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Introduction

Many books and/or papers have been published on linear generalizations of
Fourier’'s equation in order to introduce relaxataombhonlocaéffects for the
heat flux [1-9]Describing a heat-pulse propagation with a finite speed [10-15],
in agreement with experimenbslervationsuch works are ehuch conceptual
interest both because they may be applied to small systems (the characteristic size
of which is comparable to the mean-free patheoheat carriers) [16-28]to
fast processes (as for instance response to short laser pulsean@ #e2alse
they have stimulated generalized formulations of non-equilibrium thermodynamics,
with generalized expressionhefentropy and ahe entropy flux incorporating
heat-flux contributions [1-4, 7, 22, 29, 30].

The linear generalizations of Fourier’'s equation should be only employed to ana-
lyze the propagation of small-amplitude Waeesthe amplitude of temperature
waves (or of heat-flux waves) is not negligible, in fact, nonlinear effects cannot be ne
glectedthis is the case, for example, when short and intense laser pulses are applied
to heat a given materidierefore, there is much interest in generalizing the linear
theory of heat waves which has been, up to now, a fruitful stimulus to generalization
of non-equilibrium thermodynamics [41,-9,11,12,14,29,31-34to nonlinear
situationspamelyfor waves with sufficiently high amplitude2q,135-39]in-
deed, there are many possible nonlinear generalizations and, from a thermodynamic
point of viewit is of special interest selecting the forms which fit in a most direct
way with the requirements of the second law of thermodynamics.

The present thesis aims at being a contribution to the studyeat waves
when nonlinear and/or nonlogaheralizations of the Maxwell-Cattaneo equation
in the context of extended thermodynamics [1, 4, 7, 35, 40] araNVhiecshsced.
nonlocal effects in heat transport have led to fruitful analogies with hydrodynamics,
especially in the so-called phonon hydrodynamitise present thesis we also
show how some particular nonlinear effects lead to fruitful analogies with nonlinear
optics. We think that these analogieheét transport with hydrodynamics and



with optics are a nice illustration fe deep unity ophysicswhere results in

some field may also be helpful to other fields, provided that the connection between
both fields is foun@he present thesis is a contribution in that direction, and the
results contained in it may be of interest to current researches aiming to find new
ways of control and applications of the heat flux, which is the main goal of the so-
called phononics [25, 2d particular, the interaction of intense laser pulses with
heat-conducting solids has motivated nonlinear phonogig2B4equiring a
combination of nonlinear optics and nonlinear heat transport.

The plan of this thesis is the following.

In Chapter 1 we recall the basic mathematical definitions and concepts which will
be employed in this thessd briefly summarize the theoretimimodynamic
background.

In Chapter 2 a theoretical model to describe heat transport in functionally graded
nanomaterials is developed in the framewaktehded thermodynamitsie
heat-transport equation used in the proposed theoretiekld of the Maxwell-

Cattaneo type.We study the propagation a€celeration waves in functionally
graded material$n the speciatase ofunctionally graded,SiGe. thin layers,

we point out the influence of the composition gradient on the propagation of heat
pulsesA possible use of heat pulses as exploring tool to infer the inner composition
of functionally graded materials is suggested.

In Chapter 3 we analyze the role played by nondomchbenuinely nonlinear
effects in the wave propagafiiba.study is performed both in the case of a rigid
body (i.e., for heat pulse propagation), and in the case of a non-rigid body (i.e., for
thermoelastic pulse propagatiorthe framework of Extended Irreversible Ther-
modynamics the compatibility of our theoretical model with second law is proved.

In Chapter 4, starting from a nonlinear generalization of the Maxwell-Cattaneo
equation (derived in a conservation-dissipation formalism in the franeawork of
tended thermodynamies),analogy with the theory of nonlinear electromagnetic
waves is pointed oltiis analogy emphasizes several physical aspects of the nonlin-
ear theory and allows a parallelism with nonlinear optics, which may be of interest
in nonlinear phononic3he proposed nonlinear equation for heat waves is used
to analyze how the amplitudenohlinear heat wave may influence the speed of
propagation.

In Chapter 5 we finally study the influence of nonlocal and nonlinear effects on
the heat-wave propagation when a two-temperature model, which allows to describe
the different regimes which electrons and phonons can undergo in the heat-transfer



phenomenon, is used.
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Chapter 1

Mathematical and Physical
foundations

1.1 The mathematical tools

This abstract mathematical part will allow giving more generality and depth to
the analysis of the physical equations we will later inthodeegmuch of the
work in the field of transport theory is very phenomenological, dealing with relatively
simple mathematical conditidhi is good for a fast examination of the physical
consistency dhe proposed equations in some simple situations (plane waves in
infinite media, for instance), but it is insufficient to give a general powerful setting
allowing the analysis of more complicated kinds of waves and in a wider variety of
geometricalituations.This will be necessarfor instanceif one tries to study
all the consequencesmainlinear equations leadifay, instanceto self-focusing
of wavesyhich makes them depart from an inptéale waveSince my original
graduation is in mathematics, | will try here contributing to the more mathematical
aspects of the theory, when possible, in order to complement and enrich the usually
narrower range of application of the physical theories.

1.1.1 Reciprocal basis
Let V be the vector space associated to the Euclidean three-dinspasi®nal
E3. Any set {e1, e, e} Of three independent vectors (which are not necessarily

orthogonal, nor of unit length) is called basis of V if the generic element a of V can
be expressed as
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with & being the contravariant componengs Fhe set {e, &, &}, insteadjs
called reciprocal (or dual ) basis of V if

. .Jl ifi=
e ¢=d=, if i 6= ]

With respect to {e &, &}, one instead has
a= aé

whereinaare the covariant components of a.

1.1.2 Surfaces

Let S be a regular surface dhe Euclidean three-dimensisgace £ and
x" (v, V) a local parametrization of S, with\&) € D < R2.

12

i s i

The regularity hypothesis implies that the scalar functiengx(v', ?) €

]
C!(R?) with i = 1, 2, 3and the rank of their Jacobian mat%\% is equako 2.
Furthermore, the relations

_0x
re=57% a=12 (1.2)

define two vectors which are tangent to the coordinate curiéesa \&ctors
are also linearly independent at all points of S since previous hypotheses imply that

nxXr 6=o0 (1.3)

n= =
r1x r2|

As a consequengfe set {r, r, n} represents a basis for the tangent space of
S.

Definition 1.1.1he inner product of the tangent vectors defines
O i=m - B (1.4)

the metric tensor or first fundamentalform.
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Note that Eq. (1.4) shows thatg is a covariant second-order tensor,it
also let us go from contravariant to covariant components of a vector or a tensor.

Indeed, by defining the dual ba§isrz{)', for every tangent vector w Trawone
gets

Wirq = War®

with vy = ggw? and W = P w;, where & is the inverse afzg

The Gauss-Weingarten equations
According with the aforementioned observatiomslerivatives dhe basis
vectors {r, r, n} with respect td an be expressed as
ra, = Mogry + Bgn (1.5a)
n, = Abry + Bsn (1.5b)
wherein {5, by, A, Bp, with y € {1, 2}, are suitable coefficients [41nd2éd,
since from Eq. (1.3) one has n- n = 1, then it is easy to obtain
n,-n=0 = Bg=0
so that Eq(1.5b) reduces at
n; = Agry (1.6)

Similarlypy differentiating both side of the relatiom & Orwith respect té'v
one has

n; m+n-r, =0

fora = 1, 2, which, by means of Eg$a) and (1.6), yields

O0=Ar  -w+n-Tgr+hsn =A0a + kg == A0 =-beg  (1.73)
Aggyagao = b == Aé@ = —bep g’ == AJ = b (1.7b)

By inserting the coupling of E¢k.6) and (1.7) in Eq$1.5) one may finally
reach the so-called Gauss-Weingarten equations:
j ra, = rggry + QrBI‘I
y (1.8)
l ng = _bgl'y
The second-order tensgrib called the second fundamerftain; instead, the
quantity [,“B denotes the Christoffeymbols of the second kind.
The Christoffel symbols ofthe first kind are the corresponding values with a
covariant first index:
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Fyag = g/5rg[3 == rg{ﬁ = ¢°Tsap
They only depend on the derivatives of the first fundamentalféatyone
can prove that 1
Cyap = 5> Ya, t9p. " Jas, (1.9)
Note that the Christoffel symbols of the second kind are symmetric with respect

to the lower indicethen the Christoffelymbols othe first kind are symmetric
with respect to the second and the third index.

Remark 1. The Christoffel symbols are not tensors.

1.1.3 Singular surfaces

Let R be an open regiong.,an open connected skét S be a surface that
divides R into two regions Rand R*. For simplicitywe can suppose that S is
limited in R.

Figure 1.1A singular surface

Let ¢ be a scalar function defined over R which is continuous in the interior of R
and R and let - and ¢4+ be the restrictions of ¢ overaRd R" respectively.
Suppose that ¢ approaches finite limit vatuasadiyf as x approaches a point
Xo on S while remaining within @nd R" respectively:

Y (xo) = lim yr- (x) (1.10a)
Y (xo) = lim Y+ () (1.10b)

Definition 1.2.The jump of the function ¢ across S is denoted by

[Wl=g¢ -y~ (1.11)
Definition 1.3Jf [@] 6= 0, the surface S is said to be singular with respect to y.

Lemma 1.1.17he jump across S of a product of functions a and B is

[ap] = d" [B] + B [a] + [a] [B] (1.12)
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If ¢ is continuously differentiable in the interior, ahg y is differentiable

on the smooth curvesxx (s) upon S, then

d ax’

d_s4,+ =yt o (1.13)
once ¢ and yapproach, respectively, the finite Ifn@tslyf as S is approached
upon paths interior to R In other wordsthe theorem dfe totaldifferential
holds for the limiting values as S is approached from one siNetertlyat the
function ¢ doesn’t need to be defined upon the other sidieibfsSand if the
corresponding limiting valuesnd ¢ exist and have the required smoothness, a
similar result holds for them:

d _ _dx
d_sw =y s (1.14)
By coupling Eq9.1.13) and (1.14) one get
d _d - d + _ dX,'_ + dX,'_ dX,'
Es[w] —Esw Esw =y, ds Y as [LAI']E (1.15)

where [¢] = ¢ — ¢+ means the jump of the gradient Gihg.can also calculate
the derivatives of [¢] with respect to the coordinate Systeas(u

0 ox!

pa Wl =55 =l (1.16)

[y], =

where ¢ means the i-th component of the vector r

Geometric conditions of compatibility

Lemma 1.1.2Let {ey, ..., e} be a basis of a vectorialspace and let {8, ..., &} be
the dual basis. Then

¢ (&) =4 (1.17)

From Eq. (1.17) one directly Bas &rl, + nn'. Since [yl =& ¢, , then it
follows
[wl=rirh+nd w, =rrh y, +nn y, (1.18)

which firstly leads to,l¢= # [@] + n ny, , and finally to
[y,1 =7 [y] + Bn (1.19)

where B = n/y, is the jump ofthe normatomponent dhe gradientEqua-
tion (1.19) is the geometric condition oEompatibility of first order (i.e.,on the
first-order derivatives).



1.1 The mathematical tools 6

Theorem 1.1.3Maxwell Theorem
In the particular case in which @ has an equal jump in all points, i.e., [@] is constant

over S, then [@] = 0. In this case, the geometric condition becomes
[¥,]1 =Bn, (1.20)
The jump of the gradient is longitudinal, because it has the same direction gf n

Let now ¢ be a vector field defined ovea®] let the jump of the field (i.e.,
the jump of the componentbe constant over a surfaceh&.Maxwell theorem
1.1.3 leads to

Cx. = Byn; (1.21)

I

where B= ¢, n’ . Then it is possible to evaluate the jump of the divergence since
& C, =&Bkni= &, =Bik=[V-¢]=B-n (1.22)
and the jump of the curl operator since
jk C; = jikBikni= jkC,;, = jkNiBk=>[Vxe]l=nxB (1.23)

Since every vector can be written in a longitudinal component and a transversal
one, i.e., since
B=Bk+BL=(n-B)n—n><(n><B)
then the use of Eqd.22) and (1.23) yields the following result

B=[V -cln-nx[Vxc¢c] (1.24)

which is well-known as the first Weingarten theorem.
The geometric condition of compatibility (1.19) can be indeed also applied to ¢
in order to have

g, =, i+ g,n*n (1.25)

If we suppose thaty, is constantwe gety, = ¢, n* n; and,similarly,

W, = Y,n* n;. Inthis last equation, we can multiply tirnkstih sides and
get

@, n'= g,nn" n (1.26)

which in its turn yields

. . ‘i
g, = @, n" ni= Y,nn" n ni= Y,nn njn; (1.27)
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in order to obtain the geometric condition of compatibility of the second order (i.e.
on the second-order derivatives)

L,U,,-j = Cn,-n,— (128)

where C = B and
Bi= g, n (1.29)

In general, the condition for the derivative of order p, supposing that the deriva-

tive of order (p — 1) has a constant jump, can be written as
h i

Uiinoiy = Z(p)nilniz...n,-p (1.30)
wherein h i
ZP) = wjlj_zml_pnflnfz...ﬂp (1.31)
Normal Velocity
Consider a family of surfaces given by
X=X (v, t) (1.32)

namely, the placeoccupied by the surface poihttyas the time t progresses.
The motion of a point on the surface is described by thé velocity

d = gx (1.33)

Since it depends on the choicetbé surface coordinate systéhis surface
velocity is not intrinsic to the moving surfateed, suppose that£é& (z, 1) is
another parametric representation of the same surface and suppose that the relatior

V. =V (z, t) holds Vj, which is tantamount to assume that
X(vi(zt), 1) =4z 1) (1.34)

Deriving Eq(1.34) with respect to time one firstly has

) ox! .
G[X' + awatva = atél (135)
and finally
¢ +avr, = (1.36)

lWe recall that,ddenotes the derivative with respect to time.
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V' being the velocity with respect to the new parametric repre3éetéstoer:
equation shows thain generaltwo distinct parametric representations lead to
different velocities at the same @yimhultiplying both sides of En36) times
the unit normal vector, one gets

dn,- = \/ni =U (137)

with U being the normagpeed.In this waythe normalvelocity U; of the surface
can be defined as
U,' = Un, (138)

1.1.4 Displacement derivative

Definition 1.4. A coordinate system for which the velocity is normal to the surface
in all points, i.e.! & U, Vi€ {1, 2, 3}, is called a convective coordinate system.

Definition 1.5Given a moving surface S in an open region R and given a scalar
function g (x, t) defined over H)e displacementierivative with respect to the
moving surface is

SY _ . (x+ UALL+ AL - (x, 1)
5~ Am At (1.39)

where x + UAt is the point occupied by x at the time t + At when it is moving
along the normal vector.

Figure 1.2Motion of a singular surface

If the following expansion of ¢ is considered [43-45]

W (x + UAL t + A = ¢ (x, t) WAL + 0 pAt + o (At) (1.40)
then displacement derivative (1.39) becomes

Y = o + iy, (1.41)
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which is also called time derivative athe wave. Similarly the definition ofthe

displacement derivative at the wave can be also given for a field ¢ (v, t) defined on
the surface S as

99 _ iy P(V+AV, t+ Al)-¢ (v, 1)
a3 ~ A At (1.42)
If the following expansion of ¢ is considered [43-45]
d
¢ (v+Av, t+ At)=¢ (v, ) %Ava + a¢At + o (A1) (1.43)

then Eq. (1.42) becomes

5 _0p . A

o —ave a4l oar T (1.44)

The velocity’and the normal velocitydan be written in terms of the basis

{r1, r, n}, namely

¢ =un +¢ri,
U =un
respectively.
X -+ cAt
x +UAt
X

Figure 1.31n the time laps At the displacement is €At with respect to a generic
parametric representatigiys displacement is UAt with respect to a convective
representation.

It means that the vectdr¥ UAt - (x ' + ¢At) = (U’ - ¢') At (see Fig.1.3)
has not normal component since

U -c =-cr (1.45)
Then we can compute

(U'=c') At = —cOrl At = (—cOAt) r!,
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By substituting &= —c“At in Eq. (1.44), one gets

% _ .«
¥ =ap-c9, (1.46)
Remark 2. Choosing a convective coordinate systaargets AV = 0 and then

the displacement derivative and the derivative with respect to time coincide.

1.1.5 Kinematic Condition of Compatibility

A surface in cartesian coordinates ¢ (x, t) = 0 can be described as a 3-variety
embedded in*RSince x = x (v, t), then

@ (x (v, t),t) =0Vv, Vt (1.47)

Then, differentiating both sides of EE47) with respect to time one may have
(@, 0p)- ¢, 1 =¢c+ap=0 (1.48)

Referring to the inner producitpand reminding that the gradientigor-
thogonal to the surface, one gets

o,c =q@U (1.49)

namelythe vector (/1) is orthogonab the gradient (¢d ). For this reason,
we can apply Eq(1.13) (also known as the Hadamard lemma) to a curve whose
tangent vector is’(1) and get, for a given function y,

sy

5t (1.50)

d+_ + i + —
Y=yl un' +ayt =

once the definition of the displacement derivative (i.e., Eq. (174hasfbegn
used.Similarly, i
Sy=y; unray =2 (1.51)

The coupling of Egs. (1.50) and (1.51) leads to the following kinematic condition
of compatibility 5
5wl =l +[gluh (1.52)

also known as Hadamard (H-) relatioNlhen the jump of ¢ is constant, Eq. (1.52)
turns out
[oy] = -UB (1.53)

wherein B =n/y, .
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General Kinematic Compatibility Relation

The H-relation applied to the space derivative of the function ¢ turns out
o) :
5lwl=1la ]+ unh g, (1.54)

and it reduces to
[y, 1=-ur y, (1.55)

when the jump of the first order derivatives is cohstidms.caseby using the
geometric condition of the second order (i.e., Eq. (1.28)), from Eq. (1.55) one may
have

[&y,]1 =-Unnin;C =-UCn; (1.56)

The H-relation applied to the time derivative of the function ¢ turns out, instead,
b} .
50wl = 0fy +Un oy, (1.57)

When Eq.(1.56) is used in EQ..57), in the case of a constant jump of the first
order derivatives, one gets

atzl’u — _Unj at(,U,,- — _Unj (_UnJC) = U2C (158)

In general, the kinematic condition for the derivatives of order p + g (the order
p being with respect to space and order g being with respect to time, by supposing

that the derivative of the previous order has constant jump) is
h i
aﬁ(,U,,.lm,p = (—U)qZ(p+q)n,1n,2...n,
h i
where % = n'in"2..ny, .

(1.59)

p

At the end of this sectiomge recald usefulemma [46hvolving the jump of
the derivatives of the second order in a general easen(itke jump of the first
order derivatives is not constant).

Lemma 1.1.4Let Y be a function, the derivatives of which suffer discontinuities
across an acceleration wave S moving into equilibriumThen

Byl =n%-u 'y, (1.60a)
ofY = 2028 4 n'ny, (1.60b)

ot
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1.1.6 Acceleration waves

In the preceding sections we have obtained the conditions of compatibility for a
moving surface singular with respect to some fireRe{s[44] all quantities as-

sociated with a motion are regarded as functions{isxegds to the following
definition:

Definition 1.6. The order of a singular surface with respect to ¢ is the order of the
derivative/@;,. i, of lowest order p + g suffering a non-zero jump upon the surface.

In general, propagating singular surfaces are called waves.
Definition 1.7Waves of second order are called acceleration waves.

Now we shall apply some results to particular singular surfaces defined in terms
of the motion of a deformable body B.

Let S(t) be a reqgular surface in the current configyratmma&erized by the
condition

ox',t =0 (1.61)
If we rewrite (1.61) as
px' XAt ,t =dXAt (1.62)
then, the condition
dXAt =0 (1.63)

is an equation that for each t identifies a setai€riapoints ofthe continuous
body that form a surfacgtson Bo.

Remark 3. ® and ¢ are Efunctions.

By denoting the unit normals of S(t) asld Svith n; and N,, respectively, if
Vo 6= 0 on S(t), then it follows

1
M= Ve kP
1 1

Vo i T iiver A% (1.64b)

(1.64a)

NA=i

once the differentiation of Bg62) with respect to space, i.e.,

o, =F.0, (1.65)
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is usedlt is easy matter to see that merging Eqgs. (1.64) one has

kVok. (1.66)

Na = kvo k AT

If the normal speeds U agdav S and & respectively, are introduced, in view
of the representations (1.61) and (1.63) above one has

_ 1
U= +m6t(p (167a)
_ 1
Then, by using the relation
0,d =a¢p + bp, (1.68)

yielding from the differentiation of Eq. (1.62) with respect daréichepanipu-
lations of Egs. (1.67) lead to the following result:

1 1 |
Tivo 0T Tkvor Pt =

_kVok 1 1
Tivok kvt Gver®
k Vo k

KVO k

Uo =

U-c'n; (1.69)

The quantity = U - ¢n; is called the intrinsic speed of S.

1.2 The physical background

The best-known model for heat conduction is Fourier’s law (FL)

g = —Kk06 (1.70)

50

g being the locaheat-flux vector (i.ehe amount oénergy per unit time and
unit area transported by conductietipe thermatonductivitygnd 6 the non-
equilibrium temperature [47-49].

Remark 4. In the very generahbse (i.e.in the case oénisotropic systemshe
should properly speak about the matrix of theomductivityThat matrix can
be either symmetric [31,],or non-symmetric [52hroughout this thesis the
thermakonductivity wibbe represented by a scalar-valued furgitioa,we will
always refer to isotropic systems.
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Although Eq. (1.70) is well tested for most practical problems, it fails to describe
the transient temperature field in situations involving short times, high frequencies
and small wavelengthscording to FL, in fact, a sudden application of a temper-
ature difference gives instantaneously rise to a heat flux everywhere in the system,
that is, any temperature disturbance ptitipagate at infinite velocityrom a
microscopic point of view, one can also observe that the FL is valid in the collision-
dominated regime, where there are many collisions among the particles, but it loses
its validity when one approaches the ballistic riegimhéch the dominant colli-
sions are those of the particles with the boundaries of the system rather than the
collisions among particles themselves [2].

1.2.1 The Maxwell-Cattaneo Theory

From the physical point of view, the instantaneous propagation of a temperature
disturbance is unacceptable since a change in the temperature gradient should be
felt after some time (the so-called relaxation tifie)eliminate these anomalies,
Cattaneo in Refl53] proposed a damped version of FL by introducing a heat flux
relaxation timg,Tnamely,

TG = - (g + «6,) (1.71)

which is well-known as the Maxwell-Cattaneo (MC) eduation.

Acceleration waves in the MC theory
In the MC theory, the governing equations for the basic fields of a rigid body in

R3 are

pGo +¢q =0 (1.72a)
qu,'+q+KQ/ =0 (172b)

wherein the former equation directly follows from the coupling of the energy local-
balance equation

pe+g =0 (1.73)
with the usual thermodynamic assumption
oe
C = 3 (1.74)

2Throughout this thesis, superposed dot also denotes the padisivative with respect to
time of the indicated argument (fe.pf /ot)
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¢, being the specific heat at constant votubaéng the internahergy per unit
mass and p the mass density.

An acceleration wave for a solution of EqR) is a surface S across whiich
i, G, g, suffer at most finite discontinuitgth the functions & continuous
everywherdf that wave is moving into an equilibrium region for which

6 = constg =0 (1.75)
then
6" =0, 6" = (1.76)
We may take the jump of E@sZZ) to find
PG, he" =-1q,] (1.77a)
11lg] =« [4] (1.77Db)

By defining the three-dimensional wave amplitudes as
Alty= n'6, , Bi(t) = nq, (1.78)

and using the H-relations (see(Edh?2))

0 =§[q,-'] =§l+Urq, (1.79a)
hi _

0 =%[9] =60 +U o, (1.79b)

we get at first hi
[g] =-UBi, 6 =-UA (1.80)

and, finally we have

-pc,UA +nB; =0 (1.81a)
-T1UB; + kniA =0 (1.81b)

From Eq. (1.81b) one can see that the wave has to be longitydingh, j.e., B
where
B= n'ng, (1.82)
Then, it is easy matter to point out that the system of equations (1.81) does not

admit the only-one trivial solution if, and only if,
r
u= _X (1.83)
PG T

which is the wave speed in the MC theory.
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1.2.2 Second law of Thermodynamics

From the theoreticgoint of view, one can derive in severalaysa heat-
transport equation beyond EL.70)therefore different theories can be found in
literaturesome of which being very refined from the mathepwtitaF view.
It seems worth noticing that in developing a new heat-transport theory one should
not forget that the model has to be compatible with the basic tenets of Continuum
MechanicsTo be sure about this, a very valuable tool is represented by the second
law of thermodynamics which states that the rate of entropy production has to be al-
ways larger than zero in any admissible irreversible thermodynamic process [54, 55]
The rate of entropy productiopis given by the local-balance equation of the
specific entropy s as

pd® = s+ J° (1.84)

where ,(f) is the specific-entropy flux

1.2.3 Extended Irreversible Thermodynamics

Equilibrium thermodynamics deals with ideal processes taking place at infinitely
slow speed, considered as a sequence of equilibriuRoistateiary processes,
it may only compare the initial and final equilibrium states, but the processes them-
selves cannot be describealhandle more realistic situations involving finite ve-
locities and inhomogeneous effatksxtension of equilibrium thermodynamics is
neededA first insight is provided by the so-called clags@adrsible thermody-
namics. This borrows most of the concepts and tools from equilibrium thermody-
namics but transposed at a lasxadle because non-equilibrium states are usually
inhomogeneoukhe goal is to cope with non-equilibrium situations in which basic
physicabuantities like masemperaturgressuregtc. are not only allowed to
change from place to plaket also over timeNeverthelesspodern technology
points towards miniaturized devices and high-frequency processes, whose length an
timescales are comparable to the mean-free path of the particles and to the internal
relaxation times dahe devicesTo describe these phenomeandgnsions dhe
classical transport laws are neddeded, these laws assume an instantaneous re-
sponse of the fluxes to the imposed thermodynamic forces, whereas, actually, it take
some time for the fluxes to reach the values predicted by the desaicanlaws.
sequence, when working at short timescales or high frequencies, and correspondingl
at short length scales or short wavelengths, the generalized transport laws must in-
clude also memory and non-local efleetanalysis of these generalized transport
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laws is one of the main topics in modern non-equilibrium thermodstaéistics,

tical mechanics, and engineesunch transport laws are generally not compatible

with the local equilibrium hypothesis and a more general thermodynamic framework
must be looked foA very formally simple theory that meets these needs is the
Extended Irreversible Thermodynamics(EIT), which provides a macroscopic and

causal description of non-equilibrium processes and is based on the introduction of
the fluxes as additional non-equilibrium independent variables [2, 4].

The entropy in EIT

When the state-space variables are the intemalgy e per unit masshe
heat flux g and the flux ofthe heat flux ¢, in EIT the entropy has the form
s =s(e,igQ;) in such a way that its differential reads [3, 4, 7, 29]

0S 0s 0s
ds (e;9 = — de + — dg + —— dQ; (1.85)
I de ,Qj =const 0q; e,Qj =const aQU e,g =const !
wherein
9s _1 (1.86a)
ae gi,Qjj =const 9
0s LG
— =-— (1.86b)
oqi e,Qj =const KpE?
0 ji
> = - 129 (1.86¢)

N 2 2
aQ’/ e,q =const er

are the thermodynamic conjugatahefstate-space variablegieand Q; , re-
spectivelyin Eq. (1.86c)stands for the relaxation timeof@hd * means the
mean-free path of the heat carders. consequence of Egs. (1.85) and (1.86), in
EIT one has [2, 4, 7, 56]

e T T,

SETT 2kp& 96 - 2Kp@" 2

Qi Qj (1.87)

with T being the local-equilibrium temperature.

The nonequilibrum temperature in EIT

In non-equilibrium situations the correct definition of temperature is a very com-
pelling and interesting tabksides being stdh open problem [2]. For linear
harmonic chains (where the local-equilibrium temperature is related to the aver-
age energy per particle u through the Boltzmann constam KT = %), for
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example, by using the maximum-entropy formalism one may obtain [4]

11 14k
0 T 1-xx

wherein x= % with w being the speed of elastic wadhasthermal radiation,

0
instead, the maximum-entropy formalism yields [4]

1 1 (y+2)?
5=7 -1 (1.88)
wherein y is given by s
_ Vg *

wherein U = aTV is the internalenergy ofadiation in the volume \4 is the
radiation constant, andsithe speed of liglideed, the coupling of Eqs. (1.86a)
and (1.87), leads

1 1 0 71 0 )

8T 99”36 20002

6T 3 2ro@ Qi Qs (1.89)

which clearly points out how in the framework of EIT 6 is a truly nonequilibrium
variable.Indeedthe second and third term in the right-hand siég.of1.89),

which represent the corrective terms due to nonequilibrium situations, may be small
in some practicapplications [4ih that casedpr the sake of simplicibpe can

assume

(1.90)

~|

=

-+ Ol

In this thesis we always refer to @q90) as the non-equilibrium temperature

approximation.

The entropy flux in EIT

In developing a theory of heat transport beyond the classical FL, one should look
for an appropriate constitutive equation not only for the entrijoy 8ise, for
the specific entropy [35 EIT the specific-entropy flyX Jeads [2, 4, 7]
#”=%+m (1.91)
with K; being the specific-entropy extra Tloat vector has to be assigned by a
suitable constitutive equation [1, 5in5Rjreement with second law of thermo-
dynamics.
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1.2.4 Nonlinear heat-transport equations

In non-metallic solids the heat transport in only due to phohenso the
collective vibrations of atoms [5996ik]r transport is diffusive and describable
by the classical FL (1.70) in all practical applications which involve systems whose
characteristic size is of the order of micrometer, dnlangdern devices which
are widely applied in micro/nano electronics the phonon transport regime, instead,
can be also ballistior hydrodynamic [167,21,23,62-67].In these transport
regimes (which are particularly relef@nexamplan two-dimensiongystems
as graphene sheets) Eb.70) breaks down B4,7, 56,68],as it is confirmed by
the experimental observations on heat transfer in nanosystems [69, 70].

Phonon hydrodynamics, in particular, represents a regime of phonon heat trans-
fer in which the role played by memory and nonlocal effects becomes as more releve
as the characteristic size of the system decredésdhigdretlime the constitutive
equation for the heat flux is usually of the Guyer-Krurnypmngl456,71,72],
namely,

nG +q = k0, + g, (1.92)

In principle Eq(1.92) not only includes memory and noelbeatshut also
the nonlinear ones since in that equatiorttedrmophysicagluantities (i.ethe
relaxation time, the mean-free path, and the thermal conductivity) are temperature
dependentindeedsince in nanosystems srherthperature differences could lead
to high values of temperature gradient, nonlinear terms accounting for products of
the temperature gradient (or the heat flux) should be also taken into consideration.
These "genuinely” nonlinear terms may be importasttiuatibns wherein the
different thermophysical quantities only displays vanishingly small changes with the
temperature, i.e., when the material functions can be practically assumed constant.
To this end, in the hypothesis of constant material functions, in Ref. [36] Eq. (1.92)
has been generalized as

. . 2T1
G +q=-k0,+ %q, + G0 99, (1.93)
which reduces to x
. T
1G +q = -Kk6, + [fle 49, (1.94)

when the nonlocal effects do not play any relevant role, i.e., when in Eq. (1.93) the
term 2g,, can be neglected with respect the other terms [36, 46].



Chapter 2

Heat waves in functionally graded
nanomaterials

Functionally graded materials (FGMs) are composite materials with an inhomo-
geneous micromechangtalcture [52,3-75].FGMs are generally madetwofo
components and, in contrast to traditional composites, they are characterized by a
compositional gradient from one component to thénothere concrete words,
in FGMs the different material functions may change continuously (i.e., the changes
in composition and microstructure occur continuously with position), or quasi con-
tinuously (i.ethe changes in composition and microstructure occur in a stepwise
manner) along a given directlormany case§GMs can be sketched as a com-
position of severabnnected thin layedn usualexample is the alloy SiGe,,
which has been much studied in semiconductor physics to engineer heat or current
transportwith the stoichiometric variable ¢ ranging in the ihGerdf316].De-
pending on the number of directions along which the material functions change, one
can discriminate between 1-dimensional, 2-dimensional, and 3-dimensional FGM.

In the last decadbeams and plates made of FGMs have been widely applied
in micro/nano electromechandgatems (also known as MEMS/NEMS) [77-79].

Since MEMS/NEMS display a high sensitivity to extersténulationsa better
understanding dheir thermomechanipabperties withave a very relevance in
the design and fabrication of those modern sensors.

In the present chapter we principally investigate how the composition gradient
¢, (of the stoichiometric variable) influences the propagation of high-frequency heat
waves (i.eheat pulses) in FGMsThis analysis may be interesting for practical
applications because in principle the variation of ¢ can be accurately chosen during
the fabrication process in order to tailor the final device for own practical needs [80].

20
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Our goal will be pursued in the framework of the MC theory, namely, we assume
that Eqgs.(1.72) are the governing equations for the two basic fields tedsd g
the different materifainctions depend not only on temperabwtealso on the
stoichiometric varialie particular, we assume

¢, =¢(c) (2.1a)
1=1 (9, C) (21b)
K=K (6, c) (2.1¢)

2.1 Influence of the composition gradient on the
heat-pulse propagation

The analysis of heat waves is strictly related to the time variation of the state
spaceAccording with the basic tenets of EIT [4, 7], in fact, each state-space variable
has to display its own evolution equatioorder to reduce at the minimum the
indetermination levaedlour mode(in such a way that it may be appealing from
the practical point of view), here we assume that the state-space variable ¢ can not
change in time, namely,

c=0 (2.2)

Consider then an acceleration (A-) wave S for a solution of Egs. (1.72) and, for
the sake of simplicity, assume that travelling surface S is moving into an equilibrium
region, i.e., the region ahead the A-wave is such that

6=¢6 g=q" (2.3)

wherein (as in what follows) the superscript + means the (constant)thalue of
corresponding quantity at S approaching from the region which S is about to enter.
By taking the jumps of Egs. (1.72) at S we have

1 [g] F\rik* [61=0 (2.4a)
(o)t 6 +1[g]l=0 (2.4b)

which by means of the classical H-relation (1.52) yields

UvG -k *Nni§ =0 (2.5a)
niG - (pc,)" U6 = 0 (2.5b)
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wherein / is the speed at the point on S with unit normahd

[q.]1=ng [6]1=né (2.6)
with
6 (t) =8, ] G (t) = njq, (2.7)

the 3-dimensional A-wave amplitudes.
Since from Eq. (2.5a) we have that the A-waves have to be longitudinal, i.e.,

G =qn; (2.8)
with
g (t) = nin;q,, (2.9)
then the requirement of non-zero A-wave amplipulés] to the homogeneous

system of linear equations (2.5), implies that the A-wave speed is
S

UN=

K +

2.10
110G, (2.10)

We note that Eq(2.10) is formally similar to the wave speed (1.83) obtained
in Sec.1.2.1but the former fundamentally differs from the latter since the value
of Uy predicted by Eq2.10) depends on the logalue of the different material
functions (which depend, in their turn, on the local vakepation (2.10) also
points out that in FGMs the speed of propagation of thermal pulses:

i. depends on the locablue ofthe nonequilibrium temperature (ae.the
value of 6 at S);

ii. depends on the stoichiometric variable c dnethe value of at S), but
not on the concentration gradient (i.e., how fast, or slow ¢ changes along the
direction of propagation of S).

Roughly speakin@rom the results above we may infer that a heat pulse will
travelwith a speed which is not constant during the mgitioa,in any point it
depends on the local values of the different material functions (which in turn depend
both on 6, and on c¢ for the system at hAsd).consequence, the two boundaries
of a propagating pulse will travel with slightly different speeds; this may intuitively
yield focusing problem afheat pulse since the latter may either shrink (when
the frontal border is slower than the rear border), or squeeze along the propagation
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(when the frontal border is faster than the rear War@eplicitly note that such
problem, which is well known in literature to arise from the temperature dependence
of the different materi@inctions in common materials [18 FGMs becomes
more evident owing to the dependence of them on the stoichiometric variable, too.
Whereas the globbkhavior o)y (i.e.,whether it is increasingy decreasing)
depends on the particular direction of propagation, it is also worth noticing that in
a given point the value of the pulse speedevdlivays the same either the heat
pulse is propagating from the zone wherein ¢ = 0 to the zone whereinc = 1, oritis
propagating in the opposite direction.

Focusing problems, indeed, appear more evident if we investigate how the wave
amplitudé behaves in time (i.e., during the propagdalg.this, let us firstly
observe that from Eq. (2.5b) the relation

g = (pg)* Uy 6 (2.11)

between the two A-wave amplitudes afiben, let us differentiate EGL.72b)
with respect to space and Eq. (1.72a) with respect to time, in order to have

01, 07, . . 0K 0K _
%Qi + %C, q + naq,, + q, + %6: + %C: 6,:' + KQH =0 (2128)
pGc0 +G, =0 (2.12b)

once the hypothesis in E2.2) has been used (which is a tantamount to suppose
that the time variation of ¢ can be neglected during the phenomendirhat hand).
jumps of Eqgs. (2.12) are

aT1+ aT1+ . .
5o lB1+52 (6] [T+ 1q,]+[g]
ok ok
- + 55 (0145 [c] [61+K[6,1=0 (2.132)
(pc)t 6 +B'1=0 (2.13b)

Recalling Egs. (2.7) and (2.8) and that we are only considering A-waves moving
into equilibriunby straightforward calculations (which require theleseno
1.1.4) from Eqgs. (2.13) we obtain

AaT1+ + aT1+ A + [ + A
6% + C,i nj% UNq - Tl E + L5} UN ninjnkcli,,-k -q
+ +
_ 93_'; v ,‘3_’; §-k* nn6, =0 (2.14a)
6é ) ~
(pa)" 2Unv—= + U nin; 6, +5—q—UN nining, =0 (2.14b)
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whereC% means the displacement derivative (sdelSéx.

The coupling of Egs. (2.11) and (2.14) consequently yields the following Bernoulli-
type ordinary differential equation

g_?=a“ _Bb (2.15)
with
9 k
1, 0 kK T
3_ﬁ+qin,u,\,% In o (2.16b)

If we suppose that the inidahplitude of the pulseéi(;t = 0) =6, then the
solution of Eq. (2.15) is
A a l «a =
O(t)= =+ =~- = €& (2.17)
B 6 B
Equations (2.16) and (2.17) point out that the thermal-pulse amplitude:
i. depends on the local value of the nonequilibrium temperature;

ii. depends both on the concentration ¢, and on the concentration,gradient ¢

iii. depends on the scalar product(ice., on the direction of propagation of the
pulse).

The observations in the items above better confirm what we previously said abou
the focusing of a heat pulse, namely, it continuously changes its shape (shrinking an:
squeezing) during the propagatioese changes arise since the different material
functions depend both on 6 (the effects of which are accounted by the coefficient a
in Eq. (2.16a)), and on c (the effects of which are accounted by the coefficient 8 in
Eqg. (2.16b)).

We finally observe that, in contrast with what previously observed for the speed
Uy, the aforementioned results point out that in a given padihé afystem at
hand the value of the pulse ampl&ladﬂ) depends on the particular direction of

propagatiomwing to the presencetbé scalar productm; in the definition of
the coefficient .
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| | Material Gradation

Figure 2.1Schematic diagram of the concept of gradation in FGMs.

2.1.1 Application to functionally graded-5G& layer

In order to make attractive previous theoretezllts for practicapplica-
tions, the autors in R¢B1] applied them to a functionally grade@G&ilayer.
Si-. Ge: layer,in fact,has many attractive characteristics which can be exploited
for numerous applications including wavelength sensitive photonic devices, high mo-
bility complementary metalde semiconductor devices and lattice matching for
epitaxial IlI-V growth [8Zhe analysis of pulse propagation will be done by sketch-
ing the system above as a quadratic L-size layer with the stoichiometric variable only
changing along the x direction, whereas c will be kept constant along the y direction
(see Fig. 2.1 for a qualitative sketch of the syRemralling that during the fab-
rication process one can select a variation law for ¢ [80], the particular cases below
will be analyzed in what follows:

X
1.c (x) =T
et -1
2.c(x) = ]
X 2 r7
3.c(x) = . andc (x) = .

. TIX TIX
4.c (x) = smﬂ andc (x) =1 cosz—L

The computations will be performed under the further hypotheses below.
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®The materiafunctions k and 1 do not depend on temperaturehich is
tantamount to suppose that those material functions only display vanishingly
small variations with the temperature.

®The average temperature of the system is 300 K.
®The size of the layer is L ="1®.

®The form of the relaxation time (s) is
1 1-c c
+

[ Tsi TGe
according to the Matthiessen rule, wheraim .. mean, respectively, the
relaxation time aflicon and germaniurfor the sake ofimplicityin the

computationghose quantities were estimated;as rV—S' and ge = %

with s and e being the phonon mean-free path (rr?i’p) in silicon gehd germa-
nium,respectivelwhereas<vand . are the phonon speeds in silicon and
germaniumAt the room temperatuge= 8, 05 - TOm, & = 2894, 96 Ms

‘e =5, 83 - I®m, vge = 1757, 7 thsThese values have been taken from
Ref.[7](see Tables 1.1 and 1.2 therdmghat referenca particular:the

Si- and Ge-mfp values have been inferred by using the rela'g%\ﬁkof-

the kinetic theory’s relaxation-time approximation [61, 83]; in fact, the phonon
mfp depends both on phonon frequency, and on the kind of collisions in such a
way that several different relevant averages may be used to estimate it [83, 84

®The form of the thermal conductivity ¥ is [76]:

N X8
K(C) = keC + Ki (L —C) = KoeKsi  Ax (1 -cf
k=1

#

At the room temperatuge=x 149, 95 and«k= 77, 95 [7The values of the

eight constants Are quoted in Table 2 in Ref. [[E6kems worth noticing

that, at nanoscale, the thermal conductivity of a material also depends on the
characteristic size of the system, i.e., on nonlocal effects [7], in such a way that
one should properly use an effective thermal conductivity [83, 84], and not its
bulk valueln the present paper, however, this dependence has been omitted

in order to put the attention only on the role played by ¢

®The form of the mass density )dm[85]:

p (c) =2,329 + 3, 493¢c - (? 499c
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®The form of the specific heat at constant voluméK(jmis [85]:

¢ (c)=19,6 + 2, 9c

In the severalases above and for a heat pulse traveling along the x direction,
the predicted results for the speeds of propagation are plotted As kigcah 2.
be inferred from that figure, during the propagaglobadlly tends to decrease if
the pulse is moving from x = 0 (i.e., the zone whereinc = 0) tox =L (i.e., the zone
wherein ¢ = 1), or to increase if the pulse is traveling in the opposite alirection.
cases, however, it reaches a minimum when x € ]0, 6L; L[, i.e., when c € ]0, 8; 0, 9.
Diagrams like those plotted in Fig. 2.2 suggest forieseampldyeat pulses
as exploring tobbr the inner structure of a FG: using some sensansfact,
which can detect the speed in different points it should be in principle possible to
infer the inner composition by comparing the detected speed with that predicted in
those diagrams.

4000 T T T — 4000

3000

m/s|

= 2000 [

Un

1000

x [m] %1077

4000 T T u u 4000

x [m] %1077

Figure 2.2Heat-pulse speed versus the distance att3fdrdtical results arising
from Eq. (2.10).



2.2 Theoretical thermodynamic considerations 28

In the several cases above the predicted results for the pulse amplitude, instead,
are plotted in Fig2.3 when the heat pulse travels along the x direction from 0 to
L (i.e., when c varies from 0 to 1), and in Fig. 2.4 when the heat pulse travels along
the x direction from L to O (i.e&vhen c varies from 1 to 8k it can be inferred
from those ﬁgurésalways (i.e., whatever the direction of propagation is) tends to
decrease, but not monotonically; in other words, our theoretical model suggests that
the pulse continuously shrinks and enlarges, although it is always globally squeezing
during its crossing through the sy3temunexpected behavior is only due to the
role played by the concentration gragieng if ¢ = 0 then from Eq.2.17) we

would have

o) .
~ =e 217
6o

and the expected monotonically decreasing belfaigioeadvered.
Since in practical applications heat pulses can be used to send information, the

results above suggest that, in principle, one should pay attention on the role played
by the concentration gradient since it may lead to noise and/or distortion in signals.

2.2 Theoretical thermodynamic considerations

In this sectionby means ofecond law dthermodynamicse point out the
physical validity of a model based on the MC theory to describe the thermomechan-
ical behavior oFGMs. To do this,at the very beginningie have to claim the
state-space variables; therefore, according with the basic basic tenets of EIT [4, 7],
here we assume that the state space Z is

Z =10, q,c} (2.18)

with each state-space variable displaying its own evolution Rtpptistulate
that the evolution equationgofs given by MC equation (1.7Ihe evolution
equation of 6, instead, can be obtained by coupling the local balance of energy in a
rigid body (1.73) with mass density p = p (c) together with the constitutive relation

e =60 (2.19)

with ¢ = ¢ (c), in order to obtain

06,6 + po %ic c+g =0 (2.20)
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Heat pulse from c=0toc=1 Heat pulse fromc=0toc=1
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Figure 2.3Heat-pulse amplitude versus the distance at Bi9€®oKeticalesults
arising from Eq(2.17) when the pulse is moving from ¢ = 0 to ¢ = Ih. the
subfigures the direction of propagation of the heat pulse is also indicated.



2.2 Theoretical thermodynamic considerations 30
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Figure 2.4Heat-pulse amplitude versus the distance at Bi9€oKeticalesults
arising from Eq(2.17) when the pulse is moving from ¢ = 1 to ¢ = . the
subfigures the direction of propagation of the heat pulse is also indicated.
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which reduces to EfL.72a) when Eq2.2) holdsThe evolution equation of the

last state-space variable (that)isleserves some commentigct,whereas the

derivations of previous evolution equations (i.e., MC equation and Eq. (2.20)) arise
from well-established physical considerations, the derivation (or the postulation) of
an evolution equation for ¢, at the present stage, can only follow from pure theoretic
conjectures, since there are no experimental evidences about the time variations of
the composition of a FGNh a first approximatioagctually¢ should be viewed

as an internalariablesin order to constitute an efficient tooén dealing with
nonequilibrium processes involving complex thermodynamical systehis [86].

case, the evolution equation of ¢ might be written in the following form

c=F(6,gc) (2.21)

with F being a scalar-valued functiontdfe indicated argumeniMore refined
considerations (or theoretical models) could be surely made; however, Eq. (2.21) has
the great advantage of preserving the essential physics of the problem still retaining
a sufficient simplicity since it is well-defined on the state space.

2.2.1 Exploitation of second law

In order to exploit the second law of thermodynamics, we may assume the follow-
ing very general constitutive equations for the specific entropy and for the entropy
flux

s=s(6,gc) (2.22a)
J? =736, q ) (2.22b)

and let the thermodynamic restrictions to give their explicit fdtensave to
determinan fact,a set of conditions restricting the constitutive equations which
are necessary and sufficient to guarantee that thermodynamic constrain

is satisfied along any arbitrary thermodynamic procddse fiidquality above,
indeedtaking into account Eq61.84) and (2.22pn the state space Z can be
written in the following explicit form:

0s 0

s) — 055,05
Jolo) p669+6q,-q’+

os. 83" ag¥ 07
%c + 30 0, +a—qjq-,, +TC” >0 (2.23)
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To achieve our task, here we apply the classical Liu procéaaardBi).to
it, the thermodynamic restrictions on the constitutive functions can be obtained by
checking the positiveness of the linear combinatibtespoessed by the right-
hand side oEq. (2.23)) and othe evolution equationsth& state variables for
all thermodynamic processes TBB]linear combination is obtained by means of
Lagrange multipliesshich depend on the state variables themselveBh83].
we add to ¢® each constitutive equation multiplied by the respective Lagrange
multipliers f, A® and A®. That way,after rearrangemeirtequality (2.23)

takes the form:
|

@
0 A G4 05 _p@gler N 0s AT
P 30 e G-Il-p ac A ac p c+p g p 9
NSNS 03 s 0J, @3 | Ao

(2.24)

The inequality above is linear both in the time derivé,t'q'/,es', and in the
Spatialderivatives,§ g, and ¢ which can assume completely arbitrary values
due to the arbitrariness ahe thermodynamic proces&s a consequencéhe
positiveness of the inequality (2.24) demands that:

Z_Z _ GA® (2.25a)
g_i _ /\(9)9% AN (2.25b)
g_; _ % (2.25¢)
a;és’ _ gq>T51 (2.25d)
a;c,:) R (2.25€)
agf’ _ (2.25f)
_Algq)g‘l + N9FE> 0 (2.259)

Referring the readers to the Appendix to the second law of thermodynamics at
the end of this subsection for deeper details, here we only observe that if we assume
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A© =% (2.26a)
T

/\’(‘7) — _K_elqu (226b)

A© = 9Sea_9C, _GGO T (2.26¢)

oc dc 28dc kp
straightforward calculations show that the thermodynamic restrictions (2.25a)-(2.25f

are compatible with the following forms of the specific entropy and of the specific-
entropy flux, respectively:

S = gq(6, ¢) —Zngq,q, (2.27a)
Je =% (2.27b)

which are well-known in EIT [4, 7], as it is has been observed in Chap. 1 (see therein
Sec. 1.2.3From Eq. (2.25a), in particular, it also follows that our theoretical model
suggests that there Wil a very strict relation between the relaxation time and

the thermal conductivity, e, 2.

We finally also observeKthat the coupling of the thermodynamic restriction (2.25g9;
(i.e., the reduced entropy inequality) and the assumption in Eq. (2.26b) suggests tha
AYF should be always positive.

The considerations above are enough to claim the compatibility of our theoretical
model with the basic principles of continuum mechanics.

Appendix to the second-law exploitation

The Liu procedure [87] allows to obtain necessary and sufficient conditions which,
restricting the constitutive relations, yield a theoretical model which is finally com-
patible with second law [88&.thorny topic in that techniquepweveris the
determination @he form ofhe different Lagrange multipliénsour casethis
goal can be achieved starting, for example, from Eqgs. (2.2Rl)<4dsRding
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integrations, in fact, from those relations we have

(s)
a\;lc =047 =7 q)
U
0J® :
a(lq — /\(Q)éj P J’,(S) = /\(e)dq + K; (6)
/]
U
0J® K g

_ Ao K () _ @K
56 =N Tl@J, N Tld@ (2.28)

Equation (2.28) gives the form of the specific-entropy flux in our model, provided
that the Lagrange muItipIie(f‘)/‘is identified on physigrlound.Recalling that
one of the basic postulates of EIT [4, 7] is,-(fhiaxtpkoportional to the heat flux,
namelyEq. (2.27b)a simple comparison between Eg27b) and (2.28) yields
Eqg. (2.26b).

Then, the coupling of Egs. (2.25e) and (2.27b) leads to Eq. (2.26a).

The form of R, instead, can be inferred if we obtain the form of s in our model;
it arises from Eqgs. (2.25a)-(2.25¢) by succeeding integrations as below:

Z
g_z =N\ =5 = A9 + H (g, c)
U
Z

s _AN? A9

a_qi_TC:’S— qu+H2(C)
5 s A© Z oc.  A©
oS _ peg%v (N o= A% 4 dc
ac dc  p ac

(2.29)

Since in EIT the form of s is given by Eq. (2.27a) whénegonly thermody-
namic flux appearing in the state space [4] (refer to Eq. (1.87) in Sec. 1.2.3 to this

end), a simple comparison between Eqgs. (2.27a) and (2.29) yields Eq. (2.26c), once
Eq. (2.26a) has been taken into account.



Chapter 3

Thermal and elastic nonlinear
wave propagations

The analysis oheat waves is gfreat interest in solid-state phydiesause
it may provide usefahd relevant information on phonon scattering process [19,
89,90]. Indeed,a great part ofthe works dealing with heat-wave propagation
principally focuses its own attention on the analysis of the consequences of the dy-
namicabehavior othe particular generalized heat-transport equation which has
been considereékhis is a natural consequence of the very important role played by
relaxational terms in high-frequencies nonequilibrium situations [199&9, 90].
ever, the same attention should be also put on nonlinedstarcofnisequence,
from the theoreticpbint ofview,in the present chapter we investigate how the
joint consideration of nonlamadl nonlinear terms in the heat-transport equation
can influence the speed of propagation of thermal pulses both in the case of a rigid
body,and in the case of a deformable b&iyce here we are particularly inter-
ested in the consequences of accounting for genuinely nonlingaoteymosit
the present chapter we assume that all material functions are constant which, from
the practicaboint of viewmeans that the proposed results only hold in temper-
ature ranges wherein those matfemations display vanishingly smealiations
with the temperature.

In this chapter we also combine thermal effects with elastih&ffigatsle-
vant from the practical point of view because, usually, a local change of temperature
involves a dilatation or contraction of the system, and this deformation implies elas-
tic stresse#n fact, thermal dilatation coefficient, as well as a finite value of thermal
conductivity, is related to non-linear microscopic effects in the material lattice of the
systemWhen such effects are neglected, thermal conductivity is infinite and ther-

35
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maldilatation coefficient is zeftws, in principlefor usuakystems with finite

thermal conductivity, it should be expected a coupling between thermal effects and
elastic effectghich is often neglectdaktailed rigorous comparison with exper-
iments thus requires taking accourdumth couplingss we theoretically do in

Section 3.2Nonlinear effects arising from the dependence of the different material
functions on the state-space variables will be then analyzed in Chapter 4.

3.1 Heat waves in rigid nanosystems

Equation (1.93) has been obtained in[Béby introducing the concept of a
dynamicahonequilibrium temperatur&p/48].I1n more generéérms,indeed,
the compatibility d&fq. (1.93) with the basic tenetsohtinuum mechanics can
be also proven in the framework of EIT [2, 4] wherein the diffusive thermodynamic
fluxes have their own evolution equations given by

aq Ke q q QU/

j = -~ — + 3.1a
g 1 T pch T ( )
! [ T2

In particularjn EIT Eq. (1.93) can be recovered whenever the time variations
of Q; are negligibly smailith respect to other terms in E§.1a),0or when the
non-dimensional ra%i%a 0 [91].

Since in principlelthe speedmfopagation dfigh-frequency therntistur-
bances can be related to the clock speedd#vicejt should be interesting to
investigate the role of nonlinear effects in modern nanoelédisenuiag that
the specific heat at constant volume per unif, gasncby Eq. (1.74), is always
larger than zerdhen it is possible to switch from the specific intemexigy e
to the nonequilibrium temperature 6 as state-space vdheabddoreassuming
that the evolution equations of the state-space varialaled § gare given by
Eqgs. (1.72a) and (3.1), in order to investigate the propagation of heat wave in rigid
nanosystemwe can consider an acceleration wave S across which the state-space
variables 6 (xt), q (xk; t) and @ (xk; t) are continuous, but their first- and higher-
order derivatives suffer at most finite discontinunipeacticabpplicationsn
acceleration wave S can be generated by allowing the temperature in a point of the
body to vary periodically in time with respect to its steady-state reference level.
Moreoverfor the sake of simplicitye can suppose that the acceleration wave is
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moving into equilibrium, namely, the region ahead S is such that

6% =T qg,th=4¢ Qi lxx,t)=¢ (3.2)

Vt> 0, with ¢ and Q} being stationary reference le¥slsa consequendepom
Egs. (1.72a) and (3.1) we have

hi
pc, 6 +[g]1=0

. 20
Tlfi]TK[ﬂ]_ pq% G, - Qi; =0

(3.3)
), -2 g4 =
) QI/ ql,j =0

once the non-equilibrium temperature approximation is use@melyif Eq. (1.90)
holds.Since the classical H-relations (1.52) allows us to write

hi

9 = —UNb
Lq,-'] |= -Uv b (3.4)
Q =-Un®;

wherei® (1) = [16,], § (1) = ng, and®; (t) = nkQ;, are the wave ampli-
tudes, with nbeing the positive unit normal to S, then the coupling of Egs. (3.3)
and (3.4) leads to the following system of homogenous algebraic equations

poUvB-nig =0

Zd)nj
Kn,'b—'l'lq Uy + %cT —n,-(?,-j =0

20 + pUNG; = 0

(3.5)

once the following relations hold

g, =nb, [61=n8 q, =nb, Q;, =n0;. (3.6)
From Eqgs. (3.5), we firstly recover that only longitudinal waves can be obtained,
namelyy = &n;, and®; = &n;n;. Then, in order to avoid that Egs. (3.5) display

the only triviakolution for the wave amplitudks, following relation has to be
fulfilled

2¢n; K:
2 J _ _12 =
Ui+ Sog Un= - U=0 (3.7)
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wherein ¢Js given by Eq. (1.83hce i/ stands for the modulus of the wave speed,
the only admissible solution (i.e., the positive onegfising from Eq. (3.7) is

UN=L10p¢2+q+1—¢ (3.8)
wherein
qjonj ' 71
0} == KoC, (3.9a)
N2
_ PG
o, = e (3.9b)

Keeping in mind that the non-dimensional parameter ® is only related to nonlin-
ear terms in Eq. (3.1a), whereas the non-dimensional par&éawetated to the
nonlocabnes in that equatidmelow we list some considerations about the above
result for the speed of propagation of heat waves.

i. If both ® -, 0,and @@ - 0, then EQ.(3.8) turns out the usuasult of the
MC theory [53], namely, Eq. (1.83).

ii. If®6=0and® 0, Eq. (3.8) reduces to
v__
Uh=W »?2+1-0 (3.10)

and clearly points out the role played by nonlineartkffegtields a heat-

wave speed which depends on the direction of prdpguaticnlar, if the

heat wave is moving towards the average hq-%\tiﬂ_uxif;ﬁn, > 0), from

Eq. (3.10) it directly follows that the propagation speed is smaller than that
of a heat waves moving agdifiseq if fin; < 0). The absolute value of the
difference in the wave speeds, yes 2| grepresents a thermodynamic
prediction oé relation between the speedhefmabpulses in equilibrium
(which give information on the relaxation time) and the spedus il

pulses under a heat flux.

iii. If® - 0 and 6= 0, then Eq. (3.8) reduces to the high-frequency pulse speed
obtained in EIT [4, 7], i.e.,

UN = Ug + L}lz (311)

with .
117>
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which predicts an infinite speed of propagation for heat pulses widenever t
and/or & = 0.This means that each thermodynamic fluxes have to display its
own relaxation time, in order to have a hyperbolic heat-propagation theory [4].
Nonlocakermsthereforehave the same influence on the magnitude of

predicted speed both when the heat pulse is moving along the average heat
flux, and when it is moving against it.

3.2 Heat waves in non-rigid nanosystems

Thermoelastic analysis at nanoscale is becoming important along with the minia-
turization of the device and the wide application of ultrafast lasers, even the novel
laser burst technology, where size effect on heat conduction and elastic deformation
increase in such a way that the classical theory of thermoelastic coupling does not
hold any more [92].

A possible way to go beyond the classihmrimoelasticity is to introduce the
following theoretical model:

i+ U,
E; = U,—zti, (3.13a)
pii; = Ty, (3.13b)
pe=TE; —qi, (3.13¢)
. 2'[1
g +q=-k6, + 0,6 g, +Q, (3.13d)
LQ; +Q =%, (3.13e)

wherein uis the displacement vectgrjsthe so-called strain tensor, and
T,'j = (AEkk - be) (§ + 2”5 (314)

is the Cauchy stress tensor in the case of isotropic materials with elastic and ther-
moelastic contributioms.Eq. (3.14) A and u are the isothermal Lam e constants,
and

b= (3A+ 2u) a (3.15)

where a is the coefficient of linear thezrmansionThat theoreticahodehas

to be meant in the framework of linear thermoelatitpnlinear terms only
appearing in the heat-transport equatiofgct, in the case ohanosystems (at

least in a first approximation) one can assume that the deformations induced by the
temperature variations are seralgh and can be modelled within the frame of
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linear elasticityAs far as the thermaffects are concerniedteadsecond-order

terms in the heat flux (or in the temperature gradient) cannot be ngglaxted,

at nanoscale even sntdifferences éémperaturer heat fluxmay give rise to

high gradientsAccording with this observationEqgs.(3.13) only the evolution

equation for the heat flux is nonlinear, while the basic equations of thermoelasticity
are linearas a consequenaethe following it will not be made distinction either
between actuaind reference configuratiombetween Eulerian and Lagrangian
quantities.

Equations (3.13) can be used to investigate how nonlocal and nonlinear terms in
the heat-transport equations contribute to the propagation of thermoelastic pulses.
In doing this,one should observe that the different maté&riadtions involved
therein depend on temperature (at lemsExperimentabservations point out.

To reduce to a simpler lewhlat analysishowevern the next we assume that
all the materiailunctions are constaatd put ourself in the 1-dimensiaaag,
i.e.,we assume that x is the only Cartesian coordindethis case,when the
constitutive assumption (3.14) is used in Egs. (3.13), one has

UX - Uequ,xx + g Q,X = 0 (316a)
|
r _ -
G- vy, @ G 4% g (3.16b)
G o7 Jolo%
: 1 2 Qux
+ —- = + 6, - =~ =0 3.16cC
G+ T o % & UpaE, - = (3.16¢)
Qu + QTXX -Ufng, =0 (3.16d)
2
wherein Uis given by Eq. (3.12), we have set
S
A+ 2u

U, = (3.17)

Jol

as the usual speed of propagation of elastic longitudinal waves in deformable bodies
in the limit of high frequencies, and

r r__
b 6 _ (3A+2u)a 6
U2 =- = - -

p G p Cv
as a speed arising from the coupling parametacl,connects the equations of
elasticity to those for heat transport in thermoelasticity, and vanishes only whenevel
the coefficient ihear thermaxpansion a - 0 (i.ewhen the system at hand

behaves as a rigid body).

(3.18)
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In a linearized approach around the (constant) local-equilibrium temperature
T (i.e., in the non-equilibrium temperature approximation)if we consider now an
acceleration wave S across which the state-space variabldg,@)t), (g, t)
and Qx (xk, t) are continuous, but their first- and higher-order derivatives suffer at
most finite discontinuities, from Eqgs. (3.16) we have

b a1+ uUz-u2 u,1=0
p . N
1 9 _ ZUX:x —
UN [e,x] p_cv [Q(,x] + L“(I U2 C_v Ue c, [UX,XX] 0

(3.19)
U3pe 16,1~ (U + W) [6,]= — [Qw,]=0

1

Uit lg, 1+ W [Qx,1=0

once the classical H-relations (1.52) have been eindigge@3.19) it has been
set

_ 29

as a speed only arising from the nonlinear term in the heat-transport equation (3.13¢
since it is proportiona ¢, the sign of ¥/depends upon the heat pulse is prop-

agating in the same direction as the hmat flux (in this case one hassWD),

or it is propagating in the opposite direction (in this case oneshal/ In

deriving Egs. (3.19) it has been assumed that the acceleration wave is moving into
equilibrium, namely, the region ahead S is such that

O(x,t)=T g (x, t)=d Ou (X, 1) = &, U, (x, t) =& (3.21)

Vvt> 0, with § Q2 and 4 being stationary reference levels.
The homogeneous system of algebraic equations (3.19) does not admit the only
trivial solution if, and only if, the following relation holds

Ut +BUS -U S+ EE+ R+ B US-Us Uk + U Uy
+ YU+ U+ =0 (3.22)

wherein we introduced the non-dimensional parameter

bl

=1
¢ oG,

(3.23)

for the sake of having a compact notation.
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3.2.1 Propagation in equilibrium states

Around equilibrium states one can assume that the reference levels of the thermc
dynamic diffusive fluxesgd Qx are vanishingly small, and from Eq. (3.20) one
has 4 = 0. In these situations, indeed, one may distinguish between two different
cases:

l.a=0
2.06=0

In the first case (i.eif the linear thermal-expansion coefficient is vanishingly
small), since b - 0 thent/0 and é — 1las a consequence Eq. (3.22) reduces to

Ui —Ug-U? Uj-UZ =0 (3.24)
which leads to the following speeds of propagation of thermoelastic pulses:

p—
Unteq = U+ U (3.25a)
UNE,eq = U (325b)

with Wreq and Ueeq being the speed of the thermal pulse and of the elastic pulse
respectivelAround equilibrium, and when the linear thermal-expansion coefficient
is vanishingly small, therefore one can only have a pure thermal pulse propagating
with a speed given by Eq. (3.25a), and a pure elastic pulse propagating with a speed
given by Eq. (3.250h other words, in this case a local thermal gradient can not
influence the local elastic stresses, and vice-versa.

In the second case (i.df, the thermoelastic coupling can not be neglected),
instead, Eq. (3.22) becomes a bi-quadratic algebraic equation, the solutions of which
are:

2 \/_ 2 \/

UﬁrEeq=U°J2rUlz 1+ 1T+m +‘5U‘9;U22 1- ' T%m (3.26a)
2 v 2 v_ oo

U,\Z,ETeq —U";Uf 1 1+m +EU62+u§ 1+ 1+m (3.26b)
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wherein
4(1-¢&) (¢Dye— D1-1)
(1 + ®= &Dog— Do) (o Do &= Dsy) (3.27a)
o = L U (3.27b)
e0 — (DOe - Ug .

U2

b = u_:z (3.27¢)
_ g

Dy = 7 (3.27d)
U2

Oy = U—22 (3.27e)

and @ is given by Eq. (3.98yound equilibrium, when the thermoelastic coupling

can not be neglected, one has two thermoelastic pulses travelling with two different
speedsAlthough in this case there is no a net difference between thermal and elastic
pulses, we may see that the spgedq/given by Eq. (3.26a), takes its origin by

a thermapulsewhereas the speegkikq , given by Eq(3.26b)takes its origin

by an elastic pulsélherefore we may céHe former predominantly thermalit

reduces to Eq. (3.25a) if a —» 0), and the latter predominantly elastic (it reduces to

Eqg. (3.25b) if a - 0).

3.2.2 Propagation in nonequilibrium states

In nonequilibrium states, the referencelewnel<}; are no longer vanishing,
and in Eq. (3.22) no terms can be neglected in piiheigbeact solution of that
algebraic equation is rather cumbersome, although easy to be Ealwmaated.
interesting information can be pointed out when the Valssmfad enough in
such a way that from Eq. (3.20) one hak U In this case, up to the first-order
approximation ins/the solution of Eq. (3.22) can be put in the form

UntEneq = WTEeq + dUire (3.28a)
UneTneq = Uveteq + dUET (3.28b)

wherein W eeq and Wereq are given by Egs. (3.26), angd@nd diler mean
the perturbations to the speegstl and Uereq ., respectivelpnly due to &
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When Eqgs. (3.28) are inserted into Eq. (3.22), one has

UI‘\}TE,eq + 4'LIZTE,equNTE + U UI\3/TE,eq + 3Lf%TE,eq dUNTE
UG+ WBE+ U+ Ufrgeq + 2UreeqdUne
-Us U2+ U (Untgeq + WTEeqdUnTe ) + YUZ+ £ UZ%+U8 =0
(3.29a)
UﬁET,eq + 4'LIaET,eq dUNET + U U3ET,eq + 3LI%ET,eq dUNET
U §+WBE+ U+ Ulereq + 2UET.eq dUner
-Us UX+ (Uneteq + Wereq AUner ) + L§Ue2 +UF UX+UE =0
(3.29b)

By straightforward calculatiding coupling of the results of H&s26) with
the equations above allows to obtain the following expressions for the perturbations
dUNET and dLP(/TE .

v
U 1+m
dUyre = —23 1 +v1 — (3.30a)
U 14+ m
dUner = —73 1- T (3.30b)

with m being given by Eq. (3.27Rom the physical point of view, below we list
some comments about the results above.

i. When the thermoelastic coupling can not be neglected, one still has two ther-
moelastic pulses travelling with two different spgdgusugh in this case
there is still no difference between thermal and elastic pulses, we call the speec
UntEneq, Which takes its origin by a thermal pulse, as predominantly thermal,
whereas we call the spegd dd, , which takes its origin by an elastic pulse,
predominantly elastic.

ii. From Eqgs. (3.30) we have that the signs of the perturpatamd diy:
depend on whether the heat pulse is propagating in the same direction of the
average value tfe localheat flux (in this case gkt <0 and dUnre <
0), or the heat pulse is propagating in the opposite direction (in this case
dUver >0 and dUye > 0). In particularfrom Eqgs(3.28) it follows that
UntEneq < Unerneq When the heat pulse is travelling in the same direction of
the local heat flux, angrlneq > Unerneq When the heat pulse is travelling
in the opposite direction of the local heat flux.
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iii. When the thermoelastic coefficient a is vanishing, from Eqgs. (3.27) and (3.30)
one has dids = -U3/2 (i.e., the speed of propagation of the predominantly
thermal pulse still depends on the direction of propagatiatjsr = 0
(i.e., the speed opropagation afthe predominantly elastic pulse does not
depend on the direction of propagation).

3.3 The compatibility with second law

In order to be sure that the results obtained above are physically consistent, one
may prove that the theoretimaldelin Eqgs.(3.13) agrees with the second law of
thermodynamic§o do this, let the state space Z be given by

Z={6,qi, Q;, Ej} (3.31)

By inserting the expression of the specific-entropy flux (1.91) into the local bal-
ance othe entropy (1.84h terms othe Helmholtz free energy ¢ = e - 8=
have the following Clausius-Duhem type inequality
g
6
once the energy balance (3.13c) has been also taken inBy dbeocimdin rule,
merging inequality (3.32) with Egs. (3.13d) and (3.13e) we are led to

p Y +0s —~T;E; + 6 -6K; <0 (3.32)

oy oy : g PK 6([1 oK ;

P g ts O+ P ~Ty Eit g T 50055 6
2q oy p‘2 oy aK, qu 6([1 6K Kk
Sy B gL g o+ BEEZE
66 g n a0, %a BT 1 ag Y0, 9
Pq al.U inj 04/ aKi
— —- = — -6 — En. <0 3.33
T  0g T, 0Qj OEp, ( )

which is never violated if, and only if, the following thermodynamic restrictions hold:
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oy _ _ oy

P %+s 6=0>s 30 (3.34a)
a‘l’ R . _ 0y

g _ PK 6(,[/ oK ; aK,_i_ PK a_w

9 1,0 %98 9T %@ e og (3.34¢)

29w, p? o oK

——0— g, =0=>
c.0 9q; T, 0Qj aq; %

0K, _ 29 oy p* oy

aQi Cve2 6_q, 9_.[2 aQij

(3.34d)
P 0¥ _ aKk _ 0Ky _ Pl oy
7. 0g; aQu Qj,=0= —aQ,-,- = o g (3.34e)
oK’ _ K, _
9 aEhk Ehk’i - 0 - aEhk - O (334f)
pq oy pPQ; oY
T oA 20 3.34
(5] 6q, [¥) aQ,j ( 9)

The relations above do not prevent ¢ depending on the whole set of state space
variablesAs a consequence, a possible form of the Helmholtz free energy is

6 AE
W= ys(6) + qu( g + %! )Q,-,- Qj + zkk E;E; (3.35)
wherein ¢ Y4 and ¢ are regular scalar-valued functions of the indicated argument

Then, the coupling of Eqgs. (3.34a) and (3.35) allows to obtain the following form of
the specific entropy s:

pg Ex 4 H

S, S b
S=9- —2‘7 9G - 30 Qi Qi + 45, Ew

% (3.36)
wherein we set
So = —% (3.37a)
5o = aa"‘;" (3.37b)
So = % (3.37¢)

From Eq. (3.34f) one can also have

Ki=Ki(6; ¢ Q) (3.38)
Along with this result, by a simple integration merging Egs. (3.34c) and (3.35)
for the specific-entropy extra ﬂuxzone firstly has

__9 _PKG Yy L
Ki=-%= "0 §d0+Gla:Q) (3.39)
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When Eq. (3.39) is inserted in Eq. (3.34d) one then has

Z ~
L SO R T P i LW N te)

To reduce to a simpler level the calculations, one can indéd@p3sare

In this way, the combination of Egs. (1.91), (3.39) and (3.40) yields
J,-(S)=%+A6;q2 G+B(6) Qg (3.41)

with A and B regular scalar-valued functions of the indicated arguments, defined as

— quz

A= Y (3.42a)
P Yo

B = o (3.42b)

It is also possible to observe that the combination of Eq. (3.34e) with Eqgs. (3.39)-
(3.42) leads to
w= 2% (3.43)
which states a strict relation betwgendiyy.
At the very end, let us observe that if we put ourself in the framework of EIT [2,
4], the constitutive equations (3.36) and (3.41), respectively, can be specialized in

e b D oo. b
S=9° @ aq 2K Q; Qj + P E (3.44a)
j T 1
Ji(S) = % 1- ngZzez T k@2 Qi g (3.44Db)
We also observe that if we set
Ve
0o=2 (3.45)

then Eq. (3.44a) generalizes the result obtained in Ref. [93] to the situation in which
the state space is given by Eq. (F8dthermore, in this case, the Helmholtz free
energy (3.35) becomes

_ D 0.4 MEw o Ex
3T~ 2@ 197 gprez Q@ T 5 PO =+

w:

u

~EE

P =1
(3.46)



Chapter 4

Nonlinear heat transfer and some
analogies with nonlinear optics

In nanosystems)deednonlinear effects may strongly influence the electronic
and opticapropertiesit could bethereforeamportant to examine more deeply
those effects by introducing generalized nonlinear heat-transporNeqliations.
ear effects may be understood in two different ways:

a. as the presence of nonlinear products of the temperature gradient (or the heat
flux) in the transport equation [36, 94-100];

b. as a state-space variables’ dependence in the material functions [101].

Whereas in Chapter 3 the consequences of accounting for the a.-type of nonlinear
effects have been investigated, in this chapter the attention especially on the b.-type
of nonlinear effeci& this end we observe that in principle the relaxation time of
the heat carriersand the thermal conductivity k may depend both on the internal
energy density per unit volunand on the localheat flux. Generic nonlinear
expressions for and k as functions o and g, for examplehave been derived
from maximum-entropy formalism for harmonic ehaditrsgmagnetic radiation,
and classical and relativistic ideal gases (see, for example, Chap. 6 in Ref. [4], or se€
Ref. [102]).

Although in systems wherein the phonons are the main heat carriers the two
material functionsand k are more temperature dependent, rather than heat-flux
dependent, here we consider the particular (but conceptually relevant) situation in

48
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which

n=10 1+ag + ag (4.1a)
K=kKo 1+ bg + bg? (4.1b)

with pand g being the values of the relaxation time and of the thermal conductivity
at the local-equilibrium temperatureegpectively;; and B, are two vectorial
quantities,,aand b are two scalar coefficients, disdthe square of the modulus

kqgk of the heat-flux vectolhose equations witle coupled with the following
nonlinear heat-transport equation

LEP (4.2)

af/\ A 0

wherein
A = k& (4.3)

in such a way that MC equation (1.71) and(EB@) coincide whenever the ratio
a is constant (i.e., when it displays only vanishingly small variations with respect

A
to time).

4.1 The theoretical motivation

Before to analyze the consequences of accounting for Egs. (4.1), some comments
about the nonlinear heat-transport equation (4.2) ardmaeeibdn the frame-
work ofEIT if one replaces the heat fluxngth the following renormalized flux

variable
1

wi = — A q (4.4)

then for a rigid body the differential of the generalized-entropy s reads
as (e;yw = 6_5 de + a_s aw; (4.5)
de w; =const ow; e=const

wherein

0s 1

e == (4.6a)

ae wj =const 9

0s

w, =q (4.6b)

e=const

are the thermodynamic conjugates of the state-space variaplespeahidaly.
The combination of Eqt.5) and (4.6) with the lodalance of energy per unit
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volume (in the absence of heat source, for the sake of a formal simplicity), namely,
with Eq. (1.72a), furnishes
n #
1 ]
G 5 +aw =as+ 2 (4.7)

,i !

which is just the local balance equation of the generalized entropy per unit volume,

namely Eq. (1.847herefore, in Eq. (4.7) the following quantities
n # (1] #
A

1 B 1

q
s) = 9
J® = 5 (4.8b)

U(S)

stand for the generalized-entropy production and the generalized-enteepy flux,
spectivelyn particular, if in Eq. (4.8a) we regard the quantity
n #

1

i

as the conjugated thermodynamic fortdeeafhermodynamic flux, when it is
easy matter to recognize that the second laviHeghermodynamic constraint
o > 0) is always fulfilled if the following condition

51

A Xi (4.10)

VVi=

which agrees with the classttahsport theory stating that the thermodynamic
fluxes and their conjugated thermodynamic forces have to be related by linear trans.
port laws (see Ref. [7] - Chagd,, Eq. (1.1), for example), holds.

By straightforward calculations it is possible to derive Eq. (4.2) from Eqgs. (4.9)
and (4.10) once Eq. (4.4) is taken into account.

4.1.1 The renormalized heat flux w

The quantity wabove represents a renormalized flux variabl&(J4]Es a
consequenciq. (4.2) can be also viewed as the evolution equathos rehor-
malized flux variablg which is indeed related,;teggstated by Eq. (4.4).

On pure thermodynamic grounids replacement gf with w; in the state
space may have interdésicause the former is the thermodynacoigigate of
the latter and therefoitecould provide a natutasis for a Legendre transform
between a formalism based andyanother based on w
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Though being very similar tothe new state-space variapkiisplays quali-
tative differences with respect to the local heat flux and, therefore, it should deserve
a comparative analysis with the formalism based om gn analogous way as
Legendre transforms are studied in clagscaiodynamics [1@B4].From the
physical point of viewjswrelated to 14-moments theory of Grad [60, 105], wherein
the heat flux &g related in turn to the first momdmtithe constitutive equation
g =rv2p,;with‘v being the mean speed of the phoném$d@&0 from the relation

vV = 2, the identification w - 30
cT c, 62

directly follows [60].

4.2 Second-order nonlinear effects

Although the importance of accounting for nonlinear effects in the heat-transport
equation at nanoscale is well-knowrdfd@ealing with them in studying heat-
wave propagation may not be a simple task; therefore some simplifying assumptions
are neededt least in a first rough approadtar this reasonn order to study
high-frequency heat waves, we will consider the situation in whick bath 1
K - oo, but the ratio;\—1 remains finite; in this particular case, in the left-hand side
of Eq. (4.2) the second term can be neglected with respect to the other two terms,
and the combination of the balance equation of energy (1.73) and(4.2) yields

62 E _ q:ji

v

if the non-equilibrium temperature approximation is used,namelyjf Eq. (1.90)
hods [4]From the physical point of vidlwe simplifying hypothesis above means
that we are neglecting the dissipation effects since the attenuation distance of heat
waves becomes infinite when the linear term in Eq. (4.2) is not taken into account.
Without loss of physical consistency, one may indeed neglect the dissipation effects
at the very initidimes of the heat-wave propagatiocording with this obser-
vation, all the results that will be obtained in this chapter has to be meant holding
only when dissipation effects can be neglected.

On the other handyccording with the constitutive assumptions if&E#@}.
up to the second order in the heat flux, one has

%:% 1+ (g —by) g+ (@-ba-ayby) ¢ (4.12)
0

lin this chapter we set p = 1 only for the sake of simplicity.
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wherein §\= k,T2. When Eq. (4.12) is inserted into Eq. (4.11) one is finally led to
Y
~07q + g, =0/ (fq) (4.13)

wherein ¢still means the speed of heat pulses at the equilibrium (namely, it is given
by Eq. (1.83) obtained in Sec. 1.2.1), and the scalar-valued function f is defined as

f= }-T(Z) (a1 — b1j) q+ (&= by - aby) Cf (4.14)

4.2.1 Analogy with nonlinear optics

It is possible to point out some formal mathematical analogies between Eq. (4.13)
and the nonlinear electric-field equationrdinear opticsSuch formahnalogy
will suggest new situations to be considered, and it will allow us to apply mathemat-
icalresults and experiments on nonlinear electromagnetic waves to nonlinear heat
wavesOf course, in general this will be neither automatic nor immediate, because
of some significative differences between those kinds lodwerarsit wible a
useful guide for exploratieor. instance, when heating materials with strong heat
pulsespoth nonlinear electromagnetic waves and nonlinear heat waves have to be
considered, in principle.

The Maxwellequations for electromagnetic fiefdshe absence oélectric-
charge sources, are [106]

D, =0 (4.15a)
B, =0 (4.15Db)
Ejk Ex,; = —0:B; (4.15¢)
&k Hy,;, = oD (4.15d)

where Dis the displacement vectpthB magnetic inductiontife electric field
and H; the magnetic fieldnd gx is the completely antisymmetric tensor with
unitary non-zero componemtsthe linear approximation and in the vacDum,
and B are related to,Bnd H, respectively, as & oE; and B = uH,, with g
and [ being, respectively, the electrical permittivity and the magnetic permeability
of free space [108Bbreover, in a material medium, the displacement yextor D
given by
Di= oEi+ PR (4.16)

with B being the electrical polarization of the material.
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Applying the curl operation to both sides of Eq. (4.15c¢), differentiating Eq. (4.15d)
and then combining the equations so obtained, one has

07E; 0P
—i/,zl + & €kim Em,;, = — ;\/,2, (4.17)
' 1
with vy = oo being the speed of light in vacliinte
(0] 0]
Ejk Ekm Em,; =Ej; —Ei;
then Eq. (4.17) becomes
02P;
—GtzE,- + V,?E,',jj = (418)

0
In nonlinear optics one takes for the electrical-polarization ME@ToA L8]

P = oX(l)E,' + 0X,(2)E2 + 0X(3)E2Ei + ... (419)

wherein 2 means the square of modulug.k&nd ¥, x* and ¥3 are suitable
coefficientsln the constitutive equation (4.19) the first term is linear and may
be added to the linear free-space contribution in such a way that the following
expression for the displacement vector may be used

Di= o 1+ X" E (4.20)

instead of Eq. (4.1@quation (4.20) implies a change in the speed of light in the

medium with respect to the speed of light in vacuum, namely,

S
= 1 (4.21)
: oMo (1 + ¥V) '

which points out that the coefficiefit fi.e.,the linear contribution) is related
to the refraction index tbfe materialThe terms in  and ¥ are non linear
contributionsnstead.The vector ,5?), which depends on the mateiaberties,
is related to second-harmonic generationpurely isotropic materials one has
fo) = 0. The scalar coefficien®) instead)eads to an intensity dependence of
the refraction index, with consequences in self-focusing of optical pulses, and many
other interesting phenomena [107, 108].

In the 1-dimensional case, Eq. (4.13) for the heat flux is analogous to Eq. (4.18),
with g instead ofE;, U, instead of; (or ), /T\—;) instead of—t and fq instead
of B. From a physicaoint of viewthe parallelism between digd the electric
polarization vector Pneans that the presenceaafelevant value gf partially
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organizes the intermabtion of the particles of the system along the direction of
the heat flux as, in analogy, an electric fietddhizes the molecular orientation
of the materidh such a way, the increasing orientation of the particle motion may
influence the collision timand the thermal conductivitykus, in contrast to
the structurgbolarization in electric systéwmre the polarization is a dynamical
one,namelythe organization dhe motion takes the role tfie orientation of
electric dipoles in polarized systems.

The analogy between E{#.13) and (4.18) suggests considering for nonlinear
heat waves the possibility of the rich variety of phenomena considered in nonlinear
optics, though with some relevant differences due to attenuation of thermal waves.

4.2.2 Second-harmonic generation dhermal wavesin a
graded material

As an interesting illustration of the possible applications of the analogy between
the nonlinear generalizatiortloé MC equation (4.2) with the nonlinear optics
equation (4.18), in this section we deal with second-harmonic generation of thermal
wavesTo do this, here our attention will be restricted to first-order approximation
of the ratio% in g which,from the practicadoint ofview,requires to have an
anisotropic systerfgr exampleallowing to a characteristic privileged direction
along which the vectorisamd h; in Eqgs. (4.1) will lay.

A simple possibility of that case is to have a graded mateiain the sto-
ichiometric variable describing the compositiontloé systemyaries with the
position:in this casejn fact,the composition gradientgives the direction of
anisotropyand the vectorg;aand 8, in Egs.(4.1) willhave the formya= a;c,
and h; = hc,, namely, Eq. (4.14) becomes

T
f= A—O (a1 — b1) ¢,q (4.22)
0

In particular,just for the sake oépplicationwe consider a system made of
homogeneous Si at left and homogeneous Ge at right, whereas in between a graded
layer ofthickness L has been intercalated (seedFlgfor a qualitative sketch of
the aforementioned system), i.e., from z = 0 to z = L the composiGen.is Si
wherec =1 atz = 0 (pure Silicon) andc = 0 at z = L (pure Germanium).

In the graded region, in the 1-dimensional case, Eq. (4.13) therefore becomes

0/ + o yq; - Ugdzq =0 (4.23)
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2w

Figure 4.1A graded layer &i. Ge . intercalated between homogeneausiS
homogeneous Ge

whereingmeans the only component of the heat flux, and
y = (a = b1) kg, ksign (gg) (4.24)

with k¢ k being the modulus of composition gradient along the z axis in the graded
systemWe explicitly note that in dealing with graded materials, the values of the
different material functions (e.g., the thermal conductivity, the relaxation time and
the specific heat per unit volume) depend on the stoichiometric variable ¢ which,
in the present casearies when z € [0; L].As a consequenc@ what follows
Uo = W (2).

To obtain the second-harmonic generation of heat waves, we write the local heat

flux g as
q(t;z) =q(t; 2) + q(t; 2) (4.25)

wherein
G (t; 2) = A (2) 9K 12) 4 A (2) dotk12) = 2Re Aqdl@ik12) (4.26a)

@ (t; 2) = A (2) €290 22) 4 A, (2) d2wtk22) = 2Re A,d?@i 22) (4.26Db)

whereinkand k are two wave numbers, and w is the angular frequency; moreover
the syntax f indicates the conjugate of the complex nunamer Re [f Ineans
its real partBy substituting Eqs. (4.25) and (4.26) into Eq. (4.23), one obtains

Re KAUZ-w? A2 4 2i(Bky (8,A1) @12 — g 24, ok 4

Re k3Ug - 4af AP 27) 4 2ilfk, (0,A;) 629729 — 9 ZA, el2erha?)

Re 2yufA A, @tkizkaz) 4 Re 4yufAlet@ikaz) (4.27)
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once terms with angular frequency equal to 3w or 4w have beenaratjleeted,

have assumed that the parameter y does not depend on the position.
Whenever the valug#\@ and &A, vanishjn order that Eq(4.27) may hold

it is sufficient to require

k2UZ - w? Ay + 2ikUZ (0,A1) €@k12) = 2y A A gl@ttkazkaz) (4 283)
k3UZ - 46f Ay + 2ikUZ (0,A,) €20k22) = 43A2d20t-2k12) (4.28b)

Whenever [109-111]

w = kU (4.29a)
ko, = 2K (4.29b)

from Eqgs. (4.28) we have:
0,A1 = —i ykiA1A; (4.30a)
0,A; = —i ykiA? (4.30b)

The low-depletion case

For low values of the conversion of the w-component to the 2w-component (i.e.,
low depletion values of the w-component) ohaw&lpA; - 0 < A; = const.
As a consequence, in this case from Eq. (4.30b) we may have

A2(Z) = — yk]_A% V4 (431)

once the condition & = 0) = 0 holds.
The intensityal, of the 2w-wavgiven by the square of the modulus,asA
a function of the position z in the graded layer, will be

2o =12 k3y? Z° (4.32)

with I, being the square modulus gfife.,of the heat wave arriving to the left
boundary of the lay&he amplitude,of the 2w-wave at the right-hand boundary

z = L is directly obtained from (4.31) with z =Thus, for a graded medium of
thickness L and for an incident heat wavieamfuency w and amplitudg Ahe

intensity of the second harmonic going out from the graded layer (at z = L) will be
dc ?

[20=

NI =

in terms ofgr ko, @, b.
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The high-depletion case

When the conversion of w-mode to 2w-mode is relevant, the angphbide A
homogeneous,it decreases for increasing this case one has also to take into
account Eq. (4.30after some calculations, in this case one will get

A1 = A sec (Ayg) (4.34a)
A2 = —JA tan (Ayklz) (434b)

wherein we set A =4z = 0). Whenever Aykis vanishingly smat; remains
almost constant and iacreases linearly as in Eq. (4.31); furthermore, Eqgs. (4.34)
lead to the following intensitytlod w and 2w contributions as a functiothef
position in the graded layer:

I, = A’seé(Ayk1z) (4.35a)
/2w=A4tar]2(Ayk12) (435b)

Replacing z = L,one also gets the valuelgfand I,,, at the finalboundary
of the layer. In principle,this proposatould be experimentally checked and it
could be usefib achieve higher frequenaiksch are ofpeciainterest for the
MC equation Note that the intermediate layer.@3&i. could have values of ¢
different than those we have assumed at z = 0 and if ewas different from
c=1latz=0andc = 0 atz = Lone should consider the thenmasiktance of
the discontinuity layers at z = 0 and z = L between $j Ged Siand between
Si;, Ge—¢, and Ge, being@and g the values ofcatz=0and z = L.

4.3 Heat-flux dependence of the speed of nonlin-
ear heat waves

When nonlinear effects are taken into account, the speed of heat waves may also
depend on the wave amplitutteoder to investigate how speed and amplitude
of heat waves are relataedhis section we use the following particular version of
Eq. (4.2)

To(1 + ¥¢?) q + g 1

Ao N(1-02¢@) 6
wherein gand yf are two suitable scalar-valued functions, according with the phys-
ical motivations considered below.

3, =0 (4.36)

si
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4.3.1 The physical motivation

In nonlinear heat-conduction theories, constitutive equations leading to the phe-
nomenon of "flux limiters” have been sometimes investigatédipdlirhitz}s
are a direct consequence of the finite speed of the thermal peirifeadifmors:
a given energy densthe heat flux has to be bounded by a maximum saturation
value in such a way that it should not attain arbitrarily high values [102, 113, 114].
In Ref. [98], for example, the authors pointed out as a heat-flux dependence of the
thermal conductivity of the type

g=-kl-aig 6, (4.37)

characterizes different flux-limited nonlinear heat-transport bgbqtich3.7)

a; stands for a scalar-valued function depending on the particular nonlinear heat-
conduction theory [98fom EQ.(4.37) it is easy to see that the modulkkqg

the heat flux cannot indefinitely increase for increasing temperaturéogtadient,

it tends to a saturation value, that is,

KGk —— Gmax 1 (4.38)
ai

whenever kb—- «. This may be the case, for example, of a longitudinal nanowire
characterized by a length sufficiently larger than the mean-free path ° of the heat ca
riers (in such a way that its thermal conductivity is independent on * and, therefore,
it can be kept constdntherein the temperature difference between the two wire’s
ends continuously increases (for instance, by increasing the higher temperature fron
the outside)From the physical point of vielwe saturation valug.g should be
of the order ofig ~ UUnax With Unax being (the modulus of) the maximum speed
of heat pulseslhis may be relevarfgr instancaen nanosystemshere a small
temperature difference may lead to a very high temperature gradient [112].

The FL (1.70) (obtained, for example, from Eq. (4.37) by setlinerein)
yields thatdix divergeszonsequentlygdiverges, too, according with Eqgs. (4.38).
The Fourier’s theory is not, therefore, a flux-limited heat-conductidhttieeory.
MC equation (1.71) is used, instead, one thatsltalways finite, according with
Eqg. (1.83)and then g.x no longer divergddiereforeo be fully self-consistent,

2In a nanosystem with a the characteristic size smaller than the mean-free hathedt
carriers, the thermal conductivity is "-dependent, and a transition from the diffusive heat-transport
regime to the ballistic one occurghis situation, another kind of flux-limited expressions - not
necessarily dependent on the heat flux - can be obtained.
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the MC theory should lead to a flux-limited heat-conductionHibwemer, in a
strict sensaye may note that it is not self-consisbeaguse in the steady state
it reduces to FLwhich is not a flux-limited heat-conduction tlasgoyeviously
observed.

To overcome this impasse, we may also specialize Eqgs. (4.1) as

T1=7 1 —quz (4.39a)
K=Ky 1-03¢° (4.39b)

with 3 as a suitable scalar-valued function (which, from the physical point of view,
is similar toy, in such a way, up to a second-order approximation in the local heat
flux, Eq. (4.12) becomes

0 _ E
AT A 1+ y¢? (4.40)
wherein we set
y1=signof -B7 ai-p} (4.41)

In this way the use of Eqgs. (4.39)-(4.41) straightforwardly yields Eq. (4.36) from
Eq. (4.2).

4.3.2 Third-order nonlinear effects

If we dealwith high-frequency heat waweasgd we disregard the dissipation
effects (which may indeed also play an important role in heat-wave propagation [90,

115, 116]) the te in Eq. (4.36) can be neglected, in such a way that
1) the tegm;— o in Eq. (4.36) 9 y
its combination with the local energy balance (1.72a) leads to

0/ 1+yq g -Uig, =0 (4.42)
in the non-equilibrium temperature approximation.
In the 1-dimensional case, Eq. (4.42) is analogous to

X(3)E2 \/,2

2 R
0 1+1+)&1) Ei 1+

E, =0 (4.43)

which follows from Eq. (4.18) when the following special case of constitutive equa-
tion (4.19) for the electrical-polarization vector is used:

P,' =X (1) + X(B)EZ oE,‘ (444)
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As a consequence, the following formal analogies

G — - E (4.45a)
Vv
PE)
il = -7 D (4.45¢)
N, (4.45d)
To

cab be setagain. By exploiting this analogy much mathemadffmatts may be
saved to directly arrive to physical consequences of Eq. (4.42).

4.3.3 The Kerr effect in nonlinear optics

Here we firstly recadme well-known results about the spegabpéigation
of nonlinear electromagnetic waaed,later on we extend those results to the
velocity of heat waw¥e do so, instead of a direct solution arising from Eq. (4.42),
in order to emphasize the formal analogies between nonlinear optics and nonlinear
heat transfer, which suggest aspects of nonlinear heat waves not explored up to now
In the 1-dimensional case (z being the propagation direction of the wave), here
we consider a net electric fieldrBduced by a light wave of an angular frequency
w and a wave number k) given by
Ae(2)
2
wherein A(z) is the net electric-field amplitRdealling the constitutive relation
in Eq. (4.44), in this case the use of Eq. (4.46) yields that the electric polarization
vector is

E,(t; z) = glorke) 4 gllwtke) (4.46)

P, (t; 2) = B(t; 2) + B(t; 2) (4.47)
with P° and % given by

P (t; 2) =AQT(Z) R D (4.48a)
PI(t; 2) =A% o3k 4 glBur3a) -y, (4.48b)

v w 4 3XPAL(2)
Xer= X"+ = (4.49)

Note that in the linear situation, that is, if third-order teyrasciméglected
in Eq. (4.44), = x*). In Eq. (4.47) the ternt°As related to the so-called Kerr
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effect, whereas the terifif related to the third-harmonic gener8atow we
focus our analysis on the former effect.
The Kerr effect, also called the quadratic electro-optic (QEO) effect, is a change
in the refractive index of a material in response to an applied electric field [117-119]
The following two special cases of the Kerr effect are normally considered:

®The electro-optic Kerr effect (or DC Kerr effecthis is the speciatase
in which a slowly varying exterlattric field is applied by, instances
voltage on electrodes across the material.

®The optical Kerr effect (or AC Kerr effeth)is is the special case in which
the electric field is due to the light itsdlfhis causes a variation in index
of refraction which is proportiot@khe locairradiance ofhe light. This
refractive index variation is responsible for many nonlinear optical effects, such
as self-focusing.

To analyze the Kerr effect, here we nedtéct#p in Eq. (4.47) which, there-
fore, becomes

P, (t;z) = B’ (t; 2) = E, (t; 2) Xfr o (4.50)

When it is introduced in the one-dimensional version of Eq. (4.18), one has

Vi s _
1 +)éﬁazEz =0 (4.51)
which directly points out that the speed of propagation of electromagnetic waves in

the nonlinear case is

atzEz_

wherein the non-dimensional quantity

p
Neert= 1 + % (4.53)

stands for the optical-wave effective refraction indb& ofaterialand yields
information about the reduction in the wavelspdedlinear situation (namely,

if in Eq. (4.44) only first-order termswowd be accounted), instead, the optical-
wave effective refraction index of the material is

p—
Neo = 1+ xl) (454)

Recalling Eq. (4.49), then by direct calculations from Eqgs. (4.53) and (4.54) we

have S

3x3A2 3xPA2
Neeff= N 1+ S P e —
e,eff e,0 4’%0 e,0 8n,§,0

= Ne,o+ Nenil e (4.55)
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since usually® n 2. in Eq. (4.55) the quantity

A2
lo = —eV’ZO”e:O (4.56)

means the local intensity of the optical wave, and

349
Ne ni —m (4.57)

is the nonlinear refractive index per unit of intensity for the optical wave.

Equation (4.55) clearly points out that the refraction index of the deaterial
pends on the intensity of the incoming optical wave; in particular, since in common
materials g, > 0, then it follows that gefr increases in the areas wherein the
intensityd is higher (usually at the centre of a beam) creating a focusing density
profile, since a medium whose refractive index increases with the electric field inten-
sity acts like a focusing ldnsthe electro-optical Kerr effect, the refraction index
is modified by an externally imposed electric field E, instead of the electric field of
the own wave.

From the considerations abatés easy matter to see that in the nonlinear
situations the speed of propagation of electromagnetic wavigs 52 Ecan be
also written as

7

Nen
Ve = 1-—I 4.58
= s o' ( )

4.3.4 The Kerr effect in the nonlinear heat conduction

In analogy with what happens in optics, in the case of heat conduction a thermal
wave (of angular frequency w and wave number k) may produce a heat flux behaving
as

ol (t; Z) =ACI2(Z) e{(wt—kz) + e—i(wt—kz) (459)

with A, (z) being the heat-flux amplituS&arting from Eq. (4.42) and according
with Eqgs.(4.45),the results in Eqs(4.55)-(4.58) allow us to claim that in the
nonlinear case for thermal waves the propagation speed should be

n
U=U, 1--2", (4.60)
nq’O

once the heat flux is given by Eq. (4.59), wherein the quantity
_ AE’VIZ/\()

= S (4.61)
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is the local intensity of the heat wave; moreover, if we introduce the quantity
3 |l o
4\4/\0
to denote the nonlinear refractive index per unit of intensity for the heat wave, and
we set

(4.62)

Ngn =

V
Ngo = Ulo (4.63)
from Eq. (4.60) we can also obtain the following expression for the speed of propa-

gation of thermal waves in the nonlinear case:
- 3, a2
U=Uo 1- §|V1|Aq (4.64)

From Eqgs. (4.60) and (4.64) it can be clearly seen that in the nonlinear case the
heat-wave speed U depends on the heat-wawvettowdtynamelyon the (non-
negligible) heat-wave amplitubheparticular,from those expressions it can be
inferred that in the very general case in nonlinear situations the heat waves should
become slower than the heat haves in the linear situations.

This also happens in nonlinear optitgrein the maximum speed is that ob-
tained in the linear casNote,furthermordhat in Eq.(4.64) we have used the
maximum amplitude of the heat wa\ras.is valid with high-frequency thermal
waves (which is the case we are considering), but if the frequency is not sufficiently
high,the instantaneous amplitude of the wave should be used in the derivation of
the wave speed.

It has to be observedhoweverthat whenever the quantity y- 0, then
U -- Uy. The parameten yindeed, vanishes not only in the linear situation, but
also when the two coefficientand 3, appearing in Eq44.39),are such that
ay =1, according with Eq. (4.4Although interesting studies on the constitutive
assumptions in Eq&4.39) can be found in literatume, are currently not aware
of clear experimental/theoretegiressions forcand B,. In any casesthose
coefficients should be related to the particular nattédald,as wellas to the
particular working conditiofisis means that nonlinear effects may have a subtle
role,i.e.,they may influence the speetiadt waves in some caseg] have no
relevance in other situations.

The present analysiBpoweverpoints out that a deeper investigatiorthod
constitutive relations in Egs. (4.39) may have a great importance for a satisfactory
treatment of heat transfer in nonlinear situations.

In closing this part, we note that in the case of heat waves, dppesqeegl v
in Egs. (4.61)-(4.63) can be also meant as the phonon speed.
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4.4 Externally controllable lenses for heat waves

In Ref. [120] the authors theoretically studied how curved interfaces in a material
medium can be used to concentrate the energy carried by parallel thermal rays into
a given focapoint. This can be donefor exampleby intercalating a piece of
a biconvex materiBlinto a ribbon ofmaterialA (see Fig.4.2 for a qualitative
sketch)the curved element B acts as a lens for the heat vaaneBycuses the
heat waves into the point F (i.e., the focus of the heat lens).

Figure 4.2Curved interfaces (a piece of a biconvex material B in figure) intercalated
in @ materiala ribbon of materidl). B acts as a heat lenst concentrates the
parallelheat waves (dashed lines in figure) into the point F (the heat-lens focal
point). In figure z indicates the origindirection ofthe heat-wave propagation,
namelythat before the curved interfasayell as the direction of propagation of

the local heat flux.

In Ref. [120]t has been argued that the above simple devarssidered in
analogy with linear optics for electromagnetic waves, could be useful to enhance the
sensitivity of measurement of heat waves, by concentrating in a point the intensity
crossing the totdkansversarea ofthe heat lens.In particular those authors
obtained (see Egs. (9) and (10) in Ref. [120]) that the focal digtance f

1 2 Us
1 _2 U . U
FITR U 1 Us (4.65b)

in the case of a biconvex (b) thin land,in the case of a spherisalthis lens,
respectivelyn Egs. (4.65) R means the curvature radius of the heat lenses, whereas
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Us and  are the speed tfeat waves in the medium A and in the medium B,
respectivelAccording to Eq. (4.64), the heat-wave speed in a medium may depend
on the heat flux in it.

Indeed,nstead ofntercalating a mater&linto a materialA, one may also
have an externally controllable heat lens for plane heat waves propagating through
a thin curved homogeneous layer, by applying a steady hedtdlartijogonal
direction of the layer to a region of it which is limited by the two lines of curvature
radii R, and R, (see Fig. 4.3 for a qualitative sketch).

Figure 4.3Fhin layer crossed by small-amplitude heat waves (dashed lines in figure).
The steady heat flux garge arrows in figure),the orthogonadlirection of the
layer,allows to focalize paralelat waves into the point I figure z indicates

the originadirection ofhe heat-wave propagatioamelythat before the zone

crossed byg

The wave speed in curved region of Abgillifferent with respect to that in
A without the external heat flux, and it depends on the valiwehadlgmay be
controlled from the outsidgjus, this situation has two advantages with respect
to that considered in Ref. [1R2€@&es not require intercalating a different material
Bin A, and the refraction index may be externally conthidléast feature has
some analogies with electrically tunable lenses in nonlinear optics (see for instance
Refs.[121-123]) based on the electro-optic Kerr &dfadimit to that analogy,
indeedwe note that the heat is easiest to diffract than the electric fidid.
means that the boundary tiie region othe system (atop which the external
heat flux g will be imposed) should not be shap,n the case oflectric field
in electrically-induced lendms, blurred. Thus, a more realistic analysistbie
proposed heat-induced lens should take this fact into account.

In more general situations, we may consider, as in usual lenses, a curved region @
material B intercalated in material A, but with the speed of heat waves in material
B being especially sensitive to the value of the externally applied heat flux through
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it; also in this case one will be able to tune the focal distance of the lens from the
outside by modifying the value of the applied heat flux.
In the case of a curved region in the material A, from Eqgs. (4.65) we have

¢ _ R(1-4¢)
=" (4.66a)
R
d _
=25z (4.66b)

wherein & =§|y1|q§, with g being the steady heat flux applied orthogonally to

the layerin analogy with the applied electric field in the electro-optic Kerr effect.

In practicalapplicationsfor a given materiand operating temperaturethe

quantity y is fixed (according with previous observatsersonsequence from
Egs.(4.66) it follows that the fodidtance can be varied by varying the applied
orthogonal heat flux (analogous to the externally applied electric field in electro-opti
Kerr effect)this situation has the obvious advantage of allowing a relatively easy
external control of the value of the focal didtateéhat though the orthogonal

heat flux gis assumed to be high in order that the nonlinear effects on the speed

of the waves are perceptible, we consider that the heat wave propagating along the

plane has a small amplitude. ;

In Fig. 4.4 the behaviors dfe non-dimensiorrartios% as functions dfhe
non-dimensionedtio &, arising from Eq44.66),are plotted.As it can be seen
from that figurdpr a given value of,Athe use of a spheridaat lens leads to
a heat-wave focal distance larger than that arising from the use of a biconvex heat
lens.

In closing this part)et us observe that here we are considering an isotropic
material, but an anisotropic geometry (i.e., a plane layer) and an anisotropic physica
situation (i.e.a small-amplitude linear heat wave in a direction along the layer
joined with a strong constant applied heat fwrtinogonatio the layer).The
focal distances given by Eqgs. (4.65) (which directly allowed us to derive Eqgs. (4.66)
above) were derived for linear waves along tBetlagerfocal distances depend
on the propagation speed of the waves (hamely, on refraction index), which depends
on the total heat flux.

In information theory (sée; instance;hap. 6 in Ref.[4]),it turns out that
the quantit)%q,- has the form% 0h (¢) g in isotropic systems, with?) being
a scalar-valued function of the indicated arguimenir. proposed heat-induced
lens,the anisotropy d¢he physicadituation is reflected in the fact thaalgng
the plate (let us say, along the i = 1 direction) is small and oscillating, whereas the
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N —Eq. (4.66a)
e --—Eq. (4.66b)| |

15 ‘ ‘ ‘ ‘ ‘ —
0.1 0.15 0.2 0.25

Figure 4.4Heat-lens focal distances withgfyf}q%, with g the heat flux flowing
across the region dfe lensprthogonally to the layeheoreticalesults arising
from Egs. (4.660kogarithmic length scales have been used in figure.

squared heat-flux modulus in% tgay be welbpproximated by the (constant)
squared modulug gince the orthogonal applied heatdflletqus say, along the

i = 3 direction) is assumed much higher than the amplitude of the heat wave along
the layer.

In the case of an anisotropic system, the mathematical treatment would be more
complex since the different spdtiattion may affect in a different way the final
resultsExtension to anisotropic systems is obviously of interest and physically well
motivated.



Chapter 5

Nonlocal and nonlinear effects in
hyperbolic heat transfer with
phonons and electrons

Although with a different importanme&scommon materials used at nanoscale
both the electronand the lattice vibrations (ifhe phonons) are the heat car-
riers [124-127h practicabpplicationsnicro/nano electronic devices can be as-
sembled by using different material§a@asinstancepure metals (in which the
electrons are the sole heat carrrmvenetals (in which the phonons are the sole
heat carriers) and semimetals (in which heat conduction is due both to phonons and
electrons) [128, 1Z8jod examples of semimetals are the classical semiconductors
such as Germanium, Silicon, and TelluFharthermal and electric conductivities
of these elements are not so good as those of thebuketadtter than those of
nonmetals, so that semimetals are also known as semiconductors.

A very compelling task in modeling heat transport at micro/nanoscale is the right
understanding of the physics which rules the behavior of the different heat carriers,
such as their propagation, scattering, relaxation, and so onlfl30ndipld, a
correct analysis of these properties should be based on microscopic approaches [13-
either from several versions of kinetic theory or fluctuation-dissipation theorems, or
from detailed computer simulatibhese approaches allow for a detailed under-
standing and descriptioHoweverthis should not make us forget the practical
usefulness and the conceptual challenge of mesoscopic approaches starting from the
macroscopic perspective and deepening into more detailed and accurate description
of physical systems.

Although both approaches have their own qualities and élasvao one is

68
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completely preferred with respect the other one, in this chapter we pursue the sec-
ond type oftrategy to investigate heat conduction in semintetadsticular,

by regarding the electrons and the phonons as a mixheatafarriers flowing

through the crystaattice,and assuming that they are endowed with their own
temperatures [133, 134], here we propose a theoretical model based on the followin
equations and which allows to take into account memwvwiggabnd nonlinear

effects:

q

F+1i=0 (5.1a)
cs
., & K629, Q)
e 4 4 i L. =0 5.1b
Cf T1e T1e C\e;ee T1e ( )
. e ‘2q€
e =y _ et =
T Te T2 0 (5.1c)
o +% = (5.1d)
vV
4 qlp Pet:) quj})i Q’Fl)/ _
q +E + o B 0 (5.1e)
2
p +% Pl =0 (5.1f)
T2p T2p

In Egs. (5.1):

®6° and @ are,respectivelyhe electron temperature and the phonon tem-
peratureThey are related to the intermaérgy of electrorfsand that of
phononsf respectively, by the constitutive assumptions

Ut =<EF (5.2a)
P =de (5.2b)
with § and ¢ being, respectively, the specific heat of electrons and of phonons [1

134]The two above contributions to the internal energy (per unit volume) u
of the whole system are such that

u=u+w (5.3)
whereas the total specific hegtas@+ d.

®¢ and ¢ are,respectivelyhe electron contribution and the phonon contri-
bution to the locdleat flux g[133134].These two different contributions
are such that

Gg=d+4¢ (5.4)
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®Qf and q,? are the electron contribution and the phonon contribution to the
flux of g[2, 91, 135These two different contributions are such that the flux
of heat flux R of the whole system is

Q=CF +& (5.5)

®T11 and g, are, respectively, the relaxation tirfiaod of f.
®T1,¢ and g, are, respectively, the relaxation tinfe afidof ¢ .
®keand i are, respectively, the thermal conductivity of electrons and of phonons.

®'c and , are, respectively, the mean-free path of electrons and of phonons.

5.1 Heat-Wave Propagation

Advanced materials could experience very low temperaxiemely high
temperature gradierfts, which a precise heat-transport nsbadeld be consid-
ered to capture temperature rise from thermal wave propagbice).starting
from Egs. (5.1), in this section we study the propagation of heat (H-jomaves.
the practicapoint ofview,H-waves can be generated by periodically varying in
time the temperature in a point of the medium at hand with respect to its steady-
state reference levet$olitary H-wave, instead, comes into being and travels along
the medium when the latter is heated with a heat pulse.

Here we use the toof the acceleration (A-) wavés:particular we suppose
that the region ahead the travelling surface S is such that

& (xk, t) =0P (X, t) = Q o (x, ) =qf (X, 1) = ¢ (5.6)

Vt e R, with § and § being stationary constant reference levels.
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5.1.1 Heat-Wave Speeds
By taking the jump of each of Eqgs. (5.1) we firstly have

h i ,
lag +_q,‘f, =0 (5.7a)
ce :
h |
[f] +—— - ¢ g _ % =0 (5.7b)
Tlen I C390 T1e
h, i 2 F
2 - o~ =0 (5.7¢)
h i ,
c h oo
e 29 ¢ Q;,
] +2 2~ i,j’ S ) (5.7¢)
Tlfh i vO0 T1p
h i 2 ¢
.p _ p "l _
i o 0 (5.71)
and then
~ (:Z.enl. _
Uee - z (5.8a)
2¢n; KebFn,  Qin;
U+ o f - + T 0 (5.8b)
U e tgqle / —
Q; + =0 (5.8¢)
T2e
U - q'p”" -0 (5.8d)
Z(j’n, o KofPn Af} n;
U+ - + =0 5.8e
Cpeo ' T1p T1p ( )
2¢Pn;

UQ” + 212 =0 (5.8f)
once the use ofhe classicaHadamard relatlonan Ec(ll 52 has brﬁen ma]de
In Egs. (5.8) the fun%tlon@e(t) = [6,n;], cﬁ(t) = qe nj, Q)= Qj Nk,

(1) = [6.n;:1, & (t) q” n; andQ Q‘-’-, nk are theA -wave amplitudes.

Moreover, therein V means the A-wave speed (or, equivalently, the H-wave speed),
and n means the normal unit to the A-wave front.

By straightforward calculatiab$s possible to obtain that E4$.8) do not
only admit the trivial solution if, and only if, the following relation holds:

Ceeo T1eT2e T10) cy 90 T1pT2p T1,Cy
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Equation (5.9) allows us to claim the following ttesulo-temperature the-
oretical model, introduced by Egs. (5.1), predicts that a periodical variation of the
localtemperature in a point dfe system generates two different A-waves which
propagate with different speHusse speeds are

U=y p(pg+ 1+ ¢ . (5.10a)

q___
U=y @+1+y-9, (5.10b)

wherein we have introduced the following speeds

K
Us = ° 5.11a
5 r e ( )
p_ _Kp
U= go (5.11b)

and the following non-dimensional scalar-valued functions

0, = gn; 0, = an;
e — P — o
s @%ﬁ (5.12)
we — evv l,Up — p
TeKe T2pKp

It seems important to note that throughout the present chapter we use the
appellation electronic heafEH-) wave for the A-wave whose speed is given by
Eq. (5.10a)and the appellation phononic heat (PH-) wave for the A-wave whose
speed is given by Eqg. (5.10b).

As it is clearly showed by Egs. (5.10), the EH-wave speed diverges either when
Tie » 0, orwhen g, - 0. Similarlythe P H-wave speed diverges either when
T1p — 0, or whemg - 0.

Nonlocal Effects and Heat-Wave Speeds

Nonlocaleffects influence both the EH-wave spand,the P H-wave speed.
According to Eqs(5.10) those effectén fact, are introduced byeyin U¢, and
by ¢4 in UP. Since those functions are always posttisgossible to claim that
nonlocakffects enhance the speeds of propagdlti@ct, when nonlocaffects
are negligiblee.,if we may setgy= 0 and ¢4 = 0 in Eqgs.(5.10)those speeds
become

Ue =15 p(pg+1—
q
UP = U

(5.13a)

®
+1-¢ (5.13b)

R
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Nonlinear Effects and Heat-Wave Speeds

Throughout the present chapter we use the appellation pgsiovelie H-
wave which is propagating in the same directtbe afierage heat flu¥ and
the appellation negative )X for the H-wave which is propagating in the opposite
direction of the average heat/?lux q

Nonlinear effects influence both the EH-wave spakthe P H-wave speed.
According to Egs. (5.10), those effects, in fact, are introduciedUSy and by
@, in UP. Since the sign dfhe scalar pl’OdUCl,Oq/- depends on the direction of
propagation, from Eqgs. (5.12) it follows that

®@. >0 and ¢ > 0 for positive A-waves
®@. <0 and ¢ < 0 for negative A-waves

As a consequendeom Eqs(5.10) it follows that botl,land ¥ depend on
the direction of propagation of the H-wdagsarticularfrom the results above
we havepsU® and U <UP.

When nonlinear effects are negligible, i.e., whénapd ¢ = 0, Eqgs. (5.10)
become

e P15y (5.14a)

r=¢ P17y (5.14b)

Ue

and both those speeds no longer depend on the direction of propagation.

5.1.2 Heat-Wave Amplitudes

When the A-wave amplitude becomes infinite we may claim that the A-wave
becomes a shock wave.
Differentiating with respect to time each of Egs. (5.1) and then evaluating their
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jumps through S we have

h. i &
& + i =0 (5.15a)
V. hi ( hi) h._ i
o ] Ke O 2¢ g ¢, _ 9,
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when the Hadamard relations (1.52) are employed in a recursi®bsgaying
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that from Egs. (5.8a), (5.8c), (5.8d) and (5.8f) one respectively has

UGS = ¢n, (5.17a)
A “26Pcen;n;

e — __© Vi

j=- (5.17b)
U = ¢n; (5.17¢)
QP = _M (5.17d)

ij T2p

by coupling Egs. (5.16a)-(5.16¢) and Egs. (5.16d)-(5.16f), respectively, the following
Bernoully-type ODEs arise:

‘;% + 0B+ RO =0 (5.18a)
‘;@9 + 40, + B0’ = 0 (5.18b)

For the sake of computational convenience, in writing ODEs (5.18) we introduced
the following non-dimensional variable

t” =t i+i (5.19)
T1e Tlp

as well as the following non-dimensional functions

©Q = & 6, = .
60 60
oo = (Ve + [ l-;Ue) p q. = Vg + T;wp T1e
2 (k+ @) (=~ 4¢0) (ne + 1) P20+ @) (h-40) (et g
,Be Qoeyerlp T_ B (ppyprle T_;;)
(y: +@) (- 4@) (et Tp) Y 7 823 + @) (- 4@) (Ge+ 1p) Yy
Ye = Ze Yo = U_g
? _ Tle 17 = Tip
Toe Py

(5.20)

once Eqs(5.10)-(5.12) have been taken into accfunt6= 4gand y, 6= 4g
then ODEs (5.18) can be solved to find

= ? eO

e\l ) = T 7 5.21
O (t7) L NPT (5.21a)
6, (t7) = o (5.21b)

' + @, e -1
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wherein @= . (t = @, (t” = 0) are the initial conditions, and
r
2 7
o= f;’ew . (5.22a)
Z%Vp Tp?
= (5.22b)
o V,? + T Y

When g = 4@ one simply has.@?”) = 0, Vte R*, as well as whep y 4¢
one simply has,&’) = 0, Vte R*.
Although in the very general case the initial condition on the temperature-wave
amplitude ®@may be either positiva, negativehere we assume @ R*. Un-
der this assumptiobelow we comment more in ded@mhe results arising from
Egs. (5.21).

Positive Heat Waves
According with the observations made in 4cl we start to observe that
from Eqgs. (5.20) one may have that
®Ye>4@-=>0.>0,andy>4p,=a,>0
®Ye<d@e=>0.<0,andy<4@,=a,<0

whereas from Egs. (5.22) it follows tha® and , > 0, when positive H-waves
are propagating through the mediarnthis situation the main cases below may
occur.

1. If ye > 4. and y > 4¢,, then both @ and @ will decay to zer&Ve may
claim, therefore, that in this case both the EH-waves, and the P H-waves will
be damped.

2. If ye < 4@ and y < 4¢,, then both § and & will blow-up, respectively, at
the following finite values

t2=-a;tIn 1 4t (5.23a)
0Oe

£=-aln 1+ (5.23b)
Op

We may claim, therefore, that in this case both the EH-waves, and the P H-
waves will become shock waves.
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Negative Heat Waves

According with the observations made in Sec. 5.1.1, we start to observe that in
the case of negative H-waves from Eqgs. (5.20) one Rasrad ¢, > 0, whereas
from Egs. (5.22) one has 0 and , < 0. By indicating with, = min (L] ; |,]),
and with,, = max (}| ; [5]), in this situation the cases below may occur.

1.1f 8 € 0;;; , then both @, and @, will decay to zeroWe may claim,
thereforethat in this case both the EH-wavemd the P H-waves witle
damped.

2.1f 0y = ;, then

(a) ©. will decay to zero, andwll always remain constant (i,es, © ),
Vf € R*), when , < .. We may claimthereforethat in this case
the EH-waves will be damped, and the P H-waves will not change their
shapes.

(b) ©. will always remain constant (i&.= - ., Vf € R*), and @ will
decay to zerovhen . < ,. We may clainthereforghat in this case
the EH-waves wilhot change their shapasd the P H-waves wbk
damped.

3.1f@o€ ;. ,then

(@) ©¢ will decay to zero, ang ®ill blow-up at the finite valligiven by
Eq. (5.23b), whep< .. We may claim, therefore, that in this case the
EH-waves will be damped, and the P H-waves will become shock waves.

(b) ©, will blow-up at the finite valjegiven by Eq(5.23a)and & will
decay to zero, whegr ,. We may claim, therefore, that in this case the
EH-waves will become shock waves, and the P H-waves will be damped.

4.1f 0 = ;}, then

(a) ©. will always remain constant (B.= - ¢, Vf € R*), and @ will
blow-up at the finite valygdiven by Eq(5.23b)when , < .. We
may claimthereforethat in this case the EH-waves willot change
their shapes, and the P H-waves will become shock waves.

(b) ©. will blow-up at the finite valegiven by Eq(5.23a)and & will
always remain constant (i&,,= - ,, Vf € R*), when.< ,. We
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may claim, therefore, that in this case the EH-waves will become shock
waves, and the P H-waves will not change their shapes.

5.1f 09> ;}, then @ will blow-up at the finite validegiven by Eq(5.23a),
and @ will blow-up at the finite vajugen by Eq. (5.23bYe may claim,
therefore, that in this case both the EH-waves, and the P H-waves will become
shock waves.

5.2 Thermodynamic considerations

In this section we prove the thermodynamic compatibilityeafheoretical
model expressed by Eqgs. (3d this aim, we put ourself in the context of EIT [4,
7, 34, 135, 136] and assume the following state space:

s= 6,4.G.0.4F

Then we start from the lodadlance of the specific entropyes,Eq. (1.84).
According with the classical Liu procedure for the exploitation of the second law of
thermodynamics [87], a linear combination of the specific-entropy production and of
Egs. (5.1) (which represent the constraints introduced by the state-space variables)
has to be always non-negative along any admissible thermodynamis@rocess.
consequence, from the coupling of Egs. (5.1) and the balance of the specific entropy
we have that the following extended entropy inequality

. . i . ¢ K& 24 Q.
S+F -N EF+2L AN P+ N+ - D
\f' Cs C('? | : q’e T1e T1e C?zee T1e
— AP dj+i+Kp63_ Z(fd),_ Z)/ X e +i_ ‘gqu
: ' T1p T1p | C\?GD T1p I I T2e T2e
: P 2P
_/\f? :;?+_’/—M >0 (5.24)
j i T, T2p

has to be always fulfilled, whatever the thermodynamic plotkesestended
entropy inequality above the functiols, M\; , A, N’ and /'S are the so-called
Lagrange multipliers; they may depend on the whole set of state-space variables, in
principle.

The agreemendf Egs. (5.1) with second law othermodynamics cannm
checked until constitutive assumptions onjshene been given, since the latter
functions do not belong to the state spbhterder to remain on a very general
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level and let the second law give information about them, here we assume

s=s&d¢,C.0, 4,9 (5.25a)
F=F 4.0 dq (5.25b)

The insertion of Egs. (5.25) into inequality (5.24) leads (by straightforward cal-
culations) to the following sets of necessary and sufficient conditions which guarante
that second law of thermodynamics is always fulfilled

s

o - AC = 0 (5.26a)
(;3_;? _Ae=0 (5.26b)
a?gsg “AS =0 (5.26¢)
% _AP=0 (5.26d)
:_5? AP =0 (5.26e)
62)_85_,\5 -0 (5.26f)

and

%,: _ /\T,-elf:e — 0 (5.27a)

aa;;ez +/\fik ~0 (5.27¢)

% _ /\T{-’lf:’ —0 (5.27d)
P p~2

aaég +/\fjk =0 (5.27f)

together with the following reduced entropy inequality:

of 0s  Qf 0s ¢ 0s i 0s

-+ —=———+———F5+——5=<0 5.28

TleaCIie Toe aQi Tlp aq,p T2p aQIFIJ ( )
According with the thermodynamic restrictions i(5E25)-(5.27by direct

calculations it is indeed possible to verify that the two-temperature model based on
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Eqgs.(5.1) always agrees with second |der i€xampléhe following generalized
forms of the specific entropy and specific-entropy flux are used, respectively,

T T
= 9(6 @) - = _ff - Qe ¢f - 2 (e e

2K.6¢2 2K 002271
- PP - aP - = QPP (5.29a)
2k, 602 i Yi i ZZKPGOZ"% ij ~j
¢, q KOQj KpQjf
S =1 L € p
Bt 1 odE- - de° (5.29Db)

wherein g6, @) is the local-equilibrium entropy, and

ot = ae(ee)%( (5.30a)
o = o (6°) kgk (5.30b)

are suitable vector-valued functiovith a® = a€(6°) and a? = a” (6°) being
suitable scalar-valued functions of the indicated argumettanandikdpeing
the moduli of the indicated vectors.

The above considerations allow us to claim that the two-temperature model
introduced by Egs. (5.1) has well-posed theoretical basis.



Chapter 6

Conclusions and perspectives

Thermal waves have been an inspiring topic in modern nonequilibrium thermo-
dynamicsindeedwhereas the classittansport theory based on FL predicts an
infinite speed for very high frequéneybserved speed is finlteermalwaves
have fostered research on generalized transport equations leading to finite speed in
this limit.In their turn, these generalized transport equations have provided a fruit-
ful challenge to nonequilibrium thermodyndmedes)se they are not compatible
with the positive-definite character of the local-equilibrium entropy and, therefore,
new constitutive equations for the entropy have been searched in order to achieve
compatibility of these transport laws with the second law of thermidthsgamics.
theoretical aspects are nowadays reasonably understood, but there is still a wide fiel
of research for practiapblications of thermvadvesFor instancdan gases they
have been useful to explore ultrasound and hypersound velocities, and to check dif-
ferent higher-order approximations to the solutions of Boltzmann dqaation.
the other handin superfluids the thermahbves represent a very usédol to
explore the length density of quantized vorteMbtnesver, thermal waves may
also provide dynamical information that is lacking from usual steady-state measure-
ments.A very compelling challenge is to search from suitable theoredilsl
what information could be obtained from these kinds of measUiteenefors,
starting from the formulation of heat-transport model beyond the classical FL, this
thesis is principally devoted to the exploitation of heat waves, the analysis of which
may be interesting for the possible analysis of nanomaterial properties.

In more details, after that a brief summary of the main mathematical tools and of
the theoretical physical background is made in Chapter 1, in Chapter 2 a theoretical
model based on the MC equation has been used to point out the role played by the
composition gradienbo the speed and the amplitude of heaffivawddained
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results may be interesting for pracipalicationsFor examplamagine that a
component on a chip made of a FGM is perturbing the surrounding system since it
is the source of thermal disturbances with an initial temperature-afgitude.

one may face with the following two problems:

® Data transfer. If thermalpulses are used to send data from a component to
another one, observing that the temperature of a heat pulse can be related to
the amount of energy that it is carrying, then one should pay attention on the
way of how,cchanges between them if no information loss are required.

® Thermal Isolation. If one aims to isolate a component from another one (that
is, if a component has not to be influenced by thgrolsés produced by
another componenthen one should pay attention on the waho# c,
changes in space between them in order to have a good isolation.

It has to be noted that in the above analysis the different mditexdtions
have been supposed to depend both on the temperature, and on the stoichiometric
variableln the very general case, indeed, material functions as foranarnple ¢
should depend on the whole set of the state-space variables, i.e., in developing that
theoretical model we should had supposed bath&; g, c), and k = k (6,,cc).
Although still possible, those assumptions would have lead to several complications
in the calculations in view atther nonlinear termBrom the practicaoint of
view, the simplifying assumptions mean that the proposed analysis has to be meant
only as a special case of a very general theoretidal thisdsdnse, we note that
a more refined analysis of heat-pulse propagation in FGMs should take into account
(as we previously observed) nonlocal effect® do thisan interesting way is
to replace MC equation with the following evolution equation for the heat flux

ak+1
atk+1

X gk-1
g + q+ k6, = et 1% T T
k=1
which has been derived in R¢LL37]n the framework oEIT [4] by letting N
higher-order thermodynamic fluxes belong to the stat®¢paceing that the
thermalconductivity may be frequency dependent Ws38hte that Eq(6.1),
which reduces to MC equation when no higher-order thermodynamic fluxes appear
in the state space (i.@hen N = 0),is suitable to describe heat transfer in high-
frequency processes [137].
Since in the last decades 1-dimensional nanostructures (such as wires, rods, belts

and tubes) have drawn significant attention owing to their potential application in

] (6.1)
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photonics and energy conversion dewvites;ontinuous reductiontbfeir sizes

brings up new questions concerning the analysis of heat tisesp@itexperi-

ments or simulations on heat transport along these devices demonstrated that they
exhibit a strong size dependence of their electronic and optical drajesrdies.

due to the small sizes of the systems, the gradients of the heat flux will be important
as well as temperature gradianis their nonlinear effects will be no longer neg-
ligible.lt is, therefore, important to examine more deeply the influence of nonlocal
and nonlinear effects, and generalized heat transport equations must be looked for.

As a consequence, in Chapter 3 we focused our attention especially on nonlocal
and pure nonlinear modejuationssince one ofhe current hot topics in heat
transport is the so-called phononics (wherein classical nonlinear effects are explored
for the development of heat rectifiers and heat amplifiers analogous to those used s¢
successfully in electronics), in fact, the analysis of new kinds of nonlocal and nonlin-
ear effects seems especially appropnidbe speciatase of pulse propagations,
the role played by nonlocal and nonlinear effects has been investigated both in the
case of rigid bodyand in the case & deformable bodyn the study other-
moelastic wavan, fact,the role of nonlinear effects may be especially important
in miniaturized systems, in structured solids, or disordered solids with local stress:
for instancean the last two decades the study of nonlinear thermoelastic coupling
in nanosystems became important due to its application in the analysis of ultrafast-
laser pulses, or in the manufacturing of devices with high-frequency switching.

A point for the future research in this field would be considering how elastic
stresses may modify the value of the thermal conductivity, and how a heat flux may
modify the values of the elastic coefficldwise couplings would allow a practi-
cally useful method to control phonon propagation (namely, the heat transfer along
the system) by applying suitable extareahanicatresses on itn particular,
these applied stress could be inhomogeneous, in such a way that though the system
was homogeneous from the compositional point of view, it would become a graded
system (namely, a system where the value of the parameters depends in a controlle
way on the position along the syst&wgh future explorations would then com-
bine results of Chapter 2 in this thesis on wave propagation in graded systems with
results in Chapter 3, with non-linear thermal and elastic effects.

The great interest in generalizing the linear theory of heat waves bps been,
to now, a fruitful stimulus to generalizations of non-equilibrium to nonlinear situa-
tions, namely, for waves with sufficiently high ampghtndassystems, indeed,
nonlinear effects may be understood not only as the presence of nonlinear products
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of the temperature gradient (or the heat flux) in the transport equation, but also a
state-space variabldspendence in the matefualctions Along with the latter

point of view, in Chapter 4 a nonlinear evolution equation for the heat flux has been
derived in a conservation-dissipation formalism in the framework of extended ther-
modynamicsln the case ohigh-frequency heat wavbat theoreticaroposal

leads to an equation which is analogous to the equation for electromagnetic wave in
nonlinear optics, in such a way that some well-known problems of nonlinear optics
(e.q., the second-harmonic generation, the so-called Kerr effect) can be investigated
also in the case of heat tran3ferthis end we observe that considering nonlinear
electromagnetic waves and thermal waves is necessary in practical situations using
intense and swept laser pulses to heat drsphdticular, the results obtained in

this chapter follows from the dependence of the relaxatjantrdeerthermal
conductivity k on the local value of heatflthgse features could be exploited

for new applications of heat trandpaorinstance, the aforementioned dependence

of 11 and k on g could be used to externally continel speed gfropagation of

heat waves by imposing on a thin nanolayer a steady hgpefhwngicular to

the layer.ln this casein fact,if the region wherein the transvdrmsat flux has

been imposed displays curved boundaries, suitable heat lenses could be produced tc
focalize the heat waves in a priori chosen focal point, the position of which depend-
ing on the locahtensity of the heat wavéhis would be especially interesting,

for instance, for the measurement of the intensity and the frequency of heat waves.
The use of the external heat flhrgyithe advantages of producing the heat lenses

for some interval of time, and eliminating them when they are no longer necessary.
In Ref. [120] heat lenses for thermal pulses have been also proposed by inserting in
material A a small region of a material B having curved bouHderegr, this

kind ofheat lenses is static since they cannot be easily charepadyast with

imposing a perpendicular external heat flux over a given region of the system.

It is worth to be noted that a deeper comparison of the nonlinear equation for
phonons and the equation of nonlinear optics seems promising, because of the very
extensive work which has been done in the latter fielhds may suggest new
physical effects, new applications, and new mathematical techniques in the domain
of nonlinear heat transportligher harmonic generatiom,externally induced
focalizationself-focusing afitense signaler the existence eblitonic solutions
may find some applications in the fultuparticular, soliton transport may play
an interesting role for the transmissiomfifrmation by means béat signals.

Recently, Sciacca et al. [139] have explored some kinds of heat solitons in nanowires
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with nonlinear heat exchange with the enviroramérthey have computed the

energy associated to the transport of a single bit of information, which depends on
the kind ofsoliton being used to transportThis may be the subject fafture

research, too.

The analysis of coupled processes is another outstanding feature of nonequilib-
rium thermodynamics, and represents an active challenge in practical applications ir
materials sciences, high-power lasers, and optimization of energy ideankration.
emphasis is put nowaddgs,examplen the application of the coupling of heat
and electricitfrom the point of view of heat transport, the most important conse-
quence of such a coupling is that the family of heat carriers is no longer constituted
by the phonons onbs it happens in dielectric crystals at low tempesataes,
electrons and/or holes may contribute to the heat trangportFor this rea-
son, finally in Chapter 5 the Extended-Thermodynamic approach has been used to
model heat transport due to phonons and electrons, under the hypothesis that the
energy and entropy productions due to the presence of an electromagnetic field are
negligible.Therein particular emphasis has been given both to noaloddb
nonlinear effects which are evident in situations wherein the mean-free path of the
heat carriers is higher than the characteristic length of tBasgsteenphonon
mean-free path and the electron mean-free path may be considerably different from
each othetthe size ofhe system may have different effects on both constituents
and,therefordf may allow a high degree of cownfrtthe transport properties of
systems, at spatial scales comparable to the mean-free path of some of the species.

Note that a model considering nonlocal effects in phonons and in electrons could
be extrapolated to superconductorkere,instead othaving an electron flow,
one has a flow of Cooper electron p&iue to the macroscopic coherence of the
collective wavefunctiortted systemthere is a relatively long correlation length
which,in contrast to what we have been examined in Chapteo&ld be due
to quantum effects rather than to the mean freelpdtte futurejt would be
interesting to explore this perspelrtdexd, superfluidity has been the subject of
much work in extended thermodynamics, but not yet supercoidud,\diye
open way to the future is the extrapolation of some of the hydrodynamic behaviour
of electrons studied here to the field of superconductivity.
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