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Abstract

Optimal design problems have aroused particular interest in the scientific com-

munity over the past thirty years. In physics, for example, they find application

in the investigation of the minimal energy configurations of a mixture of two

materials in a bounded and connected open set.

The fascination of such problems derives from their variational formula-

tion, which involves not only the state function of a system, but also a shape,

that is a set. If a penalizing contribution of perimeter form, due to a surface

energy, is added to the integral mass energy, dependent on the configuration

state-shape, the problem becomes even more intriguing and inspiring.

It is not straightforward to investigate the regularity of minimizing pairs

because the two energies have different dimensions under commong scalings:

once a homothety of factor r is applied, the first energy “behaves” as a vol-

ume (rescaling with factor rn), the second as a perimeter (rescaling with factor

rn�1). The coexistence of the two types of energies is managed using techniques

and tools of both the Calculus of Variations and the Geometric Measure The-

ory.

In the first part of this thesis we deal with two optimal design problems,

in which the integral functions that constitute the mass energy have different

growths.

If their growth is at most quadratic, we prove the C1,µ regularity of the

interface of the shape that constitutes the optimal pair, up to a singular set of

Hausdorff dimension less than n � 1. The technique used combines the regu-

larity theories of the Λ-minimizers of the perimeter and the minimizers of the

Mumford-Shah functional.

If the integrands have at most a polynomial growth of degree p, the anal-

ysis becomes more involved. The C1,µ regularity of the interface remains an

open problem. However, it is proved that the optimal shape of the problem

is equivalent to an open set with a topological boundary that differs from its

reduced boundary for a set of Hausdorff dimension less than or equal to n� 1.

In the second part of the thesis we address to a completely different varia-

tional problem, involving a frustrated spin system on a (one-dimensional and

two-dimensional) lattice confined in two magnetic anisotropy circles.

This topic is of significant scientific interest, as it is useful for understand-

ing the behavior of low-dimensional magnetic structures existing in nature.

The frustration parameter α ¡ 0 of the system averages the ferromagnetic
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Abstract 4

and antiferromagnetic interactions that coexist in the energy. The minimal

energy state of the system, for α ¤ 4, consists of a spin that “lives” within

only one of the two magnetic anisotropy circles and has a positive or negative

chirality.

We find the correct rescaling of the functional and prove the energy needed

to detect the two phenomena that break the rigid minimal symmetry described.

These are chirality transitions and magnetic anisotropy transitions of the spin.



Sommario

I problemi di design ottimale hanno suscitato un particolare interesse nella co-

munità scientifica negli ultimi trent’anni. In campo fisico, per esempio, trovano

immediata applicazione nella ricerca della configurazione di minima energia di

una miscela di due materiali in un aperto limitato e connesso.

Il fascino di tali problemi deriva dalla loro formulazione variazionale, la

quale coinvolge non soltanto la funzione di stato di un sistema, ma anche una

forma, un insieme. Se poi alla classica energia di massa di forma integrale,

dipendente dalla configurazione funzione di stato-forma, si aggiunge un con-

tributo penalizzante di forma perimetrale, dovuto ad un’energia di superficie,

il problema diventa ancora più intrigante e stimolante.

Non è immediato investigare la regolarità delle coppie minimizzanti perché

le due energie hanno dimensioni diverse sotto lo stesso riscalamento: appli-

cata un’omotetia di fattore r, la prima si “comporta” come un volume (risca-

lando come rn), la seconda come un perimetro (riscalando come rn�1). La

compresenza dei due tipi di energie viene gestita adoperando tecniche e stru-

menti propri sia del Calcolo delle Variazioni che della Teoria Geometrica della

Misura.

Nella prima parte di questa tesi si trattano due problemi di design ottimale,

in cui le funzioni integrande che compongono l’energia di massa hanno crescite

diverse.

Se la crescita è al più quadratica, si prova la regolarità C1,µ dell’interfaccia

della forma che costituisce la coppia ottimale, a meno di un insieme di singo-

larità di dimensione di Hausdorff strettamente inferiore a n � 1. La tecnica

adoperata coniuga la teorie di regolarità dei Λ-minimi del perimetro e dei

minimi del funzionale di Mumford-Shah.

Qualora l’integranda abbia crescita al più polinomiale di grado p, l’analisi

diventa più complessa. La regolarità C1,µ dell’interfaccia resta un problema

aperto. Tuttavia, si prova che la forma ottimale del problema è equivalente ad

un aperto con una frontiera topologica che differisce dalla sua frontiera ridotta

per un insieme di dimensione di Hausdorff inferiore o uguale a n� 1.

Nella seconda parte della tesi viene affrontato un problema variazionale

completamente diverso, che coinvolge un sistema di spin frustrato su un reticolo

(unidimensionale e bidimensionale) confinato in due circonferenze di anisotropia

magnetica. L’argomento è di rilevante interesse scientifico, siccome utile a

comprendere il comportamento di strutture magnetiche di basse dimensioni
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Sommario 6

esistenti in natura. Il parametro di frustrazione α ¡ 0 del sistema media le

interazioni ferromagnetiche e antiferromagnetiche che si riflettono nell’energia.

Lo stato di minima energia del sistema, per α ¤ 4, è composto da uno spin che

“vive” all’interno di una sola delle due circonferenze di anisotropia magnetica

e ha una chiralità positiva o negativa.

Si prova quali sono il riscalamento corretto del funzionale e l’energia

necessaria per individuare i fenomeni di transizione di chiralità e anisotropia

magnetica degli spin, le quali rompono la rigida simmetria minimale descritta.



Introduction

This thesis is structured in two parts: Part I is devoted to the study of reg-

ularity properties of solutions of optimal design problems with perimeter pe-

nalization, which is the main topic that I studied in my PhD course. Part II

is focused on the study of chirality and magnetic anisotropy transitions of a

frustrated lattice system and originates from my visit, lasted four months, to

Prof. Dr. Marco Cicalese at Technische Universität München.

Introduction to Part I

Free boundary problems involving bulk and interface energy have recently at-

tracted the attention of the scientific community. This interest is justified by

the large applications they find in the description of plethora of fenomena such

as non linear elasticity, material sciences and image segmentation in the com-

puter vision.

Among free boundary problems, optimal design with perimeter penaliza-

tion concerns the study of the minimal energy configurations of a mixture of

two materials in a bounded connected open set, where the energy is penalized

by the area of the interface between the two materials (see for instance [4], [5],

[31], [34], [38], [42], [43], [44], [57]).

An optimal design problem is a variational problem whose set of competi-

tors is a family of shapes, i.e. domains of Rn. Its mathematical formulation is

the following:

min
EPA
FpEq, (0.1)

where A is the class of all admissible domains and F is the cost function to

be minimized over A (see [12]). A typical example of this kind of problems is

the well-known euclidean isoperimetric problem,

min
E�Rn
|E|�d

P pEq, (0.2)

where d P p0,�8q is a fixed number.

It is worth noticing that the class A does not have any linear or convex

structure, so in optimal design problems it is meaningless to speak of convex

functionals and similar notions. Moreover, even if several topologies on families
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Introduction 8

of domains are available, in general there is not an a priori choice of a topology

in order to apply the direct methods of the calculus of variations, for obtaining

the existence of at least an optimal shape. One would have to exclude that

minimizing sequences of problem (0.2) locally converge to a set of locally finite

perimeter that have a Lebesgue measure strictly less than d, fact that is not

guaranteed by the usual compactness results.

In Part I, we deal with variational cost functions of the type

FpEq � min
uPu0�W 1,p

0 pΩq

»
Ω

HEpx, upxq,∇upxqq dx� P pE; Ωq, (0.3)

where Ω � Rn is a bounded open set, HE : Ω�R�Rn Ñ R is a discontinuous

function on the boundary of E and u0 P W 1,p
0 pΩq is a fixed boundary datum.

The competitor E � Ω is a set of finite perimeter in Ω. In this case, the

minimization problem (0.1) involving the functional F defined in (0.3), i.e.

min
EPApΩq

FpEq, (0.4)

is called an optimal design problem with perimeter penalization and

we say that the energy F is made up of the bulk energy and the perimetral

energy. In the specific case, if the competitors run over the family

ApΩq � tE � Ω : P pE; Ωq   �8u,
we call problem (0.4) an unconstrained problem. If

A � tE � Ω : P pE; Ωq   �8, |E| � du,
for some fixed number d P p0, |Ω|q, we call problem (0.4) a constrained prob-

lem.

We remark that if F has the form (0.3), the starting problem (0.4) can be

written as follows:

min
pE,uqPA�

�
u0�W 1,p

0 pΩq
� »

Ω

HEpx, upxq,∇upxqq dx� P pE; Ωq.

For example, the problem of finding the minimal energy configuration of a

mixture of two conducting materials of permittivities α, β ¡ 0 in a container

Ω can be described by the unconstrained problem

min
pE,uqPA�

�
u0�H1

0 pΩq
� »

Ω

rpα1Epxq�β1ΩzEpxqq|∇u|2pxq�2fpxqupxqs dx�P pE; Ωq,

where f denotes the source density, u the electrostatic potential of the system

and P pE; Ωq stands for the energetic dispersion due to the contact of the

interfaces of the two materials (see [5] for more details).

Optimal design problems are strictly linked to other classes of problems.
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We discuss in Chapter 2 their substantial connection with the Mumford-Shah

functional

JpK, uq :�
»

ΩzK

�|∇u|2 � αpu� gq2� dx� βHn�1pK X Ωq.

Here g P L8pΩq X L2pΩq is fixed and α, β are positive parameters. The prob-

lem consists in minimizing J among all pairs pK, uq, being K � Rn a closed

set and u P C1pΩzKq.
Another problem linked to optimal design that we study is the model de-

scribing the shape of charged liquid droplets under a suitable free energy com-

posed by an attractive term, coming from surface tension forces, and a repulsive

one, due to the electric forces generated by the interaction between charged

particles, i.e., for K ¡ 0,

min
pE,u,ρqPA�W pEq

Q2

"»
Rn
rp1Epxq�β1RnzEpxqq|∇u|2pxqs dx�K

»
E

ρ2pxq dx
*
�P pEq,

(see [23], [49], [50], [57]). Here E � Rn represents the droplet, the constant

Q ¡ 0 is the total charge enclosed in E, β ¡ 0 is the permittivity of the

liquid, ρ and u represent respectively the normalized density of charge and the

electrostatic potential, both belonging to the space

W pEq �
"
pu, ρq P D1pRnq � L2pRnq : �divpp1E � β1RnzE∇uq � ρ,

ρ1RnzE � 0,

»
E

ρ dx � 1

*
,

where D1pRnq is the closure of C8
c pRnq with respect to the gradient norm of

W 1,2pRnq.

In addition to existence issues, regularity properties of the optimal shape

can be analyzed, e.g. the regularity of its boundary and the Hausdorff dimen-

sion of its singular set. This will be our main issue of concern.

One of the first results concerning the unconstrained problem (0.4) was due

by L. Ambrosio and G. Buttazzo in 1993 (see [5]). As mentioned before, they

considered

HEpx, s, ξq � pα1Epxq � β1ΩzEpxqq|ξ|2 � 1Epxqgpx, sq � 1ΩzEpxqhpx, sq, (0.5)

with g and h satisfying

gpx, sq ¥ γpxq � k|s|2 and hpx, sq ¥ γpxq � k|s|2, (0.6)

for a.e. x P Ω and s P R, where γ P L1pΩq and k   αλ1, being λ1 the

first eigenvalue of �∆ on Ω. The previous conditions on g and h ensure the

existence of a minimizing couple of problem (0.3). The authors proved the

following result.
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Theorem 0.0.1. Let us assume that g and h satisfy the assumption (0.6),

|gpx, sq| ¤ Cp1� |s|qq and |hpx, sq| ¤ Cp1� |s|qq,
for a.e. px, sq P Ω� R, where

q P
#
rp,�8q if n � 2,

rp, p�q if n ¡ 2.

If pE, uq is a solution of the uncostrained problem (0.4) with HE as in (0.5),

then

1. u is locally Hölder continuous;

2. E is equivalent to an open set Ẽ, that is

|E∆Ẽ| � 0 and P pE; Ωq � P pẼ; Ωq � Hn�1pBẼ X Ωq.

In the same volume of the same journal, F.H. Lin proved the regularity of

the interface (see [44]) of minimizers of the uncostrained problem (0.4) with

HEpx, ξq � p1� 1Epxqq|ξ|2, @px, ξq P Ω� Rn. (0.7)

The author proved that, for a minimal configuration pE, uq, BE is regular

outside a relatively closed set of vanishing Hn�1-measure. To be more precise,

we define the set of regular points of BE as follows:

RegpEq :�  
x P BE X Ω : BE is a C1,γ hypersurface in some Ipxq
and for some γ P p0, 1q(,

where Ipxq denotes a neighborhood of x. Accordingly, we define the set of

singular points of BE
ΣpEq :� pBE X ΩqzRegpEq.

The theorem proved in [44] is the following.

Theorem 0.0.2. There exists a solution pE, uq of the uncostrained problem

(0.4) with HE as in (0.7). Furthermore,

1. u P C 1
2 pΩq;

2. BE is pn � 1q-countably rectifiable. More precisely, pBE X ΩqzΣpEq is a

C1,α-hypersurface, for some α P p0, 1q, and Hn�1pΣpEqq � 0.

We remark that the Hölder exponent 1
2

is critical. If one can show that

u P C 1
2
�ηpΩq, for some η P �0, 1

2

�
, then we get»

Brpx0q
|∇u|2 dx ¤ C

�
n, rus 1

2
�η
�
rn�1�2η, @Brpx0q �� Ω.
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If pE, uq is a solution of problem (0.4) with HE as in (0.7) (HE can be more

generally a function with quadratic growth in ξ), then, for any F � Rn with

E∆F �� Brpx0q, by minimality, we infer

P pE;Brpx0qq � P pF ;Brpx0qq ¤
»
Brpx0q

p1Epxq � 1F pxqq|∇u|2 dx

¤ 2

»
Brpx0q

|∇u|2 dx ¤ C
�
n, rus 1

2
�η
�
rn�1�2η,

obtaining

ψpE;Brpx0qq :� P pE;Brpx0qq � min
F∆E��Brpx0q

P pF ;Brpx0qq
¤ C

�
n, rus 1

2
�η
�
rn�1�2η.

The previous inequality guaranties that E has the same regularity property of

a perimeter minimizer, as proved by I. Tamanini in 1982 (see [56]). For the

sake of completeness we recall this result below.

Theorem 0.0.3. Let E � Rn be a set of finite perimeter satisfying, for some

η P �0, 1
2

�
and two positive constants C, r0, such that

ψpE;Brpx0qq ¤ C
�
n, rus 1

2
�η
�
rn�1�2η,

for any x0 P Ω and 0   r   r0. Then the reduced boundary B�E of E is a

C1,η-hypersurface in Ω and

dimHpΩX pBEzB�Eqq ¤ n� 8,

Summing up, if pE, uq is a solution of the uncostrained problem (0.4) with

HE belonging to a large class of functions and u P C 1
2
�ηpΩq, then the boundary

BE of E contains a regular hypersurface B�E which differs from it in Ω by a

singular set of Hausdorff dimension less than n� 8. This is the best regularity

one may expect. Indeed, De Giorgi in [18] showed that the non-existence of a

singular minimal cone in Rn implies non-existence in Rn�1 and Simons in [55]

showed the non-existence of singular minimal cones in dimensions 2 ¤ n ¤ 7.

For n � 8, Bombieri, De Giorgi, and Giusti proved in [9] that the Simons’

cone

tx P R8 : x2
1 � x2

2 � x2
3 � x2

4 � x2
5 � x2

6 � x2
7 � x2

8u
is a singular minimal cone with singular set t0u. Furthermore, if n ¡ 8, there

exists a perimeter minimizer E � Rn withHn�8pBEzB�Eq � �8 (see Theorem

2.12.1 and, for further details, [46, Chapter 28]). Federer concluded in [33] by

proving the Hausdorff dimension of the singular set is less than or equal to

n� 8.

The optimal regularity of the interface is hard to obtain in most cases.

This is due to the fact that the two terms in the functional (0.3) have different
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dimension under common scalings. In [29] L. Esposito and N. Fusco studied

the regularity of the costrained problem (0.4) with

HEpx, ξq � pα1Epxq � β1ΩzEpxqq|ξ|2, @px, ξq P Ω� Rn, (0.8)

where 0   β   α are two fixed constants. Assuming that α is sufficiently close

to β, the authors obtained the full regularity of the free interface by proving

the following result.

Theorem 0.0.4. There exists γn ¡ 1 such that if α
β
  γn and pE, uq is a

solution of the costrained problem (0.4) with HE as in (0.8), then u P C 1
2
�ηpΩq,

for some η � ηpn, α, βq P �0, 1
2

�
and B�E is a C1,η-hypersurface, with HspΩ X

pBEzB�Eqq � 0, for any s ¡ n� 8.

The problem of handling with the constraint |E| � d is overtaken ensuring

that every minimizer of the constrained problem (0.4) is also a minimizer of a

penalized functional of the type

FΛpE, v; Ωq � FpE, v; Ωq � Λ
��|E| � d

��,
for some suitable Λ ¡ 0. In Chapter 2 the same idea will be carried out in a

more general context (see Theorem 2.2.1).

The optimal regularity of the free interface in the general case is still an

open problem. However, partial regularity results are available. In 2015, G. De

Philippis and A. Figalli in [21], N. Fusco and V. Julin in [35], independently

of each other and by different approaches, improved Lin’s result by finding a

sharper estimate of the singular set’s size.

Theorem 0.0.5. Let pE, uq be a solution of the costrained or uncostrained

problem (0.4) with HE as in (0.8). Then

1. there exists a relatively open set Γ � BE such that Γ is a C1,µ hypersurface

for all 0   µ   1
2
;

2. there exists ε � ε
�
n, α

β

� ¡ 0, such that

Hn�1�εpΩX pBEzΓqq � 0.

The technique used by G. De Philippis and A. Figalli consists in proving

that, if pE, uq is a solution of the problem, the singular set of BE is σ-porous in

BE, for some σ ¡ 0. Using density lower and upper bounds on the perimeter

of E, the estimate follows from a classical result of measure theory. However,

in Chapter 2 we follow the strategy adopted by N. Fusco and V. Julin.

Some aforementioned results were obtained in literature for more general

functions HE. In 1999, F.H. Lin and R.V. Kohn considered the functions

HEpx, s, ξq � F px, s, ξq � 1EpxqGpx, s, ξq, @px, s, ξq P Ω� R� Rn. (0.9)

with F,G P C`,ηpΩ�R�Rnq, for ` ¥ 2 and η P p0, 1q, satisfying the following

properties:
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• F and G are uniformly elliptic and uniformly bounded, i.e. there exist

two positive constants ν and N such that

ν|ξ|2 ¤ Fξiξjpx, s, ξq ¤ N |ξ|2, ν|ξ|2 ¤ Gξiξjpx, s, ξq ¤ N |ξ|2, (0.10)

for any px, s, ξq P Ω� R� Rn;

• F and G have a controlled growth, that is there exists a constant

M ¡ 0 such that

|∇2
ξsF |� |∇2

ξxF | ¤Mp1�|ξ|q, |∇2
ssF |� |∇2

sxF |� |∇2
xxF | ¤Mp1�|ξ|2q,

(0.11)

for any ξ P Rn.

They proved the following assertion (see [45]).

Theorem 0.0.6. Assuming that HE is as in (0.9), and (0.10), (0.11) are

in force, then there exists a solution pE, uq of the costrained problem (0.4).

Furthermore, u P C 1
2 pΩq and BA is pn� 1q-countably rectifiable.

A particular example of functions of the type (0.9) are integrands of the

type HE � F � 1EG, with

F px, s, ξq �
ņ

i,j�1

aijpx, sqξiξj �
ņ

i�1

aipx, sqξi � apx, sq, (0.12)

Gpx, s, ξq �
ņ

i,j�1

bijpx, sqξiξj �
ņ

i�1

bipx, sqξi � bpx, sq, (0.13)

for any px, s, ξq P Ω� R� Rn. The same authors proved the result below.

Theorem 0.0.7. Assuming that HE is as in (0.9), and (0.10)-(0.13) are in

force, then, for any solution pE, uq of the costrained problem (0.4), pBE X
ΩqzΣpEq is a C1,σ-hypersurface, for some σ P p0, 1q and Hn�1pΣpEqq � 0.

Actually, the previous results were proved for a more general problem, an

optimal design problem with anisotropic perimeter penalization, i.e.

min
pE,uqPA�

�
u0�W 1,p

0 pΩq
� »

Ω

HEpx, upxq,∇upxqq dx�ΨpBEq,

with

ΨpBEq �
»

Ω

ψpx, νEpxqq d|µE|,
where νE is the exterior unit normal vector to BE and ψ satisfies some addi-

tional assumptions.

As explained so far, regularity results are based on the study of the inter-

play between the perimeter and the bulk energy. For this reason, in Chapter
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1 we recall some classical notions and well-known results from the geometric

measure theory and the regularity theory of minima of variational functions

and solutions of partial differential equations.

In Chapter 2 we address the issue of improving the dimensional estimate

for the singular part ΣpEq of optimal configurations for the model quadratic

functionals treated by F.H. Lin and R.V. Kohn. We prove the same kind

of regularity of the interface proved in the model case (0.8) in [21] and [35],

namely dimHpΣpEqq ¤ n�1� ε, for some ε ¡ 0 depending on the initial data.

We consider the model function

HEpx, s, ξq � F px, s, ξq � 1EpxqGpx, s, ξq, @px, s, ξq P Ω� R� Rn.

under the structure conditions (0.12) and (0.13). Concerning the coefficients,

we assume that they are Lipschitz continuous, i.e.

aij, bij, ai, bi, a, b P C0,1pΩ� Rq.

Moreover, to ensure the existence of minimizers, we assume the uniform bound-

edness of the coefficients and the uniform ellipticity of the matrices aij and bij,

i.e.

ν|ξ|2 ¤ aijpx, sqξiξj ¤ N |ξ|2, ν|ξ|2 ¤ bijpx, sqξiξj ¤ N |ξ|2,
ņ

i�1

|aipx, sq| �
ņ

i�1

|bipx, sq| � |apx, sq| � |bpx, sq| ¤ L,

for any px, s, ξq P Ω�R�Rn, where ν, N and L are three positive constants.

We remark that our regularity assumptions are weaker than the ones as-

sumed by F.H. Lin and R.V. Kohn in [45] for the same model quadratic

functional. The aforementioned results con be found in a joint work with

L. Esposito, [30].

The problem discussed so far can be easily generalized. Indeed, one may

ask whether the aforementioned results are still true if the functional has a

p-polynomial growth in place the quadratic one. While in the quadratic case

many regularity results are available in literature, the problem is less studied

in the p-polynomial growth case. Actually, it turns out to be more involved

(see [13], [14], [28]).

As before, the formulation of the problem is

min
EPApΩq

FpEq, (0.14)

with a variational cost functions of the type

FpEq � min
uPu0�W 1,p

0 pΩq

»
Ω

HEpx, upxq,∇upxqq dx� P pE; Ωq.
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In 2014, M. Carozza, I. Fonseca and A. Passarelli di Napoli dealt with the

costrained problem (0.14) involving a discontinuous class of integrands HE of

the type

HEpx, ξq � F pξq � 1EpxqGpξq, @px, ξq P Ω� Rn. (0.15)

(see [13]). They assumed that F,G P C1pRnq and the existence of some positive

constants l, L, α, β and µ ¥ 0 such that

• F and G have p-growth (p ¡ 1):

0 ¤ F pξq ¤ Lpµ2 � |ξ|2q p2 , (F1)

0 ¤ Gpξq ¤ βLpµ2 � |ξ|2q p2 , (G1)

for all ξ P Rn;

• F and G are strongly quasi-convex:»
Ω

F pξ �∇ϕq dx ¥
»

Ω

�
F pξq � lpµ2 � |ξ|2 � |∇ϕ|2q p�2

2 |∇ϕ|2
�
dx, (F2)»

Ω

Gpξ �∇ϕq dx ¥
»

Ω

�
Gpξq � αlpµ2 � |ξ|2 � |∇ϕ|2q p�2

2 |∇ϕ|2
�
dx, (G2)

for all ξ P Rn and ϕ P C1
c pΩq.

Following the same argument adopted in [29], the authors proved that the

constraint |E| � d can be overtaken ensuring that every minimizer of the

constrained problem is also a minimizer of a suitable unconstrained energy

functional with a volume penalization, i.e.

FΛpE, v; Ωq � FpE, v; Ωq � Λ
��|E| � d

��,
for some Λ ¡ 0 sufficiently large. Inspired by the same article, they also

obtained the optimal regularity of the interface, under the condition�
β

α � 1


�
β � 1

α � 1


σ̃

¤ γ,

for some γ � γ
�
n, p, l

L

�   1 and σ̃pn, pq ¡ 0. In the general case, the authors

proved the following theorem.

Theorem 0.0.8. Let pE, uq be a solution of the costrained problem (0.14)

with HE as in (0.15), under the conditions (F1), (F2), (G1), (G2). Then

there exists an open set Ω0 � Ω with full measure such that u P C0,ηpΩ0q, for

every η P p0, 1q. In addition, B�E X Ω0 is a C1,η̃-hypersuface in Ω0, for every

η̃ P �0, 1
2

�
, and HspΩ0 X pBEzBE�qq � 0, for all s ¡ n� 8.

The stated regularity is only partial; indeed, the singular set of the optimal

interface could lie in ΩzΩ0, which could have a positive s-dimensional Hausdorff

measure, for some s P pn� 8, nq. In 2019, L. Esposito proved in [28] that this

possibility does not occur for s P pn � 1, nq. Indeed, he proved the following

lower bound estimate on the perimeter of the optimal set in Ω.
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Theorem 0.0.9. Let pE, uq be a solution of the costrained problem (0.14) with

HE as in (0.15), under the conditions (F1), (F2), (G1), (G2), and let U �� Ω.

Then there exists a constant c � c
�
U, ‖∇u‖LppΩq

�
such that, for every x0 P BE

and Brpx0q � U ,

P pE;Brpx0qq ¥ crn�1.

Moreover, Hn�1pΩX pBEzB�Eqq � 0.

In the general case, the C1 regularity of the optimal interface is still an

open problem.

In Chapter 3 we extend the partial regularity result obtained by [5] when

the integrand of F is of the type

HEpx, s, ξq � F pξq � 1EpxqGpξq � fEpx, sq, @px, s, ξq P Ω� R� Rn,

where the function fE � g � 1Eh is discontinuous.

Regarding F and G, we assume that F,G P C1pRnq and that (F1), (F2),

(G1), (G2) hold. Furthermore, we impose on F and G some proximity con-

ditions that are trivially satisfied if F and G are positively p-homogeneous.

In particular, we assume that there exist two positive constants t0, a and

0   m   p such that for every t ¡ t0 and ξ P Rn with |ξ| � 1, it holds����Fppξq � F ptξq
tp

���� ¤ a

tm
,

����Gppξq � Gptξq
tp

���� ¤ a

tm
,

where Fp and Gp are the p-recession functions of F and G (see Definition 3.1.1).

With regard to g and h, we assume that they are Borel measurable, lower

semicontinuous with respect to the real variable and that there exist a function

γ P L1pΩq and two constants C0 ¡ 0 and k P R, with k   l
2p�1λ

, being λ � λpΩq
the first eigenvalue of the p-Laplacian on Ω with boundary datum u0, such that

• g and h satisfy the following assumptions:

gpx, sq ¥ γpxq � k|s|p, hpx, sq ¥ γpxq � k|s|p,

for almost all px, sq P Ω� R;

• g and h satisfy the following growth conditions:

|gpx, sq| ¤ C0p1� |s|qq, |hpx, sq| ¤ C0p1� |s|qq,
for all px, sq P Ω� R, with the exponent

q P
#
rp,�8q if n � 2,

rp, p�q if n ¡ 2

fixed.
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The first of the previous assumptions on g and h is essential to prove the

existence of a minimal configuration. The same condition turns out to be

crucial in the proof of the regularity result as well. All the results concerning

this optimal design problem in the p-polynomial growth case can be found in

[41].

Introduction to Part II

Lattice systems are discrete variational models, whose energy depends on a

spin function defined in a lattice. A lattice system is said to be frustrated,

when a competition between ferromagnetic (F) nearest-neighbor (NN) and

antiferromagnetic (AF) next-nearest-neighbor (NNN) interactions occurs (see

[24] for a complete discussion).

For example, three-dimensional frustrated magnets generally exist in the

magnetic diamond and pyrochlore lattices (see [25]) and edge-sharing chains of

cuprates provide a natural example of frustrated lattice systems. Furthermore,

jarosites are the prototype for a spin-frustrated magnetic structure, because

these materials are composed exclusively of kagomé layers (see [51]).

In 2015, M. Cicalese and F. Solombrino in [17] set the problem in the

one-dimensional lattice

InpIq :� ZnpIqz
"Z

1

λn

^
� 1,

Z
1

λn

^*
,

where ZnpIq � ti P Z : λni P Iu and I :� p0, 1q and tλnunPN is a vanishing

sequence of lattice spacings.

They considered, as spins of the system, functions of the type u : i P
ZnpIq ÞÝÑ ui P S1, satisfying the boundary condition

ut
1
λn

u�1 � ut 1
λn

u � u0 � u1, (0.16)

where S1 is the unit circle of R2 centred in the origin. The energy of the system

is a scalar functional En defined as

Enpuq �
¸

iPInpIq
λn

��αui � ui�1 � ui � ui�2
�
,

where α ¡ 0 is the frustation parameter that rules the NN and NNN interac-

tions. As usual in the analysis of discrete systems, the family of energies may

be embedded on a common functional space, thus extending

Enpuq �

$'&'%
¸

iPInpIq
λn

��αui � ui�1 � ui � ui�2
�

for u P CnpI;S1q,

�8 for u P L8pI;S1qzCnpI;S1q,
(0.17)
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where

CnpI;S1q :� tu : ZnpIq Ñ S
1 : u satisfies (0.16),

u is constant on λnpi� r0, 1qq, @i P ZnpIqu.
While the first term of the energy En is ferromagnetic and favors the align-

ment of neighboring spins, the second one, being antiferromagnetic, frustrates

it as it favors antipodal next-to-nearest neighboring spins. A more refined anal-

ysis is contained in the following result (see [17, Proposition 2.2 and Remark

2.3]).

Proposition 0.0.10. Let En : L8pI;S1q Ñ p�8,�8s be the functional de-

fined in (0.17). We distinguish two cases.

• if α ¥ 4, then

min
uPL8pI;S1q

Enpuq � �pα � 1q#InpIq.

Furthermore,every minimizer un P L8pI;S1q of En is constant;

• if α P p0, 4q, then

min
uPL8pI;S1q

Enpuq � �
�

1� α2

8



#InpIq.

Furthermore, a minimizer un P L8pI;S1q of En satisfies

uin � ui�1
n � α

4
and uin � ui�2

n � α2

8
� 1,

for any i P InpIq.
In other words, the ground state of the system for α ¥ 4 is ferromagnetic

(the spin is made up of alligned vectors), while for 0   α ¤ 4 it is helimagnetic

(the spin consists in rotating vectors with a constant angle ψ � � arccospα{4qq.
If 0   α ¤ 4, the sign of the angle ψ represents the sense of the spin’s rotation.

Hence, minimizers can be made up of clockwise or counterclockwise spin. In

the first case we say that the spin chain has a positive chirality, while in the

second case we say that it has a negative chirality.

In [17], the authors address to a system, whose interactions are close to

the ferromagnet/helimagnet transition point as the number of particles di-

verges. Examples of edge-sharing cuprates in the vicinity of the ferromag-

netic/helimagnetic transition point can be found in [26]. From a mathemat-

ical point of view, this means that the parameter α depends on n and tends

to 4 from below, as n Ñ �8. By means of Γ-convergence’s techniques, they

provide a careful description of the admissible states and compute their asso-

ciated energy. In particular, they find the correct scalings to detect chirality

transitions, which break the simmetry of minimal configurations.
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Setting α � αn � 4p1 � δnq for some positive vanishing sequence tδnunPN,

the Γ-limit of the energy En (with respect to the weak-star convergence in

L8), as n Ñ �8, does not provide a detailed description of the fenomenon.

For this reason, M. Cicalese and F. Solombrino need to consider higher order

Γ-limits, expanding En at the first order, that is

En � minEn � λnµnHn,

for some infinitesimal tµnunPN � R� to be found. The Γ-convergence of Hn

can be better studied by changing the variable. It turns out that the best

candidate z for the order chirality parameter is linked to the angular velocity

of the spin. Hence, Hnpzq can be redefined in L1pIq, since, up to rotation, z is

uniquely associated with a spin u.

For µn �
?

2δn, they proved the following result.

Theorem 0.0.11. Let Hn : L1pIq Ñ r0,�8s be as above. Assume that there

exists l :� lim
nÑ�8

λn?
2δn

P r0,�8s. Then H :� Γ-limnHn with respect to the

L1pIq-convergence is given by one of the following formulas:

i) if l � 0

Hpzq �
#

4
3
|Dz|pIq if z P BV pI; t�1, 1uq,
�8 otherwise;

ii) if l P p0,�8q

Hpzq �
$&%

1

l

»
I

pz2pxq � 1q2 dx� l

»
I

pz1pxqq2 dx if z P H1
|per|pIq,

�8 otherwise,

where we set H1
|per|pIq :� tz P H1pIq : |zp0q| � |zp1q|u;

iii) if l � �8
Hpzq �

#
0 if z � constant,

�8 otherwise.

Therefore, at scale λnδ
3{2
n several regimes are possible. Different values of

the limit number l P r0,�8s entail different scenarios. If l � �8, the rigidity

of the system does not allow the spin to make a chirality transition. If l ¡ 0,

the spin system may have diffuse and regular macroscopic chirality transitions

whose limit energy is finite on H1pIq (provided some boundary conditions are

taken into account). When l � 0, chirality transitions on a scale of order

λn{
?
δn can occur. In this case, the continuum limit energy is finite on BV pIq

and counts the number of jumps of the chirality of the system.

In this case the presence of periodic boundary conditions allowed to turn

En into a Modica-Mortola type energy, whose Γ-convergence is well known
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in literature (see [47] and [48]). Indeed, expanding the functional at the first

order, under a suitable scaling, the spin system makes a chirality transition

on a scale of order λn?
δn

, when λn?
δn

approaches to a finite nonnegative value, as

nÑ �8 (otherwise no chirality transitions emerge).

In chemical and physical literature, frustrated lattice systems appear also

in bidimensional settings. The frustration mechanisms originates form the

presence of short-range ferromagnetic (F) and antiferromagnetic (AF) inter-

atomic interactions of more complex geometric structures. This type of model

is known as the J1-J3 F-AF classical spin model on the square lattice (see [53]).

Whenever there are no NNN interactions, the energy describes the so-called

XY model, whose variational analysis has been carried out in [2], [8], [16].

In 2019, M. Cicalese, M. Forster and G. Orlando in [15] addressed a J1-

J3 F-AF classical spin model in a two dimensional setting. We give here its

mathematical formulation.

Let Ω P A0, that is an open, bounded, regular domain of R2 (see (5.2) for

the precise definition of A0). The spin functions u are parametrized over the

points of the discrete set ΩX λnZ2, and the energy of the system is

Hnpu; Ωq : � 1

2
λ2
n

¸
pi,jqPInpΩq

� ���ui�2,j � αn
2
ui�1,j � ui,j

���2
�
���ui,j�2 � αn

2
ui,j�1 � ui,j

���2 �, (0.18)

where InpΩq is the equispaced lattice on Ω defined in (5.3) with spacing λn.

The authors proved that the two-dimensional problem can be decoupled

in two one-dimensional ones, to which the main result of [17] can be applied.

Similarly to the one-dimensional case, they redefinedHnpz, wq in L1pR2q, where

the couple pw, zq of chirality parameters is related to the oriented horizontal

and vertical angles between the adjacent vectors of the spin u. Defining the

functional H : L1
locpR2;R2q � A0 Ñ r0,�8s by setting

Hph; Ωq :�
$&%

4

3
p|D1w|pΩq � |D2z|pΩqq if h � pw, zq P DompH; Ωq,

�8 otherwise,

where

DompH; Ωq :�
"
pw, zq P L1

locpR2;R2q : pw, zq P BV pΩ; t�1, 1u2q,

curlpw, zq � 0 in D1pΩq
*
,

the authors proved the following Γ-convergence result.

Theorem 0.0.12. Assume that Ω P A0. Then the following results hold true:
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i) (Compactness) Let pwn, znq P L1
locpR2;R2q be a sequence satisfying

Hnpwn, zn; Ωq ¤ C,

for some positive constant C. Then there exists pw, zq P DompH; Ωq such

that, up to a subsequence, pwn, znq Ñ pw, zq in L1
locpΩ;R2q;

ii) (lim inf inequality) Let pwn, znq, pw, zq P L1
locpR2;R2q. Assume that

pwn, znq Ñ pw, zq in L1
locpΩ;R2q and

Hpw, z; Ωq ¤ lim inf
nÑ�8

Hnpwn, zn; Ωq;

iii) (lim sup inequality) Assume that pw, zq P L1
locpR2;R2q. Then there ex-

ists a sequence pwn, znq P L1
locpR2;R2q such that pwn, znq Ñ pw, zq in

L1pΩ;R2q and

lim sup
nÑ�8

Hnpwn, zn; Ωq ¤ Hpw, z; Ωq.

In Part II we study a frustrated lattice spin system with values on the

unit sphere of R3. We investigate both the one-dimensional and the two-

dimensional settings proposed in [17] and [15]. We force the spin of the system

u to be confined in the union of two magnetic anisotropy circles, S1 and S2,

lying on the unit sphere S2, both having the same radius and identified by

two versors, v1 and v2 (see Figure 4.1). In the one-dimensional case studied in

Chapter 4, we consider the following energy

En � En � Pn,

with

Pnp�q � λnkn|DAp�q|pIq (0.19)

and En defined as in (0.17). Here α P p0,�8q is the frustration parameter

of the system, kn is a divergent sequence of positive numbers and |DApuq|pIq
counts the magnetic anistropy transitions that the spin u makes “jumping”

from one circle Si to the other one Sj (see (4.1)).

In this case, ground states are confined in one of the two magnetic anisotropy

circles and turn out to have a symmetric and rigid structure similar to the one

explained before.

We carry out our variational analysis when the system is close to the fer-

romagnet/helimagnet transition point. We estimate the amount of energy the

system spends to break the symmetry and the rigidity of minimal configura-

tions. One one hand, we compute how much energy is spent to allow spins

to switch their chiralities (chirality transitions); on the other hand, we cal-

culate the quantity of energy needed to let spins “jump” from one magnetic

anisotropy circle to the other one (magnetic anisotropy transitions).
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In the two-dimensional setting analyzed in Chapter 5 we deal with the

functional

Hn � Hn � Pn,

where Pn is defined as in (0.19) and Hn as in (0.18).

Also in this case, we address to a system close to the ferromagnet/helimagnet

transition point and we find the correct scalings to detect the spin’s chirality

transitions.

The aforementioned results can be found in a joint work with A. Kubin,

[27] .



Part I

Optimal design problems with

perimeter penalization

23



Chapter 1

Notions and preliminaries

In this chapter we recall some basic notions and well-known properties that

will be useful in the following. The chapter is divided in two sections: the first

section addresses the topic of sets of finite perimeter and BV functions from

geometric measure theory and is taken from Maggi’s book [46]. In particular,

we focus on the Gauss Green measure associated with a set of locally finite

perimeter and we highlight concepts of reduced boundary and essential bound-

ary. A subsection is entirely devoted to the definition of excess and its basic

properties. The second section illustrates few basic tools of classical regularity

theory, collected in the books [7] and [37]. We emphasize some consequences

of Caccioppoli’s inequality concerning regularity issues, i.e. Hölder continu-

ity of minimizers, Morrey and Campanato estimates and existence of second

derivatives.

1.1 Sets of finite perimeter and BV functions

We start by giving the main definition of this section.

Definition 1.1.1. Let E � Rn be a Lebesgue measurable set. We say the E is

a set of locally finite perimeter (in Rn) if and only if, for every compact

set K � Rn, we have

sup

"»
E

div T dx : T P C1
c pRn;Rnq, sptT � K, ‖T‖8 ¤ 1

*
  �8.

If this quantity is bounded independently of K, we say that E is a set of finite

perimeter (in Rn).

Sets of finite perimeter naturally induce a vector-valued Radon measure,

satisfying a generalized Gauss-Green formula.

Proposition 1.1.2 (Distributional Gauss-Green theorem). If E � Rn is a

Lebesgue measurable set, then E is a set of locally finite perimeter if and only

if there exists a Rn-valued Radon measure µE on Rn such that»
E

div T dx �
»
Rn
T � dµE, @T P C1

c pRn;Rnq. (1.1)

24
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The measure µE is unique. Moreover, E is a set of finite perimeter if and only

if |µE|pRnq   �8.

Proof. Let us assume that E is a set of locally finite perimeter . The linear

functional LE : C1
c pRn;Rnq Ñ R defined by

xLE, T y :�
»
E

div T dx, @T P C1
c pRn;Rnq,

is bounded; indeed, for every compact set K � Rn there exists C � CpKq ¡ 0

such that |xLE, T y| ¤ CpKq supRn |T |. Therefore, LE can be extended to

a bounded linear functional on CcpRn;Rnq. The thesis follows by applying

Riesz’s theorem (see Theorem A.1.3) and setting µE :� |LE|. Clearly, if E

is a set of finite perimeter, then |µE|pRnq � |LE|pRnq   �8. The converse

implication is fairly trivial. Indeed, let µE be a Rn-valued measure on Rn such

that (1.1) holds. Then

sup

"»
E

div T dx : T P C1
c pRn;Rnq, sptT � K, ‖T‖8 ¤ 1

*
� sup

"»
Rn
T � dµE : T P C1

c pRn;Rnq, sptT � K, ‖T‖8 ¤ 1

*
¤
»
K

|dµE| � |µE|pKq   �8,

which implies the thesis. Moreover, if |µE|pRnq   �8, then

sup

"»
E

div T dx : T P C1
c pRn;Rnq, sptT � K, ‖T‖8 ¤ 1

*
¤ |µE|pKq ¤ |µE|pRnq   �8,

as we wanted to prove. Finally, we show the unicity of µE. Let ν be a Rn-valued

measure such that»
E

div T dx �
»
Rn
T � dν, @T P C1

c pRn;Rnq.

Let us fix i P t1, � � � , nu. Taking (1.1) into account and choosing T P C1
c pRn;Rnq

with all the components null beside the i-th one set as T piq � φ, where

φ P C1
c pRnq, we get »

Rn
φ dµ

piq
E �

»
Rn
φ dνpiq.

By the same density argument, the previous equality holds also for φ P CcpRnq.
This implies that µ

piq
E � νpiq and, by the arbitrariety of i, the assertions follows.

Indeed, if K � Rn is compact and A � Rn is open such that K � A, then we

can find φ P C0
c pRnq such that 1K ¤ φ ¤ 1A. In particular

µ
piq
E pKq �

»
Rn
1K dµ

piq
E ¤

»
Rn
φ dµ

piq
E �

»
Rn
φ dνpiq ¤ νpiqpAq.
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Since any Borel set F � Rn can be approximated in measure from below by

compact sets and from above by open sets (see Proposition A.1.14), passing

to the supremum for K � F and to the infimum for A � F we have µ
piq
E pF q ¤

νpiqpF q. Since µ
piq
E is Borel regular, we have µ

piq
E pF q ¤ νpiqpF q, for every F �

Rn. On the other side, with the same argument, νpiqpF q ¤ µ
piq
E pF q, for every

F � Rn. This shows that νpiq � µ
piq
E on PpRnq.

The measure µE that appears in the previous theorem is called the Gauss-

Green measure associated with E and we define respectively the relative

perimeter of E in F � Rn and the perimeter of E (in Rn) as

P pE;F q :� |µE|pF q and P pEq � |µE|pRnq.
Remark 1.1.3. The equality (1.1) is equivalent to»

E

∇φ dx �
»
Rn
φ dµE, @φ P C1

c pRnq. (1.2)

Indeed, if (1.1) holds true, we can choose T P C1
c pRn;Rnq with all the com-

ponents null beside the i-th one set as T piq � φ, where φ P C1
c pRnq. On the

other hand, if we assume that (1.2) is true, then we can choose n functions

φi P C1
c pRnq such that φi � T piq for any i P N, where T P C1

c pRn;Rnq.
Example 1.1.4. If E � Rn is an open set with C1-boundary, then E is a set

of finite perimeter with µE � νEHn�1 BE and P pE;F q � Hn�1pF XBEq, for

any F � Rn.

We recall here some useful properties of the Gauss-Green measure.

Lemma 1.1.5 (Complement). If E is a set of locally finite perimeter, then

RnzE is a set of locally finite perimeter with

µRnzE � �µE, P pEq � P pRnzEq.
Proof. Let φ P C1

c pRnq. By Lemma A.3.1 we have»
RnzE
∇φ dx � �

»
E

∇φ dx �
»
Rn
φ � p�dµEq.

Since �µE is a Radon measure, by Proposition 1.1.2, we get the thesis.

Lemma 1.1.6 (Symmetric difference). If E and F are sets of locally finite

perimeter, then µE � µF on the class BpRnq of the Borel sets of Rn if and only

if |E∆F | � 0.

Proof. We start assuming that |E∆F | � 0. By Proposition 1.1.2 we get»
Rn
T � µE �

»
E

div T dx �
»
F

div T dx �
»
Rn
T � µF , @T P C1

c pRn,Rnq.
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By the unicity of the Gauss-Green measure, we infer that µE � µF . On the

other hand, if µE � µF , the assertion is trivial when |F | � 0 or |RnzF | � 0.

We may assume that |F | � 0 and |RnzF | � 0. In this case, by Remark 1.1.3,

we get »
Rn
p1E � 1F q∇φ � 0, @φ P C1

c pRnq,
which implies the existence of a constant c such that 1E � 1F � c P t0, 1u for

a.e. x P Rn. Assume by contradiction that c � 1. Then |E| � |RnzF | and,

using the implication proved before and Lemma 1.1.5, we infer

µF � µE � µRnzF � �µF ,
which contradicts that |F | � 0 and |RnzF | � 0. Hence, c � 1 and thus

|E∆F | � 0.

Lemma 1.1.7 (Gauss-Green measure of blow-ups). If E is a set of locally

finite perimeter, x P Rn and r ¡ 0, then Ex,r :� E�x
r

is a set of finite perimeter

in Rn with

µEx,r � pΦx,rq7µE
rn�1

,

where Φx,rpyq :� y�x
r

, for y P Rn and pΦx,rq7 is as in Definition A.1.5.

Proof. If φ P C1
c pRnq and φx,r � φ � Φx,r, then ∇φx,r � r�1p∇φ � Φx,rq and»

Ex,r

∇φ dy � 1

rn�1

»
E

∇φx,r dz � 1

rn�1

»
Rn
φx,r dµE �

»
Rn
φ d

pΦx,rq7µE
rn�1

,

by Proposition A.1.6. Since r1�npΦx,rq7µE is a Radon measure, Ex,r is a set of

locally finite perimeter with µEx,r � r1�npΦx,rq7µE.

Proposition 1.1.8 (Support of the Gauss-Green measure). If E is a set of

locally finite perimeter, then

sptµE � tx P Rn : 0   |E XBrpxq|   ωnr
n, @r ¡ 0u � BE.

Moreover, there exists a Borel set F such that

|E∆F | � 0, sptµF � BF.
Proof. Step 1: If x P Rn is such that x R tx P Rn : 0   |E X Brpxq|  
ωnr

n, @r ¡ 0u, then two alternatives may occur: |E X Brpxq| � 0 or |E X
Brpxq| � ωnr

n, for some r ¡ 0. If |E XBrpxq| � 0, then, by Remark 1.1.3,

|µE|pBrpxqq � sup
φPC1

c pBrpxqq
|φ|¤1

»
Rn
φ dµE � sup

φPC1
c pBrpxqq
|φ|¤1

»
E

∇φ dx � 0,
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which implies that µEpBrpxqq � 0 because µE    |µE|. Thus x R sptµE. On

the other hand, if |E X Brpxq| � ωnr
n, then by Lemma A.3.1 and Remark

1.1.3,

|µE|pBrpxqq � sup
φPC1

c pBrpxqq
|φ|¤1

»
Rn
φ dµE � sup

φPC1
c pBrpxqq
|φ|¤1

»
E

∇φ dx

� sup
φPC1

c pBrpxqq
|φ|¤1

»
Rn
∇φ dx � 0,

which again implies that µEpBrpxqq � 0. In order to prove the other inclusion,

we assume that x R sptµE. Then |µE|pBrpxqq � 0 for some r ¡ 0 and, with

the same argument, we infer

0 �
»
Rn
φ dµE �

»
E

∇φ dx �
»
Rn
1E∇φ dx, @φ P C1

c pBrpxqq.

Consequently, there exists c P R such that 1E � c a.e. on Brpxq. Necessarily

c P t0, 1u and, correspondingly, |E X Brpxq| P t0, ωnrnu, which completes the

first part of the proof.

Step 2: Up to modifying E on a set of measure zero, we may assume that E

is a Borel set. We now construct a Borel set F with |F∆E| � 0 and

BF � tx P Rn : 0   |F XBrpxq|   ωnr
n for every r ¡ 0u.

To this end, let us define two disjoint open sets by setting

A0 � tx P Rn : there exists r ¡ 0 s.t. |E XBrpxq| � 0u,
A1 � tx P Rn : there exists r ¡ 0 s.t. |E XBrpxq| � ωnr

nu,
and consider a sequence txhuhPN � A0 such that A0 � �

hPNBrhpxhq, rh ¡ 0

and |EXBrhpxhq| � 0. Hence |EXA0| � 0 and, by Lemma 1.1.5, we also have

|A1zE| � 0. Therefore, setting F :� pA1 Y EqzA0, then F is a Borel set, with

|F zE| ¤ |A1zE| � 0 and |EzF | ¤ |E X A0| � 0,

that is |E∆F | � 0. By step 1 and Lemma 1.1.6, RnzpA0 Y A1q � sptµE �
sptµF � BF . Finally, at the same time, BF � RnzpA0 Y A1q, since, by

construction,

A1 � F̊ and F � RnzA0.

We now recall two well-known results, i.e. the relative isoperimetric in-

equality in a ball and an approximation theorem.
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Proposition 1.1.9 (Relative isoperimetric inequality). If n ¥ 2, t P p0, 1q,
x P Rn and r ¡ 0, then there exists a positive constant c � cpn, tq such that

P pE;Brpxqq ¥ c|E XBrpxq|n�1
n ,

for every set of locally finite perimeter E such that |E XBrpxq| ¤ t|Brpxq|. In

particular, if E � Brpxq, then

P pE;Brpxqq ¥ cmint|E XBrpxq|, |BrpxqzE|un�1
n ,

for some positive constant c � cpnq.
Theorem 1.1.10 (Approximation by smooth sets). A Lebesgue measurable

set E � Rn is locally of finite perimeter if and only if there exist a sequence

tEhuhPN � Rn of open sets with smooth boundary and εh Ñ 0�, such that

Eh
locÑ E, sup

hPN
P pEh;BRq   �8, @R ¡ 0,

|µEh | �á |µE|, BEh � IεhpBEq.
In particular, P pEh;F q Ñ P pE;F q, whenever P pE; BF q � 0. Moreover,

i) if |E|   �8, then Eh Ñ E;

ii) if P pEq   �8, then P pEhq Ñ P pEq.

1.1.1 The reduced boundary and the essential boundary

The key notion to consider in order to understand the geometric structure of

sets of finite perimeter is that of reduced boundary, which provides a general

definition of unitary normal vector.

Definition 1.1.11. The reduced boundary of a set E of locally finite perime-

ter is defined as

B�E :�
"
x P sptµE : D lim

rÑ0�

µEpBrpxqq
|µE|pBrpxqq �: νEpxq P Sn�1

*
.

The function νE : B�E Ñ S
n�1 is the restriction of the |µE|-density of µE

on B�E and is a Borel function. We call νE the outer unit normal to E.

Since µE    |µE|, by the Radon-Nikodym theorem (see Theorem A.1.8), we

have

µE � νE|µE| B�E, (1.3)

so that the distributional Gauss-Green theorem (Proposition 1.1.2) takes the

form »
E

∇φ dx �
»
B�E

φ νE d|µE|, @φ P C1
c pRnq.
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Remark 1.1.12. By definition and by Proposition 1.1.8, B�E � sptµE � BE.

In fact, by (1.3), the Gauss-Green measure µE is concentrated on B�E, and

hence on B�E. By definition of support, sptµE � B�E, and therefore sptµE �
B�E. By Proposition 1.1.8, up to modifying E on a set of Lebesgue measure

zero, we have that sptµE � BE. Therefore, up to modification on sets of

Lebesgue measure zero, B�E � BE.

From the following theorem it turns out that the reduced boundary B�E of

a set E of locally finite perimeter has the structure of a pn � 1q-dimensional

hypersurface and that νE has a precise geometric meaning as the outer unit

normal to E.

Theorem 1.1.13 (De Giorgi’s structure theorem). If E is a set of locally finite

perimeter, then the Gauss-Green measure µE of E satisfies

µE � νEHn�1 B�E, |µE| � Hn�1 B�E,
and the generalized Gauss-Green formula holds true:»

E

∇φ dx �
»
B�E

φ νE dHn�1, @φ P C1
c pRnq.

Moreover, there exist countably many C1-hypersurfaces Mh � Rn, compact sets

Kh �Mh, and a Borel set F with Hn�1pF q � 0, such that

B�E � F Y
¤
hPN

Kh,

and, for every x P Kh, νEpxqK � TxMh, the tangent space to Mh at x.

The next theorem establishes that the blow-up around a point of the re-

duced boundary tends to a half-space. As a corollary, two density results are

proved.

Theorem 1.1.14. If E is a set of locally finite perimeter and x P B�E, then

Ex,r
locÑ Hx :� ty P Rn : y � νEpxq ¤ 0u,

as r Ñ 0�. Similarly, if πx :� BHx � νEpxqK, then, as r Ñ 0�,

µEx,r
�á νEpxqHn�1 πx, |µEx,r | �á Hn�1 πx.

Corollary 1.1.15. If E is a set of locally finite perimeter and x P B�E, then

lim
rÑ0�

|E XBrpxq|
ωnrn

� 1

2
,

lim
rÑ0�

P pE;Brpxqq
ωn�1rn�1

� 1.

In particular, B�E � Ep1{2q.
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Proof. Let x P B�E, Hx :� ty P Rn : y � νEpxq ¤ 0u and πx :� BHx. Since

|Hx X B1| � ωn
2

, by the local convergence of Ex,r to Hx stated in Theorem

1.1.14, we infer

lim
rÑ0�

|E XBrpxq|
ωnrn

� lim
rÑ0�

|Ex,r XB1|
ωn

� Hx XB1

ωn
� 1

2
.

Since πxXBB1 is an pn�2q-dimensional unit sphere, we haveHn�1pπxXBB1q �
0. Thus, by Lemma 1.1.7, Theorem 1.1.14 and Proposition A.1.14,

lim
rÑ0�

P pE;Brpxqq
ωn�1rn�1

� lim
rÑ0�

|µEx,r |pB1q
ωn�1

� H
n�1pπx XB1q

ωn�1

� 1.

We recall another useful definition in geometric measure theory.

Definition 1.1.16 (Essential boundary). Let E � Rn be a Lebesgue measur-

able set. We define the essential boundary BeE of E as

BeE :� Rnz�Ep0q Y Ep1q�,
where

Eptq :�
"
x P Rn : lim

rÑ0�

|E XBrpxq|
ωnrn

� t

*
is the sets of points of density t of E.

We prove Federer’s theorem, stating the Hn�1-equivalence between the

reduced boundary of E, the set Ep1{2q of its points of density one-half, and

the essential boundary of E.

Theorem 1.1.17 (Federer’s Theorem). If E is a set of locally finite perimeter,

then B�E � Ep1{2q � BeE, with Hn�1pBeEzB�Eq � 0.

Proof. Of course Ep1{2q � BeE. By the relative isoperimetric inequality (see

Proposition 1.1.9), and since

|E XBrpxq| ¤ |Brpxq| 1n |E XBrpxq|n�1
n ¤ ω

1
n
n r|E XBrpxq|n�1

n ,

we find that

P pE;Brpxqq
rn�1

¥ cpnqmin

" |E XBrpxq|
rn

,
|BrpxqzE|

rn

*
.

Thus, passing to the upper limit as r Ñ 0� in the last inequality, we infer that if

lim sup
rÑ0�

P pE;Brpxqq
rn�1

� 0 implies x P Ep0q Y Ep1q. In particular,

BeE �
"
x P Rn : lim sup

rÑ0�

P pE;Brpxqq
rn�1

¡ 0

*
,
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so that

BeEzB�E �
"
x P RnzB�E : lim sup

rÑ0�

P pE;Brpxqq
rn�1

¡ 0

*
.

By Proposition A.1.11, this last set is Hn�1-negligible.

We recall a representation formula for Gauss–Green measures of intersec-

tions of two sets of locally finite perimeter, which can be derived by Federer’s

theorem.

Theorem 1.1.18 (Gauss-Green measure of the intersection of sets). If E and

F are subsets of Rn of locally finite perimeter and we let

tνE � νF u :� tx P B�E X B�F : νEpxq � νF pxqu,
then E X F is a set of locally finite perimeter, with

µEXF � µE F p1q � µF Ep1q � νEHn�1 tνE � νF u.
Theorem 1.1.19 (Comparison sets by replacement). If E,G � Rn are sets

of locally finite perimeter and A � Rn is an open set of finite perimeter such

that

Hn�1pB�AX B�Eq � HpB�AX B�Gq � 0,

then F :� pG X Aq Y pEzAq is a set of locally finite perimeter. Moreover, if

A �� A1, with A1 � Rn open, then

P pF ;A1q � P pG;Aq � P pE;A1zAq �Hn�1ppEp1q∆Gp1qq X B�Aq.

1.1.2 Excess

We introduce the fundamental notion of excess epE, x, rq, a key concept in the

regularity theory for Λ-minimizers of the perimeter. It is used to measure the

integral oscillation of the outer unit normal to E over Brpxq X B�E.

Definition 1.1.20. Let E be a set of locally finite perimeter, x P BE, r ¡ 0

and ν P Sn�1. We define:

• the cylindrical excess of E at the point x, at the scale r and with

respect to the direction ν, as

eCpE, x, r, νq :� 1

rn�1

»
Crpx,νqXB�E

|νE � ν|2
2

dHn�1

� 1

rn�1

»
Crpx,νqXB�E

p1� νE � νq dHn�1;

• the spherical excess of E at the point x, at the scale r and with respect

to the direction ν, as

epE, x, r, νq :� 1

rn�1

»
BEXBrpxq

|νE � ν|2
2

dHn�1;
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• the spherical excess of E at the point x and at the scale r, as

epE, x, rq :� min
νPSn�1

epE, x, r, νq.

We do not stress the dependence on E when it is clear from the contest. We

will often denote the excess of E at the point x, at the scale r and with respect

to the direction en by enpx, rq. Furthermore, if x � 0, we will write enprq and,

finally, if also r � 1, we will simply write en.

We recall below some properties of the excess.

Proposition 1.1.21 (Scaling of the excess). If E is a set of locally finite

perimeter, x P BE, r ¡ 0, ν P Sn�1, then

eCpE, x, r, νq � eCpEx,r, 0, 1, νq, epE, x, rq � epEx,r, 0, 1q,
where, as usual, Ex,r � E�x

r
.

Proof. Since |ν � νE|2 � 2p1� ν � νEq, using Lemma 1.1.7, we get

eCpE, x, r, νq �
|µE|pCrpx, νqq � ν �

»
Crpx,νqXB�E

νE dHn�1

rn�1

� |µE|pCrpx, νqq � ν � µEpCrpx, νqq
rn�1

� |µE| � Φ�1
x,rpC1p0, νqq � ν � pµE � Φ�1

x,rqpC1p0, νqq
rn�1

�
�pΦx,rq7|µE|

�pC1p0, νqq
rn�1

� ν � �pΦx,rq7µE
�pC1p0, νqq

rn�1

� |µEx,r |pC1p0, νqq � µEx,rpC1p0, νqq � eCpEx,r, 0, 1, νq,
where pΦx,rq7µE is as in Definition A.1.5. Similarly, applying Lemma 1.1.7

again, we have

epE, x, rq � min
νPSn�1

|µE|pBrpxqq � ν � µEpBrpxqq
rn�1

� 1

rn�1

�
|µE|pBrpxqq � max

νPSn�1
ν � µEpBrpxqq

	
� |µE|pBrpxqq

rn�1

�
1� |µEpBrpxqq|

|µE|pBrpxqq



� |µEx,r |pB1p0qq
�

1� |µEx,rpB1p0qq|
|µEx,r |pB1p0qq



� epEx,r, 0, 1q.

Proposition 1.1.22 (Excess at different scales). If E is a set of locally finite

perimeter, x P BE, 0   s   r, ν P Sn.1, then

eCpE, x, s, νq ¤
�
r

s


n�1

eCpE, x, r, νq.
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Proof. The proof follows directly from the definition of the cylindrical excess,

since Bspxq � Brpxq.
The next proposition states that the sets of locally finite perimeter with

null cylindrical excess in some point of their boundary are locally a half-space.

Proposition 1.1.23 (Zero excess implies being a half-space). If E is a set of

locally finite perimeter, with sptµE � BE, x P BE, r ¡ 0, ν P Sn�1, then

eCpE, x, r, νq � 0

if and only if |E XCrpx, νq| � |ty P Crpx, νq : py � xq � ν ¤ 0u|.
Proof. Let us assume that |E XCrpx, νq| � |ty P Crpx, νq : py � xq � ν ¤ 0u|.
Then, by Lemma 1.1.6, µE=µtyPRn : py�xq�ν¤0u on subsets of Crpx, νq and thus

eCpE, x, r, νq � |µE|pCrpx, νqq � ν � µEpCrpx, νqq
rn�1

� |µtyPRn : py�xq�ν¤0u|pCrpx, νqq � ν � µtyPRn : py�xq�ν¤0upCrpx, νqq
rn�1

� eCpty P Rn : py � xq � ν ¤ 0u, x, r, νq � 0.

On the other hand, if eCpE, x, r, νq � 0, then, by definition, νEpyq � ν for

Hn�1-a.e. y P Crpx, νq X BE, which implies the thesis.

As stated in the assertion of the following result, the reduced boundary is

made up of points where the excess is very small.

Proposition 1.1.24 (Vanishing of the excess at the reduced boundary). If E

is a set of locally finite perimeter and x P B�E, then

lim
rÑ0�

epE, x, rq � 0.

Hence, given ε ¡ 0, there exist r ¡ 0 and ν P Sn�1 with eCpE, x, r, νq   ε.

Proof. Let us fix x P B�E. By the definition of reduced boundary and by

Corollary 1.1.15 we have

lim
rÑ0�

|µEpBrpxqq|
|µE|pBrpxqq � |νEpxq| � 1, and lim

rÑ0�

|µE|pBrpxqq
ωn�1rn�1

� 1.

Thus, reasoning as in Proposition 1.1.21,

lim
rÑ0�

epE, x, rq � lim
rÑ0�

|µE|pBrpxqq
rn�1

�
1� |µEpBrpxqq|

|µE|pBrpxqq


� 0.

Finally, since Crpx, νq � B?
2rpxq for every ν P Sn�1, we infer that if r ¡ 0 is

such that epE, x, rq   ε for some ε ¡ 0, then, by the definition of spherical

excess, there exists ν P Sn�1 such that

eCpE, x, r, νq ¤ 2
1�n
2 eC

�
E, x,

r?
2
, ν



¤ 1

rn�1

»
B�EXBrpxq

p1� νE � νq dHn�1

� epE, x, rq   ε,

where the first inequality is due to Proposition 1.1.22.
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1.1.3 BV functions

The notion of BV functions is a generalization of the notion of sets of finite

perimeter. Indeed, a set is of (locally) finite perimeter if and only if its char-

acteristic function is a (locally) BV function.

Definition 1.1.25 (BV functions). Let u P L1pΩ;Rmq. We say that u is a

function of bounded variation (or BV function) in Ω if and only if

the distributional derivative of u is representable by a finite Rnm-valued Radon

measure Du � pDiu
αq iPt1,...,nu
αPt1,...,mu

in Ω, i.e., for any i P t1, . . . , nu and α P
t1, . . . ,mu, »

Ω

uα∇xiφ dx � �
»

Ω

φ dDiu
α, @φ P C1

c pΩq.
The vector space of all functions of bounded variation in Ω is denoted by

BV pΩ;Rmq. Furthermore, we set the space of those BV functions that take

values in S � Rm as BV pΩ;Sq.
Proposition 1.1.26 (Lower semicontinuity of the total variation of the dis-

tributional gradient). Let u P L1pΩ;Rmq. The map u ÞÝÑ |Du|pΩq is lower

semicontinuous in BV pΩ;Rmq with respect to the L1
locpΩ;Rmq topology.

Since the gradient of a BV function is a Radon measure, it is possibile to

introduce the notion of weak-star convergence. Actually, we give its charac-

terization as a definition (see Definition A.1.13).

Definition 1.1.27 (Weak-star convergence of BV functions). Let tuhuhPN �
BV pΩ;Rmq and u P BV pΩ;Rmq. We say that uh weakly-star converges in

BV pΩ;Rmq to u if and only if uh Ñ u in L1pΩ;Rmq and

sup
hPN

|Duh|pΩq   �8.

1.2 Some tools from the regularity theory

In this section we introduce some useful and classical tools from the regularity

theory of minimizers of quadratic functionals or solutions of quadratic partial

differential equations in divergence form.

Actually, the two subjects are closely related to each other; indeed, it is

well-known that minimizers of functionals, under very general assumptions, are

weak solutions of the associated Euler-Lagrange equation. Conversely, under

dual assumptions, solutions of a partial differential equations are quasi-minima

of a suitable functional.

Neverthless, we recall the results in a convenient formulation that will be

suitable for our aims in Part I. Our model functional is

Fpu,Ωq :�
»

Ω

F px, upxq,∇upxqq dx, @u P W 1,ppΩq,
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where F : Ω�R�Rn Ñ R is a measurable function. We will often write Fpuq
in lieu of FpE, uq if F is integrated over the whole space Ω.

For interior and boundary regularity results regarding F , we shall make

use of local and global minimizers.

Definition 1.2.1 (Local and global minimizers). Let u0 P W 1,ppΩq. We say

that

• u P W 1,p
loc pΩq is a local minimizer of the functional F if for every φ P

W 1,ppΩq, with sptφ �� Ω we have

Fpu, sptφq ¤ Fpu� φ, sptφq;

• u P u0 � W 1,p
0 pΩq is a minimizer of the functional F if for every v P

u0 �W 1,p
0 pΩq we have

Fpuq ¤ Fpvq.
We are interested in integrands with quadratic growth of the type

F px, ξq �
ņ

i,j�1

aijpxqξiξj, @px, ξq P Ω� Rn.

The Euler-Lagrange equation associated with the corrispondent class of func-

tionals is

∇jpaijpxq∇iuq � 0, @x P Ω,

where we have adopted the Einstein’s notation for which repeated indices are

implicitly summed over.

The first powerful tool of regularity theory is Caccioppoli’s inequality. We

will see in this section how the it can be employed, following an idea due to L.

Nirenberg, to prove existence of higher-order weak derivatives of minimizers of

quadratic (and also more general) functionals and suitable integrability results

thereof, and how to translate these estimates into actual regularity results by

means of the Sobolev embedding theorems. The latter aim will be pursued

mostly in Part I.

Theorem 1.2.2 (Caccioppoli’s inequality). Let u P H1
locpΩq be a local weak

solution of

∇jpaij∇iuq � 0 in Ω, (1.4)

with measurable coefficients aij : Ω Ñ R satisfying

ν|ξ|2 ¤ aijpxqξiξj ¤ N |ξ|2, @px, ξq P Ω� Rn,

for some positive constants ν and N . Then, for any B2ρpx0q � Ω, it holds»
Bρpx0q

|∇u|2 dx ¤ cpν,Nq
ρ2

»
B2ρpx0q

pu� ux0,2ρq2 dx.
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Proof. Let φ :� pu�ux0,2ρqη2 P H1
0 pB2ρpx0qq, where η P C1

c pB2ρpx0qq is a cut-off

function such that 0 ¤ η ¤ 1, η � 1 in Bρpx0q and |∇η| ¤ c
ρ
, for some positive

constant c. Then, plugging φ as a test function in the weak formulation of

(1.4), we get»
B2ρpx0q

aij∇iu∇juη
2 dx � �2

»
B2ρpx0q

aijηpu� ux0,2ρq∇iu∇jη dx.

Using the uniform ellipticity and the uniform boundedness condition on aij,

by Young’s inequality, we infer

ν

»
B2ρpx0q

η2|∇u|2 dx ¤ Nε

»
B2ρpx0q

η2|∇u|2 dx� N

ε

»
B2ρpx0q

pu� ux0,2ρq2|∇η|2 dx,

for any positive ε. Choosing ε � εpν,Nq sufficiently small, it holds»
B2ρpx0q

η2|∇u|2 dx ¤ cpν,Nq
»
B2ρpx0q

pu� ux0,2ρq2|∇η|2 dx.

Finally, the properties of η yield to the thesis.

Definition 1.2.3 (Superlevel sets). Let u P H1
locpΩq, BRpx0q � Ω and k P R.

We define the superlevel set of u as

Apk,Rq :� tx P BRpx0q : upxq ¡ ku.
A variant of Caccioppoli’s inequality on superlevel sets will be the main tool

to prove the Hölder continuity of local minimizers of quadratic functionals.

Remark 1.2.4 (Caccioppoli’s inequality on superlevel sets). We point out

that choosing φ :� pu � kq�η2, with k ¥ 0, as a test function in the weak

formulation of (1.5) and following the same proof, we get»
Apk,ρq

|∇u|2 dx ¤ cpν,Nq
ρ2

»
Apk,2ρq

pu� kq2 dx.

A rather surprising feature of Caccioppoli’s inequality on superlevel sets

is that it contain practically all the information deriving from the minimum

properties of the function u, at least for what concerns its Hölder continuity.

In the next theorem, according to a brilliant idea by E. De Giorgi, we will show

a strong maximum principle in a quantitative form (more precisely a L2 to L8

estimate), that is the first step to prove the Hölder continuity of solutions.

We shall need the following iterative lemma.

Lemma 1.2.5. Let α ¡ 0 and let txiuiPN0 � R� such that

xi�1 ¤ CBix1�α
i ,

for some C ¡ 0 and B ¡ 1. If x0 ¤ C� 1
αB� 1

α2 , we have

xi ¤ B� i
αx0,

and hence in particular lim
iÑ�8

xi � 0.
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Proof. We prove the assertion by induction. If i � 0, the inequality is trivially

true. We assume that it holds for some i P N. Using our assumptions and the

induction hypothesis, we conclude

xi�1 ¤ CBix1�α
i ¤ CBi

�
1� 1�α

α

�
x1�α

0 � �
CB

1
αxα0

�
B� i�1

α x0 ¤ B� i�1
α x0.

The following theorem is the main result proved by E. De Giorgi.

Theorem 1.2.6 (De Giorgi’s regularity theorem). Let u P H1
locpΩq be a local

weak solution of

∇jpaij∇iuq � 0 in Ω, (1.5)

with measurable coefficients aij : Ω Ñ R satisfying

ν|ξ|2 ¤ aijpxqξiξj ¤ N |ξ|2, @px, ξq P Ω� Rn,

for some positive constants ν and N . Then there exists two constants α �
αpn, ν,Nq P p0, 1q and c � cpn, ν,Nq ¡ 0 such that u P C0,α

loc pΩq and, for any

Bspxq � Ω, the following two estimates hold

sup
B ρ

2
pxq
|u|2 ¤ cpn, ν,Nq

ρn

»
Bρpxq

|u|2 dx, (1.6)

»
Bρpxq

|u� ux0,ρ|2 dx ¤ cpn, ν,Nq
�
ρ

s


n�2α »
Bspxq

|u� ux,s|2 dx, (1.7)

for any ρ P �0, s
2

�
.

Proof. We may assume for simplicity of notation that x � 0. Let ρ
2
¤ σ ¤ τ ¤

ρ, k ¥ 0 and ζ :� ηpu � kq�, where η P C8
c pBσ�τ

2
q is a cut-off function such

that η � 1 on Bσ and |∇η| ¤ c
τ�σ , for some positive constant c. Computing

∇ζ � pu�kq�∇η�η∇u, by Hölder’s and Sobolev’s inequalities, Caccioppoli’s

inequality on superlevel sets, we obtain»
Apk,σq

pu� kq2 dx (1.8)

¤
»
Apk,σq

ζ2 dx ¤
�»

Apk,σq
ζ2� dx


 2
2� |Apk, τq|1� 2

2�

¤ cpnq|Apk, τq| 2n
»
Apk,σq

|∇ζ|2 dx

¤ cpnq|Apk, τq| 2n
� »

A
�
k,σ�τ

2

� |∇u|2 dx� 1

pτ � σq2
»
A
�
k,σ�τ

2

�pu� kq2 dx
�

¤ cpn, ν,Nq |Apk, τq|
2
n

pτ � σq2
»
Apk,τq

pu� kq2 dx.
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For h   k, using that Apk, τq � Aph, τq, we easily deduce the following two

inequalities:»
Apk,τq

pu� kq2 dx ¤
»
Apk,τq

pu� hq2 dx ¤
»
Aph,τq

pu� hq2 dx,»
Aph,τq

pu� hq2 dx ¥
»
Apk,τq

pu� hq2 dx ¥ pk � hq2|Apk, τq|.

Inserting them in (1.8), we deduce that»
Apk,σq

pu� kq2 dx ¤ cpn, ν,Nq |Apk, τq|
2
n

pτ � σq2
»
Aph,τq

pu� hq2 dx

¤ cpn, ν,Nq
pτ � σq2pk � hq 4

n

�»
Aph,τq

pu� hq2 dx

1� 2

n

.

Let d ¥ 0 a number to be chosen later, ki :� 2dp1� 2�iq and σi :� ρ
2
p1� 2�iq,

for i P N0. We plug σ � σi�1, τ � σi, k � ki�1, h � ki in the previous

inequality, getting»
Apki�1,σi�1q

pu� ki�1q2 dx ¤ cpn, ν,Nq22i
�

1� 2
n

�
ρ2d

4
n

�»
Apki,τq

pu� kiq2 dx

1� 2

n

.

If we set Φi :� 1
d2

³
Apki,σiqpu� kiq2 dx and we divide the previous inequality by

d2, we infer

Φi�1 ¤ cpn, ν,Nq
ρ2

22i
�

1� 2
n

�
Φ

1� 2
n

i .

Choosing

d � cpn, ν,Nq
�
�
»
Bρ

u2
� dx


 1
2

,

so that Φ0 ¤ cpn, ν,Nqρn, we are in position to apply Lemma 1.2.5 and, thus,

we obtain that lim
iÑ�8

Φi � 0, that is

sup
Q ρ

2

u ¤ 2d � cpn, ν,Nq
�
�
»
Bρ

u2
� dx


 1
2

.

Substituting u with �u, we get (1.6). Furthermore, it can be showed that

there exists α � αpn, ν,Nq P p0, 1q such that

oscpu;Bρpxqq ¤ cpn, ν,Nq
�
ρ

s


α

oscpu;Bspxqq, (1.9)

for every Bspxq � Ω, with ρ P �
0, s

2

�
. This estimate yields to u P C0,α

loc pΩq.
Now we prove (1.7). Let x � 0 again for simplicity. Since u � u s

2
and u s

2
� u

are both weak solutions of (1.5), we apply (1.6) twice,

sup
B s

2

pu� u s
2
q2 ¤ cpn, ν,Nq

sn

»
Bs

pu� u s
2
q2 dx,
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sup
B s

2

pu s
2
� uq2 ¤ cpn, ν,Nq

sn

»
Bs

pu s
2
� uq2 dx.

Combining the previous two inequalities, we infer

oscpu2;B s
2
q

¤ cpn, ν,Nq�
»
Bs

|u� u s
2
|2 dx ¤ cpn, ν,Nq

�
�
»
Bs

|u� us|2 dx� |us � u s
2
|2
�

¤ cpn, ν,Nq
�
�
»
Bs

|u� us|2 dx��
»
B s

2

|us � u|2 dx
�
¤ cpn, ν,Nq�

»
Bs

|us � u|2 dx.

Using (1.9), we get

�
»
Bρ

|u� uρ|2 dx ¤ oscpu2;Bρq ¤ cpn, ν,Nq
�
ρ

s


2α

oscpu2;B s
2
q

¤ cpn, ν,Nq
�
ρ

s


2α

�
»
Bs

|us � u|2 dx,

which leads to (1.7).

Another useful consequence of Caccioppoli’s inequality is the control of

the oscillation of minimizers of a “frozen” functional by the oscillation of the

boundary datum. This result will come in handy in proofs based on comparison

strategies.

We state the next proposition for more general integrands with quadratic

growth of the type

|ξ|2 � c ¤ F px, s, ξq ¤ |ξ|2 � c, (1.10)

for some positive constant c. We shall assume that the functional is “freezed”

in the first two variables.

Proposition 1.2.7 (Oscillation). Let BRpx0q � Rn, F be an integrand satis-

fying (1.10) and v P H1pBRpx0qq be a minimizer of the functional

F0pwq �
»
BRpx0q

F px0, upx0q,∇wq dx, @w P H1pBRpx0qq,

under the boundary condition w � u on BBRpx0q, for some bounded function

u P H1pBRpx0qq. Then there exists a constant C � Cpn, cq such that

oscpv;BRpx0qq ¤ oscpu;BRpx0qq � CR.

Proof. We define k ¥ k0 :� sup
BBRpx0q

u and w :� mintv, ku. By minimality we

have »
Apk,Rq

F px0, upx0q,∇vq dx ¤
»
Apk,Rq

F px0, upx0q,∇wq dx.
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Thanks to the growth conditions on F we can write»
Apk,Rq

|∇v|2 dx� c|Apk,Rq| ¤
»
Apk,Rq

|∇w|2 dx� c|Apk,Rq| � c|Apk,Rq|,

that is »
Apk,Rq

|∇v|2 dx ¤ 2c|Apk,Rq|.

Considering any h ¡ k, by means of Hölder’s and Poincaré’s inequalities and

the previous estimate, we get

ph� kq2|Aph,Rq| ¤
»
Aph,Rq

pv � kq2 dx ¤
»
Apk,Rq

pv � kq2 dx

¤
�»

Apk,Rq
pv � kq2� dx


 2
2�

|Apk,Rq| 2n

¤ cpnq
»
Apk,Rq

|∇v|2 dx|Apk,Rq| 2n ¤ cpn, cq|Apk,Rq|1� 2
n .

Choosing ki :� k0 � dp1 � 2�iq and ai � |Apki, Rq|, with i P N0, we write the

previous estimate for h � ki�1 and h � ki, obtaining

ai�1 ¤ cpn, cqd�222ia
1� 2

n
i .

Choosing d � cpn, cqR so that a0 ¤ cpn, cqdn, we are in position to apply

Lemma 1.2.5. As a result,

0 � lim
iÑ�8

ai � |Apk0 � d,Rq|,

that is

sup
BRpx0q

v ¤ sup
BBRpx0q

u� cpn, cqR.

We obtain the thesis, by applying the same argument to �v.

As mentioned before, some conventional regularity results, i.e. results con-

cerning existence and quantitative bounds for higher derivatives of weak so-

lutions of elliptic equations and systems, can be obtained by Caccioppoli’s

inequality. We will follow the Nirenberg’s method, which gives a uniform

bound on the difference quotient of the gradient of minimizers. This will be

sufficient thanks to Lemma 1.2.9. Actually, the method is more general and it

fits well for problem with non-costant coefficients.

Definition 1.2.8 (Difference quotient function). Let u : Ω Ñ R, h P R and

s P t1, . . . , nu. We call the difference quotient of u with respect to the

direction es the function

∆s,hfpxq :� fpx� hesq � fpxq
h

.
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The function ∆s,hf is well-defined in the set

∆s,hpΩq :� tx P Ω : x� hes P Ωu,
and hence in the set

Ω|h| :� tx P Ω : distpx, BΩq ¡ |h|u.
The following properties of difference quotients are immediate:

• if u P H1pΩq, then ∆hu P H1pΩ|h|q and

∇i∆s,hu � ∆s,h∇iu, @i P t1, . . . , nu;

• if at least one of the functions f and g has its support contained in Ω|h|,
then an integration by parts formula holds:»

Ω

f∆s,hg dx � �
»

Ω

g∆s,�hf dx;

• a Leibniz property holds:

∆s,hpfgqp�q � fp� � hesq∆s,hgp�q � gp�q∆s,hfp�q.

We also recall a well-known lemma.

Lemma 1.2.9. Let u P L2pΩq and assume that there exists a positive constant

K such that, for every h P R sufficiently small, we have

‖∆s,hu‖L2pΩ|h|q ¤ K,

for some s P t1, . . . , nu. Then, ∇su P L2pΩq and ‖∇sv‖L2pΩq ¤ K. Moreover,

for hÑ 0, ∆s,huÑ ∇su in L2
locpΩq.

Theorem 1.2.10 (Regularity of the second order derivatives). Let u P H1
locpΩq

a local weak solution of

∇jpaij∇iuq � 0 in Ω, (1.11)

with constant coefficients aij satisfying

ν|ξ|2 ¤ aijξiξj ¤ N |ξ|2, @ξ P Rn,

for some positive constants ν and N . Then u P H2
locpΩq.

Proof. Let us assume for simplicity of notation that x0 � 0 and fix Bρ � Ω. For

some direction s P t1, � � � , nu and |h|   distpBρ,Ωq
2

, we set φ :� ∆s,�hpη2∆s,huq,
where η P C8

c pBρq is a cut-off function such that 0 ¤ η ¤ 1, η � 1 in B ρ
2

and
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|∇η| ¤ c
ρ
, for some positive constant c. Then, plugging φ as a test function in

the weak formulation of (1.11), we get»
Bρ

aij∇iu∇j

�
∆s,�hpη2∆s,huq

�
dx � 0

Commuting the derivative and the difference quotient and integrating by parts,

we are led to »
Bρ

aij∆s,h∇iupη2∆s,h∇ju� 2η∆s,hu∇jηq dx � 0.

Using the ellipticity of aij and applying Young’s inequality, we obtain

ν

»
Bρ

η2|∇∆s,hu|2 dx ¤ 2N

»
Bρ

η|∆s,h∇u||∇η||∆s,hu| dx

¤ Nε

»
Bρ

η2|∆s,h∇u|2 dx� N

ε

»
Bρ

|∇η|2|∆s,hu|2 dx,

for any ε ¡ 0. Choosing ε � εpν,Nq sufficiently small and exploiting the

properties of η, we can write»
B ρ

2

|∇∆s.hu|2 dx ¤ cpν,Nq
ρ2

»
Bρ

|∆s,hu|2 dx.

Since the sequence t∇∆s,huuhPN is bounded in L2, then, by Lemma 1.2.9,

∇∆s,huÑ ∇∇su in L2
locpB ρ

2
q, which implies that u P H2

locpB ρ
2
q and, summing

over s, »
B ρ

2

|∆2u|2 dx ¤ cpν,Nq
r2

»
Bρ

|∇u|2 dx.

The following theorem can be found in a far more general version in [31].

It proves that local minimizers u are Lipschitz continuous by means of the

Moser’s iteration technique, which provides a L2 to L8 estimate of ∇u.

Theorem 1.2.11. Let u P H1
locpΩq a local weak solution of

∇jpaij∇iuq � 0 in Ω, (1.12)

with constant coefficients aij satisfying

ν|ξ|2 ¤ aijξiξj ¤ N |ξ|2, @ξ P Rn,

for some positive constants ν and N . Then there exists a positive constant

C � Cpn, ν,Nq such that, for any Bρpxq � Ω,

sup
B ρ

2
pxq
|∇u|2 ¤ C�

»
Bρpxq

|∇u|2 dx.



1.2. Some tools from the regularity theory 44

Proof. We may assume, up to a rescaling argument, that x � 0 and r � 1. For

s P t1, . . . , nu, we set φ :� η2∇sψ, where the function ψ P C2pB1q is arbitrary

and η P C8
c pB1q is a cut-off function such that 0 ¤ η ¤ 1. Then, plugging φ

as a test function in the weak formulation of (1.12), we get»
Bρ

aij∇iuη
2∇2

jsψ dx� 2

»
Bρ

aij∇iu∇sψη∇jη dx � 0.

Integrating by parts the first integral we get

�
»
Bρ

aij∇2
isuη

2∇jψ dx�2

»
Bρ

aij∇iuη∇sη∇jψ dx�2

»
Bρ

aij∇iu∇sψη∇jη dx � 0,

which holds for any ψ P H1pB1q. We choose ψ :� |∇u|2β∇su, with β ¥ 0,

obtaining»
Bρ

aij∇2
isuη

2∇2
jsu|∇u|2β dx� β

»
Bρ

aij∇2
isu∇suη

2∇jp|∇u|2q|∇u|2β�2 dx

� �2

»
Bρ

aij∇iuη∇sη∇2
jsu|∇u|2β dx

� 2β

»
Bρ

aij∇iuη∇sη∇su|∇u|2β�2∇jp|∇u|2q dx

� 2

»
Bρ

aij∇iu∇2
ssu|∇u|2βη∇jη dx

� β

»
Bρ

aij∇iu|∇u|2β�2∇sp|∇u|2q∇suη∇jη dx

¤ cpn,Nq
»
Bρ

|∇u|η|∇η|�|∇u|2β|∇2u| � β|∇u|2β�2|∇u||∇p|∇u|2q|� dx.
Summing over s, using the ellipticity of aij and applying Young’s inequality,

we get

ν

»
Bρ

|∇2u|2|∇u|2βη2 dx� βν

2

»
Bρ

|∇u|2β�2|∇p|∇u|2q|2η2 dx

¤ cpn,Nq
�
ε

»
Bρ

η2|∇u|2β|∇2u|2 dx� 1

ε

»
Bρ

|∇u|2β�2|∇η|2 dx

� βε

»
Bρ

|∇u|2β�2|∇p|∇u|2q|2η2 dx� β

ε

»
Bρ

|∇u|2β�2|∇η|2 dx
�
.

Choosing ε � εpn, ν,Nq sufficiently small, we get

ν

2

»
Bρ

|∇u|2β|∇2u|2η2 dx� βν

4

»
Bρ

|∇u|2β�2|∇p|∇u|2q|2η2 dx

¤ cpn, ν,Nqp1� βq
»
Bρ

|∇u|2β�2|∇η|2 dx. (1.13)
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Since »
Bρ

|∇u|2β�2|∇p|∇u|2q|2η2 dx ¤ cpnq
»
Bρ

|∇u|2β|∇2u|2η2 dx,

dividing both sides of (1.13) by 1� β, we obtain»
Bρ

|∇u|2β�2|∇p|∇u|2q|2η2 dx ¤ cpn, ν,Nq
»
Bρ

|∇u|2β�2|∇η|2 dx. (1.14)

Let γ :� 1
2
� β

2
¥ 1

2
. Computing

|∇�|∇u|2γη�|2
γ2

¤ η2|∇u|4γ�4|∇p|∇u|2q|2 � |∇u|4γ|∇η|2
γ2

,

the combination of Sobolev-Poincaré’s inequality and (1.14) yield�»
Bρ

p|∇u|2γηq2χ dx

 1

2χ

¤
�»

Bρ

|∇p|∇u|2γηq|2 dx

 1

2

¤ cpn, ν,Nqγ
�»

Bρ

|∇u|4γ|∇η|2 dx

 1

2

,

where χ :� n
n�2

if n ¡ 2 and any positive number greater than 1. We apply

the previous inequality for ρi :� 1
2
� 1

2i
, γi :� χi�1

2
, η P C1

c pBρiq such that

0 ¤ η ¤ 1, η � 1 on Bρi�1
and |∇η| ¤ c2i, for some positive constant c and for

any i P N, getting∥∥|∇u|2∥∥γi
L2γi�1 pBρi�1 q

¤ cpn, ν,Nqγi2i
∥∥|∇u|2∥∥γi

L2γi�1 pBρi q
,

and so, iterating the previous estimate,

∥∥|∇u|2∥∥
L2γi�1 pBρi�1 q

¤
i¹

j�1

�
cpn, ν,Nqγj2j

� 1
γj

∥∥|∇u|2∥∥
L1pB1q . (1.15)

We remark that the product
±i

j�1

�
cpn, ν,Nqγj2j

� 1
γj is convergent, as iÑ �8,

because

log

�
i¹

j�1

�
cpn, ν,Nqγj2j

� 1
γj

�
�

i̧

j�1

χ
2

χj

�
log

�
cpn, ν,Nq

2χ



� j logp2χq

�
,

and the series in right-hand side is convergent, being χ ¥ 1. Thus, letting

iÑ �8 in (1.15), γi Ñ �8 and we conclude

‖∇u‖2
L8pB 1

2
q ¤ cpn, ν,Nq ‖∇u‖2

L2pB1q .



Chapter 2

The quadratic case

In this chapter we deal with energy functionals of the type

FpE, u; Ωq �
»

Ω

�
F px, u,∇uq � 1EGpx, u,∇uq

�
dx� P pE; Ωq, (2.1)

where Ω � Rn is a bounded connected open set, u P H1pΩq and E � Rn is a

set of finite perimeter in Ω. We assume that the density energies F and G in

(2.1) satisfy the following structural assumptions:

F px, s, ξq �
ņ

i,j�1

aijpx, sqξiξj �
ņ

i�1

aipx, sqξi � apx, sq, (2.2)

Gpx, s, zq �
ņ

i,j�1

bijpx, sqξiξj �
ņ

i�1

bipx, sqξi � bpx, sq, (2.3)

for any px, s, ξq P Ω� R� Rn. Concerning the coefficients we assume that

aij, bij, ai, bi, a, b P C0,1pΩ� Rq.
We denote by LD the greatest Lipschitz constant of the data aij, bij, ai, bi, a, b,

that is

|∇aij| ¤ LD, |∇bij| ¤ LD in Ω� R, (2.4)

and the same holds true for ai, bi, a, b.

Moreover, to ensure the existence of minimizers we assume the uniform bound-

edness of the coefficients and the uniform ellipticity of the matrices aij and bij,

ν|ξ|2 ¤ aijpx, sqξiξj ¤ N |ξ|2, ν|ξ|2 ¤ bijpx, sqξiξj ¤ N |ξ|2, (2.5)
ņ

i�1

|aipx, sq| �
ņ

i�1

|bipx, sq| � |apx, sq| � |bpx, sq| ¤ L, (2.6)

for any px, s, ξq P Ω�R�Rn, where ν, N and L are three positive constants.

We are interested in the regularity of minimizers of the following con-

strained problem.

46
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Definition 2.0.1. We shall denote by (Pc) the constrained problem

min
EPApΩq

vPu0�H1
0 pΩq

tFpE, v; Ωq : |E| � du , (Pc)

where u0 P H1pΩq is the boundary datum and 0   d   |Ω| is a fixed number.

It is clear that any minimizer u of problem (Pc) is a local minimizer of the

functional (2.1) and therefore satisfies the Euler-Lagrange equation

B
Bxi

�
Fzipx, u,∇uq �1EpxqGzipx, u,∇uq

�� � Fupx, u,∇uq �1EpxqGupx, u,∇uq,

where, as usual, we have used Einstein’s convention on repeated indices.

The problem of handling with the constraint |E| � d is overtaken using an

argument introduced in [29], ensuring that every minimizer of the constrained

problem (Pc) is also a minimizer of a penalized functional of the type

FΛpE, v; Ωq � FpE, v; Ωq � Λ
��|E| � d

��,
for some suitable Λ ¡ 0 (see Theorem 2.2.1 below). Therefore, we give in

addition the following definition.

Definition 2.0.2. We shall denote by (P ) the penalized problem

min
EPApΩq

vPu0�H1
0 pΩq

FΛpE, v; Ωq, (P )

where u0 P H1pΩq is fixed and ApΩq is the same class defined in Definition

2.0.1.

From the point of view of regularity, the extra term Λ
��|E|� |F |�� is a higher

order negligible perturbation.

Our aim is to prove the reduction of the Hausdorff dimension of the singular

set of BE for minimizing couples pE, uq of (2.1). Basically, we adopt the same

strategy of [35]. The main result of the chapter is stated in the following

theorem.

Theorem 2.0.3. Let pE, uq be a minimizer of problem (P ), under assumptions

(2.2)� (2.6). Then

a) there exists a relatively open set Γ � BE such that Γ is a C1,µ-hypersurface

for all 0   µ   1
2
;

b) there exists ε � εpn, ν,N, Lq ¡ 0 such that

Hn�1�εppBEzΓq X Ωq � 0.
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For reader’s convenience the chapter is structured in sections which reflect

the proof strategy. Section 2.1 collects some prelimary definitions and two

useful and well-known iterative lemmata that will be applied later on. Section

2.2 is devoted to proving that minimizers of the constrained problem (Pc) solve

also problem (P ). In Section 2.3 some higher integrability results are proved.

As in the case of minimizers of the Mumford-Shah functional, the proof of

regularity is based on the study of the interplay between the perimeter and the

bulk energy (see [7], [44]). We recall that the Hölder exponent 1
2

is critical for

solutions u of either (P ) or (Pc), in the sense that, whenever u P C0, 1
2 , under

appropriate scaling, the bulk term locally has the same dimension n� 1 as the

perimeter term. In this regard, our starting point is to prove suitable energy

decay estimates for the bulk energy. These estimates are presented in Section

2.4. The key point of this approach is contained in Lemma 2.4.6, where it is

proved that the bulk energy decays faster than ρn�1, that is, for any δ ¡ 0,»
Bρpx0q

|∇u|2 dx ¤ Cρn�δ, (2.7)

either in the case that

mint|E XBρpx0q|, |Bρpx0qzE|u   ε0|Bρpx0q|,
or in the case that there exists an half-space H such that

|pE∆Hq XBρpx0q| ¤ ε0|Bρpx0q|,
for some ε0 ¡ 0. The latter case is the hardest one to handle because it relies

on the regularity properties of solutions of a transmission problem. Let us

notice that, for any given E � Ω, local minimizers u of the functional»
Ω

�
F px, u,∇uq � 1EGpx, u,∇uq

�
dx (2.8)

are Hölder continuous, u P C0,α
loc pΩq, but the needed bound α ¡ 1

2
cannot

be expected in the general case without any information on the set E. In

Section 2.4 we prove that minimizers of the functional (2.8) are in C0,α for

every α P p0, 1q, in the case E is an half-space. In this context the linearity

of the equation strongly comes into play ensuring that the derivatives of the

Euler-Lagrange equation are again solutions of the same equation.

For the proof of the regularity results, we readapt a technique depicted in

the book [7] in the context of the Mumford-Shah functional and recently used

in a paper by E. Mukoseeva and G. Vescovo, [49].

Once obtained the estimates of Section 2.4, in Section 2.5 we are in position

to prove that, if in a ball Bρpx0q the perimeter of E is sufficiently small, then

the total energy»
Brpx0q

|∇u|2 dx� P pE;Brpx0qq, 0   r   ρ,
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decays as rn (see Lemma 2.5.2). Making use of the latter energy density esti-

mate we are in position to deduce in the same section a density lower bound

for the perimeter of E as well. In the subsequent sections the proof strategy

follows the path traced from the regularity theory for perimeter minimizers.

In particular, in Section 2.6 it is proved the compactness for sequences of

minimizers which more or less follows in a standard way from the density lower

bound.

Sections 2.7, 2.8 and 2.9 are devoted to proving some additional conse-

quences of the density lower bound which involve the excess

epx, rq � inf
νPSn�1

epx, r, νq :� inf
νPSn�1

1

rn�1

»
BEXBrpxq

|νEpyq � ν|2
2

dHn�1pyq,

(see Definition 1.1.20). Indeed, we prove the height bound lemma, the Lips-

chitz approximation theorem and the reverse Poincaré inequality.

In Section 2.10 we compute the Euler-Lagrange equation for FpE, uq in-

volving the variation of the set E.

Section 2.11 is devoted to proving the excess improvement, which follows

from the fact that, whenever the excess epx, rq goes to zero, for r Ñ 0, the

Dirichlet integral
³
Bρpx0q |∇u|2 dx decays as in (2.7).

Finally, in Section 2.12 we provide the proof of Theorem 2.0.3, which is a

consequence of the excess improvement proved before.

2.1 Some definitions and two iterative lem-

mata

For any µ ¥ 0, we define the Morrey space L2,µpΩq as

L2,µpΩq :�
"
u P L2pΩq : sup

x0PΩ, r¡0
r�µ

»
ΩXBrpx0q

|u|2 dx   �8
*
. (2.9)

We recall a classical result involving Morrey spaces, which can be obtain

by the combination of Poincaré’s inequality and the characterization of Cama-

panato’s spaces.

Lemma 2.1.1. Let µ P r0, 2q, Brpx0q � Rn and u P H1pBrpx0qq. If |∇u| P
L2,n�µpBrpx0qq, then u P CαpBrpx0qq, where α � 1� µ

2
.

The following definition is standard.

Definition 2.1.2. Let v P H1
locpΩq and assume that E � Ω is fixed. We define

the functional FE as

FEpw,Ωq :� FpE,w; Ωq, @w P H1pΩq.
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It is worth pointing out that for a quadratic integrand F of the type given

in (2.2) the following growth conditions can be immediately deduced from

assumptions (2.5) and (2.6):

ν

2
|z|2 � L2

ν
¤ F px, s, zq ¤ pN � 1q|z|2 � LpL� 1q, @px, s, zq P Ω� R� Rn.

(2.10)

Here we recall the proofs of two useful iterative lemmata.

Lemma 2.1.3. Let Zptq be a bounded non-negative function in the interval

rρ,Rs and assume that, for ρ ¤ t   s ¤ R, we have

Zptq ¤ θZpsq � A

ps� tq2 �B, (2.11)

with A,B ¥ 0 and 0 ¤ θ   1. Then

Zpρq ¤ c

�
A

pR � ρq2 �B

�
,

for some c � cpθq ¡ 0.

Proof. Although the proof of this lemma is standard and can be found in

[37, Lemma 6.1], we show it here for the sake of completeness. Consider the

increasing sequence ttiuiPN0 � rρ,Rs such that

t0 � ρ and ti�1 � t1 � p1� λqλipR � ρq,
where λ P p0, 1q will be chosen later on. Iterating (2.11) for t � ti and s � ti�1

we infer

Zpρq ¤ θkZptkq �
�

A

p1� λq2pR � ρq2 �B

� k�1̧

i�0

pθλ�2qi.

Now we choose λ � λpθq such that θλ�2   1. Passing to the limit for k Ñ �8,

the geometric series in the right-hand side converges and we get the conclusion

with c � 1
p1�λq2p1�θλ�2q .

The next lemma can be found in [7, Lemma 7.54].

Lemma 2.1.4. Let f : p0, as Ñ r0,�8q be an increasing function such that

fpρq ¤ A

��
ρ

R


p

�Rs

�
fpRq �BRq,

whenever 0   ρ   R ¤ a, for some constants A,B ¥ 0, 0   q   p, s ¡ 0.

Then there exist two positive constants R0pp, q, s, Aq and cpp, q, Aq such that

fpρq ¤ c

�
ρ

R


q

fpRq � cBρq,

whenever 0   ρ   R ¤ mintR0, au.
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Proof. Let us fix r � rpp, q, Aq P pp, qq and τ � τpp, q, Aq P p0, 1q such that

2Aτ p ¤ τ r. Let R0 � R0pp, q, s, Aq ¡ 0 such that Rs
0 ¤ τ p and R ¤ mintR0, au.

By assumption, for any i P N, we easily get

fpτ iRq ¤ A
�
τ p � τ isRs

�
f
�
τ iR

��Bτ iqRq ¤ τ rf
�
τ iR

��Bτ iqRq.

The previous inequality can be iterated obtaining

fpτ kRq ¤ τ kqfpRq �Bpτ kRqqτ�q
k�1̧

i�0

τ ipr�qq,

for some k P N to be chosen. We now distinguish two cases: if ρ ¤ τR, we

choose k P N such that τ pk�1qR   ρ ¤ τ kR and we conclude

fpρq ¤ fpτ kRq ¤ τ�qτ pk�1qqfpRq �Bτ�2q
�
τ k�1R

�q k�1̧

i�0

τ ipr�qq

¤ cpp, q, Aq
�
ρ

R


q

fpRq � cpp, q, AqBρq.

If ρ P pτR,Rs, choosing c � cpp, q, Aq such that cτ q ¥ 1, since f is increasing,

we infer

fpρq ¤ cpp, q, Aqτ qfpRq ¤ cpp, q, Aq
�
ρ

R


q

fpRq � cpp, q, AqBρq.

2.2 From constrained to penalized problem

The next theorem allows us to overcome the difficulty of handling with the

constraint |E| � d. Indeed, it can be proved that every minimizer of the con-

strained problem (Pc) is also a minimizer of a suitable unconstrained problem

with a volume penalization of the type given in (P ).

Theorem 2.2.1. There exists Λ0 ¡ 0 such that if pE, uq is a minimizer of the

functional

FΛpA,wq �
»

Ω

�
F px,w,∇wq � 1AGpx,w,∇wq dx

�
dx� P pA; Ωq � Λ

��|A| � d
��,

(2.12)

for some Λ ¥ Λ0, among all configurations pA,wq such that w � u0 on BΩ,

then |E| � d and pE, uq is a minimizer of problem (Pc). Conversely, if pE, uq
is a minimizer of problem (Pc), then it is a minimizer of (2.12), for all Λ ¥ Λ0.

Proof. The proof can be carried out as in [29, Theorem 1]. For reader’s conve-

nience we give here its sketch, emphasizing main ideas and minor differences

with respect to the case treated in [29].
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The first part of the theorem can be proved by contradiction. Assume that

there exist a sequence tλhuhPN such that λh Ñ �8 as hÑ �8 and a sequence

of configurations pEh, uhq minimizing Fλh and such that uh � u0 on BΩ and

|Eh| � d for all h P N. Let us choose now an arbitrary fixed E0 � Ω with finite

perimeter such that |E0| � d. Let us point out that

FλhpEh, uhq ¤ FpE0, u0q :� Θ. (2.13)

Without loss of generality we may assume that |Eh|   d. Indeed, the case

|Eh| ¡ d can be treated in the same way considering the complement of Eh in

Ω. Our aim is to show that for h sufficiently large, there exists a configuration

p rEh, ũhq such that Fλhp rEh, ũhq   FλhpEh, uhq, thus proving the result by con-

tradiction.

By the condition (2.13), it follows that the sequence tuhuhPN is bounded

in H1pΩq, the perimeters of the sets Eh in Ω are bounded and |Eh| Ñ d.

Therefore, possibly extracting a not relabelled subsequence, we may assume

that there exists a configuration pE, uq such that uh Ñ u weakly in H1pΩq,
1Eh Ñ 1E a.e. in Ω, where the set E is of finite perimeter in Ω and |E| � d.

The couple pE, uq will be used as reference configuration for the definition of

p rEh, ũhq.
Step 1. Construction of p rEh, ũhq. Proceeding exactly as in [29], we take a

point x P B�E X Ω and observe that the sets Er � pE � xq{r converge locally

in measure to the half-space H � tz � νEpxq   0u, i.e., 1Er Ñ 1H in L1
locpRnq.

Let y P B1p0qzH be the point y � νEpxq{2. Given ε (that will be chosen in

the step 4), since 1Er Ñ 1H in L1pB1p0qq, there exists 0   r   1 such that

|Er XB1{2pyq|   ε, |Er XB1pyq| ¥ |Er XB1{2p0q| ¡ ωn
2n�2

,

where ωn denotes the measure of the unit ball of Rn. Then if we define xr �
x� ry P Ω, we have that

|E XBr{2pxrq|   εrn, |E XBrpxrq| ¡ ωnr
n

2n�2
.

Let us assume, without loss of generality, that xr � 0. From the convergence

of Eh to E we have that for all h sufficiently large

|Eh XBr{2|   εrn, |Eh XBr| ¡ ωnr
n

2n�2
. (2.14)

Let us now define the following bi-Lipschitz function used in [29] which maps

Br into itself:

Φpxq �

$'''&'''%
�
1� σhp2n � 1q�x if |x|   r

2
,

x� σh

�
1� rn

|x|n
	
x if

r

2
¤ |x|   r,

x if |x| ¥ r ,

(2.15)
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for some 0   σh   1{2n sufficiently small in such a way that, setting

rEh � ΦpEhq, ũh � uh � Φ�1 ,

we have | rEh|   d. We obtain

FλhpEh, uhq � Fλhp rEh, ũhq � �»
Br

�
F px, uh,∇uhq � 1EhGpx, uh,∇uhq

�
dx

�
»
Br

�
F px, ũh,∇ũhq � 1 rEh

Gpx, ũh,∇ũhq
�
dy

�
(2.16)

� �
P pEh;Brq � P p rEh;Brq

�� λh
�| rEh| � |Eh|

�
� I1,h � I2,h � I3,h .

Step 2. Estimate of I1,h. First observe that, for |x|   r{2, Φ is simply a

homothety and all the estimates that we need are very easy to obtain.

Conversely, for r{2   |x|   r we have

BΦi

Bxj pxq �
�

1� σh � σhr
n

|x|n


δij � nσhr

n xixj
|x|n�2

, @i, j P t1, . . . , nu. (2.17)

Hence, if η P Rn,

p∇Φηq � η �
�

1� σh � σhr
n

|x|n


|η|2 � nσhr

n px � ηq2
|x|n�2

,

from which it follows that

|∇Φη| ¥
�

1� σh � σhr
n

|x|n


|η|.

From this inequality we easily deduce an estimate on the norm of ∇φ�1, that

is ��∇Φ�1Φ
��
8 � max

|η|�1

����∇Φ�1 ∇Φη

|∇Φη|
���� (2.18)

� max
|η|�1

1

|∇Φη| ¤
�

1� σh � σhr
n

|x|n

�1

¤ �
1� p2n � 1qσh

��1 ¤ 1� 2nnσh, @x P Br.

Moreover, it is clear from (2.17) that, since σh is small, Φ is a small perturba-

tion of the identity in the sense that

|z � z∇Φpyq| ¤ C1pnqσh|z|, for all y, z P Rn. (2.19)

Concerning JΦ, the Jacobian of Φ, from (2.17) we deduce

JΦpxq �
�

1� σh � pn� 1qσhrn
|x|n


�
1� σh � σhr

n

|x|n

n�1

.
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Using the fact that r{2   |x|   r, we can estimate

JΦpxq ¥
�

1� σh � pn� 1qσhrn
|x|n



p1� σhqn�2

�
1� σh � pn� 1qσhr

n

|x|n



¥
�

1� σh � pn� 1qσhrn
|x|n


�
1� σh � pn� 1qσhrn

|x|n



� p1� σhq2 � pn� 1q2σ
2
hr

2n

|x|2n ¥ p1� σhq2 � 4npn� 1q2σ2
h

� 1� 2σh �
�
4npn� 1q2 � 1

�
σ2
h ¡ 1� σh,

provided that we choose

σh   1

4npn� 1q2 � 1
.

Summarizing, we gain the following inequalities for the Jacobian of Φ:

1� σh ¤ JΦpxq, for all x P BrzBr{2, (2.20)

JΦpxq ¤ 1� 2nnσh, for all x P Br.

Now we can perform the change of variables y � Φpxq and, observing that

1
rEh
pΦpxqq � 1Ehpxq, we get

I1,h �
»
Br

�
F px, uh,∇uhq � JΦpxqF pΦpxq, uhpxq,∇uhpxq∇Φ�1pΦpxqqq� dx

�
»
BrXEh

�
Gpx, uh,∇uhq � JΦpxqGpΦpxq, uhpxq,∇uhpxq∇Φ�1pΦpxqqq� dx

�: J1,h � J2,h.

The two terms J1,h and J2,h, involving F and G in Br and BrXEh respectively,

can be treated in the same way. Therefore we just perform the calculation for

J1,h.

To make the argument more clear, since we shall use the structure conditions

(2.2) and (2.3), we introduce the following notation. A2px, sq denotes the

quadratic form and A1px, sq denotes the linear form defined as follows:

A2px, sqrzs :� aijpx, sqzizj, A1px, sqrzs :� aipx, sqzi,
for any px, s, zq P Ω�R�Rn. Analogously we set A0px, sq � apx, sq. Accord-

ingly, we can write down

J1,h

�
»
Br

!
A2px, uhpxqqr∇uhpxqs (2.21)

� A2pΦpxq, uhpxqqr∇uhpxq∇Φ�1pΦpxqqsJΦpxq
)
dx
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�
»
Br

!
A1px, uhpxqqr∇uhpxqs

� A1pΦpxq, uhpxqqr∇uhpxq∇Φ�1pΦpxqqsJΦpxq
)
dx

�
»
Br

!
A0px, uhpxqq�A0p1Φpxq, uhpxqqJΦpxq

)
dx.

We proceed estimating the first difference in the previous equality, being the

others similar and indeed easier to handle.»
Br

!
A2px, uhpxqqr∇uhpxqs�A2pΦpxq, uhpxqqr∇uhpxq∇Φ�1pΦpxqqsJΦpxq

)
dx

�
»
Br

!
A2pΦpxq, uhpxqqr∇uhpxqs

� A2pΦpxq, uhpxqqr∇uhpxq∇Φ�1pΦpxqqsJΦpxq
)
dx

�
»
Br

!
A2px, uhpxqqr∇uhpxqs � A2pΦpxq, uhpxqqr∇uhpxqs

)
dx �: H1,h �H2,h.

The first term H1,h can be estimated observing that, as a consequence of (2.5),

we have:

|A2rξs � A2rηs| ¤ N |ξ � η||ξ � η|, @ξ, η P Rn.

If we apply the last inequality to the vectors

ξ :� ∇uhpxq, η :�a
JΦpxqr∇uhpxq∇Φ�1pΦpxqqs,

we are led to estimate |ξ � η|.
We start observing that, being JΦpxq � �

1 � σhp2n � 1q�n for |x|   r{2, by

also using (2.20) we deduce

|aJΦpxq � 1|   Cpnqσh, for all x P Rn.

Therefore we have

|?JΦξ � ξ| ¤ Cpnqσh|ξ|.
In addition choosing z � ξ∇Φ�1pΦpxqq in (2.19) and using also (2.18), we can

deduce

|ξ∇Φ�1pΦpxqq � ξ| ¤ σhC1pnq|ξ∇Φ�1pΦpxqq|
¤ σh|ξ|C1pnq

∥∥∇Φ�1 � Φ
∥∥
8 ¤ n2nC1pnqσh|ξ|.

Summarizing, we finally get

|ξ � η| ¤ σhCpnq|∇uhpxq|, |ξ � η| ¤ Cpnq|∇uhpxq|,
for some constant C � Cpnq ¡ 0. From the previous estimates we deduce that

|H1,h| ¤ σhNC
2pnq

»
Br

|∇uhpxq|2 dx ¤ σhNC
2pnqΘ, (2.22)
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where Θ is defined in (2.13). The second term H2,h can be estimated using the

Lipschitz assumption of aij and observing that |x�Φpxq| ¤ σhr2
n. Therefore,

we deduce that

|H2,h| ¤ σhr2
nLD

»
Br

|∇uhpxq|2 dx ¤ σhCpn, LDqΘ. (2.23)

In conclusion, since the other terms in (2.21) can be estimated in the same

way, collecting estimates (2.22) and (2.23), we get

|J1,h| ¤ σhCpn,N, LDqΘ.
Since the same estimate holds true for J2,h, we conclude that

I1,h ¥ �σhC2pn,N, LDqΘ, (2.24)

for some constant C2 � C2pn,N, LDq ¡ 0.

Step 3. Estimate of I2,h. In order to estimate I2,h, we use the area formula

for maps between rectifiable sets. We fix x P B�Eh X pBrzB r
2
q. We denote by

tτ1, . . . , τn�1u an orthonormal base for TxB�Eh, and by L the n�pn�1q matrix

representing ∇B�EhΦpxq with respect the previous base and the canonical base

te1, . . . , enu in Rn (see Definition A.2.3 for the notation). We remark that, for

x P BrzB r
2
,

Φpxq � φp|x|q x|x| ,
where

φptq :� t

�
1� σh � σhr

n

tn



, @t P

�
r

2
, r

�
.

Hence, we have

Lij � ∇Φi � τj � φp|x|q
|x| ei � τj �

�
φ1p|x|q � φp|x|q

|x|


xi
|x|

x � τj
|x| ,

for any i P t1, . . . , nu and j P t1, . . . , n� 1u. Thus, for j, l P t1, . . . , n� 1u, we

obtain

pL�Lqjl � φ2p|x|q
|x|2

ņ

i�1

pei � τjqpei � τlq �
�
φ12p|x|q � φ2p|x|q

|x|2

px � τjqpx � τlq

|x|2 .

Since ∇B�EhΦpxq is invariant by rotation, in order to evaluate detpL�Lq, we

may assume, without loss of generality, that τj � ej, for any j P t1, . . . , n�1u.
We deduce that

L�L � φ2p|x|q
|x|2 Ipn�1q �

�
φ12p|x|q � φ2p|x|q

|x|2


x1 b x1

|x|2 ,

where Ipn�1q denotes the identity map on Rn�1 and x1 � px1, . . . , xn�1q. With

a calculation similar to the one performed to obtain JΦ, from the equality

above we easily get that

detpL�Lq �
�
φ2p|x|q
|x|2


n�1�
1� |x|2

φ2p|x|q
�
φ12p|x|q � φ2p|x|q

|x|2

 |x1|2
|x|2

�
,
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and so we can write, for x P B�Eh X pBrzB r
2
q,

JB
�EhΦpxq �a

detpL�Lq

�
�
φp|x|q
|x|


n�1
d

1� |x|2
φ2p|x|q

�
φ12p|x|q � φ2p|x|q

|x|2

 |x1|2
|x|2

¤
�
φp|x|q
|x|


n�2

φ1p|x|q ¤ φ1p|x|q ¤ 1� σh � 2npn� 1qσh.

In order to estimate I2,h, we use the area formula for maps between rectifiable

sets Theorem A.2.4, thus getting

I2,h � P pEh;Brq � P p rEh;Brq �
»
B�EhXBr

dHn�1 �
»
B�EhXBr

JEhΦpxq dHn�1

�
»
B�EhXBrzBr{2

�
1� JEhΦpxq� dHn�1 �

»
B�EhXBr{2

�
1� JEhΦpxq� dHn�1 .

Notice that the last integral in the above formula is non-negative since Φ is a

contraction in Br{2, hence JEhΦpxq   1 in Br{2, while from (??) we have»
B�EhXBrzBr{2

�
1� JEhΦpxq� dHn�1 ¥ �2nnP pEh;Brqσh ¥ �2nnΘσh ,

thus concluding that

I2,h ¥ �2nnΘσh . (2.25)

Step 4. Estimate of I3,h. To estimate I3,h we recall (2.14), (2.15) and (2.20),

thus getting

I3,h � λh

»
EhXBrzBr{2

pJΦpxq � 1q dx� λh

»
EhXBr{2

pJΦpxq � 1q dx

¥ λh

�
ωn

2n�2
� ε



σhr

n � λh
�
1� �

1� p2n � 1qσh
�n�

εrn

¥ λhσhr
n

�
ωn

2n�2
� ε� p2n � 1qnε

�
.

Therefore, if we choose 0   ε   ε0pnq, we have that

I3,h ¥ λhC3σhr
n,

for some positive C3 � C3pnq. From this inequality, recalling (2.16), (2.24)

and (2.25), we obtain

FλhpEh, uhq � Fλhp rEh, ũhq ¥ σh
�
λhC3r

n �ΘpC2pn,N, LDq � 2nnq� ¡ 0,

if λh is sufficiently large. This contradicts the minimality of pEh, uhq, thus

concluding the proof.
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The previous theorem motivates the following definition.

Definition 2.2.2 (Λ-minimizers). The energy pair pE, uq is a Λ-minimizer

in Ω of the functional F , defined in (2.1), if and only if for every Brpx0q � Ω

it holds:

FpE, u;Brpx0qq ¤ FpF, v;Brpx0qq � Λ|F∆E|,
whenever pF, vq is an admissible test pair, namely, F is a set of finite perimeter

with F∆E �� Brpx0q and v � u P H1
0 pBrpx0qq.

2.3 Higher integrability results

In this section we quote higher integrability results both for local minimizers

of functional (2.1) and for comparison functions that we will use later in the

paper. It is worth mentioning that the following lemmata can be applied in

general to minimizers of integral functionals of the type

Hpu; Ωq :�
»

Ω

F px, u,∇uq dx, (2.26)

assuming that the energy density only satisfies the structure condition (2.2)

and the growth conditions (2.5) and (2.6), without assuming any continuity

on the coefficients. Therefore, functionals of the type (2.1) belong to this class

and in addition the involved estimates only depend on the constants appearing

in (2.5) and (2.6) but do not depend on E accordingly.

Lemma 2.3.1. Let u P H1pΩq be a local minimizer of the functional H de-

fined in (2.26), where F satisfies the structure condition (2.2) and the growth

conditions (2.5) and (2.6). Then, for every B2Rpx0q �� Ω, it holds

�
»
BRpx0q

|∇u|2 dx ¤ C1

��
�
»
B2Rpx0q

|∇u|2m dx

 1

m

� 1

�
, (2.27)

where m � n
n�2

and C1 � C1pn, ν,N, Lq is a positive constant.

Proof. Whithout loss of generality we may assume that x0 � 0. Let R   t  
s   2R and choose η P C8

0 pBsq such that η � 1 in Bt and |∇η| ¤ 2{ps � tq.
We choose a test function v � u� φ, where φ � ηpu� usq and us denotes the

average of u in Bs, us � �
³
Bs
u dx. Testing the minimality of u with v and using

growth condition (2.10) we deduce that

ν

2

»
Bs

�
|∇u|2 � 2L2

ν2

�
dx ¤ Hpu;Bsq ¤ Hpv;Bsq

¤ 2

»
Bs

�
pN � 1q|∇up1� ηq �∇ηpu� usq|2 � LpL� 1q

�
dx

¤ 4pN � 1q
»
BszBt

|∇u|2 dx� 4pN � 1q
»
Bs

|u� us|2|∇η|2 dx
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� 2

»
Bs

LpL� 1q dx.

Adding to both sides 4pN � 1q ³
Bt
|∇u|2 dx we deduce�

4pN � 1q � ν

2

� »
Bt

|∇u|2 dx

¤ 4pN � 1q
»
Bs

|∇u|2 dx� 4pN � 1q
»
Bs

|u� us|2|∇η|2 dx�
»
Bs

CpL, νq dx.

Thus we get»
Bt

|∇u|2 dx ¤ θ

»
Bs

|∇u|2 dx� Cpn, ν,N, Lq
ps� tq2

»
Bs

|u� us|2 dx� Cpn, ν,N, Lq,

where θ�4pN�1q
4pN�1q� ν

2
  1. Using Sobolev-Poincaré’s inequality»

Bs

|u� us|2 dx ¤ Cpnq
�»

Bs

|∇u|2m dx

 1

m

¤ Cpnq
�»

B2R

|∇u|2m dx

 1

m

,

with m � n
n�2

, we eventually obtain»
Bt

|∇u|2 dx ¤ θ

»
Bs

|∇u|2 dx�Cpn, ν,N, Lqps� tq2
�»

B2R

|∇u|2m dx

 1

m

�Cpn, ν,N, Lq,

Iterating the previous estimate using Lemma 2.1.3, we deduce that there exists

a constant C � Cpθq � Cpν,Nq ¡ 0 such that»
BR

|∇u|2 dx ¤ Cpν,Nq
�
Cpn, ν,N, Lq

R2

�»
B2R

|∇u|2m dx

 1

m

� Cpn, ν,N, Lq
�
.

We get the thesis if we divide by Rn.

Remark 2.3.2. We observe that the reverse Hölder inequality stated in the pre-

vious lemma can be also proved exactly in the same way replacing the balls with

the cubes. The reverse Hölder inequality written on cubes is the suitable ver-

sion in order to apply Calderòn-Zygmund decomposition and Gehring’s lemma

(see [37, Proposition 6.1]), thus obtaining the higher integrability estimate on

cubes. Finally, the higher integrability estimate on balls stated below, which is

suitable in our setting, can be deduced by a covering argument.

Lemma 2.3.3. Let u P H1pΩq be a local minimizer of the functional H de-

fined in (2.26), where F satisfies the structure condition (2.2) and the growth

conditions (2.5) and (2.6). There exists s � spn, ν,N, Lq ¡ 1 such that, for

every B2Rpx0q �� Ω, it holds

�
»
BRpx0q

|∇u|2s dx ¤ C2

�
�
»
B2Rpx0q

�
1� |∇u|2� dx
s

,

where C2 � C2pn, ν,N, Lq is a positive constant.
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In the next section we will prove some energy density estimates by using a

standard comparison argument. For this purpose we will need a reverse Hölder

inequality for the comparison function defined below.

Definition 2.3.4 (Comparison function). Let u P H1pΩq be a local minimizer

of the functional H defined in (2.26) and B2R �� Ω. We shall denote by v the

solution of the following problem

v :� argmin
wPu�H1

0 pBRq

»
BR

F̃ px,∇wq dx, (2.28)

where F̃ px, zq :� F px, upxq, zq satisfies the structure condition (2.2) and the

growth conditions (2.5) and (2.6).

For the comparison function v defined in (2.28) we can state the following

reverse Hölder inequality up to the boundary of BR.

Lemma 2.3.5. Let u P H1pΩq be a local minimizer of the functional H de-

fined in (2.26), where F satisfies the structure condition (2.2) and the growth

conditions (2.5) and (2.6). Let v be the comparison function defined above and

B2R �� Ω. Let us consider the following extension of v:

V pxq :�
#
vpxq for x P BR,

upxq for x P ΩzBR.

Let Bρpx0q � B2R with x0 P BR and ρ   R
2

. Then

�
»
Bρpx0q

|∇V |2 dx ¤ C3

��
�
»
B2ρpx0q

|∇V |2m dx

 1

m

�
�
�
»
B2ρpx0q

|∇u|2m

 1

m

� 1

�
,

(2.29)

where m � n
n�2

and C3 � C3pn, ν,N, Lq is a positive constant.

Proof. Let x0 P BR and ρ ¤ s   t ¤ r   2ρ   R, where r � 3
2
ρ; then, the

following alternatives may occur:#
iqBrpx0q �� BR

iiqBrpx0q X pΩzBRq � H.
In the case i) we can proceed exactly as in Lemma 2.3.1 to get the desired

estimate. Let us then consider the case ii) which is slightly different.

Choose η P C8
0 pBtpx0qq, such that 0 ¤ η ¤ 1, η � 1 in Bspx0q and

|∇η| ¤ 2{pt � sq. Now we can use the function ϕ :� ηpV � uq to test the

minimality of v with the aim of estimating the difference
³
Bspx0q |∇pV � uq|2.

In the following it would be useful to keep in mind that ∇ϕ � ∇pV � uq in

Bspx0q, which is the quantity we are interested to estimate.

In order to simplify the notation, let us denote

ãijpxq :� aijpx, upxqq, ãipxq :� aipx, upxqq, ãpxq :� apx, upxqq,
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F̃pw;Aq :�
»
A

F̃ px,∇wq dx.
We start comparing the energy of ϕ and v inside a generic set A � BR. We

have that

F̃p∇ϕ;Aq � F̃p∇v;Aq
�
»
A

ãijpxq∇iϕ∇jϕdx�
»
A

ãipxq∇iϕdx�
»
A

ãpxq dx

�
»
A

ãijpxq∇iv∇jv dx�
»
A

ãipxq∇iv dx�
»
A

ãpxq dx

�
»
A

ãijpxq∇ipϕ� vq∇jpϕ� vq dx� 2

»
A

ãijpxq∇iv∇jpϕ� vq dx

�
»
A

ãipxq∇ipϕ� vq dx.

Using the growth conditions (2.5) and (2.6) and Young’s inequality we deduce

that

F̃p∇ϕ;Aq�F̃p∇v;Aq ¤
�
N�N2�1

2

	 »
A

|∇pv�ϕq|2dx�
»
A

|∇v|2dx�
»
A

L2

2
dx.

(2.30)

Recalling the growth condition (2.10) we estimate»
A

|∇v|2dx ¤ 2

ν

»
A

F̃ px,∇vq dx�
»
A

2L2

ν2
dx.

We can conclude from (2.30) that

F̃p∇ϕ;Aq ¤
�

1� 2

ν

	
F̃p∇v;Aq �

�
N �N2 � 1

2

	 »
A

|∇pv � ϕq|2dx

�
»
A

�L2

2
� 2L2

ν2

	
dx. (2.31)

We compute now the previous integrals on the set Btpx0q XBR. We use again

the growth condition (2.10) and the minimality of v with respect to v � ϕ in

order to estimate further on the right hand side of the previous inequality:

F̃p∇v;Btpx0q XBRq
¤ F̃p∇pv � ϕq;Btpx0q XBRq
¤ �

N � 1
� »

Btpx0qXBR
|∇pv � ϕq|2 dx�

»
Btpx0qXBR

LpL� 1q dx.

Finally we can resume (2.31) to conclude this first part concerning the energy

estimate of ϕ, using again (2.10),

ν

2

»
Btpx0q

�
|∇ϕ|2 � 2L2

ν2



dx ¤

»
Btpx0qXBR

F̃ px,∇ϕq dx
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¤ Cpν,N, Lq
»
Btpx0q

�|∇pV � ϕq|2 dx� 1
�
dx.

We summarize the previous estimate as follows:

ν

2

»
Btpx0q

|∇ϕ|2 dx ¤ Cpν,N, Lq
»
Btpx0q

�|∇pV � ϕq|2 � 1
�
dx. (2.32)

Now we observe that |∇pV �ϕq| ¤ |∇u|� p1�ηq|∇pV �uq|� 2
t�s |V �u|; then

by (2.32) we deduce»
Bspx0q

|∇pV � uq|2 dx ¤ Cpν,N, Lq
»
Btpx0qzBspx0q

|∇pV � uq|2 dx

� Cpν,N, Lq
pt� sq2

»
Btpx0q

|V � u|2 dx� Cpν,N, Lq
»
Btpx0q

�|∇u|2 � 1
�
dx. (2.33)

Now we use the “hole-filling” technique adding Cpν,N, Lq ³
Bspx0q |∇pV �uq|2 dx

to both sides of (2.33) getting»
Bspx0q

|∇pV � uq|2 dx ¤ θ

»
Btpx0q

|∇pV � uq|2 dx

� Cpν,N, Lq
�

1

pt� sq2
»
Btpx0q

|V � u|2 dx�
»
Btpx0q

�|∇u|2 � 1
�
dx

�
,

where θ � Cpν,N,Lq
Cpν,N,Lq�1

. Using Lemma 2.1.3 we obtain»
Bρpx0q

|∇pV � uq|2 dx ¤ Cpν,N, Lq
pr � ρq2

»
Brpx0q

|V � u|2 dx

� Cpν,N, Lq
»
Brpx0q

�
1� |∇u|2� dx.

Therefore, being r � 3
2
ρ and by condition ii), we have

|B2ρpx0qzBR| ¥ C|Bρpx0q|,
for some universal constant C � Cpnq ¡ 0. We can now use Sobolev-Poincaré’s

inequality for functions vanishing on a set of positive measure (see Theorem

A.3.3) to deduce

�
»
Bρpx0q

|∇pV � uq|2 dx

¤ Cpn, ν,N, Lq
��

�
»
B2ρpx0q

p|∇pV � uq|2m dx

 1

m

��
»
B2ρpx0q

�
1� |∇u|2� dx�

Finally we can apply reverse Hölder inequality (2.27) for u in the last estimate

to get (2.29).
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Reasoning in a similar way as above, the higher integrability for v can be

obtained by means of Gehring’s lemma (see [37, Proposition 6.1]).

Lemma 2.3.6. Let u P H1pΩq be a local minimizer of the functional H de-

fined in (2.26), where F satisfies the structure condition (2.2) and the growth

conditions (2.5) and (2.6). Let v P H1pBRpx0qq be the comparison function

defined in (2.28). Denoting by s � spn, ν,N, Lq ¡ 1 the same exponent given

in Lemma 2.3.3, it holds

�
»
BRpx0q

|∇v|2s dx ¤ C4

�
�
»
B2Rpx0q

�
1� |∇u|2� dx
s

,

where C4 � C4pn, ν,N, Lq is a positive constant.

2.4 A decay estimate for elastic minima

In this section we prove a decay estimate for elastic minima that will be crucial

for the proof strategy. Indeed, we show that if pE, uq is a Λ-minimizer of the

functional F defined in (2.1) and x0 is a point in Ω, where either the density

of E is close to 0 or 1, or the set E is asymptotically close to a hyperplane,

then for ρ sufficiently small we have»
Bρpx0q

|∇uE|2 dx ¤ Cρn�δ,

for any δ ¡ 0. A preliminary result, which will be used later, provides an

upper bound for F . It is rather standard and is related to the threshold

Hölder exponent 1
2

of the function u, when pE, uq is either a solution of the

constrained problem (Pc) or a solution of the penalized problem (P ) defined

in Section 1. Its proof is contained in [45, Lemma 2.3], [35], and we recall it

here for the sake of completeness.

Theorem 2.4.1. Let pE, uq be a Λ-minimizer of F in Ω. Then for every open

set U �� Ω there exists a constant C3 � C3

�
n,Λ, U, ‖∇u‖L2pΩq

� ¡ 0 such that

for every Brpx0q � U it holds

FpE, u;Brpx0qq ¤ C3r
n�1.

Proof. Fixing Brpx0q � U �� Ω, we compare pE, uq with pEzBrpx0q, uq thus

obtaining

FpE, u; Ωq ¤ FpEzBrpx0q, u; Ωq � Λ|E∆pEzBrpx0qq X Ω|
¤ FpEzBrpx0q, u; Ωq � Λ|Brpx0q|.

Making F explicit and getting rid of the common terms, we obtain:»
Brpx0qXE

Gpx, u,∇uq dx� P pE;Brpx0qq ¤ P pE X BBrpx0q; Ωq � cpn,Λqrn
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¤ Hn�1pBBrpx0qq � cpn,Λqrn�1

¤ cpn,Λqrn�1. (2.34)

Now we want to prove that there exist τ P �
0, 1

2

�
and δ P p0, 1q such that for

every M ¡ 0 there exists h0 P N such that, for any Brpx0q � U , we have»
Brpx0q

|∇u|2 ¤ h0r
n�1 or

»
Bτrpx0q

|∇u|2 dx ¤Mτn�δ
»
Brpx0q

|∇u|2 dx.

Step 1: Arguing by contradiction, for τ P �
0, 1

2

�
and δ P p0, 1q, we choose

M ¡ τ δ�n and we assume that, for every h P N, there exists a ball Brhpxhq � U

such that »
Brh pxhq

|∇u|2 dx ¡ hrn�1
h (2.35)

and »
Bτrh pxhq

|∇u|2 dx ¡Mτn�δ
»
Brh pxhq

|∇u|2 dx. (2.36)

Note that estimates (2.34) and (2.35) yield»
Brh pxhqXE

|∇u|2 dx� P pE;Brhpxhqq ¤ c0r
n�1
h   c0

h

»
Brh pxhq

|∇u|2 dx, (2.37)

and so »
Brh pxhqXE

|∇u|2 dx   c0

h

»
Brh pxhq

|∇u|2 dx, (2.38)

for some positive constant c0.

Step 2: We will prove our aim by means of a blow-up argument. We set

ς2
h :� �

»
Brh pxhq

|∇u|2 dx

and, for y P B1, we introduce the sequence of rescaled functions defined as

vhpyq :� upxh � rhyq � ah
ςhrh

, with ah :� �
»
Brh pxhq

u dx.

We have ∇upxh � rhyq � ςh∇vhpyq and a change of variable yields»
B1

|∇vhpyq|2 dy � 1

ς2
h

�
»
Brh pxhq

|∇upxq|2 dx � 1.

Therefore, there exist a (not relabeled) subsequence of vh and v P H1pB1q such

that vh á v in H1pB1q and vh Ñ v in L2pB1q. Moreover, the semicontinuity

of the norm implies

�
»
B1

|∇vpyq|2 dy ¤ lim inf
hÑ�8

�
»
B1

|∇vhpyq|2 dy � 1. (2.39)



2.4. A decay estimate for elastic minima 65

We rewrite the inequalities (2.35), (2.36) and (2.38). They become, respec-

tively,

ς2
h ¡

h

rh
, (2.40)

�
»
Bτ

|∇vhpyq|2 dy ¡Mτ�δ, (2.41)»
B1XE�

h

|∇vhpyq|2 dy   c0

h

»
B1

|∇vhpyq|2 dy � c0ωn
h

. (2.42)

Of course, (2.40) implies that ςh Ñ �8, as hÑ �8.

Step 3: We claim that the L2-norm of vh converges to the L2-norm of v.

Consider the sets

E�
h :� E � xh

rh
XB1, @h P N.

Since rn�1
h P pE�

h ;B1q � P pE;Brhpxhqq, by (2.37), we have that the sequence

tP pE�
h ;B1quhPN is bounded. Therefore up to a not relabeled subsequence,

1Eh Ñ 1E� in L1pB1q, for some set E� � B1 of locally finite perimeter. By

(2.42) and Fatou’s Lemma,»
B1XE�

|∇vpyq|2 dy � 0.

By the Λ-minimality of pE, uq with respect to pE, u � φq we get, for φ P
H1

0 pBrhpxhqq,»
Brh pxhq

�
F px, u,∇uq � 1EGpx, u,∇uq

�
dx

¤
»
Brh pxhq

�
F px, u� φ,∇u�∇φq � 1EGpx, u� φ,∇u�∇φq� dx.

Using the change of variable x � xh � rhy, we deduce for every ψ P H1
0 pB1q,»

B1

�
F pxh � rhy, upxh � rhyq, ςh∇vhq

� 1E�
h
Gpxh � rhy, upxh � rhyq, ςh∇vhq

�
dy

¤
»
B1

F pxh � rhy, upxh � rhyq � rhψ, ςh∇vh �∇ψq dy

�
»
B1

1E�
h
Gpxh � rhy, upxh � rhyq � rhψ, ςh∇vh �∇ψq dy.

Let η P C8
c pB1q such that 0 ¤ η ¤ 1. We choose as a test function ψh �

ςhηpv � vhq and exploit ∇vh �∇ψh for reader’s convenience,

∇vh �∇ψh � ςhη∇v � ςhp1� ηq∇vh � ςhpv � vhq∇η.
For simplicity of notation we denote wh :� upxh� rhyq � rhςhηpv� vhq so that

the previous inequality can be read as»
B1

�
F pxh � rhy, upxh � rhyq, ςh∇vhq � 1E�

h
Gpxh � rhy, upxh � rhyq, ςh∇vhq

�
dy
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¤
»
B1

F pxh � rhy, wh, ςhη∇v � ςhp1� ηq∇vh � ςhpv � vhq∇ηq dy

�
»
B1

1E�
h
Gpxh � rhy, wh, ςhη∇v � ςhp1� ηq∇vh � ςhpv � vhq∇ηq dy.

Using the quadratic structure of F andG, we can pull out the term ςhpv�vhq∇η
in the last argument of F and G, in order to use the convexity in the next

step. »
B1

�
F pxh � rhy, upxh � rhyq, ςh∇vhq

� 1E�
h
Gpxh � rhy, upxh � rhyq, ςh∇vhq

�
dy

¤
»
B1

F pxh � rhy, wh, ςhη∇v � ςhp1� ηq∇vhq dy

�
»
B1

1E�
h
Gpxh � rhy, wh, ςhη∇v � ςhp1� ηq∇vhq dy

� cpN,Lq
»
B1

�|ςh∇v| � |ςh∇vh| � |ςhpv � vhqq|
�
ςh|v � vh| dy.

Using the convexity of F and G and rearranging the terms we obtain»
B1

ηF pxh � rhy, wh, ςh∇vhq ¤
»
B1

ηF pxh � rhy, wh, ςh∇vq dy

�
»
B1

�
F pxh � rhy, wh, ςh∇vhq � F pxh � rhy, upxh � rhyq, ςh∇vhq

�
dy

�
»
B1

1E�
h

�
Gpxh � rhy, wh, ςh∇vhq �Gpxh � rhy, upxh � rhyq, ςh∇vhq

�
dy

�
»
B1

1E�
h
η
�
Gpxh � rhy, wh, ςh∇vq �Gpxh � rhy, wh, ςh∇vhq

�
dy

� cpN,Lq
»
B1

�|ςh∇v| � |ςh∇vh| � |ςhpv � vhqq|
�
ςh|v � vh| dy.

The last term and the second to last term can be treated in a standard way

using (2.39), Hölder’s inequality, the strong convergence of vh to v and the

weak convergence of ∇vh to ∇v. The remaining two terms, which differ only

in the second argument, can be treated as follows.

We remark that, by definition of vh and Hölder continuity of uh, it imme-

diately follows rhςhvh Ñ 0. Therefore, being rhςh Ñ 0 where v � 0, we deduce

also wh � upxh � rhyq � rhςhηpv � vhq Ñ 0 for a.e. y P B1. Finally, using the

equi-integrability of |∇vh|2, resulting from the weak convergence of ∇vh, and

the uniform boundedness of the coefficients aij, ai, a, we conclude that»
B1

�
F pxh � rhy, wh, ςh∇vhq � F pxh � rhy, upxh � rhyq, ςh∇vhq

�
dy

¤ ς2
h

»
B1

|aijpxh � rhy, whq � aijpxh � rhy, upxh � rhyq|∇ivh||∇jvh| dy
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� ςh

»
B1

|aipxh � rhy, whq � aipxh � rhy, upxh � rhyq|∇ivh| dy � cpn, Lq
� ς2

hεh.

Combining the previous inequalities, we get»
B1

ηF pxh � rhy, wh, ςh∇vhq dy ¤
»
B1

ηF pxh � rhy, wh, ςh∇vq dy � ς2
hεh.

Dividing by ς2
h, the linear terms in F tend to 0, thus getting»

B1

ηaijpxh � rhy, whq∇ivh∇jvh dy ¤
»
B1

ηaijpxh � rhy, whq∇iv∇jv dy � εh.

Since Brhpxhq � U �� Ω for all h P N, we may assume that xh Ñ x, as

h Ñ �8. Letting η Ó 1 in the previous inequality, passing to the lower limit,

as hÑ �8, by lower semicontinuity, we finally get

lim
hÑ�8

»
B1

aijpx, upxqq∇ivh∇jvh dy �
»
B1

aijpx, upxqq∇iv∇jv dy.

Since the matrix aijpx, upxqq is elliptic and bounded, it induces a norm which

is equivalent to the euclidean norm. Thus we get

lim
hÑ�8

�
»
Bτ

|∇vh|2 dy � �
»
Bτ

|∇v|2 dy ¤ 1

τn
�
»
B1

|∇v|2 dy ¤ 1

τn
,

which contradicts (2.41), provided we choose M ¡ τ δ�n.

Step 4: We conclude that there exists τ P �
0, 1

2

�
and δ P p0, 1q such that,

setting M � 1, there exists h0 P N such that, for any Brpx0q � Ω, we have»
Brpx0q

|∇u|2 ¤ h0r
n�1 or

»
Bτrpx0q

|∇u|2 dx ¤ τn�δ
»
Brpx0q

|∇u|2 dx.

Hence, »
Bτrpx0q

|∇u|2 dx ¤ τn�δ
»
Brpx0q

|∇u|2 dx� h0r
n�1,

and, using Lemma 2.1.4, we obtain that»
Bρpx0q

|∇u|2 dx ¤ c

#�
ρ

r


n�1 »
Brpx0q

|∇u|2 dx� h0ρ
n�1

+
, @ 0   ρ   r ¤ R,

and so we conclude »
Bρpx0q

|∇u|2 dx ¤ cρn�1.

As a consequence of the previous theorem, thanks to Lemma 2.1.1, we can

infer that u P C0, 1
2 . We deduce the following remark.
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Remark 2.4.2. Let pE, uq be a Λ-minimizer of the functional F defined in

(2.1). For every open set U �� Ω there exists a constant C �
C
�
n,Λ, U, ‖∇u‖L2pΩq

� ¡ 0 such that

sup
x,yPU

|upxq � upyq|
|x� y| 12 ¤ C ‖∇u‖L2pΩq . (2.43)

Notation 2.4.3. In the sequel E � Ω will denote any given subset of Ω with

finite perimeter. We denote by uE, or simply by u if no confusion arises, any

local minimizers of the functional FEpv; Ωq.
• If x P Rn we write x � px1, xnq, where x1 P Rn�1 and xn P R. Accordingly,

we denote ∇1 � pBx1 , . . . , Bxn�1q the gradient with respect to the first n�1

components.

• We will denote H � tx P R : xn ¡ 0u.
In what follows, we will use the following lemma, whose proof can be found

in [7, Theorem 7.51].

Lemma 2.4.4. Let u P LppB2Rpx0qq for some p P r1,�8q and let us assume

that, for some α P p0, 1s and γ ¡ 0,

�
»
Bρpxq

|upyq � ux,ρ|p dy ¤ γp
�
ρ

R


pα

,

for any Bρpxq with ρ ¤ R and x P BRpx0q. Then (a representative of) u is

Hölder continuous in BRpx0q with Hölder exponent α and

|upxq � upyq| ¤ cγ

� |x� y|
R


α

, @x, y P BRpx0q,

max
BRpx0q

|u| ¤ cγ � |ux0,R|,

for some positive constant c � cpn, αq.
In order to prove the main lemma of this section we introduce the following

preliminary result. For reader’s convenience we give here a sketch of the proof,

which can be found in [49]. Actually we state here a weaker version that is

suitable for our aim.

Lemma 2.4.5. Let v P H1pB1q be a solution of

�divpA∇uq � divG, in D1pB1q,
where

G� :� 1HG P C0,αpH XB1q, G� :� 1HcG P C0,αpHc XB1q,
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for some α ¡ 0 and A is a uniformly elliptic matrix satisfying

ν|z|2 ¤ Aijpxqzizj ¤ N |z|2

and

A� :� 1HA P C0,αpH XB1q, A� :� 1HcA P C0,αpHc XB1q,
for some ν,N ¡ 0. Let us denote

CA � maxt∥∥A�∥∥
C0,α ,

∥∥A�∥∥
C0,αu, CG � maxt∥∥G�∥∥

C0,α ,
∥∥G�∥∥

C0,αu.
Then ∇v P L2,n

loc pB1q (see (2.9)). Moreover, there exist two positive constants

C � Cpn, ν,N,CA, CGq and r0 � r0pn, ν,N, ‖G‖L8 , CA, CGq such that, for any

r   r0 with Brpx0q � B1,»
Bρpx0q

|∇v|2 dx ¤ C
�ρ
r

	n »
Brpx0q

|∇v|2 dx� Cρn, @ ρ   r

4
.

Proof. Fix x0 P B1 and let r be such that Brpx0q � B1. Let us denote by

a� and a� the averages of A in H X Brpx0q and Hc X Brpx0q respectively. In

an analogous way we define g� and g� the averages of G in H X Brpx0q and

Hc XBrpx0q. For x P Brpx0q we define

A :� a�1H � a�1Hc , G :� g�1H � g�1Hc .

Notice that by assumption

|Apxq � Apxq| ¤ CAr
α and |Gpxq �Gpxq| ¤ CGr

α. (2.44)

Let w be the solution of#
�divpA∇wq � divG in Brpx0q,
w � v on BBrpx0q.

The last equation can be rewritten as$''''&''''%
�divpa�∇w�q � 0 in Brpx0q XH,

�divpa�∇w�q � 0 in Brpx0q XHc,

w� � w� on Brpx0q X BH,
a�∇w� � en � a�∇w� � en � g� � en � g� � en, on Brpx0q X BH,

(2.45)

where w� :� w1Brpx0qXH , w� :� w1Brpx0qXHc . Set

Dcw :�
ņ

i�1

Ain∇iw �G � en,

where Ain is the pi, nq-th entry of the matrix A. We notice that Dcw has no

jumps on the boundary thanks to the transmission condition in (2.45). This
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allows us to prove that the distributional gradient of Dcw coincides with the

point-wise one.

Step 1: Tangential derivatives of w. Let us denote with τ the general direction

tangent to the hyperplane BH. Since A and G are both constant along the

tangential directions, Theorem 1.2.10 gives that ∇τw P H1
locpBrpx0qq and

divpA∇p∇τwqq � 0 in Brpx0q.
Hence, Caccioppoli’s inequality holds:»

Bρpxq
|∇p∇τwq|2 dy ¤ cpn, ν,Nq

ρ2

»
B2ρpxq

|∇τw � p∇τwqx,2ρ|2 dy, (2.46)

for all balls B2ρpxq � Brpx0q (see Theorem 1.2.2) and, by De Giorgi’s regularity

theorem (see Theorem 1.2.6), ∇τw is Hölder continuous and there exists γ �
γpn, ν,Nq ¡ 0 such that if Bspxq � Brpx0q»
Bρpxq

|∇τw � p∇τwqx,ρ|2 dy ¤ cpn, ν,Nq
�
ρ

s


n�2γ »
Bspxq

|∇τw � p∇τwqx,s|2 dy,
(2.47)

for any ρ P �0, s
2

�
and

max
B ρ

2
pxq
|∇τw|2 ¤ cpn, ν,Nq

ρn

»
Bρpxq

|∇τw|2 dy. (2.48)

Step 2: Regularity of Dcw. First of all observe that ∇τ pDcwq � Dcp∇τwq �
G � en. This implies by step 1 that the tangential derivatives of Dcw belong to

L2
locpBrpx0qq. Furthermore we can estimate directly by definition of Dcw:

|∇npDcwq| ¤ cpn,Nq|∇∇τw|,
which implies again by step 1

|∇Dcw| ¤ cpn,Nq|∇∇τw|.
We can conclude that Dcw P H1

locpBrpx0qq. Using Poincaré’s inequality and

(2.46), we have»
Bρpxq

|Dcw � pDcwqx,ρ|2 dy ¤ cpnqρ2

»
Bρpxq

|∇pDcwq|2 dy

¤ cpn,Nqρ2

»
Bρpxq

|∇p∇τwq|2 dy

¤ cpn, ν,Nq
»
B2ρpxq

|∇τw � p∇τwqx,2ρ|2 dy,

for any B2ρpxq � Brpx0q. By (2.47) we infer»
Bρpxq

|Dcw � pDcwqx,ρ|2 dy
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¤ cpn, ν,Nq
�
ρ

r


n�2γ »
B r

2
pxq
|∇τw � p∇τwqx, r

2
|2 dy

¤ cpn, ν,Nq
�
ρ

r


n�2γ »
Brpx0q

|∇τw|2 dy,

for any x P B r
4
px0q and ρ ¤ r

4
. Hence by Lemma 2.4.4, Dcw is Hölder contin-

uous and, by (2.48), we get

max
B r

4
px0q

|Dcw|2 ¤ cpn, ν,Nq
»
Brpx0q

|∇τw|2 dy �
�����»
B r

4
px0q

Dcwpyq dy
����2

¤ cpn, ν,Nq
rn

»
Brpx0q

|∇w|2 dy � 2 ‖G‖2
L8 . (2.49)

Step 3: Comparison between v and w. Subtracting the equation for w from

the equation for v we get»
Brpx0q

Aijpxq
�
∇iv �∇iw

�
∇jϕdx

�
»
Brpx0q

�
Aijpxq � Aijpxq

�
∇iv∇jϕdx�

»
Brpx0q

�
Gi �Gi

�
∇iϕdx

for any ϕ P W 1,2
0 pBrpx0qq. Choosing ϕ � v � w in the previous equation and

using assumption (2.44) we have

ν

»
Brpx0q

|∇v �∇w|2 dx ¤ CAr
α

»
Brpx0q

|∇v|2 dy � CGr
n�α.

Finally we can estimate»
Bρpx0q

|∇v|2 dy ¤ 2

»
Bρpx0q

|∇w|2 dy � 2

»
Bρpx0q

|∇v �∇w|2 dy

¤ 2ωnρ
n sup
B r

4

|∇w|2 � 2

»
Bρpx0q

|∇v �∇w|2 dy,

for any ρ ¤ r
4
, and observing that

sup
B r

4
px0q

|∇w|2 � sup
B r

4
px0q

|∇τw|2 � sup
B r

4
px0q

|∇nw|2

¤ cpn, ν,Nq sup
B r

4
px0q

|∇τw|2 � cpνq sup
B r

4
px0q

|Dcw|2 � cpν, ‖G‖8q,

by (2.48), (2.49), the minimality of w and Young’s inequality we gain»
Bρpx0q

|∇v|2 dy

¤ cpn, ν,Nq
�
ρ

r


n »
Brpx0q

|∇w|2 dy
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� cpn, ν, ‖G‖8 , CA, CGq
�
rα

»
Brpx0q

|∇v|2 dy � rn
�

¤ Cpn, ν,N, ‖G‖8 , CA, CGq
#��

ρ

r


n

� rα

� »
Brpx0q

|∇v|2 dy � rn

+
,

which leads to our aim if we apply Lemma 2.1.4.

The next lemma is inspired by [35, Proposition 2.4] and is the main result

of this section.

Lemma 2.4.6. Let pE, uq be a Λ-minimizer of the functional F defined in

(2.1). There exists τ0 P p0, 1q such that the following statement is true: for all

τ P p0, τ0q there exists ε0 � ε0pτq ¡ 0 such that if Brpx0q �� Ω with r
1
2n   τ

and one of the following conditions holds:

(i) |E XBrpx0q|   ε0|Brpx0q|;
(ii) |Brpx0qzE|   ε0|Brpx0q|;

(iii) there exists a halfspace H such that |pE∆HqXBrpx0q|
|Brpx0q|   ε0,

then »
Bτrpx0q

|∇u|2 dx ¤ C4

�
τn

»
Brpx0q

|∇u|2 dx� rn
�
,

for some positive constant C4 � C4

�
n, ν,N, L, LD, ‖∇u‖L2pΩq

�
.

Proof. Let us fix Brpx0q �� Ω and 0   τ   1. Without loss of generality, we

may assume that τ   1{4 and x0 � 0. We start proving the assertion in the

case (i), being the proof in the case (ii) similar. Let us define

A0
ij :� aijpx0, ur{2px0qq, B0

i :� aipx0, ur{2px0qq, f 0 :� apx0, ur{2px0qq,
and

F0pξq :� A0ξ � ξ �B0 � ξ � f 0, @ξ P Rn.

Let us denote by v the solution of the following problem:

min
wPu�H1

0 pBr{2q
F0pw;Br{2q,

where

F0pw;Br{2q :�
»
Br{2

F0p∇wq dx.

Now we use the following identity

A0ξ � ξ � A0η � η � rA0pξ � ηqs � pξ � ηq � 2A0η � pξ � ηq, @ξ, η P Rn,

in order to deduce that

F0puq � F0pvq
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�
»
Br{2

�
A0∇u �∇u� A0∇v �∇v� dx� »

Br{2

B0 �∇u�∇v dx

�
»
Br{2

rA0p∇u�∇vqs � p∇u�∇vq dx

� 2

»
Br{2

A0∇v � p∇u�∇vq dx�
»
Br{2

B0 � p∇u�∇vq dx. (2.50)

By the Euler-Lagrange equation for v we deduce that the sum of the last two

integrals in the previous identity is zero, being also u � v on BBr{2. Therefore,

using the ellipticity assumption of A0, we finally achieve that

ν

»
Br{2

|∇u�∇v|2 dx ¤ F0puq � F0pvq. (2.51)

Now we prove that u is an ω-minimizer of F0. We start writing

F0puq � FpE, uq � rF0puq � FpE, uqs
¤ FpE, vq � rF0puq � FpE, uqs
� F0pvq � rF0puq � FpE, uqs � rFpE, vq � F0pvqs. (2.52)

Estimate of F0puq � FpE, uq. We use (2.6) and (2.43) to infer

F0puq � FpE, uq �
»
Br{2

�
aijpx0, ur{2px0qq � aijpx, upxqq

�
∇iu∇ju dx

�
»
Br{2

�
aipx0, ur{2px0qq � aipx, upxqq

�
∇iu dx

�
»
Br{2

�
apx0, ur{2px0qq � apx, upxqq� dx� »

Br{2XE
Gpx, u,∇uq dx

¤ c
�
n, LD ‖∇u‖L2pΩq

��
r

1
2

»
Br{2

|∇u|2 dx� rn�
1
2



(2.53)

� CpN,Lq
�»

Br{2XE
|∇u|2 dx� rn



,

where we denoted with LD the greatest Lipschitz constant of the data

aij, bij, ai, bi, a, b, defined in (2.4). Now we use Hölder’s inequality and Lemma

2.3.3 to estimate»
Br{2XE

|∇u|2 dx ¤ |E XBr|1�1{s|Br|1{s
�
�
»
Br{2

|∇u|2s

1{s

¤ C
1{s
1

� |E XBr|
|Br|


1�1{s »
Br

�
1� |∇u|2� dx. (2.54)

Merging the last estimate in (2.53) we deduce

F0puq � FpE, uq ¤
�
c
�
n, LD, ‖∇u‖L2pΩq

�� CpN,LqC1{s
1
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�
�
r

1
2 � ε

1�1{s
0

	 »
Br

|∇u|2 dx

�
�
C

1{s
1 � 2L� c

�
n, LD, ‖∇u‖L2pΩq

�	
rn. (2.55)

Estimate of FpE, vq � F0pvq. We have

FpE, vq � F0pvq �
»
Br{2

�
aijpx, vpxqq � aijpx0, ur{2px0qq

�
∇iv∇jv dx

�
»
Br{2

�
aipx, vpxqq � aipx0, ur{2px0qq

�
∇iv dx

�
»
Br{2

�
apx, vpxqq � apx0, ur{2px0qq

�
dx (2.56)

�
»
Br{2XE

Gpx, v,∇vq dx.

If we choose now z P BBr{2, recalling that upzq � vpzq we deduce��aijpx, vpxqq � aijpx0, ur{2px0qq
��

� ��aijpx, vpxqq � aijpx, vpzqq � aijpx, upzqq � aijpx0, ur{2px0qq
��

¤ LD
�|vpxq � vpzq| � Cr

1
2 ‖∇u‖L2pΩq � r

�
¤ LD

�
oscpu; BBr{2q � Cpn, ν,N, Lqr � Cr

1
2 ‖∇u‖L2pΩq � r

�
¤ C

�
n, ν,N, L, LD, ‖∇u‖L2pΩq

�
r

1
2 ,

where we used the fact that oscpv;Br{2q ¤ oscpu; BBr{2q � Cpn, ν,N, Lqr (see

Proposition 1.2.7). Analogously we can estimate the other differences in (2.56),

deducing

FpE, vq � F0pvq ¤ C
�
n, ν,N, L, LD, ‖∇u‖L2pΩq

�
r

1
2

�»
Br{2

|∇v|2 dx� rn



� CpN,Lq
�»

Br{2XE
|∇v|2 dx� rn



,

Reasoning in a similar way as in (2.54), we can apply the higher integrability

for v given by Lemma 2.3.6 and infer»
Br{2XE

|∇v|2 dx ¤ Cpn, ν,N, Lqε1�1{s
0

�»
Br

|∇u|2 dx� rn


.

Therefore we obtain

FpE, vq � F0pvq
¤ C

�
n, ν,N, L, LD, ‖∇u‖L2pΩq

���
r

1
2 � ε

1�1{s
0

	 »
Br

|∇u|2 dx� rn
�
.(2.57)
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Finally, collecting (2.51), (2.52), (2.55) and (2.57), if we choose ε0 such that

ε
1� 1

s
0 � τn, recalling that r

1
2n   τ , we conclude that»

Br{2

|∇u�∇v|2 dx ¤ C

�
τn

»
Br

|∇u|2 dx� rn
�
, (2.58)

for some constant C � C
�
n, ν,N, L, LD, ‖∇u‖L2pΩq

�
. On the other hand v is

the solution of a uniformly elliptic equation with constant coefficients, so we

have »
Bτr

|∇v|2 dx ¤ Cpn, ν,Nqτn
»
Br{2

|∇v|2 dx

¤ Cpn, ν,N, Lq
�
τn

»
Br{2

|∇u|2 dx� rn
�
, (2.59)

(see Theorem 1.2.11). Hence we may estimate, using (2.58) and (2.59),»
Bτr

|∇u|2 dx ¤ 2

»
Bτr

|∇v �∇u|2 dx� 2

»
Bτr

|∇v|2 dx

¤ C

�
τn

»
Br

|∇u|2 dx� rn
�
,

for some constant C � C
�
n, ν,N, L, LD, ‖∇u‖L2pΩq

�
.

We are left with the case (iii). Let H be the half-space from our assumption

and let us denote accordingly

A0
ijpxq :� aijpx, upxqq � 1Hbijpx, upxqq,

B0
ijpxq :� aipx, upxqq � 1Hbipx, upxqq,

f 0pxq :� apx, upxqq � 1Hbpx, upxqq,
F0px, zq :� A0pxqz � z �B0pxq � z � f 0pxq.

Let us denote by vH the solution of the following problem

min
wPu�H1

0 pBr{2q
F0pw;Br{2q,

where

F0pw;Br{2q :�
»
Br{2

F0px,∇wq dx.

Let us point out that vH solves the Euler-Lagrange equation

�2divpA0∇vHq � divB0 in D1pBr{2q. (2.60)

Therefore we are in a position to apply Lemma 2.4.5 to the function vH . In-

deed, from the Hölder continuity of u (see Remark 2.4.2) we deduce that the

restrictions of A0 and B0 onto H XBr and BrzH respectively are Hölder con-

tinuous. We can conclude using also (2.43) that there exist two constants
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C � C
�
n, ν,N, L, LD, ‖∇u‖L2pΩq

�
and τ0 � τ0

�
n, ν,N, L, LD, ‖∇u‖L2pΩq

�
such

that for τ   τ0 »
Bτr

|∇vH |2 dx ¤ C

�
τn

»
Br{2

|∇vH |2 dx� rn
�
. (2.61)

In addition, using the uniform ellipticity condition of A0 we can argue as in

(2.50) to deduce, using also the fact that vH satisfies (2.60),

ν

»
Br{2

|∇u�∇vH |2 dx ¤ F0puq � F0pvHq. (2.62)

One more time we can prove that u is an ω-minimizer of F0. We start as above

writing

F0puq � FpE, uq � rF0puq � FpE, uqs
¤ FpE, vHq � rF0puq � FpE, uqs
� F0pvHq � rF0puq � FpE, uqs � rFpE, vHq � F0pvHqs.

We can estimate the differences F0puq�FpE, uq and FpE, vHq�F0pvHq exactly

as before using this time the higher integrability given in Lemma 2.3.6. We

conclude that »
Br{2

|∇u�∇vH |2 dx ¤ C

�
τn

»
Br

|∇u|2 dx� rn
�
,

for some constant C � C
�
n, ν,N, L, LD, ‖∇u‖L2pΩq

�
. From the last estimate

we can conclude the proof as before using (2.61) and (2.62).

2.5 Energy density estimates

This section is devoted to proving a lower bound esimate for the functional

FpE, u;Brpx0qq. Cases (i) and (ii) of Lemma 2.4.6 are the main tool to achieve

such a result.

Lemma 2.5.1 (Scaling of Λ-minimizers). Let Brpx0q � Ω and let pE, uq be a

Λ-minimizer of F in Brpx0q. Then pEx0,r, ux0,rq is a Λr-minimizer of Fr in

B1, where

Ex0,r :� E � x0

r
, ux0,rpyq :� r�

1
2upx0 � ryq, for y P B1,

FrpEx0,r, ux0,r;B1q :� r

»
B1

�
F px0 � ry, r

1
2ux0,rpyq, r�

1
2∇ux0,rpyqq

� 1Ex0,rpyqGpx0 � ry, r
1
2ux0,rpyq, r�

1
2∇ux0,rpyqq

�
dy � P pEx0,r;B1q.
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Proof. Since ∇ux0,rpyq � r
1
2∇upx0 � ryq, for any y P B1, we rescale

FpE, u;Brpx0qq � rn
»
B1

�
F px0 � ry, upx0 � ryq,∇upx0 � ryqq

� 1Epx0 � ryqGpx0 � ry, upx0 � ryq,∇upx0 � ryqq� dy � rn�1P pEx0,r;B1q
� rn�1FrpEx0,r, ux0,r;B1q.

Thus, if F̃ � Rn is a set of finite perimeter with F̃∆Ex0,r �� B1 and ṽ P
H1pB1q is such that ṽ � ux0,r P H1

0 pB1q, then

FrpEx0,r, ux0,r;B1q � FpE, u;Brpx0qq
rn�1

¤ FpF, v;Brpx0qq � Λ|F∆E|
rn�1

� FrpF̃ , ṽ;B1q � Λr|F̃∆Ex0,r|,

where F :� x0 � rF̃ and vpxq � r
1
2 ṽ
�
x�x0
r

�
, for x P Brpx0q.

We shall prove that the energy F decays “fast” if the perimeter of E is

“small”.

Lemma 2.5.2. Let pE, uq be a Λ-minimizer of F in Ω. For every τ P p0, 1q
there exists ε1 � ε1pn, τq ¡ 0 such that, if Brpx0q � Ω and P pE;Brpx0qq  
ε1r

n�1, then

FpE, u;Bτrpx0qq ¤ C5τ
n
�
FpE, u;Brpx0qq � rn

�
,

for some constant C5 � C5

�
n, ν,N, L, LD,Λ, ‖∇u‖L2pΩq

�
independent of τ and

r.

Proof. Let τ P p0, 1q and Brpx0q � Ω. Without loss of generality we may

assume that τ   1
2
. We may also assume that x0 � 0, r � 1 by scaling

Ex0,r � E�x0
r

, ux0,rpyq � r�
1
2upx0 � ryq, for y P B1, and replacing Λ with Λr.

Thus, we have that pEx0,r, ux0,rq is a Λr-minimizer of Fr in Ω�x0
r

. For simplicity

of notation we may still denote Ex0,r by E, ux0,r by u and then we have to

prove that there exists ε1 � ε1pτq such that, if P pE;B1q   ε1, then

FrpE, u;Bτ q ¤ C5τ
n
�
FrpE, u;B1q � r

	
.

Note that, since P pE;B1q   ε1, by the relative isoperimetric inequality,

mint|B1 X E|, |B1z, Ẽ|u ¤ cpnqP pE;B1q n
n�1 .

Thus Lemma 2.4.6 holds. Choosing the set of density one points of E as a

representative of E, we get by Fubini’s theorem that

|B1zE| ¥
» 2τ

τ

Hn�1pBBρzEq dρ.
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Combining the previous inequalities, we can choose ρ P pτ, 2τq such that

Hn�1pBBρzEq ¤ |B1zE|
τ

¤ cpnq
τ
P pE;B1q n

n�1 ¤ cpnqε
1

n�1

1

τ
P pE;B1q. (2.63)

Now we set F � E YBρ. Using (2.63), we observe that

P pF ;B1q ¤ P pE;B1zBρq �Hn�1pBBρzEq

¤ P pE;B1zBρq � cpnqε
1

n�1

1

τ
P pE;B1q.

If we choose pF, uq to test the Λr-minimality of pE, uq we get

r

»
B1

�
F px0 � ry, r

1
2upyq, r� 1

2∇upyqq � 1EGpx0 � ry, r
1
2upyq, r� 1

2∇upyqq� dy
� P pE;B1q � FrpE, u;B1q ¤ FrpF, u;B1q � Λr|E∆F |
¤ r

»
B1

�
F px0 � ry, r

1
2upyq, r� 1

2∇upyqq � 1FGpx0 � ry, r
1
2upyq, r� 1

2∇upyqq� dy
� P pF ;B1q � Λr|F zE|
¤ r

»
B1

�
F px0 � ry, r

1
2upyq, r� 1

2∇upyqq � 1FGpx0 � ry, r
1
2upyq, r� 1

2∇upyqq� dy
� P pE;B1zBρq � cpnqε

1
n�1

1

τ
P pE;B1q � Λr|Bρ|.

Then, getting rid of the common terms we obtain

P pE;Bρq ¤ r

»
B1XpBρzEq

Gpx0 � ry, r
1
2upyq, r� 1

2∇upyqq dy

� cpnqε
1

n�1

1

τ
P pE;B1q � Λr|Bρ|.

Now if we choose ε1 � ε1pn, τq ¡ 0 such that cpnqε
1

n�1

1 ¤ τn�1 we infer

P pE;Bρq ¤ r

»
BρXpB1zEq

Gpx0 � ry, r
1
2upyq, r� 1

2∇upyqq dy
� τnP pE;B1q � Λr|Bρ|.

Then, we choose ε1 � ε1pn, τq ¡ 0 satisfying cpnqε
n
n�1

1 ¤ ε0p2τq|B1| to obtain,

using Lemma 2.4.6, growth conditions (2.5) and (2.6),»
B1XpBρzEq

Gpx0 � ry, r
1
2upyq, r� 1

2∇upyqq dy

¤ CpN,Lq
»
Bρ

p|∇u|2 � rq dy

¤ C
�
n, ν,N, L, LD, ‖∇u‖L2pΩq

�
τn

»
B1

p|∇u|2 � rq dy.
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Finally, we recall that ρ P pτ, 2τq to get

P pE;Bτ q ¤ C
�
n, ν,N, L, LD, ‖∇u‖L2pΩq

�
τn

»
B1

p|∇u|2 � rq dy
� τnP pE;B1q � Λr|Bρ|
¤ C

�
n, ν,N, L, LD, ‖∇u‖L2pΩq

�
τn
�
FrpE, u;B1q � r � Λr

�
.

From this estimate, applying again Lemma 2.4.6, we deduce that

r

»
B1

�
F px0 � ry, r

1
2upyq, r� 1

2∇upyqq � 1EpyqGpx0 � ry, r
1
2upyq, r� 1

2∇upyqq� dy
¤ C

�
n, ν,N, L, LD, ‖∇u‖L2pΩq

�
τn
�
r

»
B1

�
F px0 � ry, r

1
2upyq, r� 1

2∇upyqq

� 1EpyqGpx0 � ry, r
1
2upyq, r� 1

2∇upyqq� dy�,
and thus

FrpE, u;Bτ q ¤ C
�
n, ν,N, L, LD, ‖∇u‖L2pΩq

�
τn
�
FrpE, u;B1q � r

�
.

Theorem 2.5.3 (Density lower bound). Let pE, uq be a Λ-minimizer of F
in Ω and U �� Ω be an open set. Then there exists a constant C6 �
C6

�
n, ν,N, L, LD,Λ, ‖∇u‖L2pΩq , U

� ¡ 0, such that, for every x0 P BE and

Brpx0q � U , it holds

P pE;Brpx0qq ¥ C6r
n�1.

Moreover, Hn�1ppBEzB�Eq X Ωq � 0.

Proof. We start assuming that x0 P B�E. Without loss of generality we may

also assume that x0 � 0. Let

τ P
�

0,
1

4



such that 2C5τ

1
2   1,

σ P p0, 1q such that 2C5C3σ   ε1pτq, 2ωn
L2

ν
σ   ε1pτq,

0   r0   min
 
1, C3, ε1pτq

(
,

where C5 and ε1 come from Lemma 2.5.2, C3 comes from Theorem 2.4.1. We

point out that τ, σ, r0, ε1pσq depend on n, ν,N, L, Lα, LD, ‖∇u‖L2pΩq through

the constants C3 and C5 only. Let us suppose by contradiction that there

exists Br � U , with r   r0, such that P pE;Brq   ε1pσqrn�1. We shall prove

that

FpE, u;Bστhrq ¤ ε1pτqτ h2 pστhrqn�1, (2.64)
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for any h P N0, reaching a contradiction afterward.

For h � 0, using Lemma 2.5.2 with ε1 � ε1pσq, Theorem 2.4.1, r   r0   C3

and 2C5C3σ   ε1pτq, we get:

FpE, u;Bσrq ¤ C5

�
σnFpE, u;Brq � pσrqn�

¤ C5C3σ
nrn�1 � C5σ

nrn�1r

¤ 2C5C3σ
nrn�1 ¤ ε1pτqpσrqn�1.

In order to prove the induction step we have to ensure to be in position to

apply Lemma 2.5.2, that is by proving smallness of the perimeter. In such

regard, let us observe that, by the definition of FpE, u;Bρq and the growth

condition given in (2.10),

P pE;Bρq ¤ FpE, u;Bρq � 2ωn
L2

ν
ρn,

for any Bρ � Ω. Assuming that the induction hypothesis (2.64) holds true for

some h P N and, being 2ωn
L2

ν
σ   ε1pτq, τ   1

4
and r   1, we infer

P pE;Bστhrq ¤ FpE, u;Bστhrq � 2ωn
L2

ν
pστhrqn

¤ pστhrqn�1

�
ε1pτqτ h2 � 2ωn

L2

ν
στhr



¤ pστhrqn�1ε1pτqpτ h2 � τhq

¤ pστhrqn�1ε1pτq2τ 1
2 ¤ pστhrqn�1ε1pτq.

We are now in position to apply Lemma 2.5.2 with ε1 � ε1pτq. Using also the

induction hypothesis and, since r   r0 ¤ ε1pτq and 2C5τ
1
2   1, we estimate:

FpE, u;Bστh�1rq ¤ C5

�
τnFpE, u;Bστhrq � τnpστhrqn�

¤ C5

�
τnε1pτqτ h2 pστhrqn�1 � τnpστhrqn�

� τ
h
2 pστhrqn�1C5

�
τnε1pτq � τnστ

h
2 r
�

¤ τ
h
2 pστhrqn�1τn

�
C5ε1pτq � C5τ

1
2 r
�

¤ τ
h
2 pστhrqn�1τn2C5ε1pτq ¤ τ

h
2 pστhrqn�1τnε1pτqτ� 1

2

� τ
h�1
2 pστh�1rqn�1ε1pτq.

We conclude that (2.64) holds for any h P N0. Thus, we gain

P pE;Bστhrq ¤ ε1pτqτ h2 pστhrqn�1 � 2ωn
L2

ν
pστhrqn

¤ pστhrqn�1τ
h
2

�
ε1pτq � 2ωn

L2

ν
στ

h
2



¤ pστhrqn�1τ

h
2 ε1pτq

�
1� τ

h
2

�
¤ 2pστhrqn�1τ

h
2 ε1pτq.
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We finally get

lim
ρÑ0�

P pE;Bρq
ρn�1

� lim
hÑ�8

P pE;Bστhrq
pστhrqn�1

¤ lim
hÑ�8

2ε1pτqτ h2 � 0,

which implies that x0 R B�E, that is a contradiction. We recall that we chose

the representative of BE such that BE � B�E. Thus, if x0 P BE, there exists

txhuhPN � B�E such that xh Ñ x0 as hÑ �8,

P pE;Brpxhqq ¥ c
�
n, ν,N, L, LD,Λ, ‖∇u‖L2pΩq

�
rn�1

and Brpxhq � U , for h large enough. Passing to the limit as hÑ �8, we get

the thesis.

2.6 Compactness for sequences of minimizers

In this section we basically follow the path given in [46, Part III]. We start

proving a standard compactness result.

Lemma 2.6.1 (Compactness). Let pEh, uhq be a sequence of Λh-minimizers

of the functional F in Ω such that suphFpE, uh; Ωq   �8 and Λh Ñ Λ P R�.

There exist a (not relabelled) subsequence and a Λ-minimizer of F in Ω, pE, uq,
such that for every open set U �� Ω, it holds

uh Ñ u in H1pUq, Eh Ñ E in L1pUq, P pEh;Uq Ñ P pE;Uq.
In addition, µEhXU

�á µEXU , |µEh | �á |µE| in U and the following assertions

hold:

if xh P BEh X U and xh Ñ x P U, then x P BE X U, (2.65)

if x P BE X U, there exists xh P BEh X U such that xh Ñ x. (2.66)

Finally, if we assume also that ∇uh á 0 weakly in L2
locpΩ;Rnq and Λh Ñ 0,

as hÑ �8, then E is a local minimizer of the perimeter, that is

P pE;Brpx0qq ¤ P pF ;Brpx0qq,
for every set F such that F∆E �� Brpx0q � Ω.

Proof. We start observing that, by the uniform boundedness condition on

FpEh, uh; Ωq, we may assume that uh weakly converges to u in H1pUq and

strongly in L2pUq, and 1Eh converges to 1E in L1pUq, as h Ñ �8. By lower

semicontinuity we are going to prove the Λ-minimality of pE, uq.
Let us fix Brpx0q �� Ω and assume for simplicity of notation that x0 � 0.

Let pF, vq be a test pair such that F∆E �� Br and sptpu � vq �� Br. We

can handle the perimeter term as in [46], that is, eventually passing to a sub-

sequence and using Fubini’s theorem, we may choose ρ   r such that, once

again, F∆E �� Bρ and sptpu� vq �� Bρ, and, in addition,

Hn�1pB�F X BBρq � Hn�1pB�Eh X BBρq � 0,
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and

lim
hÑ0
Hn�1pBBρ X pE∆Ehqq � 0. (2.67)

Now we choose a cut-off function ψ P C1
c pBrq such that ψ � 1 in Bρ and define

vh � ψv � p1 � ψquh, Fh :� pF X Bρq Y pEhzBρq to test the minimality of

pEh, uhq. Thanks to the Λh-minimality of pEh, uhq we have»
Br

�
F px, uh,∇uhq � 1EhGpx, uh,∇uhq

�
dx� P pEh;Brq ¤

¤
»
Br

�
F px, vh,∇vhq � 1FhGpx, vh,∇vhq

�
dx� P pFh;Brq � Λh|Fh∆Eh|

¤
»
Br

�
F px, vh,∇vhq � 1FhGpx, vh,∇vhq

�
dx� P pF ;Bρq � Λh|Fh∆Eh|

� P pEh;BrzBρq � εh. (2.68)

The mismatch term εh � Hn�1pBBρXpF p1q∆Ep1q
h qq appears because F is not in

general a compact variation of Eh. Nevertheless, we have that εh Ñ 0 because

of the assumption (2.67).

Now we use the convexity of F and G with respect to the last variable to

deduce»
Br

�
F px, vh,∇vhq � 1FhGpx, vh,∇vhq

	
dx

¤
»
Br

�
F px, vh, ψ∇v � p1� ψq∇uhq � 1FhGpx, vh, ψ∇v � p1� ψq∇uhq

�
dx

�
»
Br

〈∇zF px, vh,∇vhq,∇ψpv � uhq〉 dx

�
»
Br

1Fh 〈∇zGpx, vh,∇vhq,∇ψpv � uhq〉 dx,

where the last two terms in the previous estimate tend to zero as h Ñ �8.

Indeed, the term ∇ψpv � uhq strongly converges to zero in L2, being u � v in

BrzBρ and the first part in the scalar product weakly converges in L2. Then

using again the convexity of F and G with respect to the z variable we obtain,

for some infinitesimal σh,»
Br

�
F px, vh,∇vhq � 1FhGpx, vh,∇vhq

�
dx

¤
»
Br

ψ
�
F px, vh,∇vq � 1FhGpx, vh,∇vq

�
dx

�
»
Br

p1� ψq�F px, vh,∇uhq � 1FhGpx, vh,∇uhq� dx� σh. (2.69)

Finally, we combine (2.68) and (2.69) and pass to the limit as hÑ �8, using

the lower semicontinuity on the left-hand side. For the right-hand side we
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observe that 1Eh Ñ 1E and 1Fh Ñ 1F in L1pBrq, as hÑ �8, and we use also

the equi-integrability of t∇uhuhPN to conclude,»
Br

ψ
�
F px, u,∇uq � 1EGpx, u,∇uq

�
dx� P pE;Bρq

¤
»
Br

ψ
�
F px, v,∇vq � 1FGpx, v,∇vq

�
dx� P pF ;Bρq � Λ|F∆E|.

Letting ψ Ó 1Bρ we finally get»
Bρ

�
F px, u,∇uq � 1EGpx, u,∇uq

�
dx� P pE;Bρq

¤
»
Bρ

�
F px, v,∇vq � 1FGpx, v,∇vq

�
dx� P pF ;Bρq � Λ|F∆E|,

and this proves the Λ-minimality of pE, uq.
To prove the strong convergence of ∇uh to ∇u in L2pBrq we start observing

that by (2.68) and (2.69) applied using pEh, uq to test the Λ-minimality of

pEh, uhq we get»
Br

ψ
�
F px, uh,∇uhq � 1EhGpx, uh,∇uhq

�
dx

¤
»
Br

ψ
�
F px, u,∇uq � 1EhGpx, u,∇uq

�
dx� σh.

Then from the equi-integrability of t∇uhuhPN in L2pUq and recalling that

1Eh Ñ 1E in L1pUq, we obtain

lim sup
hÑ�8

»
Br

ψ
�
F px, uh,∇uhq � 1EhGpx, uh,∇uhq

�
dx

¤
»
Br

ψ
�
F px, u,∇uq � 1EGpx, u,∇uq

�
dx.

The opposite inequality can be obtained by semicontinuity. Thus we get

lim
hÑ�8

»
Br

ψ
�
F px, uh,∇uhq � 1EhGpx, uh,∇uhq

�
dx

�
»
Br

ψ
�
F px, u,∇uq � 1EGpx, u,∇uq

�
dx.

From the uniform ellipticity condition in (2.5) we infer, for some σh Ñ 0,

ν

»
Br

ψ|∇uh �∇u|2 dx ¤
»
Br

ψ
�
F px, uh,∇uhq � F px, u,∇uq� dx

�
»
Br

ψ1E
�
Gpx, uh,∇uhq �Gpx, u,∇uq� dx� σh.

Passing to the limit we obtain

lim
hÑ�8

»
Br

ψ|∇uh �∇u|2 dx � 0.
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Finally, testing the minimality of pEh, uhq with respect to the pair pE, uq we

also get

lim
hÑ�8

P pEh;Bρq � P pE;Bρq.
With a usual argument we can deduce uh Ñ u in H1pUq and P pEh;Uq Ñ
P pE;Uq, for every open set U �� Ω.

Let us prove that µEhXU
�á µEXU . Let us fix Crpx, νq �� U such that

Hn�1pB�E X BCrpx, νqq � 0. Then, we have

|µE|pCrpx, νqq � lim
hÑ�8

|µEh |pCrpx, νqq.

On the other hand, since Eh X U Ñ E X U , we easily get, by applying Propo-

sition 1.1.2, that

lim
hÑ�8

»
Rn
T � dµEhXU � lim

hÑ�8

»
EhXU

div T dx �
»
EXU

div T dx

�
»
Rn
T � dµEXU , @T P C1

c pRn;Rnq. (2.70)

If T P CcpRn;Rnq, then we can find a sequence tThuhPN � C1
c pRn;Rnq such

that Th Ñ T uniformly and
�
hPN sptTh Y sptT � K, for some compact set

K � Rn. Fixing ε ¡ 0, for h and k sufficiently large, we get����»
Rn
T � dµEhXU �

»
Rn
T � dµEXU

����
¤
����»

Rn
pT � Tkq � dµEhXU

����� ����»
Rn
Tk � dµEhXU �

»
Rn
Tk � dµEXU

����
�
����»

Rn
Tk � dµEXU �

»
Rn
T � dµEXU

����   ‖T � Tk‖8 |µEhXU |pRnq � 2

3
ε   ε,

since |µEhXU |pRnq � P pEh;Uq � P pU ;Ehq ¤ P pEh;Uq � P pUq   �8. There-

fore, we conclude that (2.70) holds for T P CcpRn;Rnq, i.e. µEhXU
�á µEXU .

In order to prove the other weak-star convergence, thanks to Proposition

A.1.14, we need to show that |µEh | is lower semicontinuous on open sets and up-

per semicontinuous on compact sets. We preliminarily observe that, if G � U

is a |µEh |-measurable set, by Theorem 1.1.18, we have

|µEhXU |pGq � |µEh |pGq � |µU |pGX Ehq � |µEh |pGq,
i.e. |µEhXU | � |µEh | on U . The same argument can be used to prove that

|µEXU | � |µE| on U . Using the lower semicontinuity property of Radon mea-

sures with respect to open sets (see Proposition A.1.14), we infer

|µE|pAq � |µEXU |pAq ¤ lim inf
hÑ�8

|µEhXU |pAq � lim inf
hÑ�8

|µEh |pAq, (2.71)

for every open set A � U .

We are left to prove the upper semicontinuity on compact sets. Let K � U
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be a compact set. Since P pEh;Uq Ñ P pE;Uq as hÑ �8, then, by the lower

semicontinuity of |µEh | on open sets (see Proposition A.1.14),

|µE|pKq � |µE|pUq � |µE|pUzKq ¥ lim
hÑ�8

|µEh |pUq � lim inf
hÑ�8

|µEh |pUzKq
� lim sup

hÑ�8
p|µEh |pUq � |µEh |pUzKqq � lim sup

hÑ�8
|µEh |pKq. (2.72)

Putting (2.71) and (2.72) together we get |µEh | �á |µE| in U .

Now we prove (2.65). If s ¡ 0 is such that B2spxq �� U , then, for h

sufficiently large, we have Bspxhq � B2spxq. Thus, the upper semicontinuity

property of Radon measures with respect to closed sets (see Proposition A.1.14)

and the density lower bound estimate (see Theorem 2.5.3) give

P pE;B2spxqq ¥ lim sup
hÑ�8

P pEh;B2spxqq ¥ P pEh;Bspxhqq ¥ cpnqsn�1 ¡ 0.

In particular, x P sptµE � BE.

Finally, we prove (2.66). We recall that we chose a representative of BE
such that BE � sptµE. Let us fix ε ¡ 0 such that Bεpxq � A0. Assume by

contradiction that there exists a divergent subsequence thpkqukPN � N such

that sptµEhpkq X Bεpxq � H, for any k P N. Since µEhpkq
�á µE, by the lower

semicontinuity property of Radon measures with respect to open sets (see

Proposition A.1.14), we finally get

µEpBεpxqq ¤ lim inf
kÑ�8

µEhpkqpBεpxqq � 0,

which implies that x R sptµE, that is a contradiction.

Proposition 2.6.2 (Lower semicontinuity of the excess). If A, A0 � Rn are

open sets with A0 �� A, P pA0q   �8, and if tEhuhPN is a sequence of Λ-

minimizers of F in A such that A0XEh Ñ E, then, for every Crpx, νq �� A0,

we have

eCpE, x, r, νq ¤ lim inf
hÑ�8

eCpEh, x, r, νq.
In fact, if Crpx, νq is such that Hn�1pB�E X BCrpx, νqq � 0, then we have

exactly

eCpE, x, r, νq � lim
hÑ�8

eCpEh, x, r, νq.

Proof. Step 1: Let us fix Crpx, νq �� A0 such that Hn�1pB�EXBCrpx, νqq �
0. Then, by Lemma 2.6.1, we have

|µE|pCrpx, νqq � lim
hÑ�8

|µEh |pCrpx, νqq.

On the other hand, since A0XEh Ñ E, we easily get, by applying Proposition

1.1.2, that

lim
hÑ�8

»
Rn
T � dµA0XEh �

»
Rn
T � dµE, @T P C1

c pRn;Rnq. (2.73)



2.7. Height bound lemma 86

If T P CcpRn;Rnq, then we can find a sequence tThuhPN � C1
c pRn;Rnq such

that Th Ñ T uniformly and
�
hPN sptTh Y sptT � K, for some compact set

K � Rn. Fixing ε ¡ 0, for h and k sufficiently large, we get����»
Rn
T � dµA0XEh �

»
Rn
T � dµE

����
¤
����»

Rn
pT � Tkq � dµA0XEh

����� ����»
Rn
Tk � dµA0XEh �

»
Rn
Tk � dµE

����
�
����»

Rn
Tk � dµE �

»
Rn
T � dµE

����   ‖T � Tk‖8 |µA0XEh |pRnq � 2

3
ε   ε,

since |µA0XEh |pRnq   �8. Therefore we conclude that (2.73) holds for T P
CcpRn;Rnq, i.e. µA0XEh

�á µE. By Proposition A.1.14 we infer

µEpCrpx, νqq � lim
hÑ�8

µA0XEhpCrpx, νqq.

Since Crpx, νq �� A0, by Theorem 1.1.18 we have

µA0XEhpCrpx, νqq � µEhpCrpx, νqq
and thus

lim
hÑ�8

eCpEh, x, r, νq � lim
hÑ�8

|µEh |pCrpx, νqq � ν � µEhpCrpx, νqq
rn�1

� |µE|pCrpx, νqq � ν � µEpCrpx, νqq
rn�1

� eCpEh, x, r, νq.

Step 2: We observe that the function r ÞÑ eCpE, x, r, νq is left-continuous on

p0,�8q. By the foliation’s property by Borel sets, we can choose a sequence

trkukPN with rk Ñ r� as k Ñ �8 such that Hn�1pB�EXBCpx, rk, νqq � 0 and

Cpx, rk, νq �� A0, for all k P N. By step 1 and Proposition 1.1.22, we find

eCpE, x, rk, νq � lim
hÑ�8

eCpEh, x, rk, νq ¤
�
r

rk


n�1

lim inf
hÑ�8

eCpEh, x, r, νq.

Finally, we let k Ñ �8 and obtain the thesis.

2.7 Height bound lemma

Now we introduce a usual quantity involved in regularity theory. We define

the rescaled Dirichlet integral of u as

Dpx, rq :� 1

rn�1

»
Brpxq

|∇u|2dy.

The proof of the height bound is rather standard and it can be found in [46,

Chapter 22]. We first need the following two lemmata.
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Lemma 2.7.1 (Small excess position). For any t0 P p0, 1q there exists a con-

stant ω � ωpn, t0q ¡ 0 with the following property. If pE, uq is a Λ-minimizer

of F in C2, 0 P BE and

enp2q ¤ ωpn, t0q,
then

|qx|   t0, @x P C1 X BE,
|tx P C1 X E : qx ¡ t0u| � 0,

|tx P C1zE : qx   �t0u| � 0.

Proof. Let t0 P p0, 1q. Assume by contradiction that there exists a sequence

tpEh, uhquhPN of Λ-minimizers of F in C2 with equibounded energies such that

0 P BEh,
lim

hÑ�8
epEh, 0, 2, enq � 0,

and for inifinitely many h P N at least one of the following conditions holds

true:

tx P C1 X BEh : t0 ¤ |qx| ¤ 1u � H, (2.74)

|tx P C1 X Eh : qx ¡ t0u| ¡ 0, (2.75)

|tx P C1zEh : qx   �t0u| ¡ 0. (2.76)

Up to subsequences, there exists a Λ-minimizer of F in C2 such that Eh Ñ E in

L1
locpC2q, uh Ñ u in H1

locpC2q, P pEh;Uq Ñ P pE;Uq, for any open set U �� Ω,

as h Ñ �8. Furthermore, since 0 P BEh X C 5
3

for any h P N, by (2.65) we

deduce that 0 P BE. In particular, E is a Λ-minimizer of F in C 5
3

and we may

assume that Eh XC 5
3
Ñ E.

By the semicontinuity of the excess (see Proposition 2.6.2) and the com-

parison between excess at different scales (see Proposition 1.1.22), we deduce

e

�
E, 0,

4

3
, en



¤ lim inf

hÑ�8
e

�
Eh, 0,

4

3
, en



¤
�

3

2


n�1

lim
hÑ�8

epEh, 0, 2, enq � 0.

Thus, using Proposition 1.1.23 we infer that

E XC 4
3

is equivalent to C 4
3
X tqx   0u. (2.77)

If (2.74) were valid for infinitely many values of h P N, then, up to extract

a further subsequence, we may construct txhuhPN with xh P C1 X BEh, t0 ¤
|qxh| ¤ 1 and, by (2.66), xh Ñ x0 P C1 X BE, as hÑ �8. Then, it would be

that

C1 X BE X t|qx| ¥ t0u � C 4
3
X BE X t|qx| ¥ t0u � H,

in contradiction with (2.77). Thus there exists h0 P N such that

tx P C1 X BEh : t0 ¤ |qx| ¤ 1u � H, @h ¥ h0.
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Since Theorem 1.1.18 guaranties that

|µC1XEh | � |µEh | C1 � |µC1 | E
p1q
h �Hn�1 tνC1 � νEhu

� |µC1 | E
p1q
h � |µEh | pC1 Y tνC1 � νEhuq,

we find that, for every h ¥ h0,

|µC1XEh |ptx P C1 : t0   |qx|   1uq
� Hn�1pEp1q

h X BC1 X tx P C1 : t0   |qx|   1uq
� |µEh |ptx P C1 : t0   |qx|   1u X tνC1 � νEhuq
¤ |µEh |ptx P C1 : t0   |qx|   1uq � 0.

Decomposing the set tx P C1 : t0   |qx|   1u in the union of the two

connected open sets tx P C1 : t0   qx   1u and tx P C1 : �1   qx   �t0u,
we have that

0 � |µC1XEh |ptx P C1 : t0   qx   1uq
� sup

φPC8
c ptxPC1 : t0 qx 1uq

‖φ‖8¤1

»
Rn
1C1XEhdivφ dx.

Thus, we infer that 1CXEh is equivalent to a constant in tx P C1 : t0   qx   1u.
With the same argument, 1CXEh is equivalent to a (possibly different) constant

in tx P C1 : �1   qx   �t0u. Since C1 X Eh Ñ E as h Ñ �8 and (2.77)

holds true, we deduce

1CXEh � 0 a.e. in tx P C1 : t0   qx   1u,
1CXEh � 1 a.e. in tx P C1 : �1   qx   �t0u,

that is a contradiction to (2.75) and (2.76).

Lemma 2.7.2 (Excess measure). If E � Rn is a set of locally finite perimeter,

with 0 P BE, and such that, for some t0 P p0, 1q,
|qx|   t0, @x P C1 X BE,

|tx P C1 X E : qx ¡ t0u| � 0, (2.78)

|tx P C1zE : qx   �t0u| � 0, (2.79)

then, setting M :� C1 X B�E, we have

Hn�1pGq ¤ Hn�1pM X p�1pGqq, (2.80)

Hn�1pGq �
»
MXp�1pGq

pνE � enq dHn�1, (2.81)»
D1

φ dx �
»
M

pφ � pqpνE � enqdHn�1, (2.82)
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»
EtXD1

φ dx �
»
MXtqx¡tu

pφ � pqpνE � enqdHn�1, (2.83)

for every Borel set G � D1, φ P CcpD1q and t P p�1, 1q. The set function

ζpGq :� P pE; CX p�1pGqq �Hn�1pGq � Hn�1pM X p�1pGqq �Hn�1pGq,
for G � Rn�1, defines a Radon measure on Rn�1, concentrated on D1. The

Radon measure ζ is called the excess measure of E over D1 since ζpD1q �
eCpE, 0, 1, enq.
Proof. We first remark that (2.82) implies (2.81), which in turn implies (2.80)

by observing that |νE �en| ¤ 1. Indeed, if (2.82) holds true, then approximating

1G, where G � D1 is a Borel set, with a sequence of functions tφhuhPN �
CcpD1q, we get (2.81). We are led to prove (2.82) and (2.83). By a density

argument we may assume that φ P C1
c pD1q. Using the foliation’s property by

Borel sets, we have

Hn�1pB�E X pBDr � Rqq � 0, (2.84)

for a.e. r P p0, 1q. By hypothesis (2.78), thanks to Fubini’s theorem, we get

0 �
»
C1XEXtqx¡t0u

dx �
» 1

t0

Hn�1pE X pD1 � tsuqqds.

This implies that

Hn�1pE X pD1 � tsuqq � 0, for a.e. s P pt0, 1q. (2.85)

By assumption (2.79), with the same argument we infer

Hn�1pE X pD1 � ttuqq � Hn�1pD1q, for a.e. t P p�1,�t0q. (2.86)

We let r P p0, 1q and s P pt0, 1q satisfy respectively (2.84) and (2.85). Given

t P p�1, sq, we define a set of finite perimeter F as F :� E X pDr � pt, sqq. By

(2.84) we have tνE � νDr�pt,squ � H, thus obtaining by Theorem 1.1.18

µF � µE pDr � pt, sqq � µDr�pt,sq E.

Now we make the Gaus-Green measure µDr�pt,sq explicit. If we set νpxq :� px
|px|

for every x P Rn such that px � 0 (so that νpxq is the outer normal to the

cylinder Dr � R at x P BDr � R), then

µDr�pt,sq � enHn�1 pDr � tsuq � νHn�1 pBDr � pt, sqq � enHn�1pDr � ttuq,
(2.87)

that is the sum of the Gauss-Green measures of the bottom, the lateral surface

and the top of the cylinder. Since ν � en � 0 and, by (2.85), Hn�1 pEXpDr�
tsuqq � 0, multiplying by en the equality (2.87), we get

en � µF � pen � νEqHn�1 pB�E X pDr � pt, sqqq �Hn�1 pE X pDr � ttuqq.
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Hence, given φ P C1
c pD1q we may define a vector field T P C1pRn;Rnq by

setting T pxq � φppxqen, for x P Rn. We apply the distributional Gauss-Green

theorem to obtain

0 �
»
F

div T dx �
»
B�F

T � dµF

�
»
B�EXpDr�pt,sqq

pφ � pqpen � νEq dHn�1 �
»
EXpDr�ttuq

pφ � pq dHn�1.

We first let r Ñ 1� and then sÑ 1� to prove (2.83), that is»
EtXD1

φ dx �
»
EXpD1�ttuq

pφ � pq dHn�1 �
»
B�EXpD�pt,1qq

pφ � pqpen � νEq dHn�1

�
»
MXtqx¡tu

pφ � pqpνE � enqdHn�1.

Finally, by letting tÑ 1� and by (2.86), we prove (2.82).

Remark 2.7.3. We observe that (2.80) ensures that C1 X B�E “leaves no

holes” over D1. Furthermore the measure ζ defined in the previous lemma

measures the flatness of subsets of C1 X B�E. The name “excess measure” is

justified by the fact that, by (2.81),

ζpDq � Hn�1pC1 X B�Eq �
»
C1XB�E

pνE � enqdHn�1 � eCpE, 0, 1, enq.

Thus, if eCpE, 0, 1, enq is small, by the monotonicity property of measures, then

every subset of G is almost flat, that can be explicited as

Hn�1pGq ¤ Hn�1pC1 X B�E X p�1pGqq ¤ Hn�1pGq � eCpE, 0, 1, enq,
for every Borel set G � D1.

The following height bound lemma is a standard step in the proof of regu-

larity.

Lemma 2.7.4 (Height bound). Let pE, uq be a Λ-minimizer of F in C4rpx0, νq
and ν P S

n�1. There exist two positive constants C7 �
C7

�
n, ν,N, L, LD,Λ, ‖∇u‖L2pΩq

�
and ε2 � ε2pnq such that if x0 P BE and

epx, 4r, νq   ε2,

then

sup
yPBEXCrpx0q

|ν � py � x0q|
r

¤ C7epx, 4r, νq 1
2pn�1q .

Proof. Step 1: Up to replacing pE, uq with
�
E�x0

2r
, p2rq� 1

2upx0 � r�q
	

and ro-

tating in a way such that ν � en, by Lemma 2.5.1, we have that pE, uq is a

Λr-minimizer of Fr in C2, 0 P BE and, by Proposition 1.1.21,

epE, 0, 2, enq   ε2.
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Assuming that ε2pnq   ω
�
n, 1

4

�
, with ω

�
n, 1

4

�
as in Lemma 2.7.1, and defining

M :� C1 X BE, by Lemma 2.7.1, Remark 2.7.3 and Proposition 1.1.22 we

deduce that

|qx|   1

4
, @x PM,

0 ¤ Hn�1pMq �Hn�1pD1q ¤ enp1q ¤ 2n�1enp2q, (2.88)

0 ¤ Hn�1pM X tqx ¡ tuq �Hn�1pEt XD1q ¤ enp1q ¤ 2n�1enp2q. (2.89)

Step 2: Let f : p�1, 1q Ñ r0,Hn�1pMqs be the left-continuous nonincreasing

function defined as

fptq :� Hn�1pM X tqx ¡ tuq.
By Lemma 2.7.1 we get that

fptq � Hn�1pMq, @t P
�
�1,�1

4



,

fptq � 0, @t P
�

1

4
, 1



.

Since f is non-increasing, there exists t0 P p�1, 1q such that

fptq ¤ H
n�1pMq

2
, if t ¥ t0, (2.90)

fptq ¥ H
n�1pMq

2
, if t ¤ t0,

for t P p�1, 1q. As 0 P C 1
2
X BE and, so,

|qx| ¤ |qx� t0| � |t0 � q0|,
it is enough to prove that

qx� t0 ¤ Cpnqenp2q 1
2pn�1q , @x P C 1

2
X BE.

Indeed, applying the same argument with RnzE in place of E, we shall then

deduce that t0 � qx ¤ Cpnqenp2q 1
2pn�1q , for any x P C 1

2
X BE.

Step 3: Let t1 P
�
t0,

1
4

�
be such that fptq ¤ a

enp2q for any t ¥ t1. Then it

holds true that

qy � t1 ¤ Cpnqenp2q 1
2pn�1q , @y P C 1

2
X BE.

Indeed if qy   t1, the assertion is trivial. If qy ¡ t1, then Bpy, qy� t1q �� C2,

with qy� t1   1
2
. Since E is a Λr-minimizer of Fr in C2, then, using Theorem

2.5.3 and observing that Bpt, qy � t1q � C1 X tqx ¡ t1u, we get

C3pqy�t1qn�1 ¤ P pE;Bpy, qy�t1qq � Hn�1pMXtqx ¡ t1uq � fptq ¤a
enp2q,
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obtaining the assertion.

Step 4: By step 3, we are left to prove that

t1 � t0 ¤ Cpnqenp2q 1
2pn�1q .

We shall prove the following chain of inequalities:

cpnqaenp2q ¥
» t1

t0

Hn�1pEt XD1qn�2
n�1 dt ¥ cpnqpt1 � t0q

a
enp2q

n�2
n�1 , (2.91)

where Et is the horizontal section of E at level t. Let us prove the first

inequality in (2.91). Since, by (2.90), (2.88) and choosing ε2pnq ¤ Hn�1pD1q
2n

,

Hn�1pEt XD1q ¤ Hn�1pM X tqx ¡ tuq � fptq ¤ H
n�1pMq

2

¤ H
n�1pD1q � 2n�1enp2q

2
¤ 3

4
Hn�1pD1q,

we can apply the relative isoperimetric inequality in dimension n � 1 (see

Proposition 1.1.9) to obtain that

Hn�2pB�Et XD1q � P pEt;D1q ¥ cpnqHn�1pEt XD1qn�2
n�1 . (2.92)

Since ε2pnq ¤ ω
�
n, 1

4

�
, we estimate

Hn�1pMq ¤ Hn�1pD1q � 2n�1enp2q ¤ cpnq. (2.93)

Furthermore, since Hn�2pB�Et∆pB�Eqtq � 0 for almost every t P R, we infer

Hn�2pD1 X B�Etq � Hn�2pD1 X pB�Eqtq � Hn�2ppC1 X B�Eqtq � Hn�2pMtq.
(2.94)

Therefore, applying (2.92), (2.94) by Fubini’s Theorem, Coarea formula (see

Theorem A.2.6) and (2.93), we get:» t1

t0

Hn�1pEt XD1qn�2
n�1 dt ¤ cpnq

» 1

�1

Hn�2pD1 X B�Etq dt

� cpnq
»
R
Hn�2pMtq dt � cpnq

»
R
dt

»
B�Et

1C dHn�2

� cpnq
»
B�E

1C

a
1� pνE � enq2 dHn�1

� cpnq
»
M

a
1� pνE � enq2 dHn�1

¤ cpnq
»
M

?
1� νE � en dHn�1

¤ cpnqaHn�1pMq
�»

M

p1� νE � enq dHn�1


 1
2

¤ cpnqaenp2q
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We now prove the second inequality in (2.91). By (2.89), the choice of t1, using

that f is decreasing, we deduce that» t1

t0

Hn�1pEt XD1qn�2
n�1 dt ¥

» t1

t0

rHn�1pM X tqx ¡ tuq � 2n�1enp2qsn�2
n�1 dt

�
» t1

t0

rfptq � 2n�1enp2qsn�2
n�1 dt

¥
» t1

t0

raenp2q � 2n�1enp2qsn�2
n�1 dt

¥ cpnqaenp2q
n�2
n�1 pt1 � t0q,

for ε2pnq sufficiently small.

2.8 Lipschitz approximation theorem

Proceeding as in [46], we give the proof of the following Lipschitz approxima-

tion lemma, which is a consequence of the height bound lemma.

Theorem 2.8.1 (Lipschitz approximation). There exist three positive con-

stants C8 � C8

�
n, ν,N, L, LD,Λ, ‖∇u‖L2pΩq

�
, ε3 � ε3pnq and δ0pnq, with the

following property. If pE, uq is a Λ-minimizer of F in C9rpx0q, with x0 P BE
and

enpx0, 9rq   ε3,

and if we set

M :� Crpx0q X BE, M0 :�
"
y PM : sup

0 s 8r
enpy, sq ¤ δ0pnq

*
,

then there exists a Lipschitz function f : Rn�1 Ñ R with

sup
x1PRn�1

|fpx1q|
r

¤ C8enpx0, 9rq 1
2pn�1q , ‖∇1f‖L8 ¤ 1

such that a suitable translation Γ of the graph of f over Dr contains M0,

M0 �M X Γ, with Γ � x0 � tpz, fpzqq : z P Dru
and covers a large portion of M in terms of enpx0, 9rq, that is

1

rn�1
Hn�1pM∆Γq ¤ C8enpx0, 9rq.

Moreover,
1

rn�1

»
Dr

|∇1f |2 dx1 ¤ C8epx0, 9rq.
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Proof. Step 1: Up to replacing pE, uq with
�
E�x0
r
, upx0 � r�q� and f with fpr�q

r
,

we shall prove that if pE, uq is a Λr-minimizer for F in C9, with 0 P BE and

enp9q ¤ ε3, and

M � C1 X BE, M0 �
"
y PM : sup

0 s 8
enpy, sq ¤ δ0pnq

*
,

then there exists a Lipschitz function f : Rn�1 Ñ R, with ‖∇f‖8 ¤ 1 such

that

sup
Rn�1

|f | ¤ C8enp9q 1
2pn�1q , (2.95)

M0 �M X Γ, with Γ � tpz, fpzqq : z P D1u

Hn�1pM∆Γq ¤ C8enp9q (2.96)»
D1

|∇1f |2 dx1 ¤ C8enp9q. (2.97)

Let ε2 and C7 the constants from Lemma 2.7.4. Assuming that

ε3 ¤ min

"
ε2, ω

�
n,

1

4


*
,

by Lemma 2.7.4, Lemma 2.7.1 and Proposition 1.1.22 it holds

sup
xPC2XBE

|qx| ¤ sup
xPC 9

4
XBE

|qx| ¤ C7enp9q 1
2pn�1q

0 ¤ Hn�1pM X p�1pGqq �Hn�1pGq ¤ enp1q ¤ 9n�1enp9q,"
x P C2 : qx   �1

4

*
� C2 X E �

"
x P C2 : qx   1

4

*
,

for any Borel set G � D1.

Step 2: We now prove that f is invertible on M0, by showing that

|qy � qx| ¤ L|py � px|, @y PM0, @x PM, (2.98)

for some positive constant L   1. Let y PM0 and x PM . Scaling

F :� E � y

‖y � x‖
, vp�q :� ‖y � x‖�

1
2 upx0 � r�q,

where ‖z‖ :� maxt|pz|, |qz|u for z P Rn (and consequently Cspyq � tz P Rn :

‖z � y‖   su), we have that F is a pΛr ‖y � x‖q-minimizer of Fr‖y�x‖ in C 9
‖y�x‖

.

Since 9
‖y�x‖ ¡ 4 and 0 P BF , by Proposition 1.1.21, we infer

enpF, 0, 4q � enpE, y, 4 ‖y � x‖q ¤ sup
sPp0,8q

enpy, sq ¤ δ0.

Assuming δ0pnq ¤ ε2pnq, by Lemma 2.7.4 we get

sup
wPC1XBF

|qw| ¤ C7δ
1

2pn�1q

0
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and, choosing w � x�y
‖x�y‖ P C1 X BF , we obtain (2.98) with L � C7δ

1
2pn�1q

0 ,

depending on n, ν,N, L, LD, ‖∇u‖L2pΩq. Furthermore, if δ0 is sufficiently small,

we have that L   1. We define f : ppM0q Ñ R as

fppxq � qx,

for x PM0. We can rewrite (2.98) as

|fppyq � fppxq| ¤ L|py � px|, @x, y PM0.

Thus ‖∇1f‖8 ¤ 1 and, since M0 �M , we get

sup
xPM0

|fppxq| ¤ C7enp9q 1
2pn�1q .

By McShane’s lemma (see Lemma A.3.2), we can extend f to the whole Rn�1

without changing its Lipschitz constant. Up to truncating f , we may also

assume that (2.95) holds. Furthermore, we have that

M0 � tppx, fpxqq : x PM0u �M X Γ.

Let us prove (2.96). Since MzΓ �MzM0, it suffices to show that

Hn�1pMzM0q ¤ C8enp9q. (2.99)

By definition of M0, for any y PMzM0 there exists s P p0, 4q such that

δ0s
n�1  

»
CspyqXBE

|νE � en|2
2

dHn�1.

By [46, Corollary 5.2] there exists a family of disjoint ball contained in C9,

tBpyh,
?

2shquhPN, with centers yh PMzM0 satisfying the above estimate, such

that

Hn�1pMzM0q ¤ cpnq
¸
hPN
Hn�1ppMzM0q XBpyh,

?
2shqq

¤ cpnq
¸
hPN
Hn�1pM XBpyh,

?
2shqq

¤ cpnq
¸
hPN

P pE;Bpyh,
?

2shqq

¤ cpnq
¸
hPN

sn�1
h

¤ cpnq
¸
hPN

»
Csh pyhqXBE

|νE � en|2
2

dHn�1

¤ cpnq
»
C9XBE

|νE � en|2
2

dHn�1

¤ cpnqenp9q.
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Therefore, we finally obtain (2.99). Now we prove that

Hn�1pΓzMq ¤ C8enp9q.

By the area formula (see Theorem A.2.5) and (2.99), we deduce that

Hn�1pΓzMq �
»
ppΓzMq

a
1� |∇1f |2 dx1 ¤

b
1� ‖∇1f‖2

8H
n�1pppΓzMqq

¤ ?
2Hn�1pM X p�1pppΓzMqqq ¤ ?

2Hn�1pMzΓq
¤ cpnqenp9q.

Step 3: We finaly prove (2.97). We split the integral in two addends:»
D1

|∇1f |2 dx1 �
»
ppM∆Γq

|∇1f |2 dx1 �
»
ppMXΓq

|∇1f |2 dx1

The first integral is easily estimated by (2.96); indeed,»
ppM∆Γq

|∇1f |2 dx1 ¤ Hn�1pppM∆Γqq ¤ Hn�1pM∆Γq ¤ cpnqenp9q.

We are left to estimate the second integral. We observe that, since f is

Lipschitz continuous, the normal to its graph is νpzq � p�∇1fpzq, 1q and

Tpz,fpzqqΓ � νpzqK, for almost every z P Rn�1. On the other side, by Theo-

rem 1.1.13, TxpB�Eq � νEpxqK, for any x P M . Thus, since B�E and Γ are

locally Hn�1-rectifiable, we infer that

TxpB�Eq � TxΓ,

for Hn�1-a.e. x P M X Γ, and, consequently, there exists λpxq P t�1, 1u such

that

νEpxq � λpxqνppxq � λpxq p�∇1fppxq, 1qa
1� |∇1fppxq|2 ,

for Hn�1-a.e. x PM X Γ. By Proposition 1.1.22 and Theorem A.2.5, we get

9n�1enp9q ¥ enp1q �
»
M

|νE � en|2
2

dHn�1 ¥ 1

2

»
MXΓ

|pνE|2 dHn�1

� 1

2

»
MXΓ

|∇1fppxq|2
1� |∇1fppxq|2 dH

n�1 � 1

2

»
ppMXΓq

|∇1fpzq|2a
1� |∇1fpzq|2 dz

¥ 1

2
?

2

»
ppMXΓq

|∇1fpzq|2 dz,

where we used the fact that

|νE � en|
2

� 1�νE �en ¥ 1� pνE � enq2
2

� |pνE|2 � |qνE|2 � pνE � enq2
2

� |pνE|2
2

.
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2.9 Reverse Poincaré inequality

In this section we shall prove a reverse Poincaré inequality following the path

traced in [46, Chapter 24]. We will use the following theorem, which is useful

to construct “good” comparison sets. The proof is purely geometric and can

be found in [46, Lemma 24.8].

Lemma 2.9.1 (Cone-like comparison sets). If s ¡ 0 and E is an open set with

smooth boundary such that

|qx|   1

4
, @x P Ks X BE,"

x P Ks : qx   �1

4

*
� Ks X E �

"
x P Ks : qx   1

4

*
,

then, for every λ P �0, 1
4

�
and |c|   1

4
, there exist r P �2

3
, 3

4

�
and an open set F

of locally finite perimeter satisfying the “boundary conditions”

F X BKrs � E X BKrs, (2.100)

K s
2
X BF � D s

2
� tcu, (2.101)

and the “excess-flatness estimate”

P pF ; Krsq �Hn�1pDrsq (2.102)

¤ C

"
λpP pE; Ksq �Hn�1pDsqq � 1

λ

»
KsXBE

|qx� c|2
s2

dHn�1pxq
*
,

with C � Cpnq ¡ 0. In fact, given s, E, λ and c as above, there exists I � �
2
3
, 3

4

�
with |I| ¥ 1

24
such that for every r P I there exists an open set F of locally

finite perimeter satisfying (2.100), (2.101) and (2.102).

We will need a weak form of the reverse Poincaré inequality.

Lemma 2.9.2 (Weak reverse Poincaré inequality). If pE, uq is a Λ-minimizer

of F in C4 such that

|qx|   1

8
, @x P C2 X BE,����"x P C2zE : qx   �1

8

*���� � ����"x P C2 X E : qx ¡ 1

8

*���� � 0,

and if z P Rn�1 and s ¡ 0 are such that

Kspzq � C2, Hn�1pBE X BKspzqq � 0, (2.103)

then, for every |c|   1
4
,

P pE; K s
2
pzqq �Hn�1pD s

2
pzqq ¤ cpn,N, Lq

#��
P pE; Kspzqq �Hn�1pDspzqq

�
�
»
KspzqXB�E

pqx� cq2
s2

dHn�1

� 1
2

� Λs�
»
Ks

|∇u|2 dx
+
.
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Proof. The proof of this lemma is fairly standard and it is inspired by [46,

Lemma 24.9]. We start assuming that z � 0.

Step 1: The set function

ζpGq � P pE; C2 X p�1pGqq �Hn�1pGq, for G � D2,

defines a Radon measure on Rn�1, concentrated on D2.

Step 2: Since E is a set of locally finite perimeter, by Theorem 1.1.10 there

exist a sequence tEhuhPN of open subsets of Rn with smooth boundary and a

vanishing sequence tεhuhPN � R� such that

Eh
locÑ E, Hn�1 BEh Ñ Hn�1 BE, BEh � IεhpBEq,

where IεhpBEq is a tubolar neighborhood of BE with half-lenght εh. By Coarea

formula we get

Hn�1pBKrs X pEp1q∆Ehqq Ñ 0, for a.e. r P
�

2

3
,
3

4



.

Moreover, provided h is large enough, by BEh � IεhpBEq,

|qx|   1

4
, @x P C2 X BEh,"

x P C2 : qx   �1

4

*
� C2 X Eh �

"
x P C2 : qx   1

4

*
.

Therefore, given λ P �
0, 1

4

�
and |c|   1

4
, we are in position to apply Lemma

2.9.1 to every Eh to deduce that there exists Ih �
�

2
3
, 3

4

�
, with |Ih| ¥ 1

24
, and,

for any r P Ih, there exists an open subset Fh of Rn of locally finite perimeter

such that

Fh X BKrs � Eh X BKrs, (2.104)

K r
2
X BFh � D s

2
� tcu,

P pFh; Krsq �Hn�1pDrsq ¤ cpnq
"
λ
�
P pEh; Ksq �Hn�1pDsq

�
� 1

λ

»
KsXBEh

|qx� c|2
s2

dHn�1

*
. (2.105)

Clearly
£
hPN

¤
k¥h

|Ik| ¥ 1

24
¡ 0 and thus there exist a divergent subsequence

thkukPN and r P �2
3
, 3

4

�
such that

r P
£
kPN

Ihk and lim
kÑ�8

Hn�1pBKrs X pEp1q∆Ehkqq � 0.
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We write Fk in lieu of Fhk . Now we test the Λ-minimality of pE, uq in C4 with

pGk, uq, where Gk � pFk X Krsq Y pEzKrsq, as E∆Gk �� Ks �� B4. By

Theorem 1.1.19 we infer:

P pE; Krsq ¤ P pGk; Krsq � Λ|pE∆Fkq XKrs| �
»
Krs

Gpx, u,∇uqr1Gk � 1Es dx
¤ P pFk; Krsq � σk � Λ|pE∆Fkq XKrs|
� cpn,N, Lq

»
Krs

p|∇u|2 � 1q dx,

with σk � Hn�1pBKrs X pEp1q∆Fkqq � Hn�1pBKrs X pEp1q∆Ehkqq Ñ 0, thanks

to (2.104), as k Ñ �8. Thus, since ζ is increasing and r ¥ 2
3
, by (2.105), we

deduce that

P pE; K s
2
q �Hn�1pD s

2
q � ζpD s

2
q ¤ ζpDrsq � P pE; Krsq �Hn�1pDrsq

¤ P pFk; Krsq �Hn�1pDrsq
� σk � Λ|pE∆Fkq XKrs| � cpn,N, Lq

»
Krs

p|∇u|2 � 1q dx

¤ cpnq
"
λ
�
P pEhk ; Ksq �Hn�1pDsq

�� 1

λ

»
KsXBEhk

|qx� c|2
s2

dHn�1

*
� cpn,N, Lq

�
Λsn�1 �

»
Ks

|∇u|2 dx


.

Letting k Ñ �8, (2.103) implies that P pEhpkq; Ksq Ñ P pE; Ksq and therefore

P pE; K s
2
q �Hn�1pD s

2
q

¤ cpnq
"
λ
�
P pE; Ksq �Hn�1pDsq

�� 1

λ

»
KsXBE

|qx� c|2
s2

dHn�1

*
� cpn,N, Lq

�
Λsn�1 �

»
Ks

|∇u|2 dx


, (2.106)

for any λ P �0, 1
4

�
. If λ ¡ 1

4
,

P pE; K s
2
q �Hn�1pD s

2
q � ζpD s

2
q ¤ ζpDrsq

¤ 4λP pE; Krsq �Hn�1pDrsq ¤ cpnqλ �P pE; Ksq �Hn�1pDsq
�

and thus (2.106) holds true for λ ¡ 0, provided we choose cpnq ¥ 4. Minimizing

over λ, we get the thesis.

Theorem 2.9.3 (Reverse Poincaré Inequality). There exists a positive con-

stant C9 � C9pn,N, Lq such that if pE, uq be a Λ-minimizer of F in C4rpx0, νq
with x0 P BE and

epx0, 4r, νq   ω

�
n,

1

8



,

then

epx0, r, νq ¤ C9

�
1

rn�1

»
BEXC2rpx0,νq

| 〈ν, x� x0〉� c|2dHn�1
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� Λr � 1

rn�1

»
K2r

|∇u|2 dx


,

for every c P R.

Proof. Up to replacing pE, uq with

�
E�x0
r
, r�

1
2upx0 � ryq



(see Lemma 2.5.1)

we may assume that pE, uq is a Λr-minimizer of Fr in C4, 0 P BE and, by

Proposition 1.1.21,

enp4q ¤ ω

�
n,

1

8



.

Applying Lemma 2.7.1 and Lemma 2.7.2, we get that

|qx|   1

4
, @x P C2 X BE,����"x P C2zE : qx   �1

8

*���� � ����"x P C2 X E : qx ¡ 1

8

*���� ,
Hn�1pGq �

»
C2XB�EXp�1pGq

νE � en dHn�1, @G � D2.

Since

enp1q �
»
C1XB�E

p1� νE � enq dHn�1 � P pE; C1q �
»
C1XB�E

pνE � enq dHn�1

� P pE; C1q �Hn�1pD1q,
then our aim is to show

P pE; C1q �Hn�1pD1q ¤ C9

�»
C2XBE

|qx� c|2 dHn�1 � Λr �
»
K2

|∇u|2 dx


,

for any c P R. Actually it suffices to prove it only for |c|   1
4
; indeed, for

|c| ¥ 1
4
, we have:»

C2XBE
|qx�c|2 dHn�1 ¥

»
C2XBE

p|c|�|qx|q2 dHn�1 ¥ P pE; C2q
64

¥ P pE; C1q
64

.

Step 2: the set function ζpGq � P pE; C2 X p�1pGqq �Hn�1pGq, for G � D2,

defines a Radon measure on Rn�1, concentrated on D2. We apply Lemma 2.9.2

to E in every cylinder Kspzq with z P Rn�1 and s ¡ 0 such that

D2spzq � D2, Hn�1pBE X BK2spzqq � 0, (2.107)

to get that

ζpDspzqq ¤ Cpn,N, Lq
"
pζpD2spzqqhq 1

2 � Λrsn�1 �
»
K2spzq

|∇u|2 dx
*
,

where

h :� inf
|c|  1

4

»
C2XBE

|qx� c|2 dHn�1.
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Multiplying by s2 and using an approximation argument to remove the second

assumption in (2.107), we obtain:

s2ζpDspzqq ¤ cpn,N, Lq
�a

s2ζpD2spzqqh� Λr �
»
K2spzq

|∇u|2 dx


, (2.108)

for D2spzq � D2, where we used that s   1. In order to prove the thesis, we

use a covering argument by setting

Q � sup
D2spzq�D2

s2ζpDspzqq   �8.

We cover Dspzq by finitely many balls tD �
zk,

s
4

�ukPt1,...,Ñu with centers zk P
Dspzq. Of course, this can be done with Ñ ¤ Ñpnq, for some Ñpnq P N.

Hence, by the sub-additivity of ζ and (2.108) for s
4
, since Dspzkq � D2, we

have:

s2ζpDspzqq ¤ s2
Ņ̃

k�1

ζ
�
D s

4
pzkq

� � 16
Ņ̃

k�1

�s
4

	2

ζ
�
D s

4
pzkq

�
¤ cpn,N, Lq

Ņ̃

k�1

�c�s
2

	2

ζ
�
D s

2
pzkq

�
h� Λr �

»
K2spzq

|∇u|2 dx
�

¤ cpn,N, Lq
�a

Qh� Λr �
»
K2spzq

|∇u|2 dx


.

Passing to the supremum for D2spzq � D2 we infer that

Q ¤ cpn,N, Lq
�a

Qh� Λr �
»
K2

|∇u|2 dx


.

If
?
Qh ¤ Λr � ³

K2
|∇u|2 dx, then Q ¤ cpn,N, Lq

�
Λr � ³

K2
|∇u|2 dx

	
. If?

Qh ¡ Λr� ³
K2
|∇u|2 dx, then Q ¤ cpn,N, Lq?Qh and thus Q ¤ cpn,N, Lqh.

In both cases we obtain:

Q ¤ cpn,N, Lq
�
h� Λr �

»
K2

|∇u|2 dx


,

which leads to the thesis.

2.10 Weak Euler-Lagrange equation

The last ingredient to prove the excess improvement is the following Euler-

Lagrange equation that we state for Λr-minimizers of the rescaled functional

Fr. For the sake of simplicity we will denote with A1 the matrix whose entries

are ahk, A2 the vector of components ah, A3 � a and similarly for Bi, i � 1, 2, 3.

Accordingly, we can write

Frpw;Dq �
»
B1

�
Frpx,w,∇wq � 1DGrpx,w,∇wq

�
dx
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�
»
B1

�pA1r � 1DB1rq∇w �∇w �?
rpA2r � 1DB2rq �∇w

� rpA3r � 1DB3rq
�
dx,

where r ¡ 0, x0 P Ω, Air :� Aipx0 � ry,
?
rwq, Bir :� Bipx0 � ry,

?
rwq, for

i � 1, 2, 3. The argument used to prove the next result is similar to the one in

[7, Theorem 7.35]. We recall a useful result that can be found in [39, Theorem

3.2].

Theorem 2.10.1. Let A � Rn be an open set, E � Rn be a set of locally finite

perimeter and Φtpxq :� x � tXpxq, for some fixed X P C1
c pA;Rnq, be a local

variation in A, i.e. tx � Φtpxqu � K � A, for some compact set K � A and

for |t|   ε0. Then

lim
tÑ0�

|ΦtpEq∆E|
t

¤
»
BE
|X � νE| dHn�1.

Theorem 2.10.2 (Weak Euler-Lagrange equation). Let pE, uq be a

Λr-minimizer of Fr in B1. For every vector field X P C1
c pB1;Rnq and for

some constant C10 � C10pN,LD, sup |X|, sup |∇X|q ¡ 0 it holds»
BE

divτX dHn�1 ¤ C10

»
B1

�|∇u|2 � r
�
dx� Λr

»
BE
|X| dHn�1, (2.109)

where divτ denotes the tangential divergence on BE, i.e.

divτX � divX � νE �∇XνE.
Proof. Let us fix X P C1

c pB1,Rnq. We set Φtpxq :� x � tXpxq, Et :� ΦtpEq
and ut :� u � Φ�1

t , for any t ¡ 0. From the Λr-minimality it follows that

rP pEt;B1q � P pE;B1qs � Λr|Et∆E|
�
»
B1

rFrpy, ut,∇utq � 1EtpyqGrpy, ut,∇utqs dy

�
»
B1

rFrpx, u,∇uq � 1EpxqGrpx, u,∇uqs dx ¥ 0. (2.110)

In order to obtain (2.109) we will divide by t and pass to the upper limit as

t Ñ 0�. Let us study these terms separately. The first variation of the area

gives

lim
tÑ0�

1

t
rP pEt;B1q � P pE;B1qs �

»
BE

divτX dHn�1. (2.111)

In regard to the second term, we apply Theorem 2.10.1, obtaining

lim
tÑ0�

|Et∆E|
t

¤
»
BE
|X � νE| dHn�1. (2.112)

In the first bulk term we make the change of variables y � Φtpxq with x P B1

and t ¡ 0, taking into account that

∇Φ�1
t pΦtpxqq � I � t∇Xpxq � optq, JΦtpxq � 1� tdivXpxq � optq.
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Thus we gain»
B1

�
Frpy, ut,∇utq � 1EtpyqGrpy, ut,∇utq

�
dy

�
»
B1

�
FrpΦtpxq, u,∇uq � 1EpxqGrpΦtpxq, u,∇uq

�p1� tdivXq dx

� t

»
B1

�
2pC1∇u∇Xq �∇u�

?
rC2 � p∇u∇Xq

�
dx� optq,

where we set

Ci :� Ãir � 1EB̃ir � AirpΦtpxq, uq � 1EpxqBirpΦtpxq, uq,
for i � 1, 2, 3. By simple calculations we obtain»

B1

�
Frpy, ut,∇utq � 1EtpyqGrpy, ut,∇utq

�
dy

�
»
B1

�
Frpx, u,∇uq � 1EpxqGrpx, u,∇uq

�
dx

�
»
B1

 
FrpΦtpxq, u,∇uq � 1EpxqGrpΦtpxq, u,∇uq

� rFrpx, u,∇uq � 1EpxqGrpx, u,∇uqs
(
dx

� t

� »
B1

�
FrpΦtpxq, u,∇uq � 1EpxqGrpΦtpxq, u,∇uq

�
divX dx

�
»
B1

�
2pC1∇u∇Xq �∇u�

?
rC2 � p∇u∇Xq

�
dx

�
� optq.

Let us estimate the first of the three terms. By Lipschitz continuity and

Young’s inequality we get»
B1

!
FrpΦtpxq, u,∇uq � 1EpxqGrpΦtpxq, u,∇uq

� rFrpx, u,∇uq � 1EpxqGrpx, u,∇uqs
)
dx

¤ cpLDqt
»
B1

|X|r|∇u|2 �?
r|∇u| � rs dx ¤ cpLDqt

»
B1

|X|r|∇u|2 � rs dx.

Finally, dividing by t and passing to the upper limit as tÑ 0� we infer

lim sup
tÑ0�

1

t

� »
B1

rFrpy, ut,∇utq � 1EtpyqGrpy, ut,∇utqs dy (2.113)

�
»
B1

rFrpx, u,∇uq � 1EGrpx, u,∇uqs dx
�

¤ cpLDq
»
B1

|X|r|∇u|2 � rs dx�
»
B1

rFrpx, u,∇uq � 1EGrpx, u,∇uqsdivX dx

�
»
B1

�
2
�pA1r � 1EB1rq∇u∇X

� �∇u�?
rpA2r � 1EB2rq � p∇u∇Xq

�
dx.
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Passing to the upper limit as t Ñ 0� in (2.110) and putting (2.111), (2.112),

(2.113) together we get»
BE

divτX dHn�1

¤ cpLDq
»
B1

|X|r|∇u|2 � rs dx�
���� »

B1

rFrpx, u,∇uq � 1EGrpx, u,∇uqsdivX dx

����
�
»
B1

��2�pA1r � 1EB1rq∇u∇X
� �∇u�?

rpA2r � 1EB2rq � p∇u∇Xq
�� dx

� Λr

»
BE
|X| dHn�1 ¤ C

»
B1

�|∇u|2 � r
�
dx� Λr

»
BE
|X| dHn�1,

where C � CpN,LD, sup |X|, sup |∇X|q.

2.11 Excess improvement

The last ingredient we need to prove the main theorem of the chapter is the

excess improvement theorem. Its proof is inspired by [35, Proposition 4.10].

Theorem 2.11.1 (Excess improvement). For every τ P �
0, 1

2

�
and M ¡ 0

there exists a constant ε4 � ε4pτ,Mq P p0, 1q such that if pE, uq is a Λ-

minimizer of F in Brpx0q with x0 P BE and

epx0, rq ¤ ε4, Dpx0, rq � r ¤Mepx0, rq,
then there exists a positive constant C11 � C11

�
n, ν,N, L, LD,Λ, ‖∇u‖L2pΩq

�
such that

epx0, τrq ¤ C11pτ 2epx0, rq �Dpx0, 2τrq � τrq.
Proof. Without loss of generality we may assume that τ   1

8
. Let us rescale

and assume by contradiction that there exist an infinitesimal sequence tεhuhPN �
R�, a sequence trhuhPN � R� and a sequence tpEh, uhquhPN of Λrh-minimizers

of Frh in B1, with equibounded energies, such that, denoting by eh the excess

of Eh and by Dh the rescaled Dirichlet integral of uh, we have

ehp0, 1q � εh, Dhp0, 1q � rh ¤Mεh (2.114)

and

ehp0, τq ¡ C11pτ 2ep0, 1q �Dp0, 2τq � τrhq,
with some positive constant C11 to be chosen. Up to rotating each Eh we may

also assume that, for all h P N,

ehp0, 1q � 1

2

»
BEhXB1

|νEh � en|2 dHn�1.
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Step 1. Thanks to the Lipschitz approximation theorem, for h sufficiently

large, there exists a 1-Lipschitz function fh : Rn�1 Ñ R such that

sup
Rn�1

|fh| ¤ C8ε
1

2pn�1q

h , Hn�1ppBEh∆ΓfhqXB 1
2
q ¤ C8εh,

»
D 1

2

|∇1fh|2 dx1 ¤ C8εh.

(2.115)

We define

ghpx1q :� fhpx1q � ah?
εh

, where ah � �
»
D 1

2

fh dx
1,

and we assume, up to a subsequence, that tghuhPN converges weakly in H1pD 1
2
q

and strongly in L2pD 1
2
q to a function g.

We prove that g is harmonic in D 1
2
. It is enough to show that

lim
hÑ�8

1?
εh

»
D 1

2

∇1fh �∇1φa
1� |∇1fh|2

dx1 � 0, (2.116)

for all φ P C1
c pD 1

2
q; indeed, if φ P C1

c pD 1
2
q, by weak convergence we have»

D 1
2

∇1g �∇1φ dx1 � lim
hÑ�8

1?
εh

»
D 1

2

∇1fh �∇1φdx1

� lim
hÑ�8

1?
εh

"»
D 1

2

∇1fh �∇1φa
1� |∇1fh|2

dx1 �
»
D 1

2

�
∇1fh �∇1φ� ∇1fh �∇1φa

1� |∇1fh|2

�
dx1

*
.

Using the Lipschitz continuity of fh and the third inequality in (2.115), we

infer that the second term in the previous equality is infinitesimal:

lim sup
hÑ�8

1?
εh

���� »
D 1

2

�
∇1fh �∇1φ� ∇1fh �∇1φa

1� |∇1fh|2

�
dx1

����
¤ lim sup

hÑ�8

1?
εh

»
D 1

2

|∇1fh||∇1φ|
a

1� |∇1fh|2 � 1a
1� |∇1fh|2

dx1

¤ lim sup
hÑ�8

1?
εh

»
D 1

2

|∇1φ||∇1fh|2 dx1 ¤ lim
hÑ�8

C8 ‖∇1φ‖8
?
εh � 0.

Therefore, we should prove (2.116). We fix δ ¡ 0 so that sptφ�r�2δ, 2δs � B 1
2
,

choose a cut-off function ψ : RÑ r0, 1s, with sptψ � p�2δ, 2δq, ψ � 1 in p�δ, δq
and apply to Eh the weak Euler-Lagrange equation with X � φψen. By the

height bound, for h sufficiently large it holds that BEh XB 1
2
� D 1

2
� p�δ, δq.

Plugging X in the weak Euler-Lagrange equation and using the assumption

in (2.114), we have

�
»
BEhXB 1

2

pνEh � enqp∇1φ � ν 1Ehq dHn�1

¤ cpN,LD, φ, ψq
»
B 1

2

�|∇uh|2 � rh
�
dx� Λrh

»
BEhXB 1

2

|φψ| dHn�1
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¤ cpn,N,Λ, LD,M, φ, ψqεh.
Therefore, if we replace φ by �φ, we infer

lim
hÑ�8

1?
εh

»
BEhXB 1

2

pνEh � enqp∇1φ � ν 1Ehq dHn�1 � 0. (2.117)

Decomposing BEh XB 1
2
� �rΓfh Y pBEhzΓfhqszpΓfhzBEhq

�XB 1
2
, we deduce

� 1?
εh

»
BEhXB 1

2

pνEh � enqp∇1φ � ν 1Ehq dHn�1

� 1?
εh

�
�
»

ΓfhXB 1
2

pνEh � enqp∇1φ � ν 1Ehq dHn�1

�
»
pBEhzΓfh qXB 1

2

pνEh � enqp∇1φ � ν 1Ehq dHn�1

�
»
pΓfhzBEhqXB 1

2

pνEh � enqp∇1φ � ν 1Ehq dHn�1

�
.

Since by the second inequality in (2.115) we have���� 1?
εh

»
pBEhzΓfh qXB 1

2

pνEh � enqp∇1φ � ν 1Ehq dHn�1

���� ¤ C8

?
εh sup

Rn�1

|∇1φ|,

���� 1?
εh

»
pΓfhzBEhqXB 1

2

pνEh � enqp∇1φ � ν 1Ehq dHn�1

���� ¤ C8

?
εh sup

Rn�1

|∇1φ|,

then by (2.117) and the area formula, we infer

0 � lim
hÑ�8

�1?
εh

»
ΓfhXB 1

2

pνEh � enqp∇1φ � ν 1Ehq dHn�1

� lim
hÑ�8

1?
εh

»
D 1

2

∇1fh �∇1φa
1� |∇1fh|2

dx1.

This proves that g is harmonic.

Step 2. The proof of this step now follows exactly as in [35] using the height

bound lemma and the reverse Poincaré inequality. We give it here to be thor-

ough. By the mean value property of harmonic functions (see for example [46,

Lemma 25.1], Jensen’s inequality, semicontinuity and the third inequality in

(2.115) we deduce that

lim
hÑ�8

1

εh

»
D2τ

|fhpx1q � pfhq2τ � p∇1fhq2τ � x1|2 dx1

�
»
D2τ

|gpx1q � pgq2τ � p∇1gq2τ � x1|2 dx1
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�
»
D2τ

|gpx1q � gp0q �∇1gp0q � x1|2 dx1

¤ cpnqτn�1 sup
x1PD2τ

|gpx1q � gp0q �∇1gp0q � x1|2

¤ cpnqτn�3

»
D 1

2

|∇1g|2 dx1 ¤ cpnqτn�3 lim inf
hÑ�8

»
D 1

2

|∇1gh|2 dx1

¤ C̃pn,C8qτn�3.

On one hand, using the area formula, the mean value property, the previous

inequality and setting

ch :� pfhq2τa
1� |p∇1fhq2τ |2

, νh :� p�p∇1fhq2τ , 1qa
1� |p∇1fhq2τ |2

,

we have

lim sup
hÑ�8

1

εh

»
BEhXΓfhXB2τ

|νh � x� ch|2 dHn�1

� lim sup
hÑ�8

1

εh

»
BEhXΓfhXB2τ

|�p∇1fhq2τ � x1 � fhpx1q � pfhq2τ |
1� |p∇1fhq2τ |2

2a
1� |∇1fhpx1q|2 dx1

¤ lim
hÑ�8

1

εh

»
D2τ

|fhpx1q � pfhq2τ � p∇1fhq2τ � x1|2 dx1 ¤ C̃pn,C8qτn�3.

On the other hand, arguing as in step 1, we immediately get from the height

bound lemma and the first two inequalities in (2.115) that

lim
hÑ�8

1

εh

»
pBEhzΓfh qXB2τ

|νh � x� ch|2 dHn�1 � 0.

Hence, we conclude that

lim sup
hÑ�8

1

εh

»
BEhXB2τ

|νh � x� ch|2 dHn�1 ¤ C̃pn,C8qτn�3. (2.118)

We claim that the sequence tehp0, 2τ, νhquhPN is infinitesimal; indeed, by the

definition of excess, Jensen’s inequality and the third inequality in (2.115) we

have

lim sup
hÑ�8

»
BEhXB2τ

|νEh � νh|2 dHn�1

¤ lim sup
hÑ�8

�
2

»
BEhXB2τ

|νEh � en|2 dHn�1 � 2|en � νh|2Hn�1pBEh XB2τ q
�

¤ lim sup
hÑ�8

�
4εh � 2Hn�1pB2τ q |pp∇

1fhq2τ ,
a

1� |p∇1fhq2τ |2 � 1q|2
1� |p∇1fhq2τ |2

�
¤ lim sup

hÑ�8

�
4εh � 4Hn�1pB2τ q|p∇1fhq2τ |2

�
¤ lim sup

hÑ�8

�
4εh � 4

»
D 1

2

|∇1fh|2 dx1
�
¤ lim

hÑ�8
r4εh � 4C8εhs � 0.
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Therefore, applying the reverse Poincaré inequality and (2.118), we have, for

h large, that

ehp0, τq ¤ ehp0, τ, νhq ¤ C9pC̃τ 2ehp0, 1q �Dp0, 2τq � 2τrhq,
which is a contradiction if we choose C11 ¡ C9 maxtC̃, 2u.

2.12 Proof of the optimal theorem

Before proving Theorem 2.0.3, for reader’s convenience we recall a well-known

result, which can be found in [46, Theorem 26.5 and Theorem 28.1]

Theorem 2.12.1. If A � Rn is an open set and E is a perimeter minimizer

in A, then AXB�E is a C1,γ-hypersurface for every γ P �0, 1
2

�
that is relatively

open in AX BE. Moreover, defining

ΣpE;Aq � AX pBEzB�Eq,
the following statements are true:

i) if 2 ¤ n ¤ 7, then ΣpE;Aq � H;

ii) if n � 8, then ΣpE;Aq has no accumulation points in A;

iii) if n ¥ 9, then HspΣpE;Aqq � 0, for every s ¡ n� 8.

There exists a perimeter minimizer E � R8 with H0pΣpE;R8qq � 1. If n ¥ 9,

then there exists a perimeter minimizer E � Rn with Hn�8pΣpE;R8qq � �8.

Proof of Theorem 2.0.3. The proof works exactly as in [35]. We give here some

details to emphasize the dependence of the constant ε appearing in the state-

ment of Theorem 2.0.3 from the structural data of the functional. The proof

is divided into four steps.

Step 1. We show that for every τ P p0, 1q there exists ε5 � ε5pτq ¡ 0 such

that if epx, rq ¤ ε5, then

Dpx, τrq ¤ C4τDpx, rq,
where C4 is from Lemma 2.4.6. Assume by contradiction that for some τ P
p0, 1q there exist two positive sequences tεhuhPN and trhuhPN and a sequence

pEh, uhq of Λrh-minimizers of Frh in B1 with equibounded energies such that,

denoting by eh the excess of Eh and by Dh the rescaled Dirichlet integral of

uh, we have that 0 P BEh,
ehp0, 1q � εh Ñ 0 and Dhp0, τq ¡ C4τDhp0, 1q. (2.119)

Thanks to the energy upper bound (Theorem 2.4.1) and the compactness

lemma (Lemma 2.6.1), we may assume that Eh Ñ E in L1pB1q and 0 P BE.
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Since, by lower semicontinuity, the excess of E at 0 is null, it follows that E is

a half-space in B1, say H (see Proposition 1.1.23). In particular, for h large,

it holds

|pEh∆Hq XB1|   ε0pτq|B1|,
where ε0 is from Lemma 2.4.6, which gives a contradiction with the inequality

(2.119).

Step 2. Let U �� Ω be an open set. Prove that for every τ P p0, 1q there exist

two positive constants ε6 � ε6pτ, Uq and C12 such that if x0 P BE, Brpx0q � U

and epx0, rq �Dpx0, rq � r   ε6, then

epx0, τrq �Dpx0, τrq � τr ¤ C12τpepx0, rq �Dpx0, rq � rq. (2.120)

Fix τ P p0, 1q and assume without loss of generality that τ   1
2
. We can

distinguish two cases.

Case 1: Dpx0, rq � r ¤ τ�nepx0, rq. If epx0, rq   mintε4pτ, τ�nq, ε5p2τqu it

follows from Theorem 2.11.1 and step 1 that

epx0, τrq ¤ C11pτ 2epx0, rq �Dpx0, 2τrq � τrq
¤ C11τpepx0, rq � 2C4Dpx0, rq � rq

Case 2: epx0, rq ¤ τnpDpx0, rq � rq. By the property of the excess at different

scales, we infer

epx0, τrq ¤ τ 1�nepx0, rq ¤ τpDpx0, rq � rq.
We conclude that choosing ε6 � mintε4pτ, τ�nq, ε5p2τq, ε5pτqu, inequality (2.120)

is verified.

Step 3. Fix σ P p0, 1
2
q and choose τ0 P p0, 1q such that C12τ0 ¤ τ 2σ

0 . Let

U �� Ω be an open set. We define

ΓX U :� tx P BE X U : epx, rq �Dpx, rq � r   ε6pτ0, Uq,
for some r ¡ 0 such that Brpx0q � Uu.

Note that Γ X U is relatively open in BE. We show that Γ X U is a C1,σ-

hypersurface. Indeed, inequality (2.120) implies via standard iteration argu-

ment that if x0 P Γ X U there exist r0 ¡ 0 and a neighborhood V of x0 such

that for every x P BE X V it holds:

epx, τ k0 r0q �Dpx, τ k0 r0q � τ k0 r0 ¤ τ 2σk
0 , for k P N0.

In particular epx, τ k0 r0q ¤ τ 2σk
0 and, arguing as in [35], we obtain that for every

x P BE X V and 0   s   t   r0 it holds

|pνEqspxq � pνEqtpxq| ¤ ctσ,

for some constant c � cpn, τ0, r0q, where

pνEqtpxq � �
»
BEXBtpxq

νE dHn�1.
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The previous estimate first implies that ΓXU is C1. By a standard argument

we then deduce again from the same estimate that ΓXU is a C1,σ-hypersurface.

Finally we define Γ :� �
ipΓ X Uiq, where tUiuiPN is an increasing sequence of

open sets such that Ui �� Ω and Ω � �
i Ui.

Step 4. The proof of this final step basically follows as in [35] (see also [6],

[20] and [22]). Finally we prove that there exists ε ¡ 0 such that

Hn�1�εpBEzΓq � 0.

Setting

Σ � tx P BEzΓ : lim
rÑ0�

Dpx, rq � 0u,
by Lemma 2.3.3, ∇u P L2s

locpΩq for some s ¡ 1, depending only on ν,N, L, n.

Since Hölder’s inequality implies that

Dpx, rq � r1�n
»
Brpx0q

|∇u|2 dx ¤ cpnq
�
rs�n

»
Brpx0q

|∇u|2s dx

 1

s

,

the following inclusion is true:

En�1 :�
"
x P Ω : lim sup

rÑ0�
Dpx, rq ¡ 0

*
�
"
x P Ω : lim sup

rÑ0�
rs�n

»
Brpx0q

|∇u|2s dx ¡ 0

*
.

Applying Proposition A.1.10 with µpBrpx0qq :�
»
Brpx0q

|∇u|2s dx , we have that

dimH
�
En�1

� ¤ n� s.

As pBEzΓqzEn�1 � Σ, it is clear that

dimHpBEzΓq ¤ maxtdimHpΣq, dimHpEn�1qu ¤ maxtdimHpΣq, n� su
If we show that Σ � H when n ¤ 7 and dimHpΣq ¤ n � 8 for n ¡ 7, we will

have that

dimHpBEzΓq ¤
#

maxt0, n� su if n ¤ 7,

maxtn� 8, n� su if n ¡ 7
� n� s,

which is the thesis of the theorem.

Case 1: n ¤ 7. Suppose by contradiction that Σ � H and, up to translations,

that 0 P Σ. If trhuhPN is infinitesimal, denoting by Eh :� E
rh

and by uhpxq :�
r
� 1

2
h uprhxq, by scaling we get that pEh, uhq is a Λrh-minimizer of F in Ω

rh
.

Furthermore ∇uh Ñ 0 in L2pB1q as hÑ �8; indeed, since 0 P Σ,

lim
hÑ�8

»
B1

|∇uh|2 dy � lim
hÑ�8

1

rn�1
h

»
Brh

|∇u|2 dy � lim
hÑ�8

Dp0, rhq � 0.
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By Lemma 2.6.1 there exists a local minimizer of the perimeter E8 � Rn such

that 0 P BE8,

Eh Ñ E8 and P pEh;Uq Ñ P pE8;Uq,
for every open set U � B1. In dimension n ¤ 7, BE8 is a smooth manifold,

since, by Theorem 2.12.1, B�E is smooth and BE8 � B�E8. By Proposition

1.1.24, for any ε ¡ 0 there exists r ¡ 0 such that epE8, 0, rq   ε. Applying

Proposition 2.6.2, there exists h0 P N such that

epEh, 0, rhq   ε, @h ¡ h0,

which implies the contradiction 0 R Σ.

Case 2: n ¡ 7. Assume by contradiction that HspΣq ¡ 0 for some s ¡ n � 8.

Then, Hs
8pΣq ¡ 0 and furthermore, by Proposition A.1.12, we have that

lim sup
ρÑ0�

Hs
8pΣXBρpxqq

ωsρs
¥ 2�s, for Hs-a.e. x P Σ.

We choose x P Σ such that lim sup
ρÑ0�

Hs
8pΣXBρpxqq

ωsρs
¥ 2�s. Let Σh :� Σ

ρh
. We

find an infinitestimal sequence tρhuhPN � R� such that

lim sup
ρÑ0�

Hs
8pΣh XB1q � lim sup

ρÑ0�

Hs
8pΣXBρhpxqq

ρsh
¥ 2�s�1ωs. (2.121)

Reasoning as in the previous case, there exists a local minimizer of the perime-

ter E8 � Rn such that 0 P BE8,

Eh Ñ E8 and P pEh;Uq Ñ P pE8;Uq,
for every open set U � B1. If we show that

HsppBE8zB�E8q XB1q ¥ Hs
8pΣh XB1q, (2.122)

for any h sufficiently large, using (2.121), we get:

HsppBE8zB�E8q XB1q ¥ Hs
8ppBE8zB�E8q XB1q

¥ lim sup
hÑ�8

Hs
8pΣh XB1q ¥ 2�s�1ωs ¡ 0,

which implies that dimHppBE8zB�E8qXB1q � s ¡ n�8, which is a contradic-

tion (see Theorem 2.12.1). In order to prove (2.122), it suffices to show that

if A � Rn is an open set such that pBE8zB�E8q X B1 � A, then there exists

h0 P N such that

Σh XB1 � A, @h ¥ h0.

Since B1 is compact and A is open, we may assume by contradiction that

there exists txhjujPN � pΣhjXB1qzA such that xhj Ñ x0 P B1zA. Furthermore
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x0 P BE8 thanks to Lemma 2.6.1. By our assumption on A, we deduce that

x0 P B�E8. Using Proposition 1.1.24, there exists ρ ¡ 0 such that

epE8, x0, ρq ¤ ε6.

Applying Proposition 2.6.2, there exists j0 P N such that

epEhj , x0, rhjq   ε6, @j ¡ j0.

Since Σ � BEhjzΓhj , where Γhj is the singular set of BEhj , we have the contra-

diction xhj R Σhj .



Chapter 3

The p-polynomial growth case

In this chapter we deal with the following energy functional:

Fpv;Eq :�
»

Ω

rF p∇vq � 1EGp∇vq � fEpx, vqs dx� P pE; Ωq,

with pv, Eq P �
u0 � W 1,p

0 pΩq� � ApΩq, for p ¡ 1, where u0 P W 1,ppΩq and

ApΩq is the set of all subsets of Ω with finite perimeter. Here we consider

F,G P C1pRnq and fE � g�1Eh, for E � Rn, where g, h : Ω�RÑ R are two

Borel measurable and lower semicontinuous functions with respect to the real

variable.

With regard to the hypotheses on the integrands, we assume that there

exist some positive constants l, L, α, β and µ ¥ 0 such that

• F and G have p-growth:

0 ¤ F pξq ¤ Lpµ2 � |ξ|2q p2 , (F1)

0 ¤ Gpξq ¤ βLpµ2 � |ξ|2q p2 ,

for all ξ P Rn.

• F and G are strongly quasi-convex:»
Ω

F pξ �∇ϕq dx ¥
»

Ω

rF pξq � lpµ2 � |ξ|2 � |∇ϕ|2q p�2
2 |∇ϕ|2s dx,»

Ω

Gpξ �∇ϕq dx ¥
»

Ω

rGpξq � αlpµ2 � |ξ|2 � |∇ϕ|2q p�2
2 |∇ϕ|2s dx,

for all ξ P Rn and ϕ P C1
c pΩq.

• there exist two positive constants t0, a and 0   m   p such that for

every t ¡ t0 and ξ P Rn with |ξ| � 1, it holds����Fppξq � F ptξq
tp

���� ¤ a

tm
, (F3)

113



114

����Gppξq � Gptξq
tp

���� ¤ a

tm
, (G3)

where Fp and Gp are the p-recession functions of F and G (see Definition

3.1.1).

We remark that the proximity conditions (F3) and (G3) are trivially satisfied

if F and G are positively p-homogeneous.

The first of the following assumptions on g and h is essential to prove the

existence of a minimal configuration. The same condition turns out to be

crucial in the proof of the regularity result as well. We assume that there exist

a function γ P L1pΩq and two constants C0 ¡ 0 and k P R, with k   l
2p�1λ

,

being λ � λpΩq the first eigenvalue of the p-Laplacian on Ω with boundary

datum u0, such that

• g and h satisfy the following assumptions:

gpx, sq ¥ γpxq � k|s|p, hpx, sq ¥ γpxq � k|s|p, (3.1)

for almost all px, sq P Ω� R.

• g and h satisfy the following growth conditions:

|gpx, sq| ¤ C0p1� |s|qq, |hpx, sq| ¤ C0p1� |s|qq, (3.2)

for all px, sq P Ω� R, with the exponent

q P
#
rp,�8q if n � 2,

rp, p�q if n ¡ 2

fixed.

We study the following problem:

min
pv,EqP

�
u0�W 1,p

0 pΩq
�
�ApΩq

Fpv, Eq. (P)

The main result of this chapter is the following theorem about the regularity

of solutions of problem (P).

Theorem 3.0.1. Let pA, uq be a solution of (P). Then

1. u is locally Hölder continuous;

2. A is equivalent to an open set Ã, that is

|A∆Ã| � 0 and P pA; Ωq � P pÃ; Ωq � Hn�1pBÃX Ωq.
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The idea of its proof is similar to that of [5, Theorem 2.2], which in turns

relies on the ideas introduced in [19]. The regularity of u is proved in Theorem

3.3.1 and the regularity of A follows from Proposition 3.4.1. The proof will be

discussed in the final section.

The same arguments can be used to treat also the volume-costrained prob-

lem

min
pv,EqP

�
u0�W 1,p

0 pΩq
�
�ApΩq

|E|�d

Fpv, Eq, (Q)

for some 0   d   |Ω|. The following theorem holds true.

Theorem 3.0.2. There exists λ0 ¡ 0 such that if pA, uq is a minimizer of the

functional

Fλpv, Eq �
»

Ω

rF p∇vq � 1EGp∇vq � fEpx, vqs dx� P pE; Ωq � λ||E| � d|,

for some λ ¥ λ0 and among all configurations pv, Eq such that v P u0�W 1,p
0 pΩq

and E P ApΩq, then |A| � d and pA, uq is a minimizer of problem (Q) .

Conversely, if pA, uq is a minimizer of the problem (Q), then it is a minimizer

of Fλ, for all λ ¥ λ0.

The proof of the previous theorem is a a straightforward adaptation of the

proof of [13, Theorem 1.4], that is a generalization of the proof of Theorem

2.2.1. The term concerning the function fE can be treated as a constant,

thanks to the boundedness stated in Theorem 3.3.1. We finally remark that

the term λ||E| � d| in the functional Fλ can be inglobed in fE, since it is

bounded. For this reason, Theorem 3.0.1 is still valid also for minimal config-

urations of Fλ and, consequently, for solutions of problem (Q).

We give here an outline of this chapter. In Section 3.1, we recall some well-

known lemmata concerning general functionals with p-polynomial growth.

Section 3.2 is entirely devoted to the proof of the existence of solutions of

problem (P) by means of a standard argument.

In the subsequent two sections we address to regularity properties of min-

imizing couples pA, uq of problem (P). In particular, in Section 3.3, we quote

the classical regularity result proved by De Giorgi and, in addition, the usual

higher integrability property of ∇u. Section 3.4 is devoted to proving regu-

larity properties of E. The main ingredient is Proposition 3.4.1, which states

that if in a ball of radius ρ the energy associated with a minimal configuration

is controlled by ρn�1, then it decays faster than ρn�1.

Finally, in Section 3.5 we give the proof of the main theorem of the chapter.

3.1 Some auxiliary results

Throughout this section we denote with H a function belonging to C1pRnq and

satisfying for some positive constants l̃ and L̃ the same kind of assumptions
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imposed on F and G:

0 ¤ Hpξq ¤ L̃pµ2 � |ξ|2q p2 ,»
Ω

Hpξ �∇ϕq dx ¥
»

Ω

rHpξq � l̃pµ2 � |ξ|2 � |∇ϕ|2q p�2
2 |∇ϕ|2s dx,

for all ξ P Rn and ϕ P C1
c pΩq. We collect some definitions and well-known

results that will be used later. We start giving the definition of p-recession

function of H.

Definition 3.1.1. The p-recession function of H is defined by

Hppξq :� lim sup
tÑ�8

Hptξq
tp

,

for all ξ P Rn.

Remark 3.1.2. It is clear that Hp is positively p-homogeneous, which means

that

Hppsξq � spHppξq,
for all ξ P Rn and s ¡ 0. It is also true that the growth condition of H implies

the following growth condition of Hp:

0 ¤ Hppξq ¤ L̃|ξ|p,

for any ξ P Rn.

The next lemma esthabilishes strong quasi-convexity of Hp, provided H

verifies an appropriate growth condition. Although its proof can be found in

[31, Lemma 2.8], we illustrate it here for the sake of completeness.

Lemma 3.1.3. Let H be as above. If there exist two positive constants t̃0, d̃

and 0   m̃   p such that for every t ¡ t̃0 and ξ P Rn with |ξ| � 1, it holds����Hppξq � Hptξq
tp

���� ¤ d̃

tm̃
,

then »
Ω

Hppξ �∇ϕq dx ¥
»

Ω

rHppξq � l̃p|ξ|2 � |∇ϕ|2q p�2
2 |∇ϕ|2s dx,

for all ξ P Rn and ϕ P C1
c pΩq.

Proof. Fix λ ¡ 1. It holds true that, for t ¡ t0λ and z P Rn such that

λ�1   |z|   λ, we have ����Fppzq � F ptzq
tp

���� ¤ c0λ
p�m

tm
. (3.3)
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Indeed, ����Fppzq � F ptzq
tp

���� � |z|p
����Fp� z

|z|


� 1

pt|z|qpF
�
t|z| z|z|


����
¤ |z|p c0

pt|z|qm � c0|z|p�m
tm

¤ c0λ
p�m

tm
.

Fix z P Rn, φ P C1
c pΩq and take an increasing divergent sequence tthuhPN such

that

Fppzq � lim
hÑ�8

F pthzq
tph

.

Fix λ ¡ maxt1, |z| � ‖∇φ‖8u. We recall that, by Remark 3.1.2, Fp is nonneg-

ative. Thus, if th ¡ t0λ, from (3.3) and by virtue of the strong quasiconvexity

of F we have»
Ω

Fppz �∇φq dx

¥
»

ΩXtλ�1 |z�∇φ|u
Fppz �∇φq dx

¥ 1

tph

»
ΩXtλ�1 |z�∇φ|u

F pthz � th∇φq dx� c0λ
p�m

tmh
|Ω|

� 1

tph

»
Ω

F pthz � th∇φq dx� 1

tph

»
ΩXtλ�1¥|z�∇φ|u

F pthz � th∇φq dx� c0λ
p�m

tmh
|Ω|

¥ 1

tph

»
Ω

F pthz � th∇φq dx� L̃

tph

»
ΩXtλ�1¥|z�∇φ|u

pµ2 � |thz � th∇φ|pq dx

� c0λ
p�m

tmh
|Ω|

¥
»

Ω

�
F pthzq
tph

� l̃

�
µ2

t2h
� |z|2 � |∇φ|2


 p�2
2

|∇φ|2
�
dx� L̃

tph

�
µ2 � tph

λp



|Ω|

� c0λ
p�m

tmh
|Ω|.

The result follows by letting hÑ �8 and then λÑ �8.

Let us recall some other useful lemmata. The proof of Lemma 3.1.4 can be

found in [37, Lemma 5.2], while Lemma 3.1.5 is proved in [13, Lemma 2.3].

Lemma 3.1.4. Let H be as above. It holds that

|∇Hpξq| ¤ 2pL̃pµ2 � |ξ|2q p�1
2 ,

for all ξ P Rn.

Lemma 3.1.5. Let H be as above. There exists a positive constant c̃ �
c̃pp, l̃, L̃, µq such that

Hpξq ¥ l̃

2
pµ2 � |ξ|2q p2 � c̃,

for all ξ P Rn.
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Proof. The strong quasi-convexity of H is equivalent to the convexity of the

function

Kpξq :� Hpξq � l̃
�
µ2 � |ξ|2� p2 , @ξ P Rn,

which, in turn, implies

Kpξq ¥ Kp0q �∇zKp0q � ξ, @ξ P Rn.

Let us fix ξ P Rn. The previous inequality can be written in terms of H as

Hpξq ¥ l̃
�
µ2 � |ξ|2� p2 �Hp0q � l̃µp �∇zHp0q � ξ.

Since Hp0q ¥ 0 and, by Schwartz’s and Young’s inequality we infer

|∇zHp0q � ξ| �
����l̃� 1

p∇zHp0q
� � �l̃ 1p ξ���� ¤ cpp, l̃q|∇zHp0q|

p
p�1 � l̃

2
|ξ|p

¤ cpp, l̃, L̃qµp � l̃

2

�
µ2 � |ξ|2� p2 ,

then we conclude

Hpξq ¥ l̃
�
µ2 � |ξ|2� p2 � cpp, l̃, L̃qµp � l̃

2

�
µ2 � |ξ|2� p2 � l̃µp

� l̃

2

�
µ2 � |ξ|2� p2 � cpp, l̃, L̃, µq.

We define the auxiliary function

V pξq � pµ2 � |ξ|2q p�2
4 ξ,

for all ξ P Rn.

In order to prove Lemma 3.1.7, we need the following auxiliary result proved

in [36, Lemma 2.1] in the case δ ¡ 0 and in [1, Lemma 2.1] in the case

δ P �� 1
2
, 0
�
.

Lemma 3.1.6. For any δ ¡ �1
2
, the following estimate holds:

4�p1�δq ¤

» 1

0

�
µ2 � |tξ � p1� tqη|2� δ2 dt�
µ2 � |ξ|2 � |η|2� δ2 ¤ max

"
2
δ
2 ,

8

2δ � 1

*
,

for any ξ, η P Rn.

Proof. We need to distinguish the cases δ ¥ 0 and δ P �1
2
, 0
�
.

Case 1: δ ¥ 0. The estimate from above is straightforward; indeed, since, for

t P p0, 1q,
µ2 � |tξ � p1� tqη|2 ¤ µ2 � 2

�
t2|ξ|2 � p1� tq2|η|2� ¤ 2

�
µ2 � |ξ|2 � |η|2�,
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then » 1

0

�
µ2 � |tξ � p1� tqη|2� δ2 dt�
µ2 � |ξ|2 � |η|2� δ2 ¤

» 1

0

�
2
�
µ2 � |ξ|2 � |η|2�� δ2 dt�
µ2 � |ξ|2 � |η|2� δ2 � 2

δ
2 .

For the estimate from below, it is not restrictive to assume |ξ| ¥ |η|. For

t P �3
4
, 1
�
, we estimate

|tξ � p1� tqη| ¥ t|ξ| � p1� tq|η| � tp|ξ| � |η|q � |η| � tp|ξ| � |η|q � |η|
2
� |η|

2

� 1

4
p|ξ| � |η|q,

in order to obtain» 1

0

�
µ2 � |tξ � p1� tqη|2� δ2 dt�
µ2 � |ξ|2 � |η|2� δ2 ¥

» 1

3
4

�
µ2 � 1

16

�|ξ| � |η|�2

� δ
2

dt�
µ2 � |ξ|2 � |η|2� δ2

¥

» 1

3
4

�
µ2 � |ξ|2 � |η|2� δ2 dt

16
δ
2

�
µ2 � |ξ|2 � |η|2� δ2 � 4�pδ�1q.

Case 2: δ P � � 1
2
, 0q. By the convexity of the map t ÞÑ |η � tpξ � ηq|2, we

infer » 1

0

�
µ2 � |tξ � p1� tqη|2� δ2 dt�
µ2 � |ξ|2 � |η|2� δ2 ¥ 1 ¥ 4�p1�δq.

Regarding the upper bound, it is not restrictive to assume |ξ| ¤ |η| and ξ � η.

Let ξ0 P Rn be the point on the line connecting ξ and η with the lowest norm,

i.e.

|ξ0| � min
tPr0,1s

|η � tpξ � ηq|.
We define

t0 :� |ξ0 � η|
|ξ � η| ¥

1

2
,

φλptq :� pµ2 � |η � tpλ� ηq|2qδ, @t P p0, 1q.
If t0 ¥ 1, by the minimality of ξ0, φξ ¤ φξ0 and thus» 1

0

φξptq dt ¤
» 1

0

φξ0ptq dt.

If t0 P
�

1
2
, 1
�
, we obtain a similar estimate:» 1

0

φξptq dt ¤ 2

» t0

0

φξptq dt � 2t0

» 1

0

�
µ2 � |η � tpξ0 � ηq|2�δ dt � 2

» 1

0

φξ0ptq dt.
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Thus, we can write, for a general t0 ¥ 1
2
,» 1

0

φξptq dt ¤ 2

» 1

0

φξ0ptq dt ¤ 2

» 1

0

φ0ptq dt ¤ 2

» 1

0

�
µ2 � t2

2

�|ξ|2 � |η|2q

δ

dt

¤ 21�δ
» 1

0

�
µ2 � t2

�|ξ|2 � |η|2�� dt
¤ 21�2δ

» 1

0

�
µ� t

�|ξ|2 � |η|2� 1
2
�2δ

dt

¤ 4

» 1

0

�
µ� t

�|ξ|2 � |η|2� 1
2
�2δ

dt. (3.4)

where we used φξ0 ¤ φ0. We remark that, for 0 ¤ b ¤ a, we have» 1

0

pa� tbq2δ dt ¤ a2δ ¤ 2δpa2 � b2q.

A similar estimate can be obtained for 0 ¤ a   b, that is» 1

0

pa� tbq2δ dt ¤ pa� bq2δ�1

p2δ � 1qb ¤ 2

2δ � 1
pa� bq2δ ¤ 2

2δ � 1
pa2 � b2qδ.

Applying to (3.4) the previous inequalities for a � µ and b � �|ξ|2� |η|2� 1
2 , we

finally get » 1

0

φξptq dt ¤ 8

2δ � 1
pµ2 � |ξ|2 � |η2qδ,

which concludes the proof.

The next lemma has been proved in [36, Lemma 2.2] for p ¥ 2 and in [1,

Lemma 2.2] for 1   p   2.

Lemma 3.1.7. There exists a constant c � cpn, pq such that

1

c
pµ2 � |ξ|2 � |η|2q p�2

2 ¤ |V pξq � V pηq|2
|ξ � η|2

¤ cpµ2 � |ξ|2 � |η|2q p�2
2 ,

for all ξ, η P Rn.

Proof. Let us distinguish the cases p ¥ 2 and 1   p   2.

Case 1: p ¥ 2. We start proving the esitmate from above. For reader’s

convenience, we compute

d

dz
V pzq � p� 2

2

�
µ2 � |z|2� p�6

4 |z|2 � �
µ2 � |z|2� p�2

4 ¤ p

2

�
µ2 � |z|2� p�2

4 .

Applying Lemma 3.1.6 for δ � p�2
4

, we easily get

|V pξq � V pηq| ¤
» 1

0

���� ddtV ptξ � p1� tqηq
���� dt
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¤ p

2

» 1

0

�
µ2 � |tξ � p1� tqη|2� p�2

4 dt|ξ � η|

¤ p

2
2
p�2
4

�
µ2 � |ξ|2 � |η|2� p�2

4 |ξ � η|.

It is not restrictive to assume |ξ| ¥ |η|. If |ξ| ¥ 2|η|, then

|ξ � η| ¤ |ξ| � |η| ¤ 3

2
|ξ|,

�
µ2 � |ξ|2 � |η|2� p�2

4 ¤ �
µ2 � 2|ξ|2� p�2

4 ¤ 2
p�2
4

�
µ2 � |ξ|2� p�2

4 .

Since |V pzq| � �
µ2 � |z|2� p�2

4 |z| is increasing in |z|, then

|V pξq � V pηq| ¥ |V pξq| �
����V�ξ2


���� ¥ |V pξq|
2

¥
�
µ2 � |ξ|2 � |η|2� p�2

4 |ξ � η|
2
p�2
4 � 3

¥ 5�
p�2
4

�
µ2 � |ξ|2 � |η|2� p�2

4 |ξ � η|.
If |η| ¤ |ξ| ¤ 2|η|, then, for τ ¥ 1, |τξ � η| ¥ |ξ � η| and so

|V pξq � V pηq| � �
µ2 � |η|2� p�2

4

�����µ2 � |ξ|2
µ2 � |η|2


 p�2
4

ξ � η

����
¥ 5�

p�2
4

�
µ2 � |ξ|2 � |η|2� p�2

4 |ξ � η|.
Case 2: 1   p   2. For z P Rn, we define

F pzq :� 2

p� 2

�
µ2 � |z|2� p�2

4 ,

so that

∇F pzq � V pzq, ∇2F pzq � �
µ2 � |z|2� p�2

4

�
I � p� 2

2
�
µ2 � |z|2�z b z



,

for any z P Rn. It holds:

p∇2F pzqλq � λ ¥ p
�
µ2 � |z|2� p�2

4 |λ|2, |∇2F pzq| ¤ ?
n� 1

�
µ2 � |z|2� p�2

4 ,

for any z, λ P Rn. Applying Lemma 3.1.6, we infer

|V pξq � V pηq||ξ � η| ¥ p∇F pξq �∇F pηqq � pξ � ηq
�
�» 1

0

∇2F pη � tpξ � ηqq dtpξ � ηq


� pξ � ηq

¥
» 1

0

p
�
µ2 � |η � tpξ � ηq|2� p�2

4 |ξ � η|2 dt

¥ p
�
µ2 � |ξ|2 � |η|2� p�2

4 |ξ � η|2.
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and

|V pξq � V pηq| � |∇F pξq �∇F pηq| ¤
» 1

0

|∇2F pη � tpξ � ηqq| ds|ξ � η|

¤ 8
?
n� 1

p

�
µ2 � |ξ|2 � |η|2� p�2

4 |ξ � η|.

We need also the following result.

Lemma 3.1.8. Let tuhuhPN � W 1,ppB1q and u P W 1,ppB1q such that

uh á u in W 1,ppB1q. Assume that t∇uhuhPN is bounded in LppB1q. If

lim
hÑ�8

»
B1

ψ|V p∇uhq � V p∇uq|2 dy � 0, @ψ P C8
c pB1q s.t. 0 ¤ ψ ¤ 1,

then uh Ñ u in W 1,p
loc pB1q.

Proof. We proceed as in [13]. By Lemma 3.1.7, the convergence in our as-

sumption yields to

lim
hÑ�8

»
B1

η
�
µ2 � |∇uh|2 � |∇u|2� p�2

2 |∇uh �∇u|2 dy � 0

We distinguish two cases. If p ¥ 2, then»
B1

η|∇uh �∇u|p dy ¤
»
B1

pµ� |∇uh| � |∇u|qp�2|∇uh �∇u|2 dy

¤ cppq
»
B1

�
µ2 � |∇uh|2 � |∇u|2q p�2

2 |∇uh �∇u|2 dy Ñ 0,

as hÑ �8. If 1   p   2, by Hölder’s inequality, we infer»
B1

η|∇uh �∇u|p dy

�
»
B1

η
�
µ2 � |∇uh|2 � |∇u|2� ppp�2q

4 |∇uh �∇u|2
�
µ2 � |∇uh|2 � |∇u|2� pp2�pq4 dy

¤
�»

B1

η
�
µ2 � |∇uh|2 � |∇u|2� p�2

2 |∇uh �∇u|2 dy

 p

2

�
�»

B1

η
�
µ2 � |∇uh|2 � |∇u|2� p2 dy
 2�p

2

¤ cpn, p, µq
�»

B1

η
�
µ2 � |∇uh|2 � |∇u|2� p�2

2 |∇uh �∇u|2 dy

 p

2

Ñ 0,

as hÑ �8.

Starting from Theorem 1.2.10, by means of an approximation argument,

the following theorem has been proved in [31, Theorem 2.2]. The subsequent

corollary is immediate.
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Theorem 3.1.9. Let H be as above and let v P W 1,ppΩq be a local miniminizer

of the functional

Hpw; Ωq �
»

Ω

Hp∇wq dx,

where w P v �W 1,p
0 pΩq. Then v is locally Lipschitz-continuous in Ω and there

exists a constant c � cpn, p, l̃, L̃q ¡ 0 such that

ess sup
BR

2
px0q

pµ2 � |∇v|2q p2 ¤ c�
»
BRpx0q

pµ2 � |∇v|2q p2 dy,

for all BRpx0q � Ω.

Corollary 3.1.10. Let H and v P W 1,ppΩq be as in Theorem 3.1.9. Then

there exists a constant cH � cHpn, p, l̃, L̃q ¡ 0 such that»
Brpx0q

pµ2 � |∇v|2q p2 dy ¤ cH

� r
R

	n »
BRpx0q

pµ2 � |∇v|2q p2 dy,

for all BRpx0q � Ω and 0   r   R.

3.2 Existence of minimizing couples

In order to prove the existence of a solution of problem (P), we recall here a

semicontinuity result by Ioffe, which can be found in [7, Theorem 5.8] and [40].

Theorem 3.2.1 (Ioffe’s semicontinuity result). Let f : Ω � Rm � Rk Ñ R
be L n � BpRm�kq-measurable and lower semicontinuous in Rm�k a.e. in Ω.

Assume that fpx, s, �q convex in Rk for any px, sq P Ω� Rm. Then

lim inf
hÑ�8

»
Ω

fpx, uh, zhq dx ¥
»

Ω

fpx, u, zq dx,

if tuhuhPN � �
L1pΩq�m and tzhuhPN � �

L1pΩq�k are such that uk Ñ u in�
L1pΩq�m and vh Ñ v in

�
L1pΩq�k, as k Ñ �8.

Theorem 3.2.2. The minimum problem (P) admits at least a solution.

Proof. We initially remark that problem (P) can be written as follows:

min
EPApΩq

tEpEq � P pE; Ωqu, (3.5)

where

EpEq � min
vPu0�W 1,p

0 pΩq

»
Ω

rF p∇vq � 1EGp∇vq � fEpx, vqs dx (3.6)

Since F , G are strongly quasi-convex and g, h are lower semicontinuous in

the real variable s, the functional F is lower semicontinuous with respect to
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the weak convergence of ∇vh in Lp and the strong convergence of vh in Lp.

Moreover, the coerciveness of»
Ω

rF p∇vq � 1EGp∇vqs dx

is granted by Lemma 3.1.5. Therefore the minimum problem (3.6) admits a

solution. Let tAhuhPN � ApΩq be a minimizing sequence for problem (3.5). It

follows that the sequence tP pAh; ΩquhPN is bounded and so, by compactness,

there exists A P ApΩq such that 1Ah Ñ 1A in L1
locpΩq. Let uh P u0 �W 1,p

0 pΩq
a solution of problem (3.6) associated with Ah, for all h P N. The sequence

tuhuhPN is bounded in W 1,ppΩq; indeed, by (3.1) and Poincaré’s inequality we

obtain

min
vPu0�W 1,p

0 pΩq
Fpv,Ωq

¥ FpAh, uhq ¥ l

»
Ω

|∇uh|p dx�
»

Ω

γ dx� k

»
Ω

|uh|p dx

¥ l

»
Ω

|∇uh|p dx�
»

Ω

γ dx� 2p�1k

»
Ω

|uh � u0|p dx� 2p�1k

»
Ω

|u0|p dx

¥ pl � 2p�1kλq
»

Ω

|∇uh|p dx�
»

Ω

γ dx� 2p�1k

»
Ω

|u0|p dx.

Hence, we can extract a subsequence (not relabelled) such that uh á u in

W 1,ppΩq. By definition of minimum we infer

EpAq ¤
»

Ω

rF p∇uq � 1AGp∇uq � fApx, uqs dx.

Applying Ioffe lower semicontinuity result, Theorem 3.2.1, to the integrand

Φpx, s1, s2, ξq :� F pξq � s1Gpξq � gpx, s2q � s1hpx, s2q,
where x P Ω, s1 P r0, 1s, s2 P R and ξ P Rn, we obtain

EpAq ¤
»

Ω

rF p∇uq � 1AGp∇uq � fApx, uqs dx �
»

Ω

Φpx,1A, u,∇uq dx

¤ lim inf
hÑ�8

»
Ω

Φpx,1Ah , uh,∇uhq dx � lim inf
hÑ�8

EpAhq.

Therefore, by the lower semicontinuity of perimeter we finally gain

EpAq � P pA; Ωq ¤ lim inf
hÑ�8

rEpAhq � P pAh; Ωqs,

which proves that A is a minimizer of problem (3.5) and so pA, uq is a mini-

mizing couple of problem (P).
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3.3 Higher integrability and Hölder continuity

of minimizers

The following theorem shows that local minimizers of the functional Fp�, Eq,
with E P ApΩq fixed, are Hölder continuous and a higher integrability property

for the gradient holds true. The proof of this result is standard and can be

carried out adopting the obvious adaptation in the proof of Lemma 2.27 and

applying Gehring’s Lemma (see Lemma 2.3.3). The local boundedness and the

Hölder continuity of solutions of problem (P) is easily obtained if one follows

the same argument of De Giorgi’s regularity theorem (Theorem 1.2.6).

Theorem 3.3.1. Let pA, uq be a solution of (P). Then the following facts

hold:

• u is locally bounded in Ω by a constant depending only on

n, p, q, α, β, l, L, µ, C0, ‖u‖LppΩq and is locally Hölder continuous in Ω;

• Let Ω0 � Ω, τ � distpΩ0, BΩq and K � tx P Ω : distpx,Ω0q ¤ τ
2
u.

Then there exist two constants γ ¡ 0 and r ¡ p depending only on

n, p, q, β, l, L, µ, C0, ‖u‖L8pKq such that»
QR

2
pyq
|∇u|r dx ¤ γ

�
Rn

�
1� r

p

�� »
QRpyq

|∇u|p dx

 r

p

�Rn

�
,

for all y P Ω0 and QRpyq � K.

3.4 Regularity of the set

The following proposition is the main result of this section and also the main

ingredient to prove Theorem 3.0.1.

Proposition 3.4.1. Let pA, uq be a solution of (P). Then for every compact

set K � Ω there exists a constant ξ P p0, distpK, BΩqq such that if y P K and

for some ρ   ξ it holds»
Bρpyq

rFpp∇uq � 1AGpp∇uqs dx� P pA;Bρpyqq   ξρn�1,

then

lim
ηÑ0

η1�n
� »

Bηpyq
rFpp∇uq � 1AGpp∇uqs dx� P pA;Bηpyqq

�
� 0.

The proof of the previous proposition relies on Proposition 3.4.5, which is an

iteration of the decay estimate in Theorem 3.4.4. The following definition

is crucial in the rescaling argument used in the proof of Theorem 3.4.4 (see

(3.17)).



3.4. Regularity of the set 126

Definition 3.4.2 (Asymptotically minimizing sequence). Let tpAh, uhquhPN �
W 1,ppB1q �ApB1q and tλhuhPN � R�. We say that the sequence tpAh, uhquhPN
is λh-asymptotically minimizing if and only if for any compact set K � B1

and any couple tpu1h, A1
hqu � W 1,ppB1q �ApB1q formed by a bounded sequence

tu1hunPN in W 1,ppB1q with sptpuh � u1hq � K and a sequence of sets tA1
hunPN

with Ah∆A
1
h � K, we have»
B1

rFpp∇uhq � 1AhGpp∇uhqs dy � λhP pAh;Bq

¤
»
B1

rFpp∇u1hq � 1A1hGpp∇u1hqs dy � λhP pA1
h;Bq � ηh, (3.7)

where tηhuhPN � R is an infinitesimal sequence.

In the proof of Theorem 3.4.4 we will show that the sequence of appropriately

rescaled miniminal configurations of problem (P) is asymptotically minimiz-

ing. The following theorem is concerned with the behaviour of asimptotically

minimizing sequences.

Theorem 3.4.3. Let tλhuhPN � R� and tpAh, uhquhPN � W 1,ppB1q � ApB1q.
Assume that pAh, uhq is λh-asymptotically miminimizing and that

i)

"»
B1

rFpp∇uhq � 1AhGpp∇uhqs dy � λhP pAh;B1q
*
hPN

is bounded;

ii) uh á u in W 1,ppB1q;
iii) 1Ah Ñ 1A in L1pB1q and λh Ñ �8;

iv) Gpp∇uhq is locally equi-integrable in B1.

Then

a) uh Ñ u in W 1,p
loc pB1q;

b) λhP pAh;Bρq Ñ 0, for all ρ P p0, 1q;
c) A � H or A � B1 and u minimizes the functional»

B1

rFpp∇vq � 1AGpp∇vqs dy,

among all v P u�W 1,p
0 pB1q.

Proof. Let us prove a). The hypothesis iv) implies that

lim
hÑ�8

»
B1

ψr1AGpp∇uhq � 1AhGpp∇uhqs dy � 0, @ψ P C8
c pB1q. (3.8)
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Let ũh :� p1 � ψquh � ψu, ψ P C8
c pB1q, with 0 ¤ ψ ¤ 1. Then

∇ũh � pu� uhq∇ψ � p1� ψq∇uh � ψ∇u. Testing pAh, ũhq, we have»
B1

rFpp∇uhq�1AhGpp∇uhqs dy ¤
»
B1

rFpp∇ũhq�1AhGpp∇ũhqs dy�ηh, (3.9)

where tηhuhPN � R is the infinitesimal sequence in (3.7). By the convexity of

Fp and Gp and Lemma 3.1.4, it follows that»
B1

rFpp∇ũhq � 1AhGpp∇ũhqs dy

¤
»
B1

rFppp1� ψq∇uh � ψ∇uq � 1AhGppp1� ψq∇uh � ψ∇uqs dy

�
»
B1

r∇Fpppu� uhq∇ψ � p1� ψq∇uh � ψ∇uqs � rpu� uhq∇ψs dy

�
»
B1

r∇Gpppu� uhq∇ψ � p1� ψq∇uh � ψ∇uqs � rpu� uhq∇ψs dy

¤
»
B1

rp1� ψqFpp∇uhq � ψFpp∇uq � 1Ahrp1� ψqGpp∇uhq � ψGpp∇uqs dy

� cpp, L, βq
»
B

pµ2 � |pu� uhq∇ψ � p1� ψq∇uh � ψ∇u|2q p�1
2 |pu� uhq∇ψ| dy.

Using the previous one in (3.9), we obtain»
B1

ψrFpp∇uhq � 1AhGpp∇uhqs dy

¤
»
B1

ψrFpp∇uq � 1AhGpp∇uqs dy � ηh

� cpp, L, βq
»
B

pµ2 � |pu� uhq∇ψ � p1� ψq∇uh � ψ∇u|2q p�1
2 |pu� uhq∇ψ| dy.

(3.10)

The second term in the right hand side is infinitesimal; indeed, using Hölder’s

inequality, we have»
B

pµ2 � |pu� uhq∇ψ � p1� ψq∇uh � ψ∇u|2q p�1
2 |pu� uhq∇ψ| dy

¤ ‖u� uh‖LppB1q

�»
B1

pµp � |pu� uhq∇ψ|p � |p1� ψq∇uh|p � |ψ∇u|pq dy

 p�1

p

,

which tends to 0 as h approaches �8. So we can inglobe the second term in

the right hand side of (3.10) in ηh. Add

»
B1

ψ1AGpp∇uhq dy to both sides in

(3.10) in order to obtain»
B1

ψrFpp∇uhq � 1AGpp∇uhqs dy ¤
»
B1

ψrFpp∇uq � 1AhGpp∇uqs dy
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�
»
B1

ψr1AGpp∇uhq � 1AhGpp∇uhqs dy � η̃h,

where tη̃huhPN � R is infinitesimal. Thanks to (3.8), we can pass to the upper

limit and obtain

lim sup
hÑ�8

»
B1

ψrFpp∇uhq � 1AGpp∇uhqs dy ¤
»
B1

ψrFpp∇uq � 1AGpp∇uqs dy.

Finally, by lower semicontinuity, we gain

lim
hÑ�8

»
B1

ψrFpp∇uhq � 1AGpp∇uhqs dy �
»
B1

ψrFpp∇uq � 1AGpp∇uqs dy.
(3.11)

By the strong quasi-convexity of Fp and Gp and Lemma 3.1.7, we have»
B1

ψ|V p∇uhq � V p∇uq|2 dy (3.12)

¤ cpn, pq
»
B1

pµ2 � |∇uh|2 � |∇u|2q p�2
2 |∇uh �∇u|2 dy

¤ cpn, p, lq
� »

B1

rψpFpp∇uhq � Fpp∇uqq �∇Fpp∇uq � rψp∇uh �∇uqss dy

�
»
B1

rψ1ApGpp∇uhq �Gpp∇uqq � 1A∇Gpp∇uq � rψp∇uh �∇uqss dy
�
.

Let hÑ �8 in (3.12). By the ii) and (3.11), we infer

lim
hÑ�8

»
B1

ψ|V p∇uhq � V p∇uq|2 dy � 0.

Thanks to Lemma 3.1.8 and the arbitrariety of ψ, we conclude that uh Ñ u in

W 1,p
loc pB1q.

Let us prove b). Since λh Ñ �8 and the energies are bounded by an

appropriate constant c, it holds that

P pAh;B1q ¤ c

λh
.

Let h Ñ �8 in the previous inequality. By semicontinuity we infer that

P pA;B1q � 0. Thanks to isoperimetric inequality it follows that A � H or

A � B. We’ll discuss the case A � H, being the other one similar. For h large

enough, by the isoperimetric inequality we have

|Ah| � mint|Ah|, |B1zAh|u ¤ cpnq
�
c

λh


 n
n�1

.

Denoting 1hpρq � 1AhXBBρ , for all h P N and ρ P p0, 1q, the Coarea formula

provides that

|Ah| �
» 1

0

dρ

»
BBρ

1hpρq dHn�1 ¤ cpnq
�
c

λh


 n
n�1

,
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which means that the sequence of functions

"
λh

»
BBρ

1hpρq dHn�1

*
hPN

con-

verges to 0 in L1p0, 1q. Thus, it converges to 0 for almost every ρ P p0, 1q.
Then, for every ρ P p0, 1q fixed, we can find a sequence tρhuhPN �

�
ρ, 1�ρ

2

�
such

that

λh

»
BBρh

1hpρhq dHn�1 Ñ 0, (3.13)

as h approaches �8. Comparing tpAh, uhquhPN and tpAh, uhzBρhquhPN , using

(3.13) and the equality

P pAhzBρh ;B1q � P pAh;B1zBρhq �
»
BBρh

1hpρhq dHn�1,

there exists an infinitesimal sequence tηhuhPN � R such that

λhP pAh;Bρhq ¤ λhP pAh;B1q ¤ λhP pAhzBρh ;B1q � ηh

� λhP pAh;B1zBρhq � λh

»
BBρh

1hpρhq dHn�1 � ηh

� λh

»
BBρh

1hpρhq dHn�1 � ηh,

provided h is so large that Ah � B ρ�1
2

. Thus, thanks to (3.13) the sequence

tλhP pAh;BρhquhPN is infinitesimal and we can conclude that

λhP pAh;Bρq Ñ 0,

as h approaches �8, since ρh ¡ ρ.

Let us prove c). Comparing pAh, uhq with pAh, ũhq � pAh, uh � ϕq, where

ϕ P C1pB1q and spt(ϕ)� Bρ, we have»
Bρ

rFpp∇uhq � 1AhGpp∇uhqs dy ¤
»
Bρ

rFpp∇ũhq � 1AhGpp∇ũhqs dy � ηh,

with tηhuhPN � R infinitesimal and ρ P p0, 1q arbitrary. Thanks to a), we

can use the dominated convergence theorem in order to pass to the limit as h

approaches �8, obtaining»
Bρ

rFpp∇uq � 1AGpp∇uqs dy ¤
»
Bρ

rFpp∇pu� ϕqq � 1AGpp∇pu� ϕqqs dy.

By the arbitrariety of ρ and ϕ we can conclude the proof.

The following theorem is the main tool for proving Proposition 3.4.1.

Theorem 3.4.4 (Energy decay estimate). Let K � Ω be a compact set,

δ � distpK, BΩq ¡ 0 and ε P p0, 1q. Let c̃ � c̃pp, l, L, α, β, µq and cH �
cHpn, p, l, L, α, βq the constants of Lemma 3.1.5 and Corollary 3.1.10 for

Hpwq �
»
B1

rFpp∇wq �Gpp∇wqs dx.
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Moreover, let τ P p0, 1q be such that τ ε   1
2p1�ωnc̃q . Then there exist two positive

constants γ and θ such that for any solution pA, uq of the problem (P) and for

any ball Bρpyq with y P K and ρ P p0, δ
2
q the two estimates»

Bρ

rFpp∇uq � 1AGpp∇uqs dx� P pA;Bρq ¤ γρn�1,

ρn ¤ θ

� »
Bρ

rFpp∇uq � 1AGpp∇uqs dx� P pA;Bρq
�
,

imply that»
Bτρpyq

rFpp∇uq � 1AGpp∇uqs dx� P pA;Bτρpyqq

¤ cHp1� βqL
l

τn�ε
� »

Bρ

rFpp∇uq � 1AGpp∇uqs dx� P pA;Bρq
�
.

Proof. Let us suppose by contradiction that there exist two sequences tγhuhPN
and tθhuhPN which tend to 0, a sequence of minimizing couples tpDh, whquhPN
of (P) and a sequence of balls tBρhpxhquhPN, with xh P K and ρh P p0, δ2q, for

all h P N, such that these estimates hold:»
Bρh pxhq

rFpp∇whq � 1DhGpp∇whqs dx� P pDh;Bρhpxhqq � γhρ
n�1
h , (3.14)

ρnh ¤ θh

� »
Bρh pxhq

rFpp∇whq � 1DhGpp∇whqs dx� P pDh;Bρhpxhqq
�
, (3.15)

»
Bτρh pxhq

rFpp∇whq � 1DhGpp∇whqs dx� P pDh;Bτρhpxhqq (3.16)

¡ cHp1� βqL
l

τn�ε
� »

Bρh pxhq
rFpp∇whq � 1DhGpp∇whqs dx� P pDh;Bρhpxhqq

�
.

In what follows it will be important that the sequence twhuhPN is locally equi-

bounded in Ω. It descends from Theorem 3.3.1 once we have proved that

twhuhPN is bounded in W 1,ppΩq, which holds true; indeed, by the minimality

of pDh, whq, (F1), (3.1) and Poincaré’s inequality it follows that

min
vPu0�W 1,ppΩq

Fpv,Ωq

¥ Fpwh, Dhq ¥ l

»
Ω

|∇wh|p dx�
»

Ω

γ dx� k

»
Ω

|wh|p dx

¥ l

»
Ω

|∇wh|p dx�
»

Ω

γ dx� 2p�1k

»
Ω

|wh � u0|p dx� 2p�1k

»
Ω

|u0|p dx

¥ pl � 2p�1kλq
»

Ω

|∇wh|p dx�
»

Ω

γ dx� 2p�1k

»
Ω

|u0|p dx,
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since k   l
2p�1λ

. Rescale the functions wh; define

uhpyq :� whpxh � ρhyq � wh

ρ
p�1
p

h γ
1
p

h

P W 1,ppB1q, Ah :� Dh � xh
ρh

, λh :� 1

γh
,

(3.17)

where wh � �
»
B1

whpxh�ρhyq dy, for all h P N. By the usual change of variables

x :� xh � ρhy, we have:»
Bρh pxhq

rFpp∇whq � 1DhGpp∇whqs dx� P pDh;Bρhpxhqq

� γhρ
n�1
h

� »
B1

rFpp∇uhq � 1AhGpp∇uhqs dy � λhP pAh;B1q
�
.

Rescale the estimates (3.14), (3.15) and (3.16), obtaining»
B1

rFpp∇uhq � 1AhGpp∇uhqs dy � λhP pAh;B1q � 1, (3.18)

ρh ¤ θhγh, (3.19)»
Bτ

rFpp∇uhq � 1AhGpp∇uhqs dy � λhP pAh;Bτ q ¡ cHp1� βqL
l

τn�ε. (3.20)

We want to apply Theorem 3.4.3 to the sequence tpAh, uhqunPN.

Firstly, let us prove that tpAh, uhqunPN is λh-asymptotically minimizing. Let

K 1 � B1 be a compact set and tpA1
h, u

1
hquhPN such that tu1huhPN is a bounded

sequence in W 1,ppB1q with spt(u1h� uh)� K 1 and A1
h � B1 with A1

h∆Ah � K 1.
Rescale the functions u1h:

w1
hpxq :� ρ

p�1
p

h γ
1
p

h u
1
h

�
x� xh
ρh



� wh P W 1,ppBρhpxhqq, D1

h � xh � ρhA
1
h.

Compare the two sequences tpDh, whquhPN and tpD1
h, w

1
hquhPN: by the minimal-

ity of tpDh, whquhPN and by (3.2) we have»
B1

rFpp∇u1hq � 1A1hGpp∇u1hqs dy � λhP pA1
h;Bq

� 1

γhρ
n�1
h

� »
Bρh pxhq

rFpp∇w1
hq � 1D1

h
Gpp∇w1

hqs dx� P pD1
h;Bρhpxhqq

�
¥ 1

γhρ
n�1
h

� »
Bρh pxhq

rF p∇whq � 1DhGp∇whqs dx� P pDh;Bρhpxhqq

�
»
Bρh pxhq

rfDhpx,whq � fD1
h
px,w1

hqs dx

�
»
Bρh pxhq

 rFpp∇w1
hq � F p∇w1

hqs � 1D1
h
rGpp∇w1

hq �Gp∇w1
hqs

(
dx

�
¥ 1

γhρ
n�1
h

� »
Bρh pxhq

rF p∇whq � 1DhGp∇whqs dx� P pDh;Bρhpxhqq
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� C0

»
Bρh pxhq

r2� |wh|q � |w1
h|qs dx

�
»
Bρh pxhqXt|∇w1h|¥t0u

 rFpp∇w1
hq � F p∇w1

hqs � 1D1
h
rGpp∇w1

hq �Gp∇w1
hqs

(
dx

�
»
Bρh pxhqXt|∇w1h| t0u

 rFpp∇w1
hq � F p∇w1

hqs � 1D1
h
rGpp∇w1

hq �Gp∇w1
hqs

(
dx

�

In the sixth line of the previous inequality we need Fp and Gp in place of F

and G, so that by (F3) and (G3) we infer»
Bρh pxhq

rF p∇whq � 1DhGp∇whqs dx

¥
»
Bρh pxhqXt|∇wh|¥t0u

rF p∇whq � 1DhGp∇whqs dx

¥
»
Bρh pxhqXt|∇wh|¥t0u

rFpp∇whq � 1DhGpp∇whqs dx� 2a

»
Bρh pxhq

|∇wh|p�m dx

¥
»
Bρh pxhq

rFpp∇whq � 1DhGpp∇whqs dx� cpn, p, L, β, t0qρnh

� 2a

»
Bρh pxhq

|∇wh|p�m dx.

Thus by homogeneity, (F3) and (G3), we get»
B1

rFpp∇u1hq � 1A1hGpp∇u1hqs dy � λhP pA1
h;Bq

¥
»
B1

rFpp∇uhq � 1DhGpp∇uhqs dx� λhP pAh;Bq

� C0

γhρ
n�1
h

»
Bρh pxhq

p|wh|q � |w1
h|qq dx� cpn, p, L, β, t0qρh

γh

� 2a

γhρ
n�1
h

»
Bρh pxhq

r|∇w1
h|p�m � |∇wh|p�ms dx.

In order to prove that tpAh, uhquhPN is λh-asymptotically minimizing, we need

to show that

lim
hÑ�8

�
C0

γhρ
n�1
h

»
Bρh pxhq

p|wh|q � |w1
h|qq dx� cpn, p, L, β, t0qρh

γh

� 2a

γhρ
n�1
h

»
Bρh pxhq

r|∇w1
h|p�m � |∇wh|p�ms dx

�
� 0.

By (3.19) it is clear that lim
hÑ�8

ρh
γh

� 0. Since twhunPN is locally equibounded

in Ω, also

lim
hÑ�8

1

γhρ
n�1
h

»
Bρh pxhq

|wh|q dx � 0.
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It remains to prove that

lim
hÑ�8

1

γhρ
n�1
h

»
Bρh pxhq

|w1
h|q dx � 0, (3.21)

lim
hÑ�8

1

γhρ
n�1
h

»
Bρh pxhq

r|∇w1
h|p�m � |∇wh|p�ms dx � 0. (3.22)

Let us prove (3.21). Since twhuhPN is locally equibounded by a constant M ¡ 0,

substituting the expression of wh from (3.17) it follows that

1

γhρ
n�1
h

»
Bρh pxhq

|w1
h|q dx �

ρh
γh

»
B1

|ρ
pp�1q
p

h γ
1
p

h u
1
h � wh|q dy

¤ cpqq
�
ρh
γh
ρ
pp�1qq
p

h γ
q
p

h

»
B1

|u1h � uh|q dy � ρh
γh

»
B1

|whpxh � ρhyq|q dy
�

¤ cpn, p, qqρh
γh
ρ
pp�1qq
p

�1

h γ
q
p
�1

h

�
‖u1h‖

q
W 1,ppB1q � ‖uh‖qW 1,ppB1q

	
� cpn, q,Mqρh

γh
,

where we used the Sobolev embedding theorem. Since q ¥ p, tu1huhPN and

tuhuhPN are bounded in W 1,ppB1q and lim
hÑ�8

ρh
γh

� 0, we conclude that (3.21)

holds true. We are left to prove (3.22). By Hölder’s inequality we get

1

γhρ
n�1
h

»
Bρh pxhq

r|∇w1
h|p�m � |∇wh|p�ms dx

¤ cpn, p,mq
γhρ

n�1
h

��»
Bρh pxhq

|∇w1
h|p dx


1�m
p

�
�»

Bρh pxhq
|∇wh|p dx


1�m
p
�
ρ
nm
p

h

� cpn, p,mq
γhρ

n�1
h

�
γhρ

n�1
h

�1�m
p

��»
B1

|∇u1h|p dy

1�m

p

�
�»

B1

|∇uh|p dy

1�m

p
�
ρ
nm
p

h

¤ cpnq
�
ρh
γh


m
p �
‖u1h‖

p�m
W 1,ppB1q � ‖uh‖p�mW 1,ppB1q

�
.

Since lim
hÑ�8

ρh
γh

� 0 and tu1huhPN, tuhuhPN are bounded in W 1,ppB1q, we obtain

(3.22).

Thanks to (3.18) there exist a function u P W 1,ppB1q and a set of finite perime-

ter A � B1 such that

uh á u in W 1,ppB1q and 1Ah Ñ 1A in L1pB1q.
We are finally in position to apply Theorem 3.4.3 to tpAh, uhquhPN. It remains

only to prove that Gpp∇uhq is locally equi-integrable, which we will prove later.

As a consequence of Theorem 3.4.3 we have that A � H or A � B1. We’ll

discuss the case A � H, being the other one similar. Thanks to Corollary

3.1.10 and Lemma 3.1.5, by lower semicontinuity we infer»
Bτ

|∇u|p dy ¤
»
Bτ

pµ2 � |∇u|2q p2 dy ¤ cHτ
n

»
B1

pµ2 � |∇u|2q p2 dy (3.23)
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¤ 2cH
l
τn
�»

B1

Fpp∇uq dy � ωnc̃



¤ 2cH

l
τn
�

lim inf
hÑ�8

»
B1

Fpp∇uhq dy � ωnc̃



.

Using inequality (3.18), (3.20) and the b) of Theorem 3.4.3, we gain

2cH
l
τn
�

lim inf
hÑ�8

»
B1

Fpp∇uhq dy � ωnc̃



� 2cH

l
τn
�

1� lim sup
hÑ�8

λhP pAh;B1q � ωnc̃



¤ 2cH

l
τnp1� ωnc̃q   cH

l
τn�ε   1

p1� βqL
»
Bτ

Fpp∇uq dy ¤
»
Bτ

|∇u|p dy.

Comparing the previous estimate with (3.23) we reach a contradiction.

We are only left to prove the equi-integrability of Gpp∇uhq in B1. It is enough

to prove that for all t P p0, 1q there exists r ¡ p such that

sup
hPN

»
Bt

|∇uh|r dy   �8. (3.24)

Indeed, fix ε ¡ 0, a compact set K 1 � B1 and A � K 1. Then by the growth

condition of Gp and Hölder’s inequality, it follows that

sup
nPN

»
A

Gpp∇uhq dy ¤ βL

»
A

|∇uh|p dy ¤ βL|A|1� p
r

�
sup
hPN

»
Bt

|∇uh|r dy

 p

r

.

In order to prove (3.24), we can apply Theorem 3.3.1: there exist two constants

γ ¡ 0 and r ¡ p depending only on n, p, q, β, l, L, µ, C0, ‖wh‖L8pKq such that

for all h P N and y P K, with dist(Q2ρhpyq, K)¤ δ
2

we have the following local

higher summability:»
Qρh pyq

|∇wh|r dx ¤ γ

�
ρ
n
�

1� r
p

�
h

�»
Q2ρh

pyq
|∇wh|p dx


 r
p

� ρnh

�
.

It can be also shown that the dependence of γ and r on ‖wh‖L8pKq is uniform

with respect to h, since twhuhPN is locally equibounded in Ω.

Fix t P p0, 1q. By a covering argument it follows that»
Btρh pxhq

|∇wh|r dx ¤ cpn, tqγ
�
ρ
n
�

1� r
p

�
h

�»
Bρh pxhq

|∇wh|p dx

 r

p

� ρnh

�
.

Rescale and write the estimate in terms of uh:»
Bt

|∇uh|r dy ¤ cpn, tqγ
��»

B1

|∇uh|p dy

 r

p

�
�
ρh
γh


 r
p
�
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¤ cpn, t, r,M 1qγ
�

1�
�
ρh
γh


 r
p
�
,

where M 1 ¡ 0 is an upper bound for t‖uh‖W 1,ppΩquhPN. Using (3.19) we prove

our assertion.

The last proposition that we need to prove Proposition 3.4.1 follows from the

previous result and is based on an iteration argument.

Proposition 3.4.5. Let K, γ, θ, δ be given by Theorem 3.4.4 and let pA, uq be

a solution of (P). Let y P K and denote

Ψpρq �
»
Bρpyq

rFpp∇uq � 1AGpp∇uqs dx� P pA;Bρpyqq, @ρ P
�

0,
δ

2

	
.

Moreover, let ε P p0, 1q and σ P pn � 1, n � εq such that there exists τ P p0, 1q
satisfying

cHp1� βqL
l

τn�ε   τσ and τ ε   1
2p1�ωnc̃q . Set

ξ � mintdistpy, BΩq, γ, τσγθu.
If Ψpρq   ξρn�1 for some ρ P p0, ξq, then

Ψpηq   τ�σγρn�1

�
η

ρ


σ

, @η P p0, ρs.

In particular,

lim
ηÑ0

η1�nΨpηq � 0.

Proof. Let us assume that Ψpρq   ξρn�1 for some ρ P p0, ξq. Since Ψ is non-

decreasing, it suffices to show by induction on j P N0 that

Ψpηjq   γρn�1

�
ηj
ρ


σ

,

where ηj � τ jρ. Since we chose ξ   γ, the inequality holds true if j � 0. Let

us assume that it holds true for j ¡ 0. By induction we state

Ψpηjq
ηn�1
j

  γ

�
ηj
ρ


σ�n�1

  γ,

that is Ψpηjq   γηn�1
j . If θΨpηjq ¡ ηnj , thanks to the choice ξ   distpy, BΩq,

we can apply Theorem 3.4.4 and the inductive hypothesis in order to obtain

Ψpηj�1q ¤ τσΨpηjq   τσγρn�1

�
ηj
ρ


σ

� γρn�1

�
ηj�1

ρ


σ

.

If θΨpηjq ¤ ηnj , then we can state

ηnj
θ
  γρn�1

�
ηj�1

ρ


σ

.
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Indeed

ηnj ρ
σ

γθρn�1ησj�1

� τ�nρσ�n�1ηn�σj�1

γθ
� τnj�σj�σρ

γθ
  τ pn�σqj   1,

since ξ   τσγθ. Finally, using that Ψ is non-decreasing, we have

Ψpηj�1q ¤ Ψpηjq ¤ ηnj
θ
  γρn�1

�
ηj�1

ρ


σ

,

which concludes the proof.

Finally, we can prove Proposition 3.4.1 choosing

ξ � mintdistpK, BΩq, γ, τσγθu,
where γ, τ, σ, θ are given by Proposition 3.4.5.

3.5 Proof of the main theorem

In this section we give the proof of Theorem 3.0.1, which makes use of the

results we obtained in the previous sections.

Proof of Theorem 3.0.1. The assertion 1. follows from Theorem 3.3.1. Let us

prove the statement 2.

Define

Ω0 �
"
y P Ω : lim

ρÑ0
ρ1�n

� »
Bρpyq

rFpp∇uq�1AGpp∇uqs dx�P pA;Bρpyqq
�
� 0

*
.

Thanks to Proposition 3.4.1 we infer that Ω0 is an open set. Setting

pBA :�
"
x P Ω : lim sup

ρÑ0�

P pA;Bρpxqq
ρn�1

¡ 0

*
,

by De Giorgi’s structure theorem (Theorem 1.1.13) it holds that P pA; �q �
Hn�1 pBA. It is clear that Ω0 � ΩzpBA.

Let x P Ω0. Since Ω0 is an open set, choose ρ ¡ 0 such that Bρpxq � Ω0. By

the isoperimetric inequality, we infer

mint|AXBρpxq|, |BρpxqzA|u ¤ cpnqP pA;Bρpxqq n
n�1 � 0,

which implies that 1A � 1 a.e. in Bρpxq or 1A � 0 a.e. in Bρpxq. Define the

open set

Ã � tx P Ω0 : 1A � 1 a.e. in a neighborhood of xu.
Let us prove that Hn�1ppΩzΩ0q∆pBAq � 0. Since pBA � ΩzΩ0, it is clear that

Hn�1ppBAzpΩzΩ0qq � 0. It remains to prove thatHn�1ppΩzΩ0qzpBAq � 0. Define

Sε :�
"
y P Ω : lim sup

ρÑ0�
ρ1�n

»
Bρpyq

rFpp∇uq � 1AGpp∇uqs dx ¡ ε

*
,
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for ε ¡ 0. It is clear that

pΩzΩ0qzpBA �
¤
ε¡0

Sε. (3.25)

Using a density argument, thanks to Lemma A.1.9 we can estimate

εHn�1pSεq ¤ cpnq
»
Sε

rFpp∇uq � 1AGpp∇uqs dx, @ε ¡ 0.

We deduce that Hn�1pSεq   �8. It implies that |Sε| � 0 and so, from the

previous inequality, we finally infer that Hn�1pSεq � 0, for all ε ¡ 0. Thanks

to (3.25) we prove our claim.

Let us prove that A and Ã are equivalent. One one hand, by the definition of

Ã we have

|Ã| �
»
Ã

1A dx � |ÃX A|,

which implies that |ÃzA| � 0; on the other hand, since Hn�1pΩzΩ0q
� Hn�1ppBAq   �8, we deduce that |ΩzΩ0| � 0 and hence

|AzÃ| � |pAzÃq X Ω0| �
»

Ω0zÃ
1A dx � 0.

Since |A∆Ã| � 0, we infer that P pA; Ωq � P pÃ; Ωq. Moreover, since ΩXBÃ �
ΩzΩ0 and Hn�1ppΩzΩ0q∆pBAq � 0, we have

Hn�1pΩX BÃq ¤ Hn�1pΩzΩ0q � Hn�1ppBAq � P pA; Ωq � P pÃ; Ωq.
The converse inequality can be obtained from the following one that holds

true for any Borel set C � Rn and can be obtained by De Giorgi’s structure

theorem:

P pC; Ωq ¤ Hn�1pΩX BCq.
Choosing C � Ã, we conclude the proof.
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Chapter 4

The one-dimensional case

In this chapter we study a one-dimensional and two-dimensional frustrated

lattice system, whose spins take values in the unit sphere in R3. In the one-

dimensional case, we set the problem in the lattice

InpIq :� ZnpIqz
"Z

1

λn

^
� 1,

Z
1

λn

^*
,

where Zn � ti P Z : λni P Iu and I :� p0, 1q and tλnunPN is a vanishing

sequence of lattice spacings. The set InpIq is the domain of the spins.

Fixing v1, v2 P S2 and R P p0, 1q, we define the two circles centred in

vi
?

1�R2:

Si :�
!
w P S2 : |πvKi pwq| � R, w � vi ¡ 0

)
, for i P t1, 2u.

We assume that for 0   R   RMax :�
b

1�v1�v2
2

so that the sets S1 and S2 are

disjoint. The set S1 Y S2 is the codomain of the spins.

We introduce the class of functions valued in S1 Y S2 which are piecewise

constant on the edges of the lattice ZnpIq and satisfy a joint boundary condi-

tion:

PCλn :�
!
v : I Ñ S1 Y S2 : vptq � vpλniq for t P λnri� r0, 1qs,
v0 � v1 � vt

1
λn

u�1 � vt 1
λn

u
)
.

We identify a piecewise function v : I Ñ S1 Y S2 with the function defined on

the points of the lattice given by i P ZnpIq ÞÑ vi :� vpλniq. Conversely, given

values vi P S1 Y S2 for any i P ZnpIq, we define v : I Ñ S1 Y S2 by vptq :� vi

for t P λnri� r0, 1qs.
We deal with an energy En : L8pI;R3q Ñ p�8,�8s defined as

En � En � Pn,

with

Enpuq �

$'&'%
¸

iPInpIq
λn

��αui � ui�1 � ui � ui�2
�

for u P PCλn ,

�8 for u P L8pI;R3qzPCλn ,
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Figure 4.1: S1 and S2 circles of anisotropic transitions.

and

Pnpuq �
#
λnkn|DApuq|pIq for u P PCλn ,
�8 for u P L8pI;R3qzPCλn .

where α P p0,�8q, tknu � R� is such that kn Ñ �8, as n Ñ �8. The map

A : PCλn Ñ tv1, v2u projects the spin on the circles and is defined as follows:

Apuptqq �
#
v1 if uptq P S1,

v2 otherwise.
(4.1)

We explain here the structure of the chapter and how we carry out our

analysis. In Section 4.1 we characterize the minimizers of the energy En. We

point out that they are confined in only one circle of magnetic anisotropy Si
and two different situations may occur:

• for α ¥ 4, minimizers are constant;

• for α P p0, 4q, minimizers are made up of rotating vectors with a constant

angle ψ � � arccospα{4q.
In the latter case, a symmetric and rigid structure for minimizers arise:

they rotate with a signed constant angle, which determines their chirality. If

minimizers rotate clockwise they are said to have a positive chirality; if they

rotate counterclockwise they are said to have a negative chirality.

In the next sections, we are mainly interested in computing the amount of

energy the system pays to allow general spins to break the simmetry of mini-

mizers. Hence, we concentrate our analysis in two directions. One one hand,

we compute how much energy is spent to allow spins to switch their chirali-

ties (chirality transitions). On the other hand, we calculate the quantity

of energy needed to let spins “jump” from one magnetic anisotropy circle to

the other one (magnetic anisotropy transitions). We achieve our pur-

pose in the next sections by means of a techinque based on the notion of

Γ-convergence.

Section 4.2 is devoted to the computation of the Γ-limit of the energy

En. The convergence theorem can be obtained by means of an abstract Γ-

convergence result proved in [3] (see Theorem 4.2.1). As a result of Theorem
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Figure 4.2: Magnetic anisotropic transitions.

4.2.8, the Γ-limit of En does not provide a detailed description of the two fenom-

ena. This suggests that, in order to get more information, we need to consider

higher order Γ-limits (see [10] and [11]). This is done in Section 4.3, where

we address to the same system, when it is close the helimagnet/ferromagnet

transition point as the number of particles diverges. This means that the pa-

rameter α depends on n and it converges to the threshold 4 from below, as

nÑ �8. In this case, we call the energy En as Ehf
n . We expand

Ehf
n � minEhf

n �
¸
j

pRnqj �
?

2λnδ
3
2
nHn,

where the functionals pRnqj and Hn are defined in (4.21) and (4.22) respec-

tively. The two fenomena can be detected at different orders and scales. In

Subsection 4.3.1, we study the first order Γ-limit, that is the asymptotic be-

havior of a (rescaling of the) new functional Hhf
n defined as

Hhf
n � Ehf

n �minEhf
n .

Rescaling Hhf
n by λn, magnetic anisotropy transitions can be made by the spin

on a scale of order λnkn, for n large enough (see Theorem 4.3.2).

In Subsection 4.3.2, in order to continue the analysis at the next order, we

restrict every spin u on some intervals Ij that partition I such that on ZnpIjq it

takes values only in one Sj. We need to modify such restrictions u|Ij in a way

that they are well-connected on the boundary of the interval Ij, denotating

them as ruIj .
The functional Hhf

n can be split in two terms:

Hhf
n puq �

¸
j

MMnpruIjq �¸
j

pRnqjpuq.

As long as we consider a remainder pRnqj for each modification of the spin, the

analysis of the global process can be localized in each Sj with the associated

energy MMnpruIjq. The two sums need to be rescaled in different ways, being

the first sum a higher order term. Thus, at the second order we deal with the
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rescaled energy

Hnpuq � 1
?

2λnδ
3
2
n

�
Hnpuq �

¸
j

pRnqjpuq
�
� 1
?

2λnδ
3
2
n

¸
j

MMnpruIjq.
We transpose the problem valued in the 3d-sphere into a finite number of

problems valued in 2d-circles with functionals MMn of Modica-Mortola type,

thus generalizing the result contained in [17]. In each Sj several regimes are

possible (see Theorem 4.3.5). For n large enough, the spin system makes a

chirality transition on a scale of order λn{
?
δn. As a result, depending on the

value of limn λn{
?
δn :� l P r0,�8s different scenarios may occur. If l � �8,

chirality transitions are forbidden. If l ¡ 0, the spin system may have diffuse

and regular macroscopic (on an order one scale) chirality transitions in each Sj
whose limit energy is finite on H1pIjq (provided some boundary conditions are

taken into account). When l � 0, transitions on a mesoscopic scale are allowed.

In this case, the continuum limit energy is finite on BV pIjq and counts the

number of jumps of the chirality of the system.

4.1 Minimizers of the energy

In order to characterize the minimizers of our energy En, we define the auxiliary

functional Hn : PCλn Ñ r0,�8q as

Hnpuq :�

$'&'%
1

2
λn

¸
iPInpIq

���ui�2 � α

2
ui�1 � ui

���2 for u P PCλn ,

�8 for u P L8pI;R3qzPCλn .

If u P PCλn , since |ui| � 1 for all i P ZnpIq, thanks to the boundary condition

contained in the definition of PCλn , we may rewrite the energy En in terms of

Hn as

En � Hn � Pn � λn

�
1� α2

8



#InpIq. (4.2)

Thanks to this decomposition, we characterize the ground states of En.

Proposition 4.1.1. Let 0   α ¤ 4. Then there exists k0 � k0pn, αq ¡ 0 such

that, for kn ¥ k0, we have that

min
uPL8pI;R3q

Enpuq � �λn#InpIq
�
R2

�
1� α2

8



� pα � 1qp1�R2q

�
.

Furthermore, a minimizer un of En over L8pI;R3q takes values only in one

circle Sd, with d P t1, 2u, and satisfies

πvKd u
i
n � πvKd ui�1

n � α

4
and πvKd u

i
n � πvKd ui�2

n � α2

8
� 1, @i P InpIq.
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Proof. We start observing that there exists k0 � k0pn, αq ¡ 0 such that

Enpuq ¤ λnk0|v1 � v2|, @u P PCλn .
Assuming that kn ¥ k0, we get that En ¤ Pn on PCλn . Thus

min
uPL8pI;R3q

Enpuq � min
uPPCλn

upIq�S1 orupIq�S2

Enpuq.

We prove that

min
uPPCλn

upIq�S1 orupIq�S2

Enpuq � �λn#InpIq
�
R2

�
1� α2

8



� pα � 1qp1�R2q

�
.

Fix d P t1, 2u and consider un P PCλn such that unpIq � Sd. By geometrical

and trigonometric identities we deduce that

uin � ui�1
n � 1�R2 �R2πuin � πui�1

n ,

where πuin :� πvKd u
i
n. Thus

Enpunq �
¸

iPInpIq
λnr�απuin � πui�1

n � πuin � πui�2
n s � pα � 1qp1�R2qλn#InpIq

�: rEnpunq � pα � 1qp1�R2qλn#InpIq. (4.3)

Now we minimize rEn, following the same argument in [17]. We remark that

rEnpunq � 1

2
λn

¸
iPInpIq

���πui�2
n � α

2
πui�1

n � πuin

���2�R2

�
1� α2

8



λn#InpIq

� rHnpunq �R2

�
1� α2

8



λn#InpIq. (4.4)

Fix φ P �� π
2
, π

2

�
so that cosφ � α

4
. We may assume for simplicity of notation

that vd � en. Let

uin :� pcospφiq, sinpφiq,?1�R2q, @i P ZnpIq,
so that πuin � pcospφiq, sinpφiq, 0q. By trigonometric identities, we have that

πuin � πui�2
n � 2 cosφ � α

2
πui�1

n , @i P InpIq.

Remarking that rHnpunq � 0, we combine the previous identity with (4.4) to

get that

min
uPPCλn

upIq�S1 orupIq�S2

rEnpuq � �R2

�
1� α2

8



λn#InpIq.
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The computation of the minimum follows from (4.3).

Consider now a minimizer un P L8pI;R3q of En. For kn ¥ k0, it must hold

that un P PCλn , unpIq � Sd, for some d P t1, 2u, and

rEnpunq � R2

�
1� α2

8



λn#InpIq,

thus implying that rHnpunq � 0. It follows that

πui�1
n � 2

α

�
πuin � πui�2

n

�
, @i P InpIq.

Squaring both sides of the previous equality, we infer

πuin � πui�2
n � α2

8
� 1.

Hence

πuin � πui�1
n � 2

α
πuin � πuin � πui�2

n � 2

α

�
1� πuin � πui�2

n

� � α

4
,

which concludes the proof.

Remark 4.1.2. The case α ¡ 4 is trivial. Indeed, the ground states are all

ferromagnetic, i.e. uin � ū P S1 Y S2 for all i P ZnpIq. Denoting with E pα�4q
n

the energy of formula (4.2) for α � 4, we have that, for all u P PCλn,

Enpuq � E pα�4q
n puq � λnpα � 4q

¸
iPInpIq

ui � ui�1.

By the above proposition, the energy E pα�4q
n is minimized on ferromagnetic

states, which trivially also holds true for the second term in the above sum.

The minimal value of E is

min
uPL8pI;R3q

Enpuq � �λnpα � 1q#InpIq.

4.2 Zero order Γ-convergence of the energy En
4.2.1 An auxiliary abstract theorem

Here we cite an abstract Γ-convergence result proved in [3] that will be ap-

plied later on in this subsection. For this purpose, we introduce the following

notation. Let K � RN be a compact set and for all ξ P Z let f ξ : R2N Ñ R be

a function such that

(H1) f ξpx, yq � f�ξpy, xq, for any px, yq P R2N ;

(H2) for all ξ P Z, f ξpx, yq � �8 if px, yq R K2;
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(H3) for all ξ P Z there exists Cξ ¥ 0 such that

sup
px,yqPK2

|f ξpx, yq| ¤ Cξ and
¸
ξPZ

Cξ   �8.

For any n P N we define the functional space

DnpI;RNq : �  
u : RÑ RN : u is constant in λnpi� r0, 1qq for all i P ZnpIq

(
and the sequence of functions Fn : L8pI,RNq Ñ p�8,�8s as follows:

Fnpuq :�

$'&'%
¸
ξPZ

¸
iPRξnpIq

λnf
ξpui, ui�ξq for u P DnpI;RNq,

�8 for u P L8pI;RNqzDnpI;RNq,
where Rξ

npIq :� ti P ZnpIq : i � ξ P ZnpIqu. For any open and bounded set

A � R and for every v : ZÑ RN , we define the discrete average of v in A as

pvq1,A :� 1

#pZX Aq
¸

iPZXA
vi.

Theorem 4.2.1. Let tf ξuξPZ a family of functions that satisfies H1, H2, H3.

Then the sequence Fn converges, as n Ñ �8 with respect to the weak-star

topology of L8pI;RNq, in the sense of the Γ-convergence to

F puq :�
$&%
»
I

fhompuptqq dt for u P L8pI; copKqq,
�8 for u P L8pI;RNqzL8pI; copKqq,

where fhom : RN Ñ R is given by the following homogenization formula:

fhompzq � lim
ρÑ0

lim
kÑ�8

1

k
inf

$&%¸
ξPZ

¸
βPRξ1pp0,kqq

f ξpvpβq, vpβ � ξqq : pvq1,p0,kq P Bpz, ρq
,.-.

4.2.2 The zero-order Γ-limit

Before stating the main result of this subsection, we need to introduce some

notation. We call a collection C of subsets of an open set S an open partition

of S if and only if C does not contain empty sets and

S �
¤
CPC

C, C1 X C2 � H, @C1, C2 P C.

We observe that if u P PCλn , the interval I can be partitioned in regions where

the function u takes values only in one of the two circles. In other words, there

exist Mpuq P N and a collection of open intervals, tIdj ujPt1,...,Mpuqu, such that

tIdj ujPt1,...,Mpuqu is an open partition of I, (4.5)
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uptq P Sd, @t P Idj , @j P t1, . . . ,Mpuqu. (4.6)

These two properties imply that this partition is unique. We observe that

Mpuq � |DApuq|pIq
|v1 � v2| � 1.

The following definition will be useful throughout the section.

Definition 4.2.2. Let u P PCλn. We say that

Cnpuq � tIdj | j P t1, . . . ,Mpuquu

is the open partition associated with u if Mpuq � |DApuq|pIq
|v1�v2| � 1 and the

collection of open intervals tIdj ujPt1,...,Mpuqu satisfies (4.5) and (4.6).

In view of the study of the Γ-convergence of the energy En defined in (4.2)

at the zero order, we consider the space

D :�
!
u P L8pI; copS1q Y copS2qq :

DCnpuq finite open partition associated with u
)
. (4.7)

We observe that ApDq � BV pI; tv1, v2uq, where A is the function defined in

(4.1). The following convergence law will be used.

Definition 4.2.3 (Convergence law). Let tfnunPN � D and f P D. We say

that fn L-converges to f (we write fn
LÑ f P D) as n Ñ �8 if and only

if fn
�á f in the weak-star topology of L8pI;R3q and Apfnq Ñ Apfq in the

weak-star topology of BV pI; tv1, v2uq, as nÑ �8.

Remark 4.2.4. We observe that the convergence law introduced in the defi-

nition above is induced by the topology on D defined as the smaller topology

containing the set

tA : A is open set of weak-star topology of L8

or of the BV pI; tv1, v2uq topologyu.
Firstly, we study the Γ-convergence of the energy En. The following theo-

rem relies on a straightforward application of Theorem 4.2.1.

Theorem 4.2.5. The sequence En converges in the sense of the Γ-convergence

to the functional

Epuq :�
$&%
»
I

fhompuptqq dt if u P L8pI; copS1 Y S2qq,
�8 otherwise,
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with respect to the weak-star topology of L8pI;R3q, where fhom : copS1YS2q Ñ
R is defined as

fhompzq � lim
ρÑ0

lim
kÑ�8

1

k
inf

#
k�2̧

i�1

��αui � ui�1 � ui � ui�2
�

: puq1,p0,kq P Bpz, ρq
+
.

(4.8)

Proof. The result immediately follows applying Theorem 4.2.1 to

f ξpu, vq �

$'&'%
�α

2
u � v if |ξ| � 1,

1
2
u � v if |ξ| � 2,

0 otherwise,

extended to �8 outside K, where u, v P K :� S1 Y S2.

Remark 4.2.6. The function fhom defined in (4.8) does not depend on the

parameter λn. Therefore, in the theorem above the Γ-limit does not depend on

the choice of λn.

Remark 4.2.7. An analogous statement of Theorem 4.2.5 can be obtained

if the functional En is defined only in L8pI;Siq for some i P t1, 2u (see [17,

Theorem 3.4]). The Γ-limit has the same form and it is finite on L8pI; copSiqq.
The following theorem is the main result of this section.

Theorem 4.2.8. Assume that there exists lim
nÑ�8

λnkn �: η P p0,�8s. Then

the following Γ-convergence and compactness results hold true:

(i) if η P p0,�8q, then En converges in the sense of Γ-convergence to the

functional

Epuq �
$&%
»
I

fhompuptqq dt� η|DApuq|pIq if u P D,

�8 otherwise,

with respect to the L-convergence of Definition 4.2.3, where fhom is de-

fined in (4.8) and D is the set defined in (4.7). Moreover, if tununPN �
L8pI;R3q satisfies

sup
nPN
Enpunq   �8,

then, up to a subsequence, un
LÑ u P D;

(ii) if η � �8, then En converges in the sense of Γ-convergence to the func-

tional

Epuq :�
$&%
»
I

fhompuptqq dt if u P L8pI; copS1qq or u P L8pI; copS2qq,
�8 otherwise,
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with respect to the weak-star topology of L8pI;R3q, where fhom is defined

in (4.8). Moreover, for all tununPN � L8pI;R3q such that

sup
nPN
Enpunq   �8,

then, up to a subsequence, un
�á u for some u P L8pI; copS1qq or u P

L8pI; copS2qq.
Proof. (i) We start to prove the compactness result. Let tununPN � L8pI;R3q
such that

sup
nPN
Enpunq   H, (4.9)

for some H ¡ 0. Thus we have that tununPN � PCλn . Moreover, by the

definition of the space PCλn , we have that, for all un P PCλn , there exists

a finite open partition Cnpunq � tpIdj qn | j P t1, . . . ,Mpunquu associated with

un, where Mpunq � |DApunq|pIq
|v1�v2| � 1 P N. By (4.2) and by the definition of the

function A, we compute

Enpunq � Hnpunq � Pnpunq � λn

�
1� α2

8



#InpIq (4.10)

¥ Pnpunq � λn

�
1� α2

8



#InpIq

� knλn |DApunq| pIq � λn

�
1� α2

8



#InpIq

� knλnpMpunq � 1q|v1 � v2| � λn

�
1� α2

8



#InpIq

¥ �Cpαq � knλnpMpunq � 1q|v1 � v2|,
for some constant C � Cpαq ¡ 0, where the last inequality is obtained by

observing that λn#InpIq � λn

Y
1
λn

]
� λn Ñ 1 as n Ñ �8 and thus it is

bounded. Therefore, by (4.9) and (4.10), we obtain that

sup
nPN

Mpunq   Cpη,H, α, |v1 � v2|q.

Hence the sequence tununPN satisfies the hypotheses of the Proposition C.0.3,

and so we deduce the existence of u P D such that, up to a subsequence,

un
LÑ u.

Now we prove the liminf inequality. Let tununPN such that un
LÑ u P D as

n Ñ �8, i.e. un
�á u in L8 and Apunq Ñ Apuq in BV pI; tv1, v2uq. By the

liminf inequality of Theorem 4.2.5 we have

lim inf
nÑ�8

Enpunq ¥
»
I

fhompuptqq dt. (4.11)

On the other hand, by the lower semicontinuity of the total variation with

respect to the convergence in BV pI; tv1, v2uq (see Proposition 1.1.26) we have

lim inf
nÑ�8

Pnpunq � lim inf
nÑ�8

knλn|DApunq|pIq ¥ η|DApuq|pIq. (4.12)
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Hence, by (4.11) and (4.12), we obtain

lim inf
nÑ�8

Enpunq ¥ lim inf
nÑ�8

Enpunq � lim inf
nÑ�8

Pnpunq ¥
»
I

fhompuptqq dt� η|DApuq|.

We finally prove the limsup inequality. Let u P L8pI; copS1q Y copS2qq. We

may assume that u P D and furthermore, by a standard density argument and

the locality of the construction, we may assume that

uptq �
#
a1 if t P �0, 1

2

�
,

a2 if t P �1
2
, 1
�
,

where a1 P copS1q and a2 P copS2q. For j P t1, 2u, let tvjnunPN � L8pI;Sjq
be the recovery sequence for the constant function aj obtained by the Γ-

convergence result in Remark 4.2.7 with 2λn as the spacing of the lattice (see

Remark 4.2.6), i.e.

fhompajq � lim
nÑ�8

Enpvjnq � lim
nÑ�8

2λn

t 1
2λn

u�2¸
i�1

��αpvjnqi � pvjnqi�1 � pvjnqi � pvjnqi�2
�
.

(4.13)

We define

unptq �
#
v1
np2tq if t P �0, 1

2

�
,

v2
np2t� 1q if t P �1

2
, 1
�
,

and compute

Enpunq � 1

2

t 1
2λn

u�2¸
i�1

2λn
��αpv1

nqi � pv1
nqi�1 � pv1

nqi � pv1
nqi�2

�
� 1

2

t 1
2λn

u�2¸
i�1

2λn
��αpv2

nqi � pv2
nqi�1 � pv2

nqi � pv2
nqi�2

�
�

t 1
2λn

u¸
i�t 1

2λn
u�1

λn
��αuin � ui�1

n � uin � ui�2
n

�
. (4.14)

We observe that�������
t 1
2λn

u¸
i�t 1

2λn
u�1

λn
��αuin � ui�1

n � uin � ui�2
n

�������� ¤ Cpαqλn Ñ 0, as nÑ �8. (4.15)

By (4.13), (4.14), (4.15), we obtain

Enpunq Ñ fhompa1q � fhompa2q
2

�
»
I

fhompuptqq dt, as nÑ �8. (4.16)
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Observing that for all n P N

Apunqptq � Apuqptq �
#
v1 if t P r0, 1

2
s,

v2 if t P p1
2
, 1s,

then |DApunq|pIq � |DApuq|pIq � |v1 � v2| and

lim
nÑ�8

Pnpunq � lim
nÑ�8

λnkn|v1 � v2| � η|v1 � v2|. (4.17)

Combining (4.16) and (4.17), we deduce the limsup inequality.

(ii) Let us prove first the compactness result. Let tununPN � PCλn such that

sup
nPN
Enpunq   H,

for some constant H ¡ 0. With the same compactness argument used in the

previous case, we deduce the existence of u P D such that un
LÑ u as nÑ �8.

By the lower semicontinuity of the map

uÑ |DApuq|pIq
with respect to the L-convergence (see Definition 4.2.3), we get

0 � lim inf
nÑ�8

H

λnkn
¡ lim inf

nÑ�8
1

λnkn
rEnpunq � λnkn|DApunq|pIqs

¥ lim inf
nÑ�8

�
Cpαq
λnkn

� |DApunq|pIq


¥ |DApuq|pIq,

hence u P L8pI; copS1qq Y L8pI; copS2qq.
Let us prove the liminf inequality. Let un

�á u and suppose that

lim inf
nÑ�8

Enpunq   �8.
Up to the extraction of a subsequence, we may assume that the previous lower

limit is actually limit. By compactness, we infer that un
LÑ u P L8pI; copS1qqY

L8pI; copS2qq. Hence, by Theorem 4.2.5, we obtain

lim inf
nÑ�8

Enpunq ¥ lim inf
nÑ�8

Enpunq ¥
»
I

fhompuptqq dt.
We finally prove the limsup inequality. Let u P L8pI; copS1qq, being the case

u P L8pI; copS2qq fully analogous. The recovery sequence obtained from Re-

mark 4.2.7, tununPN � L8pI;S1q, satisfies the limsup inequality.

4.3 First and second order Γ-convergence of

the energy En
In this section we study the system when it is close to the

helimagnet/ferromagnet transition point as the number of particles diverges.

In what follows we denote αn :� 4p1 � δnq, where δn ¡ 0 and δn Ñ 0 as

nÑ �8.

Regarding the notation, in this section we denote with d a number that

can be 1 or 2. This number stands for the index of the two circles S1 and S2.
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4.3.1 First order Γ-convergence of the energy En
We define the renormalized energy and introduce a new functional whose

asymptotic behavior will better describe the spin’s magnetic anisotropy tran-

sitions. More precisely we define

Ehf
n : L8pI;R3q Ñ p�8,�8s and Hhf

n : L8pI;R3q Ñ r0,�8s
as

Ehf
n puq :�

$'&'%
λn

¸
iPInpIq

r�αnui � ui�1 � ui � ui�2s if u P PCλn ,

�8 otherwise,

Hhf
n puq :�

$'&'%
1

2
λn

¸
iPInpIq

���ui�2 � αn
2
ui�1 � ui

���2 if u P PCλn ,

�8 otherwise.

By (4.2) we observe that

Hhf
n puq � Ehf

n puq � λn

�
1� α2

n

8



#InpIq.

The functional we are interested in is

Ghf
n puq � Ehf

n puq �minEhf
n .

At this point we need to introduce a modified spin chain in order to under-

stand better the asymptotic behaviour of the renormalized energy Ghf
n . Let

u P PCλn and Cnpuq � tIdj | j P t1, . . . ,Mpuquu the open partition associated

with u, with I
d

j � rptdj q1, ptdj q2s. For simplicity of notation, henceforth we omit

to write the superscript d in the next formulas. We define the auxiliary func-

tion ruIj : Ij � rptjq1, ptjq2s Ñ Sd as

ruIsptq �
#
u|rptjq1,ptjq2qptq if t P rptjq1, ptjq2q,
wj if t � ptsq2,

(4.18)

where wj P Sd is a vector such that the following joint boundary condition is

satisfied:

u
ptjq2
λn

�1 � wj � u
ptjq1
λn � u ptjq1

λn
�1.

We split the energy Ghf
n as follows:

Ghf
n puq � Ehf

n puq�minEhf
n puq �

Mpuq¸
j�1

MMnpruIjq�Mpuq�1¸
j�1

pRnqjpuq, @u P PCλn ,
(4.19)

where

MMnpruIjq � λn
¸

iPInpIjq

�
�αnruiIj � rui�1

Ij
� ruiIj � rui�2

Ij

�
� λn

�
1� α2

n

8



#InpIjq
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is the local energy associated with the modified spin chain ruIj , and

pRnqjpuq :� �λn
�
� αnu

ptjq2
λn

�1 � u ptjq2
λn � u

ptjq2
λn

�2 � u ptjq2
λn � u

ptjq2
λn

�1 � u ptjq2
λn

�1

� u
ptjq2
λn

�2 � wj
�
� λn
Mpuq � 1

�
u

�
tMpuq

�
2

λn
�2 � u

�
tMpuq

�
2

λn � u

�
tMpuq

�
2

λn
�2 � wMpuq

�
� λn#InpIqp1�R2q

�
αn � 2� α2

n

8



,

is the remainder for each modification. Note that pRnqj consists of three ad-

dends: the first sum is related to the interactions between spins with values

in two neighboring intervals Ij and Ij�1, for j P t1, . . . ,Mpuq � 1u, the second

sum refers to the last interval IMpuq and third one is a corrective constant.

Remark 4.3.1. For all u P PCλn we have that MMnpruIjq ¥ 0 for all j P
t1, . . . , Mpuqu, since it is simple to verify that

MMnpruIjq � 1

2
λn

¸
iPInpIq

���rui�2
Ij

� αn
2
rui�1
Ij

� ruiIj ���2 .
Theorem 4.3.2. Assume that there exists lim

nÑ�8
λnkn �: η P p0,�8q and let

R :� inf

"
lim inf
nÑ�8

pRnqjpunq
λn

: Apunq BVÝÑ v11p0, 1
2
q � v21r 1

2
,1q

*
.

Then the following compactness and Γ-convergence results hold true:

(i) (Compactness) if for tununPN � L8pI;R3q there exists C ¡ 0 independent

of n such that

Ghf
n punq ¤ λnPnpunq ¤ λnC (4.20)

then, up to subsequence, Apunq Ñ v P BV pI; tv1, v2uq as nÑ �8 in the

weak-star topology of BV pI; tv1, v2uq;
(ii) (lim inf inequality) For all v P BV pI; tv1, v2uq and for all tununPN � PCλn

such that

Apunq Ñ v, as nÑ �8 in the weak-star topology of BV pI; tv1, v2uq,
and

Ghf
n punq ¤ λnPnpunq ¤ λnC, for some C ¡ 0,

then

lim inf
nÑ�8

Ghf
n punq
λn

¥ R
|Dv| pIq
|v1 � v2| ;
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(iii) (lim sup inequality) For all v P BV pI; tv1, v2uq there exists tununPN �
PCλn such that

Apunq Ñ v, as nÑ �8 in the weak-star topology of BV pI; tv1, v2uq,
and

Ghf
n punq ¤ λnPnpunq ¤ λnC, for some C ¡ 0,

satisfying

lim
nÑ�8

Ghf
n punq
λn

� R
|Dv| pIq
|v1 � v2| .

Proof. We start proving (i). Since η P p0,�8q, by the second inequality

of (4.20), we deduce that the sequence t|DApunq|pIqunPN is bounded. Ac-

cordingly the sequence tApunqunPN is bounded in the space BV pI; tv1, v2uq
(see Proposition C.0.3). Thus, up to subsequence, it converges to a function

v P BV pI; tv1, v2uq in the weak-star topology of BV pI; tv1, v2uq.
Let us prove (ii). By assumption, tDApunqpIqunPN is bounded. Let Cnpunq �

tpIdj qn | j P t1, . . . ,Mpunquu be the open partition associated with un. By Re-

mark 4.3.1 and by the definition of R we have

lim inf
nÑ�8

Ghf
n punq
λn

¥ lim inf
nÑ�8

Mpunq¸
j�1

MMnprunpIdj qnq
λn

� lim inf
nÑ�8

Mpunq�1¸
j�1

Rnpunq
λn

¥ lim inf
nÑ�8

Mpunq�1¸
j�1

Rnpunq
λn

¥ lim inf
nÑ�8

R
|DApunq|pIq
|v1 � v2| ¥ R

|DApuq|pIq
|v1 � v2| ,

where in the last step we have used that Mpunq� 1 � |DApunq|pIq
|v1�v2| and the lower

semicontinuity of total variation (see Proposition 1.1.26).

We finally prove (iii). By a standard density argument we can choose u such

that Apuq � v11p0, 1
2
q � v21r 1

2
,1q. By the definition of R and by [17, Theorem

4.2] we gain the existence of tununPN such that

pRnqjpunq
λn

Ñ R as nÑ �8, Apunq BVÝÑ Apuq as nÑ �8,

un1p0, 1
2
q P S1, un1r 1

2
,1q P S2,

MMnpun1p0, 1
2
qq

λnδ
3
2
n

,
MMnpun1r 1

2
,1qq

λnδ
3
2
n

  C.

Therefore

lim
nÑ�8

Ghf
n punq
λn

� R � R
|DApuq|pIq
|v1 � v2| .
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4.3.2 Second order Γ-convergence of the energy En as

nÑ �8

At the second order we split the global functional on the 2-dimensional sphere

in a finite number of functionals localized in circles, where we repeat the anal-

ysis lead in [17].

We need the following theorem proved in [17, Theorem 2.2], which states

that the discrete functional Fn has the same Γ-limit of the Modica-Mortola

functional.

Theorem 4.3.3. Let Fn : L1pIq Ñ r0,�8q defined as

Fnpuq �

$'&'%εn
¸
i

λn

�
ui�1 � ui

λn


2

� 1

ηn

¸
i

λn
�
1� puiq2�2

if u P CnpI;S1q,
�8 otherwise,

where εn and λn
εn

are infinitesimal, lim
nÑ�8

εn
ηn

� 1 and

CnpI;S1q :� tu : ZnpIq Ñ S
1 : u satisfies (0.16),

u is constant on λnpi� r0, 1qq, @i P ZnpIqu.
Then, with respect to the L1pIq-convergence,

Γ- lim
n
Fnpuq �

#
4
3
|Du|pIq, if u P BV pI; t�1, 1uq,
�8 otherwise.

Let w � pw1, w2, 0q, w � pw1, w2, 0q two vectors of R3, we define the func-

tion

χrw,ws :� signpw1w2 � w2w1q.

For each Si we define a convenient order parameter.

Let u P PCλn . We associate each pair rui
Idj
, rui�1

Idj
(see (4.18)) with the cor-

responding oriented angle θij P r�π, πq with vertex the center of the circle Sj
given by

θiIj :� χ
�ruiIdj � πvdpruiIdj q, rui�1

Idj
� πvdprui�1

Idj
q
�

� arccos

�
1

R
pruiIdj � πvdpruiIdj qq � prui�1

Idj
� πvdprui�1

Idj
qq


.

Furthermore, we set

wiIj :�
c

2

δn
sin

θiIj
2

and

wptq :� wiIj



4.3. First and second order Γ-convergence of the energy En 155

if t P λnti � r0, 1qu, i P
! ptdj q1

λn
, . . . ,

ptdj q2
λn

� 1
)

and j P t1, . . . ,Mpuq � 1u. Note

that we may define a map

Tn : u P PCλn ÞÑ pw,Apuqq
and denote �PCλn :� TnpPCλnq. We observe that if h � Tnpuq � Tnpvq then

u and v take values in the same Si and differ by a constant rotation so that

Hhf
n puq � Hhf

n pvq and the same holds for the functionals pRnqdj ,MMn, Pn.

Therefore, with a slight abuse of notation, we now regardHhf
n , pRnqj,MMn, Pn

as functionals defined on h P L1pI;R� tv1, v2uq:

Hhf
n phq :�

#
Hhf
n puq if h P �PCλn ,

�8 otherwise,

pRnqjphq :�
#
Rn,jpuq if h P �PCλn ,

�8 otherwise,
(4.21)

MMnph|Idj q :�
#
MMnpruIdj q if h P �PCλn ,

�8 otherwise,

Pnphq :�
#
Pnpuq if h P �PCλn ,

�8 otherwise,

for j P t1, . . . ,Mphqu, where h � T puq and Mphq :�Mpuq.
We want to study the convergence of the functional

Hnphq � 1
?

2λnδ
3
2
n

�
Hnphq �

Mphq�1¸
j�1

pRnqjphq
�
, (4.22)

for h P L1pI;R � tv1, v2uq. In order to establish the related result, we need a

notion of convergence.

Definition 4.3.4. Let thnunPN � �PCλn and h P L1pI;R � tv1, v2uq. We say

that hn Lθ-converges to h (we write hn
LθÝÑ h) if and only if the following

conditions are satisfied:

• there exist tununPN � PCλn and a positive constant C such that if Cnpunq �
tpIdj qn | j P t1, . . . ,Mpunquu is the open partition associated with un, the

following two conditions are satisfied:

– hn � Tnpunq and Pnphnq   C;

– Mpunq ÑM P N as nÑ �8;

– pIdj qn Ñ Idj in the Hausdorff sense, as n Ñ �8, for any j P
t1, . . . ,Mu (see Definition A.1.15);

• hn1pIdj qn Ñ h1Idj in L1pI;R� tvduq, a nÑ �8, for all j P t1, . . . ,Mu.
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Theorem 4.3.5. Assume that there exist lim
nÑ�8

λnkn �: η P p0,�8q and

l :� lim
nÑ�8

λn

p2δnq 1
2

P r0,�8s. Then the following statements are true:

(i) (Compactness) if for thnunPN � L1pI;R�tv1, v2uq there exists a constant

C ¡ 0 such that

Hnphnq ¤ Pnphnq ¤ C, (4.23)

then, up to a subsequence, hn
LθÝÑ h as nÑ �8, where

– if l � 0, h P BV pI; t�1, 1u � tv1, v2uq;
– if l P p0,�8q, h|Idj P H1

|per|pIdj ;R�tv1, v2uq for all j P t1, . . . ,Mphqu;
– if l � �8, h is piecewise-constant with values in R� tv1, v2u.

The space H1
|per|ppa, bq;R� tv1, v2uq is equal to 

h P H1ppa, bq;R� tv1, v2uq : |wpaq| � |wpbq| where h � pw,Apuqq( ;

(ii) (lim inf inequality)

– If l � 0, for all h � pw,Apuqq P BV pI; t�1, 1u � tv1, v2uq and for

all thnunPN � �PCλn such that

hn
LθÝÑ h P BV pI; t�1, 1u � tv1, v2uq, as nÑ �8,

and

Hnphnq ¤ Pnphnq ¤ C, (4.24)

for some C ¡ 0, then

lim inf
nÑ�8

Hnphnq ¥ 4

3
R2

Mphq¸
j�1

|Dw| pIdj q.

– If l P p0,�8q, for all h � pw,Apuqq P L1pI;R � tv1, v2uq such that

h|Idj P H1
|per|pIdj ,R � tv1, v2uq for all j P t1, . . . ,Mphqu, and for all

thnunPN � �PCλn such that

hn
LθÝÑ h, as nÑ �8,

and satisfies formula (4.24), then

lim inf
nÑ�8

Hnphnq ¥ R2

Mphq¸
j�1

�
1

l

»
Ij

pw2pxq � 1q2 dx� l

»
Ij

pw1pxqq2 dx
�
.
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– If l � �8, for all h piecewise-constant function with values in

R� tv1, v2u and for all thnunPN � �PCλn such that

hn
LθÝÑ h, as nÑ �8,

and satisfies formula (4.24), then

lim inf
nÑ�8

Hnphnq ¥ 0;

(iii) (lim sup inequality)

– If l � 0, for all h � pw,Apuqq P BV pI; t�1, 1u � tv1, v2uq there

exists thnunPN � �PCλn such that

hn
LθÝÑ h, as nÑ �8,

satisfies formula (4.24) and

lim
nÑ�8

Hnphnq � 4

3
R2

M̧

j�1

|Dw| pIjq.

– If l P p0,�8q, for all h � pw,Apuqq P L1pI;R � tv1, v2uq such that

h|Ij P H1
|per|pIj;R � tv1, v2uq for all j P t1, . . . ,Mphqu, there exists

thnunPN � �PCλn such that

hn
LθÝÑ h, as nÑ �8,

satisfies formula (4.24) and

lim
nÑ�8

Hnphnq � R2
M̧

j�1

�
1

l

»
Ij

pw2pxq � 1q2 dx� l

»
Ij

pw1pxqq2 dx
�
.

– If l � �8, for all h piecewise-constant function with values in

R� tv1, v2u there exists thnunPN � �PCλn such that

hn
LθÝÑ h, as nÑ �8,

satisfies formula (4.24) and

lim inf
nÑ�8

Hnphnq � 0.

Proof. We prove the statement only in case l � 0, being the other cases fully

analogous. We start proving (i). By formulas (4.23), (4.19) we infer

MMnphn|Inj q ¤ λnδ
3
2
nC, for all j P t1, . . . , Mphnqu and n P N.
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It is easy to see that, up to subsequences, Mphnq is independent of n P N
and that the intervals pIdj qn Ñ Ij � ptj�1, tjq in the Hausdorff sense (it may

happen that some limit intervals are empty). In the following computations

we drop for simplicity the dependence on n writing Idj in place of pIdj qn. If

M � 1, the proof can be led exactly as in [17, Theorem 4.2]. Let us assume

that M ¥ 2. By the definition of rui
nIdj

(see formula (4.18)), observing that

1� ruinIdj � rui�1
nIdj

� 2R2 sin2

�
θiIj
2



,

1� ruInIdj � rui�2
nIdj

� R2r1� cospθiIj � θi�1
Ij
qs,

M̧

j�1

#InpIdj q � #InpIq �M � 1,

we gain

?
2λnδ

3
2
nHnphnq �

M̧

j�1

λn
¸

iPInpIdj q

!
αn

�
1� ruinIdj � rui�1

nIdj

�
�
�
1� ruinIdj � rui�2

nIdj

�)

� λn

�
1� α2

n

8



#InpIq � λnp1� αnq

M̧

j�1

#InpIdj q

� R2
M̧

j�1

λn
¸

iPInpIdj q

#
2αn sin2

�
θiIj
2



�
�
1� cospθiIj � θi�1

Ij
q
�+

� λn

�
1� α2

n

8



#InpIq � λnp1� αnqp#InpIq �M � 1q

¥ R2
M̧

j�1

λn
¸

iPInpIdj q

#
2αn sin2

�
θiIj
2



�
�
1� cospθiIj � θi�1

Ij
q
�+

� λn

�
2� αn � α2

n

8



#InpIq,

where we used that M ¡ 1. Repeating the same computations shown in [17,

Theorem 4.2], we eventually obtain

M̧

j�1

MMnprunIj q (4.25)

¥ R2
M̧

j�1

¸
iPInpIdj q

λn

"
2δ2
n

�
pwinIdj q

2 � 1
�2 � p1� γnqδnpwi�1

nIdj
� winIdj

q2
*
.

If ε ¡ 0 is sufficiently small we have that Iεj :� ptj�1 � ε, tj � εq � pIdj qn, for

all n P N, then we obtain that

MMnpwn|Iεj q ¤ λnδ
3
2
nC
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and the formula (4.25) holds with Iεj in place of Idj . Therefore, by Theorem

4.3.3, twn1Iεj unPN, up to subsequence, converge in L1 to w P BV pIjq. Thus

we deduce the existence of h P BV pI; t�1, 1u � tv1, v2uq such that hn :�
pwn, Apunqq LθÝÑ h as nÑ �8.

Now we prove (ii). Let h � pw,Apuqq P BV pI; t�1, 1u � tv1, v2uq By

Definition 4.3.4 we have that, up to a subsequence, Mphnq is independent

of n and for ε ¡ 0 sufficiently small Iεj :� ptj � ε, tj�1 � εq � pIdj qn for all

j P t1, . . . ,Mphnqu and n P N, where ptj, tj�1q � Ij. By (4.19), we have

lim inf
nÑ�8

Hnphnq � lim inf
nÑ�8

M̧

j�1

MMnphn|Ij q
?

2λnδ
3
2
n

¥ 4

3
R2

M̧

j�1

|Dw| pIεj q,

where in the last step we have used the Γ-liminf inequality of Theorem 0.0.11.

Letting εÑ 0�, we obtain the liminf inequality.

We finally prove (iii). Let h P BV pI; t�1, 1u � tv1, v2uq. We can find

M ¡ 0 and an open partition of I made by the intervals C � tIjujPt1,...,Mu
such that h|Ij � pzj, vjq for some vj P tv1, v2u and zj P BV pIj; t�1, 1uq. For

all j P t1, . . . ,Mu there exists a sequence tpzjqnunPN � L1pIj;Rq (see Theorem

0.0.11), such that

lim
nÑ�8

pzjqn � zj in L1pIj;Rq and lim
nÑ�8

MMnphn|Ijq?
2λnδ

3
2
n

� 4

3
R2|Dz|pIjq,

(4.26)

where hn|Ij � ppzjqn, vjq. By (4.19) and (4.26) we gain

lim
nÑ�8

Hnphnq � lim
nÑ�8

M̧

j�1

MMnphn|Ij q
?

2λnδ
3
2
n

� 4

3
R2

M̧

j�1

|Dz| pIjq,

that is the thesis.



Chapter 5

The two-dimensional case

In this chapter we analyze the two-dimensional version of the frustrated lattice

system investigated in Chapter 4. Therefore we need to introduce proper

notation and new definitions.

Let tλnunPN � R� be an infinitesimal sequence of lattice spacings. The

energy of a given spin of the system u : i P ΩX λnZ2 Ñ S1 Y S2 is

Hnpu; Ωq : � 1

2
λ2
n

¸
pi,jqPInpΩq

� ���ui�2,j � αn
2
ui�1,j � ui,j

���2
�
���ui,j�2 � αn

2
ui,j�1 � ui,j

���2 �,
under the assumption that the functional

Pnpu; Ωq :� λnkn|DApuq|pΩq
is bounded. In the previous formulas, the frustation parameter αn of the

system is close to the helimagnet/ferromagnet transition point as the number

of particles diverges, i.e. αn   4 for any n P N and αn Ñ 4, as n Ñ �8.

Furthermore, tknu � R� is a divergent sequence and A : PCλnpS1 Y S2q Ñ
tv1, v2u is defined as

Apuptqq �
#
v1 if uptq P S1,

v2 otherwise,

where PCλnpS1 Y S2q is the space of piecewise constants functions defined in

(5.1).

Also in the two-dimensional setting we can repeat the previous construc-

tion and restrict every spin u to some open connected sets Cs that partition

Ω in such a way that u takes values only in one magnetic anisotropy circle

Si. In order to avoid more complicated notation, we do not impose boundary

conditions on BΩ and we will state the result by means of a local convergence.

While in the one-dimensional setting the partition associated with a spin

was made by intervals, which guaranty the compactness results stated, in this

160
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case the sets Cs could be very wild, as the spacing of the lattice shrinks. There-

fore, we require an additional regularity conditions for the components Cs, that

is the BV G regularity (see Definition 5.2.1). Such conditions are satisfied by

minimizing sequences, almost minimizing sequences and minimizing sequences

under volume preserving hypotheses for the domain with the same anisotropy

magnetization.

If the number of magnetic anisotropy transitions is finite, we may apply

the Γ-convergence result proved in [15] in each component Cs for the rescaled

functional

Hnpu; Ωq :� 1
?

2λnδ
3
2
n

�
Hnpu,Ωq �

¸
s

Rn,Cspuq
�
� 1
?

2λnδ
3
2
n

�¸
s

Hnpu;Csq
�
,

as it is shown in Theorem 5.3.2.

This chapter is divided in three sections. In Section 5.1 we introduce dis-

crete functions on the equi-spaced lattice on Rn and the notion of discrete

derivatives. In Section 5.2 we introduce new notation and formulate the as-

sumptions of our problem. Finally, Section 5.3 is devoted to the proof of the

main result of this chapter (Theorem 5.3.2), where we compute the energy

that the system spends for any chirality transition that the spin chain of the

system makes.

5.1 Discrete functions

In this section we denote with d a number that can be 1 or 2. This number is

the index of the two circles S1 and S2.

Given i, j P Z, we denote withQλnpi, jq :� pλni, λnjq�r0, λnq2 the half-open

square with left-bottom corner in pλni, λnjq. For a given set S, we introduce

the class of functions with values in S which are piecewise constant on the

squares of the lattice λnZ2:

PCλnpSq :� tv : R2 Ñ S : vpxq � vpλni, λnjq for x P Qλnpi, jqu. (5.1)

We identify a function v P PCλnpSq with the function defined on the points of

the lattice λnZ2 given by pi, jq ÞÑ vi,j :� vpλni, λnjq for i, j P Z. Conversely,

given values vi,j P S for i, j P Z, we define v P PCλnpSq by vpxq :� vi,j for

x P Qλnpi, jq.
Given a function v P PCλnpRq, we define the discrete partial derivatives

Bdi v, Bd2v P PCλnpRq by

Bd1vi,j :� vi�1,j � vi,j

λn
and Bd2vi,j :� vi,j�1 � vi,j

λn
, @i, j P Z,

and we denote the discrete gradient of v by ∇dv, defined as usual. Note that

the two derivatives commute. Thus we may define the second order discrete

partial derivatives Bd11v, Bd12v � Bd21v, Bd22v by iterative application of these

operators in arbitrary order. Similarly, we define higher order discrete partial

derivatives.
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5.2 Assumptions on the model

Our model involves an energy on discrete spin fields defined on square lattices

inside a given sufficiently regular domain Ω � R2. The following definition is

given in [15, Section 3] and [52].

Definition 5.2.1 (BV G domains). A set Ω � R2 is called a BV G domain

if and only if for any x P BΩ there exist a neighborhood Ux � R2, a function

ψx P W 1,8pΩq, with ∇ψx P BV pΩ;R2q, and a rigid motion Rx : R2 Ñ R2

satisfying

RxpΩX Uxq � ty � py1, y2q P R2 : y1 ¡ ψxpy2qu XRxpUxq.
We assume that the domain Ω � R2 belongs to the following class:

A0 :� tΩ � R2 : Ω is an open, bounded, simply connected, BV G domainu.
(5.2)

To define the energies in our model, we introduce the set of indices

InpΩq :� tpi, jq P Z2 : Qλnpi, jq, Qλnpi� 1, jq, Qλnpi, j � 1q � Ωu, (5.3)

for Ω P A0. Let αn :� 4p1� δnq, where tδnu � R� is an infinitesimal sequence,

and tknunPN � R� a divergent sequence. In the following we shall assume that

εn :� λn?
δn
Ñ 0 and λnkn Ñ η P p0,�8q as nÑ �8.

We consider the functionals Hn, Pn : L8pR2;S1 Y S2q � A0 Ñ r0,�8s defined

by

Hnpu; Ωq : � 1

2
λ2
n

¸
pi,jqPInpΩq

� ���ui�2,j � αn
2
ui�1,j � ui,j

���2
�
���ui,j�2 � αn

2
ui,j�1 � ui,j

���2 �,
Pnpu; Ωq :� λnkn|DApuq|pΩq,

for u P PCλnpS1 Y S2q, and extended to �8 elsewhere, where Apuq is the

function defined in (4.1).

Similarly to the one-dimensional case, we observe that if u P PCλnpS1 Y S2q,
the set Ω can be uniquely partitioned in regions where the function u takes

values only in one of the two magnetic anisotropy circles. We now make the

notation clear. There exist Mpuq P N and a collection of open connected sets,

tCd
s usPt1,...,Mpuqu, such that

tCd
s usPt1,...,Mpuqu is an open partition of Ω, (5.4)

upxq P Sd, @x P Cd
s , @s P t1, . . . ,Mpuqu. (5.5)

For the notation of open partition, we address the reader to Subsection 4.2.2.

The following definition will be useful throughout the following section.
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Definition 5.2.2. Let u P PCλnpS1 Y S2q. We say that Cnpuq � tCd
s |s P

t1, . . . ,Mpuquu is the open partition associated with u if Mpuq P N and

the collection of open connected sets, tCd
s usPt1,...,Mpuqu satisfies (5.4), (5.5). We

call Cnpuq the open BVG partition associated with u if Cd
s is also BV G,

for all s P t1, . . . ,Mpuqu.

5.3 The Γ-convergence result

In this section we prove the main result of the chapter. Following the same

idea adopted in the one-dimensional case, we split the functional Hn in two

addends:

Hnpu; Ωq �
Mpuq¸
s�1

�
Hnpu;Cd

s q �RnCds
puq

�
,

where

Rn,Cds
puq :�1

2
λ2
n

¸
pi,jqPpCdsXInpΩqqzInpCds q

� ���ui�2,j � αn
2
ui�1,j � ui,j

���2
�
���ui,j�2 � αn

2
ui,j�1 � ui,j

���2 �
is the remainder associated with the partition Cnpuq of u, which consists of the

interactions between the vectors of the spin field in different elements of Cnpuq.
We now introduce the chirality order parameter associated with a spin

field. Let u P PCλnpS1 Y S2q and Cnpuq � tCd
s |s P t1, . . . ,Mpuquu be the open

partition associated with u. For pi, jq P InpCd
s q, we define the horizontal and

vertical oriented angles between two adjacent spins by

rθi,j
Cds

:� signpui,j � ui�1,jq arccos

�
1

R

�
ui,j � πvdprui,jIdj qq� � �ui�1,j � πvdprui�1,j

Idj
q�
,

qθi,j
Cds

:� signpui,j � ui,j�1qarccos

�
1

R

�
ui,j � πvdprui,jIdj qq� � �ui,j�1 � πvdprui,j�1

Idj
q�
,

both belonging to r�π, πq. Denoting with DpΩ; tv1, v2uq the space of functions

defined in Ω with values in tv1, v2u, we define the order parameter pw, z,Apuqq P
PCλnpR2q �DpΩ; tv1, v2uq as

wi,j :�
$&%
b

2
δn

sin
rθi,j
Cds

2
if pi, jq P InpCd

s q for some s P t1, . . . ,Mpuqu,
0 otherwise,

zi,j :�
$&%
b

2
δn

sin
qθi,j
Cds

2
if pi, jq P InpCd

s q for some s P t1, . . . ,Mpuqu,
0 otherwise.

It is convenient to introduce the transformation

Tn : PCλnpS1 Y S2q Ñ PCλnpR2q �DpΩ; tv1, v2uq



5.3. The Γ-convergence result 164

given by

Tnpuq :� �
w, z,Apuqq.

With a slight abuse of notation we define the functional Hn : L1
locpR2;R2 �

tv1, v2uq � A0 Ñ r0,�8q by

Hnph; Ωq �
#
Hnpu; Ωq if Tnpuq � h for some u P PCλnpS1 Y S2q,
�8 otherwise.

Notice that Hn does not depend on the particular choice of u, since it is

rotation-invariant. The same notation can be adopted for Pn and Rn,Cds
.

We study the convergence of the rescaled functional

Hnph; Ωq :� 1
?

2λnδ
3
2
n

�
Hnph,Ωq �

Mphq¸
s�1

Rn,Cds
phq

�
� 1
?

2λnδ
3
2
n

Mphq¸
s�1

Hnph;Cd
s q,

where h � Tnpuq and Mphq :� Mpuq, for some u P PCλnpS1 Y S2q. Hence, we

introduce the functional H : L1
locpR2;R2 � tv1, v2uq � A0 Ñ r0,�8q by setting

Hph; Ωq :�

$'&'%
4

3

Mphq¸
s�1

p|D1w|pCd
s q � |D2z|pCd

s qq if h � pw, z, αq P DompH; Ωq,
�8 otherwise,

where

DompH; Ωq :�
"
pw, z, αq P L1

locpR2;R2 � tv1, v2uq :

DtCd
s usPt1,...,Mu open partition of Ω s.t.

pw|Cds , z|Cds , α|Cds q P BV pCd
s ; t�1, 1u2�tvduq, curlpw|Cds , z|Cds q � 0 in D1pCd

s ;R2q
*
,

We have denoted by D1pCd
s ;R2q the space of distributions on Cd

s and for all

T P D1pCd
s ;R2q we have

xcurlpT qh, k, ξy :� �xT k, Bhξy � xT h, Bkξy for every ξ P C8
c pCd

s q.
Definition 5.3.1 (Convergence law). Let thnunPN � L1

locpR2;R2 � tv1, v2uq.
We say that hn Lθ-converges to h P L1

locpR2;R2 � tv1, v2uq (we write hn
LθÑ h)

if the following conditions are satisfied:

• there exist tununPN � PCλnpS1 Y S2q, a positive constant C and, for any

n P N, an open BV G partition associated with un, Cnpunq � tpCd
s qn| s P

t1, . . . ,Mphnquu, such that

– hn � Tnpunq and Pnpun; Ωq   C;

– Mpunq ÑM P N as nÑ �8;
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– pCd
s qn Ñ Cd

s in the Hausdorff sense, as n Ñ �8, for any s P
t1, . . . ,Mu (see Definition A.1.15);

• hn1pCds qn Ñ h1Cds in L1
locpR2;R2 � tvduq, as nÑ �8, @s P t1, . . . ,Mu.

Now we state the main theorem of this section. Therein the hypotheses as-

sumed are satisfied by minimizing sequences, almost minimizing sequences and

minimizing sequences under volume preserving hypotheses. Thus by a stan-

dard argument of the Γ-convergence, we obtain that a minimizing sequences

converge to a minimizer of the Γ-lim functional and that the minimal values

of the functionals Hn converge to the minimal values of the functional H.

Theorem 5.3.2. Assume that Ω P A0. Then the following statements hold

true:

i) (Compactness) Let thn � TnpunqunPN � TnpPCλn � Dpv1, v2qq be a se-

quence such that

Hnphn; Ωq ¤ Pnphn; Ωq   C, (5.6)

for some constant C ¡ 0. Assume that the BV G partition associated

with un, Cnpunq � tpCd
s qn| s P t1, . . . ,Mpunquu, is such that

Mpunq ÑM P N as nÑ �8,
pCd

s qn Ñ Cd
s in the Hausdorff sense, as nÑ �8, @s P t1, . . . ,Mu.

Then there exists h P DompH,Ωq such that, up to a subsequence, hn
LθÑ h,

as nÑ �8;

ii) (Liminf inequality) Let thnunPN � L1
locpR2;R2 � tv1, v2uq and

h P L1
locpR2;R2�tv1, v2uq. Assume that Pnphn; Ωq   C for some constant

C ¡ 0 and hn
LθÑ h, as nÑ �8. Then

Hph; Ωq ¤ lim inf
nÑ�8

Hnphn; Ωq;

iii) (Limsup inequality) Let h P L1
locpR2;R2 � tv1, v2uq. Then there exists a

sequence thnunPN � L1
locpR2;R2 � tv1, v2uq such that hn

LθÑ h and

lim sup
nÑ�8

Hnphn; Ωq ¤ Hph; Ωq.

Proof. We start proving i). Let thn � pwn, zn,ApunqqunPN � L1
locpR2;R2 �

tv1, v2uq be a sequence satisfiying (5.6). Fixing ε ¡ 0 sufficiently small, we

have that for all n P N, up to a subsequence, pCd
s qε :� tx P Cd

s : distpx, BCd
s q ¡

εu � pCd
s qn and un

|pCds qε
takes values only in one circle. We infer that

1
?

2λnδ
3
2
n

M̧

s�1

Hnphn; pCd
s qεq ¤ Hnphn; Ωq   C.
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which of course implies that Hnphn; pCd
s qεq   C

?
2λnδ

3
2
n , for all s P t1, . . . ,Mu.

We are in position to apply [15, Theorem 2.1 i)] to deduce the existence of

pwpCds qε , zpCds qεq P BV ppCd
s qε; t�1, 1u2q such that, up to subsequences, pwn, znq Ñ

pwpCds qε , zpCds qεq in L1
locppCd

s qε;R2q and curlpwpCds qε , zpCds qεq � 0 in D1ppCd
s qε;R2q.

The couples pwpCds qε , zpCds qεq can be extended to 0 in Cd
s zpCd

s qε. We preliminary

observe that

pwpCds qε2 , zpCds qε2 q � pwpCds qε1 , zpCds qε1 q a.e. on pCd
s qε2 , (5.7)

for any 0   ε1   ε2. Indeed, since pCd
s qε2 � pCd

s qε1 , we have that

pwn, znq Ñ pwpCds qε1 , zpCds qε1 q in L1
locppCd

s qε2 ;R2q.
The uniqueness of the limit in the L1

loc-topology implies (5.7). We now define

the couples pwCds , zCds q : Cd
s Ñ R2 as

pwCds , zCds q :� lim
εÑ0�

pwpCds qε , zpCds qεq.

The definition is well-posed; indeed, since by (5.7),

lim
ε1Ñ0�

pwpCds qε1 , zpCds qε1 q � pwpCds q 1
n

, zpCds q 1
n

q a.e. in pCd
s q 1

n
,

for all n P N, then����"x P Cd
s : E lim

ε1Ñ0�
pwpCds qε1 pxq, zpCds qε1 pxqq

*����
�
������8¤
n�1

"
x P pCd

s q 1
n

: E lim
ε1Ñ0�

pwpCds qε1 pxq, zpCds qε1 pxqq
*����� � 0.

Furthermore we set pw, zq : Ω Ñ R2

pw, zqpxq � pwCds , zCds qpxq,
for a.e. x P Ω with x P Cd

s , for some s P t1, . . . ,Mu. Of course pw|Cds , z|Cds q �pwCds , zCds q P BV pCd
s ; t�1, 1u2q, as it is the limit of BV functions. In order to

show the L1
loc-convergence, we fix A �� Cd

s . Since distpA, BCd
s q ¡ 0, there

exists ε ¡ 0 such that A �� pCd
s qε. We obtain:∥∥pwn, znq � pwCds , zCds q

∥∥
L1pA;R2q �

∥∥pwn, znq � pwpCds qε , zpCds qεq
∥∥
L1pA;R2q ,

which vanishes as nÑ �8, up to subsequences. This leads to the convergence

pwn, znq Ñ pwCds , zCds q in L1
locpCd

s ;R2q.
Finally, we prove that curlpwCds , zCds q � 0 in D1pCd

s q. If ξ P C8
c pCd

s q, then

sptξ � pCd
s qε for some ε ¡ 0 and so@
curlpwCds , zCds q, ξ

D � �
»
pCds qε

wpCds qεB2ξ dx�
»
pCds qε

zpCds qεB1ξ dx



5.3. The Γ-convergence result 167

� @
curlpwpCds qε , zpCds qεq, ξ

D � 0.

Now we prove ii). Let thnunPN � L1
locpR2;R2 � tv1, v2uq and h P L1

locpR2;R2 �
tv1, v2uq such that Pnphn; Ωq   C and hn

LθÑ h, as n Ñ �8. Up to sub-

sequences we may assume that the lower limit in the right hand side of the

liminf inequality is actually a limit. Furthermore we may assume that it is

finite, the inequality being otherwise trivial. In particular, we have

Hnphn; Ωq   C,

with a possibly larger C. By the definition of Lθ-convergence,

hn � pwn, zn,Apunqq � Tnpunq for some un P PCλnpS1 Y S2q. We may assume,

up to subsequences, that Mphnq is independent of n and, by the Hausdorff con-

vergence, for ε ¡ 0 sufficiently small, pCd
s qε � pCd

s qn and un
|pCds qε

takes values

only on one circle, for all n P N. By the positivity of Hn, we infer that

Hnphn; Ωq ¥ 1
?

2λnδ
3
2
n

M̧

s�1

Hnphn; pCd
s qεq.

Since hn Ñ h in L1ppCd
s qε;R2 � tvduq, as nÑ �8, we are in position to apply

[15, Theorem 2.1 ii)] so that, passing to the lower limit, we get

lim inf
nÑ�8

Hnphn; Ωq ¥
M̧

s�1

lim inf
nÑ�8

Hnphn; pCd
s qεq

¥
M̧

s�1

4

3
r|D1w|ppCd

s qεq � |D2z|ppCd
s qεqs,

where h � pw, z, αq. Letting εÑ 0� we get the thesis.

Let us prove iii). Let h P L1
locpR2;R2 � tv1, v2uq. We may assume that h P

DompH; Ωq. This means that h � pw, z, αq P L1
locpR2;R2 � tv1, v2uq and the

existence of an open partition of Ω, C � tCd
s | s P t1, . . . ,Muu, such that

pw|Cds , z|Cds , α|Cds q P BV pCd
s ; t�1, 1u2�tvduq, curlpw|Cds , z|Cds q � 0 in D1pCd

s ;R2q.
Applying [15, Theorem 2.1 iii)] to any pw|Cds , z|Cds q, we get the existence of a

sequence pwnCds , znCds q P L1
locpR2;R2q such that pwnCds , znCds q Ñ pw|Cds , z|Cds q in

L1pCd
s ;R2q and

lim sup
nÑ�8

HnpwnCds , znCds , vdq ¤
4

3
p|D1w|pCd

s q � |D2z|pCd
s qq.

Defining pwn, zn, αnq : R2 Ñ R2 � tv1, v2u by

pwn, zn, αnqpxq � pwnCds pxq, znCds pxq, vdq,
if x P Ω such that x P Cd

s for some s P t1, . . . ,Mu, and arbitrarily extended

outside Ω, and summing on s P t1, . . . ,Mu the previous inequality we get the

thesis.



Appendix A

Some tools from measure theory

In this appendix we recall some classical results that we need in our manuscript,

which can be found in the books of [7], [32], [46] and [54].

A.1 Radon measures

In this section we recall the definition of Radon measures and some of their

properties.

Definition A.1.1 (Radon measure). An outer measure µ on Rn is a Radon

measure if it is

• locally finite, i.e., for every compact set K � Rn, µpKq   �8;

• Borel regular, i.e. µ is a Borel measure and regular, that is, for every

set F � Rn, there exists a Borel set E � Rn such that F � E and

µpEq � µpF q.
Radon measures are linked with bounded linear functionals via total vari-

ation measures. Indeed, as stated in Riesz’s theorem, every bounded linear

functional L defined on CcpRn;Rmq has an integral representation with re-

spect to the total variation measure associated with L. We start giving the

following definition.

Definition A.1.2 (Total variation of a linear functional). Let L be a linear

functional on CcpRn;Rmq. We define the total variation |L| of L as the set

function |L| : PpRnq Ñ r0,�8s such that, for A � Rn open,

|L|pAq � suptxL, φy : φ P CcpA;Rmq, |φ| ¤ 1u,
and, for E � Rn arbitrary,

|L|pEq � inft|L|pAq : E � A and A is openu.
Next, we state Riesz’s theorem.

168
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Theorem A.1.3 (Riesz’s theorem). If L : CcpRn;Rmq Ñ R is a bounded linear

functional, then its total variation |L| is a Radon measure on Rn and there

exists a |L|-measurable function g : Rn Ñ Rm, with |g| � 1 |L|-a.e. on Rn,

such that

xL, φy �
»
Rn
pφ � gq d|L|, @φ P CcpRn;Rmq,

that is L � g|L|. Moreover, for every open set A � Rn,

|L|pAq � sup

"»
Rn
pφ � gq d|L| : φ P CcpA;Rmq, |φ| ¤ 1

*
.

Remark A.1.4 (Total variation of a Radon measure). Radon measures can be

unambiguously identified with monotone linear functionals on CcpRnq. Hence,

the total variation |µ| of a Radon measure µ in Rn can be defined as

|µ|pAq :� sup

"»
Rn
φ � dµ : φ P CcpA;Rmq, |φ| ¤ 1

*
.

Here we introduce the operation of push-forward of a measure through a

function and we recall a useful property.

Definition A.1.5 (Push-forward of a measure). Given a function f : Rn Ñ
Rm and a measure µ on Rn, the push-forward of µ through f is the outer

measure f7µ on Rm defined by the formula

f7µpEq :� µ
�
f�1pEq�, @E � Rn.

Proposition A.1.6 (Push-forward of a Radon measure). If µ is a Radon

measure on Rn, and f : Rn Ñ Rm is continuous and proper, then f7µ is a

Radon measure on Rm, sptpf7µq � fpsptµq, and for every Borel measurable

function u : Rm Ñ r0,�8s we have»
Rm

u dpf7µq �
»
Rn
pu � fq dµ.

We recall the Radon-Nikodym theorem, a well-known result related to the

differentiation of Radon measures. It states that every Radon measure ν have

an integral representation with respect to any Radon measure µ such that ν

is absolutely continuous with respect to µ.

Definition A.1.7. Let µ and ν be two Borel measures on Rn. We say that ν

is absolutely continuous with respect to µ, written ν    µ, if and only if

µpAq � 0 implies νpAq � 0,

for any A � Rn.
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Theorem A.1.8 (Radon-Nikodym theorem). Let ν and µ be two Radon mea-

sures on Rn, with ν    µ. Then

νpAq �
»
A

Dµν dµ,

for all µ-measurable sets A � Rn, where, for any x P Rn,

Dµνpxq :�
$&% lim
rÑ0�

νpBrpxqq
µpBrpxqq if µpBrpxqq ¡ 0, @r ¡ 0,

�8 if µpBrpxqq � 0, for some r ¡ 0,

is the derivative (or the density) of ν with respect to µ.

The derivative function enjoys of the following properties.

Lemma A.1.9. Let µ and ν be two Radon measures on Rn, A � Rn and fix

α P p0,�8q. Then

i) A �
"
x P Rn : lim inf

rÑ0�

νpBrpxqq
µpBrpxqq ¤ α

*
implies νpAq ¤ αµpAq;

ii) A �
"
x P Rn : lim sup

rÑ0�

νpBrpxqq
µpBrpxqq ¥ α

*
implies νpAq ¥ αµpAq

Proposition A.1.10. Let A � Rn be an open set, and let µ be a positive

Radon measure in A, with µpAq   �8. For 0   α   n let

Eα :�
#
x P A : lim sup

ρÑ0�

µpBρpxqq
ρα

¡ 0

+
.

Then dimHpEαq ¤ α.

We quote below some density results for the Hausdorff measures.

Proposition A.1.11. If s P p0, nq and M � Rn is a Borel set with HspM X
Kq   �8 for every compact set K � Rn, then for Hs-a.e. x P RnzM ,

lim
rÑ0�

HspM XBrpxqq
ωsrs

� 0.

Proposition A.1.12. Let E � Rn. If Hs
8pEq   �8, then, for Hs-a.e. x P E,

lim sup
rÑ0�

Hs
8pE XBrpxqq

ωsrs
¥ 2�s.

We conclude this section by giving the definition of weak-star convergence

of Radon measures and its characterization.
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Definition A.1.13 (Weak-star convergence of Radon measures). Let tµhuhPN
and µ be Rm-valued Radon measures on Rn. We say that µh weak-star con-

verges to µ, and we write µh
�á µ, if and only if»

Rn
φ � dµ � lim

hÑ�8

»
Rn
φ � dµh, @φ P CcpRn;Rmq.

Proposition A.1.14. If tµhuhPN and µ are Radon measures on Rn, then the

following three statements are equivalent.

(i) µh
�á µ.

(ii) If K � Rn is compact and A � Rn is open, then

µpKq ¥ lim sup
hÑ�8

µhpKq, and µpAq ¤ lim inf
hÑ�8

µhpAq.

(iii) If K � Rn is a bounded Borel set with µpBEq � 0, then

µpEq � lim
hÑ�8

µhpEq.

Definition A.1.15 (Hausdorff convergence). Let C � Rn and a the sequence

tCnunPN of sets in Rn. We say that Hausdorff converges to C if and only

if there exists ε0 ¡ 0 such that C � pCnqε and Cn � Cε, for every ε   ε0. We

have denoted

Dε :� tx P D : distpx, BDq ¡ εu,
for some set D � Rn.

A.2 Area and Coarea formulas

In this section we recall the Area formula for surfaces, for which we need the

notion of tangential differentiability, and its application to graph of Lipschitz

functions of codimension one. We also give the Coarea formula on locally

Hn�1-rectifiable sets.

We start giving the definition of Hk-rectifiable sets.

Definition A.2.1. Given a Hk-measurable set M � Rn, we say that M

is countably Hk-rectifiable if there exist countably many Lipschitz maps

fh : Rk Ñ Rn such that

Hk

�
Mz

¤
hPN

fhpRkq


� 0;

we say that M is locally Hk-rectifiable provided HkpM X Kq   �8, for

every compact set K � Rn; finally, if HkpMq   �8, then M is simply called

Hk-rectifiable.
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For locallyHk-rectifiable sets an approximate tangent space can be defined.

Theorem A.2.2 (Approximate tangent space). If M � Rn is a locally Hk-

rectifiable set, then, for Hk-a.e. x P M , there exists a unique k-dimensional

space TxM such that, as r Ñ 0�,

pΦx,rq7pHk Mq
rk

� Hk

�
M � x

r



�á Hk TxM,

where Φx,rpyq :� y�x
r

, for y P Rn. The space TxM is called the approximate

tangent space to M at x.

Definition A.2.3. Let M � Rn be a countably Hk-rectifiable set and f : Rn Ñ
Rm a Lipschitz function. We say that f is tangentially differentiable at

x PM if the restriction of f to the affine space x� TxM is differentiable at x.

In this case, there exists a linear function ∇Mfpxq : TxM Ñ Rm such that

lim
hÑ0

fpx� hvq � fpxq
h

� ∇Mfpxqv.
The tangential Jacobian of f with respect to M at x is defined by

JMfpxq �a
detp∇Mfpxq�∇Mfpxqq,

where �∇Mfpxq is the adjoint of the map ∇Mfpxq.
We are now in position to recall the Area and Coarea formulas.

Theorem A.2.4 (Area formula for injective maps). If f : Rn Ñ Rm is an

injective Lipschitz function and M � Rn is a countably Hk-rectifiable set (m ¤
k), then

HkpMq �
»
E

JMfpxq dx.
Theorem A.2.5 (Area formula of a graph of codimension one). If u : Rn�1 Ñ
R is a Lipschitz function, then for every Lebesgue measurable set G � Rn�1,

Hn�1pΓupGqq �
»
G

a
1� |∇1upzq|2 dz.

In fact, Hn�1 Γu is a Radon measure on Rn and, for every φ P CcpRnq,»
Γu

φ dHn�1 �
»
Rn�1

φpz, upzqqa1� |∇1upzq|2 dz.

Theorem A.2.6 (Coarea formula on locallyHn�1-rectifiable sets). If M � Rn

is a locally Hn�1-rectifiable set and f : Rn Ñ R is a Lipschitz function, then»
R
Hn�2pM X tf � tuq dt �

»
M

|∇Mf | dHn�1.

In particular, if g : M Ñ r�8,�8s is a Borel function and either g ¥ 0 or

g P L1pRn,Hn�1 Mq, then»
R
dt

»
MXtf�tu

g dHn�2 �
»
M

g|∇Mf | dHn�1.
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A.3 Other useful results

We present here three well-known useful results. The first one is an obvious

consequence of Fubini’s theorem and the fundamental theorem of Calculus.

The second and the third results are well-known.

Lemma A.3.1. If φ P C1
c pRnq, then»

Rn
∇φ dx � 0.

Lemma A.3.2 (McShane’s Lemma). If E � Rn and f : E Ñ R is a Lipschitz

function, then there exists an extension g : Rn Ñ R of f in Rn with the same

Lipschitz constant.

Theorem A.3.3 (Sobolev-Poincaré’s inequality for functions vanishing on a

set of positive measure). Let Ω � Rn be a bounded connected set with Lipschitz

continuous boundary. For every u P W 1,ppΩq, p   n, taking the value zero in

a set A of positive measure, we have

‖u‖Lp� pΩq ¤ c

� |Ω|
|A|


 1
p�

‖∇u‖LppΩq ,

for some constant positive c � cpn, p,Ωq.



Appendix B

The notion of Γ-convergence

The Γ-convergence is a convegence law introduced by De Giorgi in the 1970s.

It is well-suited for the description of the asymptotic behaviour of variational

problems, which depend on some parameters. The latter ones could have a

geometric nature or derive from an approximation procedure or a discretization

argument.

No a priori assumptions on the form of minimizers are needed, so that Γ-

convergence can be applied to diversified contexts: from the study of problems

with discontinuities in computer vision as well as to the description of the

overall properties of nonlinear composites, to the formalization of the passage

from discrete systems to continuum theories, homogenization theory, phase

transitions and boundary value problems in wildly perturbed domains.

We now recall the mathematical definition of Γ-convergence.

Definition B.0.1. Let X be a metric space. We say that a sequence fj : X Ñ
R Γ-converges in X to f8 : X Ñ R if, for all x P X, we have

i) (lim inf inequality) for every sequence txjujPN � X converging to x

f8pxq ¤ lim inf
jÑ�8

fjpxjq;

ii) (lim sup inequality) there exists a sequence txjujPN � X (called “recov-

ery” sequence) converging to x such that

f8pxq ¥ lim sup
jÑ�8

fjpxjq.

The function f8 is called the Γ-limit of tfjujPN, and we write f8 � Γ-limj fj.

As it is evident in the previous definition and in Part II, the choice of the

metric on X is clearly a crucial step in problems involving Γ-limits.

Γ-convergence is designed so that it implies the convergence of “compact”

minimum problems, as stated in the following theorem.
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Theorem B.0.2. Let X be a metric space and let tfjujPN be a sequence of

equi-mildly coercive functions on X, i.e. there exists a non-empty compact set

K � X such that infX fj � infK fj, for all j P N. Let f8 :� Γ-limj fj; then

f8 admits minimum and

min
X

f8 � lim
jÑ�8

inf
X
fj.

Moreover, if txjujPN � X is a precompact sequence such that lim
jÑ�8

fjpxjq �
lim
jÑ�8

inf
X
fj, then every limit of a subsequence of txjujPN is a minimum point

of f8.

In Part II we employ the notion of Γ-convergence (with respect different

topologies) in the study of the asymptotic behaviour of a functional deriving

from a discrete system.



Appendix C

Some properties of L8 functions

with values in a compact set

In this appendix we recall some classical properties of the Lebesgue space

L8pI;Kq, where K � RN is a compact set.

Proposition C.0.1. Let K � RN be a compact set and let tfnunPN � L8pI;Kq.
Then, up to subsequences, fn

�á f P L8pI; copKqq as n Ñ �8 in the weak-

star topology of L8pI;RNq. Moreover, for all u P L8pI; copKqq, there exists

a sequence tununPN � L8pI;Kq of piecewise functions such that un
�á u as

nÑ �8.

Proof. Since the set K is bounded then, up to a subsequence, there exists

f P L8pI;RNq such that fn
�á f as nÑ �8. We now prove that fptq P copKq

for almost every t P p0, 1q. For every ξ R copKq there exist an affine function

hξ : RN Ñ R and α   0 such that

hξpξq ¡ 0 ¡ α ¡ hξpxq, @x P copKq.
By the weak-star convergence of tfnunPN we have that for any measurable set

A � p0, 1q »
A

hξpfptqqdt � lim
nÑ�8

»
A

hξpfnptqqdt ¤ |A|α   0.

Hence by the arbitrariness of A we obtain

hξpfptqq   0, for a.e. t P p0, 1q. (C.1)

Recalling that

copKq �
£
jPN

 
y P RN : hξjpyq   0, ξj P QNzcopKq( ,

by formula (C.1) we obtain

fptq P copKq, for a.e. t P p0, 1q.
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Now we can prove the second statement of the proposition. By a standard

density argument, it is enough to prove the claim for u � a1J , where J is an

open interval and a P copKq. We define the following function:

hptq : �
#
a1 if t P p0, λq,
a2 if t P rλ, 1q,

where a � λa1 � p1 � λqa2 with a1, a2 P K and for some λ P r0, 1s. Then the

sequence unptq :� hpntq converges to u in the weak-star topology of L8 by

Riemann-Lebesgue’s lemma.

Corollary C.0.2. Let K � RN be a compact set. The closure of the set

L8pI;Kq with respect to the weak-star topology of L8pI;RNq is the set

L8pI; copKqq.
Proof. Since the space L1pI;RNq is separable, every bounded subset of

L8pI;RNq is metrizable with respect to the weak-star topology of L8pI;RNq.
Hence the set L8pI;Kq is metrizable. Therefore, by the above proposition, we

have that the set L8pI; copKqq is the weak-star closure of the set L8pI;Kq.
Proposition C.0.3. Let K1, K2 � RN be two compact sets and let tfnunPN �
L8pI;K1 YK2q be such that for all n P N exist Mpnq P N and 0 � t

pnq
1   � � �  

t
pnq
Mpnq � 1 for which

fnptq P Kj, for some j P t1, 2u and a.e. t P ptpnqi , t
pnq
i�1q,

for all i P t1, . . . ,Mpnq � 1u. Finally we suppose that

sup
nPN

Mpnq   �8. (C.2)

Then, up to subsequences, fn
�á f in the weak-star topology of L8pI;RNq and

f P L8pI; copK1q Y copK2qq. Moreover if copK1q X copK2q � H, there exist

M P N and 0 � t1   � � �   tM � 1 such that

fptq P copKjq, for some j P t1, 2u and a.e. t P pti, ti�1q,
for all i P t1, . . . ,Mu,
Proof. By Proposition C.0.1, we have, up to a subsequence, that fn

�á f P
L8pI; copK1 Y K2qq. Accordingly, by assumption (C.2), we can find M P N,

independent of n P N, such that for every n P N there exist 0 � t
pnq
1   � � �  

t
pnq
M � 1 for which fnptq P Kj for some j P t1, 2u and a.e. t P ptpnqi , t

pnq
i�1q, for all

i P t1, . . . ,M � 1u. Up to subsequence, we can calculate

lim
nÑ�8

t
pnq
i � ti, @i P t1, � � � ,Mu,
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so that 0 � t1   � � �   tM � 1. Let us fix i P t1, � � � ,M � 1u. For all ε ¡ 0

there exists n0 P N such that we have

pti � ε, ti�1 � εq � ptpnqi , t
pnq
i�1q @n ¥ n0.

We define the following two sets:

A1 � tn ¥ n0 : fnptq P K1 for a.e. t P pti � ε, ti�1 � εqu ,
A2 � tn ¥ n0 : fnptq P K2 for a.e. t P pti � ε, ti�1 � εqu .

One of the following three alternatives may occur:

1. #A1 � 8, #A2   8;

2. #A1   8, #A2 � 8;

3. #A1 � 8, #A2 � 8.

In the first case we have that fn P L8ppti � ε, ti�1 � εq;K1q for all n ¥ n0,

up to a finite number of indices of the sequence. Thus, by Proposition C.0.1

fn
�á f P L8ppti�ε, ti�1�εq; copK1qq and hence, by the arbitrariness of ε ¡ 0,

we obtain f P L8ppti, ti�1q; copK1qq.
The second case is fully analogous to the first case. In the third case we can

find two subsequences tnp1qk ukPN and tnp2qk ukPN such that f
n
p1q
k
P L8ppti�ε, ti�1�

εq;K1q and f
n
p2q
k
P L8ppti�ε, ti�1�εq;K2q for all k P N. By Proposition C.0.1,

there exist f1 P L8ppti�ε, ti�1�εq; copK1qq and f2 P L8ppti�ε, ti�1�εq; copK2qq
such that f

n
p1q
k

�á f1 and f
n
p2q
k

�á f2. One the other hand, we recall that

fn
�á f P L8pI; copK1YK2qq. Thus, by the uniqueness of the limit in the weak-

star topology, we have f1ptq � f2ptq � fptq for almost every t P pti�ε, ti�1�εq
and so f P L8ppti � ε, ti�1 � εq; copK1q X copK2qq. Hence, by the arbitrariness

of ε ¡ 0, we have f P L8ppti, ti�1q; copK1q X copK2qq.
If we repeat the above argument for all i P t1, � � � ,Mu we obtain the thesis.

If copK1qXcopK2q � H, the case #A1 � #A2 � 8 cannot occur and therefore

we obtain the last claim of the statement.



List of Symbols

N set of all positive natural numbers

Z set of all integer numbers

R set of all real numbers

Rn euclidean n-dimensional space

PpEq power set of the set E

copEq convex hull of the set E � Rn

S
n�1 unit sphere of Rn

txu integer part of x P R
x
Â

y the tensor product between x, y P Rn

x � y inner euclidean product between the vectors x, y P Rn

|x| euclidean norm of x P Rn;

Ex,r blow-up E�x
r

of the set E � Rn of centre x P Rn and

radius r ¡ 0

IεpEq tubular neighborhood of E � Rn of half-lenght ε ¡ 0

A �� B the closure of the set A � Rn is contained in the set

B � Rn

Brpxq open ball of Rn with centre x P Rn and radius r ¡ 0

Br open ball of Rn with centre 0 and radius r ¡ 0

Crpx, νq open cylinder of Rn with centre x P Rn, radius and half-

height r ¡ 0 and oriented in the direction ν P Sn�1

Crpxq open cylinder of Rn with centre x P Rn, radius and

half-height r ¡ 0, oriented in the direction en
Cr open cylinder of Rn with centre 0, radius and half-

height r ¡ 0, oriented in the direction en
Krpxq open cylinder of Rn with centre x P Rn, radius r ¡ 0,

half-height 2 and oriented in the direction en
Kr open cylinder of Rn with radius r ¡ 0, half-height 2

and oriented in the direction en
|E| Lebesgue measure of the set E � Rn

ωn Lebesgue measure of B1

Eptq set of points of density t P r0, 1s of E � Rn

HspEq s-dimensional Hausdorff measure of the set E � Rn

dimHpEq Hausdorff dimension of the set E � Rn
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#E cardinality of the set E

|µ| total variation measure associated with µ

sptµ support of the measure µ

µ E restriction of the measure µ to the set E � Rn

µ    ν the measure µ is absolutely continuous with respect the

measure ν

µh
�á µ the sequence of measures tµhuhPN weak-star converges

to the measure µ

pvw the projection of the vector w P Rn on the vector v P Rn

qw the projection of the vector w P Rn on the vector en
pvKw the rojection of the vector w P Rn the orthogonal com-

plement of the vector v P Rn

pw the projection of the vector w P Rn on the orthogonal

complement of the vector en
u� the positive part of the function u

sptf the support of the function f

1E the characteristic function of the set E � Rn

ux,r the mean value of u in the ball Brpxq, i.e. �
³
Brpxq upzq dz

ur the mean value of u in the ball Br

LppΩq the space of Lebesgue measurable functions f in the

open set Ω � Rn, with p P r1,�8s
W 1,ppΩq the space of Sobolev functions in the open set Ω � Rn

W 1,p
0 pΩq the space of Sobolev functions W 1,ppΩq with zero trace

on Ω

H1pΩq the space of Sobolev functions W 1,2pΩq
H1

0 pΩq the space of Sobolev functions W 1,2
0 pΩq

CpΩq the space of continuous functions in the open set Ω �
Rn

CkpΩq the space of continuously k-differentiable functions in

the open set Ω � Rn

CαpΩq the space of Hölder continuous functions with Hölder

exponent α P r0, 1q in the open set Ω � Rn

oscpf ; Ωq oscillation of the function f in the open set Ω

C0,1pΩq the space of Lipschitz functions in the open set Ω � Rn,

with k P N
BV pΩq the space of BV functions in Ω

D1pΩq the space of distributions on the open set Ω � Rn

TxM the approximate tangent space to M at the point x P
Rn

‖f‖LppΩq the Lp norm of the function f P LppΩq
rf sα the Hölder continuous seminorm of f P CαpΩq
xL, fy dual scalar product between the functional L and the

element f



List of Symbols 181

|L| total variation measure of the linear functional

L : CcpRn;Rnq
Ñ strong convergence of functions or points

Eh Ñ E the sequence of functions t1EhuhPN of Rn conveges to

1E

fh á f the sequence of functions tfhuhPN weakly converges to

the function f

fh
�á f the sequence of functions tfhuhPN weakly-star converges

to the function f

Γf pGq the graph of the function f : Ω Ñ R lying on G � Ω

Γf the set Γf pΩq
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tions, 65. Birkhäuser Boston Inc., Boston, MA, 2005.

[13] M. Carozza, I. Fonseca and A. Passarelli Di Napoli, Regularity results for

an optimal design problem with a volume constraint, ESAIM: COCV, 20

no. 2 (2014), 460-487.

[14] M. Carozza, I. Fonseca and A. Passarelli Di Napoli, Regularity results

for an optimal design problem with quasiconvex bulk energies, Calc. Var.

Partial Differential Equations 57, 68 (2018).

[15] M. Cicalese, M. Forster and G. Orlando, Variational analysis of a two-

dimensional frustrated spin system: emergence and rigidity of chirality

transitions, SIAM J. Math. Anal. 51(6) (2019), 4848-4893.

[16] M. Cicalese, G. Orlando and M. Ruf, From the N -clock model to the

XY model: emergence of concentration effects in the variational analysis,

preprint (2019).

[17] M. Cicalese, F. Solombrino, Frustrated ferromagnetic spin chains: a vari-

ational approach to chirality transitions, J. Nonlinear Sci. 25 (2015),

291-313.

[18] E. De Giorgi, Una estensione del teorema di Bernstein, Annali Della

Scuola Normale Superiore Di Pisa-classe Di Scienze 19 (1965), 79-85.

[19] E. De Giorgi, M. Carriero and A. Leaci, Existence theorem for a minimum

problem with free discontinuity set. Arch. Ration. Mech. Anal. 108 (1989),

195-218.

[20] C. De Lellis, M. Focardi and B. Ruffini, A note on the Hausdorff dimension

of the singular set for minimizers of the Mumford–Shah energy, Adv. Calc.

Var. 7 no. 5 (2014), 539-545.

[21] G. De Philippis and A. Figalli, A note on the dimension of the singular

set in free interface problems, Differ. Integral Equ. 28 (2015), 523-536.

[22] G. De Philippis and A. Figalli, Higher integrability for minimizers of the

Mumford-Shah functional, Arch. Ration. Mech. Anal. 213, no. 2 (2014),

491–502.

[23] G. De Philippis, J. Hirsch and G. Vescovo, Regularity of

minimizers for a model of charged droplets, preprint (2019)

https://arxiv.org/abs/1901.02546, accepted paper: Ann. Inst. H.
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