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ABSTRACT

Facility management is a developing discipline that has received attention from both professionals
and researchers in recent years. In industry, this is mainly due to the importance of efficiency in the
production process and to its economic relevance.

Modern facility management considers various interests related to material resources, and among
others, social and environmental interests. An important opportunity for the improvement of this
discipline derives from the introduction of industry 4.0 technologies for the management of material
resources.

The goal of this research is to develop a general approach for maintenance management of
industrial facilities based on Industry 4.0 technologies, to support decision-making in maintenance
schedules and contribute to the continuous improvement of maintenance activities, from which also
derives the improvement of the production process performance.

Starting from a facility management model for the maintenance of industrial assets, we develop a
general approach to maintenance based on the Internet of Things and Cyber-Physical Systems,
which allows us to reason about the implementation of an effective Organisational Facility
Management Unit. Then, leveraging on the Internet of Things, Big Data and Machine Learning
technologies for acquiring, analyzing, and processing industrial data, we contribute to the
improvement of industrial facilities management by delivering a new methodology that has allowed
the design and implementation of new tools to support the management of industrial facilities.

In particular, we will focus in this work on the problem of machine tool maintenance and propose
two new software tools that take advantage of Industry 4.0 technologies to improve the traditional
approaches proposed in the Total Productive Maintenance area.

The first tool is a software application developed to support the processes of planning and execution
of maintenance operations, maximizing the effectiveness of the maintenance management strategies
Time-Based Maintenance and Breakdown Maintenance. The second tool is a Predictive
Maintenance application developed to support decision-making processes in maintenance
schedules, using the Gaussian mixtures technique. The predictive model has been applied to real
data from the Italian automotive manufacturing industry.

This study proposes a methodology that can be used as a guideline for the implementation of a
facility maintenance office that pursues continuous improvement in the management of industrial
assets within the scenario of Industry 4.0.



ACKNOWLEDGMENTS

The authors thank Eng. Michele Nastasia for providing the data relating to the performance
of maintenance activities for the case study proposed in this research, PhD student
Francesco Nota for proposing the abstract framework for unsupervised learning in PdM,
and Eng. Rosario Carvello for facilitating the Web MVC Framework used for the
development of software applications related to the project.



TABLE OF CONTENTS

ABSTRACT 2

1. INTRODUCTION 8

1.1. Industrial Facility Management 9

1.2. Predictive maintenance and Unsupervised Machine learning 11

1.3. Research aim and objectives 12

1.4. Project methodology 13

1.4. Document organization 14

2. MANUFACTURING ENTERPRISE ARCHITECTURE 15

2.1. Enterprise Architecture 15

2.2. Archimate 18

2.3. Manufacturing system organization 21

2.4. The Case Study: Molds Production Mechanical Company 23

2.4.1. Organizational Structure 23

2.4.2. Primary and support processes 24

3. INDUSTRIAL FACILITY MANAGEMENT 27

31. Facility Management in the industry 4.0 scenario 27

3.1.1. Facility Maintenance Management 28

3.2. Maintenance of industrial machinery 30

3.2.1. Total Productive Maintenance 31

3.2.2. Maintenance Approaches 32

3.2.3. Maintenance strategy 34

3.3. A methodology for Facility Maintenance Management 36

3.3.1. Machine maintenance planning flow 37

3.3.2. Execution of maintenance operations 38

4. CYBER-PHYSICAL SYSTEMS 40

4.1. Cyber-Physical Systems definition 40



4.2. Internet of Things 41

4.3. Digital Twin 42

4.4. Cyber Physical Production System 43

4.5. CPS Reference Models 44

4.6. The proposed complex system metamodel 46

4.6.1. The Interaction type metamodel 46

4.6.2. CPS metamodel applications to Smart industry 4.0 50

5. BIG DATA ANALYTICS 59

5.1. Industrial Big Data Analytics 61

5.2. PdM in an unsupervised context 62

5.3. A Big Data and IoT architecture 64

5.4. Machine Learning for predictive analysis 66

5.4.1. Gaussian Mixtures as an indication of machine anomalous behavior 67

6. CASE STUDY 69

6.1. Facility Maintenance Management 69

6.1.1. The AS-IS scenario 69

6.1.1.1. Structural representation of the STAMEC factory (Static View: CPS
Metamodel) 70

6.1.2. TO BE scenario 72

6.1.2.1. Planning and executing maintenance operations 72

6.2. Machinery Maintenance 75

6.2.2. A predictive maintenance system model 78

6.2.3. PdM approach implementation 79

6.3. Preliminary results 85

7. CONCLUSIONS 88

8. REFERENCES 91

9. APPENDICES 102



LIST OF FIGURES AND TABLES

Figure 1. Project methodological scheme 14

Figure 2. Strategic Alignment Model 17

Figure 3. The Archimate full framework 20

Figure 4. The organizational structure of STAMEC 24

Figure 5. The main processes and services managed by STAMEC 25

Figure 6. Facility Maintenance Management top-level model 29

Figure 7. Machinery maintenance as part of Facility management 30

Figure 8. The Machinery Maintenance Management view as part of Facility management 32

Figure 9. Maintenance strategy 35

Figure 10. The machinery maintenance management flow for planning 37

Figure 11. Maintenance activities execution process 39

Figure 12. A schema for the design and implementation of a Cyber-physical system 43

Figure 13. Description of the interaction type metamodel 48

Figure 14. Structure and dynamic behavior of a complex system: UML class diagram 50

Figure 15. Hierarchical structure of the Smart Industry 4.0 company 52

Figure 16. Example of representation of the organic structure of the Smart Industry 4.0 company
through Entity class and Properties 52

Figure 17. Structural representation of metadata 54

Figure 18. Example of structural representation of the factory: census of machine tools using the
Entity class and Properties 54

Figure 19. Representation of the Interaction types between factory entities 56

Figure 20. Key categories of Analytics 59

Figure 21. A generic predictive maintenance system architecture, based on the integration of the
CPS, IoT, BDA and IoS concepts 64



Figure 22. The framework for PdM in an unsupervised context 67

Figure 23. Organizational structure representation of the STAMEC company through the CPS
metamodel 71

Figure 24. Software application example to support the weekly maintenance planning proces 73

Figure 25. Maintenance activity time register 74

Figure 26. Root cause selection for closing EWO 74

Figure 27. Mapping of the Maintenance system according to the Groover classification 77

Figure 28. The predictive maintenance system model for the case study 78

Figure 29. The collected industrial machine data 80

Figure 30. Energy data log 80

Figure 31. Acceleration, velocity, and displacement data log 81

Figure 32. Implementation of the abstract framework for PdM and unsupervised learning 82

Figure 33a. Tension variable group resulting chart 84

Figure 33b. Acceleration and velocity variable group resulting chart 84

Figure 33c. Power, acceleration, and velocity combination resulting chart 84

Table 1. Example of inventory of STAMEC machines 53

Table 2. Example of representation of the Interaction types for the problem of machine
maintenance 55

Table 3. Summary of the main results evidenced after the introduction of the new maintenance
system, in comparison with the previous year 86



1. INTRODUCTION

Effective management of non-essential business activities is necessary for an organization to
function more efficiently. Facility management (FM) is a form of business management that aims
to provide relevant, cost-effective services to support the core business activities and allows to
optimize them [1].

With the aim of continuous improvement of the FM, also pursuing the improvement of core
activities, this document proposes a model and a top-down methodology that can be used to
implement the coordinated management of industrial assets.

The effort for coordinated management of company support services as a corporate practice has
not always been understood in this way, as it is often closely associated with the building
management, construction, and real estate disciplines. According to Potkany et al.[2], FM should
not only be understood as general building management connected with everyday building
operation, but it should also include long-term planning and focus on its users. In the same way,
Atkin [3] argues that the significance of facility management is nowadays far more recognized
embracing a wide range of interests.

As presented by Hodge et al.[4], those single-source outsourcing services, which started out as
soft FM services (cleaning, catering, etc. [5]), saw a change in the late 1980s to hard FM services
(mechanical, electrical, etc.). In the 1990s, there was a move toward service integration,
supported by FM automation through Computer-Aided Facility Management [4] and
Computer-Aided Maintenance Management [6].

In the early 2000s, the concept evolved to Total FM by including waste management, human
resources, finance, and other internal or outsourcing services[4]. Throughout the 2000s and
2010s, sustainability management, with concepts as value-driven design, customer performance,
and regional and global contracts started to become more common [7]. Finally, workplace
management, sustainable workspace, environmental performance, intelligent building
management [8], [9], risk mitigation, among other strategic initiatives [10], as a way to increase
the business value using new technologies and tools to enhance services delivered and client’s
satisfaction [11], are part of FM discipline in the 2020s.

Nowadays, facilities management can cover a wide range of services [3], [12]. However, the
literature does not provide sufficient coverage of facility management in the industrial scenario,
an application domain that requires specialized methods and techniques for the management of
industrial assets.
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1.1. Industrial Facility Management

Several definitions of Facility Management have been proposed in the literature, each one trying
to put into evidence one or more characteristics of this discipline [13], [14]. One that is suitable
for the FM in an Industrial context is [15]:

‘Facility Management is an integrated approach to operating, maintaining, improving
and adapting the buildings and infrastructure of an organisation in order to create an
environment that strongly supports the primary objectives of that organisation’.

In the scenario of Industry 4.0, FM is evolving as a consequence of the introduction of new
technologies that can enhance the capabilities of roles devoted to the management of structures.
The technologies of Digital Twin (DT), Internet of Things (IoT), Cyber-Physical Systems (CPS)
and their respective specialization to industry, Industrial Internet of Things (IIoT) and
Cyber-Physical Production System (CPPS), are considered in this project to increase the
effectiveness of FM.

Facilities maintenance (Fm) is a vital function for effective FM programs, since facility
maintenance strategies do have an impact on higher-level organizational objectives, thereby
highlighting the importance to consider maintenance performance during strategic decision
making [16].

Fm is defined by the British Standard (BS 8210:2012) as the “work needed to maintain the
performance of the building structure, fabric and components, and engineering installations”
[17]. So facility maintenance decisions include those that are required to keep the facility fit for
the intended use. As a result, different maintenance strategies would have different impacts on a
facility’s supportiveness to the processes conducted within it [16]. In this sense, the overall
maintenance goal is to provide economical maintenance and housekeeping services to allow the
facility to be used for its intended purpose [18].

As mentioned before, FM has been being successfully applied to maintaining and operating
diverse types of industrial facilities, including those for logistics and warehousing. In this
context, maintenance plays a significant role. In fact, it assures the full service of the
warehousing system, which includes both, building, utilities, and material handling equipment as
mentioned by Mangano et al. [19].

In general, maintenance is defined as all the technical and managerial actions taken during the
period of use to maintain or restore the required functionality of a product or resource [20].
According to different authors [21]–[23], Maintenance is defined as “a set of activities or
activities used to restore an element to a state in which its designated functions can be
performed”.
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For the manufacturing industry, in particular, maintenance consists in carrying out all the
necessary actions to restore the durable equipment or keep it in specific operating conditions.
The very word "durable" means that the equipment is intended to last a long time and must
therefore be maintained [24]. In this sense, the purpose of industrial maintenance is to maximize
the effectiveness of the machines, production lines and industrial assets.

In this research, we first adopt a systemic investigation of the asset’s maintenance in Industry
4.0. We propose a meta-model that considers the general patterns of planning, monitoring, and
control for the maintenance of industrial assets. Since a production system is a complex system
made of several parts and relationships, the meta-model needs to be instantiated according to the
properties of the goods to be maintained. For example, the maintenance of machine tools,
material handling equipment, and industrial plants can be addressed by referring to the model
discussed in detail in section 3.1.1.

On the other hand, in the case of building maintenance, even if the pattern
“planning/monitoring/control” can be reused, it is necessary to adopt intervention methods and
technical procedures appropriate for the object under maintenance. This document shows how
views at different levels can increase the understanding of how hardware/software systems must
be integrated to provide support to facility managers during operations. We proposed a
methodology that can be used as a guideline for the implementation of a facility maintenance
office that pursues continuous improvement in the management processes of industrial assets.

Our proposal takes as a starting point the studies on the Total Productive Maintenance (TPM)
philosophy and its associated tools and techniques, but it refers to a field of applicability, the set
of industrial facilities subject to maintenance. TPM is the term used today to refer to activities
that constitute a systemic approach to eliminate device failures and increase the efficiency of
production lines [25]. The objective of this coordinated group of activities, according to Groover
[26], is to minimize production losses due to equipment failures, malfunctions, and low
utilization through the participation of workers at all levels of the organization.

The main idea of the TPM approach adopted in this research is the implementation of different
strategies, techniques, tools and modern solutions in equipment maintenance operations to
improve equipment uptime and reliability [27], through eliminating equipment breakdowns and
related defects.

The assumptions of TPM are implemented in a number of topic areas among the pillars of World
Class Manufacturing (WCM) idea, which is based on the implementation and use of the best
working practices available in the field of administration and the organization of work to achieve
the best operational efficiency of the company [28], [29].

The pillar under interest in this research is entitled Professional Maintenance (PM), a technical
methodology closely aligned with TPM strategies, which states all the actions of the specialised
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services of maintenance which deal with structural approach to eliminate the break-downs of
devices [25]. Those activities aimed at building a maintenance system capable of reducing
machine and plant failures and micro-stops to zero and obtaining savings, extending the life
cycle of machines through the use of maintenance practices based on the ability to extend the life
of the components (preventive and corrective maintenance) [30].
As PM is related to the continuous improvement of downtime and breakdowns, it establish the
following objectives:

● Maximize the reliability and availability of the machines (at economic costs).
● Eliminate the activities of extraordinary maintenance.
● Reach the zero failure of the plants (failures, micro-leaks, defects etc.) with the

collaboration of the production staff.

The application of PM principles has the purpose of increasing the efficiency of the machines by
using fault analysis techniques and facilitating the cooperation between the operators (equipment
specialists) and the maintenance workers (maintainers) to achieve zero failures [28].

With the introduction of Industry 4.0 technologies as the Internet of Things (IoT) [8], Big Data
and Machine learning (ML) [10], and Cyber-Physical Systems (CPS) [11], new maintenance
opportunities arise in networked factories with the availability of massive data from processes,
machines, and systems. This permits operators, or even intelligent scheduling systems, to
monitor the machinery conditions instead of their faults, hence anticipating possible failures, and
optimizing the assets utilization [12]. One of these opportunities is the Predictive maintenance
(PdM) approach, which can be considered as an evolution of preventive maintenance by enabling
just-in-time work strategies.

PdM has acquired great relevance for industrial scenarios as a maintenance strategy for
diagnosing and prognosing a machine based on its condition. Compared with other maintenance
strategies, the predictive maintenance strategy has the advantage of lowering maintenance costs
and time [35].

As this research also proposes a predictive maintenance approach using the unsupervised
learning model Gaussian mixtures to support decision-making in maintenance schedules as an
application of Big Data Analysis in the industry 4.0 context, a brief description of the PdM
approach and the Unsupervised ML method is presented below.

1.2. Predictive maintenance and Unsupervised Machine learning

PdM concerns the detection of hidden and potential faults and the prediction of future equipment
conditions [36]. To do this, predictive maintenance programs are established, which require the
periodic determination of variables to verify the condition of the critical industrial machinery, the
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diagnosis of defects, and the evaluation of the Remaining Useful Life (RUL) of the machine
[37].

As argued by Busse [38], to use PdM, a condition monitoring system must be in place that
provides information on the current machine condition (Diagnosis) and, depending on the
system’s maturity, predicts the future condition (Prognosis).

ML as extension of Artificial Intelligence is one of the trend methods used to make prediction
and estimation by using real world datasets [39]. According to Zong et al. [40], unsupervised
anomaly detection is a fundamental problem in ML, with critical applications in many areas [24],
[41], [42].

The problem of discovering the incoming faults (prognosing) can be seen as a special case of
outlier detection, since an outlier is an observation which deviates so much from the other
observations as to arouse suspicions that it was generated by a different mechanism [43]. In this
field supervised, semi-supervised and unsupervised methods are employed [44].

While Supervised learning provides a clean approach to building ML models, in practice, labeled
data in manufacturing is not easily accessible or abundantly available. Unsupervised learning
aims to build the representation of a given dataset without any label-based feedback mechanism
[45].

In this research, we focused on an Unsupervised ML methodology to support maintenance
operations in situations where there is unlabeled data, as a tool to support decision makers for
predicting and planning maintenance, thanks to the indication of anomalous behaviours of
industrial machines in a job shop manufacturing context.

We propose an abstract framework for PdM and unsupervised learning to support maintenance
teams to make informed decisions, propose better maintenance scheduling, and establish
effective maintenance policies based on the condition of factory equipment. The approach was
implemented through a predictive maintenance system using the Gaussian Mixture model for the
diagnosis and prognosis of machinery failures.

1.3. Research aim and objectives

The research aim is to develop a general approach for maintenance management of industrial
facilities based on Industry 4.0 technologies, to support decision-making in maintenance
schedules. This will contribute to the continuous improvement of maintenance activities, from
which also derives the improvement of the production process performance. For what concerns
the application domain, the research takes as a starting point the study of a small Italian
mechanical enterprise, STAMEC s.r.l., that operates in the automotive sector and is
representative of the companies that build molds for the automotive industry. The general
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objective, a methodology for managing industrial structures/plants, is pursued by achieving the
following sub-objectives:

1. Achieve a Manufacturing Enterprise Architecture model capable of representing
Industrial Facilities and that allows the reasoning about the management of these
facilities in Industry 4.0 scope.

2. Deliver a methodology for maintenance management of industrial facilities in a
manufacturing scenario as a solution strategy to the problem of maintenance
management.

3. Define a CPPS model from which a real system can be implemented to support the
maintenance management processes in manufacturing industry scenarios.

4. Establish a Big Data Analysis solution for the predictive maintenance of industrial
machinery under unsupervised conditions.

1.4. Project methodology

As it is a research, innovation and development project, the proposed methodology for its
development was divided into the following five phases:

Phase 1 is related to the understanding of the manufacturing industry, specially the
Manufacturing Enterprise Architecture of the company in which the research project is executed.
To do this, different views of the architectural structure of the company are modeled.

Similarly, Phase 2 consists of modelling the Industrial facilities maintenance management
processes to propose new management strategies based on the different maintenance approaches
in the literature. The methodology for maintenance management of industrial facilities is
obtained in this stage.

Phase 3 studies several CPS reference models to propose a new CPPS model for Industry 4.0,
thus contributing to the improvement of maintenance activities of industrial machinery. Based on
this model, two software applications were developed. The first tool supports the processes of
planning and execution of maintenance operations as described in chapter 3.

An abstract framework, centered around Big data and IoT technologies has been developed
during phase 4. A significant part of this framework is the second developed software tool based
on an unsupervised ML algorithm to support decision-making processes in maintenance
schedules.

Finally, in Phase 5 a real-world application of the proposed approach was pursued through a case
study in an italian automotive manufacturing industry located in the south of Italy. The results of
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the previous phases were applied using the enabling technologies of industry 4.0 for the
continuous improvement of maintenance operations.

Figure 1 shows a graphic description of the mentioned phases of the proposed methodology,
from which some of the main artifacts obtained are derived.

Figure 1. Project methodological scheme.

1.5. Document organization

This document is structured as follows. In chapter 2 the organizational structure of the company
STAMEC s.r.l. and its main processes and services are diagrammed through the Archimate
language notation, as part of the manufacturing enterprise architecture. Next, in chapter 3, a
top-level model that comprises several views for Facility Maintenance Management (FMM) and
a classification of several maintenance approaches for machine tools are introduced. The steps of
the proposed methodology for FMM are also discussed in this chapter.

As part of chapter 4, in which CPS reference models are studied, a CPPS for the management of
production assets discussed has been pursued. In chapter 5 the Big Data Analysis concepts and
characteristics are studied. Based on it, an industrial Big Data and IoT architecture is designed to
meet the needs of a data-driven analytics system, focused on predictive machinery maintenance
in the Industry 4.0 scenario. An unsupervised approach for predictive maintenance using the
Gaussian mixtures unsupervised ML algorithm is also discussed.

Finally, a real-world application of the proposed models was pursued through a case study in
STAMEC s.r.l. as discussed in chapter 6; the case study allowed us to collect experimental
evidence on the model's effectiveness and validate this research. The conclusions summarize the
research results discussing benefits, limitations, and future developments.
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2. MANUFACTURING ENTERPRISE ARCHITECTURE

The notion of architecture is used in a wide range of domains, from town planning to building
and construction, and from computer hardware to information systems, each being characterized
by the types of ‘structures’ or ‘systems’ being designed. However, we can recognize some
common concerns in all these approaches [46].

Architecture is concerned with understanding and defining the relationship between the users of
the system and the system being designed itself, defining its structure, behavior, and other
properties based on a thorough understanding of this relationship.

This representation of the system’s architecture forms the basis for analysis, optimization, and
validation and is the starting point for the further design, implementation, and construction of
that system.

The architecture is also concerned with the relationship between an enterprise and its IT support,
which is why the architecture should express the structure, behavior, and coherence of both the
business processes and the IT support [46]. In this way, a deep understanding of the enterprise
can be reached through its architecture, aiming at the introduction of improvements, according to
specific business goals.

2.1. Enterprise Architecture

The Enterprise Architecture aims to provide a clear overall view of the organization, its
components, and interrelationships [47], facilitating to meet desired organizational objectives. In
this sense, understanding business and technological aspects of the enterprise architecture
contribute to its organizational goals, to improve decision-making processes, to innovate and to
coevolve with its environment.

To achieve this, it is important to first provide a definition of Architecture, as indicated by
ISO/IEC/IEEE 42010: 2011 [48] that describes the architecture of a system as:

"The architecture of a system is its fundamental organization, contained in its components, in the
relationships they have with each other and with the surrounding context and in the principles
that guide its design and evolution".

The definition therefore shows that each system can be represented by an architecture if it is
possible to describe:

1) The structure (the components and relationships)
2) How it behaves (interactions, that is the relationships activations [49], [50])
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3) How it evolves (the principles)

The previous one is a general definition that applies in different scenarios such as, for example,
the architecture of an industrial plant or a software architecture. As we are interested in the
concept of business architecture, it is better, first of all, to refer to a definition of enterprise and
then specialize the definition of architecture to that of business architecture.

“Enterprise is one or more organizations sharing a definite mission, goals, and objective to offer
an output such as a product or a service” [51].

From this definition, it is possible to understand that a company is a complex organization of
different domains, relationships, and dependencies within it and with the environment. To
manage this complexity in any organization is a challenging task, and often a common way to
describe the construction and operation of business processes, organizational structures,
information flow, IT systems, and technical infrastructures is required.

In the same way, to have a clear understanding of the enterprise structure, processes, products or
services, operations, technology, and relations that allow achieving the organizational goals an
important instrument is the architecture.

Therefore, linking both Enterprise and Architecture concepts, it is possible to define Enterprise
architecture (EA) as “a coherent whole of principles, methods, and models that are used in the
design and realization of an enterprise’s organizational structure, business processes,
information systems, and infrastructure” [48].

An Enterprise Architecture provides a holistic view of a company that considers both business
and technological aspects [52] acting as a means of coordination between:

● Corporate planning aspects, such as objectives, vision, strategies and governance
principles;

● Operational aspects related to the business, such as organizational structure, processes
and data;

● Automation aspects, such as information systems and databases;
● Technological support infrastructures such as computers, operating systems and

networks.

This approach looks at business processes, the structure of the organization and the type of
technology used to guide the processes" [53], [54].

From this perspective, Strategic business and Information Technology (IT) alignment
(henceforth referred to as strategic alignment) takes on special relevance to clarify the scope and
importance of Enterprise Architecture and its different aspects.
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In the literature, it is possible to identify many definitions of strategic alignment [55]. Tallon and
Kraemer [56] define strategic alignment as the extent to which the IS strategy supports and is
supported by the business strategy, while Reich and Benbazat [57] define strategic alignment as
the degree to which the IT mission, objective and plans support and are supported by the
business mission, objectives and plans. For his part, Silvius [58] defines strategic alignment as
the degree to which the IT applications, infrastructure and organization, the business strategy and
processes enable and shape, as well as the process to realize this.

However, the Strategic Alignment Model (SAM) proposed by Henderson and Venkatraman (see
Figure 2) is one of the most cited strategic alignment models [59].

Figure 2. Strategic Alignment Model. (adapted from [60])

The conceptual model in the figure above is defined in terms of four domains of strategic choice:
business strategy, IT strategy, organization infrastructure and processes, and IT infrastructure and
processes. Each has its constituent components: scope, competencies, and governance at the
external level; and infrastructure, skills, and process at the internal level.

The model is conceptualized in terms of two fundamental characteristics of strategic
management: strategic fit (the interrelationships between external and internal domains) and
functional integration (integration between business and technology domains) [61].
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The linkage between strategy and infrastructure and processes is examined in terms of process,
structure and people, rather than at an abstract level of attempting to relate internal architectures
to strategic goals [61].

As exposed in the model, people play an important role in the strategic alignment of the four
components, as well as in the definition of enterprise architectures. During this definition
process, it is important to communicate with all stakeholders of the system, ranging from clients
and users to those who build and maintain the resulting system, in order to balance all their
needs, requirements and constraints, in such a way that the resulting artefacts, be they buildings
or information systems, meet those criteria.

According to [46], these can only be met if the architects have an appropriate way of specifying
architectures and a set of design and structuring techniques at their disposal, supported by the
right tools.

In general, the notations used to define EA refer to frameworks for the description of EA. This is
useful to dominate the complexity of formalization by subdividing the whole system into
domains (or levels) of representation. This aspect is further explored in the following paragraph.

2.2. Archimate

ArchiMate is an open and independent business architecture modeling language developed by
Open Group consortium and supported by various consulting firms and software tool retailers
that provides the tools to support business architects in describing, analyzing and putting into it
relates the different domains of architecture in a non-univocal way, similar to that used in civil
engineering that uses internationally accepted standards to describe the projects. The TOGAF
(The Open Group Architecture Framework) standard is one of them.

TOGAF is a framework used to develop an Enterprise Architecture and improve business
efficiency [62]. ArchiMate can be perfectly integrated with TOGAF in the various phases of the
cycle by providing a visual representation of the various components of the business architecture.

ArchiMate presents a clear set of internal concepts and relationships between architectural
domains and offers a simple and uniform structure to describe the contents of these domains; it is
a real language to describe the construction and operations on:

● Business process
● Organizational structures
● Information flows
● IT systems
● Technological infrastructure
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All this helps stakeholders to plan, estimate and communicate the consequences of changes and
decisions within and between business domains.

Archimate uses a tiered, service-oriented view of architectural models. The three main levels of
the Archimate Core Framework are:

1. The Business Layer offers products and services to external customers that are created
by business processes performed by corporate actors.

2. The Application Layer supports the business layer with application services that are
created by software applications.

3. The Technology Layer offers infrastructure services (for example processing, data
storage and communication services) necessary to run applications created by the
computer, the communication hardware and the software system.

The following levels and extensions have also been added in the most recent versions:

4. The Strategy Layer includes the elements (capability), resources and line of conduct that
have been added to support the modeling strategy and represent how the use of resources
and abilities allows to reach some strategic objectives.

5. The Physical Layer contains additional elements with respect to the Technology Layer
useful for modeling physical structures and equipment, distribution networks and
materials.

6. The Implementation and Migration extension adds concepts for modeling a transition
state or supporting the last stages of business architecture modeling related to the
implementation and migration of architectures, such as work packages, deliverables,
gaps, etc.
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Figure 3. The Archimate full framework [63]

The core of the language is made up of three main types of elements:

● Active structural elements: defined as an entity capable of performing a behavior (actor,
component, device, etc.). They represent the "subjects" of the activities.

● Behavioral elements: defined as units of activity performed by one or more active
structural elements. Active structural elements are assigned to behavioral elements to
show who or what performs the behavior.

● Passive structural elements (objects): they represent the objects on which the behaviors
are performed (for example, digital data or paper documents).

These modeling elements were inspired by natural language where a sentence has:

● a subject (active structure)
● a verb (behavior)
● an object complement (passive structure)

Figure 3 shows the elements made available by Archimate divided by level. As can be seen from
the figure, in Archimate it is the use of color is very important to distinguish between the
different levels; in fact, focusing on the three main levels, the following models are used:

● Yellow for the elements of the Business Layer
● Blue for those of the Application Layer e
● Green for the Technology Layer
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2.3. Manufacturing system organization

In Groover [26] it is possible to find a series of fundamental definitions and explanatory graphic
models of both automated production systems and Computer-Integrated Manufacturing
techniques (CIM). CIM systems are the starting point for the study of CPS in which IoT and Big
Data Analytics (BDA) will have to combine with traditional approaches to industrial automation,
in order to obtain a CPS with an Industry 4.0 perspective.

The main definitions that highlight the decomposition of a production system into subsystems
are reported below.

Manufacturing: can be defined as the application of physical and/or chemical processes
to alter the geometry, properties, and/or appearance of a given starting material to make
parts or products. Manufacturing also includes the joining of multiple parts to make
assembled products.

Manufacturing systems: the logical groupings of equipment and workers that accomplish
the processing and assembly operations on parts and products made by the factory.
Manufacturing systems can be individual work cells consisting of a single production
machine and a worker assigned to that machine.

Manufacturing support systems: people and procedures by which an industry manages
its production operations. These are the procedures used by the company to manage
production and to solve the technical and logistics problems encountered in ordering
materials, moving the work through the factory, and ensuring that products meet quality
standards. Product design and certain business functions are included in the
manufacturing support systems.

Manufacturing systems are components of the wider production system:

Production system: a collection of people, equipment, and procedures organized to
perform the manufacturing operations of a company.

Manufacturing activities can be considered as being composed of multiple levels, from the level
of the individual devices where unit processes take place, through to that of the enterprise,
incorporating all the activities in the manufacturing system, including supply chain externalities
[64]. From this perspective, Duflou et al. [65] structure the organization of the manufacturing
system in five levels, similar to those mentioned in Groover’s model:

1. Device/unit process: Individual device or machine tool in the manufacturing system,
which is performing a unit process. Support equipment of the unit process is included
here [66].

2. Line/cell/multi-machine system: It is a grouping of machines organized in a line layout
(multiple workstations arranged in sequence, and the parts or assemblies are physically
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moved through the sequence to complete the product) or cellular layout (consisting of
several workstations or machines designed to produce a limited variety of part
configurations, specializes in the production of a given set of similar parts or products)
[26].

3. Facility: This refers to the relative location of equipment and/or work centers on the
factory floor [67].

4. Multi-factory system: Different facilities whose proximity to one another allows them to
make use of possible synergies in terms of reuse of waste and lost energy streams [65].

5. Enterprise/global supply chain: This includes the flow and transformation of goods (as
well as the flow of the associated information) from the raw materials stage to the end
user, including the supplier's supplier and the customer's customer. This flow of goods
and information may encompass several different facilities (plants, warehouses, sales, and
distribution centers) belonging to several different business entities located in various
parts of the globe [67].

Similarly, the ISA 95 model, also known as the IEC/ISO 62264-1 standard [68] is a
well-consolidated model suitable for representing the manufacturing system organization. In its
2018 version it received the name of "Enterprise-Control System Integration", which suggests
that the study of corporate systems must be integrated with that of control and manufacturing
systems. ISA 95 deals with all aspects related to automation, providing an overall overview of
the most important automation concepts and processes.

Focusing on the structure of the ISA 95 company organization, it proposes two models:

1. A hierarchical model for the representation of the physical elements that make up a
production system.

2. A logical model which represents the hardware/software elements that participate in the
information exchange that affects the 5 levels of the ISA 95 architecture, named as the
automation pyramid of the ISA 95 model. The model description can be found in [69].

In manufacturing, coordination and control activities include both the regulation of processing
and assembly operations, and the management of activities at the factory level. In this project,
although the sensors are provided at the machine level, it will operate at the factory/facility level
as the planning and control activities will be implemented for the preventive maintenance of
machinery malfunctions. For this reason, the Industrial Facility Management and related
concepts are further explored in section 3, while the case study of this research is formalized in
the next section using the Archimate language notation.
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2.4. The Case Study: Molds Production Mechanical Company

This research work was developed during the realization of the three-year "SMART INDUSTRY
4.0" project at STAMEC S.R.L, a small and medium-sized company in southern Italy. The1

context within which the SMART INDUSTRY project took place was formalized using the
Archimate language, identifying the problems to be solved and the research approach aimed at
creating a new management system for industrial structures and the production process.

Since 1969 STAMEC is a company specialized in production of:

● Moulds for pressure die-casting for Alluminium, Zinc, Magnesium
● Injection moulds for plastic
● Permanent moulds for gravity and low-pressure castings, Core-boxes, tools and high

precision machining, precision mechanical working.

The products realized by moulds, for automotive, electro sanitary or household appliance, are
tested in order to obtain a first sampling from whom extract a detailed dimensional report of the
tool. In addition, check-points are made by STAMEC before the delivery to the customer, in
order to grant an efficient product. The company tools allow it to do careful checks on the
materials and on the production process, ensuring a product accordant to the highest quality
standards [70].

The organizational structure of the company, as well as the main processes managed for the
production of molds are presented below.

2.4.1. Organizational Structure

Essentially the company structure is divided into functions (see Figure 4):

• The administrative, accounting and financial area are staffed by the Company
Management and;

• The production area is divided into two strategic business areas, mainly the production of
molds and mechanical equipment and the pre-series production of cold-pressed sheet
metal products. The company also has two production plants: one located in the main
office, which deals with the production of small and medium-sized mechanical molds and
for pre-series production, and the other, decentralized, where it is production of large
molds.

1 MISE project “SMART INDUSTRY 4.0” n. F/050493/01-02/X32, decreto MISE n.5195 del 19/12/2017.
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Figure 4. The organizational structure of STAMEC.

2.4.2. Primary and support processes

STAMEC is an enterprise that works under the Engineering-to-Order (ETO) modality, an
approach proposed since 1983 by Wortmann [71] in which engineering activities need to be
added to product lead time. In this sense, upon receipt of a customer order, the order engineering
requirements and specifications are not known in detail, and therefore, there is a substantial
amount of design and engineering analysis required.

This is a process that requires high collaboration with the customer and a much closer
relationship with clients, which is why it is important that the fundamental processes managed by
the industry are supported by technological services that facilitate communication and
management.

Therefore, based on the analysis of the fundamental processes managed by STAMEC, the vision
derived from the implementation of the project is established, discussed through the use of
Archimate diagrams in Figure 5. The color of the objects in the diagram shows that the diagram
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is structured in levels: the yellow part refers to the actual business processes managed by the
company, while the blue part refers to the applications that must be developed to support the
business processes.

At the business level, starting from the different processes managed by the industry such as
production, purchasing, warehousing and maintenance, a series of business services are provided
to the supply chain, supported by business applications and a corporate cloud.

The main services provided to stakeholders for the control and monitoring of production-related
activities are also shown in the figure. In the specific case, the term actors or stakeholders of the
supply chain means not only customers and suppliers, but also logistics and transport companies
assigned to deliveries and those that deal with specialized maintenance of machinery.

Customers are obviously interested in following the status of the order, while suppliers must be
given the opportunity to view the status of payments or if the sent delivery has been received.
Likewise, companies involved in logistics must be able to check whether a delivery has arrived
(unloading of goods) or if there are new requests for delivery to customers (loading).

In the case of a Maintenance company partner, the possibility of having a Maintenance status
visualization service related to the Machinery maintenance management process would be
helpful.

Figure 5. The main processes and services managed by STAMEC.
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As regards management processes, at the beginning of the SMART Industry 4.0 project,
STAMEC had practically no computerization for management processes. Figure 5 therefore
shows the vision of the project under construction as regards the use of new software
applications in the context of the primary process (the production of molds) and some support
processes.

Thus, the project contemplates equipping the company with vertical software applications for
both accounting management (ERP) and production management (MES). Furthermore,
following the new guidelines on Industry 4.0, the trend is to adopt sensor systems applied to
machinery for automatic production control and for preventive and predictive maintenance,
which are covered by the Facility Management Application.

All partners will also be able to make general use of the corporate cloud, linked to new business
applications. The access to this system will be guaranteed through the connection interface since
each actor will have access in protected mode exclusively to the data and functions of the system
within its strict competence.

In this research, the topic of Machine maintenance will be studied in depth, as a particular case
of the Facility management system, which is presented in greater detail in the next section.
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3. INDUSTRIAL FACILITY MANAGEMENT

Facility management is a term which is closely associated with building management. More
broadly, facility management should not only be understood as general building management
connected with everyday building operation, but it should also include long term planning and
focus on its users [72].

According to Vetráková et al. [73], Facility management is an effective form of outreach
business management which aims to provide relevant, cost-effective services to support the main
business activities (core business) and allow them to optimize.

To explain better the scope of facility management we can use the definition of IFMA
(International Facility Management Association), which has defined Facility Management as “a
method whose task in organisations is to mutually harmonize employees, work activities and the
work environment that includes principles of business administration, architecture and
humanities and technical sciences” [74].

In more recent years, the definition has included aspects such as processes and technology:
“Facility management is a profession that encompasses multiple disciplines to ensure
functionality of the built environment by integrating people, place, process and technology” [75],
and also maintenance and effectiveness as proposed by Atkin et al. [17] when defines FM as “the
integration of processes within the organization to maintain and develop the agreed services that
support and improve the effectiveness of its primary activities”.

FM has been gaining increasing credit for the crucial role it can play to generate
efficiency and cost savings in business operations [19], and the most common forms of
application of facility management in the enterprise is a partial or complete outsourcing [72].

In recent years there is a renewed interest in FM because the advent of Industry 4.0, and in
particular of IoT and CPS, constitute an important opportunity to improve facility management
processes.

31. Facility Management in the industry 4.0 scenario

With the introduction of the Industry 4.0 in recent years a new scenario for Facility Management
is derived. The fourth industrial revolution 4.0 has introduced digital technologies, sensor
systems, intelligent machines, and smart materials to the industry [76], encompassing the
widespread integration of information and communication technologies that converge the
physical and digital many areas of industry.
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Successful enterprises are using a full stack of technologies to achieve the goals of Industry 4.0:
efficiency, speed, agility, and customer-centricity [77]. One of these technologies is the Digital
Twin (DT), recognized as a key part of the Industry 4.0 roadmap.

DT is the exact representation of, for example, a building as digital data [77], and is a technology
that is rapidly being adopted by the industrial enterprise, in which there are multiple use cases
across: engineering, manufacturing and operations, and maintenance and service.

Digital twins are made possible (and improved) by a multitude of Industry 4.0 technologies -IoT,
Augmented Reality (AR), Computer-Aided Design (CAD), Product Lifecycle Management
(PLM), Artificial intelligence (AI), Edge Computing, to name a few– to create a powerful tool
that is driving business value [78].

A DT or digital replica of a physical entity can target industry in several sub-areas [79], as
Facility management, Product Lifecycle Management, Smart Buildings, Smart energy,
Optimization, Analyze complex structures, Structural Health Monitoring, Increase human safety,
Reduce maintenance costs, Materials testing, Smart Cities, any kind of other IoT solution [80].

The application of the mentioned technologies to the facility management processes represents a
breakthrough for the development and integration of new processes that support the
development, maintenance, and functionality of the facilities, and brings new development
opportunities in this field. Maintenance of industrial machinery, as a particular case of Facility
Management from an Industry 4.0 perspective is one of them, and is presented below.

3.1.1. Facility Maintenance Management

As mentioned before, FM has been being successfully applied to maintaining and operating
diverse types of industrial facilities, including those for logistics and warehousing. In this
context, maintenance plays a significant role. In fact, it assures the full service of the
warehousing system, which includes both, building, utilities, and material handling equipment as
mentioned by Mangano et al. [19].

Despite increasing recognized importance of FM as an integrated component of business
operations, most companies still complain about the rising cost of maintenance of industrial and
logistic facilities. Managers often seek to cut FM spending by reducing repair interventions to a
minimum and by delaying preventive maintenance actions, leading to a cascade of extra costs in
the medium and long term [81].

The proposed model here, drawn in ArchiMate notation, takes into consideration a systemic
approach to the maintenance of industrial facilities. Assuming that the generic industry has an
Organizational Unit (OU) that deals with FM, we introduce the top-level model of Figure 6. It
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represents the Facility Management OU and several offices hierarchically organized (Building
Maintenance, Machinery Maintenance, etc.). The model takes into consideration the general
aspects concerning both the decision-making process and the approaches to maintenance.

For what concerns the decisional process, the role of “Executive Director” acts with the
collaboration of technical support roles in order to make informed decisions. The involved
decisional processes has the duty to establish: a) the FM program to implement in a given time
period; b) which maintenance services must be implemented internally and which must be
requested from service providers (make or buy choice); c) identify the technology that must
support the maintenance activities (that may depend on the asset under maintenance); d) allocate
the resources for the maintenance operations.

Figure 6. Facility Maintenance Management top-level model.

The second aspect concerns the maintenance functions. The model states that there are two valid
general approaches: planned maintenance and unplanned maintenance. According to the good
characteristics, one or both can be considered as appropriate. For example, planned and
unplanned maintenance are normally required for complex machinery, while for the power grid,
the unplanned approach usually works well in order to save on maintenance costs. The bottom
parts of the model states that the Facility Management OU is assigned to the Maintenance
functions which have access to an object or a system to perform a behavior.

In order to provide better clarity on the application of the proposed model for the management of
facilities and its usefulness for the industry, a specialization in the machinery maintenance
functions is presented in the view shown in Figure 7. It is important to indicate that in the
particular case of machinery maintenance, the two general functions, Planned and Unplanned
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maintenance reported in the top-level model must be detailed (see Figure 8) to assure adequate
equipment operating conditions.

Figure 7. Machinery maintenance as part of Facility management

Maintenance is an integral part of facility management and requires clear definition of
arrangements to prevent and deal with failure or breakdown of parts, components, systems and
other elements [12]. Consequently, some fundamental concepts related to maintenance
approaches in an industrial context are presented below, starting from Total Productive
Maintenance as part of World Class Manufacturing (WCM), to some maintenance strategies.

3.2. Maintenance of industrial machinery

In general, maintenance is defined as all the technical and managerial actions taken during the
period of use to maintain or restore the required functionality of a product or resource [20].
According to different authors [21]–[23], Maintenance is defined as “a set of activities or
activities used to restore an element to a state in which its designated functions can be
performed”.

For the manufacturing industry, in particular, maintenance consists in carrying out all the
necessary actions to restore the durable equipment or keep it in specific operating conditions.
The very word "durable" means that the equipment is intended to last a long time and must
therefore be maintained [24]. In this sense, the purpose of maintenance is to maximize the
effectiveness of the machines and production lines.

Considering that there are different approaches to maintenance, some general definitions and
considerations are presented below, starting from the first postulates made in the literature and
reviewing the positions that new authors have today in this regard.
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3.2.1. Total Productive Maintenance

Total Productive Maintenance (TPM) is the term used today to refer to activities that constitute a
systemic approach to eliminate device failures and increase the efficiency of production lines
[25]. The objective of this coordinated group of activities according to Groover [26] is to
minimize production losses due to equipment failures, malfunctions, and low utilization through
the participation of workers at all levels of the organization.

The assumptions of TPM are implemented in a number of topic areas among the pillars of World
Class Manufacturing (WCM) idea, used initially by Hayes & Wheelwright and more developed
as a model in the 80s by Richard J. Schonberger, which is based on the implementation and use
of the best working practices available in the field of administration and the organization of work
to achieve the best operational efficiency of the company [28], [29], topic also addressed in more
recent studies such as those of Poor [82] and Szczepaniak [83].

According to Fiat Group Automobiles [30], WCM is: “a structured and integrated production
system that includes all plant processes, the safety environment, from maintenance to logistics
and quality”. The goal is to continuously improve production performance, seeking a
progressive elimination of waste, in order to guarantee product quality and maximum flexibility
in responding to customer requests, through the involvement and motivation of the people who
work in the plant.

The benefits of WCM integration include increased competitiveness, the development of new
and improved technologies and innovations, greater flexibility, greater communication between
management and production employees and an increase in job quality and strengthening of the
workforce.

The WCM model is implemented through two lines of action known as pillars: 10 technical
pillars and 10 managerial pillars. The pillar structure represents the "Temple of the WCM" and
underlines that, in order to reach the standard of excellence, a parallel development of all the
pillars is necessary. Each pillar focuses on a specific area of the production system using
appropriate tools to achieve global excellence.

For the specific case of this project, we will focus on the principles established for the pillar
called Professional Maintenance (PM), which is related to the continuous improvement of
downtime and breakdowns and has the following objectives:

● Maximize the reliability and availability of the machines (at economic costs).
● Eliminate the activities of extraordinary maintenance.
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● Reach the zero failure of the plants (failures, micro-leaks, defects etc.) with the
collaboration of the production staff.

The application of these principles has the purpose of increasing the efficiency of the machines
by using fault analysis techniques and facilitating the cooperation between the conductors
(equipment specialists) and the maintenance workers (maintenance workers) to achieve zero
failures [28].

According to [30], the Professional Maintenance technical pillar includes the activities aimed at
building a maintenance system capable of reducing machine and plant failures and micro-stops
to zero and obtaining savings, extending the life cycle of machines through the use of
maintenance practices based on the ability to extend the life of the components (preventive and
corrective maintenance).

To better understand the purpose and methods of maintenance activities, it is advisable to know
the different approaches to maintenance from which different types of maintenance derive.

3.2.2. Maintenance Approaches

There are various types of maintenance that can be performed based on certain conditions or
characteristics, but they are mainly classified into two general functions based on the repair
timing: planned (before a detected fault) and unplanned (after a detected fault), as presented in
Figure 8. Both maintenance operations must be performed to assure adequate equipment
operating conditions.

Figure 8. The Machinery Maintenance Management view, as part of Facility management.
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Corrective maintenance (CM) refers to “maintenance carried out after fault recognition and
intended to put an item into a state in which it can perform a required function” [84]. This
strategy is often applied to low-cost or non-critical equipment for production.

In contrast, Preventive maintenance (PM) strategies [85] involve carrying out maintenance
activities before equipment failure, contributing to minimizing the costs of breakdown and
downtime (loss of production) [86] and the increase in product quality [87]. This type of
maintenance strategy in turn includes:

● Autonomous Maintenance (AM): it deals with increasing the efficiency of the production
line through the actions of the device operators [25], which aims to take care of small
anomalies/problems (small faults, abnormal operation of the device, minor errors related to
the work of machines and devices) before they cause equipment failures.

● Time-Based Maintenance (TBM): maintenance carried out in accordance with established
intervals of time or number of units of use but without previous condition investigation
[84].

● Condition-Based Maintenance (CBM): it consists of diagnosing the state of resources
based on a combination of condition monitoring and/or inspection and/or testing [84], and
performs appropriate maintenance actions, usually based on real-time equipment condition
evaluation, such as repair and replacement before serious problems occur [20].

● Predictive Maintenance (PdM): also known as “prescriptive maintenance”, concerns the
detection of hidden and potential faults and the prediction of future equipment conditions
[36]. To do this, predictive maintenance programs are established, which require the
periodic determination of variables to verify the condition of the critical industrial
machinery, the diagnosis of defects, and the evaluation of the RUL of the machine [37].
PdM can be dissociated into two specific subcategories [88]:

a) Predictive maintenance based on statistics: involves the meticulous recording of all
interruptions of articles and plant components [89]. The generated information
facilitates the development of statistical models for predicting bankruptcy and
therefore allows preventive measures to be taken through a scheduled maintenance
policy [90].

b) Condition-based Predictive Maintenance (CbPM): it is based on the principle that
wear or degradation is responsible for a large number of mechanical failures and even
where not directly responsible, some elements of the phenomenon are usually present
[91]. As mentioned before, degradation is a gradual process that affects industrial
machines and components over time. The wear process will not cause a sudden
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mechanical failure but is preceded by changes in the sensitive behavior of the machine
[92]. Condition-based monitoring revolves around examining these wear processes in
mechanical components, in order to predict their future behavior and tendency to fail.

Predictive maintenance exhibits several inherent benefits, namely by Lee et al. [93]: optimized
parts usage, reduced costs, increased machinery lifetime, plant safety, product quality (near zero
failure manufacturing), reduced number of accidents, or effortless integration with company
scheduling, among others. However, to enable the implementation of PdM strategies in an
industry 4.0 scenario, it is necessary to have a technological architecture that adequately supports
the deployment of the developed systems.

The Big data and IoT architectural model designed for the proposed predictive maintenance
system is presented in section 5.

3.2.3. Maintenance strategy

To know all the approaches to maintenance and the different types of maintenance is important to
develop a strategy that defines the best mix of approaches and types, in relation to the
characteristics of the organizational context.

A maintenance strategy involves identifying, finding and performing many repairs, replacing and
inspecting decisions [94]. It deals with the formulation of the best life plan for each unit of the
plant and the formulation of the optimal maintenance program for the plant, in coordination with
the production and other interested functions [95].

A maintenance strategy describes which events (e.g. Fault, elapsed time, condition) determine
which type of maintenance intervention (inspection, repair or replacement). A maintenance
strategy consists of a mix of policies and/or techniques, which vary from structure to structure
[96], [97]. This depends on several factors such as the maintenance objectives, the nature of the
structure or the equipment to be maintained, the workflow models (process focus, product focus)
and the work environment [98], [99].

The Figure 9 presented below shows the organization of the various types of maintenance
according to the needs of the organization and the priority level of their plants in the production
process.
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Figure 9. Maintenance strategy. (adapted from [100])

According to the above, for a type of organization where systems are not essential and instead
there is a strong presence of work, as in an assembly operating unit, the best combination is that
which provides basic autonomous maintenance, cleaning, lubrication, inspection, fault
maintenance and less periodic, preventive and corrective maintenance.

On the other hand, for a type of organization in which systems are essential, such as an operating
unit for panels or painting, the best combination is an autonomous basic maintenance, without
failed maintenance, periodic, predictive and corrective maintenance [95].

It should be noted that in practice more than one approach could be used at the same time.
Therefore, it is very important to know which maintenance approach, from the various applicable
maintenance approaches, is the most convenient and fits the technical system in its operational
context.

According to a report by WCM Development Center [100], if the maintenance strategy involves
only reactive failures, the maintenance costs are relatively low, but the losses could be high. If
preventive maintenance is introduced, maintenance costs increase: for example, some activities
must be carried out using overtime, detectors for predictive maintenance are introduced, time is
devoted to training activities to increase the skills of operators and maintainers.

As a result, maintenance costs increase. However, transformation costs are reduced because
losses due to faults and micro-stops are reduced. The balance between transformation costs and
maintenance costs is the one in which the choice of maintenance strategy, i.e. the mix of types of
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maintenance adopted, is the best. The move towards a more sophisticated strategy produces a
further increase in maintenance costs, which is no longer balanced by a decrease in
transformation costs.

The planning and execution of these strategies, however, require well-defined guidelines
according to the characteristics of the facilities to be maintained and the FM OU structure. For
this reason, we propose below a methodology designed to support the FMM programs.

3.3. A methodology for Facility Maintenance Management

Figure 6 shows how a top-level model for FMM while the top-down decomposition method
allows us to dominate the problematic complexity inherent to the management of industrial
assets.

Although the decisional process outlined in Figure 4 provides a guideline on how to set up an
FM program, more detailed information is necessary to indicate the essential actions to perform
for effective facility maintenance. For this reason, we propose a step-by-step methodology for
FMM based on two main phases: planning time, and operation time.

● Planning time
a) Focus on the area of intervention and identify the roles to be allocated
b) Select the management methods for the area of intervention
c) Acquire detailed knowledge about the appropriate technology for the object/system to be

maintained
d) Plan the management activities for the object/system

● Operation time
e) Implement management support hardware/software systems and big data

technologies/techniques
f) Measure, monitor, and control the object/system
g) Execute the maintenance activities
h) Feedback the process

As the models discussed in section 3.1.1 and the methodology follow a top-down approach to
FM, in the next section we define two business processes, planning and execution, that show
how the points d) and g) can be developed. An example of how the step c), e) and f) can be used
in an Industry 4.0 scenario is presented in the case study of section 6. Points a) and b) have been
briefly considered by the models of figure 5 and figure 6 and will be further elaborated in the
case study. Point h) comes from the feedback management approach [101], and enables a
systematic integration [102] between planning and operation processes for better maintenance
decision-making processes.
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3.3.1. Machine maintenance planning flow

During the development of this research, we observed the planning and execution processes for
machine maintenance managed by several factories. The model in figure 10 describes the
planning processes that the observed factories usually adopt to cope with the problem of machine
tool maintenance using the planned and unplanned approaches. It is representative of many
manufacturing scenarios where machine tools and equipment of various kinds must be
maintained in good health condition to reduce the amount of time in which the manufacturing
system does not produce.

As the model shows, preventive and corrective maintenance activities are planned on a biannual
and weekly basis; unplanned activities, as well as those related to Emergency Work Orders
(EWO) that correspond to failures or anomalies, are performed during daily operation. In the
three processes below, the involved roles “Equipment responsible”, “Workforce manager” and
“Maintainer responsible”, are particular cases of a more generic planner role.

Figure 10. The machinery maintenance management flow for planning [103].
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The tasks related to the biannual planning process, carried out by the Equipment responsible,
consist of defining the maintenance activities that must be performed each semester and planning
the execution of the activities on a weekly basis. This planning is stored in a Machine Ledger, a
graphical visualization tool that allows maintenance teams to better understand
maintenance/breakdown trends and patterns at the machines, assemblies, and components levels,
so they can more effectively predict failures and plan preventive actions.

Based on the previous planning, the Workforce responsible verifies the availability of the
technician through an attendance calendar as well as the fulfillment of the employee's
competencies to perform the required activity and assigns the weekly maintenance activities
(second phase, once a week) on a specific date and time, also indicating the estimated time for
the intervention. This assignment is stored in a database and communicated to the corresponding
maintainer.

On the other hand, the management of unplanned activities (third phase, one or more times a
day) is carried out by the Maintainer responsible, who is in charge of receiving the intervention
requests that may be submitted during the day (ticket) and opening an EWO. To carry out their
assignment, the availability of the maintainers is verified as well as the fulfillment of the
competencies required to effect the maintenance activity and the assignment is done. As soon as
the activity is assigned, the maintainer is notified.

Both the machine maintenance management flow described above and the availability of
machine data are essential for planning. In this sense, as will be seen in section 6.1.2.1, the
application of technology plays a fundamental role.

Once the planning phase is complete, the proposed activities are executed in the Operation time
phase, as presented below.

3.3.2. Execution of maintenance operations

As related in the previous section, planner roles are responsible for the maintenance planning and
assignment of biannual and weekly maintenance activities to maintainer roles. From these
processes, several planned maintenance orders are sent to each maintainer during the day. A
second assignment modality is executed when emergencies arise during the working day that
must be attended, which are handled as unplanned activities for which the corresponding EWO is
generated and assigned.

Once the maintenance activity has been assigned to a particular Maintainer, he receives a
notification of the corresponding assigned maintenance order. Before starting with the execution
of the activity, all the information related to the intervention (area of intervention, typology,
estimated intervention time, required materials, procedure description, among others) must be
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verified by the maintenance technician. This allows the intervention to be carried out efficiently
and avoiding delays due to ignorance of the procedure or lack of supplies.

The lower part of Figure 11 shows a brief representation of the process executed by a Maintainer
to perform the assigned maintenance activities.

Figure 11. Maintenance activities execution process.

For each assigned planned activity, an activity sheet must be opened in which the Maintainer,
once positioned in the workstation (machine), can start the maintenance activity and report
information as the description of the performed activity, start date/time and stop date/time.

Similarly, when an unplanned maintenance activity is completed and the first part processed after
maintenance (Job1) is verified, the Maintainer must indicate the completion of the activity and
register it in an EWO sheet, to be subsequently closed.

A second type of unplanned maintenance activity refers to Extra activities that must be carried
out but are not necessarily related to damage or failure, such as changing the oil or fuel. They are
generally related to AM actions performed by machine operators to preserve normal machine
operating conditions. In this case, the EWO sheet is not required.

To support both planning and operation processes, a software application based on Figure 7 was
developed for the management of maintenance activities, which, together with the application of
the methodology presented in section 3.3, is introduced in the case study in section 6.1.2.1
Planning and executing maintenance operations.

39



4. CYBER-PHYSICAL SYSTEMS

In recent years, we are witnessing a new industrial revolution called Industry 4.0. The fourth
industrial revolution aims to introduce changes to improve the efficiency of production
processes, to reduce costs, to increase services to customers and their quality [104]. Apart from
improving industrial value chain processes, the introduction of Industry 4.0 technologies
constitutes also an important opportunity for the improvement of the industrial facility
management.

In this sense, technologies such as DT, IoT, CPS and their respective specialization to industry,
IIoT and CPPS, are considered in this document to increase the effectiveness of FM.

The view introduced in this section describes some technologies of Industry 4.0 necessary for the
creation of an integrated system consisting of CPPS, IIoT, DT, and Production Planning and
Control (PPC) software, aiming to make the management of maintenance activities more
effective. In this sense, the next section considers the definitions and main characteristics of
those concepts, seeking to better understand the contribution they make to the integrated system
model proposed in section 4.4, in which these technologies are implemented.

4.1. Cyber-Physical Systems definition

The term CPS has been defined as the systems in which natural and human-made systems
(physical space) are tightly integrated with computation, communication and control systems
(cyber space) [65].

The disruptive technologies emerging from combining the cyber and physical worlds could
provide an innovation engine for a broad range of industries: manufacturing, transportation,
infrastructure, health care, emergency response, defense; as indicated in [105].

According to Herrmman and Thiede [106], CPS can be used to address these issues in today’s
industry by bringing autonomous control, self-awareness, and self-management capabilities to
industrial machines.

Similarly, CPS can be understood as smart systems that encompass computational (i.e., hardware
and software) and physical components, seamlessly integrated and closely interacting to sense
the changing state of the real world. These systems involve a high degree of complexity at
numerous spatial and temporal scales and highly networked communications integrating
computational and physical components [107].

CPS are capable of increasing productivity, fostering growth, modifying the workforce
performance, and producing higher-quality goods with lower costs via the collection and analysis
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of malicious data [105]. Ivanov et al. [108] argue that dynamic models are needed in CPS to
coordinate activities in manufacturing procedures and to achieve an optimization of production.

In the Industry 4.0 scenario, a CPS for Facility management consists of microcontrollers that
interact with sensors and actuators that exchange data and information through a communication
network to facility management systems.

This “cyber-physical ecosystem” as called by Ivanov et al. [108], should be developed to achieve
real-time monitoring and optimization of maintenance activities. In this way, maintenance
planning strategies, with implications for decision-making processes, cost management, and
energy consumption of the manufacturing system can be improved through the facility
management system.

A specialization of CPS related to the Industry 4.0 scenario and some technologies necessary for
a better industry performance are the CPPS, whose definition is presented in [104]:

“Cyber-Physical Production Systems comprise smart machines, warehousing systems,
and production facilities that have been developed digitally and feature end-to-end
ICT-based integration, from inbound logistics to production, marketing, outbound
logistics, and service”.

4.2. Internet of Things

The IoT is a novel paradigm that is rapidly gaining ground in the scenario of modern wireless
telecommunications [109]. Recent developments in facility management methods are based on
the use of these new technologies (IoT and CPS), with their corresponding specialization into
IIoT and CPPS to the industrial context.

For what concerns the building facilities, one study by Weiwei Chen has proposed models that
show the use of IoT for automatic scheduling of maintenance work orders and predictive
maintenance strategy for building facilities [110]. Cheng et al. [111] discuss how Building
Information Modeling and IoT have the potential to improve the efficiency of FMM.

The basic idea of the IoT concept is the pervasive presence around us of a variety of things or
objects such as Radio-Frequency IDentification (RFID) tags, sensors, actuators, mobile phones,
etc. which, through unique addressing schemes, are able to interact with each other and
cooperate with their neighbors to reach common goals [109].

A simple IoT definition given in [112], describes a system where objects in the physical world,
and sensors within or attached to these items, are connected to the Internet via wireless and wired
network connections.
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It is important to distinguish between IoT and IIoT. Even if they are closely related concepts,
they cannot be used interchangeably [113]. As seen in the previous definitions, the frequently
adopted definitions of IoT [114] state a network of physical objects –vehicles, machines, home
appliances, and more– that use sensors and APIs to connect and exchange data over the Internet.
These definitions are suitable for the building facilities and many other application fields.
However, a more specialized definition is necessary to reason about its application in the
manufacturing field.

Essentially, IIoT can be seen as a specialization of IoT to manufacturing; indeed, the Industrial
Internet of Things is about connecting all the industrial assets, including machines and control
systems, with the information systems and business processes [113].

Concretely, the IIoT refers to “the use of certain IoT technologies – certain kinds of smart objects
within cyber-physical systems – in an industrial setting, for the promotion of goals distinctive to
industry” [115]. Some short definitions found in the literature review present the concept of IIoT
as “the use of Internet of Things (IoT) technologies in manufacturing” [116], or “a short-hand for
the industrial applications of IoT” [117].

In the manufacturing industry, IIoT is relying on wireless devices such as RFID and wireless
sensor networks [118] to gather real-time data from the shop floor, such as a machine status,
inventory levels, shipment progress, and energy consumption data [119].

4.3. Digital Twin

In the Industry 4.0 scenario, FM is evolving as a consequence of the introduction of new
technologies that can enhance the capabilities of roles devoted to the management of structures.
The Digital Twin (DT) is one of these disruptive technologies.

A simple definition of DT is “Digital representation of a real-world object with focus on the
object itself” [120]. This is a general definition that outlines the essential characteristics of this
concept. Many definitions highlight the purpose of DT. For example, Bolton et al. [121] define a
DT as: "a dynamic virtual representation of a physical object or system across its lifecycle, using
real-time data to enable understanding, learning and reasoning". A comprehensive review of the
concept of DT can be found in the work of Negri et al. [122].

DT has been used in manufacturing industries focusing the attention either on the object to
produce [123], [124] or on the manufacturing systems [125], [126]. For what concerns the
application of DT for facility management in the industrial context, the literature does not offer
sufficient references. This point will be addressed by the model proposed in the next section
discussing the management of a variety of industrial assets.
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The CPPS, IIoT and DT definitions are used in the model presented in the next section, which
proposes a high-level model that can be considered for the creation of an integrated system
consisting of CPS, DT and Professional maintenance (PM) software, as part of a Facility
management system.

4.4. Cyber Physical Production System

In order to make the management of maintenance activities more effective, the view introduced
in this section describes some technologies of Industry 4.0 necessary for the creation of an
integrated system consisting of CPPS, IIoT, DT, and PPC software.

A simplified version of the view of Figure 12 has first been introduced in [127] for the problem
of real-time Production Planning and Control (PPC); the variant illustrated here appears instead
in [128] that proposes a contribution to the topic of energy saving during the execution of batch
processes[129].

We further contribute to the semantics of the CPPS model by considering an extension of DT
that comprises non only the digital representation of structures but also technical parameters
necessary for the maintenance. On the other side, the PPC, originally designed to drive the
production process, is enriched with functionalities described in the model of Figure 6 and
Figure 8 for both the decision process and the maintenance functions.

Figure 12. A schema for the design and implementation of a Cyber-physical production system [128].
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In the presented CPPS, the IoT devices such as smart (embedded) sensors and actuators installed
in the machines and connected to the communication network provide important information for
the planning of Condition based maintenance (CBM) strategies, and to support Breakdown
maintenance (BdM) activities since they send data on anomalous behaviors in the production
process through the DT. This permits operators, through intelligent scheduling systems such as
the PPC software, to monitor the machinery conditions instead of their faults and generate early
alerts or stop production in case of breakdown, hence anticipating possible failures by
self-adjusting their operations at different levels and optimizing the assets utilization.

Similarly, the Maintenance Planning & Control (MPC) module uses the data to define the
techniques and methods that can be employed for maintenance in the area of intervention, as well
as to manage their execution.

In this way, the CPPS in conjunction with the MPC software contribute to improving the
resilience [130] and performance of the maintenance support system and factory control system.
Furthermore, the software modules DT, PPC, and MPC, enriched with the functionality of
facility management discussed so far, provide support to the application of the methodology
described in section 6.1.2.1.

The following section focuses on the study of CPS reference models for manufacturing
scenarios, which form the basis of a new complex system metamodel proposed in section 4.6,
considering the new technologies available in today's industry context.

4.5. CPS Reference Models

In this section, the 5C and 8C models are briefly resumed. The interaction type metamodel
proposed by Nota et at. [131] on which a new proposal of CPPS is based is also described.

In literature, one of the most cited models for the representation of CPS systems is that of Lee et
al. [132], which presents the 5C architecture.

5C model: the essential elements of the 5C architecture for each level of Lee's model are: 

I. Smart Connection Level: it is the architectural level in which all those devices of the IoT
are identified, represented and put in communication to enable forms of integration and
interoperability between different, distributed and heterogeneous data sources.

II. Data-to-Information Conversion Level: at this level, the data is converted into
information. It is the level in which the ability to process (pre-process, analyze, interpret,
merge, etc.) the data that comes from a machine is implemented. Specific algorithms can
be used with predictive purpose to evaluate parameters on the "health status" or on the

44

https://www.zotero.org/google-docs/?iFglop
https://www.zotero.org/google-docs/?ePf840
https://www.zotero.org/google-docs/?VN8rN3


"prognostic" of the machine (examples: a) RUL or, b) a data or a correlation between data
in which an impending breakdown). At this level, the machine acquires self-awareness.

III. Cyber   Level: it is the central level where the other levels of architecture are intertwined. It
identifies all the factory resources that can be managed and participate in the production
processes. Each identified resource is then given a virtual representation in order to first
represent it and then manage it through specific software subsystems, each characterized
by functions that depend on the type of resource managed. From analytical algorithms that
use large amounts of data it is possible to obtain additional information.

IV. Cognition Level: it is to define what is the useful knowledge to provide and what are the
right ways of displaying information with respect to the job of the specific user (e.g., the
cognitive load per worker, production manager, manager, etc.). The adequate presentation
of the knowledge acquired allows expert users to make appropriate decisions. For example,
the priority on what to service can be easily determined based on the individual state of the
machines and comparative information. Augmented reality technologies may also be
involved at this level.

V. Configuration Level: The configuration level constitutes feedback from the context of the
digital representation (cyber space) to the context of the physical system (physical space)
and acts as supervision and control to make the machines self-configuring and
self-adaptive. This level acts as RCS (Resilience Control System) to apply the preventive
and corrective decisions, taken at the cognition level, to be applied to the monitored
system.

The 5C architecture for the implementation of a CPS proposed in Lee's work differs from those
previously described in that it emphasizes the role of factory 4.0. The architecture highlights
how, starting from the data collected by machines and sensors, it is possible to obtain large
quantities of data (Big Data) from which intelligent applications allow:

a) the improvement of the performance of the industrial process,
b) the resilience and self-adaptability of the machines.

The architecture focus is more on vertical integration and less on horizontal integration, since
vertical flow refers to company activities development and execution, including basic elements
such as: the organizational structure, human factor, departments relationships, technological and
management level; while the horizontal flow includes external relations, establishes supplier and
customer networks integration, information and management systems and others [133]. This
weakness is also found in ISA 95 and Groover architectures, mentioned in section 2.3
(manufacturing system organization).
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A variant of the 5C architecture is the one called 8C, proposed by Jiang [134] for the modeling
and implementation of CPS that take horizontal and vertical integration into consideration. The
8C architecture adds three aspects to the 5C called:

● Coalition: for the integration of the production system in the supply chain.
● Customer: to highlight the role that the customer plays during the design process,

production and after-sales interaction.
● Content: focuses on extraction, storage, and querying of records for product traceability.

In the next section, a new solution to the formal modeling needs of the CPS that will be used for
the development of the project is proposed, since there is still the problem of defining a
metamodel that is more than the reference frameworks that have appeared in the literature, and
can formally define the components and relationships of a CPS.

4.6. The proposed complex system metamodel

To describe the proposal for a new system metamodel able to represent complex systems as CPS,
we first discuss the interaction type metamodel proposed by Nota et al. [131], first from a
structural and then from a behavioral point of view. Subsequently, the generalized version of the
composite pattern will be integrated into the metamodel to obtain a new CPS metamodel suitable
for the digital representation of the factory with an Industry 4.0 perspective.

4.6.1. The Interaction type metamodel

The purpose of the interaction type metamodel is to provide a formalization that includes both
the concept of active entity and those of relationship, interaction, and interaction type, capable of
describing the static and dynamic aspects of a system. First, consider the following definitions:

● Active entity: It is an organization, an individual or an automated component capable of
performing behavior while interacting with other active entities.

● Relationship: Represents a logical or physical connection between the components of a
structure. Through relationships, communication becomes possible at the basis of the
interaction between active entities.

● Interaction: An interaction is a concrete action between two active entities in order to
achieve a goal.

● Interaction type: It is the structural element that shapes a kind of interaction. This form
qualifies one or more interactions in the sense that it provides a description or

46

https://www.zotero.org/google-docs/?zGNQp3
https://www.zotero.org/google-docs/?pDRcgi


configuration external to interactions of that type. The structure of an interaction type can
be suitably represented considering the structure of messages between active entities.

A set of interaction types concerning active entities delimits the type of actions admissible
between them or allows us to limit our attention to the interaction types we are interested in. As
for our model, we focus on exchanging messages; this will allow us to represent the exchanges
(interactions) between active entities.

An interaction type that participates in the structuring of a relationship can be simple or
aggregate. The formalization of an interaction type is as follows:

sitName = {activeEntity1, activeEntity2, goal, messageStructure, constraints}

aitName = {activeEntity1, activeEntity2, goal, setOfInteractionTypes, constraints}

where a simple interaction type, called by the sitName, represents the structure of an atomic
interaction between two active entities in terms of messages exchanged; goal is something you
want to achieve, and constraints act as a guard for activating the interaction type.

An aggregate interaction type is a set of two or more interaction types called by its aitName;
goal expresses the purpose of the entire set of interactions and constraints can be applied to the
elements of setOfInteractionTypes.

We consider two different times when we refer to a relationship: construction time and activation
time. At the time of construction, the structure of the relationship is defined as a set of interaction
types. At the time of activation, systemic behavior emerges in terms of interactions between
active entities. These interactions are mediated by the interaction type in the sense that the
communication that takes place between active entities becomes possible when the structure of
the messages exchanged is compatible with that of the interaction types.

Approaching the diagram in Figure 13 on the side of the relationship, we can say that there is a
relationship between two active entities when there is at least one interaction type that connects
them. When the structure is created, the interaction can occur (systemic behavior).
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Figure 13. Description of the interaction type metamodel [131].

This basic metamodel is general enough to be applied to each of the models presented in the
previous paragraphs. In particular, the proposal of this research is to apply it as regards the
description of the relationships and interactions between:

a) entities present in the same level, for example level L;
b) entities present between adjacent levels, for example between L and L+1, or between

L and L-1;
c) entities present between non-adjacent levels, for example between L and L+2 or

between L and L-2.

It should be noted that the formalization of the reports relating to point a) will allow for
horizontal integration. Similarly, the identified relationships concerning points b) and c) will
allow the vertical integration of factory and/or supply chain components and systems.

The approach adopted in the determination of the new metamodel proposed in this paragraph
considers the strengths of the models described so far. It was agreed to start from the Groover
model which well represents a production system and control systems that operate at various
levels. The Groover model and the ISA 95 model are quite similar, which is why it is natural to
combine them in a single model that highlights the strengths of each of them.

The metamodel of the interaction types of Figure 13 will therefore be used to formalize the
structural relationships that exist between active entities of the same level and between different
levels. The strength of the interaction type metamodel is goal orientation. When two entities act,
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each goal is identified and represented. In general, the goal of a relationship can be further
broken down into lower level goals. Reaching the most basic set of goals allows you to reach a
goal at a higher level.

The fundamental requirement of the proposed metamodel is the ability to express, define and
represent each entity involved in the architectures described above and, in particular, consider the
relevant aspects from an Industry 4.0 perspective.

The metamodel is also capable of representing and classifying all the relationships, types of
interaction and interactions that exist between the present entities.

Figure 14 shows the proposed complex system metamodel. Although this complex system
scheme can be used to represent a CPS, it is presented in a general form that allows it to be used,
after being contextualized in the application domain of interest, in all those situations potentially
represented by the metamodel (systems: corporate, physical cyber, corporate information, supply
chain information, etc.). It should be noted that for the purposes of contextualization to the
application domain, the set of properties associated with Entity Type, Entity Class and Interaction
Type are relevant.

A system can be studied in its structural and dynamic perspectives. In this sense, the metamodel
of Figure 14 reflects this apparent dichotomy. The upper part of the figure is richer and
represents the structural view of a system. The structural view is divided, in turn, into two levels:

1. The metamodel, in light blue color, in which those consolidated concepts of systems
theory and, in particular, of the Viable System Approach (VSA) [50], [135] are made
explicit. At this level, the exposed concepts are recognizable, belong to every observable
system and are therefore expressible at the meta level. For brevity, the suffix "type" has
been omitted; e.g. "Entity" must be understood as "Entity type" and "Interaction" as
"Interaction type".

2. The model, in light yellow color, in which objects, relationships and properties of a
system are made explicit in a context (e.g., production planning subsystem rather than
equipment maintenance subsystem).

The lower part of the diagram explains the dynamics of the model. Active entities (e.g. a
machine tool or a worker) are represented here and interact with each other through an
information, energy, or other exchange (Interaction). The interactions are represented in the
model so that the implementation of the same can consider the registration of exchanges between
active entities, deemed relevant to maintain the state of the system and reconstruct its
evolutionary history.
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Figure 14. Structure and dynamic behavior of a complex system: UML class diagram.

4.6.2. CPS metamodel applications to Smart industry 4.0

According to the nature of the real scenario to be represented and once contextualized in a
domain of specific interest, the metamodel (blue in the graph) allows to represent in general the
structural and dynamic perspectives of each physical or abstract object of the real world (Entity)
together with its properties. This characteristic can be used to explain, for example, the
organizational structure of a company, a complex system, a machine or a physical object with all
its components, a supply chain or the hierarchical structure of a company's business processes
together with their respective control systems, as expressed in the ISA 95 Model.

In different words, the metamodel is able to represent both physical and abstract entities from
different points of view (expressed by the metamodel through the View element), allowing a
better understanding of its shape and behavior in a given situation.

To obtain the above and implement it using a cybernetic system, this structural representation of
the system at the meta level must be referred to a real-world context and specified by means of a
data model (light yellow) which allows to represent the characteristics of the particular system of
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interest. In this regard, the Entity class characterizes, in the application context, the set of entities
described above (a machine, a company, etc.) considering certain properties or attributes
(Properties), as mentioned in the previous section.

From the point of view of system dynamics, this model allows us to represent all the interactions
existing between entities in the cybernetic system. Interactions must conform to specific
predefined types (interaction type) in order for communications and exchanges between active
entities to take place.

Dynamic behavior is represented by the interactions that the Active entity elements entertain
with other active entities, in an attempt to pursue common purposes. Through the qualification of
relationships, types of interaction (structure of the relationship) and interactions (dynamics of the
exchange between active entities) it is possible to rigorously specify the control logics of the
cybernetic system.

With the above in mind, four application examples of the metamodel are presented below,
showing its capabilities to represent both static and dynamic views.

Example 1: Structural representation of the factory (Static View: ISA 95 model)

As already mentioned, through the metamodel it is possible to express conceptual elements, such
as those present in the 5 levels mentioned by the ISA 95 model to represent the hierarchical
structure of the company, based on roles (Company, Site, Area, Work centers, Work units). The
example presented below shows how the metamodel developed can be used to represent the
division of the factory into areas and work centers through these abstract entities.

Let us assume that the “Smart Industry 4.0” company exists, made up of different departments,
areas, and organizational units. The following branches are managed by the General
Management of the company: Site1, Site2 and Site3 with headquarters in different locations.
Each Site is made up of various Organizational Units or Areas, such as Production, Logistics,
Commercial, Purchasing, IT, Maintenance, among others. The organizational unit can be divided
into Work Centers based on the corresponding activity, for example, Production line, Storage,
Process cell, etc. Finally, each Work center can contain one or more Work units such as Milling,
Cutting, Pressing, Molding, etc.

As can be seen in Figure 15, the structure of the Smart Industry 4.0 company corresponds to a
hierarchical organizational model in which the headquarters is Smart Industry 4.0, and the sites,
the organizational units, the work centers and the work units are dependent one from the other in
the order listed from left to right.
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Figure 15. Hierarchical structure of the Smart Industry 4.0 company.

Figure 16 below is a diagram showing this hierarchical division for Smart Industry 4.0
companies, through the Entity class and the Entity class Properties elements indicated by the
metamodel.

Figure 16. Example of representation of the organic structure of the Smart Industry 4.0 company through
Entity class and Properties.
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Example 2: Structural representation of the machine (Static View: Groover model)

The following lines show how the meta-model can represent the structure of the factory and, as a
particular case, the census of the machines and their composition. To do this, Table 1 summarizes
the information of some of the machines present in the factory, as well as the main properties
associated with each of them. For example, multiple values such as Milling, Drilling, Tapping
and Boring are possible for the "Machining name" property.

Table 1. Example of inventory of STAMEC machines.

Machine
Internal

ID
IP Address Manufacturer Model Year CN brand CN model Version

Machining
name

Milling
Machine

ME1 192.168.49.155 Mecof CS88 - Selca S4045P 1.12.8

Milling
Drilling
Tapping
Boring mill

ME2 192.168.49.117 Mecof CS500 - Selca S4045P 1.7.2

Milling
Drilling
Tapping
Boring mill

TE1 192.168.49.55 Tecmu - - Selca 3045 45030131.ITA-F

Milling
Drilling
Tapping
Boring mill

KI1 192.168.49.103 Kitamura Mytrunnion 5
201
5

Fanuc
300i-B PMC
NX00-0F

3-E96807

Boring mill
Drilling
Tapping
Boring mill

JO1 192.168.49.151 Jobs Linx
200
3

Fidia C20 V3R1.18 Milling

MK1 192.168.49.99 Gfac
Mikron HSM 600
U

200
8

Heidenha
in

iTCN530 340490 04 SP6

Milling
Drilling
Tapping
Boring mill

Presse MO1 - Mossini 630Ton - Siemens
S7-300; CPU
315

- Molding

Laser
cutting

TR1  - Trumpf
TrueLaserCell
7040

 - Trumpf
Trumpf
Op.Sys- 840D

05.20.00 Cutting

The Machine column (vertical view), is represented in the metamodel by the Entity type element
and can represent various types of machines, equipment or devices that have a set of
characteristics that differentiate it from the others; for this case, these attributes called by the
model as Properties, are the titles of each of the columns that are located to the right of the
Machine column (horizontal view): Internal ID, IP Address, Manufacturer, Model, Year, CN
Brand, CN Model, Version, Machining Name. The latter is a multivalued property because it can
change according to the different processes for which the machine has been prepared.

In this way, the titles of each column of the table (metadata) form the structure of the physical
cyber system to be represented, using only the Entity type and Entity class Properties elements,
which finally, when developing an information system, will be the fields required by its
interface. These elements are shown in Figure 17.
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Figure 17. Structural representation of metadata.

Once the static structure of the system has been formed and the table populated with the
information corresponding to each of the machines, the metamodel interprets them as an Entity
class element, which allows it to host various types of machines with their respective attributes
(data representative of each Properties or tuple).

Therefore, for an instance of the Milling type Entity class as a single Active entity, to take only
one case (row highlighted in blue, Figure 18), the following values can be identified for each of
the Properties of the machine: Internal ID {ME1}, IP address {192.168.49.155}, Manufacturer
{Mecof}, Model {CS88}, Year {2015}, CN Brand {Selca}, CN Model {S4045P}, Version
{1.12.8}, Machining Name {Milling}. More examples are presented below in Figure 18.

Figure 18. Example of structural representation of the factory: census of machine tools using the Entity
class and Properties.

Example 3: Dynamic representation of the maintenance process (Dynamic View:
Interaction Type Metamodel)

54



From a dynamic point of view, the metamodel also has the ability to represent the relationships
and interactions that exist between the entities that make up the cybernetic system. This dynamic
behavior allows to represent activities and processes of high value for the company, such as those
related to the maintenance of the machines mentioned in (Table 1).

To do this, the model uses the Relationship and Interaction type elements to represent the
existing relationships between entities and their structure; and the Interaction element, which is
the dynamic correspondent of the type of interaction.

From what has been mentioned in section 4.6, it is important to underline that each interaction
has a well-defined Goal and that these interactions can be simple or aggregate, allowing to
represent through it a set of interactions (setOfInteractionTypes). Similarly, the metamodel states
that each interaction can identify a set of properties or attributes, expressed through the
Interaction Properties element.

On the basis of the above, the example below shows the applicability of the model presented in
Figure 14 to represent the problem of Preventive maintenance of the machines. This problem is
representative of a larger class of scheduled maintenance types (see section 3.2.2) that can be
performed based on various considerations and needs.

Supposing to take as reference the Milling machine ME1 of Table 1 as Active entity, and
Operator1 as actor responsible for its operation. There is a relationship between Operator1 and
ME1 whose purpose is the management of the machine by the operator, through a maintenance
activity. The maintenance to be performed is of the Autonomous maintenance (AM) type, which
can be understood as the set of first level activities performed by the operator before, during and
after use of the machine, such as changing the oil or cleaning it.

Table 2. Example of representation of the Interaction types for the problem of machine maintenance.

No. Entity 1 Entity 2 Relationship Interaction type

1 Operator1 ME1 Maintenance Autonomous maintenance

2 Operator2 JO1 Maintenance Autonomous maintenance

3 Internal Maintainer 1 ME1 Maintenance Time-based maintenance

4 External team of maintainers 1 MK1 Maintenance Condition based maintenance

5 Manufacturer 1 TR1 Maintenance Corrective maintenance

6
Operator 3 Robot 1 Maintenance

Autonomous maintenance

7 Time-based maintenance

8 Internal Maintainer 2 Conveyor belt Maintenance Time-based maintenance

9 External team of maintainers 2 Press 1 Maintenance Condition based maintenance

10 Manufacturer 2 Robot 3 Maintenance Corrective maintenance
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In the same way, Table 2 expressed other types of maintenance that require specialized personnel
belonging to another organizational unit of the company (local-first maintenance strategy), such
as Time-based maintenance (TBM), which consists in running the scheduled programs in the
specified time interval, for example, every month or every week; or a subcontracted external
institution (second-level maintenance strategy) as happens in some cases with Condition based
maintenance (CBM), or when it is necessary to perform Corrective maintenance (CM) due to an
emergency or a failure that cannot be corrected by internal factory personnel or subcontracted
company, and requires the intervention of the original machine manufacturer (third-party
maintenance strategy).

According to the metamodel, the relationships presented in the Relationship column form an
array with the different entities involved in the relationship, in this way it is possible to know the
different levels of interaction in which one or more entities participate. In other words, the
relationship is formed by the aggregation of interactions between entities that have a specific
goal, in this case, to perform the different types of maintenance on the machine.

So, for example, in a level 0 of interaction, the ME1 machine of our previous example is an
entity that has a relationship with the Operator1 which has autonomous maintenance as Goal, but
in level 1 it can also have a relationship with the Internal Maintainer 1, whose Goal is to perform
a TBM, which in turn has been programmed by a Planner in a level 2, as shown in Figure 19.

In the same way, it can happen with CBM or with CM, activities that can be programmed by a
Planner actor and performed by other entities such as the External team of maintainers 1 or the
Manufacturer 2, based on certain conditions or needs, as already explained over it.

Figure 19. Representation of the Interaction types between factory entities.

Once the relationships linking the four active entities and the types of interaction associated with
each relationship have been identified, we can say that, in general terms, the maintenance
activities of the machines present in the STAMEC plant can be expressed as a set of types of
interaction that are connected through a corresponding relationship, which is activated by the
exchange of messages at various levels of interaction, as presented in the following reports:
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Level 0 (operator1, ME1, atonomousMaintenance)
Level 1 (internalMaintainer1, ME1, time-BasedMaintenance)
Level 1 (planner, operator1, autonomousMaintenancePlanification)
Level 2 (planner, externalTeamOfMaintainers1, time-BasedMaintenancePlanification)

To emphasize the interaction, the metamodel proposes the use of the Interaction type element,
which, according to Nota et al. [131], it is a Simple interaction type or Aggregate interaction
type, in which:

● Simple interaction type, represents the structure of an atomic interaction between two
active entities in terms of messages exchanged:

simpleInteractionTypeName = {activeEntity1, activeEntity2, goal, messageStructure, constraints}

where goal is something you are trying to do or achieve, and the constraints act as a guard for
activating such an interaction;

● Aggregate interaction type, is a set of two or more types of interaction:

aggregateInteractionTypeName = {activeEntity1, activeEntity2, goal, setOfInteractionTypes, constraints}

Therefore, we could say that in our example, the exchange of messages between Active entities,
which facilitates an interaction between them to perform a certain goal, can be expressed, in the
case of a Simple interaction type, as follows:

timeBasedMaintenanceInstance1 =
{internalMaintainer1, ME1, ”Perform Time-based maintenance”, <list of maintenance operations>,
start at ”2020-07-14-8:00”

in which, the variables present in the structure of the simple interaction type are enhanced in the
interaction instance, identified by timeBasedMaintenanceInstance1, as follows:

- activeEntity1 = internalMaintainer1;
- activeEntity2 = ME1;
- goal = Perform Time-based maintenance;
- messageStructure = list of maintenance operations;
- constraints= start at ”2020-07-14-8:00.

The Maintainer who must take care of the periodic maintenance (activeEntity1) of the ME1
machine (activeEntity2) operates through a list of maintenance operations (represented here as
messages that flow from the operator to the machine). The constraint that appears in the
application establishes that the maintenance operation must be started on July 14, 2020 at 8:00
am. The latter is a constraint that may have been established by the manager of the maintenance
department (Planner in Figure 19) during a previous interaction between Planner and Maintainer.
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Now, since this project delves not only into the application of CPS and IoT in the development of
applications in an industrial-type domain but also in the application of Big Data Analysis
techniques, a further explanation of the BDA approach is presented in the next section, with
special emphasis on industrial applications.
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5. BIG DATA ANALYTICS

The term Big Data Analytics refers to applications of AI, ML techniques, data mining
techniques, and time-series forecasting methods, into the way a massive volume of data is
acquired, processed, analyzed to extract insight from available data. Hence, the volume, velocity,
value, and variety are regarded as four primary attributes of big data [136]. For its part, Analytics
denotes the systematic computational analysis of data or statistics, and is defined as a set of
technologies, processes and tools that use data to predict likely behaviour by individuals,
machinery or other entities [137].

In fact, BDA is set to transform virtually every business activity, bringing opportunities for
enhanced customer service, optimized production levels, superior capacity planning, reduced
repair and maintenance costs and improved working capital utilization, as argued by Bughin
[138].

For these purposes, the most popular categories of analytics according to Davenport and Dyche
[139] are descriptive, predictive and prescriptive, as shown in Figure 20. These categories build
on each other and enable enterprises to make faster and smarter decisions [140].

Figure 20. Key categories of Analytics. Based on [140].

Descriptive analytics is a process of answering what happened in the past by analyzing historical
data through the summarization and description of knowledge patterns using simple statistical
methods [141] and summarizing them in charts [142].

The descriptive tasks of BDA identify the common characteristics of data with the purpose of
deriving patterns and relationships that exist in the data. According to [143], the descriptive
functions of big data mining include classification analysis, clustering analysis, association
analysis, and logistic regression.

● Classification Analysis: Classification is a typical learning model used in BDA, which
aims to build a model for making predictions on data features from the predefined set of

59

https://www.zotero.org/google-docs/?V9TOHk
https://www.zotero.org/google-docs/?ti4i6u
https://www.zotero.org/google-docs/?hHU5SB
https://www.zotero.org/google-docs/?Z79r0m
https://www.zotero.org/google-docs/?kq8EaZ
https://www.zotero.org/google-docs/?g24jKg
https://www.zotero.org/google-docs/?5VW4Am
https://www.zotero.org/google-docs/?CB8uko
https://www.zotero.org/google-docs/?tfVSVZ


classes according to certain criteria. A rulebase classification is used to extract IF-THEN
rules to classify as different categories. The examples include neural networks, decision
trees and support vector machines.

● Clustering Analysis: Clustering analysis is defined as the process of grouping data into
separate clusters of similar objects, which helps to segment and acquire the data features.
Data can be divided into different subgroups according to the characteristics. The
practitioners may formulate appropriate strategies for different clusters. The common
examples of clustering techniques are K-means algorithm, self-organizing map, hill
climbing algorithm and density-based spatial clustering.

● Association analysis: Association model helps the practitioners to recognize groups of
items that occur synchronously. Association algorithm is developed for searching
frequent sets of items with minimum specified confidence level. The criteria support and
confidence level helps to identify the most important relationships among the related
items.

● Regression Analysis: Regression represents the logical relationship of the historical data.
The focus in regression analysis is to measure the dependent variable given one or several
independent variables, which support the conditional estimation of expected outcome
using the regression function. Linear regression, non-linear regression and exponential
regression are the common statistical methods to measure the best fit for a set of data.

The collection and comprehensive evaluation of data from many different sources production
equipment and systems as well as enterprise and customer-management systems will become
standard to support real-time decision making [144].

The data analysis of previously recorded data is used to find out the threats occurring in different
production processes earlier in the industry and also forecast the new issues occurring as well as
the various solutions to stop that from occurring again and again in industry [145]. In these
purposes, BDA plays a fundamental role in industry production performance, as presented in the
following section.

Predictive analytics, is an extension to descriptive analytics where historical data is analyzed to
predict the future outcomes. In particular, predictive analytics for prediction combines numerous
advanced analytics tools: ad-hoc statistical analysis, predictive modeling, data mining, text
analytics, optimization, real-time scoring and ML [146]; become tools that help companies to
accurately predict different future events.

In maintenance, it is used to predict type of failure and time to complete failure [142]. The data
analysis of previously recorded data is used to find out the threats occurred in different
production processes earlier in the industry and also forecast the new issues occurring as well as
the various solutions to stop that from occurring again [145]. In this research, clustering analysis

60

https://www.zotero.org/google-docs/?BMHA9I
https://www.zotero.org/google-docs/?opzfLj
https://www.zotero.org/google-docs/?fLUCIZ
https://www.zotero.org/google-docs/?Imrwex
https://www.zotero.org/google-docs/?5g3FEG


was implemented to predict machine failures through the Gaussian Mixtures algorithm, which
will be described in section 5.4.1.

Prescriptive analytics is a process of optimization to identify the best alternatives to minimize or
maximize the objective, generally, by determining the cause-effect relationship among analytic
results and business process optimization policies [141], based on the feedback provided by
predictive analytic models [147]. In maintenance, according to Amruthnath and Gupta [142], this
can be used to optimize the maintenance schedules to minimize the cost of maintenance.

As shown in this section, intelligent predictive and preventive maintenance are key requirements
of large-scale IIoT systems [148]. In this sense, Industrial BDA (IBDA) acquires great
importance in the context of IIoT systems, since it allows the application of various methods
based on computational intelligence to optimize and improve production systems [149], since its
main goal is to maximize production according to customer needs, as mentioned by Saldivar et
al. [150].

The IBDA process can help in off-line forecasting (for example, forecasting based on historical
data) and online maintenance (e.g., maintaining machines without shutting down production
units). This concept is further explained in the next section.

5.1. Industrial Big Data Analytics

BDA is now a vital foundation for forecasting manufacturing and proactive maintenance [151].
Compared to big data in general, industrial big data has the potential to create value in different
sections of the manufacturing business chain [152].

As mentioned by Courtney [153], the Industrial Big Data Analytics (IBDA) will focus on
high-performance operational data management systems, cloud-based data storage, and hybrid
service platforms. The complexity [154] and the concepts of the six V’s are also adopted in
industrial big data characteristics, which include volume, velocity, variety, variability, veracity,
and value. With this adoption, the current data analytics requires new techniques in handling
enormous data. As a result, the analytic process becomes complex with massive data from
several sources, but helps in the creation of an impactful analytic process and facilitates the
decision-making process with easy analysis and accurate prediction results [155].

Technologies such as Hadoop, Spark, MapReduce, SAS, and Rapid Miner offer flexibility,
scalability, and good performance to improve the industrial analytic process [156], [157]. As
mentioned by Amalina et al. [158], these advanced tools co-exist with programming languages,
such as Python, Scala, R and SQL. This coexistence boosts the potential of BDA in transforming
unstructured to structured data in many domains. In this research, the Python programming
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language was used for the implementation of the ML algorithms, in which unlabeled data was
used to predict machine data anomalous behavior.

In addition, to carry out data analytics processes in any of its categories (descriptive, predictive
or prescriptive), and enable early fault detection, fault identification, health assessment of the
machine and predict the future state of the machine in an industrial scenario, it is essential to
analyze machine data with statistical and AI techniques. ML approach as one of these techniques
is presented in section 5.4.

As this project deals with unlabeled data coming from industrial machines, the main focus has
been on the use of unsupervised learning as the foundation of an unsupervised predictive
maintenance approach. In this sense, some considerations for PdM in an unsupervised context are
presented below.

5.2. PdM in an unsupervised context

The analysis of the literature made in the previous sections frames the problem of maintenance in
its various facets. In this section and the following of the work, we will focus on the PdM in an
unsupervised context.

The problem of discovering the incoming faults (prognosing) can be seen as a special case of
outlier detection, since an outlier is an observation which deviates from the other observations to
arouse suspicions that it was generated by a different mechanism [43]. In this field supervised,
semi-supervised and unsupervised methods are employed [44].

While Supervised learning provides a clean approach to build ML models, in practice, labeled
data in manufacturing is not easily accessible or abundantly available. Unsupervised learning
aims to build the representation of a given dataset without any label-based feedback mechanism
[45].

In literature, several studies oriented to predictive maintenance using the unsupervised learning
approach can be found. Amruthnath and Gupta [142] suggested a methodology using
unsupervised learning for rapid implementation of predictive maintenance activity, which
includes fault prediction and fault class detection using density estimation via Gaussian Mixture
Model Clustering and K-means algorithm [159]. They have also conducted a research study on
unsupervised ML algorithms for early fault detection in PdM, using simple vibration data
collected from an exhaust fan to fit different unsupervised learning algorithms to test its
accuracy, performance, and robustness.

Similarly, Patra et al. [160] considered data collected from the bearing and fit different
unsupervised learning algorithms such as the Gaussian mixture model and clustering technique,
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to check its performance, accuracy, and sturdiness. In conclusion, they proposed a methodology
to benchmark different algorithm techniques and select the best one.

For his part, Bao et al. [161] developed an unsupervised learning system of aero-engine
predictive maintenance based on Cluster Analysis, aiming to perform predictive maintenance on
aero-engines under unsupervised conditions and reduce the cost of traditional periodic
maintenance.

In Farbiz et al. [162], a framework based on the concept of cognitive analytics with unsupervised
learning for machine health monitoring, anomaly detection, and predictive maintenance is
described. The experimental results on an industrial robot demonstrate the effectiveness of the
framework in the identified use case.

Kim et al. [163] stated a predictive maintenance framework based on unsupervised learning
which can be applied directly in the industrial field regardless of run-to-failure data. The
proposed framework consists of data acquisition, preprocessing data, constructing a Health
Index, and predicting the remaining useful life. The usefulness and applicability of the proposal
were conducted through two different real-life cases: monitor the condition of a pump in a
manufacturing plant and, a robotic arm in a production line of automobiles.

However, despite the existence of studies like these conducted in the industrial field, few of them
have focused on the manufacturing industry, for which some limitations and challenges had been
identified in the literature. The acquisition of relevant manufacturing data is a very common
limitation for ML application, as the availability, quality, and composition of the manufacturing
data at hand have a strong influence on the performance of ML algorithms [164].

Pre-processing of data also has a critical impact on the accuracy of the results, and a lot of time is
spent on preparing the data and extracting information, the reason for which performance
problems (low speed, low accuracy, high memory complexity [165]) may occur.

A major challenge of increasing importance is the question of what ML algorithm to choose, a
task related not only to the efficiency of the algorithm but also to the cost (to choose buy or
develop). The same happens with the interpretation of the results. According to Wuest [164], in
some cases, there might be no expert feedback available about the results, which makes it
difficult to interpret them.

In this study, our approach focuses on unsupervised context. The goal is to contribute to filling
some gaps described in the literature related to the acquisition and analysis of manufacturing
machine data through a Big Data and IoT architecture. In particular, we propose an abstract
framework for the implementation of PdM in unsupervised learning contexts, which is formed of
several steps that are independent of the algorithms used and therefore, provides an abstract
structure for testing different unsupervised learning solutions.
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However, to enable the implementation of PdM strategies in an industry 4.0 scenario, it is also
necessary to have a technological architecture, based on Big Data and IoT technologies that
adequately supports the deployment of the developed systems.

5.3. A Big Data and IoT architecture

In this research, Industry 4.0 principles have been adopted for the predictive maintenance of
assets, as a critical aspect of companies’ efficiency and product quality. Figure 21 presents a
generic PdM system architecture designed for the implementation of the project, which is based
on the CPS, IoT, and Big Data Analysis (BDA) technologies. This set of technologies is
completed with the Internet of Services (IoS) one, which takes the processed information from
Big Data tools and deploys it at the right place and in the right form [109]. A real-world
application of this architecture was pursued through a case study in an Italian automotive
manufacturing industry, which was fundamental for the deployment of a predictive maintenance
system.

Figure 21. A generic predictive maintenance system architecture, based on the integration of the CPS,
IoT, BDA and IoS concepts mentioned in [34].

Generally, in the life cycle of Big Data in a data processing environment, it is always necessary
to acquire data, store data temporarily or permanently, analyze data and produce outputs/results
[166]. Therefore, the methodology for the extraction and analysis of large amounts of data, and
the development of an analytical model of industrial big data that can be used for preventive and
predictive maintenance, is typically carried out in three major stages: pre-processing (I),
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processing (II), and post-processing (III). Inside these stages, the four phases of the Big Data life
cycle are contained: (1) data acquisition, (2) data storage, (3) data analysis, and (4) data
exploitation.

I. Pre-processing: this stage is related to the acquisition and storage of data from various
sources of information. It involved the implementation of the following phases:

a. Data Acquisition: in this phase, the data is collected from several sources such as
machines CNC (computerized numerical control)/PLC (programmable logic controller),
and sensors connected to the machines (energy and vibration sensors). After this, filtering
and cleaning data processes are performed before storage.

b. Storage: once content from mentioned data sources is retrieved, it is stored in a
centralized server through a software component developed as an automatic storage
mechanism, which allows managing the large-scale datasets with reliability and
availability. The stored data is subsequently processed, reorganized, and finally analyzed
using big data analysis algorithms, as presented below.

II. Processing (data analysis): this stage is mainly related to the preparation of the data obtained
in the previous phases for its subsequent analysis and, based on this, to develop the analytical
model of Big Data for the preventive and predictive maintenance of the machine. Hence, this
stage involves the implementation of the ML model and the algorithm used to process and
analyze the collected data for the PdM system. The phases performed to achieve it are the
following:

a. Understanding of data: this activity focused on the analysis of Big data obtained from the
log files of machinery and sensors, structured in a single information repository that can
later facilitate its analysis. This task requires separating, grouping, and filtering the data
into a subset of variables in which the analysis is to be performed.

b. Cleaning and pre-processing of data: before the analysis, duplicated data, errors, and
states where the machine does not work are removed, since this data does not provide
useful information and can be considered as noise. In the same way, data showing the
same semantic information can be merged, so that the analysis can be performed more
effectively.

c. Modeling and algorithms: it consists, in this architecture, in the development of an ML
analytical model for preventive and predictive maintenance. Details of the analytical
model of big industrial data implemented will be presented in the section describing
Gaussian Mixtures (GM) as an indication of machine anomalous behavior.

III. Post-processing (data exploitation): this stage concerned the exploitation of the results of
the performed analysis employing the following phases:
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a) Data interpretation: it includes the interpretation of the discovered patterns, as well as the
visualization of the extracted patterns.

b) Data communication/visualization: the knowledge acquired is organized and presented so
that the client can use it. To achieve this, thresholds are created and used in the
visualization tool with the aim of instant communication with all the involved
stakeholders, and thus help them to identify patterns, trends, and correlations.

c) Evaluate the results: the results are evaluated to verify the effectiveness of the approach
and to find improvement opportunities, allowing new and better functionalities to be
subsequently integrated from feedback mechanisms.

As presented in Figure 21, the execution of the life cycle of Big data analysis within the
technological architecture established through CPS, IoT, and IoS devices and applications occurs
as follows: the integration of systems of sensors and actuators with the machine turns the
machine into a CPS (quadrant a, upper left) capable of obtaining production data through its
management systems, which corresponds to phase 1 of the Big data analytics process: data
acquisition. Through a communications network, IoT technologies and, a developed data
acquisition software component (quadrant b, lower left), this information is received and sent to a
central server, database, cloud system, data warehouse, or any other storage solution, as part of
phase 2: data extraction, transformation, and storage. These first two processes constitute stage I
of the life cycle of Big Data: pre-processing.

Once the data has been stored, Big data analysis (quadrant c, lower right) processes through ML
algorithms can be performed to diagnose machine health conditions, anomaly detection, or fault
identification; as well as to prognosing potential failure identification or RUL prediction. This
corresponds to phase 3: data analysis, which is performed in stage II: processing.

Finally, in the IoS (quadrant d, upper right), data visualization, as part of phase 3: data
exploitation, enables maintenance responsible to make informed maintenance decisions, establish
maintenance policies, and plans preventive maintenance activities. In this way, stage III:
post-processing is carried out with the help of specialized data visualization tools.

5.4. Machine Learning for predictive analysis

ML refers to the process of teaching a computer system by exploring patterns and discovering
inferences among data without the use of explicitly programmed instructions [136], that is, an
algorithm that is capable of learning with minimum or no additional support. In maintenance,
ML can be used to predict potential faults and future equipment conditions (prognostics).
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ML algorithms are commonly divided into supervised and unsupervised models [136]. The
supervised models predict the future events from learning models that are trained using labeled
data points [167], while unsupervised models are trained on all data points and are mainly used
for data clustering. In this research, given unlabeled data coming from industrial machines, the
main focus has been on the use of unsupervised learning as the foundation of an unsupervised
predictive maintenance approach.

In this sense, the problem of PdM using unsupervised learning was approached with the
definition of a framework with several abstract steps, which aims to provide an abstract structure
for testing different unsupervised learning solutions. In Figure 22 it is shown the definition of the
proposed approach at an abstract level; the abstract steps are independent of the decision of the
algorithm and evaluation metrics to be used, and therefore different techniques could be used and
tested in different contexts.

Figure 22. The framework for PdM in an unsupervised context.

Based on the framework and according to the characteristics and behavior of the variables used
in this research which correspond to energy and vibration data, we have used clustering to group
points based on a defined algorithmic criterion. In particular, we have chosen the Gaussian
Mixtures model and trained it for detecting anomalous data points, as mentioned in the next
section. The unsupervised model for anomaly detection represented a crucial step in our
approach used to support predictive maintenance capabilities.

5.4.1. Gaussian Mixtures as an indication of machine anomalous behavior

The GMM is a parametric probability density function represented as a weighted sum of
Gaussian component densities. GMMs are commonly used as a parametric model of the
probability distribution of continuous measurements or features in several systems [168]. GMM
is one of the most popular data clustering methods where each cluster obeys Gaussian
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distribution and the task of clustering is to group observations into different components through
estimating each cluster's own parameters [169].

GMM parameters are estimated from training data using the iterative Expectation-Maximization
(EM) algorithm [168], a general method of finding the Maximum Likelihood Estimation (MLE)
[170], which is used to estimate the parameters of an assumed probability distribution, given
some observed data.

GMM can be used as an anomaly detection algorithm. In particular, an anomaly is a point in
space that does not belong to any cluster. The anomalous points can be further processed to
obtain a metric for an effective and probable anomalous behavior of the machine.

The discussion of how the GMM is used in a particular industrial application is further explained
in the case study of the next section.
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6. CASE STUDY

The case study was conducted in a mechanical company in the manufacturing industry to
validate the effectiveness of the developed approach on preventive and predictive maintenance,
which attempts to improve the facility maintenance management activities through the
implementation of Industry 4.0 technologies.

First, the application of the FMM and the proposed methodology is illustrated in this section,
which attempts to improve the facility management activities through the implementation of
CPPS and IIoT technologies.

Then, unsupervised ML techniques are applied with the goal of fitting a ML model able to
support the prediction of machinery degradation. In this sense, we developed a software system
oriented to CbPM of machinery with the adoption of sensor systems as part of a CPS that
comprises two milling machines.

6.1. Facility Maintenance Management

The application of the FMM and the proposed methodology to a mechanical company in the
manufacturing industry is illustrated in this section, which attempts to improve the facility
management activities through the implementation of CPPS and IIoT technologies. The AS-IS
scenario is shown first, followed by the TO-BE scenario where the implementation of the CPPS
and the application of the methodology steps are described.

6.1.1. The AS-IS scenario

As shown in Figure 4 of section 2.4.1, the organizational structure of the STAMEC production
company, which produces moulds for automotive, electro-sanitary, and household appliances, is
divided into administrative and production functions.

Accounting and financial, staff, sales, safety and quality areas are staffed by the Company
Management and are structured into administrative organizational units. Design, manufacturing,
warehouse and maintenance are managed by the Production department. The company has two
production plants: one located in the main office, which deals with the production of small and
medium-sized mechanical molds and the other, decentralized, dedicated to the production of
large molds.

69



The analysis of the AS-IS scenario highlighted that the company had very simple maintenance
procedures, such as autonomous and breakdown maintenance directly managed by the
production department, together with a low level of computerization. A more detailed
representation of this structure through the CPS metamodel proposed in section 4.6 is presented
below.

6.1.1.1. Structural representation of the STAMEC factory (Static View: CPS Metamodel)

The flexibility of the metamodel allows us to represent the structure of the STAMEC company,
which is made up of a different organizational model from the ones presented in section 4.6.2.

Figure 23 below shows the two large Organizational Units of the company: Administrative and
General Direction, and Production Direction. These, in turn, group various Support Units:
Accounting and Finance, Staff, Shopping, Safety and Quality, Sales, R&S, and General secretary
as part of the first Organizational unit. General services, Maintenance and Warehousing, as part
of the second Organizational unit.

The Production Direction Organizational unit is subdivided into Organizational Unit of Line,
which includes: Technical office, between 0 and 85% mold production line, prototypes,
pre-series and series production; and 85-100% mold production line, assistance and series
production. Finally, the Organizational Unit of Line group supports units such as: CAM,
Machine tools, The realignment, MAP, Metrology and Mass production.
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Figure 23. Organizational structure representation of the STAMEC company through the CPS metamodel.

In the same way, the metamodel contemplates the existence of single entities such as a sensor, a
component or a part of a machine and uses the Simple entity element to indicate them as an
Entity type. The use of the Aggregate entity symbolizes those entities that can be composed of
different components, for example a machine consisting of the union of several parts or a
production line, consisting of a certain number of machines, robots, control devices and
communications, among other elements that are part of the line.

It is important to note that each element of the structure contains a well-defined set of attributes,
represented by the metamodel with the Properties element. This individualization of the
components together with their properties or attributes is fundamental for the problem of
preventive and predictive maintenance, since having the data of each device in real time will
allow to know the health status of the machines at all times, to carry out the maintenance
activities in a timely and manage these company assets more efficiently.

In this sense, the use of sensors is relevant for the automation of the process as it will allow us to
continuously and uninterruptedly collect the information of each device, which will be available
for later use, ideally, by a software that allows the management of the machine register, which is
called Machine Ledger.
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6.1.2. TO BE scenario

During the implementation of the SMART Industry 4.0 project, STAMEC decided to change the
organizational structure, inserting a new Facility Management OU in the administrative
department compliant with the one shown in Figure 6.

At the same time, a CPS was implemented for the improvement of production performance. This
provided the opportunity to use the technological substrate to implement ad hoc software for the
preventive maintenance of two pilot machines.

6.1.2.1. Planning and executing maintenance operations

The step-by-step methodology for FMM presented in section 3.3 was implemented based on two
main phases: planning time, and operation time. The development of the methodological steps
required the creation of a specific software application described below ("make or buy" choice of
the model in Figure 6). The main activities carried out in each of the points of the methodology
are summarized below.

● Planning time
a) Focus on the area of intervention and identify the roles to be allocated: the application

developed for the management of maintenance activities emphasizes the area of
  intervention (organizational unit, work center, work unit) and the type of intervention
(electrical, electronic, hydraulic, mechanical) according to the type of machine or asset to
maintain. Likewise, the access levels to activities are determined according to specific
planning (Planner) or execution (Maintainer) roles. As well, for the execution of
maintenance activities, specific skills are required according to the type of intervention,
which is why the application is capable of selecting only maintainers who have the
appropriate skills to perform it, as shown in Figure 24. When these skills are not
available, or they are highly specialized activities that are not typical of the organization's
internal maintenance team, outsourcing should be done.
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Figure 24. Software application example to support the weekly maintenance planning processes.

b) Select the management methods for the area of intervention: the machine considered in
this case study was maintained periodically, and, therefore, was following a time-based
maintenance approach, however, the necessity of preventing production stops when the
machine presented considerable problems required the management to shift to a
preventive maintenance method.

c) Acquire detailed knowledge about the appropriate technology for the object/system to be
maintained: on the machine, two sensors measuring the temperature and the vibrations
have been installed. The data has been used by an anomaly detection algorithm that
identified anomalous temperatures and vibration rates, allowing to know the state of
health of the machine.

d) Plan the management activities for the object/system: planning preventive maintenance
activities based on the results of the aforementioned algorithm is performed at this point.
The information obtained facilitates decision-making processes aimed at avoiding future
problems, such as the possibility of carrying out pre- or post-production maintenance to
reduce the need to stop production for longer due to faults that could be avoided. In this
way, CBM strategies were planned based on the condition of the machines, and PdM
strategies could be implemented in the future.

● Operation time
e) Implement management support hardware/software systems and big data

technologies/techniques: a software application as presented in Figures 25 and 26 was
developed that supports the management, planning, and recording of the execution of
preventive and corrective maintenance activities of the machines, considering aspects a)

73



and b) related in the planning time phase. An example of the time recording of a
performed maintenance activity is shown in Figure 25, while Figure 26 is related to the
selection of one of the following root causes for closing EWO when a BdM strategy is
applied: RC1: External factors, RC2: Human error, RC3: Design defect, RC4: Insufficient
maintenance, RC5: Wrong operating conditions, RC6: Lack of basic conditions. Both
examples are performed by a user with the Maintainer role.

Figure 25. Maintenance activity time register. Figure 26. Root cause selection for closing EWO.

Similarly, based on the CPPS proposed in Figure 12, sensors were installed in the
machines to capture and analyze in real-time the information related to the machine
health condition and plan the corresponding preventive maintenance strategies, as
mentioned in points c) and d) of the methodology.

f) Measure, monitor, and control the object/system: the integration of hardware and
software systems for monitoring the health conditions of the machine, through IoT
devices as smart sensors, as well as the control of the data obtained, allow the generation
of early emergency alerts in the event of data indicating a problem, for example, spindle
temperature too high, machine downtime detected by a sensor while the machine was
running, or even the deterioration of the performance of the machine detected by an
accelerometer and an energy sensor. This facilitates the early detection of anomalies and
the prevention of failures through the execution of preventive maintenance activities, as
CBM.

g) Execute the maintenance activities & h) Feedback the process: once the maintenance
activity is performed, the Maintainer must carry out a feedback process that allows
continuous improvement of the maintenance planning and operation processes, which
directly reaches the Planner role.

It is worthwhile to observe that thanks to the CPPS, the information related for example to
machine stops due to failure or deterioration of the functioning of the machine, reaches the
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planner directly coming from the sensors. This signal immediately activates the process of
assigning the EWO to the maintenance technician through the maintenance management
software developed, significantly reducing the time of assigning the maintenance order for the
machine out of production. On his part, the technician receives the information detected by the
sensors together with the maintenance order on his tablet/mobile device, also making it possible
to decrease the attention time by intervening more quickly. In this way, it is possible to improve
productivity by reducing the time and costs associated with repairs.

Similarly, in the case of degradation or deterioration of the machine's operation, the most
appropriate preventive maintenance times can be planned to extend the life cycle of the
machines. An example of this is the so-called "opportunistic strategies", where on a line that
stops, simple preventive maintenance operations are carried out even on machines other than the
one that caused stopped and have shown a degradation through the sensors.

In this sense, the next section presents the PdM system model designed for the implementation of
our approach on a milling machine. In the following, the discussion is focused on a single
milling machine. The method, models, and used technology can be applied to other milling or
lathes machines as well with little or no variation.

6.2. Machinery Maintenance

The first step of the analysis was to structure the problem by mapping the Archimate views with
the classification proposed by Groover for the automation and control of manufacturing
industries.

According to Groover, the automated systems and the corresponding control systems can be
applied at different levels of factory operation, as presented in section 2.4; therefore the proposed
model is structured in five levels numbered from 1, the device level in which sensors, actuators
and other hardware elements are located, up to 5 which is the level of the information system of
the industry.

As for the Archimate model of the proposed maintenance system (Figure 27):

● The enterprise level (5) corresponds to the set of Business and Application views. As far
as the objectives are concerned, the company's Management wants to reduce machine
downtimes and as drivers and capabilities we can identify those for improving FM and, in
particular, maintenance of machinery. The main intervention is then carried out on the
Preventive maintenance and Predictive maintenance processes.

● On the application side, we will work by modifying the pre-existing software applications
for preventive maintenance and introducing software for the preventive analysis of
malfunctions.
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● The entire production plant is considered as a Factory level.

● System level is considered to be anything related to the implementation of the new
company Maintenance system, in particular, the set of industrial machines concerned, and
the sensor systems applied to them, plus the control software.

● The Machine level focuses on the individual industrial Machine and the control systems
connected to it.

● Finally, the Device level focuses on the system of sensors installed on the single machine.

76



Figure 27. Mapping of the Maintenance system according to the Groover classification.
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6.2.1. A predictive maintenance system model

In this section, we present the PdM system model designed for the implementation of our
approach on a milling machine. A milling machine is used to remove metals from the workpiece
with the help of a revolving cutter called a milling cutter.

Due to the operating characteristics of the machines, we decided to analyze the energy,
acceleration, and velocity variables, since they are associated with some of the main reasons for
failure in this type of machine. The developed software stores and analyzes the data collected
from machines and visualizes potential energy and vibration anomalies, the latter as a possible
consequence of alterations of acceleration or velocity.

As shown in Figure 28, the prototype created as a PdM system is based on KITAMURA milling
machines with CNC. Energy and vibration sensors have been applied to these machines for
energy and vibration monitoring and analysis, since these sensors take care of measuring
parameters that change according to modifications and disturbances in the mill process.

Figure 28. The predictive maintenance system model for the case study.

The sensors were connected directly to the machine, while the sensor control devices, divided
into physical devices (the Electronics) and the control software, were inserted in the machine
control cabinet, which also houses the numerical control system. These sensors are connected to
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a local network, which becomes part of a CPS as shown in quadrant a of the architecture
presented in Figure 21. In turn, IoT techniques are used to retrieve the information collected
from the sensors and send it securely to a centralized server.

The preventive maintenance application is served by a software component that directly accesses
the data server. In this way, the data produced by the sensors (Sensor data logs) are first read and
then processed to analyze the machine's performance. The Big Data Node-Red framework has
been used to manage this networked data in daily and sensor-wise synchronized CSV files (see
quadrant b of the architecture).

Once the massive data produced in the factory is rendered into a more concise and informative
form, it is used to train and fit an anomaly detection algorithm, which identifies anomalies in the
data. For the specific case of this study, the GMM was implemented according to the abstract
steps of the framework for PdM in unsupervised learning. The data processing phase, presented
in the next section as part of quadrant c of the architecture, describes a particular instance of the
abstract framework focused on the data analysis process.

Finally, through a developed IoS utility represented in Figure 28 by the PdM application service
(data exploitation as part of quadrant d of the architecture), the anomalies extrapolated from the
data are represented temporally as the sum of the anomalies in a defined time interval, and
graphically shown to the maintenance responsible to carry out informed maintenance scheduling
activities. In case of excessive acceleration, velocity, or energetical alterations during machine
operation, the application triggers the appropriate alerts as necessary, which can be related to
preventive checks or extraordinary maintenance. In this sense, the CbPM approach is being
implemented. The next section further describes the application of the abstract framework
focused on the data analysis process, as part of the generic PdM system architecture presented in
section 5.

6.2.2. PdM approach implementation

This section presents details of the practical application of the theoretical concepts introduced
before, following the execution of the activities corresponding to the three major stages indicated
in the Big data and IoT architecture of Figure 21: pre-processing (I), processing (II), and
post-processing (III). This includes the implementation of the abstract framework which supports
the data analysis process as part of stage II, where the GMM was used as the anomaly detection
algorithm.

I. Data collection and pre-processing

As part of the Data collection phase, industrial machine data in this research was collected from
the machines CNC using energy sensors and vibrational sensors. Among the numerous variables
returned by the energy and vibration sensors, for the purposes of this work we have selected
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those described in Figure 29. The energy sensors collected the tension (Volts), current
(Amperes), and power (Watts) data every 200 milliseconds; while the vibration sensor collected
acceleration, velocity, and displacement data every 100 milliseconds.

Figure 29. The collected industrial machine data.

Voltage and current values correspond to data of a three-phase power installation. We also have
the value of average voltage, average current, and total power respectively (Vsis, Asis, and
PAtsis), as well as the timestamp. Figure 30 shows an extract of the energy data log.

Figure 30. Energy data log.

On the other hand, Figure 31 shows the data contained inside the acceleration, velocity, and
displacement data log, where the machine state indicates whether the machine is running (1) or is
stopped or turned off (0). As an example of the cleaning process, the data that do not offer a
significant contribution to the analysis are removed or not taken into account, such as those
corresponding to machine state 0, since they do not generate any variation in the machine
acceleration and velocity measurement.
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Figure 31. Acceleration, velocity, and displacement data log.

For each of the vibration sensor variables (variable type: acceleration-1, velocity-2, and
displacement-3), the data has been obtained as a summary of the original signal. The original
signal was divided into intervals and each interval was summarised with the following values:
maximum value, average of highest values, minimum value, average of lower values, and
timestamp.

The data collected by the energy and vibration sensors was sent to the data server on the local
network. The data server is responsible for filtering and cleaning out the data incoming from
sensors while the machine is not running and organizing the data in CSV files related to a single
day. The file format CSV has been chosen for both its flexibility and its low storage
requirements.

After collection and cleaning, the data is requested by a centralized server by means of a shared
Samba directory on the network (for accessing the energy data) and an HTTP request (for the
acceleration, velocity, and displacement data). Several access mechanisms are due to the
different knowledge of the developers working on the project. The different collection
mechanisms give the possibility to maintain independence among teams working in the data
collection and cleaning from different sensors.

II. Data processing

To carry out the Data analysis phase established by this stage, we derived from the abstract
framework presented in chapter 5 a particular instance using GM and ML as shown in Figure 32.
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Figure 32. The abstract framework for PdM and unsupervised learning is on the left, while on the right
the details of the implementation of the abstract steps in the case study.

Once the data was collected from different sources, and stored on a centralized server as part of
the Data collection and pre-processing phase, it was organized in five directories on the
computer: Current, Power, Tension, Vibration, ElectricalAndVibrational. Each directory
represents a variable group, while, in the case of the ElectricalAndVibrational directory, it
contains temporally synchronized data from power, acceleration, and velocity variable groups.

The unlabeled data in the directories have been used to create five different GM models whose
goal is to give an indication of an electrical problem (current, voltage, or power anomalies), a
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mechanical problem (acceleration or velocity anomalies), or a problem related to an anomalous
relationship between mechanical and electrical variables.

It is possible to elaborate anomalies starting from the clusters given as output of the GMM. A
point is considered anomalous if it does not belong to any cluster. Specifically, a point P does not
belong to any cluster when the probability of P belonging to each cluster is less than a threshold
T. For example, if the threshold T is 40% and there are four clusters, then a point P is considered
anomalous if, for each cluster, the probability of P belonging to it is less than 40%.

In most cases, an anomalous point does not define an anomalous behavior of the machine nor a
failure; but it actually only defines an anomalous instantaneous condition of the machine. For
this reason, in this paper the proposed approach exploits anomalies for predictive maintenance by
using this simple assumption:

“The greater the number of anomalies of a variable group is present in a specific time interval,
the greater the probability of a real failure occurring”.

In other words, the assumption states that: the higher the number of anomalies of a specific
variable group over time, the higher the probability of a real anomalous behavior of the machine.

The data processing steps can be summarised as follows:

1. Data is stored in CSV format and synchronized temporally.
2. Five GM Models elaborate the clusters over five different variable groups (current,

power, tension, acceleration and velocity, and power, acceleration and velocity variable
groups).

3. For each GM model, the anomalous points are elaborated with a threshold T (in the test
case generally close to 40%), with T calculated heuristically as the threshold guaranteeing
few anomalies in the data, but more than zero per each day.

4. For each GM Model, the anomalies identified are summed over a specific time interval
(eg. one day).

5. Every week the models are retrained to ensure more reliable results.

The fourth step is the one representing the assumption and is necessary for creating the
appropriate graphical tools needed to support predictive maintenance. These graphical tools have
been developed using the software that will be described in the next section.

III. Data exploitation

As part of the PdM system, a software application was developed for data visualization (data
visualization/communication phase), providing the maintainer with a graphical tool that allows
him/her quick, clear understanding of the information. Thanks to graphic representations, we
summarised the multivariate analysis of industrial machines data in an understandable and
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coherent way, which in turn helps to comprehend the information and establish preventive
maintenance decisions, from simple revisions to emergency maintenance activities.

The system is able to show information about anomalous events ordered and summed temporally
in different time intervals (1 day, 3 days, 1 week, 2 weeks, and 1 month) and for different
variable groups (current; power; tension; acceleration and velocity; and power, acceleration and
velocity). As an example, Figure 33a shows potential anomalies in a 1-day interval for the
tension variable group, Figure 33b shows them for the acceleration and velocity variable group,
while Figure 33c includes the combination of power, acceleration, and velocity; the points of the
line drawn by each graph represent the number of anomalous conditions in a specific day.
Therefore, the more the trend grows in the graph, the more it is necessary to consider control of
the machine and to plan maintenance.

Figure 33a. Tension variable group resulting chart. Figure 33b. Acceleration and velocity variable group
resulting chart.

Figure 33c. Power, acceleration, and velocity combination resulting chart.
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The horizontal yellow line represents the maximum level that the number of anomalies can
exceed before requiring a preventive check, while the red line indicates the need for
extraordinary maintenance. The position of the yellow line is given by one standard deviation
from the mean, while that of the red line is by two standard deviations from the mean.

Standard deviations are a simple anomaly detection tool in single variable distributions, and are
used in this case for detecting a higher-than-normal number of anomalies that occurred in a
single time interval, (eg. one day) compared to the other time intervals. To summarise, an
anomalous number of anomalies in a time interval is a probabilistic indication of an increased
failure on the machine. Those patterns have been analyzed by domain experts after a data
visualization tool has shown the analysis obtained, based in this case, on GM (data interpretation
phase).

These tools have been used to suggest when to do maintenance, depending on which chart shows
the yellow or red line surpassed, if the problem is electrical, mechanical, or if it is a problem
caused by the interaction of the mechanical and electrical phenomena. However, a long
observation period will be needed to fully evaluate the performance of the approach in the
diverse environment where it has been deployed (data evaluation phase). At the moment, some
promising results in the test case indicate early positive signs of the effectiveness of the
approach.

6.3. Preliminary results

From the changes made in the management of maintenance activities and the implemented
systems, the following results can be summarized that demonstrate the usefulness of the
approach presented in the previous sections.

About the organization of the company, the fact of including the management of the facilities in
the administrative division has allowed improving the planning and programming of the
maintenance activities, initially of machinery and software applications, thanks to a program of
effective preventive maintenance based on the analysis of the data obtained through the
technologies implemented starting from the model shown in Figure 10 and the methodology
presented in section 3.3.

Related to the two pilot machines object of the experimentation, significant results have been
evidenced regarding the efficiency of the production process, as shown in Table 3.
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Table 3. Summary of the main results evidenced after the introduction of the new maintenance system, in
comparison with the previous year.

Before the
intervention

After the
intervention

Percentage of
improvement

Downtime (number) 29 21 27%

Breakdown (hours) 87 48 45%

Production capacity (hours) 1865 1912 2,5%

Production output (n° moulds) 35 39 12%

Maintenance costs (€) 21.750,00 € 17.400,00 € 20%

By comparison with maintenance data taken in the year before the introduction of the new
maintenance system, we have observed a reduction in downtime occurrences of 27% and a 45%
reduction in breakdown, which has allowed an increase in production capacity of 2.5%, which
represents a 12% increase in production output. These improvements have been achieved in the
same operating conditions (two 8-hour shifts, 5 days/week, 50 weeks/year and a similar quantity
of production orders).

In the same way, the improvement of maintenance planning and the implemented actions from
the new model have allowed a reduction in maintenance costs of 20%. These results rely on the
early diagnosis of anomalies and failure patterns through the real-time data analysis enabled by
CPPS, providing planning and operational teams with effective information on future downtime
problems on machines with a higher risk of failure or that may result in more defective products.

About the company's maintenance management activities, the establishment of CbM policies, as
part of an effective preventive maintenance program, was performed based on the technological
architecture implemented from the model shown in Figure 21, and the PdM system model
presented in Figure 28. At the time of writing, the realization concerns the two KITAMURA
pilot machines object of the experimentation but, shortly, all the machine tools in the production
department will be equipped to be part of the CPS.

Experimental data, for the two pilot machines, have been collected from the start of February to
the end of August 2021. Our approach allowed us to study the influence on machine’s behaviours
of: 1) a single variable; 2) a group of variables of the same type representing a machine behavior
(e.g. the three current variables  in a three-phase system) and 3) combined variables of different
types (such as power and acceleration). This is possible because the ML algorithm can be
instructed to learn from a single variable type or a combination of variables. In the case of
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potential machine anomalies, this feature allows providing selected information to an expert,
useful to orient the analysis of potential causes of an imminent fault.

During this period, it has happened four times that the system has shown an increasing trend of
data anomalies provided as an output of the methods used on the KITAMURA machines.

Case 1: an anomaly has been signaled because of an anomalous trend of the variables A1, A2,
and A3 representative of current data. As shown in step 3 of the proposed framework (Figure 22)
the analysis of the expert has shown incorrect electrical wiring that has been fixed with a
corrective maintenance operation.

Case 2 and 3: An increasing trend of the number of anomalies detected by the model analyzing
power and acceleration variables was observed, indicating a potential failure in the imminent
future. In both cases, it was decided to continue the production and to observe the machine’s
status. In case 2, the machine KITAMURA1 has produced a not negligible number of defective
pieces; as a consequence, a mechanical engineer identified the causes in a nearly broken spindle
bearing. In case 3, concerning the machine KITAMURA2, the expert has identified in a tool
wear-out the cause of the anomalous behaviour.

Case 4: In this case, the anomalous behaviour signaled by the model, has not been associated
with any cause.

The results provide a first indication of the effectiveness of the system in detecting preventively
anomalous machine behaviours, and effectively transmit this information to maintainers and
production managers who can decide, if necessary, to start a maintenance operation based on the
system output.
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7. CONCLUSIONS

Traditionally FM has been understood as a discipline that tends to preserve value (safety,
comfort, etc.) [171]. Its evolution leads us today to see a different aspect of FM as a discipline
that creates value. In this sense, the combined approach (model + methodology + technology)
presented in this research allows planning and control of industrial resources that can achieve
maintenance cost reduction, increased machinery availability by means of predictive
maintenance, and better product quality. It is important to emphasize that the contribution of this
project to facility management is strongly related to the use of industry 4.0 technologies such as
IIoT, CPPS, Digital Twin, Big Data and ML.

In this sense, being maintenance a fundamental aspect in FM, the diagnosis and prognosis
concepts were considered in this work since they are two important aspects of preventive
maintenance programs. Prognostics is usually applied to achieve zero-downtime performance
through prediction, while diagnostics are required when faults occur. Data analysis is used to
perform both diagnosis and prognosis, which is why big data analytics in industrial contexts is
now a vital foundation for forecasting manufacturing and proactive maintenance.

On this basis, several strategies were presented in this work to support maintenance as part of
FM. From the study of the STAMEC s.r.l. manufacturing enterprise architecture as a starting
point, a general model that brings together the various assets that need to be supported by the FM
organizational unit was initially presented, as well as the main maintenance functions that can be
applied to them to guarantee their operating conditions. In particular, the main advantage of the
proposed model lies in the unifying approach to the maintenance of the industrial assets present
in the organization and this can lead to significant savings. This particularity allows the manager
of the FM organizational unit to adopt a management pattern for planning, monitoring, and
maintenance control of the industrial resources, customizing the technical methods necessary for
each type of resource.

The model is also accompanied by a step-by-step methodology for FMM that guides the
planning and operation of an effective facility maintenance program, facilitating the
decision-making process through a top-down decomposition method. In particular, the
methodology requires detailed knowledge acquisition about the appropriate technology for the
object/system to be maintained; this led to choice Industry 4.0 technologies such as IIoT,
vertical/horizontal integration, Cloud Computing, CPS, and Big Data in the case study presented
in section 6.

A general approach to the maintenance of resources through the implementation of a CPPS was
also developed, which makes use of IIoT, Digital Twin, and PPC technologies to maximize the
effectiveness of the maintenance management activities, facilitating the planning and execution
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of preventive maintenance strategies mainly oriented towards CBM and BdM. In this way, the
CPPS together with the MPC software developed contribute to improving the performance of the
maintenance support system by achieving zero signaling time of machine downtime or
degradation in machine operation, allowing timely intervention to return the machine to normal
operating conditions and plan preventive maintenance strategies at the most appropriate times,
bringing benefits in reducing non-production times and repairment costs.

In addition, a generic PdM system architecture based on the CPS, IoT, BDA, and IoS
technologies was presented in this research. An abstract framework for PdM of industrial
machines using unsupervised learning was also proposed. The framework supports the
identification of machine anomalies through several steps that are independent of the used
algorithms, providing a general reference structure for testing different unsupervised learning
solutions.

Furthermore, a real-world application of both the framework and the architecture was
implemented through a case study in an italian automotive manufacturing industry. The
description of the case study demonstrates the practical use of the proposed approach for the
maintenance of machine tools, but it is general enough to be applied in other scenarios.

The positive implications of the developed general approach for maintenance management of
industrial facilities are the generation of value by means of industrial technologies integration,
and facilitating the management of resources and facilities by delivering new strategies that
support the decision-making process in maintenance schedules. This contributes to the
continuous improvement of maintenance activities, which also derives the improvement of the
production process performance.

From the PdM solution, we contribute to enriching an area, the one of frameworks for predictive
maintenance based on unsupervised ML, not sufficiently covered in the scientific literature. The
data analysis was positively impacted by means of a PdM system developed for data acquisition,
analysis, and visualization, which uses unsupervised ML models for early failure diagnosis and
prognosis in situations where there is unlabeled data. Thus, the maintenance manager has a
graphic tool that helps to better understand the behavior of the machines through the information
collected by energy and vibrational sensors, providing support for more effective preventive
maintenance decisions.

The abstract representation of our approach gives a general perspective that allows the use of
different unsupervised ML for anomaly detection, which means that the framework does not
depend on a specific algorithm. Additionally, our model is automatically re-trained to improve
the accuracy of the results.
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The findings of this research are twofold. First, the decision-making process is modeled and the
methodology clearly states the necessary steps for FM; then the continuous improvement takes
advantage of the modernization of the processes related to the management of resources and
facilities. Our approach to FM promotes the early identification and diagnosis of anomalies in
real-time through the implementation of preventive strategies supported by IIoT devices, CPPS
and Big data technologies.

This work is not without limitations, particularly for what concerns the maintenance of industrial
assets allocated to production processes. In fact, in this scenario, the cost and time of FM
programs can be high. However, CPPS are often implemented to improve the production process
performance and are already there to be used with little additional cost for maintenance purposes.

Several future developments can be conducted from this work, such as the optimization and
automation of maintenance management processes of other assets, resources allocation
simulation, and the implementation of the abstract PdM framework based on different ML
techniques to analyze unlabeled data from different machine types and operations, enabling
potential failure prognosis or RUL prediction. Similarly, other research and development
directions could be considered based on the integration of the proposed CPPS and PPC software
with different 4.0 technologies, such as virtual reality and various Big data techniques that allow
transforming processes in various phases of the supply chain.

In the same way, the integration of the designed IoT and Big data architecture with different ML
algorithms, such as those for prescriptive analysis [36], could be used to optimize maintenance
programs through the development of advanced recommendation systems, helpful for suggesting
the actions to undertake during maintenance.

Finally, studying how human factors affect the FM in a Cyber-physical manufacturing context is
another future direction of the work on this subject, as there is growing evidence that human
factors play an important role in determining the performance of a manufacturing system [172].
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Distributed Sensor Networks (IJDSN).

● Environmental maturity model for manufacturing sustainability in the industry 4.0,
(G. Nota, A. Toro Lazo) - To be submitted.
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