

Università degli Studi di Salerno

Dottorato di Ricerca in Informatica e Ingegneria dell’Informazione
Ciclo 33 – a.a 2019/2020

TESI DI DOTTORATO / PH.D. THESIS

Statistical Techniques for
Mitigation and Prevention of

Distributed Attacks over
Communication Networks

MARCO TAMBASCO

SUPERVISOR: PROF. VINCENZO MATTA

PHD PROGRAM DIRECTOR: PROF. PASQUALE CHIACCHIO

Dipartimento di Ingegneria dell’Informazione ed Elettrica
 e Matematica Applicata
Dipartimento di Informatica

ii

Contents

Acronyms and Abbreviations 1

1 Introduction 5

1.1 Security Issues over Networks 5

1.2 Distributed Denial of Service Attacks 6

1.3 Network High Availability and Performability . . . 12

1.4 Main Contributions and Overview 14

2 Background 17

2.1 Related Work on DDoS attacks 17

2.1.1 Randomized L7-DDoS Model 20

2.1.2 The Botnet Identification Condition 23

2.1.3 Consistent Botnet Identification 26

2.2 Related Work on Availability 29

2.2.1 Stochastic Reward Networks 31

3 DDoS with Multiple Emulation Dictionaries 35

3.1 Model . 36

3.2 Pairwise Cluster Interaction 37

3.3 Botnet Identification Algorithm 39

3.3.1 Cluster Formation 40

3.3.2 Cluster Expurgation 44

3.4 Practical Issues . 46

iii

3.4.1 Violation of Condition (3.17) 46

3.4.2 Clusters’ Asymmetries 48

3.4.3 Numerical Analysis 50

3.5 Experimental Results 52

4 High Availability of Telecommunication Networks 63

4.1 Performability of Service Chains 64

4.1.1 Service Availability 65

4.1.2 Overview of the IMS Architecture 67

4.1.3 Containerized IMS Infrastructure 68

4.1.4 Availability Model of Containerized IMS . . 71

4.1.5 Homogeneous Scheme 72

4.1.6 Homogeneous Co-located Scheme 76

4.1.7 Heterogeneous Co-located Scheme 78

4.1.8 Heterogeneous Mixed Scheme 78

4.1.9 The Availability/Cost Optimization Problem 81

4.1.10 OptChains+ Algorithm 82

4.1.11 Numerical Evaluation 86

4.1.12 Sensitivity Analysis 93

4.2 The NFV-based model of IP Multimedia Subsystem 95

4.2.1 Availability Model of virtualized IMS 96

4.2.2 Stochastic Reward Networks for vIMS . . . 97

4.2.3 Model Evolution 98

4.2.4 Numerical Analysis 100

4.2.5 Transient non-Markovian Analysis 103

4.2.6 Sensitivity Analysis 105

4.3 A Tool for HA Model Generation 107

4.3.1 SFC model generation 107

4.3.2 Network Service Module 107

4.3.3 Model-to-Model Transformation 108

4.3.4 SRN Module 108

4.3.5 Model-to-Text Transformation 109

4.3.6 SRN Evaluation 109

4.3.7 Assembly & Presentation 110

4.3.8 Graphical Appearance 110

iv

5 Conclusions 115

A Appendix 119

Bibliography 131

v

Acronyms and
Abbreviations

APT Advanced Persistent Threat.

BIC Botnet Identification Condition.

cIMS containerized IMS.

CNF Containerized Network Function.

CNR Containerized Network Replica.

CNT Container.

CSCF Call Session Control Function.

CTMC Continuous-Time Markov Chain.

DCK Docker daemon.

DDoS Distributed Denial of Service.

DNS Domain Name System.

EDR Emulation Dictionary Rate.

GAN Generative Adversarial Network.

HPV Hypervisor.

2 Acronyms and Abbreviations

HSS Home Subscriber Server.

HTTP HyperText Transfer Protocol.

HW Hardware components.

I-CSCF Interrogating CSCF.

IaaS Infrastructure as a Service.

IDS Intrusion Detection System.

IMS IP Multimedia Subsystem.

IoT Internet of Things.

MANO Management and Orchestration.

MIR Message Innovation Rate.

MRM Markov Reward Model.

MTTF Mean Time to Failure.

MTTR Mean Time to Repair.

NFV Network Function Virtualization.

P-CSCF Proxy CSCF.

RBD Reliability Block Diagram.

S-CSCF Serving CSCF.

SDN Software Defined Networking.

SFC Service Function Chain.

SIP Session Initiation Protocol.

SMTP Simple Mail Transfer Protocol.

Acronyms and Abbreviations 3

SRN Stochastic Reward Networks.

VM Virtual Machine.

VNF Virtual Network Function.

4 Acronyms and Abbreviations

Chapter 1

Introduction

1.1 Security Issues over Networks

Nowadays, dealing with security aspects of modern telecommu-
nication networks is extremely challenging. On one hand, novel
paradigms such as the 5G, Internet of Things (IoT), Network Func-
tion Virtualization (NFV), Software Defined Networking (SDN),
just to mention a few, represent a great opportunity to have an
extremely interconnected world. On the other hand, the com-
mon all-IP structure inherited from the aforementioned paradigms
makes them exposed to a huge number of network threats. For
instance, a 5G network can be jeopardized by a man-in-the-middle
attack; the sensors belonging to an IoT system might be compro-
mised so as to become vectors of a fast-propagating threat which
follows an avalanche effect; the weak nodes of an NFV/SDN ar-
chitecture (i.e. the network interfaces) can be attacked to gain
the access to critical elements such as the operating system or the
hypervisor. It is interesting to analyze some official data provided
by the Clusit [1], the credited Italian association for information
security. For instance, Fig. 1.1 reports the severity (graded ac-
cording to 3 levels - critical, high, medium) for 10 representative
network targets monitored in 2019. It is possible to notice that
the governmental and critical infrastructures were subject to most
attacks with “critical” severity, followed by banking/finance and

6 1. Introduction

other relevant applications. Figure 1.2 shows the severity for some
specific network threats monitored in 2019. Here it is possible to
see that techniques such as Advanced Persistent Threat (APT),
0-day attacks and Distributed Denial of Service (DDoS) attacks
are the most dangerous in terms of severity. In the next section we
focus on the last category (DDoS) which, in particularly in its L7
variant (where L7 refers to the application layer of the TCP/IP
protocol stack), represents one of the most alarming threats nowa-
days affecting communication networks.

Figure 1.1: Severity distribution for 10 representative targets in
2019 (Source: 2020 Clusit Security Report).

1.2 Distributed Denial of Service At-

tacks

The purpose of a classical Denial of Service (DoS) attack is to make
a service unavailable. This cyber-attack is typically performed by
overwhelming the target with spurious requests, overload it and
block the use of the service requested by legitimate users. One
dangerous evolution of a DoS attack is a Distributed DoS (DDoS)
attack, which takes place when the target is flooded by many

1.2. Distributed Denial of Service Attacks 7

Figure 1.2: Severity distribution for attack type in 2019 (Source:
2020 Clusit Security Report).

sources with relatively small (thus, non-suspicious) individual re-
quests rates. In the DoS scenario, an Intrusion Detection System
(IDS) can easily detect the attack since the attacker generates a
great volume of traffic from a single source. In comparison, in a
DDoS attack the small rate of fake requests from different sources
makes practically impossible to detect them using indicators of the
network traffic volume. The sources of the attack are represented
by many compromised hosts (the bots) forming a botnet coordi-
nated by a botmaster. The botmaster instructs the bots to send
specific attack packets to the victims. Botnet launching DDoS
attacks can be very dangerous and can make rapidly unavailable
significant portions of the network. A DDoS attack can be bought
on some darknets in the form of a service (DDoS as a Service) for
as little as $10 for one hour or $60 for one day. Due to its flexibil-
ity, a DDoS attack can be designed to damage network resources
in a number of application domains as shown in Fig. 1.3. Such a
figure shows that the DDoS phenomenon appears to be “no holds
barred”. The most targeted sectors are gaming, finance/insurance,
services and entertainment.

Typically, DDoS attacks can be implemented at various layers
of the TCP/IP stack. Some examples are briefly described below:

� SYN flood attack: attackers send a huge number of SYN

8 1. Introduction

requests to a victim starting the three-way-handshake pro-
cedure of the TCP protocol without completing it. The
consumed resources of the half-opened connections at the
victim’s side can make the system unavailable to legitimate
users.

� Teardrop attack: attackers send to a target machine IP
packets assembled with a wrong fragmentation offset. The
reassembling phase can cause a crash of the target machine.

� Smurf attack: attackers send ICMP messages to the broad-
cast address of a network using the victim’s IP address (IP
spoofing). All hosts of the network receive such ICMP mes-
sages and in turn answer to the source IP address (victim),
producing a message amplification that makes the victim
overwhelmed by these responses.

Figure 1.3: Targets of DDoS attack - 2019 (Source: 2020 Clusit
Security Report).

The aforementioned DDoS attacks have in common the pos-
sibility of acting on specific fields of the TCP/IP stack, mainly
positioned at the network (e.g. Teardrop and Smurf attacks) or
transport (e.g. SYN flood) layers. Nowadays, revealing and/or

1.2. Distributed Denial of Service Attacks 9

stemming such attacks is no longer a hard task. In fact, an intru-
sion detection system can be easily instructed to selectively inspect
the values of critical flags within the network and transport layers
of the TCP/IP structure, and to raise an alarm in case of sus-
picious combinations of such flags. In contrast, the new class of
application-layer (L7-DDoS) attacks is arising recently as one of
the most powerful threats. In principle, the L7 qualification refers
to all those protocols designed to run at the application layer of
the TCP/IP stack: HTTP, DNS, SIP, SMTP, and many others.
In practice, an L7-DDoS attack becomes very dangerous when
implemented through the HTTP protocol that can be maliciously
exploited to compromise a web resource through artificially crafted
GET and POST requests, giving rise to a broad variety of admis-
sible messages to emulate legitimate traffic patterns. Accordingly,
in this thesis we will broadly use the term L7-DDoS to denote
an application-layer attack exhibiting great richness of admissible
messages used to emulate legitimate traffic, such as HTTP-based
DDoS. These types of attacks are expected to be particularly rel-
evant to next-generation networks. This is because such networks
will exploit widely the HTTP protocol, owing to the convenient
possibility of encapsulating a great variety of messages through a
dedicated REST API interface. For instance, the HTTP protocol
coexists with the SIP protocol to handle the nodes interconnec-
tions in many modern implementations of the IP Multimedia Sub-
system (see Clearwater [2]), an infrastructure having a critical role
in managing the multimedia content across 4G/5G core networks.
Moreover, HTTP acts as a protocol vector for the Management
and Orchestration (MANO) framework, which governs the lifecy-
cle of virtualized services in accordance to the NFV paradigm.
In fact, MANO implementations (e.g. OSM, Open Baton, ONAP,
etc.) expose a broad set of HTTP REST APIs [3] useful to interact
both with internal modules and with the external web resources.

The detection of L7-DDoS attacks is demanding for a series of
reasons, for example [4]: i) the bandwidth is lower in comparison
to DDoS attacks perpetrated at network and transport layer; ii)
GET and POST requests can be forged using fake contents with

10 1. Introduction

Figure 1.4: An example of L7-DDoS attack against Logitravel, a
famous worldwide travel agency (Source: Verizon provider).

potentially infinite possibilities; iii) during a L7-DDoS, the TCP
and UDP protocols are actually used in a legitimate way. There
exist specific real-world examples showing the relevance and power
of L7-DDoS attacks. One is the case of Logitravel, a worldwide
travel agency interested by an L7-DDoS attack with peaks reach-
ing approximately 9 million requests per minute (corresponding
to about 150000 requests per second). The analysis of such attack
has been carried out by Verizon [5] and is reported in Fig. 1.4.
To put this in perspective, the Logitravel agency has daily peaks
of about 3300 requests per second across the infrastructure hosted
on Verizon Edgecast CDNs. Accordingly, the considered attack
has produced a spike 50 times larger than the normal load on
the original infrastructure. The sources of the attack are primar-
ily originated from Europe (in particular from France, Spain and
Italy). Moreover, further investigation revealed that the bunch of
L7 requests were HTTP POSTs to Logitravel’s quoting and pricing
API endpoints, and then translated into an exceptional amount of
back-end database queries as shown in Fig. 1.5.

From a topological viewpoint, DDoS attacks might rely on bot-
nets that exhibit different architectures. Some exemplary archi-
tectural scenarios are shown in Fig. 1.6 where we can consider the
following taxonomy:

� Centralized Architecture: this is probably the most

1.2. Distributed Denial of Service Attacks 11

Figure 1.5: Back-end database queries relative to the L7-DDoS
attack shown in Fig. 1.4 (Source: Verizon provider).

common architecture. The botmaster instructs the botnet
through the so-called Command & Control (C&C) centers,
which are often exploited as load balancers.

� P-2-P Architecture: the bots share some information
about the target. Such an architecture exhibits more re-
siliency since the problem of a single point of failure (present
in the centralized solution) is avoided.

� Hybrid Architecture: this architecture represents a kind
of mix between centralized and P2P scenarios. Two types
of bot agents are present: server and client bots. The for-
mer have management roles, whereas the latter perform the
attack.

From a technological point of view, the device in charge of
detecting and mitigating DDoS attacks is a Network IDS. Such
devices (implemented either by hardware and software) are strate-
gically located in “hot” points of networks (e.g. close to routers,
border gateways, sensible network targets) to collect and analyze
the data flows. The technical literature suggests two kind of ap-
proaches: misuse and anomaly detection. The former relies on
a set of rules (similar to the rules implemented by anti-viruses)
allowing to reveal suspicious behavior within a traffic flow (e.g. a
weird combination of TCP flags possibly resulting in a SYN flood
attack). The latter is based on the idea that the deviation from
a regular activity might be a symptom of a network attack. Un-

12 1. Introduction

C&C C&C

Botmaster

BotBot

Bot

Bot

Bot

Bot

Bot

Bot Bot

Bot

Bot

Bot

Bot Bot

Bot

Bot Bot Bot

Centralized

Architecture

P-2-P

Architecture

Hybrid

Architecture

Botmaster
Servent

Bots

Client

Bots

Figure 1.6: Botnet architectures and models.

fortunately, both misuse and anomaly detection approaches could
result ineffective to deal with modern L7-DDoS attacks. Some
of these attacks, in fact, exhibit a very subtle behavior consist-
ing in emulating almost perfectly the web activity of legitimate
users. Devising reliable strategies for botnet identification under
L7-DDoS attacks is one of the main contributions of this thesis,
which will be discussed in great detail in Chapters 2 and 3.

1.3 Network High Availability and

Performability

A very interesting peculiarity of a DDoS attack is given by its
duration. As can be seen in Fig. 1.7, over 95% of DDoS attacks
lasted less than 3 hours, and just a tiny fraction (0.24%) goes be-
yond 24 hours. Such information suggests that, in many cases, it
is impossible to quickly react to such incredibly fast attacks. In
this spirit, an effective botnet detection and identification strategy
can be coupled with the design of a robust and resilient network.
This latter aspect can be addressed through the high availability
and performability concepts. High availability (HA) means that

1.3. Network High Availability and Performability 13

Figure 1.7: Duration of DDoS attacks - 2019 (Source: 2020 Clusit
Security Report)

the maximum tolerated downtime of a system (i.e. a network in-
frastructure) amounts to 5 minutes and about 15 seconds per year.
Another way to express HA is that the probability that the sys-
tem is working when requested for use amounts to 0.99999 (the
so-called “five nines”). Five nines is an industry benchmark his-
torically adopted to characterize telecommunication systems (from
traditional telephony to IP-based networks) in terms of their abil-
ity of providing a service. It also holds within modern networks,
where the impelling softwarization process imposes new challenges.
Virtualized and Containerized environments arising with the Net-
work Function Virtualization (NFV) paradigm, in fact, drastically
modify the structure of network nodes (e.g. router, switches, web
servers, firewalls, and many others) whose software logic (often
known as Virtual Network Function - VNF) is decoupled from the
hardware resources through intermediate entities such as hyper-
visors or container engines. On the other hand, performability
(performance + availability) takes into account also performance
metrics of a system, namely its ability to provide a service accord-
ing to a specific demand level. For instance, in case of a system

14 1. Introduction

such as IP Multimedia Subsystem (IMS), the performance is mea-
sured in terms of the maximum number of concurrent multimedia
sessions that the system is able to support. Generally speaking,
to observe an improvement of availability and performability, the
design of specific redundancy strategies is a fundamental step. In
fact, having more redundant network elements (or “replicas”) such
as hardware, hypervisor, software, guarantees more resiliency to
faults. Obviously, one must account for the costs associated to re-
dundancy, putting in field strategies that maximize the trade-off
between availability/performability and costs. This critical issue
will be addressed in Chapter 4.

1.4 Main Contributions and Overview

In this thesis it is possible to recognize two main contributions.
The first one pertains to distributed network attacks, and in par-
ticular to the randomized DDoS attacks originally introduced in
[6], for which we provide some useful advances. Precisely, we:
i) formalize a novel challenging scenario that accounts for botnets
spread over different clusters where the emulation dictionaries may
be partially shared (overlap); ii) devise a consistent algorithm to
correctly identifying the bot clusters; when it is not possible, the
algorithm allows to discriminate bots from legitimate users any-
way; iii) carry out an extensive experimental campaign over real
datasets, which allows us to examine a broader range of users’
behavior as compared to previous results [6].

The second contribution pertains to the design of architec-
tural countermeasures against network attacks. In particular, we:
i) exploit the Stochastic Reward Networks (SRN) formalism to
characterize a “virtualized” network in terms of failure and re-
pair events of its composing elements (hardware, virtualization
layer, software); in order to go beyond the classic Markov mod-
els, we consider also some examples encompassing more realistic
semi-Markovian models; ii) devise optimized network resiliency
strategies where performability and costs are jointly considered;

1.4. Main Contributions and Overview 15

iii) design a software tool adhering to the model-driven approach
for automating the network resiliency life cycle [7–15].

As a result, we provide guidelines to implement optimal re-
silience strategies in the context of distributed network paradigms
such as NFV, Cloud Computing, SDN. On one hand, it is worth
noticing that the methodologies and strategies proposed in this
thesis to devise architectural countermeasures are not unique to
distributed network attacks, and can be fruitfully used in many
other applications. On the other hand, the interplay between “dis-
tributed” and “virtualized” becomes particularly relevant for our
purposes, since virtualization technologies introduce specific chal-
lenges and opportunities in distributed environments. For exam-
ple, in a distributed system, multiple virtual machines can be de-
ployed to add redundancy in face of attacks, and the availability
target of such ensemble of machines can be flexibly achieved by
increasing the virtual resources with a limited impact on hardware
costs.

The thesis is organized as follows. Chapter 2 introduces some
useful background that is relevant to the analysis conducted in the
subsequent sections. In Chapter 3 we present the formal model
of L7-DDoS attacks with multiple emulation dictionaries and the
relative novel results. Chapter 4 delves into a detailed analysis of
availability and performability models with focus on a virtualized
version of IMS. Chapter 5 contains some concluding remarks and
hints for future research.

16 1. Introduction

Chapter 2

Background

In this section, we introduce some useful background concepts
that will be exploited throughout this thesis. In particular, we
focus on two crucial aspects. The first one concerns the Random-
ized L7-DDoS model, originally conceived in [6], which represents
the starting point for the characterization of the DDoS attacks ad-
dressed in this work, where the more challenging setting of multiple
overlapped dictionaries is considered. The second aspect pertains
to the description of some formalisms useful to characterize the
availability of modern network infrastructures, with a particular
focus on the Stochastic Reward Networks (SRN) technique.

2.1 Related Work on DDoS attacks

Networks are consistently exposed to a variety of dangerous cyber-
threats. Providing reliable processing and inference strategies to
contrast these threats is a critical part of the network security
chain [16–22].

In recent years, several useful works addressed the problem of
devising countermeasures toward DDoS identification and mitiga-
tion — we invite the Reader to consult [4] and [23] for an overview
on the subject. A popular approach to tackle DDoS attacks and
bot identification is based on statistical methods aimed at reveal-
ing anomalous patterns (e.g., repetition patterns, unusual traf-

18 2. Background

fic rates). The DDoS identification strategy devised in [24] re-
lies on the detection of anomalies observed in the entropy and in
the (frequency-sorted) distribution of selected packet attributes.
In a similar vein, a technique based on entropy detection is pro-
posed in [25], where the degree of randomness associated to suit-
able packet attributes is elected as the critical marker of a DDoS.
A hierarchical method aimed at capturing shifts within spatio-
temporal traffic patterns is designed in [26]. Such shifts are then
exploited to reveal a DDoS flooding attack. The framework Um-
brella is proposed in [27], focusing on amplification DDoS attacks
and offering to the victims the possibility to customize the level
of defense. In [28], the generalized entropy and the information
distance metrics are used to reveal low-rate DDoS attacks, where
dissimilarity between legitimate and malicious traffic is evaluated.
The case of low-rate shrew DDoS attacks (TCP flows constrained
to sustain a small fraction of their ideal rate at low attack costs)
is tackled in [29], where a model amenable to control the TCP
congestion window at the target’s side is exploited. In [30], the
Authors propose a fingerprinting approach relying on the analy-
sis of packet-level features in a traffic flow (e.g., length, number
of transmissions). The obtained fingerprints are used to generate
“normal” profiles, and then a clustering-based detection algorithm
decides about the legitimacy of an unknown fingerprint possibly
associated to a DDoS source.

Since DDoS attacks are typically based on the repetition of
predefined actions or patterns, their power can be greatly ampli-
fied when they are implemented at the application layer of the
TCP/IP protocol stack (L7-DDoS) [31–35]. In this case, the bot-
net has at its disposal a numerically consistent set of messages
(e.g., HTTP GET requests), which helps the bots avoid massive
repetitions that could appear suspicious. One notable real-world
L7-DDoS attack was recently performed through a sophisticated
malware named Mirai [36]. This malware compromised a network
of cameras (hence, the bots), which started forming variously in-
teracting clusters to launch a distributed attack to a web server.

Even if the application layer offers to the attacker the possi-

2.1. Related Work on DDoS attacks 19

bility of assembling fairly rich request patterns, we should keep
in mind that requests must be performed in some structured way
in order to impair an IDS. For example, when attacking a certain
website, only some requests are admissible/meaningful at a cer-
tain time. This concept can be conveniently abstracted by saying
that the bots can access an emulation dictionary (the set of ad-
missible messages) in order to emulate the behavior of a normal
(i.e., legitimate) network user. The emulation dictionary can be
learned continually (and, hence, enriched continually) by the bot-
master through monitoring and collection of legitimate network
traffic patterns. Recently, this class of DDoS attacks with emula-
tion dictionary has been described in some detail in [6, 37, 38].

One useful framework for implementing and counteracting net-
work attacks is the framework of Generative Adversarial Networks
(GANs), originally conceived by Goodfellow [39] and typically ap-
plied into the realm of fake image generation. GANs are based
on the idea that the attacker (or generator) and the defender (or
discriminator) can establish their strategies through two neural
networks which are trained together. Based on training sets of
real samples, the generator attempts to learn the best functions
to disguise the generated (fake) samples as legitimate, while the
discriminator attempts to provide the best possible response. In
this way, the generator and the discriminator play within an adver-
sarial setting, in the game theory sense. In the specific context of
network attacks, there are some recent works that apply the GAN
framework to the problem of characterizing/revealing flooding at-
tacks, where the competing neural networks (also used in some
deep-learning variant) operate on pre-labeled datasets of network
traffic (e.g., KDD99, NSL KDD, CIC IDS) [40–43]. To the best
of our knowledge, an application of the GAN framework to the
L7-DDoS scenario (which is relevant to this thesis) is currently
missing. In such scenario, the GAN framework introduces new
possibilities and challenges, as succinctly detailed below, where
a GAN-based approach is specifically contrasted to the approach
pursued in this work.

� At the attacker’s side, the DDoS mechanism considered in

20 2. Background

this work emulates normal traffic patterns by picking uni-
formly at random a request from a set (the emulation dic-
tionary) of admissible messages. In comparison, a neural
network can emulate traffic patterns in a more sophisticated
way, e.g., by exploiting structures arising over time in the
traffic patterns collected in the training set.

� At the defender’s side, the solution provided by a GAN
would be typically costly, hardly interpretable, and highly
dependent on the training set. In comparison, our defense
strategy provided by the botnet identification algorithm is
simple, sharply interpretable and relies on statistical descrip-
tors that apply to a broad ensemble of settings.

� In the GAN framework, training the neural networks will be
costly, especially due to the peculiarities of our distributed
network attacks, since the (raw) features feeding the neural
networks are given in terms of a large number of time-series
(i.e., the traffic patterns). Exploiting the structure hidden in
these time-series to provide good emulation (and appropriate
countermeasures) is expected to be a complex task involving
optimization over many hyperparameters, necessity of large
datasets and noteworthy computational resources.

2.1.1 Randomized L7-DDoS Model

The novel L7-DDoS model presented in [6] relies on the idea that
an attack would be even more effective if an attacker has the ability
of emulating normal network traffic. In other words, an attacker
tries to mimic the behavior of “legitimate” users by using the same
application layer (L7) messages. Such messages are gathered by
the botmaster, and exploited by the malicious nodes of a botnet
to impair the resources of a network target. Precisely, the bots
try to bypass the network Intrusion Detection System (IDS) by
implementing a “drop-by-drop” strategy, where i) each individual
bot sends a relatively low number of legitimate requests to a target
site; and ii) the global rate of requests produced by the entire

2.1. Related Work on DDoS attacks 21

botnet is so large to saturate the computational resources of the
target.

The goal of the network administrator is to mitigate these at-
tacks, and to this aim a critical task is to identify (and then ban)
the bots. In order to accomplish botnet identification, the network
administrator collects and examines the messages that form the
traffic patterns produced by the different users. When appropri-
ate, sets of messages will be generally referred to as “dictionar-
ies”, for example, the set of messages used by the bots to emu-
late normal traffic patterns will be called “emulation dictionary”.
Likewise, the set of messages representing the actual activity of a
certain user or subnet will be called “empirical dictionary”.

In order to formalize the randomized L7-DDoS model, some
network indicators are introduced in [6]. The first one is the em-
pirical transmission rate at time t, viz.

λ̂S(t) ,
NS(t)

t
, (2.1)

where NS(t) represents the number of messages transmitted by
users of a subnet S up to time t. When a limiting rate is mean-
ingfully defined (as t goes to infinity), it is denoted by λS, which
is simply referred to as the transmission rate of subnet S.

Precisely, two kinds of transmission schedulings are considered
in [6], namely, the synchronous (constant-rate), and the indepen-
dent Poisson scheduling. In the synchronous case, all nodes trans-
mit in a synchronous manner, and the interval between two trans-
missions has a constant duration amounting to 1/λ. In the second
case, the transmission of user u is modeled as a Poisson process
with rate λu, and the processes of distinct users are mutually in-
dependent.

A second network indicator pertains to the content of the sent
messages, and is called Message Innovation Rate (MIR). First, we
define DS(t) as the empirical dictionary composed by the distinct
messages sent, up to time t, by users within S. Accordingly, the

22 2. Background

𝐸 𝑡

Network
Target

Figure 2.1: The emulation dictionary contains legitimate messages
exploited by a botnet to impair a network target.

empirical Message Innovation Rate (MIR) is defined as follows:

ρ̂S(t) ,
|DS(t)|
t

. (2.2)

If ρ̂S(t)
p−→ ρS, the limiting value ρS is simply referred to as the

MIR of subnet S. In a sense, the MIR quantifies the “innovation
power” of a botnet. Intuitively, a high MIR implies that bots
have a great ability of being innovative (namely, of being similar
to legitimate users), thus, the network attack is most likely to be
successful. In contrast, a low MIR implies that bots are pretty
similar (namely, they have in common many messages perhaps
due to a limited emulation dictionary), thus, a network defender
might easily recognize such a similarity.

The last network indicator refers to the degree of innovation
sustained by the bots when they assemble legitimate traffic pat-
terns emulating the activity of normal users. Preliminarily, it is
necessary to introduce the emulation dictionary E (t), which is for-
mally defined as the set of legitimate messages available at time
t to all botnet members — see Fig. 2.1. In order to mimic nor-
mal patterns, the bots pick uniformly at random the legitimate
messages (represented as blocks in Fig. 2.1) from the emulation

2.1. Related Work on DDoS attacks 23

dictionary, which is learned continually to sustain a reasonable
innovation rate. Then, the Emulation Dictionary Rate (EDR) is
defined as:

α , lim
t→∞
|E (t)|
t

. (2.3)

One criticism that could be raised with reference to the unifor-
m/independent picking mechanism adopted in randomized DDoS
attacks is that, when surfing over a webpage, the sequence of
HTTP requests is likely to exhibit a certain correlation between
subsequent samples. In this connection, it is worth remarking
that, as we will see in the forthcoming sections, the core of the
identification strategy proposed in [6] relies on dependence/inde-
pendence across network users (dependence across bots and inde-
pendence across normal users) and not over time. For this reason,
even changing the granularity at which messages are sent, the ac-
tivities of normal users are expected to feature a smaller degree
of dependence than the activities of bots. One possibility to take
into account the aforementioned granularity at a webpage level, is
that the attacker identifies as the atomic element of the emulation
dictionary a sequence of requests. Then, the analysis presented
in the thesis applies if we assume that the defender has some ap-
proximate knowledge of the rule adopted by the attacker to parse
the requests. For example, if the attacker uses the granularity of
the webpage, then the defender could use the same parsing when
examining the captured traffic. Another possibility is to consider
more sophisticated models (e.g., Markov models) for the emulation
of traffic patterns embodying some temporal dependence.

2.1.2 The Botnet Identification Condition

As specified before, the MIR indicator provides a kind of “correla-
tion degree” among users. For instance, if two users are bots, they
are expected to exhibit a low MIR (low ability of being innova-
tive). In contrast, if the two users are normal, they are expected to
exhibit a high MIR (high independence). This behavior suggests
that a meaningful way to declare whether a subnet is made by

24 2. Background

bots, is to compare its empirical MIR to the MIR that the same
subnet would produce if it were made by bots. Therefore, it is
critical to establish what is the MIR produced by a botnet. With
reference to the case of a single emulation dictionary, the MIR of
a botnet has been analytically characterized in [6].

Preliminarily, it is necessary to introduce the following func-
tion:

R(α, λ) , αλ

α + λ
. (2.4)

Theorem 1 (Botnet MIR). Let Btot be a botnet, where the node
transmission policies can be either synchronous, or independent
Poisson processes, with rates λu, for u ∈ Btot. Let now B be a
subset of the botnet Btot. Then, the MIR of B is:

|DB(t)|
t

p−→ ρB = R(α, λB) (2.5)

where λB =
∑

u∈B λu is the aggregate transmission rate of B, and
where the convergence in (2.5) is meant to be in probability.

Once that the MIR of a botnet is available, it is necessary to
understand to what extent it is distinguishable from the MIR of
normal users. To this aim, we introduce a Botnet Identification
Condition (BIC). For the sake of clarity, let us assume that the
empirical EDRs pertaining to a couple of users are comparable,
namely α̂1 ≈ α̂2 ≈ α̂.

Theorem 1 guarantees that, when both users belong to a bot-
net, for t large enough, it is possible to write:

ρ̂{1,2} ≈ R(α̂, λ̂1 + λ̂2) , ρ̂bot. (2.6)

Furthermore, it is possible to show that the empirical MIR of
the aggregate subnet {1, 2} can be upper bounded by the MIR
pertaining to the disjoint dictionaries, namely,

ρ̂{1,2} ≤ ρ̂1 + ρ̂2 = R(α̂1, λ̂1) + R(α̂2, λ̂2) , ρ̂sum

≈ R(α̂, λ̂1) + R(α̂, λ̂2). (2.7)

2.1. Related Work on DDoS attacks 25

Since ρ̂bot < ρ̂sum (see [6]), it is possible to introduce a threshold
γ lying between ρ̂bot and ρ̂sum, namely

ρ̂bot < γ = θρ̂bot + (1− θ)ρ̂sum < ρ̂sum, (2.8)

where θ ∈ (0, 1) is a tuning threshold parameter.1

When the two users belong to a botnet, it is possible to show
that, for large t, the empirical MIR ρ̂{1,2} converges to ρ̂bot. In
contrast, by exploiting Theorem 1, one can verify that ρ̂sum− ρ̂bot

converges in probability to a positive quantity, which implies that,
for any θ ∈ (0, 1), as time elapses, the empirical MIR will stay
sooner (lower θ) or later (higher θ) below the threshold γ, yielding:

1 AND 2 are bots⇒ ρ̂{1,2} < γ (2.9)

Let us switch to another case: at least one user is normal. In
case the dictionaries of the two users would be perfectly disjoint,
we would observe that ρ̂{1,2} ≈ ρ̂sum > γ (for any θ ∈ (0, 1)).
Thus, when at least one user is normal, for sufficiently big θ, the
empirical MIR is expected to lie above the threshold, namely:

1 OR 2 are normal⇒ ρ̂{1,2} > γ. (2.10)

In summary, in case the empirical MIR lies below γ, we declare
that the two users form a botnet, otherwise, we declare that at
least one user is normal. This behavior is pictorially sketched in
Fig. 2.2.

Before concluding this section, it is useful to remark that in
(2.2) the cardinality of the empirical dictionary is divided by the
current time epoch, and not by the transmission rate. Accord-
ingly, if we compare two users or subnets featuring very different
transmission rates, normalization by the transmission rate would
provide a more fair comparison. However, it must be noticed that
the BIC is not based upon comparison of MIRs. Rather, the BIC

1In [6], the tuning threshold parameter was defined as ε = 1 − θ. The
different choice adopted in the present work is more convenient to deal with
overlapped emulation dictionaries, as will become clear in chapter 3.

26 2. Background

Figure 2.2: Pictorial representation of the Botnet Identification
Condition

relies on comparing the MIR of a certain subnet to the MIR that
this subnet would produce if it were made by bots. In this respect,
normalization by the (estimated) transmission rate becomes im-
material.

2.1.3 Consistent Botnet Identification

In [6], an algorithm is provided that guarantees correct botnet
identification, assuming that the BIC is satisfied. This result has
been proved with reference to the setting where one and the same
emulation dictionary is available to all bots. This is a simplifying
assumption that will be removed in this thesis. The novel results
corresponding to the general case where multiple emulation dic-
tionaries are disseminated across the network are dealt with in
great detail in chapter 3. In this section we would like to illustrate
briefly the results available in the simplified scenario of random-
ized L7-DDoS with a unique emulation dictionary.

Two useful indicators are exploited to quantify the perfor-
mance of a botnet identification algorithm. Considering a network
N = {1, 2, . . . , N} containing a botnet B, and letting B̂(t) be the
botnet estimated at time t by the algorithm, we introduce the

2.1. Related Work on DDoS attacks 27

following two performance indices:

ηbot(t) =
E[|B̂(t) ∩B|]

|B| , ηnor(t) =
E[|B̂(t) ∩ (N \B)|]

|N \B| . (2.11)

The first one represents the expected percentage of correctly
banned users (i.e., discovered bots), whereas the second one is the
expected percentage of incorrectly-banned users (i.e., legitimate
users mistakenly declared as bots).

The desired asymptotic behavior of the two indices is:
ηbot(t) → 1, and ηnor(t) → 0. The Authors in [6] formally prove
that if the BIC is verified, ηbot(t)→ 1 and ηnor(t)→ 0 as t→∞.
Such a behavior is confirmed by some experimental analysis as re-
ported in Figs. 2.3 and 2.4. In both figures we see that ηbot(t)→ 1
and ηnor(t)→ 0 as t increases. Moreover, Fig. 2.3 explores differ-

Figure 2.3: Percentage of banned users as a function of time, for
different values of the tuning parameter θ. The network is com-
posed of 10 legitimate users, and contains B = 10 bots.

ent values of a tunable threshold parameter θ (more details about
this parameter will be given in chapter 3). We see that the al-
gorithm exhibits little sensitivity to the choice of this parameter.

28 2. Background

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [min]

F
ra

c
ti

o
n
 o

f
b
a
n
n
e
d
 u

se
rs

B = 10, ǫ = 0.2, for different EDRs

α = 0, ηbot
α = 10, ηbot
α = 50, ηbot
α = 0, ηnor
α = 10, ηnor
α = 50, ηnor

Figure 2.4: Percentage of banned users as a function of time, for
different values of the EDR α. The network is composed of 10
legitimate users, and contains B = 10 bots.

Figure 2.4 examines instead the effect of different EDRs. Notably,
we see that the performance worsens as the EDR increases, which
sounds perfectly reasonable since the EDR represents in a sense
the attacker’s power.

In summary, we have seen that under certain conditions the
attacker can be revealed and, hence, successfully defeated. For
this to be true, it was critical to exploit the specific constraints
at the attacker’s side. It is therefore legitimate to ask what hap-
pens in the presence of other types of constraints and/or attacking
schemes. For example, what if i) each bot replays the requests
from a different user, or ii) different users request the same set
of popular objects from the same web server? The scheme ad-
vocated in i) would require that the bots cooperatively act so as
to select deterministically distinct messages, and that the richness
of the available messages is so high to prevent from repetition of
distinct messages. These are clearly strong assumptions that, if
verified, could create perfect independence among bots and, hence,
perfect indistinguishability from normal users. For what concerns

2.2. Related Work on Availability 29

ii), it is clear that the verification of the BIC can depend upon
the specific class of websites. However, it should be remarked
that nowadays websites try to protect themselves from robot-like
behavior by introducing deliberately redundant dynamic content
(such as banners). This dynamic content reduces the impact of
repetitive behavior, and is in turn responsible for the need of con-
tinuous updates of the emulation dictionary to be performed by
the botmaster.

2.2 Related Work on Availability

The interest in techniques and methods for evaluating the perfor-
mance, reliability, and availability of novel communication systems
based on cloud models is recently growing [44]. The attention of in-
dustry and academia is increasing also in accordance with the new
5G telecommunication networks requirements. In particular, the
need to have strict Service Level Agreements (namely, the perfor-
mance indicators that operators must guarantee) encourages ever
deeper analyses about the performability of the systems, where
performance and availability are considered in a unified manner
([45, 46]).

One contribution of this thesis focuses on the reliability as-
sessment of network architectures designed to furnish complex
services by integrating several interconnected virtualized units or
functions. This ensemble of virtualized entities is usually referred
to as a Service Function Chain (SFC).

There exist several useful aspects involved in the availability
studies of an SFC, for example: the optimal VNF placement [47–
49], the optimization of routing paths [50, 51], the design and
analysis of provisioning strategies in view of efficient VNF deploy-
ment [52, 53].

The élite tool to perform a reliability assessment of complex
systems made by interconnected entities is given by a Reliabil-
ity Block Diagram (RBD), where failure/repair events are conve-
niently abstracted in terms of a chain of individual series/parallel

30 2. Background

interconnections. The RBD tool is automatically suited to the
SFC structure addressed in this thesis, due to the inherent block
structure exhibited by an SFC.

As a matter of fact, the RBD framework has been successfully
applied in the context of availability of distributed network ar-
chitectures. For example, an availability study of a private cloud
architecture has been faced in [54], where the RBD framework is
used to describe the high-level interconnections between the in-
frastructure layers, whereas the inner structure of these layers is
described by means of a Continuous-Time Markov Chain (CTMC)
framework. A similar combined analysis (RBD with CTMC) has
been exploited in [55], where a Video-on-Demand service for cloud-
based Eucalyptus platform has been taken into account. Again, in
[56] the Authors perform a CTMC-Based availability analysis of a
multiple cluster system characterized by common mode failures.

One major drawback when applying Markov chains to model
complex systems is the largeness of the pertinent state space. In
this thesis, the complexity of the infrastructures under analysis
(containerized or virtualized network service chains such as the
IMS architecture) stems from the need of taking into account: i)
the failure/repair events of the single layers of a node; ii) the
common mode failures due to the nested structure among the lay-
ers (e.g. the hardware fault implies the hypervisor fault); iii)
the single point of failures due to the chained structure of nodes
connected in series (in fact, the series arrangement is typical in
network service chains); and iv) the replication of single nodes
to guarantee certain availability requirements. Implementing a
Markov model able to capture all the aforementioned aspects can
be unaffordable. Stochastic Reward Networks emerge as a pow-
erful tool to overcome the aforementioned drawbacks, since they
offer the possibility to automate the generation of the underly-
ing Markov chain directly starting from a compact description of
the system. In a sense, the SRN formalism provides a high level
interface to automatically specify the underlying Markov model.
The SRN framework has been profitably exploited in [57], where a
stochastic model to characterize the aspects of an IaaS infrastruc-

2.2. Related Work on Availability 31

ture has been considered. A technological-based analysis aimed
at comparing classic virtualized environments against container
infrastructures, according to a high availability perspective, has
been carried out in [58], where some open-source and commercial
systems have been considered for the comparison, but without
proposing a failure/repair mathematical model.

For instance, the Authors in [59] examine availability issues of
an SFC, with respect to the minimum number of backup VNFs to
deploy. The model proposed in [59] addresses only failure events
but not repair actions. Similarly, a repair model is not taken
into account in [60], where a framework for a reliability evalua-
tion of a virtualized deployment has been proposed. In [61], the
problem of distributing VNF replicas between primary and backup
paths aimed at maximizing the SFC availability has been faced via
a heuristic algorithm, without taking into account failure/repair
models. Another study concerning microservice oriented architec-
tures and inspired to Google Kubernetes services is described in
[62], but is limited to an availability analysis, leaving performabil-
ity for future works. A performability analysis lacks also in [63],
where the Stochastic Petri Net framework is adopted, and where
a cloud server, a load balancer and a database distribute different
requests across VMs to realize a Disaster-Recovery-as-a-Service
paradigm.

2.2.1 Stochastic Reward Networks

In this thesis we deal with complex network architectures, thus we
find it beneficial to adopt the SRN formalism to take into account
the huge number of failure and repair states. Originally conceived
for reliability prediction in [64], the SRN model derives from the
Markov Reward Model (MRM), which enhances the traditional
Continuous-Time Markov Chain (CTMC) by adding a reward rate
to each state. With state-space based models (such as MRMs),
a classic problem of modeling real-world systems is related to the
growth of the state space. In comparison, an SRN-based represen-
tation allows a more compact description of the underlying system,

32 2. Background

11P1up

P1dn

TfcT1r

P2up

P2dn

T2fT1f T2r

Figure 2.5: The SRN model of a network node consisting of two
parts P1 and P2, as described in the main text.

by identifying repetitive structures. In this way, it is possible to
automatically generate the underlying MRMs [65]. To this end,
the SRN model adopts a bipartite directed graph representation
where: i) places (represented by circles) specify a condition (e.g.,
the system is down or up); and ii) transitions (represented by
rectangles) denote actions (e.g., a system crash). Places and tran-
sitions are connected by arcs denoted by directed edges. In the
SRN formalism, the transition times take into account probabilis-
tic delays, and are particularly modeled as exponential random
variables. A place typically contains a number called token, which
represents a holding condition. In case of a condition change, a
transition is fired, and the token is moved from one place to an-
other. A measure of interest is the distribution of tokens, called
marking, that denotes the possible assignment of tokens to all
places of the underlying Markov model, and is useful to capture
the dynamics of the overall system.

It is useful to examine a simple example of an SRN. Let us
consider a basic network node consisting of two parts, say P1 and
P2. We consider the node to be working as long as one of two
parts is working. We assume that failures and repairs of the two

2.2. Related Work on Availability 33

parts are exponentially distributed random variables, and there is
a failure mode where both parts can fail simultaneously. Moreover,
we assume the priority repair of P1 over P2. Translating such a
process into the corresponding SRN is quite straightforward, and
the resulting graphical representation in shown in Fig. 2.5. The
four places P1up, P2up, P1dn and P2dn represent the conditions in
which the parts P1 and P2 are up or down, respectively. The
transitions T1f and T2f denote the failure of the parts P1 and P2,
respectively; the transitions T1r and T2r denote the repair of the
parts P1 and P2, respectively; the transition Tfc denotes the so-
called common-mode failure. The number inside the places P1up

and P2up is the token. The particular arc drawn from P1dn to T2r

is called an inhibitory arc. Such an arc is useful to encode into
the SRN representation the priority repair of P1 over P2. It means
that, in case of failure of P1, P2 cannot work until P1 has been
repaired.

Metrics such as availability, reliability and performability are
computed by assigning appropriate reward rates to the states of
the SRN. Precisely, we have to identify the states in which the
node is working, and assign to them a reward rate amounting to
1. Conversely, a reward rate amounting to 0 is assigned to the
other states. In the SRN of Fig. 2.5, the node is working as
long as there exists a token in either of the two places, P1up or
P2up. Accordingly, the reward rate assignment can be specified as
follows:

ri =





1 if (#P1up = 1) ∨ (#P2up = 1) in marking i,

0 otherwise.
(2.12)

Here, ri is the reward rate assigned to the state i of the SRN,
and #P represents the number of tokens in the place P . The
operator ∨ represents the logical OR. The availability of the node
at time t is defined as the expected instantaneous reward rate
E[X(t)] at time t [64]. Thus, we can write:

34 2. Background

A(t) = E[X(t)] =
∑

i∈I
ri pi(t), (2.13)

where I is the set of markings, and pi(t) is the probability of being
in state i at time t.

Chapter 3

DDoS with Multiple
Emulation Dictionaries

The botnet identification strategies considered in previous works
assume either that the emulation dictionary is one and the same
for all bots [6, 37] or that different groups of bots can use completely
disjoint dictionaries [38]. These assumptions appear somehow re-
strictive, since in practice it is expected that coordination among
the bots is only partial, for different reasons, including: decentral-
ized control of the botnet, decentralized learning of the emulation
dictionary, imperfect communication. In comparison, it is more
realistic to assume that, inside the botnet, there exist clusters of
bots that pick messages from the same emulation dictionary, but
that at the same time a certain degree of diversity exists among the
dictionaries of different clusters. Such augmented diversity implies
in turn an augmented variability in the traffic patterns produced
by the botnet, making it more difficult to distinguish them from
legitimate users. In this chapter we tackle this issue and provide
the following main contributions. We obtain an analytical char-
acterization of the message innovation rate of the DDoS attack
with multiple emulation dictionaries. Exploiting this result, we
design a botnet identification algorithm equipped with a cluster
expurgation rule, which, under appropriate technical conditions,
is shown to provide exact classification of bots and normal users

36 3. DDoS with Multiple Emulation Dictionaries

as the observation window size increases. Then, an experimental
campaign over real network traces is conducted to assess the va-
lidity of the theoretical analysis, as well as to examine the effect
of a number of non-ideal effects that are unavoidably observed in
practical scenarios.

3.1 Model

When formalizing the aforementioned new model with multiple
emulation dictionaries, we can use the empirical transmission rate
as defined in (2.1), and the empirical MIR as defined in (2.2).
The third descriptor (EDR) requires a different characterization
w.r.t. the original one presented in (2.3). Let B ⊆ N denote the
ensemble of all bots disseminated across the network. We assume
that the botmaster has collected a set of messages available for the
purpose of emulating legitimate traffic patterns. The botmaster
distributes fairly the dictionary across the botnet, in such a way
that different clusters of bots receive approximately equal-sized
portions of the dictionary. Formally, the botnet is partitioned into
C clusters and at time t the bots belonging to the i-th cluster can
access an emulation dictionary Ei(t), whose cardinality grows over
time at rate:

α , lim
t→∞
|Ei(t)|
t

, i = 1, 2, . . . , C, (3.1)

which is the considered EDR. In order to send apparently legiti-
mate requests, a bot belonging to the i-th cluster picks admissible
messages from Ei(t). We remark that the botmaster must steadily
learn new admissible messages (i.e., the cardinality of the emula-
tion dictionary must increase over time) in order to guarantee a
non-suspicious innovation rate.

One fundamental feature of this work is that we allow for non-
negligible interaction between distinct clusters. More specifically,
the emulation dictionaries of two clusters i and j have an inter-

3.2. Pairwise Cluster Interaction 37

section given by:
Eij(t) , Ei(t) ∩ Ej(t), (3.2)

whose overlap degree is quantified as:

lim
t→∞
|Eij(t)|
|Ei(t)|

= lim
t→∞
|Eij(t)|
|Ej(t)|

= ωij = ωji ∈ (0, 1), (3.3)

yielding, in view of (3.1), the EDR of the intersection:

lim
t→∞
|Eij(t)|
t

= αωij. (3.4)

One example of the scenario with multiple dictionaries is illus-
trated in Fig. 3.1, with reference to three clusters. Even though
our model allows intersection among more than two dictionar-
ies (as shown in the top panel), the pairwise overlap degrees ωij
(shown in the bottom panel) will play a critical role in the botnet
identification algorithm, as explained in the forthcoming section.

3.2 Pairwise Cluster Interaction

Preliminarily, it is useful to introduce the following function, for
α, λ > 0:

R(α, λ) , αλ

α + λ
. (3.5)

In [6] it is shown that this function corresponds to the MIR of a
botnet (using one and the same emulation dictionary) with EDR
α and transmission rate λ, under either a synchronous or Poisson
scheduling. For later use, we report also the following inequality,
holding for any choice of positive α, λ1, λ2 [6]:

R(α, λ1 + λ2) ≤ R(α, λ1) + R(α, λ2), (3.6)

which reflects the fact that the innovation rate of a botnet made of
two components (both using the same emulation dictionary with
EDR α, and transmitting at rates λ1 and λ2, respectively) is up-

38 3. DDoS with Multiple Emulation Dictionaries

emulation dictionary 1

emulation dictionary 2 emulation dictionary 3

cluster 2 cluster 1

cluster 3

bot
message

overlap ω23=1/12

overlap ω13=1/2

overlap ω12=1/4

Figure 3.1: Top. Illustration of the DDoS attack with multiple
emulation dictionaries. Bottom. Pairwise overlaps relative to the
setting displayed in the top.

per bounded by the sum of the innovation rates of the individual
components.

The following theorem establishes the coupling effect between
clusters that arises from the nonzero overlap between their emu-
lation dictionaries.

Theorem 1 (Pairwise MIR). Let Bi and Bj be subsets of the i-th
and j-th cluster, respectively. Assume that the transmission poli-
cies of all bots are either synchronous (having constant transmis-
sion rate) or governed by independent Poisson schedulings. Then,
the (limiting) MIR of the joint subnet Bi ∪Bj is (the symbol

m.s.−−→

3.3. Botnet Identification Algorithm 39

denotes mean-square convergence as t→∞):

ρ̂Bi∪Bj(t)
m.s.−−→ ρBi∪Bj = ωij R(α, λBi + λBj)

+ (1− ωij) [R(α, λBi) + R(α, λBj)]. (3.7)

The proof is reported in Appendix A
Equation (3.7) admits a clear interpretation. The MIR of the

botnet Bi ∪ Bj, which aggregates bots from clusters i and j, is a
convex combination (with weights ωij and 1−ωij) of two types of
MIRs. A fraction ωij of the aggregate MIR is given by the MIR
corresponding to a botnet with transmission rate λBi +λBj , whose
members pick messages from the same emulation dictionary. In
comparison, a fraction 1 − ωij of the aggregate MIR is given by
the sum of the MIRs corresponding to Bi and Bj. This fraction
represents messages not picked from the intersection between the
two emulation dictionaries.

It is also useful to compare (3.7) with the MIRs corresponding
to the cases of total overlap and absence of overlap, respectively.
We have from (3.6) and (3.7):

R(α, λBi + λBj) ≤ ρBi∪Bj ≤ R(α, λBi) + R(α, λBj). (3.8)

In other words, the aggregate botnet Bi∪Bj is: i) more innovative
than a botnet where both clusters pick messages from the same
emulation dictionary (left inequality in (3.8), total overlap); and
ii) less innovative than a botnet where the clusters pick messages
from disjoint dictionaries (right inequality in (3.8), no overlap at
all).

3.3 Botnet Identification Algorithm

A botnet identification algorithm nicknamed BotBuster was pro-
posed in [6]. This algorithm is able to detect a botnet possibly
hidden in the network under the assumption that there is a sin-
gle emulation dictionary common to all bots (i.e., no multi-cluster
allowed), and with detection error that vanishes as the observa-

40 3. DDoS with Multiple Emulation Dictionaries

tion time grows. We now manage to illustrate how efficient botnet
identification can be achieved under the multi-cluster setting ad-
dressed in this work.

To this aim, we build an algorithm nicknamed BotCluster-
Buster, which is basically composed of two stages. The first stage
pertains to the formation of candidate bot clusters. The routine
implemented at this stage is inherited from BotBuster, which, as
said, was designed for the single-cluster case. Proving that this
routine can be useful in the multi-cluster setting as well, requires
significant effort and a novel analysis that relies primarily on the
results contained in Theorem 1. The second stage pertains to
cluster expurgation, a procedure necessary to discard possibly fake
clusters from the set of candidates produced in the first stage.

3.3.1 Cluster Formation

The core of BotClusterBuster is a pairwise comparison between a
pivot element (a single node or an estimated botnet) and a test
node. The final goal is to decide whether or not the pivot and the
test node form a botnet. Let us start by considering a pivot node
p, and a test node τ .

First, the algorithm computes the empirical MIRs correspond-
ing to node p, to node τ , and to their union, namely, ρ̂{p}(t),
ρ̂{τ}(t), and ρ̂{p,τ}(t) — see 2.2. Then, since the EDR is not known
beforehand, and since when it is estimated from the data one gets
distinct values for the two nodes p and τ (either because one or
both nodes correspond to normal users, or because of estimation
errors), it is necessary to compute a common reference EDR. This
is not an easy task, since, e.g., intuitive solutions such as the av-
erage between the EDRs of the individual nodes might lead to in-
consistent results — see [6]. In order to overcome this issue, in [6]
a Replacement and Reassignment (R&R) procedure is proposed.
This procedure relies on the intuition that, if some messages from
the node with higher estimated EDR are fictitiously reassigned to
the other node, the resulting EDRs tend to move close to each
other, until a common EDR α̂(t) is reached. Once this reference

3.3. Botnet Identification Algorithm 41

EDR is obtained, BotClusterBuster computes the MIR that would
correspond to a botnet with one and the same emulation dictio-
nary (total overlap) having reference EDR α̂(t), namely,

ρ̂tot(t) , R
(
α̂(t), λ̂{p,τ}(t)

)
. (3.9)

We further introduce the sum MIR:

ρ̂sum(t) , ρ̂{p}(t) + ρ̂{τ}(t). (3.10)

Let us now delve into the analysis of the possible cases that the
algorithm encounters when testing nodes p and τ . Depending on
the nature of these nodes, there are three possibilities — see the
summary in Table 3.1.

— Case I. If p OR τ are normal, we have that:

ρ̂{p,τ}(t) ≈ ρ̂sum(t), (3.11)

which intuitively stems from the fact that low correlation is ob-
served between normal users and between normal users and bots.
Moreover, it can be shown that [6]:

ρ̂tot(t) ≤ ρ̂sum(t). (3.12)

— Case II. If p AND τ are bots from the same cluster, for suffi-
ciently large t we have α̂(t) ≈ α and λ̂{p,τ}(t) ≈ λp + λτ , yielding:

ρ̂{p,τ}(t) ≈ ρ̂tot(t) ≈ R(α, λp + λτ). (3.13)

— Case III. If p AND τ are bots from distinct clusters i and j,
from Theorem 1 we have:

ρ̂{p,τ}(t)

≈ ωijR(α, λp + λτ) + (1− ωij)[R(α, λp) + R(α, λτ)]

≈ ωij ρ̂tot(t) + (1− ωij) ρ̂sum(t), (3.14)

where in the second approximate equality we exploited the rela-

42 3. DDoS with Multiple Emulation Dictionaries

Nodes p, τ Indicators
I. at least one normal ρ̂{p,τ}(t) ≈ ρ̂sum(t)

II. bots from the same cluster ρ̂{p,τ}(t) ≈ ρ̂tot(t)
III. bots from clusters i and j ρ̂{p,τ}(t) ≈ ωij ρ̂tot(t) + (1− ωij)ρ̂sum(t)

Table 3.1: Behavior of the pertinent MIRs for the three cases
described in the main text.

tionship ρ̂tot(t) ≈ R(α, λp+λτ), which can be proved as in case II.
Indeed, by examining the R&R procedure it is readily seen that
convergence of α̂(t) to α is not affected by the fact that p and τ
use distinct emulation dictionaries.

Assume now that we set a threshold equal to, for θ ∈ (0, 1):

γ(t) = θ ρ̂tot(t) + (1− θ) ρ̂sum(t), (3.15)

and that the algorithm adopts the following rule:

ρ̂{p,τ}(t) ≤ γ(t)⇒ form an estimated botnet {p, τ}. (3.16)

Let us examine how such classification rule works under the
aforementioned three cases — see Fig. 3.2. When p or τ are normal
users (case I), from (3.11), (3.15) and (3.16) we conclude that
the algorithm rejects the hypothesis that {p, τ} is a botnet, since
the empirical MIR ρ̂{p,τ}(t) will be sufficiently close to the upper
boundary ρ̂sum(t). Likewise, when p and τ are bots sharing the
same emulation dictionary (case II), from (3.13), (3.15) and (3.16)
we conclude that the algorithm accepts the hypothesis that {p, τ}
is a botnet, since the empirical MIR ρ̂{p,τ}(t) will be sufficiently
close to the lower boundary ρ̂tot(t). Finally, let us examine the
situation where p and τ are bots from distinct clusters (case III).
Assume that:

θ > ωij. (3.17)

In this case, we see from (3.14), (3.15) and (3.16) that the algo-
rithm rejects the hypothesis that {p, τ} is a botnet, since ρ̂{p,τ}(t)

3.3. Botnet Identification Algorithm 43

1 1.5 2 2.5

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

1 1.5 2 2.5

4.4

4.6

4.8

5

5.2

5.4

5.6

1 1.5 2 2.5

5.6

5.8

6

6.2

6.4

6.6

6.8

Figure 3.2: Time evolution of the relevant MIRs, for the three
cases described in the main text.

will stay above the threshold. In summary, we see that under con-
dition (3.17) the algorithm ends up estimating a botnet only when
p and τ belong to the same cluster.

Iterating the above procedure yields the BotClusterBuster al-
gorithm (pseudo-code at the top of next page). The algorithm
starts with node 1 as a pivot. If nodes 1 and 2 are classified
as a botnet, B̂(1; t) = {1, 2}, otherwise B̂(1; t) = {1}. At the
end of the loop, the algorithm returns a candidate botnet clus-
ter B̂(1; t) (in case the candidate cluster has cardinality equal
to 1, it is discarded). The loop is iterated across the whole
set of pivots, yielding a sequence of candidate clusters, namely,
B̂(1; t), B̂(2; t), . . . , B̂(N ; t).

We remark that the analysis of cases I–III is basically un-
changed if we replace the pivot node p with a subnet of bots
belonging to the same cluster. Accordingly, since for large t the
pairwise checks are all correct, they can produce either empty sets
or subnets of bots belonging to the same cluster. In particular: i) if
the initial pivot node is a normal user, BotClusterBuster produces
an empty cluster; ii) if the initial pivot node is a bot from a certain
cluster, BotClusterBuster produces a candidate cluster matching
the cluster the pivot belongs to. Thus, provided that (3.17) is ver-
ified, as t → ∞ the algorithm ends up estimating all the botnets
corresponding to the different clusters, reaching the twofold goal
of discriminating bots from normal users and identifying the local
structure of the individual clusters. Remarkably, condition (3.17)

44 3. DDoS with Multiple Emulation Dictionaries

Algorithm: B̂(t)=BotClusterBuster(traffic patterns until time t, θ, κ, ξ)

N = {1, 2, . . . , N}
for p ∈ N do

B̂(p; t) = {p}
for τ ∈ N \ {p} do

γ(t) = θρ̂tot(t) + (1− θ)ρ̂sum(t)

if ρ̂
B̂(p;t)∪{τ}(t) ≤ γ(t) then B̂(p; t) = B̂(p; t)

⋃{τ}
end

if |B̂(p; t)| = 1 then B̂(p; t) = ∅
% begin cluster expurgation

if λ̂
B̂(p;t)

(t) ≤ ξκ

1 + κ
λ̂N(t) then B̂(p; t) = ∅

% end cluster expurgation
end

B̂(t) =

N⋃
p=1

B̂(p; t)

does not require detailed knowledge of the degree of overlap ωij.
A rough prediction is sufficient, so as to let θ > ωij.

3.3.2 Cluster Expurgation

According to the analysis reported in the previous section, the
first stage of BotClusterBuster ends up delivering one (possibly
empty) candidate cluster per each initial pivot node. The most
natural way to build the final estimated botnet is to retain all
the (non-empty) botnet clusters, namely, to consider their union
(union-rule). From a theoretical standpoint such rule would pro-
vide perfect botnet identification. However, in practice there are
several non-ideal effects that can induce coupling between normal
users and/or between normal users and bots. First of all, our
analysis guarantees convergence of certain relevant quantities for
sufficiently long time, and in practice we must face issues related
to finite observation windows. Second, the condition that nor-
mal users (or normal users and bots) are mutually independent
(yielding an aggregate MIR approximately equal to ρ̂sum(t), hence
resulting into an easy threshold up-crossing) cannot be perfectly
met in practice. Occasionally, we can have normal users that ap-
pear correlated to other normal users or to some bots. As a matter

3.3. Botnet Identification Algorithm 45

of fact, the algorithm usually delivers the true clusters plus some
fake (small) clusters containing legitimate network users, due to
spurious correlations arising during the pairwise checks. In the
traditional single-cluster setting, this issue is easily remediated by
retaining only the estimated botnet with largest cardinality (max-
rule). This rule would obviously fail in the multi-cluster scenario,
since it will surely discard all but one cluster.

In order to face this issue, the BotClusterBuster algorithm im-
plements a cluster expurgation strategy, aimed at: i) retaining the
true clusters, while ii) discarding the fake ones. In order to reach
these goals, a first important step is to observe that the power of
a DDoS attack is determined by its global transmission rate, λB.
More precisely, we are under a (meaningful) DDoS attack if the
botnet activity is at least comparable to the normal users’ activity,
namely if, for some κ ≥ 1, we have that:

λB = κλN\B, (3.18)

with λN\B being the global transmission rate of normal users. The
lower bound κ = 1 corresponds to an optimistic assumption (at
the botnet side) that a DDoS with relatively low rate is sufficient
to damage the target site. By noticing that λN\B = λN − λB, we
can reformulate (3.18) in terms of the global network transmission
rate:

λB =
κ

1 + κ
λN. (3.19)

A second critical observation is that, in order to deserve counter-
measures, a botnet cluster must sustain a reasonable part of the
global attack rate, namely,

λBi ≥ ξλB, (3.20)

for some ξ ∈ (0, 1). Joining (3.19) with (3.20), the algorithm

retains the candidate cluster B̂(p; t) if:

λ̂
B̂(p;t)(t) >

ξκ

1 + κ
λ̂N(t), (3.21)

46 3. DDoS with Multiple Emulation Dictionaries

otherwise, the candidate cluster is discarded. Finally, the estimate
of the entire botnet is produced by applying the union operator
to the survived clusters.

It is useful to comment on the role of the hyperparameters κ
and ξ. First of all, since in the overall check rule they play jointly
in the single parameter ξκ

1+κ
, we have actually a single hyperpa-

rameter. We choose to keep both since they can be more easily
related to “physical” considerations concerning the size and im-
pact of the cyber-threat. Actually, the value of κ determines a
safeguard level at which we judge a botnet dangerous in terms of
resource saturation. Likewise, the value of ξ determines to what
extent we can tolerate to miss some (small) bot cluster. Remark-
ably, setting these hyperparameters introduces a flexible degree
of customization that is more related to the type of service and
users’ expectation for a particular application. For example, the
typical choice of a network administrator facing a DDoS attack
are: i) avoiding that the destination site crashes; ii) guaranteeing
proper service to the legitimate users. Under these conditions, it
is preferable not to be indulgent in cluster acceptance, so as to re-
duce the likelihood of banning normal users (perhaps at the price
of losing some bots).

3.4 Practical Issues

In real-world settings, we cannot expect that the technical con-
ditions used to prove our mathematical claims are perfectly met.
For this reason, in this section we examine some relevant scenarios
that are not covered by the previous analysis, and verify whether
BotClusterBuster can deliver satisfying performance even under
these perturbed conditions.

3.4.1 Violation of Condition (3.17)

The choice of the parameter θ in (3.17) can be determined by dif-
ferent factors. Preliminarily, we notice that the case ωij ≈ 1 (total
overlap) is of scarce interest here, since it basically corresponds

3.4. Practical Issues 47

to the single cluster case already dealt with in [6]. Thus, let us
assume that ωij takes on some intermediate value. On one hand,
we could conservatively set the threshold parameter θ close to 1
in order to be sure that (3.17) holds true. On the other hand, if
θ collapses to 1, the threshold γ(t) collapses to the lower bound-
ary ρ̂tot(t), thus reducing the likelihood that the estimated MIR
ρ̂{p,τ}(t) stays below the threshold. Accordingly, there is a certain
flexibility in the choice of θ that should be taken into account in
practice. For this reason, it makes sense to examine whether the
algorithm is robust to violation of (3.17).

In presence of this violation, it is readily seen that, among cases
I–III described before, only case III changes. In fact, in cases I
and II (provided that θ is not collapsing to 0 or 1), the estimated
MIR ρ̂{p,τ}(t) stays above or below the threshold, respectively. In
contrast, when case III is in force, nodes p and τ belong to distinct
clusters with partially overlapped emulation dictionaries, which
implies that (since (3.17) is violated) the threshold γ(t) becomes
larger than the MIR associated to the botnet {p, τ} — see (3.14)
and (3.15). Accordingly, the algorithm would classify the pair
{p, τ} as a botnet even if p and τ belong to distinct clusters. In
principle, this is not a problem, since what we need is to distinguish
bots from normal users, and not to separate the bot clusters. This
property is illustrated in Fig. 3.3, where we see the two possible
behaviors of the algorithm, depending on whether θ is greater or
smaller than the overlap degree ωij. In summary, if θ < ωij, the
algorithm is able to identify membership to the (overall) botnet,
while if θ > ωij the algorithm is able to identify (the additional
attribute of) membership to the individual cluster.

Unfortunately, the above analysis (which is restricted to pair
of nodes) is not sufficient to establish consistency of BotCluster-
Buster, for the following reason. Owing to the impossibility of dis-
criminating the individual clusters, when the algorithm progresses
the intermediate pivot botnets can be mixed, i.e., comprising bots
of different clusters. The technical analysis of this case appears
to be nontrivial. For this reason, we are not in the position of
claiming that BotClusterBuster learns consistently the true bot-

48 3. DDoS with Multiple Emulation Dictionaries

Declare normal

Declare bot

(Cluster Identification)

Declare normal

Declare bot

(Botnet Identification)

Figure 3.3: Botnet identifiability vs. cluster identifiability.

net when (3.17) is violated.

3.4.2 Clusters’ Asymmetries

Another assumption adopted so far pertains to the equal distri-
bution of the emulation dictionaries across the network. Assume
instead that different clusters are assigned unbalanced emulation
dictionaries, yielding different EDRs, namely, for i = 1, 2, . . . , C:

αi = lim
t→∞
|Ei(t)|
t

. (3.22)

Likewise, we now allow for variable overlap degrees. Formally,
the common intersection Eij(t) of the dictionaries pertaining to
clusters i and j has a degree of overlap with Ei(t) and Ej(t) given
by, respectively:

ωij = lim
t→∞
|Eij(t)|
|Ei(t)|

, ωji = lim
t→∞
|Eij(t)|
|Ej(t)|

. (3.23)

3.4. Practical Issues 49

We notice that simultaneous verification of (3.22) and (3.23) en-
tails the following relationship:

αij , lim
t→∞
|Eij(t)|
t

= αiωij = αjωji. (3.24)

Actually, the proof of Theorem 1 does not require any symmetry
assumption. In particular, the proof reported in Appendix A is
carried out under the aforementioned asymmetric scenario, and
the resulting MIR referred to clusters i and j is:

ρBi∪Bj = R(αij, λBiωij + λBjωji)

+ (1− ωij) R(αi, λBi) + (1− ωji) R(αj, λBj).

(3.25)

Despite the fact that the limiting MIR corresponding to partially
overlapped dictionaries can be precisely evaluated using (3.25), in
the asymmetric scenario it is hard to exploit this relationship to
prove consistency of BotClusterBuster. In fact, the asymmetry
introduced by the (unknown) parameters αi, αj, ωij, ωji, precludes
the simple extension of the arguments used in Sec. 3.3.1 to exam-
ine cases I–III. For example, when αi 6= αj we cannot claim that
the reference EDR α̂(t) obtained from the R&R procedure con-
verges to some known value. As a result, we are no longer in the
position of establishing the limiting behavior of ρ̂tot(t), and, hence,
of the threshold γ(t). Nevertheless, we have collected numerous
numerical evidences where (for various choices of the parameters
characterizing the aforementioned asymmetric scenario) the fol-
lowing inequality is observed:

ρ̂Sa∪Sb(t) > ρ̂tot(t) = R(α̂(t), λSa + λSb), (3.26)

for two subnets S1 and S2, each one containing bots belonging
to distinct clusters i and j. Since i) Eq. (3.26) implies that the
empirical MIR corresponding to Sa ∪ Sb is larger than the MIR
associated to the reference EDR α̂(t); and ii) the empirical MIR
ρ̂Sa∪Sb(t) is obviously upper bounded by the sum of the individual

50 3. DDoS with Multiple Emulation Dictionaries

bot from cluster 1

bot from cluster 2

subnet subnet

6

!"#$%&" '(&)%$

!"#$%&" *(+

!"#$%&" '(&)%$

!"#$%&" *(+

! " #$%&

#$'%&

#$%&

#$()*
!

#$'%&

#$%&

#$()*

!

! + #$%&

,!"#$%# &'%$#()(*+#("$-

,,-./#%01&'%$#()(*+#("$-

Fig. 3. Botnet identifiability vs. cluster identifiability.

where we see the two possible behaviors of the algorithm,
depending on whether ✓ is greater or smaller than the overlap
degree !. In summary, if ✓ < !, the algorithm is able to identify
membership to the (overall) botnet, while if ✓ > ! the algorithm
is able to identify (the additional attribute of) membership to
the individual cluster.

Unfortunately, the above analysis (which is restricted to pair
of nodes) is not sufficient to establish consistency of BotClus-
terBuster, for the following reason. Owing to the impossibility
of discriminating the individual clusters, when the algorithm
progresses the intermediate pivot botnets can be mixed, i.e.,
comprising bots of different clusters. The technical analysis
of this case appears to be nontrivial. For this reason, we are
not in the position of claiming that BotClusterBuster learns
consistently the true botnet when (19) is violated.

B. Clusters’ Asymmetries

Another assumption adopted so far pertains to the equal
distribution of the emulation dictionaries across the network.
Assume instead that different clusters are assigned unbalanced
emulation dictionaries, yielding different EDRs, namely, for
i = 1, 2, . . . , C:

↵i = lim
t!1

|Ei(t)|
t

. (24)

Likewise, we now allow for variable overlap degrees. Formally,
the common intersection Eij(t) of the dictionaries pertaining to
clusters i and j has a degree of overlap with Ei(t) and Ej(t)
given by, respectively:

!ij = lim
t!1

|Eij(t)|
|Ei(t)|

, !ji = lim
t!1

|Eij(t)|
|Ej(t)|

. (25)

We notice that simultaneous verification of (24) and (25) entails
the following relationship:

↵ij , lim
t!1

|Eij(t)|
t

= ↵i!ij = ↵j!ji. (26)

Actually, the proof of Theorem 1 does not require any symmetry
assumption. In particular, the proof reported in Appendix A is
carried out under the aforementioned asymmetric scenario, and
the resulting MIR referred to clusters i and j is:

⇢Bi[Bj = R(↵ij , �Bi!ij + �Bj!ji)

+ (1 � !ij) R(↵i, �Bi) + (1 � !ji) R(↵j , �Bj).

(27)

bot from cluster 1

bot from cluster 2

subnet A subnet B

Fig. 4. Graphical illustration of the scenario described in Sec. V-C, with two
subnetworks, Sa = S1a [S2a and Sb = S1b [S2b, each one containing bots
belonging to clusters1 and 2.

Despite the fact that the limiting MIR corresponding to partially
overlapped dictionaries can be precisely evaluated using (27), in
the asymmetric scenario it is hard to exploit this relationship to
prove consistency of BotClusterBuster. In fact, the asymmetry
introduced by the (unknown) parameters ↵i, ↵j , !ij , !ji, pre-
cludes the simple extension of the arguments used in Sec. IV-A
to examine cases I–III. For example, when ↵i 6= ↵j we cannot
claim that the reference EDR b↵(t) obtained from the R&R
procedure converges to some known value. As a result, we are
no longer in the position of establishing the limiting behavior of
b⇢tot(t), and, hence, of the threshold �(t). Nevertheless, we have
collected numerous numerical evidences where (for various
choices of the parameters characterizing the aforementioned
asymmetric scenario) the following inequality is observed:

b⇢Sa[Sb
(t) > b⇢tot(t) = R(b↵(t), �Sa

+ �Sb
), (28)

for two subnets S1 and S2, each one containing bots belonging
to distinct clusters i and j. Since i) Eq. (28) implies that the
empirical MIR corresponding to Sa [Sb is larger than the MIR
associated to the reference EDR b↵(t); and ii) the empirical
MIR b⇢Sa[Sb

(t) is obviously upper bounded by the sum of the
individual MIRs, we conclude that under these conditions the
evolution of BotClusterBuster would be basically unchanged.

C. Numerical Analysis

As remarked in Secs. V-A and V-B, a rigorous treatment of
the non-ideal scenarios described in these sections is definitely
nontrivial. For this reason, we now focus on a numerical
analysis aimed at capturing the expected behavior of BotClus-
terBuster under these non-ideal scenarios.

We have examined the MIR arising from pairs of subnets
(of mixed type, i.e., each one containing bots from two distinct
clusters), and for several sets of parameters. The considered
scenario is illustrated in Fig. 4. We have two subnets:

Sa = S1a [S2a, Sb = S1b [S2b, (29)

where each subnet is made of bots from both clusters 1 and
2 (the subscripts 1 and 2 are used accordingly to denote
subnets belonging to the pertinent clusters). Now, let ↵1 and
�1 = �S1a

+�S1b
be, respectively, the EDR and the transmission

rate of the botnet S1a [S1b coming from cluster 1. Likewise,
↵2 and �2 = �S2a + �S2b

will denote, respectively, the EDR

6

!"#$%&" '(&)%$

!"#$%&" *(+

!"#$%&" '(&)%$

!"#$%&" *(+

! " #$%&

#$'%&

#$%&

#$()*
!

#$'%&

#$%&

#$()*

!

! + #$%&

,!"#$%# &'%$#()(*+#("$-

,,-./#%01&'%$#()(*+#("$-

Fig. 3. Botnet identifiability vs. cluster identifiability.

where we see the two possible behaviors of the algorithm,
depending on whether ✓ is greater or smaller than the overlap
degree !. In summary, if ✓ < !, the algorithm is able to identify
membership to the (overall) botnet, while if ✓ > ! the algorithm
is able to identify (the additional attribute of) membership to
the individual cluster.

Unfortunately, the above analysis (which is restricted to pair
of nodes) is not sufficient to establish consistency of BotClus-
terBuster, for the following reason. Owing to the impossibility
of discriminating the individual clusters, when the algorithm
progresses the intermediate pivot botnets can be mixed, i.e.,
comprising bots of different clusters. The technical analysis
of this case appears to be nontrivial. For this reason, we are
not in the position of claiming that BotClusterBuster learns
consistently the true botnet when (19) is violated.

B. Clusters’ Asymmetries

Another assumption adopted so far pertains to the equal
distribution of the emulation dictionaries across the network.
Assume instead that different clusters are assigned unbalanced
emulation dictionaries, yielding different EDRs, namely, for
i = 1, 2, . . . , C:

↵i = lim
t!1

|Ei(t)|
t

. (24)

Likewise, we now allow for variable overlap degrees. Formally,
the common intersection Eij(t) of the dictionaries pertaining to
clusters i and j has a degree of overlap with Ei(t) and Ej(t)
given by, respectively:

!ij = lim
t!1

|Eij(t)|
|Ei(t)|

, !ji = lim
t!1

|Eij(t)|
|Ej(t)|

. (25)

We notice that simultaneous verification of (24) and (25) entails
the following relationship:

↵ij , lim
t!1

|Eij(t)|
t

= ↵i!ij = ↵j!ji. (26)

Actually, the proof of Theorem 1 does not require any symmetry
assumption. In particular, the proof reported in Appendix A is
carried out under the aforementioned asymmetric scenario, and
the resulting MIR referred to clusters i and j is:

⇢Bi[Bj = R(↵ij , �Bi!ij + �Bj!ji)

+ (1 � !ij) R(↵i, �Bi) + (1 � !ji) R(↵j , �Bj).

(27)

bot from cluster 1

bot from cluster 2

subnet A subnet B

Fig. 4. Graphical illustration of the scenario described in Sec. V-C, with two
subnetworks, Sa = S1a [S2a and Sb = S1b [S2b, each one containing bots
belonging to clusters1 and 2.

Despite the fact that the limiting MIR corresponding to partially
overlapped dictionaries can be precisely evaluated using (27), in
the asymmetric scenario it is hard to exploit this relationship to
prove consistency of BotClusterBuster. In fact, the asymmetry
introduced by the (unknown) parameters ↵i, ↵j , !ij , !ji, pre-
cludes the simple extension of the arguments used in Sec. IV-A
to examine cases I–III. For example, when ↵i 6= ↵j we cannot
claim that the reference EDR b↵(t) obtained from the R&R
procedure converges to some known value. As a result, we are
no longer in the position of establishing the limiting behavior of
b⇢tot(t), and, hence, of the threshold �(t). Nevertheless, we have
collected numerous numerical evidences where (for various
choices of the parameters characterizing the aforementioned
asymmetric scenario) the following inequality is observed:

b⇢Sa[Sb
(t) > b⇢tot(t) = R(b↵(t), �Sa

+ �Sb
), (28)

for two subnets S1 and S2, each one containing bots belonging
to distinct clusters i and j. Since i) Eq. (28) implies that the
empirical MIR corresponding to Sa [Sb is larger than the MIR
associated to the reference EDR b↵(t); and ii) the empirical
MIR b⇢Sa[Sb

(t) is obviously upper bounded by the sum of the
individual MIRs, we conclude that under these conditions the
evolution of BotClusterBuster would be basically unchanged.

C. Numerical Analysis

As remarked in Secs. V-A and V-B, a rigorous treatment of
the non-ideal scenarios described in these sections is definitely
nontrivial. For this reason, we now focus on a numerical
analysis aimed at capturing the expected behavior of BotClus-
terBuster under these non-ideal scenarios.

We have examined the MIR arising from pairs of subnets
(of mixed type, i.e., each one containing bots from two distinct
clusters), and for several sets of parameters. The considered
scenario is illustrated in Fig. 4. We have two subnets:

Sa = S1a [S2a, Sb = S1b [S2b, (29)

where each subnet is made of bots from both clusters 1 and
2 (the subscripts 1 and 2 are used accordingly to denote
subnets belonging to the pertinent clusters). Now, let ↵1 and
�1 = �S1a

+�S1b
be, respectively, the EDR and the transmission

rate of the botnet S1a [S1b coming from cluster 1. Likewise,
↵2 and �2 = �S2a + �S2b

will denote, respectively, the EDR

6

!"#$%&" '(&)%$

!"#$%&" *(+

!"#$%&" '(&)%$

!"#$%&" *(+

! " #$%&

#$'%&

#$%&

#$()*
!

#$'%&

#$%&

#$()*

!

! + #$%&

,!"#$%# &'%$#()(*+#("$-

,,-./#%01&'%$#()(*+#("$-

Fig. 3. Botnet identifiability vs. cluster identifiability.

where we see the two possible behaviors of the algorithm,
depending on whether ✓ is greater or smaller than the overlap
degree !. In summary, if ✓ < !, the algorithm is able to identify
membership to the (overall) botnet, while if ✓ > ! the algorithm
is able to identify (the additional attribute of) membership to
the individual cluster.

Unfortunately, the above analysis (which is restricted to pair
of nodes) is not sufficient to establish consistency of BotClus-
terBuster, for the following reason. Owing to the impossibility
of discriminating the individual clusters, when the algorithm
progresses the intermediate pivot botnets can be mixed, i.e.,
comprising bots of different clusters. The technical analysis
of this case appears to be nontrivial. For this reason, we are
not in the position of claiming that BotClusterBuster learns
consistently the true botnet when (19) is violated.

B. Clusters’ Asymmetries

Another assumption adopted so far pertains to the equal
distribution of the emulation dictionaries across the network.
Assume instead that different clusters are assigned unbalanced
emulation dictionaries, yielding different EDRs, namely, for
i = 1, 2, . . . , C:

↵i = lim
t!1

|Ei(t)|
t

. (24)

Likewise, we now allow for variable overlap degrees. Formally,
the common intersection Eij(t) of the dictionaries pertaining to
clusters i and j has a degree of overlap with Ei(t) and Ej(t)
given by, respectively:

!ij = lim
t!1

|Eij(t)|
|Ei(t)|

, !ji = lim
t!1

|Eij(t)|
|Ej(t)|

. (25)

We notice that simultaneous verification of (24) and (25) entails
the following relationship:

↵ij , lim
t!1

|Eij(t)|
t

= ↵i!ij = ↵j!ji. (26)

Actually, the proof of Theorem 1 does not require any symmetry
assumption. In particular, the proof reported in Appendix A is
carried out under the aforementioned asymmetric scenario, and
the resulting MIR referred to clusters i and j is:

⇢Bi[Bj = R(↵ij , �Bi!ij + �Bj!ji)

+ (1 � !ij) R(↵i, �Bi) + (1 � !ji) R(↵j , �Bj).

(27)

bot from cluster 1

bot from cluster 2

subnet A subnet B

Fig. 4. Graphical illustration of the scenario described in Sec. V-C, with two
subnetworks, Sa = S1a [S2a and Sb = S1b [S2b, each one containing bots
belonging to clusters1 and 2.

Despite the fact that the limiting MIR corresponding to partially
overlapped dictionaries can be precisely evaluated using (27), in
the asymmetric scenario it is hard to exploit this relationship to
prove consistency of BotClusterBuster. In fact, the asymmetry
introduced by the (unknown) parameters ↵i, ↵j , !ij , !ji, pre-
cludes the simple extension of the arguments used in Sec. IV-A
to examine cases I–III. For example, when ↵i 6= ↵j we cannot
claim that the reference EDR b↵(t) obtained from the R&R
procedure converges to some known value. As a result, we are
no longer in the position of establishing the limiting behavior of
b⇢tot(t), and, hence, of the threshold �(t). Nevertheless, we have
collected numerous numerical evidences where (for various
choices of the parameters characterizing the aforementioned
asymmetric scenario) the following inequality is observed:

b⇢Sa[Sb
(t) > b⇢tot(t) = R(b↵(t), �Sa

+ �Sb
), (28)

for two subnets S1 and S2, each one containing bots belonging
to distinct clusters i and j. Since i) Eq. (28) implies that the
empirical MIR corresponding to Sa [Sb is larger than the MIR
associated to the reference EDR b↵(t); and ii) the empirical
MIR b⇢Sa[Sb

(t) is obviously upper bounded by the sum of the
individual MIRs, we conclude that under these conditions the
evolution of BotClusterBuster would be basically unchanged.

C. Numerical Analysis

As remarked in Secs. V-A and V-B, a rigorous treatment of
the non-ideal scenarios described in these sections is definitely
nontrivial. For this reason, we now focus on a numerical
analysis aimed at capturing the expected behavior of BotClus-
terBuster under these non-ideal scenarios.

We have examined the MIR arising from pairs of subnets
(of mixed type, i.e., each one containing bots from two distinct
clusters), and for several sets of parameters. The considered
scenario is illustrated in Fig. 4. We have two subnets:

Sa = S1a [S2a, Sb = S1b [S2b, (29)

where each subnet is made of bots from both clusters 1 and
2 (the subscripts 1 and 2 are used accordingly to denote
subnets belonging to the pertinent clusters). Now, let ↵1 and
�1 = �S1a

+�S1b
be, respectively, the EDR and the transmission

rate of the botnet S1a [S1b coming from cluster 1. Likewise,
↵2 and �2 = �S2a + �S2b

will denote, respectively, the EDR

6

!"#$%&" '(&)%$

!"#$%&" *(+

!"#$%&" '(&)%$

!"#$%&" *(+

! " #$%&

#$'%&

#$%&

#$()*
!

#$'%&

#$%&

#$()*

!

! + #$%&

,!"#$%# &'%$#()(*+#("$-

,,-./#%01&'%$#()(*+#("$-

Fig. 3. Botnet identifiability vs. cluster identifiability.

where we see the two possible behaviors of the algorithm,
depending on whether ✓ is greater or smaller than the overlap
degree !. In summary, if ✓ < !, the algorithm is able to identify
membership to the (overall) botnet, while if ✓ > ! the algorithm
is able to identify (the additional attribute of) membership to
the individual cluster.

Unfortunately, the above analysis (which is restricted to pair
of nodes) is not sufficient to establish consistency of BotClus-
terBuster, for the following reason. Owing to the impossibility
of discriminating the individual clusters, when the algorithm
progresses the intermediate pivot botnets can be mixed, i.e.,
comprising bots of different clusters. The technical analysis
of this case appears to be nontrivial. For this reason, we are
not in the position of claiming that BotClusterBuster learns
consistently the true botnet when (19) is violated.

B. Clusters’ Asymmetries

Another assumption adopted so far pertains to the equal
distribution of the emulation dictionaries across the network.
Assume instead that different clusters are assigned unbalanced
emulation dictionaries, yielding different EDRs, namely, for
i = 1, 2, . . . , C:

↵i = lim
t!1

|Ei(t)|
t

. (24)

Likewise, we now allow for variable overlap degrees. Formally,
the common intersection Eij(t) of the dictionaries pertaining to
clusters i and j has a degree of overlap with Ei(t) and Ej(t)
given by, respectively:

!ij = lim
t!1

|Eij(t)|
|Ei(t)|

, !ji = lim
t!1

|Eij(t)|
|Ej(t)|

. (25)

We notice that simultaneous verification of (24) and (25) entails
the following relationship:

↵ij , lim
t!1

|Eij(t)|
t

= ↵i!ij = ↵j!ji. (26)

Actually, the proof of Theorem 1 does not require any symmetry
assumption. In particular, the proof reported in Appendix A is
carried out under the aforementioned asymmetric scenario, and
the resulting MIR referred to clusters i and j is:

⇢Bi[Bj = R(↵ij , �Bi!ij + �Bj!ji)

+ (1 � !ij) R(↵i, �Bi) + (1 � !ji) R(↵j , �Bj).

(27)

bot from cluster 1

bot from cluster 2

subnet A subnet B

Fig. 4. Graphical illustration of the scenario described in Sec. V-C, with two
subnetworks, Sa = S1a [S2a and Sb = S1b [S2b, each one containing bots
belonging to clusters1 and 2.

Despite the fact that the limiting MIR corresponding to partially
overlapped dictionaries can be precisely evaluated using (27), in
the asymmetric scenario it is hard to exploit this relationship to
prove consistency of BotClusterBuster. In fact, the asymmetry
introduced by the (unknown) parameters ↵i, ↵j , !ij , !ji, pre-
cludes the simple extension of the arguments used in Sec. IV-A
to examine cases I–III. For example, when ↵i 6= ↵j we cannot
claim that the reference EDR b↵(t) obtained from the R&R
procedure converges to some known value. As a result, we are
no longer in the position of establishing the limiting behavior of
b⇢tot(t), and, hence, of the threshold �(t). Nevertheless, we have
collected numerous numerical evidences where (for various
choices of the parameters characterizing the aforementioned
asymmetric scenario) the following inequality is observed:

b⇢Sa[Sb
(t) > b⇢tot(t) = R(b↵(t), �Sa

+ �Sb
), (28)

for two subnets S1 and S2, each one containing bots belonging
to distinct clusters i and j. Since i) Eq. (28) implies that the
empirical MIR corresponding to Sa [Sb is larger than the MIR
associated to the reference EDR b↵(t); and ii) the empirical
MIR b⇢Sa[Sb

(t) is obviously upper bounded by the sum of the
individual MIRs, we conclude that under these conditions the
evolution of BotClusterBuster would be basically unchanged.

C. Numerical Analysis

As remarked in Secs. V-A and V-B, a rigorous treatment of
the non-ideal scenarios described in these sections is definitely
nontrivial. For this reason, we now focus on a numerical
analysis aimed at capturing the expected behavior of BotClus-
terBuster under these non-ideal scenarios.

We have examined the MIR arising from pairs of subnets
(of mixed type, i.e., each one containing bots from two distinct
clusters), and for several sets of parameters. The considered
scenario is illustrated in Fig. 4. We have two subnets:

Sa = S1a [S2a, Sb = S1b [S2b, (29)

where each subnet is made of bots from both clusters 1 and
2 (the subscripts 1 and 2 are used accordingly to denote
subnets belonging to the pertinent clusters). Now, let ↵1 and
�1 = �S1a

+�S1b
be, respectively, the EDR and the transmission

rate of the botnet S1a [S1b coming from cluster 1. Likewise,
↵2 and �2 = �S2a + �S2b

will denote, respectively, the EDR

6

!"#$%&" '(&)%$

!"#$%&" *(+

!"#$%&" '(&)%$

!"#$%&" *(+

! " #$%&

#$'%&

#$%&

#$()*
!

#$'%&

#$%&

#$()*

!

! + #$%&

,!"#$%# &'%$#()(*+#("$-

,,-./#%01&'%$#()(*+#("$-

Fig. 3. Botnet identifiability vs. cluster identifiability.

where we see the two possible behaviors of the algorithm,
depending on whether ✓ is greater or smaller than the overlap
degree !. In summary, if ✓ < !, the algorithm is able to identify
membership to the (overall) botnet, while if ✓ > ! the algorithm
is able to identify (the additional attribute of) membership to
the individual cluster.

Unfortunately, the above analysis (which is restricted to pair
of nodes) is not sufficient to establish consistency of BotClus-
terBuster, for the following reason. Owing to the impossibility
of discriminating the individual clusters, when the algorithm
progresses the intermediate pivot botnets can be mixed, i.e.,
comprising bots of different clusters. The technical analysis
of this case appears to be nontrivial. For this reason, we are
not in the position of claiming that BotClusterBuster learns
consistently the true botnet when (19) is violated.

B. Clusters’ Asymmetries

Another assumption adopted so far pertains to the equal
distribution of the emulation dictionaries across the network.
Assume instead that different clusters are assigned unbalanced
emulation dictionaries, yielding different EDRs, namely, for
i = 1, 2, . . . , C:

↵i = lim
t!1

|Ei(t)|
t

. (24)

Likewise, we now allow for variable overlap degrees. Formally,
the common intersection Eij(t) of the dictionaries pertaining to
clusters i and j has a degree of overlap with Ei(t) and Ej(t)
given by, respectively:

!ij = lim
t!1

|Eij(t)|
|Ei(t)|

, !ji = lim
t!1

|Eij(t)|
|Ej(t)|

. (25)

We notice that simultaneous verification of (24) and (25) entails
the following relationship:

↵ij , lim
t!1

|Eij(t)|
t

= ↵i!ij = ↵j!ji. (26)

Actually, the proof of Theorem 1 does not require any symmetry
assumption. In particular, the proof reported in Appendix A is
carried out under the aforementioned asymmetric scenario, and
the resulting MIR referred to clusters i and j is:

⇢Bi[Bj = R(↵ij , �Bi!ij + �Bj!ji)

+ (1 � !ij) R(↵i, �Bi) + (1 � !ji) R(↵j , �Bj).

(27)

bot from cluster 1

bot from cluster 2

subnet A subnet B

Fig. 4. Graphical illustration of the scenario described in Sec. V-C, with two
subnetworks, Sa = S1a [S2a and Sb = S1b [S2b, each one containing bots
belonging to clusters1 and 2.

Despite the fact that the limiting MIR corresponding to partially
overlapped dictionaries can be precisely evaluated using (27), in
the asymmetric scenario it is hard to exploit this relationship to
prove consistency of BotClusterBuster. In fact, the asymmetry
introduced by the (unknown) parameters ↵i, ↵j , !ij , !ji, pre-
cludes the simple extension of the arguments used in Sec. IV-A
to examine cases I–III. For example, when ↵i 6= ↵j we cannot
claim that the reference EDR b↵(t) obtained from the R&R
procedure converges to some known value. As a result, we are
no longer in the position of establishing the limiting behavior of
b⇢tot(t), and, hence, of the threshold �(t). Nevertheless, we have
collected numerous numerical evidences where (for various
choices of the parameters characterizing the aforementioned
asymmetric scenario) the following inequality is observed:

b⇢Sa[Sb
(t) > b⇢tot(t) = R(b↵(t), �Sa

+ �Sb
), (28)

for two subnets S1 and S2, each one containing bots belonging
to distinct clusters i and j. Since i) Eq. (28) implies that the
empirical MIR corresponding to Sa [Sb is larger than the MIR
associated to the reference EDR b↵(t); and ii) the empirical
MIR b⇢Sa[Sb

(t) is obviously upper bounded by the sum of the
individual MIRs, we conclude that under these conditions the
evolution of BotClusterBuster would be basically unchanged.

C. Numerical Analysis

As remarked in Secs. V-A and V-B, a rigorous treatment of
the non-ideal scenarios described in these sections is definitely
nontrivial. For this reason, we now focus on a numerical
analysis aimed at capturing the expected behavior of BotClus-
terBuster under these non-ideal scenarios.

We have examined the MIR arising from pairs of subnets
(of mixed type, i.e., each one containing bots from two distinct
clusters), and for several sets of parameters. The considered
scenario is illustrated in Fig. 4. We have two subnets:

Sa = S1a [S2a, Sb = S1b [S2b, (29)

where each subnet is made of bots from both clusters 1 and
2 (the subscripts 1 and 2 are used accordingly to denote
subnets belonging to the pertinent clusters). Now, let ↵1 and
�1 = �S1a

+�S1b
be, respectively, the EDR and the transmission

rate of the botnet S1a [S1b coming from cluster 1. Likewise,
↵2 and �2 = �S2a + �S2b

will denote, respectively, the EDR

6

!"#$%&" '(&)%$

!"#$%&" *(+

!"#$%&" '(&)%$

!"#$%&" *(+

! " #$%&

#$'%&

#$%&

#$()*
!

#$'%&

#$%&

#$()*

!

! + #$%&

,!"#$%# &'%$#()(*+#("$-

,,-./#%01&'%$#()(*+#("$-

Fig. 3. Botnet identifiability vs. cluster identifiability.

where we see the two possible behaviors of the algorithm,
depending on whether ✓ is greater or smaller than the overlap
degree !. In summary, if ✓ < !, the algorithm is able to identify
membership to the (overall) botnet, while if ✓ > ! the algorithm
is able to identify (the additional attribute of) membership to
the individual cluster.

Unfortunately, the above analysis (which is restricted to pair
of nodes) is not sufficient to establish consistency of BotClus-
terBuster, for the following reason. Owing to the impossibility
of discriminating the individual clusters, when the algorithm
progresses the intermediate pivot botnets can be mixed, i.e.,
comprising bots of different clusters. The technical analysis
of this case appears to be nontrivial. For this reason, we are
not in the position of claiming that BotClusterBuster learns
consistently the true botnet when (19) is violated.

B. Clusters’ Asymmetries

Another assumption adopted so far pertains to the equal
distribution of the emulation dictionaries across the network.
Assume instead that different clusters are assigned unbalanced
emulation dictionaries, yielding different EDRs, namely, for
i = 1, 2, . . . , C:

↵i = lim
t!1

|Ei(t)|
t

. (24)

Likewise, we now allow for variable overlap degrees. Formally,
the common intersection Eij(t) of the dictionaries pertaining to
clusters i and j has a degree of overlap with Ei(t) and Ej(t)
given by, respectively:

!ij = lim
t!1

|Eij(t)|
|Ei(t)|

, !ji = lim
t!1

|Eij(t)|
|Ej(t)|

. (25)

We notice that simultaneous verification of (24) and (25) entails
the following relationship:

↵ij , lim
t!1

|Eij(t)|
t

= ↵i!ij = ↵j!ji. (26)

Actually, the proof of Theorem 1 does not require any symmetry
assumption. In particular, the proof reported in Appendix A is
carried out under the aforementioned asymmetric scenario, and
the resulting MIR referred to clusters i and j is:

⇢Bi[Bj = R(↵ij , �Bi!ij + �Bj!ji)

+ (1 � !ij) R(↵i, �Bi) + (1 � !ji) R(↵j , �Bj).

(27)

bot from cluster 1

bot from cluster 2

subnet A subnet B

Fig. 4. Graphical illustration of the scenario described in Sec. V-C, with two
subnetworks, Sa = S1a [S2a and Sb = S1b [S2b, each one containing bots
belonging to clusters1 and 2.

Despite the fact that the limiting MIR corresponding to partially
overlapped dictionaries can be precisely evaluated using (27), in
the asymmetric scenario it is hard to exploit this relationship to
prove consistency of BotClusterBuster. In fact, the asymmetry
introduced by the (unknown) parameters ↵i, ↵j , !ij , !ji, pre-
cludes the simple extension of the arguments used in Sec. IV-A
to examine cases I–III. For example, when ↵i 6= ↵j we cannot
claim that the reference EDR b↵(t) obtained from the R&R
procedure converges to some known value. As a result, we are
no longer in the position of establishing the limiting behavior of
b⇢tot(t), and, hence, of the threshold �(t). Nevertheless, we have
collected numerous numerical evidences where (for various
choices of the parameters characterizing the aforementioned
asymmetric scenario) the following inequality is observed:

b⇢Sa[Sb
(t) > b⇢tot(t) = R(b↵(t), �Sa

+ �Sb
), (28)

for two subnets S1 and S2, each one containing bots belonging
to distinct clusters i and j. Since i) Eq. (28) implies that the
empirical MIR corresponding to Sa [Sb is larger than the MIR
associated to the reference EDR b↵(t); and ii) the empirical
MIR b⇢Sa[Sb

(t) is obviously upper bounded by the sum of the
individual MIRs, we conclude that under these conditions the
evolution of BotClusterBuster would be basically unchanged.

C. Numerical Analysis

As remarked in Secs. V-A and V-B, a rigorous treatment of
the non-ideal scenarios described in these sections is definitely
nontrivial. For this reason, we now focus on a numerical
analysis aimed at capturing the expected behavior of BotClus-
terBuster under these non-ideal scenarios.

We have examined the MIR arising from pairs of subnets
(of mixed type, i.e., each one containing bots from two distinct
clusters), and for several sets of parameters. The considered
scenario is illustrated in Fig. 4. We have two subnets:

Sa = S1a [S2a, Sb = S1b [S2b, (29)

where each subnet is made of bots from both clusters 1 and
2 (the subscripts 1 and 2 are used accordingly to denote
subnets belonging to the pertinent clusters). Now, let ↵1 and
�1 = �S1a

+�S1b
be, respectively, the EDR and the transmission

rate of the botnet S1a [S1b coming from cluster 1. Likewise,
↵2 and �2 = �S2a + �S2b

will denote, respectively, the EDR

Figure 3.4: Graphical illustration of the scenario described in
Sec. 3.4.3, with two subnetworks, Sa = S1a∪S2a and Sb = S1b∪S2b,
each one containing bots belonging to clusters 1 and 2.

MIRs, we conclude that under these conditions the evolution of
BotClusterBuster would be basically unchanged.

3.4.3 Numerical Analysis

As remarked in Secs. 3.4.1 and 3.4.2, a rigorous treatment of the
non-ideal scenarios described in these sections is definitely nontriv-
ial. For this reason, we now focus on a numerical analysis aimed at
capturing the expected behavior of BotClusterBuster under these
non-ideal scenarios.

We have examined the MIR arising from pairs of subnets (of
mixed type, i.e., each one containing bots from two distinct clus-
ters), and for several sets of parameters. The considered scenario
is illustrated in Fig. 3.4. We have two subnets:

Sa = S1a ∪ S2a, Sb = S1b ∪ S2b, (3.27)

where each subnet is made of bots from both clusters 1 and 2 (the
subscripts 1 and 2 are used accordingly to denote subnets belong-

3.4. Practical Issues 51

ing to the pertinent clusters). Now, let α1 and λ1 = λS1a + λS1b
be, respectively, the EDR and the transmission rate of the botnet
S1a ∪ S1b coming from cluster 1. Likewise, α2 and λ2 = λS2a + λS2b
will denote, respectively, the EDR and the transmission rate of the
botnet S2a ∪ S2b aggregating bots from cluster 2. In the following
analysis, we set α1 = 1 and let α2 vary. We consider the limiting
MIRs evaluated using the theoretical formulas, and accordingly
denoted without the symbol̂and without time-dependence.

In Fig. 3.5, we display ρSa∪Sb and ρtot as functions of α2,
for three values of the overlap degree ω12 (we recall that, in
view of (3.24), the value of ω21 is uniquely determined from
the values α1, α2 and ω12), and for balanced transmission rates
λS1a = λS1b = λS2a = λS2b = 3. We see that the inequality in (3.26)
is confirmed across the whole range of α2 and for all the considered
values of overlap. Furthermore, for very small values of α2 all the
curves tend to collapse, since they correspond to the degenerate
case where cluster 2 has empty emulation dictionary.

In Fig. 3.6 we repeat the analysis by using an intermediate
overlap degree ω12 = 0.5, and by considering different values for
the transmission rates, corresponding to four practical scenarios.
Scenario 1 (dashed-dotted curves) accounts for the case where the
activity of subnet Sa is predominant w.r.t. the activity of Sb. Un-
der scenario 2 (dashed curves), the activity of bots from cluster 2 is
more intense than the activity of bots from cluster 1. Scenarios 3
(dotted curves) and 4 (continuous curves) are mixed combinations
of the other two scenarios.

Remarkably, in all our experiments we observed that (3.26) was
verified. While we cannot claim that BotClusterBuster is consis-
tent when (3.17) is violated and/or under the asymmetric scenario,
the conducted numerical analysis explains why BotClusterBuster
is in fact able to discriminate bots from normal users under various
practical conditions, as we will see in detail in the section devoted
to simulations.

52 3. DDoS with Multiple Emulation Dictionaries

Figure 3.5: Numerical analysis aimed at testing verification of the
inequality ρ̂Sa∪Sb > ρ̂tot. The pertinent MIRs are displayed as
functions of α2 (with α1 = 1), and computed for different values
of the overlap degrees.

3.5 Experimental Results

In this section we report the results of an experimental campaign
that we have conducted to validate the theoretical analysis devel-
oped in the previous sections. We start with the description of
the experimental setup. First of all, we constructed two differ-
ent datasets containing traffic patterns from legitimate network
users. In the forthcoming analysis, we will test BotClusterBuster
over both datasets. The first dataset (which will be referred to as
CampusDataset), was built by asking 100 people randomly polled
around the Campus of the University of Salerno, to query an auc-
tion portal for about 3 minutes. The second dataset (which will
be referred to as LabDataset), was built in the Co.Ri.TeL Labo-
ratory of the University of Salerno. We asked 10 people (students
and researchers) to query an e-commerce portal for about 20 min-

3.5. Experimental Results 53

(Scenario 1)

(Scenario 2)

(Scenario 3)

(Scenario 4)

Figure 3.6: Numerical analysis aimed at testing verification of the
inequality ρ̂Sa∪Sb > ρ̂tot. The pertinent MIRs are displayed as
functions of α2 (with α1 = 1), and computed for different values
of the transmission rates of the single subnetworks and clusters.

utes. With regard to this dataset, in order to obtain a larger
number of legitimate users, we divided the traffic patterns into
chunks lasting about 2 minutes, and considered each chunk as an
independent user, obtaining a total number of 100 normal users.
In both datasets, each traffic “track” is representative of a nor-
mal user. The application-layer patterns of these tracks have been
captured by a network sniffer.

Once the normal users activity has been produced, we focus on
the multi-cluster DDoS attack.1 We will consider 3 clusters. The
preliminary step is to learn an emulation dictionary that is valid
for the particular target site. To this end, we join all the normal-

1Needless to say, we did not launch a DDoS attack against any website.
We used the admissible messages taken from the activity performed by the
selected real-world users to build an emulation dictionary, and then simulated
the emission of requests, without effectively sending these requests to the
target site.

54 3. DDoS with Multiple Emulation Dictionaries

user tracks pertaining to the particular dataset/target-site under
attack (obtaining 27072 packets for both the CampusDataset and
22178 packets for the LabDataset), and consider this ensemble of
messages as the overall emulation dictionary to be disseminated
across the botnet. Then we divide the overall dictionary into 7
sets:

E1, E2, E3, E12, E13, E23, E123, (3.28)

where i) all sets are mutually disjoint; ii) the indices appearing as
subscripts denote the cluster(s) using messages in that particular
set. For example, E1 contains messages that can be accessed only
by cluster 1 and E123 contains messages that are available for all
clusters. Then, let us focus on cluster 1 for the sake of definiteness.
As initialization, we assume that at time t = 0 the emulation dic-
tionary E1(0) contains 100 messages chosen, e.g., from E1. Then,
at time t > 0 the dictionary E1(t) adds to these 100 messages bα1tc
messages picked from the sets relative to cluster 1, partitioned as
follows:

bα1ω123tc from E123,

bα1(ω12 − ω123)tc from E12,

bα1(ω13 − ω123)tc from E13,

bα1(1− ω12 − ω13 + ω123)tc from E1, (3.29)

where ω12 and ω13 are the overlap degrees introduced in (3.23),
and ω123 is the (sub-)fraction of elements that is picked from the
intersection E123, common to all the three clusters.2 The same
procedure is applied to all clusters. Then it is easily verified that
the dictionary construction fulfills the following conditions, for all

2With regard to the picking rule in (3.29), it is readily seen that not all
configurations of the parameters αi, ωij and ω123 are compatible with all
configurations of the sets in (3.28). We have verified that the configurations
used in our simulations are admissible, which roughly amounts to say that the
cardinalities of the pertinent sets are sufficiently large to make the choices in
(3.29) admissible for the entire duration of the observation period.

3.5. Experimental Results 55

i, j ∈ {1, 2, 3}:

lim
t→∞
|Ei(t)|
t

= αi, lim
t→∞
|Ei(t) ∩ Ej(t)|
|Ei(t)|

= ωij. (3.30)

In order to make the bots similar to legitimate users, both the bot
transmission rates and the EDR have been chosen on the same
order of the corresponding attributes estimated over the normal
users’ traces. Finally, we will consider an overall network with 200
users, 100 of which are bots disseminated over 3 clusters of sizes
20, 30, and 50.

We are now ready to examine the performance of the BotClus-
terBuster algorithm. We start with the following setting:

α1 = α2 = α3 = 10, (3.31)

and

ω12 =
3

4
, ω13 = ω23 =

1

2
. (3.32)

For the sake of definiteness, we report the analysis performed on
the CampusDataset, with similar conclusion being obtained for
the LabDataset. In Figs. 3.7 and 3.8, we illustrate the results
corresponding to decreasing values of the threshold parameter θ
(θ = 0.95 in Fig. 3.7, θ ∈ {0.9, 0.75, 0.5} from left to right in 3.8).
Let us start by examining the bottom panels, where we display
an algorithm’s snapshot corresponding the end of the observation
window. The decisions produced by the algorithm are encoded in
a graphical matrix, whose p-th row corresponds to the output of
the algorithm when user p is elected as a pivot (users are ordered
for clarity of visualization, but this ordering is immaterial, since in
our simulations the bots were randomly spread over the network).
A white pixel represents the “estimated bot presence”, whereas a
black pixel represents the “estimated bot absence”. Thus, if pixel
(p, q) is white, the algorithm is estimating (before applying the
particular cluster selection rule) that user q is a bot when user p
is elected as pivot.

For θ = 0.95 (Fig. 3.7), condition (3.17) is met for the largest

56 3. DDoS with Multiple Emulation Dictionaries

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 30 50 70 90 110 130 150 170 190

10

30

50

70

90

110

130

150

170

190

Figure 3.7: Top. Performance of the botnet identification algo-
rithm. Bottom. Algorithm’s snapshot corresponding the end of
the observation window: the decisions produced by the algorithm
are encoded in a graphical matrix whose p-th row corresponds to
the output of the algorithm when user p is elected as a pivot. A
white pixel in the location (p, q) signifies that the algorithm is esti-
mating (before applying the particular cluster selection rule) that
user q is a bot when user p is elected as pivot.

degree of overlap, i.e., ω12 = 0.75. The presence of three distinct
off-diagonal white squares (of sides 20, 30, and 50) means that
the algorithm is able to identify the 3 clusters properly in agree-
ment with the theoretical prediction. We notice also the occasional
presence of some white pixels on the main diagonal. These pixels

3.5. Experimental Results 57

correspond to very small clusters (about 2 or 3 nodes) composed
of normal users. Notably, the small size of these clusters reveals
that the algorithm can occasionally form a wrong cluster, but that
then this cluster is never paired with other users, i.e., it is very
unlikely that more than a few users can form a wrong botnet.
This property is very important, since clusters with so small car-
dinalities cannot have any significance in practice, and there are
many rules one can conceive to discard them. In particular, we
will now see whether the proposed cluster expurgation rule is able
to get rid of this effect. Moreover, we notice that the white squares
corresponding to the clusters have some black gaps, and are ac-
companied by some horizontal white bands. For what concerns
gaps, a black pixel in position (p, q) signifies that the algorithm is
not estimating q as member of the botnet when p is pivot. How-
ever, BotClusterBuster is on purpose designed so as to perform
redundant checks (i.e., the same pairs of nodes are involved in
multiple checks). In this way, a bot is missed only if it is missed
by all checks. For this reason, we see that the occasional black
gaps observed in the white squares are irrelevant if at least one
time each bot is included in a cluster. In the end, the overall set
of nodes that belong at least to one cluster can be found on the
main (white) diagonal of the graphical matrix. In relation to the
horizontal white bands, a collection of white pixels in row p means
that the pivot p results paired with many nodes q, which results
into the formation of a relatively large cluster. Accordingly, we
see that occasionally some bots of one cluster appear paired with
bots of another cluster. This effect is clearly not relevant for DDoS
mitigation, as can be concluded from the fact that ηbot(t) ≈ 1 (top
panel).

For θ = 0.9 (left panel in Fig. 3.8), condition (3.17) is still
met, however, we are approaching the case θ = 0.75 which would
result into a violation of (3.17). Accordingly, we see that the
images of the individual clusters starts to become a bit blurred.
When we set θ = 0.75 (center panel), condition (3.17) is violated,
and, as predicted from our analysis in Sec. 3.4.1, the algorithm
does not lose the capability of identifying the botnet, but looses

58 3. DDoS with Multiple Emulation Dictionaries

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 30 50 70 90 110 130 150 170 190

10

30

50

70

90

110

130

150

170

190

10 30 50 70 90 110 130 150 170 190

10

30

50

70

90

110

130

150

170

190

10 30 50 70 90 110 130 150 170 190

10

30

50

70

90

110

130

150

170

190

Figure 3.8: Top. Performance of the botnet identification algo-
rithm. Bottom. Algorithm’s snapshot corresponding the end of
the observation window: the decisions produced by the algorithm
are encoded in a graphical matrix whose p-th row corresponds to
the output of the algorithm when user p is elected as a pivot. A
white pixel in the location (p, q) signifies that the algorithm is esti-
mating (before applying the particular cluster selection rule) that
user q is a bot when user p is elected as pivot. We consider dif-
ferent values of the threshold parameter, in particular, from left
to right we have θ = 0.9, 0.75, 0.5. All experiments refer to the
CampusDataset.

the capability of identifying the individual clusters. In particular,
since in our example we have θ = ω12 = 0.75, but we have also
θ > ω13 = ω23 = 0.5, we see that the first two clusters are merged
into a big one, whereas the third cluster is still correctly identified.
Finally, this capability is lost when θ = 0.5 (right panel), which
corresponds to the estimation of a unique big botnet comprising
all 100 bots. Moreover, in the case θ = 0.5 we notice the emer-
gence of some vertical white bands. A band in column q means
that there exists a node q that results paired with many pivots p.

3.5. Experimental Results 59

This corresponds to the formation of many (one for each paired
pivot) small clusters. Accordingly, we see that some spurious small
clusters made of normal users arise. As we will see soon, this effect
will play a role in the performance of the union-rule.

Let us move on to examine the top panels of Fig. 3.7 and
3.8, where we display the performance of the algorithm expressed
in terms of the indicators ηbot(t) and ηnor(t), which have been
evaluated over 100 Monte Carlo runs. The DDoS evolution is
monitored during the observation window with a time-step of 0.1
minutes. We show the results corresponding to the three rules
introduced in the previous sections, namely, the max-rule, the
union-rule and the cluster expurgation rule.

Let us consider the first case θ = 0.95 (Fig. 3.7), which meets
well condition (3.17). We start with the max-rule. From the evo-
lution of ηnor(t) (black dashed curve), we see that the max-rule is
effective in rejecting the fake micro-clusters. This happens since
the max-rule retains only the maximum-cardinality cluster, which
has however a detrimental effect as regards the bot identification.
Indeed, we see that ηbot(t) (black solid curve) converges approxi-
mately to 0.5, which means that only the biggest cluster made of
50 bots is correctly identified.

We continue by illustrating the behavior of the union-rule.
Here we see that the bot identification issue is remediated, since
ηbot(t) (red solid curve) converges to 1. This happens because the
union-rule aggregates the detected clusters of any cardinality. On
the other hand, this effect is detrimental as regards the normal
users classification. Indeed, we see that ηnor(t) (red dashed curve)
converges approximately to 0.1. However, this effect must be ex-
pected, especially in light of the analysis of the bottom panels in
Fig. 3.7. The union-rule is in fact aggregating many clusters of
very small cardinality. This means that, under the union-rule, we
are claiming that there exist a DDoS attack launched by several
botnets comprised of 2 or 3 members, which appears to be a very
uncommon scenario.

Another notable effect observed in the time-evolution of ηnor(t)
is the appearance of a peak at some intermediate time. The expla-

60 3. DDoS with Multiple Emulation Dictionaries

nation of this peak sheds some further light on the detrimental ef-
fects produced by the union-rule. Examining the individual traffic
patterns, we identified one specific normal user that was perform-
ing some anomalous activity. In particular, they were performing
some very intense activity for a single slot during the entire obser-
vation window. As a result, during this slot of intense activity, this
user was coupled to a very large number of other normal users, giv-
ing rise to several micro-clusters of size 2. The union-rule was then
including all these clusters into the estimated botnet, producing
the peak observed in ηnor(t). This effect disappears progressively
as time elapses, since the abnormal behavior of the particular user
is not persistent over time.

Let us finally see whether the cluster expurgation rule is able to
solve both issues experienced under the max-rule and the union-
rule. The performance of BotClusterBuster is accordingly dis-
played in blue. We see that this algorithm has very good per-
formance, since ηbot(t) (blue solid curve) converges approximately
to 1, and ηnor(t) (blue dashed curve) converges approximately to
0. With regard to the hyperparameters of the cluster expurgation
rule, in the experiments we set κ = 1 and ξ = 0.1. We remark
that these are very “agnostic” choices. Indeed, the choice κ = 1
corresponds to say that a DDoS with attack rate barely equal to a
legitimate traffic rate is deemed as dangerous. Likewise, the choice
ξ = 0.1 corresponds to say that a cluster is deemed as meaningful
if it sustains barely the 10% of the botnet activity.

From the analysis of the top plot in Fig. 3.7, we conclude that
BotClusterBuster delivers good performance under the conditions
used to prove our theoretical results. Let us now see how a reduc-
tion of the threshold parameter θ influences the performance. To
this end, we examine the top plots in Fig. 3.8. For what concerns
the max-rule, we see that ηnor(t) (black dashed curve) converges
approximately to 0 in all cases. In other words, the performance
in terms of normal users is not affected by variations of θ. In com-
parison, ηbot(t) (black dashed curve) is sensitive to θ. As it should
be expected, when the algorithm aggregates two clusters into a big
cluster of size 80 (center panel in Fig. 3.8), then ηbot(t) converges

3.5. Experimental Results 61

approximately to 0.8, whereas when a unique cluster is produced
(right panel in Fig. 3.8), then ηbot(t) converges approximately to
1.

For what concerns the union-rule, we see that ηbot(t) (red solid
curve) converges approximately to 1, irrespectively of the value of
θ, which is expected since the union rule aggregates all detected
clusters and, hence, is not sensitive to the individual clusters.
On the other hand, the union-rule performance degrades severely
when we decrease the value of θ, since lower values of θ favor the
emergence of fake micro-clusters. Accordingly, we see that ηnor(t)
(red dashed curve) increases (i.e., the performance degrades) as θ
decreases.

So far we have shown that BotClusterBuster provides proper
cluster identification when the technical conditions used to prove
the theoretical results are met, and continues to provide proper
botnet identification even when condition (3.17) is violated. Now
we want to check what happens when we deviate further from
the nominal conditions by allowing for clusters’ asymmetries, as
described in Sec. 3.4.2. Specifically, we set:

α1 = α2 = 10, α3 = 30, (3.33)

and

ω12 =
3

4
, ω13 = ω23 =

1

2
, (3.34)

with the companion overlap degrees ω21, ω31 and ω32 being deter-
mined by the constraints (3.24). The results of these experiments
are reported in Fig. 3.9, with reference to the case θ = 0.95, and for
the two datasets, namely, CampusDataset (left) and LabDataset
(right). As predicted by the numerical analysis carried out in
Sec. 3.4.3, asymmetries in the EDRs do not lead to significant
variations in the botnet identification performance. In summary,
we reach the remarkable conclusion that both the asymmetries
and the violation of (3.17) do not impair consistent botnet iden-
tification.

62 3. DDoS with Multiple Emulation Dictionaries

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 30 50 70 90 110 130 150 170 190

10

30

50

70

90

110

130

150

170

190

10 30 50 70 90 110 130 150 170 190

10

30

50

70

90

110

130

150

170

190

Figure 3.9: Top. Performance of the botnet identification algo-
rithms. Bottom. Algorithm’s snapshot corresponding the end of
the observation window: the decisions produced by the algorithm
are encoded in a graphical matrix whose p-th row corresponds to
the output of the algorithm when user p is elected as a pivot. A
white pixel in the location (p, q) signifies that the algorithm is esti-
mating (before applying the particular cluster selection rule) that
user q is a bot when user p is elected as pivot. Left panels refer to
the CampusDataset, whereas right panels to the LabDataset.

Chapter 4

High Availability of
Telecommunication
Networks

In this chapter we face the general problem of network availability,
with special focus on Service Function Chains (SFCs). They repre-
sent a modern way of composing network services within software-
based environments, where the virtualized nodes are traversed in a
specific order to provide a given service. As valuable case of SFCs,
we consider the IP Multimedia Subsystem (IMS), an infrastructure
aimed at managing multimedia content within 4G/5G telecommu-
nication systems.

It is useful to split this contribution in three parts. In the
first part (Section 4.1), we detail the performability (performance
and availability) model of a virtualized IMS deployment, where
we: i) exploit the SRN and RBD formalisms to derive a state-
based availability model, where state transitions are supposed to
be exponentially distributed; ii) perform a comparative analysis
of multiple IMS schemes in order to evaluate the fault robust-
ness also through a sensitivity assessment; iii) devise an algorithm
(nicknamed OptChains+) in charge of, first, evaluating RBD/SRN
models associated to IMS deployments (or settings), and, then,
pinpointing the settings which satisfy, at the same time, minimum

64 4. High Availability of Telecommunication Networks

cost and high availability under specific performance criteria.

In the second part (Section 4.2) we consider a more realistic
scenario where we remove the exponential assumption on state
transitions. In particular, we assume that repair transition times
follow a Weibull distribution, enabling us to highlight some inter-
esting effects of the transient availability analysis.

In the final part (Section 4.3), we describe a designed-from-
scratch tool that allows to automate the generation of availability
models for service chains. Such a tool is developed by adhering to
the Model-Driven Engineering (MDE) paradigm, and is conceived
to support the network managers during the modeling availability
stage.

4.1 Performability of Service Chains

The SFCs paradigm allows to easily create and deploy novel ser-
vices through a series (namely, a chain) of concatenated network
components [66, 67]. They are often designed by exploiting soft-
warized technologies such as virtualization, microservices, con-
tainerized environments, which provide a flexible and handy habi-
tat for diverse telecommunication frameworks [68, 69]. Among
such frameworks we focus on the IP Multimedia Subsystem (IMS),
which, embracing the service chaining concept, has been elected
both by standardization groups [70] and by the industry world
[71, 72] as the ideal intermediary between legacy networks and
5G-based solutions. In this regard, being mainly focused on an
architectural problem, we consider a high-level perspective of the
IMS service chain, as often contemplated in the technical litera-
ture on SFCs infrastructures (e.g., [73, 74]). Moreover, a recent
project named Clearwater [2] has been specifically conceived to
offer an open source implementation of IMS architecture within
virtualized and containerized environments, and to be exploited
as a benchmark testbed for assorted performance analyses [75–
77].

Inspired by this last trend, we draw up a technique for man-

4.1. Performability of Service Chains 65

aging availability and performance of service chains, where a con-
tainerized version of IMS (cIMS for brevity) has been considered
as pivotal use case. Basically, a container is a lightweight pro-
cess [78, 79] that, differently from classic virtual machines (VMs),
does not include a whole operating system. Container technol-
ogy is normally coupled with the Network Function Virtualization
(NFV) paradigm which allows to encompass the network logic
(e.g. routing, firewalling, load balancing) in virtualized elements
referred to as Virtual Network Functions (VNFs).

In the specific case considered in this work, containers fulfill
functionalities encountered in an IMS domain. Moreover, since
failure and repair events can occur at various layers of the cIMS
system (container, VM, hypervisor, etc.), we first model the prob-
abilistic behavior of the whole cIMS chain, and then solve an op-
timization problem to achieve cIMS configurations guaranteeing,
simultaneously, high availability and minimal costs at a given per-
formance level.

More generally, the methodology can be adapted to other in-
stances in the field of telecommunications and hence can be use-
ful to management organizations involved in planning/deploy-
ing/maintaining systems and services, where trade-offs among
cost, availability, and performance are critical.

4.1.1 Service Availability

Service availability is a crucial parameter of Quality of Service
(QoS) as specified by ITU-T E.800 [80]. The severe requirements
prescribed by this standard imply a very careful network design of
5G infrastructures, where virtualized and containerized modules
interact not only among them, but also with the underlying hard-
ware infrastructure. For instance, more containers deployed on
a single virtual machine can be adversely affected by a malfunc-
tioning operating system running on the VM, or, similarly, more
virtualized network functions sharing the same physical layer can
be adversely influenced by a misconfiguration of the resource iso-
lation mechanism [81]. Further issues can arise when the network

66 4. High Availability of Telecommunication Networks

elements have to be traversed in a specific order to provide a ser-
vice. It is the case of SFCs, of which IMS can be considered a
particular realization. Other examples may include: virtualized
Evolved Packet Core (vEPC) solutions able to interoperate in a
chained fashion with SDN components [82], service chains deploy-
ments across virtual data centers [83], virtual Mobility Manage-
ment Elements (vMMEs) organized as SFCs interested by signal-
ing processing flows [84].

Across such a chained scheme, the availability analysis must
consider the features of each single node which, if affected by a
failure event, disrupts the whole chain network flow.

Accordingly, we provide the following main contributions: i)
we propose a detailed availability characterization of virtualized
network chains by exploiting two techniques: Reliability Block Di-
agrams (RBDs) to describe the high-level interconnections among
concatenated nodes and Stochastic Reward Networks (SRNs) to
model the internal structure of each node from a probabilistic point
of view; ii) we conduct a performability (availability plus perfor-
mance) assessment of an exemplary virtualized chain constituted
by an IP Multimedia Subsystem deployed in a container-based set-
ting, namely, a containerized IMS (cIMS) where three container-
ized schemes have been compared and discussed in detail; more-
over, through a sensitivity analysis, we evaluate the robustness
of cIMS with respect to deviations of some external parameters
from their nominal values, due, e.g., to designer’s uncertainty on
failure/repair mean times; iii) we devise an algorithm (nicknamed
OptChains+) in charge of evaluating first RBD/SRN models as-
sociated to cIMS deployments (or settings) and then pinpointing
the settings which satisfy, at the same time, minimum cost and
high availability under specific performance criteria. Finally, an
experimental testbed based on the Clearwater project has been
deployed to execute stress tests aimed at deriving the relevant
workload parameters.

4.1. Performability of Service Chains 67

Figure 4.1: A simplified Registration procedure in the IMS do-
main. The Register message is propagated from a device to the
S-CSCF. A 200 OK message is back-propagated to the device if
the procedure ends correctly.

4.1.2 Overview of the IMS Architecture

The IP Multimedia Subsystem was born as a framework able to
providing access to a plethora of multimedia IP-based services with
guaranteed quality of service [85]. The IMS architecture supports
a broad range of services by exploiting the flexibility of the Ses-
sion Initiation Protocol (SIP) [86], to mention a few, multimedia
and real-time sessions (such as phone calls), web messaging and
enriched communications. The signaling flows are managed by the
Call Session Control Function (CSCF) servers, which communicate
by exchanging mainly SIP messages. The CSCF functionalities are
distributed among three servers. The Proxy CSCF (P-CSCF) is
a SIP proxy, and acts as an interface between the user device and
the IMS network. The Interrogating CSCF (I-CSCF) forwards
SIP requests or responses within the domain. The Serving CSCF
(S-CSCF) is in charge of performing some core functions as ses-
sion and routing control and user registration management. An-
other key element of the IMS infrastructure is the Home Subscriber
Server (HSS), an advanced database containing users’ profiles that
can be queried by means of a specific protocol called Diameter.

Such nodes are interconnected to provide basic and advanced

68 4. High Availability of Telecommunication Networks

services. An example is offered in Fig. 4.1, where a (simplified)
registration procedure (needed before exploiting IMS services) is
depicted. Initially, a user device contacts P-CSCF via a register
message (1). Such a message is passed to I-CSCF (2) that, in turns,
sends it to HSS (3) in order to retrieve the address of S-CSCF
in charge of current registration. Once obtained the information
from HSS (4), the message is forwarded to the correct S-CSCF (5).
Finally, an OK message indicating a correct device registration is
back-propagated to the user device (6), (7), (8). Once completed
the registration procedure, the device is ready to use IMS services
as, e.g, a real-time audio/video session. It is worth noting that,
in Fig. 4.1 the signaling flow is shown, but typically media flows
between distinct user devices (i.e. the content of an audio/video
call) traverse distinct paths.

4.1.3 Containerized IMS Infrastructure

We consider a deployment of an IMS infrastructure (described
in the previous section) in a container-based framework such as
the recently introduced Docker [87], RKT [88] or OpenVZ [89]
frameworks.

With respect to VMs, containers exhibit some differences.
First, containers share the host operating system, whereas a VM
has its own guest operating system, resulting in a heavier structure
(in terms of disk/memory utilization, start-up time, etc.). Second,
a VM exhibits a strong isolation at the host kernel level (being the
operating system not shared), thus exhibiting a stronger security
w.r.t. their container counterpart. Finally, containers are more
flexible in terms of portability (since they do not have a separate
operating system), whereas VMs require additional efforts dur-
ing porting operations especially when the hosting platforms are
different.

Market leaders such as Amazon Web Services and Google Con-
tainer Engine typically take advantage both from virtualization
and containerization by designing infrastructures where contain-
ers run on top of VMs [90]. Actually, the possibilities of combin-

4.1. Performability of Service Chains 69

ing VMs with containers strongly depend on the specific policy
adopted by the cloud provider. An useful taxonomy is provided
in [62], where two common schemes stand out: the first is the
homogeneous one, where several instances of a single kind of con-
tainers run on top of one and the same VM. Such a scheme is well
suited for public cloud environments where, for security issues,
it is preferable not to share VMs among different users or ten-
ants. The second one is the heterogeneous scheme, where different
kinds of containers are allowed to share the same VM. It is the
case of private cloud environments (see for example [91]), where
there are no strict security requirements, and where it is possi-
ble to design scalable redundant policies (by replicating the entire
VM) to cope with failure events. Specifically, we consider Docker-
based implementations of both schemes that share a common five-
layer arrangement referred to as a Containerized Network Replica
(CNR), consisting of (see Fig. 4.2): i) an infrastructure layer that
generically embodies hardware components (HW) such as CPU,
RAM, power supplies; ii) a hypervisor (HPV) acting as an inter-
face between hardware and upper layers; iii) a virtual machine
(VM) layer that provides a wrapper for the Docker environment;
iv) a Docker daemon (DCK) that offers a runtime environment
to handle containers; v) a Container (CNT) which embeds the
specific software functionality to be provided (e.g. Proxy, Serv-
ing, etc.), and represents the basic element supplying/managing
IMS sessions. Since a DCK can handle more than one CNT, and
since a HPV can handle different VMs, different CNRs schemes
are possible. As illustrated in Fig. 4.2, scheme (a) accounts for a
homogeneous implementation of a CNR hosting only one kind of
instance; scheme (b) represents a co-located homogeneous imple-
mentation where different containers instances are deployed over
different dockers and virtual machines, although they share the
same underlying infrastructure; scheme (c) accounts for a het-
erogeneous implementation that allows to consider a co-located
deployment of different containers; finally, scheme (d) represents
a mixed heterogeneous deployment with different dockers and vir-
tual machines. We remark that schemes (b) and (c) represent

70 4. High Availability of Telecommunication Networks

Hardware (HW)

Hypervisor (HPV)

Virtual Machine (VM1)

Docker Deamon (DCK1)

C1 C1 C2. . . .

Docker Deamon (DCK2)

C2

Virtual Machine (VM2)

. . . .

Hardware (HW)

Hypervisor (HPV)

Virtual Machine (VM)

Docker Deamon (DCK)

C1 C1. . . .C1

Hardware (HW)

Hypervisor (HPV)

Virtual Machine (VM)

Docker Deamon (DCK)

C1 C1. . . .C2 C2

Hardware (HW)

Hypervisor (HPV)

Virtual Machine (VM12)

Docker Deamon
(DCK12)

C1 C2 C4. . . .

Docker Deamon
(DCK34)

C3

Virtual Machine (VM34)

. . . .

(a) (b)

(c) (d)

H
om

ogeneous
Schem

es
H
eterogeneous
Schem

es

Figure 4.2: Different schemes of CNRs. Schemes (a) and (b) re-
alize the pure and the co-located homogeneous deployments, re-
spectively. Schemes (c) and (d) realize the co-located and the
mixed heterogeneous deployments, respectively. Note that the co-
location in (b) is intended at an infrastructure level, whereas in
(c) is intended at a container level.

different kinds of co-location (that in real IMS settings typically
involves HSS and I-CSCF - see [92]): the former implements co-
location at infrastructure level, whereas the latter implements co-
location at container level. It is useful to define a Containerized
Network Function (CNF) as an ensemble of CNRs deployed to
provide a specific IMS functionality. Otherwise stated, a CNF is
a logical abstraction of a cIMS node composed by one or more
CNRs. Thus, in the sequel, the terms CNF and cIMS node may
be used interchangeably.

The introduction of the CNF representation provides some de-
grees of freedom. First, a single CNF can be realized by means
of multiple CNRs that, in principle, can be distributed geograph-
ically. Second, different CNRs belonging to the same CNF can
have a different number of containers since a CNR has a limited
resource to support up to a certain number of cIMS sessions. Fi-
nally, different CNRs belonging to the same CNF can be deployed
according to different schemes (see Fig. 4.2). To clarify this con-

4.1. Performability of Service Chains 71

Hardware (HW)

Hypervisor (HPV)

Virtual Machine (VM)

Docker Deamon (DCK)

C1 C1 C1

Hardware (HW)

Hypervisor (HPV)

Virtual Machine (VM)

Docker Deamon (DCK)

C1 C1

P-
C
N
R
1

P-
C
N
R
2

P-CNF

Hardware (HW)

Hypervisor (HPV)

Virtual Machine (VM)

Docker Deamon (DCK)

C4 C4 C4

Hardware (HW)

Hypervisor (HPV)

Virtual Machine (VM)

Docker Deamon (DCK)

C4 C4

I-C
N
R
2

I-C
N
R
1

I-CNF

Hardware (HW)

Hypervisor (HPV)

Virtual Machine (VM)

Docker Deamon (DCK)

C2 C2 C2

Hardware (HW)

Hypervisor (HPV)

Virtual Machine (VM)

Docker Deamon (DCK)

C2 C2

S-
C
N
R
3

S-
C
N
R
2

Hardware (HW)

Hypervisor (HPV)

Virtual Machine (VM)

Docker Deamon (DCK)

C2 C2

S-
C
N
R
1

S-CNF

Hardware (HW)

Hypervisor (HPV)

Virtual Machine (VM)

Docker Deamon (DCK)

C3 C3 C3

Hardware (HW)

Hypervisor (HPV)

Virtual Machine (VM)

Docker Deamon (DCK)

C3 C3

H
-C
N
R
4

H
-C
N
R
3

Hardware (HW)

Hypervisor (HPV)

Virtual Machine (VM)

Docker Deamon (DCK)

C3 C3

H
-C
N
R
2

H-CNF

Hardware (HW)

Hypervisor (HPV)

Virtual Machine (VM)

Docker Deamon (DCK)

C3 C3

H
-C
N
R
1

Figure 4.3: Interconnections among nodes in a (containerized) IMS
infrastructure (homogeneous deployment case).

cept, Fig. 4.3 shows different CNFs (distinguished by node) each
one can contain one or more CNRs. The particular arrangement
in Fig. 4.3, where the four CNFs are chained in series, can be
modeled using the RBD formalism.

4.1.4 Availability Model of Containerized IMS

The SRN methodology, stemming from Markov Reward Models
[64], [93], allows to describe the interactions occurring among the
various layers of a CNR that composes a generic cIMS node. More
specifically, we adopt the usual graphical description in terms of
bi-partite directed graphs where places (depicted as circles) ac-
count for specific conditions (e.g. nodes up/down), and transi-
tions (depicted as rectangles) represent the actions (e.g. a node
fails or is repaired). Inside a place, tokens (represented by dots or
numbers) characterize holding conditions. In case of a CNT layer,
one (or more) tokens lying in the “up” place indicate one or more
working containers, whereas for the remaining layers (DCK, VM,

72 4. High Availability of Telecommunication Networks

HPV, HW) one token in the “up” place indicates a working layer.
When a failure/repair event related to a specific CNR layer occurs
(namely, a transition is fired), a token (or more than one token in
the case of a CNT layer) is transferred from the source place to a
destination place.

In an SRN, transitions times are supposed to be exponential
random variables (a common assumption in reliability and avail-
ability analyses), with λ denoting the failure rate, and µ the repair
rate. Solving an SRN amounts to evaluate the reward function,
defined as a non-negative random process associated to some de-
pendability metrics (among them, the availability).

Let Y (t) be the reward function that is equal to 1 when the
system is working at time t, and to 0 otherwise. The instantaneous
availability can be expressed as [64]

A(t) = P{Y (t) = 1} = E[Y (t)] =
∑

i∈I
ri pi(t), (4.1)

where I is the set of markings, namely, the set of feasible tokens
distributions, ri (commonly referred to as reward rate) is the value
of Y (t) in marking i, and pi(t) is the corresponding probability.
The set I can be split in a subset of “up” states (ri = 1), and a
subset of “down” states (ri = 0).

4.1.5 Homogeneous Scheme

Figure 4.4 (on the left) describes the SRN model of the homo-
geneous scheme depicted in Fig. 4.2(a) implementing a generic
CNR. Places PupCNT [PdnCNT], PupDCK [PdnDCK], PupVM [PdnVM],
PupHPV [PdnHPV], and PupHW [PdnHW] take into account the work-
ing [failure] conditions of container instance, docker daemon, vir-
tual machine, hypervisor, and hardware, respectively. Note that
each place contains only one token (indicated by number 1), ex-
cept for the place PupCNT that contains nk tokens, which denotes
the possibility of having more replicas of a single container in-
stance. Transitions TfCNT [TrCNT], TfDCK [TrDCK], TfVM [TrV M],
TfHPV [TrHPV], and TfHW [TrHW] denote failure [repair] activi-

4.1. Performability of Service Chains 73

1PupHW PdnHW

TfHW

TrHW

1PupHPV PdnHPV

TrHPV

tHPV

TfHPV

1PupVM PdnVM

TrVM

tVM

TfVM

1PupDCK PdnDCK

TrDCK

tDCK

TfDCK

nkPupCNT PdnCNT

TrCNT

tCNT

TfCNT
#

#

Hardware (HW)

Hypervisor (HPV)

Virtual Machine (VM)

Docker Deamon (DCK)

C1 C1 C1. . . .

Figure 4.4: SRN-based model (on the left) representative of a
generic CNR deployed according to the homogeneous scheme (on
the right).

ties characterizing containers, docker, virtual machine, hypervisor,
and hardware, respectively. Such transitions (depicted as unfilled
rectangles) are called “timed” transitions and, as previously said,
are characterized by exponentially distributed times. If a timed
transition is “marking-dependent” (in Fig. 4.4 we insert the “#”
symbol to denote such condition), its effective rate is multiplied by
the number of tokens available in the pertinent place. Conversely,
transitions tCNT , tDCK , tVM , and tHPV (represented by filled and
thin rectangles) are called “immediate” transitions and account
for actions occurring in a zero-length time interval.

The time-evolution of the SRN in Fig. 4.4 can be analyzed

74 4. High Availability of Telecommunication Networks

by starting from the initial working condition, where nk tokens
are located in place PupCNT , while a single token is present in all
the remaining “up” places. When a single container failure occurs
(e.g., an uncontrolled reboot of a container instance), transition
TfCNT is fired and one token in PupCNT is moved to place PdnCNT .
As a consequence, nk − 1 tokens remain in PupCNT . Conversely,
once the container becomes again repaired, TrCNT is fired and the
token comes back to PupCNT .

Now, let us consider the case of a docker layer failure. The
transition TfDCK is fired and the token is moved from PupDCK to
PdnDCK . Notice that, when the docker layer fails, all container in-
stances that need the underlying docker layer to be up and running
become inactive. Such an issue is taken into account through an
inhibitory arc (depicted as a segment between PupDCK and tCNT
with a little circle close to the latter) that, in case of a docker
failure, forces tCNT to be fired. When the docker gets repaired,
TrDCK is fired, and two actions occur: first, the token passes from
PdnDCK to PupDCK , then the inhibitory arc between PdnDCK and
TrCNT is disabled and, consequently, the nk tokens are ready to
be transferred from PdnCNT to PupCNT .

Similar behaviors occur in case of virtual machine, hypervi-
sor, and hardware failures/repairs. It is worth noting that the
only layer without an immediate transition is the hardware layer.
Indeed, being hardware the lower layer of a generic cIMS node
structure, no further underlying dependencies have to be taken
into account. Let us now define two quantities useful for the
forthcoming performability analysis: the demand W , that is the
required system performance in terms of concurrent IMS sessions;
the capacity cj, namely the maximum number of concurrent IMS
sessions a container belonging to CNF j can manage. Therefore,
the reward rate in marking i is

ri(j) =





1 if
∑k

h=1 #P
(h)
upCNT cj ≥ W in marking i,

0 otherwise.
(4.2)

4.1. Performability of Service Chains 75

where h is the number of CNRs forming CNF j, and “#” refers to
the number of tokens1. By defining γj = W/cj as the normalized
performance level, Eq. (4.2) can be recast as

ri(j) =





1 if
∑k

h=1 #P
(h)
upCNT ≥ γj in marking i,

0 otherwise.

(4.3)

Finally, in the limit as t→∞, we get the steady-state availability
for cIMS node j:

Aj = lim
t→+∞

Aj(t) =
∑

i∈I
ri(j) pij, (4.4)

where: ri(j) is derived from (4.3), and pij is the steady-state prob-
ability given by pij = limt→+∞ pij(t) (where pij(t) is the instanta-
neous probability of the CNF j being in marking i). It is worth
noting that in (4.3) we are implicitly considering k independent
CNRs replicas represented in turn by k SRNs. Accordingly, the
overall marking state-space can be seen as the cartesian product
of the marking state-spaces pertaining to the k composing SRNs.
Thus, the probability in (4.4) is meant as the product of proba-
bilities pertaining to the different markings of the k SRNs. Such
a remark also holds true for the cases presented in the following
sections (co-located, heterogeneous, mixed).

From the CNF availability in (4.4), it is possible to derive the
overall steady-state availability for the homogeneous scheme as

AcIMS =
∏

j∈{P,S,I,H}
Aj. (4.5)

The product in (4.5) stems from the RBD-like modeling of Fig.
4.3 representative of series connection among cIMS nodes. The
overall cIMS steady-state availability, in fact, requires that each
node must be available.

1In the standard SRN terminology there is a little abuse of notation, as
the symbol # denotes both the number of tokens and the marking-dependent
transitions in SRN graphical representations.

76 4. High Availability of Telecommunication Networks

4.1.6 Homogeneous Co-located Scheme

Let us now consider the availability model of a CNR deployed
according to a homogeneous co-located scheme as shown in Fig.
4.2(b). We recall that such a co-location is realized by sharing the
infrastructural level (hypervisor/hardware). The corresponding
SRN is shown in Fig. 4.5 (on the left), where, for the sake of
simplicity, we consider only two different co-located containers and
two different dockers and virtual machine layers. Comparing this
co-located scheme against the homogeneous scheme in Fig. 4.4,
we can observe that the main structure remains unaltered (on the
left), whereas a new piece (on the top right) typifies the presence
of co-located elements. In particular, the new piece present on the
top right of Fig. 4.5 embodies: the second container layer (C2),
the second docker layer (DCK2), and the second virtual machine
layer (VM2). Moreover, we can notice the presence of two further
inhibitory arcs connecting the two parts of the graph. The first one
between PupHPV and tVM2 accounts for the fact that, if hypervisor
fails, the co-located VM (and, in turn, co-located DCK and CNT)
cannot be operative, thus, tVM2 is fired and the only token in
PupVM2 is moved to PdnVM2. The second inhibitory arc between
PdnHPV and TrV M2 accounts for the fact that the token cannot
be moved from PdnVM2 to PupVM2, until the token in PdnHPV is
transferred to PupHPV , since the co-located virtual machine cannot
be restored until hypervisor gets repaired.

Similarly, given marking i, it is possible to define a new reward
rate as

r′i(j1, j2) =





1 if
(∑k

h=1 #P
(h)
upCNT1 ≥ γj1

)
∧

(∑k
h=1 #P

(h)
upCNT2 ≥ γj2

)
in marking i,

0 otherwise,

(4.6)

4.1. Performability of Service Chains 77

1PupHW PdnHW

TfHW

TrHW

1PupHPV PdnHPV

TrHPV

tHPV

TfHPV

1PupVM1 PdnVM1

TrVM1

tVM1

TfVM1

1PupDCK1 PdnDCK1

TrDCK1

tDCK1

TfDCK1

nk1PupCNT1 PdnCNT1

TrCNT1

tCNT1

TfCNT1
#

#

Hardware (HW)

Hypervisor (HPV)

Virtual Machine (VM1)

Docker Deamon (DCK1)

C1 C1 C2. . . .

1PupVM2 PdnVM2

TrVM2

tVM

TfVM2

1PupDCK2 PdnDCK2

TrDCK2

tDCK2

TfDCK2

nk2PupCNT2 PdnCNT2

TrCNT2

tCNT2

TfCNT2
#

#

Docker Deamon (DCK2)

C2

Virtual Machine (VM2)

. . . .

Figure 4.5: SRN-based model (on the left) representative of a
generic CNR deployed according to the homogeneous co-located
scheme (on the bottom-right).

where the symbol ∧ denotes a logical AND operator between the
two conditions. The above expression can be interpreted as a gen-
eralization of (4.3) to the case of two co-located types of containers
with performance capacities cj1 and cj2 belonging to co-located
CNFs j1 and j2 that, in our case, are I-CSCF and HSS.

Accordingly, the steady-state availability pertaining to a pair
of co-located nodes can be expressed as

A′j1j2 = lim
t→+∞

A′j1j2(t) =
∑

i∈I
r′i(j1, j2) p′ij1j2 , (4.7)

78 4. High Availability of Telecommunication Networks

where r′i(j1, j2) is given by (4.6), and p′ij1j2 is the corresponding
steady-state probability. Considering that, in a homogeneous co-
located scheme, the overall cIMS infrastructure is composed by
two non-colocated nodes (typically P-CSCF and S-CSCF) and two
co-located nodes (typically I-CSCF and HSS), the overall steady-
state availability is:

A′cIMS = A′j1j2
∏

j 6=j1,j2
Aj. (4.8)

The product of Aj (derived from (4.4)) spans across the two non-
colocated nodes, whereas A′j1j2 (from (4.7)) takes into account the
remaining co-located nodes.

4.1.7 Heterogeneous Co-located Scheme

The next model refers to a heterogeneous co-located scheme, whose
pertaining SRN is depicted in Fig. 4.6 (on the left). Such a scheme
represents a lightweight co-location since the whole infrastructure
from docker to hardware can host different kinds of containers. In
this case, just one new part represented by another container has
been introduced. Similar to the previous case, the inhibitory arc
from PupDCK12 and tCNT2 forces the co-located container to fail in
case of a docker failure, whereas the inhibitory arc from PdnDCK12

to TrCNT2 prevents that co-located containers could be working
again until docker gets repaired.

Since the definition of the work condition is the same as in the
co-located scheme defined in the previous section, the reward rate
and the steady state availability are the same defined in 4.6, 4.7
and 4.8.

4.1.8 Heterogeneous Mixed Scheme

This last SRN model pertains to a heterogeneous mixed case that
is a combination of the homogeneous co-located and the hetero-
geneous co-located schemes; referring to Fig. 4.7 (on the left).

4.1. Performability of Service Chains 79

1PupHW PdnHW

TfHW

TrHW

1PupHPV PdnHPV

TrHPV

tHPV

TfHPV

1PupVM12 PdnVM12

TrVM12

tVM12

TfVM12

1PupDCK12 PdnDCK12

TrDCK12

tDCK12

TfDCK12

nk1PupCNT1 PdnCNT1

TrCNT1

tCNT1

TfCNT1
#

#

Hardware (HW)

Hypervisor (HPV)

Virtual Machine (VM12)

Docker Deamon (DCK12)

C1 C2

nk2PupCNT2 PdnCNT2

TrCNT2

tCNT2

TfCNT2

#

#

C2 C1...

Figure 4.6: SRN-based model (on the left) representative of a
generic CNR deployed according to the heterogeneous co-located
scheme (on the right).

The new part allows to model the behavior of two separated sub-
structures (each composed of container(s), docker, and VM) which
share the same underlying infrastructure. The two inhibitory arcs
(one from PupDCK34 and tCNT4 and another from PdnDCK34 to
TrCNT4) admit the same interpretation, mutatis mutandis, offered
for the heterogeneous case. Let us now evaluate for the reward rate
and the steady-state availability. Given marking i, we express the

80 4. High Availability of Telecommunication Networks

1PupHW PdnHW

TfHW

TrHW

PupHPV PdnHPV

TrHPV

tHPV

TfHPV

1

1PupVM12 PdnVM12

TrVM12

tVM12

TfVM12

1PupDCK12 PdnDCK12

TrDCK12

tDCK12

TfDCK12

nk1PupCNT1

PdnCNT1

TrCNT1

tCNT1

TfCNT1
#

#

Hardware (HW)

Hypervisor (HPV)

Virtual Machine (VM12)

Docker Deamon (DCK12)

C1 C2 C4. . . .

nk2

PupCNT2 PdnCNT2

TrCNT2

tCNT2

TfCNT2

#

#

C3

1PupVM34 PdnVM34
tVM34

TfVM34

1PupDCK34 PdnDCK34

TrDCK34

tDCK34

TfDCK34

nk3

PupCNT3 PdnCNT3

TrCNT1

tCNT3

TfCNT3
#

#

nk4

PupCNT4 PdnCNT4

TrCNT4

tCNT4

TfCNT4

#

#

TrVM34

Virtual Machine (VM34)

Docker Deamon (DCK34)

Figure 4.7: SRN-based model (on the left) representative of a
generic CNR deployed according the heterogeneous co-located
scheme (on the bottom-right).

reward rate as

r′′′i (j1, j2, j3, j4) =





1 if
(∑k

h=1 #P
(h)
upCNT1 ≥ γj1

)
∧(∑k

h=1 #P
(h)
upCNT2 ≥ γj2

)
∧(∑k

h=1 #P
(h)
upCNT3 ≥ γj3

)
∧(∑k

h=1 #P
(h)
upCNT4 ≥ γj4

)

in marking i,

0 otherwise.

(4.9)

4.1. Performability of Service Chains 81

We notice that the above formula can be obtained from (4.3) by
considering two couples of co-located containers with capacities cj1
(with j1 representing I-CSCF), cj2 (with j2 representing HSS), cj3
(with j3 representing P-CSCF), and cj4 (with j4 representing S-
CSCF) in accordance to Fig. 4.2(d). Hence, the pertinent steady-
state availability can be expressed as

A′′′cIMS = lim
t→+∞

A′′′j1j2j3j4(t) =
∑

i∈I
r′′′i (j1, j2, j3, j4) p′′′ij1j2j3j4 , (4.10)

The reward function r′′′i (j1, j2, j3, j4) is given by (4.9) and p′′′ij1j2j3j4
is the corresponding steady-state probability.

4.1.9 The Availability/Cost Optimization
Problem

Let setting S be a generic deployment of a cIMS infrastructure
composed of a certain number of CNRs. Our goal is to find the
settings satisfying high availability requirements at minimal cost
(since CNRs can be variously combined among them and with dif-
ferent schemes, the optimum could be achieved by more than one
setting). This optimization problem can be formalized as follows.

Letting Ej be the cost (expenditure) of node j, composed of h
CNRs, the overall cost of a cIMS setting is

E(S) =
∑

j∈{P,S,I,H}
Ej. (4.11)

Letting R = {S : AcIMS(S) ≥ A0} be the ensemble of settings sat-
isfying a steady-state availability requirement A0, the formal so-
lution of the problem amounts to:

S∗ = arg min
S∈R

E(S). (4.12)

We shall work under two assumptions. The first one concerns the
cost computation/assignment of a cIMS system. Since a single
cIMS node is composed of one or more CNRs, we assume that the

82 4. High Availability of Telecommunication Networks

cost of a single CNR is the sum of three dimensionless contribu-
tions: i) cost per container (CNT) embodying the software logic
and licenses, ii) cost per docker and virtual machine (DCK+VM)
that includes the operating system, and iii) cost per hypervisor
and hardware (HPV+HW) representing the infrastructure cost.
Each contribution is supposed to be equally priced with a normal-
ized cost amounting to 1. Such assumption, in line with the policy
pricing of top-player services such as Amazon AWS or Microsoft
Azure, reflects the fact that software parts have a cost compa-
rable with physical parts since an extra amount due to licenses
must be considered. Needless to say, the proposed analysis can be
generalized by customizing (4.11) and by choosing different cost
contributions.

The second assumption concerns the diversity between CSCF
containers (P, S, I) and the HSS, as the latter implies an addi-
tional criticality due to the underlying database structure. This
issue is accounted for by imposing that HSS container provides one
extra replica w.r.t. CSCF containers. In other words, we impose
that γHSS = γCSCF + 1. To avoid overburdened notation, in the
following we simply use γ in place of γCSCF .

4.1.10 OptChains+ Algorithm

In our analysis, we face a search across a huge number of possible
redundancy schemes obtained by variously combining CNRs and
pertinent containers.

Our analysis is assisted by TimeNET [94], a powerful tool for
SRN model evaluation, whose functionalities have been further
enriched by means of a purposely designed Python-based external
module implementing a multi-stage procedure (sketched in Fig.
4.8) which:

� automatically builds, replicates (to achieve redundancy),
and evaluates SRN models per cIMS node on the basis of
some parameters such as: desired scheme (homogeneous,
heterogeneous, etc.), Mean Time to Failure (MTTF) 1/λ

4.1. Performability of Service Chains 83

!"#$%&#'()*+,)%$-./)

($01#2"(#'$0)3).4&/"&#'$0

!"#$%&#'()+56)%$-./)($%7$1'#'$0

3)8.&1'9/.)*.##'0:);<#2&(#'$0

!" #$%&'''''$

(&)&$*+(),-.

!"#!"#$%&' &()*+,-.

$%&'('

!/&01)/#%1)$&2.

)* !3%#4567-%4%#)

484924:929%6 %4';#%.

+,-.-/#!

Figure 4.8: Big picture of the procedure implementing
OptChains+ to support the performability assessment.

and Mean Time to Repair (MTTR) 1/µ for various layers,
desired steady-state availability target A0 (0.99999 in our
case), cost per layer, value of γ;

� automatically composes the series/parallel structures (set-
tings) through the RBD formalism, along with the over-
all availability evaluation; at the same time, an extraction
of feasible settings satisfying the desired constraints is per-
formed.

The described procedure has been embedded into an algorithm
dubbed OptChains+, whose pseudo-code is reported in the next
page. The first part (lines 1 − 9) embodies the external call to
TimeNET to build and evaluate SRN models for single CNFs
(made of one or more CNRs - see Fig. 4.3), by retaining only
the (feasible) CNFs that cope with a given availability constraint
(ACNF ≥ A0, line 5). The rationale behind this choice is to save
computational resources for the evaluation of the final availabil-
ity AcIMS, which is obtained as the product of ACNF terms, one
per node. We want to remark that such external call (line 4) is
just preparatory to obtain the vector R of feasible CNFs, thus,

84 4. High Availability of Telecommunication Networks

1 Initialize the vector R’ containing all possible CNFs with various parameters (schemes, λ,
µ, A0, costs, γ);

2 for CNF ∈ R’ do
3 if #Container ≥ γ then
4 SRN model evaluation (CNF)
5 if ACNF ≥ A0 then
6 R[CNF] ← ACNF
7 end

8 end

9 end
Intermediate Input: R, g1, g2, g3, G

10 minCost← inf
11 for p ∈ Rpcscf do
12 calculate Ep
13 if Ep > g1 · minCost then
14 continue;
15 end
16 for s ∈ Rscscf do
17 calculate Es
18 if Ep + Es > g2 · minCost
19 OR (Ap · As) <A0 then
20 continue;
21 end
22 if homogeneous then
23 for i ∈ Ricscf do
24 calculate Ei
25 if

∑
k=p,s,i Ek > g3 · minCost

26 OR
∏

k=p,s,i Ak <A0 then

27 continue;
28 end
29 for h ∈ Rhss do
30 calculate Eh
31 if

∑
k=p,s,i,h Ek > G · minCost

32 OR
∏

k=p,s,i,h Ak <A0 then

33 continue;
34 end
35 minCost← min{minCost, EcIMS}
36 save [cIMS, AcIMS , EcIMS]

37 end

38 end

39 end
40 else if colocated or heterog. then
41 for c ∈ Rcol−het do
42 calculate Ec
43 if

∑
k=p,s,c Ek > G · minCost

44 OR
∏

k=p,s,c Ak <A0 then

45 continue;
46 end
47 minCost← min{minCost, EcIMS}
48 save [cIMS, AcIMS , EcIMS]

49 end

50 end

51 end

52 end

in case a different tool is used, the rest of OptChains+ remains
unaltered. The second part of the algorithm aims at achieving a
reduced number of cIMS settings (matching specific costs EcIMS

and availability criteria AcIMS at the same time) for different
schemes (homogeneous (lines 22 − 39), co-located/heterogeneous
(lines 40 − 50)). The intermediate inputs for such a second part

4.1. Performability of Service Chains 85

include: R, γ, and four weight factors (g1, g2, g3, G) adopted to
tune the pruning/searching process. The idea is to perform an ex-
haustive search with pruning, starting to cycle on the sub-vector
Rpcscf that includes all feasible Proxy-type CNFs (line 11). The
algorithm prunes all the settings with a cost exceeding g1 times
the cost of cIMS. The variable minCost represents the whole cIMS
cost calculated/updated within a cycle, and initialized at line 10.
Then, when analyzing the sub-vector Rscscf (line 16), OptChains+
prunes all the settings whose total cost of Proxy and Serving-type
CNFs exceeds g2 times the cIMS cost, or whose availability prod-
uct ApAs is less than A0. A similar logic holds for: I-type contain-
ers (line 23) and H-type containers (line 29). At line 31, the weight
factor G indicates that an extra amount of settings (with a cost
increased by G% regarding the actual cost) is retained for backup.
The final output is a vector gathering: all the feasible cIMS set-
tings along with their availability AcIMS and cost EcIMS (line 36
for homogenous schemes, and line 48 for colocated/heterogeneous
schemes). We remark that any reasonable criterion can be pur-
sued to select the weight factors. The practical rule we adopted
is based on the assumption that each of the four nodes is worth
1/4 of the whole cIMS deployment. Hence, the algorithm starts
to prune all settings whose P-CSCF cost exceeds its redoubled
value, thus, g1 = 1/2. Such a “conservative” reasoning is repeated
further ahead in OptChains+, so as to obtain the rescaled weight
factors g2 = 3/4 and g3 = 1. Ultimately, the value of G is set to
1.15, implying that we keep more settings than needed, with the
aim of providing a broader set of cIMS combinations. Intuitively,
greater values of weight factors result in a more conservative strat-
egy since more settings are kept, but at the cost of a higher com-
putation time. In our case study, which assumes a maximum of 6
containers to deploy per CNR, the variety of redundancy schemes
to analyze produces a number of settings in the order of 1013 (con-
sider combining 7 containers (0-6) deployed across 4 nodes, and,
then, composing a setting of 4 elements: (74)4).

It is worth noting that OptChains+ can be regarded as an ap-
proximation to a brute-force search with heuristic pruning rules.

86 4. High Availability of Telecommunication Networks

Actually, relatively large weights (i.e., few pruned configurations)
go in the direction of the brute-force search, reaching an approx-
imate O(n4) complexity. In comparison, with relatively small
weights the complexity can scale with the more affordable law
O(n log n), which arises from a sorting operation of the pertinent
cost vectors. Clearly, the amount of pruning can affect the fi-
nal algorithm performance, since the more we prune, the higher
is the probability of missing useful configurations. Unfortunately,
there does not exist an analytical way to choose the weights so
as to optimize the complexity/performance trade-off. In practice,
heuristic thresholding rules are employed to set an appropriate
level of pruning, as detailed before. As we will show in the exper-
imental analysis, with typical choices of the pruning threshold the
optimization routine exhibits reasonable complexity and is able
to find (sub-)optimal configurations that attain satisfying perfor-
mance.

With the proposed OptChains+ tuning, the number of set-
tings to analyze decreases to 105, and, on a standard PC (Intel
Core CPU i5− 3230@2.60 GHz, with a RAM of 8 GB), the whole
procedure requires about 450 seconds to run (neglecting the call
to external tool TimeNET).

4.1.11 Numerical Evaluation

In Fig. 4.9 we sketch the deployed experimental testbed based on
the Clearwater platform. On a laptop with an Intel Core CPU
i7− 3630QM@2.40GHz and with a RAM of 8 GB, we deploy two
Linux-based virtual machines (1 virtual Core and 2 GB of RAM
per VM): the first one serves as a containerized deployment of
the whole cIMS architecture including P-CSCF (Bono), S/I-CSCF
(Sprout), and HSS (Homestead). The second VM is a stress node
that executes some routines useful to perform a load stress against
the containerized platform. The test scenario considers 1000 con-
current IMS sessions with a BHCA (Busy Hour Call Attempts)
equal to 2.6 per user (in line with values provided for VoLTE - see
[95]). The resulting average call setup delay is 80 msec, a value

4.1. Performability of Service Chains 87

!"#"

!"#$%$&'

$%$&'"()

!%#$%$&'

*"+,-),./

!(%%'

01,.'2.),'3

0"',

%)"

%)"

(**"

%)"+%,-.//+*001 4%$&'"()

!)#$%$&'

$&'"()

234

235

Figure 4.9: Sketch of the experimental testbed relying on the
Clearwater architecture.

quite reasonable since the infrastructure is deployed on the same
node, so that interconnection delays are negligible.

The values of some parameters (e.g. virtual machine and hy-
pervisor MTTF) have been directly obtained from the technical
literature [96]. The values of other parameters (e.g. container and
docker MTTF and MTTR, see Table 4.1) have been chosen after
consultation with experts from the ERICSSON company, within
the research collaboration of the Co.Ri.TeL Laboratory of the Uni-
versity of Salerno.

The experiment allows for a performance demand W ranging
from 2000 to 5000, assuming a performance capacity c=1000 (both
in terms of IMS sessions) and assuming, for simplicity, cj = c. This
basically means that, if a provider needs to guarantee up to, say,
4000 concurrent IMS sessions, we get γ = 4, indicating the need
for at least 4 containers. Hence, according to the W value, γ
ranges from 2 to 5 (in case of non integer result, we consider the
next integer value for γ).

Aimed at considering a practical case, we analyze some rele-
vant settings (extracted among about 1000 produced by the pro-
cedure) as reported in Tables 4.2 and 4.3. The column Scheme
indicates the type of cIMS deployment along with different val-
ues of γ. With a little abuse of notation, homogeneous (HOM.)
scheme refers to a cIMS setting where all nodes are composed
of homogeneous CNRs, whereas in the co-located (COL.) and

88 4. High Availability of Telecommunication Networks

Table 4.1: Parameters values. CNT and DCK repair times must
be interpreted as times spent to perform a software reboot.

Parameter Description Value

1/λCNT container MTTF (hour) 500
1/λDCK docker daemon MTTF (hour) 1000
1/λVM virtual machine MTTF (hour) 2880
1/λHPV hypervisor MTTF (hour) 2880
1/λHW hardware MTTF (hour) 60000
1/µCNT container MTTR (sec) 2
1/µDCK docker daemon MTTR (sec) 5
1/µVM virtual machine MTTR (hour) 1
1/µHPV hypervisor MTTR (hour) 2
1/µHW hardware MTTR (hour) 8
W performance demand (IMS sessions) (2000, 5000)
c performance capacity (IMS sessions) 1000
A0 steady-state availability requirement 0.99999

heterogeneous (HET.) schemes, I-CSCF and HSS share the same
CNR(s) of the co-located and the heterogeneous type, respectively.
For each scheme, we consider four exemplary settings (S1, . . . , S4)
where a maximum of 4 CNRs per node are allowed. Let us clar-
ify the notation adopted in Tables 4.2 and 4.3 by considering, for
instance, setting S1 in the co-located scheme with γ = 2. The
notation ([2 2 0 0]) used for P-CSCF indicates that 2 out of
4 (homogeneous) CNRs are exploited and 2 containers per CNR
are used. Similarly, for the S-CSCF ([1 1 1 0]), 3 out of 4
(homogeneous) CNRs are exploited and 1 container per CNR is
used.

A slightly different notation is used for I-CSCF and HSS
that share the same CNRs (Table 4.3). In such a case,
[2, 3 2, 3 0, 0 0, 0] indicates that 2 out of 4 (co-located) CNRs
are exploited where 2 I-type containers and 3 H-type containers
are deployed per CNR, respectively.

Such a concise notation is also helpful to quickly compute the
cost E for each setting. As regards the previous example, the
deployment cost EP for P-CSCF amounts to 1 · 4 (CNT) +1 · 2

4.1. Performability of Service Chains 89

Table 4.2: A selection of 4 exemplary settings (S1, S2, S3, S4) with
different distributions of CNRs for homogeneous deployment and
for values of γ ranging from 2 to 5.

Scheme Setting P-CSCF S-CSCF I-CSCF HSS

S1 [2 2 0 0] [2 2 0 0] [2 2 0 0] [2 2 1 0]
HOM. S2 [2 2 0 0] [2 2 0 0] [2 2 0 0] [3 3 0 0]
γ=2 S3 [2 2 0 0] [2 2 0 0] [2 2 0 0] [3 4 0 0]

S4 [2 2 0 0] [2 2 0 0] [2 3 0 0] [3 3 0 0]

S1 [4 4 0 0] [4 4 0 0] [4 4 0 0] [3 3 2 0]
HOM. S2 [4 4 0 0] [4 4 0 0] [4 4 0 0] [5 5 0 0]
γ=4 S3 [4 4 0 0] [4 4 0 0] [4 4 0 0] [5 6 0 0]

S4 [4 4 0 0] [4 4 0 0] [4 5 0 0] [5 5 0 0]

S1 [3 3 0 0] [3 3 0 0] [3 3 0 0] [2 2 2 0]
HOM. S2 [3 3 0 0] [3 3 0 0] [3 3 0 0] [4 4 0 0]
γ=3 S3 [3 3 0 0] [3 3 0 0] [3 3 0 0] [4 5 0 0]

S4 [3 3 0 0] [3 3 0 0] [3 4 0 0] [4 4 0 0]

S1 [5 5 0 0] [5 5 0 0] [5 5 0 0] [3 3 3 0]
HOM. S2 [5 5 0 0] [5 5 0 0] [5 5 0 0] [6 6 0 0]
γ=5 S3 [5 5 0 0] [5 5 0 0] [5 6 0 0] [6 6 0 0]

S4 [5 6 0 0] [5 5 0 0] [5 5 0 0] [6 6 0 0]

(DCK+VM) +1 · 2 (HPV+HW); cost ES for S-CSCF amounts to
1 · 3 (CNT) +1 · 3 (DCK+VM) +1 · 3 (HPV+HW); cost EI,H for
the co-located I-CSCF and HSS amounts to 1 · 10 (CNT) +1 · 4
(DCK+VM) +1 · 2 (HPV+HW). The total cost amounts to E =
EP + ES + EI,H = 33.

Let us now explore the results in terms of availability and costs
for various settings through Fig. 4.10, where we report the steady-
state availability AcIMS for different values of γ. Let us consider,
for instance, Fig. 4.10(b) showing the case γ = 3, where the four
exemplary settings have been grouped per scheme. Each bar indi-
cates the availability value, whereas the number inside reports the
cost associated to that particular setting. The horizontal dashed
line represents the “five nines” threshold that, if crossed, means
that the pertinent setting does not match the availability require-
ment.

90 4. High Availability of Telecommunication Networks

Table 4.3: A selection of 4 exemplary settings (S1, S2, S3, S4) with
different distributions of CNRs for the co-located and the hetero-
geneous deployments and for values of γ ranging from 2 to 5.

Scheme Setting P-CSCF S-CSCF I,H (CNR shared)

S1 [2 2 0 0] [1 1 1 0] [2,3 2,3 0,0 0,0]
COL. S2 [2 2 0 0] [2 2 0 0] [2,3 2,3 0,0 0,0]
γ=2 S3 [2 2 0 0] [2 3 0 0] [2,3 2,3 0,0 0,0]

S4 [2 2 0 0] [2 2 0 0] [2,3 2,3 0,0 0,0]

S1 [3 3 0 0] [3 3 0 0] [3,2 3,2 0,2 0,0]
COL. S2 [3 3 0 0] [3 3 0 0] [3,3 3,3 0,1 0,1]
γ=3 S3 [3 3 0 0] [3 3 0 0] [3,2 3,2 0,2 0,2]

S4 [3 4 0 0] [3 3 0 0] [3,3 3,3 0,1 0,1]

S1 [4 4 0 0] [4 4 0 0] [2,3 2,3 2,2 0,0]
COL. S2 [4 4 0 0] [4 4 0 0] [3,3 3,3 1,2 1,2]
γ=4 S3 [4 4 0 0] [4 4 0 0] [2,3 2,3 2,2 2,2]

S4 [4 5 0 0] [4 4 0 0] [3,3 3,3 1,2 1,2]

S1 [5 5 0 0] [5 5 0 0] [3,3 3,3 2,3 0,0]
COL. S2 [5 5 0 0] [2 3 3 3] [2,3 3,3 3,3 3,0]
γ=5 S3 [2 3 3 3] [5 5 0 0] [2,3 3,3 3,3 3,0]

S4 [5 5 0 0] [2 3 3 4] [2,3 3,3 3,3 3,0]

S1 [1 1 1 0] [2 2 0 0] [2,3 2,3 0,0 0,0]
HET. S2 [2 2 0 0] [2 2 0 0] [2,3 2,3 0,0 0,0]
γ=2 S3 [2 2 0 0] [2 3 0 0] [2,3 2,3 0,0 0,0]

S4 [2 3 0 0] [2 2 0 0] [2,3 2,3 0,0 0,0]

S1 [3 3 0 0] [3 3 0 0] [2,2 2,2 1,2 0,0]
HET. S2 [3 3 0 0] [3 3 0 0] [3,3 3,3 0,1 0,1]
γ=3 S3 [3 3 0 0] [3 3 0 0] [3,1 3,2 0,2 0,3]

S4 [3 3 0 0] [3 3 3 0] [2,2 2,2 1,2 0,0]

S1 [4 4 0 0] [4 4 0 0] [2,3 2,3 2,2 0,0]
HET. S2 [4 4 0 0] [2 2 2 2] [2,3 2,3 2,2 0,0]
γ=4 S3 [2 2 2 2] [4 4 0 0] [2,3 2,3 2,2 0,0]

S4 [4 4 0 0] [2 2 2 2] [3,3 1,3 1,2 0,0]

S1 [5 5 0 0] [5 6 2 0] [3,3 3,3 2,3 0,0]
HET. S2 [5 5 0 0] [2 3 3 3] [3,3 3,3 2,3 0,0]
γ=5 S3 [2 3 3 3] [5 5 0 0] [3,3 3,3 2,3 0,0]

S4 [5 5 0 0] [2 3 3 4] [3,3 3,3 2,3 0,0]

4.1. Performability of Service Chains 91

!"####$

!"####$%

!"####$&

!"####$'

!"####$$

!"#####

!"#####%

!"#####&

!"#####'

!
"
#
$

%

E
=

3
5

E
=

3
4

E
=

3
5

E
=

3
5

E
=

3
3

E
=

3
2

E
=

3
3

E
=

3
3

E
 =

3
1

E
=

3
0

E
=

3
1

E
=

3
1

!(!% !) !& !(!% !) !& !(!% !) !&

!"#"$%&%"'(

)"*+",-.%/

!%.%0"$%&%"'(

(a) Availability for γ = 2.

!"####$

!"####$%

!"####$&

!"####$'

!"####$$

!"#####

!"#####%

!"#####&

!"#####'

!
"
#
$

%

E
=

4
2

E
=

4
2

E
=

4
3

E
=

4
3

E
=

4
0

E
=

4
4

E
=

4
4

E
=

4
5

E
 =

3
7

E
=

4
2

E
=

4
2

E
=

4
2

!(!% !) !& !(!% !) !& !(!% !) !&

!"#"$%&%"'(

)"*+",-.%/ !%.%0"$%&%"'(

(b) Availability for γ = 3.

!"####$

!"####$%

!"####$&

!"####$'

!"####$$

!"#####

!"#####%

!"#####&

!"#####'

!
"
#
$

%

E
=

5
0

E
=

5
0

E
=

5
1

E
=

5
1

E
=

4
7

E
=

5
4

E
=

5
4

E
=

5
5

E
 =

4
4

E
=

4
8

E
=

4
8

E
=

4
9

!(!% !) !& !(!% !) !& !(!% !) !&

!"#"$%&%"'(

)"*+",-.%/

!%.%0"$%&%"'(

(c) Availability for γ = 4.

!"####$

!"####$%

!"####$&

!"####$'

!"####$$

!"#####

!"#####%

!"#####&

!"#####'

!
"
#
$

%

E
=

5
7

E
=

5
8

E
=

5
9

E
=

5
9

E
=

5
4

E
=

6
4

E
=

6
4

E
=

6
5

E
 =

5
6

E
=

5
6

E
=

5
6

E
=

5
7

!(!% !) !& !(!% !) !& !(!% !) !&

!"#"$%&%"'()"*+",-.%/ !%.%0"$%&%"'(

(d) Availability for γ = 5.

Figure 4.10: Steady-state availability considering 4 exemplary set-
tings (S1, S2, S3, S4) per scheme for: γ = 2, 3, 4, 5.

In order to put forth some unexpected and interesting behav-
iors, for each case we report also a setting satisfying the “four
nines” but not the “five nines” condition. This is the case of S1,
whose availability values are 0.999985, 0.999986, and 0.999987,
for homogeneous, co-located, and heterogeneous schemes, respec-
tively.

Let us now focus on the homogeneous scheme: among settings
S2, S3, and S4 that barely satisfy the availability constraint, S2 has
the lowest cost (E = 42), so we elect this setting as the best one.
We notice that S1 achieves the same cost as S2, but with a different
distribution of containers in the HSS node (see Table 4.2). For the
co-located scheme, we also consider S2 as optimal although the

92 4. High Availability of Telecommunication Networks

same cost (E = 44) is achieved by S3 but at lower availability level
(0.9999911 for S3 vs. 0.9999925 for S2). This notwithstanding, a
network designer could more comfortably choose S3, should the
uniformity of replica distribution be at a premium (related, may
be, to deployment flexibility). In such a case, in fact, being all
CSCF nodes equal, HSS exhibits distributions [2 2 2 2] for S3

and [3 3 1 1] for S2.

Similar considerations hold true for the heterogeneous scheme
where, again, S2 emerges as the setting satisfying the best trade-off
between availability and cost.

Now, consider the case γ = 5, whose availability results are
shown in Fig. 4.10(d). In comparison to case γ = 3, two facts
emerge: first, the availability values for settings S2, S3, and S4

(those able to guarantee the “five nines”) are almost equal (in each
scheme), and are very close to the 0.99999 threshold. Basically,
this is related to the need of achieving high availability require-
ments with a more challenging performance level that, in turn,
implies more redundancy at a container level for all considered
settings and schemes. Second, the difference in terms of costs be-
tween the homogeneous and the co-located settings becomes more
pronounced. This behavior can be explained as follows. For γ = 5,
the system has to manage a greater number of cIMS sessions w.r.t.
the case γ = 3, which in turn implies that we need more contain-
ers. When the number of containers grows, the co-located setting
is saturated more “quickly” than the homogeneous one, thus more
DCK and VM levels are needed, resulting in additional costs.

In conclusion, watching from afar the availability results, two
aspects should be highlighted. The first aspect concerns the mono-
tonic increase of the cost with γ, since more resources are needed
(in terms of CNRs and/or containers). The second aspect pertains
to the choice of a particular scheme among the three considered:
according to the performed analysis, in fact, the co-located and
the heterogeneous schemes offer the best trade-off in terms of cost
and availability when the performance level is not so high. Ba-
sically, this is due to the possibility of arranging containers in
a more ductile way, since the homogeneous scheme forces to in-

4.1. Performability of Service Chains 93

troduce a new CNR in case different types of containers have to
be deployed. On the other hand, when high performance level
is required, the redundancy at CNR level is needed also for the
co-located and the heterogeneous schemes, thus, a homogeneous
arrangement becomes more attractive in terms of cost reduction.

4.1.12 Sensitivity Analysis

We carry out a sensitivity analysis useful, from the designer’s
perspective, to cope with parameters uncertainty. Precisely, we
evaluate the effects of drifts from nominal values (see Table 4.1)
for six critical parameters: failure and repair times pertaining to
container, docker, and virtual machine layers. The results are re-
ported in Fig. 4.11, starting from the best settings (S2) derived
in the previous analysis for the case γ = 5. Let us first analyze
the Fig. 4.11(a) showing the sensitivity analysis for the container
failure time (1/λCNT). It is possible to observe that, for the case of
co-located scheme, the failure time can be reduced from its nom-
inal value (500 hours, circled in red) to about 370 hours with no
side effects on the availability, since the corresponding curve re-
mains above the horizontal dashed line (five nines limit). For the
homogeneous and heterogeneous schemes, such analysis reveals a
similar behavior (see the zoomed inset), but with more stringent
margins since nominal values can be reduced from 500 hours to
not less than 480 hours. However the improved robustness for the
co-located scheme is paid in the coin of a higher cost (see Fig.
4.10(d)). Similar arguments hold for the container repair time
sensitivity as shown in Fig. 4.11(b). In fact, the nominal value of
1/µCNT can be relaxed from 2 seconds to about 2.5 seconds for the
co-located scheme, and to about 2.15 seconds for the homogeneous
and heterogeneous schemes.

In Figs. 4.11(c) and 4.11(d), we display the results relative
to docker failure and repair times, respectively. On one hand, we
can see that the nominal value of 1/λDCK can be decreased from
1000 hours to about 640 hours (co-located) or to about 900 hours
(homogeneous and heterogeneous cases). On the other hand, the

94 4. High Availability of Telecommunication Networks

250 300 350 400 450 500 550 600 650 700 750

!!!!"# "#$%

0.99998992

0.99998994

0.99998996

0.99998998

0.99999

0.99999002

0.99999004

0.99999006

$
%
&
'

(

Homogeneous
Co-Located
Heterogeneous

495 500 505
0.9999900025

0.999990003

0.9999900035

0.999990004

0.9999900045

(a)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

!!!!"# "#$

0.99998994

0.99998996

0.99998998

0.99999

0.99999002

0.99999004

0.99999006

$
%
&
'

(

Homogeneous
Co-Located
Heterogeneous

1.998 1.999 2 2.001 2.002

0.9999900034

0.9999900036

0.9999900038

0.999990004

0.9999900042

0.9999900044

(b)

500 600 700 800 900 1000 1100 1200 1300 1400 1500

!!!!"# "#$%

0.99998996

0.99998997

0.99998998

0.99998999

0.99999

0.99999001

0.99999002

0.99999003

$
%
&
'

(

Homogeneous
Co-Located
Heterogeneous

980 990 1000 1010 1020
0.999990003

0.9999900035

0.999990004

0.9999900045

(c)

3 3.5 4 4.5 5 5.5 6 6.5 7

!!!!"# "#$

0.99998999

0.999989995

0.99999

0.999990005

0.99999001

0.999990015

0.99999002

0.999990025

0.99999003

0.999990035

0.99999004

$
%
&
'

(

Homogeneous
Co-Located
Heterogeneous

4.98 4.99 5 5.01 5.02
0.9999900032

0.9999900034

0.9999900036

0.9999900038

0.999990004

0.9999900042

0.9999900044

(d)

1500 2000 2500 3000 3500 4000

!!!!" "#$%

0.999984

0.999985

0.999986

0.999987

0.999988

0.999989

0.99999

0.999991

0.999992

0.999993

0.999994

#
$
%
"

&

Homogeneous
Co-Located
Heterogeneous

2880 2880.2 2880.4 2880.6 2880.8 2881

0.999990004

0.999990006

0.999990008

0.99999001

0.999990012

0.999990014

0.999990016

0.999990018

0.99999002

2879.9 2880 2880.1
0.9999900034

0.9999900036

0.9999900038

0.999990004

(e)

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

!!!!" "#$%

0.999985

0.999986

0.999987

0.999988

0.999989

0.99999

0.999991

0.999992

0.999993

0.999994

#
$
%
"

&

Homogeneous
Co-Located
Heterogeneous

0.99998 0.99999 1 1.00001 1.00002

0.999990005

0.99999001

0.999990015

0.99999002

0.99998 1 1.00002
0.9999900034

0.9999900036

0.9999900038

0.999990004

(f)

Figure 4.11: Influence on the overall cIMS infrastructure (case
γ = 5) of: container failure time (a), container repair time (b),
docker failure time (c), docker repair time (d), virtual machine
failure time (e), virtual machine repair time (f). Nominal values
(reported in Table 4.1) are circled in red.

4.2. The NFV-based model of IP Multimedia Subsystem 95

nominal value of 1/µDCK can be relaxed from 5 seconds to about
9 seconds for the co-located scheme, and to about 5.6 seconds in
case of the homogeneous and heterogeneous schemes. Also in this
case, the improved robustness to deviation of docker parameters
is paid in terms of a higher cost of deployment.

Finally, we analyze the sensitivity for VM failure and repair
times as reported in Figs. 4.11(e) and 4.11(f), respectively. The
nominal value of 1/λVM can be diminished from 2880 hours to
2870 hours (co-located) and to 2878 hours (homogeneous/hetero-
geneous) with no side effects on the high availability requirement.
On the contrary, the margin for the parameter 1/µVM is even more
stringent: it can be relaxed from 1 hour to 1 hour and 1 second
(co-located) and to 1 hour and 7 seconds (homogeneous/heteroge-
neous).

In summary, the sensitivity analysis reveals that the robustness
of the whole cIMS is influenced by two factors: i) the robustness of
the individual layers, which for some cases (CNT, DCK) exhibits
a reasonable margin, whereas in other cases (VM) is practically
not amenable to any significant deviation; ii) the type of deploy-
ment where, typically, the co-located scheme offers more room for
manoeuvre.

4.2 The NFV-based model of IP Mul-

timedia Subsystem

In this section we consider a virtualized implementation of an IMS
system (vIMS) in a Network Function Virtualization (NFV) envi-
ronment that we characterize by an availability standpoint. NFV
[97] represents one of the most innovative paradigms within the
fifth generation (5G) of telecommunication systems. Basically, it
has been designed to boost the deployment of new network services
by exploiting the virtualization concepts. Within an NFV domain,
traditional network equipments (e.g. firewalls, routers, switches,
etc.) are replaced by their virtual counterparts named Virtualized
Network Functions (VNFs). Differently from the containeriza-

96 4. High Availability of Telecommunication Networks

tion paradigm, NFV guarantees a more secure environment since
each VNF lies within a dedicated “sandbox”. Moreover, the VNF
model is easier than the CNF model (see Sect. 4.1.3) since only 3
layers (in place of 5) are present: the hardware layer, the hypervi-
sor layer, and the application layer. This latter embodies a specific
IMS function (e.g. the proxy function, the interrogating function,
etc.). Similarly to the CNF case, the probabilistic behavior of a
VNF has been modeled through the Stochastic Reward Nets. In-
novating on previous formulations, part of the analysis is carried
out by adopting non-Markovian models, thus allowing for more
realistic (non-exponentially distributed) times between some state
transitions. As final results, we determine the optimal redundant
vIMS configuration able to guarantee a steady-state availability
not less than 0.99999, and we provide a sensitivity analysis useful
to evaluate the system robustness to the variation of parameters
from their nominal values.

4.2.1 Availability Model of virtualized IMS

We continue to follow the two-level hierarchical approach adopted
in the containerized case. The first level is the RBD modeling,
allowing to characterize the vIMS in terms of interconnections
among nodes. Figure 4.12 shows the RBD representation derived
from the Registration scenario reported in Fig. 4.1, where a se-
ries model is necessary to characterize the IMS architecture. In
fact, all network functionalities must be active to guarantee the
Registration service to the users. In contrast, a parallel configu-
ration for each node (replicas) is useful to ensure a certain degree
of redundancy in case of failures. Furthermore, we assume that
the HSS node is deployed in a k-out-of configuration, where k rep-
resents the number of HSS replicas that must work to make the
HSS node to work. Henceforth, we assume k = 2, in accordance
with many actual deployments.

On the other hand, the second level of the hierarchical model
relies on the SRN formalism amenable to describe the internal
behavior of a single node in terms of failure/repair events. In the

4.2. The NFV-based model of IP Multimedia Subsystem 97

Figure 4.12: The Reliability Block Diagram representation of a
virtualized IMS infrastructure, where HSS is deployed in a 2-out-
of-nH redundancy configuration.

following paragraph we start from the SRN characterization of
vIMS nodes.

4.2.2 Stochastic Reward Networks for vIMS

In this section, we provide a specific model of a generic vIMS node
using the SRN formalism described in Section 2.2.1.

The SRN of a generic vIMS node replica (CSCF or HSS) is
shown in Fig. 4.13, while the overall vIMS infrastructure is de-
scribed by the RDB model illustrated in Fig. 4.12.

By inspection of Fig. 4.13 it is possible to distinguish the
following entities:

� Places (circles): the group of places PupHW , PupVMM , and
PupAPP , takes into account the working conditions of hard-
ware, hypervisor (VMM subscript stands for Virtual Ma-
chine Monitor), and application layers, respectively. The
numbers inside the three places (tokens) indicate the corre-
sponding initial (working) conditions. Conversely, the places
PdnHW , PdnVMM , and PdnAPP , represent the failure condi-
tions of hardware, hypervisor, and application layers, respec-
tively.

� Timed Transitions (unfilled rectangles): such transitions
take into account the various layers behavior; in particular,
TfAPP [TrAPP], TfVMM [TrV MM], and TfHW [TrHW] denote

98 4. High Availability of Telecommunication Networks

Figure 4.13: SRN representation of one generic node replica of the
vIMS network infrastructure.

the failure [repair] events of the application, the hypervisor,
and the hardware, respectively.

� Immediate Transitions (thin and filled rectangles): such
transitions take into account the instantaneous actions. In
the proposed SRN, two immediate transitions appear: tAPP
and tVMM .

4.2.3 Model Evolution

In this section we analyze the dynamics of the system, namely, the
conditions arising when events such as failures or repairs emerge.
In particular, we focus on the evolution of the SRN model of a
single vIMS node. For the sake of simplicity, it is useful to con-
sider an initial fully working condition for the node characterized
by a token in each Pup place of the SRN. If an application fail-
ure happens, it means that the software function representing the
logic of a vIMS node (a CSCF node or the HSS node) breaks.
In this case, the transition TfAPP is fired, and the token leaves
place PupAPP to enter place PdnAPP . Once the application gets
repaired (sometimes a reboot procedure could solve the problem),
the transition TrAPP is fired, and the token comes back to initial
place PupAPP . In case of hypervisor failure, instead, the transition
TfVMM is fired, and the token is moved from place PupVMM to
place PdnVMM . It is worth noting that place PupVMM is connected
to immediate transition tAPP by an inhibitory arc (the segment

4.2. The NFV-based model of IP Multimedia Subsystem 99

with a small circle close to tAPP). Such arc forces tAPP to get fired
in order to model an application failure. The application layer, in
fact, needs a working hypervisor layer to work correctly. On the
contrary, when the hypervisor gets repaired, the token is again
moved from PdnVMM to PupVMM , and the inhibitory arc is now
ineffective. A similar reasoning holds for the failure of hardware.
The token passes from PupHW to PdnHW as transition TfHW gets
fired. In such a case, an inhibitory arc (between PupHW and tVMM)
forces tVMM to move the token from PupVMM to PdnVMM since
the hypervisor layer needs an underlying functioning hardware to
work properly. It is interesting to note that another inhibitory arc
connects PdnHW and TrV MM . Such arc inhibits transition TrV MM

(and consequently transition TrAPP), until the hardware layer gets
repaired.

The reward rate ri(j) associated to marking i is given by:

ri(j) =





1 if #PupAPP = 1 in marking i,

0 otherwise.
(4.13)

It is worth noting that such reward rate does not need to account
for an “up” condition of hypervisor and hardware because this
condition is automatically embedded in the SRN model in Fig.
4.12, where inhibitory arcs avoid having a working application
layer coupled with failed hypervisor and/or hardware layers.

We recall that the overall vIMS system can be modeled as a
series/parallel of independent subsystems as shown in Fig. 4.12
and the steady-state availability of the subsystems is derived from
(4.4). Accordingly, the overall vIMS steady-state availability can

100 4. High Availability of Telecommunication Networks

be expressed as

AvIMS =

[
1−

nP∏

j=1

(
1− APj

)
]
· (4.14)

[
1−

nS∏

j=1

(
1− ASj

)
] [

1−
nI∏

j=1

(
1− AIj

)
]
·

nH∑

j=2

(
nH
j

)
AH
(
1− AH

)nH−j,

where APj , ASj , and AIj are the steady-state availabilities of the
j-th replica of nodes P-CSCF, S-CSCF and I-CSCF, respectively,
while the steady-state availability of HSS node replicas is AHj =
AH , ∀j; the numbers of redundant node replicas of each network
functionality are nP , nS, nI , and nH , respectively. Being the vIMS
a series system of network functionalities, the vIMS steady-state
availability (4.14) is a product of single node availabilities, where
P-CSCF, S-CSCF and I-CSCF nodes are in parallel configuration
and provide the first three terms in (4.14). The last factor, instead,
takes into account the k-out-of-n configuration of the HSS node,
where k = 2 and n = nH .

4.2.4 Numerical Analysis

This section presents a numerical analysis of the proposed IMS
architecture over an NFV environment by exploiting two soft-
ware tools: SHARPE (Symbolic Hierarchical Automated Reliabil-
ity and Performance Evaluator) [98] and TimeNet [94]. It aims to
single out the minimal-cost redundant configuration of the virtu-
alized IMS system able to guarantee the “five nines” requirement
for telecommunication systems availability. The parameters used
for this analysis, representative of the mean time of failures and
repairs as regards the various components (hardware, hypervisor,
application) are reported in Table 4.4. For the sake of simplicity
we assume that: i) hardware and hypervisor are supposed to be

4.2. The NFV-based model of IP Multimedia Subsystem 101

Table 4.4: Input parameters for the pertinent subsystems

Parameter Description Value

1/λHW mean time for hardware failure 60000 hours
1/λVMM mean time for hypervisor failure 5000 hours
1/λCSCF mean time for CSCF node failure 3000 hours
1/λHSS mean time for HSS node failure 2000 hours
1/µHW mean time for hardware repair 8 hours

1/µVMM mean time for hypervisor repair 2 hours
1/µCSCF mean time for CSCF software repair 1 hour
1/µHSS mean time for HSS software repair 1 hour

Table 4.5: Availability results of the whole virtualized IMS

Setting Redundancy Level AvIMS

S1 CSCF = [2, 2, 2], HSS = 3 0.99999416
S2 CSCF = [2, 2, 2], HSS = 4 0.99999756
S3 CSCF = [2, 2, 3], HSS = 3 0.99999497
S4 CSCF = [3, 3, 3], HSS = 3 0.99999659
S5 CSCF = [2, 3, 3], HSS = 4 0.99999918

the same for all the nodes; ii) all the software instances running
on CSCF nodes (P-CSCF, I-CSCF, S-CSCF) are characterized by
the same failure and repair times. On the contrary, the software
instance running on the HSS is supposed to have a different mean
time of failure, being the database a more delicate and prone to
failures element. In order to characterize the stationary availabil-
ity of the vIMS system over long runs, a steady-state analysis is
carried out by considering some exemplary settings as shown in
Table 4.5.

The first column of Table 4.5 indicates the setting identifier
(S1, . . . , S5). The second column indicates the considered redun-
dancy level; for example, setting S3 is characterized by two (what-
ever) CSCF nodes having redundancy 2, the remaining CSCF node
having redundancy 3, and the HSS node having redundancy 3.
The third column indicates the steady-state availability value of

102 4. High Availability of Telecommunication Networks

the whole virtualized IMS system in Fig. 4.12.

S1 S2 S3 S4 S5

Settings

10
−6

10
−5

1
−
A

v
I
M
S

Figure 4.14: Steady-state unavailability for different settings
S1, S2, . . . , S5. The above horizontal dashed line represents the
required unavailability: 1− AvIMS = 10−5.

In order to visualize in a more comfortable manner the steady-
state availability results, we show in Fig. 4.14 the unavailability of
the virtualized IMS system 1−AvIMS, and it is possible to observe
that each setting Si satisfies the “five nines” requirement, namely,
each bar lies below the horizontal dashed line at 1−AvIMS = 10−5.
In the case of setting S5, the system is even able to satisfy the
more challenging “six nines” requirement, being the corresponding
bar lying below the horizontal dashed line at 1 − AvIMS = 10−6.
Among the considered settings, S1 entails the minimum number
of deployed replicas, namely, 2 replicas for each CSCF node and
3 replicas for the HSS node. Consequently, setting S1 represents
the optimal redundant configuration in terms of minimum number
of deployed replicas while fulfilling the desired high availability
requirement.

4.2. The NFV-based model of IP Multimedia Subsystem 103

4.2.5 Transient non-Markovian Analysis

The performed regime analysis is useful to evaluate the system
behavior as t → ∞, but it cannot capture the dynamics of the
system when, for example, some node instances are changing their
states from failed to repaired. We approach this issue analyzing
the dynamics of the system when software instances (namely the
application parts) of both P-CSCF node replicas are down and
ready to be repaired. This is the typical case of an unplanned
update of the operating system that forces both software instances
to be rebooted.

Actually, in order to consider a more realistic scenario, we re-
place the classical hypothesis of exponentially distributed software
repair transition times with a Weibull-distributed one. In partic-
ular, the transient analysis evaluates the behavior of the instanta-
neous availability AvIMS(t) and the interval availability AvIMS(t)
of the vIMS system in (0, t], which is defined as

AvIMS(t) =
1

t

∫ t

0

AvIMS(u)du. (4.15)

The interval availability represents the time average of the
instantaneous availability function over the interval (0, t]. Fig-
ure 4.15 shows the behavior of AvIMS(t) and of AvIMS(t) when a
Markovian process (all exponential transition times) and a non-
Markovian process (Weibull software repair transition times) are
considered. In the case of Weibull software repair transition times,
we consider the same mean repair time used in the case of expo-
nentially distributed software repair transition. In particular, fol-
lowing [99] we set the shape parameter of the Weibull distribution
to α = 3, while the scale parameter β turns out to be 1.1198.

Besides, Fig. 4.16 highlights the different behavior of instan-
taneous availability AvIMS(t) during the transient, in the case of
exponential and Weibull failure rate (of the application part). It
is worth noting that the transient of AvIMS(t) in the Weibull case
is slower than the transient of AvIMS(t) in the exponential case.
This behavior is compatible with real-world effects [100]. In both

104 4. High Availability of Telecommunication Networks

(a) Markovian process (Exponential repair
time).

(b) Non-Markovian process with a Weibull re-
pair time.

Figure 4.15: Instantaneous (AvIMS(t)) and interval (AvIMS(t))
availability in case of Markovian and non-Markovian process for
the repair time of the P-CSCF application part.

cases, as expected, the interval availability AvIMS(t) in (4.15) con-
verges more slowly to the steady-state availability with respect to

4.2. The NFV-based model of IP Multimedia Subsystem 105

Figure 4.16: Instantaneous availability comparison in case of
Markovian process (all exponential transition times) and non-
Markovian process (Weibull repair time of the P-CSCF application
part).

the instantaneous availability AvIMS(t).

4.2.6 Sensitivity Analysis

In relation to the last part of the considered experiment, we per-
form a sensitivity analysis with respect to deflections of two sys-
tem parameters from their nominal values: λP−CSCF and λHSS.
Such an analysis has been carried out by considering the minimal
cost setting S1 obtained as a result of the regime analysis. In
Fig. 4.17, the influence of the P-CSCF application part failure
time has been considered. The nominal value amounts to 3000
hours (see Table 4.1), but if we relax such a value to about 1500
hours, we are still able to satisfy the “five nines” requirement. At
1/λP−CSCF = 1500, in fact, the value AvIMS lies approximately
around to 0.9999935. Figure 4.18, instead, shows the influence of
the HSS application part failure time. In this case, the nominal
value amounts to 2000 hours, and no side effects are notable un-

106 4. High Availability of Telecommunication Networks

Figure 4.17: Influence of failure time 1/λP−CSCF over system avail-
ability, in case of optimal setting S1.

Figure 4.18: Influence of failure time 1/λHSS over system avail-
ability, in case of optimal setting S1.

less 1/λHSS takes the value 1000 (approximately). In this case,
the horizontal dashed line at 0.999990 is useful to identify the
breakpoint of the high availability requirement.

4.3. A Tool for HA Model Generation 107

4.3 A Tool for HA Model Generation

Network providers reputation strongly depends on their ability to
guarantee high performance levels of virtualized infrastructures,
and to maintain strict Quality of Service (QoS) requirements, thus,
the concept of “five nines” or high availability (HA) is critical.

Aimed at facilitating the definition and analysis of availabil-
ity models, we design a model-driven framework which assists
a user to perform an availability assessment of modern virtu-
alized architectures embracing the SFCs paradigm. The SFCs
chained software logic is embodied in many NFV telecommunica-
tion infrastructures (e.g., the Virtual IP Multimedia Subsystem
described in 4.2.1 and elected as a representative use case). The
proposed framework allows to: i) handle an automated generation
of stochastic models on the basis of some input parameters (e.g.,
MTTF, MTTR); ii) manage the transformation process in charge
of translating high-level user specifications into templates feeding
TimeNET, a powerful tool for Petri nets evaluation (freely down-
loadable from [101]); iii) compute the availability of the whole
vIMS and of the relevant subsystems.

4.3.1 SFC model generation

The proposed tool is realized from-the-scratch, and relies on the
Eclipse Modeling Framework (EMF) [102], which provides runtime
support to produce Java code starting from a meta model. More-
over, a specific plug-in for invoking the TimeNET tool has been
realized in order to evaluate SRN models. In Fig.4.19 we show
the workflow representative of the realized tool, whose individual
modules are described in the following subsections.

4.3.2 Network Service Module

The module EMF-NS allows to model, through EMF, the “skele-
ton” of an SFC composed of at least two Virtualized Network
Functions (VNFs) connected in series. Such a series arrangement

108 4. High Availability of Telecommunication Networks

!"#$%&'()*+,

-&.$/(01&.2

3(.4*5($

6!"#7/38

"&'()70&7

"&'()

9.:+;-&.%:0*&+

!"#$%&'()*+,

-&.$3</

6!"#73</8

"&'()70&79(=0

9.:+;-&.%:0*&+

3</

!4:)>:0*&+

69*%(/!98

?;;(%@)A$B

C.(;(+0:0*&+

Figure 4.19: Workflow of the realized tool.

is often known as Network Service (NS). By means of easy drag-
and-drop operations, any user (basic or advanced) can setup the
desired chain. At this stage, users can set system parameters such
as: MTTF/MTTR, maximum number of replicas to use for re-
dundancy, k-out-of-n values, and others.

4.3.3 Model-to-Model Transformation

In composing an NS, each single VNF needs to be mapped into a
corresponding SRN. Such an operation is performed via the Atlas
Transformation Language (ATL), a model-to-model transforma-
tion language often adopted in Model-Driven Engineering (MDE),
which allows to produce target models from a set of source mod-
els by means of specific semantic rules that we have designed and
customized for our domain.

4.3.4 SRN Module

This module (EMF-SRN) embeds a meta model needed to define
the SRN described in Section 4.2.2, and is based on the definition
of classes and attributes according the standard description pro-
vided by the UML class diagram, as specified in Fig. 4.20. The
root class is SRN (top of Fig. 4.20) with an attribute name of
type EString. Classes Element and Function are abstract (grey
background) and can be specialized through Arc/Node and Re-
wardFunction/GuardFunction, respectively. Classes such as In-
hibitorArc and NormalArc inherit functionalities from the Arc
class.

4.3. A Tool for HA Model Generation 109

[0..*] functions[0..*] elements

[1..1] to

[1..1] from

[0..1] guardfunction[0..1] guardfunction

Figure 4.20: UML class diagram (EMF-based) of the SRN.

4.3.5 Model-to-Text Transformation

This module operates a transformation from a model to text by
using Acceleo [103], a tool adhering to the MOFM2T (Meta-
Object Facility Model-to-Text) standard. In particular, the model
is translated into textual code readable by TimeNET2.

4.3.6 SRN Evaluation

TimeNET [94] is a tool adopted for the modeling and analysis of
stochastic Petri nets, including SRNs. We have designed a wrap-
per which allows to feed TimeNET with textual information em-
bedding system parameters (MTTF/MTTR etc.) extracted dur-

2This module is fully customizable if one is interested to interact with
different availability evaluation tools.

110 4. High Availability of Telecommunication Networks

ing the EMF-SRN step. In practice, the invoked tool evaluates
the steady-state availability associated to the SRN representative
of a vIMS node by solving (4.4).

4.3.7 Assembly & Presentation

This module has a double function: i) it is in charge of evaluating
the availability of the whole SFC starting from the steady state
availability of a single node expressed by (4.4) (Assembly); ii) it
gives to the final user results either in tabular and in graphical
forms with the support of Java-based utilities (Presentation). As
regards the Assembly sub-module, a clarification is needed. Ac-
tually, TimeNET does not provide a simple way to evaluate the
availability of a system made of components arranged in series
(vIMS nodes) and in parallel (redundant replicas of vIMS nodes).
Accordingly, we move such functionalities into the Assembly sub-
module which, starting from the availability value associated to
each SRN (namely, each vIMS node), builds an RBD series/paral-
lel representation of the whole vIMS and evaluates the final avail-
ability. We want to remark that the number of the series/parallel
vIMS configurations can be very high. Unfortunately, TimeNET
does not provide an automated mechanism to evaluate “one shot”
the availability of all the output configurations. Thus, the As-
sembly module has been designed to automate such a process.
Finally, the overall availability of the vIMS is quickly obtained
by multiplying single availabilities derived from (4.4). Starting
from the obtained configurations, the Presentation sub-module is
in charge of performing a user-guided exhaustive search to propose
just those vIMS configurations whose availability value satisfies a
certain requirement (e.g. “five nines”).

4.3.8 Graphical Appearance

The realized tool is equipped with a GUI for either basic or ad-
vanced users. Figure 4.21 shows the main screen where, through
drag-and-drop operations, a user can build a three-layered node

4.3. A Tool for HA Model Generation 111

Figure 4.21: Building an SFC (virtualized IMS in our example)
via drag-and-drop operations.

and connect via links the nodes to form an SFC. It is interesting
to note that there is the possibility of customizing each layer by
accessing the property tab (see, for instance, Fig. 4.22). Here it is
possible to set/modify some parameters of each layer. A generic
user is authorized to access the following fields:

� Name: name of the VNF;

� VNF Type: type of pre-charged VNFs (e.g. P-CSCF, HSS,
etc.);

� Min Replica: minimum number of node replicas to de-
ploy. Deploying more replicas implies more redundancy
(and, hence, availability) but higher costs;

� Max Replica: maximum number of node replicas to deploy;

� Hypervisor: hypervisor type on which deploy the chosen
VNF;

� k-out-of-n: this parameter is set when a node is required to
work if and only if at least k of n replicas work.

By contrast, the VNF Type Properties Tab (see red arrow in
Fig. 4.22) allows to access some layer parameters such as MTTF,
MTTR, Layer Cost. It is also possible to load templates of vari-
ous layers: a user can be interested in differentiating, for example,

112 4. High Availability of Telecommunication Networks

Figure 4.22: Properties setting.

Hypervisor types (e.g. VMware, Virtualbox, etc.) on the basis of
MTTF/MTTR and other specific parameters. Again, a dedicated
panel (Figure 4.23) reports the underlying SRN as presented in
4.2.2, so that an advanced user can modify it. Let us now consider
the results shown by the tool. Once a user has built the desired
SFC (a vIMS in our example), the tool evaluates the availability
of all configurations which can be very high, since each vIMS node
can have a different number of replicas lying in the interval [Min
Replica, Max Replica]. Figure 4.24 shows the visual outputs pro-
duced by the tool where the user decided to visualize only a limited
set of configuration satisfying the HA requirement. Precisely, Fig.
4.24(a) reports a bar graph of the steady-state Unavailability (1 -
Availability) of 4 exemplary configurations (S1,. . . ,S4).

More details are shown in the corresponding tabular output
(see Fig. 4.24(b)), where the exact value of availability is shown
in the third column of the table, whereas the composition of config-
urations is reported in the second column (Configuration Type).
For instance, the notation in the form HSS|2|3 indicates that a
virtualized HSS node has been considered with k = 2 and n = 3.

4.3. A Tool for HA Model Generation 113

Figure 4.23: SRN building GUI.

(a) Graphical Output.

(b) Tabular Output.

Figure 4.24: Outputs produced by the tool.

114 4. High Availability of Telecommunication Networks

Chapter 5

Conclusions

This thesis focused on statistical methods to characterize, miti-
gate, and counteract distributed network attacks. When coping
with distributed network attacks, two main stages/issues emerge
manifestly.

The first issue pertains to the design of suitable strategies
aimed at revealing and tracking the distributed threats, which typ-
ically act sneakily to compromise the resources of a network target.
The second issue concerns the precautionary countermeasures that
a network manager can put in field to mitigate the damages that a
threat can provoke. Accordingly, the contributions offered in this
thesis moved along the two aforementioned lines as detailed in the
following. The first contribution regarded the formalization of a
novel class of application-layer (or L7) DDoS attacks. Under this
model, a set of legitimate (thus, not suspicious) messages are col-
lected within an emulation dictionary, and exploited by a botnet (a
network of malicious nodes) to overwhelm the resources of a target
(e.g. a web server). In this novel and challenging setting, we en-
counter different clusters (groups of bots) which share some parts
of the emulation dictionary, giving to the attacker the possibility
of introducing one more confusion element, thus having a greater
chance of passing unnoticed through a defense system. In order to
overcome this issue, this thesis provides a designed-from-scratch
algorithm that, under reasonable conditions, identifies correctly

116 5. Conclusions

the clusters of bots. Moreover, our analysis and experimental cam-
paign identified practical scenarios where the individual clusters
are not detectable, but, remarkably, our algorithm continues to
guarantee (asymptotically) a correct discrimination of malicious
nodes from legitimate nodes.

The second contribution pertains to the formalization of net-
work availability and performability problems and the resulting
design of suitable prevention strategies. Specifically, the focus is
on the so-called “virtualized” networks, where each element can
be logically split in different (and interacting) parts such as soft-
ware, hypervisor, hardware. The sophisticated interconnections
between such parts are captured through the Stochastic Reward
Network (SRN) formalism. Such a formalism allows to model each
“virtualized” element as a state-space system, and to examine its
dynamical evolution under randomly distributed failure and repair
events. The prevention strategy is then recast as an optimization
problem, whose solution leads to the optimal trade-off between
redundancy and costs.

As concerns the characterization of the novel DDoS setting,
several questions are open, which could lead to useful extensions.
For example, the identification algorithm can be totally paral-
lelized (since it loops over the network users), but its complexity
is quadratic in the network size. A useful extension would be to
devise different algorithms to reduce the computational burden
while still ensuring efficient botnet identification. Another rele-
vant issue pertains to the collection of real-world malicious traffic
traces. As it is well known, these traces are not publicly available,
or are available under limited permissions that do not allow to ex-
tract sufficient information to test the pertinent algorithms (to the
best of our knowledge, L7-DDoS real-world attacks with accessible
message content are currently not available). Finally, the applica-
tion of the Generative Adversarial Network (GAN) framework to
L7-DDoS attacks with emulation dictionaries seems to be a new
and challenging open problem that could be worth pursuing. In
particular, relating the attacker/defender cost-performance trade-
off corresponding to the GAN equilibrium, to the cost-performance

117

trade-off pertaining to our scheme would constitute a significant
research advance.

For that concerns the availability analysis, our techniques can
be surely applied to other IMS deployments that, for instance,
might include: co-location of multiple network nodes, more so-
phisticated interconnections among the involved elements, time-
varying load requirements as demanded by contemporary Service
Level Agreements. Other hints for future research stem from the
consideration that the methods presented here can be adapted,
for the benefit of service management organizations, to other in-
frastructures exhibiting a chained arrangement. Among modern
networking systems, examples include: virtualized Evolved Packet
Core (vEPC) nodes able to intervene in a service chain thanks to
the SDN paradigm; dedicated SFCs (virtualized or containerized)
composed, for instance, by firewalls, load balancers, IDSs built
as chained resources in virtual data centers; virtualized Mobility
Management Entities (vMMEs) whose signaling flow is organized
in a chained fashion.

118 5. Conclusions

Appendix A

Appendix

In the following, the symbol o(gn) will denote a function such that
o(gn)/gn → 0 as n → ∞. Also, when convenient for notational
reasons, the expectation of X is denoted by X̄.

For clarity of presentation, in the statement of Theorem 1 we
deemed it useful to consider the symmetric scenario where αi =
αj = α. Actually, the MIR corresponding to pairwise cluster
interactions can be characterized in the more general setting where
αi is not necessarily equal to αj. For this reason, in this appendix
we state and prove the following more general version of Theorem 1
that encompasses such asymmetric case.

Theorem 1a (Pairwise MIR with arbitrary αi and αj). Let Bi

and Bj be subnets consisting of bots belonging to cluster i and
cluster j, respectively. Assume that the transmission policies of
all bots are either deterministic and synchronous (i.e., all bots
transmit at regular intervals) or governed by independent Poisson
processes (with rates that are allowed to vary across bots). Then,
the (limiting) MIR of the joint subnet Bi ∪Bj is (the symbol

m.s.−−→
denotes mean-square convergence as t→∞):

ρ̂Bi∪Bj(t)
m.s.−−→ ρBi∪Bj = R(αiωij, ωijλBi + ωjiλBj)

+ (1− ωij) R(αi, λBi)

+ (1− ωji) R(αj, λBj). (A.1)

120 A. Appendix

Proof of Theorem 1a. Without loss of generality, we will denote
the two clusters under analysis with indices 1 and 2. The emula-
tion dictionaries of the two clusters can be decomposed as:

E1(t) = Ẽ1(t) ∪ E12(t), E2(t) = Ẽ2(t) ∪ E12(t), (A.2)

where E12(t) is the dictionary part shared between the two clusters,

whereas Ẽ1(t) and Ẽ2(t) are the unshared parts, with:

Ẽ1(t) ∩ Ẽ2(t) = ∅. (A.3)

Since each bot picks messages from the dictionary pertaining to
the cluster it belongs to, the empirical dictionary of the overall
network B1 ∪B2 can be decomposed as:

DB1∪B2(t) = D̃1(t) + D̃2(t) + D12(t), (A.4)

where D̃1(t) and D̃2(t) contain the (distinct) messages picked re-

spectively from Ẽ1(t) and Ẽ2(t), while D12(t) contains the (distinct)
messages picked from E12(t). In view of (A.4), in order to com-
pute the limiting MIR of B1 ∪ B2, we can examine the evolution
over time of the three empirical dictionaries. The most difficult
case pertains to the intersection dictionary D12(t). For this reason,
we now focus on its time evolution. The proof for the other two
dictionaries follows along the same lines.

We start with the synchronous scheduling, where all bots trans-
mit at intervals of deterministic length equal to τ = 1/λ, where λ
is the transmission rate common to all bots. The resulting schedul-
ing corresponds to a slotted system whose time evolution can be
more conveniently described with discrete time index n ≥ 0, yield-
ing the corresponding discrete-time quantities:

e1(n) , |E1(nτ)|, e2(n) , |E2(nτ)|,
e12(n) , |E12(nτ)|, D12(n) , |D12(nτ)|, (A.5)

where we used capital letters to remark that D12(n) is random,
whereas e1(n), e2(n) and e12(n) are modeled as deterministic se-

121

quences. We note in passing that, from (3.23), (3.24) and (A.5)
we get:

e1(n) = α1 τ n+ o(n),

e2(n) = α2 τ n+ o(n),

e12(n) = α12 τ n+ o(n),

e12(n)

e1(n)
= ω12 + o(1),

e12(n)

e2(n)
= ω21 + o(1). (A.6)

Let us now introduce the quantity:

ρ12 ,
α12τ(B1ω12 +B2ω21)

α12τ + (B1ω12 +B2ω21)
, (A.7)

where B1 and B2 denote the cardinality of B1 and B2, respectively.
We observe preliminarily that, from the orthogonality principle,
we have the following decomposition:

E

[(
D12(n)

n
− ρ12

)2
]

= E

[(
D12(n)− D̄12(n)

n

)2
]

+

(
D̄12(n)

n
− ρ12

)2

,

(A.8)

where D̄12(n) is the expectation of D12(n). We will now show that
both terms on the RHS in (A.8) vanish as n → ∞, which would
in fact imply mean-square convergence of the random sequence
D12(n)/n to the deterministic value ρ12 in (A.7).

Let us start by proving that the sequence of expectations con-
verge, namely, that D̄12(n)/n → ρ12. To this end, let i ∈ {1, 2}
denote the specific cluster under analysis. We recall that a message
picked at time n is included in the empirical dictionary D12(nτ)
only if: i) the message is picked from the intersection emulation

122 A. Appendix

dictionary E12(nτ); and ii) the message is not already present in
the empirical dictionary D12((n − 1)τ) corresponding to the pre-
vious time epoch. According to this description, the total number
of messages not contained in D12((n − 1)τ), picked during the n-
th time slot by bots belonging to cluster i = 1, 2, are distributed
according to a binomial random variable Mi(n) with Bi trials and
success probability (conditioned on the cardinality D12(n− 1)):

pi(n) , e12(n)−D12(n− 1)

ei(n)
, i = 1, 2. (A.9)

The (conditional) expectation and variance of Mi(n) are accord-
ingly:

E[Mi(n)|D12(n− 1)] = Bi pi(n), (A.10)

and

VAR[Mi(n)|D12(n− 1)] = Bi pi(n)[1− pi(n)]. (A.11)

Furthermore, we recall that to build D12(nτ) we must select all
the distinct messages among the M1(n) and M2(n) picked by the
bots in clusters 1 and 2. For this reason, the effective number of
new messages D12(n)−D12(n− 1) is upper bounded by the sum
M1(n) +M2(n), namely,

D12(n) ≤ D12(n− 1) +M1(n) +M2(n). (A.12)

By taking expectations and using (A.10), Eq.(A.12) can be cast

123

in the form:

D̄12(n) ≤ D̄12(n− 1) +B1
e12(n)− D̄12(n− 1)

e1(n)

+ B2
e12(n)− D̄12(n− 1)

e2(n)

= D̄12(n− 1)

[
1− B1

e1(n)
− B2

e2(n)

]

+ B1
e12(n)

e1(n)
+B2

e12(n)

e2(n)

= D̄12(n− 1)

[
1− 1

(α1 τ)/B1n+ o(n)

− 1

(α2 τ)/B2n+ o(n)

]

+ B1ω12 +B2ω21 + o(1)

= D̄12(n− 1)

[
1− 1

an+ o(n)

]

+ B1ω12 +B2ω21 + o(1), (A.13)

where we set:
a =

α1α2τ

α1B2 + α2B1

, (A.14)

and observed that:

1

(α1 τ)/B1n+ o(n)
+

1

(α2 τ)/B2n+ o(n)
=

1

an+ o(n)
. (A.15)

Using Lemma 1, from the final inequality in (A.13), and applying
(3.24) and the definition in (A.7), straightforward algebra yields:

lim sup
n→∞

D̄12(n)

n
≤ ρ12. (A.16)

We now manage to prove the above inequality for the lim inf, with
reversed inequality sign. To this end, we consider the following
(uniform, but for rounding errors) partition of E12(nτ) into K

124 A. Appendix

subsets, namely,1

E12(nτ) =
K⋃

k=1

E (k)
12 (nτ), e

(k)
12 (n) , |E (k)

12 (nτ)| (A.17)

and ⌊
e12(n)

K

⌋
≤ e

(k)
12 (n) ≤

⌊
e12(n)

K

⌋
+ 1. (A.18)

In this partition, K is an integer that can be chosen arbitrarily
(we will make next a choice convenient for our purposes).

Let us now partition the empirical dictionary according to the
partition of the emulation dictionary, yielding:

D12(nτ) =
K⋃

k=1

D (k)
12 (nτ), D

(k)
12 (n) , |D (k)

12 (nτ)|,

D12(n) =
K∑

k=1

D
(k)
12 (n). (A.19)

Then, conditionally on D
(k)
12 (n − 1), the probability that a bot

belonging to cluster i = 1, 2 picks a message belonging to the
particular subset E (k)

12 (nτ) \D (k)
12 ((n− 1)τ) is equal to:

p
(k)
i (n) , e

(k)
12 (n)−D(k)

12 (n− 1)

ei(n)
, i = 1, 2, (A.20)

where the dependence of the probabilities upon D
(k)
12 (n − 1) has

been suppressed for ease of notation. From (A.18), we can write
the loose bound (for sufficiently large n):

p
(k)
i (n) ≤ 2

K
. (A.21)

1Since we are interested in the limiting behavior as n → ∞, we can start
the analysis from an initial time n0 where at least one message is present in

every E
(k)
12 (n0). This is tantamount to assuming that e12(0) ≥ K.

125

A key observation to obtain a lower bound on the expected number
of new messages is that D

(k)
12 (n−1) increases by at least 1 whenever

at least one bot picks a new message belonging to the k-th subset,
which means:

E[D
(k)
12 (n)|D(k)

12 (n− 1)]

≥ D
(k)
12 (n− 1) + 1−

[
1− p(k)

1 (n)
]B1
[
1− p(k)

2 (n)
]B2

.

(A.22)

By exploiting the Taylor series of (1 − p)B in conjunction with
(A.21), we see that there exist always nK such that, for all n > nK
we can write:

1−
[
1− p(k)

1 (n)
]B1
[
1− p(k)

2 (n)
]B2

≥ B1p
(k)
1 (n) +B2p

(k)
2 (n)− c

K2
, (A.23)

for a suitable constant c. In view of (A.22), the last inequality
implies that:

E[D
(k)
12 (n)|D(k)

12 (n− 1)]

≥ D
(k)
12 (n− 1) +B1p

(k)
1 (n) +B2p

(k)
2 (n)− c

K2
. (A.24)

Averaging over D
(k)
12 (n − 1) and summing over k = 1, 2, . . . , K,

from (A.20) we obtain:

D̄12(n) ≥ D̄12(n− 1) +B1
e12(n)− D̄12(n− 1)

e1(n)

+ B2
e12(n)−D12(n− 1)

e2(n)
− c

K
,

(A.25)

126 A. Appendix

which in view of (A.6), and reasoning as done in (A.13), gives:

D̄12(n) ≥ D̄12(n− 1)

[
1− 1

an+ o(n)

]

+ B1ω12 +B2ω21 −
c

K
+ o(1). (A.26)

Using Lemma 1 along with the definition of a in (A.14) we get:

lim inf
n→∞

D̄12(n)

n
≥ a

1 + a

(
B1ω12 +B2ω21 −

c

K

)
. (A.27)

Since K is arbitrary, we conclude that:

lim inf
n→∞

D̄12(n)

n
≥ a

1 + a

(
B1ω12 +B2ω21

)
, (A.28)

which using (A.7), (A.14) and (A.16), shows finally that:

lim
n→∞

D̄12(n)

n
= ρ12. (A.29)

We have therefore proved that the second term on the RHS
in (A.8) vanishes. Let us move on to examine the first term
in (A.8). Since we have just established convergence of the ex-
pectation, to prove that the variance vanishes it is sufficient to
show that: E[D2

12(n)]/n2 → ρ2
12. By virtue of (A.12) we can write:

E[D2
12(n)|D12(n− 1)]

≤ D2
12(n− 1)

+ E[(M1(n) +M2(n))2|D12(n− 1)]

+ 2D12(n− 1)E[(M1(n) +M2(n))|D12(n− 1)],

(A.30)

which, using (A.10) and (A.11), by straightforward algebra can be

127

written in the following form:

E[D2
12(n)|D12(n− 1)]

≤ D2
12(n− 1)

{
1− 2B1

e1(n)
− 2B2

e2(n)
+ o(1/n)

}

+ 2D12(n− 1) {B1ω12 +B2ω21 + o(1)}+ cost.

(A.31)

By introducing the quantity vn , E[D2
12(n)]/n, and taking expec-

tation w.r.t. D12(n− 1), Eq. (A.31) can be rewritten as:

vn ≤ vn−1
n− 1

n

{
1− 2B1

e1(n)
− 2B2

e2(n)
+ o(1/n)

}

+ 2ρ12 {B1ω12 +B2ω21}+ o(1), (A.32)

where we used the fact that, as shown before, D̄12(n − 1)/n →
ρ12. Now, the first term appearing on the RHS in (A.32) can be
represented as (the term 1/n appearing in the fraction (n− 1)/n
must be correctly embodied):

vn−1

(
1

1− a′n+ o(n)

)
, (A.33)

where

a′ , α1α2τ

α1α2τ + 2α1B2 + 2α2B1

=
α12τ

α12τ + 2B1ω12 + 2B2ω21

,

(A.34)
where in the last equality we used (3.24). Applying now Lemma 1

128 A. Appendix

to (A.32), we get:

lim sup
n→∞

E[D2
12(n)]

n2
= lim sup

n→∞

vn
n

≤ 2ρ12(B1ω12 +B2ω21)
a′

1 + a′

= ρ12
α12τ(B1ω12 +B2ω21)

α12τ +B1ω12 +B2ω21

= ρ2
12.

(A.35)

Using now the subadditivity of limit superior we can write:

lim sup
n→∞

E

[(
D12(n)− D̄12(n)

n

)2
]

≤ lim sup
n→∞

E[D2
12(n)]

n2
+ lim sup

n→∞

(
−D̄

2
12(n)

n2

)
≤ 0,

(A.36)

where the last inequality follows from (A.35) and the fact that
D̄12(n)/n → ρ12. We have finally shown that D12(n) converges
to ρ12 in mean-square sense. Using similar (somehow simpler)
calculations we can prove that:

|D̃1(nτ)|
n

m.s.−−→ (1− ω12)
α1τ

α1τ +B1

,

|D̃2(nτ)|
n

m.s.−−→ (1− ω21)
α2τ

α2τ +B2

. (A.37)

Combining the results in (A.37) with the convergence of D12(n)/n
we finally get the claim for the synchronous case.

As regards the Poisson case, we consider again the slotted sys-
tem in (A.5), but for the fact that τ is now an arbitrarily small
interval. Let A1 and A2 denote the number of transmission at-
tempts in a single slot pertaining to cluster 1 and 2, respectively.
These variables are Poisson random variables with expectations

129

Ā1 = λB1τ and Ā2 = λB2τ . Since the A1 + A2 transmissions
correspond to independent (also across clusters) choices of mes-
sages from the pertinent emulation dictionaries, for small τ the
system behaves as if we had A1 +A2 synchronous bots, where A1

and A2 are now random quantities. As a result, in the Poisson
case we need to modify slightly the previous proof to embody this
randomness. For example, Eq. (A.13) should be modified by con-
sidering a random numbers of bots A1 and A2, which after taking
expectations gives:2

D̄12(n) ≤ D̄12(n− 1)

(
1− Ā1

e1(n)
− Ā2

e2(n)

)

+ Ā1
e12(n)

e1(n)
+ Ā2

e12(n)

e2(n)
. (A.38)

A similar development can be carried out for (A.25), since, using
the definition of a Poisson random variable, we can write, for any
p ∈ (0, 1):

E[(1− p)A] = e−Āp ≤ 1− Āp+ (Āp)2. (A.39)

Similar arguments apply to (A.32), implying that all the equations
relevant to prove the desired convergence hold true with B1 and
B2 replaced by Ā1 and Ā2, revealing that, for example:

D12(n)

nτ
→ α12 (Ā1ω12 + Ā2ω21)

α12τ + Ā1ω12 + Ā2ω21

=
α12(λB1ω12 + λB2ω21)

α12 + λB1ω12 + λB2ω21

. (A.40)

Lemma 1 (Useful Recursion). Let a, b > 0, n ∈ N, and let fn be

2We use independence between the scheduling proccess and the message-
picking process, as well as the memoryless property of the Poisson process.

130 A. Appendix

a nonnegative sequence such that:

fn ≤ fn−1

(
1− 1

an+ o(n)

)
+ b+ o(1). (A.41)

Then:

lim sup
n→∞

fn
n
≤ ab

1 + a
. (A.42)

If the inequality in (A.41) is reversed, the constant b can be relaxed
to be an arbitrary real number, and:

lim inf
n→∞

fn
n
≥ ab

1 + a
. (A.43)

Proof. See Proposition 1 and its corollary in [6].

Bibliography

[1] CLUSIT, “2020 Clusit Security Report.” https://clusit.it/, ac-
cessed: 2020-09-12.

[2] “The Clearwater Project,” http://www.projectclearwater.org/,
accessed: 2020-09-12.

[3] N. de Sousa, D. Perez, R. Rosa, M. Santos, and C. E. Rothenberg,
“Network service orchestration: A survey,” Computer Commu-
nications, vol. 142, pp. 69–94, 2019.

[4] N. Hoque, D. K. Bhattacharyya, and J. K. Kalita, “Botnet in
DDoS attacks: Trends and challenges,” IEEE Communications
Surveys Tutorials, vol. 17, no. 4, pp. 2242–2270, 2015.

[5] VERIZON, “Application layer DDoS mitigation
in action.” https://vzmediaplatform.medium.com/
application-layer-ddos-mitigation-in-action-ee73e2ee4075,
accessed: 2021-01-22.

[6] V. Matta, M. Di Mauro, and M. Longo, “DDoS attacks with ran-
domized traffic innovation: Botnet identification challenges and
strategies,” IEEE Transactions on Information Forensics and Se-
curity, vol. 12, no. 8, pp. 1844–1859, 2017.

[7] M. Cirillo, M. Di Mauro, V. Matta, and M. Tambasco,
“Application-Layer DDoS attacks with multiple emulation dic-
tionaries,” accepted to ICASSP 2021 - IEEE International Con-
ference on Acoustics, Speech and Signal Processing, 2021.

https://clusit.it/
http://www.projectclearwater.org/
https://vzmediaplatform.medium.com/application-layer-ddos-mitigation-in-action-ee73e2ee4075
https://vzmediaplatform.medium.com/application-layer-ddos-mitigation-in-action-ee73e2ee4075

132 BIBLIOGRAPHY

[8] ——, “Botnet Identification in DDoS Attacks with Multiple Em-
ulation Dictionaries,” under review - IEEE Transactions on In-
formation Forensics and Security, 2020.

[9] M. Di Mauro, G. Galatro, M. Longo, F. Postiglione, and M. Tam-
basco, “Availability Assessment of IP Multimedia Subsystem in
an NFV-based Environment,” in The Tenth International Con-
ference on Advances in Future Internet (AFIN 2018), 2018, pp.
3–7.

[10] ——, “IP Multimedia Subsystem in an NFV environment: avail-
ability evaluation and sensitivity analysis,” in 2018 IEEE Con-
ference on Network Function Virtualization and Software Defined
Networks (NFV-SDN). IEEE, 2018, pp. 1–6.

[11] ——, “IP Multimedia Subsystem in a containerized environment:
availability and sensitivity evaluation,” in 2019 IEEE Conference
on Network Softwarization (NetSoft). IEEE, 2019, pp. 42–47.

[12] ——, “Performability Management of Softwarized IP Multimedia
Subsystem,” in NOMS 2020 - IEEE/IFIP Network Operations
and Management Symposium. IEEE, 2020.

[13] ——, “Comparative Performability Assessment of SFCs: The
case of Containerized IP Multimedia Subsystem,” IEEE Trans-
actions on Network and Service Management, pp. 1–1, 2020.

[14] M. Di Mauro, G. Galatro, M. Longo, A. Palma, F. Postiglione,
and M. Tambasco, “Automated Generation of Availability Mod-
els for SFCs: The case of Virtualized IP Multimedia Subsystem,”
in NOMS 2020 - IEEE/IFIP Network Operations and Manage-
ment Symposium. IEEE, 2020.

[15] ——, “A Tool for Automated Generation of Availability Models
for Service Function Chains,” in European Safety and Reliability
Conference (ESREL 2020), 2020.

[16] M. Barni and B. Tondi, “The source identification game: An
information-theoretic perspective,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 8, no. 3, pp. 450–463, 2013.

BIBLIOGRAPHY 133

[17] A. Abrardo, M. Barni, K. Kallas, and B. Tondi, “A game-
theoretic framework for optimum decision fusion in the presence
of Byzantines,” IEEE Transactions on Information Forensics and
Security, vol. 11, no. 6, pp. 1333–1345, 2016.

[18] M. Barni and B. Tondi, “Source distinguishability under
distortion-limited attack: An optimal transport perspective,”
IEEE Transactions on Information Forensics and Security,
vol. 11, no. 10, pp. 2145–2159, 2016.

[19] M. Mardani, G. Mateos, and G. B. Giannakis, “Dynamic anoma-
lography: Tracking network anomalies via sparsity and low
rank,” IEEE Journal of Selected Topics in Signal Processing,
vol. 7, no. 1, pp. 50–66, 2013.

[20] P. Venkitasubramaniam, T. He, and L. Tong, “Anonymous net-
working amidst eavesdroppers,” IEEE Transactions on Informa-
tion Theory, vol. 54, no. 6, pp. 2770–2784, 2008.

[21] J. Kim and L. Tong, “Unsupervised and nonparametric detection
of information flows,” Signal processing, vol. 92, no. 11, pp. 2577–
2593, 2012.

[22] S. Marano, V. Matta, T. He, and L. Tong, “The embedding ca-
pacity of information flows under renewal traffic,” IEEE trans-
actions on Information Theory, vol. 59, no. 3, pp. 1724–1739,
2013.

[23] Z. Liu, H. Jin, Y.-C. Hu, and M. Bailey, “Practical proactive
DDoS-attack mitigation via endpoint-driven in-network traffic
control,” IEEE/ACM Transactions on Networking, vol. 26, no. 4,
pp. 1948–1961, 2018.

[24] L. Feinstein, D. Schnackenberg, R. Balupari, and D. Kindred,
“Statistical approaches to DDoS attack detection and response,”
in Proceedings DARPA information survivability conference and
exposition, vol. 1. IEEE, 2003, pp. 303–314.

[25] L. Li, J. Zhou, and N. Xiao, “DDoS attack detection algorithms
based on entropy computing,” in International Conference on

134 BIBLIOGRAPHY

Information and Communications Security. Springer, 2007, pp.
452–466.

[26] Jian Yuan and K. Mills, “Monitoring the macroscopic effect of
DDoS flooding attacks,” IEEE Transactions on Dependable and
Secure Computing, vol. 2, no. 4, pp. 324–335, 2005.

[27] Z. Liu, Y. Cao, M. Zhu, and W. Ge, “Umbrella: Enabling ISPs
to offer readily deployable and privacy-preserving DDoS preven-
tion services,” IEEE Transactions on Information Forensics and
Security, vol. 14, no. 4, pp. 1098–1108, 2019.

[28] Y. Xiang, K. Li, and W. Zhou, “Low-rate DDoS attacks detection
and traceback by using new information metrics,” IEEE Trans-
actions on Information Forensics and Security, vol. 6, no. 2, pp.
426–437, 2011.

[29] J. Luo, X. Yang, J. Wang, J. Xu, J. Sun, and K. Long, “On a
Mathematical Model for Low-Rate Shrew DDoS,” IEEE Trans-
actions on Information Forensics and Security, vol. 9, no. 7, pp.
1069–1083, 2014.

[30] M. E. Ahmed, S. Ullah, and H. Kim, “Statistical Application
Fingerprinting for DDoS Attack Mitigation,” IEEE Transactions
on Information Forensics and Security, vol. 14, no. 6, pp. 1471–
1484, 2019.

[31] A. Wang, W. Chang, S. Chen, and A. Mohaisen, “Delving into
internet DDoS attacks by botnets: characterization and analy-
sis,” IEEE/ACM Transactions on Networking, vol. 26, no. 6, pp.
2843–2855, 2018.

[32] A. Praseed and P. S. Thilagam, “DDoS attacks at the applica-
tion layer: Challenges and research perspectives for safeguarding
Web applications,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 1, pp. 661–685, 2019.

[33] “Layer 7 DDoS — blocking http flood attacks.” http://blog.
sucuri.net/2014/02/layer-7-ddos-blocking-http-flood-attacks.
html, accessed: 2020-09-12.

http://blog.sucuri.net/2014/02/layer-7-ddos-blocking-http-flood-attacks.html
http://blog.sucuri.net/2014/02/layer-7-ddos-blocking-http-flood-attacks.html
http://blog.sucuri.net/2014/02/layer-7-ddos-blocking-http-flood-attacks.html

BIBLIOGRAPHY 135

[34] “Taxonomy of DDoS attacks.” http://www.riorey.com/
types-of-ddos-attacks/#attack-15, accessed: 2020-09-12.

[35] “Global DDoS Threat Landscape.” https://www.incapsula.
com/blog/ddos-global-threat-landscape-report-q2-2015.html.,
accessed: 2020-09-12.

[36] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in
the IoT: Mirai and other botnets,” Computer, vol. 50, no. 7, pp.
80–84, 2017.

[37] V. Matta, M. Di Mauro, and M. Longo, “Botnet identification in
randomized DDoS attacks,” in 24th European Signal Processing
Conference (EUSIPCO). IEEE, 2016, pp. 2260–2264.

[38] ——, “Botnet identification in multi-clustered DDoS attacks,”
in 25th European Signal Processing Conference (EUSIPCO).
IEEE, 2017, pp. 2171–2175.

[39] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative Adver-
sarial Nets,” in Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume 2, 2014, pp.
2672–2680.

[40] Q. Yan, M. Wang, W. Huang, X. Luo, and F. Yu, “Automati-
cally synthesizing DoS attack traces using generative adversarial
networks,” International Journal of Machine Learning and Cy-
bernetics, vol. 10, pp. 3387–3396, 2019.

[41] C. Yin, Y. Zhu, S. Liu, J. Fei, and H. Zhang, “Enhancing network
intrusion detection classifiers using supervised adversarial train-
ing,” The Journal of Supercomputing, vol. 76, pp. 6690–6719,
2020.

[42] G. Gursun, M. Sensoy, and M. Kandemir, “On Context-Aware
DDoS Attacks Using Deep Generative Networks,,” in 27th Inter-
national Conference on Computer Communication and Networks
(ICCCN), 2018, pp. 1–9.

http://www.riorey.com/types-of-ddos-attacks/#attack-15
http://www.riorey.com/types-of-ddos-attacks/#attack-15
https://www.incapsula.com/blog/ ddos-global-threat-landscape-report-q2-2015.html.
https://www.incapsula.com/blog/ ddos-global-threat-landscape-report-q2-2015.html.

136 BIBLIOGRAPHY

[43] J. Charlier, A. Singh, G. Ormazabal, R. State, and
H. Schulzrinne, “Syngan: Towards generating synthetic network
attacks using gans,” CoRR, vol. abs/1908.09899, 2019. [Online].
Available: http://arxiv.org/abs/1908.09899

[44] R. Ghosh, F. Longo, F. Frattini, S. Russo, and K. S. Trivedi,
“Scalable Analytics for IaaS Cloud Availability,” IEEE Transac-
tions on Cloud Computing, vol. 2, no. 1, pp. 57–70, 2014.

[45] B. Haverkort, R. Marie, G. Rubino, and K. Trivedi, Performa-
bility Modelling: Techniques and Tools. John Wiley & Sons,
2001.

[46] K. Nagaraja, G. Gama, R. Bianchini, R. P. Martin, W. Meira,
and T. D. Nguyen, “Quantifying the performability of cluster-
based services,” IEEE Transactions on Parallel and Distributed
Systems, vol. 16, no. 5, pp. 456–467, 2005.

[47] M. M. Tajiki, S. Salsano, L. Chiaraviglio, M. Shojafar, and B. Ak-
bari, “Joint Energy Efficient and QoS-Aware Path Allocation and
VNF Placement for Service Function Chaining,” IEEE Transac-
tions on Network and Service Management, vol. 16, no. 1, pp.
374–388, 2019.

[48] P. Nguyen and L. B. Le, “Joint Computation Offloading, SFC
Placement, and Resource Allocation for Multi-Site MEC Sys-
tems,” in 2020 IEEE Wireless Communications and Networking
Conference (WCNC), 2020, pp. 1–6.

[49] Z. Wang, J. Zhang, T. Huang, and Y. Liu, “Service Function
Chain Composition, Placement, and Assignment in Data Cen-
ters,” IEEE Transactions on Network and Service Management,
vol. 16, no. 4, pp. 1638–1650, 2019.

[50] M. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and
O. Duarte, “Orchestrating Virtualized Network Functions,”
IEEE Transactions on Network and Service Management, vol. 13,
no. 4, pp. 725–739, 2016.

[51] M. Barcelo, J. Llorca, A. M. Tulino, and N. Raman, “The cloud
service distribution problem in distributed cloud networks,” in

http://arxiv.org/abs/1908.09899

BIBLIOGRAPHY 137

2015 IEEE International Conference on Communications (ICC),
2015, pp. 344–350.

[52] Y. Lin, T. He, S. Wang, K. Chan, and S. Pasteris, “Looking Glass
of NFV: Inferring the Structure and State of NFV Network From
External Observations,” IEEE/ACM Transactions on Network-
ing, vol. 28, no. 4, pp. 1477–1490, 2020.

[53] X. Zhang, C. Wu, Z. Li, and F. C. M. Lau, “Proactive VNF
provisioning with multi-timescale cloud resources: Fusing online
learning and online optimization,” in IEEE INFOCOM 2017 -
IEEE Conference on Computer Communications, 2017, pp. 1–9.

[54] R. Matos, J. Dantas, J. Araujo, K. S. Trivedi, and P. Maciel, “Re-
dundant eucalyptus private clouds: Availability modeling and
sensitivity analysis,” Journal of Grid Computing, vol. 15, no. 1,
pp. 1–22, 2017.

[55] M. C. Bezerra, R. Melo, J. Dantas, P. Maciel, and F. Vieira,
“Availability modeling and analysis of a vod service for eucalyp-
tus platform,” in 2014 IEEE International Conference on Sys-
tems, Man, and Cybernetics (SMC). IEEE, 2014, pp. 3779–
3784.

[56] Z. Hong, M. Shi, and Y. Wang, “CTMC-Based Availability Anal-
ysis of Multiple Cluster Systems with Common Mode Failure,” in
2016 IEEE Conf. on Applied Computing and Information Tech-
nology. IEEE, 2016, pp. 394–396.

[57] D. Bruneo, “A stochastic model to investigate data center perfor-
mance and QoS in IaaS cloud computing systems,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 25, no. 3, pp.
560–569, 2014.

[58] W. Li and A. Kanso, “Comparing containers versus virtual ma-
chines for achieving high availability,” in 2015 IEEE Interna-
tional Conference on Cloud Engineering. IEEE, 2015, pp. 353–
358.

[59] J. Fan, C. Guan, Y. Zhao, and C. Qiao, “Availability-aware map-
ping of service function chains,” in IEEE INFOCOM 2017 - IEEE
Conference on Computer Communications. IEEE, 2017, pp. 1–9.

138 BIBLIOGRAPHY

[60] J. Liu, Z. Jiang, N. Kato, O. Akashi, and A. Takahara, “Reliabil-
ity evaluation for NFV deployment of future mobile broadband
networks,” IEEE Wireless Communications, vol. 23, no. 3, pp.
90–96, 2016.

[61] J. Kong, I. Kim, X. Wang, Q. Zhang, H. C. Cankaya, W. Xie,
T. Ikeuchi, and J. P. Jue, “Guaranteed-availability Network
Function Virtualization with Network Protection and VNF repli-
cation,” in GLOBECOM - 2017 IEEE Global Communications
Conference. IEEE, 2017, pp. 1–6.

[62] S. Sebastio, R. Ghosh, and T. Mukherjee, “An availability analy-
sis approach for deployment configurations of containers,” IEEE
Transactions on Services Computing, 2018.

[63] E. Andrade, B. Nogueira, R. Matos, G. Callou, and P. Maciel,
“Availability modeling and analysis of a disaster-recovery-as-a-
service solution,” Computing, vol. 99, no. 10, pp. 929–954, 2017.

[64] J. K. Muppala, G. Ciardo, and K. S. Trivedi, “Stochastic Reward
Nets for reliability prediction,” in Communications in Reliability,
Maintainability and Serviceability, 1994, pp. 9–20.

[65] G. Bolch, S. Greiner, H. De Meer, and K. S. Trivedi, Queueing
Networks and Markov Chains: Modeling and Performance Eval-
uation with Computer Science Applications. New York, NY,
USA: Wiley-Interscience, 1998.

[66] G. Davoli, W. Cerroni, C. Contoli, F. Foresta, and F. Calle-
gati, “Implementation of service function chaining control plane
through OpenFlow,” in 2017 IEEE Conference on Network Func-
tion Virtualization and Software Defined Networks (NFV-SDN).
IEEE, 2017, pp. 1–4.

[67] D. Borsatti, W. Cerroni, G. Davoli, and F. Callegati, “Intent-
based Service Function Chaining on ETSI NFV Platforms,” in
2019 10th International Conference on Networks of the Future
(NoF). IEEE, 2019, pp. 144–146.

[68] “Google cloud platform - container engine,” https://cloud.google.
com/container-engine/, accessed: 2020-09-12.

https://cloud.google.com/container-engine/
https://cloud.google.com/container-engine/

BIBLIOGRAPHY 139

[69] “Amazon Elastic Container Service,” https://aws.amazon.com/
ecs, accessed: 2020-09-12.

[70] “ETSI Tech. Spec. 124 173 V15.2.0 (2018-09),” https:
//www.etsi.org/deliver/etsi ts/124100 124199/124173/15.
02.00 60/ts 124173v150200p.pdf, accessed: 2020-09-12.

[71] “Ericsson Techology Report: Real-time interac-
tion in 5G - A use case example from the health
care industry,” https://www.ericsson.com/4a44a9/
assets/local/digital-services/offerings/voice-services/
health-care-case-real-time-interaction-in-5g-with/
-ims-data-channel.pdf, accessed: 2020-09-12.

[72] “Huawei Techology Report: Vo5G Technical White Paper,”
https://www.huawei.com/it/industry-insights/technology/
vo5g-technical-white-paper, accessed: 2020-09-12.

[73] J. Sun, G. Zhu, G. Sun, D. Liao, Y. Li, A. K. Sangaiah, M. Ra-
machandran, and V. Chang, “A Reliability-Aware Approach for
Resource Efficient Virtual Network Function Deployment,” IEEE
Access, vol. 6, pp. 18 238–18 250, 2018.

[74] A. Shameli-Sendi, Y. Jarraya, M. Pourzandi, and M. Cheriet,
“Efficient Provisioning of Security Service Function Chaining Us-
ing Network Security Defense Patterns,” IEEE Transactions on
Services Computing, vol. 12, no. 4, pp. 534–549, 2019.

[75] D. Cotroneo, R. Natella, and S. Rosiello, “NFV-Throttle: An
Overload Control Framework for Network Function Virtualiza-
tion,” IEEE Transactions on Network and Service Management,
vol. 14, no. 4, pp. 949–963, 2017.

[76] D. Cotroneo, L. De Simone, and R. Natella, “NFV-Bench: A
Dependability Benchmark for Network Function Virtualization
Systems,” IEEE Transactions on Network and Service Manage-
ment, vol. 14, no. 4, pp. 934–948, 2017.

[77] M. Di Mauro and A. Liotta, “Statistical Assessment of IP Mul-
timedia Subsystem in a Softwarized Environment: A Queueing

https://aws.amazon.com/ecs
https://aws.amazon.com/ecs
https://www.etsi.org/deliver/etsi_ts/124100_124199/124173/15.02.00_60/ts_124173v150200p.pdf
https://www.etsi.org/deliver/etsi_ts/124100_124199/124173/15.02.00_60/ts_124173v150200p.pdf
https://www.etsi.org/deliver/etsi_ts/124100_124199/124173/15.02.00_60/ts_124173v150200p.pdf
https://www.ericsson.com/4a44a9/assets/local/digital-services/offerings/voice-services/health-care-case-real-time-interaction-in-5g-with/-ims-data-channel.pdf
https://www.ericsson.com/4a44a9/assets/local/digital-services/offerings/voice-services/health-care-case-real-time-interaction-in-5g-with/-ims-data-channel.pdf
https://www.ericsson.com/4a44a9/assets/local/digital-services/offerings/voice-services/health-care-case-real-time-interaction-in-5g-with/-ims-data-channel.pdf
https://www.ericsson.com/4a44a9/assets/local/digital-services/offerings/voice-services/health-care-case-real-time-interaction-in-5g-with/-ims-data-channel.pdf
https://www.huawei.com/it/industry-insights/technology/vo5g-technical-white-paper
https://www.huawei.com/it/industry-insights/technology/vo5g-technical-white-paper

140 BIBLIOGRAPHY

Networks Approach,” IEEE Transactions on Network and Ser-
vice Management, vol. 16, no. 4, pp. 1493–1506, 2019.

[78] C. Negus and W. Henry, Docker Containers. Prentice Hall Press,
2015.

[79] Y. Zhang, Network Function Virtualization: Concepts and Ap-
plicability in 5G Networks. John Wiley & Sons, 2018.

[80] “ITUT - Recommendation E.800,” https://www.itu.int/rec/
T-REC-E.800-200809-I, accessed: 2020-09-12.

[81] H. Chantre and N. L. da Fonseca, “Reliable broadcasting in 5G
NFV-based networks,” IEEE Communications Magazine, vol. 56,
no. 3, pp. 218–224, 2018.

[82] “NEC Virtualized Evolved Packet Core - vEPC,”
https://networkbuilders.intel.com/docs/vEPC white paper w.
cover final.pdf, accessed: 2020-09-12.

[83] “Ericsson Review - Virtualizing network services - the
telecom cloud,” https://www.ericsson.com/4af606/assets/
local/reports-papers/ericsson-technology-review/docs/2014/
er-telecom-cloud.pdf, accessed: 2020-09-12.

[84] H. Jin, Y. Jin, H. Lu, C. Zhao, and M. Peng, “NFV and SFC: A
Case Study of Optimization for Virtual Mobility Management,”
IEEE Journal on Selected Areas in Communications, vol. 36,
no. 10, pp. 2318–2332, 2018.

[85] G. Camarillo and M. Garcia-Martin, The 3G IP Multimedia Sub-
system, 3rd ed. John Wiley and Sons, 2008.

[86] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Pe-
terson, R. Sparks, M. Handley, and E. Schooler, “Session Initia-
tion Protocol (SIP),” http://www.ietf.org/rfc/rfc3261.txt, IETF
RFC 3261.

[87] “Docker,” https://www.docker.com, accessed: 2020-09-12.

[88] “CoreOS,” https://coreos.com/rkt/, accessed: 2020-09-12.

https://www.itu.int/rec/T-REC-E.800-200809-I
https://www.itu.int/rec/T-REC-E.800-200809-I
https://networkbuilders.intel.com/docs/vEPC_white_paper_w.cover_final.pdf
https://networkbuilders.intel.com/docs/vEPC_white_paper_w.cover_final.pdf
https://www.ericsson.com/4af606/assets/local/reports-papers/ericsson-technology-review/docs/2014/er-telecom-cloud.pdf
https://www.ericsson.com/4af606/assets/local/reports-papers/ericsson-technology-review/docs/2014/er-telecom-cloud.pdf
https://www.ericsson.com/4af606/assets/local/reports-papers/ericsson-technology-review/docs/2014/er-telecom-cloud.pdf
http://www.ietf.org/rfc/rfc3261.txt
https://www.docker.com
https://coreos.com/rkt/

BIBLIOGRAPHY 141

[89] “OpenVZ,” https://openvz.org, accessed: 2020-09-12.

[90] T. Combe, A. Martin, and R. Di Pietro, “To Docker or Not to
Docker: A Security Perspective,” IEEE Cloud Computing, vol. 3,
no. 5, pp. 54–62, 2016.

[91] “Amazon AWS Lambda,” https://aws.amazon.com/lambda/,
accessed: 2020-09-12.

[92] M. Ilyas and S. A. Ahson, IP multimedia subsystem (IMS) hand-
book. CRC press, 2018.

[93] A. Reibman, R. Smith, and K. Trivedi, “Markov and Markov
reward model transient analysis: An overview of numerical ap-
proaches,” European Journal of Operational Research, vol. 40,
no. 2, pp. 257–267, 1989.

[94] R. German, C. Kelling, A. Zimmermann, and G. Hommel,
“TimeNET: a toolkit for evaluating non-Markovian stochastic
Petri nets,” Performance Evaluation, vol. 24, no. 1–2, pp. 69–87,
1995.

[95] T. Telecom, “The LTE Data Storm in the Core of Your Network,”
White Paper, 2013.

[96] D. S. Kim, F. Machida, and K. S. Trivedi, “Availability modeling
and analysis of a virtualized system,” in 2009 15th IEEE Pacific
Rim International Symposium on Dependable Computing, 2009,
pp. 365–371.

[97] ETSI, “Network Functions Virtualisation: An introduction, ben-
efits, enablers, challenges and call for action,” 2012.

[98] R. A. Sahner and K. S. Trivedi, “Reliability modeling using
SHARPE,” IEEE Transactions on Reliability, vol. 36, no. 2, pp.
186–193, 1987.

[99] M. Guida, M. Longo, F. Postiglione, K. S. Trivedi, and X. Yin,
“Semi-Markov models for performance evaluation of failure-prone
IP multimedia subsystem core networks,” Proceedings of the In-
stitution of Mechanical Engineers, Part O: Journal of Risk and
Reliability, vol. 227, no. 3, pp. 290–301, 2013.

https://openvz.org
https://aws.amazon.com/lambda/

142 BIBLIOGRAPHY

[100] M. L. Ayers, Telecommunications System Reliability Engineering,
theory, and practice. Ed. John Wiley and Sons, 2012.

[101] “TimeNET project.” https://timenet.tu-ilmenau.de/, accessed:
2020-09-12.

[102] “Eclipse Modeling Framework (EMF),” https://www.eclipse.
org/modeling/emf/, accessed: 2020-09-12.

[103] “Acceleo project.” https://www.eclipse.org/acceleo/, accessed:
2020-09-12.

https://timenet.tu-ilmenau.de/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/acceleo/

	Acronyms and Abbreviations
	Introduction
	Security Issues over Networks
	Distributed Denial of Service Attacks
	Network High Availability and Performability
	Main Contributions and Overview

	Background
	Related Work on DDoS attacks
	Randomized L7-DDoS Model
	The Botnet Identification Condition
	Consistent Botnet Identification

	Related Work on Availability
	Stochastic Reward Networks

	DDoS with Multiple Emulation Dictionaries
	Model
	Pairwise Cluster Interaction
	Botnet Identification Algorithm
	Cluster Formation
	Cluster Expurgation

	Practical Issues
	Violation of Condition (3.17)
	Clusters' Asymmetries
	Numerical Analysis

	Experimental Results

	High Availability of Telecommunication Networks
	Performability of Service Chains
	Service Availability
	Overview of the IMS Architecture
	Containerized IMS Infrastructure
	Availability Model of Containerized IMS
	Homogeneous Scheme
	Homogeneous Co-located Scheme
	Heterogeneous Co-located Scheme
	Heterogeneous Mixed Scheme
	The Availability/Cost Optimization Problem
	OptChains+ Algorithm
	Numerical Evaluation
	Sensitivity Analysis

	The NFV-based model of IP Multimedia Subsystem
	Availability Model of virtualized IMS
	Stochastic Reward Networks for vIMS
	Model Evolution
	Numerical Analysis
	Transient non-Markovian Analysis
	Sensitivity Analysis

	A Tool for HA Model Generation
	SFC model generation
	Network Service Module
	Model-to-Model Transformation
	SRN Module
	Model-to-Text Transformation
	SRN Evaluation
	Assembly & Presentation
	Graphical Appearance

	Conclusions
	Appendix
	Bibliography

