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Abstract

Space-time is curved by the presence of massive bodies and this curvature influences the motion

of the bodies themselves: this leads to a geometry in constant evolution. One of the consequences is

that even light, supposed to be massless, bends its trajectory while passing close to a massive body.

The study of light bending started in the XVIII century and a lot of progress was done so far.

Gravitational lensing is an important tool in astrophysics and in cosmology widely used to study

both populations of compact objects (including exoplanets, black holes and other stellar remnants),

and extended objects, such as galaxies, clusters of galaxies and large-scale structures. Since most of

the mysteries of our Universe do not show up in observations based on electromagnetic interactions,

gravitational lensing is more and more employed to study the dark side of the Universe, including

dark matter, dark energy, and any kind of exotic matter (such as wormholes) conjectured by theorists.

In the introduction in Chapter 1 we run across the history of gravitational lensing through the

explanation of the lens equation, the magnification of images, the description of critical curves and

caustics, the binary lenses in the standard theory. In Chapter 2 we focus on gravitational lensing

by objects with 1/rn potential giving a complete atlas of the critical curves and caustics in mixed

binary systems such as pairs of galaxies with different halos, or cases in which one object is made up

of exotic matter and the other one is a normal star or in the case of wormholes when they appear in

non-isolated systems.

After the amazing discoveries by the GRAVITY collaboration in the last few years on the star

S2 orbiting the black hole Sgr A* in the center of the Milky Way, we present in Chapter 3 a detailed

investigation of the impact of gravitational lensing on the reconstruction of stellar orbits around this

massive black hole.

Finally, in Chapter 4 we draw the conclusions of this thesis.
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CHAPTER 1

INTRODUCTION

1.1 History of Gravitational Lensing

Historically scientists started studying the bending of light with Newton in 1704 with the

treatise Opticks. In 1784, Henry Cavendish calculated the bending of light due to Newtonian gravity,

without publishing the result and its proof was brought to surface only in the 1900s. In 1801 Johann

von Soldner calculated the bending of light as it passes close to a massive object, by using Newton’s

theory of light as a stream of massive corpuscles (photons) but neglecting their mass in the calculation,

and he found out that the deflection angle is 2GM/(c2u) where G is Newton’s gravitational constant,

c is the speed of light, M is the mass of the massive object and u is the impact parameter. This

solution was very close to Cavendish’s. In 1802, Thomas Young’s interference experiment showed

that light must behave as a wave. Scientists then focused on wave optics, forgetting about the

interaction of light with gravity.

If we consider a ray of light passing close to a massive object of mass M , the deflection angle

is given by

α̂ =
4GM

c2u
(1.1)

as shown in Fig. 1.1.

7



1. Introduction

Figure 1.1: Deflection of light by a massive compact object, credits: Chiara Melchiorre.

Einstein deduced the bending of light in 1913, two years before his theory was completed [1], and

the British astronomer Arthur Eddington decided to exploit this intuition experimentally. On May

29th 1919 during a solar eclipse in Principe Islands he showed that stars moved from their position

by the amount precisely predicted by general relativity. This great result was put in evidence by the

main newspapers of that time, such as Cosmic Time that titled "Sun’s gravity bends starlight", see

Fig. 1.2, underlining the triumph of Einstein’s theory. This was the first observation of gravitational

lensing [2].

Figure 1.2: The 1919 Edition of Cosmic Times. Image Credit: NASA.
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1. Introduction

1.2 The Lens Equation

The Einstein’s field equations are [3]:

Gαβ =
8πG

c4
Tαβ (1.2)

where Tαβ is the stress-energy tensor and Gαβ is the Einstein tensor. In the Newtonian limit, these

equations reduce to the Poisson’s equation

∇2φ = 4πGρ (1.3)

where φ is the Newtonian potential, ρ is the matter density and ∇2 is the Laplace operator. The

stress-energy tensor satisfies the conservation law Tαβ;β = 0, so Gαβ;β = 0.

The Schwarzschild metric which describes the external gravitational field of a non rotating

spherically symmetric body is

ds2 =

(
1− 2GM

rc2

)
c2dt2 −

(
1− 2GM

rc2

)−1

dr2 − r2dθ2 − r2 sin2 θϕ2 (1.4)

where θ and ϕ are the polar coordinates, t is the coordinate time and r is the radial coordinate. This

metric is a first approximation for any kind of gravitational lens and we refer to a point-lens because

we do not have any information about the physical size of the body generating the field as long as

light rays pass outside the mass distribution.

The Lagrangian of a free particle in the gravitational field is [3]

L =
1

2
gαβẋ

αẋβ (1.5)

where gαβ is the metric tensor, ẋα and ẋβ are the four-velocities and the action is given by

S =

∫
L(xα, ẋα)dλ (1.6)

with λ the affine parameter which satisfies λ = τ
m

for a massive particle m and being τ the proper

time. By varying the action with respect to the coordinates, and by setting the variation equal to

zero we obtain the Euler-Lagrange equations:

d

dλ

(
∂L
∂ẋα

)
− ∂L
∂xα

= 0 (1.7)

with xα = (t, r, θ, ϕ).

The particle moves along a geodesic in the spacetime and the geodesic equations come from

the Lagrangian in the Schwarzschild metric [3]

L =
1

2

[(
1− 2GM

rc2

)
c2ṫ2 −

(
1− 2GM

rc2

)−1

ṙ2 − r2θ̇2 − r2 sin2 θϕ̇2

]
(1.8)
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1. Introduction

where the dot derivatives stand for d
dλ

. We get from Eq.(1.8) the equations for ṫ, ϕ̇ and θ̇

d

dλ

[(
1− 2GM

rc2

)
ṫ

]
= 0. (1.9)

From this last one we find

ṫ =
E

c2
(
1− 2GM

rc2

) . (1.10)

where E is the particle energy per unit mass. At the same way, from Eq.(1.8), we get

d

dλ
(r2 sin2 θ ϕ̇) = 0 (1.11)

and from this one we find

ϕ̇ =
L

r2 sin2 θ
. (1.12)

where L is the particle angular momentum per unit mass. For θ̇ we get

d

dλ
(r2θ̇) = r2 sin θ cos θϕ̇2. (1.13)

The initial conditions are

θ = π
2

θ̇ = 0
(1.14)

if we let the particle move on the equatorial plane and these conditions identify a unique solution

and θ will be π
2

for all λ: the particle will remain in the equatorial plane. In general relativity orbits

are planar as in the Newtonian case. With θ = π
2

we get

ϕ̇ =
L

r2
. (1.15)

L and E are constants of motion which correspond to the ignorable coordinates ϕ and t in Eq.(1.8).

To get ṙ we use the condition

gαβẋ
αẋβ = 1 (1.16)

and, for a massless particle (i.e. a photon, when m = 0), we get

ṙ = ±

√
E2

c2
−
(
1− 2GM

c2r

)(
1 +

L2

r2

)
(1.17)

where the negative solution is for the photon approaching the lens, the positive solution is for the

photon moving away from the lens.

The deflection angle α̂ is the angle between the incoming trajectory of the photon and the

outgoing one. If the photon comes from the direction at azimut ϕi and approaches the origin at a

10



1. Introduction

minimum radial coordinate r0 when λ = 0 and then escapes in the direction ϕf , the deflection angle

is

α̂ = ϕf − ϕi − π = −π +

∫ ϕf

ϕi

dϕ =

−π +

∫ 0

−∞

dϕ

dλ
dλ+

∫ +∞

0

dϕ

dλ
dλ =

−π +

∫ r0

+∞

dϕ

dλ

dλ

dr
dr +

∫ +∞

r0

dϕ

dλ

dλ

dr
dr

(1.18)

By replacing Eq. (1.15) and Eq. (1.17) in Eq. (1.18), by taking care of the correct signs in the

approach and escape integrals respectively and by swapping the extrema of the approach integral,

we obtain

α̂ = −π + 2

∫ +∞

r0

dr

r

√
r2

r20

(
1− 2GM

c2r0

)
−
(
1− 2GM

c2r

) (1.19)

where r0 is the closest approach distance of the null geodesic on which the photon is travelling. It is

related to the impact parameter u of the asymptotic trajectory at infinity as

u =
r0√

1− 2GM
c2r0

. (1.20)

Eq.(1.19) is an elliptic integral but for the majority of physically interesting cases, we can make an

expansion for weak fields, and at first order in M we get the deflection angle as in Eq. (1.1).

In gravitational lensing we have two regimes, strong and weak lensing, depending on the

alignment of the lens and source as illustrated in Fig. 1.3.

Figure 1.3: Figure a): Weak lensing; Figure b): Strong lensing. Credits: Chiara Melchiorre.

We have weak lensing when the lens is far from the line of sight to the source and we have

small magnifications, mild distortions of the images while we have strong lensing when the line of

sight from the observer to source is very close to the lens, in this case we have high magnifications,

strong distortions, multiple images, arcs and rings in the lens plane.
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1. Introduction

The gravitational lens configuration scheme is shown in Fig. 1.4

Figure 1.4: Gravitational lens scheme. Credits: Valerio Bozza.

and the lens equation is given by the geometric relation between the source position and the

position of the images for a given distribution of mass acting as lens. If we consider a point-lens

(i.e. a lens with no physical size of the body generating the field), an observer O and a source S, we

call optical axis the line OL, the photons move on the plane defined by O, L (the lens) and S and,

by approximating all tangents with their arguments, from the relation AS = AB − BS we get the

relation DOSβ = DOSθ −DLSα̂ and the lens equation becomes [4]

β = θ − DLS

DOS

α̂ (1.21)

where DLS is the distance between the lens and the source, DOS is the distance between the observer

and the source, DOL is the distance between the observer and the lens, β is the source position, θ is

the angle where the observer sees the image and α̂ is the deflection angle as given in Eq.(1.1). If we

rewrite Eq.(1.1) as α̂ = 4GM
DOLθ

, the lens equation becomes

β = θ − θ2E
θ

(1.22)

where

θE =

√
4GM

c2
DLS

DOLDOS

(1.23)

is the Einstein angle. If we solve Eq. (1.22) for a generic source β we find the images position

θ± =
β ±

√
β2 + 4θ2E
2

(1.24)

where θ+ is the image on the same side of the source and θ− the one on the other side. For θ >> θE

we have θ+ → β and θ− → 0; for θ << θE we have θ± → ±θE, i.e. the two images form at the same

angular distance from the lens and merge together to form a continuous ring (the Einstein ring).
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1. Introduction

If an extended object acts as a lens we can rewrite the lens equation in a vectorial form. As the

extension of the lens in the direction of the optical axis is usually much smaller than the distances

between observer and lens and between lens and source, we can assume the lens as a thin lens in

comparison with the whole light path. We replace the mass distribution of the lens with the projected

surface mass distribution on the lens plane. We define the surface mass density as [4]

Σ(ξ⃗) =

∫
dzρ(ξ⃗, z) (1.25)

which corresponds to the projection of the mass distribution ρ on a plane passing through its center

and orthogonal to the light ray direction where ξ⃗ is the two dimensional vector indicating the positions

in the lens plane and z is the coordinate in the orthogonal direction. The gravitational effect of the

lens can be calculated by integrating over the surface elements d2ξ, with the surface mass density Σ

in the lens plane using Eq. (1.1), so we can rewrite the deflection angle at a position ξ⃗ as

α⃗(ξ⃗) =
4G

c2

∫
(ξ⃗ − ξ⃗′)Σ(ξ⃗′)

|ξ⃗ − ξ⃗′|
d2ξ⃗′ (1.26)

The plane parallel to the lens plane at the distance of the source from the observer is called the

source plane and for small angles we have the relation β⃗DOS = θ⃗DOS − ˆ⃗αDLS where θ⃗ = ξ⃗/DOL and

α⃗ = DLS

DOS

⃗̂α, so we rewrite the lens equation as

β⃗ = θ⃗ − α⃗. (1.27)

The rescaled projected gravitational potential is given by

Ψ ≡ 2

c2
DLS

DOSDOL

ψ (1.28)

where

ψ(ξ⃗) = 2G

∫
d2ξ⃗′Σ(ξ⃗′) ln |ξ⃗ − ξ⃗′| (1.29)

is the projected potential and by the use of Eq. (1.26) we get

⃗̂α =
2

c2
∇⃗ξψ(ξ⃗) (1.30)

and then we obtain the following relation

α⃗ = ∇⃗θΨ (1.31)

and finally the lens equation becomes
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1. Introduction

β⃗ = θ⃗ − ∇⃗θΨ(θ⃗). (1.32)

which is a non-linear equation in θ⃗ which means that for some source positions β⃗ we could have

multiple solutions of the lens equations instead of one. When we have the formation of multiple

images we are in the strong lensing regime.

1.3 Magnification

The gravitational lensing brings to the deformation and to the shift of the images and it affects

the flux of the sources which experiences the lensing but it also preserves surface brightness and this

is due to Liouville’s theorem.

The surface brightness is given by

I(ν) =
dE

dtdAdΩdν
(1.33)

and it is defined as the flux of energy E of a certain frequency ν, crossing a unit area A perpendicular

to the direction of propagation, per unit time, per unit solid angle Ω and per unit frequency interval.

The flux received from a source is the product of its surface brightness and the solid angle it

subtends. The deflection of light changes the shape and the solid angle that the source subtends on

the sky, this leads to a magnification of the source luminosity by the gravitational lensing which is

given by [4]

µ =
dΩ

dΩ0

(1.34)

where dΩ is the observed solid angle and dΩ0 is the corresponding solid angle in the absence of

lensing.

Generally it is not possible to measure the flux from the source and so it is not possible to know

the magnification but it is possible to measure the variation of the total flux of the images. If we

consider an extended lensing mass distribution with no axis of symmetry, the lens equation written

in Eq. (1.27) can be seen as a two-dimensional mapping between the positions of the images θ⃗ and

the actual source positions in the sky β⃗. We define the Jacobian of the lens mapping by

J = det
∂β⃗

∂θ⃗
(1.35)

and the relation

dΩ = J−1dΩ0 (1.36)
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1. Introduction

relates the differential element of solid angle in the image plane dΩ = dθ⃗1∧dθ⃗2 with the corresponding

element of solid angle in the source plane dΩ0 = dβ⃗1 ∧ dβ⃗2. The magnification is given by

µ = J−1. (1.37)

Starting from Eq.(1.32) we can write the Jacobian as

Jij ≡
∂βi
∂θi

= δij −
∂2Ψ

∂θi∂θj
(1.38)

where δij is the Kronecker delta and ∂2Ψ
∂θi∂θj

is the Hessian of the rescaled projected gravitational

potential Ψ seen in Eq.(1.28).

The relation between the projected gravitational potential and the surface mass density

distribution is given by the Poisson equation

∇2
ξψ(ξ⃗) = 4πGΣ(ξ⃗) (1.39)

and the trace of the Hessian of the rescaled projected gravitational potential is

Tr

(
∂2Ψ

∂θi∂θj

)
= ∇2

ξψ = 2
Σ(θ⃗)

Σcrit

≡ 2κ(θ⃗) (1.40)

where

Σcrit =
c2

4πG

DOS

DOLDLS

(1.41)

is the critical surface density and

κ(θ⃗) ≡ Σ(θ⃗)

Σcrit

(1.42)

is the convergence which is a parameter that changes the size of the image of a source without

modifying its shape. Now we can rewrite the mapping matrix as

T =

1− κ− γ1 −γ2
−γ2 1− κ+ γ1

 (1.43)

where

γ1 =
1

2

(
∂2Ψ

∂θ21
− ∂2Ψ

∂θ22

)
(1.44)

γ2 =

(
∂2Ψ

∂θ1∂θ2
=

∂2Ψ

∂θ2∂θ1

)
(1.45)

and the combination of γ1 and γ2 is the shear
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γ =
√
γ21 + γ22 (1.46)

which is a parameter responsible for the distortions in the image shape.

If we calculate the trace and the determinant of T

TrT = 2(1− κ) (1.47)

detT = (1− κ)2 − γ2 (1.48)

from which we can get the eigenvalues of the mapping matrix: 1− κ± γ which say that the image is

stretched by a factor 1− κ− γ in one direction and by a factor 1− κ + γ in the other direction. If

one eigenvalue has a negative value (negative partial parity), the image is inverted in that direction,

if both eigenvalues are negative, the total parity of the image is positive and it appears rotated by

180◦, if one eigenvalue has a positive value it has positive partial parity and if both images have

positive eigenvalues the magnification is greater than one.

A sufficient, but not necessary condition to have the formation of multiple images is given by

Σ(θ⃗) > Σcrit (1.49)

which means κ(θ⃗) > 1, but is also sufficient to have κ > 1− γ.

For a circularly symmetric system the radial magnification is given by

µr =

(
∂β

∂θ

)−1

(1.50)

while the tangential magnification is given by

µt =
θ

β
(1.51)

and the total magnification is

µ = µrµt. (1.52)

1.4 Critical Curves and Caustics

The sign of the Jacobian determinant defines the regions where we can find the images. The

critical points on the lens plane where the Jacobian is equal to zero are the critical points of the lens

map. The corresponding points on the source plane, found by applying the lens map on the critical
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points are the caustic points. When the source crosses a caustic, a degenerate image is formed on

the corresponding critical point and therefore creation or destruction of images can happen. After

the crossing, all images are again ordinary, but according to the theorem on the number of images,

it must always change by two units.

A critical point is a singularity in the lens map which means that it is not possible to invert the

map in that point. J = 0 is the condition which defines a critical point and where one eigenvalues

vanishes (i.e., TrJ ̸= 0 and ∇⃗J ̸= 0): these points are the cuspoids. If we define a tangent vector

T⃗ to the critical curve in the critical point, JT⃗ is tangent to the corresponding caustic. We can

distinguish two cases:

• fold: when a critical point is a cuspoid with JT⃗ ̸= 0;

• cusp: when a critical point is a cuspoid with JT⃗ = 0 and (T⃗ · ∇⃗)JT⃗ ̸= 0;

folds and cusps are the only stable singularities.

About the unstable singularities it is necessary to use the Hessian of the Jacobian determinant

∆, so we can distinguish:

• umbilics: when J = 0, TrJ = 0 and ∇⃗J = 0, which are divided in

– elliptic umbilics when det∆J > 0, the eigenvalues are both negative and the corresponding

critical curve is a single point which, for small variations of the parameters, opens up in

a circular critical curve, while the corresponding caustic is triangular with three cusps;

– hyperbolic umbilics when det∆J < 0 which are single points joining a fold to a cusp of

another critical curve. For small variations the cusp is exchanged between the two critical

curves.

• cuspoids of higher order: they are divided in

– swallowtail or second order cuspoid with (T⃗ · ∇⃗)JT⃗ = 0;

– butterfly or third order cuspoid which merges three cusps leaving only one;

• gradient singularities: we have them when J has a non-vanishing eigenvalue and zero

gradient. A gradient singularity is a maximum, minimum or saddle point of J . We can

distinguish two cases:

– det∆J > 0, in this case it is a maximum or a minimum. When it touches the plane J = 0

a new critical curve forms and its caustic has two opposed cusps, with the shape of a

mouth, they are called lips ;
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– det∆J < 0, in this case we have a saddle. When it is cut by the plane J = 0, we have

four folds meeting in a cross. When the saddle is cut higher or lower we may have two

separated folds or two folds with a cusp each. The two cusps point one against the other

and they are called beak-to-beak.

1.5 The Binary Lens

If we consider a model with a lens composed by two point masses we are able to describe

microlensing by binary stars or planetary systems. One of the advantages is that this lens model is

sufficiently simple to be derived analytically. If we indicate the two point-like lenses’ masses MA and

MB in the lens plane forming angles θ⃗A and θ⃗B with the optical axes, the lens equation is

β⃗ = θ⃗ − µA(θ⃗ − θ⃗A)
θ2E

|θ⃗ − θ⃗A|2
− µB(θ⃗ − θ⃗B)

θ2E

|θ⃗ − θ⃗B|2
(1.53)

where µA,B = MA,B/M are the reduced masses, M = MA +MB is the total mass and θE is the one

defined in Eq. (1.23) using M as total mass. With a binary lens we have the break of the axial

symmetry of the system and the lens becomes astigmatic; the magnification pattern on the source

plane also is different and we have the presence of extended caustics. When the source crosses a

caustic new images are created or destroyed. According to the separation of the lenses s we can

distinguish three topologies:

• wide binary topology;

• intermediate binary topology;

• close binary topology;

and each case corresponds to a specific shape of the caustics as we will show in some applications in

the following chapters.

Now we introduce complex coordinates for the source [5]

ζ = β1 + iβ2 (1.54)

and for the image

z = θ1 + iθ2 (1.55)

and the lens equation becomes

ζ = z − µA

(z̄ − z̄A)
− µB

(z̄ − z̄B)
(1.56)
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and the Jacobian determinant of the lens map in complex notation is given by

J(z, z̄) =

∣∣∣∣∂ζ∂z
∣∣∣∣2 − ∣∣∣∣∂ζ∂z̄

∣∣∣∣2 (1.57)

and from Eq.(1.56) we have ∂ζ
∂z

= 1 and

J = 1−
∣∣∣∣∂ζ∂z̄

∣∣∣∣2 (1.58)

with

∂ζ

∂z̄
=

µA

(z̄ − z̄A)
2 +

µB

(z̄ − z̄B)
2 . (1.59)

The condition J = 0 determines the critical curves on the lens plane and we can rewrite Eq.(1.58) as

∂ζ

∂z̄
= eiφ (1.60)

with 0 < φ < 2π.

By putting the origin of the coordinates at the midpoint between the two lenses and the real

axis along the line joining the lenses and with the combination of the last two equations, we get

a quartic equation for the points which define the critical lines: by applying the lens equation we

get the caustics. The shape of the caustics depends on the mass ratio γ = µB/µA and on the lens

separation in units of the Einstein angle s ≡ |zA − zB|.

In order to understand the shape evolution of critical curves and caustics, we show the basic

example of a standard binary lens in the Schwarzschild case. By standard binary lens we mean

a system composed by two objects described by the same Schwarzschild metric and with the

gravitational potential which goes as 1/r. The starting critical curves configuration in Fig.1.5,

first row left-top panel, is given by the close separation, then we move the lenses further to the

intermediate and wide separations. On the second row we show the corresponding caustics. These

results are for a mass ratio γ = 1.
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Figure 1.5: Critical curves and caustics for γ = 1 in the standard binary lenses.

In the next chapter we will study the generalization of caustics when we adopt 1/rn potentials.
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CHAPTER 2

GRAVITATIONAL LENSING BY OBJECTS

WITH 1/rn POTENTIAL

2.1 Motivations

Gravitational lensing is widely used in astrophysics and in cosmology to study compact

objects (such as exoplanets, black holes and other stellar remnants [6, 7]), and extended objects

(galaxies, clusters of galaxies and large-scale structures [8–12]) but it is also an important tool in the

investigation of dark matter, dark energy and exotic matter (such as wormholes) [13–18].

Gravitational lensing effects by wormholes were investigated in Refs. [19, 20], with negative

mass in Refs. [21–25] and with positive mass in Refs. [26–30]. We want to remark that in

1973, Ellis and Bronnikov independently found a massless wormhole (the Ellis wormhole) as a

wormhole solution of the Einstein equations, see Refs. [31, 32]. Also spherically symmetric and

static traversable Morris-Thorne wormholes were analyzed in Refs. [33, 34]. The most general

extension of the Morris-Thorne wormhole is the solution of the stationary and axially symmetric

rotating Teo wormhole in Ref. [35], the first rotating wormhole solution, and this was the starting

point for the investigation of gravitational lensing by rotating wormholes explored by Jusufi and

Ovgun in Ref. [36]. Tsukamoto and Harada studied the light rays passing through a wormhole in

Ref. [37]; Ohgami and Sakai studied the images of wormholes surrounded by optically thin dust in

Ref. [38] in order to state if it is possible to identify wormholes by observing shadows; this was also

investigated in Ref. [39] in rotating dust flow.

The metric of the Ellis wormhole falls down asymptotically as 1/r2 and its deflection angle

goes as the inverse square of the impact parameter 1/u2 as explored in Refs. [40–48]. Metrics falling
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2. Gravitational Lensing by Objects with 1/rn Potential

as 1/rn were investigated also by Kitamura et al. [49] who found out that the deflection angle falls

down with the same exponent as the metric: α̂ ∼ 1/un with n > 1. Other investigations include

Refs. [50–55]. Power-law deflection terms can also be found in gravitational lensing in the presence

of plasma [56–60]. Particular attention was posed on the study of caustics of 1/rn binary lenses by

Bozza and Melchiorre in Ref. [61]

Particular attention was posed to the investigation of gravitational lensing by exotic lenses with

a non-standard form of the equation of state or with a modified gravity theory by Asada [62]. A new

method of detecting Ellis wormholes by the use of the images of wormholes surrounded by optically

thin dust was investigated by Ohgami and Sakai [63].

After the Event Horizon Telescope (EHT) results [64], consisting in the detection of the shadow

of a supermassive black hole in the center of galaxy M87, many authors tried to explore new frontiers,

and an interesting new reference is from Tsukamoto and Kokubu [65]: they investigate the collision

of two test particles in the Damour-Solodukhin wormhole spacetime where Damour and Solodukhin

stated in Ref. [66] that is not possible to distinguish black holes from wormholes with observations

on a limited timescale.

From the side of binary galaxies as binary lenses we must cite the considerable work of Shin

and Evans [67] that discussed the critical curves and caustics in the case n < 1. This applies to

generic galactic halos and isothermal sphere in particular, as the limit n→ 0.

Kovner investigated extremal solutions for a singular isothermal sphere with a tide (SIST) [68];

Evans and Wilkinson studied lens models for representing cusped galaxies and clusters, as isothermal

cusps always generate a pseudocaustic [69], while Rhie discussed pseudocaustics of various lens

equations [70]. Wang and Turner studied strong gravitational lensing by spiral galaxies, modelling

them as infinitely thin uniform disks embedded in singular isothermal spheres [71], while Tessore

and Metcalf investigated a general class of lenses following an elliptical power law profile [72]. All

these systems possess pseudocaustics that were also investigated by Lake and Zheng in gravitational

lensing by a ring-like structure [73]. Higher-order caustic singularities, such as the elliptic umbilic,

were discussed by Aazami et al. [74].

In this chapter we want to extend the symmetric structure already studied by Bozza and

Melchiorre in Ref. [61] for 1/rn potentials, in which the two lenses have the same index n, to an

asymmetric case in which the lenses have different indexes. This generalization is particularly useful

in both scientific contexts described by 1/rn potentials. In fact, we may have pairs of galaxies that

have very different structures and thus different halo profiles, e.g. a dwarf galaxy as a satellite to a

giant galaxy. On the other hand, if wormholes or other exotic objects exist, they might be part of

a binary system with an ordinary star or other compact objects. The co-existence of objects with

different 1/rn potentials thus seems plausible in many situations, thus justifying the generalization
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2. Gravitational Lensing by Objects with 1/rn Potential

we are going to undertake here.

In Section 2.2 we describe exotic metrics, we give the lens equation for 1/rn potentials for

two exotic lenses with equal and different n. In Section 2.6 we study critical curves and caustics

presenting three main cases: equal-strength binary lenses, unequal-strength binary and extreme

unequal-strength binary lenses explaining the origin of the pseudocaustic and of the elliptic umbilic

catastrophe for mn < 1. In Section 2.7 we study the transitions between different caustic topologies.

In section 2.8 we derive analytical approximations for the three cases analysed in Section 2.6 in order

to have a deeper understanding in the caustic evolution, in its shape and size. Finally in Section 2.9

we draw our discussion.

2.2 Exotic Metrics

The metric of non-Schwarzschild objects falls down asymptotically as 1/rn giving rise to a

deflection angle which goes as 1/un where u is the impact parameter of the ray of light which can be

written also as α ∼ 1/|θ|n, where θ is the angular position at which the image is observed.

We consider the metric [49, 50, 61]

ds2 =

(
1− α

rn

)
c2dt2 −

(
1 +

γ

rn

)(
dr2 − r2dθ2 + sin2 θdϕ2

)
(2.1)

where α and γ are two coefficients related to the energy momentum tensor component as required

by the Einsteins equations and the index n is either the exponent of the halo profile for a normal

matter distribution or the ratio between tangential and radial pressure, n = −2pt/pr, if we consider

exotic matter [55].

The deflection angle for a ray of light is given by [49, 50]

α̂ =

√
πΓ[(1 + n)/2]

Γ[n/2]

α + γ

un
(2.2)

where Γ[z] is the Euler gamma function.

The generalized deflection angle for a generic energy-momentum distribution is given by [75]

ˆ⃗α(x⃗) =
4G

c4

∫
d2x′

x⃗− x⃗′

|x⃗− x⃗′|2

∫
dz(ρ+ pz) (2.3)

where ˆ⃗α ≡ α̂x⃗/u is the vectorial form of the deflection angle, z is referred to the z-axis travelled by

the unperturbed photon, pz is the z-component for the pressure and ρ is the energy density, so it is

necessary to refer to a "strength ratio” between these two components in the case of binary lenses

which will be deepened in the further sections.

The convergence is given by [49]
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κ =
1

2
∇ · ˆ⃗α (2.4)

and by substituting Eq. (2.2) in Eq. (2.4) we get [55]

κ =

√
πΓ[(1 + n)/2]

Γ[n/2]

(1− n)(α + γ)

un+1
. (2.5)

The convergence is proportional to the mass density projected along the line of sight
∫
ρdz and,

according to Ref. [49], both n > 1 and (α + γ) > 0 (attractive deflection) imply a negative mass

density and so we need exotic matter. A bond between convergence and energy-momentum tensor

components is given by [55]

κ =
λG
2

∫
dz(T t

t − T z
z ) =

λG
2

∫
dz

[
ρ+ pt + (pr + pt)

z2

u2 + z2

]
(2.6)

where T t
t and T z

z are the non-zero components of the energy-momentum tensor for the energy density

and the radial pressure respectively, λG = 8πG/c4 is the gravitational coupling constant. In order

to have a negative convergence in Eq. (2.6) we must have ρ + pz < 0 in some regions which is a

violations of the weak energy condition which is also a violation of strong energy condition as seen

in Eq. (2.4).

2.3 The Lens Equation for Exotic Lenses

The lens equation for a single lens, first studied by Kitamura et. al in Ref. [49] and then

generalized by Bozza and Postiglione in Ref. [55], is

β = θ − θn+1
E

|θ|n
Sign(θ), (2.7)

where β is the source angular position with respect to the center of the lens, θ = u/DL is the angular

position at which the observer observes the image and

θE =

[
DLS

Dn
OLDOS

√
πΓ[(1 + n/2)](α + γ)

Γ[n/2]

] 1
n+1

(2.8)

is the Einstein radius of the lens, which depends on DOL, DOS, DLS.

From the lens equation we get two solutions θ±: θ+ is for the image which forms on the same

side of the source, θ− is the one on the other side. In the limit β ≫ θE the primary image is in

θ+ ≃ β and the secondary image is in θ− ≃ (−θn+1
E /β)1/n. For n > 0 we have two real images; for

n = 0 (the singular isothermal sphere) we have the secondary image only when the source is within

the Einstein radius β < θE. Due to the central singularity we have a single image from the crossing

of the Einstein ring which violates the theorems on the number of images.
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The radial magnification is given by Eq.(1.50)

µr =

(
∂β

∂θ

)−1

=

(
1 + n

θn+1
E

θn+1

)−1

(2.9)

while the tangential magnification is given by by Eq.(1.51)

µt =
θ

β
=

(
1− θn+1

E

θn+1

)−1

(2.10)

and the total magnification is the one found in Eq.(1.52).

In the case of n > 1 we can find some value of β giving the demagnifying effect (i.e. µ < 1).

We can expand µ around θ ≃ β ≫ θE and neglect the contribution of the secondary image

µ→ 1 + (1− n)

(
θE
β

)n+1

+ (1 + n+ n2)

(
θE
β

)2n+2

+ o
(
θE
β

)2n+2

(2.11)

For n > 1 the first deviation from unity is negative. For the Schwarzschild case, the leading deviation

is the second order going as β−4: images created by exotic lenses are extended tangentially as the

Schwarzschild ones, but are more compressed on the radial direction. The two deformations do not

compensate at first order for exotic lenses. For n < 1 (ordinary matter) the situation is reversed,

with a radial compression that is smaller than in the Schwarzschild case, allowing a higher total

magnification emerging at the β−2 order.

2.4 The Standard Binary Lens Composed by Exotic Objects

The binary system composed by two exotic objects was already studied by Bozza and Melchiorre

[61]. These symmetric binary lenses are mathematically simpler that the mixed case because the two

deflection terms fall with the same power of the impact parameters, furthermore there is a strong

astrophysical motivation in studying binary wormholes, exotic objects and 1/rn potentials for their

multiples applications already mentioned in Section 2.1 such as isothermal haloes with and without

a regular core [67] (the singular isothermal sphere is the limiting case for n → 0), lensing by two

galaxies with spheroidal haloes declining as 1/rn+2. In general the two regimes of investigation of

binary 1/rn objects are for n < 1, corresponding to galactic haloes, and for n > 1, corresponding

to exotic objects violating the energy conditions. For n = 1 we find the Schwarzschild metric which

divides these two regimes. The light deflection is sensitive to the energy density and to the pressure

so, in the binary lens case, it is necessary to refer to a "strength ratio" instead of a "mass ratio".
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2.5 The Mixed Binary Lens

In this chapter we want to extend the symmetric structure already studied by Bozza and

Melchiorre in Ref. [61] for 1/rn potentials, in which the two lenses have the same index n, to an

asymmetric case in which the lenses have different indexes. This generalization is particularly useful

in both scientific contexts described by 1/rn potentials. In fact, we may have pairs of galaxies that

have very different structures and thus different halo profiles, e.g. a dwarf galaxy as a satellite to a

giant galaxy. On the other hand, if wormholes or other exotic objects exist, they might be part of

a binary system with an ordinary star or other compact objects. The co-existence of objects with

different 1/rn potentials thus seems plausible in many situations, thus justifying the generalization

we are going to undertake here.

We give the lens equation for 1/rn potentials for two exotic lenses with different n, we

study critical curves and caustics presenting three main cases: equal-strength binary lenses,

unequal-strength binary and extreme unequal-strength binary lenses explaining the origin of the

pseudocaustic and of the elliptic umbilic catastrophe for mn < 1, then we study the transitions

between different caustic topologies. Finally we derive analytical approximations for the three cases

analysed in order to have a deeper understanding in the caustic evolution, in its shape and size.

We want to explore a system composed by two objects in the asymmetric case in which our

lenses have different indexes, here indicated with n and m. The binary lens equation is

β⃗ = θ⃗ − θn+1
E,A

θ⃗ − θ⃗A

|θ⃗ − θ⃗A|n+1
− θm+1

E,B

θ⃗ − θ⃗B

|θ⃗ − θ⃗B|m+1
, (2.12)

where θ⃗A and θ⃗B are the coordinates of the two objects in the sky.

We note that the Einstein radii θE,A and θE,B, appear with different exponents for each lens.

It is thus convenient to use θE,A as a unit of measure for angles and define the "strength ratio" as

γ = θE,B/θE,A. We rewrite the lens equation as follows

β⃗ = θ⃗ − θ⃗ − θ⃗A

|θ⃗ − θ⃗A|n+1
− γm+1 θ⃗ − θ⃗B

|θ⃗ − θ⃗B|m+1
. (2.13)

Now we introduce complex coordinates [5] as seen in Eq.(1.54) and (1.55), we take the mid-point

between the two lenses as the origin of the coordinates, and orient the real axis along the line joining

the two lenses. We thus set zA = −s/2 and zB = s/2, where s is the normalized angular separation

between the lenses. The lens equation becomes

ζ = z − 1(
z + s

2

)n−1
2
(
z̄ + s

2

)n+1
2

− γm+1(
z − s

2

)m−1
2
(
z̄ − s

2

)m+1
2

(2.14)

The Jacobian determinant of the lens map in complex notation is given by
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J(z, z̄) =

∣∣∣∣∂ζ∂z
∣∣∣∣2 − ∣∣∣∣∂ζ∂z̄

∣∣∣∣2 , (2.15)

which in our case becomes

J =

[
1 +

1

2

 n− 1(
z + s

2

)n+1
2
(
z̄ + s

2

)n+1
2

+
γm+1(m− 1)(

z − s
2

)m+1
2
(
z̄ − s

2

)m+1
2

]2

− 1

4

∣∣∣∣∣∣ n+ 1(
z + s

2

)n+3
2
(
z̄ + s

2

)n−1
2

+
γm+1(m+ 1)(

z − s
2

)m+3
2
(
z̄ − s

2

)m−1
2

∣∣∣∣∣∣
2 . (2.16)

We note that the structure of the Jacobian becomes more complicated with respect to the ordinary

point-lenses (m = n = 1), in which many terms disappear. We thus expect a correspondingly richer

phenomenology. The Schwarzschild case was already explored by Schneider and Weiss in Ref. [76] for

lenses with the same mass and by Erdl and Schneider for lenses with different masses [77]; Bozza and

Melchiorre investigated the case m = n. In order to compare our results with theirs, it is important

to note that there is no notion of a combined total Einstein radius when the two lenses have different

indexes for their potentials. Therefore, the notation introduced there, with ϵi as the ratio of the

individual lens strength to the total strength cannot be replicated here. Their results were expressed

in terms of the ratio q = ϵB/ϵA. The relation between our parameter γ = θE,B/θE,A and q is just

γm+1 = q. As a practical example, the Einstein radius scales as √q in the Schwarzschild case, where

q becomes the mass ratio of the two lenses.

2.6 Critical curves and caustics for exotic lenses

The condition J(z) = 0 defines the critical curves on the lens plane. By applying the lens map

on critical points we find the corresponding points on the source plane, which form the caustics.

Critical curves and caustics are of fundamental importance to understand how gravitational lensing

works. When a source crosses a caustic, a new pair of images is created on the corresponding point

in the critical curve. Therefore, caustics bound regions with a different number of images. Critical

curves distinguish regions in which images have opposite parities.

Our model contains four parameters: the indexes of the two potentials n, m, the separation

between the two lenses s, and the ratio of the two Einstein radii γ. In order to start the exploration of

this parameter space, we first analyze the equal-strength case with γ = 1, and then move to unequal

strength cases.

In all plots presented in this chapter, we keep n = 1 fixed for the first lens (ordinary

Schwarzschild lens), with variable m for the second lens: m = 0, 0.5, 1, 2, 3 (we remind that m = 0

27



2. Gravitational Lensing by Objects with 1/rn Potential

is the singular isothermal sphere, already investigated by Shin and Evans in Ref. [67], galactic halos

are in the range 0 < m < 1 and m = 2 corresponds to the Ellis wormhole; objects with m > 2 require

exotic matter).

Critical curves are obtained by the contour plot of the Jacobian determinant and these contours

are then mapped through the lens equation in order to get the caustics. All computations are

performed by Wolfram Mathematica 11 1.

2.6.1 Equal-strength binaries

In the equal-strength case, we set γ = 1, which means that θE,A = θE,B: both lenses would

generate a critical curve with the same radius if they were isolated.

For the standard binary Schwarzschild lens [76], we know that three topologies exist:

- close separation, for s < sCI ;

- intermediate separation, for sCI < s < sIW ;

- wide separation, for s > sIW ;

and the two transitions are sCI = 1 and sIW = 2
√
2 in our units.

We find that these three topologies persist for any values of n and m, although the boundary

values may vary somewhat. In order to illustrate the evolution of critical curves and caustics in

intelligible figures, we present the plots for different values of m at fixed values of separation s,

starting from wide separation binaries and then moving the two lens closer.

First, in Fig. 2.1, we have two lenses at wide separations for s = 3.4. Here we clearly see how

the Einstein ring of each lens is distorted by the presence of the partner lens. Comparing the critical

curves obtained at different values of the index m, we clearly see that the distortion is stronger for

small values of m. This is a direct consequence of the fact that the potential decays more steeply for

larger m and thus the first lens feels a weaker tidal field from the second lens. This is particularly

evident for the caustic of the first lens, which becomes very small at m = 3, while it becomes larger

and more shifted at m = 0. The caustic of the second lens is almost independent of m. In practice,

the shape and the size of the caustic is mostly determined by the tidal field of the first lens, which

we are keeping fixed with n = 1.
1https://www.wolfram.com/mathematica/
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Figure 2.1: Critical curves and caustics in the equal-strength binary, wide separation. Here and in

the following figures the lens on the left has n = 1 and the lens on the right has variable m.

In Fig. 2.2 we show critical curves and caustics for s = 2
√
2, which corresponds to the

intermediate-wide transition in the standard n = m = 1 case. In fact, the red curves show the

typical beak-to-beak singularity in the origin. For m < 1 we are already in the intermediate regime,

while for m > 1 we are still in the wide regime. As explained before, the fact that the intermediate

regime extends to larger separations for m < 1 is a consequence of the slower decay of the potential.
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Figure 2.2: Critical curves and caustics in the equal-strength binary, intermediate-wide transition.

In Fig. 2.3 we see an intermediate separation at s = 1.4: critical curves are larger for smaller

values of m, while caustics are larger for increasing m. Indeed, we are starting to see some kind of

inversion in the behavior of the lenses. Steeper profiles are going to dominate at smaller separations,

as will be more evident in the incoming figures.
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Figure 2.3: Critical curves and caustics in the equal-strength binary, intermediate separation.

In Fig. 2.4 we show the critical curves and caustics at s = 1, which corresponds to the

close-intermediate transition for the standard n = m = 1 case. In fact, the red curve shows the two

symmetric beak-to-beak singularities. Contrary to the previous transition, now the m < 1 caustics

are already in the close regime, with small oval critical curves generating small triangular caustics.

The m > 1 curves are still in the intermediate regime. Following the same reasoning, m < 1 lenses

become subdominant in this regime and their influence on the whole system is smaller. In this regime,

we also find the elliptic umbilic catastrophe that we shall discuss in Subsection 2.6.1.
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Figure 2.4: Critical curves and caustics in the equal-strength binary, close-intermediate transition.

Dashed magenta circle indicates the pseudocaustic for m = 0.
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In Fig.2.5 we can see critical curves and caustics in the close separation, for s = 0.8. Primary

critical curves are big ovals that become smaller as m increases. In fact, m > 1 curves tend to be

closer to an intermediate regime. Secondary critical curves are small ovals that move far from the

second lens, in the left direction, for m > 1; for m = 0 (magenta line) they converge on the second

lens with the shape of a lemniscate: in this point the lens map is indeterminate and the correspondent

caustics remain opened on a circle that is called pseudocaustic. We shall discuss this structure in

subsection 2.6.1.

On the other side we find that the central caustics have the typical 4-cusps shape and they

become smaller as m decreases. Secondary caustics are always triangular but are considerably larger

for m > 1, a fact that was already stressed in Ref. [61]. Note that for m > 1 triangular caustics

move right, while the central caustic is slightly displaced to the left. The opposite occurs for m < 1.

We can find a similar behavior for standard Schwarzschild binaries with unequal masses. In practice,

although we started with the same Einstein radius for both lenses, steeper profiles (m > 1) behave

similarly to heavier masses in this regime, while shallower profiles (m < 1) behave as lighter masses.

-2 -1 0 1 2

-2

-1

0

1

2

x1

x
2

m = 3
m = 2
m = 1
m = 0.5
m = 0 Critical curves (s = 0.8, = 1)

-3 -2 -1 0 1 2 3

-4

-2

0

2

4

y1

y
2

Caustics (s = 0.8, = 1)

m = 3
m = 2
m = 1
m = 0.5
m = 0

Figure 2.5: Critical curves and caustics in the equal-strength binary, close separation. Dashed

magenta circle indicates the pseudocaustic for m = 0.

The Pseudocaustic

A pseudocaustic is a closed curve on the source plane that exists for singular distributions with

zero core radius. In the singular limit, the radial critical curve collapses onto the center of the lens,

leaving no space for the dim central image. When the source crosses the corresponding radial caustic,

only one more image forms, while the other image is degenerate with the center of the lens. The

radial caustic is then named pseudocaustic, since it behaves differently from normal caustics [68–73].
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In the binary case, a pseudocaustic may still exist in the singular limit m = 0. Through an

analytical exploration we find out the points where the two secondary triangular caustics touch the

pseudocaustic.

The pseudocaustic is generated by critical curves collapsing to the center of the lens when

m = 0. In order to explore what happens around the center of the second lens, we set

z =
s

2
+ ϵ1 + iϵ2; (2.17)

we expand around zero at 1/ϵ order and then we solve with respect to ϵ2. We get two symmetric

solutions

ϵ2 = ±
√
s2 + 1√
1− s2

ϵ1 (2.18)

These solutions are two straight lines that cross at the origin of the system, and their angular

coefficient is real only for s < 1. This means that the two small oval critical curves will touch the

center of the m = 0 lens for separations in this regime. By substituting in the lens equation we find

ζ =
s

2
− 1

s
± γ

√
−s2 ±

√
s4 − 1 (2.19)

These are the coordinates of the four contact points of the two triangular caustics with the

pseudocaustic of radius γ and center ( s
2
− 1

s
, 0). The term 1

s
shifts the caustic to the left side

with respect to the position of the second lens s
2
.

If the source only crosses the pseudocaustic, we have the sudden creation of one image of

negative parity; if the source crosses a triangular caustic first and then the pseudocaustic, we have

the formation of two images and the one inside the lemniscate (with positive parity) collapses on the

lens.

The Elliptic Umbilic

As shown in Refs. [61, 67], in the range 0 ≤ m < 1 an elliptic umbilic catastrophe exists in the

close separation. In an elliptic umbilic, the size of the small oval critical curves goes to zero and then

grows up to finite size again. The catastrophe lies on a circle centered in the origin of the system, at

the mid-point between the two lenses, and passing through them. It occurs at a specific separation

s, which depends on the other parameters of the lens γ, m, n.

To find out the separation s, for any m and n, at which the catastrophe occurs we proceed as

follow: first we write the system of equationsJ=0
∂J
∂z

= 0
(2.20)
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along the circle, i.e. we set

z = s
eiθ

2
. (2.21)

Then we introduce a new angular variable t in order to simplify our computation

t =
sinm+1(θ/2)

cosn+1(θ/2)
(2.22)

From Eq. ((2.20)), we get the angular position of the elliptic umbilic

t =
(m+ 1)γm+1

(n+ 1)sn−m
(2.23)

and then we finally obtain the value of s at which the catastrophe happens

seuc =

(
1−mn

m+ 1

) 1
n+1

√√√√1 +
γ2(m+ 1)

2
n+1

(n+ 1)
2

m+1 (1−mn)
2(m−n)

(m+1)(n+1)

(2.24)

Note that the solution exists for mn < 1. In mixed binaries, we may have an elliptic umbilic also

when one of the two lenses has a steep potential with n > 1. In order to illustrate this, we choose

n = 2 (exotic matter) and m = 0.25 (a possible galactic halo). We can see, in Fig. 2.6, a zoom

on the small oval critical curve for 0.714 ≤ s ≤ 0.834 in steps of 0.02. The separation at which

the catastrophe occurs is seuc = 0.774. The critical curve shrinks to zero size for growing s, from

s = 0.714 to s = 0.774 (lower curves) and then it grows up again. The corresponding triangular

caustics behave similarly.
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Figure 2.6: The elliptic umbilic catastrophe for n = 2, m = 0.25 and 0.714 ≤ s ≤ 0.834 in steps

of 0.02, one colour for each s from red to blue. The separation at which the catastrophe occurs is

seuc = 0.774. Critical curves on the left side panel, caustics on the right side panel.
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2.6.2 Unequal-strength binary

In the unequal-strength binary case, in order to keep contact with the previous work, we

consider q = 0.1, as in Ref. [61], so in terms of the ratio of the Einstein radii, our strength ratio is

γ =
√
0.1. We need to multiply s in Ref. [61] by a factor

√
q + 1 =

√
1.1, so the transitions between

different topologies for n = m = 1 occur as follows:

- close-intermediate transition, sCI = 0.807;

- intermediate-wide transition, sIW = 1.772.

Therefore, in this subsection we have the standard lens on the left with bigger Einstein radius than

the lens on the right, for which we vary the potential index m. We shall discuss each value of m in

the range 0 ≤ m ≤ 3 in detail.

In Fig.2.7 we show the wide separation for s = 2.1. Critical curves are separated and slightly

deformed. The caustic of the left side lens is smaller since the tidal field from the right side lens

is normally weaker. However, for m < 1 the potential decays slower enough to make the left side

caustic bigger than the caustic on the right.
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Figure 2.7: Critical curves and caustics in the unequal-strength binary, wide separation. Here and

in the following figures the lens on the left has n = 1 and the lens on the right has variable m.

In Fig.2.8 we can see the intermediate-wide transition at s = 1.772.

For m < 1 (magenta and blue lines) the transition to the intermediate regime has already

occurred, while we are still in the wide regime for m > 1 (green and yellow lines).
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Figure 2.8: Critical curves and caustics in the unequal-strength binary, intermediate-wide transition.

In Fig.2.9 we can see the intermediate separation for s = 1.05.

Critical curves now are all joined and they get smaller with increasing m. Caustics now have

the 6-cusps shape and they get smaller with decreasing m. Note that the throat of the critical curve

is wider for m > 2 and narrower for m < 1. Correspondingly, the fold between the off-axis cusps is

longer for m > 1 and is extremely short for m = 0, where the two off-axis cusps almost coincide.
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Figure 2.9: Critical curves and caustics in the unequal-strength binary, intermediate separation.

In Fig.2.10 we have the close-intermediate transition for s = 0.807. For m = 0 and m = 0.5, the

primary caustics are already in the close regime, with the smaller ovals detached from the primary

critical curve; for m = 1 we see the transition (red line), for m > 1 we are still in the intermediate
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regime. Note that the m = 0 ovals already reached the right side lens and the triangular caustics

reached the pseudocaustic.
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Figure 2.10: Critical curves and caustics in the unequal-strength binary, close-intermediate transition.

Dashed magenta circle indicates the pseudocaustic for m = 0.

In Fig.2.11 we show the close separation for s = 0.63: the main critical curves, that generate

the central caustics, are big ovals growing up in size with decreasing m. Secondary critical curves

are small ovals close to the second lens, moving in the left direction as m increases. Like the

equal-strength ratio case, for m = 0 the secondary critical curves are attached in a lemniscate shape

and the corresponding caustics remain open on the pseudocaustic (see subsection 2.6.1).

On the right panel we have the caustics: as m decreases, the central caustic moves to the right;

secondary caustics become larger for greater values of m.
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Figure 2.11: Critical curves and caustics in the unequal-strength binary, close separation. The dashed

magenta circle indicates the pseudocaustic for m = 0.

2.6.3 Reversed unequal-strength binary

In the previous section we assumed that the bigger lens was standard (n = 1) and the smaller

lens had a different index m. In this section we study the reverse situation: the standard lens is

smaller and the other lens is bigger. We thus keep γ =
√
0.1, fix m = 1 and let n vary.

In Fig.2.12 we start from the wide separation. Similarly to Fig. 2.7, the caustic of the

non-standard lens remains unaffected, while the caustic of the standard object strongly depends

on the tidal field of the other lens. The shift and the size are much more affected than before, since

now the standard lens is the weaker one.
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Figure 2.12: Critical curves and caustics in the unequal-strength binary with the standard lens on

the right, wide separation. Here and in the following figures the lens on the right has m = 1 and the

lens on the left has variable n.

In Fig.2.13, we are at the intermediate-wide transition. The situation is quite similar to Fig.

2.8, with stronger dependence on the index n, as discussed before.
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Figure 2.13: Critical curves and caustics in the unequal-strength binary with the standard lens on

the right, intermediate-wide transition.

Fig.2.14 shows the intermediate topology. Comparing with Fig. 2.9, it is interesting to note

that here the left cusp is common for all caustics, while there it was the right cusp to be shared

among all caustics. Of course, we can still interpret this fact through the variations of the tidal

fields.
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Figure 2.14: Critical curves and caustics in the unequal-strength binary with the standard lens on

the right, intermediate separation.

Fig.2.15 shows the close-intermediate transition. Note that the red curves (n = m = 1) are

exactly at the transition, while both larger and smaller n curves are in the close regime. This is not

what happens in Fig. 2.10, where larger m curves were still in the intermediate regime. Then we

learn that the close regime is more extended for all n ̸= 1 in this case.
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Figure 2.15: Critical curves and caustics in the unequal-strength binary with the standard lens on

the right, close-intermediate transition.

Finally, Fig.2.16 shows the close regime. Note that the n = 0 small ovals do not collapse to the

left lens but remain quite far. The pseudocaustic is never reached by the triangular caustics.
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Figure 2.16: Critical curves and caustics in the unequal-strength binary with the standard lens on

the right, close separation.

2.7 Transitions between different topologies

Now we want to find out the boundaries for the three topology regimes, sCI and sIW , for any

n, m and γ.

As we know that transitions occur via higher order singularities of the lens map (beak-to-beak

singularity in the binary lens case), in order to find out sCI and sIW we need to solve again the

system of equations

J=0
∂J
∂z

= 0
(2.25)

We put the origin of the system in the first lens, so we rewrite the lens equation as follows

ζ = z − 1

(z)
n−1
2 (z̄)

n+1
2

− γm+1

(z − s)
m−1

2 (z̄ − s)
m+1

2

(2.26)

the Jacobian determinant is

J =
1

4

[(
2 +

n − 1

z
n+1
2 z̄

n+1
2

+
(m− 1)γm+1

(z − s)
m+1

2 (z̄ − s)
m+1

2

)2

−(
n + 1

z
n+3
2 z̄

n−1
2

+
(m+ 1)γm+1

(z − s)
m+3

2 (z̄ − s)
m−1

2

)(
n + 1

z
n−1
2 z̄

n+3
2

+
(m+ 1)γm+1

(z − s)
m+1

2 (z̄ − s)
m+3

2

)] (2.27)

and

40



2. Gravitational Lensing by Objects with 1/rn Potential

∂J

∂z
=

1

4

{
1

2

[(
n + 1

z
n+3
2 z̄

n+1
2

+
(m+ 1)γm+1

(z − s)
m+3

2 (z̄ − s)
m−1

2

)(
n2 − 1

z
n+1
2 z̄

n+3
2

+
(m2 − 1) γm+1

(z − s)
m+1

2 (z̄ − s)
m+3

2

)
+(

(n + 1)(n + 3)

z
n+5
2 z̄

n−1
2

+
(m+ 1)(m+ 3)γm+1

(z − s)
m+5

2 (z̄ − s)
m−1

2

)(
n + 1

z
n−1
2 z̄

n+3
2

+
(m+ 1)γm+1

(z − s)
m−1

2 (z̄ − s)
m+3

2

)]

−

(
2 +

n − 1

z
n+1
2 z̄

n+1
2

+
(m− 1)γm+1

(z − s)
m+1

2 (z̄ − s)
m+1

2

)(
n2 − 1

z
n+3
2 z̄

n+1
2

+
(m2 − 1) γm+1

(z − s)
m+3

2 (z̄ − s)
m+1

2

)} (2.28)

Here we show the analytical procedure to find out sIW ; the other transition, sCI , is only found

numerically.

We require z = z̄ because the beak-to-beak singularity for the intermediate-wide transition

occurs along the line that joins the two lenses, and we introduce two variables

y1 =
(s− z)m+1

zn+1
, y2 =

(s− z)m+2

zn+2
(2.29)

we replace y1 in Eq. (2.27), we solve and we get

y1 =
zn+1 − 1

γm+1
, (2.30)

we substitute y2 in Eq. (2.28), we solve and we find

y2 =
n+ 1

(m+ 1)γm+1
. (2.31)

We use Eqs. (2.30) and (2.31) in Eqs. (2.29), we find two new equations and by a combination of

them we get a complicated expression for z

γ
m+1
n+2

(
1 + γ

n+1
n+2

)m+1
[
z +

(
m+1
n+1

) 1
m+2 γ

m+1
m+2 z

n+2
m+2

]n−m

[
z +

(
m+1
n+1

) 1
m+2 γ

m+1
m+2 z

n+2
m+2

]n+1

−
(
1 + γ

n+1
n+2

)n+1
= 1 (2.32)

that we can solve only numerically. We call this numerical solution zIW . Finally we get the value of

the intermediate-wide transition for general n and m

sIW = zIW + (γm+1zn+2
IW

m+ 1

n+ 1
)

1
m+2 . (2.33)

In Fig. 2.17, upper panel, we plot the cases with fixed n = 1 and variable m (upper curves). The

close-intermediate transition sCI is found numerically (lower curves). We can see that the value of

sIW increases with γ and that the transition occurs earlier for greater values of m. The value of sCI

has a different behaviour: first it decreases with increasing γ, with a minimum around γ = 0.5, and

then it starts to grow up again. Also in this case the transition occurs earlier for greater values of

m. We remind the reader that we are working in units of the Einstein radius of the first lens.
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For the reversed binary case, in Fig. 2.17, lower panel, we plot the cases with fixed n = 1 and

variable m. We can see that the value of sIW increases with γ similarly to the case with fixed m.

For sCI all curves are very closely packed and have a minimum for a value of γ that depends on the

specific choice of n. In particular, for γ =
√
0.1, corresponding to the situation in Fig. 2.15, the

transition occurs for n = 1 at smaller separation than for all other curves.
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Figure 2.17: Critical values of the separation for the intermediate-wide transition sIW as a function

of γ (upper curves); critical values of the separation for the close-intermediate transition sCI as a

function of γ (lower curves). The upper panel is for n = 1 and variable m; the lower panel is for

m = 1 and variable n.
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2.8 Analytical Approximations

In order to remark the differences with the Schwarzschild case n = m = 1 and to have a

deeper understanding in the caustics evolution, we now want to explore the analytical approximations

obtained for the most general case, varying both n and m. In particular, we will investigate the wide

binary regime and the very small γ regime, but we are not able to get analytical results for the close

binary regime. The main difficulty comes from the fact that the starting point of the expansion

would have the two lenses coinciding in the origin, but the resulting Einstein radius can only be

calculated numerically. Therefore, even the zero order is not analytic.

2.8.1 Wide Binary

Let us consider the wide binary regime with s >> 1: the case in which an isolated object is

perturbed by another one at a distance much greater than the Einstein radius θE. We can set the

origin of our system in the first lens (zA = 0 and zB = s), so we can use the same lens equation

written in Eq. (2.26) and the Jacobian determinant in Eq. (2.27). The perturbing object deforms

the circular critical curve of the main object with radius ρ and we can find out this deformation δ

through a perturbative approach.

We set

z = ρ(1 + δ)eiθ (2.34)

and we substitute in J . In our case ρ = 1 (because for s→ ∞ the radius of the critical curves is the

Einsten radius, which, in our case, is θE,A = 1), and take δ = O(1/sm+1). We perform a power series

expansion for J about the zero point with respect to 1/s at first order. Then, we solve J = 0 and

find the correction to the critical curve

δ =
γm+1[1−m+ (m+ 1) cos(2θ)]

2(n+ 1)sm+1
(2.35)

Now we put Eq. (2.34) in Eq. (2.26) and we expand around zero with respect to 1/s at first order,

and we take the real and the imaginary parts

Re[ζ(θ)] =
γm+1

sm
+

(m+ 1)γm+1 cos3(θ)

sm+1
(2.36)

Im[ζ(θ)] = −(m+ 1)γm+1 sin3(θ)

sm+1
(2.37)

The real part contains the shift γm+1

sm
of the caustic toward the direction of perturbing object as we

can see in Figs. (2.1), (2.7), (2.12).
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The other term, cos3(θ)+ i sin3(θ), describes the shape of the caustic (the 4-cusps astroid) that

remains unchanged by varying m. The coefficient γm+1 (m+1)
sm+1 gives the size of the caustic.

In these approximations the error is given by a term O(γ2).

2.8.2 Extremely unequal-strength ratio limit

Now we study the caustic evolution in the extreme limit θE,B << θE,A for the close and wide

separations. We remind that, in the case of two Schwarzschild objects (n = m = 1) this is the

so-called "planetary" limit.

Central Caustic

We put the origin of our system in the first lens (zA = 0), the perturbing object is at zB = −s

and we rewrite the lens equation as follow

ζ = z − 1

(z)
n−1
2 (z̄)

n+1
2

− γm+1

(z + s)
m−1

2 (z̄ + s)
m+1

2

(2.38)

and the Jacobian determinant is

J =
1

4

[(
2 +

n − 1

z
n+1
2 z̄

n+1
2

+
(m− 1)γm+1

(z + s)
m+1

2 (z̄ + s)
m+1

2

)2

−(
n + 1

z
n+3
2 z̄

n−1
2

+
(m+ 1)γm+1

(z + s)
m+3

2 (z̄ + s)
m−1

2

)(
n + 1

z
n−1
2 z̄

n+3
2

+
(m+ 1)γm+1

(z + s)
m+1

2 (z̄ + s)
m+3

2

)] (2.39)

For the critical curve of the main lens, we use the parametrization in J

z = (1 + δ)eiθ (2.40)

where δ = O(γm+1).

We expand around zero with respect to γm+1 to first order, solve J = 0 and we find the

correction of the circular critical curve

δ =
2 + 4s cos θ + s2[(m+ 1) cos(2θ)−m+ 1]

2(n+ 1) (1 + 2s cos θ + s2)
m+3

2

γm+1. (2.41)

Now we substitute this δ in Eq. (2.38) and we get the caustic

ζ = (1 + δ)eiθ − 1

[(1 + δ)eiθ]
n−1
2 [(1 + δ)e−iθ]

n+1
2

− γm+1

[(1 + δ)eiθ + s]
m−1

2 [(1 + δ)e−iθ + s]
m+1

2

(2.42)

In order to find the size of the caustic, we expand the lens equation around zero to first order in

γm+1 and we evaluate it for θ = 0 and θ = π. We have
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∆ζ = ζ(0)− ζ(π) = sγm+1

[
1

(s− 1)m+1
− 1

(s+ 1)m+1

]
(2.43)

and this is the distance between the left and the right cusp. We find that Eq. (2.42) is invariant

under the transformation

s→ 1

s
, γm+1 → γm+1

sm−1
. (2.44)

which expresses the duality of the close-wide regimes in our mixed binary framework.

Caustics of the Perturbing Object

We put the origin of our system in the second lens so that zA = −s and zB = 0 and the lens

equation becomes

ζ = z − 1

(z + s)
n−1
2 (z̄ + s)

n+1
2

− γm+1

z
m−1

2 z̄
m+1

2

(2.45)

we rewrite the Jacobian determinant as follows

J =
1

4

[(
2 +

n − 1

(z + s)
n+1
2 (z̄ + s)

n+1
2

+
(m− 1)γm+1

(z)
m+1

2 (z̄)
m+1

2

)2

−(
n + 1

(z + s)
n+3
2 (z̄ + s)

n−1
2

+
(m+ 1)γm+1

z
m+3

2 z̄
m−1

2

)(
n + 1

(z + s)
n−1
2 (z̄ + s)

n+3
2

+
(m+ 1)γm+1

z
m+1

2 z̄
m+3

2

)] (2.46)

and we introduce a new expression for z

z = ρ
1

m+1γeiθ. (2.47)

We substitute in Eq. (2.46) and we expand with respect to γm+1, around zero at zero order and the

Jacobian determinant becomes

(ρ− 1)(ρ+m)

ρ2
+

(n− 1)(m+ 2ρ− 1)− (m+ 1)(n+ 1) cos(2θ)

2ρs2
− n

s2n+2
= 0 (2.48)

Then we solve Eq. (2.48), J = 0, with respect to ρ and we find two solutions

ρ± =
(m− 1){sn+1

[
(1− n) + (m+ 1)(n+ 1) cos(2θ)− 2sn+1

]
±
√
∆}

4 (sn+1 − 1) (sn+1 + n)
(2.49)

∆ = s2n+2{
[
(m− 1)(2sn+1 + n− 1)− (m+ 1)(n+ 1) cos(2θ)

]2
+ 16m(sn+1 − 1)(sn+1 + n)} (2.50)

We have two scenarios: for external objects (when the secondary lens is outside the Einstein ring

of the main lens, s > 1) the critical curves are elongated rings, see Fig. (2.12); for internal objects

(when the secondary lens is inside the critical curve of the main lens, s < 1) it generates two specular

ovals, see Fig. 2.16.
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In order to get the caustics we put our solutions in the lens equation and we get, at first order:

ζ = γρ
1

m+1

[
eiθ
(
n− 1

2sn+1
− 1

ρ
+ 1

)
+
e−iθ(n+ 1)

2sn+1

]
− 1

sn
(2.51)

From Eq. (2.51) we can get all the information for the size and for the displacement of the secondary

caustic from the central one.

The displacement along the axis that joins the two lenses is the middle point [ζ(0) + ζ(π)]/2

and in our case is

ζcenter = s− 1

sn
. (2.52)

because the origin of our system is in the second lens.

Now we want to find out the size of the caustics in the close and wide separation. For the wide

case we have an extension of the caustics in the parallel direction (with respect to the lens axis),

given by [ζ(0)− ζ(π)]

∆ζ||,wide = 2(n+ 1)
γ

s
m(n+1)
m+1 (sn+1 − 1)

1
m+1

(2.53)

and in the vertical direction, orthogonal to lens axis, [ζ(−π/2)− ζ(π/2)]:

∆ζ⊥,wide = 2(n+ 1)
γ

s
m(n+1)
m+1 (sn+1 + n)

1
m+1

(2.54)

In Fig.2.18, upper panel, we show the size of the caustic for three different fixed n = 0.5, 1, 2 with

variable m
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Figure 2.18: Upper panel: size of the caustic in the wide case for s = 4, γ = 0.01, for three different

fixed n = 0.5, 1, 2, with variable m. Lower panel: size of the caustic in the close case for s = 0.6,

γ = 0.01, for three different fixed n = 0.5, 1, 2, with variable m.

and we can see that the size grows up with increasing m, slower for larger n.

In the close regime, in order to find the position of the central caustic, we evaluate the lens

equation in ρ± for θ = ±π/2 and we need to distinguish the case mn > 1 from the case mn < 1

changing the sign after taking the square root.

We put θ = π/2 and ρ+ in Eq. (2.51), we take the imaginary part and we find

Im
[
ζ+(π/2)

]
=


(m+ 1)γ

[
(1−sn+1)
msn+1

] m
m+1

, if mn < 1

(n+ 1)γ

[
1

sm(n+1)(n+sn+1)

] 1
m+1

, if mn > 1

(2.55)

and to find the position of the two secondary caustics we need to calculate ζ(π/2) with ρ−, then we
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take the imaginary part and we find

Im
[
ζ−(π/2)

]
=


(n+ 1)γ

[
1

sm(n+1)(n+sn+1)

] 1
m+1

, if mn < 1

(m+ 1)γ

[
(1−sn+1)
msn+1

] m
m+1

, if mn > 1

(2.56)

The measure of the transverse size of the secondary caustics is the difference between the last two

formulas, Im
[
ζ+(π/2)

]
− Im

[
ζ−(π/2)

]
and we plot the result in Fig. 2.18, lower panel, for s = 0.6,

γ = 0.01, for three different fixed n = 0.5, 1, 2, with variable m.

We can see that the size increases with m, quicker for larger n. We underline that, for mn < 1,

and so for n = 0.5 especially (green line), the two branches exchange role because of the elliptic

umbilic catastrophe. Then, we must change the sign in our formula for the size.

In these approximations the error is given by a term O(1/sm+2).

2.9 Discussion

In this chapter we have generalized the previous study of binary lenses with 1/rn potential

[61], by extending it to the case of mixed binaries. Of course the mathematics of this general case is

interesting from several points of view, since many earlier results are put in a more general context.

However, this case is also important from the astrophysical point of view. In fact, we now have the

critical curves and caustics of pairs of galaxies with different halos, or we may apply our results to

cases in which one object is made up of exotic matter and the other one is a normal star.

Our figures, together with those of Ref. [61] may be considered as a complete atlas of critical

curves and caustics in binary lensing by 1/rn potentials. We have studied different limits in which

the stronger (weaker) lens has a steeper (gentler) potential in all three topology regimes.

We have shown that an elliptic umbilic catastrophe exists formn < 1 and calculated its position.

We have also described the pseudocaustic in the m = 0 limit. We have calculated the boundaries

of the three topology regimes and provided analytic approximations for the wide binary and the

extremely small-strength secondary lens.

With respect to the m = n binary lens case, we note that for large m we still have large

secondary triangular caustics, but they are not as giant as those in Ref. [61]. In fact, the presence of

a more standard lens in the system mitigates the behavior at large distances and pushes back these

caustics to more normal sizes. Indeed, these structures are quite sensitive to the parameters of the

lens.

This fact helps us recall that the mixed binary lens described here is still obtained by the linear

superposition of the potentials of two isolated objects. This is physically relevant whenever we can
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neglect the non-linear terms in Einstein equations. Even when this is not possible, our results may

serve as a basis for more accurate calculations. The complete work was published on Universe in

2020 [78].
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CHAPTER 3

FROM THEORY TO OBSERVATIONAL

EFFECTS: S2, SGR A* AND THE S-STARS

3.1 Motivations

The Galactic Center (GC) is one of the most attractive regions of the Milky Way that has

been monitored for about three decades [79]. The Sgr A complex of radio sources extends over the

central 10 parsecs of our Galaxy. A compact object called Sgr A* with a mass of several million solar

masses lies in its center, traditionally accepted as a massive black hole (MBH) [80, 81]. A striking

confirmation of this conclusion has come from the recent release of the image of the shadow of the

black hole from the Event Horizon Collaboration [82].

The central parsec hosts old, late-type red giants, supergiants, asymptotic giant branch stars,

but also many hot young, early-type stars, like post-main sequence blue supergiants and Wolf-Rayet

stars [83–93], and two different observational campaigns from VLT and Keck observatories, revealed

a hundred of B stars within 1 arcsecond in the neighborhood of Sgr A*, known as the S-stars [85,

87–89, 94]. Many of the orbits of these stars have been reconstructed in detail after many years of

observations.

De Paolis et al. [95] showed that the binary system S2-Sgr A* offers an opportunity to study

the retro-lensing phenomenon proposed by Holz & Wheeler [96], taking advantage of both the large

black hole (BH) mass and the small separation of the binary components. Bozza and Mancini [97]

calculated the light curves for the secondary and the first two relativistic images, in the Schwarzschild

black hole hypothesis for S2, S12, S14, S1, S8, and S13, throughout their orbital periods showing

that for most of these stars the secondary image should be observable during its brightness peak.
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Amitai and Bin-Nun [98] add in a 1/r2 term to the Schwarzschild metric near Sgr A* in order to

determine the effect of this extra term on the properties of the secondary images of the S-stars in

the GC showing that when this term is positive, this represents a Reissner-Nordstrom (RN) metric,

leading to the conclusion that secondary images may not be a useful probe of electrical charge in

black holes, while a negative value for the term can enter through modified gravity scenarios.

Zakharov et al. [99] consider shadows around black holes as a tool to evaluate their parameters

by analyzing Kerr and Reissner-Nordström cases and for a significant charge one can expect that

geodesics of bright stars near the black hole and their observed fluxes may be different for these

metrics due to a difference in gravitational lensing. Therefore, a deviation from the Schwarzschild

case flux may be measured for a significant charge and the signature of extra dimensions may found.

However, as a theoretical analysis shows that a tidal charge has to be very close to zero and a

suggested charge value which may lead to measurable flux deviations for S2 like stars (or their

essential displacements or astrometrical lensing) is not consistent with observational constraints on

a shadow size.

The possibility of determining the spin of the SMBH in Sgr A* by using secondary images of

stars orbiting it was explored by [100].

Strong gravitational lensing effects around rotating black holes in different gravity theories were

explored by [101] and also by [102] for a photon sphere in spherically symmetric regular electrically

charged (REC) black hole and with those by corresponding REC no-horizon spacetimes, where in a

no-horizon spacetime images by lensing from the inside of the photon sphere can also appear and the

deflection angle α also increases with the impact parameter u; the lensing observables were analyzed

by modeling Sgr A* and the REC black holes agree with the EHT results in finite space. The

results offered by the EHT gave motivation to study gravitational lensing in strong-field limit by a

static spherically symmetric black hole in quartic scalar field Horndeski gravity having additional

hair parameter [103] where an increase in the deflection angle, photon sphere radius, and angular

position is found. The astrophysical consequences in the supermassive black holes at the center of

several galaxies was also discussed. Rahman and Sen [104] studied the strong lensing and time delay

effect of static spherically symmetric black hole solutions for the case of gravitational lensing of the

star S2 by Sgr A*, they constructed the rotating black hole solution from this static spherically

symmetric solution in Proca theories using the Newman-Janis algorithm and they studied lensing,

time delay and black hole shadow effect in this rotating black hole spacetime. The axially symmetric

counterpart of an existing spherical hairy black hole in Horndeski gravity was presented by [105].

Signatures from charged black holes were also investigated by [106] in the weak and strong

deflection limit, the SMBH in the GC is taken as the lens, and the observables are evaluated

in order to compare these signatures with those of the Schwarzschild, Reissner-Nordström, tidal
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Reissner-Nordström and charged Galileon black holes.

A major breakthrough in the astrometric precision in these campaigns has been achieved when

GRAVITY became operational. GRAVITY is an interferometer part of the second generation of

VLTI [107–110], the Very Large Telescope Interferometer.GRAVITY observed Sgr A* for 6 months

in 2019 in order to detect the weakest objects closer to it and follow their movement across the sky.

Indeed, the major result of these observations has been the detection of the relativistic

precession of the star S2 [111], which has marked an exceptional milestone for General Relativity

(GR), astrophysical black holes and Near Infrared interferometric observations. S2 is characterized

by the most favorable characteristics for such gravity test: it is bright enough for clear detection

both in astrometry and spectroscopy, it has a relatively small orbital period of about 16 years, it

comes as close as 120 au to the central black hole. Its nearly elliptical orbit only perturbed by GR

effects is evidence of the existence of a massive compact object located at its focus.

Astrometric measurements of the positions of the stars around a black hole are obviously subject

to light bending, which shifts the observed light outwards from the black hole. There is a number of

expectations related to gravitational lensing by Sgr A*. The apparent density of background stars

should decrease around the black hole [112]. The orbits of stars and the velocity distribution should

be distorted [113]. Extremely dim negative parity images should appear on the opposite side of

the stars with respect to the black hole [95, 97, 114]. These will be probably detectable by next

generation instruments, such as the ELT [115]. However, the most accessible effect of light bending

remains the astrometric shift of the primary image, which should be within reach of GRAVITY for

a number of S-stars [116]. The deflection is generally too weak for known stars to bear any memory

of the spin of the black hole [116, 117]. Other GR effects such as the relativistic precession or time

delay tend to dominate [118] and return more information on the characteristics of the black hole,

including its angular momentum [119]. Grould et al. [118] investigated the detection by GRAVITY

of different relativistic effects affecting the astrometric and/or spectroscopic observations of S2 such

as the transverse Doppler shift, the gravitational redshift, the pericenter advance and higher-order

general relativistic (GR) effects, in particular the Lense-Thirring effect due to the angular momentum

of the black hole.

Nevertheless, even a very weak distortion of the orbits of S-stars introduces systematic errors

in the determination of the orbital parameters if the astrometric shift is neglected. This error needs

to be correctly quantified and compared to statistical uncertainties. The purpose of the present

chapter is to assess the level of systematics induced by gravitational lensing in the orbits of three

short period S-stars (S2, S38, S55). This is achieved by forcing an orbital fit without lensing to

reproduce the orbit including lensing and evaluating the shift in the parameters. As expected, we

find that the systematic error is below current uncertainties but not so far. After that, with the same
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spirit of similar studies [119], by varying the semimajor axis and the orbital inclination of the star

S2, we determine the region of the orbital parameters in which a similar star would show evidence

of gravitational lensing beyond statistical noise.

In Section 3.2 we present a description of the instrument, Section 3.3 introduces the three stars

investigated in our study and their orbits. Section 3.4 discusses gravitational lensing by Sgr A*.

Section 3.5 evaluates the impact of gravitational lensing on the aforementioned stars. Section 3.6

repeats the same study on a clone of star S2 with different semimajor axis and inclination. Section

3.7 contains the discussion.

3.2 The GRAVITY Instrument

The European Southern Observatory (ESO) on Cerro Paranal in the Atacama Desert of

Northern Chile, shown in Fig.3.1,

Figure 3.1: The four UTs and the four ATs. Source: eso.org.

is the observing site for optical astronomy. It hosts ten telescopes: two of them (VST

(VLT Survey Telescope) and VISTA) are used for survey observations, the other eight are two

quadruplets of telescopes forming the VLTI (Very Large Telescope Interferometer) when they do

operate simultaneously, while operated individually they are called Very Large Telescope (VLT).

The VLTI combines the light of the four VLT telescopes (the four Unit Telescopes (UTs)) and the

Auxiliary Telescopes (ATs). The four UTs have a primary mirror of 8.2 m diameter assisted by both

active and adaptive optics with a laser guide star if needed. When they do operate simultaneously

they form an optical interferometer with a maximum baseline of 130 m used to study sources up to

apparent magnitude in the K-band mK = 19, such as the GC, AGNs, exoplanets or young stellar

objects.
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The four ATs are a set of telescopes with a primary mirror of 1.8 m and they can be only

operated in the interferometric mode with a maximum baseline available of 200 m for targets up to

mK = 16.5.

For the UTs part of the collected light is sent to a curvature wavefront sensor which corrects

the atmospheric aberration due to the atmospheric turbulence by acting over a deformable mirror in

real time. For the ATs, the interferometer is used during nights with an excellent quality of the sky

[120].

GRAVITY provides a spectro-interferometry in the K-band between 2 and 2.4 µm and a

resolution between 4 mas (milli-arcsecond) and 50 mas with the UTs, and between 2 mas and 140

mas with the ATs. The project was accepted by ESO after concluding a study period finished in

2007 [107] and the commissioning phase started at the end of 2015 for the ATs and in 2016 for the

UTs. GRAVITY observed Sgr A* for 6 months in 2019 in order to detect the weakest objects closer

to it and follow their movement across the sky.

A scheme of the GRAVITY instrument can be seen in Fig. 3.2 [110]

Figure 3.2: Diagram of GRAVITY subsystems. Source: Gravity Collaboration et al.[110].

where only two telescopes and one of the wavefront sensors and beam combiner are shown. For

a complete description of the instrument, which is not part of the plan of this thesis, we refer to the

references cited above in this Section.
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Osculating Orbital Parameters

Parameter Unit S2 S38 S55

a mas 124.95± 0.04 142.54± 0.04 104.40± 0.05

e 0.88441± 0.00006 0.81451± 0.00015 0.72669± 0.00020

i ◦ 134.70± 0.03 166.65± 0.4 158.52± 0.22

ω ◦ 66.25± 0.03 27.17± 1.02 322.78± 1.13

Ω ◦ 228.19± 0.03 109.45± 1 314.94± 1.14

T0 Years 2018.38± 0.00 2003.15± 0.01 2021.69± 0.01

P Years 16.046± 0.001 19.55± 0.01 12.25± 0.01

Table 3.1: S2, S38 and S35 osculating orbital parameters from Gravity Collaboration’s fit [111, 127].

Parameter Unit Value

MBH 106 M⊙ 4.261± 0.01

D• pc 8246.7± 9.3

Table 3.2: The black hole mass and the derived distance of the Solar System to the Galactic Center.

[111, 127].

3.3 The stars S2, S38 and S55

The S-stars present a variety of orbital parameters, according to an isotropic distribution with

projected density Σ(θ) ∼ θ−0.3 [121]. Many S-stars lie on very eccentric long-period orbits. The

most favorable case for a full orbital reconstruction is provided by low-period stars, with P ≤ 20

yrs, which are suitable for a long-term follow-up. The three stars discussed in this section fulfill this

requirement.

S2 (or S02 in the UCLA nomenclature) is a single and slowly rotating main-sequence B-star

of age ≃ 6.6 Myr, apparent magnitude K = 14.1 and estimated mass MS2 ≃ 13.6 M⊙ [110, 111,

122–126]. S2 represents the only case in which a prograde orbital precession of 12 arcminutes has

been measured. Therefore, here we refer to the osculating orbital parameters.

In Table 3.1 we display the current estimates of S2 orbital parameters as in Refs. [111, 127],

where a is the semimajor axis of the ellipse, e its eccentricity, i is the angle of inclination between the

real orbit and the observation plane, Ω is the angle of the ascending node measured from the north

direction, ω is the argument of the pericenter, T0 is the epoch of pericenter passage, P is the orbital

period, MBH the black hole mass, D• is the derived distance of the Solar System to the Galactic

Center as shown in Table 3.2.

The relativistic precession changes the orbit orientation by increasing ω by 12’ per orbit. The
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last apocenter passage was in 2010, the next one is expected in 2026, the furthest distance from the

MBH is rmax = 1954.24 au according to Eq.(3.7), the last pericenter passage is T0 = 2018.38 (May

19th 2018) [128, 129], the closest distance estimated according to Eq.(3.8) is rmin = 119.87 au and

the next pericenter passage is expected to be in 2034.

S38 is a main-sequence B-star of apparent magnitude K = 17. In Table 3.1 we display the

orbital parameters for S38 as in Ref. [111]. The last apocenter passage was at the end of 2012, the

next one is expected in 2032, the furthest distance from the MBH is rmax = 2146.66 au according

to Eq.(3.7), the last pericenter passage is T0 = 2003.15, the closest distance estimated according to

Eq.(3.8) is rmin = 219.44 au and the next pericenter passage is expected to be in 2022.

S55 is a main-sequence B-star of apparent magnitude K = 17.5. In Table 3.1 we display the

orbital parameters for S55 as in Ref. [111]. The last apocenter passage was in 2015, the next one is

expected in 2027, the furthest distance from the MBH is rmax = 1496.17 au according to Eq.(3.7),

the last pericenter passage is T0 = 2021.69, the closest distance estimated according to Eq.(3.8) is

rmin = 236.82 au and the next pericenter passage is expected to be at the end of 2033.

For the orbit calculation of the S-stars, we start from the Lagrangian of a particle in the

Schwarzschild metric

L =
1

2
m

[
A(r)c2ṫ2 − A(r)−1ṙ2 − r2ϕ̇2

]
(3.1)

where m is the reduced mass of the star, ϕ is the true anomaly, r is the radial coordinate, t is the

time for the observer at infinity and dots denote derivatives with respect to the proper time τ . The

Schwarzschild metric is characterized by

A(r) =

(
1− RS

r

)
(3.2)

where

RS =
2GMBH

c2
(3.3)

is the Schwarzschild radius, G is the gravitational constant, c is the speed of light.

The equations of motion can be expressed in terms of the constants of motion E and L as

ṫ =
E

c2
(
1− RS

r

) (3.4)

ϕ̇ =
L

r2
(3.5)

ṙ = ±

√
E2

c2
−
(
1− RS

r

)(
1 +

L2

r2

)
(3.6)
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where the negative solution is for the particle approaching the black hole, the positive solution is

for the particle moving away from the black hole. E represents the energy and L is the angular

momentum of the particle per unit mass which we can get by solving the system with Eq.(3.6)

evaluated for r = rmax and r = rmin, where

rmax = a(1 + e) (3.7)

rmin = a(1− e) (3.8)

are the apocenter and the pericenter respectively as functions of the semimajor axis and the

eccentricity.

The equation of motion is [130]:

r̈ = −A(r)
2

(
dA(r)

dr
ṫ2 − 1

A(r)2
dA(r)

dr
ṙ2 − 2rϕ̇2

)
. (3.9)

We solve Eq.(3.9) for r = r(τ) numerically from the last pericenter passage T0 starting from null

velocity as initial conditions, Eq.(3.5) and Eq.(3.4) respectively give ϕ = ϕ(τ) and t = t(τ), then

we invert the latter in order to have τ = τ(t) to finally obtain r = r(t) and ϕ = ϕ(t) which

give the position and the true anomaly as functions of the observer time. All these solutions are

found numerically and their stability over several periods has been carefully checked. We have then

evaluated the orbital precessions of our three stars by comparing the true anomaly at two consecutive

pericenters, i.e. minima of r. For the relativistic precession of S2 we find δϕ = ϕ(P )− 2π = 12′.17,

in agreement with GRAVITY results [111]. For S38 we get δϕ = ϕ(P ) − 2π = 6′.79 and for S55

δϕ = ϕ(P )− 2π = 6′.46.

Finally, the orientation of the orbits in space is described by the standard orbital elements i,

Ω, ω. The detailed geometric transformation from r(t) and ϕ(t) to the position in the sky described

by ∆R.A. and ∆Dec. is reported in Subsection 3.3.1 for completeness.

The orbits of the three stars are shown in Fig. 3.3 as they appear on the observer sky.
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Figure 3.3: On the left: S2, S38 and S55 orbit reconstruction around Sgr A*; on the right: orbit

reconstruction of other S-stars.

3.3.1 Orbital parameters of the real and apparent orbits

We deal with a two-body problem where S2 and the other S-stars have an elliptic orbit and

Sgr A* lies in the focus located at the center of mass and we denote OXY Z the coordinate system

of the apparent orbit of the star: the axes origin is centered at Sgr A*. The Z-axis of the coordinate

system is defined by the vector pointing from the Solar System to the Galactic Center, and the X

and Y axes are defined such that the X-Y plane is parallel to the plane of the sky, with the X-axis

pointing North and the Y-axis pointing East; we denote Oxyz the plane of the real star’s orbit.

In polar coordinates the ellipse equation in the Oxyz system is given by


x = r cosϕ

y = r sinϕ

z = 0

(3.10)
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where r(τ) is the star position that we get as a function of the proper time from Eq.(3.9) and, in our

case, it coincides with DLS, i.e. the distance between the lens (Sgr A*) and the source (the S-star);

ϕ is the true anomaly that we get, as a function of the proper time ϕ(τ), from Eq.(3.5), a is the

semimajor axes of the ellipse and e its eccentricity.

We can always obtain the apparent orbit in the OXY Z system by applying a matrix

transformation on the Oxyz system:


X

Y

Z

 = R


x

y

z

 (3.11)

where R = RΩ ·Ri ·Rω is the rotation matrix where i is the angle of inclination between the real orbit

and the observation plane, Ω is the angle of the ascending node, and ω is the argument of pericenter,

and

RΩ(Z) =


cosΩ − sinΩ 0

sinΩ cosΩ 0

0 0 1

 (3.12)

Ri(X) =


1 0 0

0 cos i − sin i

0 sin i cos i

 (3.13)

Rω(Y ) =


cosω − sinω 0

sinω cosω 0

0 0 1

 (3.14)

where RΩ represents the rotation along the Z-axes, Ri the rotation along the X-axes and Rω is the

rotation along the Y-axes. Then finally we get the Cartesian coordinates of the apparent orbit of the

star on the sky plane,


X = r[cos Ω cos (ϕ+ ω)− sinΩ sin (ϕ+ ω) cos i]

Y = r[sinΩ cos (ϕ+ ω) + cosΩ sin (ϕ+ ω) cos i]

Z = r[sin (ϕ+ ω) sin i]

(3.15)

The observed displacement from Sgr A* are∆Dec. ≡ X
D•

∆R.A. ≡ Y
D•

. (3.16)
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Figure 3.4: Projection on the sky of the real star’s orbit onto the plane of the sky, the osculating

orbital parameters are shown.

When we turn on the gravitational lensing effect, both coordinates are multiplied by D•θ/
√
X2 + Y 2

with θ given by Eq. (3.23).

3.4 Gravitational lensing by Sgr A*

The light from the S-stars is deviated by the gravitational field of Sgr A*. The deflection for the

primary image can be generally studied in the weak deflection limit, unless the source is well-aligned

behind it and is very close to it. However, this is precisely the situation in which gravitational lensing

effects become appreciable. Therefore, we decide to keep the calculation of the deflection exact so as

not to miss any potentially interesting effects. The source position is tracked by its radial coordinate

rS ≡ r(t) as calculated from the orbital motion, and by the angle γ between the source position and

the optical axis, defined as the line of sight from the observer to the black hole. In terms of the true

anomaly and the orbital elements defined before, this angle is

γ(t) = arccos [sin (ϕ(t) + ω) sin i] (3.17)

and ranges from 0 (perfect alignment of the source behind the lens) to π (perfect anti-alignment,

with the source in front of the lens).

A photon travelling from some radial coordinate r1 to r2 experiences an azimutal shift

I(r1, r2; r0) =

∫ r2

r1

dr

r

√
r2

r20

(
1− RS

r0

)
−
(
1− RS

r

) , (3.18)
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where r0 is the closest approach distance of the null geodesic on which the photon is travelling. It is

related to the impact parameter u of the asymptotic trajectory at infinity as

u =
r0√

1− RS

r0
.

(3.19)

For a photon emitted by a source at rS and reaching an observer at distance D•, we have two

possibilities: the photon may approach the black hole, reach the minimum distance r0 and then

travel toward the observer; otherwise, the photon may directly travel from rS to the observer at D•

without approaching the black hole. This is the case when the source is in front of the black hole as

seen by the observer. Therefore, the azimutal shift is

∆ϕ(rS, r0) =

I(r0, rS; r0) + I(r0, D•; r0) if γ < γ0

I(rS, D•; r0) if γ ≥ γ0

(3.20)

The angle γ0, distinguishing the two cases, corresponds to the limiting case in which the photon is

emitted with r0 = rS, i.e. when the photon is emitted at the closest approach point of its geodesic.

For a given source distance rS, the angle γ0 is calculated by imposing

I(rS, D•; rS) = π − γ0, (3.21)

but is obviously very close to π/2 in all practical situations as shown in Fig.3.5.

Figure 3.5: The angle γ0 as a function of the source position rS in a semi-log scale.

Only when the source is at a distance similar to the one of the observer, i.e. when rS = D•,

γ0 grows and exceeds π. On the other extremum γ0 negatively diverges when the source approaches

the photon sphere at 1.5 RS because photons will reach a far observer only if they are emitted in an

outward direction.
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Finally, by imposing that the azimutal shift is just the correct one to let the photon move from

γ to π (where the observer lies), we have a lens equation

∆ϕ(rS, r0) = π − γ. (3.22)

We solve numerically for the closest approach r0 and find the corresponding impact parameter u.

The angular distance of the image from the black hole as seen by the observer is then

θ =
u

D•
, (3.23)

since the observer distance D• is much larger than any u of our interest.

The star position including the astrometric shift is then obtained by increasing the angular

coordinates ∆Dec. and ∆R.A. so that the angular distance from the black hole matches θ while

keeping the position angle fixed. Note that the astrometric shift steadily increases from zero (when

the source is in front of the black hole with γ = π) to the maximum value corresponding to the

Einstein radius θE =
√

2RS rS/D•(D• + rS), which is reached if the source is behind the black hole

with γ = 0.

As already stated before, we neglect any lensing effects from the spin of the black hole following

the findings of previous works [116, 117].

3.5 Impact of gravitational lensing on the reconstruction of

the orbits of S- stars

The orbital fit of the S-stars is typically performed ignoring the astrometric shift due to

gravitational lensing [118, 131]. However, forcing an orbital fit without including gravitational lensing

may lead to a systematic error in the derived parameters. The most obvious one is the semimajor axis:

since the astrometric shift pushes the observed images away from the black hole, the real semimajor

axis should be slightly smaller than what we naively deduce from the observations. However, as we

shall see, the 3-D reconstruction of the orbital parameters may lead to some combined effects on

different correlated parameters.

In order to quantify this systematic error, we create simulated observations of the S-stars

along their orbits including the astrometric shift due to gravitational lensing. These “data points”

are generated from the tabulated orbital elements as reported by recent observations [127] and

summarized in Table 3.1. We then try to fit these data points with orbits that do not include

gravitational lensing. The new orbital elements will be slightly offset from the original ones and

quantify the systematic error committed by ignoring gravitational lensing.
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Since the offsets from the original parameters are very small, it is sufficient to perform a few

iterations with the Gauss-Newton method to find the new minimum of the χ2 [132]. In detail,

denoting the 7 orbital elements with the vector

η = (a, e, i, ω,Ω, T0, P ), (3.24)

and the shift in the parameters with

δ = (δa, δe, δi, δω, δΩ, δT0 , δP ), (3.25)

we compare the positions including lensing flens,i(η) and the positions without lensing f0,i(η).

Here the index i spans the number of generated data points n, including both ∆Dec. and ∆R.A..

Introducing the gradients

Ji =
∂f0,i(η)

∂η
(3.26)

the shifts are obtained by solving the linear equation

(
JTJ

)
δ = JT [flens − f0 (η)] (3.27)

where J is the Jacobian matrix, whose i-th row equals Ji, and where f0 (η) and flens are vectors with

i-th component f0,i and flens,i respectively. The calculation of the offsets δ can be iterated so as to

minimize the χ2

χ2 =
n∑

i=1

[
flens,i − f0,i(η + δ)]

σi

]2
, (3.28)

where σi is the statistical uncertainty in each measurement. Here for simplicity we adopt a standard

value of σ = 0.4 mas for the uncertainty of each individual measurement, as reported by GRAVITY

[127]. A different value has no effect in the estimate of the systematic error calculated with our

procedure, but is important to assess the relevance of systematic errors compared to statistical

errors. In fact, the statistical uncertainty in each parameter scales as σ/
√
n.
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Figure 3.6: Analysis for S2. First row: γ(t) (top left) and r(t) (top right) as functions of time; second

row: right ascension (on the left) and declination (on the right); last row: astrometric shifts in right

ascension (left) and declination (on the right). Computations are done starting from T0 over two

periods.
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Figure 3.7: Analysis for S38. First row: γ(t) (top left) and r(t) (top right) as functions of time;

second row: right ascension (on the left) and declination (on the right); last row: astrometric shifts

in right ascension (left) and declination (on the right). Computations are done starting from T0 over

two periods.
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Figure 3.8: Analysis for S55. First row: γ(t) (top left) and r(t) (top right) as functions of time;

second row: right ascension (on the left) and declination (on the right); last row: astrometric shifts

in right ascension (left) and declination (on the right). Computations are done starting from T0 over

two periods.

Figs. 3.6, 3.7, 3.8 show the angular coordinates ∆R.A. and ∆Dec. as functions of time for

the three stars S2, S38 and S55 respectively. In addition, we include plots of the alignment angle

γ and the radial distance from the black hole r. These are the two quantities that determine the

amount of the astrometric shift, which is finally reported in the bottom panels of each figure for both

coordinates. We can appreciate that while the angular distances from the black hole are of the order

of tens or hundred mas, the astrometric shifts are of the order of ten µas. Such small astrometric

shifts are due to the fact that for all the three stars considered here, the alignment angle γ remains

quite far from perfect alignment. For S2 we have 45◦ < γ < 135◦, for S38 77◦ < γ < 103◦, for S55
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69◦ < γ < 111◦.

Table 3.3 contains the results of our investigation of the systematic shifts in the orbital

parameters due to gravitational lensing compared with the statistical uncertainties as declared by

GRAVITY. As expected, the estimates of the parameters are robust against gravitational lensing:

all systematic errors are well below the uncertainties, but not too far! For S2 we see that for most

parameters the shift is just one order of magnitude below the current uncertainty in the parameters.

Even keeping the current astrometric accuracy for each individual data point, just by adding new

observations in future years it will be possible to let the astrometric shift emerge and be detected.

This is indeed an interesting perspective, since the astrometric shift provides another constraint on

the enclosed mass that should be compatible with the dynamically derived mass. For S38 and S55

the situation is just slightly less favorable for lensing detection because the orbits are closer to face-on

and the periastron is not as close as for S2. For these two stars, the most affected parameter remains

the semimajor axis.

S2 S38 S55

Parameter σ(stat.) δ(syst.) σ(stat.) δ(syst.) σ(stat.) δ(syst.)

a (mas) 4.0× 10−2 3.5× 10−3 4.0× 10−2 3.2× 10−3 5.0× 10−2 5.0× 10−3

e 6.0× 10−5 4.7× 10−6 1.5× 10−4 6.1× 10−6 2.0× 10−4 7.8× 10−6

i (◦) 3.0× 10−2 −1.2× 10−3 4.0× 10−1 3.9× 10−3 2.2× 10−1 4.6× 10−3

ω (◦) 3.0× 10−2 1.9× 10−3 1.0 2.9× 10−3 1.1 −1.3× 10−2

Ω (◦) 3.0× 10−2 1.9× 10−3 1.0 2.9× 10−2 1.1 −1.3× 10−2

P (years) 1.0× 10−3 −2.9× 10−5 1.0× 10−2 9.9× 10−7 1.0× 10−2 −5.3× 10−6

Table 3.3: Comparison between the systematic error δ committed by ignoring gravitational lensing

and the statistical uncertainty σ reported by the GRAVITY Collaboration [111, 127] for S2, S38 and

S55.

3.6 Exploring Gravitational lensing at various semimajor axes

and inclinations

As shown in the previous section, the astrometric shifts of S2 and the other stars are about one

order of magnitude smaller than the current uncertainties in the parameters. Indeed, their orbital

inclinations keep the stars relatively far from perfect alignment. For stars getting closer to the

black hole, the emitted light also experiences stronger deflections. Motivated by the interest in the

detection of effects related to gravitational lensing, in this section we repeat the analysis for S2 after
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varying the two parameters that have the strongest impact on gravitational lensing: the semimajor

axis and the orbital inclination.

We start from the original value of the semimajor axis a reported in Table 3.1, and go down to

a× 10−1.5 ≈ 388 RS in steps of 10−0.25 with a minimum periastron of 45 RS. The smallest value of

a is safely far from the tidal radius, i.e. the maximal distance from the MBH where the tidal forces

of the MBH would overwhelm the stellar self-gravity and tear the star apart [133]:

RT = RS2

(
MBH

MS2

)1/3

≈ 31RS (3.29)

where we have adopted RS2 = 8.4 R⊙ for a normal main sequence star with M =MS2 [134].

For each of the six semimajor axes in the described range, we also vary the inclination angle i

in the range 90.5◦ < i < 135◦ in steps of 5◦, so as to investigate the effects on the parameter shifts

from the S2 inclination i = 134.7◦ to an edge-on orbit.

In our simulated observations, we keep the number of data points fixed and span two full orbits

starting from T0 with a total of 107 data points. Obviously, if the semimajor axis changes, the orbital

period changes according to the third Kepler’s law.

In Fig.3.9 we show how the S2 orbit changes as the semimajor axis becomes smaller keeping

the inclination fixed at the real value. We compare the orbit including the lensing shift (green line)

with the orbit without gravitational lensing (red line). The circle marks the position where Sgr A*

is located. The orbit is traced over two periods starting from T0 and it does not close due to the

relativistic precession. The scale of the figures follows the same factor as the semimajor axis, so as

to show the orbits always with the same size. We may note that the green line perfectly overlaps

the red line, meaning that the astrometric shift is smaller than the thickness of the lines, save for

the last figure in the bottom right, where we can barely appreciate a difference between the green

line (including lensing) passing out of the red line (orbit with no lensing). In particular, the effect is

visible at the periastron passage in the last panel.
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Figure 3.9: S2 orbit with its original fixed inclination i = 134.7◦ by varying its semimajor axis from

a× 10−0.25 (first row, top left) to a× 10−1.5 (second row, bottom right). The red line stands for the

unperturbed orbit, which is almost completely hidden behind the green line standing for the orbit

affected by gravitational lensing. The circle stands for the position of Sgr A*. The orbit is traced

over two periods starting from T0 and it does not close due to the relativistic precession.

In Fig.3.10 we show the orbits of S2 with a fixed reduced semimajor axis by a factor of 10−1.5

and with a varying orbital inclination from i = 90.5◦ (first row, top left) to i = 130◦ (second row,

bottom right) in steps of 5◦. With the smallest semimajor axis, the effect of gravitational lensing

is evident in all plots. In particular, nearly edge-on orbits show the typical circular section as the

image rapidly revolves around the Einstein ring [113].
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Figure 3.10: S2 orbit with a fixed reduced semimajor axis by a factor of 10−1.5 by varying its

inclination from i = 90.5◦ (left top) to i = 130◦ (right bottom) in steps of 5◦. The red line stands

for the unperturbed orbit, the green line stands for the orbit affected by gravitational lensing. The

circle stands for the position of Sgr A*. The orbit is traced over two periods starting from T0 and it

does not close due to the relativistic precession.

Finally, Fig. 3.11 shows the systematic shift δ in each orbital element due to gravitational

lensing for all values of the semimajor axis in our range and for the different inclinations. The

maximum semimajor axis corresponds to the actual measured value of S2. Therefore, the gray lines

in each plot, which correspond to an inclination of 135◦, match the values reported in Table 3.3 at

their right ends.
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First we note that the shifts in the semimajor axis and the eccentricity are very sensitive to

the orbital inclination. For edge-on inclinations, the shifts rapidly approach the current uncertainty

in the parameters. If we also decrease the semimajor axis, the shifts exceed the uncertainties. It

may look quite counter-intuitive that the shift in the semimajor axis and the eccentricity decreases

and even changes sign for closer stars, but we should be aware that the circular deviation of the star

image around the Einstein ring cannot be fit by an unlensed orbital trajectory in any effective way.

In these cases, the quality of the fit is rapidly degraded and the orbital elements become less and

less reliable.

For the angular orbital elements, there is no particular evolution when we go to smaller

semimajor axes. For the inclination we note that we start with a negative shift (toward a more

edge-on orbit) and we end with a positive shift (more face-on orbit) when the deviation is closer

to the Einstein ring. This inversion looks coherent with the plots for the semimajor axis and the

eccentricity. A similar effect, but less pronounced, is in the argument of the periastron ω. The shift

in the longitude of the ascending node Ω just increases very slowly.

The negative shift in the period can be interpreted as a combination of the increase in a and

the need to follow the relativistic precession: a larger a with the same relativistic precession can only

be obtained with a slightly larger mass of the black hole and a slightly shorter period.
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Figure 3.11: The δ obtained by varying the semimajor axis a and the inclination i. From top left to

the sixth panel: δa/a, δe, δi, δω, δΩ, δP/P as a function of log a expressed in au. The error bars on

the right indicate GRAVITY’s fit error, see Table 3.1.

Once more we stress the fact that the systematic shifts presented in Fig. 3.11 are independent

of the statistical uncertainties. The minimum of the χ2 does not change if we multiply or divide all

σi by the same factor. Therefore, the significance of the parameter shifts caused by gravitational

lensing can be evaluated once a given floor for the statistical noise is assigned. In this respect, Fig.

3.12 may be of some help. It represents the change in χ2 induced by the lensing effects investigated

in this section. The χ2 depends on the uncertainty σi of the individual measurements and on the

total number of data points. In Fig. 3.12 we have adopted σi = σ
(

a
aact

)
, where σ = 0.4 mas is the

average uncertainty of each individual measurement reported by GRAVITY [127], aact is the actual
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semimajor axis as we read it in Table 3.1 and a is the rescaled semimajor axis used in the plots of Fig.

3.11. In this way, the error bars of each astrometric measurement is rescaled with the same factor

as the semimajor axis, which is a reasonable choice for simulated observations in which we assume

to be sensitive to smaller and smaller values of a. The number of data points in our simulations is

fixed to 107. Increasing the data would make the lensing signal emerge by increasing the χ2. This

is particularly true if we add data points in the most sensitive sections of the orbit, when the star is

better aligned with the black hole (minima of γ) and the distance is smaller.

With the basic setup discussed in this section, we see that the χ2 is very modestly increased

until we decrease the semimajor axis by an order of magnitude. Only at this point the χ2 increases

by more than one unit. Actually, we already have thousands of astrometric measurements on S2,

which make the detection of lensing effects much closer than what may appear from Fig. 3.12.

Figure 3.12: The χ2 test of all data sets vs log a expressed in au.

3.7 Discussion

The presence of a MBH at the center of our Galaxy has inspired many studies about light

deflection from such a mass concentration surrounded by a very dense stellar environment. Many

relativistic effects have already been measured, such as the gravitational redshift, the Shapiro time

delay and the relativistic precession of the periapse [111]. This is indeed happened thanks to the

existence of the star S2, which provides an ideal laboratory for testing relativistic dynamics in such

strong fields. In contrast with these outstanding measurements, the long sought light deflection effect

is surprisingly still hidden within the current astrometric error bars. The only manifestation of light

deflection by Sgr A* currently known is through the reconstruction of the image of the shadow by

the EHT collaboration [135]. In that case, mm-band observations by different stations are combined
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so as to sample the interferometric visibility amplitude across several spatial frequencies. In this way,

the best image including a model of the accretion flow and light deflection by the black hole metric

can be selected based on the measured amplitudes. The source of the radiation detected in this band

is the matter accreting onto the black hole, whose flow is modeled by sophisticated gravito-magnetic

relativistic hydrodynamics simulations. Light deflection in these images is therefore only one of the

many essential ingredients but cannot be studied in a clean isolated framework as it would be possible

for a point source.

On the other hand, stars are ideal compact sources for probing gravitational lensing. Their

emission peaks in the visible or in the NIR, which makes GRAVITY the ideal instrument. In this

chapter, we have investigated the impact of gravitational lensing in current orbital fits for S2, S38 and

S55. By forcing a fit ignoring lensing on the apparent orbit including the lensing effect, we estimate

that the systematic shift in the orbital elements is about one tenth of the reported uncertainties.

Therefore, we recommend the inclusion of the astrometric deflection of the image of S2 and other

stars in the reconstruction of the orbits already at the present stage. Furthermore, by a continuous

follow-up of the orbits of these stars, the light deflection should be detectable even at the current

astrometric precision. Simple statistics would suggest that in order to bring down statistical errors

at the same level of the systematic shift we should increase the sampling by a factor of 100. Yet, not

all sections of the orbit have the same weight. The astrometric shift caused by gravitational lensing

is more prominent when the star has the most favorable alignment behind the black hole. It would

be ideal to concentrate the most accurate observations by NIR interferometers in this short section

to have a clearer detection.

In addition to this analysis focusing on the actual orbits of the S-stars, we have presented an

investigation of the systematic shift in the orbital elements after varying the semimajor axis and the

orbital inclination of S2. For nearly edge-on orbits the shift in the parameters may increase by an

order of magnitude. The effect becomes even more pronounced for stars orbiting closer and closer to

the MBH.

The complete work is published on JCAP (Journal of Cosmology and Astroparticle Physics)

and available at the following link https://arxiv.org/abs/2207.14732.
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CHAPTER 4

CONCLUSIONS

The deflection of light has inspired many scientists starting from the XVIII century and in this

thesis we showed two applications of gravitational lensing in fields of scientific interest, in the weak

and in the strong regime.

We have generalized a previous study of binary lenses with 1/rn potential with an extension to

the case of mixed binaries which is a case important from the astrophysical point of view. This kind

of investigation gave a complete atlas of the critical curves and caustics of mixed binary systems such

as pairs of galaxies with different halos, or cases in which one object is made up of exotic matter

and the other one is a normal star. The investigation in different limits in all three topology regimes

have shown that an elliptic umbilic catastrophe exists for mn < 1 and it was also possible to describe

the pseudocaustic in the m = 0 limit. We showed that these structures are quite sensitive to the

parameters of the lens and that the mixed binary lens described here is still obtained by the linear

superposition of the potentials of two isolated objects which is physically relevant whenever we can

neglect the non-linear terms in Einstein equations.

The presence of a supermassive black hole at the center of the Milky Way inspired many studies

about light deflection. This happened thanks to the existence of the star S2 and of the S-stars, which

provide an ideal laboratory for testing General Relativity. Stars are ideal compact sources for probing

gravitational lensing. Their emission peaks in the visible or in the NIR and makes GRAVITY the

ideal instrument. The investigation of the impact of gravitational lensing in current orbital fits for

S2, S38 and S55 by forcing a fit ignoring lensing on the apparent orbit including the lensing effect

returns an estimation of the systematic shift in the orbital elements which is about one tenth of

the reported uncertainties. The astrometric shift caused by gravitational lensing is more prominent

when the star has the most favorable alignment behind the black hole. We have also presented an
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investigation of the systematic shift in the orbital elements after varying the semimajor axis and

the orbital inclination of S2 showing that for nearly edge-on orbits the shift in the parameters may

increase by an order of magnitude and this effect becomes even more pronounced for stars orbiting

closer and closer to the supermassive black hole.

More and more precise observations will allow the discovery of other S-stars around the Galactic

Center which will be protagonist of future tests of General Relativity, whose results will indeed amaze

us with striking confirmations or incredible surprises.
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