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ABSTRACT 

 

Human Biomonitoring (HB) represents a useful tool to investigate the complex relationship 

existing between environment and health.  

Assess human exposure to external stressors means to deepen observe, with a holistic 

approach, all factors contributing to generate the exposure itself. 

Considering the “Campania Region (Italy)” case study, the present PhD dissertation 

introduce and describe an innovative HB protocol that try to make up to the lack of data 

integration from complementary science fields. The biomonitoring model is based on a 

whole systemic analytical evaluation of the environmental context. The paradigm of the 

protocol considers three elements: identification of pollution sources, of pollutants 

migration ways and of effects on target organisms. It pursues its aims enrolling healthy 

human cohorts, in order to identify potential risks of exposure to pollutants and to 

potentially predict correlated clinical outcomes. Monitoring of environmental matrices, 

detection of exposure and effect biomarkers in human specimens, together with 

epidemiological evaluations, are integrated in a multilevel analysis in order to depict a 

framework of the regional state of contamination.  

A particular focus in the dissertation is dedicated to epigenetic profiles obtained with DNA 

methylation array analysis, the most widely molecular mark observed in environmental 

epigenetic studies. The modulation of gene expression programs in response to 

environmental exposure is a key to understand gene-environment interactions and to deep 

insight into possible phenotypic and clinical effects on susceptible populations, as well as 

into the etiology of cancers and chronic-degenerative diseases. This means the possibility 

of translating the acquired knowledge into public health interventions and developing 

prevention strategies. Indeed, the long-term objective of the study, over the current PhD 

dissertation, is to create an integrated, dynamic map of environmental contamination in the 

Campania Region, in order to support the implementation of public health policy and 

provide a scientific reference model for the evaluation of exposure risk assessment.  

According to a “One Health” perspective, the model aspires to be translated in different 

contexts and for various applications, and to become a useful tool for comparative, multi-

criteria and multi-disciplinary analysis. 
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ABSTRACT 

 

Il Biomonitoraggio Umano (HB) rappresenta un utile strumento per indagare la complessa 

relazione esistente tra ambiente e salute. 

Valutare l’esposizione umana a stressors ambientali significa osservare profondamente, 

con un approccio olistico, tutti i fattori che contribuiscono a generare l’esposizione stessa. 

Considerando il caso studio “Regione Campania (Italia)”, la presente dissertazione di 

Dottorato di Ricerca introduce e descrive un innovativo protocollo di HB, che tenta di 

sopperire alla carenza di integrazione di dati tra discipline scientifiche complementari. 

Il modello di biomonitoraggio si basa su una valutazione analitica e sistemica del contesto 

ambientale. Il paradigma del protocollo considera tre elementi: l’individuazione delle 

sorgenti di contaminazione, delle vie di migrazione dei contaminanti e dell’effetto sugli 

organismi target. Persegue tale scopo arruolando coorti di popolazione sana, al fine di 

identificare potenziali rischi di esposizione ai contaminanti e predire possibili conseguenze 

cliniche correlate. Un’analisi multilivello integra insieme il monitoraggio delle matrici 

ambientali, l’individuazione di biomarcatori di esposizione e di effetto in fluidi biologici 

umani, le valutazioni epidemiologiche, al fine di delineare una fotografia dello stato di 

contaminazione sul territorio regionale. 

Un particolare focus nella dissertazione è dedicato ai profili epigenetici ottenuti dall’analisi 

degli array di metilazione del DNA, il marcatore molecolare più ampiamente utilizzato in 

studi di epigenetica ambientale. La modulazione dell’espressione genica in risposta 

all’esposizione ambientale rappresenta una chiave di comprensione delle interazioni gene-

ambiente, utile per approfondire possibili effetti fenotipici e clinici sulle popolazioni 

suscettibili, così come l’eziologia delle neoplasie e delle patologie cronico-degenerative. 

Ciò permette di traslare le conoscenze acquisite in azioni di sanità pubblica e sviluppare 

strategie di prevenzione. Al di là della presente dissertazione di dottorato, difatti, l’obiettivo 

a lungo termine dello studio è di creare una mappa dinamica ed integrata dei livelli di 

contaminazione ambientale campani, al fine di supportare l’implementazione di interventi 

di sanità pubblica e fornire un modello scientifico di riferimento per la valutazione del 

rischio da esposizione. 

In accordo con una prospettiva di tipo “One Health”, il modello aspira ad essere traslato in 

differenti contesti e per varie applicazioni, e a diventare uno strumento utile per l’analisi 

comparativa, multi-criteriale e multidisciplinare. 
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1. INTRODUCTION 

 

1.1 Environment and Health  

 

The environment, meaning as the whole physical, chemical, and biological factors external 

to a person (Pruss-Ustun et al., 2016), is an actual determinant for human life.  

According to this omni-comprehensive definition, a fine and breakable balance governs the 

relationships between its biotic and abiotic compartments, and any perturbation affecting 

the system could be able to move this balance towards new arrangements. A combination 

of actions and reactions tries to restore the system balance, moved away from its 

“optimum”, triggering mechanisms of positive (enhancing) or negative (regulatory) 

feedback of the phenomena. This type of regulation results in different condition of 

healthiness or risk for the unsettled ecosystem and its components.   

Humans, as part of the environment and of the biotic compartment, are influenced by the 

succession of these events and by regulatory mechanisms during their lifespan. They are 

exposed to environmental events and contribute through their activities to the changes 

occurring in the environment itself. The main difference between natural and human-

induced ecosystem changes is in the spatial and time scale of events.  

Human activities, including population growth, industrialization, economic development, 

and urbanization, cause disturbances over time scales of decades to a few hundreds of years. 

Such environmental impacts and pollution processes could occur at smaller (local) spatial 

scale (e.g. point-source pollution associated with a hazardous waste site) or at a much larger 

scale, encompassing entire regions, until the entire planet (Maximilian et al., 2019). 

It is well-known that, as dark side of the anthropization, the widespread of contaminants in 

the environmental matrices define a heavy threat on ecosystems health and particularly on 

target organisms, highlighting the environmental pollution as a growing concern for global 

health, and representing it as one of the great existential challenges of the Anthropocene 

epoch (Landrigan et al., 2018). 

As stated by the World Health Organization (WHO), in 2012 approximately 24% of deaths 

recorded worldwide have been linked to environment, which is roughly 13.7 million deaths 

a year (this data includes infectious diseases related death). Moreover, the Global Burden 

of Disease (GBD) study estimates that the pollution-related disease was responsible for 9 

million premature deaths in 2015 (16% of total global mortality) (Forouzanfar et al., 2016). 

Especially air, water, and soil contamination, together with electromagnetic pollution, 

industrial activities, in-door and occupational exposure, represent factors potentially 

correlated to chronic and degenerative diseases onset (Pruss-Ustun et al., 2016). 

Over the past decades scientific research has supposed a link between exposure to 

environmental stressors and human diseases (Ziech et al., 2010). On the basis of these solid 



 

2 
 

scientific evidences a lot of substances derived from pollution phenomena were classified 

as carcinogenic or mutagenic due to their dangerousness 

(https://monographs.iarc.fr/agents-classified-by-the-iarc/). Most harmful compounds have 

been identified in occupational health studies as characteristics of professional exposure. 

For example, one of the most studied occupational carcinogens, the asbestos, had a terrible 

history of proved correlations between professional exposure and adverse clinical 

outcomes (Siemiatycki 2007; Frank et al., 2014). 

Nevertheless, the sources of pollution are increasingly widespread and heterogeneous and, 

above all, follow diverse time of action in terms of exposure. This means that the 

phenomena do not affect only workers or cohorts of people with acute events, but the whole 

general population and, in a holistic point of view, affect the entire biotic compartment. 

Hence, humans are exposed to many environmental stressors during life, but the real 

balance is often represented by the addition of a series of environmental factors not linked 

to pollution, called confounders, which contribute to generate the final consequence in term 

of health or diseases onset (e.g. individual life or food habits).  

The interpretations as to the extent of environmental or confounders remains unclear own 

to the multifactorial nature of diseases. Some observations suggest the minor role of 

environmental pollutants in chronic diseases incidence rather than lifestyle factors, others 

underline contaminants as the major contributing factors (Belpomme et al., 2007a; 

Belpomme et al., 2007 b; Irigaray et al., 2007; Clapp et al., 2008; Miller et al., 2012, Joseph 

et al., 2013). 

In 2018, The Lancet Commission on pollution and health has developed the concept of 

“Pollutome”, as the totally of all forms of pollution that have the potential to harm human 

health causing illnesses (Fig. 1A). In the opinion of the Commission it could be viewed as 

a fully contained (nested) subset of the “Exposome”, the term coined in 2005 by Wild to 

identify every exposure to which an individual is subjected from conception to death. The 

Exposome complements the genome by providing a comprehensive description of lifelong 

exposure history (Wild 2005 and 2011), and its multidisciplinary measurement could be 

considered a useful way to improve prevention strategies from a public health perspective 

(Siroux et al., 2016) (Fig. 1B). 

  

https://monographs.iarc.fr/agents-classified-by-the-iarc/
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Figure 1. (A) The Pollutome. The totally of all forms of pollution that have the potential to harm human health. 

The Lancet Commission on pollution and health divides the Pollutome into three zones. Zone 1: well-

established pollution-disease pairs, with robust estimate contribution to the global burden of disease; zone 2: 

emerging effects of known pollutants, where evidence of causation is building but associations are not fully 

characterized; zone 3: new and emerging pollutants, whose effects are unknown and not yet quantified (source 

Landrigan et al., 2018). (B) The Exposome. Effects and interactions between the three different domains of the 

Exposome: the general external, the specific external and the internal. The internal exposome comprises 

processes as metabolism, inflammation, aging etc.…The specific external includes for example lifestyle and 

food habits. The general external is the wider climatic, social, economic and psychological influences of the 

environment (source Siroux et al., 2016). 

 

Up to this short overview, environmental pollution problems could be considered as a 

multilevel sum of past and present events, which could or not affect people at the same 

time, and nor to the same intensity or way (Trevors, 2010). Notwithstanding in the last 

decades there was a raise attention and a higher awareness for this hot issue, the complexity 

A 
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and the interconnection of the problems require likewise complex and interconnected 

solutions. 

Only through effective methods and models it could be possible to identify the variables 

and the causal links that feed the phenomena and influence each other’s parts. 

Observational studies focusing on these phenomena, on ecosystem alterations and on 

related biological modifications, allow to go back to the source of the alteration itself and 

to identify mechanisms of cause-effect. Therefore, the state of well-being or disease will 

be determined by the correlations between all the variables that contribute to generate the 

exposure. Actually, the “exposure” represents the key concept that could give, by its 

measurement, the chance to define the relationships between environment and health. 

 

 

1.2 Environmental Risk Assessment and Human Biomonitoring  

 

The complex investigation of the causal link between environment and health could be 

interpreted through a multi-level analysis that starts from the definition of environmental 

exposure, through its evaluation, up to the assessment of the associated risk for health.  

Thus, exposure measurement becomes a useful tool in understanding, characterizing, and  

reducing associated health risks (U.S. EPA 2019). 

In a general meaning, the "Risk" could be defined as an expectation determined by the 

observation of phenomena and variables, with a percentage of uncertainty depending on 

the field of application. From a mathematical point of view, the risk is defined as a 

combination of the probability of an event occurring and the severity of its damage, 

therefore the extent of the consequences determined. Accordingly, the risk becomes a two-

dimensional assessment expressed by the two variables: probability and magnitude. Thanks 

to these two factors, it permits to identify, predict or prevent, a series of phenomena whose 

effects could be deleterious. The system investigated must be screened, analyzed, 

deepened, in its entire structure, through protocols and methods that allow to generate a 

predictive definition and verification model. This model should be a tool at the service of 

authorized decision-making levels. 

To measure the exposure means to assess the “Environmental Exposure Risk”.  

In general, it is carried out to examine the effects of an agent on humans (Health Risk 

Assessment) and on ecosystems (Ecological Risk Assessment) (Dinis et al., 2009). 

The European Environment Agency in 1998 described a series of key task in general Risk 

Assessment to carry out especially for the environmental ones as guideline: 

i. Problem formulation: pollutants characteristics and chemistry; 

ii. Hazard identification: presence and toxicity of chemicals; 

iii. Release assessment: sources and rate releases; 
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iv. Exposure assessment: target of exposure and type of exposure; 

v. Consequence or effect assessment: how is it toxic and at what exposure levels and 

what is the effect on the receptors; 

vi. Risk estimation and characterization: what does the risk assessment 

tell us about the situation and what are the risks, quantitative or 

qualitative; 

vii. Risk evaluation: how important is the risk to those affected, those 

who create it, and those who control it. 

It follows that the risk characterization and/or risk evaluation are used as input for risk 

management in order to come up with an answer to which actions should be taken and how 

should the remaining risks be handled (Fairman et al., 1998). 

The scientific and methodological approach aimed to estimate exposure importance and 

extension is the Human Biomonitoring (HB). 

According to Centre of Disease Control and Prevention (CDC) definition, HB is a method 

for assessing human exposure to pollutants or their effects, by measuring these chemicals, 

their metabolites or reaction products in human specimens (CDC, 2005).This means a 

repeated and controlled quantification of these markers, on susceptible subjects (or exposed 

in the past) in a general environment or in a workplace (Zielhuis and Henderson 1986; 

Manno et al. 2010).   

Exposure to environmental pollutants occurs through different routes, such as inhalation, 

ingestion, and dermal absorption and the amount of pollutant uptake is named as the 

“absorbed dose.” Thus, the body burden of a specific pollutant is determined by factors, 

such as the pollutant’s concentration in a specific environmental medium, its physical and 

chemical properties, and timing of exposure, as well as individual factors, such as uptake, 

metabolism and excretion rates. HB considers all these factors by measuring the 

concentrations of a chemical or its metabolites in human matrices (WHO, 2015). 

It was firstly used in occupational medicine and then transferred to life habits or territorial 

emergencies.  

Concerning occupational medicine, the human biomonitoring allows to figure out and 

acquire data about health consequences after exposure to toxic compounds, thanks to its 

measured time and known type of contact to single elements or to a mixture. Examples are 

petroleum distribution workers (Heibati et al., 2018) or incinerator workers (Mauriello et 

al., 2017) exposure assessment. 

Different analytical methods to estimate the uptake of occupational chemicals in human 

body fluids were developed in the early 20th century (e.g. lead and a few other compounds 

and relative metabolites) (Angerer et al., 2007). Many years later (‘80s), HB was included 

in exposure and health surveillance programs as part of regulatory requirements, for 

instance for chemical industries. Indeed, when HB is compared to environmental evidence, 
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it shows itself to be an effective tool to improve occupational risk assessment at individual 

or group level, supporting the same health surveillance plans (Manno et al., 2010). During 

the health surveillance each worker is usually subjected to imaging, instrument, and 

biochemical testing to detect any clinically relevant occupation-dependent change. The use 

of biomarkers and of HB approach represents not only the method to estimate the internal 

exposure or to predict potential health effects, but also the chance to assess a causal 

relationship between health impairment and chemical exposure, when a change is firstly 

detected in exposed workers.  

Therefore, in the field of occupational medicine, the “occupational risk assessment” could 

be defined as a qualitative and quantitative characterization of an occupational risk; it 

consists of three fundamental tools: environmental monitoring, health surveillance and 

biological monitoring. It becomes clear that the advantage of using biomarkers and HB 

approach in occupational surveillance and study is recognizable when the toxicological 

significance of the compound object of the analysis is sufficiently known. Some examples 

are below. Zidek et al in 2017 reported in a review the use of HB data for regulatory risk 

assessment in “Canada Chemicals Management Program”. DEMOCOPHES study 

(Schwedler et al., 2017) was developed and carried out in Europe, with an attempt of 

harmonize HB studies on European scale, in order to support regulation. Same purposes 

for Human Biomonitoring for Europe (HB4EU) project (www.hbm4eu.eu), which joints 

efforts of many countries and environmental agency, coordinating and advancing HB in 

Europe, to provide scientific evidence  for chemical policy making. 

Nowadays the application of HB is beyond the limits of the occupational surveillance and 

is an attractive approach for research activities (Manno et al., 2014). 

Despite the impressive potential of the HB, particularly in occupational risk assessment, it 

is not always correctly used or interpreted. Some ethical issues become evident. As early 

as in 2002, The Code of Ethics of the International Commission on Occupational Health 

(ICOH, 2002), highlighted some questions:  

1. The aims of the study: if HB is performed for research interest or for health 

surveillance. 

2. The definition of an appropriate study design: depending on the aims, the right 

choice of biomarkers, of matrices, of sample size (WHO’s guidelines suggest a 

minimum of 120 subjects randomly selected), of reference group, of inclusion and 

exclusion criteria of enrollment. 

3. The scientific approach and methodology. 

4. The biomarkers validation and their predictive value. 

5. The operative aspects: samples collections and analysis. 

6. Interpretation of biomarkers data and management of the results. 

7. Data protection and communication. 

http://www.hbm4eu.eu/
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Beyond the occupational risk assessment, when HB is combined with health data, they 

together create an epidemiological study, aimed to observe the body burden of pollutants 

and their health effects. In addition, when HB is surrounded by environmental evidence it 

gives the possibility to obtain a systemic and full view of the condition investigated. In fact, 

HB alone usually does not reveal exposure sources and routes. Thus, environmental 

monitoring remains crucial for the development of targeted policy actions (WHO, 2015). 

Monitoring and analyses on environmental matrices (soil, water, air, food, biosentinel 

models), gives the overview of territorial context, a state of art of critical issues and of 

potential contaminated areas, mapping the spatial dimension of compounds and 

geolocalizing the putative sources of pollution (Balassone et al. 2016; Ducci et al. 2017; 

Ducci et al. 2019).  

Actually, in the systemic overview, the multidimensionality and the complexity of the 

observations are what gives the chance to divide the phenomenon in several levels of 

analysis, which, in the final intersection, could provide the global reading and 

interpretation.  

Despite the great potential of the approach, the main problem in the majority of 

environmental assessment protocols and human biomonitoring studies seems to be exactly 

the lack of data integration and methodological sharing between different science fields, as 

well as the lack of a holistic approach through which acquire a real snapshot of the overall 

degree of contamination. Frequently also the epidemiological analyses are twisted by a 

unilateral view, led by the observations on mortality and diseases incidence, linked with a 

single source of pollution, without any consideration for the sum of variables contributing 

to the condition.  

 

 

1.3 Exposure, Effect and Genetic Susceptibility Biomarkers  

 

HB protocols consider the determination of exposure, effects and susceptibility biomarkers 

in order to define the internal dose of pollutants and their direct effects on biological and 

cellular system (Migliore 2018) (Fig.2). 

Biomarkers of Exposure are the results of exposure itself and estimate chemicals or 

metabolites, in body fluids or in tissues, reflecting the internal dose and the level of 

pollutants absorbed. Inorganic and organic compounds, such as heavy metals, dioxins, 

dioxins-like and polychlorinated biphenyl (PCBs), and some of their derivatives, are among 

them. Biomarkers of Effect represent the biochemical or molecular reaction of the system 

to the xenobiotic compounds. They identify early and generally reversible biological 

effects: the measure of DNA damages, chromosome aberrations, sister chromatid 

exchange, DNA adducts and proteins, inflammatory cytokines, epigenetic changes. 
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Biomarkers of Susceptibility reflect the individuality, that is the predisposition to be 

susceptible to adverse effects related to exposure. For example, polymorphisms of relevant 

xenobiotic metabolizing enzymes. 

 

 

 

 

 

 

 

 

 

Figure 2. The continuum from exposure to disease. During different life stages biomarkers allow to evaluate 

the way and the magnitude of chemical interferences on biological processes, up to the alteration of structure 

and function, which means disease onset (source De Bord et al., 2015).  

 

An important issue, in a correct HB study design, is the appropriate choice of the sample 

matrix to analyze. It could depend on the study design, on the aims and on the type of 

exposure investigated in the HB. In the last decades, the improvement in technologies and 

methodological approaches allow to have very low limits of quantification (LOQ) and, in 

consequence, have expanded the use of non-invasive matrices even if with low 

concentration of xenobiotics investigated.  

As reported in Table 1, blood is one of the most suitable matrices for a series of 

investigations, given the half-life of its cellular components and the balance at systemic 

levels with other organs and tissues, even if it is limited by the invasiveness of the collection 

procedures (Smolders et al. 2009). A lot of heavy metals, such as lead and cadmium, are 

measured in blood. Dioxins and dioxins-like compounds, given their lipophilic nature, were 

originally evaluated in adipose tissue, but from ‘80s they are successfully estimated in 

serum, even if its low percentage of fats (WHO, 2015). Over the recent years, because of 

the great amount of serum required for high resolution analysis methods for these organic 

compounds (Brasseur et al., 2014), a lot of HB considers alternative specimens. For 

instance, breast milk of new mums is as a good reference matrix for this type of 

measurement given its lipophilic nature and given the level of information obtained on 

mother and child at the same time (Fang et al., 2013; Schuhmacher et al., 2019).  

Urine is probably the most frequently used matrix in HB to quantify the degree of 

environmental or occupational exposure to pollutants, especially for substances with short 

biological half-life. The collection and analysis of urine samples carries no associated risk, 

and large volumes can at once be gathered per individual (Esteban et al., 2009). Urinary 
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samples are useful for the analysis of inorganic compounds and metabolites of organic 

ones, for instance volatile organic compounds, like vinyl chloride, or inorganic mercury, 

which reflects a recent exposure to this pollutant. 

Other less common matrices, like hair, nails, saliva and teeth are practical for HB on 

children cohorts, given their non-invasiveness. These alternatives, with derivative of the 

most common ones, are generally used for in-depth analysis and particular tests. For 

example erythrocytes, a blood derivative, are the more appropriate for the Hexavalent 

Chromium Cr(VI) speciation; in fact Cr(VI) ions, after uptake by inhalation or 

percutaneously are carried in the blood plasma and penetrate, depending on the 

concentration, into the erythrocytes, which represent the golden standard target for its 

quantitative determination (Lewalter et al., 1985). Similar consideration for hair samples, 

used for Mercury (Hg) speciation. The growth rate of hair (1 cm per month) and the 

tendency of Hg to accumulate in hair make it possible to estimate long-term exposure. In 

addition, tracing the dynamic changes along hair growing direction provides an insight into 

average exposure on timescale ranging from weeks to months (Li et al., 2019a). Generally, 

more than the 80% of Hg in hair is as Metyl-Hg, which is taken up by hair follicles as 

MeHg-cysteine complexes (Pino et al., 2018). The semen is useful for the evaluation of 

Lead exposure; because of the evidence of structural alteration of spermatozoa in workers 

exposed to the element (Naha et al., 2005), there is a growing use of this specimen for the 

evaluation of exposure and the correlation with male infertility (Fatima et al., 2010 and 

2015; Onul et al., 2018). 
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Table 1. Biological matrices used in HB studies (source WHO, 2015). 
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1.4 Omics Sciences and Translational Knowledge for Human Biomonitoring 

 

Beyond exposure, effect and susceptibility biomarkers, the WHO’s guidelines underline 

the role over the last decades of the “omics sciences” for HB, which offered the opportunity 

to enhance the knowledge of the exposure-response continuum in health risk assessment. 

According to McHale et al., (2010), the perturbations causing the onset of human diseases 

can be assessed by measuring the components of the “responsome”, by means 

toxicogenomics technologies. Especially they refer to trascriptome, proteome, miRNome 

and methylome. In point of fact, the study of genome structure and function and its response 

to external stressors could integrate some fundamental aspects in HB assessment by 

toxicogenomic perspective, in order to understand molecular mechanisms subtended to 

toxicity (National Research Council, 2007; Vineis et al. 2013). A deep insight into gene-

environment interaction, through pathways, genetic, protein and metabolic alterations, 

pointed to predict phenotypic and clinical effects on susceptible populations (Albertini et 

al. 2000; Krishanu 2011). Noteworthy, these observations have also underlined the 

involvement of endocrine pathways, immune modulation, inflammatory response, as silent 

or symptomatic mediators of biological system perturbation associated to environmental 

exposure (Chighizola  et al. 2012; Gilbert et al. 2016; Almeida et al. 2019; Hassan et al. 

2019; Macchi et al. 2019; Zhao et al. 2019).  

The toxicogenomics analysis proceeds by two different approaches: one focused mainly on 

identifying mechanisms of toxicity in animal studies or in vitro, another carrying out 

analysis on well-characterized exposed cohorts of people, in order to directly determine 

biomarkers of exposure and early effects and assess dose-response (McHale et al., 2010). 

The omics techniques (adductomics, transcriptomics, proteomics, epigenomics and 

metabolomics), provide a molecular “fingerprint” of the exposure or early effects, 

comparable with profiles generated from already known toxicants. 

A series of study have described, with an omics perspective, the relationship between 

exposure and molecular answer to external stressors (Forrest et al., 2005; Zhai et al., 2005; 

van Leeuwen et al., 2008; McHale et al., 2009). Reading these studies, it is clear the need 

of an accurate experimental design and a detailed data collection. Moreover, in the analysis 

of the advancing in risk assessment (National Research Council, 2008), authors suggest, as 

recommendation for this approach, the harmonization of cancer and non-cancer  risk 

observations, to correct the deficiencies in the treatment of uncertainty and variability for 

this type of quantitative risk assessment. Human toxicogenomics data, if unbiased, could 

potentially generate biomarkers and enrich the knowledge on the mechanisms underlying 

several human diseases. In fact, toxicogenomics endpoints not only describe gene-

environment interaction and, with an appropriate sample size, could potentially give 

information on human heterogeneity. 
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Most human chronic diseases are result of the interactions between inherited genetic factors 

and modifiable environmental factors (Hunter, 2005). Likewise, most cancer cases are 

consequence of the interaction of genetic variants and environmental factors. In 1997 

Perera estimated that only the 5% of cancers’ development is led by genetic factors. For 

example, genetic susceptibility contributes only for 5-10% on the total incidence of breast 

cancer cases. The development of sporadic breast cancers might be indeed related to the 

interaction of genetic variation with environmental exposures (e.g. radiation, organic 

compounds, carcinogens, xenoestrogens) (Balmain et al., 2003). Molecular 

epidemiological studies have revealed that many environmental factors may interact with 

genetic variants to affect the risk of cancer development (Ning et al., 2014). In this context, 

toxicogenomics has become a fundamental tool for HB, with the primary goal to understand 

the correlations between environmental stress and human disease susceptibility, exploring 

the molecular mechanisms of environmental mutagens and/or carcinogens, and identifying 

potential biomarkers of disease and toxicity, including mutagenicity and carcinogenicity 

(Waters et al., 2004). Generally, there are two ways to perform toxicogenomics studies: (i) 

starting with conventional toxicological research and then focusing on omics approaches 

to detect systematic biological effects, and (ii) starting with the omics study followed by 

conventional toxicological research to interrogate molecular mechanisms. In this effort, it 

becomes a challenge to determine the mechanisms of toxicity induced by mixtures 

containing many chemical components (Ning et al., 2014). 

Understanding the interactions between genetic and environmental factors will provide 

insights into the etiology of cancers and chronic-degenerative diseases. This means the 

possibility of developing prevention strategy and translate the acquired knowledge into 

public health actions. Ning et al., supposed that in the next years, powerful infrastructures 

will be developed to support the storage, access, analysis and management of the huge 

amount and diversity of data derived from HB and toxicogenomics approach. Powerful 

bioinformatics tools will be developed for identification of genetic variants and genetic-

environmental interactions that contribute to cancer risk. This will hopefully lead to better 

diagnosis, treatments, and ultimately prevention. 
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1.5 Environmental epigenetics 

 

Environmental factors can affect the expression of the genome also through alterations in 

the epigenome, which is intended as the whole epigenetic modifications present along the 

DNA sequences in a particular cell type (Wild et al., 2013). The term “epigenetic”, literally 

“above the genetics”, was firstly used by Conrad Waddington in the 40s to explain “[…] 

the interactions of genes with their environment which bring the phenotype into being”. 

Epigenetic modifications do not entail change in the genome code, but only in the gene 

expression. Hence, it provides the link between genes and phenotype. Thanks to the 

advancing in this research field, it was suggested the role of epigenetic mechanisms in 

modulation of gene expression programs in response to environmental exposure. Actually, 

epigenome functions can be considered an interface between the genome and the 

environment (Hou et al., 2012). Despite the dynamism, due to its reversible changes, an 

alteration in epigenome may represents a more stable signature of environmental exposure 

than transcriptomic ones (Wild et al., 2013). Some authors identified epigenetic marks as 

early changes in the biological system investigated in reaction to exposure to some external 

stressors. Among them, the tobacco smoking (Vaissere et al., 2009; Wan et al., 2012), the 

benzene (Bollati et al., 2007), the particulate matters and air pollution (Tarantini et al., 

2009; Bollati et al., 2010), the arsenic (Bailey et al., 2013). It is clear that epigenetic plays 

a mechanistic role in the consequent disease processes. Since epigenetic regulates cellular 

plasticity, that is the ability of a cell to rapidly respond to its environment, and is a key 

regulator of critical cell processes including genome stability and gene transcription, it 

offers an attractive biological mechanism to explain how environmental exposures can 

cause disease (Ladd-Acosta and Fallin, 2016). 

Epigenetic modifications include DNA methylation, histone modifications and long non-

coding RNA activity. They are physiologically involved in the regulation of many cellular 

processes, including DNA-protein interactions, suppression of transposable elements 

mobility, cellular differentiation, embryogenesis, X-chromosome inactivation and genomic 

imprinting, regulating chromatin remodeling and spatial and temporal gene expression 

(Meissner et al., 2008; Portela and Esteller, 2010). 

 

1.5.1 DNA Methylation mechanisms 

DNA methylation is the most deepened epigenetic mechanism in relation to environment 

stressors. It occurs when a methyl group (-CH3) is covalently bonded to the carbon 5 (5C) 

position of a cytosine and this happens exclusively in the context of CpG dinucleotides 

(Clark et al., 1995). The CpG dinucleotides tend to cluster in some regions, even if they are 

distributed in the whole human genome, representing about 1% (Varriale and Bernardi, 

2010). High-density regions called “CpG islands” have more than 500 bases, with more 
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than 55% GC (guanidine and cytosine) content and an expected/observed CpG ratio of > 

0.65. Approximately 40-60% of human gene promoters contains CpG islands and are 

usually unmethylated in physiological conditions; about 6% of them become methylated in 

a spatial- (tissue) and temporal- (lifespan) specific manner (Fig. 3a). Up to 2 Kb (kilobases) 

upstream the CpG islands, are located the “CpG shores”, with more than 75% of tissue-

specific differentially methylated regions. Methylation in shores shows higher correlation 

with gene expression than CpG islands (Fig. 3b). Finally, “CpG shelves” are located about 

at 4 Kb from islands. Occasionally some CpG clusters are located within the body of the 

gene (Fig. 3c), or even in the UTR region (untranslated region), where they are normally 

more susceptible to methylation (Esteller, 2002). Considerable amount of CpG are also 

found in repetitive DNA elements such as transposons and retrotransposon-like elements. 

Highly methylated CpG in these regions are necessary to prevent transposition, 

chromosome and genome instability (Ehrlich et al., 1982) (Fig. 3d). 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 3. DNA methylation patterns. The figure describes on the left column a normal condition, on the right 

the altered one. (a) CpG islands when are located at promoters of genes are normally unmethylated, allowing 

transcription. When they are methylated cause transcriptional inactivation. (b) Same mechanism characterizes 

CpG shore. (c) Methylation along the gene body in a normal scenario is closely related to transcriptional 

activation, elongation efficiency and prevention of spurious initiation of transcription. It is positively associated 

to gene expression. In altered scenario the loss of methylated sites along the gene body could promote origin 

of transcription at incorrect points. (d) Methylation at repetitive sequences allows to prevent chromosome 

instability, translocations and gene disruption. Unmethylated scenario is associated to diseases onset (source 

Portela and Esteller, 2010). 

DNA methylation is mediated by DNMT (DNA methyltransferase) enzymes, which allow 

to transfer a methyl group from S-adenosyl methionine (SAM) to the 5C of DNA cytosine. 
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The members of the DNMT family, which effectively possess the methyltransferase 

activity, are classified in “de novo DNMTs” (DNMT3A and DNMT3B) and “maintenance 

DNMTs” (DNMT1). During the embryonic development DNMT3A and DNMT3B are 

responsible of the methylation pattern setting. DNMT1, the maintenance enzyme, is able 

to preserve the methylation pattern already existing, because of its affinity for emi-

methylated DNA sequences. It has the role of catalyze methylation on a DNA strand 

associated to a methylated CpG dinucleotides during semi-conservative DNA replication. 

Indeed, it is the most abundant DNMT in the cell, and is expressed mostly during S phase 

of the cell cycle. 

The 5C of the cytosine could also be modified in 5- hydroxymethylcytosine (5hmC), the 

oxidative product of 5-metylcytosine, catalyzed by TET (ten-eleven translocation) family 

enzymes. This epigenetic mark plays a role in embryonic stem cells and blood cells 

differentiation, in neuronal development, through a mechanism of DNA demethylation able 

to regulate gene expression (Shock et al., 2011; Pastor et al.,2013). 

Altered methylation pattern were highlighted in some pathogenic processes. Neoplastic 

conditions are generally characterized by gene-specific hypermethylation with a global 

hypomethylation scenario. While the global hypomethylation leads to chromosome 

instability, aberrant translocations and mutations, the hypermethylation that occur in CpG 

islands associated to gene promoters, cause transcriptional inactivation. When the gene is 

involved in the cell cycle control, DNA repair, Tp53 signaling, apoptosis, then the 

carcinogenesis is triggered (Portela and Esteller, 2010).  

Aberrant DNA hypermethylation has been reported in the promoter regions silencing 

tumor-suppressor genes such as CDKN2A (cyclin-dependent kinase inhibitor 2A), 

CDKN2B (cyclin-dependent kinase inhibitor 2B), TP73 (tumor protein p73), MLH1 (mutL 

homolog 1), APC (adenomatosis polyposis coli), BRCA1 (breast cancer 1), MGMT (O-6-

methylguanineDNA methyltransferase), VHL (von Hippel-Lindau tumor-suppressor), 

GSTP1(glutathione S-transferase pi 1), CDH1 (cadherin 1) and DAPK1 (death-associated 

protein kinase 1) (Sharma et al., 2010). For this reason, hypermethylated promoters are 

considered cancer biomarkers, with great diagnostic and prognostic potential (Li et al., 

2009). Otherwise, the global hypomethylation could also be caused by dysregulation in 

DNMTs expression. Furthermore, epigenetic alterations are involved in 

neurodevelopmental, neurodegenerative and autoimmune diseases (Javierre et al., 2008; 

Urdinguio et al., 2009). 

 

1.5.2 The role of DNA methylation in environmental epigenetics 

DNA methylation is the most widely epigenetic mark observed in the environmental 

epigenetic studies. The exposure to external stressors has the potential to modify gene 

expression and adult disease susceptibility in different ways through changes in the 
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methylation patterns. These epigenetic changes can be inherited in somatic cells during 

mitosis, providing a potential mechanism by which the environmental impact on the 

epigenome can affect gene expression in long-term.   

In addition, considering that the methylation pattern is also inherited in germinal cells 

division, the hypothesis of a transgenerational epigenetic inheritance represents a growing 

research field, especially referred to environmental exposure inducing epigenetic changes 

(Jirtle and Skinner, 2007; Feil and Fraga, 2012; Ladd Acosta and Fallin, 2015). Evidence 

from animal studies indicates that prenatal and post-natal environmental factors exposure 

(during the life-stages when a series of demethylation and methylation programming 

occur), can result in altered epigenetic programming and subsequent change in the risk of 

developing diseases. Likewise, mice germlines show that environmental influences could 

be linked to disease phenotypes in adulthood through the inherited epigenome 

modifications (Morgan et al., 1999; Lane et al., 2003; Anway et al., 2005; Anway and 

Skinner, 2006; Pembrey et al., 2006). 

A series of studies on human cohorts were conducted to investigate the relationship 

between exposure to heavy metals, organic compounds and changes in DNA methylation 

patterns. Some evidence highlighted by HB studies are reported in Table 2, adapted from 

Migliore 2018 (Chapter 18). 

 

Table 2. Human Biomonitoring using epigenetic biomarkers (adapted from Migliore, 2018 – Chapter 18). 

 

Exposure Sample size Biological 

matrix 

Epigenetic effect 

reported 

Bibliography 

Benzene 213 adults Whole 

Peripherical 

Blood 

DNA 

hypomethylation in 

LINE-1 and AluI 

Bollati et al., 2007 

PAH - urban smog 

(Polycyclic 

Aromatic 

Hydrocarbons) 

56 children Leukocytes from 

Cord Blood 

DNA 

hypermethylation in 

CpG island 

associated with 

ACSL3 gene 

Perera et al., 2009 

POPs (Persistent 

Organic 

Pollutants) 

70 adults Whole 

Peripherical 

Blood 

Global DNA 

hypomethylation 

Rusiecki et al., 2008 

Particulate Matters 718 adults Leukocytes from 

whole 

peripherical blood 

Global DNA 

hypomethylation 

Baccarelli et al., 2009 

Arsenic by 

drinking water 

16 women Leukocytes from 

whole 

peripherical blood 

DNA methylation 

changes for breast 

cancer and diabetes 

correlated genes 

Bailey et al., 2013 
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Endocrine 

Disruptor 

196 pregnant 

women 

Placenta DNA 

hypomethylation in 

DMR 

(Differentially 

Methylated Region) 

IGF2 and H19 

La Rocca et al., 2014 

 

 

Arsenic exposure from drinking water was associated with pathways involved with breast 

cancer and diabetes onset by Bailey et al. in 2013. Also, Ameer et al. in 2017 associated 

arsenic exposure from drinking water with decreased gene expression and DNA 

hypermethylation in peripheral blood. The pathway analysis performed in this study 

suggests the involvement of genes related to cell death and cancer. 

Benzene low-dose exposure was related, in HB on workers cohort as well in 2007 by Bollati 

et al., to a significant reduction in LINE-1 and AluI methylation, the repeated sequences 

representative of global DNA methylation. Results obtained were consistent with global 

methylation observed in malignant cells and particularly in acute myelogenous leukemia 

(AML). In addition, they verified hypermethylation in P15 promoter (which normally 

shows low or not methylation), and hypomethylation in MAGE-1 gene (with high 

methylation in normal tissues). Even these two observations were consistent with leukemia 

condition. Likewise, POPs and Particulate Matters from urban smog cause global DNA 

hypomethylation (Rusiecki et al., 2008; Baccarelli et al., 2009). 

A systematic review published in 2015 by Ruiz-Hernandez et al., reported a synthetic 

overview of the studies evaluating the association of some environmental chemicals and 

DNA methylation. The Figure 4, adapted from the review, describes possible mechanism 

of action elucidating these interactions. 

 

 

 

 



 

19 
 

 

 

Figure 4. Possible mechanisms of action for environmental chemicals on DNA methylation. Metals, POPs and 

PAH tend to increase reactive oxygen species (ROS) formation. This alters methionine synthesis pathways, 

leading to a reduced synthesis of S-adenosylmethionine (SAM), substrate for DNMT enzymes. SAM depletion 

potentially inhibits DNA methylation, resulting in global DNA hypomethylation. Oxidative stress is proposed 

to stimulate the alpha-ketoglutarate (α-KG) production, which activated TET enzyme that, in presence of iron 

and oxygen, triggers demethylation pathway. 

Short-term cadmium, PAH, lead and mercury exposure direct reduce DNMT concentration and activity. 

Conversely, long-term cadmium exposure induced compensatory DNMT overexpression, which increase 

global DNA methylation (adapted from Ruiz-Hernandez et al, 2015). 
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1.6 Environmental Context Overview: the Campania Region case study 

 

Scientific literature documents some biomonitoring and epidemiological analyses about 

national areas of particular interest. Seveso in the Northern of Italy and Taranto in the South 

are two examples (Hay, 1980; Brambilla et al., 1998; Signorini et al., 2000; Warner et al., 

2013; Vimercati et al., 2016; Buononato et al., 2016; Ingelido et al., 2017; Lovreglio et al., 

2018). Among them, one of the most famous italian environmental contexts, considered in 

the last decades as a polluted land, is Campania Region. For several years, some areas of 

Campania have been scenario of irregular waste disposal and illegal dumping, defining a 

potential danger for spreading of persistent pollutants in the environment. In addition, due 

to a series of uncontrolled burning waste events, some of these areas gained the name of 

“Land of Fires” (LOF) (Legambiente Reports, 2013 and 2015). Over the years, public 

opinion has focused its attention on potential environmental damage arising from the LOF 

and its supposed correlations with adverse pathological outcomes, generating alarm. 

Probably because of an intense and inaccurate media coverage, and probably because of a 

complete unawareness of people on the true situation, the attention was brought on the 

Campania products, triggering a widespread distrust for what came from the territory, with 

a huge damage for agri-food sector. This emergency prompted special intervention by the 

Italian government, which set up an inter-ministerial task force (Law 6/2014) charged with 

guaranteeing the safety of agricultural production.  

Many substances, chemical products and derivatives of burning and waste disposal are 

known to be harmful (especially those featured in the IARC ranking, in which substances 

are classified as carcinogenic on the basis of solid scientific evidences - 

https://monographs.iarc.fr/agents-classified-by-the-iarc/). Consequently, those associated 

with practices and events responsible of the LOF phenomenon, have been characterized 

from epidemiological and analytical point of view in various institutional and research 

contexts. This has made Campania one of the most thoroughly investigated Regions in Italy 

regarding the environmental pollution.  

Several studies have been carried out (Mazza et al., 2018); some have focused on the 

measurement of exposure in humans or animals (Basile et al., 2009; Rivezzi et al., 2013; 

De Felip et al., 2014; Esposito et al., 2014; De Roma et al., 2017), others on the 

epidemiological evaluation of exposure and health effects (Senior and Mazza, 2004; Fazzo 

et al., 2011; Pirastu et al., 2013; Comba et al., 2014; Triassi et al., 2015). One series of 

monitoring activities on environmental and biological matrices showed levels of pollutants 

consistent with those expected for burning waste, as dioxins, dioxin-like and 

polychlorinatedbiphenyls compounds (Rivezzi et al., 2013). Likewise, compounds 

originating from urban areas and from rural and industrial activities have been detected 

https://monographs.iarc.fr/agents-classified-by-the-iarc/
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with specific distribution in the provinces (Pacini et al., 2013; Ducci et al., 2017; 

Thiombane et al., 2018). By contrast, several studies have revealed levels of pollutants in 

Campania comparable to or lower than the values registered in other European countries 

or in the industrialized areas of Northern Italy (Ulaszewska et al., 2011; De Felip et al., 

2014). In 2014, Esposito et al. did not detect significantly higher levels of organic 

compounds (dioxins, dioxin-like, polychlorinated biphenyls congeners) in blood serum 

from people living in urban Naples and in “triangle of death” area, than those recorded in 

other European countries and Italian Regions. This was probably due to the lower presence 

of industrial plants and other recognized sources. In 2013, Pacini et al. reported that the 

main bodies of water in several areas of the Campania Region were in poor condition, 

owing to their relatively severe sediment contamination. Nevertheless, in the fish samples 

analyzed, they did not find high levels of the compounds investigated. 

Concerning epidemiological evaluation, data from scientific literature actually reveal a 

decreased trend for oncological mortality from 1988 to 2009 in Campania, at the regional 

level, and, to a lesser extent, in the Provinces of Naples and Caserta (where LOF 

municipalities are concentrated), although in these same areas it was registered a significant 

deviation, from regional and national trend, with mortality excesses for some neoplastic 

and chronic conditions (Crispo et al., 2013). Furthermore, in 2014-2015, the SENTIERI 

report documented cancer incidence and mortality rates in towns in the LOF areas that were 

comparable to those recorded in areas with a history of industrial pollution in Northern and 

Southern Italy. 

With regard to disease epidemiology, in 2014 Pirastu et al. reported higher rates of all-

cause mortality and mortality due to neoplastic and chronic diseases in both sexes in two 

Campania areas, “Litorale Domizio-Flegreo and Agro-Aversano” and “Area Litorale 

Vesuviano”, in comparison with the regional population; these data were later confirmed 

by Zona et al. in a 2019 update of the fifth SENTIERI report. However, only some of the 

medical conditions investigated can be correlated ‘a priori’ with environmental causes. 

While the above authors hypothesize a correlation between disease onset and mortality 

rates with unauthorized waste disposal or occupational exposure, they also strongly 

recommend improving biomonitoring, epidemiologic evaluation and primary health 

interventions. 
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1.7 Integrated Approach for Human Biomonitoring 

 

Diverse scientific publications on Campania Region case study and HB have stoked an 

epidemiological controversy (Cantoni, 2016). It is well known that the genesis of neoplastic 

disease is complex and multifactorial, therefore its investigation requires the integration of 

different evaluations on determining factors. In fact, the epidemiological evidence needs to 

take in account some other putative determinants of disease, including lifestyle, lack of a 

culture of prevention, social deprivation, and even the governance of the Regional Health 

System. Various epidemiological, clinical, geographical models have shown statistically 

significant correlations between several kinds of chronic or neoplastic diseases and 

exposure to diverse chemicals. However, much of the evidence available have been limited 

by the lack of fundamental information, such as environmental characterization in areas of 

analysis or the failure to investigate biomarkers or to adopt a molecular approach (Barba et 

al., 2011). None of the above-mentioned epidemiological evaluations have considered all 

the features of the phenomenon in its entirety, nor was able to analyze a homogeneous data-

set: integration of data on the territory (soils, waters and air), food, animals, humans, or 

full-blown clinical outcomes (including confounding factors). Moreover, none of them 

have assessed the complex system of variables, environmental matrices and toxicokinetic 

which contribute to exposure and the putative risk for citizens' health. The real critical point 

in this type of analysis is the complexity of the environmental system, which includes biotic 

and abiotic compartments that coexist in a delicate balance.  

Hence, to support a complete understanding of the phenomena, the entire system needs to 

be integrated into a single multilevel analysis, in order to define causal relationships 

throughout the network of factors involved.  

For example, in HB studies, a fundamental contribute should be provided by the monitoring 

of the environmental contexts, especially by pollutants data in matrices (soil, water and 

air), in order to acquire a synthetic indicator of the contamination levels in the system 

analyzed. Additionally, in order to assess the contribution of diet and lifestyle, HB 

participants should be subjected to a validated questionnaire which collect these evidence 

(e.g. EPIC – European Prospective Investigation into Cancer and Nutrition studies); they 

also should undergo a complete medical examination to assess clinical parameters and 

anamnestic data. Finally, the sample size and the choice of matrices of analysis should fit 

with the primary endpoints of the study, with the possibility of integrating exposure, effects 

and susceptibility biomarkers (Pierri et al., 2020).  

Concerning LOF and Campania Region case study, since data collected in different HB 

have so far been unable to demonstrate a causal link between human exposure to pollutants 

from dumps or other sources and increased mortality due to chronic and degenerative 



 

23 
 

diseases in some municipalities, this implicates an enhanced and compelling requirement 

of a methodological breakthrough.  

As mentioned above, some assessments have not considered a set of specific variables 

covering environmental features, context observations and confounding aspects (lifestyle 

and dietary habits, social and economic deprivation, lack of a culture of prevention).  

This underscores the pressing need of applying a new biomonitoring model, a new 

multidisciplinary and systemic approach with an analytical design capable of depicting the 

real state of contamination, and then to look in depth for the molecular mechanisms and 

the potential phenotypic consequences, with a view of assessment the exposure risk for 

residents and susceptible individuals. 
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2. AIMS OF THE STUDY 

 

The purpose of the PhD dissertation is to introduce and describe an innovative HB protocol, 

carried out in the complex environmental context of the Campania Region, including the 

“Land of Fire” area. The dissertation is especially focused on innovations in HB study 

design and procedures and on biomarkers of exposure and effect considered in the health 

risk assessment for people residing in the regional territory. 

The biomonitoring model is based on a whole systemic analytical evaluation of the 

environmental context. The paradigm of the protocol considers three elements: 

identification of pollution sources, of pollutants migration ways and of effects on target 

organisms, and pursues its aims enrolling healthy human cohorts, in order to identify 

potential risks of exposure to pollutants and to potentially predict correlated clinical 

outcomes.  

The following chapters will describe: 

1) Innovative study design and procedures, with environmental background 

characterization. 

2) Exposure and effect biomarkers aimed to have a direct quantification of the 

environmental impact on the general population. 

3) Exploring the environmental epigenetic marks, as DNA methylation, through an 

“omics” approach. 

4) Data integration from several levels of analysis: monitoring of environmental 

matrices, human biomonitoring, toxicogenomic analysis and epidemiological 

evaluation, in order to obtain a framework of the regional condition, giving a 

spatial and geographical reference to pollutants, their sources and their migration 

ways. This could make up for the lack of methodological sharing and data merging 

among complementary scientific fields.  

 

The long-term objective of the study, over the current PhD dissertation, is to create an 

integrated, dynamic map of environmental contamination in the Campania Region, in 

order to support the implementation of public health interventions and provide a 

reference model for the evaluation of exposure risk assessment.  

Given its holistic nature, the model aspires to be translated in different contexts and for 

various applications, and to become a useful tool for comparative and multi-criteria 

analysis elsewhere. 
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3. MATERIALS AND METHODS 

 

3.1 Study Design  

 

SPES “Exposure Study on Susceptible People” is an epidemiological observational cohort 

study promoted by the Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM) of 

Portici (Naples) in collaboration with the National Tumor Institute IRCCS “G. Pascale” of 

Naples. The protocol of the study was approved by the ethics committee of the IRCCS “G. 

Pascale” through Commissioner Deliberation n.590 of 03/08/2016. 

The PhD project was carried out in partnership between Laboratory of Molecular Medicine 

and Genomics (Lab. Med. Mol. Ge.), Department of Medicine, Surgery and Dentistry 

“Scuola Medica Salernitana”, University of Salerno, and the “National Reference Center 

for Analysis and Correlation Study of Environment, Animals and Humans”, IZSM. 

 

The study design consists of two parts:  

1. A context overview, in order to individuate source of contamination (variables) 

and the migration pathways of pollutants, and to define, by means of a multi-

criteria analysis, geographical areas of interest as “clusters”, which are then ranked 

according to a computed environmental “Pressure Index”.  

2. A transversal biomonitoring of people living in these clusters, in order to estimate 

“exposure” by quantifying pollutants in biological samples and investigating its 

biomolecular effects through in-depth “omics” analysis.  

 

3.1.1 Environmental characterization of the Campania Region 

Data from the scientific literature, the ARPAC (environmental regional agencies) database, 

Potential Hazard Maps (Minolfi et al., 2016), local monitoring projects on the Land of Fire 

and on the Campania Region, and preliminary results from the Campania Trasparente 

project (www.campaniatrasparente.it) (Fig.5) allowed us to have an overview of the 

territorial context and potentially contaminated areas, by mapping the spatial distribution 

of chemical compounds and geo-localizing the putative sources of pollution. 

  

http://www.campaniatrasparente.it/
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Figure 5. Campania Trasparente Environmental Monitoring. The environmental background of SPES 

biomonitoring. The search for pollutants in bioindicator organisms and environmental matrices yields a 

guideline for identifying impact areas and Risk Indexes in the municipalities observed. 

 

 

3.1.2 Pressure Index computing for cluster generation and impact areas definition  

We adopted an innovative approach in order to construct a “Comparative Risk Assessment 

Model” based on a multi-criteria analysis and combinatorial calculation of the percentage 

weight assigned to variables that contribute to determining the exposure.  

The paradigm, shown in Figure 6, defines the evaluation chart model, from the selection of 

sources responsible for contamination, through the identification of migration pathways of 

pollutants, up to the final targets of exposure.  

This approach provides a better understanding of the environmental impact determined by 

the sum of variables, the concerted action which generates the exposure, or rather creates 

part of the “exposome” (Wild, 2005 and 2012; Dennis et al., 2017), which could condition 

human health and putative targets. 
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Figure 6. Paradigm of the method, from the selection of variables (sources of pollution) for AHP model, 

through identification of migration pathways of pollutants, to final target organisms. Migration pathways of 

pollutants represent the junction between the origin of pollutants and the final targets. 

 

 

The variables shown in Table 3 were selected in such a way as to include all the factors 

involved in the pollution process, i.e. sources of potential contamination, analytical data on 

environmental matrices (soil, water, air), migration pathways from contamination sources 

to potential targets, and the targets themselves. Each variable was inserted into a rank 

system which attributes a score to each single factor, depending on the weight of the factor 

in generating the exposure; this operation was done by means of the multi-criteria decision 

support technique Analytic Hierarchy Process (AHP) (Saaty, 2008).  
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Table 3. Variables selected for Multi-criteria Analysis by the Analytical Hierarchy Process (AHP). 

 

 

The AHP enables several alternatives to be compared with regard to a plurality of criteria, 

and yields an overall evaluation of each variable, which then can be ordered, for instance, 

according to a preference axis. Thus, all variables were geo-referenced and ordered in a 

geographic database (using Geographic Information System - GIS) and their percentage 

weight distributions were defined by means of AHP (Fig. 7).  

  

VARIABLES – SOURCES 

OF POLLUTION   

Environmental Parameters for IRc computation 

 

1 

 

Contaminated sites 

 

Sites according to Legislative Decree 152/2006; sites of 

classes 3, 4 and 5 according to Decrees n.56 of 

09/03/2015 and n.191 of 08/19/2015 related to the “Land 

of Fires”.        

    

2 Zoning Use of land for agriculture, industry and urban purposes; 

housing density and evaluation of air quality. 

 

3 Areas of particular 

interest 

Sites of national and local interest present in the regional 

territory; illegal and pending landfills and potentially 

contaminated sites surveyed since at least one value 

above the CSCs was found. 

 

4 State of groundwater 

and surface water 

Water Analysis data from Campania Trasparente and 

ARPAC monitoring. 

 

5 Potential Hazard Soil analysis data from Minolfi et al., 2016, Campania 

Trasparente and ARPAC monitoring. 

 

6 Illegal waste disposal 

and dumping 

 

Data monitoring by SMA Campania 

(https://www.smacampania.info/progetto-terra-dei-

fuochi/). 

7 Waste disposal plants Composting plants, waste-to-energy plants, STIR plants, 

controlled landfills 

 

8 Particles covered 

“Land of Fire” 

Decree 

DM 23/12/2013 - TdF 2a, 2b and 5, 4 and 3 of class A 

particles. 
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Figure 7. (A) Flowchart for the definition of “Municipal Risk Index” (IRc) and cluster generation.  

(B) Percentage distribution of weights of variables resulting from Analytical Hierarchy Process. For each source 

of pollution, the AHP model defines the importance of criteria by means of pairwise comparison. Comparisons 

create a calculation matrix from which the generation of a priority vector gives the final percentage distribution 

of the weight of each variable. 

 

This enabled us to compute a “Municipal Risk Index” (IRc): our “Pressure Index”, given 

by the sum of the weights of the variables characterizing the territory of the municipality 

in analysis. This value ensures diversification of the pressures exerted by each source and 

reproduces different levels of risk; to sum up, this index provides a synthetic representation 

of the level of pressure exerted by the contamination sources on the municipal territory. 

The IRcs have been subsequently normalized (by a relativization method with variation 

range), and divided into homogeneous classes using the Natural Breaks Algorhitm (Dent 

1999; Slocum 1999): 21 clusters comprising several municipalities whose score of risk 

index is included in a given range (Table 4). A completely different approach from the 

epidemiological computed indexes of Martuzzi et al., 2009 and Musmeci et al., 2010.  
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Table 4. Computed Municipal Index Risk IRc: range and clustering. 
 

N. CLUSTER CLUSTER IRc Normalized IRc 

1 HIGH_1 833-1015 16-19 

2 HIGH_2 1051.7-1216.10 21-23 

3 HIGH_3 1240,8 - 1375,9 24-26 

4 HIGH_4 1408.4 - 1514 27-29 

5 HIGH_5 1563 - 1687.5 30- 32 

6 HIGH_6 1692.3 - 1876.2 33 - 36 

7 HIGH_7 1916.4 - 2049.7 37-40 

8 HIGH_8 2101.3-2286.7 41-44 

9 HIGH_9 2429.6 - 2650.1 47-51 

10 HIGH_10 2729.6 - 3005.7 53-58 

11 HIGH_11 3251.3 - 3347.8 63-65 

12 HIGH_12 4125.9 - 5108.1 81-100 

13 MEDIUM_1 791.7 - 1200.8 15-23 

14 MEDIUM_2 1544.2 - 1749.4 30-34 

15 MEDIUM_3 1847.5 - 3373.1 36 -66 

16 LOW_1 265.6 - 499 4 - 9 

17 LOW_2 525.4 - 815.6 9 - 15 

18 LOW_3 812 - 1087.3 15 - 21 

19 SABATO 1100.6 - 2077.9 21 - 40 

20 IRNO_1 687 - 1201.3 13 - 23 

21 IRNO_2 1711.1 33 

 

 

The spatial distribution of environmental pressures, as yielded by the variables and by the 

computed IRc, provided an exhaustive representation of the territory, characterized mainly 

by three increasing levels of impact: high impact, medium impact and low impact (Fig. 

8A). The high-impact area (Fig. 8B) included most of the territory of the Naples and 

Caserta provinces; this area is densely populated, has poor-quality groundwater and 

exceeds “contamination threshold concentrations” (CSCs) in soil samples. Numerous 

contaminated or potentially contaminated sites are located in this area, according to 

Legislative Decree 152/2006, denoting a high level of environmental pressure. The 

medium-impact area (Fig. 8C) included municipalities in the Naples, Salerno and Avellino 

provinces, which have poor-quality groundwater and exceed CSCs in soils. In addition, 

some municipalities show groundwater concentrations of organic halogenated compounds 

far above CSC values. The “Irno Valley” and “Sabato Valley”, which are situated in this 

area, contribute to this contamination through the presence of large industrial facilities and 

the orographic conformation of the sites. The low-impact area (Fig. 8D), covering the 

province of Salerno, the coastline (Cilento) and inland area (Sele-Tanagro), is characterized 

by a good state of groundwater, a low presence of CSCs and a low anthropization rate. 

On the basis of the migration pathways of pollutants, an intervention area was identified 

for each level. 
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Figure 8. Clusters and Impact Areas. (A) Map of Campania Region showing areas of impact and clustering: 

(B) high impact, (C) medium impact, (D) low impact. 

 

Based on the Comparative Risk Assessment Model and on the clustering of the 

municipalities in areas linked to different levels of human exposure, a target population in 

the HB protocol was identified in a ratio of 4:2:1 in high-, medium- and low-impact areas, 

respectively: 12 clusters were selected in  the high-impact area, 6 in the medium-impact 

area and 3 in the low-impact area. 

 

3.1.3 Study Population– SPES “Exposure Study on Susceptible People” 

In order to integrate epidemiological observations, biomonitoring and toxicogenomic 

approaches, the SPES study design envisioned the recruitment of healthy residents in the 

Campania Region, the aim being to further investigate the state of exposure and its putative 

pathological consequences.  

The scientific protocol involved the evaluation of a set of biomarkers able to quantify 

exposure and to detect individual genetic and molecular responses to the potential damage 

suffered. 

A B 

C D 
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In detail, exposure biomarkers comprised the presence of organic and inorganic 

compounds; effect biomarkers included sentinels of morphological, structural and 

functional alteration of cell systems; individual biomarkers of genetic susceptibility 

involved subjective features of predisposition or resistance to disease (Fig. 9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. SPES Study Design. Selection of target population and analytical methods. 

 

The study design considers an integrated set of assessments on healthy subjects living in 

several regional areas with different environmental “Pressure Indexes”, computed by 

analyzing environmental data and literature references, as explained in previous paragraph.  

A total of 4205 subjects were enrolled; the sample size was fixed in such a way as to 

guarantee optimal power on statistical tests (with a significance level of α= 0.06, the power 

is 90%); subjects were selected from the various impact areas in a ratio of 4:2:1, in cohorts 

of 200 people for each cluster.  

The inclusion criteria were:  

o good health (no severe or neoplastic conditions),  

o age range 20-50,  

o both sexes,  

o no viral infectious (HIV, HCV, HBV),  

o residence in the municipalities under study.  

Among the inclusion criteria, it is important to underline that the age-range chosen (20-50 

years) allows a better correlation between lifestyle and exposure to work-related risks; 

indeed, in younger or older age-groups, this correlation may be underestimated or 
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overestimated, respectively. In this way, we tried to reduce the contribution of some 

confounding factors. In addition, the choice of the age-range guarantees greater adherence 

to the project and a higher probability of being able to conduct long-term follow-up. 

Furthermore, in addition to having a negative history of HIV, HCV, HBV (to ensure the 

safety of operators and avoid bias) and providing informed consent, the participants must 

have lived for at least 5 years in these municipalities.  

 

3.1.4 People cohorts enrollment and sample collection 

The viability of the study was ensured through precise planning of the operating 

procedures; this guaranteed the ethical and scientific validity of the methods and actions in 

each phase and the rapid achievement of the final endpoints.  

A Contract Research Organization (CRO) supervised all procedures during protocol 

performing. 

The operational steps of the study were divided into five main areas of action:  

(i) volunteers recruiting; 

(ii) enrollment and medical examination; 

(iii) samples collection; 

(iv) experimental phase and reporting of results; 

(v) data management and elaboration. 

The selection procedures were implemented through random extrapolation of the 

population sample by means of an algorithm (Linear Congruential Generator - LCG) that 

randomly selects potential participants from municipal registries on the basis of the criteria 

indicated. The alignment of this random sample with the provincial phonebooks permitted 

to obtain the telephone contacts that the dedicated call center can make use of. 

The activity of the call center was accompanied in parallel by the activity of recruitment 

units throughout the territory; these geo-located the potential participants in the 

municipalities of interest, identified stakeholders and promoted scientific communication. 

Indeed, scientific and health communication was one of the secondary endpoints of the 

study and was aimed at promoting awareness and transferring knowledge of health and 

prevention issues through specific campaigns tailored on the basis of social deprivation 

indexes.  

On recruitment, participants signed a document in which they consented to the confidential 

treatment of their personal information, in accordance with current legislation on privacy 

(EU 679/2016). Eligible subjects, who were willing to participate, were registered in a 

database (www.openspes.campaniatrasparente.it), in which all the associated information, 

documents and reports are stored and managed. With the submission of an informed 

consent the volunteers become enrolled and, in order to ensure the protection of privacy, 

everyone is associate to an univocal ID code, as well as applied data encryption and policies 
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to restrict access to information. All interactions with the system take place via secure 

channels using internationally recognized security protocols (for instance https).  

Synergic teams of recruiters, doctors and nurses completed the entire recruitment, 

enrollment, medical examination and sample collection steps in the different impact areas 

in the same time period (november 2016 – august 2017). 

Participants first underwent medical examination, completed a questionnaire on lifestyle 

and eating habits (EPIC questionnaire – European Prospective Investigation into Cancer 

and Nutrition -  validated by WHO – World Health Organization; Riboli, 1992; Margetts 

et al., 1997), and filled in an anamnestic (professional, familial, clinical and pathological) 

case report form (CRF).  

Finally, samples of blood (about 100 ml in several aliquots) urine and stool were collected. 

These biological samples constituted the biological matrices in which biomarkers of 

exposure, effect and genetic susceptibility were measured, in order to further investigate 

any causal link between environmental contamination and health. 

Every sample collected was identified by a unique barcode, associate with the ID of the 

subject.  

Samples were transported with secondary and thirdly boxes and GPS- Data Logger Device, 

in order to guarantee transport temperature control and traceability.  

Aliquots not used for immediate analysis have been stored in the IZSM Biobank dedicated 

to the study (www.biobancaizsm.it). 

 

3.1.5 Subgroup selection and analytical methods 

In addition to routine biochemical-clinical investigations and virologic investigations 

(HBV, HCV, HIV, HEV), which define an entrance profile of the individual, the analytical 

step has provided the search in the biological samples of exposure, effect and susceptible 

biomarkers. 

Regarding biomarkers of exposure, we have considered Potentially Toxic Metals (MPT), 

Dioxins, Furans and PCBs linked to exposure to different sources of pollution, able to 

persist in the environment and in living organisms for a long time (WHO 2015). They were 

detected by chemical and biological methods: Inductively Coupled Plasma - Mass 

Spectrometry methods (ICP-MS) for MPT;  High Resolution - Gas Chromatography (HR-

GC) (adapted from US EPA Methods 1613 e 1668) and CALUX Assay (Warner et al. 2005; 

Sakthivel et al. 2016) for organic pollutants, dioxins, furans, dioxin-like, PCBs, PAH and 

other metabolites. 

About Effect biomarkers, SPES protocol have considered: evaluation of the telomeric 

length (De Felice et al. 2012; Borghini et al. 2016), of the inflammatory cytokines 

(Gruzieva et al., 2017), of the oxidative stress (Rossner et al. 2013; Brucker et al. 2013), 

total plasmatic protein, as well as insights on epigenomic mechanisms such as the DNA 

http://www.biobancaizsm.it/
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methylation (by pyrosequencing and microarray) (Plusquin et al. 2017; Demanelis et al. 

2019), circulating miRNA (La Rocca et al. 2016; Vrijens et al. 2016), panel of gene 

expression profile (Ameer et al. 2017; Espin-Perez et al. 2018), microbiome (Claus et al. 

2016) and metabolomic panel (Saberi et al. 2013; Li et al. 2019b). 

Finally, biomarkers of genetic susceptibility. Details are shown in table 5.  

 

Table 5. Scheme of Exposure, Effects and Susceptible Biomarkers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

BIOMARKER BIOLOGICAL 

MATRIX 

N. SAMPLES 

TESTED 

➢ EXPOSURE BIOMARKERS: 

- Heavy Metals (20) 

 

Serum 

 

 

4205 

- Organic - Dioxins, Furans, dioxin -like PCBs, 

non-dioxin-like PCBs 

serum 600 

- Bioassay CALUX for determination of organic 

pollutants 

plasma 600 

- Trace Elements serum 600 

- Speciation Cr VI (hexavalent chromium) erythrocytes 600 

- Speciation As (Arsenic) urine 180 

➢ EFFECT BIOMARKERS:   

- Telomeric length DNA from whole 

blood 

600 

- Inflammatory cytokines (Luminex assay pane l) plasma 600 

- Redox status erythrocytes e mRNA 

from whole blood 

600 

- miRNA (panel of 18 miRNA) miRNA from whole 

blood 

600 

- DNA Methylation (Pyrosequencing) DNA from whole 

blood 

600 

- DNA Methylation (Array Infinium Methylation 

850k Illumina) 

DNA from whole 

blood 

600 

- Plasmatic markers (AOPP, MDA, homocystein, 

thiol, total protein) 

plasma 600 

- Copy Number Variation mitochondrial DNA DNA from whole 

blood 

600 

- Gene Expression – Nanostring Panel RNA from whole 

blood 

600 

- Microbiome stool 600 

- Metabolome serum 600 

➢ GENETIC SUSCEPTIBILITY 

BIOMARKERS: 

  

- Polymorphisms (hOGG1, XRCC3, XRCC1, 

CYPA1) 

DNA from whole 

blood 

600 
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In order to preliminary test all the biomarkers and identify the set of specific and trustable 

ones (especially in view of optimizing funding resources), a subgroup of 600 subjects has 

been selected between the 4205 enrolled.  

The subgroup represents a specific part of SPES population, eligible for the following 

inclusion criteria: 

• No smoking; 

• No alcohol abuse; 

• No use of drugs for chronic diseases (in order to avoid iatrogenic alterations); 

and balance criteria: 

• Ratio of 2:2:1 between high, medium and low impact areas, in such way as to 

maximizing the difference between clusters; 

• Stratified by body mass index (no obesity of II, III and IV classes); 

and, finally, with Professional Identification.  

Details in Table 6. 

 
Table 6. Subgroup stratification per gender, age, clusters and impact areas. 

 
  

male female total per  
 

Clusters 

Age 
range 
20-29 

Age 
range 
30-39 

Age 
range 
40-49 

Age 
range 
20-29 

Age 
range 
30-39 

Age 
range 
40-49 

Cluster Impact 
Areas 

H
IG

H
 

9 10 10 10 10 10 10 60   

10 10 10 10 10 10 10 60 240 

11 10 10 10 10 10 10 60   

12 10 10 10 10 10 10 60   
M

ED
IU

M
 

 
13 10 10 10 10 10 10 60   

14 10 10 10 10 10 10 60 240 

19 10 10 10 10 10 10 60   

20+21 10 10 10 10 10 10 60   

LO
W

 

16 10 10 10 10 10 10 60   

17 10 10 10 10 10 10 60 120 
  

100 100 100 100 100 100   
male total 300 female total 300 

TOTAL  600 

 

 

3.1.6 Sample processing and Biobanking 

Biological specimens collected were blood, urine and stool. 

Blood was collected in tubes vacutainer as follow: 

- n. 8 vacutainers for serum (BD REF 366468 SST II Advance Tube); 

- n. 6 vacutainers for plasma and whole blood (BD REF 367864 K2EDTA Tube); 

- n. 2 vacutainers for plasma (BD REF 368886 LH Lithium Heparin); 

- n. 2 Tempus Blood RNA (REF 4342792); 
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for a total amount of about 100 ml. 

Fresh samples were allocated to biochemical and virological analysis, within 3 hours from 

venous sampling (1 vacutainer for serum and 2 vacutainers with K2EDTA for each subject). 

The remaining part was processed as follow: 

▪ Serum was separated by centrifugation at +4°C, 10 minutes at 2000 g. Aliquots 

obtained were stored at -80°C in cryovials until analysis. 

▪ Plasma from K2EDTA and Lithium Heparin vacutainers was obtained after 

centrifugation at +4°C, 10 minutes at 2500 g. Then separated and stored at -80°C 

in cryovials until analysis. 

▪ Whole blood aliquots (K2EDTA vacutainers) were inverted several times and then 

transferred to cryovials for storage at -80°C until analysis. 

▪ Tempus Blood RNA were vortexed and then stored at -80°C as manufacturer’s 

instructions. 

▪ Urine, collected in sterile urine container, was aliquoted in cryovials and stored at 

-20°C until analysis.  

▪ Stool, collected in sterile container, was directly stored at -80°C until DNA 

extraction for microbiome analysis. 

The biobank dedicated to the study (www.biobancaizsm.it) has a system of remote 

monitoring of temperature. Each aliquot is registered on the platform by a sample code and 

position coordinates in the fridge. 

 

3.2 Biomarkers of Exposure 

 

3.2.1 Heavy Metals  

The determinations were performed by IZSM’s Department of Chemistry.  

All study participants samples (4205) were analyzed for 19 metals (arsenic [As], beryllium 

[Be], cadmium [Cd], cobalt [Co], chromium [Cr], copper [Cu], iron [Fe56 and Fe57], 

mercury [Hg], lithium [Li], manganese [Mn], molybdenum [Mo], nickel [Ni], lead [Pb], 

antimony [Sb], selenium [Se], strontium [Sr], thallium [Tl], vanadium [V], and zinc [Zn]. 

The measurement was carried out in serum by Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS) NexION 350 (PerkinElmer, Waltham, USA) equipped with a 

concentric nebulizer (Meinhard Associates, Golden, USA), a cyclonic spray chamber  and 

a quartz torch with a quartz injector tube (2 mm internal diameter). Argon gas (99.9999%) 

and Helium 6.0 were supplied from Rivoira (Italy).  

For each analyte, accuracy and precision were assessed by internal quality controls and 

using certified reference materials. 

Calibration standard solutions and internal standards were prepared by successive dilution 

of a high purity multi-element Standard Solution at 10 mg/L, obtained from Perkin Elmer 

http://www.biobancaizsm.it/
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(Norwalk, CT). Internal standard solution containing yttrium (Y), rhodium (Rh), and 

lutetium (Lu) (each at 1000 mg/L) were acquired from Perkin Elmer. Superpure grade nitric 

acid 68% (v/v) was obtained from VWR International (Belgium). 

Serum was thawed at room temperature and mixed by gentle rotation. Then, 500 μl of 

sample were diluted 1:10 (v/v) with nitric acid 67-69 %. 

Trace element concentrations were determined in serum by ICP-MS and the signal 

intensities were compared to a standard calibration curve for each trace element. 

The following isotopes were selected: 75As, 111Cd, 9Be, 59Co, 52Cr, 63Cu, 57Fe, 202Hg, 

7Li, 55Mn, 98Mo, 60Ni, 208Pb, 121Sb, 78Se, 88Sr, 205Tl, 51V and 66Zn.  

The correlation coefficient (R2) of calibration curves for all the trace elements was always 

greater than 0.99, showing a good linear relationship throughout the selected ranges of 

concentration. Each sample was analyzed in duplicate and the mean concentration was used 

in all statistical analyses. 

 

3.2.2 Dioxins, Furans and PCBs congeners by High Resolution Gas Chromatography 

– Mass Spectrometry 

The determinations were performed by IZSM’s Department of Chemistry in partnership 

with University of Liegi (Belgium). The analysis was carried out on the 600 subgroup 

samples. Analytical method used was adapted from Brasseur et al. (2014).  

This protocol allowed the determination of congeners belonging to classes of compounds 

as Dioxins PCDD (polychlorinated dibenzo-p-dioxin), Furans PCDF (polychlorinated 

dibenzofuran), DL-PCB (Dioxin like - polychlorinated biphenyl) and NDL-PCB (Non-

Dioxin like - polychlorinated biphenyl) were analyzed.  

For the purpose of the present dissertation will be considered only the following variables: 

▪ Sum of PCDD/PCDF pg WHO-TEQ/g lipids. 

▪ Sum of DL-PCB pg WHO-TEQ/g lipids. 

▪ Sum of PCDD/PCDF + DL-PCB pg WHO-TEQ/g lipids. 

▪ Sum of NDL-PCB ng/g lipids. 

A volume between 10 to 20 ml of serum for each sample was processed. After the 

accelerated solvent extraction using a mixture of hexane-acetone, and a clean-up step, the 

serum was analysed by High Resolution Gas Chromatograph – High Resolution Mass 

Spectrometer (DFS Magnetic Sector HRGC-HRMS system, Thermo Fisher Scientific) 

operating at a resolution of at least 10000 at a 10% valley. 

Each batch of analysis was monitored for Quality Assurance and Quality Control by testing 

control samples. 

Given the lipophilic nature of the congeners, data obtained from biochemical analysis 

(through enzymatic method) were considered for the computing of fats percentage: the total 

lipid (TL) content was estimated using triglycerides (TG), total cholesterol (TC), non-
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esterified (free) cholesterol (FC) and phospholipids (PL). For each serum sample, the TL 

content, expressed in mg dL-1, was calculated by the following equation: 

TL = 1.677 × (TC-FC) + TG + PL 

where 1.677 is the ratio of the mean molecular weight of esterified cholesterol to 

unesterified cholesterol (Bernert et al., 2007; Brasseur et al., 2014).  

For comparing the estimate of the lipid content in human serum obtained using alternative 

formulas, the TL contents calculated with the above-mentioned equation was compared 

with the results calculated using the formula described by Phillips et al. (1989):  

TL = (2.27×TC) + TG + 62.3 mg dL-1 

Two equations provided comparable values for TL. 

Analytical results were expressed not only as measured value, but also according to Toxic 

Equivalent (TEQ) concentrations, by means Toxic Equivalent Factors (TEF) (Van den 

Berg et al., 2006). Congeners and their sums were also expressed used the approach of 

Lower, Medium and Upper Bound, that means to replace 0.00 (zero), ½ LOQ (Limit of 

Quantification) or LOQ, if the detected value was below the LOQ itself (De Felip et al., 

2008; Miniero et al., 2017). 

 

3.2.3 Chemical Activated LUciferase gene eXpression (CALUX) Bioassay 

These determinations were performed in partnership with Bio-Detection System (BDS) 

Laboratory (The Netherlands). The analysis was carried out on the 600 subgroup samples. 

Chemical Activated LUciferase gene eXpression (CALUX) is a ligand-dependent nuclear 

receptor- bioassay used in the detection of classes of chemicals in food, environmental and 

biological matrices. It could be considered as a screening method because it estimates the 

total effect that ligands have on the receptor observed. Engineered cell lines are stably 

transfected with a luciferase reporter gene. If activated by ligands presence, DNA 

responsive elements stimulate transcription of the inserted luciferase gene and produce the 

light-generating enzyme which can be measured by Luciferin addition (Fig.10). 
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Figure 10. CALUX bioassay mechanism. The presence of the ligand by binding to the nuclear receptor allows 

its dimerization and transfer to the nucleus, where an intracellular signal transduction cascade activates 

regulatory regions and responsive elements of the DNA which, associated with the luciferase reporter gene, 

permit gene expression and luminescence emission as a response to enzymatic activity in the presence of 

luciferin. 

 

SPES protocol have considered the DR CALUX® (Garrison et al., 1996), PAH- CALUX® 

(Pieterse et al, 2013) and ERα CALUX® (Sonneveld et al., 2005). They are all based on 

stably transfected cell lines: DR and PAH CALUX are based on stably transfected rat 

hepatoma H4IIe cell lines, while the ERα CALUX assay is based on a stably transfected 

human osteoblastic osteosarcoma U2-OS cell line (American Type Culture Collection). 

Cells that are exposed to compounds of interest not only express proteins that are under 

normal circumstances associated to the receptors, but also luciferase. By addition of the 

appropriate substrate for luciferase, light is emitted. The amount of light produced is 

proportional to the amount of ligand-specific receptor binding, which is benchmarked 

against the relevant reference compounds, i.e., 2,3,7,8-TCDD (2,3,7,8-

tetrachlorodibenzodioxin) for DR CALUX; B(a)P (benzo(a)pyrene) for PAH CALUX and 

17-β-estradiol for ER CALUX.  

The results are expressed as bioassay equivalents (BEQ) per gram of lipid (DR, PAH) or 

per ml of plasma (ERα). 

In detail, the human plasma (5 ml obtained from Lithium Heparin Vacutainers) was 

extracted with hexane/ethyl ether solvent, subsequently purified (clean-up) on a silica 

column; the extraction product is resuspended in DMSO (dimethyl sulfoxide). 

The ERα CALUX cells, U2-OS cells, were routinely sub-cultured every 3–4 days in growth 

medium consisting of DMEM (Gibco) supplemented with 7.5% dextran-coated charcoal 

stripped fetal calf serum (DCC-FCS), 1×nonessential amino acids (Gibco) and 10 U/ml 
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penicillin and 10 µg/ml streptomycin. DR and PAH-CALUX cells were routinely sub-

cultured every 3–4 days in growth medium consisting of αMEM (Gibco) supplemented 

with 10% fetal calf serum. All cell types were always maintained at 37 °C and 5% CO2. 

CALUX® cells were seeded in 96 wells plates in assay medium and fetal calf serum 

according to conditions indicated in Table 7. Exposure of the cells started when > 95% 

confluency was reached (DR, PAH) or at 10000 cells per well (ERα). 

The cell cultures are then incubated with the DMSO eluted extract for 24 hours. Incubation 

is in triplicate for each biological sample and takes place in 96-well plates. A solution 

containing luciferin is added to estimate the luciferase activity by means of a luminometer 

(Berthold Centro XS3). Each plate contains a calibration curve with reference standards 

relating to the class of compounds investigated: full dose-response curve of the reference 

compound, 2,3,7,8-TCDD for DR CALUX, B(a)P for PAH CALUX and 17-β-estradiol for 

the ERα CALUX.  

 

Table 7. CALUX cell type, culture and exposure information. 

 

Assay ERα CALUX DR CALUX PAH CALUX 

Cell type U2OS H4IIe H4IIe 

Species Human Rat Rat 

%DMSO exposure  0,1%, or 1%* 0,8% 0,8% 

%CO2 incubation  5% 5% 5% 

Exposure time 24 hrs 24 hrs 4 hrs 

Confluence/cells 10000 cells/well >95% confluence >95% confluence 

Medium used DMEM/F12 αMEM αMEM 

% FCS 7,5% DCC-stripped** 10% 10% 

Additions to medium Non-essential amino 

acids 

  

* All samples were first tested at 0,1% DMSO; when low values were observed (below Limit of quantification) these 

samples were re-analyzed using 1% DMSO 

** FCS was treated with dextran-coated charcoal (DCC) to strip the endogenously present hormones 

 

 

Analysis results of plasma extracts expressed as relative light units (RLUs) are interpolated 

in the calibration curves of each respective bioassay for quantitative determination of the 

induction potential using the statistical software package GraphPad Prism V5.03. All 

analysis results are expressed as amount of reference compound equivalents per ml 

processed sample (BEQ/ml plasma), or per gram of fat (BEQ/g fat). 

Fats percentage follows gravimetrically measurement and, in parallel, the same formulas 

of Dioxins/Furans/PCBs in previous paragraph. 
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3.3 Biomarkers of Effect and Susceptibility 

 

3.3.1 DNA Methylation Array 

The determinations were performed in partnership with Lab. Med. Mol. Ge., University of 

Salerno. The analysis was carried out on the 600 subgroup samples. 

Genomic DNA was extracted from whole blood aliquots (obtained from K2EDTA 

vacutainers) stored at -80°C in IZSM Biobank. 

The nucleic acid extraction protocol using the QIAsymphony Biorobot (QIAGEN), Custom 

B_400 protocol, was carried out according to DSP DNA MIDI QIASymphony Kit (REF 

937255). A volume of 400 µl of whole blood was the input material. Extracted DNA was 

finally eluted in 100 µl of nuclease-free H2O (Invitrogen™ UltraPure™ DNase/RNase-

Free Distilled Water).   

Genomic DNA was checked for integrity by means of Genomic DNA protocol (REF 5067-

5365/5366) on Agilent TapeStation System 4200. Concentration and purity were assessed 

by spectrophotometer Nanodrop ND-1000: A260/A280 and A260/A230 ratio. Accurate 

concentration measurement was performed by means of Qubit 2.0 Fluorometer, according 

to Qubit dsDNA BR – Broad Range kit (REF Q32850). 

All samples showed A260/A280 ratio around 1.8, and A260/A230 ratio around 2.00, 

confirming the good quality of DNA. Tape Station DINs (DNA Integrity Number) were 

for all samples in acceptable range for integrity 6.00 to 10.00. 

The bisulfite conversion step was performed with EZ DNA Methylation Zymo kit 

(ZYD5001) with 500 ng of genomic DNA as input material, according to manufacturer’s 

instructions. 

DNA methylation arrays were performed according to Illumina Infinium HD Arrays 

procedure. Particularly, Infinium Methylation EPIC 850K (Infinium HD Assay 

Methylation Protocol Guide Material #20002138 Document #15019519v01), which allows 

the identification and quantitative analysis of the methylation state of approximately 

850000 CpG dinucleotides distributed throughout the entire human genome, was used.  

The Infinium HD Assay for Methylation combines bisulfite conversion of genomic DNA 

and whole-genome amplification (WGA) with direct, array-based capture and scoring of 

the CpG loci. During the chemical conversion induced by bisulfite, the unmethylated 

cytosines are deaminated to uracil while the methylated ones are protected and remain so. 

The enzymatic reaction that occurs on the surface of the array determines the incorporation 

of complementary fluorescent bases which, thanks to different fluorophores, allows to 

discriminate one case from another for each dinucleotide analyzed. 

This method considers two chemistry technologies, Infinium I and Infinium II. The 

Infinium I probe design has two probes per site (one for methylated, one for unmethylated) 

and the 3' end of the probes is positioned directly across from the CpG site (Fig.11A). The 
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Infinium II probe has one probe per site (for the methylated state) and the 3' end of the 

probes is positioned immediately adjacent to the site (Fig.11B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Broader Coverage using Illumina Infinium I and II Assay Design. (A) The Infinium I assay employs 

2 probes per CpG locus: 1 “unmethylated” and 1 “methylated” query probe. The 3’terminus of each probe is 

designed to match either the protected cytosine (methylated design) or the thymine base resulting from bisulfite 

conversion and whole-genome amplification (unmethylated design). (B) The Infinium II assay design requires 

only one probe per locus. The 3’ terminus of the probe complements the base directly upstream of the query 

site. A single base extension results in the addition of a labeled G or A base, complementary to either the 

‘methylated’ C or ‘unmethylated’ T (source www.emea.illumina.com). 

 

 

This approach allows to evaluate 95% of the cytosines present in the best functionally 

characterized regions along the whole human genome and, in particular, > 99% of the 

human gene regulatory sites (RefSeq), including promoters, 5 'UTR, gene body (exons and 

introns) and 3 'UTR, with excellent coverage also of the enhancer regions (Moran et al, 

2016). 

 

 

http://www.emea.illumina.com/
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3.3.2 DNA Methylation Array data analysis 

Signal intensity was measured with the Illumina iScan system. DMAP files (containing the 

spatial maps of the probes along each bead-chip), were downloaded following the “Decode 

File Client” instructions, the windows-based software application supplied for this purpose. 

The input data from the Illumina iScan were analyzed using the Illumina GenomeStudio® 

Methylation Module v1.9 software, in order to generate Beta Values, the measure of the 

level of methylation at a locus. Beta values represent the estimate methylation level of the 

CpG locus as ratio of intensities between methylated and unmethylated alleles; it is 

computed by means the following expression: β = M/M+U+100, where M indicates the 

methylated locus, M+U the sum of methylated and unmethylated loci and 100 a 

mathematical constant. Beta values are intended to allow sample to sample comparisons 

for each individual CpG and can be interrogated and compared across samples for powerful 

large-scale studies.  

Genome Studio Software allows to check and validate array sessions through a series of 

controls: sample independent controls, for quality workflow steps, and sample dependent 

controls, that evaluate performance across samples. Among them for example, the bisulfite 

conversion rate check. 

First step analysis considers the background subtraction, in order to avoid any non-specific 

signal, and normalization. Then a filter was applied: only the probes that showed a detection 

p-value <0.05 (98% for each sample) were selected, considering for the subsequent steps 

only the CpGs with a high detection quality. 

Together with Genome Studio Software, provided by Illumina, thanks to the partnership 

with The Laboratory of Statistics and computational tools for Bioinformatics (BioinfoLab) 

– Istituto per le applicazioni del calcolo "Mauro Picone”, National Research Council of 

Naples (CNR), data analysis were also performed by means R software (4.0.3 version) and 

Bioconductor, with ChAMP package 

(https://www.bioconductor.org/packages/release/bioc/html/ChAMP.html) as follows: 

• Probes normalization; 

• Correction for Cell Heterogeneity (step considered when sample matrix is blood); 

• Singular Value Decomposition (SVD) for the batch effect correction; 

• Batch correction on SVD indication; 

• Differential Methylated Probes identification (DMP); 

• Differential Methylated Region identification (DMR); 

• Gene set enrichment for DMP and DMR. 

In addition, both Genome Studio and R Bioconductor-ChAMP display valuable 

information such as chromosomal coordinates, percent GC, location in CpG Island, and β 

values useful for perform an in-depth analysis. 

  

https://www.bioconductor.org/packages/release/bioc/html/ChAMP.html
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3.4 Statistical Analysis 

 

Standard descriptive statistics were used for characterizing the study sample. Numerical 

variables were described using mean ± standard deviation (std. dev.) or median (25th - 75th 

percentile) in case of distribution showing a consistent asymmetry. Absolute frequencies 

and percentages were used to describe categorical factors. Several median regression 

models were estimated to explore the association between serum exposure biomarkers in 

the assessed population and impact areas, as well as clusters. 

In those models where the impact area was considered as the geographical reference unit, 

the low impact area was always used as reference category. When analyzing geographical 

difference at cluster's level, the reference cluster was the one with the median 

concentration.  

Considering Calux bioassay data analysis, statistical significance was set at a level p-

value<0,05 and paired datasets were analyzed by the Mann Whitney test, while differences 

between multiple groups were analyzed using one-way Anova test.  

For methylation data analysis, in order to highlight a potential correlation between 

methylation levels and exposure biomarkers, data analysis proceeded through a robust 

linear multiple regression model, by M-value transformation from methylation beta values.  

All the analyses were performed using the statistical platform R.  

 

3.5 Data management 

 

The study protocol has been supported by web-based software 

(openspes.campaniatrasparente.it), developed by IZSM, and custom-made for the SPES 

study. The software interface works in the Linux Apache POSTGRESsql (LAPP) 

environment to ensure maximum interoperability and scalability. The programming 

language operated is PHP interfaced with Apache server. The management and permanent 

storage of data has been carried out using POSTGRESql equipped with PostGis extension 

in order to ensure maximum interoperability with GIS systems. The graphical interface is 

based on the twitter Bootstrap framework, so to optimize the web platform for displaying 

on several kinds of devices of different degrees of resolution. All users are able to access 

the system using a web browser; they therefore, using a TC/ IP network and communicating 

via the HTTPs protocol to send data and make requests to the Apache web server, without 

installing additional software. All restriction and cryptographic policies have been applied 

to guarantee the protection and privacy of data. The openspes system also communicates 

with the GIS system to collect environmental data from “Campania Trasparente” and 

literature references (www.geojizz.it) in order to integrate data into a single software.  

http://www.geojizz.it/
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4. RESULTS 

 

4.1 Environmental background 

 
A preliminary analysis on the environmental background was performed to compute the 

environmental pressure index for each municipality. 

Data from scientific literature and from “Campania Trasparente” monitoring 

(www.campaniatrasparente.it; Allocca et al., 2016; Qu et al., 2019;; Sellerino et al., 2019; 

Nasta et al., 2020) were combined in the “Comparative Risk Assessment Model” (see 

Paragraph 3.1.2), in order to obtain a synthetic representation of the level of pressure 

exerted by the pollutant sources, on the municipal territory. This synthetic index is 

represented by the IRc (see Table 4). IRc values allow to cluster municipalities. Figure 12 

shows a graphical representation of the IRcs, according to the geographical distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12. Campania Region and geographical distribution of IRcs. The spatial distribution of the 

environmental pressures provides an exhaustive representation of the territory, mainly characterized by three 

increasing levels of impact: high impact, medium impact and low impact. 

 

The evidence of critical issues on the regional territory could be divided, from an 

environmental point of view, in different macro-areas: 

1. Volturno and Regi Lagni areas (Caserta province), where pollutants values above 

normative referments (Legislative Decree 152/2006; Annex 5, Part IV) are Lead 

(Pb) and Zinc (Zn) in soil matrix, both attributable to vehicular traffic. Spreading 

http://www.campaniatrasparente.it/
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of  Volatil Organic Compounds (VOC) in surface waters is attributable to industrial 

waste disposal, especially for Villa Literno and Marcianise municipalities. Finally, 

nitrates peaks are attributable to agricultural and urban contributes. 

2. Flegrea-Neapolitan area (Naples and north of Naples), where high levels of toxic 

metals are recorded both in urban and in agricultural areas. Lead (Pb) and Zinc 

(Zn) in soils are attributable to vehicular traffic, while polycyclic aromatic 

hydrocarbons in waters are probably linked to intentional or accidental waste 

disposal. 

3. Sarno-Vesuvio area (south of Naples), where surface pollution for coast line 

regards heavy metals and organochlorine pesticides, while the most critical issue 

is registered for Sarno river area and for Terzigno municipality, this last with 

ground water contamination attributable to landfill leachate (Cava Sari and Cava 

Ranieri). Finally, the wide presence of copper (Cu) is linked to the indiscriminate 

use of pesticides in viticulture. 

4. Irno and Sabato Valley, where the presence of industrial plants gives an important 

contribute to the spreading of heavy metals and polycyclic aromatic hydrocarbons. 

According to the environmental monitoring and to the IRcs computing, three areas with 

increasing levels of impact were identified: high-, medium- and low-impact (Paragraph 

3.1.2, Fig. 8). 

As mentioned in Materials and Methods chapter, the target population in the SPES protocol 

was identified in a ratio of 4:2:1 in high-, medium- and low-impact areas, respectively: 12 

clusters were selected in the high-impact area, 6 in the medium-impact area and 3 in the 

low-impact area. A subgroup of 600 subjects has been selected among the 4205 enrolled, 

in ratio of 2:2:1 between high-, medium- and low-impact areas for further investigation. 
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4.2 People demographic features  

 

Among the 4205 volunteers enrolled for the purposes of the biomonitoring study, a total of 

2404 subjects (57.2% of the study sample) were recruited in the high impact area, 1201 

(28.6% of the study sample) were recruited in the medium impact area and 600 (14.3% of 

the study sample) were recruited in the low impact area. Distribution of enrolled subjects 

according to age, gender, impact area and cluster is shown in table 8.  

Mean age of the population was 34.9±8.8 years, with women representing 53.9% of the 

study sample. Age and gender distributions were consistent across the three study areas.  

Median weight of the entire population was 71 kg [IQR: 61 ; 82] , while median height was 

170 cm [IQR: 163 ; 175], with a median body mass index of 24.6 [IQR: 22.3 ; 27.7]  kg/m² 

(table 9). Median weight in the high-, medium- and low-impact area was 71 [IQR: 60 ; 83], 

71 [IQR: 61; 82] and 72 [IQR: 62 ; 82]  kg, respectively, while median height was 170 

[IQR: 163 ; 176], 168 [IQR: 161.2 ; 175] and 170 [IQR: 163 ; 175] cm, respectively (Table 

9).  

Blood count, blood biochemistry and endocrinological panel results were consistent with 

those of a healthy population, with adequate function of bone marrow, liver, kidney and of 

the endocrine system. No clinically relevant differences were reported among the three 

areas assessed. 
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Table 8. Number of participants according to age. gender. impact area and cluster. 

Study sample  

 

Number of subjects  

(% with respect to the overall sample) 

Total Population 4205 (100.0) 

Age 
 

20-29 1394 (33.2) 

30-39 1296 (30.8) 

40-50 1515 (36) 

Gender 
 

Male 2268 (53.9) 

Female 1937 (46.1) 

Area 
 

High 2404 (57.2) 

Low 600 (14.3) 

    Medium 1201 (28.6) 

Cluster # Cluster  
 

HIGH_1 1 204 (4.9) 

HIGH_2 2 199 (4.7) 

HIGH_3 3 200 (4.8) 

HIGH_4 4 200 (4.8) 

HIGH_5 5 200 (4.8) 

HIGH_6 6 200 (4.8) 

HIGH_7 7 199 (4.7) 

HIGH_8 8 201 (4.8) 

HIGH_9 9 200 (4.8) 

HIGH_10 10 199 (4.7) 

HIGH_11 11 200 (4.8) 

HIGH_12 12 202 (4.8) 

MEDIUM_1 13 179 (4.3) 

MEDIUM_2 14 209 (5) 

MEDIUM_3 15 212 (5) 

IRNO_1 20 

 
188 (4.5) 

IRNO_2 21 

 
212 (5) 

SABATO 19 201 (4.8) 

LOW_1 16 200 (4.8) 

LOW_2 17 205 (4.9) 

LOW_3 18 195 (4.6) 
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Table 9. Demographic characteristics of the overall sample population, according to the impact area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

*Deprivation index was computed taking into account both educational characteristics of the study participants (number of years of education, education degree), housing characteristics 

(number of rooms, number of occupants) and ownership of basic consumption goods (refrigerator and car).  These types of data were collected by means EPIC questionnaire (see paragraph 

3.1.4). 

  IMPACT AREAS (HIGH vs MEDIUM vs LOW) 

 Overall (n=4205; 100%) High (n=2404; 57.2%) Medium (n=1201; 28.6%) Low (n=600; 14.3%) 

Age; years 34.9+-8.8 (20 to 50) 34.6+-8.8 (20 to 50) 35.5+-8.8 (20 to 50) 35.1+-8.9 (20 to 50) 

Gender; female 2268 (53.9) 1306 (54.3) 639 (53.2) 323 (53.8) 

Deprivation Index*; % 26+-8.8 (0 to 92.1) 25.5+-8.6 (0 to 74.7) 25.9+-8.9 (5.7 to 92.1) 28+-9.3 (8.6 to 65.3) 

Below 1st quartile 1045 (25.1) 652 (27.1) 293 (25.3) 100 (16.7) 

Below 2nd quartile 1037 (24.9) 610 (25.4) 293 (25.3) 134 (22.3) 

Below 3rd quartile 1071 (25.7) 591 (24.6) 294 (25.4) 186 (31) 

Above 3rd quartile 1008 (24.2) 550 (22.9) 278 (24) 180 (30) 

Occupational status; %     

Full time 1846 (51.4) 1069 (51.4) 522 (52.8) 255 (48.6) 

Partial 957 (26.6) 518 (24.9) 272 (27.5) 167 (31.8) 

Unemployed 789 (22) 492 (23.7) 194 (19.6) 103 (19.6) 

Current Potential 

Occupational Exposure; 

% 

605 (14.4) 330 (13.7) 177 (14.7) 98 (16.3) 

Weight; (kg) 71 [61; 82] (39 to 166) 71 [60; 83] (42 to 166) 72 [62; 82] (39 to 140) 71 [61; 82] (41 to 135) 

Height; (cm) 170 [163; 175] (108 to 198) 170 [163; 176] (108 to 198) 170 [163; 175] (124 to 196) 168 [161.2; 175] (108 to 

196) 

BMI; (kg/m2) 24.6 [22.3; 27.7] (15.8 to 63.4) 24.6 [22.2; 27.5] (15.8 to 63.4) 24.6 [22.2; 27.8] (16.9 to 54.6) 25 [22.5; 28.2] (16 to 48.8) 
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4.3 Exposure Biomarkers  

 

4.3.1 Heavy Metals  

Heavy metals results, expressed as serum concentrations in µg/L, were measured on the 

overall population. They are reported as geometric mean in the general population and in 

the three impact areas as well as in the 21 clusters (Tables 10a and 10b). Median and inter-

quartile ranges are reported in tables 10c, 10d and 10e. 

Geometric mean values were generally comparable among the three impact areas, except 

for mercury levels that were approximately twice in the medium impact areas vs. the high- 

and low-impact areas. Considering the 21 clusters defined and the 19 metals assessed, the 

most relevant differences of a single cluster vs average serum levels in the overall study 

sample, were reported in the Sabato valley cluster for cadmium (Cd111), nickel (Ni60) and 

antimony (Sb121) and for the two Irno valley clusters for mercury  (Hg202), which were 

approximately five times higher than those found in the entire population.  

Percentage fold decreases/increases of interesting 6 of 19 heavy metals, for which 

percentage fold increase with respect to the general population was ≥ 100% in at least one 

cluster, are reported in Table 11 and graphically represented in Figures 13 a to f. 

In Median regression models, where impact area was the geographical analysis unit (Table 

12 a/b), using the low impact area as reference, the high impact area was not associated 

with higher levels of any of the 19 heavy metals assessed, except for thallium (Tl205) 

whose median levels were significantly but only slightly higher in the high impact  vs the 

low impact area (Difference between medians: 0.009; 95% C.I.: 0.006 to 0.011).  

Compared to the low impact area, the medium impact one was instead associated with 

higher levels of mercury (Hg202) (Difference between medians: 0.87; 95% C.I.: 0.62 to 

113), lithium (Li7) (Difference between medians: 0.09; 95% C.I.: 0.03 to 0.16), cobalt 

(Co59) (Difference between medians: 0.13; 95% C.I.: 0.09 to 0.17), manganese (Mn55) 

(Difference between medians: 0.15; 95% C.I.: 0.06 to 0.23), antimony (Sb121) (Difference 

between medians: 0.03; 95% C.I.: 0.01 to 0.04), thallium (Tl205) (Difference between 

medians: 0.004; 95% C.I.: 0.002 to 0.007) and zinc (Zn66) (Difference between medians: 

138; 95% C.I.: 100 to 176). Older age was consistently associated with higher levels of 

arsenic (As75), cobalt (Co59), copper (Cu63) and strontium (Sr88). Male gender was 

characterized by higher levels of lithium (Li7), iron (Fe), manganese (Mn55), selenium 

(Se78) and zinc (Zn66) but lower levels of copper (Cu63).When analyzed by cluster (Table 

13 a/b/c), it emerged that the associations found for the medium impact area were mainly 

due to the contribute of the Irno and Sabato Valley’s clusters.  

Finally, Tables 13d, 13e, 13f, report a correlation matrix showing how correlated metals 

are to each other, for impact areas. Noteworthy, there is a significant association between 

Hg and Cd in high impact areas and between Cd and Mn in medium impact areas.  
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                      Table 10a. Geometric mean of the heavy metals assessed in the serum (µg/L) by cluster and area. 

Cluster Li7 Be9 Cd111 As75 Cr52 Co59 Cu63 Fe Hg202 Mn55 

High Impact Area 1.008 0.004 0.007 0.940 0.049 0.852 981.5 2311 0.573 0.612 

HIGH_1 1.102 0.004 0.006 1.033 0.045 0.948 1106 2363 0.631 0.831 

HIGH_2 0.948 0.004 0.007 0.735 0.046 0.806 966.1 2215 0.587 0.518 

HIGH_3 0.979 0.004 0.007 1.106 0.058 0.842 978.5 2153 0.686 0.562 

HIGH_4 1.002 0.004 0.009 1.082 0.037 0.814 1007 2258 0.55 0.56 

HIGH_5 1.151 0.003 0.007 0.744 0.036 0.966 992.4 2378 0.486 0.618 

HIGH_6 1.046 0.004 0.008 1.236 0.063 0.856 967.9 2399 0.518 0.685 

HIGH_7 0.809 0.005 0.007 0.457 0.048 0.786 942.9 2189 0.473 0.323 

HIGH_8 1.021 0.005 0.008 1.17 0.051 0.854 975.9 2433 0.622 0.688 

HIGH_9 1.104 0.004 0.007 1.096 0.044 0.905 973.7 2399 0.575 0.422 

HIGH_10 0.98 0.003 0.008 1.09 0.078 0.888 916.6 2364 0.628 0.845 

HIGH_11 0.96 0.003 0.008 0.911 0.063 0.777 984.2 2256 0.521 0.893 

HIGH_12 1.031 0.006 0.009 0.967 0.039 0.799 975.7 2341 0.658 0.666 

Medium Impact Area 1.093 0.005 0.011 1.084 0.065 0.812 966.3 2154 1.505 0.689 

MEDIUM_1 0.958 0.004 0.007 0.765 0.056 0.975 1025 2592 0.648 1.12 

MEDIUM_2 0.949 0.004 0.008 0.779 0.063 0.855 1000 2475 0.564 0.592 

MEDIUM_3 0.912 0.004 0.005 0.799 0.028 0.833 995 2372 0.463 0.441 

IRNO_1 1.287 0.004 0.012 1.566 0.07 0.582 868.1 1656 4.517 0.499 

IRNO_2 1.245 0.005 0.011 1.221 0.078 0.697 881 1641 4.971 0.459 

SABATO 1.292 0.007 0.053 1.794 0.151 1.021 1044 2425 1.678 1.74 

Low Impact Area 1.037 0.004 0.009 1.182 0.061 0.904 1034.0 2379 0.756 0.922 

LOW_1 1.044 0.005 0.009 1.226 0.036 0.878 1006 2316 0.865 0.658 

LOW_2 1.021 0.003 0.008 1.327 0.076 0.941 1049 2487 0.899 1.058 

LOW_3 1.047 0.003 0.011 1.007 0.086 0.894 1048 2334 0.561 1.129 

Overall 1.036 0.004 0.009 1.011 0.055 0.847 984.4 2274 0.804 0.671 
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                                         Table 10b. Geometric mean of the heavy metals assessed in the serum (µg/L) by cluster and area. 

  
Cluster Mo98 Ni60 Pb208 Sb121 Se78 Sr88 Tl205 V51 Zn66 

High Impact Area 0.405 0.457 0.038 0.023 187 28.3 0.014 0.287 1342 

HIGH_1 0.408 0.321 0.036 0.02 191 29.8 0.017 0.374 1434 

HIGH_2 0.308 0.315 0.04 0.02 188 27.7 0.015 0.299 1311 

HIGH_3 0.466 0.526 0.036 0.02 189 28.5 0.013 0.344 1388 

HIGH_4 0.379 0.471 0.043 0.03 183 27.7 0.016 0.275 1270 

HIGH_5 0.275 0.586 0.032 0.02 207 30.9 0.014 0.27 1502 

HIGH_6 0.611 0.31 0.048 0.03 186 28.4 0.012 0.25 1287 

HIGH_7 0.445 0.306 0.03 0.02 165 26.1 0.011 0.213 1246 

HIGH_8 0.429 0.648 0.048 0.03 188 28.8 0.014 0.309 1367 

HIGH_9 0.53 0.829 0.037 0.04 192 28.5 0.015 0.234 1390 

HIGH_10 0.429 0.412 0.039 0.03 184 27.5 0.015 0.37 1287 

HIGH_11 0.399 0.36 0.037 0.03 190 28.5 0.019 0.343 1321 

HIGH_12 0.299 0.887 0.035 0.02 183 27.4 0.016 0.225 1314 

Medium Impact Area 0.378 0.515 0.041 0.057 193 29.1 0.014 0.246 1507 

MEDIUM_1 0.391 0.309 0.044 0.04 193 28.7 0.018 0.32 1460 

MEDIUM_2 0.374 0.381 0.04 0.02 190 28.0 0.013 0.361 1385 

MEDIUM_3 0.423 0.724 0.031 0.02 199 29.2 0.007 0.245 1472 

IRNO_1 0.276 0.23 0.043 0.09 184 27.4 0.015 0.171 1580 

IRNO_2 0.229 0.226 0.034 0.08 181 27.3 0.009 0.176 1697 

SABATO 0.752 3.198 0.06 0.23 209 34.3 0.033 0.26 1451 

Low Impact Area 0.598 0.404 0.047 0.038 196 29.0 0.011 0.321 1331 

LOW_1 0.464 0.33 0.034 0.03 177 29.0 0.009 0.34 1294 

LOW_2 0.663 0.632 0.043 0.05 212 29.6 0.015 0.29 1377 

LOW_3 
0.698 0.406 0.07 0.03 201 28.4 0.01 0.336 

1321 

Overall 0.42 0.472 0.04 0.03 190 28.6 0.014 0.279 1386 
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Table 10c. Median (IQR) of the heavy metals assessed in the serum (µg/L) by cluster and area. Data are reported as median [25th ; 75th percentile]. 

 

Cluster Li7 Be9 Cd111 As75 Cr52 Co59 

High Impact 

Area 1.01 (0.727 ; 1.444) 0.002 (0.002 ; 0.012) 0.005 (0.001 ; 0.059) 1.446 (0.615 ; 3.237) 0.196 (0.002 ; 0.832) 0.909 (0.688 ; 1.162) 

HIGH_1 1.048 (0.75 ; 1.427) 0.002 (0.002 ; 0.018) 0.001 (0.001 ; 0.057) 1.565 (0.673 ; 3.182) 0.168 (0.002 ; 0.727) 0.965 (0.744 ; 1.232) 

HIGH_2 0.958 (0.655 ; 1.353) 0.002 (0.002 ; 0.011) 0.002 (0.001 ; 0.07) 1.432 (0.483 ; 3.198) 0.149 (0.002 ; 0.727) 0.857 (0.67 ; 1.135) 

HIGH_3 0.919 (0.692 ; 1.397) 0.002 (0.002 ; 0.012) 0.001 (0.001 ; 0.062) 1.478 (0.724 ; 2.962) 0.239 (0.002 ; 0.862) 0.914 (0.662 ; 1.167) 

HIGH_4 1.02 (0.733 ; 1.385) 0.002 (0.002 ; 0.002) 0.005 (0.001 ; 0.07) 1.749 (0.692 ; 3.405) 0.08 (0.002 ; 0.784) 0.94 (0.706 ; 1.18) 

HIGH_5 1.136 (0.789 ; 1.625) 0.002 (0.002 ; 0.002) 0.001 (0.001 ; 0.042) 1.328 (0.589 ; 3.178) 0.088 (0.002 ; 0.633) 1.01 (0.785 ; 1.268) 

HIGH_6 1.044 (0.722 ; 1.538) 0.002 (0.002 ; 0.015) 0.001 (0.001 ; 0.073) 1.711 (0.723 ; 3.233) 0.314 (0.002 ; 1.045) 0.914 (0.66 ; 1.207) 

HIGH_7 0.961 (0.684 ; 1.429) 0.002 (0.002 ; 0.021) 0.003 (0.001 ; 0.067) 1.151 (0.278 ; 2.904) 0.167 (0.002 ; 1.122) 0.796 (0.6 ; 1.054) 

HIGH_8 1.02 (0.736 ; 1.426) 0.002 (0.002 ; 0.028) 0.001 (0.001 ; 0.069) 1.575 (0.724 ; 4.03) 0.189 (0.002 ; 0.882) 0.877 (0.665 ; 1.141) 

HIGH_9 1.087 (0.803 ; 1.573) 0.002 (0.002 ; 0.009) 0.009 (0.001 ; 0.029) 1.47 (0.552 ; 3.477) 0.165 (0.002 ; 0.751) 0.925 (0.717 ; 1.192) 

HIGH_10 0.972 (0.732 ; 1.358) 0.002 (0.002 ; 0.005) 0.008 (0.001 ; 0.053) 1.591 (0.684 ; 3.23) 0.348 (0.002 ; 0.891) 0.966 (0.778 ; 1.18) 

HIGH_11 0.942 (0.654 ; 1.338) 0.002 (0.002 ; 0.006) 0.007 (0.001 ; 0.033) 1.174 (0.577 ; 2.947) 0.253 (0.002 ; 0.777) 0.838 (0.689 ; 1.023) 

HIGH_12 1.035 (0.751 ; 1.413) 0.002 (0.002 ; 0.031) 0.006 (0.001 ; 0.102) 1.437 (0.701 ; 3.469) 0.077 (0.002 ; 0.9) 0.89 (0.623 ; 1.129) 

Medium Impact 

Area 1.099 (0.805 ; 1.581) 0.002 (0.002 ; 0.022) 0.017 (0.001 ; 0.082) 1.69 (0.631 ; 3.89) 0.288 (0.002 ; 0.906) 1.039 (0.739 ; 1.352) 

MEDIUM_1 0.929 (0.717 ; 1.296) 0.002 (0.002 ; 0.025) 0.005 (0.001 ; 0.04) 1.091 (0.528 ; 2.696) 0.227 (0.002 ; 0.645) 0.996 (0.802 ; 1.242) 

MEDIUM_2 0.973 (0.7 ; 1.325) 0.002 (0.002 ; 0.007) 0.007 (0.001 ; 0.069) 1.313 (0.421 ; 3.702) 0.294 (0.002 ; 0.908) 0.965 (0.716 ; 1.25) 

MEDIUM_3 0.973 (0.76 ; 1.312) 0.002 (0.002 ; 0.008) 0.001 (0.001 ; 0.031) 1.051 (0.44 ; 2.912) 0.002 (0.002 ; 0.822) 0.895 (0.657 ; 1.19) 

IRNO_1 1.244 (0.921 ; 1.938) 0.002 (0.002 ; 0.014) 0.019 (0.001 ; 0.055) 2.843 (0.872 ; 5.978) 0.291 (0.002 ; 0.805) 1.189 (0.772 ; 1.508) 

IRNO_2 1.247 (0.854 ; 1.882) 0.002 (0.002 ; 0.032) 0.019 (0.001 ; 0.058) 2.235 (0.926 ; 4.872) 0.345 (0.002 ; 0.81) 1.232 (0.839 ; 1.599) 

SABATO 1.197 (0.958 ; 1.643) 0.002 (0.002 ; 0.059) 0.095 (0.038 ; 0.196) 2.319 (1.242 ; 3.69) 0.697 (0.002 ; 1.26) 1.042 (0.812 ; 1.319) 

Low Impact 

Area 0.99 (0.697 ; 1.537) 0.002 (0.002 ; 0.006) 0.013 (0.001 ; 0.041) 1.45 (0.62 ; 3.168) 0.277 (0.002 ; 0.804) 0.923 (0.742 ; 1.15) 

LOW_1 1.017 (0.686 ; 1.427) 0.002 (0.002 ; 0.031) 0.013 (0.001 ; 0.059) 1.64 (0.666 ; 3.774) 0.062 (0.002 ; 0.703) 0.906 (0.74 ; 1.162) 

LOW_2 0.956 (0.675 ; 1.561) 0.002 (0.002 ; 0.002) 0.012 (0.001 ; 0.029) 1.413 (0.685 ; 3.632) 0.331 (0.002 ; 0.94) 0.935 (0.776 ; 1.155) 

LOW_3 0.995 (0.709 ; 1.704) 0.002 (0.002 ; 0.002) 0.017 (0.001 ; 0.044) 1.422 (0.503 ; 2.547) 0.347 (0.002 ; 0.982) 0.925 (0.696 ; 1.101) 

Overall 1.026 (0.736 ; 1.504) 0.002 (0.002 ; 0.012) 0.009 (0.001 ; 0.062) 1.513 (0.624 ; 3.462) 0.242 (0.002 ; 0.854) 0.941 (0.709 ; 1.213) 
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             Table 10d. Median (IQR) of the heavy metals assessed in the serum (µg/L) by cluster and area. Data are reported as median [25th ; 75th percentile]. 

 

Cluster Cu63 Fe Hg202 Mn55 Mo98 Ni60 Pb208 

High Impact 

Area 985.9 (832.5 ; 1159.9) 2389.2 (1794.8 ; 3127.9) 0.693 (0.119 ; 1.881) 1.031 (0.543 ; 1.506) 0.756 (0.305 ; 1.207) 1.121 (0.021 ; 2.537) 0.018 (0.018 ; 0.044) 

HIGH_1 1093.4 (935.8 ; 1310.8) 2382.7 (1833.3 ; 3216.4) 0.783 (0.119 ; 1.796) 1.18 (0.797 ; 1.538) 0.754 (0.322 ; 1.209) 0.907 (0.021 ; 1.956) 0.018 (0.018 ; 0.02) 

HIGH_2 999.7 (814.5 ; 1152.4) 2334.6 (1643 ; 3073.4) 0.792 (0.119 ; 1.798) 0.934 (0.504 ; 1.346) 0.638 (0.128 ; 1.128) 0.765 (0.021 ; 2.092) 0.018 (0.018 ; 0.088) 

HIGH_3 989.8 (814.2 ; 1165.7) 2232.8 (1674.4 ; 2867.3) 0.929 (0.119 ; 2.351) 1.015 (0.473 ; 1.449) 0.76 (0.389 ; 1.202) 1.407 (0.021 ; 2.262) 0.018 (0.018 ; 0.036) 

HIGH_4 1009.4 (897.2 ; 1159.4) 2327.9 (1770 ; 3069.1) 0.684 (0.119 ; 1.86) 0.981 (0.493 ; 1.47) 0.744 (0.29 ; 1.084) 1.027 (0.021 ; 2.503) 0.018 (0.018 ; 0.073) 

HIGH_5 980.6 (819.2 ; 1170.3) 2516.6 (1832.3 ; 3161.3) 0.449 (0.119 ; 1.901) 0.966 (0.506 ; 1.416) 0.628 (0.057 ; 1.151) 1.526 (0.021 ; 3.475) 0.018 (0.018 ; 0.018) 

HIGH_6 982 (826.4 ; 1165.9) 2434.7 (1814.8 ; 3321.6) 0.528 (0.119 ; 1.741) 1.148 (0.625 ; 1.575) 0.945 (0.438 ; 1.28) 0.819 (0.021 ; 2.808) 0.018 (0.018 ; 0.142) 

HIGH_7 957.6 (815.3 ; 1162.2) 2239.3 (1670.3 ; 3101.3) 0.316 (0.119 ; 1.765) 0.781 (0.156 ; 1.317) 0.774 (0.364 ; 1.223) 0.641 (0.021 ; 2.011) 0.018 (0.018 ; 0.018) 

HIGH_8 985.4 (847.2 ; 1151.4) 2472.2 (1924 ; 3111.9) 0.728 (0.142 ; 1.996) 1.019 (0.595 ; 1.52) 0.855 (0.428 ; 1.172) 1.151 (0.021 ; 3.112) 0.018 (0.018 ; 0.098) 

HIGH_9 963.2 (851.2 ; 1127.2) 2427.3 (1800 ; 3250.7) 0.697 (0.141 ; 1.534) 0.86 (0.383 ; 1.504) 0.833 (0.387 ; 1.21) 1.753 (0.556 ; 3.056) 0.018 (0.018 ; 0.026) 

HIGH_10 921.4 (795.5 ; 1065.5) 2437.4 (1918.2 ; 3123.2) 0.854 (0.119 ; 1.762) 1.135 (0.714 ; 1.611) 0.81 (0.296 ; 1.23) 0.78 (0.021 ; 2.266) 0.018 (0.018 ; 0.048) 

HIGH_11 993.7 (832.5 ; 1155.9) 2420.2 (1899.8 ; 3022.3) 0.654 (0.119 ; 1.583) 1.158 (0.737 ; 1.527) 0.742 (0.322 ; 1.168) 0.774 (0.021 ; 1.96) 0.018 (0.018 ; 0.033) 

HIGH_12 967.7 (836.5 ; 1120) 2449.7 (1851.1 ; 3261.1) 0.863 (0.146 ; 2.086) 1.081 (0.535 ; 1.595) 0.669 (0.193 ; 1.072) 1.578 (0.692 ; 2.703) 0.018 (0.018 ; 0.021) 

Medium 

Impact Area 982 (842.7 ; 1148.3) 2442.9 (1787 ; 3176.5) 1.937 (0.564 ; 4.284) 1.309 (0.729 ; 1.78) 0.794 (0.27 ; 1.215) 1.054 (0.021 ; 3.042) 0.018 (0.018 ; 0.06) 

MEDIUM_1 1017.8 (848.6 ; 1169.6) 2597 (2016.9 ; 3408) 0.826 (0.119 ; 2.029) 1.353 (0.847 ; 1.884) 0.789 (0.317 ; 1.209) 0.416 (0.021 ; 2.401) 0.018 (0.018 ; 0.041) 

MEDIUM_2 1002.4 (854.6 ; 1200.9) 2534.3 (1820.7 ; 3306.8) 0.568 (0.119 ; 1.792) 1.086 (0.563 ; 1.556) 0.792 (0.176 ; 1.355) 1.068 (0.021 ; 2.47) 0.018 (0.018 ; 0.047) 

MEDIUM_3 981.5 (848.3 ; 1172.5) 2441.6 (1876.3 ; 3110) 0.385 (0.119 ; 1.65) 0.952 (0.438 ; 1.368) 0.809 (0.244 ; 1.27) 1.845 (0.021 ; 4.269) 0.018 (0.018 ; 0.018) 

IRNO_1 903.8 (812.2 ; 1077.3) 2233.2 (1424.1 ; 3170.7) 5.14 (2.874 ; 8.812) 1.4 (0.614 ; 1.735) 0.728 (0.06 ; 1.112) 0.383 (0.021 ; 1.478) 0.018 (0.018 ; 0.064) 

IRNO_2 
925.8 (755.3 ; 1083.4) 2326.2 (1286 ; 2998) 

5.046 (2.667 ; 

10.542) 1.246 (0.643 ; 1.654) 0.757 (0.01 ; 1.165) 0.415 (0.021 ; 1.169) 0.018 (0.018 ; 0.021) 

SABATO 1040.3 (900.9 ; 1176.4) 2468.8 (1999.9 ; 3090.4) 1.812 (1.056 ; 2.972) 1.785 (1.421 ; 2.248) 0.895 (0.602 ; 1.168) 3.43 (1.873 ; 11.147) 0.018 (0.018 ; 0.281) 

Low Impact 

Area 1008.6 (870.8 ; 1210.5) 2456 (1847.6 ; 3177.3) 0.877 (0.189 ; 2.15) 1.157 (0.749 ; 1.622) 0.902 (0.541 ; 1.33) 0.858 (0.021 ; 3.423) 0.018 (0.018 ; 0.144) 

LOW_1 983.4 (839 ; 1202.3) 2381.9 (1810.9 ; 3061.3) 1.059 (0.253 ; 2.635) 0.956 (0.585 ; 1.456) 0.859 (0.405 ; 1.306) 0.653 (0.021 ; 3.29) 0.018 (0.018 ; 0.018) 

LOW_2 1034.5 (865.9 ; 1224.6) 2561.7 (1904.3 ; 3301.1) 1.006 (0.333 ; 2.521) 1.187 (0.813 ; 1.594) 0.942 (0.557 ; 1.283) 1.449 (0.021 ; 3.807) 0.018 (0.018 ; 0.085) 

LOW_3 1024.3 (899 ; 1191.3) 2378.1 (1840.2 ; 3139.5) 0.734 (0.119 ; 1.398) 1.303 (0.832 ; 1.791) 0.908 (0.624 ; 1.402) 0.81 (0.021 ; 3.243) 0.018 (0.018 ; 0.354) 

Overall 988.1 (841 ; 1163.6) 2413.9 (1799.7 ; 3155.7) 1.004 (0.119 ; 2.619) 1.129 (0.609 ; 1.618) 0.795 (0.326 ; 1.224) 1.057 (0.021 ; 2.752) 0.018 (0.018 ; 0.057) 
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Table 10e. Median (IQR) of the heavy metals assessed in the serum (µg/L) by cluster and area. Data are reported as median [25th ; 75th percentile]. 

 

Cluster Pb208 Sb121 Se78 Sr88 Tl205 V51 Zn66 

High Impact Area 0.018 (0.018 ; 0.044) 0.063 (0.002 ; 0.168) 194.3 (159 ; 228.1) 28.3 (22.3 ; 35.3) 0.025 (0.001 ; 0.054) 0.418 (0.216 ; 0.693) 1387 (1178.3 ; 1618.6) 

HIGH_1 0.018 (0.018 ; 0.02) 0.029 (0.002 ; 0.18) 198.3 (162.9 ; 233) 29.2 (24.3 ; 35.9) 0.031 (0.001 ; 0.06) 0.477 (0.292 ; 0.787) 1462.2 (1262.6 ; 1679.6) 

HIGH_2 0.018 (0.018 ; 0.088) 0.002 (0.002 ; 0.144) 194.1 (158.5 ; 230.2) 27.7 (22.2 ; 35.2) 0.03 (0.001 ; 0.065) 0.501 (0.232 ; 0.876) 1363.6 (1123.5 ; 1614.8) 

HIGH_3 0.018 (0.018 ; 0.036) 0.029 (0.002 ; 0.141) 195.8 (157.4 ; 238.1) 27.6 (20.8 ; 37.2) 0.022 (0.001 ; 0.045) 0.45 (0.251 ; 0.744) 1404.6 (1159.7 ; 1638.7) 

HIGH_4 0.018 (0.018 ; 0.073) 0.103 (0.002 ; 0.182) 187 (159 ; 219.3) 28.2 (21.7 ; 35.9) 0.029 (0.001 ; 0.067) 0.451 (0.188 ; 0.774) 1371 (1121.1 ; 1617.6) 

HIGH_5 0.018 (0.018 ; 0.018) 0.002 (0.002 ; 0.15) 207.2 (175 ; 243.2) 29.8 (25.4 ; 35.9) 0.022 (0.002 ; 0.046) 0.424 (0.223 ; 0.639) 1529.2 (1308.9 ; 1709.9) 

HIGH_6 0.018 (0.018 ; 0.142) 0.071 (0.002 ; 0.155) 195.9 (157.7 ; 228.1) 28.5 (21.8 ; 35.3) 0.022 (0.001 ; 0.049) 0.387 (0.163 ; 0.678) 1380.3 (1114.9 ; 1602.1) 

HIGH_7 0.018 (0.018 ; 0.018) 0.002 (0.002 ; 0.132) 175.8 (135.3 ; 206.6) 25.8 (20.3 ; 33.8) 0.017 (0.001 ; 0.058) 0.395 (0.184 ; 0.609) 1304 (1040.8 ; 1568.9) 

HIGH_8 0.018 (0.018 ; 0.098) 0.078 (0.002 ; 0.182) 194.7 (154.7 ; 218.9) 27.9 (23 ; 36.5) 0.027 (0.001 ; 0.054) 0.446 (0.218 ; 0.781) 1408.9 (1173.9 ; 1608.5) 

HIGH_9 0.018 (0.018 ; 0.026) 0.106 (0.002 ; 0.187) 195.1 (164.2 ; 228.8) 28.5 (22.9 ; 34.6) 0.023 (0.005 ; 0.042) 0.361 (0.184 ; 0.558) 1392.7 (1218.2 ; 1676.3) 

HIGH_10 0.018 (0.018 ; 0.048) 0.103 (0.002 ; 0.185) 187.4 (155.5 ; 218.1) 27.9 (22.4 ; 33.6) 0.023 (0.004 ; 0.048) 0.409 (0.266 ; 0.631) 1317.1 (1103.8 ; 1545.1) 

HIGH_11 0.018 (0.018 ; 0.033) 0.102 (0.002 ; 0.174) 197.7 (168.4 ; 234.5) 28.9 (22.2 ; 35.4) 0.028 (0.008 ; 0.057) 0.433 (0.299 ; 0.645) 1369.8 (1195.3 ; 1578.4) 

HIGH_12 0.018 (0.018 ; 0.021) 0.03 (0.002 ; 0.156) 195.2 (157.2 ; 225.9) 27.9 (22 ; 33.6) 0.026 (0.001 ; 0.061) 0.345 (0.14 ; 0.613) 1348.2 (1150.6 ; 1533.3) 

Medium Impact 

Area 0.018 (0.018 ; 0.06) 0.144 (0.002 ; 0.23) 196 (163.4 ; 233.9) 28.4 (23.5 ; 36.2) 0.021 (0.002 ; 0.043) 0.446 (0.193 ; 0.731) 1539.5 (1320.8 ; 1753.8) 

MEDIUM_1 0.018 (0.018 ; 0.041) 0.143 (0.002 ; 0.228) 195.9 (163.9 ; 233.2) 27.8 (23.6 ; 34.2) 0.026 (0.012 ; 0.045) 0.462 (0.257 ; 0.641) 1493.9 (1322.9 ; 1703.3) 

MEDIUM_2 0.018 (0.018 ; 0.047) 0.074 (0.002 ; 0.167) 202.7 (161.2 ; 231.6) 27.4 (22 ; 35.4) 0.02 (0.001 ; 0.046) 0.534 (0.27 ; 0.812) 1428.5 (1224.5 ; 1642.5) 

MEDIUM_3 0.018 (0.018 ; 0.018) 0.03 (0.002 ; 0.151) 197.7 (165.8 ; 238.2) 28.6 (24.7 ; 35) 0.008 (0.001 ; 0.028) 0.363 (0.185 ; 0.646) 1457.7 (1265.5 ; 1688.4) 

IRNO_1 0.018 (0.018 ; 0.064) 0.138 (0.084 ; 0.215) 184 (155 ; 221.8) 28.2 (22.6 ; 34.3) 0.022 (0.013 ; 0.042) 0.404 (0.009 ; 0.671) 1651.7 (1467.6 ; 1899.3) 

IRNO_2 0.018 (0.018 ; 0.021) 0.156 (0.07 ; 0.216) 183.5 (156.3 ; 227.6) 27 (21.8 ; 33.6) 0.017 (0.001 ; 0.03) 0.469 (0.009 ; 0.694) 1708.7 (1522.4 ; 1973.6) 

SABATO 0.018 (0.018 ; 0.281) 0.246 (0.183 ; 0.304) 206.6 (184 ; 243.8) 32.8 (27.1 ; 41.3) 0.038 (0.016 ; 0.085) 0.533 (0.186 ; 0.836) 1456.2 (1288.9 ; 1627.7) 

Low Impact Area 0.018 (0.018 ; 0.144) 0.118 (0.002 ; 0.192) 204 (169.3 ; 240.8) 28.1 (22.5 ; 36.2) 0.016 (0.003 ; 0.031) 0.428 (0.245 ; 0.681) 1379.3 (1170.8 ; 1607) 

LOW_1 0.018 (0.018 ; 0.018) 0.094 (0.002 ; 0.176) 188 (152 ; 222.4) 28.3 (22.3 ; 35.7) 0.013 (0.001 ; 0.031) 0.439 (0.248 ; 0.739) 1353.7 (1161.4 ; 1596.6) 

LOW_2 0.018 (0.018 ; 0.085) 0.154 (0.002 ; 0.209) 216.2 (181.3 ; 250.8) 28.1 (22.5 ; 37.5) 0.02 (0.009 ; 0.033) 0.416 (0.229 ; 0.584) 1401.6 (1172.1 ; 1598.7) 

LOW_3 0.018 (0.018 ; 0.354) 0.105 (0.002 ; 0.196) 207.6 (172.5 ; 236.2) 27.4 (22.6 ; 34.8) 0.015 (0.001 ; 0.027) 0.439 (0.258 ; 0.75) 1387.7 (1187.6 ; 1622.2) 

Overall 0.018 (0.018 ; 0.057) 0.103 (0.002 ; 0.194) 196.1 (161.9 ; 232.1) 28.3 (22.7 ; 35.6) 0.022 (0.001 ; 0.046) 0.425 (0.215 ; 0.703) 1431.4 (1216.8 ; 1661.8) 
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Table 11. Percentage fold-increase/decrease of the geometric mean of six of the heavy metals assessed in the 

population indwelling in each cluster/area vs the entire population by cluster and area. Green and red colors 

express the fold-decrease and increase, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cluster Cd111 Hg202 Mn55 Ni60 Sb121 Tl205 

High Impact Area -19.1 -28.7 -8.8 -3.2 -28.7 2.8 

HIGH_1 -29.4 -21.6 23.9 -32 -36.0 24.3 

HIGH_2 -15.9 -27.0 -22.7 -33.3 -50.0 8.6 

HIGH_3 -24.3 -14.7 -16.2 11.4 -37.5 -4.9 

HIGH_4 -0.4 -31.6 -16.5 -0.2 -14.7 18.3 

HIGH_5 -21.7 -39.5 -7.8 24.2 -48.5 -0.2 

HIGH_6 -10.6 -35.6 2.1 -34.3 -16.3 -15.1 

HIGH_7 -14.4 -41.1 -51.8 -35.2 -50.1 -22.2 

HIGH_8 -9.9 -22.6 2.5 37.3 -14.7 3.8 

HIGH_9 -14.7 -28.5 -37.0 75.8 23.0 8.1 

HIGH_10 -6.8 -21.9 26.0 -12.7 -3.5 8.0 

HIGH_11 -13.1 -35.2 33.1 -23.6 -9.6 38.7 

HIGH_12 5.5 -18.2 -0.7 88.1 -38.2 16.6 

Medium Impact Area 4.0 -5.9 37.5 -14.4 17.7 -19.2 

MEDIUM_1 -22.4 -19.3 66.9 -34.5 22.6 34.9 

MEDIUM_2 -3.8 -29.8 -11.7 -19.3 -24.3 -7.5 

MEDIUM_3 -45.4 -42.4 -34.2 53.4 -32.8 -51.5 

IRNO_1 40.7 461.9 -25.7 -51.2 180.9 12.4 

IRNO_2 30.9 518.4 -31.5 -52 146.0 -33.8 

SABATO 517.5 108.7 159.5 577.6 626.6 142.2 

Low Impact Area 27.1 87.2 2.7 9.1 76.6 2.8 

LOW_1 9.3 7.6 -1.9 -30 3.8 -34.4 

LOW_2 -6.2 11.8 57.8 33.9 48.3 8.6 

LOW_3 22.2 -30.3 68.3 -13.9 6.4 -27.9 



 

58 
 

 

  

 

Figure 13. Campania Region representations with percentage fold decreases/increases of heavy metals for 

which percentage fold increase with respect to the general population was ≥ 100% in at least one cluster: (a) 

Cadmium – Cd111. (b) Mercury – Hg202. (c) Manganese – Mn55. (d) Nichel – Ni60. (e) Antimony – Sb121. 

(f) Thallium – Tl205. 

a b 

e f 

d c 
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Table 12a. Median regression models where low impact area is the geographical analysis unit. Likewise, age and gender are considered for the median regression model. Bold results indicate 

differences with p<0.05. Results are expressed as difference between adjusted medians.  

 

 

Se78 Sr88 Tl205 V51 Zn66 Co59 Cr52 

Area; Low impact ref.        

Medium impact 

-8.7 (-15 to -2.4) 

p=0.007 

-0.05 (-1.22 to 1.11) 

p=0.929 

0.004 (0.002 to 0.007) 

p=0.002 

0.02 (-0.03 to 0.07) 

p=0.393 

138.1 (100.1 to 176) 

p<0.001 

0.13 (0.09 to 0.17) 

p<0.001 

0.05 (-0.05 to 0.15) 

p=0.332 

High Impact 
-11.7 (-17.8 to -5.6) 

p<0.001 

-0.21 (-1.28 to 0.87) 
p=0.707 

0.009 (0.006 to 0.011) 

p<0.001 

-0.01 (-0.05 to 0.03) 
p=0.586 

-5.9 (-43.3 to 31.5) 
p=0.758 

-0.01 (-0.04 to 0.03) 
p=0.677 

-0.06 (-0.16 to 0.03) 
p=0.203 

Gender; Male 

21.2 (15.8 to 26.5) 

p<0.001 

-0.26 (-1.12 to 0.61) 

p=0.557 

-0.002 (-0.005 to 0.001) 

p=0.153 

0 (-0.04 to 0.04) 

p=0.906 

132.8 (99.3 to 166.2) 

p<0.001 

0.01 (-0.03 to 0.04) 

p=0.721 

0.03 (-0.03 to 0.1) 

p=0.321 

Age; 20-30 ref        

30-40 

-0.1 (-5.2 to 5) 

p=0.974 

1.23 (0.37 to 2.09) 

p=0.005 

0.001 (-0.002 to 0.004) 

p=0.553 

-0.01 (-0.04 to 0.02) 

p=0.428 

-18.8 (-52.8 to 15.2) 

p=0.279 

0.04 (0.01 to 0.08) 

p=0.021 

0.05 (-0.02 to 0.12) 

p=0.181 

40-50 

1.1 (-4.3 to 6.5) 

p=0.7 

1.78 (0.92 to 2.64) 

p=0.00 

0.002 (-0.001 to 0.004) 

p=0.126 

-0.02 (-0.06 to 0.01) 

p=0.192 

-0.6 (-32.3 to 31.2) 

p=0.973 

0.07 (0.03 to 0.1) 

p=0.00 

0.03 (-0.04 to 0.09) 

p=0.409 

 

 

Hg202 Li7 Cd111 As75 Cr52 Ni60 Sb121 

Area; Low impact ref.        

Medium impact 
0.87 (0.62 to 1.13) 

p<0.001 

0.09 (0.03 to 0.16) 

p=0.003 

0.003 (-0.003 to 0.009) 
p=0.296 

0.14 (-0.1 to 0.37) 
p=0.251 

0.05 (-0.05 to 0.15) 
p=0.332 

0.12 (-0.31 to 0.55) 
p=0.584 

0.03 (0.01 to 0.04) 

p=0.005 

High Impact 

-0.3 (-0.45 to -0.15) 

p<0.001 

0.01 (-0.05 to 0.07) 

p=0.694 

-0.007 (-0.011 to -0.003) 

p=0.001 

-0.06 (-0.26 to 0.15) 

p=0.588 

-0.06 (-0.16 to 0.03) 

p=0.203 

0.21 (-0.2 to 0.62) 

p=0.316 

-0.06 (-0.08 to -0.04) 

p<0.001 

Gender; Male 

0.16 (0 to 0.32) 
p=0.053 

0.12 (0.08 to 0.17) 

p<0.001 

-0.004 (-0.007 to 0) 
p=0.058 

0.17 (-0.04 to 0.39) 
p=0.109 

0.02 (-0.03 to 0.1) 
p=0.321 

-0.02 (-0.31 to 0.28) 
p=0.915 

0 (-0.02 to 0.02) 
p=0.779 

Age; 20-30 ref        

30-40 
0.15 (-0.02 to 0.33) 
p=0.087 

-0.03 (-0.08 to 0.02) 
p=0.25 

0 (-0.002 to 0.002) 
p=1 

0.25 (0.04 to 0.45) 

p=0.017 

0.05 (-0.02 to 0.12) 
p=0.181 

-0.02 (-0.31 to 0.28) 
p=0.905 

0.01 (-0.01 to 0.03) 
p=0.186 

40-50 

0.15 (-0.03 to 0.33) 

p=0.107 

0.03 (-0.04 to 0.07) 

p=0.589 

0.04 (-0.001 to 0.005) 

p=0.161 

0.26 (0.05 to 0.46) 

p=0.015 

0.03 (-0.04 to 0.09) 

p=0.409 

0.02 (-0.21 to 0.26) 

p=0.86 

0.01 (-0.01 to 0.03) 

p=0.272 
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Table 12b. Median regression models where low impact area is the geographical analysis unit. Likewise, age and gender are considered for the median regression model. Bold results indicate 

differences with p<0.05. Results are expressed as difference between adjusted medians. 

 

 

 

 

 

 

 

 

 

 

 

Cu63 Fe Mn55 Mo98 

Area; Low impact ref.     

Medium impact 

-43.8 (-67.4 to -20.2) 

p<0.001 

6 (-104 to 117) 

p=0.91 

0.15 (0.06 to 0.23) 

p=0.001 

-0.09 (-0.16 to -0.02) 

p=0.016 

High Impact 

-42.2 (-63.8 to -20.7) 

p<0.001 

-94 (-200 to 13) 

p=0.085 

-0.12 (-0.2 to -0.04) 

p=0.004 

-0.14 (-0.2 to -0.08) 

p<0.001 

Gender; Male 

-159 (-183.5 to -135.1) 

p<0.001 

544 (440 to 649) 

p<0.001 

0.11 (0.02 to 0.19) 

p=0.013 

0 (-0.06 to 0.06) 

p=0.991 

Age; 20-30 ref     

30-40 

52.4 (33 to 71.7) 

p=0.00 

34 (-77 to 144) 

p=0.553 

0.01 (-0.06 to 0.08) 

p=0.77 

0.05 (-0.01 to 0.11) 

p=0.134 

40-50 

80 (59.8 to 100.2) 

p=0.00 

-93 (-198 to 11) 

p=0.079 

0.02 (-0.03 to 0.1) 

p=0.344 

0.03 (-0.02 to 0.11) 

p=0.169 
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Table 13a. Median regression models for the heavy metals assessed in the population, using cluster as geographical reference unit. Data are reported as adjusted difference between medians with the 

corresponding 95% CIs. Bold results indicate differences with p<0.005. It is considered as reference value the cluster with the lower geometric mean for each metal. 

Cluster Hg202 Li7 Cd111 As75 Cr52 Co59 

HIGH_1 ref 0 (-0.16 to 0.16) -0.004 (-0.012 to 0.003) 0.12 (-0.4 to 0.64) -0.07 (-0.27 to 0.13) 0.04 (-0.06 to 0.13) 

HIGH_2 -0.02 (-0.45 to 0.4) -0.1 (-0.25 to 0.05) -0.003 (-0.012 to 0.005) -0.01 (-0.55 to 0.54) -0.08 (-0.29 to 0.12) -0.07 (-0.15 to 0.01) 

HIGH_3 0.14 (-0.42 to 0.7) -0.1 (-0.24 to 0.05) -0.004 (-0.011 to 0.004) 0.22 (-0.31 to 0.75) -0.01 (-0.21 to 0.18) -0.01 (-0.1 to 0.09) 

HIGH_4 0.02 (-0.46 to 0.5) -0.03 (-0.18 to 0.12) -0.002 (-0.013 to 0.009) 0.39 (-0.19 to 0.96) -0.14 (-0.33 to 0.05) 0.01 (-0.07 to 0.09) 

HIGH_5 -0.33 (-0.69 to 0.03) 0.11 (-0.04 to 0.26) -0.003 (-0.01 to 0.005) -0.11 (-0.59 to 0.36) -0.09 (-0.28 to 0.1) 0.08 (-0.02 to 0.18) 

HIGH_6 -0.22 (-0.62 to 0.18) 0.06 (-0.1 to 0.22) -0.003 (-0.011 to 0.005) 0.26 (-0.3 to 0.82) 0.06 (-0.14 to 0.26) 0.01 (-0.1 to 0.11) 

HIGH_7 -0.28 (-0.7 to 0.14) -0.07 (-0.23 to 0.08) -0.002 (-0.011 to 0.007) -0.26 (-0.73 to 0.22) -0.08 (-0.29 to 0.13) -0.13 (-0.23 to -0.04) 

HIGH_8 0.03 (-0.37 to 0.43) 0 (-0.13 to 0.13) -0.004 (-0.012 to 0.005) 0.23 (-0.31 to 0.77) -0.02 (-0.23 to 0.19) -0.05 (-0.13 to 0.04) 

HIGH_9 -0.1 (-0.48 to 0.29) 0.07 (-0.08 to 0.22) 0.001 (-0.008 to 0.009) ref -0.08 (-0.27 to 0.1) ref 

HIGH_10 0.05 (-0.35 to 0.44) -0.02 (-0.16 to 0.11) 0.001 (-0.009 to 0.01) 0.15 (-0.37 to 0.66) 0.16 (-0.06 to 0.37) 0.05 (-0.04 to 0.14) 

HIGH_11 -0.15 (-0.54 to 0.25) -0.08 (-0.22 to 0.06) 0 (-0.008 to 0.008) -0.07 (-0.54 to 0.41) 0.01 (-0.21 to 0.23) -0.11 (-0.18 to -0.03) 

HIGH_12 0.09 (-0.33 to 0.51) -0.02 (-0.15 to 0.12) ref -0.1 (-0.59 to 0.39) -0.12 (-0.31 to 0.07) -0.05 (-0.15 to 0.04) 

MEDIUM_1 0.16 (-0.28 to 0.61) -0.06 (-0.2 to 0.09) -0.002 (-0.01 to 0.007) -0.33 (-0.79 to 0.14) ref 0.07 (-0.02 to 0.17) 

MEDIUM_2 -0.07 (-0.58 to 0.44) -0.03 (-0.16 to 0.1) -0.002 (-0.011 to 0.008) -0.14 (-0.65 to 0.36) 0.09 (-0.12 to 0.29) 0.03 (-0.06 to 0.13) 

MEDIUM_3 -0.3 (-0.66 to 0.06) -0.02 (-0.15 to 0.1) -0.005 (-0.012 to 0.001) -0.4 (-0.88 to 0.07) -0.16 (-0.32 to 0.01) -0.03 (-0.14 to 0.07) 

IRNO_1 4.17 (3.28 to 5.05) 0.26 (0.1 to 0.42) 0.012 (0.003 to 0.021) 1.47 (0.68 to 2.26) 0.08 (-0.14 to 0.3) 0.29 (0.16 to 0.42) 

IRNO_2 4.17 (3.22 to 5.13) 0.22 (0.05 to 0.38) 0.013 (0.002 to 0.023) 0.8 (0.17 to 1.42) 0.08 (-0.11 to 0.27) 0.33 (0.22 to 0.45) 

SABATO 1.03 (0.54 to 1.51) 0.17 (0.03 to 0.32) 0.092 (0.065 to 0.119) 0.82 (0.26 to 1.37) 0.45 (0.18 to 0.72) 0.09 (-0.03 to 0.2) 

LOW_1 
0.34 (-0.06 to 0.74) ref 0.004 (-0.005 to 0.012) 0.31 (-0.26 to 0.88) -0.12 (-0.3 to 0.06) -0.02 (-0.11 to 0.06) 

LOW_2 0.34 (-0.13 to 0.8) -0.05 (-0.18 to 0.08) 0.003 (-0.005 to 0.012) 0.22 (-0.34 to 0.78) 0.09 (-0.12 to 0.3) 0 (-0.08 to 0.08) 

LOW_3 -0.03 (-0.4 to 0.34) -0.05 (-0.19 to 0.09) 0.009 (0 to 0.018) -0.02 (-0.5 to 0.45) 0.12 (-0.08 to 0.32) 0 (-0.09 to 0.08) 
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Table 13b. Median regression models for the heavy metals assessed in the population, using cluster as geographical reference unit. Data are reported as adjusted difference between medians with the 

corresponding 95% CIs. Bold results indicate differences with p<0.005. It is considered as reference value the cluster with the lower geometric mean for each metal. 

Cluster Cu63 Fe Mn55 Mo98 Ni60 Sb121 

HIGH_1 79.5 (13.1 to 145.9) -4.6 (-287 to 277.8) 0.1 (-0.07 to 0.26) -0.02 (-0.17 to 0.12) ref -0.05 (-0.1 to -0.01) 

HIGH_2 -36.2 (-97.2 to 24.9) -58.9 (-343.4 to 225.5) -0.18 (-0.36 to 0) -0.13 (-0.3 to 0.04) -0.37 (-1.13 to 0.38) -0.07 (-0.1 to -0.05) 

HIGH_3 -46 (-105.3 to 13.4) -175.1 (-426.5 to 76.3) -0.08 (-0.24 to 0.08) 0 (-0.15 to 0.16) 0.39 (-0.38 to 1.15) -0.06 (-0.1 to -0.02) 

HIGH_4 -2.8 (-57.2 to 51.6) -99.9 (-351.6 to 151.9) -0.08 (-0.25 to 0.08) -0.04 (-0.21 to 0.12) 0.22 (-0.54 to 0.99) 0.01 (-0.03 to 0.05) 

HIGH_5 -18.5 (-75 to 38) -1.4 (-300.6 to 297.7) -0.12 (-0.3 to 0.05) -0.17 (-0.37 to 0.02) 0.58 (-0.21 to 1.36) -0.08 (-0.1 to -0.05) 

HIGH_6 -0.5 (-59.9 to 59) 67.3 (-210 to 344.5) 0.08 (-0.1 to 0.26) 0.16 (-0.02 to 0.33) -0.38 (-1.03 to 0.27) -0.02 (-0.07 to 0.02) 

HIGH_7 -38.8 (-94.1 to 16.5) -121.7 (-413.8 to 170.5) -0.29 (-0.46 to -0.12) -0.02 (-0.19 to 0.15) 0.04 (-0.74 to 0.83) -0.07 (-0.1 to -0.04) 

HIGH_8 ref 53.7 (-221.8 to 329.3) -0.07 (-0.23 to 0.09) 0.07 (-0.08 to 0.23) 0.17 (-0.54 to 0.89) -0.01 (-0.06 to 0.04) 

HIGH_9 -38.6 (-89.4 to 12.3) ref -0.19 (-0.39 to 0.01) 0.03 (-0.13 to 0.19) 0.8 (0.07 to 1.52) 0.01 (-0.02 to 0.04) 

HIGH_10 -62.5 (-115.7 to -9.4) -76.7 (-313.8 to 160.5) 0.05 (-0.09 to 0.19) 0.03 (-0.16 to 0.21) -0.2 (-0.95 to 0.55) 0.01 (-0.03 to 0.04) 

HIGH_11 -33.6 (-96.3 to 29.1) -29.3 (-287.7 to 229.1) 0.08 (-0.07 to 0.22) -0.06 (-0.22 to 0.11) -0.17 (-0.85 to 0.51) 0.01 (-0.04 to 0.05) 

HIGH_12 -9.5 (-67.5 to 48.4) -47.4 (-300 to 205.2) 0 (-0.18 to 0.17) -0.1 (-0.24 to 0.04) 0.54 (-0.18 to 1.25) -0.06 (-0.09 to -0.02) 

MEDIUM_1 -10.3 (-70 to 49.3) 201.5 (-76.4 to 479.4) 0.26 (0.07 to 0.45) ref -0.35 (-1.09 to 0.4) 0.05 (0.01 to 0.08) 

MEDIUM_2 15.8 (-43 to 74.7) 161.6 (-79.9 to 403.2) ref 0.01 (-0.19 to 0.22) 0 (-0.72 to 0.72) -0.01 (-0.06 to 0.03) 

MEDIUM_3 -36.5 (-89.7 to 16.7) 56.9 (-199.4 to 313.2) -0.13 (-0.32 to 0.07) 0.04 (-0.14 to 0.21) 0.95 (-0.05 to 1.95) -0.06 (-0.1 to -0.03) 

IRNO_1 -72.5 (-122 to -23) 11.6 (-294.5 to 317.7) 0.34 (0.17 to 0.51) -0.01 (-0.19 to 0.18) -0.53 (-1.12 to 0.06) 0.05 (0.03 to 0.08) 

IRNO_2 -58.3 (-109.5 to -7.1) -33.3 (-296.1 to 229.5) 0.24 (0.08 to 0.41) 0.02 (-0.15 to 0.18) -0.51 (-1.09 to 0.07) 0.07 (0.04 to 0.09) 

SABATO 23.5 (-34.1 to 81) 17.3 (-206.9 to 241.6) 0.69 (0.54 to 0.85) 0.1 (-0.06 to 0.25) 2.26 (1.58 to 2.95) 0.15 (0.12 to 0.18) 

LOW_1 
-7.4 (-64.9 to 50.1) 31.1 (-196.7 to 259) -0.12 (-0.27 to 0.03) 0.07 (-0.09 to 0.23) -0.33 (-1.19 to 0.54) ref 

LOW_2 37 (-13.7 to 87.6) 132.8 (-111.6 to 377.2) 0.09 (-0.07 to 0.25) 0.14 (0 to 0.28) 0.6 (-0.54 to 1.73) 0.06 (0.03 to 0.08) 

LOW_3 40.5 (-16.1 to 97.1) -3.2 (-251.9 to 245.5) 0.21 (0.04 to 0.38) 0.14 (0.01 to 0.28) -0.13 (-0.94 to 0.67) 0.01 (-0.02 to 0.05) 
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Table 13c. Median regression models for the heavy metals assessed in the population, using cluster as geographical reference unit. Data are reported as adjusted difference between medians with the 

corresponding 95% CIs. Bold results indicate differences with p<0.005. It is considered as reference value the cluster with the lower geometric mean for each metal. 

Cluster Se78 Sr88 Tl205 V51 Zn66 

HIGH_1 4.7 (-11.4 to 20.8) 0.45 (-1.59 to 2.49) 0.008 (-0.001 to 0.017) 0.023 (-0.068 to 0.115) 58.8 (-37.5 to 155.2) 

HIGH_2 2 (-14.2 to 18.1) -1.17 (-3.68 to 1.33) 0.007 (-0.004 to 0.017) 0.04 (-0.06 to 0.139) -37.4 (-129.2 to 54.3) 

HIGH_3 ref -1.32 (-4.17 to 1.52) 0 (-0.01 to 0.011) -0.016 (-0.106 to 0.073) -14.3 (-106.8 to 78.1) 

HIGH_4 -3.8 (-20.4 to 12.8) -0.78 (-3.3 to 1.74) 0.007 (-0.005 to 0.018) -0.002 (-0.105 to 0.101) -53.6 (-151.8 to 44.6) 

HIGH_5 13.7 (-1.8 to 29.2) 1.22 (-0.94 to 3.38) 0 (-0.01 to 0.01) -0.028 (-0.118 to 0.062) 103.7 (16.6 to 190.8) 

HIGH_6 -0.4 (-15.5 to 14.8) 0.03 (-2.4 to 2.45) ref -0.063 (-0.144 to 0.018) -23.8 (-107.4 to 59.8) 

HIGH_7 -19.3 (-37 to -1.7) -2.42 (-4.87 to 0.03) -0.004 (-0.017 to 0.008) -0.056 (-0.131 to 0.02) -80.6 (-162.9 to 1.7) 

HIGH_8 -3.3 (-17.8 to 11.2) -0.05 (-2.06 to 1.97) 0.005 (-0.004 to 0.015) -0.003 (-0.109 to 0.103) -18.1 (-110.6 to 74.4) 

HIGH_9 0.4 (-15.7 to 16.6) -0.14 (-2.2 to 1.92) -0.001 (-0.009 to 0.008) -0.089 (-0.166 to -0.011) -22.9 (-114 to 68.1) 

HIGH_10 -4.6 (-20.6 to 11.5) -1.09 (-3.32 to 1.15) 0.001 (-0.008 to 0.01) -0.04 (-0.116 to 0.036) -97.6 (-179.8 to -15.5) 

HIGH_11 4.1 (-12.5 to 20.8) 0.91 (-1.52 to 3.33) 0.007 (-0.001 to 0.016) -0.023 (-0.099 to 0.054) -26.3 (-112.7 to 60.1) 

HIGH_12 -2.4 (-18.5 to 13.6) -0.55 (-2.73 to 1.64) 0.004 (-0.005 to 0.013) -0.112 (-0.203 to -0.021) -54.1 (-144.7 to 36.5) 

MEDIUM_1 1.3 (-14.5 to 17.2) -0.51 (-2.88 to 1.86) 0.002 (-0.006 to 0.011) 0.011 (-0.076 to 0.099) 74.1 (-15 to 163.2) 

MEDIUM_2 8.2 (-6.6 to 22.9) -1.08 (-3.14 to 0.99) -0.001 (-0.009 to 0.008) 0.084 (-0.02 to 0.188) -6.2 (-99.4 to 87) 

MEDIUM_3 4.5 (-10.4 to 19.5) 0 (-1.94 to 1.93) -0.013 (-0.021 to -0.005) -0.096 (-0.178 to -0.014) 48.2 (-38.8 to 135.2) 

IRNO_1 -13.7 (-31.6 to 4.2) -0.56 (-2.63 to 1.52) -0.001 (-0.009 to 0.008) -0.038 (-0.134 to 0.059) 235.8 (136.4 to 335.3) 

IRNO_2 -11.9 (-27.2 to 3.4) -1.72 (-3.79 to 0.35) -0.004 (-0.012 to 0.004) 0.029 (-0.061 to 0.118) 287.5 (202.1 to 373) 

SABATO 14.7 (-1.9 to 31.2) 4.79 (2.25 to 7.33) 0.016 (0.006 to 0.026) -0.019 (-0.153 to 0.115) 51.2 (-33.7 to 136.2) 

LOW_1 
-6.5 (-21.9 to 8.9) 0.11 (-2.35 to 2.56) -0.008 (-0.016 to 0) ref -42.3 (-125.7 to 41.2) 

LOW_2 23.4 (8 to 38.8) ref -0.002 (-0.01 to 0.006) -0.054 (-0.138 to 0.029) ref 

LOW_3 14.4 (-1.4 to 30.1) -0.31 (-2.71 to 2.1) -0.008 (-0.016 to 0.001) -0.019 (-0.107 to 0.07) -9.4 (-100.7 to 81.9) 
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Table 13d. Metals correlation matrix for low impact areas and clusters. Data are reported as Spearman Correlation Coefficient (p-value). Red color expresses the significant correlations. 

 

 

Table 13e. Metals correlation matrix for medium impact areas and clusters. Data are reported as Spearman Correlation Coefficient (p-value). Red color expresses the significant correlations. 

 

Low Li7 Be9 Cd111 As75 Cr52 Co59 Cu63 Fe Hg202 Mn55 Mo98 Ni60 Pb208 Sb121 Se78 Sr88 Tl205 V51 Zn66

Li7 1 0.107 (0.009) 0.178 (<0.001) 0.139 (0.001) 0.061 (0.135) 0.236 (<0.001) 0.104 (0.011) 0.152 (<0.001) 0.23 (<0.001) 0.213 (<0.001) 0.207 (<0.001) 0.141 (0.028) 0.033 (0.418) 0.174 (<0.001) 0.201 (<0.001) 0.526 (<0.001) 0.113 (0.006) 0.173 (<0.001) 0.251 (<0.001)

Be9 1 0.092 (0.025) 0.014 (0.727) 0.08 (0.052) 0.086 (0.036) 0.093 (0.024) 0.03 (0.465) 0.202 (<0.001) 0.011 (0.78) 0.143 (<0.001) 0.087 (0.175) -0.135 (0.001) 0.018 (0.654) 0.042 (0.306) 0.053 (0.197) 0.074 (0.07) 0.088 (0.031) 0.094 (0.024)

Cd111 1 0.096 (0.019) 0.252 (<0.001) 0.091 (0.027) 0.099 (0.016) 0.068 (0.099) 0.242 (<0.001) 0.265 (<0.001) 0.312 (<0.001) 0.173 (0.007) 0.218 (<0.001) 0.206 (<0.001) 0.056 (0.171) 0.078 (0.056) 0.241 (<0.001) 0.214 (<0.001) 0.105 (0.013)

As75 1 0.045 (0.277) 0.142 (0.001) 0.089 (0.03) 0.096 (0.019) 0.202 (<0.001) 0.005 (0.911) -0.06 (0.143) 0.149 (0.02) -0.055 (0.179) 0.032 (0.432) 0.152 (<0.001) 0.116 (0.004) 0.155 (<0.001) 0.004 (0.927) 0.123 (0.003)

Cr52 1 0.034 (0.411) -0.036 (0.385) 0.051 (0.215) 0.215 (<0.001) 0.332 (<0.001) 0.096 (0.02) 0.283 (<0.001) 0.192 (<0.001) 0.226 (<0.001) 0.033 (0.425) -0.047 (0.248) 0.178 (<0.001) 0.117 (0.004) 0.067 (0.111)

Co59 1 0.269 (<0.001) 0.212 (<0.001) 0.101 (0.036) 0.227 (<0.001) 0.112 (0.006) 0.111 (0.083) 0.062 (0.13) 0.157 (<0.001) 0.32 (<0.001) 0.25 (<0.001) 0.079 (0.054) 0.116 (0.004) 0.261 (<0.001)

Cu63 1 0.164 (<0.001) 0.055 (0.256) 0.206 (<0.001) 0.17 (<0.001) 0.025 (0.693) 0.026 (0.521) 0.18 (<0.001) 0.415 (<0.001) 0.269 (<0.001) 0.064 (0.121) 0.116 (0.004) 0.293 (<0.001)

Fe 1 0.05 (0.299) 0.322 (<0.001) 0.186 (<0.001) 0.035 (0.586) 0.054 (0.185) 0.172 (<0.001) 0.448 (<0.001) 0.235 (<0.001) 0.073 (0.074) 0.187 (<0.001) 0.424 (<0.001)

Hg202 1 0.068 (0.154) 0.197 (<0.001) 0.314 (<0.001) 0.032 (0.509) 0.271 (<0.001) -0.018 (0.713) 0.119 (0.013) 0.207 (<0.001) 0.157 (0.001) 0.17 (<0.001)

Mn55 1 0.298 (<0.001) 0.178 (0.005) 0.276 (<0.001) 0.301 (<0.001) 0.258 (<0.001) 0.131 (0.001) 0.142 (<0.001) 0.171 (<0.001) 0.3 (<0.001)

Mo98 1 0.309 (<0.001) 0.151 (<0.001) 0.331 (<0.001) 0.219 (<0.001) 0.158 (<0.001) 0.072 (0.078) 0.087 (0.034) 0.217 (<0.001)

Ni60 1 0.202 (0.001) 0.391 (<0.001) -0.105 (0.1) -0.072 (0.265) 0.11 (0.087) -0.027 (0.671) -0.031 (0.646)

Pb208 1 0.205 (<0.001) 0.029 (0.472) -0.025 (0.541) 0.114 (0.005) 0.058 (0.158) 0.046 (0.268)

Sb121 1 0.254 (<0.001) 0.134 (0.001) 0.218 (<0.001) -0.01 (0.815) 0.186 (<0.001)

Se78 1 0.389 (<0.001) 0.098 (0.017) 0.13 (0.001) 0.542 (<0.001)

Sr88 1 0.05 (0.222) 0.13 (0.001) 0.308 (<0.001)

Tl205 1 0.061 (0.136) 0.099 (0.018)

V51 1 0.279 (<0.001)

Zn66 1

Medium Li7 Be9 Cd111 As75 Cr52 Co59 Cu63 Fe Hg202 Mn55 Mo98 Ni60 Pb208 Sb121 Se78 Sr88 Tl205 V51 Zn66

Li7 1 0.171 (<0.001) 0.212 (<0.001) 0.055 (0.06) 0.152 (<0.001) 0.04 (0.167) 0.097 (0.001) 0.154 (<0.001) 0.145 (<0.001) 0.061 (0.035) 0.048 (0.154) 0.128 (<0.001) 0.145 (<0.001) 0.138 (<0.001) 0.377 (<0.001) 0.104 (<0.001) 0.029 (0.31) 0.154 (<0.001)

Be9 1 0.045 (0.118) 0.12 (<0.001) -0.05 (0.084) -0.05 (0.085) -0.014 (0.633) -0.049 (0.091) 0.074 (0.016) -0.027 (0.357) -0.021 (0.459) -0.072 (0.034) 0.084 (0.004) 0.032 (0.268) -0.007 (0.82) -0.06 (0.039) 0.042 (0.147) -0.071 (0.014) 0.042 (0.151)

Cd111 1 0.084 (0.003) 0.211 (<0.001) 0.153 (<0.001) 0.098 (0.001) 0.048 (0.1) 0.171 (<0.001) 0.322 (<0.001) 0.26 (<0.001) 0.26 (<0.001) 0.164 (<0.001) 0.299 (<0.001) -0.012 (0.669) 0.14 (<0.001) 0.221 (<0.001) 0.201 (<0.001) -0.037 (0.208)

As75 1 0.032 (0.275) -0.016 (0.572) 0.004 (0.883) 0.003 (0.908) 0.276 (<0.001) 0.029 (0.322) -0.131 (<0.001) -0.002 (0.953) 0.052 (0.075) 0.023 (0.429) 0.1 (0.001) 0.127 (<0.001) 0.077 (0.008) -0.002 (0.942) 0.138 (<0.001)

Cr52 1 0.171 (<0.001) 0.037 (0.205) 0.112 (<0.001) 0.142 (<0.001) 0.316 (<0.001) 0.252 (<0.001) 0.279 (<0.001) 0.015 (0.616) 0.286 (<0.001) -0.102 (<0.001) 0.028 (0.327) 0.074 (0.01) 0.166 (<0.001) -0.046 (0.12)

Co59 1 0.235 (<0.001) 0.264 (<0.001) 0.165 (<0.001) 0.354 (<0.001) 0.124 (<0.001) 0.204 (<0.001) 0.068 (0.019) 0.235 (<0.001) 0.026 (0.362) 0.203 (<0.001) 0.044 (0.128) 0.233 (<0.001) 0.217 (<0.001)

Cu63 1 0.066 (0.022) -0.069 (0.024) 0.2 (<0.001) 0.224 (<0.001) 0.178 (<0.001) 0.082 (0.005) 0.089 (0.002) 0.275 (<0.001) 0.235 (<0.001) 0.075 (0.01) 0.19 (<0.001) 0.157 (<0.001)

Fe 1 -0.046 (0.134) 0.392 (<0.001) 0.148 (<0.001) 0.178 (<0.001) 0.116 (<0.001) 0.186 (<0.001) 0.195 (<0.001) 0.147 (<0.001) 0.072 (0.013) 0.182 (<0.001) 0.167 (<0.001)

Hg202 1 0.118 (<0.001) -0.01 (0.749) -0.08 (0.02) 0.029 (0.347) 0.234 (<0.001) -0.188 (<0.001) 0.032 (0.292) 0.165 (<0.001) 0.01 (0.737) 0.205 (<0.001)

Mn55 1 0.379 (<0.001) 0.347 (<0.001) 0.292 (<0.001) 0.451 (<0.001) 0.022 (0.447) 0.204 (<0.001) 0.2 (<0.001) 0.244 (<0.001) 0.079 (0.007)

Mo98 1 0.307 (<0.001) 0.197 (<0.001) 0.307 (<0.001) 0.033 (0.255) 0.091 (0.002) 0.092 (0.001) 0.164 (<0.001) -0.051 (0.082)

Ni60 1 0.121 (<0.001) 0.306 (<0.001) -0.012 (0.715) 0.179 (<0.001) 0.188 (<0.001) 0.181 (<0.001) -0.13 (<0.001)

Pb208 1 0.168 (<0.001) 0.005 (0.87) 0.029 (0.318) 0.078 (0.007) 0.053 (0.065) -0.029 (0.319)

Sb121 1 -0.017 (0.562) 0.137 (<0.001) 0.242 (<0.001) 0.105 (<0.001) 0.049 (0.093)

Se78 1 0.181 (<0.001) -0.043 (0.135) -0.065 (0.024) 0.358 (<0.001)

Sr88 1 0.153 (<0.001) 0.116 (<0.001) 0.068 (0.021)

Tl205 1 0.098 (0.001) -0.074 (0.012)

V51 1 -0.036 (0.215)

Zn66 1
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Table 13f. Metals correlation matrix for high impact areas and clusters. Data are reported as Spearman Correlation Coefficient (p-value). Red color expresses the significant correlations. 

  

High Li7 Be9 Cd111 As75 Cr52 Co59 Cu63 Fe Hg202 Mn55 Mo98 Ni60 Pb208 Sb121 Se78 Sr88 Tl205 V51 Zn66

Li7 1  0.073 (<0.001) 0.139 (<0.001) 0.144 (<0.001) 0.077 (<0.001) 0.198 (<0.001) 0.147 (<0.001) 0.179 (<0.001) 0.102 (<0.001) 0.206 (<0.001) 0.116 (<0.001) 0.114 (<0.001) 0.066 (0.001) 0.058 (0.005) 0.196 (<0.001) 0.386 (<0.001) 0.091 (<0.001) 0.16 (<0.001) 0.21 (<0.001)

Be9 1  0.142 (<0.001) 0.087 (<0.001) 0.07 (0.001) 0.076 (<0.001) 0.031 (0.133) -0.022 (0.286) 0.14 (<0.001) 0.046 (0.026) 0.049 (0.016) 0.037 (0.2) 0.001 (0.951) 0.046 (0.024) -0.087 (<0.001) -0.02 (0.336) 0.085 (<0.001) 0.106 (<0.001) 0.033 (0.12)

Cd111 1  0.152 (<0.001) 0.254 (<0.001) 0.114 (<0.001) 0.117 (<0.001) -0.018 (0.379) 0.344 (<0.001) 0.294 (<0.001) 0.269 (<0.001) 0.273 (<0.001) 0.259 (<0.001) 0.266 (<0.001) -0.034 (0.1) 0.023 (0.251) 0.23 (<0.001) 0.131 (<0.001) 0.06 (0.004)

As75 1  0.085 (<0.001) 0.079 (<0.001) 0.064 (0.002) 0.087 (<0.001) 0.163 (<0.001) 0.111 (<0.001) 0.055 (0.007) -0.005 (0.852) 0.034 (0.099) 0.021 (0.31) 0.077 (<0.001) 0.113 (<0.001) 0.103 (<0.001) 0.097 (<0.001) 0.162 (<0.001)

Cr52 1 0.056 (0.006) 0.054 (0.008) -0.029 (0.158) 0.215 (<0.001) 0.331 (<0.001) 0.185 (<0.001) 0.22 (<0.001) 0.192 (<0.001) 0.33 (<0.001) -0.062 (0.003) -0.039 (0.054) 0.074 (<0.001) 0.144 (<0.001) -0.044 (0.035)

Co59 1  0.288 (<0.001) 0.182 (<0.001) 0.094 (<0.001) 0.207 (<0.001) 0.117 (<0.001) 0.113 (<0.001) 0.021 (0.303) 0.065 (0.001) 0.258 (<0.001) 0.217 (<0.001) 0.036 (0.077) 0.167 (<0.001) 0.31 (<0.001)

Cu63 1  0.126 (<0.001) 0.102 (<0.001) 0.227 (<0.001) 0.211 (<0.001) 0.129 (<0.001) 0.106 (<0.001) 0.106 (<0.001) 0.334 (<0.001) 0.315 (<0.001) 0.109 (<0.001) 0.176 (<0.001) 0.306 (<0.001)

Fe 1  -0.003 (0.907) 0.243 (<0.001) 0.093 (<0.001) 0.001 (0.986) 0.034 (0.1) 0.093 (<0.001) 0.378 (<0.001) 0.2 (<0.001) 0.015 (0.475) 0.087 (<0.001) 0.394 (<0.001)

Hg202 1  0.195 (<0.001) 0.231 (<0.001) 0.34 (<0.001) 0.153 (<0.001) 0.286 (<0.001) -0.089 (<0.001) 0.059 (0.01) 0.281 (<0.001) 0.135 (<0.001) 0.097 (<0.001)

Mn55 1  0.31 (<0.001) 0.281 (<0.001) 0.264 (<0.001) 0.337 (<0.001) 0.16 (<0.001) 0.197 (<0.001) 0.13 (<0.001) 0.193 (<0.001) 0.224 (<0.001)

Mo98 1  0.209 (<0.001) 0.202 (<0.001) 0.398 (<0.001) 0.097 (<0.001) 0.121 (<0.001) 0.088 (<0.001) 0.063 (0.002) 0.12 (<0.001)

Ni60 1 0.198 (<0.001) 0.24 (<0.001) -0.017 (0.548) 0.013 (0.658) 0.173 (<0.001) 0.007 (0.805) 0.138 (<0.001)

Pb208 1  0.249 (<0.001) 0.025 (0.224) 0.049 (0.016) 0.073 (<0.001) 0.102 (<0.001) 0.016 (0.443)

Sb121 1  0.01 (0.629) 0.054 (0.008) 0.215 (<0.001) 0.046 (0.024) 0.057 (0.006)

Se78 1  0.353 (<0.001) 0.054 (0.008) 0.03 (0.139) 0.501 (<0.001)

Sr88 1  0.078 (<0.001) 0.141 (<0.001) 0.336 (<0.001)

Tl205 1  0.032 (0.123) 0.129 (<0.001)

V51 1  0.136 (<0.001)

Zn66 1 
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4.3.2 Dioxins, Furans and PCBs congeners by High Resolution Gas Chromatography 

– Mass Spectrometry  

 

Results, expressed as serum concentrations, were measured on the subgroup of 600 

subjects. All congeners were expressed as estimated value on volume of serum and on gram 

of fats. It was also considered the TEQ (Toxicity Equivalence) value that is the product of 

the concentration of the compound and its corresponding TEF (Toxic Equivalency Factor) 

on gram of fats (Van den Berg et al., 1998; Van den Berg et al., 2006). 

To avoid any bias for the substitution of measured values under the Limit of Quantification 

(LOQ), the “Lower Bound” (LB) approach was applied for statistical analysis. This means 

that each value registered under the LOQ was substituted with 0.00 (zero).  

The figures below show the median of the sum of classes of organic compounds among the 

three impact areas and among the clusters included in the subgroup. 

In order to estimate a cumulative effect on the people potentially exposed, we firstly 

analyzed the sum of PCDD/PCDF + DL-PCB (pg WHO-TEQ/g lipids) (Fig. 14).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Sum of PCDD/PCDF + sum of DL-PCB expressed as pg WHO-TEQ/g lipids among the three 

different impact areas: low, medium and high impact area. 

 

No significative evidence was shown among the three impact areas, considering the median 

values. If the same parameter is observed among clusters (Table 14 and Fig.15), it shows a 

sensitive increase of median value for Sabato Valley cluster compared to the overall 

median. Irno 1 and Irno 2 clusters, together with High 9 and High 12, show a slight increase 

compared to the other clusters. 
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Table 14. Median of Sum of PCDD/PCDF + sum of DL-PCB assessed in the serum (pg WHO-TEQ/g lipids) 

by cluster and grouped cluster for areas. LB=Lower Bound; IQR=Interquartile Range. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Sum of PCDD/PCDF + sum of DL-PCB expressed as pg WHO-TEQ/g lipids among the clusters. 

  

Cluster Median [IQR] (Range) LB CLUSTER 

GROUPED 

Average 

value 

LOW_1 3.919 [2.469; 6.011] (from 0.795 to 12.544) LOW  3.894 

LOW_2 3.869 [1.929; 4.694] (from 0.108 to 17.293) 

MEDIUM_1 3.016 [1.957; 3.826] (from 0.468 to 9.076) MEDIUM 2.989 

MEDIUM_2 2.963 [2.079; 4.13] (from 0.015 to 34.244) 

HIGH_9 3.047 [0.833; 5.079] (from 0.007 to 19.201) HIGH 3.265 

HIGH_10 2.755 [1.342; 6.296] (from 0.013 to 19.386) 

HIGH_11 3.207 [2.212; 4.601] (from 0.219 to 9.899) 

HIGH_12 4.051 [1.797; 5.685] (from 0.052 to 11.466) 

IRNO_1 4.951 [2.371; 8.145] (from 0.355 to 22.572) IRNO 4.165 

IRNO_2 3.38 [1.796; 5.994] (from 0.025 to 15.244) 

SABATO 4.192 [2.027; 6.5] (from 0.374 to 24.923) SABATO 4.195 

OVERALL 3.385 [1.897; 5.317] (from 0.007 to 34.244) OVERALL 3.385 
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The same scenario is presented when considering the only contribute of dioxins and furans, 

without DL-PCB addition (Table 15 and Fig. 16). 

 

Table 15. Median of Sum of PCDD/PCDF assessed in the serum (pg WHO-TEQ/g lipids) by cluster and 

grouped cluster for areas. LB=Lower Bound; IQR=Interquartile Range. 

Cluster Median [IQR] (Range) LB  CLUSTER 

GROUPED 

Average 

value 

LOW_1 1.041 [0.762; 1.687] (from 0.074 to 3.16) LOW  1.109 

LOW_2 1.177 [0.649; 1.895] (from 0.1 to 6.988) 

MEDIUM_1 1.628 [1.168; 2.413] (from 0.302 to 5.683) MEDIUM 1.675 

MEDIUM_2 1.722 [1.166; 2.664] (from 0 to 26.414) 

HIGH_9 1.069 [0.171; 3.126] (from 0 to 17.691) HIGH 1.662 

HIGH_10 1.727 [0.769; 3.925] (from 0 to 18.996) 

HIGH_11 1.77 [1.229; 2.811] (from 0.158 to 8.81) 

HIGH_12 2.085 [1.012; 3.336] (from 0 to 9.933) 

IRNO_1 1.881 [0.832; 3.572] (from 0.036 to 19.84) IRNO 1.866 

IRNO_2 1.851 [0.995; 3.936] (from 0 to 13.505) 

SABATO 3.127 [0.42; 5.648] (from 0 to 16.347) SABATO 3.127 

OVERALL 1.618 [0.825; 2.891] (from 0 to 26.414) OVERALL 1.618 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Sum of PCDD/PCDF expressed as pg WHO-TEQ/g lipids among the clusters. 
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Finally, NDL-PCB are shown in Figure 17. Median of Low 1 cluster is higher compared to 

those of other clusters (Table 16).  

 

Table 16. Median of Sum of NDL-PCB assessed in the serum (ng/g lipids) by cluster and grouped cluster for 

areas. LB=Lower Bound; IQR=Interquartile Range. 

Cluster Median [IQR] (Range) LB  CLUSTER 

GROUPED 

Average 

value 

LOW_1 57.802 [36.375; 108.759] (from 14.226 to 342.419) LOW  1.109 

LOW_2 63.646 [29.554; 102.164] (from 4.942 to 355.678) 

MEDIUM_1 38.67 [30.292; 61.9] (from 3.218 to 159.285) MEDIUM 1.675 

MEDIUM_2 40.953 [25.97; 73.585] (from 11.718 to 429.657) 

HIGH_9 23.335 [16.732; 43.549] (from 6.29 to 285.887) HIGH 1.662 

HIGH_10 25.065 [17.488; 47.998] (from 7.91 to 438.94) 

HIGH_11 44.24 [25.263; 65.679] (from 4.571 to 171.898) 

HIGH_12 51.77 [29.158; 101.514] (from 10.2 to 560.58) 

IRNO_1 46.12 [26.369; 82.549] (from 17.95 to 1340.27) IRNO 1.866 

IRNO_2 40.983 [22.835; 67.873] (from 11.53 to 635.98) 

SABATO 47.61 [31.962; 63.532] (from 11.98 to 272.26) SABATO 3.127 

OVERALL 42.611 [24.763; 73.566] (from 3.218 to 1340.27) OVERALL 1.618 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Sum of NDL-PCB expressed as ng/g lipids among the clusters. 
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Table 17 reports the percentage fold-increase/decrease of the median of compounds 

assessed per cluster and area. Noteworthy: the Irno and Sabato valley percentage increase 

for the sum of PCDD/F + DL-PCB, as well as in the high impact cluster 12; the NDL-PCB 

increase evidence for both clusters low_1 and low_2. 

Results are also reported in Table 18 and 19 as median regression models using impact 

areas or clusters as geographical reference unit, respectively. It emerged that older age was 

consistently associated with the variable sum NDL-PCB and, to a lesser extent, with sum 

of PCDD/F, sum of PCDD/F+DL-PCB, sum of NDL-PCB. 

Medium and high impact areas revealed association with higher levels of sum PCDD/F, 

and lower levels of DL-PCB and NDL-PCB.  

Concerning median regression model data per clusters, all clusters of medium impact area 

were positively associated with higher levels of sum of PCDD/F, especially considering 

Irno_2 and Sabato valley. Also High_10, High_11, High_12 showed the same association. 

Conversely, low impact clusters were associated with higher levels of DL-PCB and NDL-

PCB. Finally, clusters High_11 and High_12, Irno_1, Sabato, Medium_1 and Medium_2 

were associated with high levels of NDL-PCB. 

 

Table 17. Percentage fold-increase/decrease of the median of compounds assessed in the population indwelling 

in each cluster/area vs. the entire population. Green and red colors express the fold-decrease and increase, 

respectively. 

 

  

Cluster 

SUM 

PCDD/PCDF  

pg WHO-TEQ/g 

lipids 

SUM PCDD/PCDF + 

SUM DL-PCB pg 

WHO-TEQ/g lipids 

SUM DL-PCB  

pg WHO-TEQ/g 

lipids 

SUM NDL-

PCB 

ng/g lipids 

High Impact Area 7,6 -2,3 -24,6 -19 
HIGH_9 -33,9 -9,9 -42,8 -45,2 
HIGH_10 6,7 -18,6 -59,6 -41,1 
HIGH_11 9,3 -5,2 -4,5 3,8 
HIGH_12 28,8 19,6 21,3 21,4 
Medium Impact 

Area 16,8 -6,5 -12,8 1,4 
MEDIUM_1 0,6 -10,9 -2,9 -9,2 
MEDIUM_2 6,4 -12,4 -15,5 -3,8 
IRNO_1 16,2 46,2 9,9 8,2 
IRNO_2 14,4 -0,1 -37,4 -3,8 
SABATO 93,2 23,8 -12,3 11,7 

Low Impact Area -33,1 15,3 93,6 41,9 
LOW_1 -35,6 15,7 113,7 35,6 
LOW_2 -27,2 14,2 68,9 49,3 
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Table 18. Results of median regression models for the compounds assessed in the population, using impact area as geographical reference unit. Data are reported as adjusted difference between 

medians with the corresponding 95% CIs. Bold results indicate differences with p<0.05. 

 

 

 

 

 

 

 

Table 19. Results of median regression models for the compounds assessed in the population, using cluster as geographical reference unit. Data are reported as adjusted difference between medians 

with the corresponding 95% CIs. Bold results indicate differences with p<0.05. 

 

 

 

SUM PCDD/PCDF  

pg WHO-TEQ/g lipids 

SUM PCDD/PCDF + SUM DL-PCB 

pg WHO-TEQ/g lipids 

SUM DL-PCB  

pg WHO-TEQ/g lipids 

SUM NDL-PCB 

 ng/g lipids 

Area; Low impact ref.     

Medium impact 0.68 (0.41 to 1.01); p<0.001 -0.34 (-0.93 to 0.27); p=0.183 -1.12 (-1.56 to -0.8); p<0.001 -12.28 (-24.62 to -1.48); p=0.032 

High Impact 0.58 (0.27 to 0.86); p=0.001 -0.47 (-1.02 to 0.22); p=0.151 -1.18 (-1.6 to -0.77); p<0.001 -16.94 (-29.62 to -6.5); p=0.005 

Gender; Male 0.32 (0.01 to 0.54); p=0.047 0.6 (0.1 to 1.04); p=0.014 0.08 (-0.17 to 0.46); p=0.636 11.73 (3.2 to 18.66); p=0.002 

Age; 20-30 ref     

30-40 0.17 (-0.01 to 0.65); p=0.274 0.63 (0.11 to 1.09); p=0.023 0.19 (0 to 0.45); p=0.177 10.17 (4.68 to 16.29); p<0.001 

40-50 1.06 (0.69 to 1.5); p<0.001 2.04 (1.53 to 2.67); p<0.001 0.9 (0.59 to 1.15); p= p<0.001 43.15 (35.17 to 50.58); p<0.001 

Cluster 
SUM PCDD/PCDF 

 pg WHO-TEQ/g lipids 

SUM PCDD/PCDF + SUM DL-PCB 

 pg WHO-TEQ/g lipids 

SUM DL-PCB 

pg WHO-TEQ/g lipids 

SUM NDL-PCB 

ng/g lipids 

LOW_1 
Reference 0.96 (-0.42 to 2.13); p=0.14 1.53 (0.75 to 2.34); p<0.001 32.33 (11.49 to 48.62); p<0.001 

LOW_2 
0.25 (-0.18 to 0.57); p=0.229 0.63 (-0.94 to 1.63); p=0.337 0.98 (0.32 to 1.78); p=0.012 25.54 (12.32 to 47.95); p=0.004 

MEDIUM_1 
0.72 (0.22 to 1.09); p=0.001 0.12 (-1.49 to 1); p=0.838 0.04 (-0.5 to 0.61); p=0.888 10.6 (-0.53 to 18); p=0.024 

MEDIUM_2 
0.88 (0.42 to 1.18); p<0.001 0.57 (-0.99 to 1.41); p=0.37 0.17 (-0.43 to 0.61); p=0.534 18.13 (6.01 to 29.85); p=0.005 

HIGH_9 
0.26 (-0.36 to 1.01); p=0.406 0.33 (-1.64 to 1.46); p=0.688 Reference Reference 

HIGH_10 
0.98 (0.12 to 1.35); p=0.003 Reference -0.34 (-0.95 to 0.09); p=0.212 4.61 (-9.32 to 11.33); p=0.394 

HIGH_11 
0.70 (0.27 to 1.17); p=0.003 0.48 (-1.02 to 1.39); p=0.42 0.23 (-0.46 to 0.72); p=0.439 16.62 (3.97 to 24.67); p=0.002 

HIGH_12 
0.87 (0.33 to 1.37); p=0.002 0.87 (-0.79 to 2.1); p=0.228 0.49 (-0.19 to 1.02); p=0.107 16.61 (5.2 to 37.91); p=0.038 

IRNO_1 
0.50 (-0.17 to 1.44); p=0.295 0.92 (-0.67 to 3.62); p=0.396 0.68 (-0.53 to 1.68); p=0.238 17.68 (4.83 to 32.12); p=0.008 

IRNO_2 
1.05 (0.07 to 2.02); p=0.034 0.59 (-0.96 to 1.87); p=0.419 -0.07 (-0.67 to 0.56); p=0.833 12.09 (-1.03 to 24.5); p=0.079 

SABATO 
1.77 (0.37 to 3.13); p=0.016 1.41 (-0.22 to 2.52); p=0.062 0.09 (-0.56 to 0.59); p=0.753 19.71 (6.77 to 29.31); p=0.001 
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4.3.3 Chemical Activated LUciferase gene eXpression (CALUX) Bioassay  

 

Results of the Calux gene reporter assay, expressed as plasma concentrations depending on 

the cell line observed, were estimated on the subgroup of 600 subjects. Considering the DR 

Calux® assay, with Ahrilic (AhR) receptor activation measurement, 597 samples had 

sufficient amount of plasma for the determinations. 

In Figure 18 a Yardstick representation of the results, lined up from lowest to highest value is 

given, while in Figure 19 a frequency distribution of these data is presented.  

A mean value of 44.89 ± 15.74 pg 2,3,67,8-TCDD BEQ/g fat and a median value of 42.19 pg 

2,3,7,8-TCDD BEQ/g fat was observed (Fig. 18 and 19, table 20). 90% of the DR CALUX® 

values were between 24.8 and 73.8 pg 2,3,7,8-TCDD BEQ/g fat, while the 5% highest values 

ranged from 73.8 to 150.0 pg 2,3,7,8-TCDD BEQ/g fat. The lowest quantifiable result 

obtained was 6.0 pg 2,3,7,8-TCDD BEQ/g fat, equal to the LOQ of the DR CALUX® method. 

Two samples had results below the LOQ.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 18. Yardstick-based representation of DR CALUX® results in study sample plasma analyzed. DR 

CALUX® bioassay results are lined up from lowest to highest obtained result expressed in pg 2,3,7,8-TCDD 

BEQ/g fat. Back line represents the mean value of 44.89 pg 2,3,7,8-TCDD BEQ/g fat. The top line indicates the 

95% percentile and the bottom line the 5% percentile of respectively 73.8 and 24.8 pg 2,3,7,8-TCDD BEQ/g fat. 
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Figure 19. Frequency distribution of DR CALUX® results expressed as pg BEQ/g fat. 

 

In Table 20 a summary of results obtained in plasma, measured by DR CALUX®, is given per 

impact areas and clusters. Medium impact area is divided in two groups, in order to better 

highlight differences among clusters. 

 

Table 20. DR CALUX® results (pgBEQ/g fat) compared to areas and cluster of living. In bold are values 

significantly higher (p-value: >0.001, one-way Anova), as compared to all other clusters; SEM = standard error of 

mean. 

Impact Area Cluster 

(grouped) 

N. subjects Mean Median SEM Min. Max. 

Low 16-17 120 41.62 39.66 1.74 12.41 99.51 

Medium 1 13-14 118 43.31 41.65 1,58 20.76 88.41 

Medium 2 19-21 120 54.17 52.99 2.82 18.26 100.66 

High 9-12 237 42.94 40.07 1.93 36.00 150.0 

 

 

As can be observed, there is no significant correlation between the area of living and the stable 

AhR ligands in plasma of volunteers living in those areas. However, there is a significant 

difference (one-way ANOVA, p=0.0008) between the level of stable AhR ligands in plasma 

of subjects from clusters 19, 20 and 21 as compared to all other clusters analyzed. These 

clusters include Irno and Sabato Valleys. Figure 20 reports a box-plot representation of the 

DR CALUX® results in plasma vs. clusters. 
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Figure 20. Box-Plot representation of Acid stable AhR ligands measured by DR CALUX® in plasma samples, in 

relation to clusters and impact areas. 

 

The analysis of plasma samples on the PAH CALUX® bioassay resulted in measurable PAHs 

and PAH-like responses in all samples analyzed. 

A wide range of PAH-like activities were observed in the plasma samples with a mean value 

of 86.00 ng BaP-EQ/ml, a minimum of 0.3 ng BaP-EQ/ml and a maximum of 7900.00 ng BaP-

EQ/ml.  

In Table 21 the PAH CALUX® activity in plasma (ngBaP-EQ/ml) is presented per impact 

areas and clusters. Medium impact area is divided in two groups, in order to better highlight 

differences among clusters. 

As can be observed there is a wide range of PAH activities spanning 3-4 orders of magnitude 

between the lowest and the highest values per clusters. Overall, there is no relationship 

between PAH CALUX® levels in plasma and area and cluster of living. Apparently, other 

factors than the area of living may be more important to explain the internal exposure levels 

to PAH in ng BaP-EQ/ml as measured with the PAH CALUX® method. 

 
Table 21. PAH CALUX® results (ng BaP-EQ/ml) compared to areas and cluster of living. SEM = standard error 

of mean. 

Impact Area Cluster 

(grouped) 

N. 

subjects 

Mean Median SEM Min. Max. 

Low 16-17 120 86.00 50.00 13.1 0.4 1400.00 

Medium 1 13-14 120 114.00 29.00 65.7 0.3 7900.00 

Medium 2 19-21 120 87.00 31.00 27.4 0.1 3200.00 

High  9-12 238 58.00 15.00 15.1 0.3 3300.00 
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The analysis on the ERα CALUX® bioassay resulted in measurable total estrogenic and 

estrogen-like responses (expressed in pg-EEQ/ml) in all plasma samples analyzed.  

In Table 22, the total estrogenic activity data (pg-EEQ/ml) are compared to the main 

endogenous estrogenic hormone, 17-β-estradiol (17-β) levels measured in plasma of female 

volunteers from the SPES subgroup selected. Medium impact area is divided in two groups, 

in order to better highlight differences among clusters. 

 

Table 22. Concentrations of 17-β-estradiol (17-β pg/ml) and total estrogenic activity (pg-EEQ/ml) in female 

volunteers of the SPES subgroup compared to cluster and area of living. In bold are represented values significantly 

higher as compared to 17-β value for same cluster (p-value<0.002, Mann-Whitney). SEM = standard error of mean. 

Impact 

Area 

Cluster 

(grouped) 

Analyte N. 

subjects 

Mean Median SEM Min. Max. 

Low 16-17 17-β 60 21.22 21.15 0.77 10.00 53.9 

Medium 1 13-14 17-β  60 22.91 21.80 0.93 6.80 51.00 

Medium 2 19-21 17-β 57 22.61 22.00 1.51 7.00 70.00 

High 9-12 17-β 120 22.28 21.18 0.66 11.00 68.70 

Low 16-17 EEQ 60 45.85 27.50 6.84 2.10 240.00 

Medium 1 13-14 EEQ 60 94.26 * 59.50 12.30 2.10 510.00 

Medium 2 19-21 EEQ 57 85.44 * 57.00 8.93 8.40 290.00 

High 9-12 EEQ 120 109.39 ** 73.00 8.43 2.10 510.00 

*Significantly higher as compared to Low Impact Area, Cluster 16-17 (p-value = 0.007, Mann-Whitney). 

** significantly higher (p-value= 0.0005, one-way Anova) as compared to all other clusters.  

 

 

A wide range of total estrogenic activity was observed ranging from 2.10 to 510.00 pg-

EEQ/ml. As can be observed there is a significant 3 to 5-fold difference in total estrogenic 

activity levels measured by the ERα-CALUX® reporter gene assay in comparison to the levels 

of the natural endogenous hormone 17-β Estradiol. This suggests the presence of endocrine 

active compounds, that activate the estrogen receptor-alpha in plasma of females, that can to 

a large extend not be explained by natural endogenous hormone levels and may thus indicate 

the presence of endocrine active compounds (EACs) in samples. 

In addition, the total estrogenic activity levels are significantly higher (p-value = 0.0005, one-

way Anova) in clusters of high and medium impact areas (Fig. 21).  

Conversely, the plasma levels of 17-β estradiol in females do not differ significantly between 

volunteers from the various areas of living, suggesting that the additional estrogenic activity 

may arise from external sources. 
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Figure 21. Boxplot of female plasma concentrations of 17-β-estradiol (pg/ml) and total estrogenic activity (pg-

EEQ/ml) measured by ERα-CALUX®. Statistical differences were analyzed using one-way Anova for comparisons 

between clusters, and Mann Whitney test of significance between pairs of boxplots. Level of significance was set 

at p-value< 0.05 (17-β: 17-β-estradiol; EEQ: estrogen equivalents). 

 

Similarly, it is reported the total estrogenic activity in plasma by the ERα-CALUX® reporter 

gene assay in male volunteers. These levels have been compared with concentrations of 17-β-

estradiol in plasma of the same male individuals (Table 23). The range of total estrogenic 

activity levels in male plasma is much lower than in female individuals and shows a smaller 

range of differences i.e., ranging from 1.7 to 150.00 pg-EEQ/ml. Also the differences between 

the levels of the  total estrogenic activity (EEQs) and the natural 17-β estrogen concentrations 

is much less pronounced, and variable, with a significantly lower EEQ level than 17-β levels 

in the low impacted area of living and significantly higher EEQ levels than 17-β in the high 

impacted areas of living (Fig. 22). 
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Table 23. Concentrations of 17-β-estradiol (17-β pg/ml) and total estrogenic activity (pg-EEQ/ml) in male 

volunteers of the SPES subgroup compared to cluster and area of living. In bold are represented values significantly 

lower as compared to 17-β value for same cluster (p-value = 0.002, Mann-Whitney).  

SEM = standard error of mean. 

* significantly higher as compared to Low Impact Area, Cluster 16-17 (P= 0.0072, Mann-Whitney). 
** significantly higher as compared to 17-β value for same cluster (P<0.0001); 

*** significantly higher (P-value: 0,0005, one-way Anova) as compared to all other clusters.  
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Figure 22. Boxplot of male plasma concentrations of 17-β-estradiol (pg/ml) and total estrogenic activity (pg-

EEQ/ml) measured by ERα-CALUX®. Statistical differences were analyzed using one-way Anova for comparisons 

between clusters, and Mann Whitney test of significance between pairs of boxplots. Level of significance was set 

at p-value< 0.05 (17-β: 17-β-estradiol; EEQ: estrogen equivalents). 

 

 
 

Category Cluster Analyte  N Mean Median SEM Min Max 

Low 16-17 17-β 60 19.59 18.35 0.96 10.00 52.00 

Medium 1 13,14 17-β  60 19.23 18.20 0.88 10.00 51.00 

Medium 2 19-21 17-β 60 20.35 18.15 1.14 7.20 44.00 

High 9-12 17-β 127 18.24 18.13 0.36 11.10 40.00 

Low 16-17 EEQ 60 12.72 15.30 1.51 1.70 37.00 

Medium 1 13-14 EEQ 60 24.25* 25.00 1.49 6.80 61.00 

Medium 2 19-21 EEQ 60 21.62* 22.50 2.05 6.10 110.00 

High 9-12 EEQ 117 27.88**, *** 25.00 2.30 5.00 150.00 
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Therefore, also in male subjects the total estrogenic activity levels are significantly higher (p-

value = 0.0007, one-way Anova) in clusters of high and medium impact areas (Fig. 22). The 

plasma levels of the natural hormone, 17-β-estradiol, in males do not differ significantly 

between volunteers from the diverse areas of living, suggesting that the additional estrogenic 

activity observed in the high impacted area may arise from external sources. Overall, it is 

observed a significant higher level of estrogenic activity in plasma from human volunteers as 

compared to natural endogenous 17-β-estradiol levels, which increased with higher impacted 

areas of living. This may suggest that the contamination areas give rise to elevated exposure 

to contaminants with possible endocrine activity, so called Endocrine-disrupting chemicals 

(EDCs). 

Figure 23 shows the geographical distribution per area of living of the EEQ measured by ERα-

CALUX® assay on female cohort. Higher values are detected in women from high and 

medium impact areas. Notably, as previously shown by table22 and figure 21, among medium 

impact areas, the higher values are geolocated in Irno and Sabato valleys. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 23. Campania Region maps representing hotspot areas of living for female subjects at municipal level, 

with their respective total estrogenic activity detected by ERα-CALUX® reporter gene assay (pg EEQ/ml) in 

plasma.  
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4.4 Effect Biomarkers  

 

4.4.1 DNA methylation Array Preliminary Analysis 

Methylation array data analysis was firstly performed through a quality control step, secondly 

with a global overview on methylation differences among the three impact areas and, finally, 

by means of a regression model method to explore the correlation between the exposure 

biomarkers assessed and the epigenetic profile. 

As mentioned in paragraph 3.3.2, DNA methylation array analysis consists of a preliminary 

control quality check, with following filtering and normalization steps.  

Samples with a lot of missing probes and probes with poor quality were removed from the 

analysis. Finally, 592 of 600 samples and 677886 of 865918 probes were included in the 

analysis.  

In order to have an overview of the dataset, the most variable 1000 probes were graphically 

represented in a multidimensional plot (MDS-plot) before and after normalization step (Fig. 

24 a/b), as well as all probes raw data were represented in a density plot (Fig. 25 a/b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 24. 1000 most variable probes represented in a multidimensional plot (MDS), before (a) and after (b) the 

normalization step. The 1000 probes were selected computing variance in the beta value matrix and sorting them 

in descending order. The figures were obtained by means a multidimensional scaling approach. 

  

a. 

b. 
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Figure 25. Density plot of raw data (677886 probes) before (a) and after (b) the normalization step.  

 

 

It can be observed a better probe distribution after the normalization step, even though it is not 

completely satisfying. A total number of 188032 probes were removed through the 

normalization step. Profiles are consistent with reference methylation dataset distribution of 

beta values between 0.0 and 1.0. The following “cell heterogeneity” step improves the probes 

distribution from a qualitative point of view. 

Then a Singular Value Decomposition Analysis (SVD) was performed in order to allow the 

batch correction (Fig. 26 a/b). Among the most important confounding variables it can be 

highlighted Run_ID, Slide, Cluster, Age and Gender. Run_ID and Slide are linked to the 

analytical process, while Cluster, Age and Gender are linked to the population features. 

  

a. 

b. 
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Figure 26. Singular Value Decomposition Analysis (SVD) before (a) and after (b) the batch correction considering 

Slide, Age and Gender as factors to correct. 

 

Considering the nature of samples (genomic DNA from whole blood), it becomes fundamental 

a step of cell heterogeneity correction (Houseman et al., 2012).  

a. 

b. 
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In the Figure 27 a/b, the Multidimensional Plot on the most variables 1000 probes and the 

Density Plot on the whole dataset after batch and cell heterogeneity corrections, show a notably 

improvement of distribution from a qualitative point of view. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27.  (a) 1000 most variable probes represented in a multidimensional plot (MDS) after normalization, batch 

and cell heterogeneity correction steps. (b) Density plot of raw data (677886 probes) after normalization, batch and 

cell heterogeneity correction steps. 

 

4.4.2 Differentially Methylated Probes and Differentially Methylated Regions 

Differentially Methylated Probes (DMPs) were identified in the following comparisons, 

among impact areas: 

1. High impact area vs Low impact area; 

2. Medium impact area vs High impact area; 

3. Medium impact area vs Low impact area. 

The following Volcano plots (Fig. 28 a/b/c) show an overview of the global methylation, 

representing on the x the delta beta values (Δβ) between the two impact areas observed in each 

a. 

b. 
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comparison, and on the y the statistical significance. A strict cut-off was selected for adjusted 

p-value (0.00001) for the selection of the probes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Volcano plot for DMP comparison among impact areas (a) high vs low; Δβ>0 means higher value for 

high impact area; (b) medium vs high; Δβ>0 means higher value for medium impact area; (c) medium vs low; Δβ>0 

means higher value for medium impact area. 

 

a.  High vs Low  

b.  Medium vs High 

c.  Medium vs Low 
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Volcano plot 28a shows relevant statistical significance of global hypomethylation of high 

impact area compared to the low one. 

Less visible difference on global methylation is shown in Fig. 28b and 28c: slight 

hypomethylation for high impact area vs medium impact area, slight global hypomethylation 

for medium impact area vs low impact area. 

Frequently the delta beta values are not very high, and this means a difficulty in biological 

understanding of the phenomena. For the purposes of this dissertation the focus is particularly 

on DMPs mapping on promoters’ regions. 

All analysis were performed considering the M-values (the logit transformation of the beta-

values), even if the results are shown in tables as β-values, in order to have an easier 

interpretation. 

Tables below report DMPs filtered from impact areas comparisons, considering a Δβ ≥ 0.10. 

Table 24a shows DMPs positioned on proximal promoter region (5’UTR, TSS200, TSS1500, 

1stExon), comparing low vs high impact areas. 

Table 24b report the same object referring to comparison between medium vs low impact 

areas. For both tables, hypermethylated CpGs in areas of increasing pollution risk were 

selected. Interestingly, among DMPs in table 24a, mapping on promotor regions in low vs 

high comparison, it is possible to list the following genes involved: 

• RHOJ, a GTP binding protein, regulating angiogenesis and involved in insulin 

signaling pathway; 

• MYCBPAP, encoding for a MYCBP associated protein, which is concern for 

spermatogenesis; 

• WBSCR26, encoding for a lncRNA ABHD11-AS1, which play a role in gastric and 

bladder cancer; 

• LOXL3, encoding for a Lysil Oxidase Like 3, which has a role in copper ion binding, 

oxidoreductase activity and regulation of inflammatory response; 

• CLDN14, playing a role in cell-to-cell adhesion in epithelial or endothelial cell sheets; 

• CLEC4C, implied in cell adhesion, cell-to-cell signaling, inflammation and immune 

responses; 

• COQ5, with its methyltransferase activity; 

• COX7A1, encoding for Cytochrome C Oxidase subunit 7A1; 

• FAT1, encoding for adhesion molecule and signaling receptor, with a role in 

development processes and cell communication; 

• PTPRE, encoding for a tyrosine phosphatase protein family member, which has a role 

in signaling regulating cell growth, differentiation, mitotic cycle and oncogenic 

transformation. 
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Considering table 24b, reporting the medium vs low impact area comparison, beyond RHOJ 

and LOXL3 genes, in common with the results of high vs low comparison, it is possible to 

count: 

• NRIP1 gene, encoding a nuclear protein that modulate the transcriptional activity of 

the estrogen receptor, and has also a role in inflammation pathway lead by NF-kB; 

• S100A13 gene, which encodes for a S100 family protein, involved in cell cycle 

progression and differentiation. Its expression was documented by Azimi et al., in 

2014, in chemotherapy resistance in melanoma. 
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Table 24a. High impact areas vs low impact area. Differential Methylated Probes with delta beta value ≥ 0.10, 

positioned on promoter region. Statistical significance is expressed as FDR (False Discovery Rate) adjusted p-

value (adj.P.Val). Δβ > 0 means the methylation is higher in high impact areas. 

CpG adj.P.Val deltaBeta gene feature cgi UCSC_Islands_Name 

cg11775521 1.13E-51 0.0857 KCNE3 TSS200 island chr11:74178175-74178801 

cg18297203 1.34E-44 0.0661 LPCAT2 TSS200 shore chr16:55542920-55543274 

cg20094837 6.36E-31 0.0627 NBEA TSS1500 opensea   

cg08370546 3.20E-25 0.0843 PHKG1 TSS200 opensea   

cg01216565 4.55E-22 0.0813 WDR45B TSS1500 shore chr17:80605301-80606324 

cg23980942 1.05E-21 0.0606 SEMA6D 5'UTR shore chr15:47476369-47477499 

cg20833838 2.25E-21 0.0649 GPRIN1 5'UTR shore chr5:176036458-176037557 

cg25432232 5.89E-19 0.0861 AURKC 5'UTR island chr19:57741955-57742457 

cg01668281 7.77E-19 0.0605 CLDN14 5'UTR opensea   

cg09340198 3.73E-18 0.0677 ANKRD28 TSS1500 shore chr3:15900497-15901990 

cg21695771 3.85E-18 0.0735 COX7A1 TSS200 shore chr19:36642327-36643585 

cg12569497 7.14E-18 0.06 COL21A1 TSS1500 shore chr6:56112188-56112444 

cg11659652 1.51E-17 0.0708 PTPRE 5'UTR opensea   

cg16443366 5.89E-17 0.0617 SOGA3 5'UTR shore chr6:127836730-127837706 

cg09548084 3.20E-16 0.06 SLC35B3 TSS1500 shore chr6:8435314-8436141 

cg02176678 8.71E-16 0.0814 TTLL4 5'UTR shore chr2:219575448-219576080 

cg19603903 1.12E-15 0.0893 AURKC TSS200 island chr19:57741955-57742457 

cg15176213 1.20E-15 0.0673 COX7A1 5'UTR island chr19:36642327-36643585 

cg05524354 1.94E-15 0.071 PTPRE 5'UTR opensea   

cg06643849 3.26E-15 0.085 AURKC 5'UTR island chr19:57741955-57742457 

cg05275307 1.27E-14 0.064 CLDN14 TSS200 opensea   

cg19052272 3.00E-14 0.1095 ALLC TSS1500 opensea   

cg24824686 2.23E-13 0.0615 PTPRE 5'UTR opensea   

cg00161556 2.38E-13 0.0711 ZDHHC13 TSS1500 shore chr11:19138497-19139216 

cg25932599 3.48E-13 0.0669 FGFRL1 TSS1500 island chr4:1003106-1005455 

cg08161306 5.39E-13 0.127 TBC1D22A TSS1500 opensea   

cg00255882 8.73E-13 0.0729 WDR33 TSS1500 shore chr2:128568321-128569064 

cg19825600 1.04E-12 0.0681 ALLC TSS1500 opensea   

cg00999904 2.67E-12 0.0768 ALLC TSS1500 opensea   

cg21183455 2.71E-12 0.0626 C22orf34 TSS1500 opensea   

cg24335895 3.86E-12 0.0693 COX7A1 TSS200 shore chr19:36642327-36643585 

cg14409029 4.17E-12 0.0837 ZDHHC13 TSS1500 shore chr11:19138497-19139216 

cg06888460 7.22E-12 0.0693 LDHAL6A TSS200 island chr11:18477298-18477756 

cg23786580 8.73E-12 0.0723 HECW1 5'UTR opensea   

cg26740318 9.84E-12 0.0608 LDHAL6A TSS1500 shore chr11:18477298-18477756 

cg16168363 1.44E-11 0.0609 FAT1 5'UTR shore chr4:187644319-187648253 

cg07889765 1.47E-11 0.0864 NOC3L TSS1500 shore chr10:96122540-96122904 

cg21517946 2.67E-11 0.0985 FKBP5 TSS1500 shore chr6:35699166-35699953 

cg24527560 3.28E-11 0.0915 LOC441666 TSS200 shore chr10:42862953-42863216 

cg25605888 4.06E-11 0.0618 COQ5 TSS1500 shore chr12:120966788-120967038 

cg21042336 7.07E-11 0.0794 OSBPL1A TSS1500 shore chr18:21977275-21978110 

cg17240725 7.94E-11 0.118 WBSCR26 TSS200 shelf chr7:73152564-73153716 
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cg01485177 3.12E-10 0.0611 LOC441666 TSS200 shore chr10:42862953-42863216 

cg04413036 3.37E-10 0.0626 PLA2G6 5'UTR opensea   

cg07157030 5.19E-10 0.1457 RHOJ 5'UTR opensea   

cg19148731 9.85E-10 0.1126 LOXL3 5'UTR shore chr2:74781494-74782685 

cg14259717 9.95E-10 0.0841 LDHC TSS200 opensea   

cg12759523 1.14E-09 0.0707 CYFIP1 5'UTR opensea   

cg07189587 1.24E-09 0.1532 RHOJ 5'UTR opensea   

cg02511570 1.30E-09 0.0788 THCAT158 TSS1500 shore chr17:45400874-45401440 

cg10645314 2.26E-09 0.0701 ALLC TSS1500 opensea   

cg20111217 2.27E-09 0.0992 MYCBPAP TSS1500 shore chr17:48585385-48586167 

cg09408571 3.36E-09 0.0916 GPR88 TSS200 shore chr1:101004471-101005885 

cg00901687 4.44E-09 0.1182 MYCBPAP TSS1500 shore chr17:48585385-48586167 

cg19272349 4.71E-09 0.0793 CSNK1A1L TSS1500 opensea   

cg21471707 1.26E-08 0.068 LDHC TSS200 opensea   

cg11440486 1.62E-08 0.0902 MYCBPAP TSS1500 shore chr17:48585385-48586167 

cg25251562 2.44E-08 0.076 ALLC TSS1500 opensea   

cg03343083 6.77E-08 0.0888 LEPREL1 5'UTR opensea   

cg11474464 7.46E-08 0.06 GABRB3 TSS200 island chr15:26874097-26874528 

cg21367232 2.05E-07 0.064 SCAMP2 TSS1500 shore chr15:75165373-75165903 

cg19149522 2.09E-07 0.0609 ZDHHC4 TSS1500 shore chr7:6616918-6617277 

cg00614959 3.08E-07 0.0681 PCGF3 5'UTR shelf chr4:724335-726070 

cg11079896 3.43E-07 0.0912 RHOJ 5'UTR opensea   

cg24480555 8.18E-07 0.0656 C8orf33 TSS1500 shore chr8:146277801-146278396 

cg07195891 2.48E-06 0.0981 CLEC4C 5'UTR opensea   

cg24521141 2.91E-06 0.0791 LOC101929596 TSS1500 opensea   

 

Table 24b. Medium impact areas vs low impact area. Differential Methylated Probes with delta beta value ≥ 

0.10, positioned on promoter region. Statistical significance is expressed as FDR (False Discovery Rate) 

adjusted p-value (adj.P.Val). Δβ > 0 means the methylation is higher in medium impact areas. 

CpG adj.P.Val deltaBeta gene feature cgi UCSC_Islands_Name 

cg08370546 2.02E-26 0.0944 PHKG1 TSS200 opensea   

cg01708150 3.46E-13 0.0914 RHOJ 5'UTR opensea   

cg11079896 5.28E-13 0.1326 RHOJ 5'UTR opensea   

cg16102102 1.43E-11 0.1032 HAPLN1 TSS1500 shore chr5:83017894-83018358 

cg04526399 2.93E-11 0.0765 HAPLN1 TSS1500 shore chr5:83017894-83018358 

cg16287373 6.85E-11 0.0723 NRIP1 5'UTR opensea   

cg00318109 6.89E-10 0.1041 MYH7 5'UTR opensea   

cg16406611 8.01E-09 0.0688 IFITM5 TSS1500 shore chr11:299389-299635 

cg19148731 9.59E-09 0.1054 LOXL3 5'UTR shore chr2:74781494-74782685 

cg01347250 1.20E-08 0.0624 S100A13 TSS200 opensea   

cg24443494 4.74E-08 0.0909 CHST15 5'UTR opensea   

cg07189587 3.11E-07 0.1279 RHOJ 5'UTR opensea   

cg07157030 9.40E-07 0.1167 RHOJ 5'UTR opensea   

cg18008345 1.89E-06 0.1153 POLR2E TSS1500 shore chr19:1094797-1095649 

cg08296601 3.01E-06 0.0777 MRPL28 5'UTR island chr16:419860-420256 

cg22110428 4.01E-06 0.0655 CEACAM18 TSS1500 opensea   

cg17422692 6.31E-06 0.0804 MRPL28 5'UTR island chr16:419860-420256 
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The analysis was carried out through the identification of the Differentially Methylated 

Regions (DMRs), with the same comparisons among impact areas used for DMPs: 

1. High impact area vs Low impact area; 

2. Medium impact area vs High impact area; 

3. Medium impact area vs Low impact area. 

The DMRs identification was performed by means of two independent methods 

(Bumpunther and DMRcate, implemented on R software), then only the “consensus 

DMRs”, reached out with both two methods, were selected: 392 consensus DMRs were 

identified for high impact vs low impact comparison, 1082 for medium vs high, 537 for 

medium vs low. 

In order to understand the biological implication given by the differential methylation 

levels for each impact areas, a gene set enrichment analysis was performed for both DMPs 

and DMRs. This analysis consists of a Gene Ontology (GO) by “gometh” method and a 

Pathway Analysis by “KEGG” method (Adjusted P-value for GO was set at 0.001, for 

KEGG at 0.05). 

Table 25 is an extract of the GO annotated terms, showing the most significative molecular 

functions come out from each impact area comparison for DMPs. Among the most 

enriched: “metal ion binding”, “heterocyclic compound binding”, and “organic cyclic 

compound binding” were counted.  

Otherwise, in Table 26, among biological processes enriched in the GO, it is possible to 

find “nitrogen compound metabolic process”, “organonitrogen compound metabolic 

process”, “cell development” and “ nervous system development”. 

Figure 29 a/b/c and 30 a/b/c graphically represents GO most enriched terms for each impact 

area comparison for molecular function and biological process, respectively.  

Fig. 29d and Fig. 30d show the comparing bar plots of common terms and number of DMPs 

genes involved.   
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Table 25. Gene Ontology for DMPs and most significant Molecular Function (MF) reported for each impact 

area comparison (High vs Low; Medium vs Low; Medium vs High). DE=number of genes from DMPs 

annotated; FDR=statistical significance of the term. 

High vs Low    

TermID ONTOLOGY TERM DE FDR 

GO:0005515 MF protein binding 11033 2.64E-115 

GO:0005488 MF binding 12817 5.66E-94 

GO:0043167 MF ion binding 5154 2.26E-46 

GO:0003824 MF catalytic activity 4641 5.20E-46 

GO:0019899 MF enzyme binding 1985 8.51E-39 

GO:1901363 MF heterocyclic compound binding 4941 2.23E-36 

GO:0097159 MF organic cyclic compound binding 5007 4.81E-36 

GO:0043168 MF anion binding 2393 6.76E-29 

GO:1901265 MF nucleoside phosphate binding 1826 3.75E-28 

GO:0000166 MF nucleotide binding 1825 4.11E-28 

GO:0016740 MF transferase activity 1886 1.20E-25 

GO:0043169 MF cation binding 3503 2.06E-25 

GO:0046872 MF metal ion binding 3439 2.69E-25 

GO:0017076 MF purine nucleotide binding 1621 1.64E-24 

GO:0032555 MF purine ribonucleotide binding 1610 1.64E-24 

GO:0032553 MF ribonucleotide binding 1624 2.22E-24 

GO:0035639 MF purine ribonucleoside triphosphate binding 1554 2.98E-24 

GO:0140096 MF catalytic activity, acting on a protein 1828 6.86E-23 

Medium vs Low    

TermID ONTOLOGY TERM DE FDR 

GO:0005515 MF protein binding 10657 1.15E-46 

GO:0005488 MF binding 12442 3.31E-38 

GO:0043167 MF ion binding 5000 1.84E-22 

GO:0003824 MF catalytic activity 4482 3.14E-20 

GO:0043168 MF anion binding 2331 2.32E-17 

GO:0008092 MF cytoskeletal protein binding 852 2.34E-14 

GO:0019899 MF enzyme binding 1891 2.36E-14 

GO:0036094 MF small molecule binding 2073 2.63E-14 

GO:1901265 MF nucleoside phosphate binding 1762 6.03E-14 

GO:0000166 MF nucleotide binding 1761 6.42E-14 

GO:0005524 MF ATP binding 1248 7.49E-14 

GO:0140096 MF catalytic activity, acting on a protein 1780 7.49E-14 

GO:0097367 MF carbohydrate derivative binding 1846 1.83E-13 

GO:0043169 MF cation binding 3408 2.85E-13 

GO:0046872 MF metal ion binding 3344 5.00E-13 

GO:0030554 MF adenyl nucleotide binding 1302 5.50E-13 

GO:0032559 MF adenyl ribonucleotide binding 1292 5.71E-13 

GO:0035639 MF purine ribonucleoside triphosphate binding 1503 8.16E-13 

GO:0032555 MF purine ribonucleotide binding 1555 2.01E-12 
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Table 26. Gene Ontology for DMPs and most significant Biologic Process (BP) reported for each impact area 

comparison (High vs Low; Medium vs Low; Medium vs High). DE=number of genes from DMPs annotated; 

FDR=statistical significance of the term. 

High vs Low 
    

TermID ONTOLOGY TERM DE FDR 

GO:0006996 BP organelle organization 3445 9.06E-61 

GO:0044237 BP cellular metabolic process 8880 9.07E-57 

GO:0048522 BP positive regulation of cellular process 4708 1.25E-52 

GO:0050794 BP regulation of cellular process 8839 1.19E-50 

GO:1901576 BP organic substance biosynthetic process 5051 2.44E-50 

GO:0044267 BP cellular protein metabolic process 4400 3.95E-50 

GO:0043412 BP macromolecule modification 3696 4.56E-50 

GO:0006464 BP cellular protein modification process 3520 7.09E-50 

GO:0036211 BP protein modification process 3520 7.09E-50 

GO:0031323 BP regulation of cellular metabolic process 5195 7.92E-50 

GO:1901564 BP organonitrogen compound metabolic process 5566 1.44E-49 

GO:0006807 BP nitrogen compound metabolic process 8244 2.65E-48 

GO:0048518 BP positive regulation of biological process 5133 1.60E-46 

GO:0019538 BP protein metabolic process 4808 1.88E-46 

GO:0009059 BP macromolecule biosynthetic process 4158 6.74E-46 

GO:0051171 BP regulation of nitrogen compound metabolic process 4852 1.49E-45 

GO:0080090 BP regulation of primary metabolic process 5006 3.42E-45 

GO:0034645 BP cellular macromolecule biosynthetic process 4057 2.20E-44 

Medium vs High    

TermID ONTOLOGY TERM DE FDR 

GO:0005488 MF binding 14711 6.19E-213 

GO:0005515 MF protein binding 12497 8.44E-215 

GO:0043167 MF ion binding 5791 2.32E-69 

GO:0097159 MF organic cyclic compound binding 5676 1.53E-42 

GO:1901363 MF heterocyclic compound binding 5593 8.61E-41 

GO:0003824 MF catalytic activity 5215 8.32E-73 

GO:0043169 MF cation binding 3964 1.05E-41 

GO:0046872 MF metal ion binding 3889 1.52E-40 

GO:0003676 MF nucleic acid binding 3811 6.71E-13 

GO:0098772 MF molecular function regulator 3444 8.37E-29 

GO:0043168 MF anion binding 2640 1.09E-34 

GO:0036094 MF small molecule binding 2361 5.05E-32 

GO:0003677 MF DNA binding 2269 1.70E-13 

GO:0019899 MF enzyme binding 2139 1.84E-29 

GO:0097367 MF carbohydrate derivative binding 2091 3.39E-18 

GO:0016740 MF transferase activity 2078 1.07E-28 

GO:0140096 MF catalytic activity, acting on a protein 2021 3.26E-30 

GO:1901265 MF nucleoside phosphate binding 1992 4.77E-28 

GO:0140110 MF transcription regulator activity 1824 7.05E-13 
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GO:0044085 BP cellular component biogenesis 2738 1.06E-43 

GO:0007399 BP nervous system development 2141 7.97E-43 

Medium vs Low 
    

TermID ONTOLOGY TERM DE FDR 

GO:0016043 BP cellular component organization 5214 4.28E-33 

GO:0071840 BP cellular component organization or biogenesis 5356 7.17E-32 

GO:0032502 BP developmental process 5277 8.76E-24 

GO:0051179 BP localization 5399 1.62E-23 

GO:1901564 BP organonitrogen compound metabolic process 5389 1.84E-22 

GO:0048856 BP anatomical structure development 4891 3.74E-22 

GO:0048518 BP positive regulation of biological process 4970 5.64E-21 

GO:0051128 BP regulation of cellular component organization 2045 7.35E-21 

GO:0048468 BP cell development 1877 2.06E-20 

GO:0048523 BP negative regulation of cellular process 4078 5.42E-20 

GO:0120036 BP plasma membrane bounded cell projection organization 1334 1.09E-19 

GO:0048522 BP positive regulation of cellular process 4524 1.09E-19 

GO:0044260 BP cellular macromolecule metabolic process 6518 1.35E-19 

GO:0030030 BP cell projection organization 1368 2.13E-19 

GO:0007275 BP multicellular organism development 4495 2.79E-19 

GO:0019538 BP protein metabolic process 4638 3.34E-19 

GO:0051234 BP establishment of localization 4206 6.23E-19 

GO:0009653 BP anatomical structure morphogenesis 2349 1.08E-18 

GO:0000902 BP cell morphogenesis 916 2.16E-18 

GO:0007399 BP nervous system development 2053 2.16E-18 

Medium vs High 
    

TermID ONTOLOGY TERM DE FDR 

GO:0071840 BP cellular component organization or biogenesis 6170 7.01E-100 

GO:0016043 BP cellular component organization 5989 9.49E-97 

GO:0009987 BP cellular process 15580 5.87E-96 

GO:0044260 BP cellular macromolecule metabolic process 7660 1.26E-88 

GO:0050794 BP regulation of cellular process 10131 4.10E-81 

GO:1901564 BP organonitrogen compound metabolic process 6287 2.87E-75 

GO:0065007 BP biological regulation 11442 2.47E-69 

GO:0044237 BP cellular metabolic process 10151 3.15E-69 

GO:0051179 BP localization 6254 6.77E-68 

GO:0032502 BP developmental process 6111 2.24E-65 

GO:0044238 BP primary metabolic process 9898 3.69E-64 

GO:0048518 BP positive regulation of biological process 5756 7.13E-61 

GO:0006807 BP nitrogen compound metabolic process 9441 1.22E-60 

GO:0050789 BP regulation of biological process 10843 6.15E-60 

GO:0048522 BP positive regulation of cellular process 5232 3.44E-59 

GO:0019538 BP protein metabolic process 5402 8.02E-59 

GO:0048856 BP anatomical structure development 5657 1.97E-58 

GO:1901576 BP organic substance biosynthetic process 5657 1.06E-55 

GO:0009058 BP biosynthetic process 5734 1.87E-55 

GO:0006996 BP organelle organization 3758 2.36E-54 
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Figure 29. GO most enriched terms for Molecular Function in (a) high vs low area, (b) medium vs low area, (c) medium vs high area. On the x the number of genes from DMPs annotated. 

(d) Common GO terms and number of DMPs annotated genes for each area comparison.  
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Figure 30. GO most enriched terms for Biological Process in (a) low vs high areas, (b) medium vs low area, 

(c) medium vs high area. On the x the number of genes from DMPs annotated. (d) Common GO terms and 

number of DMPs annotated genes for each area comparison.  
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Figure 30. (Continuing from previous page).
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Tables 27 a/b/c report the KEGG pathway analysis on DMPs, performed for each impact 

area comparison.  

Noteworthy, it is possible to underline for high and medium impact area vs low one the 

enrichment of gene-set involved in metabolic and cancer pathways, transduction signaling 

and inflammation pathways, as well as small and non-small cell lung cancer, pancreatic 

and prostate cancer, cell cycle and p53 signaling pathways. For all conditions breast cancer 

and gastric cancer pathways are enriched. Interestingly, for high vs low and for medium vs 

high are counted some neurodegenerative disorders pathways (e.g. Alzheimer and 

Parkinson diseases), as well as a series of infectious disease pathways. Medium vs low 

comparison shows, in addition, enrichment for estrogenic signaling and thyroid hormone 

pathways, as well as endocrine resistance one.  

Considering the DMRs consensus, the GO and the KEGG analysis show significant  gene-

set enrichment evidence only for medium vs high and medium vs low impact areas 

comparison (Table 28). All terms reported involve gene silencing processes and post-

transcriptional regulation.  

The “neuroactive ligand receptor interaction” is the only pathway that resulted enriched in 

medium vs high comparison by KEGG analysis on DMRs consensus (Table 29). 
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Table 27a. KEGG for DMPs reported for High vs Low impact area comparison. DE=number of genes from DMPs annotated; FDR=statistical significance of the pathway. 

High vs Low 
       

TermID Description DE FDR TermID Description DE FDR 

path:hsa01100 Metabolic pathways 1206 1.56E-06 path:hsa03040 Spliceosome 116 4.46E-03 

path:hsa05200 Pathways in cancer 468 1.29E-10 path:hsa04110 Cell cycle 115 2.11E-04 

path:hsa05022 Pathways of neurodegeneration - multiple diseases 408 2.19E-07 path:hsa04926 Relaxin signaling pathway 112 3.13E-02 

path:hsa05010 Alzheimer disease 313 6.13E-06 path:hsa04071 Sphingolipid signaling pathway 111 1.17E-03 

path:hsa05014 Amyotrophic lateral sclerosis 308 4.46E-06 path:hsa04611 Platelet activation 111 3.13E-02 

path:hsa04151 PI3K-Akt signaling pathway 302 2.78E-05 path:hsa04142 Lysosome 110 3.71E-02 

path:hsa05165 Human papillomavirus infection 293 2.99E-06 path:hsa04722 Neurotrophin signaling pathway 108 8.57E-04 

path:hsa04010 MAPK signaling pathway 262 6.11E-06 path:hsa04919 Thyroid hormone signaling pathway 108 1.19E-02 

path:hsa05016 Huntington disease 255 2.89E-04 path:hsa03010 Ribosome 108 4.50E-02 

path:hsa04144 Endocytosis 232 8.93E-09 path:hsa04935 Growth hormone synthesis, secretion and action 105 1.33E-02 

path:hsa05020 Prion disease 222 2.53E-03 path:hsa04725 Cholinergic synapse 103 1.19E-02 

path:hsa05132 Salmonella infection 217 2.13E-04 path:hsa04114 Oocyte meiosis 103 4.96E-02 

path:hsa05131 Shigellosis 215 8.19E-05 path:hsa04668 TNF signaling pathway 98 2.91E-02 

path:hsa04014 Ras signaling pathway 203 8.57E-04 path:hsa04066 HIF-1 signaling pathway 97 9.79E-03 

path:hsa05012 Parkinson disease 202 2.78E-03 path:hsa04916 Melanogenesis 92 2.82E-02 

path:hsa04810 Regulation of actin cytoskeleton 197 1.94E-06 path:hsa01522 Endocrine resistance 90 2.78E-03 

path:hsa04015 Rap1 signaling pathway 196 6.13E-06 path:hsa04713 Circadian entrainment 90 5.77E-03 

path:hsa05205 Proteoglycans in cancer 188 7.34E-06 path:hsa04750 Inflammatory mediator regulation of TRP channels 90 1.38E-02 

path:hsa05163 Human cytomegalovirus infection 187 1.41E-02 path:hsa04660 T cell receptor signaling pathway 90 3.08E-02 

path:hsa05166 Human T-cell leukemia virus 1 infection 184 3.29E-02 path:hsa04070 Phosphatidylinositol signaling system 89 3.28E-04 

path:hsa04510 Focal adhesion 183 1.50E-05 path:hsa05215 Prostate cancer 89 2.78E-03 

path:hsa04024 cAMP signaling pathway 183 4.34E-02 path:hsa04933 AGE-RAGE signaling pathway in diabetic complications 88 1.38E-02 

path:hsa04020 Calcium signaling pathway 176 8.57E-04 path:hsa05231 Choline metabolism in cancer 88 1.75E-02 

path:hsa05130 Pathogenic Escherichia coli infection 167 1.22E-02 path:hsa05142 Chagas disease 88 3.75E-02 
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path:hsa05169 Epstein-Barr virus infection 166 1.91E-02 path:hsa04350 TGF-beta signaling pathway 87 1.11E-02 

path:hsa05203 Viral carcinogenesis 164 4.51E-03 path:hsa04925 Aldosterone synthesis and secretion 86 3.08E-02 

path:hsa04360 Axon guidance 163 3.38E-04 path:hsa05222 Small cell lung cancer 84 2.06E-03 

path:hsa05167 Kaposi sarcoma-associated herpesvirus infection 161 3.66E-02 path:hsa04666 Fc gamma R-mediated phagocytosis 84 2.16E-02 

path:hsa04141 Protein processing in endoplasmic reticulum 155 1.50E-05 path:hsa05032 Morphine addiction 82 1.24E-02 

path:hsa05225 Hepatocellular carcinoma 154 2.99E-06 path:hsa05210 Colorectal cancer 81 8.57E-04 

path:hsa04022 cGMP-PKG signaling pathway 151 2.11E-04 path:hsa04914 Progesterone-mediated oocyte maturation 81 1.09E-02 

path:hsa04390 Hippo signaling pathway 148 1.10E-05 path:hsa04512 ECM-receptor interaction 80 1.81E-02 

path:hsa04310 Wnt signaling pathway 145 4.43E-04 path:hsa05235 PD-L1 expression and PD-1 checkpoint pathway in cancer 80 3.76E-02 

path:hsa04934 Cushing syndrome 144 2.13E-04 path:hsa04540 Gap junction 79 3.50E-02 

path:hsa04218 Cellular senescence 143 3.33E-04 path:hsa03015 mRNA surveillance pathway 78 1.09E-02 

path:hsa05224 Breast cancer 139 1.80E-05 path:hsa04727 GABAergic synapse 78 1.63E-02 

path:hsa05226 Gastric cancer 139 1.46E-04 path:hsa04012 ErbB signaling pathway 75 1.75E-02 

path:hsa04921 Oxytocin signaling pathway 139 7.40E-03 path:hsa05100 Bacterial invasion of epithelial cells 74 7.33E-04 

path:hsa04150 mTOR signaling pathway 138 3.34E-03 path:hsa01521 EGFR tyrosine kinase inhibitor resistance 73 1.12E-02 

path:hsa04072 Phospholipase D signaling pathway 136 3.06E-04 path:hsa04721 Synaptic vesicle cycle 73 1.41E-02 

path:hsa03013 RNA transport 135 6.39E-04 path:hsa05214 Glioma 72 8.57E-04 

path:hsa05161 Hepatitis B 134 1.63E-02 path:hsa05220 Chronic myeloid leukemia 72 8.57E-04 

path:hsa05017 Spinocerebellar ataxia 133 3.95E-05 path:hsa04115 p53 signaling pathway 71 7.33E-04 

path:hsa04550 Signaling pathways regulating pluripotency of stem cells 132 9.99E-05 path:hsa05223 Non-small cell lung cancer 70 3.28E-04 

path:hsa04261 Adrenergic signaling in cardiomyocytes 131 1.25E-02 path:hsa05212 Pancreatic cancer 70 4.41E-03 

path:hsa04120 Ubiquitin mediated proteolysis 125 1.73E-04 path:hsa05412 Arrhythmogenic right ventricular cardiomyopathy 70 1.38E-02 

path:hsa04140 Autophagy - animal 124 1.30E-04 path:hsa00562 Inositol phosphate metabolism 68 3.45E-04 

path:hsa04723 Retrograde endocannabinoid signaling 122 8.71E-03 path:hsa05218 Melanoma 67 4.51E-03 

path:hsa05418 Fluid shear stress and atherosclerosis 121 9.64E-04 path:hsa04520 Adherens junction 67 7.00E-03 

path:hsa04728 Dopaminergic synapse 120 8.57E-04 path:hsa05211 Renal cell carcinoma 62 1.19E-02 

path:hsa05135 Yersinia infection 120 4.41E-03 path:hsa05217 Basal cell carcinoma 61 3.44E-03 

path:hsa04210 Apoptosis 119 1.41E-02 path:hsa01524 Platinum drug resistance 61 1.28E-02 
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path:hsa04270 Vascular smooth muscle contraction 118 2.32E-02 path:hsa05031 Amphetamine addiction 61 4.34E-02 

path:hsa04910 Insulin signaling pathway 118 2.72E-02 path:hsa05213 Endometrial cancer 55 2.50E-03 

path:hsa04068 FoxO signaling pathway 117 4.51E-03 
    

 

 

Table 27b. KEGG for DMPs reported for Medium vs Low impact area comparison. DE=number of genes from DMPs annotated; FDR=statistical significance of the pathway. 

Medium vs Low 
       

TermID Description DE FDR TermID Description DE FDR 

path:hsa01100 Metabolic pathways 1169 4.18E-03 path:hsa04916 Melanogenesis 93 1.45E-02 

path:hsa05200 Pathways in cancer 443 7.15E-04 path:hsa04625 C-type lectin receptor signaling pathway 93 2.40E-02 

path:hsa04151 PI3K-Akt signaling pathway 292 7.31E-03 path:hsa05231 Choline metabolism in cancer 92 6.00E-04 

path:hsa04010 MAPK signaling pathway 259 1.21E-04 path:hsa01522 Endocrine resistance 91 1.35E-03 

path:hsa04014 Ras signaling pathway 202 1.81E-03 path:hsa04660 T cell receptor signaling pathway 90 3.25E-02 

path:hsa04015 Rap1 signaling pathway 194 1.21E-04 path:hsa05146 Amoebiasis 88 2.19E-02 

path:hsa04810 Regulation of actin cytoskeleton 191 5.71E-04 path:hsa04713 Circadian entrainment 88 3.14E-02 

path:hsa05166 Human T-cell leukemia virus 1 infection 184 2.82E-02 path:hsa04925 Aldosterone synthesis and secretion 87 1.69E-02 

path:hsa04714 Thermogenesis 183 3.42E-02 path:hsa05414 Dilated cardiomyopathy 86 1.12E-02 

path:hsa05205 Proteoglycans in cancer 180 5.59E-03 path:hsa04070 Phosphatidylinositol signaling system 85 2.19E-02 

path:hsa04510 Focal adhesion 179 7.77E-04 path:hsa05410 Hypertrophic cardiomyopathy 83 3.13E-03 

path:hsa04360 Axon guidance 164 4.65E-04 path:hsa04512 ECM-receptor interaction 82 4.18E-03 

path:hsa05225 Hepatocellular carcinoma 148 1.35E-03 path:hsa04914 Progesterone-mediated oocyte maturation 79 4.61E-02 

path:hsa04310 Wnt signaling pathway 146 4.65E-04 path:hsa04012 ErbB signaling pathway 77 3.27E-03 

path:hsa04921 Oxytocin signaling pathway 139 7.51E-03 path:hsa04911 Insulin secretion 76 4.61E-02 

path:hsa04934 Cushing syndrome 139 1.03E-02 path:hsa05412 Arrhythmogenic right ventricular cardiomyopathy 73 6.00E-04 

path:hsa04072 Phospholipase D signaling pathway 135 1.19E-03 path:hsa01521 EGFR tyrosine kinase inhibitor resistance 73 1.17E-02 

path:hsa05224 Breast cancer 134 3.13E-03 path:hsa04971 Gastric acid secretion 71 1.12E-02 
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path:hsa05226 Gastric cancer 134 8.78E-03 path:hsa05212 Pancreatic cancer 70 5.75E-03 

path:hsa04261 Adrenergic signaling in cardiomyocytes 129 3.42E-02 path:hsa05214 Glioma 70 1.17E-02 

path:hsa04915 Estrogen signaling pathway 122 1.17E-02 path:hsa05220 Chronic myeloid leukemia 70 1.17E-02 

path:hsa04371 Apelin signaling pathway 121 4.09E-02 path:hsa05100 Bacterial invasion of epithelial cells 70 4.84E-02 

path:hsa05135 Yersinia infection 118 1.58E-02 path:hsa04520 Adherens junction 69 7.15E-04 

path:hsa04140 Autophagy - animal 117 3.25E-02 path:hsa05223 Non-small cell lung cancer 67 1.92E-02 

path:hsa04270 Vascular smooth muscle contraction 117 3.69E-02 path:hsa00562 Inositol phosphate metabolism 65 2.04E-02 

path:hsa04068 FoxO signaling pathway 116 9.90E-03 path:hsa05218 Melanoma 65 3.32E-02 

path:hsa05418 Fluid shear stress and atherosclerosis 116 3.25E-02 path:hsa04664 Fc epsilon RI signaling pathway 64 2.72E-03 

path:hsa04926 Relaxin signaling pathway 113 1.87E-02 path:hsa04929 GnRH secretion 61 1.35E-03 

path:hsa04071 Sphingolipid signaling pathway 112 7.15E-04 path:hsa04137 Mitophagy - animal 61 1.92E-02 

path:hsa04919 Thyroid hormone signaling pathway 109 6.67E-03 path:hsa05211 Renal cell carcinoma 61 3.25E-02 

path:hsa04152 AMPK signaling pathway 108 1.00E-02 path:hsa05221 Acute myeloid leukemia 59 3.37E-02 

path:hsa04724 Glutamatergic synapse 107 1.51E-03 path:hsa04370 VEGF signaling pathway 57 7.48E-03 

path:hsa04935 Growth hormone synthesis, secretion and action 106 7.48E-03 path:hsa04730 Long-term depression 56 1.00E-02 

path:hsa04722 Neurotrophin signaling pathway 105 1.17E-02 path:hsa05213 Endometrial cancer 54 1.17E-02 

path:hsa04725 Cholinergic synapse 104 7.31E-03 path:hsa04340 Hedgehog signaling pathway 48 2.79E-02 

path:hsa04066 HIF-1 signaling pathway 97 1.00E-02 path:hsa04960 Aldosterone-regulated sodium reabsorption 36 8.78E-03 
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Table 27c. KEGG for DMPs reported for Medium vs High impact area comparison. DE=number of genes from DMPs annotated; FDR=statistical significance of the pathway. 

Medium vs High 
      

TermID Description DE FDR TermID Description DE FDR 

path:hsa01100 Metabolic pathways 1386 2.13E-13 path:hsa05225 Hepatocellular carcinoma 159 1.95E-02 

path:hsa05200 Pathways in cancer 497 1.58E-04 path:hsa04310 Wnt signaling pathway 155 5.65E-03 

path:hsa05022 Pathways of neurodegeneration - multiple diseases 445 6.62E-06 path:hsa04390 Hippo signaling pathway 154 6.15E-03 

path:hsa05010 Alzheimer disease 343 9.29E-05 path:hsa04934 Cushing syndrome 152 2.42E-02 

path:hsa05014 Amyotrophic lateral sclerosis 337 4.18E-04 path:hsa04921 Oxytocin signaling pathway 151 2.42E-02 

path:hsa05165 Human papillomavirus infection 312 1.73E-02 path:hsa04150 mTOR signaling pathway 149 2.42E-02 

path:hsa04080 Neuroactive ligand-receptor interaction 310 2.42E-02 path:hsa05226 Gastric cancer 147 6.87E-03 

path:hsa05016 Huntington disease 281 6.87E-03 path:hsa05224 Breast cancer 145 6.87E-03 

path:hsa04010 MAPK signaling pathway 280 9.75E-04 path:hsa04072 Phospholipase D signaling pathway 143 3.06E-02 

path:hsa05020 Prion disease 248 1.95E-02 path:hsa05017 Spinocerebellar ataxia 139 9.06E-03 

path:hsa04144 Endocytosis 240 4.85E-03 path:hsa04550 Signaling pathways regulating pluripotency of stem cells 138 3.53E-02 

path:hsa05132 Salmonella infection 235 2.42E-02 path:hsa04723 Retrograde endocannabinoid signaling 133 4.26E-02 

path:hsa05131 Shigellosis 231 3.06E-02 path:hsa04210 Apoptosis 132 1.09E-02 

path:hsa05012 Parkinson disease 225 1.57E-02 path:hsa04270 Vascular smooth muscle contraction 131 1.19E-02 

path:hsa04014 Ras signaling pathway 221 6.87E-03 path:hsa04120 Ubiquitin mediated proteolysis 131 4.53E-02 

path:hsa04714 Thermogenesis 209 2.42E-02 path:hsa04140 Autophagy - animal 129 4.89E-02 

path:hsa04015 Rap1 signaling pathway 207 6.19E-04 path:hsa04071 Sphingolipid signaling pathway 118 1.95E-02 

path:hsa04810 Regulation of actin cytoskeleton 207 6.19E-04 path:hsa01200 Carbon metabolism 108 2.42E-02 

path:hsa04024 cAMP signaling pathway 206 2.42E-02 path:hsa04066 HIF-1 signaling pathway 105 2.85E-02 

path:hsa05205 Proteoglycans in cancer 198 5.65E-03 path:hsa01522 Endocrine resistance 95 4.34E-02 

path:hsa04510 Focal adhesion 192 6.87E-03 path:hsa05231 Choline metabolism in cancer 95 4.45E-02 

path:hsa04020 Calcium signaling pathway 189 2.34E-02 path:hsa04350 TGF-beta signaling pathway 94 4.45E-02 

path:hsa04360 Axon guidance 174 2.94E-03 path:hsa00564 Glycerophospholipid metabolism 93 4.53E-02 

path:hsa04141 Protein processing in endoplasmic reticulum 163 1.73E-02 
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Table 28. Gene Ontology for DMRs consensus, reported for the enriched comparison (Medium vs High and 

Medium vs Low). DE=number of genes from DMRs annotated; FDR=statistical significance of the term. 

Medium vs 

High 

    

TermID ONTOLOG

Y 

TERM DE FDR 

GO:0016458 BP gene silencing 56 1.73E-05 

GO:0031047 BP gene silencing by RNA 54 1.14E-06 

GO:0016441 BP posttranscriptional gene silencing 50 1.86E-06 

GO:0035194 BP post-transcriptional gene silencing by RNA 50 1.86E-06 

GO:0035195 BP gene silencing by miRNA 49 1.86E-06 

GO:0150100 MF RNA binding involved in posttranscriptional gene 
silencing 

21 4.24E-04 

GO:1903231 MF mRNA binding involved in posttranscriptional gene 

silencing 

21 4.24E-04 

GO:0008191 MF metalloendopeptidase inhibitor activity 7 2.89E-02 

Medium vs Low 
    

TermID ONTOLOG

Y 

TERM DE FDR 

GO:0007156 BP homophilic cell adhesion via plasma membrane 

adhesion molecules 

21 5.64E-04 

GO:0098742 BP cell-cell adhesion via plasma-membrane adhesion 
molecules 

25 1.19E-02 

 

Table 29. KEGG for DMRs consensus reported for Medium vs High impact area comparison. DE=number of 

genes from DMRs annotated; FDR=statistical significance of the pathway. 

Medium vs High 
   

TermID Description DE FDR 

path:hsa04080 Neuroactive ligand-receptor interaction 38 9.54E-04 
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4.4.3 Regression analysis for methylation and exposure biomarkers correlation 

In order to highlight a potential correlation between methylation levels and exposure 

biomarkers evaluated in the subgroup of 600 volunteers, data analysis proceeded through 

a “Robust Linear Multiple Regression Model”, by M-value transformation from beta 

values, considering the following predictive parameters:  

▪ exposure biomarkers; 

▪ clusters; 

▪ gender; 

▪ age; 

▪ BMI; 

▪ Lymphocytes; 

▪ Neutrophils. 

Among the 19 heavy metals assessed as biomarkers of exposure, those showing a statistical 

significance in correlation to one of the cluster or to one of the impact areas in their 

independent data analysis were selected (Mercury – Hg202, Arsenic – As75, Cadmium – 

Cd111, Thallium – Tl205 (µg/L)). 

For dioxins and dioxin-like compounds the sum of PCDD/F+DL-PCB (pg WHO-TEQ/g 

lipids) was considered, as an explorative example of cumulative effect of more congeners. 

For Calux gene reporter, all the three assays were included in the regression analysis. 

The robust linear multiple regression model, for computing power reasons, was performed 

on the most variable 5000 differentially methylated probes. 

Heatmaps below show the results of the regression model as estimate association between 

each probe and each exposure biomarker selected, represented by position on gene (Fig. 

31a) and by relation to CpG features (Fig. 32a). The same is represented also with the 

indication of the statistical significance level (Adjusted P-value) (Fig. 31b and 32b). 

The model explains how the methylation is affected by exposure biomarkers, given the 

contribute of the other factors selected as predictive parameters. 

Estimate > 0 means that, with the increase of the measured biomarker, there is an increase 

in the methylation for the probe observed. Conversely, if estimate < 0, the increase of the 

biomarker causes a decrease in the methylation level for the probe observed.  

The Adjusted P-value gives support in understanding if the contribute of the exposure 

biomarker on the methylation level for each probe has a statistical significance. 

No particular patterns of hyper- or hypo-methylation are shown in the heatmaps, nor 

considering the link with gene position, neither the relation to the CpG features. 
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Figure 31. Heatmaps of robust linear multiple regression model linked to probe position on gene. (a) Estimate 

association between each probe and biomarkers of exposure. (b) Adjusted p-value as indicator of statistical 

significance for the correlation between the probe and the biomarkers of exposure. 

Hg.202 = Mercury (µg/L); As.75 = Arsenic (µg/L); Cd.111 = Cadmium (µg/L); Tl.205 = Thallium (µg/L); 

ERalfa.Calux = Erα Calux assay (pg-EEQ/ml) ; PAH.Calux = PAH Calux assay (ngBaP-EQ/ml); DR.Calux = 

DR Calux assay (pg BEQ/g fats); PCDD = sum of PCDD/F+DL-PCB (pg WHO-TEQ/g fats). 
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Figure 32. Heatmaps of robust linear multiple regression model linked to CpG features. (a) Estimate association 

between each probe and biomarkers of exposure. (b) Adjusted p-value as indicator of statistical significance 

for the correlation between the probe and the biomarker of exposure. 

Hg.202 = Mercury (µg/L); As.75 = Arsenic (µg/L); Cd.111 = Cadmium (µg/L); Tl.205 = Thallium (µg/L); 

ERalfa.Calux = Erα Calux assay (pg-EEQ/ml) ; PAH.Calux = PAH Calux assay (ngBaP-EQ/ml); DR.Calux = 

DR Calux assay (pg BEQ/g fats); PCDD = sum of PCDD/F+DL-PCB (pg WHO-TEQ/g fats). 
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In the regression model for the mercury (Hg202), the contribute of the metal to explain the 

change in methylation is significant for the probes showed in table 30. The focus is on those 

located on promoter regions, linked to CpG islands and shores. 

As reported in 2016 by Martin and Fry, the ATHL1 gene shows a mercury-associated 

hypomethylation for probes located on CpG shore-promoter region. Likewise, probes 

mapping on RUNX1 gene (leukemia linked gene) and RASGEF1C show mercury-

associated hypomethylation on promoter proximal region. RASGEF1C was linked to 

differentially methylated site in Alzheimer’s disease by Li et al. in 2020. SLC43A2 gene, 

associated to the transport of aminoacids, shows mercury-associated hypermethylation in 

promoter region, that means transcriptional repression.  

 

Table 30. Top significant probes in robust linear regression model for Mercury (Hg202). Metal.Estimate > 0 

means that with the increase of the measured biomarker, there is an increase in the methylation for the probe 

observed. Metal.Pr expresses the statistical significance ≤ 0.05. 

CpG gene feature cgi UCSC_Islands_0.00me metal.Estimate metal.Pr 

cg26423139 SLC43A2 TSS200 shore chr17:1509882-1510101 2.05E+14 0.0370 

cg15747436 ATHL1 TSS1500 shore chr11:289771-290010 -1.39E+14 0.0190 

cg08829299 ATHL1 TSS1500 shore chr11:288847-289239 -2.31E+14 0.0510 

cg18727742 ATHL1 TSS1500 shore chr11:288847-289239 -2.67E+14 0.0330 

cg12955789 RASGEF1C 5'UTR island chr5:179588400-179588773 -1.13E+14 0.0500 

cg06758350 RUNX1 5'UTR island chr21:36258952-36259472 -1.20E+14 0.0500 

cg12477880 RUNX1 1stExon island chr21:36258952-36259472 -1.69E+14 0.0300 

 

In the regression model for the arsenic (As75), the contribute of the metal to explain the 

change in methylation is significant for probes showed in table 31. The focus is on those 

located on promoter regions, linked to CpG islands and shores. Interestingly, among the 

genes involved, those showing arsenic-related hypermethylation for multiple probes are: 

• C1orf109, which encode for a CK2 (casein-kinase 2) substrate that is involved in 

cell cycle control (G1 to S phase transition) and DNA repair; 

• MRPS18A, with its mitochondrial function; 

• PIWIL1, which plays a role in gene silencing by RNA; Sellitto et al. in 2019 

reported that the PIWIL1-piRNA pathway actively contribute to the clinic-

pathological features of the colorectal cancers. Also Amaar and Reeves in 2020 

documented the RASSF1C-PIWIL1-piRNA pathway involvement in modulation 

of key oncogenes and tumor suppressors; 

• NAV1 involved in neuronal development; 

• CYP1A1, encoding for a member of the Cytochrome P450 family; its expression 

is induced by some polycyclic aromatic hydrocarbons (PAHs) and has been 

associated with lung cancer risk. 



 

106 
 

Conversely, PON1 and SDHAP3 genes show arsenic-related hypomethylation. PON1 

encodes for an enzyme able to bind “paraoxon”, a metabolite of Parathion, a toxic 

organophosphorus pesticide. SDHAP3 is linked to pancreatic cancer (Wolpin et al., 2014).  

Noteworthy, these results report a total arsenic estimation that need to be careful interpreted 

because of the presence of non-toxic organic arsenic for the food intake, which could hide 

the association between the toxic inorganic arsenic species. Indeed, over the purposes of 

the present dissertation, the SPES protocol have considered the speciation of Arsenic in the 

biological samples (urine) collected in the study. 
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Table 31. Top significant probes in robust linear regression model for Arsenic (As75). Metal.Estimate > 0 

means that with the increase of the measured biomarker, there is an increase in the methylation for the probe 

observed. Metal.Pr expresses the statistical significance ≤0.05. 

CpG gene feature cgi UCSC_Islands_Name metal.Estimate metal.Pr 

cg26052728 ADAP1 TSS1500 shore chr7:960048-960351 5.88E+14 0.03236 

cg14644031 APOB TSS1500 shore chr2:21266669-21266961 3.02E+14 0.01887 

cg24088508 C1orf109 TSS1500 shore chr1:38157295-38158586 1.21E+14 0.00065 

cg06917450 C1orf109 TSS1500 shore chr1:38157295-38158586 4.02E+13 0.00445 

cg04944931 COMTD1 TSS1500 shore chr10:76993892-76995953 2.49E+14 0.03363 

cg22549041 CYP1A1 TSS1500 island chr15:75018186-75019336 2.45E+14 0.00374 

cg14644378 DNAJB5 TSS1500 shore chr9:34989555-34989875 1.97E+14 0.01310 

cg26038582 HIVEP3 1stExon shore chr1:42383640-42384003 2.75E+14 0.00008 

cg20290983 MRPS18A 1stExon island chr6:43655271-43655618 5.62E+14 0.01002 

cg04842962 MRPS18A 1stExon island chr6:43655271-43655618 4.22E+14 0.01002 

cg04124281 MTHFS TSS1500 shore chr15:80189006-80189695 2.09E+14 0.01887 

cg14920846 NAV1 1stExon island chr1:201617041-201619788 1.54E+14 0.04120 

cg08010094 NXPH2 TSS1500 shore chr2:139537692-139538650 4.11E+14 0.01599 

cg18782210 PAMR1 TSS1500 shore chr11:35547139-35547396 1.82E+14 0.00158 

cg24838063 PIWIL1 TSS200 island chr12:130822360-130822696 5.04E+14 0.01111 

cg19424457 PIWIL1 TSS200 shore chr12:130823502-130824083 4.21E+14 0.00313 

cg26677194 PIWIL1 TSS200 island chr12:130822360-130822696 3.97E+14 0.00290 

cg27630820 PIWIL1 TSS200 shore chr12:130823502-130824083 3.53E+14 0.01635 

cg11931211 PIWIL1 TSS200 island chr12:130822360-130822696 3.33E+14 0.03954 

cg11649415 PTPRS 5'UTR shore chr19:5335044-5335261 2.98E+14 0.04571 

cg03760072 SRPRB TSS200 island chr3:133502561-133502963 2.46E+14 0.04261 

cg10426581 SRRT TSS1500 island chr7:100472375-100473393 4.18E+14 0.02306 

cg25093797 UBASH3B TSS1500 shore chr11:122526278-122527479 1.25E+14 0.05157 

cg03012280 ZFYVE19 TSS1500 shore chr15:41099243-41099878 1.45E+14 0.00008 

cg15721243 ZNF468 TSS1500 shore chr19:53360201-53360460 3.56E+14 0.03373 

cg01147067 RNF213 TSS1500 shore chr17:78233888-78235283 -2.74E+13 0.02352 

cg22355889 ELMOD1 TSS1500 shore chr11:107461743-107462648 -3.07E+14 0.03847 

cg25605443 METTL24 TSS1500 shore chr6:110679417-110679833 -1.89E+14 0.01846 

cg00785941 OR2L13 1stExon island chr1:248100325-248100726 -5.78E+13 0.00516 

cg09506600 OR2L13 TSS1500 shore chr1:248100325-248100726 -2.13E+14 0.02507 

cg08944170 OR2L13 1stExon island chr1:248100325-248100726 -7.47E+14 0.02352 

cg22190023 PCDHB7 1stExon shore chr5:140553681-140554637 -2.03E+14 0.00430 

cg18008345 POLR2E TSS1500 shore chr19:1094797-1095649 -4.80E+14 0.00537 

cg19678392 PON1 1stExon island chr7:94953769-94953971 -3.38E+14 0.00179 

cg20119798 PON1 TSS1500 shore chr7:94953769-94953971 -3.61E+14 0.00013 

cg17330251 PON1 TSS200 island chr7:94953769-94953971 -3.72E+14 0.02789 

cg01874867 PON1 TSS200 shore chr7:94953769-94953971 -3.91E+14 0.00818 

cg15571646 RAMP1 TSS1500 shore chr2:238768073-238768831 -3.97E+14 0.00088 

cg06665890 RNF213 TSS1500 shore chr17:78233888-78235283 -3.28E+14 0.01640 

cg24960960 SDHAP3 TSS200 island chr5:1594238-1595027 -4.50E+14 0.02820 

cg21931717 SDHAP3 TSS200 island chr5:1594238-1595027 -4.51E+14 0.04767 

cg19397885 VWDE TSS1500 shore chr7:12443163-12443705 -3.07E+14 0.00528 

cg03579179 VWDE TSS1500 shore chr7:12443163-12443705 -3.12E+14 0.00820 
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In the regression model for the cadmium (Cd111), the contribute of the metal to explain 

the change in methylation is significant for probes showed in table 32. The focus is on those 

located on promoter regions, linked to CpG islands and shores. Among genes showing 

cadmium-related hypermethylation C1orf109, the same listed for arsenic regression model, 

which is involved in cell proliferation by control on G1-S phase transition. 

Instead, the HNF1B gene, involved in type II diabetes mellitus pathway and with altered 

expression in some cancer types, shows cadmium-related hypomethylation. 

 

Table 32. Top significant probes in robust linear regression model for Cadmium (Cd111). Metal.Estimate > 0 

means that with the increase of the measured biomarker, there is an increase in the methylation for the probe 

observed. Metal.Pr expresses the statistical significance ≤ 0.05. 

 

In the regression model for the Thallium (Tl205), the contribute of the metal to explain the 

change in methylation is significant for probes showed in table 33. The focus is on those 

located on promoter regions, linked to CpG islands and shores.  

Among thallium related CpGs, those showing multiple hypermethylated probes within 

promoter regions, involve genes as: 

• COLEC11, playing a role in innate immunity, apoptosis and embryogenesis; 

• PRDM8, encoding a protein belonging to histone methyltransferase family, which 

acts as negative regulators of transcription. It is involved in steroidogenesis and 

neural development, a particular interesting function considering that thallium 

exposure could affect nervous system. 

Considering the hypermethylation related genes: 

• DUSP22, activating the JNK signaling pathway; 

• NOC3L, involved in adipogenesis, gastric and colorectal cancers; 

• PON1, encoding the enzyme able to bind paraoxon, a metabolite of Parathion, a 

toxic organophosphorus pesticide, then with a role in toxic compounds response; 

• RRAS2, with its important role in activating signal transduction pathways 

controlling cell proliferation.

CpG gene feature cgi UCSC_Islands_Name metal.Estimate metal.Pr 

cg22355889 ELMOD1 TSS1500 shore chr11:107461743-107462648 5.31583E+14 0.0048 

cg24088508 C1orf109 TSS1500 shore chr1:38157295-38158586 5.08453E+14 0.0085 

cg15655868 DZIP1L TSS1500 shore chr3:137833848-137834592 -2.18796E+13 0.0495 

cg04198914 HNF1B TSS1500 shore chr17:36102033-36104766 -1.70354E+14 0.0100 

cg17729891 SNAR-F TSS1500 island chr19:51107425-51107742 -1.90419E+14 1.69E-05 

cg07107916 PPP2R5A TSS1500 shore chr1:212457967-212459694 -1.96994E+14 0.0184 

cg21140145 ZC2HC1A TSS1500 shore chr8:79578112-79578667 -3.67212E+14 0.0002 

cg03983883 ZC2HC1A TSS1500 shore chr8:79578112-79578667 -4.28353E+14 0.0002 

cg04842962 MRPS18A 1stExon island chr6:43655271-43655618 -6.09795E+14 1.69E-05 



Table 33. Top significant probes in robust linear regression model for Thallium (Tl205). Metal.Estimate > 0 

means that with the increase of the measured biomarker, there is an increase in the methylation for the probe 

observed. Metal.Pr expresses the statistical significance ≤ 0.05. 

CpG gene feature cgi UCSC_Islands_Name metal.Estimate Metal.Pr 

cg13286116 ARNTL 5'UTR shore chr11:13298796-13300735 4.63E+14 1.18E-03 

cg08837037 C22orf27 TSS200 shore chr22:31318228-31318489 1.54E+14 8.57E-05 

cg19867917 COLEC11 TSS200 island chr2:3642547-3642751 8.93E+14 5.31E-05 

cg12135269 COLEC11 1stExon island chr2:3642547-3642751 6.76E+14 5.56E-05 

cg18032014 DYNC1I1 5'UTR island chr7:95401691-95402432 1.08E+14 8.37E-04 

cg16631618 GPR150 TSS1500 shore chr5:94955630-94957244 2.16E+14 3.83E-12 

cg02104434 LOC148824 TSS1500 island chr1:247694035-247694501 2.14E+14 2.74E-04 

cg12758973 LOC148824 TSS200 island chr1:247694035-247694501 1.72E+14 5.06E-06 

cg12754571 LOC148824 TSS200 island chr1:247694035-247694501 1.86E+13 8.22E-06 

cg00112952 OR2B11 TSS1500 shore chr1:247614695-247614944 8.33E+14 7.54E-04 

cg14830002 OR2B11 TSS1500 shore chr1:247614695-247614944 5.61E+14 4.32E-04 

cg20717585 PCDHGA2 1stExon island chr5:140720138-140720829 1.75E+14 1.90E-04 

cg05059566 PRDM8 TSS200 shore chr4:81119095-81119391 1.88E+14 1.58E-04 

cg05452645 PRDM8 TSS1500 shore chr4:81118137-81118603 1.77E+14 3.09E-04 

cg26299084 PRDM8 5'UTR island chr4:81118137-81118603 1.66E+14 1.18E-03 

cg10694470 PRDM8 TSS200 island chr4:81118137-81118603 1.59E+14 3.40E-06 

cg06373870 PRDM8 TSS1500 shore chr4:81118137-81118603 1.44E+14 1.61E-04 

cg06307913 PRDM8 5'UTR shore chr4:81119095-81119391 1.33E+14 5.70E-04 

cg09419670 PSMD5 TSS1500 shore chr9:123605043-123605585 3.69E+14 1.21E-05 

cg10411850 TDRD10 TSS1500 shore chr1:154474107-154475699 2.45E+14 6.22E-10 

cg07732735 TTC23 TSS200 shore chr15:99791328-99792042 2.01E+14 1.90E-04 

cg22618164 WDR66 TSS200 island chr12:122356315-122356853 6.03E+14 4.32E-04 

cg04074835 ACCS 5'UTR shore chr11:44087518-44088165 -5.44E+14 1.93E-05 

cg08742575 C21orf56 5'UTR shore chr21:47602431-47602740 -9.14E+14 1.23E-04 

cg19427746 CAMTA2 5'UTR shore chr17:4890282-4890991 -2.00E+14 5.37E-08 

cg24324837 CCDC155 1stExon island chr19:49891269-49891604 -1.51E+14 2.50E-04 

cg02656474 CMAS TSS1500 shore chr12:22199062-22199589 -2.09E+13 2.76E-09 

cg03680517 CSGALNACT2 TSS1500 island chr10:43632966-43634222 -1.55E+14 1.12E-03 

cg05185784 DEF8 5'UTR island chr16:90015551-90016120 -1.84E+14 1.17E-03 

cg03395511 DUSP22 TSS200 shore chr6:291948-292839 -2.05E+13 1.00E-04 

cg05064044 DUSP22 1stExon island chr6:291948-292839 -1.18E+14 7.68E-04 

cg18110333 DUSP22 1stExon island chr6:291948-292839 -2.00E+14 3.17E-04 

cg21548813 DUSP22 TSS1500 shore chr6:291948-292839 -2.15E+14 3.62E-06 

cg11245928 EIF3L TSS1500 shore chr22:38245341-38245681 -1.41E+14 5.30E-05 

cg24578493 EIF3L TSS1500 shore chr22:38245341-38245681 -1.87E+14 1.69E-07 

cg01359822 ETS2 TSS1500 shore chr21:40177002-40178667 -1.77E+13 5.23E-06 

cg14748380 FAM163A 5'UTR island chr1:179711947-179713951 -1.36E+14 2.43E-05 

cg13607226 GGTA1 TSS1500 shore chr9:124261806-124262587 -1.33E+14 9.20E-04 

cg04945312 GLB1L 5'UTR shore chr2:220107844-220108348 -1.88E+14 6.18E-04 

cg10602248 GLB1L 1stExon island chr2:220107844-220108348 -2.46E+14 1.86E-08 

cg24061197 GLB1L 5'UTR shore chr2:220107844-220108348 -2.46E+14 7.38E-05 

cg24076236 ICE2 TSS1500 shore chr15:60771068-60771558 -2.10E+14 2.33E-04 

cg07520074 KCTD11 TSS1500 shore chr17:7253298-7253764 -2.76E+14 1.84E-04 

cg03185704 LRRC61 TSS200 island chr7:150019950-150020752 -2.51E+14 2.99E-05 

cg06099315 MIR8078 TSS200 island chr18:112309-112529 -1.29E+14 3.20E-04 
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cg21537187 MTPN TSS1500 shore chr7:135661841-135662272 -3.16E+14 3.55E-07 

cg19968001 NFKBIB 5'UTR shore chr19:39390033-39390895 -2.83E+14 1.11E-06 

cg27514038 NIPA2 TSS1500 shore chr15:23033933-23034710 -1.69E+14 3.58E-04 

cg07889765 NOC3L TSS1500 shore chr10:96122540-96122904 -2.14E+14 4.17E-05 

cg08923894 NOC3L TSS1500 shore chr10:96122540-96122904 -2.68E+14 5.70E-04 

cg15157241 PKNOX1 5'UTR shore chr21:44394084-44395850 -1.23E+14 3.66E-04 

cg02802029 PLOD2 TSS1500 shore chr3:145878430-145879287 -1.85E+14 1.75E-04 

cg17330251 PON1 TSS200 island chr7:94953769-94953971 -2.79E+14 1.76E-04 

cg07107916 PPP2R5A TSS1500 shore chr1:212457967-212459694 -1.96E+14 1.28E-07 

cg13824270 PRPF4B TSS1500 shore chr6:4021444-4022004 -4.37E+14 7.00E-04 

cg09293560 REPIN1 TSS200 shore chr7:150068756-150070051 -1.59E+14 4.25E-09 

cg19336497 RRAS2 TSS1500 shore chr11:14379808-14380737 -1.59E+14 5.96E-04 

cg15356281 SEPT2 5'UTR shore chr2:242254299-242256026 -1.24E+13 6.58E-04 

cg08602346 TUBGCP3 TSS1500 shore chr13:113241711-113241925 -1.32E+14 1.51E-04 

cg14853367 ZNF329 TSS1500 shore chr19:58661737-58662287 -1.71E+14 1.56E-04 

cg21464363 ZSWIM4 TSS1500 shore chr19:13905810-13906649 -2.48E+14 5.31E-05 

 

 

In the regression model for the DRCalux, the contribute of the biomarker to explain the 

change in methylation is significant for probes showed in table 34. The focus is on those 

located on promoter regions, linked to CpG islands and shores. 

The only two probes with significant hypomethylation DR Calux-linked, are cg00321850 

and cg00523161, with no particular documented links with dioxin compounds exposure. 

However, because its role in fatty acids metabolism, LP1N1 gene could potentially be 

related to the biological processes involved, given the lipophilic nature of the dioxins. 

 

Table 34. Top significant probes in robust linear regression model for DRCalux. Calux.Estimate > 0 means 

that with the increase of the measured biomarker, there is an increase in the methylation for the probe observed. 

Calux.Pr expresses the statistical significance ≤ 0.05. 

CpG gene feature cgi UCSC_Islands_Name calux.Estimate calux.Pr 

cg00321850 KIAA0040 TSS200 shore chr1:175161900-175162364 -2.88E+14 0.0012 

cg00523161 LPIN1 5'UTR shore chr2:11886249-11887207 -2.84E+14 0.0046 
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In the regression model for the ERαCalux, the contribute of the biomarker to explain the 

change in methylation is significant for probes showed in table 35. The focus is on those 

located on promoter regions, linked to CpG islands and shores. Genes with ErαCalux 

related hypermethylation are: 

• C21orf56 (SPATC1L), associated with Protein Kinase A regulatory subunit and 

male infertility (Kim et al., 2018); 

• PLSCR2, with its role in blood coagulation and apoptosis; 

• RUNX1, leukemia linked gene. 

Among hypomethylated:  

• DDX4 which encodes for a DEAD box protein, involved in embryogenesis, 

spermatogenesis, cellular growth and division;  

• ZNF714 which plays a role in transcriptional regulation of zinc finger proteins. 

 

Table 35. Top significant probes in robust linear regression model for ERαCalux. Calux.Estimate > 0 means 

that with the increase of the measured biomarker, there is an increase in the methylation for the probe observed. 

Calux.Pr expresses the statistical significance ≤ 0.05. 

CpG gene feature cgi UCSC_Islands_Name calux.Estimate calux.Pr 

cg07747299 C21orf56 5'UTR shore chr21:47602431-47602740 7.06E+14 0.018 

cg12016809 C21orf56 5'UTR shore chr21:47602431-47602740 6.60E+14 0.024 

cg22355889 ELMOD1 TSS1500 shore chr11:107461743-107462648 1.65E+14 0.041 

cg24005645 PLSCR2 TSS200 island chr3:146187108-146187710 5.89E+14 0.038 

cg14937633 RUNX1 1stExon island chr21:36258952-36259472 5.17E+14 0.022 

cg20418711 RUNX1 1stExon island chr21:36258952-36259472 4.85E+14 0.027 

cg17729891 SNAR-F TSS1500 island chr19:51107425-51107742 2.40E+14 0.041 

cg09352518 ZNF714 5'UTR island chr19:21265164-21265433 -1.05E+14 0.011 

cg05202629 C17orf97 TSS1500 shore chr17:259754-260306 -5.42E+14 0.016 

cg27560391 DDX24 5'UTR shore chr14:94547001-94547665 -8.89E+14 4.09E-06 

cg06238316 ZNF714 5'UTR island chr19:21265164-21265433 -7.17E+14 0.034 

 

In the regression model for the PAHCalux, the contribute of the biomarker to explain the 

change in methylation is significant for probes showed in table 36. The focus is on those 

located on promoter regions, linked to CpG islands and shores. Genes with PAHCalux 

related hypermethylation are: 

• AURKC, encoding for a member of Aurora subfamily of serine/threonine protein 

kinase. It is overexpressed in several cancer lines, suggesting a role in oncogenic 

signal transduction; 

• GPR88 with its role in cognitive disorders; 

• PF4 with its role in platelet aggregation; 
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• RNF213 involved in wnt signaling; 

• UHMK1 encoding a serine/threonine protein kinase that promotes cell cycle 

progression through G1, by phosphorylation of the cyclin-dependent kinase 

inhibitor 1B. The encoded protein has also a role in the adult nervous system. 

Among hypomethylated: 

• CDKN1A, regulator of cell cycle progression at G1 (expression of gene 

controlled by p53) and DNA damage; 

• HOX4, with its role in gene expression, morphogenesis and differentiation, for 

instance during embryonic development; 

• MIR886, pre-miRNA, direct inhibitor of protein kinase R, plays an important 

role in regulation of cell growth. It is repressed in some cancers. 

• TACSTD2, encoding a carcinoma-associated antigen, a cell receptor that 

transduces calcium signals. 

• TEKT4, which contributes to sperm motility, being a structural component of 

the sperm flagellum. 
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Table 36. Top significant probes in robust linear regression model for PAHCalux. Calux.Estimate > 0 means 

that with the increase of the measured biomarker, there is an increase in the methylation for the probe observed. 

Calux.Pr expresses the statistical significance ≤ 1.0-5. 

CpG gene feature cgi UCSC_Islands_Name calux.Estimate calux.Pr. 

cg04450003 AQP5 1stExon island chr12:50354839-50356163 3.23E+08 2.00E-10 

cg18315870 ATG101 TSS1500 shore chr12:52463348-52464202 4.74E+08 5.88E-06 

cg07314988 ATHL1 5'UTR island chr11:289771-290010 7.57E+08 2.58E-07 

cg14370847 AURKC TSS200 island chr19:57741955-57742457 4.25E+08 3.17E-06 

cg02349264 CARHSP1 5'UTR shore chr16:8962189-8963190 2.83E+08 4.03E-07 

cg03651525 CCDC25 TSS1500 shore chr8:27629753-27630234 4.18E+08 6.08E-06 

cg07187855 DDR1 5'UTR shore chr6:30852102-30852676 3.25E+08 1.65E-05 

cg05185784 DEF8 5'UTR island chr16:90015551-90016120 2.67E+08 4.33E-05 

cg27638615 FZD7 1stExon shore chr2:202897386-202901046 5.92E+08 5.27E-11 

cg06223162 GPR88 TSS200 shore chr1:101004471-101005885 1.04E+09 1.13E-09 

cg07412545 GPR88 1stExon shore chr1:101004471-101005885 1.03E+09 1.23E-12 

cg09408571 GPR88 TSS200 shore chr1:101004471-101005885 8.07E+08 1.29E-08 

cg19978674 HOPX 5'UTR shore chr4:57521621-57522703 6.65E+08 8.84E-05 

cg16406611 IFITM5 TSS1500 shore chr11:299389-299635 4.70E+08 8.30E-09 

cg00944873 KIAA0319 TSS1500 shore chr6:24645931-24646591 5.13E+08 3.50E-05 

cg18049933 LOC100996579 TSS1500 shore chr2:162101439-162101650 3.54E+08 3.71E-07 

cg25755428 MRI1 TSS1500 island chr19:13875044-13875951 1.39E+09 1.06E-06 

cg08989084 P2RX2 TSS1500 shore chr12:133195922-133196556 3.75E+08 2.26E-05 

cg05509609 PF4 TSS200 island chr4:74847528-74847830 6.10E+08 1.65E-09 

cg06834998 PF4 TSS200 island chr4:74847528-74847830 5.51E+08 4.95E-10 

cg02530824 PF4 TSS200 island chr4:74847528-74847830 5.12E+08 2.65E-08 

cg16072462 PF4 TSS200 island chr4:74847528-74847830 4.67E+08 5.90E-09 

cg15398841 PF4 TSS200 island chr4:74847528-74847830 4.57E+08 4.96E-09 

cg21043213 PF4 1stExon island chr4:74847528-74847830 4.11E+08 1.92E-08 

cg11649415 PTPRS 5'UTR shore chr19:5335044-5335261 4.53E+08 2.03E-06 

cg08742290 RNASET2 TSS1500 shore chr6:167369439-167370588 4.42E+08 2.31E-07 

cg06665890 RNF213 TSS1500 shore chr17:78233888-78235283 4.69E+08 5.92E-06 

cg01147067 RNF213 TSS1500 shore chr17:78233888-78235283 4.48E+08 4.16E-07 

cg22198044 SH3BP2 TSS1500 island chr4:2819499-2820429 2.48E+07 7.25E-07 

cg26390081 TMEM204 5'UTR shore chr16:1583809-1584641 3.97E+08 1.49E-07 

cg27594616 TMEM204 5'UTR shore chr16:1583809-1584641 2.90E+08 8.56E-05 

cg09777637 TMEM229A TSS1500 shore chr7:123672063-123673691 3.28E+07 2.03E-09 

cg06179011 TSPAN4 TSS1500 shore chr11:842293-843396 3.11E+08 1.61E-05 

cg19814518 UHMK1 TSS1500 shore chr1:162467599-162468027 6.61E+08 1.44E-14 

cg00859178 UHMK1 TSS1500 shore chr1:162467599-162468027 5.80E+08 6.98E-14 

cg03012280 ZFYVE19 TSS1500 shore chr15:41099243-41099878 5.98E+08 3.33E-09 

cg26751094 ABCC4 TSS1500 shore chr13:95953337-95954211 -2.60E+08 4.44E-05 

cg01324343 ABCC5 5'UTR shore chr3:183735183-183736103 -5.58E+08 7.36E-08 

cg18349420 AQP11 TSS1500 shore chr11:77300360-77301391 -4.24E+07 3.44E-12 

cg06061081 AQP11 TSS1500 shore chr11:77300360-77301391 -3.70E+08 2.02E-08 

cg04518186 AQP11 TSS1500 shore chr11:77300360-77301391 -4.83E+08 1.01E-08 

cg15747436 ATHL1 TSS1500 shore chr11:289771-290010 -3.74E+08 1.67E-10 

cg08829299 ATHL1 TSS1500 shore chr11:288847-289239 -5.64E+08 5.71E-09 

cg18727742 ATHL1 TSS1500 shore chr11:288847-289239 -6.52E+08 3.98E-08 

cg04567952 C2orf69 TSS1500 shore chr2:200775746-200776548 -6.12E+08 1.41E-06 

cg15855900 CA7 TSS1500 shore chr16:66878172-66879072 -2.42E+08 6.91E-05 

cg24425727 CDKN1A TSS1500 shore chr6:36646244-36648465 -2.34E+08 8.19E-05 

cg02452435 COG1 TSS1500 shore chr17:71188407-71189458 -4.84E+08 1.55E-07 

cg02271943 COMTD1 TSS1500 shore chr10:76993892-76995953 -1.19E+09 8.54E-70 

cg27560391 DDX24 5'UTR shore chr14:94547001-94547665 -8.17E+08 9.01E-17 
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cg00481259 DECR2 TSS1500 island chr16:450834-451140 -3.88E+08 2.63E-09 

cg07973095 DECR2 TSS1500 island chr16:450834-451140 -5.33E+08 1.66E-05 

cg24578493 EIF3L TSS1500 shore chr22:38245341-38245681 -3.80E+08 1.37E-10 

cg11245928 EIF3L TSS1500 shore chr22:38245341-38245681 -4.35E+08 2.00E-11 

cg08291335 FANCG TSS1500 shore chr9:35079628-35080213 -4.81E+08 6.40E-11 

cg14785464 HLCS TSS200 island chr21:38362015-38362868 -3.25E+08 4.91E-06 

cg17457637 HOXA4 TSS1500 shore chr7:27169572-27170638 -2.99E+08 6.91E-05 

cg07317062 HOXA4 5'UTR island chr7:27169572-27170638 -3.47E+08 3.28E-05 

cg24426391 HTATIP2 TSS1500 shore chr11:20385161-20385673 -8.09E+08 1.18E-06 

cg19521832 KCNE1 TSS200 island chr21:35831697-35832365 -3.71E+08 6.49E-07 

cg04177826 KLHDC7B TSS1500 island chr22:50984972-50988141 -2.57E+08 2.20E-06 

cg15509177 LOC100101938 TSS200 island chr13:19918585-19919221 -3.05E+07 2.52E-05 

cg15469871 LOC387646 TSS200 island chr10:27541297-27541883 -3.74E+08 1.44E-05 

cg18806716 MAP3K8 TSS1500 shore chr10:30722378-30723707 -4.23E+08 5.04E-05 

cg26896946 MIR886 TSS200 island chr5:135416204-135416475 -1.07E+07 9.48E-38 

cg18797653 MIR886 TSS1500 shore chr5:135415069-135415307 -9.63E+08 7.58E-30 

cg00124993 MIR886 TSS200 island chr5:135416204-135416475 -1.15E+09 5.26E-22 

cg08745965 MIR886 TSS1500 shore chr5:135415069-135415307 -1.20E+09 3.22E-48 

cg18678645 MIR886 TSS200 island chr5:135416204-135416475 -1.30E+09 1.99E-33 

cg23605644 MOBP TSS200 shore chr3:39543771-39544223 -3.91E+08 3.06E-06 

cg03054684 MOBP 5'UTR shore chr3:39543771-39544223 -5.16E+08 1.09E-06 

cg07878407 MOBP 1stExon shore chr3:39543771-39544223 -6.31E+08 2.02E-09 

cg05633900 MOBP 1stExon shore chr3:39543771-39544223 -6.58E+08 2.13E-10 

cg14666699 MRGPRG-AS1 TSS1500 shore chr11:3239217-3239988 -2.36E+08 1.42E-05 

cg18705301 NDUFAF1 TSS1500 shore chr15:41694493-41694756 -5.54E+08 3.07E-05 

cg13348653 PCDHB3 TSS200 shore chr5:140481546-140482460 -3.68E+08 2.24E-08 

cg03780733 PCDHB7 1stExon shore chr5:140553681-140554637 -1.69E+09 7.31E-05 

cg15157241 PKNOX1 5'UTR shore chr21:44394084-44395850 -5.91E+08 6.34E-12 

cg24530147 PRR23C TSS200 island chr3:138762689-138764113 -3.42E+08 9.50E-09 

cg05895034 PRSS22 TSS1500 shore chr16:2907574-2907836 -4.19E+08 2.66E-11 

cg09745688 PRSS22 TSS1500 shore chr16:2907574-2907836 -4.67E+08 1.49E-05 

cg09309269 PSMD11 TSS1500 island chr17:30770960-30772137 -3.24E+08 4.49E-06 

cg00871487 RANBP17 TSS200 shore chr5:170288879-170289737 -5.18E+08 1.72E-07 

cg06091474 SEMA3C TSS1500 shore chr7:80548306-80548726 -3.09E+08 1.95E-07 

cg10589385 SETDB1 TSS1500 shore chr1:150898619-150898839 -2.73E+08 5.05E-05 

cg26748578 SLC1A4 1stExon island chr2:65215598-65217212 -3.65E+07 3.69E-06 

cg05845376 SLC25A2 TSS200 island chr5:140683195-140683773 -2.93E+07 3.46E-05 

cg17729891 SNAR-F TSS1500 island chr19:51107425-51107742 -8.53E+08 3.55E-06 

cg22023531 SORD TSS1500 shore chr15:45315201-45315543 -4.42E+08 1.14E-09 

cg16699148 TACSTD2 TSS200 island chr1:59042013-59043295 -3.67E+08 3.23E-06 

cg16080552 TACSTD2 TSS200 island chr1:59042013-59043295 -6.19E+08 6.32E-05 

cg04863005 TACSTD2 TSS200 island chr1:59042013-59043295 -6.40E+08 3.06E-06 

cg06282964 TEKT4 1stExon island chr2:95537196-95537810 -3.68E+07 8.82E-10 

cg05852568 TEKT4 1stExon island chr2:95537196-95537810 -4.24E+08 6.40E-09 

cg24354818 TNFRSF6B 5'UTR island chr20:62328013-62328558 -3.82E+08 6.60E-05 

cg00152799 TXNL1 TSS1500 shore chr18:54305419-54306087 -3.80E+08 2.17E-06 

cg17751872 ZNF714 5'UTR shore chr19:21265164-21265433 -4.13E+08 6.71E-05 

cg21464363 ZSWIM4 TSS1500 shore chr19:13905810-13906649 -4.33E+08 2.78E-06 

 

In the regression model for the sum of PCDD/F + DL-PCB, no significant probes on 

promoter regions and linked to CpG islands and shores were reported. 
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5. DISCUSSION 

 

Human Biomonitoring can be considered as a form of public health surveillance (Salines, 

2012). It represents an important and useful tool to investigate human exposure to 

environmental chemicals, providing a reliable measurement of the internal dose of 

pollutants, through different exposure pathways (Calafat et al., 2006). 

Its methodological approach, aimed to estimate exposure importance and extension, is 

widely used in the risk assessment for occupational health and for monitoring of general 

population. According to EU in 2013, HB can serve the chemicals surveillance by 

providing “authorities with a more comprehensive view of actual exposure of the 

population to pollutants, […] and can provide better evidence from guiding appropriate 

responses” (Ganzleben et al., 2017). 

Assessing chemicals in body tissues and fluids, HB can help to understand the toxic-kinetic 

profile of compounds and their interactions, the correlation with effects on biological 

systems and the potential health outcomes (CDC, 2005). Moreover, from an 

epidemiological point of view, it can help to define what is the total exposure to the 

substances from different sources, how does the chemical exposure evolve over time and 

among regions or population groups, and incidence and mortality rates of putative linked 

diseases. Thus, HB evidence is able to support both the advance of scientific knowledge 

and the effectiveness of policy and regulatory actions (Louro et al., 2019). 

Despite of the great potential, the conventional HB protocols often suffer the lack of data 

integration and methodological sharing between different science fields, as well as the lack 

of a holistic approach oriented to a “one health” perspective (Frazzoli et al., 2015; Falzon 

et al., 2018; Sleeman et al., 2019). 

To support a complete understanding of the phenomena, HB protocols need to integrate a 

single multilevel analysis. The environmental background characterization, the anamnestic 

and epidemiological data collection, together with the omics approach, become 

fundamental for the evaluation of the exposure risk and for depicting a framework of the 

real degree of contamination (Pierri et al., 2020). This means to set up a systemic overview, 

in which the multidimensionality and the complexity of the observations are solved by 

dividing the phenomenon in several levels of analysis that, in the final intersection, could 

provide the global reading and interpretation. 

Especially considering the Campania Region and the Land of Fire case study, the 

controversy emerging from scientific literature (Cantoni, 2016; Mazza et al., 2018) does 

not allow to obtain a clear definition of the level of pollution in the regional territory. 

For these reasons, the main purpose of the present PhD dissertation is to introduce and 

describe an innovative HB integrated approach, the basis of the SPES protocol, the 
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observational study on Campania Region healthy population promoted by the IZSM. A 

particular focus in the dissertation comes from exploring the role of epigenetic biomarkers, 

as the DNA methylation, and their integration with several levels of analysis by means 

statistical model of data elaboration. 

Starting from the paradigm of the method (which considers three main elements: the 

identification of pollution sources, of pollution migration pathways and of final target 

organisms), the Campania environmental context has been characterized, highlighting sites 

of particular interest. By means of a “Pressure Index” (IRc), the environmental background 

provides a synthetic representation of the level of pressure exerted by the contamination 

sources on the municipalities. The three increasing levels of impact derived were consistent 

with areas with the already known reputation of “triangle of death” (Triassi et al., 2015), 

expression firstly coined by Senior and Mazza on The Lancet Oncology in 2004 and 

referred to area with documented illegal disposal of urban, toxic and industrial wastes. 

Interestingly, the IRc methods showed a medium impact area, where the presence of 

industrial plants gives an important contribute to the spreading of heavy metals and 

polycyclic aromatic hydrocarbons in the ecosystem. It is well known that workers 

surveillance and study monitoring on people indwelling areas close to industrial plants 

document adverse health effects linked to the spreading of pollutants. Scientific literature 

describes a series of renowned italian sites, as well as Taranto city, with its steel foundry, 

that is one of the most famous of the Southern Italy (Vimercati et al., 2017; Lovreglio et 

al., 2018; Lucchini et al., 2019). The medium impact areas, identified with the computed 

IRc in SPES protocol, consist of some sites of particular interest, given the presence of 

industrial plants: tanneries in Solofra area, a steel foundry in the Irno Valley, metallurgic, 

iron and steel industries, asbestos disposal plant in Sabato Valley and, finally, the area 

known as “agro-nocerino-sarnese”, mainly characterized by groundwater contamination 

caused by landfill leachate and wide presence of compounds linked to the use of pesticides. 

This suggests other areas, over those included in the LOF, where industrial sources of 

contamination could represent a risk for residing people. Data acquired by HB support this 

hypothesis. The assessment of heavy metals in serum of healthy volunteers, resulting from 

SPES human biomonitoring, revealed that the average levels (µg/L) of cadmium (Cd111) 

and mercury (Hg202) were approximately 5 times higher in Irno and Sabato Valley clusters 

(Medium Impact Area), compared to the entire population assessed.  

The high impact areas, where are present municipalities belonging to the so-called “Land 

of Fire”, were only characterized by thallium (Tl205) higher values, probably due to the 

natural background levels of this compound in the soil, because of the volcanic origin of 

the region (Karbowska, 2016). 
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In line with these results, also organic compounds measurement showed a consistent 

statistical significance in medium impact area, especially for Irno and Sabato Valley 

clusters. Considering high resolution gas chromatography results, the median value of the 

sum of PCDD/PCDF + DL-PCB (pg WHO-TEQ/g lipids) showed a sensitive increase for 

Sabato Valley cluster, compared to the overall median. A slighter increase is also evident 

for Irno Valley cluster and High 12 cluster. This last includes the municipalities of Acerra, 

Villa Literno and Naples, where the presence of a waste incinerator for Acerra, a busy 

commercial road (Nola-Villa Literno provincial road - SP333), and the complex 

urbanization of Naples metropolis, could explain the higher values of the sum of dioxins 

congeners (Marques and Domingo, 2019). 

Comparable data were obtained considering the DR-Calux® bioassay, expression of stable 

ligands of Ahrilic receptor (e.g. dioxins congeners), which found a significant correlation 

between DR-Calux® median values (pgBEQ/g lipids) and Irno and Sabato Valley clusters.  

In addition, the bioassay showed an interesting evidence of total estrogenic and estrogenic-

like responses by the ER-Calux® assessment (pgEEQ/ml), with higher values detected in 

females and males from high and medium impact areas. The total estrogenic activity 

observed in females is 3 to 5-fold increase compared to the levels of the natural endogenous 

hormone 17-β-estradiol, and this could suggest the presence of compounds with possible 

endocrine activity (Endocrine disrupting chemicals EDCs).  

Morgan et al. in 2017 highlighted a link between environmental exposure to PCB138 and 

breast cancers, as well as a correlation with the sum of non-dioxin like PBCs and breast 

cancer. Calaf et al. in 2020 reviewed xenoestrogens compounds in relation to breast cancer 

incidence, showing that Bisphenol A, Dichlorodiphenyltrichloroethane (DDT) and PCBs 

are involved in alteration of cell proliferation and of cell death, are immunosuppressive 

agents and induce oxidative stress and epigenetic alterations. 

The Report AIOM-AIRTUM of 2019 (www.salute.gov.it) estimated approximately 4050 

new diagnosis of breast cancers among women in Campania Region, with an incidence rate 

of 140.5 per 100.000 residents (Friuli Venezia Giulia Region has the higher incidence rate 

at 203.9 per 100.000 people, while Calabria Region has the lower rate at 124 per 100.000 

people). Fusco et al., in 2013, already showed an increasing trend in Campania for this type 

of cancer, as well as for lung cancer and skin melanoma in women, for colorectal cancer 

and skin melanoma for men.  

Some studies reported a link between exposure to PCBs and risk of cutaneous melanoma 

(Zani et al., 2017; Boffetta et al., 2018; Cao et al., 2019).  

Lung and colorectal cancers were also reported in literature as possible adverse outcome 

linked to pollution (de Groot et al., 2012; Juloski et al., 2020).  
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Certainly, the incidence trends from literature need to be explained also considering life 

habits, prevention culture and familiar history. Indeed, these anamnestic considerations are 

possible confounding factors. 

This is the reason why in the SPES protocol the subgroup of 600 volunteers, selected for 

deepened investigation, were chosen according to inclusion criteria that allowed to avoid 

bias given by the confounding factors (see paragraph 3.1.5). 

Data obtained with exposure biomarkers investigation are supported by the deep analysis 

of effect biomarkers. Considering the epigenetic profile resulted from methylation array 

data analysis, it is important to underline that the KEGG pathway analysis on the DMPs 

revealed, in medium impact areas vs low impact areas, an interesting enrichment for 

estrogenic signaling and thyroid hormone pathways, as well as for the endocrine resistance 

one. These results are consistent with the higher levels of organic compounds detected in 

the high and medium clusters. 

The same KEGG pathway analysis has shown for high and medium impact areas vs low 

one, the enrichment of gene-set involved in metabolic and cancer pathways, transduction 

signaling and inflammation, as well as breast cancer, gastric cancer, small and non-small 

lung cancer, melanoma, cell cycle and p53 signaling.  

The KEGG pathway analysis performed on the DMRs also revealed the enrichment of 

“neuroactive ligand receptor interaction”, supported by biological processes terms enriched 

in the gene ontology analysis, “nervous system development”, and by the KEGG 

neurodegenerative disorders pathways reported for DMPs in high and medium vs low 

impact area comparison. 

As a matter of fact, there are a lot of scientific evidences that pre- and post-natal exposures 

to environmental factors could predispose to the onset of neurodegenerative diseases in 

later life (e.g. Alzheimer and Parkinson diseases). According to Chin-Chan et al., 

neurotoxic metals such as lead, mercury, aluminum, cadmium and arsenic, as well as some 

pesticides have involved in Alzheimer etiology, due to their ability to increase the 

formation of beta amyloids plaques. The exposure to lead, manganese, solvents and some 

pesticides has related to Parkinson disease. Epigenetic alteration is one of the involved 

mechanisms (Chin-Chan et al., 2015). 

The use of epigenetics as a key to understand the molecular mechanism subtended to 

toxicity, gives the chance of characterize the biological response to environmental stressors 

and identify possible molecular biomarkers or patterns of exposure (Vineis et al., 2013). 

From the epigenetic analysis, carried out for the purposes of the present dissertation, 

emerges a global hypomethylation in the high impact areas and in the medium one 

compared to the low impact areas. This is consistent with the exposure to several toxic 

compounds as benzene (Bollati et al., 2007), POPs persistent Organic Pollutants (Rusiecki 
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et al., 2008), Particular Matters (Baccarelli et al., 2009; Plusquin et al., 2017), Endocrine 

Disruptors (La Rocca et al., 2014) and, at the same time, with genomic instability and a 

series of chronic and degenerative conditions (Van Togelen et al., 2017; Zang et al., 2020). 

Additionally, the regression analysis performed to highlight possible correlations between 

DNA methylation levels and exposure biomarkers, revealed some promoter regions, linked 

to CpG island and shore, where hypermethylated sites could be involved in a transcriptional 

repression mechanisms, and could contribute to generate the final response of the biological 

system to the external stressors. Similarly, hypomethylated sites could contribute to 

generate a reaction to the external input.  

As reported in the Results chapter, heavy metals included in the robust linear regression 

models (Hg, As, Cd and Tl) showed a significant link with genes involved in cell cycle 

regulation, carcinogenesis, neuronal development and this is consistent with the known 

possible effect of some of them (WHO, 2015).  

Among them, an interesting correlation emerged between arsenic and PIWIL1 gene, which 

plays a role in gene silencing by RNA; as previously described the PIWIL1-piRNA 

pathway is involved in modulation of key oncogenes and tumor suppressors (Amaar and 

Reeves, 2020), and, as documented by Sellitto et al. in 2019, in colorectal cancer cells 

contributes to the clinic-pathological features of the disease. Noteworthy, as previously 

described (see paragraph 4.4.3), these results report a total arsenic estimation that need to 

be careful interpreted because of the presence of non-toxic organic arsenic for the food 

intake, which could hide the association between the toxic inorganic arsenic species. 

Indeed, over the purposes of the present dissertation, the SPES protocol have considered 

the speciation of Arsenic in the biological samples (urine) collected in the study. 

Regarding arsenic and thallium, both the two metals show a correlation with the gene 

PON1: arsenic-related hypomethylation and thallium-related hypermethylation of its 

promoter region. This gene encodes for the enzyme able to bind the paraoxon, a metabolite 

of Parathion, a toxic organophosphorus pesticide. Marhooz et al. in 2019 described PON1 

as a fundamental antiatherogenic and antioxidant enzyme in the circulation that has been 

associated with adverse health outcomes, particularly cardiovascular disease. It is also been 

analyzed by Cardenas et al., in 2017, in order to assess an association with the maternal 

prenatal mercury exposure in cord blood samples. According to their findings, DNA 

methylation at the PON1 locus could regulate the association between prenatal mercury 

exposure, cognitive development and other health outcomes in children. The researchers 

expressed that the persistent epigenetic disruption of the PON1 gene might serve as a 

biomarker of mercury exposure and disease susceptibility. Moreover, the PON1 activity 

shows a polymorphic distribution in patients with Alzheimer's disease (Saeidi et al., 2017), 

with different frequencies in group of people exposed or not to organophosphate pesticides 
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(Javeres et al., 2020). This could suggest the methylation and the expression of PON1 gene 

as a biomarker of effect in response to heavy metals exposure, and as an early sentinel of 

health consequences, given its involvement in multiple biological processes. 

Finally, the organic compounds included in the robust linear regression models (DR Calux, 

ER Calux, PAH Calux) showed a significant link with genes involved in fertility, 

embryogenesis, sperm motility, but also oncogenic signal transduction (AURCK), cell 

cycle progression (UHMK1 and CDKN1A) and cognitive disorders (GPR88). 

These results are consistent with the possible action of the compounds as endocrine 

disruptors (Schug et al., 2011). 

In view of these, the multilevel analysis carried out by means of a holistic approach, from 

the environmental background characterization, through human biomonitoring assessment, 

to epidemiological considerations, has been able to depict a frame of the regional state of 

contamination. The spatial and geographical reference given to pollutants allows to identify 

a new area of interest where compounds associated to industrial plants and the presence of 

a particular orography of the valleys, could represents a risk for residing people.  

The hypothesis is supported by HB data and by an early epidemiological evaluation of 

incidence rates of diseases potentially related with.  

Notwithstanding the preliminary results encourage the theory, the integration of the 

observational SPES dataset with in vitro validation of the effects of compounds, as well as 

a comparative meta-analysis with other HB or omics datasets, could be useful to 

consolidate and support the evidence, avoiding false positive correlations, potentially 

generating from multiple comparisons. 

Furthermore, a potential contribute could come from integrative bio-statistics models of 

data elaboration, considering mixture of elements and their cumulative effects, together 

with other biomarkers of effects assessed and not object of the present dissertation. Indeed, 

as previously described (see paragraph 3.1.5), a set of other effect biomarkers are object of 

further investigations in the SPES protocol: inflammatory cytokines and redox status aimed 

to explore early evidence of phlogosis and immunity involvement, telomeric length and 

polymorphisms in order to observe genetic consequences of exposure and individual 

susceptibility, miRNA to deepen epigenetic alterations, gene expression profiling to 

identify transcriptomic variations in response to environmental exposure.  

Model of big data analysis could be the right choice to implement the multiparametric 

evaluation, and the integrative approach could provide a fully detailed insight into the 

biological meaning of exposure to several compounds. Novel biomarkers of diagnostic, 

prognostic, predictive and therapeutic interest could be found out from this multi-level 

analysis. 
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5.1 Applications and future perspectives 

Considering the long-term purpose of the study, all data collected with the SPES protocol 

and its integrated approach represent an important contribute to define a full and dynamic 

map of the environmental pollution of the Campania Region. This could constitute a 

scientific support for public health policy and for decision making, giving to the model the 

chance to be translated in different contexts and for various applications. 

Indeed, susceptible cohorts of people, or people residing in critical areas, involved in 

environmental emergencies for spreading of pollutants, or for the presence of a known 

source of contamination, could be investigated through this innovative approach.  

The systemic overview, from environmental matrices, through biomonitoring and 

molecular insight, to epidemiology, could be used to characterize the context and acquire 

the real level of pressure exerted by pollutants in that area or on that population. 

From a mere scientific and research point of view, the “one health” perspective, intrinsic 

in the novel human biomonitoring model, reveals the ability of the methodological 

approach in integrate different science fields, in order to gain an inter-disciplinary reading 

and interpretation of phenomena observed. 
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