1.24)

r(n, 0) = ξ, n ∈ S \ {0}. (1.25)

with λ, µ, ξ > 0. Hence, {M(t), t ≥ 0} is a time-homogeneous continuous-time Markov

process with transition rates (1.23), (1.24) and (1.25), and is defined on the state-space S,

where S is an irreducible class. Equation (1.25) defines the catastrophes rate, the effect

of each catastrophe being the instantaneous transition to state 0.

Due to (1.23), (1.24) and (1.25), for all j, n ∈ S and t ≥ 0 the transition probabilities

pj,n(t) = P[M(t) = n|M(0) = j] (j, n ∈ S)

satisfies the following differential-difference equations:



d
dt
pj,0(t) = −[N(λ+ µ) + ξ]pj,0(t) + (N + 1)λpj,−1(t) + (N + 1)µpj,1(t) + ξ,

d
dt
pj,n(t) = −[(N − n)λ+ (N + n)µ+ ξ]

pj,n(t) + (N + n+ 1)µ pj,n+1(t), n = ±1,±2, . . . ,±(N − 1)

d
dt
pj,−N(t) = −(2Nλ+ ξ)pj,−N(t) + µ pj,−N+1(t),

d
dt
pj,N(t) = −(2Nµ+ ξ)pj,N(t) + λ pj,N−1(t).

(1.26)

The initial condition for system (1.26) is expressed in terms of the Kroenecker’s delta:

pj,n(0) = δj,n =

 1, n = j

0, otherwise.
(1.27)

With a typical scaling in oder to obtain a diffusion approximation of the discrete-time
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Ehrenfest model leading to Ornstein–Uhlenbeck process it can be done a jump-diffusion

approximation for the process M(t). We first rename the parameters related to the birth

and death process, given in Equations (1.24) and (1.23), by setting

λ =
α

2
+
γ

2
ε, µ =

α

2
− γ

2
ε, (1.28)

with ε > 0, α > 0 and

−α
ε
< γ <

α

ε

For all t ≥ 0, consider the position M∗
ε (t)ε, so that {Mε(t), t ≥ 0} is a continuous-

time stochastic process with state-space {−Nε,−Nε+ ε, . . . ,−ε, 0, ε, . . . , Nε− ε,Nε} and

transient probabilities, for j, n ∈ S and t ≥ 0,

p∗j,n(t) := P [M∗
ε (t) = nε|M∗

ε (0) = jε]

= P [nε ≤M∗
ε (t) < (n+ 1)ε|M∗

ε (0) = jε] ≡ pj,n(t).

Under suitable limit conditions the scaled process M∗(t) converges weakly to a jump-

diffusion process {X(t); t ≥ 0} having state-space R and transition density

f(x, t|y) =
∂

∂x
P[X(t) ≤ x|X(0) = y], t ≥ 0.

Indeed, with reference to system (1.26), we make use of (1.29) and assume that p∗j,n(t) '

f(x, t|y)ε for ε close to 0, with x = nε and y = jε, and expand f as Taylor series, with

ε→ 0+, N → +∞, Nε→ +∞, Nε2 → ν > 0. (1.29)

Hence, under limits (1.29), from the first and the second equation of (1.26) we obtain

the following partial diffusion equation, with x ∈ R, y ∈ R, t ≥ 0:

∂

∂t
f(x, t|y) =

∂

∂x
{(αx− γν)f(x, t|y)}+

1

2

∂2

∂x2
{ανf(x, t|y)} − ξf(x, t|y) + ξδ(x), (1.30)
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whereas from third and fourth equation of (1.26) we have

lim
x±∞

f(x, t|y) = 0,

for t ≥ 0 and y ∈ R. Moeover, initial condition (1.27) gives the following delta-Dirac

initial condition:

lim
t→0+

f(x, t|y) = δ(x− y). (1.31)

We remark that Equation (1.30) is the Fokker–Planck equation for a temporally homo-

geneous jump-diffusion process {X(t), t ≥ 0} with state-space R, having linear drift and

constant infinitesimal variance. The jumps occur with constant rate ξ, and each jump

makes X(t) instantly attain the state 0.

In the sequence, for simplicity we set

β =
γν

α
. (1.32)

We point out that if ξ → 0+ then (1.30) yields the Fokker–Planck equation of an Ornstein–

Uhlenbeck process on R, denoted by {X̃(t), t ≥ 0}, with initial condition (1.31) , and

having drift and infinitesimal variance

A1(x) = −α(x− β), A2(x) = αν,

with α > 0, β ∈ R and ν > 0. This process has state-space R and transition density

denoted as

f̃(x, t|y) =
∂

∂x
P
[
X̃(t) ≤ x|X̃(0) = y

]
, t ≥ 0.

We remark that, due to (1.28) and (1.32), the special case β = 0 arises when birth

and death rates λ and µ are equal. In this case the drift of the approximating process

becomes A1(t) = −αx so that X̃(t) has an equilibrium point in the state 0.
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Let us denote by

T̃y = inf{t ≥ 0 : X̃(t) = 0}. y ∈ R \ {0},

the first-passage time (FPT) of X̃(t) through 0, with X̃(0) = y, and let g̃(0, t|y) be the

corresponding density. For y ∈ R \ {0}, the first-passage time density of X̃(t) from y to

0 is given by:

g̃(0, t|y) =
2α|y|e−αt

√
πν (1− e−2αt)3/2

exp

{
− y2e−2αt

ν(1− e−2αt)

}
, y 6= 0, t > 0. (1.33)

with initial condition

g̃(0, 0|y) = lim
t→0

g̃(0, t|y) = 0

Finally, accounting for the transition density of X(t), f(x, t|y) can be related to f̃(x, t|y)

through the following relation

f(x, t|y) = e−ξtf̃(x, t|y) + ξ

∫ t

0

e−ξtf̃(x, τ |0) dτ, x, y,∈ R, t > 0. (1.34)

Making use of (1.33) and (1.34) in the case β = 0 we obtain

g(0, t|y) = e−ξt g̃(0, t|y) + ξ e−ξtErf
(
|y|e−αt [ν(1− e−2αt)]−1/2

)
, t ≥ 0, y 6= 0, (1.35)

where where g̃(0, t|y) is given in (1.33) and Erf(·) is the error function (see Eq. 7.1.1 of

[1]) defined by

Erf(z) =
2√
π

∫ z

0

e−t
2

dt, (1.36)

The initial condition of (1.35) is given by

g(0, 0|y) = lim
t→0

g(0, t|y) = ξ.

The FPT pdf (1.35) deserves interest in the realm of stochastic processes with stochastic
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reset (see, for instance, Kusmierz et al. [46] and Pal [61]).
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Chapter 2

Residual varentropy of random

lifetimes and applications

The aim of this chapter is to discuss properties and applications of residual varentropy with

particular attention to the residual lifetime distribution or residual varentropy. After an

introduction to the meaning and the main properties of the varentropy, the investigation

of some mathematical properties of the residual varentropy is object of Section 1. Finally

some applications are proposed in Section 2.

2.1 Varentropy

The varentropy is the variance of the information content and is used in various appli-

cations of information theory, such as for the estimation of the performance of optimal

block-coding schemes. Recent contributions on the varentropy can be found in various

papers by Arikan [3], Bobkov and Madiman [13], Fradelizi et al. [32], Kontoyiannis and

Verdú [43], [44], [71]. Most of such results have been aimed to mathematical properties

or to applications in information theory. However, it should be pointed out that such

information measures often deserve interest in other fields, such as reliability and survival

analysis. See, for instance Nanda and Chowdhury [59] for a recent comprehensive review

on the Shannon’s entropy and its applications in various fields. Several investigations

17
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have been oriented in the past to assess the information content of stochastic systems

with special attention to dynamic measures related to the residual lifetime, the past life-

time, the inactivity time and their suitable generalizations. However, no efforts have been

dedicated to the analysis of the variance of the information content in dynamic contexts.

Bobkov and Madiman [13] investigated a relevant problem concerning the concentra-

tion of the information content around the entropy in high dimensions, when the pdf of

X is log-concave1. Restricting our attention to the one-dimensional case, hereafter we

focus on a relevant quantity related to the concentration of IC(X) around H(X), namely

the so-called varentropy of X. The varentropy of a random lifetime X is defined as the

variance of the information content of X, i.e.

V (X) := Var[IC(X)] = Var[log f(X)] = E[(IC(X))2]− [H(X)]2

=

∫ ∞
−∞

f(x)[log f(x)]2 dx−
[∫ ∞
−∞

f(x) log f(x) dx

]2

. (2.1)

The varentropy thus measures the variability in the information content of X. The rel-

evance of this measure has been pointed out in various investigations, especially from

Fradelizi et al. [32] that start from the concept of varentropy of a random variable X and

use it to find an optimal varentropy bound for log-concave distributions. Furthermore,

a sharp uniform bound on varentropy for log-concave distributions is found in the work

of Madiman [53]. An alternative way to calculate a bound for varentropy is discussed in

the article due to Goodarzi et al. [34] where the authors use some concepts of reliability

theory. The generalization from log-concave to convex measures has been studied in the

work of Li et al. [48] where a bound on the varentropy for convex measures is discussed.

Other works that deal with the bounds of the varentropy in the contest of source coding

are due to Arikan [3], that has analized the case of the polar transform showing that var-

entropy decreases to zero asymptotically as the transform size increases. In studies on the

lossless source code it is possible to relate varentropy to the dispersion of the source code,

1We say that X has a log-concave density if its pdf is such that log f(x) is a concave function on
(0,∞). Equivalently, we say that X is ILR (increasing in likelihood ratio).
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as shown in the papers by Kontoyiannis and Verdú [43], [44], [71]. Specifically, together

with the entropy rate, the varentropy rate serves to tightly approximate the fundamental

nonasymptotic limits of fixed-to-variable compression for all but very small block lengths.

We remark that, due to (4) and (2.1), both the entropy and varentropy do not depend

on the realization of X but only on its pdf f .

The varentropy of a discrete random variable X taking values in the set {xi; i ∈ I} is

expressed as

V (X) = Var[IC(X)] =
∑
i∈I

P(X = xi)[log P(X = xi)]
2 − [H(X)]2. (2.2)

Hereafter we analyze an illustrative example related to the study of varentropy for a

three-valued random variable.

Example 2.1 Let X be a discrete random variable such that, for a fixed h > 0,

P(X = h) = p, P(X = 0) = 1− p− q, P(X = −h) = q, (2.3)

with 0 ≤ q ≤ 1 − p ≤ 1. Thus, from (2) we have that the entropy expressed in natural

units is

H(X; p, q) = −p log p− (1− p− q) log (1− p− q)− q log q, (2.4)

Thus, from (2.2) we have

V (X; p, q) = p(log p)2 + (1− p− q)[log (1− p− q)]2 + q(log q)2 − [H(X; p, q)]2. (2.5)

Figure 2.1 shows the varentropy given in (2.5) as a function of (p, q). Clearly, it confirms

the symmetry property V (X; p, q) = V (X; q, p). We can see that the varentropy vanishes

in the following 7 cases: (p, q, 1−p−q) = (0, 0, 1), (0, 1, 0), (1, 0, 0), (0.5, 0.5, 0), (0.5, 0, 0.5),

(0, 0.5, 0.5), (1/3, 1/3, 1/3). Moreover, the maximum of V (X; p, q) is attained for (p, q, 1−

p− q) = (0.06165, 0.06165, 0.8767), (0.8767, 0.06165, 0.06165), (0.06165, 0.8767, 0.06165).
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Now consider a system based on the superposition of three Gaussian signals. Namely

we deal with a random variable, say Y , whose pdf is a mixture of Gaussian densities with

unity variance and mean given by h, 0, −h according to the probability law specified in

(2.3). Hence, for x ∈ R one has

fY (x) = (2π)−1/2
[
pe−(x−h)2/2 + (1− p− q)e−x2/2 + qe−(x+h)2/2

]
. (2.6)

Figure 2.2 shows some instances of the corresponding varentropy as a function of h,

determined numerically by means of (2.1). It can be shown that V (Y ) is not monotonic

in h; moreover it reaches large values for the choices of (p, q) that maximize V (X; p, q)

and for large values of h.

The relevance of the entropy in information theory and other disciplines is very well

known, whereas the varentropy has attracted less attention. Nevertheless, the latter plays

a relevant role in the assessment of the statistical significance of entropy. Specifically, in

the discrete case the entropy (2) represents the expected number of symbols, in natural

base, required to code an event produced by a source of information governed by the

probability distribution of X. In this case the varentropy (2.2) measures the variability

related to such a coding. In other terms, if two sources of information have the same

entropy, than the number of digits required in the average to code two sequences produced

by such sources is the same and is proportional to H(X). However, the number of digits

required for a single observed sequence in the average is closer to the expected one for the

source having the smallest varentropy. Hence, V (X) measures how much the entropy is

meaningful in the coding of sequences of symbols generated by X.

Example 2.2 Let Y be a Bernoulli random variable having distribution P(Y = 0) =

1 − θ, P(Y = 1) = θ, with 0 ≤ θ ≤ 1. By means of numerical calculations it is easy

to see that for θ ≈ 0.337009 one has H(Y ) ≈ 0.639032 and V (Y ) ≈ 0.1023. For the

distribution considered in the Example 2.1, if p = q = 0.1 from (2.4) and (2.5) we have

H(X) ≈ 0.639032 and V (X) ≈ 0.691852, respectively. Hence, the considered random
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Figure 2.1: Plots of varentropy (2.5); top: 3D plot; bottom: contourplot.
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Figure 2.2: The varentropy corresponding to pdf (2.6) for p = q = 0.06165, 0.1, 0.2, 0.45,
0.4, 0.3 (from top to bottom for large values of h).

variables have the same entropy, but the varentropy of X is larger. This implies that the

coding procedure is much more reliable for sequences generated by Y .

In Table 2.1 the differential entropy and differential varentropy2 have been reported

in the case of uniform, exponential, normal, logistic and Cauchy distributions. Here the

set

SX := {x ∈ R : F (x) > 0}

is the support of the given distribution of X. We note that for these distributions differ-

ential varentropy has a fixed constant value that does not depend on the parameters of

the distributions.

2.2 Residual varentropy

Recalling that the varentropy of a random lifetime X is defined in (2.1), in ref. [24] the

notion of varentropy is extended to the residual lifetime considered in (1.1). Namely,

recalling Equation (1.3), for t ∈ SX

Definition 2.1 The varentropy of residual lifetime distribution or residual varentropy of

2The differential varentropy for Cauchy Distribution in Table 2.1 was estimated through numerical
calculations.
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Table 2.1: Differential entropy and differential varentropy for selected distributions.

Distribution Pdf Differential entropy Differential varentropy
f(x) H(X) V (X)

Uniform
1

θ
log θ 0

SX = (0, θ)

Exponential λe−λx, λ > 0 1− log λ 1
SX = (0,∞)

Normal 1√
2πσ2

e−
(x−µ)2

2σ2 , µ ∈ R, σ > 0 1
2

log (2πeσ2)
1

2
SX = R

Logistic e−
x−µ
σ

1+e−
x−µ
σ

, µ ∈ R, σ > 0 log σ + 2 4− π2

3

SX = R
Cauchy 1

π
y0

(x−x0)2+y20
, x0 ∈ R, y0 > 0 log (4πy0) 3.28987...

SX = R

a random lifetime Xt is defined as

V (Xt) := Var[IC(Xt)] =

∫ ∞
t

f(x)

F (t)

(
log

f(x)

F (t)

)2

dx− [H(Xt)]
2 (2.7)

An alternative expression to the varentropy of a residual lifetime distribution is the fol-

lowing.

Proposition 2.1 For all t ∈ SX the residual varentropy (2.8) has the following alterna-

tive form

V (Xt) =
1

F (t)

∫ ∞
t

f(x) (log f(x))2 dx− [Λ(t) +H(Xt)]
2 (2.8)

where Λ(t) is given in (1.6), and H(Xt) is provided in (1.13) and (1.14).

Proof. Applying the properties of the logarithm to Equation (2.8) we obtain

∫ ∞
t

f(x)

F (t)

(
log

f(x)

F (t)

)2

dx =

∫ ∞
t

f(x)

F (t)

(
[log f(x)]2 + [logF (t)]2

− 2 log f(x) logF (t)
)

dx

=
1

F (t)

∫ ∞
t

f(x)(log f(x))2 dx+ [logF (t)]2

− 2
logF (t)

F (t)

∫ ∞
t

f(x) log f(x) dx (2.9)
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and applying Equation (1.13) for the last two terms of Equation (2.9) it follows that

[logF (t)]2 − 2
logF (t)

F (t)

∫ ∞
t

f(x) log f(x) dx = Λ(t)2 − 2Λ(t)(H(Xt) + Λ(t))

= −[Λ(t) +H(t)]2 + [H(Xt)]
2

from which applying (1.6) we get

V (Xt) =

∫ ∞
t

f(x)

F (t)

(
log

f(x)

F (t)

)2

dx− [H(Xt)]
2

=
1

F (t)

∫ ∞
t

f(x)(log f(x))2 dx− [H(Xt) + Λ(t)]2.

As a dynamical measure of the variance of the information content, the residual varentropy

was a topic of interest in the last years. Goodarzi et al. applied residual varentropy in

the study of the upper bounds for the variance of functions of the inactivity time (see ref.

[33]) and in the variance of functions of residual life of random variables (see ref. [35]).

Other alternative definitions are applications to the order statistics (see ref. [50]) and to

the Tsallis varentropy (see ref. [51]).

2.3 Mathematical properties of residual varentropy

In the following some results involving mathematical properties of residual varentropy are

shown. These results are obtained through the analysis done in ref. [24]. In particular

we illustrate some properties related to the constant residual varentropy, varentropy for

linear transformations and upper and lower boundaries of the residual varentropy.

2.3.1 Constant residual varentropy

Making use of Eq. (2.8) we can show in Table 2.2 some examples in which the residual

varentropy is constant.



2.3 Mathematical properties of residual varentropy 25

Table 2.2: Selected distributions with constant varentropy.

Distribution Pdf Residual entropy Residual varentropy
f(x) H(Xt) V (Xt)

Uniform
1

θ
log (θ − t) 0

SX = (0, θ)
Exponential λe−λx, λ > 0 1− log λ 1
SX = (0,∞)

Triangular 2(1− x)
1

2
+ log

1− t
2

1

4
SX = (0, 1)

In the following we determine the conditions for which the residual varentropy is

costant. To this aim we first obtain an expression of its derivative.

Proposition 2.2 For all t ∈ SX the derivative of the residual varentropy is

V ′(Xt) = λ(t)
{
V (Xt)− [H(Xt) + log λ(t)]2

}
. (2.10)

Proof. By differentiating both sides of Eq. (2.8), and recalling (1.4) we have

V ′(Xt) =λ(t)

{
1

F (t)

∫ ∞
t

f(x)[log f(x)]2 dx− [log f(t)]2
}

−2[Λ(t) +H(Xt)][λ(t) +H ′(Xt)], t ∈ D. (2.11)

Then, making use of Eqs. (1.17) and (2.8), from (2.11) we get

V ′(Xt) =λ(t)
{
V (Xt) + [Λ(t) +H(Xt)]

2 − [log f(t)]2

−2[Λ(t) +H(Xt)][H(Xt) + log λ(t)]} , t ∈ D.

Hence, due to (1.6), after some calculations we obtain Eq. (2.10).

As a consequence of Proposition 2.2 we can now provide some useful results involving

the residual varentropy, the residual entropy, the hazard rate and the varentropy of a

lifetime X.
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Theorem 2.1 Let X have a pdf such that f(t) > 0 for all t ∈ (0, r), with r ∈ (0,∞]. Let

c ∈ R, the following statements are equivalent

(i) The residual varentropy is constant, such that

V (Xt) = c2, ∀t ∈ [0, r), (2.12)

(ii) The generalized hazard rate (1.9) of X is constant, such that

λc−1(t) = ec−H(X), t ∈ [0, r), (2.13)

(iii)

H(Xt) + log λ(t) = c, ∀t ∈ (0, r), (2.14)

Proof. It is immediate to show that (i) implies (iii). In fact, since f(t) > 0 for all

t ∈ (0, r), the assumption (2.12) immediately gives (2.14), due to (2.10).

In order to show that (iii) implies (i) let us assume that the condition (2.14) is satisfied,

then Eq. (2.10) becomes

V ′(Xt) = λ(t)
[
V (Xt)− c2

]
, t ∈ (0, r), (2.15)

with initial condition V (Xt)|t=0 = V (X). Equation (2.15) can be solved applying formula

x′(t) = a(t)x(t) + b(t) x(0) = x0

that has solution

x(t) = e
∫ t
0 a(s)ds x0 +

∫ t

0

e
∫ t
s a(u)du b(s) ds

from which if x(t) = V (t), a(t) = λ(t) and b(t) = −c2λ(t) and x0 = V (X) we have

V (t) = e
∫ t
0 λ(s)ds V (X)− c2

∫ t

0

e
∫ t
s λ(u)du λ(s) ds, t ∈ [0, r). (2.16)
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Applying (1.6) to (2.16) we have

V (Xt) =
V (X)

F (t)
− c2

F (t)

∫ t

0

F (s)λ(s) ds, t ∈ [0, r)

and applying Equation (1.4) we have

∫ t

0

F (s)λ(s)ds =

∫ t

0

f(s)ds = F (t) = 1− F (t), t ∈ [0, r)

and so we obtain the equation

V (Xt) = c2 +
V (X)− c2

F (t)
(2.17)

In order to show (2.12), without loss of generality, let us assume that the support of X is

SX = (0,∞). The differential varentropy of X can be obtained from Eq. (2.8) for which

we have

V (X) =

∫ ∞
0

f(x)[log f(x)]2 dx− [H(X)]2 (2.18)

where H(X) is the differential entropy of X (cf. (4)). By the hypothesis (2.14), we have

log f(x) = c logF (x) + c−H(X). (2.19)

If we substitute (2.19) into the integral at the right hand side of (2.18) we get

∫ ∞
0

f(x)[log f(x)]2 dx =

∫ ∞
0

f(x)
[
c logF (x) + c−H(X)

]2
dx. (2.20)

Expanding the integrand at the right hand side of (2.20) we obtain

∫ ∞
0

f(x)[log f(x)]2 dx = c2

∫ ∞
0

f(x)[logF (x)]2 dx

+ 2c(c−H(X))

∫ ∞
0

f(x) logF (x) dx+ (c−H(X))2.

(2.21)
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Applying integration by part we get the following results:

∫ ∞
0

f(x) logF (x) dx = −
∫ ∞

0

f(x) dx = −1 (2.22)

∫ ∞
0

f(x)[logF (x)]2 dx = −2

∫ ∞
0

f(x) logF (x) dx = 2 (2.23)

from which substituting (2.22) and (2.23) into (2.21), after a bit simplification we obtain

∫ ∞
0

f(x)[log f(x)]2 dx = [H(X)]2 + c2 (2.24)

Finally, if we substitute back the result (2.24) into (2.18) we get

V (X) = c2

from which applying (2.17) we get immediately V (Xt) = c2 for all t ∈ SX .

Let us show that (iii) implies (ii). Assume that the Eq. (2.13) is fulfilled. Making use

of (1.4) and (1.14a), we have

H(Xt) + log λ(t) = log f(t) +
1

F (t)

{
H(X) +

∫ t

0

f(x) log f(x) dx

}
. (2.25)

From the assumption (2.13) it is not hard to see that

∫ t

0

f(x) log f(x) dx = −F (t)H(X)− c F (t) logF (t).

Hence, due to Eqs. (2.13) and (2.25) we have

H(Xt) + log λ(t) = H(X) + log
f(t)

[F (t)]c
= c,

so that (2.14) holds.
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Finally, let us prove that (ii) implies (iii). In fact, rearranging Eq. (1.17), we have

H(Xt) + log λ(t) =
H ′(Xt)

λ(t)
+ 1,

so that, due to Eq. (2.14), one has

H ′(Xt) = (c− 1)λ(t), t ∈ (0, r).

By integration over [0, t], and recalling (1.6), one obtains

H(Xt)−H(X) = (c− 1)Λ(t), t ∈ [0, r).

Comparing the latter identity with Eq. (2.14) and in virtue of (1.6), we have

c− log λ(t)−H(X) = (1− c) logF (t) t ∈ [0, r),

and applying (1.4) we get

log f(t)− c logF (t) = log
f(t)

[F (t)]c
= c−H(X) t ∈ [0, r)

which gives immediately relation (2.13) by virtue of (1.9).

Remark 2.1 (i) It is worth pointing out that, due to Theorem 3.1 of Asadi and Ebrahimi

[5], the condition expressed in Eq. (2.14) is fulfilled if and only if X has a generalized

Pareto distribution, with survival function

F (t) =

(
b

at+ b

) 1
a

+1

, t ≥ 0, (2.26)

for a > −1 and b > 0. The generalized Pareto distribution is a flexible statistical model

which is employed in several research areas, such as statistical physics, econophysics and
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social sciences, since its distribution possesses a tail of general form. Specifically, it

includes the exponential distribution (a→ 0), the Pareto distribution (a > 0, with heavy

tail), and the power distribution (−1 < a < 0, with bounded support). An intuitive reason

leading to the above result is due to the property that the generalized Pareto distribution

is the only family of distributions whose mean residual function (1.5) is linear (see Hall

and Wellner [38]). Indeed, for the survival function (2.26) we have m(t) = at + b, with

hazard rate function λ(t) = 1+a
at+b

. For a recent characterization of this distribution in the

context of shape functionals see Arriaza et al. [4].

(ii) A special case arises from (2.26) in the limit as a→∞ and b→∞, with a
b
→ λ > 0,

by which the pdf and the survival function of X are given respectively by

f(t) =
λ

(1 + λt)2
, F (t) =

1

1 + λt
, t ∈ [0,∞).

In this case X has a modified Pareto distribution that describes the first arrival time in

a Geometric counting process with parameter λ > 0 (cf. Section 2.2 of [26], for instance).

From Eq. (1.9) it immediately follows that the generalized hazard rate of X is a constant

for α = 1, i.e. λ1(t) ≡ λ. As a consequence, Eq. (2.13) is fulfilled for c = 2 and H(X) =

2− log λ. From Theorem 2.1 we thus obtain the (increasing) residual entropy,

H(Xt) = 2− log
λ

1 + λt
, t ≥ 0,

and the corresponding constant residual varentropy, V (Xt) = 4. It is worth pointing out

that in this special case the mean residual lifetime is infinite. Hence, for such a stochastic

model the residual entropy and the residual varentropy provide useful information even

if the mean residual lifetime is not finite.

The following example is concerning a family of distributions for which the residual

varentropy exhibits different behaviors.
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Example 2.3 Let Xλ,k have Weibull distribution, with pdf

fλ,k(x) =
k

λ

(x
λ

)k−1

e−(x/λ)k , x > 0, (2.27)

where k > 0 is the shape parameter and λ > 0 is the scale parameter. Recall that

this family of distributions includes special cases of interest, such as the exponential

distribution (for k = 1) and the Rayleigh distribution (for k = 2). The expression of the

residual varentropy is reported in Appendix A (cf. Eq. (A.10)). The behavior of the

pdf (2.27) and of the corresponding residual varentropy is visualized in Fig. 2.3 for some

choices of the shape parameter. It can be seen that the residual varentropy is decreasing,

constant, increasing, non monotonic for k = 0.5, 1, 1.5, 3.5 respectively.

2.3.2 Linear transformations

Let us now analyze the effect of linear transformations to the residual varentropy.

Proposition 2.3 Let X and Y be related by (1.15). Hence, for their residual varentropies

we have:

V (Yt) = V
(
X t−b

a

)
∀ t. (2.28)

Proof. Clearly, from (1.15) we have that the cdf’s and the pdf’s of Y and X are related

by FY (x) = FX
(
x−b
a

)
and fY (x) = 1

a
fX
(
x−b
a

)
. Hence, recalling (2.7) and (1.16), it is not

hard to see that

V (Yt) =

∫ ∞
t−b
a

fX(x)

FX( t−b
a

)

[
log

fX(x)

FX( t−b
a

)
− log a

]2

dx−
[
H
(
X t−b

a

)
+ log a

]2

.

that can be expanded obtaining

V (Yt) =

∫ ∞
t−b
a

fX(x)

FX( t−b
a

)

[
log

fX(x)

FX( t−b
a

)

]2

dx

− 2 log a

∫ ∞
t−b
a

fX(x)

FX( t−b
a

)
log

fX(x)

FX( t−b
a

)
dx+ (log a)2 −

[
H
(
X t−b

a

)
+ log a

]2

.
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Figure 2.3: (top) Weibull pdf, given in (2.27), and (bottom) residual varentropy for λ = 1
and various choices of k (as indicated in the label).
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The thesis (2.28) follows finally from Equation (1.13).

2.3.3 Bounds

We conclude this section by discussing some bounds to the residual varentropy.

First, we provide a lower bound for V (Xt).

Theorem 2.2 Let Xt be a residual lifetime as defined in (1.1), and assume that the

corresponding mean residual lifetime m(t) and variance residual lifetime σ2(t) are finite

(cf. (1.5) and (1.7), respectively). Then, for all t ∈ D,

V (Xt) ≥ σ2(t) (E[w′t(Xt)])
2 (2.29)

where the function wt(x) is defined by

σ2(t)wt(x) ft(x) =

∫ x

0

[m(t)− z] ft(z) dz, x > 0,

with ft(x) given in the (1.3).

Proof. If X is an absolutely continuous random variable with pdf f(x), mean µ and

variance σ2, then (cf. [15])

Var(g(X)) ≥ σ2 (E[w(X)g′(X)])2, (2.30)

where the function w(x) is defined by

σ2w(x) f(x) =

∫ x

0

(µ− z) f(z) dz, x > 0,

Hence, by taking Xt as reference, with g(x) = − log f(x) and integrating by parts, simi-

larly as Equation (3.9) of Goodarzi et al. [34] we obtain (2.29).
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Let us observe that the inequality in (2.30) holds if and only if X is exponentially dis-

tributed.

Hereafter we determine suitable upper bounds to the residual varentropy, thus provid-

ing conditions on its finiteness.

Theorem 2.3 Given a random lifetime X with log-concave pdf f(x), then

V (Xt) ≤ 1, for all t ∈ D.

Proof. We note that if f(x) is log-concave, then also ft(x) is log-concave due to (1.3).

Hence, the proof is a direct consequence of Theorem 2.3 of Fradelizi et al. [32], which

states that the varentropy of a random lifetime with log-concave pdf is not greater than

1.

The following bound for the residual varentropy is expressed in terms of the residual

entropy of X (cf. (1.13)) and weighted residual entropy of X (cf. (1.18)).

Theorem 2.4 If X is a random lifetime such that its pdf satisfies

e−αx−β ≤ f(x) ≤ 1 ∀x ≥ 0, (2.31)

with α > 0 and β ≥ 0, then for all t ≥ 0

V (Xt) ≤ α[Λ(t)δ(t) +Hw(Xt)] + β[Λ(t) +H(Xt)]− [Λ(t) +H(Xt)]
2. (2.32)

where δ(t) is the vitality function (1.8) and Λ(t) is the cumulative hazard function (1.6).

Proof. From Eq. (2.8), due to (2.31) one has

V (Xt) ≤ −
1

F (t)

∫ ∞
t

(αx+ β)f(x) log f(x)dx− [Λ(t) +H(Xt)]
2 , t ≥ 0. (2.33)
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We note that Eqs. (1.5) and (1.8) give

∫ ∞
t

x f(x)dx = F (t)δ(t), t ≥ 0,

where δ(t) is the vitality function Hence, recalling (1.6) and (1.8), Eq. (1.18) implies:

∫ ∞
t

x f(x) log f(x)dx = −F (t)[Λ(t)δ(t) +Hw(Xt)], t ≥ 0. (2.34)

Moreover, from (1.14a) we have

∫ ∞
t

f(x) log f(x)dx = −F (t)[Λ(t) +H(Xt)], t ≥ 0. (2.35)

Finally, substituting (2.34) and (2.35) in (2.33) we immediately obtain the inequality

(2.32).

2.4 Some applications of residual varentropy

In this section some applications of the residual varentropy are considered. The first two

applications are illustrated in ref. [24]. They are the residual varentropy for proportional

hazard rates model and the first-passage-time problem of an Ornstein–Uhlenbeck jump-

diffusion process which arises as limit of the continuous-time Ehrenfest model. Finally, as

a further application, a kernel estimation is proposed in order to study of a given sample

of data.
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2.4.1 Proportional hazards model

Let us now address the problem of evaluating the residual varentropy for the model (1.10).

From (1.14a) it is not hard to see that the residual entropy of X(a) is expressed as

H(X
(a)
t ) =−Λ(a)(t)− 1

[F (t)]a

∫ ∞
t

f (a)(x) log f (a)(x) dx

=−aΛ(t)− 1

[F (t)]a

∫ [F (t)]a

0

`(y; a) dy, t > 0, (2.36)

with y = [F (x)]a, and where

`(y; a) := log
{
a y1−1/a f [F

−1
(y1/a)]

}
, 0 < y < 1. (2.37)

Hence, recalling (2.8), from (1.12) and (2.36) after some calculations we obtain the residual

varentropy of X(a), for t > 0:

V (X
(a)
t ) =

∫∞
t
f (a)(x)[log f (a)(x)]2 dx

[F (t)]a
−

[∫∞
t
f (a)(x) log f (a)(x) dx

[F (t)]a

]2

=
1

[F (t)]a

∫ [F (t)]a

0

[`(y; a)]2dy −

{
1

[F (t)]a

∫ [F (t)]a

0

`(y; a) dy

}2

. (2.38)

Making use of Eqs. (1.4) and (1.6), one has f(x) = λ(x)e−Λ(x), so that the function

introduced in (2.37) can be rewritten also as follows:

`(y; a) = log
{
ayλ

(
Λ−1

(
− 1

a
log y

))}
.

An application can be immediately given to series systems.

Example 2.4 Consider a system composed of n units in series and characterized by

i.i.d. random lifetimes X1, . . . , Xn. Let the survival function of each unit be denoted with

F (t) = P(Xi > t). Since the system lifetime is given by X(n) = min{X1, . . . , Xn}, the

model of series system satisfies the proportional hazards model specified in (1.10), for

a = n ∈ N.
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Figure 2.4: The residual varentropy of X
(a)
t for the series system of Example 2.4, for

a = n = 1, 2, 3, 4 (from top to bottom) and for b and λ as indicated.

For an illustrative example we assume that the random lifetimes Xi have generalized

exponential distribution with survival function F (t) = 1 − (1 − e−λt)b, t ≥ 0, for b > 0.

(We recall that this distribution plays a role in the construction of probabilistic models

for damped random motions with finite velocities [22]). From (2.37) thus we have3

`(y; a) = log
{
abλy1− 1

a (1− y
1
a )1− 1

b

[
1− (1− y

1
a )

1
b

]}
, 0 < y < 1.

From Eq. (2.38) we come to the residual varentropy of the system lifetime X(n). The

expression of V (X
(a)
t ) cannot be obtained in closed form, but it can be evaluated via

numerical computations. Figure 2.4 shows some plots of the residual varentropy for some

choices of a = n. It is clear that the varentropy decreases when the number of units

grows, and approaches the value 1 when t becomes larger.

Example 2.5 Under the proportional hazards model, Eq. (2.38) can be used to con-

struct time-varying reference sets for the information content of the residual lifetime

3We corrected a misprinting in the result obtained in Example 4.1 of [24].
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Figure 2.5: Residual entropy H(X
(a)
t ) (full) and extremes of the intervals (2.39) (dotted)

with a = 2 (left) and a = 4 (right), for the following baseline pdfs:

(i) (Weibull) f(t) = k
λ

(
t
λ

)k−1
exp{−

(
t
λ

)k}, t > 0, for k = 2, λ = 2
π
;

(ii) (gamma) f(t) = 1
θ

(
t
θ

)r−1
exp

{
− t
θ

}
1

Γ(r)
, t > 0, for r = 2, θ = 1

2
;

(iii) (lognormal) f(t) = 1√
2πσt

exp
{
− (log t−µ)2

2σ2

}
, t > 0, for µ = −1

2
, σ = 1.

(1.1). Specifically, we determine intervals of the form

H(X
(a)
t )± k

√
V (X

(a)
t ) = E[IC(X

(a)
t )]± k

√
Var[IC(X

(a)
t )], k = 2, 3 (2.39)

for suitable baseline distributions (Weibull, gamma and lognormal). Since closed forms

are not available, we illustrate such results with some graphics given in Figure 2.5. For

comparison purposes, the relevant parameters are chosen in order that the baseline dis-

tributions have unity means.
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Figure 2.6: Residual entropy for the FPT pdf (1.35), when y = 1, α = 1, ν = 1 (left),
ν = 2 (right), and ξ = 0, 0.35, 0.7, 1 (from top to bottom).

0.5 1.0 1.5 2.0
t

-0.2

0.2

0.4

0.6

0.8
H(Xt )

0.5 1.0 1.5 2.0
t

-0.2

0.2

0.4

0.6

0.8
H(Xt )

Figure 2.7: Same as Figure 2.6, for ξ = 1 (left), ξ = 2 (right), and ν = 0.15, 0.3, 0.45, 0.6
(from top to bottom).

2.4.2 First-passage times of an Ornstein–Uhlenbeck jump-diffusion

process

Starting from the analysis of the first-passage times of an Ornstein–Uhlenbeck jump-

diffusion process (see Section 1.3) we can investigate the residual entropy and residual

varentropy associated to the first-passage transition density without catastrophes (1.33)

or with catastrophes (1.35). In order to analyse the relevant information content, Figures

2.6 and 2.7 show some instances of the residual entropy related to pdf (1.35), whereas the

corresponding residual varentropy is provided in figures 2.8 and 2.9. It is shown that the

residual entropy is decreasing in ξ and in ν; moreover it tends to a constant when t grows,

such limit being decreasing in ξ and constant in ν. The residual varentropy exhibits a

different behavior, since it is decreasing in ξ and is increasing in ν for sufficiently large

values of t. Moreover, it tends to an identical limit when t grows. This latter property is

confirmed by extensive computations performed for various choices of the parameters.
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Figure 2.8: Residual varentropy for the same cases of Figure 2.6, with ξ = 0, 0.35, 0.7, 1
(from top to bottom).
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Figure 2.9: Residual varentropy for the same cases of Figure 2.7, with ν = 0.15, 0.3, 0.45,
0.6 (from bottom to top).

2.4.3 Kernel estimation of the residual varentropy

This section is finalized to obtain suitable estimates of the residual varentropy. A classical

approach in this area is centered on kernel type estimation. The kernel estimation of the

entropy and of other information measures has been treated by many authors (see, for

instance, Hall and Morton [37] and Belzunce et al. [10]). Along the lines of the previous

investigations, we purpose to adopt this criterion to estimate the residual varentropy.

Recalling Eqs. (2.8) and (1.14a) it is now convenient to express such measure as follows,

for t ∈ D:

V (Xt) =
1

F (t)

∫ ∞
t

f(x) [log f(x)]2 dx−
[

1

F (t)

∫ ∞
t

f(x) log f(x) dx

]2

=
I2(t)

F (t)
−
[
I1(t)

F (t)

]2

, (2.40)

where

Ir(t) :=

∫ ∞
t

f(x)[log f(x)]r dx, r = 1, 2. (2.41)
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Hereafter we consider two suitable criteria in order to estimate the quantities given in

(2.41). These will be employed to construct suitable estimates of the residual varentropy.

(i) Hybrid estimator

Îer (t) =
1

n

n∑
i=1

1{Xi>t}
[
log f̂i(Xi)

]r
, r = 1, 2

where f̂i(Xi) is the leave-one-out kernel estimator of the pdf f(x) (1.19). Hence, in

this case the estimate of the residual varentropy (2.40) is provided by

V̂ e(Xt) =
Îe2(t)

R̂e(t)
−

[
Îe1(t)

R̂e(t)

]2

.

where R̂e(t) is the empirical estimator of the survival function (1.20).

(ii) Kernel estimator

Îh,r(t) =

∫ ∞
t

1

n

n∑
i=1

1

h
K
(x−Xi

h

) [
log f̂i(Xi)

]r
dx

=
1

n

n∑
i=1

S
(t−Xi

h

)[
log f̂i(Xi)

]r
, r = 1, 2.

where S(x) is the survival function associated to K(x) (cf. (1.22)). Consequently,

now a kernel estimator of V (Xt) is given by

V̂h(Xt) =
Îh,2(t)

R̂h(t)
−

[
Îh,1(t)

R̂h(t)

]2

. (2.42)

where R̂h(t) is the kernel estimator of the survival function (1.21).

Example 2.6 Let us now consider an application to a set of data consisting in the

following 63 observations of the strengths of 1.5 cm glass fibers, originally obtained by

workers at the UK National Physical Laboratory (cf. Smith et al. [70] or Merovci et al.

[55]):
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Figure 2.10: Estimates of the residual varentropy obtained from (2.42) for h = 0.25 (left)
and h = 0.5 (right), with the indicated choices of kernel functions.

0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39,

1.42, 1.48, 1.48, 1.49, 1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 1.61,

1.61, 1.61, 1.61, 1.62, 1.62, 1.63, 1.64, 1.66, 1.66, 1.66, 1.67, 1.68, 1.68, 1.69, 1.70, 1.70, 1.73,

1.76, 1.76, 1.77, 1.78, 1.81, 1.82, 1.84, 1.84, 1.89, 2.00, 2.01, 2.24.

The kernel estimator of the residual varentropy has been obtained from such data

by means of Eq. (2.42), with four different choices of the kernel function. The curves

obtained in these cases are shown in Figure 2.10. They have similar bathtub shape, with

vertical shifts according to the kernel function adopted in the estimation.

Example 2.6 shows that the shape of V̂h(Xt) is sensible to the choice of K and h. A

comprehensive investigation on their optimal choice is a suitable object of future studies.
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Chapter 3

Stochastic comparisons and

connections with entropy and

varentropy

In this chapter we explore some properties of differential entropy and varentropy by fo-

cusing on their implications in the context of stochastic comparisons. In order to do

this in the first part we concentrate our efforts to study the quantiles for an unimodal

distribution (Section 2) and we introduce the notion of pdf-related distribution (Sections

3 and 4). In the second part of the chapter, these notions are applied in order to com-

pare distributions induced by probability density function. This investigation will lead us

to obtain the determination of the quantiles of the information content (Section 5) that

will determine some conditions in order to compare differential entropy and varentropy

(Section 6) and residual varentropy (Section 7) of random variable distributions.

3.1 Introduction

LetX be an absolutely continuous random variable defined on a probability space (Ω,F ,P),

and let the interval SX ⊆ R be its support. The results of Sections 1-3 that are analysed

in ref. [25] follow from the hypothesis that the pdf f(x) of X satisfies one of the following

45
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assumptions:

(i) f(x) is strictly decreasing for all x ∈ SX , with SX = (m, b), with m < b ≤ ∞,

(ii) f(x) is strictly increasing for x ≤ m and strictly decreasing for x ≥ m, with

m ∈ SX .

Henceforth, X is unimodal with mode m ∈ SX .

3.2 Quantiles for unimodal distributions

In the following, for all u ∈ (0, 1) we shall denote by xu the lower quantile of a random

variable X, such that F (xu) = u, i.e.

xu = F−1(u), u ∈ (0, 1),

where

F−1(α) := sup{x ∈ SX : F (x) ≤ α}, α ∈ (0, 1) (3.1)

denotes the right-continuous inverse of the distribution function F . In the following the

function (3.1) will be said quantile function of X. Clearly, xu := x1−u is the upper

quantile, and x1/2 is the median of the distribution of X.

We recall that the distribution of X is symmetric if there exists a constant m such

that F (m − x) = F (m + x) for all x ∈ SX , equivalently if F (xu) = F (xu) for all u ∈

(0, 1). Moreover, if X is absolutely continuous, a sufficient condition for the symmetry

is f(m − x) = f(m + x) for all x ∈ SX , and an equivalent condition is (cf. Lemma 1 of

Fashandi and Ahmadi [30]) f(xu) = f(xu), for almost all u ∈ (0, 1).

In the following, given a pdf f having support SX , we define

Im+(f) := {y > 0: ∃x ∈ SX s.t. f(x) = y}.

Definition 3.1 Let X be an absolutely continuous random variable having support SX =

(a, b) and a unimodal pdf f with mode m. Let y ∈ Im+(f).
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(i) If f(x) is continuous and strictly monotone on (a, b), then the inverse of f at y is

denoted by

ly := f −1(y). (3.2)

(ii) If f(x) is continuous in all the support SX and is strictly increasing for x ≤ m and

strictly decreasing for x ≥ m, then the lower inverse of f at y is given in (3.2),

where in this case f−1 denotes the inverse of the restriction of f to SX ∩ (−∞,m].

Moreover, the upper inverse of f at y is denoted by

uy := f −1
2 (y) (3.3)

where in this case f−1
2 denotes the inverse of the restriction of f to SX ∩ [m,∞).

Remark 3.1 If, in the case (ii) of Definition 3.1, f is symmetric in m then

uy = 2m− f −1(y) = 2m− ly.

Remark 3.2 Under the assumptions specified in the case (ii) of Definition 3.1 we have

f(uy) = f(ly) and F (ly) = F (uy).

3.2.1 Unimodal residual lifetime distributions and quantiles

Now we generalize the above concepts to the case of residual lifetimes.

We first consider some properties of the residual lifetime when the underlying pdf is

unimodal.

Proposition 3.1 Let X be an absolutely continuous random variable with support SX =

(0, b), for 0 < b ≤ ∞, and having a unimodal pdf f(x) with mode m. Let Xt be defined as

in (1.1), for t ∈ SX , and with pdf (1.3).

(i) If t < m, then ft(x) is unimodal with mode mt = m− t.
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(ii) If t ≥ m, then ft(x) is decreasing for all x ∈ (0, b− t).

The proof is straightforward and thus is omitted.

We can now recover the expression of the quantile function of the residual lifetime.

Proposition 3.2 If X is an absolutely continuous random variable having distribution

function F (x) and support SX = (0, b), for 0 < b ≤ ∞, then the quantile function

associated with the residual lifetime Xt, for t ∈ SX can be expressed as

F −1
t (p) = F −1(1− (1− p)F (t))− t, p ∈ (0, 1).

Proof. From Equation (1.2), imposing Ft(x) = p ∈ (0, 1) we have F (x+t) = (1−p)F (t),

for x ∈ (0, b− t). Hence, one has F (x+ t) = 1− F (x+ t) = 1− (1− p)F (t), which gives

the thesis.

If the pdf f(x) is symmetrical and unimodal, then the median and the mode of X

coincide. However, even in this case the median and the mode of Xt are not generally

coincident.

3.3 Pdf-related distributions

The object of the present section is a special type of distribution, named “pdf-related

distribution” that is illustrated in ref. [25]. This particular type of random variable is

defined by means of a transformation expressed by the pdf of a given baseline random

variable.

Definition 3.2 Let X be an absolutely continuous random variable with support SX =

(a, b), and having pdf f(x). Then, f(X) is named as the pdf-related random variable of

X. For any y ∈ Im+(f) the distribution function of f(X) is defined as

K(y) := P(f(X) ≤ y). (3.4)
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In the following proposition, which refers to the distribution function of pdf-related

distributions, we use the notation adopted in Eqs. (3.2) and (3.3).

Proposition 3.3 Let X be an absolutely continuous random variable with support SX =

(a, b), and having pdf f(x) that is continuous in all the support SX .

(a) If f(x) is strictly decreasing, then

K(y) = F (ly) = F (f −1(y)), y ∈ Im+(f).

(b) If f(x) is strictly increasing, then

K(y) = F (ly) = F (f −1(y)), y ∈ Im+(f).

(c) If f(x) is strictly increasing for x ≤ m and strictly decreasing for x ≥ m, then

K(y) = F (ly) + F (uy) = F (f −1(y)) + F (f −1
2 (y)), y ∈ Im+(f).

The proof easily follows from Definition 3.1 and Eq. (3.4). Clearly, in the case (c) of

Proposition 3.3 if the pdf f(x) is symmetric then

K(y) = 2F (ly) = 2F (uy), y ∈ Im+(f). (3.5)

Example 3.1 From the case (a) of Proposition 3.3 it is not hard to see that if X has

pdf

f(x) =

(
1−

(
1− 1

α

)
x

)1/(α−1)

, 0 < x <
α

α− 1
,

for α > 1, then K(y) = yα, for 0 ≤ y ≤ 1.

It is worth pointing out that a pdf-related distribution is not necessarily continuous.

Indeed, for instance, if X is uniformly distributed on (a, b), then clearly f(X) is degenerate

in (b− a)−1.
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Hereafter we obtain a characterization of the (0, 1)-uniform distribution based on pdf-

related distributions of exponential and Laplace type.

Proposition 3.4 Under the assumptions of Proposition 3.3, we have that the pdf-related

random variable f(X) is uniform on (0, 1) if and only if

(a) f(x) = ea−x for x ∈ (a,∞) and f(x) = 0 otherwise, when f is strictly decreasing in

(a,∞), for a ∈ R;

(b) f(x) = ex−b for x ∈ (−∞, b) and f(x) = 0 otherwise, when f is strictly increasing in

(−∞, b), for b ∈ R;

(c) f(x) = e2(x−m) for x ∈ (−∞,m] and f(x) = e2(m−x) for x ∈ [m,∞), when f is strictly

increasing in (−∞,m] and is strictly decreasing in [m,∞), for m ∈ R.

Proof. In the following we will use the relation

K(y) = y = f(x). (3.6)

If f(X) is uniform in (0, 1) it is immediate to conclude from (3.4) that

K(y) =


0 if y ≤ 0

y if 0 < y < 1

1 if y ≥ 1

(3.7)

(a) If f(x) is strictly decreasing for all x ∈ (a,∞) , applying Proposition 3.3 we have

K(y) = F (ly) = F
(
f−1(y)

)
= F

(
f−1(f(x))

)
= F (x) = 1− F (x)

and from Equation (3.6)

K(y) = f(x)⇐⇒ 1− F (x) = f(x)⇐⇒ F ′(x) + F (x) = 1. (3.8)

Solving the last differential equation in (3.8) with initial condition F (a) = 1 we obtain
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F (x) = 1− ea−x for x ∈ (a,∞) and

K(y) = F (x) = ea−x, x ∈ (a,∞)

whose corresponding pdf is

f(x) =
d

dx
(1− ea−x) = ea−x, x ∈ (a,∞)

From Equations (3.7) and (3.6) trivially follows that outside of the interval y ∈ (0, 1) that

corresponds to the interval x ∈ (a,∞) the pdf of f(X), as the pdf of X vanishes.

(b) If f(x) is strictly increasing for all x ∈ (a,∞), applying Proposition 3.3 we have

K(y) = F (ly) = F
(
f−1(y)

)
= F

(
f−1(f(x))

)
= F (x)

and from Equation (3.6)

K(y) = f(x)⇐⇒ F (x) = f(x)⇐⇒ F ′(x)− F (x) = 0. (3.9)

Solving the last differential equation in (3.9) with initial condition F (b) = 0 we obtain

F (x) = ex−b and

K(y) = F (x) = ex−b, x ∈ (−∞, b)

whose corresponding pdf is

f(x) =
d

dx
(ex−b) = ex−b, x ∈ (−∞, b)

and f(x) vanishes outside the interval x ∈ (−∞, b).

(c) In this case f(x) is symmetric and unimodal, so we can apply (3.5) and we obtain

K(y) = 2F (ly) = 2F
(
f−1(y)

)
= 2F

(
f−1(f(x))

)
= 2F (x) x ∈ (−∞,m) (3.10)
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and

K(y) = 2F (uy) = 2F
(
f−1

2 (y)
)

= 2F
(
f−1

2 (f(x))
)

= 2(1− F (x)) = 2− 2F (x). x ∈ (m,∞). (3.11)

Solving differential equations (3.10) and (3.11) with boundary condition F (m) = 1
2

we

obtain, in a similar way as for cases (a) and (b), respectively, that f(x) = e2(x−m) for

x ∈ (−∞,m] and f(x) = e2(m−x) for x ∈ [m,∞).

A characterization of the power distribution is given in the following proposition. Let us

recall that a random variable with power distribution in (0, 1) has the following cdf

F (x) =


0 if x ≤ 0

xα if 0 < x < 1, α > 0

1 if x ≥ 1

Proposition 3.5 Let X be an absolutely continuous random variable having support

SX = (a, b) and pdf f(x) continuous over all the support SX . The pdf-related variable

f(X) has power distribution in (0, 1) if and only if

(a) f(x) = α−1

√
α−1
α

(a− x) + 1 for x ∈ (a,∞) and f(x) = 0 otherwise, when f is strictly

decreasing in (a,∞), for a ∈ R,

(b) f(x) = α−1

√
α−1
α

(x− b) + 1 for x ∈ (−∞, b) and f(x) = 0 otherwise, when f is strictly

increasing in (−∞, b), for b ∈ R;

(c) f(x) =


α−1

√
2α−1

α
(x−m) + 1 , x ∈ (−∞,m]

α−1

√
2α−1

α
(m− x) + 1 , x ∈ [m,+∞)

when f is strictly increasing in

(−∞,m] and strictly decreasing in [m,∞), per m ∈ R with 0 < α < 1.

Proof. The proof follows in a similar way as the proof of Proposition 3.4. The distri-
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bution function of f(X) is given straightforwardly applying (3.4)

K(y) =


0 se y ≤ 0

yα se 0 < y < 1, α > 0

1 se y ≥ 1

(3.12)

Applying Proposition 3.3 for the interval y ∈ (0, 1) we can determine the following differ-

ential equations according to the monotonicity of the function f(x).

(a) f(x) is decreasing in (a,∞), then applying Proposition 3.3 and Equation (3.12) the

following chain of equivalences are given

K(y) = yα = (f(x))α ⇔ 1− F (x) = (f(x))α ⇔ 1− F (x) = F ′(x)α, x ∈ (a,∞). (3.13)

Solving the last differential equation in (3.13) with initial condition F (a) = 0 we get

F (x) = 1−
[
α− 1

α
(a− x) + 1

] α
α−1

x ∈ (a,∞). (3.14)

It can be proved straightforwardly (but the proof is here omitted) that (3.14) is a distri-

bution function for α ∈ (0, 1) and the pdf is given by

f(x) = F ′(x) =


α−1

√
α−1
α

(x− b) + 1 , x ∈ (−∞, b)

0 , otherwise
, 0 < α < 1

(b) f(x) is increasing in (−∞, b), then applying again Proposition 3.3 and Equation (3.12)

the following chain of equivalences are given

K(y) = yα = (f(x))α ⇔ F (x) = (f(x))α ⇔ F (x) = F ′(x)α, x ∈ (−∞, b). (3.15)

Solving the last differential equation (3.15) with initial condition F (a) = 0 we get

F (x) =

[
α− 1

α
(x− b) + 1

] α
α−1

, x ∈ (−∞, b). (3.16)
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Also in this second case Equation (3.16) is a distribution function for α ∈ (0, 1) and the

pdf is given by

f(x) = F ′(x)


α−1

√
α−1
α

(x− b) + 1 , x ∈ (−∞, b)

0 , altrimenti
, 0 < α < 1

(c) f(x) is increasing in (−∞,m) and decreasing in (m,+∞). Accounting for the sym-

metry and unimodality of the pdf, with a similar strategy as in cases (a) and (b) we have

that the cdf and the pdf are respectively

F (x) =

[
2

1
α
−1

(
2
α− 1

α
(x−m) + 1

)] α
α−1

x ∈ (−∞,m) (3.17)

and

F (x) = 1− 1

2

[
2
α− 1

α
(m− x) + 1

] α
α−1

x ∈ (m,+∞) (3.18)

are distribution functions for α ∈ (0, 1) and

f(x) = F ′(x) =


α−1

√
2α−1

α
(x−m) + 1 , x ∈ (−∞,m]

α−1

√
2α−1

α
(m− x) + 1 , x ∈ [m,+∞)

, 0 < α < 1 .

In the following, when the pdf f has support SX = (a, b), we adopt the following notation:

f(a) = lim
x→a+

f(x) and f(b) = lim
x→b−

f(x).

Hereafter we determine the cdf of the pdf-related random variable of the residual

lifetime defined in (1.1), denoted as

Kt(y) := P(ft(Xt) ≤ y) = P(f(X) ≤ yF (t) |X > t), (3.19)

with the last identity due to (1.3).

Proposition 3.6 Let X be an absolutely continuous random variable defined on a support

SX = (0, b).
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(a) If the pdf f is continuous and strictly decreasing in (t0, b) for a given t0 ∈ (0, b),

then for all t ∈ (t0, b) one has

Kt(y) =
F (f −1(yF (t)))

F (t)
, y ∈ Im+(ft) =

(
f(b)

F (t)
, λ(t)

)
, (3.20)

where f−1 denotes the inverse of the restriction to (t0, b) of f .

(b) If the pdf f is continuous and strictly increasing in (t0, b) for a given t0 ∈ (0, b),

then for all t ∈ (t0, b) one has

Kt(y) = 1− F (f −1(yF (t)))

F (t)
, y ∈ Im+(ft) =

(
λ(t),

f(b)

F (t)

)
, (3.21)

where f−1 denotes the inverse of the restriction to (t0, b) of f .

(c) Let the pdf f be continuous in SX , unimodal and symmetric, strictly increasing for

x ∈ (0,m] and strictly decreasing for x ∈ [m, b), with m = b/2. Then, for all

t ∈ (0,m] one has

Kt(y) =


F (f −1(yF (t)))

F (t)
, y ∈

(
f(0)

F (t)
, λ(t)

)
2F (f −1(yF (t)))− F (t)

F (t)
, y ∈

[
λ(t), f(m)

F (t)

) (3.22)

where f−1 is the inverse of the restriction to (0,m] of f .

Proof. In the case (a), from (3.19) for all t ∈ (t0, b) we have

Kt(y) = P(X ≥ f −1(yF (t)) |X > t), y ∈ Im+(ft).

Eq. (3.20) then follows from the assumption that f is strictly decreasing in (t0, b). In the

case (b), from (3.19) one similarly has, for all t ∈ (t0, b),

Kt(y) =
P(t < X ≤ f −1(yF (t))

F (t)
, y ∈ Im+(ft),
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this giving Eq. (3.21) due to the assumption that f is strictly increasing in (t0, b). In the

case (c), when y ∈
(
f(0)

F (t)
, λ(t)

)
the function Kt(y) can be obtained similarly as in case

(a), whereas when y ∈
[
λ(t), f(m)

F (t)

)
we have

Kt(y) = P(t < X ≤ f −1(yF (t)) |X > t) + P(b− f−1(yF (t)) ≤ X ≤ b |X > t).

The expression given in (3.22) thus follows by noting that F (b − x) = F (x) for all 0 ≤

x ≤ b.

Clearly, the cdf given in (3.22) is continuous in y = λ(t), with

Kt(λ(t)) =
F (t)

F (t)
, t ∈ (0,m],

where the right-hand-side is the odds function of X evaluated at t ≤ m.

Example 3.2 Let X be a Pareto-type random variable having pdf and cdf given respec-

tively by

f(x) =
1

(1 + x)2
, x ∈ (0,+∞), F (x) =

x

1 + x
, x ∈ [0,+∞).

Since f is strictly decreasing for all x ∈ (0,+∞), with inverse f− 1(y) = y−1/2 − 1,

y ∈ (0, 1), from (3.20) we have that, for all t > 0

Kt(y) = (y(1 + t))1/2 , y ∈
(

0,
1

1 + t

)
.

Example 3.3 Let X be a random variable having support SX = (0, 2), with pdf and

cdf given respectively by

f(x) =
b

3
+

1

2
− b(x− 1)2, F (x) =

( b
3

+
1

2

)
x− b

3
(x− 1)3 − b

3
, x ∈ SX ,
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Figure 3.1: The cdf Kt(y) of Example 3.3 for t = 0.25 (left) and for t = 0.5 (right), with
b = 0.25 (dotted), b = 0.5 (dashed) and b = 0.75 (full).

with b ∈
(
0, 3

4

]
. It satisfies the assumptions of Case (c) of Proposition 3.6, with mode

m = 1 and inverse

f −1(y) = 1−
√

1

b

( b
3

+
1

2
− y
)
, y ∈

(1

2
− 2b

3
,
1

2
+
b

3

)
.

The cdf Kt(y) can be easily obtained from (3.22). We omit the details for brevity, and

show some instances in Figure 3.1.

A further case of interest is considered hereafter. For a given absolutely continuous

random variable X with support SX = (a, b), and having pdf f , let us now analyze the

survival function of f(t + Xt). For all y ∈ Im+(f) and t ∈ (a, b), recalling Eq. (1.1) we

have

Gt(y) := P(f(t+Xt) > y) = P (f(X) > y |X > t) . (3.23)

Proposition 3.7 Let X be an absolutely continuous random variable with support SX =

(a, b), and let its pdf f be continuous and unimodal with mode m, such that f(x) is strictly

increasing for x ≤ m and strictly decreasing for x ≥ m. Let y ∈ Im+(f); denoting by F

the cdf of X we have
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(a) for t ∈ (a,m] and f(a) < f(b) < f(t)

Gt(y) =



1 if f(a) < y < f(b)

F (uy)− F (t)

F (t)
if f(b) < y ≤ f(t)

F (uy)− F (ly)

F (t)
if f(t) ≤ y ≤ f(m)

(b) for t ∈ (a,m] and f(a) < f(t) < f(b)

Gt(y) =



1 if f(a) < y ≤ f(t)

1− F (ly)

F (t)
if f(t) ≤ y < f(b)

F (uy)− F (t)

F (t)
if f(b) < y ≤ f(m);

(c) for t ∈ (a,m] and f(b) ≤ f(a)

Gt(y) =


F (uy)− F (t)

F (t)
if f(b) < y < f(a) or f(a) < y ≤ f(t)

F (uy)− F (ly)

F (t)
if f(t) ≤ y ≤ f(m);

(d) for t ∈ [m, b)

Gt(y) =
F (uy)− F (ly)

F (t)
if f(b) < y ≤ f(t).

Proof. According to Eq. (3.23) we can consider the following cases.

(a) for t ∈ (a,m] and f(a) < f(b) < f(t):

Gt(y) = P (t ≤ X < b |X > t) = 1, y ∈ (f(a), f(b)),

Gt(y) = P (t ≤ X ≤ uy |X > t) =
F (uy)− F (t)

F (t)
, y ∈ (f(b), f(t)],

Gt(y) = P (ly ≤ X ≤ uy |X > t) =
F (uy)− F (ly)

F (t)
, y ∈ [f(t), f(m)];
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(b) for t ∈ (a,m] and f(a) < f(t) < f(b):

Gt(y) = P (t ≤ X < b |X > t) = 1, y ∈ (f(a), f(b)),

Gt(y) = P (ly ≤ X < b |X > t) =
F (ly)

F (t)
, y ∈ (f(b), f(t)],

Gt(y) = P (ly ≤ X ≤ uy |X > t) =
F (uy)− F (ly)

F (t)
, y ∈ [f(t), f(m)];

(c) for t ∈ (a,m] and f(b) ≤ f(a):

Gt(y) = P (t ≤ X ≤ uy |X > t) =
F (uy)− F (t)

F (t)
, y ∈ (f(b), f(a)) ∪ (f(a), f(t)];

Gt(y) = P (ly ≤ X ≤ uy |X > t) =
F (uy)− F (ly)

F (t)
, y ∈ [f(t), f(m)];

(d) for t ∈ [m, b):

Gt(y) = P (t ≤ X ≤ uy |X > t) =
F (uy)− F (t)

F (t)
, y ∈ (f(b), f(t)].

The proof is thus completed.

Remark 3.3 With reference to Proposition 3.7, recalling Definition 3.1 we have

d

dy
F (uy) =

y

f ′(uy)
,

d

dy
F (ly) =

y

f ′(ly)
,

so that we can obtain the pdf of f(t+Xt), denoted by gt(y) := −∂Gt(y)
∂y

, as follows:

• for t < m and f(a) ≤ f(b) < f(t)

gt(y) =


− y

F (t) f ′(uy)
if f(b) < y ≤ f(t)

− y

F (t)

(
1

f ′(uy)
− 1

f ′(ly)

)
if f(t) < y ≤ f(m),

(3.24)
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• for t < m and f(a) < f(t) < f(b)

gt(y) =


y

F (t) f ′(ly)
if f(b) < y ≤ f(t)

− y

F (t)

(
1

f ′(uy)
− 1

f ′(ly)

)
if f(t) ≤ y ≤ f(m),

(3.25)

• for t < m and f(b) ≤ f(a)

gt(y) =


− y

F (t) f ′(uy)
if f(b) < y < f(a) ∨ f(a) < y ≤ f(t)

− y

F (t)

(
1

f ′(uy)
− 1

f ′(ly)

)
if f(t) ≤ y ≤ f(m),

(3.26)

• for t ≥ m

gt(y) = − y

F (t) f ′(uy)
if f(b) < y ≤ f(t).

We note that f ′(uy) < 0 < f ′(ly). Moreover, if X has a symmetric pdf, i.e. f(uy) = f(ly)

then f ′(uy) = −f ′(ly), so that the last expressions in the right-hand-sides of Eqs. (3.24)-

(3.26) are simplified.

Hereafter we discuss the expression of the survival function (3.23) and the correspond-

ing pdf as a function of t.

Remark 3.4 If f(a) < f(b) then we have the following cases:

(a) for y ∈ (f(a), f(b))

Gt(y) =
F (ly)

F (t)
, gt(y) =

y

f ′(ly)F (t)
, a < t ≤ ly

(b) for y ∈ (f(b), f(m))
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Gt(y) =


F (uy)− F (ly)

F (t)
, a < t ≤ ly

F (uy)− F (t)

F (t)
, ly ≤ t ≤ uy

gt(y) =


− y

F (t)

( 1

f ′(uy)
− 1

f ′(ly)

)
, a < t ≤ ly

− y

f ′(ly)F (t)
, ly ≤ t ≤ uy.

If f(b) ≤ f(a) then we have:

(a) when f(b) < f(a), for y ∈ (f(b), f(a))

Gt(y) =
F (uy)− F (t)

F (t)
, gt(y) := − y

f ′(uy)F (t)
, a < t ≤ uy

(b) for y ∈ (f(a), f(m)]

Gt(y) =


F (uy)− F (ly)

F (t)
, a < t ≤ ly

F (uy)− F (t)

F (t)
, ly ≤ t ≤ uy

gt(y) =


− y

F (t)

( 1

f ′(uy)
− 1

f ′(ly)

)
, a < t ≤ ly

− y

f ′(uy)F (t)
, ly ≤ t ≤ uy.

As in Remark 3.3, some expressions are simplified in the symmetric case for f ′(uy) =

−f ′(ly).
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3.3.1 Determination of quantiles

Generally the determination of quantiles for a pdf-related distribution is not an easy task.

Nevertheless, in some cases this problem can be solved, as reported hereafter.

Proposition 3.8 Let X be an absolutely continuous random variable with support SX =

(0, b) and having a symmetric and unimodal pdf f(x). Then the lower quantile and the

upper quantile of f(X) are given respectively by

ξu = f
(
F −1

(u
2

))
, ξ1−u = f

(
F −1

(
1− u

2

))
, u ∈ (0, 1) . (3.27)

Proof. Recalling (3.4), from Proposition 3.3 we have

K(y) = F (ly) + F (uy), y ∈ Im+(f).

For the symmetry, we can apply Remark 3.2 so that

K(y) = 2F (ly) = 2F (uy).

Hence, applying Eqs. (3.2) and (3.3) we obtain the lower and upper quantiles of f(X)

given in (3.27).

The following result refers to the cdf of the the pdf-related random variable of the

residual lifetime (1.1), that is given in (3.19).

Proposition 3.9 Let X be an absolutely continuous random variable with support SX =

(0, b) and having a strictly monotone pdf f(x).

(a) If f(x) is strictly decreasing, then for all t ∈ SX and 0 < p < 1,

Kt(y) = 1− p, y ∈ Im+(ft)
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if and only if

y = ft
(
F −1
t (p)

)
=

1

F (t)
f
(
F−1

(
1− (1− p)F (t)

))
.

(b) If f(x) is strictly increasing, then for all t ∈ SX and 0 < q < 1,

Kt(y) = q, y ∈ SX

if and only if

y = ft
(
F −1
t (q)

)
=

1

F (t)
f
(
F−1

(
1− (1− q)F (t)

))
.

Proof. After straightforward calculations, in both cases the result follows making use

of Proposition 3.6 and Proposition 3.2.

With reference to the cdf (3.4), a straightforward consequence of Proposition 3.9 is

given hereafter.

Corollary 3.1 Under the assumptions of Proposition 3.9,

(a) if f(x) is strictly decreasing, then for 0 < p < 1,

K(y) = 1− p if and only if y = f
(
F −1(p)

)
;

(b) if f(x) is strictly increasing, then for 0 < q < 1,

K(y) = q if and only if y = f
(
F −1(q)

)
.

3.4 Results based on stochastic orders

In this section some results involving stochastic orders and quantiles are reported. This

results are part of the analysis made in ref. [25] that is finalized to obtain stochastic

comparisons between pdf-related random variables. For a comprehensive review on the

background we refer to Shaked and Shantikumar [67]. We first recall notions that will be
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used in the following to establish an ordering between the varentropy of different random

variables. Hereafter, the notation F−1 refers to the right-continuous inverse introduced

in (3.1). Moreover, Me = x1/2 is the median of the distribution of X.

Definition 3.3 Let X and Y be random variables having cdfs F (x) and G(x), respec-

tively. Then,

(i) X is stochastically smaller than Y , and write X ≤st Y , if F (x) ≥ G(x) for all x ∈ R,

or equivalently if

F −1(u) ≤ G−1(u), for all u ∈ (0, 1);

(ii) X is smaller than Y in the dispersive order, and write X ≤disp Y , if

F −1(β)− F −1(α) ≤ G−1(β)−G−1(α), for all 0 < α ≤ β < 1.

(iii) X is smaller than Y in the convex transform order, with X and Y nonegative, and

write X ≤c Y , if G−1(F (x)) is convex in x on the support of F (x);

(iv) X is smaller than Y in the star order, with X and Y nonegative, and write X ≤∗ Y ,

if G−1 is starshaped in x, or equivalently

G−1(F (x))

x
is increasing in x on the support of F (x);

(v) X is smaller than Y in kurtosis order, and write X ≤k Y , if X and Y symmetric

and G−1(F (x)) is concave for all x < Me, or, equivalently, G−1(F (x)) is convex for all

x > Me (see, for example, Arriaza et al. [4]).

3.4.1 Mapping of quantiles

Given two random variables X and Y having cdfs F (x) and G(x), respectively, let us

define the mapping function

φ(x) := G−1(F (x)). (3.28)
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Clearly, this well-known function maps the quantiles of X to the quantile of Y , since

Y =st φ(X). The following result follows from Theorem 1.A.17 of [67].

Remark 3.5 The random variables X and Y satisfy X ≤st Y if and only if, for all x in

the support of X, we have

φ(x) ≥ x.

The following result is related to the dispersive order, and involves the function (3.28).

Remark 3.6 For continuous random variables X and Y we have that X ≤disp Y if and

only if Y =st ψ(X) for some function ψ which satisfies (cf. Section 3.B.1 of [67])

ψ(x2)− ψ(x1) ≥ x2 − x1 whenever x1 ≤ x2. (3.29)

It is easy to verify that if ψ(x) is equal to the function given in (3.28), then condition

(3.29) is satisfied.

3.4.2 Stochastic orders and convexity

Let us now recall a characterization of the convex transform order.

Remark 3.7 Let X and Y be nonnegative random variables with cdfs F (x) and G(x),

and pdfs f(x) and g(x), respectively. Then, (cf. Section 4.B.2 of [67])

X ≤c Y ⇐⇒ f(F −1(p))

g(G−1(p))
is increasing for all p ∈ (0, 1).

We also recall two results involving the star order.

Remark 3.8 Let X and Y be nonnegative random variables with cdfs F (x) and G(x),

respectively. Then, (cf. Section 4.B.1 of [67])

X ≤∗ Y ⇐⇒ G−1(p)

F−1(p)
is increasing in p ∈ (0, 1).
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Remark 3.9 Let X and Y be nonnegative random variables. Then, (cf. Theorem 4.B.1

of [67])

X ≤∗ Y ⇐⇒ logX ≤disp log Y.

We are now able perform the comparison of pdf-related distributions as defined in

Section 3.3 in terms of the star order.

Theorem 3.1 Let X and Y be absolutely continuous random variables having pdfs f(x)

and g(x), respectively. Then,

f(X) ≤∗ g(Y )

if and only if

φ(x)

x
is increasing in x for all x in the support of f(X),

where

φ(x) := S −1(K(x)),

for

K(x) = P(f(X) ≤ x) and S(x) = P(g(Y ) ≤ x). (3.30)

Proof. The proof is a consequence of the point (iv) of Definition 3.3 applied to the

random variables f(X) and g(Y ).

From the point (iv) of Definition 3.3 one has that both relations U ≤∗ V and V ≤∗ U

hold simultaneously, and in the following we shall write U =∗ V , if the random variables

U and V have proportional quantile functions. In this case they belong to the same

scale family of distributions (see, for instance, Section 4.1 of Di Crescenzo et al. [23]).

Let us now investigate this relation for the pdf-related distributions connected by affine

transformations.
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Theorem 3.2 Let X be an absolutely continuous random variable with pdf f(x), and let

Y = aX + b, a > 0, have pdf g(x). Then, one has

f(X) =∗ g(Y ). (3.31)

Proof. For the cdfs (3.30), recalling that g(x) = 1
a
f
(
x−b
a

)
, for all x in the support of Y

we have

S(x) = P

(
1

a
f

(
Y − b
a

)
≤ x

)
= K(ax).

Hence, one has

S−1(p) =
1

a
K−1(p), for all p ∈ (0, 1),

so that

φ(x)

x
=
S−1(K(x))

x
=

1

a
for all x in the support of f(X).

This implies relation (3.31) by Theorem 3.1.

The notion of rearrangement of a function has played a key role in many inequalities

in literature. It is described in the seminal book of Hardy et al. [40] and has been studied

in the context of entropy, randomness, majorization and dispersion in Hickey [41], [42]

and Fernández-Ponce and Suárez-Llorens [31], among other authors. We next recall the

decreasing rearrangement of a density function and some of its important properties.

Definition 3.4 Let X be an absolutely continuous random variable having a pdf f(x).

The decreasing rearrangement of f(x), denoted by f ∗(x), is given by

f ∗(x) = sup{c : m(c) > x}, x > 0,

where m(c) = µ{t : f(t) > c}, µ denoting the Lebesgue measure.

It is well known, see [39], that the decreasing rearrangement satisfies the following identity
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(see, Hardy et al. [39]) ∫ ∞
0

f ∗(x) dx =

∫ ∞
−∞

f(x) dx = 1.

Then f ∗ can be considered as a pdf of a particular random variable that we will denote

by X∗.

The following implication is well-known (see Hardy et al. [39], Theorems 9 and 10).

Let X and Y be absolutely continuous random variables having pdf f and g, respectively.

Then

∫ t

0

f ∗(x)dx ≥
∫ t

0

g∗(x)dx, ∀t > 0 ⇐⇒
∫ ∞
−∞

u(f(x))dx ≤
∫ ∞
−∞

u(g(x))dx, (3.32)

for all continuous and concave functions u. From Definition 3.3, the expressions in (3.32)

are also equivalent to X∗ ≤st Y ∗. It is worth mentioning that X∗ ≤st Y ∗ is interpreted as

continuous majorisation in Hickey [41].

It seems that X∗ ≤st Y ∗ implies a kind of stochastic comparison between f(X) and

g(Y ). Rewriting the right side of expression (3.32), we obtain that X∗ ≤st Y ∗ is equivalent

to

E

[
u(f(X))

f(X)

]
≤ E

[
u(g(Y ))

g(Y )

]
for all continuous and concave functions u. The latter relation provides a class of measures

of entropy. Indeed, as it is interpreted in Hickey [41], just taking u(x) = −x log(x), one

has that if X∗ ≤st Y ∗ then H(X) ≤ H(Y ), due to (4).

Hence, it is worth mentioning that the rearrangement captures in some sense the

degree of randomness in a density function. Now we wonder if the rearrangement is also

related with the concept of varentropy. From now on, we will assume that the density

functions have no flat zones or, equivalently, the rearrangements are strictly decreasing.

Next we provide a result that we will use later on.

Theorem 3.3 Let X and Y be absolutely continuous random variables having pdf f and
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g, respectively, with no flat zones. Then

X∗ ≤c Y ∗ ⇐⇒ f(X) ≤∗ g(Y ).

Proof. From Eq. (2.1) of Hickey [41] we have that the distribution function of X∗ can

be expressed as

FX∗(t) = P(X∗ ≤ t) =

∫ t

0

f ∗(x) dx =

∫
{x∈R : f(x)>f∗(t)}

f(x) dx = P(f(X) > f ∗(t)).

The use of strict inequality in the set {x ∈ R : f(x) > f ∗(x)} follows from the assumption

of f having no flat zones. Therefore, one has

Ff(X) (f ∗(t)) = 1− FX∗(t), t ∈ R.

Because f ∗ is strictly decreasing and thus invertible, we have

F −1
f(X)(p) = f ∗

(
F−1
X∗ (1− p)

)
, 0 < p < 1, (3.33)

where F−1
X∗ denotes the right-continuous inverse of FX∗ . Then, recalling Remark 3.8 the

stochastic relation

f(X) ≤∗ g(Y )

is satisfied if and only if

F −1
g(Y )(p)

F −1
f(X)(p)

=
g∗
(
G−1
Y ∗(1− p)

)
f ∗
(
F−1
X∗ (1− p)

) , is increasing in p ∈ (0, 1).

Finally, this is equivalent to X∗ ≤c Y ∗ by virtue of Remark 3.7.

Example 3.4 From expression (3.33) and taking in account the inverse probability in-

tegral transform, we obtain that f(X) =st f
∗(X∗). Therefore, it is clear that random
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variables having the same rearrangements have also the same differential entropy and

varentropy. Here we provide an illustrative example. Let X and Y be random variables

taking values in [−1, 1], with density functions f and g given by

f(x) = 1− |x|, −1 ≤ x ≤ 1, g(x) = |x|, −1 ≤ x ≤ 1,

respectively. It is easy to compute that

mf (c) = mg(c) = µ {x : g(x) > c} = 2(1− c)I[0,1](c).

Then f ∗(x) = g∗(x) = (1− x/2)I[0,2)(x). Therefore, we have that f ∗(X∗) =st g
∗(Y ∗) and

thus we can conclude that H(X) = H(Y ) and V (X) = V (Y ). It is worth mentioning

that g is not unimodal.

Remark 3.10 Let X and Y be nonnegative random variables having common support

S = (a, b), and having pdfs f(x) and g(x), respectively. Then,

X ≤c Y =⇒

 f(X) ≤∗ g(Y ), if f and g are strictly decreasing

f(X) ≥∗ g(Y ), if f and g are strictly increasing.

The following remarks are straightforward and they will be useful later on.

Remark 3.11 If X has a symmetric and unimodal pdf f(x), then X∗ =st 2|X −Me|

where Me is the median of X.

Remark 3.12 If X has an unimodal and strictly decreasing pdf in the interval (a,+∞),

then f ∗(x) = f(x) for all x ∈ R, i.e. X∗ =st X.

With the expression Y =st X we intend that X and Y are identically distributed. A

possible comparison in terms of the kurtosis order is provided by Remark 3.11 through

the following theorem (see Oja [60]).

Theorem 3.4 Let X and Y be symmetric unimodal random variables having median

zero. X ≤k Y if and only if |X| ≤c |Y |.
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3.4.3 Pdf-related distributions and variability orders

The following result allows to relate the kurtosis order between two symmetric and uni-

modal pdf and the star order between the respective pdf-related distributions.

Theorem 3.5 Let X and Y be random variables having symmetric and unimodal pdfs f

and g, respectively. If X ≤k Y then f(X) ≤∗ g(Y ).

Proof. Since changes in location do not affect kurtosis we can assume that Me(X) =

Me(Y ) = 0. Therefore from Theorem 3.4 and using Remark 3.11 we obtain that X ≤k Y

if and only if X∗ ≤c Y ∗. The result follows easily just applying Theorem 3.3.

3.5 Quantiles of the information content

An important aspect in the study of entropy and varentropy for an absolutely continuous

variable X is the determination the distribution of IC(X) and IC(Xt). In this respect,

it can be useful to introduce the cdf and the quantile of the information content IC(X)

(cf. (3)) and IC(Xt) (cf. (1.1)).

Definition 3.5 Let X be an absolutely continuous random variable with support SX =

(0, b), and having pdf f(x) that is continuous in all the support SX .

(i) The cdf of the information content of X, that is IC(X) is given by

M(y) := P(IC(X) ≤ y) = P(− log f(X) ≤ y) = 1−K(e−y), y ∈ Im+(− log f)

(3.34)

where K(x) is the cdf of f(X) defined in (3.4) .

(ii) The cdf of the information content of Xt, that is IC(Xt) is given by

Mt(y) := P(− log ft(Xt) ≤ y) = P(f(Xt) ≥ e−y F (t)) = 1−Kt(e
−y),

y ∈ Im+(− log ft)
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where Kt(x) is the cdf of ft(Xt) defined in (3.19) .

In the following proposition a connection between the log-quantile and the quantile of a

pdf-related distribution has been provided.

Proposition 3.10 Let X be an absolutely continuous random variable having pdf f(x),

then the inverse of the log-quantile and of the quantile of f(X) is given by

M−1(q) = − logK−1(1− q) ∀q ∈ (0, 1). (3.35)

Proof. Applying (3.34) for all q ∈ (0, 1)

q = M(y) = 1−K(e−y), y ∈ Im+(− log f)

implies that

y = − logK−1(1− q) q ∈ (0, 1),

from which we have the thesis.

In the following examples two applications involving the determination of quantile and

log-quantile of a pdf-related distribution are illustrated.

Example 3.5 Let X ∼ Exp(λ), with λ > 0. Let K(y) the cdf of f(X). The expression

for K(y) can be obtained applying case (a) of Proposition 3.3 from which we have

K(y) = F (f−1(y)) = F

 log
(
λ
y

)
λ

 =

∫ ∞
log(λy )

λ

λe−λx dx =
y

λ
, y ∈ [0,∞) (3.36)

and by substituting (3.36) into (3.34) we get

M(y) = 1−K(e−y) = 1− e−y

λ
, y ∈ [0,∞). (3.37)
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Finally, the quantile function of IC(X) is obtained from the inverse of the (3.36) applying

Equation (3.35)

M−1(u) = − log [K−1(1− u)] = − log [(1− u)λ], u ∈ (0, 1). (3.38)

Example 3.6 Let X ∼ Norm(µ, σ), with µ ∈ R and σ > 0. Let K(y) the cdf of f(X).

In order to have an expression for the cdf of M(y) (3.34) it is convenient to calculate the

survival function 1−K(y) where K(y) can be obtained applying case (c) of Proposition

3.3

1−K(y) = F

(
µ+
√

2σ

√
log

(
1√

2πσy

))
− F

(
µ−
√

2σ

√
log

(
1√

2πσy

))

= Erf

(√
log

(
1√

2πσy

))
, y ∈

(
0,

1√
2πσ

]
(3.39)

where F (x) is the cdf of the Normal distribution

F (x) =
1√

2πσ2

∫ x

−∞
e−

(x−µ)2

2σ2 dx, x ∈ R.

and Erf(·) is the error function defined in (1.36). Applying (3.39) to obtain (3.34) we get

M(y) = 1−K(e−y) = Erf

(√
y + log

(
1√
2πσ

))
, y ∈

[
log (
√

2πσ),+∞
)
. (3.40)

and inverting (3.40)

M−1(u) = [Erf−1(u)]2 + log
(√

2πσ
)
, u ∈ (0, 1). (3.41)

where Erf−1(·) is the inverse error function.1 Therefore the distribution of IC(X) when

1If θ = Erf(x), then the inverse error function is x = Erf−1(θ) and it is defined using McLaurin series
(cf. Eq. (1.3) of [16])

Erf−1(θ) = u+
1

3
u3 +

7

30
u5 +

127

630
u7 +

4369

22680
u9 + . . .



74 Stochastic comparisons and connections with entropy and varentropy

0.5 1.0 1.5 2.0 2.5 3.0
y

0.2

0.4

0.6

0.8

1.0

M(y)

0.0 0.2 0.4 0.6 0.8 1.0
u

0.5

1.0

1.5

2.0

2.5

3.0
M-1(u)

σ=0.5

σ=1

σ=2

Figure 3.2: (left) cdf of IC(X) when X has a Normal distribution, given in (3.40), and
(right) quantile of IC(X), given in (3.41) for various choices of σ (as indicated in the
label).

X is a Normal distribution N(µ, σ) does not depend on µ. In the figure 3.2 the cdf (3.40)

and the quantile M−1(u) (cf. (3.35)) are plotted as a function of the parameter σ.

3.6 Differential entropy, varentropy and stochastic

orders

In this we will use section some concepts related to perform some comparisons for the

differential entropy and the differential varentropy. The first part of the section concerns

results that are analysed in ref. [25] and are finalized to illustrate the effect of the usual

stochastic ordering between pdf-related random variables on the differential entropy of

the underlying random variables.

Theorem 3.6 Let X and Y be absolutely continuous random variables having pdfs f(x)

and g(x), respectively, and having finite differential entropy. If f(X) ≤st g(Y ), then

H(X) ≥ H(Y ).

Proof. From the hypothesis f(X) ≤st g(Y ) it follows that − log f(X) ≥st − log g(Y ),

so that E[IC(X)] ≥ E[IC(Y )]. The thesis then follows from Eq. (4).

where u = 1
2π

1/2(1− θ).
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Remark 3.13 When X and Y have cdf’s F and G, and pdf’s f and g, respectively,

then X ≤disp Y if and only if f(F−1(u)) ≥ g(G−1(u)) for all u ∈ (0, 1), see (3.B.11) in

[67]. Just considering the inverse probability integral transformation and Theorem 1.A.1

in [67], if X ≤disp Y holds then f(X) ≥st g(Y ) and using Theorem 3.6 we obtain that

H(X) ≤ H(Y ). On the other hand, it is well known that if X is IFR then Xt2 ≤disp Xt1

for all t1 ≤ t2, see Belzunce et al. [9] and Pellerey and Shaked [63]. From the previous

arguments it is apparent that if X is IFR then H(Xt) is decreasing when t increases. This

result is well known in the literature, see Ebrahimi [27]. A similar result holds for DFR

distributions by exchanging all inequalities and replacing decreasing for increasing in the

residual differential entropy.

A similar result can be stated for the differential varentropy when the pdf-related

random variables are compared in the star order.

Theorem 3.7 Let X and Y be absolutely continuous random variables having pdf f(x)

and g(x), respectively, and having finite differential varentropy. If f(X) ≤∗ g(Y ), then

V (X) ≤ V (Y ).

Proof. Recalling Remark 3.9 one has that the assumption f(X) ≤∗ g(Y ) is equivalent

to log f(X) ≤disp log g(Y ). The latter relation implies that Var[log f(X)] ≤ Var[log g(Y )]

(see, for instance, Section 3.B.2 of [67]). The thesis then follows from (2.1).

With reference to equation (3), we denote by

L(x) = P(IC(X) ≤ x) and M(x) = P(IC(Y ) ≤ x) (3.42)

the cdfs of the information contents IC(X) = − log f(X) and IC(Y ) = − log g(Y ),

respectively (cf. Equation (3.34)). Then, in the following proposition we show some
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stochastic comparisons between the information contents of X and Y , where a role is

played by the mapping function related to these cdfs.

Remark 3.14 Let X and Y be absolutely continuous random variables having pdf f(x)

and g(x), respectively, and let ϕ(x) := M −1 (L(x)) be the mapping function related to

the cdfs (3.42).

(i) From Remark 3.5 we have that IC(X) ≤st IC(Y ) if and only if ϕ(x) ≥ x for all x

in the support of X. Moreover, due to Theorem 1.A.3(a) of [67] these conditions are

equivalent to f(X) ≥st g(Y ).

(ii) From Remark 3.6 one has IC(X) ≤disp IC(Y ) if and only if ϕ′(x) ≥ 1 for all x in the

support of X.

(iii) Due to Theorem 3.4 of Alimohammadi et al. [2], if IC(X) ≥st IC(Y ) and IC(X) ≤disp

IC(Y ), then f(X) ≤disp g(Y ).

Hereafter we show further comparison results for the differential varentropy.

Theorem 3.8 Let X and Y be symmetric and unimodal random variables with median

zero. If X ≤k Y then

V (X) ≤ V (Y ).

Proof. The result follows easily from Theorem 3.4 and 3.5.

Remark 3.15 Theorem 3.8 provides many possible comparisons. We find in Arriaza

et al. [4] a compilation of many unimodal symmetric distributions that are ordered in

the kurtosis sense. For example, we know that the classical normal, logistic and Cauchy

distributions satisfy that normal ≤k logistic ≤k Cauchy, Therefore, just applying Theorem

3.8 we obtain2 that V (normal) ≤ V (logistic) ≤ V (Cauchy).

2This result is obviously confirmed by the direct calculations (see Table 2.1 and Appendix A).
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Proposition 3.11 If X and Y are absolutely continuous random variables having strictly

decreasing pdfs in the interval (a,+∞) and if X ≤c Y , then

V (X) ≤ V (Y ).

Proof. Without lack of generality we assume that a = 0. By Definition 3.4 we have

that X∗ is identically distributed as X. Hence, by Theorem 3.3 the assumption X∗ ≤c Y ∗

is equivalent to f(X) ≤∗ g(Y ), where f(x) and g(x) denote respectively the pdfs of X

and Y . We thus obtain V (X) ≤ V (Y ) from Theorem 3.7.

In the last part of this section we present two examples involving the exponential and

the normal families of distribution. In these examples a comparison of differential entropy

and differential varentropy is given making use of Theorems 3.6 and 3.7.

Example 3.7 Let X ∼ Exp(λX) and Y ∼ Exp(λY ). From (3.37) the cdf of IC(X) and

IC(Y ) are given by L(y) = 1− e−y

λX
and M(y) = 1− e−y

λY
. Then, applying Equation (3.38)

the mapping function (3.37) is given by

ϕ(x) = M−1(L(x)) = − log(1− L(x)λY ) = x+ log

(
λX
λY

)
, x ∈ [0,∞).

If λX ≤ λY the condition ϕ(x) ≥ x is satisfied for all x in the support of X. Hence, for

the point (i) of Remark 3.14 we have IC(X) ≤st IC(Y ) and for the Theorem 3.6, we have

H(X) ≥ H(Y ). Moreover, because ϕ′(x) = 1 for all x in the support of X, for the point

(ii) of Remark 3.14 we have IC(X) =disp IC(Y ) or alternatively f(X) =∗ g(Y ) implying

that, for Theorem 3.7, V (X) = V (Y ).

Example 3.8 Let X ∼ Norm(µX , σX) and Y ∼ Norm(µY , σY ). From (3.40) the cdf of

IC(X) and IC(Y ) are given respectively by

L(y) = Erf

(√
y + log

(
1√

2πσX

))
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M(y) = Erf

(√
y + log

(
1√

2πσY

))

where Erf(·) is the error function defined in (1.36). Then, applying Equation (3.41) the

mapping function (3.37) is given by

ϕ(x) = M−1(L(x)) = [Erf−1(L(x))]2 + log
(√

2πσY

)
= x+ log

(
σY
σX

)
(3.43)

where Erf−1(·) is the inverse error function (see footnote 1 at page 74). Observing from

(3.43) that the condition σX ≥ σY implies that ϕ(x) ≥ x is satisfied for all x in the support

of X, according to the Remark 3.14 and to the Theorem 3.6 we have IC(X) ≤st IC(Y )

and H(X) ≥ H(Y ). Moreover, the condition ϕ′(x) = 1 for all x in the support of X

implies for Remarks 3.7 and 3.14 that we have IC(X) =disp IC(Y ) and V (X) = V (Y ).

3.6.1 Application to the residual varentropy

In the following theorems, that are given in [25], a condition for which the residual var-

entropy is monotonic and an upper bound are provided.

Theorem 3.9 Let X be a nonnegative absolutely continuous random lifetime with support

SX having a cdf F and a pdf f(x). Let Xt be its residual lifetime at time t, as defined in

(1.1). Let us suppose that exists t0 ∈ SX such the pdf of Xt, defined in (1.3), is strictly

decreasing ∀t ≥ t0. If the ratio

f(F−1(1− (1− p)u))

f(F−1(1− (1− p)v))

increases (decreases) in p ∈ (0, 1), ∀ 0 < v < u < 1. Then V (Xt) increases (decreases) in

t ≥ t0.

Proof. Given t1 and t2 such that t0 < t1 < t2 and using Proposition 3.11 we just need to

check that Xt1 ≤c (≥c)Xt2 . From the characterization of the convex transfor order given in

Remark 3.7, the expression of the pdf of the residual life given in (1.3) and the expression
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of the inverse of the distribution function of the residual life given in Proposition 3.2 we

obtain that

Xt1 ≤c (≥c)Xt2 ⇐⇒
f(F−1(1− (1− p)F (t1)))

f(F−1(1− (1− p)F (t2)))
is increasing (decreasing) in p ∈ (0, 1).

The result follows easily from the hypothesis assumption just considering v = F (t2) and

u = F (t1).

Example 3.9 Let X ∼ Weibull(k, λ) be a Weibull distribution with shape parameter

k and scale parameter λ. From the expression of the cdf of X given by F (x) = 1 −

exp(−(x/λ)k), it is a straightforward matter to compute the ratio

f(F−1(1− (1− p)u))

f(F−1(1− (1− p)v))
=
u

v

(
ln((1− p)u)

ln((1− p)v)

) k−1
k

for all 0 < v < u < 1. It follows easily that the above ratio is increasing (decreasing) when

k > 1 (k < 1) and it is constant for k = 1. It is well-known that Weibull distributions

are always unimodal having decreasing density functions after the mode. Then, the pdfs

of the residual lives after the mode satisfy the conditions of Theorem 3.9, see Proposition

3.1. Then, V (Xt) increases (decreases) ∀t ≥ mode, for k > 1 (k < 1). On the other hand,

the Weibull distribution is IFR (DFR) for k > 1 (k < 1). Then using Remark 3.13 we

obtain that the differential entropy and the varentropy of the residual lives have opposite

directions of growth depending on the shape parameter k. Of course, the case k = 1 is

just the exponential distribution where the residual lives have both differential entropy

and varentropy constant. Some examples of the varentropy of the residual lives in the

Weibull distributions are shown computationally in figure 2.3.

We recall that in Theorem 2.3 it has been proved that if a random lifetime X is ILR, i.e.

its pdf is logconcave, then the residual varentropy (2.8) is such that V (Xt) ≤ 1 for all t

in the support of X. The condition of log-concave density means that the pdf belongs
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to the class of strong unimodal densities. Hereafter we show a similar result making use

of some of the above results. To this aim we will make use of IFR random variables. A

random variable is IFR if its hazard rate (1.4) is increasing.

Theorem 3.10 Let X be a nonnegative absolutely continuous random lifetime with sup-

port SX , and let Xt be its residual lifetime at time t, as defined in (1.1). If, for a given

t ∈ SX , Xt is IFR and its pdf (1.3) is strictly decreasing, then

V (Xt) ≤ 1.

Proof. Since, for a given t ∈ SX , the residual lifetimeXt is IFR, then for Theorem 4.B.11

of [67] one has that Xt ≤c Exp, where Exp denotes an exponential random variable.

Moreover, by assumption Xt has a strictly decreasing pdf ft(x) for all x ≥ 0, so that

Xt ≤c Exp if and only if X∗t ≤c Exp∗ for all t ∈ SX , where X∗t and Exp∗ are the

rearrangement of X and Exp, respectively. Due to Theorem 3.3, the last stochastic

inequality is satisfied if and only if

fXt(Xt) ≤∗ g(Exp),

where g is the pdf of Exp. Hence, making use of Theorem 3.7 we find

V (Xt) ≤ V (Exp).

Finally, the thesis follows recalling that V (Exp) = 1 (see table 2.1).

Remark 3.16 From Proposition 3.1, we have that the conditions of Theorem 3.10 easily

hold for all unimodal IFR distributions when t ≥ m, where m is the mode of X. For

example, this is the case of the residual lives of the Weibull distribution for k > 1, as it

is described in Example 3.9. After the mode the varentropy increases but it has an upper

bound equal to 1.
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Chapter 4

Correlations in the information of

bivariate distributions

In this chapter we will show how the study of the correlations in the information of bi-

variate distributions can be carried on making use of the concept of covarentropy. We will

study the property of covarentropy both for discrete (Section 2) and for continuous ran-

dom variables (Section 3). In particular we are interested to the investigation of relations

between covarentropy and covariance. This will be done for different choices of families

of bivariate distributions as normal, exponential, log-normal and Gamma distributions.

4.1 Introduction

Let us suppose that X and Y are two random variables. If X and Y are discrete with

joint probability function p(x, y), the joint information content is given by the random

variable

IC(X, Y ) = − log p(X, Y )

83
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If X and Y are absolutely continuous with joint pdf f(x, y), then the joint information

content is given by the random variable

IC(X, Y ) = − log f(X, Y ).

Let us assume that X and Y are discrete random variables having probability functions

pX(x) and pY (y), respectively and joint probability p(x, y). If X and Y are independent,

then p(x, y) = pX(x)pY (y) that implies

IC(X, Y ) = IC(X) + IC(Y )

where IC(X) and IC(Y ) are the information content of X and Y , respectively (cf. (1)).

Similarly, let us consider two absolutely continuous random variables X and Y having

pdfs fX(x) and fY (y), respectively and joint pdf f(x, y). If X and Y are independent then

f(x, y) = fX(x)fY (y) implying that the the information content of two random variables

is the sum of the information contents of the two random variables.

With the name covarentropy we will denote the covariance of IC(X) and IC(Y ) or

alternatively the variance of IC(X, Y ). We will write the covarentropy of X and Y using

the symbol CovE(X, Y ). The covarentropy is thus a measure of the joint variability of the

information contents of X and Y and is directly proportional to the correlation between

their information contents.

4.2 Discrete random variables

In this section we will consider X and Y as two discrete random variables, having joint

probability function p(x, y) and whose marginal distributions X and Y have probability

function pX(x) and pY (y), respectively. Let us now give a definition of the covarentropy

of two discrete random variables.

Definition 4.1 Let X and Y be two discrete random variables, the covarentropy of X
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and Y is defined as

CovE(X, Y ) := Cov[IC(X), IC(Y )]

= E[IC(X)IC(Y )]− E[IC(X)] · E[IC(Y )]

=
∑
x

∑
y

p(x, y){log pX(x) log pY (y)} −H(X)H(Y ) (4.1)

where IC(X) and IC(Y ) are the information contents of X and Y , respectively (cf. (1))

and H(X) and H(Y ) their respective the Shannon entropies (cf. (2)).

4.2.1 Independent random variables

Let us show that if X and Y are independent random variables, then the covarentropy

vanishes.

Theorem 4.1 Let X and Y be two discrete random variables, if X and Y are indepen-

dent, then

CovE(X, Y ) = 0 (4.2)

Proof. Suppose that X and Y are independent, then we have

p(x, y) = pX(x) · pY (y) ∀x, y.

This implies that applying (4.1)

CovE(X, Y ) =
∑
x

∑
y

p(x, y) log pX(x) log pY (y)

−
∑
x

pX(x) log pX(x)
∑
y

pY (y) log pY (y)

=
∑
x

∑
y

(pX(x) · pY (y)) log pX(x) log pY (y)

−
∑
x

pX(x) log pX(x)
∑
y

pY (y) log pY (y) = 0
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Example 4.1 Let X and Y be two discrete random variables having the following joint

probability distribution

HH
HHHHx

y
0 1 pX(x)

0 θ 1
2
− θ 1

2

1 1
2
− θ θ 1

2

pY (y) 1
2

1
2

1

where θ ∈ [0, 1
2
]. The covariance of X and Y can be calculated as a function of the

parameter θ:

Cov(X, Y ) =
∑
x

∑
y

x y p(x, y)−
∑
x

x pX(x)
∑
y

y pY (y) = θ − 1

4

The correlation coefficient of X and Y is therefore

ρ(X, Y ) =
Cov(X, Y )

σXσY
=
θ − 1

4
1
4

= 4θ − 1

Observing Figure 4.1 we see that the correlation coefficient vanishes for θ = 1
4
, for

greater values we find positive correlation while for smaller values negative correlation.

The entropy of X and the entropy of Y can be easily calculated according to the Equation

(2)

H(X) = H(Y ) = −1

2
log

1

2
− 1

2
log

1

2
= log 2

The covarentropy can be found from Equation (4.1)

CovE(X, Y ) = Cov[IC(X), IC(Y )] = E[IC(X) · IC(Y )]− E[IC(X)] · E[IC(Y )]

=
∑
x

∑
y

log pX(x) log pY (y) p(x, y)−H(X) ·H(Y )

= (2θ + 1− 2θ)

[
log

1

2

]2

−
[
log

1

2

]2

= 0
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Figure 4.1: Correlation coefficient vs. θ parameter.

Example 4.2 Let X and Y be two discrete random variables having the following joint

probability distribution

@
@
@
@
@

x

y
0 1 pX(x)

0 θ 1− p− θ 1− p

1 1− p− θ 2p− 1 + θ p

pY (y) 1− p p 1

If we fix θ ≥ 0 for p < 1
2

the condition for which each term of the distribution is positive

implies that 1 − p ≥ θ. In analogy with the previous case if we suppose that θ ≥ 1
2

we

find again that 1− p ≥ θ. So that we have

max{0, 1− 2p} ≤ θ ≤ 1− p, (4.3)

that is individuated by the region highlighted in the yellow area of figure 4.2. The covari-
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Figure 4.2: Area of the region for which inequality (4.3) is verified (yellow area). The
dashed line corresponds to the condition of vanishing covariance (4.4).
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ance of X and Y has the following expression

Cov(X, Y ) =
∑
x

∑
y

xy p(x, y)−
∑
x

x pX(x)
∑
y

y pY (y)

= θ + 2p− 1− p2 = θ − (p2 − 2p+ 1) = θ − (1− p)2

The condition of zero covariance is

θ = (1− p)2 (4.4)

that is represented by the parabola in Figure 4.2. The entropy of the random variable X

is calculated through the relation

H(X) = −
∑
x

pX(x) log pX(x) = −(1− p) log (1− p)− p log p

An analogous calculation can be done for Y that gives

H(Y ) = −
∑
y

pY (y) log pY (y) = −(1− p) log (1− p)− p log p

Finally, applying (4.1) we can calculate covarentropy of X and Y

CovE(X, Y ) =
∑
x

∑
y

log pX(x) log pY (y) p(x, y)−H(X) ·H(Y )

= θ[log (1− p)]2 + 2(1− p− θ) log p log (1− p) + (θ + 2p− 1) (log p)2

− (1− p)2 [log (1− p)]2 − p2 (log p)2 − 2p (1− p) log p log (1− p)

= [θ − (1− p)2] [log(1− p)]2 + [θ − (1− p)2] (log p)2

− 2[θ − (1− p)2] log p log (1− p) = [θ − (1− p)2] [log p− log (1− p)]2

= [θ − (1− p)2]

(
log

p

1− p

)2

(4.5)

Eq. (4.5) vanishes for θ = (1 − p)2 and p = 1
2
. The first coincides with the condition of

zero covariance, while the last condition was already treated in Example 4.1.
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4.2.2 Uniform distributions

Another remarkable property of the covarentropy concerns the case in which one of them

is uniform, as showed in the following theorem.

Theorem 4.2 Let X and Y be two discrete random variables. If X is uniform, then

CovE(X, Y ) = 0

Proof. Suppose that X is uniform, that is

pX(x) =
1

n
(4.6)

for x ∈ {x1, x2 . . . , xn}. Then, substituting (4.6) into (4.1) we have

CovE(X, Y ) =
∑
x

∑
y

p(x, y) log pX(x) log pY (y)

−
∑
x

pX(x) log pX(x)
∑
y

pY (y) log pY (y)

=
∑
y

log pY (y) log
1

n

∑
x

p(x, y)− log
1

n
[−H(Y )]

=
∑
y

log pY (y) log
1

n
pY (y)− log n H(Y )

= log
1

n

∑
y

pY (y) log pY (y)− log
1

n
H(Y )

= log n H(Y )− log n H(Y ) = 0.

4.2.3 Covarentropy for uncorrelated random variables

If the random variables X and Y are uncorrelated, it is not generally true that the

covarentropy is zero. We can construct an example to show this property.

Example 4.3 Let X and Y be two discrete random variables having the following joint
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distribution

@
@
@
@
@

x

y
0 1 pX(x)

−1 1
4

0 1
4

0 1
4

1
4

1
2

1 1
4

0 1
4

pY (y) 3
4

1
4

1

The covariance is zero. In fact

Cov(X;Y ) =
∑
x

∑
y

x y p(x, y)−
∑
x

x pX(x)
∑
y
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Therefore the variables X and Y are uncorrelated. Let us show that the covarentropy is

not zero. The entropy of X and the entropy of Y is given applying (2):
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The covarentropy can be calculated form (4.1)

CovE(X, Y ) = E[IC(X) · IC(Y )]

− E[IC(X)] · E[IC(Y )] =
∑
x

∑
y

log pX(x) log pY (y) p(x, y)

− H(X) ·H(Y ) =
1

4
log 4 log
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3
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log 2 log
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log 2 log 4
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log 4 log
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(
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)
3
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log 2

=
1

4

[
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2
log 2 log

4

3
+ 5 (log 2)2

]
∼= 0.625

We conclude that even if the correlation between the variables X and Y is zero, the

covarentropy is not necessarily zero.

4.3 Absolutely continuous random variables

Let us now consider X and Y as two absolutely continuous random variables, having joint

probability pdf f(x, y) and whose the marginal distributions X and Y have pdfs fX(x)

and fY (y), respectively. Let us now give a definition of the covarentropy of two continuous

random variables.

Definition 4.2 Let X and Y two absolutely continuous random, the covarentropy of X

and Y is defined as the quantity

CovE(X, Y ) = E[IC(X) · IC(Y )]− E[IC(X)] · E[IC(Y )]

=

∫
R2

log fX(y) log fY (x) f(x, y) dx dy −H(X) ·H(Y )

(4.7)

where IC(X) and IC(Y ) are the information contents of X and Y , respectively (cf. (3))

and H(X) and H(Y ) their respective the differential entropies (cf. (4)).
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4.3.1 Covarentropy for independent random variables

In analogy with the discrete random variables, also for continuous random variables the

covarentropy vanishes if the random variables are independent.

Theorem 4.3 Let X and Y be independent absolutely continuous random variables, then

CovE(X, Y ) = 0.

Proof. Suppose that X and Y are independent, so that

f(x, y) = fX(x) · fY (y) ∀x ∀y.

This implies that for (4.7)

CovE(X, Y ) =

∫
R2

log fY (y) log fX(x) f(x, y) dx dy −H(X) ·H(Y )

=

∫
R2

log fY (y) log fX(y) fX(x)fY (y) dx dy −H(X) ·H(Y ) = 0

(4.8)

4.3.2 Uniform distributions

Theorem 4.4 Let X and Y two absolutely continuous random variables, if X is uniform,

then

CovE(X, Y ) = 0

Proof. Suppose that X is uniform in an interval [a, b] with a and b real constants such

that −∞ < a < b <∞, the pdf of uniform distribution is the function

fX(x) =
1

b− a
, a < x < b, (4.9)
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then substituting (4.9) into (4.7) we have

CovE(X, Y ) =

∫
[a,b]×R

log fX(y) log fY (x) f(x, y) dx dy −H(X) ·H(Y )

= log

(
1

b− a

)∫
[a,b]×R

log fY (y) f(x, y) dx dy − log (b− a) H(Y )

= − log (b− a)

∫
R

log fY (y) fY (y) dy − log (b− a) H(Y )

= log (b− a) H(Y )− log (b− a) H(Y ) = 0

4.3.3 Gumbel exponential distributions

Let us consider two random variables X and Y having joint pdf

f(x, y) = [(µ+ θx)(λ+ θy)− θ] exp (−λx− µy − θxy), x > 0, y > 0, (4.10)

with λ > 0, µ > 0 and 0 ≤ θ ≤ 1. Equation (4.10) describes the Gumbel exponential

pdf (cf. [58]). The marginals of the bivariate distribution (X, Y ) are the exponential

distributions Exp(λ) and Exp(µ) and so H(X) and H(Y ) are obtained by (4) and are

given by

H(X) = −
∫ ∞

0

fX(x) log fX(x) dx = 1− log λ, (4.11a)

H(Y ) = −
∫ ∞

0

fY (x) log fY (x) dx = 1− log µ. (4.11b)

The covariance of X and Y is given by

Cov(X, Y ) =

∫
[0,+∞)×[0,+∞)

(
x− 1

λ

)(
y − 1

µ

)
f(x, y) dx dy

=
1

λµ
+

1

θ
e
λµ
θ Γ

(
0,
λµ

θ

)
(4.12)
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where Γ(z, x) is the incomplete Gamma function (see Eq. 6.5.3 of [1]), defined as

Γ(z, x) =

∫ ∞
x

tz−1 e−t dt (4.13)

The covarentropy is given applying (4.7)

CovE(X, Y ) =

∫
[0,+∞)×[0,+∞)

log fX(x) log fY (y) f(x, y) dx dy

−H(X) ·H(Y ) = −1 +
λµ

θ
e
λµ
θ Ei

(
−λµ
θ

)
(4.14)

where Ei(x) is the exponential integral function of x (see Equation 5.1.2 of [1]), defined

as

Ei(x) = −
∫ +∞

−x

et

t
dt (4.15)

In the case where λ = 1
µ

the covarentropy coincides with the covariance, while in the other

cases they differ each other (see Fig. 4.3). In fact, the following theorem can be stated.

Theorem 4.5 Let X and Y be two random variables having Gumbel exponential distri-

bution with correlation parameter θ 6= 0. Then

Cov(X, Y ) = CovE(X, Y ) ⇐⇒ λ =
1

µ
.

Proof. Substituting (4.13) into (4.12) we have:

Cov(X, Y ) = − 1

λµ
+

1

θ
e
λµ
θ

∫ ∞
−λµ

θ

e−t

t
dt. (4.16)

Moreover, substituting (4.15) into (4.14) we have

CovE(X, Y ) = −1− 1

θ
e
λµ
θ

∫ ∞
−λµ

θ

e−t

t
dt. (4.17)

Comparing (4.16) and (4.17) we have that Cov(X, Y ) = CovE(X, Y ) is satisfied for all θ
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Figure 4.3: Covariance and covarentropy calculated for the Gumbel exponential pdf (4.10)
for different choices of λ and µ.
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in the interval (0, 1] if and only if λ = 1
µ
.

Theorem 4.6 Let X and Y be two random variables having Gumbel exponential distri-

bution with correlation parameter θ = 0. Then

Cov(X, Y ) = CovE(X, Y ) = 0.

Proof. It is sufficient to observe that for θ = 0 Gumbel pdf (4.10) has the expression

f(x, y) = µλ exp (−λx− µy) = fX(x)fY (y) for all x, y > 0. (4.18)

Hence, as a consequence of (4.18), we have thatX and Y are independent random variables

and therefore they have vanishing covariance and covarentropy.

4.3.4 McKay’s bivariate Gamma distributions

Let us consider two random variables X and Y having joint pdf

f(x, y) =
ap+q

Γ(p) Γ(q)
xp−1(y − x)q−1e−ay x > 0, y > x (4.19)

with p > 0, q > 0. The function Γ(z) is the Gamma function of the parameter q (see Eq.

6.1.1 of [1]) defined as

Γ(z) =

∫ +∞

0

tz−1 e−t dt (4.20)

Eq. (4.19) gives McKay’s bivariate Gamma pdf (cf. Chapter 48, Sec. 2.1 of [45]). The

marginals are the Gamma pdf’s

fX(x) =
ap

Γ(p)
xp−1e−ax x > 0,
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fY (y) =
ap+q

Γ(p+ q)
yp+q−1e−ay y > 0,

with expectations µX = p
a

and µY = p+q
a

and variances σ2
X = p

a2
and σ2

Y = p+q
a2

, respec-

tively. The expression of the covariance is

Cov(X, Y ) =

∫
[0,+∞)×[x,+∞)

(x− µX)(y − µY ) f(x, y) dx dy =
p

a2
(4.21)

The correlation coefficient is therefore

r =
Cov(X, Y )

σX σY
=

√
p

p+ q
=

(
1 +

p

q

)− 1
2

and depends only on the ratio p
q
. The entropy of the marginal distributions is

H(X) = −
∫ ∞

0

fX(x) log fX(x) dx = p+ log

(
Γ(p)

a

)
− (−1 + p) ψ(0)(p)

where ψ(m)(x) is the PolyGamma function of order m calculated at x (see Eq. 6.4.1 of

[1]) defined by

ψ(m)(x) :=
dm+1

dxm+1
log Γ(x) (4.22)

where Γ(x) is the Gamma function defined in Eq. (4.20). Similarly,

H(Y ) = −
∫ ∞

0

fY (y) log fY (y) dy

= p+ q + log

(
Γ(p+ q)

a

)
− (−1 + p+ q) ψ(0)(p)

The covarentropy can be calculated as a function of p
q

with q fixed. The covarentropy is

given applying (4.7).

CovE(X, Y ) =

∫
[0,+∞)×[x,+∞)

log fX(x) log fY (y) f(x, y) dx dy −H(X) ·H(Y ) (4.23)
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that can be solved numerically. The covarentropy compared with the covariance has been

plotted in Figure 4.4. The covariance is linear in p
q

with the slope increasing when q

increases. The covarentropy is a non-linear decreasing function of q. It approaches to be

linear as the parameter q decreases to zero.
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Figure 4.4: (a) Covariance and (b) covarentropy with varying p/q calculated for the
Gamma bivariate pdf (4.19) for different choices of q (see Equations (4.21) and (4.23)).
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4.3.5 Normal bivariate distributions

Let us consider two random variables X and Y having joint pdf

f(x, y) =
1

2π(1− ρ2)1/2σXσY

× exp

[
− 1

2(1− ρ2)

{(
x− µX
σX

)2

− 2ρ

(
x− µX
σX

)(
y − µY
σY

)
+

(
y − µY
σY

)2
}]

x, y ∈ R (4.24)

with µX ∈ R, µY ∈ R, σX > 0 and σY > 0. Eq. (4.24) gives normal bivariate pdf (cf.

Chapter 46 of [45]). The marginals are the normal distributions

fX(x) =
1√

2πσX
e
− 1

2

(
x−µX
σX

)2
, x ∈ R

fY (y) =
1√

2πσY
e
− 1

2

(
y−µY
σY

)2
, y ∈ R

with expectations µX and µY and the variances σ2
X and σ2

Y , respectively. The entropy

calculated for the variables X and Y are obtained by (4)

H(X) = −
∫ ∞
−∞

fX(x) log fX(x) dx =
1

2
log (2πeσ2

X)

and

H(Y ) = −
∫ ∞
−∞

fY (x) log fY (x) dx =
1

2
log (2πeσ2

Y )

The covariance of X and Y is

Cov(X, Y ) =

∫ ∞
−∞

(x− µY )(y − µY ) f(x, y) dy dx = ρ σX σY . (4.25)

Finally we calculate the covarentropy of X and Y applying (4.7)

CovE(X, Y ) =

∫
R2

log fX(x) log fY (y) f(x, y) dx dy −H(X) ·H(Y ) =
ρ2

2
(4.26)
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As a direct consequence of (4.26) we can state the following proposition.

Proposition 4.1 Let X and Y be two distributions having Normal bivariate pdf (4.24)

with mean values µX and µY and variances σX and σY , respectively. Then CovE(X, Y )

is independent of µX , µY , σX and σY .

We plot the dependence of the covariance and of the covarentropy when the parameter ρ

varies (see fig. 4.5).
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Figure 4.5: Covariance and covarentropy for a bivariate normal distribution.
(a) Covariance as a function of ρ when σX is fixed to 1 and for different choices of σY (see
Eq. (4.25)).
(b) Covarentropy for a bivariate normal distribution as a function of ρ (see Eq. (4.26)).
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4.3.6 Gumbel–Malik–Abraham logistic distributions

Let us consider a continuous random vector (X, Y ) with pdf

f(x, y) =
2 e
−x−µX

σX e
− y−µY

σY

σXσY

(
1 + e

−x−µX
σX + e

− y−µY
σY

)3 , x, y ∈ R (4.27)

with µX ∈ R and µY ∈ R, σX > 0 and σY > 0. Eq. (4.27) gives the Gumbel–Malik–

Abraham logistic bivariate pdf (cf. Chapter 51, Sec. 2 of [45]). The marginals are the

logistic distributions

fX(x) =
e
−x−µX

σX(
1 + e

−x−µX
σX

)2 , x ∈ R,

fY (y) =
e
− y−µY

σY(
1 + e

− y−µY
σY

)2 , x ∈ R,

with expectation values µX and µY and the variances σ2
X and σ2

Y , respectively.

The entropy of the marginal distributions are obtained by (4)

H(X) = −
∫ ∞
−∞

fX(x) log fX(x) dx = 2 + log σX (4.28a)

and

H(Y ) = −
∫ ∞
−∞

fY (x) log fY (x) dx = 2 + log σY . (4.28b)

The covariance of X and Y gives

Cov(X, Y ) =

∫
R2

(x− µX) (y − µY ) f(x, y) dx dy =
π2

6
σXσY (4.29)

while the covarentropy is given by expression (4.7)

CovE(X, Y ) =

∫
R2

log fX(x) log fY (y) f(x, y) dx dy

− H(X) ·H(Y ) =
5π2

6
− 8 ' 0.22 (4.30)
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As a direct consequence of (4.30) we can state the following proposition.

Proposition 4.2 Let X and Y be two distributions having Gumbel-Malik-Abraham pdf

(4.27) with mean values µX and µY and variances σX and σY , respectively. Then CovE(X, Y )

is independent of µX , µY , σX and σY .

4.3.7 Farlie–Gumbel–Morgenstern distributions

Let X and Y be two absolutely continuous random variables having cdfs FX(x) and

FY (y) and pdfs fX(x) and fY (y), respectively. Then the Farlie–Gumbel–Morgenstern

(FGM) distribution is the bivariate distribution with joint pdf

f(x, y) = fX(x)fY (y)[1 + α(2FX(x)− 1)(2FY (y)− 1)], x ∈ DX , y ∈ DY (4.31)

with α ∈ [−1, 1] is a correlation parameter (see Chapter 44, Sec. 13 of [45]). If fX(x) and

fY (y) are exponential pdfs, then the joint pdf (4.31) reduces to

f(x, y) = λ µ exp (−λx− µy)[1 + α(2e−λx − 1)(2e−µy − 1)] x > 0, y > 0 (4.32)

with λ > 0, µ > 0. and −1 ≤ α ≤ 1. Eq. (4.32) gives the Farlie–Gumbel–Morgenstern

exponential pdf (cf. Equation 47.14 of [45]). The marginal distributions are exponentials

with parameters λ and µ, respectively. The covariance of X and Y can be written in

terms of the parameters α, λ and µ and its calculation gives

Cov(X, Y ) =

∫ ∞
0

(
x− 1

λ

) (
y − 1

µ

)
f(x, y) dx dy =

α

4λµ
. (4.33)

The covarentropy of X and Y has the following expression

CovE(X, Y ) =

∫ ∞
0

log fX(x) log fY (y) f(x, y) dx dy

− H(X) ·H(Y ) (4.34)
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where H(X) and H(Y ) are given by (4.11). If we solve the integrals we obtain that

Cov(X, Y ) =
α

4λµ
.

and

CovE(X, Y ) =
α

4
.

A special case is given when λ = 1
µ

(see Figure 4.6).

Theorem 4.7 Let X and Y be two random variables having exponential FGM pdf (4.32)

with correlation parameter α 6= 0. Then

Cov(X, Y ) = CovE(X, Y ) ⇐⇒ λ =
1

µ

Proof. The proof is immediate.

Another case is when fX(x) and fY (y) are logistic with parameters µX and µY , σX and

σY , respectively, then the joint pdf (4.31) reduces to

f(x, y) =
e−zX−zY

σXσY (1 + e−zX )3(1 + e−zy)3
·[1+α+(e−zX+e−zy)(1−α)+e−zX−zY (1+α)] (4.35)

where

zX =
x− µX
σX

, zY =
y − µY
σY

x ∈ R, y ∈ R.

Equation (4.35) gives the Farlie-Gumbel-Morgenstern logistic bivariate pdf (cf. Chapter

51, Sec. 4 of [45]). The covariance of X and Y is given by

Cov(X, Y ) =

∫
R2

(x− µX) (y − µY ) f(x, y) dx dy = α σXσY
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Figure 4.6: Covariance and covarentropy calculated for a FGM exponential distribution
for different choices of λ and µ (cf. Equations (4.33) and (4.34)).

tht is, the covariance is linear in α. The covarentropy of X and Y gives the result

CovE(X, Y ) =

∫
R

log fX(x)

∫
R

log fY (y) f(x, y) dy dx

− H(X) ·H(Y ) = 0. (4.36)

where the values of H(X) and H(Y ) are given by the Eqs. (4.28). The result (4.36) can

be synthesized by the following proposition.

Proposition 4.3 Let X and Y be two logistic FGM distributions, then CovE(X, Y ) van-

ishes for all α ∈ [0, 1].
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Conclusions

In this thesis we discussed some mathematical properties and applications of information

measures for continuous random variables. Among these quantities this thesis concerns

entropy, the varentropy and the covarentropy. The differential entropy (4) is largely used

in information theory and other related areas, being the analogue of the Shannon entropy

for a continuous random variable. It constitutes the expected value of the information

content (3), whereas its variance is given by the varentropy (2.1) and the covariance of

two information contents is given by the covarentropy. The varentropy is useful to assess

the effectiveness of the differential entropy as a measure of the information content of a

random system, while the covarentropy provide the correlations of the information content

of two random variables.

Motivated by possible application in reliability theory and survival analysis, in the first

part of the thesis we investigated the residual varentropy, i.e. the varentropy of the residual

lifetime distribution. Together with the residual entropy, this measure allows to analyse

the dynamical information content of time-varying systems conditional on being active

at current time. We discussed various properties, with connections to the generalized

hazard rate, the effect of linear transformations, and a suitable lower bound that involves

the variance residual life function. We also addressed the use of the residual varentropy

in connection with classical distributions, and within some applications concerning the

proportional hazards model and the first-passage time problem of an Ornstein-Uhlenbeck

jump-diffusion process with catastrophes. Finally we applied kernel varentropy estimation

to obtain residual varentropy from a given set of data.

107
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In the second part of the thesis we obtained some results about the residual entropy

and varentropy making use of stochastic comparisons, such as usual stochastic order,

dispersive order, star order and kurtosis order. In order to do this, we concentrated

our attention on the pdf-related, that are the distribution induced by probability density

function. The investigation of their properties led us to study quantile functions under

suitable assumptions of monotonicity and unimodality. Other properties of pdf-related

distributions in connection to stochastic order were studied making use of mapping of

quantiles and using the properties of the decreasing rearrangement of a given pdf. The

final result is the comparison of differential entropy and differential varentropy of random

lifetimes.

In the final part of the thesis we obtained some results for the covarentropy. The

covarentropy was applied both to discrete and continuous distribution and different re-

sults involving the independence and the correlation of random variables were proved.

Also specific examples were illustrated for different bivariate distributions: Gumbel expo-

nential, Normal bivariate,Gumbel–Malik-Abraham logistic, Farlie–Gumbel–Morgenstern

exponential and logistic. In some of the cases we noted relations between covariance and

covarentropy, in other the covarentropy is independent of the parameters of the distribu-

tion.

Future developments will be oriented to applications of the information measures to

other stochastic models of interest (such as order statistics, spacings, record values, in-

accuracy measures based on the relevation transform and its reversed version), and to

provide further improvements to the empirical version of the residual varentropy. Other

developments will involve also the application of the stochastic order, for which the future

investigation in this field will be oriented to the study of residual entropy and residual

varentropy. Finally, future developments can be oriented to analyze the dependence of the

covarentropy on the copula of the random vector (X, Y), and to compare the covarentropy

of vectors with identical marginals but with different copulas.
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Appendix A

Entropy and varentropy for selected

distributions

In this appendix some results about entropy and varentropy for ordinary and residual

lifetime distributions are given.

A.1 Uniform distributions

Xa,b ∼ U(a, b) (a, b > 0, a < b)

Pdf

fa,b(x) =
1

b− a
x ∈ SX = (a, b) (A.1)

Survival function

F a,b(t) =

∫ b

t

1

b− a
dx =

b− t
b− a

, t ∈ [a, b]

Differential entropy

H(Xa,b) = −
∫ b

a

1

b− a
log

(
1

b− a

)
dx = log (b− a)
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Figure A.1: Residual entropy of a distribution having a uniform pdf (A.1) with a = 0 and
b = 1 (cf. Eq. (A.2)).

Differential varentropy

V (Xa,b) =

∫ b

a

1

b− a

[
log

(
1

b− a

)]2

dx− [log(b− a)]2

= [log(b− a)]2 − [log(b− a)]2 = 0

Residual entropy

H(X
(a,b)
t ) = −

∫ b

t

1

b− t
log

(
1

b− t

)
dx = log (b− t) t ∈ SX (A.2)

Residual varentropy

V (X
(a,b)
t ) = −

∫ b

t

1

b− t

[
log

(
1

b− t

)]2

dx− [log (b− t)]2

= [log (b− t)]2 − [log (b− t)]2 = 0 t ∈ SX
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A.2 Decreasing exponential distributions

Xλ ∼ Exp(λ) (λ > 0)

Pdf

fλ(x) = λe−λx, x ∈ SX = (0,∞)

Survival function

F λ(t) =

∫ ∞
t

e−λx dx = e−λt, t ∈ [0,∞)

Differential entropy

H(Xλ) = −
∫ ∞

0

e−λx(−λx+ log λ) dx = 1− log λ

Differential varentropy

V (Xλ) =

∫ ∞
0

e−λx(−λx+ log λ)2 dx− (1− log λ)2 = 1

Residual entropy

H(X
(λ)
t ) = −

∫ ∞
t

λe−λ(x−t)[−λ(x− t) + log λ] dx

= −
∫ ∞

0

e−λx(−λx+ log λ) dx = H(X) = 1− log λ t ∈ SX

Residual varentropy

V (X
(λ)
t ) =

∫ ∞
t

λe−λ(x−t)[−λ(x− t) + log λ]2 dx− (1− log λ)2

=

∫ ∞
0

e−λx(−λx+ log λ)2 dx− (1− log λ)2 = V (X) = 1 t ∈ SX
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A.3 Triangular distribution

X ∼ Triang(0, 1)

Pdf

f(x) = 2(1− x), x ∈ SX = (0, 1) (A.3)

Survival function

F (t) =

∫ 1

t

2(1− x) dx = (1− t)2, t ∈ [0, 1]

Differential entropy

H(X) = −
∫ 1

0

2(1− x) log (1− 2x) dx =
1

2
− log

(
1

2

)

Differential varentropy

V (X) =

∫ 1

0

2(1− x) {log[2(1− x)]}2 dx−
[

1

2
− log

(
1

2

)]2

=
1

4

Residual entropy

H(Xt) = −
∫ 1

t

2(1− x)

(1− t)2
log

[
2(1− x)

(1− t)2

]
dx =

1

2
+ log

(
1− t

2

)
t ∈ SX (A.4)

Residual varentropy

V (Xt) =

∫ 1

t

2(1− x)

(1− t)2

{
log

[
2(1− x)

(1− t)2

]}2

dx−
[

1

2
+ log

(
1− t

2

)]2

=
1

4
t ∈ SX
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Figure A.2: Residual entropy of a distribution having a triangular pdf (A.3) (cf. Eq.
(A.4)).

A.4 Normal distributions

Xµ,σ ∼ Norm(µ, σ), (µ ∈ R and σ > 0)

Pdf

fµ,σ(x) =
1√
2πσ

e−
1
2(x−µσ )

2

, x ∈ SX = R (A.5)

Survival function

F µ,σ(t) =

∫ ∞
t

1√
2πσ

e−
1
2(x−µσ )

2

dx =
1

2
Erfc

(
t− µ√

2σ

)
, t ∈ SX

The complementary error function Erfc(·) is defined as (cf. Eq. 7.1.2 of [1])

Erfc(x) =
2√
π

∫ ∞
x

e−t
2

dt = 1− Erf(x)

Differential entropy

H(Xµ,σ) = −
∫ ∞
−∞

1√
2πσ

e−
1
2(x−µσ )

2

[
− log (

√
2πσ)− 1

2

(
x− µ
σ

)2
]

dx

= − log
(√

2πeσ
)
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Figure A.3: Pdf of a normal distribution (A.5) for different choices of the parameters µ
and σ (as indicated in the labels).

Differential varentropy

V (Xµ,σ) =

∫ ∞
−∞

1√
2πσ

e−
1
2(x−µσ )

2

[
− log (

√
2πσ)− 1

2

(
x− µ
σ

)2
]2

dx

−
[
log
(√

2πeσ
)]2

=
1

2

Residual entropy

H(X
(µ,σ)
t ) = −

2
∫∞
t

(
− (x−µ)2

2σ2 − 1
2

log(2πσ2)
)

1√
2πσ

e−
1
2(x−µσ )

2

dx

Erfc
(
t−µ√

2σ

)
+ log

[
1

2
Erfc

(
t− µ√

2σ

)]

=
(t− µ)e−

(t−µ)2

2σ2

√
2πσ Erfc

(
t−µ√

2σ

) + log

(
Erfc

(
t− µ√

2σ

))
+ log σ +

1

2

(
1 + log

(π
2

))
t ≥ 0

(A.6)
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Residual varentropy

V (X
(µ,σ)
t ) =

2
∫∞
t

(
− log σ − (x−µ)2

2σ2 − 1
2

log(2π)
)2

1√
2πσ

e−
1
2(x−µσ )

2

dx

Erfc
(
t−µ√

2σ

)
−

4
(∫∞

t

(
− log σ − (x−µ)2

2σ2 − 1
2

log(2π)
)

1√
2πσ

e−
1
2(x−µσ )

2

dx
)

2

Erfc
(
t−µ√

2σ

)2

+ log

[
1

2
Erfc

(
t− µ√

2σ

)]

=
1

4

(t− µ)e−
(t−µ)2

σ2

(√
2πe

(t−µ)2

2σ2 (σ2 + (t− µ)2) Erfc
(
t−µ√

2σ

)
+ 2σ(µ− t)

)
πσ3Erfc

(
t−µ√

2σ

)2 + 2


t ≥ 0

(A.7)

A.5 Weibull distributions

Xk,λ ∼Weibull(k, λ)

Pdf

fk,λ(x) =
k

λ
xk−1 e−( xλ)

k

, x ∈ SX = (0,+∞) (A.8)

Survival function

F k,λ(t) =

∫ ∞
t

fk,λ(x) dx = e−( tλ)
k

, t ∈ [0,+∞)
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Figure A.4: (top) Residual entropy and (bottom) residual varentropy for the normal
distributions in Fig. A.3 (cf. Eqs. (A.6) and (A.7)).
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Differential entropy

H(Xk,λ) = −
∫ ∞

0

k

λ
xk−1 e−( xλ)

k
[
log k − k log λ+ (k − 1) log x−

(x
λ

)k]
dx

= −γ
k
− log k + log λ+ γ + 1

The constant γ = 0.57721 . . . is the Eulero–Mascheroni constant.

Differential varentropy

V (Xk,λ) =

∫ ∞
0

k

λ
xk−1 e−( xλ)

k
[
log k − k log λ+ (k − 1) log x−

(x
λ

)k]2

dx

−
[
−γ
k
− log k + log λ+ γ + 1

]2

=
(π2 − 6) (k − 2)k + π2

6k2

Residual entropy

H(X
(k,λ)
t ) = −

(
t

λ

)k
− 1

e−( tλ)
k

∫ ∞
t

k

λ
xk−1 e−( xλ)

k
[
log k − k log λ+ (k − 1) log x−

(x
λ

)k]
dx

=
(k − 1)e(

t
λ)

k

Ei
(
−
(
t
λ

)k)
k

+ k log λ− k log t− log k + log t+ 1

t ∈ SX

(A.9)

The exponential integral function Ei(·) is defined in Eq. (4.15)).
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Figure A.5: Residual entropy of the Weibull distributions of Fig. 2.3 (cf. Eq. (A.9)).
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Residual varentropy

V (X
(k,λ)
t ) =

1

e−( tλ)
k

∫ ∞
t

k

λ
xk−1 e−( xλ)

k
[
log k − k log λ+ (k − 1) log x−

(x
λ

)k]2

dx

−

[
−γ
k
− log k + log λ+ γ + 1−

(
t

λ

)k]2

=
λ−2k

6k2

{
− 6k2λ2k + 6γ2k2λ2ke(

t
λ)

k

+ 12kλ2k − 12γ2kλ2ke(
t
λ)

k

+ 6γ2λ2ke(
t
λ)

k

+ 12ke(
t
λ)

k

(λt)kEi

(
−
(
t

λ

)k)
+ π2k2λ2ke(

t
λ)

k

+ π2λ2ke(
t
λ)

k

− 2π2kλ2ke(
t
λ)

k

− 12k2e(
t
λ)

k

(λt)kEi

(
−
(
t

λ

)k)
− 6λ2ke2( tλ)

k

Ei

(
−
(
t

λ

)k)2

+ 24ke(
t
λ)

k

(λt)k 3F3

(
1, 1, 1; 2, 2, 2;−

(
t

λ

)k)

+ 12kλ2ke2( tλ)
k

Ei

(
−
(
t

λ

)k)2

− 12e(
t
λ)

k

(λt)k 3F3

(
1, 1, 1; 2, 2, 2;−

(
t

λ

)k)

− 6k2λ2ke2( tλ)
k

Ei

(
−
(
t

λ

)k)2

+ 12γkλ2k(log t)e(
t
λ)

k

− 12k2e(
t
λ)

k

(λt)k 3F3

(
1, 1, 1; 2, 2, 2;−

(
t

λ

)k)
− 12k3λ2k(log t)2e(

t
λ)

k

+ 6k2λ2k(log t)2e(
t
λ)

k

+ 12γk3λ2k(log t)e(
t
λ)

k

+ 24γk2λ2k(log t)e(
t
λ)

k

+ 6k4λ2k(log t)2e(
t
λ)

k

+ 24γk2λ2k(log λ)e(
t
λ)

k

− 12γkλ2k(log λ)e(
t
λ)

k

− 12γk3λ2k(log λ)e(
t
λ)

k

+ 24k3λ2k(log λ)(log t)e(
t
λ)

k

− 12k2λ2k(log λ)(log t)e(
t
λ)

k

+ 6k4λ2k(log λ)2e(
t
λ)

k

− 12k3λ2k(log λ)2e(
t
λ)

k

+ 6k2λ2k(log λ)2e(
t
λ)

k

− 12k4λ2k(log λ)(log t)e(
t
λ)

k
}

t ∈ SX (A.10)

The generalized hypergeometric function p Fq(·; ·) is defined as (see Section 2.1 of [69])

p Fq (a1, . . . , ap; b1, . . . , bq;x) :=
∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

xk

k!



122 Entropy and varentropy for selected distributions

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.2

0.4

0.6

0.8

1.0
fk,1(x)

k=0.5

k=1

k=1.5

k=3.5

Figure A.6: Gamma pdf (A.11) for some choices of k (as indicated in the labels) and for
θ fixed to 1.

where

(a)k =
Γ(a+ k)

Γ(a)
= a(a+ 1) · · · (a+ k − 1)

A.6 Gamma distributions

Xk,θ ∼ Gamma(k, θ) (k > 0 and θ > 0)

Pdf

fk,θ(x) =
xk−1 e−

x
θ

θk Γ(k)
, x ∈ SX = (0,∞) (A.11)

Γ(·) is the Gamma function defined in Eq. (4.20).

Survival function

F k,θ(t) =

∫ ∞
t

xk−1 e−
x
θ

θk Γ(k)
dx =

Γ(k, t
θ
)

Γ(k)
, t ≥ 0

Γ(·, ·) is the Gamma incomplete function defined in Eq. (4.13).
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Differential entropy

H(Xk,θ) = −
∫ ∞

0

xk−1 e−
x
θ

θk Γ(k)

(
−k log θ + (k − 1) log x− log Γ(k)− x

θ

)
dx

= log θ + k − (k − 1)ψ(0)(k) + log Γ(k)

The PolyGamma function of order m ψ(m)(·) is defined in (4.22).

Differential varentropy

V (Xk,θ) =

∫ ∞
0

xk−1 e−
x
θ

θk Γ(k)

(
−k log θ + (k − 1) log x− log Γ(k)− x

θ

)2

dx

− [log θ + k − (k − 1)ψ(0)(k) + log Γ(k)]2 = −k + (k − 1)2ψ(1)(k) + 2

Residual entropy

H(X
(k,θ)
t ) = − Γ(k)

Γ
(
k, t

θ

) ∫ ∞
t

xk−1 e−
x
θ

θk Γ(k)

(
−k log θ + (k − 1) log x− log Γ(k)− x

θ

)
dx

+ log Γ(k, θ)− log Γ(k)

=
1

Γ
(
k, t

θ

) − (k − 1)G3,0
2,3

 1, 1

0, 0, k

∣∣∣∣∣∣∣
t

θ


+ Γ

(
k + 1,

t

θ

)
+ (k − 1)Γ(k)

(
− log θ − log

(
t

θ

)
+ log t

)
+ Γ

(
k,
t

θ

)(
k log θ + log

(
Γ

(
k,
t

θ

))
− k log t+ log t

)
t ∈ SX

Meijer’s G-function Gm,n
p,q (·|·) (see section 5.3 of [8]) is defined as

Gm,n
p,q

 a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣∣∣z
 =

1

2πi

∫
L

∏m
j=1 Γ (bj − s)

∏n
j=1 Γ (1− aj + s)∏q

j=m+1 Γ (1− bj + s)
∏p

j=n+1 Γ (aj − s)
zsds (A.12)

and is a complex line integral. The path L of integration of (A.12) is determined in a

specific way for which we remind to section 5.3 of ref. [8].
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Figure A.7: Residual entropy (top) and residual varentropy (bottom) for the Gamma
distributions of Fig. A.6.

Residual varentropy

V (X
(k,θ)
t ) =

Γ(k)

Γ
(
k, t

θ

) ∫ ∞
t

xk−1 e−
x
θ

θk Γ(k)

(
−k log θ + (k − 1) log x− log Γ(k)− x

θ

)2

dx

−

(
Γ(k)

Γ
(
k, t

θ

) ∫ ∞
t

xk−1 e−
x
θ

θk Γ(k)

(
−k log θ + (k − 1) log x− log Γ(k)− x

θ

)
dx

)2

t ∈ SX

(A.13)

It was not possible to do an analytical computation of (A.13). Nevertheless, we give a

numerical plot in the bottom side of Fig. A.7.
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Figure A.8: Logistic pdf (A.14) for some choices of µ and σ (as indicated in the label).

A.7 Logistic distributions

Xµ,σ ∼ Logistic(µ, σ) (µ > 0 and σ > 0)

Pdf

fµ,σ(x) =
e−

x−µ
σ

σ
(

1 + e−
x−µ
σ

)2 , x ∈ SX = R (A.14)

Survival function

F µ,σ(t) =

∫ ∞
t−µ
σ

e−z

(1 + e−z)2 dz =
e−

t−µ
σ

1 + e−
t−µ
σ

, t ∈ SX

Differential entropy

H(Xµ,σ) = −
∫ ∞
−∞

e−z

(1 + e−z)2

[
−z − log σ − 2 log (1 + e−z)

]
dz

= 2 + log σ

Differential varentropy

V (Xµ,σ) =

∫ ∞
−∞

e−z

(1 + e−z)2

[
−z − log σ − 2 log (1 + e−z)

]2
dz − (2 + log σ)2

= 4− π2

3
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Residual entropy

H(X
(µ,σ)
t ) = −t− µ

σ
−
(

1 + e
t−µ
σ

)∫ ∞
t−µ
σ

e−z

(1 + e−z)2

[
−z − log σ − 2 log (1 + e−z)

]
dz

=
1

σ

[
− µ+ 2σ + (t− µ)e

t−µ
σ

+ σ
(

log σ +
(
−e

t−µ
σ − 1

)
log
(
e
t−µ
σ + 1

)
+ log

(
e
µ−t
σ + 1

))
+ t

]
t ≥ 0

(A.15)

Residual varentropy

V (X
(µ,σ)
t ) =

(
1 + e

t−µ
σ

)∫ ∞
t−µ
σ

e−z

(1 + e−z)2

[
−z − log σ − 2 log (1 + e−z)

]2
dz

=
e−

2µ
σ

3σ2

×
{
− 3(t− µ)2e

2t
σ + e

µ+t
σ

(
13π2σ2 − 24iπσ(t− µ)− 21(t− µ)2

)
+ e

2µ
σ

((
12 + 13π2

)
σ2 − 24iπσ(t− µ)− 18(t− µ)2

)
− 3σ

(
eµ/σ + et/σ

) [
σ
(
et/σ − eµ/σ

) [
log
(
e
t−µ
σ + 1

)]2

− 2(t− µ)
(
eµ/σ + et/σ

)
log
(
e
t−µ
σ + 1

)
− 4eµ/σ(µ− 4iπσ − t) log

(
e
µ−t
σ + 1

)]
+ 6σ2eµ/σ

(
eµ/σ + et/σ

)
×

[
Li2

(
−e

t−µ
σ

)
+ 2Li2

(
−e

µ−t
σ

)
− 4

(
Li2

(
1 + e

t−µ
σ

)
+ Li2

(
1 + e

µ−t
σ

))]
t ≥ 0

The dilogarithm function Li2(·) is defined as (see [56])

Li2(z) := −
∫ x

0

dz

z
log (1− z)
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Figure A.9: Residual entropy (top) and residual varentropy (bottom) for the logistic
distributions of Fig. A.8 (cf. Eqs. (A.15) and (A.16)).
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Figure A.10: Cauchy pdf (A.16) for x0 = 0 and for some choices of y0 (as indicated in the
label).

A.8 Cauchy distributions

Xx0,y0 ∼ Cauchy(x0, y0) (x0 ∈ R, y0 > 0)

Pdf

fx0,y0(x) =
1

π

y0

(x− x0)2 + y2
0

, x ∈ SX = R (A.16)

Survival function

F x0,y0(t) =

∫ ∞
t−x0

1

π

y0

z2 + y2
0

dz = − 1

π
arctan

(
t− x0

y0

)
+

1

2
, t ∈ SX

Differential entropy

H(Xx0,y0) = −
∫ ∞
−∞

1

π

y0

z2 + y2
0

(
− log π + log y0 − log (z2 + y2

0)
)

dz = log (4πy0)
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Differential varentropy (numerical estimation)

V (Xx0,y0) =

∫ ∞
−∞

1

π

y0

z2 + y2
0

(
− log π + log y0 − log (z2 + y2

0)
)2

dz−[log (4πy0)]2 = 3.28987 . . .

Residual entropy

H(X
(x0,y0)
t ) = − log π − log y0 − log [(t− x0)2 + y2

0]

−
(

1

π

y0

(t− x0)2 + y2
0

+
1

2

)−1

×
∫ ∞
t−x0

1

π

y0

z2 + y2
0

(
− log π + log y0 − log (z2 + y2

0)
)

dz t ≥ 0

(A.17)

Residual varentropy

V (X
(x0,y0)
t ) =

(
1

π

y0

(t− x0)2 + y2
0

+
1

2

)−1

×
∫ ∞
t−x0

1

π

y0

z2 + y2
0

(
− log π + log y0 − log (z2 + y2

0)
)2

dz

−
[(

1

π

y0

(t− x0)2 + y2
0

+
1

2

)−1

×
∫ ∞
t−x0

1

π

y0

z2 + y2
0

(
− log π + log y0 − log (z2 + y2

0)
)

dz

]2

t ≥ 0

(A.18)

The numerical plot of residual entropy and residual varentropy of Cauchy distributions is

given in Fig. A.11.
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Figure A.11: Residual entropy (top) and residual varentropy (bottom) for the Cauchy
distributions of Fig. A.10 (cf. Eqs. (A.17) and (A.18)).
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