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A B S T R A C T

The advent of the Internet of Things (IoT) paradigm has launched
a new world of opportunities, bringing with it a new understand-
ing of objects and technology that, today, is all around us. In
fact, especially in domestic environments, there is a real digi-
tal overhaul of the objects that users interact with on a daily
basis. Thus, devices such as lights, TVs, cameras, locks, and elec-
trical outlets are expanding their set of physical and technical
characteristics expected from such devices with the addition of
“smart” functionality, made possible by providing such devices
with Internet connectivity. The activation and management of
these devices, therefore, can be coordinated remotely, via smart-
phone, or through voice assistants such as Amazon Alexa or
Google Home. Being devices eternally connected to the Internet,
they never stop collecting, processing and sending data of the
environment in which they are placed. For example, a temper-
ature sensor can at any time send updates on the state of the
environment, directly to the user’s smartphone, or a camera can
provide, at any time, a live image of the apartment. In addition,
such devices can be configured to provide true automation that
is triggered in response to the occurrence of certain conditions.
This aspect is precisely among the most important of those of-
fered by IoT technology; in fact, the interoperability that can be
established between different IoT devices and/or communication
with different web services is capable of radically simplifying the
everyday life of users who make use of them.

Recently, we have witnessed the emergence of several plat-
forms specifically designed to simplify the definition, by the end-
users, of automation, based on the interaction between devices
and services in a smart environment. Among these platforms,
the most popular ones are those that provide a reinterpretation
of the Trigger-Action paradigm, i.e., the ability to define automa-
tisms by specifying the event (or trigger) and the action. The
first component establishes the type of event for which the au-
tomation is triggered if conditions are met. Instead, the second
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component refers to the operation to be performed to complete
the automation. Such platforms take the name of Trigger-Action
Platforms (TAPs).

The wide spread of IFTTT and other TAPs raised the question
of the enormous security risks to smart environments and the
privacy of end users interacting with the platforms, which might
be caused by the defined behaviors. This is partly due to the
high level of abstraction that TAPs provide and that very often
gives little emphasis to security and privacy issues. In addition,
the low level of technical knowledge that the average TAP user
has, however, would not allow them to approach such issues and
understand their severity.

This thesis aims to address a common problem in trigger-action
platforms (TAPs) - the inability for users to create behaviors that
actively protect their smart environment. To solve this issue,
we propose integrating the capabilities of a newly created IoT
device, called the Intrusion Defender (ID), into an existing TAP.
The ID is capable of monitoring network traffic throughout the
smart environment for unusual patterns that may indicate a
cyber attack. Additionally, by providing an appropriate level of
abstraction, the events detected by the ID are presented to the
user in a more understandable format, allowing them to create
rules that respond to, for example, a Denial-of-Service attack.

Additionally, we propose an NLP-based solution that can au-
tomatically identify any potential security and privacy risks as-
sociated with the trigger-action rules defined by the user. We
achieved this by utilizing the capabilities of transfer learning
models that incorporate the transformer architecture to achieve
precise outcomes even with a limited amount of data for training.
Specifically, we employed the Bidirectional Encoder Represen-
tations from Transformers (BERT) model developed by Google
for identifying risks. The results from our experiments demon-
strated the reliability and precision of the model we trained in
classifying risks into three different damage classes, particularly
when compared to other similar methods in the field.

To further reinforce the understanding of these risks, we use
natural language models to generate example scenarios. In partic-
ular, our risk identification model is paired with a component that
explains why the rule is activated through a possible scenario. We
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fine-tune the model through prompts, which are virtual tokens
embedded in a continuous space, to aid the model in understand-
ing the rule’s purpose. Our evaluations of the trained models
prove that our approach is effective in producing plausible and
contextually appropriate justifications.
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A B S T R A C T

L’avvento del paradigma dell’Internet of Things (IoT) ha dato
vita ad un nuovo mondo di opportunità, portando con sé una
nuova comprensione degli oggetti e della tecnologia che, oggi, ci
circonda. In effetti, soprattutto negli ambienti domestici, c’è una
vera e propria rivoluzione digitale degli oggetti con cui gli utenti
interagiscono quotidianamente. Pertanto, dispositivi come luci,
televisori, telecamere, serrature e prese elettriche stanno espan-
dendo il loro insieme di caratteristiche fisiche e tecniche attese
da tali dispositivi con l’aggiunta di funzionalità "intelligenti",
rese possibili dalla fornitura di tali dispositivi con la connettività
Internet. L’attivazione e la gestione di questi dispositivi, quindi,
possono essere coordinate in modo remoto, tramite smartphone
o tramite assistenti vocali come Amazon Alexa o Google Home.
Essendo i dispositivi eternamente connessi a Internet, non smet-
tono mai di raccogliere, elaborare e inviare dati dell’ambiente
in cui sono collocati. Ad esempio, un sensore di temperatura
può inviare in qualsiasi momento aggiornamenti sullo stato
dell’ambiente, direttamente sul smartphone dell’utente, oppure
una telecamera può fornire, in qualsiasi momento, un’immagine
in diretta dell’appartamento. Inoltre, tali dispositivi possono es-
sere configurati per fornire un’automazione vera e propria che
viene attivata in risposta all’occorrenza di determinate condizioni.
Questo aspetto è proprio tra quelli più importanti offerti dalla tec-
nologia IoT; infatti, l’interoperabilità che può essere stabilita tra
diversi dispositivi IoT e/o la comunicazione con diversi servizi
web è in grado di semplificare radicalmente la vita quotidiana
degli utenti che ne fanno uso.

Recentemente, abbiamo assistito alla comparsa di diverse pi-
attaforme specificamente progettate per semplificare la definizione,
da parte degli utenti finali, dell’automazione, basata sull’interazione
tra dispositivi e servizi in un ambiente intelligente. Tra queste
piattaforme, quelle più popolari sono quelle che forniscono una
rielaborazione del paradigma Trigger-Action, ovvero la capac-
ità di definire automatismi specificando l’evento (o trigger) e
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l’azione. Il primo componente stabilisce il tipo di evento per il
quale l’automazione viene attivata se le condizioni sono soddis-
fatte. Invece, il secondo componente si riferisce all’operazione
da eseguire per completare l’automazione. Tali piattaforme pren-
dono il nome di piattaforme Trigger-Action (TAP).

La diffusione capillare di IFTTT e altre piattaforme TAP ha
sollevato il problema dei rischi di sicurezza enormi per gli am-
bienti smart e la privacy degli utenti finali che interagiscono
con le piattaforme, che potrebbero essere causati dai comporta-
menti definiti. Ciò è dovuto in parte al alto livello di astrazione
che le TAP forniscono e che molto spesso dà poca importanza
alle questioni di sicurezza e privacy. Inoltre, il basso livello di
conoscenza tecnica che ha in media un utente TAP, tuttavia, non
gli permetterebbe di affrontare tali questioni e di comprenderne
la gravità.

In questa tesi, proponiamo una soluzione ad un comune difetto
presente in tutte le piattaforme trigger-action (TAP), ovvero la
mancanza di capacità per gli utenti di definire comportamenti
che difendono attivamente il loro ambiente smart. Per risolvere
questo problema, integriamo la funzionalità offerta da un dis-
positivo IoT creato ad hoc, chiamato Intrusion Defender (ID),
all’interno di una TAP esistente. L’ID è in grado di monitorare
il traffico di rete in tutto l’ambiente smart per rilevare schemi
anomali che possono indicare un attacco di sicurezza informat-
ica in corso, e attraverso l’introduzione di un adeguato livello
di astrazione, gli eventi catturati dall’ID vengono presentati
all’utente finale in modo più comprensibile, al fine di consentirgli
di definire una regola le cui azioni si verificano in risposta ad un
attacco di negazione del servizio, ad esempio.

Inoltre, proponiamo una soluzione basata su NLP in grado
di identificare automaticamente eventuali rischi di sicurezza e
privacy associati alle regole trigger-action definite dall’utente.
Abbiamo fatto ciò sfruttando il potenziale dei modelli di trans-
fer learning che sfruttano l’architettura transformer per ottenere
risultati precisi anche con un insieme di dati limitato disponibile
per la fase di addestramento. In particolare, abbiamo utilizzato
il modello Bidirectional Encoder Representations from Trans-
formers (BERT) presentato da Google per eseguire i compiti
di identificazione dei rischi. Gli esperimenti condotti hanno di-
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mostrato la affidabilità e la precisione del modello addestrato
nell’identificazione dei rischi, classificandoli in 3 diverse classi
di danni, soprattutto quando confrontati con soluzioni simili
presenti in letteratura.

Infine, per rafforzare ulteriormente la comprensione di questi
rischi, utilizziamo i modelli di linguaggio naturale per generare
scenari di esempio. Abbiamo abbinato il modello per l’identificazione
dei rischi con un componente di spiegabilità, che presenta uno
scenario plausibile per l’attivazione della regola. Abbiamo uti-
lizzato il fine-tuning basato su prompt, con prompt morbidi
costituiti da token virtuali incorporati in uno spazio continuo,
per guidare il modello nella deduzione del contesto di esecuzione
della regola. Le valutazioni condotte sui modelli addestrati hanno
dimostrato l’efficacia della nostra soluzione nella generazione di
giustificazioni plausibili e adeguate al contesto.

x



C O N T E N T S

1 Introduction 1

1.1 IoT Technology 2

1.2 End-User Development 3

1.3 Aims and Challenges 7

1.4 Thesis Contributions 9

1.4.1 Definition of security-events triggered rules 9

1.4.2 Identification of harmful rules at design-
time 10

1.4.3 Explanation of the risks associated with
harmful rules 10

1.5 Thesis Outline 11

i Context & Background
2 Trigger-Action Programming Platforms 15

2.1 Trigger-action Rules 16

2.2 State-of-the-art on TAPs 17

2.3 IFTTT 21

2.3.1 IFTTT applet components 21

2.4 Open challenges 24

3 Security and Privacy Issues in TAPs 27

3.1 Classification of threats 27

3.1.1 Threat model 28

3.2 Open challenges 29

4 An empirical analysis of IFTTT applets 33

4.1 Reviews of existing studies on IFTTT 33

4.1.1 Practical trigger-action programming in the
smart home 33

4.1.2 Trigger-Action Programming in the Wild:
An Analysis of 200,000 IFTTT Recipes 36

4.1.3 An Empirical Characterization of IFTTT:
Ecosystem, Usage, and Performance 38

4.2 A recent empirical study of IFTTT applets 40

4.2.1 The scraping approach 41

4.2.2 Analysis results 44

xi



xii contents

4.3 Model for automatic semantic consistency check-
ing 55

4.3.1 Literature review 56

4.3.2 Methodology 71

4.3.3 Experimental evaluation 75

ii Approaches for securing IoT Ecosystems
5 Empowering the definition of security-events triggered

rules 79

5.1 Literature review 79

5.2 Intrusion Defender: a smart object to secure smart
environments 80

5.3 Abstracting security-related events 83

5.3.1 Card-sorting study to reduce information
overload 84

5.3.2 Designing event description for the ID 86

5.4 Evaluation 88

5.4.1 Study design 89

5.4.2 Procedure 89

5.4.3 Data collection and analysis 91

5.4.4 Results 91

5.5 Discussion 92

6 Identification of harmful ECA-rules 95

6.1 Literature Review 97

6.1.1 Analyzing Privacy and Security of ECA
Rules 97

6.1.2 Protecting TAPs from Privacy and Security
Violations 99

6.2 Construction of Classification Models for Identify-
ing Harmful ECA Rules 100

6.3 The IFTTT Dataset 103

6.4 Data Labeling 104

6.4.1 Categorizing Applets based on Security
and Privacy Risks 104

6.4.2 Manual Applet Labeling 106

6.4.3 Automatic Applet Labeling 107

6.5 Model Training 111

6.5.1 Classification by Artificial Neural Networks 112

6.5.2 Classification by BERT 116



contents xiii

6.5.3 Training with Imbalanced Datasets 119

6.6 Experimental Evaluation 121

6.6.1 Evaluation Setup 121

6.6.2 Evaluation Metrics 122

6.6.3 Results and Discussion 122

6.6.4 Comparative Evaluation 127

7 Explaining risks related to behavioral rules 131

7.1 Literature Review 131

7.1.1 Explainable Security 131

7.1.2 Explainable AI with Natural Language Ex-
planations 133

7.2 Methodology 134

7.2.1 Problem Formulation and System Overview 135

7.2.2 Justifications based on Keywords to Sen-
tences Model 136

7.2.3 Justifications based on Prompt Learning 138

7.3 Experimental Evaluation 150

7.3.1 Evaluation Metrics 150

7.3.2 Dataset Collection 152

7.3.3 Implementation details 153

7.3.4 Results and analysis 158

7.3.5 Discussion 163

iii Conclusion
8 Conclusion and Future Work 169

Bibliography 173



L I S T O F F I G U R E S

Figure 1.1 An example of ECA rule. 6

Figure 4.1 Evolution of services 48

Figure 4.2 Heatmap of interactions between categories. 52

Figure 4.3 Number of installations per applet 53

Figure 4.4 Log of the number of total installations
per creator 55

Figure 4.5 An example of AST 57

Figure 4.6 An example of semantic derivation. 59

Figure 4.7 HeyTAP GUI [43]. 60

Figure 4.8 HeyTAP architecture [43]. 60

Figure 4.9 Functioning of InstructablesCrowd [82]. 63

Figure 4.10 Architecture of InstructablesCrowd [82]. 64

Figure 4.11 InstructablesCrowd Scoring [82]. 65

Figure 4.12 Architecture of the latent attention model
[97]. 68

Figure 4.13 Latent Attention model: accuracy evalu-
ated on channels [97]. 71

Figure 4.14 Trained BERT model 74

Figure 5.1 Architecture of the secured smart home
environment 82

Figure 5.2 Process of grouping security events 85

Figure 5.3 ECA rule created in EFESTO: it is trig-
gered when a virus threat is detected in
a smart device (Hallway Camera) and, in
this case, executes the switch off of the
attacked camera. 89

Figure 6.1 The proposed process for constructing and
evaluating NLP-based models for detect-
ing harmful ECA rules. 102

Figure 6.2 Similarity comparison process of IFTTT
applets based on SentenceBERT. 106

Figure 6.3 Length distribution (in logarithmic scale)
of the sentences obtained concatenating
the Title and Desc features. 113

xiv



Figure 6.4 The architecture of the LSTM-1c model. 114

Figure 6.5 The architecture of the NN-2c model. 115

Figure 6.6 The architecture of the LSTM-3c model. 117

Figure 6.7 Architecture of the BERT-based model con-
sidering all applet’s features (BERT-3c). 118

Figure 6.8 Length distribution (in logarithmic scale)
of the sentences obtained concatenating
the discrete features. 119

Figure 7.1 Workflow for generating justifications con-
cerning harmful rules 134

Figure 7.2 Workflow for generating justifications us-
ing keywords 136

Figure 7.3 Workflow for generating justifications us-
ing hard prompts 140

Figure 7.4 Example of erroneous positive input sam-
ples (highlighted in red) generated through
Skip-Gram 144

Figure 7.5 Workflow for computing the embedding
of services 145

Figure 7.6 Workflow for generating justifications us-
ing hard-soft prompts 148

L I S T O F TA B L E S

Table 2.1 Task-automation tools and their character-
istics [29] 19

Table 4.1 Features in the actionList (triggerList) file. 44

Table 4.2 Features in the channelList file. 45

Table 4.3 Features in the detailChannelDataset file 45

Table 4.4 Features of the applet 46

Table 4.5 Comparison between our dataset and the
one from [109]. 46

Table 4.6 Comparison of the distribution of services
across categories. 47

xv



xvi list of tables

Table 4.7 Amount of services added compared to
the dataset in [109]. 48

Table 4.8 Comparison of the distribution of triggers
addCounts. 49

Table 4.9 Comparison of the distribution of actions
addCounts. 50

Table 4.10 Trigger services and actions sorted by the
total number of applet installations they
take part in. 50

Table 4.11 Triggers and actions sorted by the number
of applet installations. 51

Table 4.12 Examples of components for a consistent
applet 56

Table 4.13 Subdivision of applets in the labeled dataset 74

Table 4.14 Classification performance on the test set 76

Table 5.1 List of the final 6 groups and their original
labels 86

Table 5.2 Event messages and related readability
and sentiment scores. 88

Table 5.3 List of tasks and the related ID event. 90

Table 6.1 Statistics about the services involved in
the applets of the labeled dataset 111

Table 6.2 Accuracy of the considered models on
TS_2k 123

Table 6.3 Precision of the considered models on TS_2k 123

Table 6.4 Recall of the considered models on TS_2k 123

Table 6.5 F1-score of the considered models on TS_2k 123

Table 6.6 Accuracy and F1-score achieved by the
considered models on TS_500 126

Table 6.7 Confusion Matrix Obtained for TS_500 127

Table 6.8 Confusion Matrix Obtained for TS_425 127

Table 6.9 Performances of BERT-3c on TS_500 and
its subset of “consistent” applets TS_425 128

Table 6.10 A comparison of the results obtained by
IFC and BinaryBERT-3c for TS_2k 128

Table 7.1 Discrete Prompt Learning by T5 - Fixed-
prompt LM Tuning 159

Table 7.2 Discrete Prompt Learning by GPT-2 - Fixed-
prompt LM Tuning 159



Table 7.3 Continuous Prompt Learning by GPT-2 -
Prompt+LM Fine-tuning 160

Table 7.4 Justifications generated for three harmful
rules, one for each class of harm consid-
ered. Blue words highlight services not in-
cluded in the training set. Green sentences
indicate cases where the execution context
of the trigger (action, resp.) is correctly
identified, while red sentences show cases
where a wrong event is generated. 164

L I S T I N G S

Listing 4.1 An example of a sitemap from IFTTT.com 41

xvii





1
I N T R O D U C T I O N

IoT-based applications are built by programming a set of IoT
devices to communicate with each other and perform certain
tasks, e.g., voice-controlled cameras and remote-controlled door
locks. To help users define interoperability behaviors between
different smart devices and web services, several platforms have
been defined and commercialized [85, 89]. Among them, the
most popular are the Trigger-Action IoT Platforms (TAPs) [152],
which empower users to define custom behaviors by means of
conditional rules [50, 71].

Unfortunately, the enormous spread of IoT devices, the con-
siderable variety of data that such devices are capable of ac-
quiring and processing, along with the user base (commonly
characterized by inexperienced and non-practicing technology
personalities), make IoT ecosystems a particularly attractive tar-
get for malicious characters [169]. In fact, one of the largest
and most damaging cyberattacks in history involves Internet of
Things devices: in fact, the Mirai botnet attack involved more
than 600 thousand IoT devices that were infected and turned
into pawns in a large-scale Distributed-Denial-of-Service (DDoS)
attack, which saturated DNS providers Dyn, Lonestar Cell, and
Liberian Telecom with requests, sending offline all sites that re-
lied on their services [4]. Furthermore, even the use of the TAPs
themselves can pose risks to the user. The definition of behavior
through such platforms may lead to the formation of harmful
automations. Therefore, the development of trigger-action rules
should also be closely monitored, ideally through automated
methods to ensure that the user is not causing harm to their
smart environment or compromising their privacy.

This thesis proposes a series of ad-hoc designed solutions
for monitoring, reporting, and notifying security and privacy
issues connected to the behaviors definable through TAPs. In
particular, the solutions leverage state-of-the-art technologies and
concepts, such as automated tools for network intrusion detection
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2 introduction

or artificial intelligence models for natural language processing,
with the addition of appropriate abstractions and automation,
so as to enable end-users to both specify automation behaviors
through TAPs that can be triggered in response, for example,
to a security violation. Furthermore, the interaction with TAPs
has been made more safe proof with the addition of automatic
approaches for the identification and justification of any risks
that might arise if a certain rule created by means of a TAP is
deployed into the smart environment.

1.1 iot technology

Internet of Things (IoT) [10] is an emerging technological ap-
proach that is transforming the way we live. In the IoT vision,
“smart” physical objects are networked together, able to interact
and communicate with each other, with human beings and/or
with the environment, to exchange data and information “sensed”
about the environment. They are also able to react autonomously
to events in the physical world and influence them by running
processes that trigger actions and perform service functions. In
Gartner’s Hype Cycle 2017, IoT was considered entering the
“peak of inflated expectations” meaning that the technology is
now overcoming the initial enthusiasm of the novelty effect and
has entered a more mature stage. Gartner indicated that this
IoT technology is likely going to enter the phase of mainstream
adoption in 2 to 5 years.

Thanks to this technology, new classes of disruptive interactive
applications are emerging that have the potential to empower
users and the quality of their life in many different fields. The
need of controlling the increasing number of devices, and of
interacting with them in a meaningful way is of paramount
importance in order to drive the development of this technology
toward socially-sustainable goals [129] as well as to prevent new
forms of digital divide [63].

IoT technology weaves itself into “the fabric of everyday life”
[155], which raises new challenges in terms of modeling interac-
tion and shaping the behavior of devices consistently with the
characteristics of physical objects and spaces, the actual context
of use, the application domain, and the characteristics and needs
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of the target user. The power of IoT technologies is directly re-
lated to their capability of addressing the needs of every single
end-user or class of end-users, which in turn raises the need
of empowering them by offering means of customizing, if not
building from scratch, IoT applications autonomously. Different
approaches to designing, customizing, tailoring, and evolving
interaction-rich IoT systems have been experimented and are be-
ing investigated (see, for example, the TOCHI special issue [105],
which includes articles of researchers involved in this project). Yet,
it is well recognized that the so-called computational thinking
(i.e., the set of knowledge and cognitive skills that are involved
in computer programming) is the new literacy of the digital age
[127, 160] and may offer a new methodological ground to address
the above issues.

The effort of configuring, controlling, and adapting interactive
IoT ecosystems might be alleviated by providing end-users with
carefully designed environments that allow them to “tailor” to
the needs and desires of the applications they use. Yet, in order
to develop usable and useful tools, it is important to ground their
design on the cognitive principles of computational thinking
[127], to understand the impact of other constructs such as per-
sonality [128], to leverage meaningful mental models as a solid
base for the interface metaphors [108], as well as to know relevant
mental theories that might foster or hinder the understanding of
the task [28].

1.2 end-user development

Users are becoming more proficient with ICT technologies and
are able to create basic applications on their own. However, with-
out the training and expertise of professional software developers,
it is unrealistic to expect them to use traditional programming
environments and methodologies. End-User Development (EUD)
refers to the techniques, tools, and methods that enable non-
professional software developers to create, modify or extend soft-
ware systems [95]. Recent years have seen some investigation into
topics related to EUD, but until recently EUD primarily focused
on desktop-based applications such as spreadsheets that were
not adaptable to changing usage contexts. The introduction of



4 introduction

IoT brings additional challenges, such as designing applications
that can respond to events generated by various combinations of
sensors, objects, services, devices, and people.

In order to effectively support the EUD of IoT applications, it
is crucial to take into account the varying context of the users,
technology, environment, and social aspects. Factors such as the
user’s tasks, preferences, and emotional state, the devices and
modalities supported, and the environment’s light, noise, and
location all play a role in determining how the application should
react to contextual events. Only the end-users themselves know
the most appropriate ways in which their applications should
respond to these events. To reach a wide range of users, it is
important to provide a user-friendly interface that is easy to
learn, while also allowing for customization and complexity in
the software. This approach will enable faster tailoring, improved
control over application functionality, and an overall enhanced
user experience.

It is important to recognize that the foundation of EUD is the
concept of tailorability, which refers to the ability for end-users
to customize software to meet their specific goals and needs in
various usage contexts (such as at work or at home). To achieve
EUD, a shift in design paradigm is necessary, moving away from
user-centered and participatory design towards meta-design,
which refers to “design for designers” [64]. Under meta-design,
professional developers do not design the final product as in
traditional design, but instead create open software that various
stakeholders, including end-users, can adapt to meet their unique
requirements.

Providing end-users with the necessary tools to develop IoT
applications is a way to ensure that their needs are met, and
it also encourages innovation from end-users rather than just
software companies. EUD focuses on the use of simple, easy-to-
understand abstractions and metaphors to reduce the complexity
of handling the various devices, sensors, actuators, and services
involved in IoT-related domains. This approach allows for greater
creativity and participation from end-users in the development
process. Using meaningful abstractions in EUD, such as relevant
concepts, metaphors, programming styles, vocabularies, and intu-
itive notations, can facilitate communication and understanding
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between different stakeholders, including professional software
developers, domain experts, and users. Ultimately, EUD for IoT
empowers users to have more control, confidence, and personal-
ized support in their interactions with devices and smart things,
both at home and in learning environments. In a field as diverse
as IoT, EUD is crucial in meeting the wide range of requirements
for end-use developers.

The EUD area has explored the use of rule-based solutions,
which involve specifying system behavior through a series of
if-then statements. This approach led to the development of
Trigger-Action Platforms or Systems (TAPs or TASs). One early
example of this is iCAP [52], which allowed for the creation
of if-then rules (a.k.a. Trigger-Action rules or Event-Condition-
Action rules) to personalize access to home appliances. Recently,
rule-based approaches have gained popularity in the IoT space,
as they allow end-users to easily understand and configure the
behavior of their applications. These ECA rules can address
various aspects of a smart environment, such as the example
in Fig. 1.1, where the action of opening shutters in the living
room is triggered by a temperature change in the house above
25 degrees Celsius. High-level abstraction in ECA rule creation
helps users to effectively and efficiently create their rules without
needing to understand technical details [42].

However, even if rule specification could seem simpler than
specifying a block of code, such approaches can become difficult
for non-programmer users when complex rules have to be ex-
pressed. The correct formulation of logical expressions implies
knowledge of some key concepts (e.g. Boolean operators, the
priority of operators) that may not always be intuitive for them.
Some approaches do not even support event composition at all.
Therefore, further effort in enabling end users to specify rules
combining multiple triggers and actions should be pursued be-
cause this would provide them with the possibility to indicate
more flexible behaviors [50, 71]. As highlighted in [81], rule-
based approaches, and in particular trigger-action rules, could
raise some ambiguity in their interpretation due to potential
discrepancies in end-users’ mental models.

In [108], an established theory of mental models is used to
guide the design of interfaces for TAPs so that people can easily
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The temperature
in the house

changes

 Temperature  

 > 25°C 

Event Condition 

Trigger

Open the
shutters in the
living room

Action

Figure 1.1: An example of ECA rule.

comprehend and manipulate logical expressions. According to
such theory, people find it easier to conceptualize logical state-
ments as a disjunction of conjunctions (an OR of ANDs), as
opposed to other logically equivalent forms. Thus, the authors
propose a paradigm to facilitate the specification of complex log-
ical expressions that however is still far from providing general
solutions.

Another interesting aspect (yet not addressed in the EUD
area) is how people can test and possibly assess whether the
modified/created behavior of the application actually results
in the expected one. This need is especially relevant in IoT do-
mains, where incorrect behavior of applications or actuators can
eventually have safety-critical consequences (e.g., in the elderly
assistance domain and in the home domain). If we consider rule-
based approaches, a way to reduce the likelihood of errors is to
allow users to simulate the conditions and the events that can
trigger a rule and the effects that they will bring about. However,
most TAPs environments do not include debugging aids [47]
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since non-professional end-users find debugging especially diffi-
cult. Therefore, another important area for further investigation
is devising debugging mechanisms that are adequate for end
users.

1.3 aims and challenges

A significant issue that is often overlooked in the TAP domain
is the misalignment between an end-users’ mental model, influ-
enced by their lack of computational thinking, and the potential
security and privacy risks that can arise [55]. This is particularly
relevant in the context of IoT devices, which have the capability
to collect and make available large amounts of sensitive data,
leading to an increased number of privacy and safety concerns.
For instance, in a smart home setting, data about the individuals
living in the house can be tracked through the monitoring of
the cyber and physical activities of connected domestic devices,
assisted living systems, or smart meters. This can potentially
make the smart home environment and the information stored in
its back-end vulnerable to malicious attacks. In addition, the low
level of computational thinking that characterizes the typical user
of TAPs and in general the users of IoT ecosystems often leads to
risks caused by their own actions. It is not uncommon for inexpe-
rienced users to define trigger-action rules that introduce incon-
sistencies or even real flaws within the smart environment [23,
39, 138]. For example, a user who wishes to play music from their
smartphone as soon as their Bluetooth earphones connect may
define the rule: “If a Bluetooth device is connected to the

smartphone, then the smartphone plays the audio files contained

in a folder”. This rule implies an important privacy disclosure
as there may be a scenario where the selected folder contains
personal audio files, and the smartphone connects to a Bluetooth
speaker. The rule in Fig. 1.1 could also raise risks for the users. In
this scenario, the opening of shutters is ruled only by the internal
temperature of the smart house. If the user forgets that the rule is
active, shutters might open on hot summer days when the house
is empty, providing an entry point for thieves. Furthermore, open
windows represent a risk factor for unsupervised children.
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Despite this, a significant number of users are not motivated
to engage with technical issues and do not fully understand the
potential risks associated with ECA rules [73, 133, 157]. Several
studies have shown that many ECA rules can be potentially dan-
gerous and pose privacy and security risks [138], while the users
often have little concern for these risks and do not feel respon-
sible for them, often assuming that the companies producing
IoT devices should guarantee their privacy [171]. However, there
has been limited research on automatically identifying harmful
ECA rules. For example, Surbatovich et al. used an information-
flow lattice to analyze potential secrecy or integrity violations
in ECA rules [138]. Paci et al. proposed two approaches based
on information flow analysis to detect rules that unintentionally
violate users’ privacy by sharing private photos [118]. Other stud-
ies have focused on identifying undesired behaviors caused by
the chain execution of rules [107, 162], such as actions triggered
automatically without user intervention.

Furthermore, simply identifying and alerting users to the pres-
ence of security and privacy risks may not be enough for them
to fully understand the gravity of these risks [162]. Therefore, it
is crucial to provide clear and comprehensible explanations of
the risks associated with a rule in order to increase user trust.
This can be accomplished through the use of Explainable Security
(XSec), a concept derived from the field of eXplainable Artificial
Intelligence [74], which aims to make the reasoning behind a clas-
sification model’s output transparent. Despite the importance
of this issue being acknowledged in the literature, there are cur-
rently few practical approaches for providing users with expla-
nations about security and privacy issues. One notable example
is the work of Xiao et al. who proposed a module for detecting
conflicts between automation rules and providing explanations
that include the scope of the affected actuators, the effects on
the environment, the functionalities provided, and the type of
interference produced [162]. This allows users to understand the
nature of the problem and its causes.
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1.4 thesis contributions

To provide viable solutions to the challenges introduced in Sec-
tion 1.3 respectively, we make three major contributions in this
thesis:

• Definition of security-events triggered rules

• Identification of harmful rules at design-time

• Explanation of the risks raised by harmful rules

In particular, the contributions made in this thesis aim at pro-
viding an answer to the following research question:

RQ0.“Can we support end-users in dealing with security and
privacy concerns within smart environments?”

1.4.1 Definition of security-events triggered rules

We proposed an approach to allow end users to create rules
that are triggered by security events [25]. To achieve this, we
integrated the functionality offered by a custom-made IoT device,
called Intrusion Defender (ID), within an existent trigger-action
platform.

The ID is designed to monitor network traffic throughout the
smart environment for detecting anomalous patterns by employ-
ing a signature-based approach. The match of a signature with
a known cybersecurity attack may indicate an ongoing risk for
the smart environment, generating a security event. Through the
use of an appropriate level of abstraction, the events captured
by the ID are presented to the end user in a more understand-
able and user-friendly manner, summarizing the initial set of
35 cyberattacks into 6 categories thanks to a card-sorting study.
This enables the user to define a rule whose action occurs in
response to one of these categories of cyberattacks, for example,
a Denial-of-Service attack.

A user study was conducted on a pool of 20 participants to
evaluate the effectiveness of this approach. The results of the
study demonstrated that thanks to the abstraction provided by
the creation paradigm of the TAP, enables even an inexperienced
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user to define rules to safeguard their smart environment in the
same way as a more experienced individual in the cybersecurity
domain would. Overall, this solution offers a more efficient and
user-friendly approach to securing smart environments.

1.4.2 Identification of harmful rules at design-time

To mitigate the risk of defining trigger-action rules that threaten
both the security and privacy of the smart environment and its
users, we presented a model for identifying different types of
harm associated with trigger-action rules [23]. The model is based
on BERT and trained on a dataset of over 80,000 rules defined
through the IFTTT platform. We managed to label the whole
dataset by employing a novel strategy of labeling, combining a
minimal manual effort with the advantages of semi-supervised
learning approaches and an ensemble strategy. The model is able
to classify 3 different types of risks by semantically analyzing
the various components of a rule: personal harm, physical harm,
and cybersecurity harm, with an average accuracy of 92%. This is
achieved by using BERT’s pre-training on a large corpus of text,
which allows the model to understand the meaning of the words
and phrases in the context of the rule, and thus make accurate
predictions.

Our model is compared to other solutions proposed in the
literature, such as one that uses information flow analysis and
another that uses recurrent neural network architecture. The
results of the comparison reveal that our BERT-based model,
considering semantic properties, is able to discriminate more
accurately between different types of risks. This is because our
model’s ability to understand the meaning of the words and
phrases in the context of the rule, allows it to make more accurate
predictions, and thus more effectively identify different types of
harm.

1.4.3 Explanation of the risks associated with harmful rules

We paired the model for identifying risks associated with trigger-
action rules with an explainability component, which presents a
possible scenario, known as justifications, to which the rule’s ac-
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tivation could lead [24]. The aim of this component is to provide
a clear understanding of the risks related to the activation of a
certain rule, and what could be the potential consequences of its
execution.

To generate justifications, we used a method called prompt-
based fine-tuning, experimenting with both hard and soft prompts.
The hard prompts involve providing specific examples of justifica-
tions for the model, whereas the soft prompts involve providing
more general guidance on how to construct the justifications. We
find that the use of both types of prompts allows the model to
deduce the context of the rule’s execution in a better way. In fact,
we mapped the services related to both the trigger and the action
through a novel strategy comprising the generation of their em-
beddings by leveraging the Skip-gram architecture. By providing
virtual tokens as prompts, the model is able to understand the
underlying context and the relationships between different ser-
vices, which enables a more effective selection of tokens to use in
constructing the justification related to the identified harm. Addi-
tionally, the use of virtual tokens allows the model to generalize
the justifications to other rules and environments, making the
system more robust and adaptable.

We evaluated the performance of the proposed solutions using
an automatic metric commonly used in natural language gen-
eration tasks, called the Bilingual Evaluation Understudy with
Representations from Transformers (BLEURT), which has been
shown to have a high correlation with human ratings. The evalu-
ation of the results revealed an overall high BLEURT score value,
with an average score of 0.412 and 0.416 for the QA Prompt and
Span Prompt respectively, for the test set considered. This indi-
cates that the proposed system is able to generate justifications
that are coherent, accurate, and easy to understand, making it
an effective tool for ensuring the security and privacy of smart
environments.

1.5 thesis outline

Overall, the document is divided into three main parts.
The first part provides an overview of trigger-action platform

concepts and the rules that can be created through this paradigm.
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It also examines commercially deployed solutions, such as If-This-
Then-That (IFTTT), which is the most widely used trigger-action
platform globally. The first part also delves into threat and risk
models that an end-user may encounter when interacting with
IoT ecosystems. Additionally, it includes empirical studies con-
ducted on the IFTTT platform as well as a recent study that
resulted in a dataset of rules created following that paradigm.
The part concludes with the introduction of an artificial intelli-
gence model that can classify the degree of semantic consistency
between the behavior stated by a rule and the behavior enacted.

The second part focuses on end-user oriented solutions. Specif-
ically, it discusses an approach to enable the end-user to define,
via trigger-action platforms, a new type of rule, specifically, rules
that relate to smart environment security risk scenarios. This ap-
proach allows the user to customize countermeasures to events
that may compromise their privacy or the security of IoT devices
connected to their environment. The second part also includes a
natural language processing model that can process the compo-
nents that form a trigger-action rule, extract its semantic informa-
tion, and identify whether such a rule presents security risks to
the smart environment and the privacy of the user who defined
it. Finally, the second part presents an approach that, by utiliz-
ing natural language models, is able to identify inherent risks
associated with trigger-action rules and provide a classification
justification, thus facilitating the end-user’s understanding of the
risk’s severity.

The third and final part concludes with a summary of the
presented work and discusses potential future developments.



Part I

C O N T E X T & B A C K G R O U N D





2
T R I G G E R - A C T I O N P R O G R A M M I N G
P L AT F O R M S

The Internet of Things (IoT) connects various objects, allowing
them to exchange data, respond to real-world events, and ac-
tivate services [10]. This technology offers many opportunities
and capabilities, but also poses risks and potential problems.
Unauthorized parties can monitor users’ interactions with these
objects, and their misuse can lead to unintended consequences
and activate services that do not meet the needs of the end users.

Recently, there has been a growing interest in developing tools
that empower end-users to control and customize the behavior
of IoT devices in smart environments where they live and work.
Researchers have highlighted the benefits of utilizing personal-
ization techniques to combine IoT devices, such as sensors and
actuators, with other software services [105]. However, the di-
verse nature of smart objects presents significant challenges in
creating methodologies and tools that can effectively empower
end-users to make the most of this technology [140]. End-User
Development (EUD) is well-suited to addressing this problem
[95], as it focuses on designing tools that enable end-users to
compose and create their own applications, as well as support
their work practices [46].

In relation to the EUD of IoT systems, event-driven and rule-
based approaches have gained popularity because they allow end
users to easily understand the contextual events and the corre-
sponding behavior of their applications [144]. Various web tools
have adopted the trigger-action rule paradigm to address the
problem of Task Automation (TA). Specifically, Task Automation
Systems (TASs) or Trigger-Action Platforms (TAPs) are software
tools that are available as websites or mobile apps, and they assist
non-technical users in configuring the behavior of smart objects
within a smart environment. Typically, configuration is done
through either i) visually illustrating the interaction between
objects (for example, by creating graphs that show how events

15
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and data parameters flow among the different objects to achieve
synchronization) or ii) visually defining Event-Condition-Action
(ECA) rules, often through a step-by-step interface that guides
users through the rule definition process. Tools such as Node-
RED or Microsoft Flow offer graph-based notations that enable
a high degree of customization, but they may not align with
the mental model of most end users, particularly those without
technical expertise [100].

2.1 trigger-action rules

Given the nature of the involved devices, smart interactive spaces
and their components are intrinsically event-driven. Different
task-automation tools today enable configuring and synchroniz-
ing the behavior of IoT devices and Web services by means of
event-driven programming [44, 50]. In this paradigm, the execu-
tion flow of an IoT system is determined by the occurrence of
events, such as user actions, sensor outputs, or messages from
other services. The behavior of the involved resources is then
specified by means of trigger-action rules: these are chains of
conditional statements that automatically trigger actions that
change the status of synchronized resources when specific events
occur. More specifically [103]:

• An event represents a state change that a resource of the
IoT system is able to detect. Events bring parameters with
themselves, which express the values sensed for variables
the events refer to, and can be exploited to express con-
ditions over the rule activation. State changes leading to
new events can occur in data produced by the surrounding
environment (e.g., the temperature in a room), they can
be generated by actions of the users interacting with the
system, or can refer to changes in data provided by some
software services.

• A condition is a state of a specific contextual aspect that
lasts for a period of time.

• A trigger corresponds to either an event or a condition or
their composition through Boolean operators (AND/OR).
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• As reactions to the sensed events and/or the occurrence
of a condition, actions refer to functions that a resource of
the IoT system can execute through its actuators and that
therefore are able to produce state changes at different lev-
els: on IoT devices installed environment, on smart objects,
on software services managing the system.

Given these elements, trigger-action rules adhere to a common
schema consisting of two parts:

• a cause(s) part, dedicated to specifying trigger(s), which
defines the event(s) and/or the condition(s) that activate
the execution of the rule;

• an effect(s) part, dedicated to specifying action(s) to carry
out when the rule is verified.

Therefore, a rule is verified when any event(s) occur and/or
any condition(s) are satisfied in its trigger part. It is executed
when it is verified and the action part is performed.

2.2 state-of-the-art on taps

Event-driven software architectures have been studied for many
years to tackle the design of active systems across various do-
mains, including active databases, workflow design, and context-
aware applications [57]. This architectural pattern can be im-
plemented whenever the components of a system have to be
coordinated based on the production, detection, and consump-
tion of certain events. In this design, the trigger-action rules play
a crucial role. These rules enable the specification of active be-
havior by identifying an event that triggers the rule, a condition
that activates an action, and the action itself, which involves
performing an operation on data or functions exposed.

The work in [29] provides a comprehensive review of litera-
ture from 2010 to 2016 on trigger action. The authors identified
several tools for smart home control and analyzed them based
on some characteristics and design principles for smart home
control, identifying three tools suitable for an additional inves-
tigation. The paper conducted an experimental study involving
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real users to compare the three selected tools, aiming to iden-
tify the interaction mechanisms that end-users find more usable
for managing smart home rules. The study’s findings led to the
derivation of implications for the design of future tools to support
non-technical people to install, configure and use the devices of
a smart home. Overall, the paper’s methodology of combining a
literature review with an experimental study involving real users
contributes to the validity and reliability of the study’s results
and provides valuable insights for designers and developers of
smart home systems.

Event-driven, rule-based approaches for configuring behavior
in IoT applications are becoming increasingly popular due to
their ease of use for end-users. These approaches enable end-
users to comprehend the context of events and how they impact
the behavior of their applications [144]. Various web tools have
been developed to address the problem of Task Automation (TA)
by utilizing the trigger-action rule paradigm. These tools help
to synchronize the behavior of smart objects and services [16,
44]. Table 2.1 summarizes the key features of some well-known
tools for trigger-action rule specification. Some of these tools
are user-friendly and feature wizard procedures to guide users
through the composition process.

Several tools utilize wizard procedures to aid users in defin-
ing data-flow chains among predefined and custom services.
elastic.io offers a catalog of web services primarily focused on
business applications such as Magento and SAP, and allows for
the registration of custom services to access and control smart
objects [67]. Similarly, Zapier allows for the composition of web
services and smart objects by proposing a wizard to specify
one event and one action in a “basic rule”, which can be later
extended with additional events and actions [167]. Filters on trig-
gering events can also be added to further control rule activation.
itDuzzit is another web tool with a composition paradigm similar
to Zapier, but with the limitation of only being able to contain
one trigger and one action. The wizard approach is also used
by WigWag, a commercial web tool specifically designed for the
automation of smart environments [158], which is also available
as a mobile app.
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Name Service Type Composition Paradigm License
Execution

Device

Target

Users
Rule Type

Atooma
Device functions

Web services

Smart Objects

Wizard
Free

Payware
Mobile Non-tech.

IF TriggerS

Do ActionS

AutomateIt Devices functions Item selection
Free

Payware
Mobile Non-tech.

IF TriggerS

THEN ActionS

Bip.io
Web services

Custom
Wired

Free

Payware
PC

Non-tech.

technical
Complex process

Context-Dependent

Authoring

Web services

Smart Objects
Item selection

Research

project
PC

Non-tech.

technical

IF TriggerS

THEN ActionS

Elastic.io Web services Custom Wizard Payware PC
Non-tech.

technical

Data flow chain

service -> service

IFTTT
Web services

Smart Objects
Wizard

Free

Payware

PC

Mobile
Non-tech.

IF Trigger

THEN ActionS

itDuzzit Web services Wizard Free Payware PC Non-tech.
IF Trigger

THEN Action

Node-RED
Web services

Smart Objects

Custom

Wired

Programming
Free PC Technical Complex process

Spacebrew
Web services

Smart Objects

Custom

Wired

Programming
Free PC Non-tech.

Publishers

-> Subscribers

Tasker Devices functions Wizard
Free

Payware
Mobile Technical

IF TriggerS

THEN ActionS

We Wired Web
Web services

Smart Objects
Item selection Free Payware PC Non-tech.

When TriggerS

THEN ActionS

WigWag Smart Objects Wizard Payware
PC

Mobile
Non-tech

When TriggerS

THEN ActionS

Zapier
Web service

Custom
Wizard Free Payware PC Non-tech

IF Trigger

THEN ActionS

Zipato Smart Objects Building blocks Payware
PC

Mobile
Technical Complex process

Table 2.1: Task-automation tools and their characteristics [29]

Other alternative composition approaches have been suggested.
One such example is the We Wired Web, where rule creation
takes place within a web page that is divided into two sections.
The left panel is used to specify the elements that trigger the rule,
while the right panel is used to define the actions that occur when
the rule is triggered [5]. This approach also allows for the use of
filters in the definition of triggering events, similar to Zapier.

Bip.io presents a unique approach by utilizing the graph
metaphor for connecting Web services represented as nodes.
Users are guided through the process of defining trigger and
action properties when nodes representing Web services are con-
nected with arrows. Similarly, Node-RED, a Web tool for compos-
ing both smart objects and Web services [84], also adopts a graph-
based representation. However, Node-RED is geared towards
professional users as it offers advanced rule customization op-
tions through nodes representing control statements, JavaScript
functions, and debugging procedures.
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Spacebrew combines the concepts used in We Wired Web
and Node-RED [136] to offer a unique experience. It allows for
the creation of rules within a workspace that is divided into two
sections: the left panel for configuring services that publish events
and the right panel for configuring services that perform actions
in response to those events. These services can be connected in
a wired manner. For non-technical users, Spacebrew also offers
the Zipato paradigm, which is a web tool that utilizes graphical
widgets to represent typical programming language constructs,
such as “when-then,” “while,” “if,” and logical operators. These
widgets can be combined to create automation rules for tasks
[173].

TA services can also be accessed through mobile devices, such
as the Atooma app for Android [9]. This app allows for the com-
bination of device functions, web services, and connected smart
objects. The rules follow an “If-Do” paradigm, and multiple trig-
gers and actions can be included in each rule, with the ability
to add filters similar to those found in Zapier. Other apps such
as AutomateIt and Tasker also support creating rules for mobile
device functions and apps. The ECCE toolkit aims to support the
creation of “ecologies” of smart objects by connecting them to
a server for setup and management [19]. It uses an XML-based
language to describe the properties of each object and generates
the necessary code for their behavior on the platform server.
The behavior of these connected devices can then be synchro-
nized through a web interface for the end-user. However, this
toolkit does not currently support specifying further conditions
to constrain rule activation.

The manipulation of physical objects was studied as a means
of defining smart object behaviors. One example of this is Auto-
HAN, which utilizes special cubes as “one-button remote con-
trols” for interacting with the functions of home appliances. Each
cube is dedicated to a specific function, such as Play/Pause, and
users can associate these functions by placing a cube against
the front of an appliance. The language’s expressive power is
achieved through the combination of these functions, by placing
multiple cubes together and instructing AutoHAN to store the
configuration. This configuration can then be used to schedule
home automation processes. Another system, SiteView, also uti-
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lizes the manipulation of physical objects to create ECA rules [18].
Conditions are set by placing physical objects in a designated
“condition composer area”, and actions are programmed by plac-
ing objects representing appliances in a “world-in-miniature
area”, which is a small-scale model of the active environment.
Users can view the rule representation in a “rule display” and
simulate the results in an “environment display”.

An example of an alternate application of user-defined event-
action rules can be found in [71]. The environment described
in the study allows for easy editing of a wide range of context-
aware rules, including various options for triggers and actions.
Additionally, it also includes features such as the ability to reuse
and share rules.

2.3 ifttt

IFTTT, short for “If This, Then That”, is a platform that was
established in 2010 by Linded Tibbets and Jesse Tane. It utilizes
a visual interface that enables users to create automation rules,
referred to as IFTTT applets, by specifying and configuring two
primary components: the trigger and the action. The trigger de-
fines the event or events that initiate the execution of the applet,
while the action corresponds to the operation performed once
the applet is triggered.

2.3.1 IFTTT applet components

The key components that define an IFTTT applet are as follows
[174]:

• Triggers: triggers are events on the service. Some example
triggers are “any new post” or “New photo added to album” or
“textitany new movement”;

• Trigger fields: allow users to enter filters or modifiers for a
given trigger. For example, when a user selects the trigger
“New photo added to album”, they will be asked for the name
of the album;
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• Ingredients: are the attributes emitted by a given trigger.
For the trigger “New photo added to album”, there would be,
for example, the ingredients for “PhotoURL” and “TakenAt”;

• Query: a query provides a way to request additional data
that a trigger does not include. For example, when trigger-
ing the Google Calendar service “New Event Added” you
might need information about the event participants. The
query “Participant List” returns the desired data;

• Query fields: are like fields in a form and are often pop-
ulated with the ingredients of a trigger. For example, the
query “Participant List” contains fields for “calendar ID”
and “event ID”;

• Action: such as, for example, sending data or creating
resources on the service. Some example actions include
“Create post” or “Upload photo” or “Turn on lights”;

• Action fields:. when a user creates an applet, he assembles
these ingredients into the action fields of the action. Action
fields are like form fields. For the action “Create post”, there
would be an action field for “Title” and another for “Body
post”;

A user, when creating a rule can also enter:

• a title representative of the IFTTT applet created;

• a description detailing the operation of the rule created.

In these fields, the user enters text content written in natural
language, on which no filtering or checking is performed by the
official IFTTT.com site.

To create an applet, the user must first select the service, also
known as a channel, associated with the trigger component, such
as a social network or an IoT device producer’s cloud service.
Once the channel is chosen, the user can then select a trigger from
a range of options, completing the first section of the applet. The
process is then repeated for the action section, where the user can
select the channel and its corresponding action. Depending on the
chosen trigger or action, the user may need to provide additional
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information, known as fields, to complete the definition of the
applet’s behavior. These fields can include information such as
the name of the folder to upload a file to on Google Drive or
which parameters tracked by a Fitbit device should be recorded.
Finally, the user can give the applet a title and description to
easily remember its purpose and make it understandable to other
users. Every applet created is automatically made available on
the IFTTT platform for other users to activate without having to
create a new one.

IFTTT was born as a free platform available to all users. Com-
pletion of the registration process gave users complete access to
the huge catalog of applets created and shared by other users,
as well as the ability to create an unlimited amount of applets
as needed. In the late 2020s, however, the exponential growth of
users involving the platform prompted the creators to introduce
a revenue plan through monthly subscriptions, which not only
introduced new features but also guaranteed the unlocking of
certain limitations that characterized the free version. Specifically,
starting in 2021, IFTTT’s plans became three [175]:

• IFTTT Free:

– Ability to create (and activate) up to a maximum of 3

Applets.

– High latency for the applets (See Section 4.1.3 for an
explanation).

– Unlimited Applets run.

– Free mobile app access.

– Simple no-code integrations.

• IFTTT Pro, priced at 2.5€ (2.72$ per month):

– Ability to create (and activate) up to a maximum of 20

Applets.

– Low latency for the applets.

– Multi-action Applets.

– Customer support.

• IFTTT Pro+, priced at 5€ (5.44$ per month):
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– Ability to create (and activate) unlimited Applets.

– Everything in Pro.

– Connect multiple accounts.

– Use queries and filter code.

– Developer tools.

– Prioritized customer support.

2.4 open challenges

Tools such as IFTTT, Zapier, and Atooma offer a user-friendly
visual approach for defining rules for ECA systems, which can
be easily understood by most users. However, the notation used
in these tools has limited expressive power and does not allow
for the synchronization of complex requirements for smart ob-
jects. As a result, while the ease of use of these tools presents
many possibilities for the user-centered design of smart environ-
ments, their limited expressive power limits their effectiveness. In
particular, addressing security and privacy concerns is nearly im-
possible, creating tension with the need to protect smart objects
from vulnerabilities [96].

Ur et al. explored the relationship between the expressivity
and usability of TAP by conducting a study to investigate how
average end users could handle flexible trigger-action rules in
the home domain [144]. According to their findings, average
users were able to effectively manipulate multiple triggers and
actions to create rules. However, further research is needed to
understand the attitudes of users towards rules that are similar
but differ slightly in their triggers, such as a simple check or a
state change. As highlighted by Huang and Cakmak [81], dis-
tinguishing between the semantics of relevant elements can be
challenging, with users struggling to understand the difference
between events and conditions or between different types of ac-
tions, such as extended actions, which automatically revert back
to their original state after a certain period of time, and sustained
actions, which do not. Therefore, it is crucial for EUD tools to
assist users in correctly assigning roles to different rule elements.

Additionally, a smart environment may also present various
security and privacy concerns. For instance, data exchanged
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among smart objects can be intercepted by malicious actors for
fraudulent activities [96]. Due to their small size, smart objects
often have limited hardware capabilities, making it difficult to
implement advanced security protocols or protective measures
within the devices. Furthermore, smart objects are vulnerable to
physical tampering, wardriving, malicious software, and side-
channel attacks. It is crucial to provide TASs with tools that can
assist users in managing the security of their smart environments.

In conclusion, the state of the art on TAPs (or TASs) high-
lighted how trigger-action rules, and the paradigms defined for
their creation embedded within the platforms, provide important
abstraction elements for defining automatisms. However, there
are still several features that, if introduced, could benefit users in
a major way. Among others, there is a need to provide users with
proactive features that reduce the likelihood of generating errors
and inconsistencies when creating rules, be they bugs [22, 103]
or security and privacy vulnerabilities [34], that may inevitably
plague the smart environments, as we will see in more detail in
the next chapter, motivating the pursuit of approaches that can
respond to RQ0. Thus, the focus of this thesis is addressing the
issues of security and privacy that IoT devices face. To address
these challenges, the approach taken is to allow the end user to
establish trigger-action rules that can be activated in response to
potential security threats in the smart environment.





3
S E C U R I T Y A N D P R I VA C Y I S S U E S I N TA P S

In this chapter, we will provide considerations concerning se-
curity and privacy issues related to the Internet of Things and
Trigger-Action Platforms. Indeed, in the literature, security-privacy
issues related to trigger-action platforms and rules that are achiev-
able through their interfaces have received important attention
and recognition [1, 36, 152]. Studies have pointed out the actual
presence of several types of errors and inconsistencies that can
plague trigger-action rules, generating serious vulnerabilities that
can go unnoticed, especially in light of inexperienced users who
are very often totally unaware of the risks [34].

3.1 classification of threats

The survey produced by Chen et al. [34] classified the variety
of inconsistencies that can be derived from rules and TAPs into
two macro-categories, i.e., 1) logical errors in rules that lead IoT
devices to behave in unexpected ways, going on to cause serious
risks to security and the physical world, and 2) threats that arise
directly from TAPs, where the rule management and execution
processes are incorrectly implemented.

Logical errors were then further distinguished by the authors
into three categories:

• Rule prevention: defines that scenario that occurs when
the action of one rule prevents the trigger of another rule
from being activated. For instance, rule 1 states that smart
outlets should be turned off if no one is home in order
to save energy, and rule 2 states that the smart pet feeder
should be turned on if it is 10 AM. If no one is home at
10AM and the pet feeder is powered by one of the smart
outlets, the pet will not be fed.

• Rule collision: defines a scenario where the actions of two
rules are executed simultaneously but whose outcomes
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turn out to be conflicting. For instance, if rule 1 instructs "if
the kitchen sensor detects smoke, open the window" and
rule 2 instructs "if it is dark outside, close the window,"
while something is burning in the oven and it is nighttime,
the window could not open properly due to the conflict
between the two rules.

• Unexpected rule chain: defines a scenario in which one
rule may inadvertently cause another rule to be triggered.
For instance, if rule 1 states, "If the temperature in my room
is below 20°C, put on the heater in my room," and rule 2

states, "If the temperature in my room is over 25°C, open
the window,", then the temperature may increase after the
first rule is executed, triggering rule 2 and causing the
window to open, leading to a scenario where the smart
environment has both a window open and the heather on,
implying a considerable waste of electricity.

3.1.1 Threat model

Regarding the attack surfaces produced by using the trigger-
action programming paradigm, Chen et al. identified the threat
model by selecting five possible attack channels.

1. Network sniffing: by monitoring the state of a network and
the traffic of IoT devices connected to it, it might be possible
for an attacker, for example, to detect the state of connected
devices, identify patterns in order to predict user routines
or even acquire personal user data by manipulating the
communication between the TAP and the IoT device.

2. Privacy escalation attack: an over-privileged vulnerability
in the TAP allows an attacker to take advantage of acciden-
tally granted authorization to access IoT devices that the
attacker is not meant to access.

3. Malicious applet: some TAPs can offer a sophisticated
feature called filter code. A TAP applet’s filter code allows
premium/paid users to change the triggers and actions
while the applet is in use. A malicious TAP applet might



3.2 open challenges 29

be created by an attacker with the intention of passively
leaking sensitive user data or manipulating the settings of
IoT devices when the end-user uses the malicious applet
released by the attacker.

4. Rule logical attack: an attacker who could be able to manip-
ulate the trigger-action rules created by the victim (for ex-
ample, via IFTTT and SmartThings) can introduce a known
logical error to injure the end-user, destroy the physical
environment, or aid in a crime in the real world.

5. Unintentional rule logical attack: legit users of the TAP
may unwittingly turn into an attacker if the rules they
create have a logical flaw that might pose serious risks to
the user or harm the physical environment where the IoT
device is installed.

3.2 open challenges

A smart interactive space should provide mechanisms to mitigate
privacy and security concerns, such as guiding users while setting
up the environment, and monitoring any possible security and
privacy leak that might be generated by the user. The users
should be warned in a simple and intuitive way, explaining where
the security issue might be generated from and what procedure
should be followed to quickly solve the issue, leaving aside some
technical details having only the purpose of further confusing
the unaware user. The EUD environment should (i) enable end-
users to intuitively specify security and privacy requirements, (ii)
monitor security and privacy leak, warning the users when this
happens to provide suggestions for possible solutions, and (iii)
use methods for increasing users’ trust in EUD tools.

enabling the specification of security and privacy

requirements According to [168], IoT environments should
enhance users’ technology threat models to effectively manage
privacy and security risks, and communicate best practices for
smart spaces. A TAP should assist users in editing rules, provid-
ing feedback on potential privacy or security violations, and pre-
venting the deployment of such rules in the smart environment.
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One example of this is the use of security lattices, as described
by Surbatovich et al. in [138], to understand how certain state-
ments within IFTTT recipes can lead to potential security risks.
Additionally, EUD environments should support end-users in
managing access control and authentication for smart objects. He
et al. suggest using a capability-centric model to fit access control
and authentication mechanisms to the various capabilities and
features of smart objects [78]. This approach allows for more
specific and restricted access, such as only allowing a user to
turn on/off a device or update software, rather than giving com-
plete access. Furthermore, contextual factors, such as the user’s
proximity to the smart space, should also impact access to smart
objects’ capabilities.

monitoring security and privacy leak The security
and privacy of IoT devices continues to be a significant con-
cern, as they not only gather personal data such as names and
phone numbers, but also have the ability to track user behaviors.
Therefore, EUD environments should integrate mechanisms to
protect users from potential security threats communicating best
practices to fix or reduce them. For example, [88] analyzed the
password policies of several Web applications and their vulner-
ability to default password. EUD environments should be able
to provide feedback on these kinds of vulnerabilities and sug-
gestions on how to mitigate their risks. Several privacy issues
are raised when data acquired by smart objects are exchanged
over the internet. For instance, [112] highlighted an important
aspect of privacy issues, focusing on the analysis of smart meters.
They showed that without knowledge about family informa-
tion living in a house, it is possible to extrapolate enough data
smart meters for discovering daily routine. Authors proposed a
privacy-enhancing smart meter, which, among others, is based
on a remote utility server, applying Zero-Knowledge protocols
that allow for the preservation of the data acquired by the smart
meters, without compromising user’s privacy and still being
able to accomplish their goals. EUD environments should adopt
similar techniques for impeding data to be leaked and inferred
by malicious external users.
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increasing user trust towards the tap Another im-
portant aspect of TAPs relies on the necessity to let users feel
safe while interacting with the tool. Indeed, for being able to
manage and synchronize the environment, TAPs require full
access to IoT devices. In this scenario, users might feel unsafe
granting complete access to the objects and, consequently, not
encouraged in using the TAP. [142] focused on protecting users
from the so-called smart apps, i.e., third-party mobile applica-
tions performing automatic operations on IoT devices. In order
to exploit the devices, smart apps require users to grant permis-
sions, such as the ability to control a lock. Tian et al. proposed to
automatically analyze the permissions required by smart apps
in order to inform the users whether they are truly necessary
for the purposes of the app declared in the app store. Similarly,
in the EUD context, user trust could be increased by informing
users in a transparent manner on how the authorizations will be
exploited by the TAPs.

In conclusion, the literature has shown that the critical security
and privacy issues that plague smart environments urgently need
to be addressed with ad hoc solutions. This urgency gains further
value when one takes into account the type of users who make
use of both TAPs and IoT devices, namely, inexperienced users
without sufficient technological background to make them aware
of the many risks they face. Therefore, this thesis presents con-
tributions whose ultimate goal is to support end users in their
approach toward the security and privacy issues that plague
smart environments. Empowering them to both proactively de-
fend the environment itself and monitor the process of interaction
with TAPs by preventing them from introducing vulnerabilities
themselves through the rules they create.
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A N E M P I R I C A L A N A LY S I S O F I F T T T A P P L E T S

In Chapter 2, we focused on TAPs and highlighted the IFTTT
platform as the most widely used due to its extensive collection
of pre-existing rules, also known as “applets”. In this chapter,
we will delve into the results of our empirical analysis on IFTTT
applets. This was made possible by the availability of datasets
that include all the features of the applets, which were directly
obtained from the IFTTT platform.

We will begin by discussing previous research on applets found
in early versions of the IFTTT platform. Then, we will present
a preliminary study on more recent applets, along with the
updated method used to collect data from the IFTTT platform.
Finally, we will introduce an automated approach for verifying
the semantic consistency between the trigger-action components
of an applet and its natural language description provided by its
creator.

4.1 reviews of existing studies on ifttt

In this section, we will revise the studies published in the litera-
ture aiming at analyzing the IFTTT platform and its users.

4.1.1 Practical trigger-action programming in the smart home

One of the earliest studies found in the literature is the one
conducted by Ur et al. in 2014 [144]. The authors utilized a catalog
from the IFTTT platform from 2013, which consisted of 67,169

recipes (the name by which applets were identified back then), to
conduct three different studies. In the first study, they evaluated
the effectiveness of using a trigger-action approach for defining
personalized behaviors involving physical smart devices. In the
second study, the authors analyzed users’ preferences towards
specific trigger-action combinations by utilizing the 67k+ recipes
scraped from the IFTTT platform. Lastly, in the third study, the
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authors recruited 226 participants to assess the ease of use of the
interaction paradigm proposed by IFTTT.

first study The study was developed through a survey car-
ried out on 318 workers at Amazon’s Mechanical Turk (MTurk)
asking them to imagine that they own a home with smart devices
that are connected to the Internet and can be given instructions on
how they can behave. At this point, participants had to imagine 5

things they would prefer the house to do entirely autonomously.
The intent of this study was to test whether what partici-

pants desired was naturally expressible through the trigger-action
paradigm. The results confirmed this assumption, showing that
62.6 percent of the behaviors sent by participants were about
defining functionality centered on automatism involving the
smart environment. Moreover, of these behaviors, 77.9% could
have been realized by leveraging the IFTTT platform.

second study The second study involved 67,169 written
recipes, scraped directly from IFTTT.com, publicly shared by
35,295 different creators on the platform as of June 20, 2013. By
considering 6 different channels associated with the control of
physical devices, the objective of this study was to verify, despite
the vast availability of recipes on the platform, users preferred to
define new, perhaps redundant, behaviors rather than serve to
search and activate recipes already on the platform. Once again,
the study demonstrates that the most popular dozen channels
were frequently coupled with other channels in recipes that
involved physical triggers or actions, suggesting that users could
find it simpler to express a relevant combination than to look for
it in a big list. According to the Good-Turing [68] calculation, the
likelihood of producing a combination for the triggers and the
actions that didn’t show up in this sample is around 11% and 9%,
respectively. This outcome indicates that around 1 in 10 searches
would return no results if users were only permitted to use
recipes from that scrape. This outcome demonstrates that even a
considerably large library of IFTTT recipes, will not include all
potential combinations of triggers and actions.
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third study The third study, again, involved a user study
involving 226 Amazon MTurk workers in a test lasting a total of
30 minutes, during which participants were randomly assigned
to use one of two types of user interfaces. The first one, simi-
lar to the IFTTT platform, allowed the definition of behaviors
characterized by a single trigger and a single action. The second
one, although identical at a first glance, allowed the definition
of rules that supported multiple triggers and multiple actions.
Each participant was asked to complete 10 tasks identified with
letters A through J. Both interfaces allowed tasks A-F to be solved,
while tasks I-J could only be solved through the multi-trigger and
multi-action interface. Finally, tasks G and H were impossible to
solve with either interface. In any case, users could skip to the
next task through a dedicated button.

The tasks were evaluated in terms of success rates, the time
required for task completion, and satisfaction in performing the
tasks verified through liker-scale responses to questions. The re-
sults showed that the type of interface assigned, the participant’s
gender, and prior programming expertise, did not influence the
success at solving Tasks A through F or as well as to determine
that some tasks (G-H) could not be solved. Overall, the task
completion rate was very high, close to 80%. An important effect
uncovered is that of “learning”, which means that the success rate
of a single task is influenced by the number of tasks previously
completed. As might be expected, the age of the participants had
an impact on success rates. A similar argument applies when
considering the time taken to complete a task, where only age
proved to be a discriminating factor in the time taken to complete,
while the other factors did not influence the time. Again, there
was a learning effect, with participants taking less and less time
in task resolution as they completed tasks. Last but not least, re-
sponses to the questionnaires report that participants concurred
that creating recipes was simple and intuitive, and they would
be willing to create recipes on a daily basis.
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4.1.2 Trigger-Action Programming in the Wild: An Analysis of 200,000
IFTTT Recipes

Ur et al. deepened the analysis on IFTTT 2 years later, in 2015,
to assess the type of recipes created by IFTTT users [145]. To do
so, they collected the totality of applets shared publicly on the
IFTTT platform as of September 6, 2015. These recipes were then
the target of an empirical evaluation designed to verify the type
of recipes created, their creators, how they are described, and to
estimate the growth of the platform compared to the previous
study.

the dataset To collect the applets, the authors used the
Selenium framework to create a Web scraper for this purpose.
Each publicly available recipe on IFTTT was assigned a unique ID
or numeric identity. In fact, each recipe was accessible via a URL
in the form https://ifttt.com/recipes/ID. The IDs appear to have
been assigned consecutively, starting with the number 1. The
creator then analyzed each result to extract the main components
presented on the recipe page. The terms used to identify the
various extracted components of the recipes are as follows:

• ID: the unique identifier of the recipe

• Trigger Channel: the device or the service offering a set of
available triggers.

• Trigger: describes the actual event that triggers the recipe.

• Action Channel: the device or the service offering a set of
available actions.

• Action: describes the actual action to be performed.

• Author: the user who created the recipe.

• Date: the date the recipe was created.

• Adoptions: the number of users who have added that
recipe to “my recipes”.

• Description: a textual description provided by the creator
of the recipe which serves as the recipe’s title.
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The final dataset comprises a total of 224,590 recipes created
by 106,452 different creators, such a dataset has been released
publicly and made available for research on trigger-action pro-
gramming. Unfortunately as of today, the dataset is no more
available for download.

analysis In comparison with the dataset collected in the
publication in [144], the authors found a significant increase in
each statistic. In fact, compared with two years earlier, the number
of triggers and actions tripled, as did the number of recipes
created and their creators. The most significant stat, however, is
in the number of adoptions recorded, which increased tenfold
with respect to 2013.

Through a manual evaluation of the description assigned to
recipes, the authors identified a few different description styles.
Some of them stated explicitly what the recipe was (“Sends
post to Twitter”), while others were more implicit (“Tweet latest
post”). There were descriptions omitting the “then” (“If new post,
send to Twitter”), and others that instead of utilizing the if-then
format, use the when-then structure. Arrows were also used by
authors to indicate relationships (such as “Post -> Twitter”).

An interesting result was the identification of a certain degree
of redundancy in the choice of triggers and actions. In fact, al-
though the number of triggers and actions on IFTTT allowed for
up to 282,624 combinations, the analysis performed by the cre-
ators showed that only 6% of these (15,961 unique combinations)
were actually used by creators.

Finally, the authors pointed out that although the number of
recipes posted on the IFTTT platform has been growing exponen-
tially, at the rate of 50% per year, many of the newly submitted
recipes were duplicates of recipes already in IFTTT’s catalog,
that is, recipes characterized by the same combination of trigger
and action. This finding supports what was discovered in [144],
from which it was already inferred that it appeared almost more
immediate for users to define a new recipe than to go searching
within the catalog for one that met their needs.
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4.1.3 An Empirical Characterization of IFTTT: Ecosystem, Usage,
and Performance

As of today, the last published study on the IFTTT platform
applets was in 2017, authored by Mi et al. [109]. In that study,
in addition to conducting an empirical analysis on a dataset
consisting of more than 320,000 recipes (which had since been
renamed applets), the authors developed a test environment to
monitor the entire process of applets from creation to execution,
analyzing not only what happens in the front-end but also in the
back-end.

ifttt ecosystem analysis In order to conduct a more de-
tailed analysis of what goes on behind the scenes of an IFTTT
applet, the authors have built a testing environment, which com-
prises also their own IFTTT service, supporting a set of triggers
and actions for both IoT devices and web applications, which is
charged with managing both IoT devices and third-party web
services. This allowed the authors to intercept and monitor the
interactions among the entities involved, i.e., the devices and/or
the web services, within the IFTTT ecosystem.

Among the aspects evaluated by the authors is Trigger-to-
Action (T2A) Latency, which is a metric that evaluates the time
taken between the occurrence of the condition satisfying the trig-
ger to the execution of the specified action. To perform this evalu-
ation, the authors first considered 7 popular applets (identified as
A1 . . . A7), measuring the T2A Latency on the test environment.
The results of this first experiment showed that over a 3-day
execution period, running each applet 50 times a day, the T2A La-
tency for A1 through A4 applets averaged relatively high and yet
highly variable latencies, ranging from a minimum of 1 minute to
a maximum of 15 minutes. For the A5 . . . A7 applets, on the other
hand, whose major difference is that they used Amazon Alexa
as a trigger, the T2A Latency turned out to be much lower on
average, ranging from 1 second up to a maximum of 10 seconds.
This would show that such a service might be treated in a special
way by IFTTT, to which it would give higher priority.

To identify the cause of such high latency and variability, the
authors considered applets again by involving them in three
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different experiments. In the first, the trigger service was replaced
with the customs service created by the authors themselves, while
in the second, both the trigger and the action were replaced with
their own service. Finally, in the third and final experiment, the
authors were going to replace the IFTTT engine entirely, that is,
that module responsible for running the applet. Such a module
has been replaced with a custom implementation following the
IFTTT protocol but with a polling (update cycle) of 1 second.
This last experiment was the one to demonstrate a significant
decrease in T2A Latency, giving proof that the bottleneck lies in
the IFTTT engine itself.

Further investigation had shown that such a high polling
regime also causes several problems when a single trigger is
activated multiple times, this causes the corresponding actions to
be executed over a series of clusters, separated from each other
by as much as several hundred seconds. In addition, polling also
negatively affects concurrent applet execution, i.e., cases in which
the user defines multiple applets with the same trigger expect-
ing that, when it is triggered, distinct actions will be executed
simultaneously. As mentioned, due to the high and variable T2A
Latency, the distance between the execution of the two actions
turns out to be even more than 2 minutes.

Finally, it was pointed out that the IFTTT platform does not
perform any checks on cases where several applets could be
chained together going on to generate an infinite loop, i.e., cases
in which an applet A triggers an applet B which in turn triggers
A again. To face such an issue, the authors urge the need for
runtime detection techniques.

empirical analysis In order to evaluate the growth of the
IFTTT platform both in terms of published applets and with
respect to the number of users, the authors conducted an empir-
ical study similar to what was done previously by Ur et al. in
[145]. In fact, the authors collected a total of 320k applets from
the platform and, through a web scrape process, retrieved the
following information: applet name, description, trigger, trigger
service (channel), action, action service (channel), and the add
counter, i.e., the number of users who activated that applet. Ap-
plets were collected weekly during the months from November
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2016 to April 2017. The 200GB of data represents the biggest
dataset of IFTTT applets ever scraped with 30% more applets
collected with respect to the study of [145]. Furthermore, such a
dataset was shared and made available for research, and it is still
available for download 1.

While comparing weekly applet collection sessions, the au-
thors showed that over the 6-month period of the experiment,
the platform grew steadily with an increase in trigger services,
action, applets, and total add count of 11%, 31%, 27%, and 19%,
respectively. Furthermore, an in-depth analysis of the most in-
volved services showed that, compared to the 2016 study by Ur
et al., more than half of them involve IoT devices. Concerning the
type of IoT-related triggers and actions, the authors pointed out
that the top 3 of the most used ones are Alexa, Philips Hue, and
Fitbit, while on the other hand, non-IoT-related triggers include
Social Networks, online services, RSS feeds, and time/location
services. On the contrary, non-IoT-related actions focused more
on notification services via notification or email or posting on
social networks.

Finally, the authors ranked the applets by their add count,
showing that the top 1% of applets contribute in 84.1% of cases.
A final consideration comes from the fact that although service
providers themselves may also publish their own applets, 98% of
the applets shared publicly on the platform, and contributing to
the top 1% in 18% of all applets activated, are created by users.

4.2 a recent empirical study of ifttt applets

The study by Mi et al. [109] represents the latest published empir-
ical evaluation of IFTTT, as well as the latest dataset of applets
scraped from the platform and made available for the research.

With the intent not only to verify the evolution of the plat-
form after more than 5 years, but also to provide researchers
with an additional, more updated dataset on which to carry out
their studies, we have carried out a new applet web scraping
process, directly from IFTTT.com. A further novelty that char-
acterizes this new scraping process is its compatibility with the

1 https://xianghang.me/IFTTT_measurement/

https://xianghang.me/IFTTT_measurement/
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new multi-trigger and multi-action paradigm introduced with
IFTTT Pro (see Section 2.3), as well as the fact that it represents
a workaround solution to restrictions introduced by IFTTT pre-
cisely to limit the scraping of applets. In this section, we first
present in detail the approach devised for scraping applets from
the IFTTT platform and then provide preliminary results of an
empirical study performed on the new dataset.

4.2.1 The scraping approach

This section outlines the approach carried out for collecting ap-
plets from IFTTT. In fact, unlike up to 2017, the platform has
changed the way individual applets are referenced within the
site.

The need for a new approach to applet scraping is driven by
a change in the way individual applets are referenced within
the website. Whereas until 2017, in fact, applets (recipes) were
uniquely identified by an ID assigned consecutively and incre-
mentally, which allowed the scraping process to be automated by
accessing https://ifttt.com/recipes (or applets)/ID and incrementally
increasing the ID, after 2017 the URL format for applets became
https://ifttt.com/applets/ID-*title of the applet* where ID now con-
sists of 8 alphanumeric characters. An example is the following
URL, which references an Instagram applet that automatically
saves photos to a Dropbox folder: https://ifttt.com/applets/
rd4EyWXx-autosave-your-instagram-photos-to-dropbox.

This design choice made scraping applets following the pre-
viously adopted state-of-the-art approach, virtually impossible.
Thus, we approached the scraping of applets by leveraging the
IFTTT’s sitemaps.

A sitemap is a file that classifies and identifies all of a website’s
pages that we want search engines to index. As its name suggests,
a sitemap is a map of a website.

Like the table of contents of a book, the sitemap may be thought
of as the website’s table of contents. In reality, the sitemap gives a
general overview of the content’s organization to make it simpler
for users and search engines to locate.

Listing 4.1: An example of a sitemap from IFTTT.com

https://ifttt.com/applets/rd4EyWXx-autosave-your-instagram-photos-to-dropbox
https://ifttt.com/applets/rd4EyWXx-autosave-your-instagram-photos-to-dropbox
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<url><loc>https://ifttt.com/pinboard</loc><lastmod>

2021-08-12T09:34:36-07:00</lastmod><changefreq>weekly</

changefreq><priority>0.9</priority></url>

<url><loc>https://ifttt.com/pocket</loc><lastmod>2021-08-12

T09:34:36-07:00</lastmod><changefreq>weekly</changefreq><

priority>0.9</priority></url>

<url><loc>https://ifttt.com/evernote</loc><lastmod>

2021-08-12T09:34:36-07:00</lastmod><changefreq>weekly</

changefreq><priority>0.9</priority></url>

<url><loc>https://ifttt.com/instagram</loc><lastmod>

2021-10-13T15:21:12-07:00</lastmod><changefreq>weekly</

changefreq><priority>0.9</priority></url>

[...]

<url><loc>https://ifttt.com/applets/5203-notify-your-das-

keyboard-when-your-android-phone-s-battery-is-low</loc><

lastmod>2018-08-02T12:00:51-07:00</lastmod><changefreq>

weekly</changefreq><priority>0.7</priority></url>

<url><loc>https://ifttt.com/applets/5210-get-the-weather-

forecast-every-day-at-7-00-am</loc><lastmod>2017-05-30

T17:08:49-07:00</lastmod><changefreq>weekly</changefreq><

priority>0.7</priority></url>

<url><loc>https://ifttt.com/applets/5211-automatically-

create-a-discover-weekly-archive</loc><lastmod>2017-01-20

T12:03:04-08:00</lastmod><changefreq>weekly</changefreq><

priority>0.7</priority></url>

<url><loc>https://ifttt.com/applets/5212-save-your-

instagrams-to-google-drive</loc><lastmod>2017-04-20

T17:17:16-07:00</lastmod><changefreq>weekly</changefreq><

priority>0.7</priority></url>

Listing 4.1 shows an example of a sitemap, which provides
links to both the pages of some services and the link that redirects
directly to the applet page.

IFTTT sitemaps are updated monthly and are basically a col-
lection of the featured applets that the platform would like to
have indexed by search engines. This obviously implies that some
applets, over time, may be repeated, reasoning that the scraping
approach will have to account for any duplicates.

As one would imagine, this type of approach does not allow
exhaustively and non-stop scraping of applets from the IFTTT
platform, instead only applets present in the sitemap can be
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obtained and 1 time per month. However, to date, this represents
the only way to acquire applets from IFTTT.

The scraping session considered 5 different sitemaps, acquired
over a period of 5 months, and which in total allowed the collec-
tion of 55256 applets.

In order to do so, we parsed the sitemaps, isolating only the
links that reference pages of the applet. Once the applet page is
reached, the scraping process is identical to what was done by
Ur et al. and Mi et al. in [109, 144, 145].

We categorized the information concerning the applets into 5

different files:

actionlist e triggerlist : These two files, as the name
implies, contain information about the triggers and actions for
each service available on the platform; in addition, for each,
fields related to the variables are stored. The actions dataset
has 2508 elements, the triggers dataset has 3029 elements. A
comprehensive list of the feature extracted is provided in Table
4.1.

channellist : This is the file related to 774 services. It in-
cludes details such as the name and ID of the service, with
its description. A comprehensive list of the feature extracted is
provided in Table 4.2.

channeldetaillist : Similar to the previous file, except
that, for each service, the associated actions and triggers are
listed. A comprehensive list of the feature extracted is provided
in Table 4.3.

applets : The applet dataset, which counts 55256 applets, in-
dicates, in addition to information such as name and description,
the elements of which an applet is composed (actions and trig-
gers), the number of times the applet has been installed, and the
name of its creator. A comprehensive list of the feature extracted
is provided in Table 4.4.

Note that, in contrast to previously published datasets, when-
ever an applet was created through IFTTT Pro, through which it
is possible to define behaviors through a concatenation of trig-
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name description

actionId (triggerId) Numerical identifier of the action
(trigger)

actionUrl (triggerUrl) URL of the action (trigger) page

actionTitle (triggerTitle) Action (trigger) name

actionDesc (triggerDesc) Action (trigger) description

actionChannelName

(triggerChannelName) Name of the service associated
with the action (trigger)

actionChannelId

(triggerChannelId) ID of the service associated with
the action (trigger)

actionChannelUrl

(triggerChannelUrl) URL of the service associated with
the action (trigger)

actionFieldList

(triggerFieldList) Parameters of the action (trigger)

Table 4.1: Features in the actionList (triggerList) file.

gers and actions the features related to the triggers and actions
of each applet present a collection of triggers (or actions). This
possibility is supported by our scraping approach.

The applets scraped from the IFTTT platform have been col-
lected in a GitHub repository and made publicly available for
research2.

4.2.2 Analysis results

This section presents the preliminary results of a statistical com-
parison carried out between the dataset we collected (from now
on IFT22) and the dataset published in [109].

Specifically, data were acquired every month from October 2021

to March 2022, obtaining a sufficient amount of data in order to
purpose of inferring a correct estimate of the data characteristics.
In contrast, the dataset presented in [109] was constructed by
applying a crawling process from November 2016 to April 2017.

2 https://github.com/buonleandro/IFTTT-Spider
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name description

channelId Numerical service identifier

channelName Service name

channelDesc Service description

channelUrl URL of the service page

channelImgUrl URL of the service icon

lastModified Date of last service change

Table 4.2: Features in the channelList file.

name description

name Service name

id Numerical service identifier

url URL of the service page

desc Service description

specName Service reference

specUrl Service official page

type Service category

suggestedApplet Suggested applet IDs associated with
the service

suggestedChannels Related suggested services

triggerList Triggers provided by the service

actionList Actions provided by the service

lastModified Date of last service change

Table 4.3: Informazioni detailChannelDataset.

As can be seen from Table 4.5, the number of installed applets
and the number of creators is lower than in the dataset presented
in [109] (−82.73% and −82.52%, respectively); this is because,
excluding private ones, many applets have been removed and
consequently creators who do not have published applets were
not involved in the count.

In recent years starting in 2020, moreover, there are no dupli-
cate applet links among the various platform sitemaps, an event
that occurred in previous years, resulting in a reduction in the
number of applets counted.
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name description

title Applet title

desc Applet description

triggers List of triggers used by applets

actions List of actions used by applets

favoritesCount Number of additions to favorites

addCount Number of applet installations

creatorName Name of the applet creator

creatorURL URL of the creator’s profile

URL URL of the applet page

dateCreated Date of applet creation

Table 4.4: Features of the applet

statistics ift22 dataset [109]

#Applet 55256 320k

#Services 774 408

#Triggers 3029 1490

#Actions 2508 957

#Adds 31, 6M 24M

#Authors 23, 6k 135k

#Snapshot 5, once a month 25, once a week

Table 4.5: Comparison between our dataset and the one from [109].

Instead, the line additions refers to the number of applet in-
stallations by platform users. In total they increased by 31.67%,
reaching almost 32 million.

In general, from Table 4.5, it can be seen that services and
triggers show an increase of about double compared to the
previous dataset (+89.71% and +103.29%, respectively) while
shares increased by 162.10%

services Each of the 774 services offers management func-
tions related to home automation devices, automobiles, wear-
ables, web services, etc.. Because of the great variety in the type
of services, each of them has been assigned a category. The next
table shows the distribution of services in the various categories,
comparing it with [109].
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category % services ift22 % services in [109]

Smart devices 49.10% 37.70%

IoT Hubs/Integration solutions 8.10% 9.30%

Wearable devices 2.79% 2.70%

Automobilies 0.42% 2.00%

Smartphone applications 4.60% 3.70%

Cloud storage 1.25% 2.50%

Online services 17.10% 8.80%

RSS and recommendation systems 3.49% 2.20%

Personal data managers and schedulers 1.53% 10.30%

Social networking, blogging, sharing platforms 4.60% 5.60%

Messaging, team collaboration, VoIP 5.20% 4.70%

Time & location 1.12% 1.20%

Mail services 0.70% 1.00%

Other - 8.30%

Table 4.6: Comparison of the distribution of services across categories.

Table 4.6 shows the difference in the distribution of services
differs between the two datasets. For example, no service in the
proposed dataset was associated with the category Other (present
instead in [109]), where there are all those services that do not
find an exact location in the other classes.

In addition, it can be seen that in the dataset presented in [109],
after the category Smart devices (which contains the most ser-
vices overall in both datasets), the second category that includes
most of the services is Personal data managers and schedulers;
in contrast, in the proposed dataset the second category with
which the most services were associated is Online services, a
sign that in recent years there has been a greater need to need to
connect web services with other services and/or devices.

Compared to the total number of services in the proposed
dataset in [109], 148 were removed and 514 new ones were added.
Table 4.7 shows the number of services added to each category.

As can be seen, the amount of services related to IoT devices
is predominant compared to other categories. This phenomenon
was also evidenced in the study conducted in [109], a sign that the
platform is mainly popular among smart device manufacturers.
In fact, more services were added in the category related to smart
devices and in the category related to web applications (this
shows that the platform is mainly used for the development of
applets for IoT devices and for web services).
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category # services added # services removed

Smart devices 249 54

IoT Hubs/Integration solutions 58 14

Wearable devices 16 5

Automobilies 3 6

Smartphone applications 17 5

Cloud storage 5 2

Online services 95 40

RSS and recommendation systems 23 2

Personal data managers and schedulers 7 2

Social networking, blogging, sharing platforms 8 3

Messaging, team collaboration, VoIP 26 8

Time & location 6 2

Mail services 1 1

Table 4.7: Amount of services added compared to the dataset in [109].

Figure 4.1: Evolution of services until March 2022.

Figure 4.1 shows the trend in the number of services over time,
from the year of publication of [109] to the date of the last data
collection with respect to the proposed dataset. The red line is
associated with the number of services for each month, while
the dashed line represents the trend of the data trend, indicating
steady growth in the number of services over time.
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triggers and actions Hand in hand with the increase in
services, the number of triggers and actions has also grown in
recent years.

For each category of services, trigger and action count values
were collected. In the following tables, each column represents
the distribution of trigger additions (i.e., the count, in percentage,
of additions of applets whose triggers belong to a service within
each category) and actions.

category % ac trigger ift22 % ac trigger [109]

Smart devices 20.79% 6.40%

IoT Hubs/Integration solutions 0.86% 0.80%

Wearable devices 0.98% 1.60%

Automobilies 0.34% 0.50%

Smartphone applications 7.42% 11.00%

Cloud storage 0.82% 0.60%

Online services 17.00% 20.00%

RSS and recommendation systems 5.90% 9.80%

Personal data managers and schedulers 7.70% 11.20%

Social networking, blogging, sharing platforms 23.74% 17,70%

Messaging, team collaboration, VoIP 2.72% 0.80%

Time & location 10.63% 14.10%

Mail services 1.10% 4.40%

Other - 1.30%

Table 4.8: Comparison of the distribution of triggers addCounts.

As shown in Table 4.8, the most commonly used triggers in
the definition of applets belong to the category related to Smart
devices, in contrast to [109], where the most popular triggers
were those related to Web services. Smart devices most involved
triggers include Amazon Alexa and Google Assistant, both of
which are most associated with applets whose actions include
the service Philips HUE -Philips smart devices for lighting- (163

and 80 applets, respectively).
In contrast, from the 4.9 table, it can be seen that the most

frequently used actions are also part of the Smart devices cate-
gory, whereas previously the most frequently used were those
related to the Personal Data Managers and Schedulers category.
The smart devices most involved in actions, on the other hand,
include textitAndroid Device (a service associated with devices
running the Google operating system) and Philips HUE, which
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category % ac action ift22 % ac action [109]

Smart devices 25.22% 7.90%

IoT Hubs/Integration solutions 1.72% 1.00%

Wearable devices 0.47% 1.00%

Automobilies 0.00% 0.10%

Smartphone applications 12.71% 13.80%

Cloud storage 4.87% 13.60%

Online services 9.35% 1.90%

RSS and recommendation systems 0.68% 0.10%

Personal data managers and schedulers 10.00% 27.40%

Social networking, blogging, sharing platforms 19.23% 17,30%

Messaging, team collaboration, VoIP 5.23% 3.10%

Time & location 0.09% 0.00%

Mail services 10.43% 12.80%

Other - 0.20%

Table 4.9: Comparison of the distribution of actions addCounts.

are most involved in applets whose triggers belong to the Date
& Time service (360 and 291 applets, respectively).

Table 4.10 illustrates a ranking of the most commonly used
services according to the actions and triggers they expose. Also,
in Table 4.11, a list of the triggers and actions most commonly
used in applet definition is presented.

top-10 trigger services top-10 action services

Weather Underground (3, 48M) Notifications (5, 09M)

Amazon Alexa (3, 06M) Android Device (4, 15M)

Instagram (2, 70M) Twitter (3, 06M)

Button Widget (2, 54M) Email (2, 66M)

Space (2, 37M) Google Sheets (2, 23M)

Facebook (2, 33M) Philips Hue (2, 02M)

Location (2, 32M) Google Calendar (1, 54M)

Google Assistant (1, 52M) Dropbox (1, 48M)

Date & Time (1, 20M) VoIP Calls (1, 03M)

Android SMS (1, 09M) Phone Calls (US only) (912k)

Table 4.10: Trigger services and actions sorted by the total number of
applet installations they take part in.

In addition, from the collected applets it is possible to analyze
the interaction between the various services. By counting the
occurrences of applets that have a trigger of a service belonging
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top-10 triggers

Any new photo by you (Instagram)

Today’s weather report (Weather Underground)

Image of the day by NASA (Space)

New SMS received matcher search (Android SMS)

Any new contact (iOS Contacts)

You enter an area (Location)

You enter or exit an area (Location)

Every day of the week at (Date & Time)

Tomorrow’s forecast calls for (Weather Underground)

ISS passes over specific location (Space)

top-10 actions

Post a tweet image (Twitter)

Send a notification from the IFTTT app (Notifications)

Update device wallpaper (Android Device)

Set ringtone volume (Android Device)

Add row to spreadsheet (Google Sheets)

Quick add event (Google Calendar)

Mute ringtone (Android Device)

Send a notification from the IFTTT app (Notifications)

Update profile picture (Twitter)

Call my device (VoIP Calls)

Table 4.11: Triggers and actions sorted by the number of applet instal-
lations.

to a X category and an action of a service belonging to a Y
category, it is possible to determine the pairs of categories most
related to the act of building an applet.

Specifically, each coordinate frame (i, j) corresponds to the
number of applets that have an action of a service of category i
and a trigger of a service of category j.

Figure 4.2 illustrates a heatmap highlighting the interactions
between the various categories.

Where:

1. Smart devices

2. IoT Hubs/Integration solutions

3. Wearable devices
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Figure 4.2: Heatmap of interactions between categories.

4. Automobiles

5. Smartphone apps

6. Cloud storage

7. Online services

8. RSS and recommendation systems

9. Personal data managers and schedulers

10. Social network, blogging, sharing platforms

11. Messaging, team collaboration, VoIP

12. Time & location

13. Mail services

For example, the applet

Mail me free games with Steam keys posted to /r/gamedeals
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is included in the cell count (13, 7), since it has an action associ-
ated with a category 13 service (Email) and a trigger associated
with a category 7 service (Reddit).

Instead, the applet

Tell Alexa to adjust your Nest Thermostat to a certain temperature

It is included in the cell count (1,1) because the services associated
with the trigger and action (Amazon Alexa and Nest Thermostat,
respectively) belong both to category 1.

This evaluation demonstrated a strong correlation between
specific trigger and action categories. In fact, there is a particu-
larly high number of occurrences of applets in which a trigger
belonging to the Smart devices category (1) is associated with
an action belonging to the same category.

An example is the following applet:

If my smart camera detects turn the light on.

applet Figure 4.3 ordinates for the number of installations per
applet. The x-axis illustrates the indices identifying applets, the y-
axis illustrates the indices identifying the number of installations.

Figure 4.3: Number of installations per applet

The first 10% of the collected applets accounts for about 97.83%
of the total number of installations. In general, 32087 applets have
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a total of maximum 2 installations while just 66 exceed 100000
installations.

Many applets help to link web services together. Moreover,
from the number of installations, it can be seen that the use of
applets for automating social networking channels is widespread.

As for the rest of the applets, that is, those that feature IoT
devices in the trigger, action, or both, it can be seen that the
platform provides applets that act as bridges to coordinate the
various elements. In a smaller number, one can find applets
created for testing purposes (named "test," "test2," etc.) or applets
whose structures show remarkable similarities, with differences
related only to titles or parameters.

The methodology adopted to identify differences between the
proposed dataset and the dataset in [109] was also used to get an
account of the number of new applets that the addition of the new
services resulted in. Specifically, the new services contribute as
many as 29700 applets, accounting for 68.16% of the installations
(21.5M).

creators Figure 4.4, shows the number of total installations
recorded per creator. The x-axis illustrates the indices identify-
ing the creators (order by number of installations), the y-axis
illustrates the indices identifying the number of installations.

On the IFTTT platform, each user is free to create a personal
account and define his or her own automations. Approximately
23600 creators (i.e., users who have at least one non-private applet
published) have been identified; these, considering the portion of
applets mentioned above, i.e., those that represent the first 10%
of the collected applets, contribute a large number of installations
(they represent approximately 27.58% in the first 10%).

Most creators contributed at most 2 applets. In contrast, cre-
ators who contributed 3 or more applets represent only 12.66%
of all active users (2988).

Without taking into account the creator accounts correspond-
ing to official services, such as textitAmazon Alexa, Instagram,
Facebook or Google, the total number of applet installations per
user ranges from a minimum of 0 to a maximum of about 2.1 M
(with an average of 1337 total installations per user). The number
of installations of a single applet, on the other hand, ranges from
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Figure 4.4: Log of the number of total installations per creator

a minimum of 0 to a maximum of 350647 (with an average of 589
installations per applet).

4.3 model for automatic semantic consistency check-
ing

According to the IFTTT creation paradigm, when a user creates
a new applet, the creator must specify a title and a description,
in natural language, that summarize how the applet works. By
reading these fields, a new user can more easily understand what
an applet is for and decide whether or not to activate it on their
device. However, on the part of IFTTT, there is no control over
the content of the description and title entered by the user, so
the creator could write anything, falsely describing the applet’s
behavior.

To this end, in this section, we present a model that can check
whether there is some semantic consistency between the trigger-
action components of an applet and its natural language descrip-
tion provided by its creator.

For example, consider the following description:

“Create a link note on Evernote for my favorite tweets.”
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We define this description as consistent if the components that
characterize the defined IFTTT rule are those in Table 4.12.

Trigger New tweet liked by you

Trigger Channel Twitter

Action Create a new note

Action Channel Evernote

Table 4.12: Examples of components for a consistent applet

The proposed approach attempts to evaluate the coherence of
the description through a semantic approach based on the Bidirec-
tional Encoder Representations from Transformers (BERT) model.
The description is defined as consistent if it agrees with the de-
scription of the IFTTT rule synthesized from its components. The
method manages to distinguish, within the description, trigger
channels and action channels, what the first method fails to do.

The experimental analysis performed shows that the BERT-
based model is more effective than other models implemented in
the literature.

4.3.1 Literature review

This section presents the main studies carried out on the semantic
analysis of IFTTT rules.

Studies carried out in the literature use “Language to code”
approaches, i.e., which allow the components that characterize
an IFTTT applet to be derived from its description. Other studies,
on the other hand, attempt to simplify rule creation for the user
by creating complex graphical interfaces designed specifically to
enhance the user-experience of the user.

4.3.1.1 From language to code: Using semantic parsers for IFTTT
applets

Programming computers with natural language would make
it easier for inexperienced users to utilize modern technology
[102]. Translating language to code often requires extensive man-
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ual work for constructing parsers or large amounts of training
data. One area of interest is IFTTTs, An interesting subset of the
possible program space are IFTTTs.

In [121] authors built a semantic parser that allows users to
describe applets in natural language and automatically map them
to executable code. For this work, 114,408 applet-description pairs
were collected.

Playing a key role in achieving correct semantic derivation are
ASTs (Abstract syntax tree).

In computer science, an AST, or simply syntax tree, is a tree
representation of the abstract syntactic structure of text (often
source code) written in a formal language.

Each node in the tree denotes a construct present in the text.
Syntax is abstract in the sense that it does not represent every
detail that appears in actual syntax, but rather only structural or
content-related details. Similarly, a syntactic construct such as an
i f − condition − then statement can be denoted by a single node
with three branches. Once constructed, additional information is
added to the AST by subsequent processing [159].

An example of AST is shown in Figure 4.5.

Figure 4.5: An example of AST

The constructed ASTs are given as input to a series of classi-
fiers. The AST obtained as output from the classifier is given back
as input to the classifier to improve its performance until a maxi-
mum number of iterations is reached or the desired performance
is achieved.

The synthesis of the IFTTT rule from the natural language
description is carried out through four steps:
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• program retrieval: multiple users could potentially have
similar needs and thus create similar or even identical
programs. Given a new description, the closest description
in a table of description-rule pairs is searched to return the
associated program. Several text similarity metrics were
used;

• machine translation: where data are segmented and as-
sembled at runtime. First, each program is translated into
an AST and then converted into flat sequences of tokens.
The tokens are annotated with their similarity, i.e., the num-
ber of arguments or operands taken by the functions, which
is useful for reconstructing the AST tree later. The collected
set of tokens are converted into a well-formed program
according to the formal grammar;

• generalization without alignment: this approach is to treat
the source language as context, rather than as a hard con-
straint. The program, obtained from the previous step, is
analyzed to extract its various instructions. For each con-
struct in the formal grammar, a binary classifier intended
to predict whether or not that construct corresponds to an
instruction is trained. This classifier uses the general char-
acteristics of the source sentence. This allows for context-
dependent inference of instructions. Each instruction is
assigned a probability by looking at each construct inde-
pendently;

• synchronous generation: Previous methods focus on learn-
ing the distribution of instructions based on the input, with-
out considering the syntax of the source sentence or any
correspondence between the language syntax and the pro-
gram structure. Unlike traditional systems, this approach
does not use word alignment as a strict guideline. Instead,
the phrasal correspondence is established during the train-
ing process to produce a semantic derivation, as shown in
Figure 4.6.

This study illustrates an example of natural language transla-
tion into a program. The authors’ best results were obtained by
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Figure 4.6: An example of semantic derivation.

introducing the vaguely synchronous approach. In practical situ-
ations, however, many elements of the semantic representation
may be implied only by description, rather than explicitly stated.

This work has considered only interactions in which the user
describes a request and the system responds with an interpreta-
tion. An important next step would be to engage the user in an
interactive dialogue to confirm and refine the user’s intent and
develop a fully functional correct program.

4.3.1.2 HeyTAP: bridging the gap between user needs and technology
in IF-THEN rules via conversation

In [43] authors present the HeyTAP system, a conversational
and semantic trigger-action programming platform that can map
users’ abstract needs to executable IF-THEN rules. By interact-
ing with a conversational agent, the user communicates his or
her customization intentions and preferences. The user’s input,
along with contextual and semantic information about available
connected entities, is then used to recommend a set of IF-THEN
rules that meet the user’s needs.

Taking advantage of a multimodal interface, the user can in-
teract with a conversational agent to communicate his or her
personalization intentions for different contexts, for example, to
personalize the temperature of his or her room when he or she is
close to home as in Figure 4.7.
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Figure 4.7: HeyTAP GUI [43].

By interacting with the agent, the user can also specify his
preferences on how to achieve the goal of his personalization
intention, such as convenience and preserving security. To model
such concepts, the authors extended the EUPont [41] model, a
semantic, ontology-based representation of IoT devices.

Figure 4.8 shows the HeyTAP architecture.

Figure 4.8: HeyTAP architecture [43].
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The EUPont ontology was leveraged by HeyTAP to classify the
triggers and actions offered by the user’s connected entities in
terms of the functionality provided and to model contextual infor-
mation, e.g., user-owned devices and services and their location.
In addition, classes and restrictions are added to automatically
characterize triggers and actions based on user preferences, for
example, to discriminate between behaviors that require energy
and privacy-invasive behaviors. All this semantic information
is used to suggest a set of IF-THEN rules that meet the user’s
needs, i.e., intentions and preferences. The user can eventually
inspect the suggested rules in the multimodal interface and select
one or more of them to personalize his or her connected entities.

HeyTAP helps users move from their abstract needs to IF-
THEN rules involving real smart devices and online services and
consists of two main phases, namely conversation and recom-
mendation.

The user interacts with a conversational agent (a) to tell the
system his personalization intentions for different contexts, along
with his preferences, with different levels of abstraction. Leverag-
ing a semantic model, i.e., EUPont-conversational (b), the server
analyzes the user’s input, along with contextual information
about the available connected entities (c), to infer a set of IF-
THEN rules that meets the user’s needs (d). The recommended
rules are displayed in the multimodal user interface to the user,
who can decide (e) which rules should be instantiated and exe-
cuted on real smart devices and online services (f).

The HeyTAP server uses user input, i.e., the user’s intentions
and preferences, together with contextual information about
available connected entities (c), to infer a set of IF-THEN rules
that include available and real connected entities, e.g., with trig-
gers and IFTTT actions (d). The server analyzing the user action
and trigger intentions extracts a set of appropriate IFTTT actions
and triggers, respectively. In this step, it first extracts all actions
and then filters them according to the available intention ele-
ments, i.e., functionality, category, entity, technology, where, and
when. The same steps are then used to extract a set of triggers,
which are combined with the retrieved actions to generate an
initial set of IF-THEN rules. That set of IF-THEN rules is finally
filtered by considering the user’s preferences.
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On the one hand, modern trigger-action programming plat-
forms exploit highly technology-dependent representation mod-
els, thus making end-user customization of connected entities a
complex task. On the other hand, using a higher level of abstrac-
tion requires an effective way to select the actual entities, triggers
and actions with which to satisfy the user’s abstract needs.

The results of an exploratory study of eight end-users confirm
the effectiveness of the approach and show that HeyTAP can
“successfully translate” users’ abstract needs into IF-THEN rules
that can be instantiated and executed by concurrent trigger-action
programming platforms.

However, this study targeted only a limited number of users
with a computer science background. A more valuable study
would be to deploy HeyTAP, testing it with different types of
users.

4.3.1.3 InstructablesCrowd: creating IF-THEN rules for smartphones
via conversations

In [82] authors, they built a system called “InstructableCrowd”,
which allows users to schedule their own devices via conversa-
tion.

The user verbally expresses a problem to the system and a
group of crowd workers collectively respond to schedule and
return IF-THEN rules requested by the user.

The IF-THEN rules generated by Instructable Crowd link com-
binations of relevant sensors (e.g., location, weather, device ac-
celeration, etc.) to useful effectors (e.g., text messages, device
alarms, etc.).

InstructableCrowd is implemented as a conversational agent
for android smartphones. The user is able to issue commands
to the agent via voice or text as shown in Figure 4.9). The client
side records the user’s speech and sends it to the server, which
in turn sends this speech to Google Automatic Speech Recog-
nition; the user can also use text input to enter the command.
InstructableCrowd adopts the LIA [11] framework, which uses
a combinatorial categorical grammar (CCG) parser to parse the
input text into a logical form and execute the corresponding
commands to recognize the user’s speech input. Once the user
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Figure 4.9: Functioning of InstructablesCrowd [82].

gives verbal commands such as “create a rule”, LIA connects to
InstructableCrowd and begins the rule creation process.

InstructableCrowd also provides an editing interface to allow
the user to manually create new rules and edit them. All rules are
grouped by conversation session in which the rule was created.
Crowd generated rules are blue and user created or modified
rules are green. The Decision Rule Engine is responsible for
validating, storing, processing, and executing rules created by a
crowd-worker or user. The Decision Rule Engine is composed
of multiple modules that interact with each other to perform
an action given a set of specific conditions that are true. These
modules are interconnected as shown in Figure 4.10.

The workflow and how the components of the Decision Rule
Engine cooperate over time to handle rules created by the user
or crowd-workers can be described in the following six steps:

• Decision Rule Validator: After the user or crowd worker
defines a new rule to be added (Step 1), this component
validates the syntax of that rule based on the attributes and
constraints of the sensors and effectors (Step 2);
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Figure 4.10: Architecture of InstructablesCrowd [82].

• Knowledge Base: once the rule has been parsed and vali-
dated, it is stored in a knowledge base that can be accessed
at any time by any component (Step 3). These rules are
stored locally for performance and privacy reasons, so po-
tentially confidential information contained in the rule is
protected;

• Rule executor: after validation, the rule is immediately pro-
cessed to determine whether it should be executed at that
time (Step 4). If so, it invokes actions from the appropriate
effectors (Step 5). Otherwise, it adds the rule to a queue so
that it can be executed later when all its conditions are met.
The rule executor periodically checks to see if each queued
rule should be executed (Step 6);

• Monitoring and tracking: this module is responsible for
monitoring the rule execution process (Step 7) and checks to
see if there are any rules that are never triggered or conflict
with each other (e.g., one rule intends to turn GPS on while
the other intends to turn it off). When conflicts occur, the
monitoring/tracking module temporarily subsumes the
least relevant rule (i.e., the one that has been activated
least frequently) and then the user is asked to confirm this
subsumption decision (Step 8);
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• Integrated and external sensors/effectors: in addition to
the built-in sensors and effectors that are part of the operat-
ing system, such as GPS and SMS messages, some virtual
sensors/effectors rely on external services, such as weather
forecasts and news feeds. Finally, the user is always aware
of the execution of the action through notifications, text
messages, alarms, etc. (Phase 9).

Figure 4.11: InstructablesCrowd Scoring [82].

While the THEN parts were not affected much, performance
in the IF parts decreased as the scenarios became more complex.
The “Crowd Voting” performed similarly or slightly better than
“User Only” in the easy and intermediate rules, but worse in
the more complex rules. These results indicate that the large
number of sensors and effectors influences the level of difficulty
in composing the rule.

This study allows us to highlight the increasing complexity of
IFTTT applet components due to the large number of triggers,
actions, and channels that increase over time and how much
human intervention is required for consistency analysis of these
components.

4.3.1.4 Interactive semantic analysis for IF-THEN recipes by hierar-
chical reinforcement learning

In most existing semantic parsers, text parsing and comprehen-
sion are performed in a single step.

With this study [164] authors propose a system that can trans-
late the description of an IFTTT rule into an applet by exploiting
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hierarchical reinforcement learning. Semantic analysis becomes
interactive; the agent can ask clarifying questions to resolve am-
biguities through a multi-turn dialogue.

The agent interactively predicts the 4 components of an IF-
THEN recipe, deciding to ask a question when the prediction
probability of a recipe component is below a predefined threshold.
An optimization framework also simultaneously improves the
accuracy of analysis and reduce the number of questions.

This work is done through hierarchical reinforcement learn-
ing (HRL). The whole semantic analysis is decomposed into 4

subtasks or options namely, trigger prediction, trigger channel,
action and action channel.

Four low-level policies are used one for each task. These poli-
cies are used to give rewards to the agent which are positive
in case it makes correct predictions and negative if it makes
incorrect predictions.

The rewards also stimulate the agent to predict a correct com-
ponent with fewer questions. The agent chooses the order of
subtasks to perform and moves to the next subtask only when
the current one has been completed.

To move from one state to the next, the agent must perform
an action, which may consist of predicting an IFTTT component
or asking the user a clarification question. During training, the
analysis is not interrupted even if one of the predictions is wrong
to encourage the agent to predict as many correct components as
possible.

In this experiment, the authors used different reinforcement
learning algorithms to train the agent to recognize trigger, action,
channel and function of an IFTTT rule, testing their work on
different datasets and with different policy functions. With this
study, the authors demonstrated that the use of reinforcement
learning greatly improves, compared to other work done in the
literature, the prediction of the components of an IFTTT rule.

The improvement is achieved more on applets that possess
very vague and unclear descriptions because the agent by asking
questions of the user is able to gain clarity on the individual
components to be predicted. The model, in fact, on this type of
recipe achieves an accuracy of 87%.
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With the different policy features implemented by the authors,
the agent asks fewer questions of the user and still achieves very
good accuracy.

This work is not robust with respect to sentences that contain
typos in the descriptions and does not consider any typos made
by the user.

4.3.1.5 Synthesizing If-Then programs through the mechanism of
latent attention

A fundamental problem for computational linguistics is trans-
lating natural language descriptions into executable programs.
Over the past decade, there has been an increasing number of
attempts to address this problem from both the natural language
processing community and the programming language commu-
nity [90]. In [97], researchers have focused on the description of
IFTTT rules to try to predict from the latter the trigger and action
of the rule.

To translate a natural language description into a program,
they identified the words in the description that are the most
relevant to predict the desired labels: trigger, action, and channel.
For example, in the following description:

“Automatically save Instagram photos to your Dropbox folder”

The text “photo of Instagram” is the most relevant to predict
the trigger. To acquire this information, they adapted the Latent
Attention mechanism: they first calculate the importance weight
of each token in the sentence and then produce a weighted sum
of the embeddings of these tokens.

The weight of each token depends not only on the token itself,
but also on the overall structure of the sentence.

The Latent Attention, or latent attention, mechanism was used
to exploit these clues and calculate the latent weight for each to-
ken to determine which of them are most relevant in the sequence
for the trigger or action.

The architecture of the Latent Attention model, implemented
by the researchers, is presented in Figure 4.12. The model takes
as input a sequence of symbols x1, ..., xJ , each coming from a
dictionary of N words where J is the maximum length of a
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Figure 4.12: Architecture of the latent attention model [97].

description. The architecture has several components, detailed
below.

Vocabulary. Each sentence is tokenized by splitting it on spaces
and punctuation (e.g. “.:;!? "0:;”) and converted to lowercase
characters. All punctuation symbols are still retained as tokens.
In this mapping, typos in the text are not considered. The 4,000

most frequent tokens remain unchanged while all the rest are
placed in a single token that is subsequently compressed. Another
approach used is to take word embeddings, run it through a
bidirectional LSTM using concatenation of two LSTM outputs
at each time step as embeddings. This can take into account the
context around a token by having the embeddings contain more
information about the entire sequence as well as the individual
token. Both approaches were used in the training phase.

Latent attention layer. Each symbol xi is encoded as a one −
hot vector of N size. The input sequence X is embedded in a
d − dimensional embedding sequence using E = Embedθ1(X),
where θ1 is a set of parameters.

The output of the latent attention layer is computed as a stan-
dard softmax function on E in the following way:

l = so f tmax(uTEmbedθ1(X)).

Where, l is the J − dimensional output vector and u is a d −
dimensional trainable vector. The softmax function, or normalized
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exponential function, is a generalization of a logistic function that
compresses an k − dimensional z vector of arbitrary real values
into an k − dimensional σ(z) vector of values in the interval (0, 1)
whose sum is 1. The function is calculated as follows:

σ(z) =
ez

j

∑ k=1K ezk per j = 1, .., K

Attention layer. The attention layer or active attention layer
calculates the weight of each token based on its importance
to the final prediction. These weights are called active weights.
First X is embedded in D using another set of parameters 2, i.e.,
D = Embedθ2(X) is of size d ∗ J. Next, for each token Di, its active
attention input Ai is computed through a softmax:

Ai = so f tmax(V Di)

Here, Ai and Di denote the i-th column vector of A and D
respectively, and V is a trainable parameter matrix of dimension
J ∗ d. Note that V Di = (VD)i, is computed by performing a
softmax per column on (V D). Here, A is of dimension J ∗ J. The
active weights are calculated as the weighted sum of Ai, using
the following formula:

w = ∑J
i=1 = li Ai

Output representation. A set of parameters is used to embed
X into the inclusion matrix J, and the final output o, a d −
dimensional vector, is the weighted sum of embeddings obtained
by the following formula:

o = Embedθ3(X)w

Prevision The softmax function is used to make the final predic-
tion: f̂ = so f tmax(Po), where P is a matrix of parameters d ∗ M
and M is the number of classes.

This complex model made by the researchers was trained
with a very large number of manually validated and cleaned-up
IFTTTs.

The realized architecture was used to build the following six
different training models:
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• Dict: model that uses the architecture described above with
the latent attention and attention layers turned off and
performs tokenization of input data by exploiting the con-
structed vocabulary;

• Dict +A: model that uses the architecture described above
with only the attention layers active and performs input
data tokenization by exploiting the constructed vocabulary;

• Dict +LA: model that uses the above architecture with the
attention and latent attention layers active and performs
input data tokenization by exploiting the constructed vo-
cabulary;

• BDLSTM: model that uses the architecture described above
with the latent attention and attention layers turned off and
performs tokenization of input data with two-way recurrent
networks;

• BDLSTM+A: model that uses the architecture described
above with only the attention layers active and performs
tokenization of input data with bidirectional recurrent net-
works;

• BDLSTM+LA: model that uses the architecture described
above with the attention and latent attention layers active
and performs input data tokenization with bidirectional
recurrent networks.

In the various studies carried out, the researchers have per-
formed several trainings by also testing an ensemble of the above
models from which the following considerations emerged:

• latent attention consistently improves performance com-
pared to standard attention architectures and no attention
layer using both embedding methods;

• among the six architectures evaluated performance im-
proves significantly with single model;

• when the ensemble of models is considered the tokenization
of input data done with bidirectional recurrent networks
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(BDLSTMs) performs better than that done using vocabu-
laries, since BDLSTMs are able to encode the information
of tokens and their surroundings.

Figure 4.13 illustrates the accuracy obtained by training the vari-
ous models in channel prediction. Note that the best performance
was obtained with the model BDLSTM+LA reaching 91% accu-
racy in predicting the channel of an IFTTT rule.

Figure 4.13: Latent Attention model: accuracy evaluated on channels
[97].

4.3.2 Methodology

In this section, we discuss the proposed solution for evaluating
the semantic consistency of an IFTTT applet. In particular, we
evaluated the consistency of the description through a semantic
approach based on Google’s BERT. The description is defined as
consistent if it agrees with the description of the IFTTT applets
synthesized by considering the other components, i.e., Trigger,
Trigger channel, Action, Action Channel.

4.3.2.1 Pre-processing

The rules considered for training the proposed approach are
derived from the dataset of Mi et al. [109]. At a preliminary stage,
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the complete dataset went through a preprocessing phase during
which the following steps were performed:

• filtering of applets with English descriptions: most of the
descriptions in the dataset are in English. Therefore, this
study focused only on descriptions written in English since
it is not good practice to train a single classifier with data
from different languages;

• deletion of non-text characters: any numeric or punctua-
tion characters have been deleted in order to leave only text
characters;

• deletion of stop-words: for each description, words that
are used very frequently, which do not possess semantic
meaning such as “of, are, the, it, is” were deleted.

• normalization of text: all words have been normalized to
lowercase;

The resulting dataset then went first through a feature selec-
tion and construction phase, followed by with a labeling phase,
leading the generation of training, validation and test sets we
employed in our approach.

synthesizing a description from the elements of an

applet Since our ultimate goal is to evaluate the semantic
consistency between the description of the applet provided by
the creator and its actual behavior, defined on the basis of the
choice of trigger and action components, we decided to train the
model to classify the semantic coherence of an applet by going
to compare the natural language description with one artificially
synthesized from the applet’s components. In fact, by taking into
account the four "static" components of a rule, i.e., trigger, trigger
channel, action, action channel, it is possible to generate a natural
language description of how it works.

For example, considering an IFTTT applet having the following
components:

• triggerTitle: “Any new SMS received”

• triggerChannelTitle: “Android SMS”
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• actionTitle: “Send me an email”

• actionChannelTitle: “Email”

we can synthesize a description by exploiting the following
pattern.

IF triggerTitle (triggerChannelTitle) THEN actionTitle
(actionChannelTitle)

The synthesized description for such an applet thus becomes:

IF Any new SMS received (Android SMS) THEN Send me an email
(Email)

dataset labeling From the applets resulting from the clean-
ing phase, we selected 11000 and proceeded to label them over
a 3-week period. We built each set by considering the following
features:

• Author’s description: the natural language description
drafted by the creator of the applet at the time of its cre-
ation.

• Synthesized IFTTT description: The IFTTT description
generated according to the approach described above.

• Label: Label indicating whether the description is consis-
tent, inconsistent, or partially consistent. In particular, the
label can have one of the following values:

– “entailment”: Whether the description drafted by the
developer is consistent with that summarized by the
applet;

– “contradiction”: Whether the description drafted by
the developer is inconsistent with that summarized by
the applet.

Finally, the labeled dataset was randomly divided into training,
validation, and test sets with the distribution of applets shown
in Table 4.13.
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# entailment applets # contradiction applets

Training set 3000 3000

Validation set 450 400

Test set 1500 1000

Table 4.13: Subdivision of applets in the labeled dataset

4.3.2.2 The BERT model

The model trained for classifying the semantic consistency of an
IFTTT applet is presented in Figure 4.14.

Figure 4.14: Trained BERT model

The dataset applets are fed to BERT’s pre-trained model, which
converts them into densely compressed vectors. They are called
dense vectors because each element of the vector has a specific
numerical value and the vector produced is a vector of dense
type.

Each layer of the pre-trained BERT network outputs a series
of dense vectors, thus capturing different levels of syntactic and
semantic information. The result obtained from the BERT model
is passed to an LSTM layer which stores the relationships present
in the sequence passed as input. The output of this stage is scaled
down through two layers of MaxPooling and concatenated into a
single vector. Finally, the DropOut operation is performed before
passing the data to the densely connected layers of the network,
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to prevent the system from going into overfitting. The network
thus constructed was trained to teach the model to distinguish
coherent from incoherent or neutral descriptions.

4.3.3 Experimental evaluation

The BERT model trained on the previously built training set was
then evaluated on the test set by measuring its performance on
the basis of precision, recall and F1-score metrics. Results are
shown in Table 4.14

As we can see, the classification results are particularly high
especially regarding the results of the "entailment" class. In any
case, in general the global accuracy of the model is still suffi-
ciently high, having returned an accuracy of 82% on the test
set.

An example classification of the trained BERT model is shown
below.

Given the following IFTTT applet:

• triggerTitle: “Any new post by you”,

• triggerChannelTitle: “Instagram”,

• actionTitle: “created a photo post”,

• actionChannelTitle: “blogger”

Starting from the above applet, the following description is
synthesized:

If any new post by you on (instagram) then create a photo post on
(blogger).

The description written by the creator of the applet is as follows:

Use this Applet to automatically post your Instagram uploaded photos
to a Blogger pager.

The description written by the creator of the IFTTT and the one
synthesized starting from the applet’s components are given as
input to the BERT model which returns the following prediction
as output:
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Precision Recall F1-Score

Entailment 0.97 0.98 0.89

Contradiction 0.78 0.75 0.82

Table 4.14: Classification performance on the test set

(’entailment’, ’ 0.92%’)

The classifier is able to recognize that the description associated
with the IFTTT applet is 92% consistent with its actual behavior,
making a correct prediction.

Although the two descriptions are formulated in different
ways, the model is able to fully learn the semantic content of the
description and carry out a correct classification.

An example of a case in which the creator has written an
inconsistent description is shown below.

Given the following description of IFTTT:

Save your all twitter photo in your blog.

https://meet.google.com/uxt-vryu-bby?authuser=2 Giving in-
put the summary description of the rule and the inconsistent
description written by the developer, BERT makes the following
prediction:

(’contradiction’, ’ 0.67%’)

Also in this case the model made an excellent prediction with
a fairly high probability.
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S E C U R I T Y- E V E N T S T R I G G E R E D R U L E S

One aspect often neglected by current TASs, which is instead
typical of IoT, is that “connected” smart objects are vulnerable
in terms of security. These devices are an attractive target for
external malicious attackers since they provide entry points to
user’s online services and physical devices [115, 138]. Also, data
can be arbitrarily manipulated by attackers and cause damage.
This problem is amplified when end-users, not fully aware of
these risks, put in communication devices by using TASs. In
many situations, end users do not have sufficient skills in secu-
rity and privacy, in particular when they deal with IoT devices
[83]. In addition, they under-evaluate the importance of these
aspects in defending their smart environments, thus they neglect
countermeasures that might protect the security of their smart
devices [3, 88].

In this chapter, we try to address this problem and present
a visual paradigm that supports users, even those who do not
possess technical skills in IoT and security, in securing their smart
environments. The definition, implementation, and evaluation
of the following proposal have been performed in conjunction
with researchers from the University of Bari "Aldo Moro" and
the Politecnico di Milano with different expertise in the area
of Human-Computer Interaction with specific accents to usable
security and privacy in IoT.

5.1 literature review

According to [168], IoT environments should improve users’ tech-
nology threat models, which enable the conscious management
of privacy and security risks, and communicate best practices
suitable for the smart spaces. Transferred into the EUD context,
this recommendation implies that EUD environments should sup-
port users during the creation of rules, guiding possible privacy

79
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or security violations and ad-hoc elements in the rule definition
language that can facilitate the definition and deployment of
rules addressing these issues. Along this line of action, [138] de-
fined security lattices to understand how the flow of statements
within IFTTT recipes could lead to the generation of potential
security risks. This is an interesting work, which suggests ways
to extend TASs with debugging capabilities, but that, however,
does not sufficiently empower the end users to configure the
security of their smart environments. This is instead the goal of
our work, which focuses on proper paradigms for the end users
to become aware of possible security threats and be enabled to
control them.

The EUD environment should also support end users in the
management of access control and authentication to the smart
objects. In this context, [78] suggested using a capability-centric
model to fit the access control and authentication mechanisms to
the variety of smart objects and features they can perform. For
example, rather than allowing the users to have complete access
to a smart object, a more adequate solution would be to configure
the access schemes only on certain capabilities, such as turning
on/off the device, update the software, and so on. This would
also reduce the complexity of system configurations addressing
security and privacy problems. In line with this recommendation,
our work concentrated on identifying categories of attacks and
related countermeasures that could make sense for the end users
who have not sufficient knowledge in security aspects.

5.2 intrusion defender : a smart object to secure

smart environments

In order to extend TASs with security management capabilities,
we built a smart object, called Intrusion Defender (ID), that
monitors the network traffic of a private area network (PAN) to
detect anomalous events. The events occurring on a PAN might
originate from cyberattacks that a malicious individual could
launch against a smart environment, e.g., a smart home, with
the intent of stealing sensitive data acquired by smart objects or
deactivating intrusion detection systems controlling the smart
environment.
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ID has been developed on top of Snort, a software monitoring
and identifying network threats. It is an Open-Source Network
Intrusion Detection System that monitors the packets of the
network traffic, which travel to and from all smart objects in the
smart environment. A network packet can carry data related to
an exchange of information that takes place between a smart
device and the Internet. Some features of this network traffic,
e.g., the number of packets sent in a given time frame or the
type of packets received and sent, provide important clues for
identifying cyberattacks. By monitoring these features, which are
called signatures, Snort can identify the intrusions by performing
a fast comparison with the signatures contained within a database
of pairs (attack, signature). Once an attack is identified, Snort
generates an event reporting the main information about the
attack. All the generated events are stored into a database.

To effectively defend a smart environment from external cy-
berattacks, Snort has to be configured to monitor the network
locally, i.e., within the PAN. Indeed, it is not possible to remotely
monitor the exchange of packets between smart devices of a
PAN from outside the network. The individual smart devices
communicate with the outside through the router, which masks
the information generated by the smart objects. Thus, ID has
been implemented as a smart object that acts as an intermediary
in the communication between the smart devices and the router,
by intercepting and analyzing the network traffic for possible
network intrusions. This solution is also the safest from the data
management point of view. In fact, a different solution would
allow the smart devices to share their information externally so
that the ID could retrieve this information remotely. However,
this type of solution would expose the smart environment to an
even higher risk since the communication could be intercepted by
an external malicious attacker. Performing the network analysis
locally avoids sharing more information than the one required
by the smart devices to behave as they are designed to.

The ID has been installed on a Raspberry Pi, a particularly
inexpensive single-board computer, small in size and low in en-
ergy consumption [26]. On the Raspberry Pi, therefore, the Snort
software has been installed, the launch of which depends on the
execution of some scripts, which contain the commands and pa-
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Figure 5.1: Architecture of the secured smart home environment

rameters necessary for Snort to know the type of monitoring that
must be carried out. The board also contains databases storing
both the signature repository that Snort uses for analysis and
the archive of all the events associated with cyberattacks that
Snort can detect. The database is then made available to the other
components of the smart environment.

Fig. 5.1 summarizes the architecture of the smart environment
after the installation of the Intrusion Defender. The previously
established connections between the various smart objects and
the router are preserved from the introduction of the ID within
the PAN. Indeed, the ID behaves like any smart object connected
to the smart home environment. Once connected, it analyzes the
network packets by interacting with the router; when a cyber-
attack is detected, it sends the information about the identified
event directly to the TAS.

Besides managing the detection of attacks at runtime, the TAS
also provides the environment for configuring the rules defining



5.3 abstracting security-related events 83

countermeasures for security attacks. In our research, we adopted
the EFESTO-5W platform, which offers a visual paradigm for
ECA rule definition that has proved to be effective for different
application domains [6–8, 13, 50]. In the following sections, we
will illustrate the design process that eventually led to extending
EFESTO-5W to support the definition of ECA rules covering ID
events.

5.3 abstracting security-related events

The configuration of the ID device requires IT and cybersecurity
expertise. For example, it reports the detected cyberattacks in
a log file or in a dashboard, in both cases targeted to experts.
However, countermeasures to defend the PAN devices must be
taken by the user, who has to be aware of the meaning and level of
risk of cyberattacks. Also, countermeasures like switching off the
attacked devices must be configured by developing, for example,
scripts in programming languages such as JavaScript or Python.
Therefore, users with no expertise in IT and cybersecurity, who
are the majority of the actual users of smart environments, would
be excluded from the effective use of the ID, or in general, from
the use of similar technical devices for cyber defense.

To solve these problems, this article proposes a solution to con-
figure the behavior of the ID by using Task Automation Systems,
and in particular EFESTO-5W. The final goal is to make possible
the creation of Event-Condition-Action (ECA) rules that can be
triggered when an attack is detected by the ID, for example, by
defining a rule like “IF the ID detects the attack X then switch
off the attacked device”. This research goal poses two main chal-
lenges. First, the ID is able to detect several attacks (35 in the
current implementation), and this high number can overload the
users with too much information. Second, the detected attacks
refer to cybersecurity concepts (e.g., DDoS, man in the middle,
etc.), which are too technical and complex for lay users.

To address the first challenge, a card sorting session was car-
ried out with 11 IT and cybersecurity experts, to reduce the
number of ID-detected attacks to be exposed to the users. All
the possible attacks have been grouped based on their mean-
ing and consequences on the attacked devices. For the iden-
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tified groups, the event descriptions that the users can select
when creating ECA rules have been designed by adopting the
Communication-Human Information Processing (C-HIP) model
[161]. C-HIP frames the most important activities and entities
involved in the communication of a warning, and sets the foun-
dation for structuring warning messages. Lastly, to make the
description text clearer, we iteratively refined the descriptions of
the events by using metrics for the evaluation of text comprehen-
sion, readability and sentiment. In the following, these activities
are illustrated in detail.

5.3.1 Card-sorting study to reduce information overload

The definition of ECA rules by using TASs is the ground of the
proposed solution. An example of ECA rules in smart homes
might be “IF the motion sensor detects a person THEN switch on
the smart lamp”. Regardless of the visual metaphor implemented
by a TAS, the definition of an ECA rule like this does not require
technical IT knowledge but only knowing the smart objects’ func-
tionalities. However, when dealing with devices like the ID, the
creation of an ECA rule could be more complex. Indeed, the
events detected are exposed in the technical language, thus an
ECA rule would be, for example, something like “IF the ID de-
tects an unusual client port connection on the device X THEN
switch off device X”. The number of all the possible events can
be high and sometimes the differences between different events
are related to technical nuances which might not be meaningful
for non-technical users. In other words, a simplification of the ID
events is required, in relation to both their multiplicity and tech-
nical description. For this purpose, as a first step, we conducted a
card sorting session to identify groups of events to be represented
by a unique name. Card sorting is a low-tech approach used to
generate a dendrogram (category tree) or folksonomy [137]. It is
widely used during the design of interactive systems to optimize
the information architecture, menu item organization, or naviga-
tion paths. HCI expert identifies key concepts and reports them
on cards (e.g., Post-it notes). A group of users, individually, are
required to arrange the cards according to their preferences and
follow the study goal (e.g., structuring menu items). Typically,



5.3 abstracting security-related events 85

a number of 10/15 users is sufficient to obtain reliable results
[117].

We recruited 11 IT and cybersecurity experts as study par-
ticipants; two HCI experts then managed the study. Given the
COVID-19 pandemic, the study was carried out remotely by
using the kardSort platform [12]. Since the original ID events
are often too short and meaningless, all of them were converted
into a clearer description, so that participants can better under-
stand their meaning and consequences of the detected attacks.
For example, the original event “malware-cnc” was replaced
with the description “Detected infected device sending system
information to other infected devices”.

Figure 5.2: Process of grouping security events

The final 35 descriptions were registered as cards in the kard-
Sort platform and the study was set up as “open”, meaning that
no predefined categories were defined but the users were com-
pletely free to arrange the cards. In addition, an introductory text
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was added in kardSort to instruct participants they had to create
groups containing cards reporting similar attacks (e.g., DoS and
DDoS) and/or having the same consequences (e.g., that tries to
collapse a device). The study lasted 2 days and each participant
spent around 20 minutes.

The results have been analyzed by using Casolysis [139]. This
tool implements two methods for the analysis of open tests,
namely Hierarchical Clustering (Single Link, Average Link, Com-
plete Link) and Section Label Analysis (SLA). For our analysis,
we used the Average Link since it typically performs better than
other solutions [135]. Finally, a threshold for the similarity of the
clustering algorithm was set to 0.68/1 to obtain a low number
of categories that include attacks that can reasonably stay in
the same group. Figure 5.2 depicts the process of grouping the
original 35 events in the final 6 groups which are summarized in
Table 5.1. The final groups represent the basis for the design of
the final messages, as reported in the next section.

Class Labels

1 DOS
system-call-detect; denial-of-service;

dataset successful-dos; attempted-dos; misc-attack

2 Malware
malware-cnc; shellcode-detect; inappropriate-content;

trojan-activity; file-format; suspicious-filename-detect;

3 Privilege Escalation
attempted-user; unsuccessful-user; default-login-attempt;

suspicious-login; successful-admin; successful-user; attempted-admin

4 Data Exfiltration
sdf; web-application-attack; successful-recon-limited;

successful-recon-largescale; attempted-recon

5 Suspicious Connection misc-activity; tcp-connection; non-standard-protocol

6 Suspicious Traffic
protocol-command-decode; bad-unknown; client-side-exploit;

web-application-activity; string-detect; Unknown; network-scan;

icmp-event; unusual-client-port-connection

Table 5.1: List of the final 6 groups and their original labels

5.3.2 Designing event description for the ID

Reducing the 35 ID events in 6 groups solved the problem of the
information overload that users might have if using the original
ID events. However, this phase did not solve the problem of the
technical skills required to understand the ID events. Therefore,
we designed, for each group, a short title, and an event descrip-
tion that explains the attack and its consequences. Since the ID
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event can be seen as a warning event that users adopt in the ECA
rule definition, as the ground of this design phase we used the
Communication-Human Information Processing (C-HIP) model,
which defines the critical route and sets the foundation for struc-
turing warning messages [161].

The C-HIP model summarizes the most important activities
and entities involved in the communication of a warning. The
model starts with a source delivering a warning through a chan-
nel to a receiver, who then takes it along with other stimuli
(environmental or internal) that subject the message to a lot of
distractions or distortions. It then identifies a set of steps be-
tween the delivery of a warning and the user’s final behavior
or response, which is usually based on the effect of the various
processes such warnings had undergone. In [46] the authors also
define a set of design guidelines related to the C-HIP model and
present rules for descriptive text: i) Briefly describe the risk and
consequences of not complying with advice; ii) Illustrate clearly
how to avoid the risk; iii) Be transparent and avoid technical
jargon where possible; iv) Be as brief as possible.

Based on prescriptions and guidelines of the C-HIP model, we
designed the descriptions for the 6 ID events, generating them
following a template purposely defined:

Title + Hazard Identification + Effects of a successful attack

The generation of these messages was carried out iteratively,
considering metrics that perform static evaluations of the read-
ability and sentiment of the event messages. Indeed, conveying
the hazard messages to all users is not simple, as reported in [59,
79]. Readability metrics measure the degree to which a person
can read, easily understand, and find interesting that text [49].
Among the most popular metrics, we used the Flesch Reading
Ease formula, the Flesch-Kincaid Grade Level, and the SMOG
formula [56, 66, 106]. The Flesch–Kincaid Reading indicates how
difficult a text can be understood and it is measured in an inter-
val between 1 and 100 [65]. The higher this score, the easier for
a particular text to be read by the majority of people [56]. The
Flesch–Kincaid Grade Level Test [65, 66] reflects the US educa-
tion system needed to understand a text. It ranges from o to 18,
where 0 indicates a basic level (learning to read a book) while 18
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Event message (title + description)
Flesch-

Kincaid

Flesch

Reading

SMOG

Index
Sent.

Someone is trying to collapse a smart device down! 5.0 75.5 8.8 -0.74

1 Someone is attacking one of your smart devices.

This has the goal to make the device collapse.
5.1 73.8 10.1 0.00

Virus threat in a smart device! 2.5 87.9 3.1 0.83

2 A virus has infected one of your smart devices.

This virus can compromise your device and your privacy (e.g., steal your files and passwords).
6.8 67.8 11.2 -0.81

A hacker is breaking into a smart device! 3.8 82.4 3.1 0.62

3 A non-authorized user has accessed one of your devices (or is trying to).

If not stopped, this user may damage your device and steal your private data.
5.9 77.8 8.8 0.00

There’s a danger of data theft from a smart device 3.7 86.7 3.1 -0.50

4 Someone is trying to steal your private data on one of your smart devices.

This can threaten your privacy (e.g., pictures/video stolen).
6.9 66.4 10.1 -0.92

A suspicious event has occurred in your network 6.7 61.2 8.8 0.00

5 Someone is looking for vulnerabilities in your network.

This event might reveal an incoming attack.
9.4 41.3 8.8 -0.85

Threats coming from outside your network 4.5 73.8 3.1 -0.69

6 Suspicious activity is going on against your network.

Someone could be trying to attack and access your network.
6.9 61.4 8.8 -0.87

Table 5.2: Event messages and related readability and sentiment scores.

indicates an advanced level (an academic paper); the lower the
easier it to read. The SMOG (Simple Measure of Gobbledygook)
estimates the years of education a person needs to be able to com-
prehend a passage [106]. These three readability measures have
been calculated by using the platform readable [125]. Regarding
sentiment analysis, texts convey emotions which are key compo-
nents to effectively communicate messages and to understand
reactions to messages [141]. For warning messages, a negative
valence is preferred to alert users about potential dangers. The
text sentiment analysis was carried out by using the IBM Watson
platform [30].

The resulting messages for the 6 ID events, as well as their final
readability and sentiment scores, are reported in Table 5.2. The ID
device and its events have been integrated into the EFESTO-5W
platform. Figure 5.3 reports the visual representation in EFESTO-
5W of an ECA rule to switch off a smart device (Hallway Camera
in the example) when ID detects a virus threat in the smart device
itself. The reported ECA rules refer to the six tasks administered
in the evaluation study detailed in the next section.

5.4 evaluation

To verify if end users, even without technical skills in IT and
cybersecurity, are able to defend their smart environments by
defining ECA rules based on the ID device, we conducted a
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Figure 5.3: ECA rule created in EFESTO: it is triggered when a virus
threat is detected in a smart device (Hallway Camera) and,
in this case, executes the switch off of the attacked camera.

controlled experiment. More formally, the study aims to answer
the following research questions:

RQ1. “Do the designed events enable the users to define ECA rules
to protect a smart environment?”

RQ2. “Are there differences between expert and non-expert users in
defining ECA rules based on the Intrusion Defender device to protect a
smart environment?”

5.4.1 Study design

To answer the two research questions, we adopted a between-
subject design, with users’ skills as the independent variable.
The two between-subject conditions are experts and non-experts.
A total of 20 volunteers (6 females) were recruited. 9 of them
were non-experts in IT and cybersecurity, while the remaining
were mild experts (expertise assessed in a pre-test questionnaire).
Their mean age was 27 years (SD = 7.04).

5.4.2 Procedure

Given the COVID-19 pandemic, the study was performed re-
motely. To facilitate the remote execution, a tool for remote user
testing, eGLU-Box PA, was used [61]. Three evaluators (HCI ex-
perts) were involved. A total of 30 candidates among students,
friends, family members and colleagues were contacted 5 days
before the study by emails, SMS, and phone calls. Candidates
were asked to fill in an online form providing demographic
data, contact information and answer two questions on a self-
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Task instructions
ID

Event

T1. If a hacker is trying to switch off the lights in the house entrance and

it’s evening (between 7 pm and 4 am), then turn on the emergency lights

outside and send a notification to your smartphone

1

T2. If a virus has infected your vacuum cleaner robot, then stop this robot 2

T3. If a hacker is trying to access your garage camera

without your permission, then request to change your garage

camera credentials by sending a notification to your email address

3

T4. If a hacker is trying to steal private data from

your vacuum cleaner robot, then turn off this robot
4

T5. If a hacker is monitoring your network to try to identify vulnerabilities,

then send a notification to your smartwatch
5

T6. If a hacker is attacking your network, then

send a notification on your smartwatch
6

Table 5.3: List of tasks and the related ID event.

evaluation of IT and cybersecurity skills. 20 candidates agreed
and were recruited as participants. The evaluators sent an email
to all the participants with a link to start the test in eGLU-Box
PA, the description of the technical requirements (PC, webcam,
microphone, a browser like Chrome, Firefox, or Edge and a sta-
ble internet connection), and information on the test duration
(around 20 minutes) so that participants could freely decide when
to perform the tests without interruptions and disturbances.

After opening eGLU-Box PA, participants were asked to sign a
digital consent form and, if they agreed, eGLU-Box PA checked
the functioning of all the peripherals devices needed for data
collection (microphone, webcam and screen recording). If no
technical problems were detected, eGLU-Box PA showed a video,
which asks participants to complete a set of tasks according to
a scenario in which a person who lives in a smart home needs
to configure the security of some devices. Then, eGLU-Box PA
randomly administered six tasks one at a time. For each task,
all the participants had a maximum of 5 minutes. Each task is
designed to cover each of the 6 events. Table 5.3 reports the tasks
and the associated ID event. After the task execution, eGLU-Box
PA administered the SUS (System Usability Scale) and NASA-
TLX questionnaires.
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5.4.3 Data collection and analysis

To answer the two research questions, for each participant differ-
ent quantitative and qualitative data were collected. Regarding
the quantitative data, we gathered task completion time, task
success (success, partial success and failure), SUS score for mea-
suring perceived usability, and NASA-TLX index to assess the
perceived workload [76, 77]. For SUS we also analyzed its sub-
dimensions - Usability and Learnability [27, 92]. Regarding the
qualitative data, significant comments made by the participants
were annotated by reviewing the audio/video recordings. In-
dependent t-test was used to analyze task completion times,
SUS scores and NASA-TLX index (they did not violate the nor-
mal distribution, the assessment has been performed by using
Shapiro–Wilk’s test). Pearson Chi-Square was used to analyze
success results (nominal values). An alpha level of .05 was used
for all statistical tests.

5.4.4 Results

performance The participants’ performance was evaluated
by measuring the task time and the task success. Regarding
the task time, participants spent an average of 112 seconds to
complete a task (only successful or partially successful tasks were
computed). In particular, each task required the following time:
T1 = 219s, T2 = 69s, T3 = 143s, T4=66s, T5=85s, and T6=88s. The
t-test revealed that no differences exist between experts and non-
experts in performing all 6 tasks (p = 0.60). A detailed analysis
revealed that no differences persist for T1 (p = 0.886), T3 (p =
0.55), T4 (p = 0.224), T5 (p = 0.106) and T6 (p = 0.181) while for
T2 a significant difference emerged (p = 0.039). The analysis of
the success rates revealed an overall positive performance of all
the participants. The 6 tasks resulted in a 71% of success rate: T1

= 62.5%, T2=75%, T3=77.5%, T4=67.5%, T5=80%, and T6=67.5%.
Pearson Chi-Square revealed that no differences exists between
experts and non-experts (χ(1) = 2.209, p = .331). No differences
also emerged comparing task success of experts and non-experts
for each task (T1: χ(1) = 2.229, p = .317; T2: χ(1) = 3.300, p = .069;
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T3: χ(1) = 2.424, p = .298; T4: χ(1) = 2.181, p = .336; T5: χ(1) =
0.202, p = .904; T6: χ(1) = 1.694, p = .429).

perceived usability The perceived usability was assessed
by analyzing the results of the SUS and NASA-TLX question-
naires. The SUS scores highlighted that, in general, a good us-
ability level in creating ECA rules with ID (SUS Score: x = 83.9,
SD= 11.3; SUS Usability: x = 84.11, SD= 11.4; SUS Learnability:
x = 83.8, SD = 20.7). No differences emerged in the SUS scores
even in comparing experts and non-experts (SUS Score: p =.852;
SUS Usability: p = .87, SUS Learnability: p=.394). The analysis
of the NASA-TLX results shows that participants’ workload was
quite low (x = 24.91, SD = 12.34). No differences emerged in the
workload of experts and non-experts (SUS Score: p =.852; SUS
Usability: p = .87, SUS Learnability: p=.307).

5.5 discussion

Concerning RQ1, interesting and promising results emerged.
Indeed, the overall task success rate is 71%, which can be con-
sidered as a positive result. T1 was the most complex since it
required to set two actions in the rule. It resulted in the lowest
rate (62.5%); however, the analysis of media recording revealed
that only one user selected the wrong ID event while 6 users
selected one or two wrong actions. The other tasks obtained a
higher success rate but some users selected the wrong events:
three users for T5, four users for T2, T3, T6, and six users for
T4. Focusing on T2, T3, T4 and T6 it emerges that users selected
the wrong event more frequently, and a deeper investigation is
needed to clarify the users’ difficulties in identifying the right
ID event. The analysis of video recordings and further reflec-
tions on the event descriptions led us to hypothesize that some
descriptions can appear too similar to users who do not have
a profound knowledge of possible malicious attacks; therefore,
they are in trouble guessing which is the right one. This would
imply a revision of the event taxonomy. Even results on task time
can be considered positive. Participants spent around 112 sec.
creating the right ECA rule to defend the smart home. Only T1

required an average of 219 sec.; the analysis of the recorder media
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confirmed that the complexity of the task caused this higher time
since two actions and temporal constraints had to be defined.
These good performances have been confirmed by the perceived
usability. Indeed, SUS scores (SUS Score: x = 83.9, SD = 11.3;
SUS Usability: x = 84.11, SD = 11.4; SUS Learnability: x = 83.8,
SD = 20.7) highlighted excellent usability: with respect to of one
thousand studies reported in Bangor et al, SUS score above 68

are considered above the mean and scores above an 80.3 are in
the top 10% of scores [15]. Similarly, NASATLX revealed that
a low workload (x = 24.91) was required to accomplish the 6

tasks. With respect to RQ2, the results demonstrated that, in gen-
eral, there are no differences between experts and non-experts.
This result is very important since, typically, tools for advanced
configurations are designed for professionals. This limitation is
common, for example, for TASs that are created to suit the skills
and mental models of technical users [148]. We can safely assume
that thanks to the abstraction mechanisms designed for ID events,
non-experts perform like experts. Of course, the study results
are important because both users’ performances and usability
obtained positive results. The only emerged difference regards
the task time spent for T2 since non-experts were slower. The
analysis of the recorded media revealed that two users spent
more time since they fixed the rule during their creation, in both
cases because they selected the wrong action, i.e., switch off in-
stead of stop. Finally, an interesting behavior has been observed
three times in T6. Two non-experts and one expert created the
rule by adding two alternative events, i.e., the ones titled “A
suspicious event has occurred in your network” and “Threats
coming from outside your network”. Even if the right event is the
second one, this task was considered as a partial success since
the created rule produces the expected behavior. However, this
aspect deserves more attention since it might be the symptoms
that the two events confuse users. For example, the aggregation
of the two events into a new one could be a possible solution. In-
deed, the two events (5 = A suspicious event has occurred in your
network; 6 = Threats coming from outside your network) might
appear quite similar and their distinction can easily confuse the
users.
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In conclusion, the integration of the ID module into EFESTO-
5W, a TAS that uses a visual, wizard-based approach, empowered
users in the definition of security-triggered rules. While the study
focused on the EFESTO-5W visual paradigm, the principles used
for threat categorization and event descriptions can be applied
to other TAS systems, such as IFTTT. In a comparative study,
it was found that non-expert users were able to create rules
that addressed security and privacy issues with a performance
comparable to that of expert users. These results demonstrate
that the proposal effectively supports end-users in the somewhat
tedious tasks of securing their smart environment, and therefore
positively provides an answer to the RQ0.



6
I D E N T I F I C AT I O N O F H A R M F U L E C A - R U L E S

Enabling end-users to define custom behaviors for their smart
environment in a simple and intuitive fashion represents the
main goal for a TAP platform. However, the usage of such tools
by a non-expert user could easily lead to the generation of severe
security and privacy flaws, risky for both the smart environment
and mostly for the end-user’s privacy. Therefore, it is essential to
support end-users when creating ECA rules by providing them
with information on the potential risks.

In this chapter, we will present solutions aiming at identifying
security and privacy issues concealed within ECA rules [23].

To date, very little research has been performed to address
the problem of automatically identifying risks concealed by ECA
rules. In particular, Surbatovich et al. defined an information-flow
lattice to analyze potential secrecy or integrity violations in ECA
rules [138]. Paci et al. [118] proposed two approaches based on
information flow analysis to detect rules that unintentionally
violate users’ privacy by sharing private photos. Other works
focused on the automatic identification of undesired behaviors
caused by rules’ chain execution [107, 162], where a rule is au-
tomatically triggered by the action of another rule without user
intervention. Instead, we propose to tackle such a problem by
using Natural Language Processing (NLP) techniques, for seman-
tically analyze the information of the rules, and infer how the
type of trigger and action is related to the potential damage a rule
might cause. In particular, the NLP models analyze the triggers
and actions associated with the rules, and the natural language
textual descriptions provided by the creators. The latter represent
an important resource for understanding the behavior of the
rules, as demonstrated by the effectiveness of NLP-based analyz-
ers that exploit these descriptions to generate executable code
[97], and to infer the context in which the devices are involved
[101].

95
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We evaluate the considered NLP-based models on the IFTTT
(If-This-Then-That) platform, exploiting a set of crawled applets
directly from the website and available on the Web [109]. We
extract a set of 79,214 IFTTT applets and classify them into four
categories based on the type of damage they might cause. We
select 2,473 rules for manual classification and classify the re-
maining by using an ensemble of three semi-supervised learn-
ing techniques. Then, using the labeled dataset we train several
classifiers on different combinations of rule’s features. The ex-
perimental results demonstrate that the model based on BERT, a
pre-trained language model released by Google [51], achieves the
highest Precision and Recall scores. Furthermore, we compare
our approach with a baseline system implemented by using the
information flow approach, which only focuses on the analysis of
the event and the action chosen for building the rule [118, 138].

The main contributions are the following:

• Define a process for automatic labeling ECA rules with
respect to security and privacy risks. The proposed strategy
encompasses the application of an ensemble method to the
predictions provided by different semi-supervised learning
techniques.

• Make a dataset of ECA rules, crawled from the IFTTT plat-
form and labeled with respect to security and privacy risks,
publicly available in the additional material accompanying
this thesis, so that others can advance work in the area.

• Provide an automatic, NLP-based approach for semantic-
based and context-aware identification of security and pri-
vacy risks underlying ECA rules.

• Implement and evaluate the proposed approach on a main-
stream trigger-action platform, i.e., IFTTT, showing that
among the considered NLP-based models, the BERT-based
one gives higher accuracy when trained on all rule’s fea-
tures.
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6.1 literature review

In this section, we discuss prior work for preserving the privacy
and security of trigger-action IoT platforms and their users. We
first discuss approaches that analyze and evaluate the potential
risks of ECA rules, and then we review solutions that enhance
platforms with mechanisms that prevent the disclosure of confi-
dential information or malicious attacks.

6.1.1 Analyzing Privacy and Security of ECA Rules

The study presented in [138] is the first that analyzes the privacy
and security risks of IFTTT applets. In particular, Surbatovich et
al. analyzed a dataset consisting of 19,323 IFTTT applets with a
multi-level lattice that associates security labels to IFTTT triggers
and actions. Information flow analysis is then performed to
determine if a rule could involve a secrecy or integrity violation.
The results highlighted that around 50% of the analyzed rules
are potentially unsafe. They also manually categorized a subset
of randomly selected applets according to the potential issue
they can cause. About 60% of them were involved in a violation.
The study presented in [39] refined the previous analysis by
taking into consideration two factors while marking applets as
harmful or not, i.e., the contexts in which the rules are applied,
or the users’ privacy preferences. The user study with 28 IFTTT
users and 732 applets revealed that, with respect to the prior
work, the number of harmful applets was significantly reduced
by considering users’ opinions.

In [118], Paci et al. focused on privacy issues related to sharing
images via IFTTT applets. In particular, they introduced two pro-
totypes, one for providing users with warnings about the privacy
risks they may incur at design-time (when an applet is created),
and one for providing warnings at run-time (when an applet
is running). The first prototype considers the audience of the
information, namely the “visibility”, to report a privacy violation.
In particular, the tool verifies whether sensitive information flows
from a private trigger to a public or restricted action. The second
prototype considers the “sensitivity” of the shared data. To this
end, the tool exploits the Google “Vision” API to evaluate the



98 identification of harmful eca-rules

sensitivity of a photo, reporting a privacy violation if a sensitive
data item flows from a private trigger to a public or restricted
action.

Other approaches focused on the problem of identifying un-
expected behaviors potentially caused by ECA rules. McCall et
al. [107] proposed SafeTAP, a tool that verifies through model
checking whether the behavior of a new rule is affected by the
existing ones [21]. Xiao et al. proposed A3ID, a tool for detect-
ing implicit rule interferences, which occur when two or more
rules are triggered simultaneously, causing contradictory effects
on the environment [162]. A3ID uses NLP techniques to ex-
tract smart devices’ knowledge (e.g., functionality, effect, and
scope) from knowledge graphs. iRULER is a system proposed
by Wang et al. for detecting different interferences conditions
between trigger-action rules, such as action loop, where a rule
is activated cyclically, or condition block, where the condition
of a rule is unsatisfiable [152]. To this end, iRULER uses Satis-
fiability Modulo Theories solving [113] and model checking by
operating on an abstracted information flow model inferred with
NLP techniques. IoTMon [54] and SafeChain [80] are systems for
identifying harmful attack chains produced by a combination of
ECA rules. ProvThings is a tool that tracks data provenance for
the purpose of providing explanations of rules’ chain behaviors
[153].

With respect to the approaches that identify harmful ECA
rules through information flow analysis [39, 138], we propose
the use of NLP techniques to extract semantic and contextual
information from ECA rules, which are used to classify them
according to the type of damage they could cause when activated.
Moreover, while the approaches [54, 80, 107, 152, 162] aim to
identify possible interferences/interactions between ECA rules,
which could damage the smart environment, or affect the safety
of the user, the proposed approach focuses on the identification
of individual ECA rules that are potentially dangerous for the
security and privacy.
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6.1.2 Protecting TAPs from Privacy and Security Violations

Xu et al. examined the possible leak of privacy information to
which users may be exposed while using the main platforms for
managing IoT devices and online services [163]. In particular,
they analyzed how these platforms could reconstruct a user’s
behavior model through all the events for which s/he has defined
a custom rule. To prevent this from happening, they introduced
a process that filters and fuzzes the stored events. Bastys et al.
demonstrated that IFTTT applets are vulnerable to attacks that
could exfiltrate the private information of the users [17], and
proposed two countermeasures. The former is based on an access
control policy to prevent information flows from private sources
to public sinks, the latter relies on a framework for monitoring
the applet information flow over time, intending to identify what
information the attackers might obtain from applet output and
exploit them for future attacks.

Chiang et al. observed that TAP platforms are authorized to
manipulate a lot of sensitive user information, and for this reason,
they represent an attractive target for attackers [37]. To alleviate
this problem, the authors proposed two platforms that can be
integrated within a TAP to improve the privacy of users’ data.
The first aims to hide trigger information by sending fake infor-
mation to the platforms, while the latter aims to preserve user
privacy by masking the connection between the users and their
data. Similarly, Chen et al. addressed the problem concerning
the loss of users’ sensitive data occurring when a TAP is com-
promised [35]. They proposed eTAP, an encrypted trigger-action
platform capable of executing rules without accessing users’ data
in plaintext.

Fan et al. explored the possibility of attackers forcing rule
executions with forged IoT devices or malicious events [60]. To
face this issue, the authors proposed Ruledger, a ledger-based
IoT platform that can be integrated within a TAP to guarantee
the correct execution of rules.

IoTGUARD is a system that protects users from undesirable de-
vice states by monitoring trigger-action programs [33], blocking
risky actions when integrity or confidentiality violations might
happen. FlowFence is a framework that allows users to control
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their information flow once rules gained sensitive data access per-
missions [62]. SainT is a tool that identifies sensitive data flows
by performing static analysis on information flow from sensitive
sources to external sinks [31]. SOTERIA [32] and IotSan [116]
are systems that apply model checking to control whether user
security and safety properties are breached when using IoT plat-
forms. IoT-Praetor is a system that exploits NLP techniques for
extracting the interaction and communication behaviors of IoT
devices from ECA rules, and comparing the obtained information
to the actual behaviors detected at run-time [149].

The approach proposed in this thesis is complementary with re-
spect to those that safeguard the security and privacy of the users
by protecting the information processed by TAPs [35, 37, 163],
because it evaluates the risks by only analyzing the ECA rule’s
information. Similarly, the approaches proposed in [17, 33, 60,
62] use rule process monitoring techniques to identify potential
damages at run-time, while our proposal identifies them at the
time the ECA rules are defined. Moreover, while the approaches
[31, 32, 116] are functionally dependent on the structure of an IoT
program’s source code, our proposal evaluates the behavior of
an ECA rule without the need to analyze the source code. Finally,
while [149] exploits NLP techniques to produce an intermediate
representation of an ECA rule, we exploit NLP techniques for
analyzing the semantic structure of an ECA rule with the aim of
identifying potential damages.

6.2 construction of classification models for iden-
tifying harmful eca rules

This section describes the steps we perform to construct a clas-
sifier of harmful ECA rules. In particular, Fig. 6.1 depicts the
process yielding the definition of effective supervised models
for properly discriminating ECA rules according to possible
classes of risk. More specifically, the process consists of three
main phases:

(a) Labeling ECA Rules: this phase aims to prepare labeled
datasets for classification models. Before carrying out this
procedure, it is required to define the possible classes of risk
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for ECA rules, and the corresponding labels. Successively,
each ECA rule of the input dataset has to be annotated
with a suitable label. Since the manual labeling process is
time-consuming, and the number of rules in the datasets
might be very high, we propose to use a semi-automatic
labeling strategy. In particular, we partition the original
dataset of ECA rules into two subsets: a random small
set of rules, which is labeled manually, and the set of the
remaining rules, which is automatically labeled using semi-
supervised classification models. The latter exploits the set
of manually labeled rules to acquire sufficient knowledge
for providing the labels to the rules contained in the larger
set. Finally, an ensemble approach is employed to establish,
among the labels provided by the semi-supervised models,
which should be assigned to each rule, yielding a final large
dataset of rules labeled according to the classes of risk.

(b) Training ECA Rules Classification Models: this phase aims
to train classification models by using the dataset of la-
beled ECA rules, which is called training set. The features
considered for training the models correspond to the com-
ponents of the ECA rules revealing the context of use and
the meaning of the rule, i.e., the trigger, the action, and
the description of the rule behavior. These components are
usually provided in textual form, so NLP techniques can be
used to extract semantic information that can be exploited
by classification models to identify and discriminate among
the classes of risk. It is worth noting that the training set
is most likely imbalanced, in fact, most of the rules do not
provide damage to users, while some classes of damage are
more frequent than others. To deal with the classification
errors caused by imbalanced datasets, we consider the ap-
plication of a weighted loss function [86], which weights
the classification errors according to the number of rules
available for each class. The best settings for the weighted
loss function can be inferred by employing the stratified
k-fold cross-validation [53].

(c) Testing ECA Rules Classification Models: this phase aims to
evaluate the performances of the classification models and,
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indirectly, the quality of the labels generated for the training
set. This is performed by giving in input to the classification
models a set of manually labeled ECA rules. The models’
performances can be measured by using well-known met-
rics, such as Precision, Recall, F1-score, and Accuracy.

In the following sections, we describe how the considered
process has been applied to a case study concerning the IFTTT
platform.
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Figure 6.1: The proposed process for constructing and evaluating NLP-
based models for detecting harmful ECA rules.
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6.3 the ifttt dataset

The dataset used for training and testing the models for classify-
ing harmful IFTTT applets is the one published by Mi et al. [109]
(see Section 4.1.3).

In our work, we only consider the following applet features
derived from the terms originally assigned by Ur et al. (see
Paragraph 4.1.2):

• Title: is a string containing the title of the applet;

• Desc: is a string containing a description of the applet’s
behavior;

• TriggerTitle: is a string representing the name of the trigger
that “activates” the applet;

• TriggerChannelTitle: is a string representing the name of the
trigger channel chosen by the user as a trigger for the
applet;

• ActionTitle: is a string representing the name of the action
to execute in response to the trigger;

• ActionChannelTitle: is a string representing the name of the
action channel chosen as an action by the user.

It is worth noting that the first two features are continuous since
they are defined by the applet’s creator, whereas the remaining
ones are discrete since they are automatically populated by IFTTT
and can assume a finite number of values. As an example, the
ECA rule shown in Fig. 7.4 could be specified by the following
parameters:

• Trigger channel: Netatmo Weather Station

• Trigger: Temperature rises above

• Action channel: Gewiss Smart Home IoT

• Action: Control your Shutter or Venetian

• Fields: Temperature threshold (25◦ in Fig. 7.4), Unit

of measure (Celsius in Fig. 7.4)
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• Title: Let some fresh air comes in your house when it

gets too hot

• Description: If the temperature inside your house is above

a certain threshold, automatically open the shutters.

An accurate data cleaning process is performed on the initial
dataset, which considerably reduces the number of applets. In
particular, to obtain a uniform dataset in language, we use the
langdetect Python library to filter out the applets whose title
and description are not written in English. Subsequently, we
discard all applets without title or description or containing only
numbers for these features. The resulting dataset consists of
116,825 applets, and is provided in the supplementary material 1

6.4 data labeling

As said above, the rule labeling process is performed by applying
a combination of manual labeling and automatic labeling with
semi-supervised models, and an ensemble strategy. This allows
us to perform extensive labeling of the dataset minimizing the
manual effort. In this section, we go through all the phases
yielding a fully labeled dataset with respect to the considered
classes of risk.

6.4.1 Categorizing Applets based on Security and Privacy Risks

We consider the work in [138] for categorizing the damages that
could be inflicted by an applet on the user. An interesting result
of the analysis performed in [138] is that not all applets need a
third party to cause a risk. In fact, many applets are dangerous
due to issues resulting from users’ behaviors. For instance, at first
sight, an applet having title “Keep your Facebook and Twitter

profile pictures in sync” could not seem harmful. However,
in a scenario where a user has a private Facebook profile, if s/he

1 Supplementary material can be found online at https://github.com/

empathy-ws/Harmful-ECA-rules-classifiers. The repository provides the
source code and datasets used in the experimental sections of the thesis, as
well as detailed notebooks showing the use of the provided models.

https://github.com/empathy-ws/Harmful-ECA-rules-classifiers
https://github.com/empathy-ws/Harmful-ECA-rules-classifiers
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forgets that such an applet is active, unwanted photos will au-
tomatically be published to Twitter, where the audience might
not be the same as the one on Facebook, causing possible embar-
rassment. In this case, an attacker does not need to intervene for
providing damages, since is the user’s behavior that generates
harm to his/her own privacy. At the same time, other applets
could violate users’ privacy/security due to attackers exploiting
the behavior of an applet to damage an IoT device or to disrupt
online services.

In [138], by manually examining a set of applets, the potential
damages they can cause are classified into four macro-categories:

1. Innocuous: causes no harm, i.e., an applet for which it is
not possible to imagine a realistic harm. As an example,
the applet: “If I meet my daily step target, update a

file with the statistics on my phone” has no negative
consequences because sensitive information is not shared
with third parties, without causing embarrassing situations;

2. Personal: causes loss of sensitive data. This damage is self-
inflicted since any damage is the result of the user behavior.
As an example, the applet: “If I take a new photo, then

upload it on Instagram as a public photo” could un-
intentionally leak sensitive information;

3. Physical: causes damage to physical health or goods. This
damage is external as a third party can potentially inflict the
damage. As an example, the applet: “If the last family

member leaves home, then turn off lights” is danger-
ous since turning off the lights in a predictable way signals
that the house is empty, making it easier for a thief to plan
the right time for a theft;

4. Cybersecurity: causes interruption of an online service or
distribution of malware. This damage is external too, as
a third party can potentially inflict the damage. As an
example, the applet: “If there is a new email in your

inbox with an attachment, then add the attached files

to OneDrive” could be used to spread malware to all de-
vices synced with a OneDrive account. If a malicious at-
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tachment is propagated to all synced devices, it increases
the likelihood that the file will be opened by the user.

The analysis of the results highlighted that the most common
damage is personal, i.e., the one caused by mistakes of users and
not from the involvement of a third party. Concerning damages
potentially inflicted by an attacker, cybersecurity damages are
found to be more frequent than physical ones.

According to the considered macro-categories of risk, we use
the following classes for applet labeling: class 0 corresponds to
“Innocuous” applets, class 1 to the applets underlying a “Personal”
damage, class 2 to the applets which could lead to a “Physical”
damage, and class 3 to the applets exposing “Cybersecurity”
damages. In the following, we provide details about the manual
and automatic labeling processes.
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Figure 6.2: Similarity comparison process of IFTTT applets based on
SentenceBERT.

6.4.2 Manual Applet Labeling

We apply the majority method for manually labeling the applets
of the IFTTT dataset. In particular, the first and second authors
are in charge of manually labeling the applets, while the third
intervenes when there is no agreement. This phase leads to 492

class 0 applets, 296 class 1 applets, 105 class 2 applets, and 107

class 3 applets.
To balance the number of applets of each class, we define a

process for selecting further applets to be labeled manually as
shown in Fig. 6.2. For each labeled applet a, we build a spread-
sheet containing all the unlabeled applets sorted in descending
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order based on their similarity with respect to a. The similar-
ity is evaluated through a combination of vector semantics and
similarity functions. The former is used to compute a vector
representation of sentences, namely sentence embeddings, which
takes into account their semantic meaning [87]. For computing
the sentence embedding of each applet, we apply SentenceBERT
[126] on the concatenation of the applet’s title and description,
whereas the cosine similarity function is used to compare the
embeddings.

By manually reviewing each spreadsheet, we select and label a
subset of applets having “similar” characteristics to those already
labeled, but with at least a difference in the trigger, the action,
and/or the involved channels. The resulting dataset of manually
labeled applets consists of 503 class 3 applets, 502 class 2 applets,
501 class 1 applets, and 967 class 0 applets, for a total of 2,473

instances.

6.4.3 Automatic Applet Labeling

To increase the number of labeled data, we devise a process
combining different semi-supervised learning models with an
ensemble strategy, as shown in Fig. 6.1. This section illustrates
the three semi-supervised learning techniques we use to auto-
matically label additional applets, namely Self Learning, Label
Propagation, and Generative Adversarial Learning, and the en-
semble strategy we adopt to generate the final labeled dataset.

self learning It consists in turning any supervised classi-
fier into a semi-supervised method by iteratively labeling the
unlabeled data, and adding these predictions to the set of labeled
data until the classifier converges [165]. More specifically, we
implement the following Self Learning process:

(a) Train a classifier C on the set of available labeled applets A;

(b) Use C to make predictions on the set of unlabeled applets
U;

(c) Move from U to A the applets whose predictions satisfy
a condition defined with a confidence parameter, which is
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specified a priori. These are called “pseudo-labeled applets”
to distinguish them from the original labeled ones.

Steps (a)-(c) are repeated until one of the following convergence
criteria is reached:

• The maximum number of iterations is reached;

• All predictions obtained on the applets of the set U do not
satisfy the condition in (c);

• The set U is empty.

We set the maximum number of iterations to 5, the confidence
parameter to 0.6, and use BERT as a classifier [51]. Moreover,
we use the softmax function to compute the probabilities with
which unlabeled applets are associated with each class. Thus,
if the highest estimated probability is greater than 0.6 then the
corresponding class is assigned to the applet, becoming a pseudo-
labeled applet.

label propagation It is an inference algorithm based on
semi-supervised graphs [172]. The algorithm constructs a similar-
ity graph that models the set of training data trying to propagate
known labels across the edges of the graph, from labeled samples
to samples for which the label is not available. Since the data
are in textual form, we apply techniques for obtaining a vector
representation of them. In particular, we use the sentence embed-
dings computed through SentenceBERT [126], which produces a
512-dimensional vector of the input sentences.

The graph construction process deals with converting the
dataset X into a graph G, where X represents the input sam-
ples composed of the applets x1, x2, ..., xn, and each applet xi in
turn is represented by a 512-dimensional vector. Each applet is
assigned to a node of the graph, and a weight wi,j is assigned
to each edge connecting the pair of nodes i and j. To identify
the similarity between two nodes, a matrix of weights W is com-
puted. To calculate the weights, it is necessary to employ a kernel.
Among the possible applicable kernels, we use the K-nearest
neighbors, which produces a fully connected graph represented in
memory by a sparse matrix, and guarantees fast execution times.
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The obtained weights are used to compute the probabilities of
propagating a label from a labeled node to an unlabeled one. In
particular, the probabilities are used to assign soft labels to each
node that can be interpreted as distributions over labels. Labeled
nodes have probability 1 of belonging to one of the four classes
(since their classes are known), while unlabeled nodes get their
class from “neighboring” nodes. During the execution, these dis-
tributions are altered causing the change of the labels assigned
to unlabeled applets. The process iterates until convergence, i.e.,
the probabilities do not change and the labels associated with
unlabeled applets are no longer changed, or a fixed number of
iterations is reached. We set the maximum number of iterations
to 1,000.

The LabelPropagation class of the scikit-learn Python li-
brary is used to implement the algorithm.

generative adversarial learning for robust text

classification with a bunch of labeled examples

It is an extension of the BERT model within the Generative
Adversarial Network (GAN) framework allowing for the imple-
mentation of an effective semi-supervised learning schema [48].
This model allows training BERT on a limited number of labeled
samples, with respect to a larger number of unlabeled samples.
The fine-tuning phase of BERT is extended by introducing a
Discriminator-Generator setting, where:

• The generator G deals with the production of “fake” vec-
tor representations of sentences. In particular, G produces
“fake” samples by taking as input a 100-dimensional noise
vector based on a Gaussian distribution;

• The discriminator D is a BERT-based classifier that works
on k + 1 classes. In particular, D receives as input either
a fake vector generated by G, or a vector from real data
embedded by BERT. The final layer of D is a Softmax Out-
put Layer producing a vector of size k + 1, where k is the
number of classes in the training set.

D has the role of classifying an instance as one of the k classes
related to the task of interest (in this case k = 4) and must
recognize the instances generated by G (to which it must associate
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the class k + 1). In other words, it must classify whether the input
is a real instance or not; if it estimates the input as a real instance,
it must predict which class the input belongs to. On the other
hand, G must produce representations as similar as possible to
the “real” instances. G is penalized when D correctly classifies
an instance as fake.

We employed the PyTorch interface of the transformers

Python library of Hugging Face for implementing the model.
We set the parameters of the model as follows:

• Batch size: 32;

• Number of hidden layers for the Generator: 1;

• Number of hidden layers for the Discriminator: 1;

• Size of the noise vectors: 100;

• Learning rate Discriminator: 5e − 5;

• Learning rate Generator: 5e − 5;

• Epsilon: 1e − 8.

Since D must also be trained to discriminate real sentences
from fake ones, we introduce an additional class to those of
the task of interest; in particular, the identifier “4” has been
associated with the “fake” class.

ensemble Starting from the three datasets of labeled applets
obtained with the semi-supervised learning approaches, we ap-
ply an ensemble strategy to get a single dataset. In particular,
we use a majority-vote method across the three different semi-
supervised models, assuming that if two models agree, the pre-
diction would be more accurate. Thus, only the applets for which
at least two semi-supervised techniques agree on their class la-
bels are included in the final dataset with that class. This allows
us to obtain more consistent labels for the evaluated applets.

With this strategy, we obtain a dataset containing 79,214 ap-
plets, where 56,236 belong to class 0, 16,344 to class 1, 3,433 to
class 2, and 3,201 to class 3. Table 6.1 reports statistics about
the service categories involved in the labeled dataset. For each
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service category, the table provides the percentage of involved
services, and the percentage of applets whose triggers (actions,
resp.) belong to a service within the category. We can observe that
most of the services are for IoT devices, while triggers from social
networking services are the most popular among the applets. On
the other hand, almost half of the applets in the dataset have
an action belonging to the “RSS feeds, online recommendation”
category.

Table 6.1: Statistics about the services involved in the applets of the
labeled dataset

Service category % Services % Triggers % Actions

Smarthome devices (e.g., Light, thermostat) 44.79% 5.08% 4.33%

Online service and content providers 16.60% 11.72% 14.99%

Social networking, photo/video sharing 8.21% 35,78% 18.32%

Smartphones (e.g., battery, NFC) 5.56% 11.09% 2.62%

SMS, instant messaging, VoIP 5.55% 7.51% 2.29%

RSS feeds, online recommendation 4.11% 2.24% 44.34%

Smarthome hub (e.g., Samsung SmartThings) 2.90% 0.08% 0.03%

Personal data & schedule manager 2.90% 7.11% 0.64%

Wearables (e.g., smartwatch) 2.66% 0.37% 0.84%

Cloud storage (e.g., Google Drive) 2.17% 9.35% 1.01%

Time and location 1.60% 0.07% 6.49%

Email 1.45% 9.45% 4.01%

Other 1.50% 0.15% 0.09%

6.5 model training

This section illustrates the models we implement for classifying
the IFTTT applets, the techniques we adopt to solve the problem
of imbalanced data in the final dataset, and the setup of the
training phase. The models are implemented as Python modules.

We consider two types of classifiers. The first is based on ar-
tificial neural networks (ANNs), and treats discrete features as
numerical values, by using the label encoder technique [154], and
continuous features as textual values, by using a word embed-
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ding technique [70], namely Global Vectors for Word Representation
(GloVe) [119]. The latter is based on BERT, a pre-training model
of Natural Language Processing, which uses deep bidirectional
transformers to train a language representation model through a
large number of data [51]. In this model all features are treated
as text.

The ANN-based and BERT-based models are trained consider-
ing three combinations of features:

combination
1 :

Title and Desc;

combination
2 :

TriggerTitle, ActionTitle, ActionChannelTitle, and TriggerChannelTitle;

combination
3 :

All features.

Before training the models, a pre-processing phase is carried
out to remove noise from the data. In particular, we perform
the operation of tokenization, normalization, noise removal, and
lemmatization on the textual values. Successively, the encoding
phase converts the dataset into a format valid for the classifiers.

6.5.1 Classification by Artificial Neural Networks

In the following, we illustrate the different architectures imple-
mented for the ANN models. In particular, we consider a simple
neural network (NN) when the features are discrete (combination
2), and the Long Short-Term Memory (LSTM) when continuous
features are involved (combinations 1 and 3).

first combination We train an LSTM model, named LSTM-
1c, using the Title and Desc features. Their GloVe word embed-
dings are vector representations of textual data having a fixed
length. Since the title and description of the applets have differ-
ent lengths, an embedding with a longer length will be filled
with zeros at the end (representing the so-called padding), if it
is shorter, it will be truncated. To identify the most suitable em-
bedding length, we analyze the distribution of the lengths of the
dataset sentences obtained by concatenating Title and Desc. As
shown in Fig. 6.3, most sentences are composed of 25 words or
less, whereas the maximum length is 400. Using 25 as embedding
length is unsuitable because many words may be lost. At the
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same time, setting the length to 400 leads to embedding with a lot
of padding, which would not help the model to learn. Therefore,
we set the length of the embeddings to 50, which corresponds to
a good trade-off.
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Figure 6.3: Length distribution (in logarithmic scale) of the sentences
obtained concatenating the Title and Desc features.

Fig. 6.4 shows the architecture of the LSTM-1c model. Specifi-
cally, the Input Layer receives embeddings of 50 dimensions, then
the Embedding Layer turns positive integers into dense vectors of
fixed size. The latter requires the following parameters:

• The size of the dictionary (i.e., the number of distinct words
in the input sentences);

• The size of the output vector, which is 50, as the dimension
of the embeddings;

• The pre-trained embedding matrix specified using the weights
attribute.

The LSTM Layer is composed of 70 neurons and uses the tanh
(hyperbolic tangent) activation function, whose outputs are in
the range [-1,1]. Subsequently, the Dense Layer is composed of
35 neurons and uses the tanh activation function. The values of
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Figure 6.4: The architecture of the LSTM-1c model.

the two parameters are obtained through a fine-tuning process.
The final Dense Layer acting as the Output Layer consists of 4

neurons and uses the softmax activation function. The number of
neurons corresponds to the number of classes that the classifier
has to predict. The LSTM-1c model is trained using 24 epochs and
a batch size of 10.
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second combination We train a simple Neural Network
model, named NN-2c, using the discrete features of the dataset.
For these features, it is possible to apply the label encoder technique
to convert them into numerical ones. This technique simply
assigns a unique numerical value to each categorical value that
a feature can assume. In this way, we obtain well-structured
data, which can be used as input for densely connected neural
networks.

Fig. 6.5 shows the architecture of the NN-2c model. It is com-
posed of an Input Layer that accepts an input with size 4 (i.e.,
the values of discrete features) and three Dense Layers. Two of
them consist of 50 and 20 neurons, and use the tanh activation
function. As for LSTM-1c, the final Dense Layer acts as the Output
Layer and consists of 4 neurons, with the softmax as an activation
function. The NN-2c model is trained using 30 epochs and a batch
size of 16.
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TriggerTitle TriggerChannelTitle ActionTitle ActionChannelTitle 

Figure 6.5: The architecture of the NN-2c model.

third combination We train an LSTM model, named LSTM-
3c, using all features of the dataset. The discrete features are con-
verted from categorical to numeric, and combined with the con-
tinuous ones. To efficiently handle the different types of inputs,
i.e., textual (i.e. Title and Desc) and numerical (i.e. TriggerTitle,
ActionTitle, ActionChannelTitle and TriggerChannelTitle), we define
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two sub-models: the former receives textual input encoded with
GloVe, while the latter receives numerical input encoded with
the label encoder technique.

Fig. 6.6 shows the network architecture. The first sub-model
is composed of an Input Layer, which receives embeddings of 50

dimensions, an Embedding Layer, and an LSTM Layer character-
ized by 70 neurons and using the tanh activation function. Also,
the second sub-model is composed of three layers. In particular,
an Input Layer receiving the four numerical values of the discrete
features, and two Dense Layers, composed of 50 and 20 neurons
respectively, on which the tanh activation function is used. The
output of the LSTM Layer of the first sub-model is concatenated
to the output of the second Dense Layer of the second sub-model,
and used as input for another Dense Layer characterized by 10

neurons. Finally, the last Dense Layer acts as the Output Layer and
is characterized by 4 neurons, corresponding to the classification
classes. The LSTM-3c model is trained using 35 epochs and a batch
size of 10.

6.5.2 Classification by BERT

In the following, we present the classifiers developed with BERT
by considering the same three combinations of features, but all
in a textual form. BERT is based on the concept of Transfer
Learning, namely a Machine Learning technique in which a
model exploits knowledge gained from a problem to improve its
performances on a related one. Unlike directional models (e.g.,
the LSTM model), which read the textual input sequentially (from
left to right or vice versa), BERT, as a contextual model, captures
the relationships between words in a bidirectional manner. In
this way, it can learn the context of a word based on everything
around it.

We train BERT by freezing all the pre-trained layers, and a
layer of untrained neurons is added to the top of the architecture.
Thus, during the training phase, only the additional classification
layer is trained on the dataset. The classifier has been imple-
mented using the BertForSequenceClassification class of the
transformers Python library, which corresponds to the BERT
model with a single linear layer added at the top for classification.
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Figure 6.6: The architecture of the LSTM-3c model.

Among the different available pre-trained BERT models, we use
the “bert-base-uncased”, which represents the “base” version with
12 transformer blocks, 768 hidden units, 12 self-attention heads,
and considers lowercase letters.

Fig. 6.7 shows the architecture of the implemented BERT-based
model with all applet’s features in input. In particular, the in-
put is a sequence of tokens where a special classification token,
denoted with [CLS], is placed at the beginning. All tokens are
first embedded and then processed in the following blocks. Each
block applies self-attention [146] and provides the output to a
feed-forward neural network. Finally, the representation corre-
sponding to the token [CLS] (H) is given in input to the Dense
Layer added at the top of the architecture, which is responsible
for classifying the input applet.
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Figure 6.7: Architecture of the BERT-based model considering all ap-
plet’s features (BERT-3c).

The models are trained by considering the following hyperpa-
rameters: 32 as batch size, 2e − 5 as learning rate, 2 epochs, and
1e − 8 as epsilon. This configuration is used with a maximum
sentence length that changes based on the combination of consid-
ered features. In particular, for the first combination of features,
we implement a model named BERT-1c with a maximum length
of 50, as done in Section 6.5.1. For the second combination of fea-
tures, we implement a model named BERT-2c with the maximum
length of embeddings set to 20, which corresponds to the longer
sentence (as shown in Fig. 6.8). With this choice, the semantic
meaning of the longer sentences is better captured, but without
excessively affecting the performances and the training quality of
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the model. Furthermore, it is also worth noting that the number
of services provided by the IFTTT platform is constantly growing.
Thus, the considered length allow us to correctly represent any
new trigger/action characterized by many characters, that might
be added in the future.
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Figure 6.8: Length distribution (in logarithmic scale) of the sentences
obtained concatenating the discrete features.

Concerning the combination that considers all the features,
we implement a model, named BERT-3c, with the maximum
length of embeddings set to 70, which allows us to fully consider
the discrete features (since they are inserted at the beginning of
each sentence and are certainly correct as provided by the IFTTT
platform) and in addition, in whole or in part, the title and the
description, which can have variable length and potentially a
more or less distorted meaning.

6.5.3 Training with Imbalanced Datasets

The constructed dataset of IFTTT applets is “imbalanced” since
the number of observations it contains is not the same for all
classes. Imbalanced datasets are an important challenge in super-
vised classification [150]. In fact, a model trained on imbalanced
data tends to classify the input instances with the class for which
the most observations are available, namely the majority class. Dif-
ferent techniques can be used to alleviate the imbalanced dataset
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problem. In this work, we use “penalized” models, which try to
penalize misclassifications related to minority classes more than
those related to the majority class.

In general, the training objective of a model is the minimization
of a loss function. Usually, every class in the loss function has the
same weight, i.e., 1. Instead, in a penalized model these weights
are altered for improving the accuracy of minority classes. In
particular, it uses a weighted loss function that associates different
weights to each class according to the number of class samples
in the dataset. For the considered dataset, the minimum weight
is associated with class 0, as it contains the largest number of
samples.

We use the categorical crossentropy as a loss function for our
multiclass classification task. To calculate the weight to be as-
sociated with each class, the compute_class_weight method of
the scikit-learn Python library is used. In particular, having
indicated the string ‘balanced’ as a parameter, each weight is
calculated as:

weight[Ci] =
#samples

#classes · #samples[Ci]

where

• #samples: represents the total number of instances consid-
ered for training;

• #classes: represents the total number of considered classes;

• #samples[Ci]: represents the total number of instances of
class Ci considered for training.

The loss for a sample x of class Ci is calculated as:

loss(x, Ci) = weight[Ci] ·
(
− x[Ci] + log

(
∑j exp(x[j])

))
Imbalanced datasets could also introduce biased estimations

or overfitting in favor of the majority class when using k-fold
cross validation to evaluate the performances of the models. To
alleviate this problem, we use the stratified k-fold cross valida-
tion technique, which performs stratified rather than random
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sampling. Stratified sampling is a probabilistic sampling proce-
dure whereby reference data are divided into subsets that are
as homogeneous as possible to the variable whose value is to be
estimated. It ensures that the folds of the data have a uniformly
representative sampling of the target attribute.

We use the stratified k-fold cross validation for fine tuning
hyperparameters. In particular, we employ it for the optimization
of the weights to be adopted in the loss function previously
introduced. We set k to 4 in this work.

6.6 experimental evaluation

We conduct a series of experiments to analyze the performances
of the implemented models. This section illustrates the experi-
mental setup, the adopted metrics, and the experimental results.
The latter are compared with those obtained by a solution eval-
uating the risk of IFTTT applets through the information flow
analysis [138].

6.6.1 Evaluation Setup

Each of the previously described models is trained on the set
of 76,741 applets obtained by the ensemble approach, whereas
the 2,473 manually labeled applets are used as a test set (named
TS_2k). Moreover, since the training set is labeled through the
application of semi-supervised techniques to the TS_2k applets,
we make a further evaluation on 500 applets randomly chosen
among the applets not yet labeled (named TS_500). In this way,
we validate the quality of the proposed methodology, i.e., the
performances of the classification models to properly discrimi-
nate applets’ damage, and the quality of the labels provided by
the ensemble approach.

Once the training and test sets are selected, as said above, we
apply a weighted loss function to solve the imbalanced dataset
problem, obtaining the weights through the stratified k-fold cross
validation. As a new validation set is created at each iteration, it
is not necessary to extract one from the training set. Therefore,
once the weights are obtained, each model is trained on all 76,741

applets.
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6.6.2 Evaluation Metrics

The performances of each classifier are evaluated by considering
the following metrics:

• Accuracy: is the ratio between the number of instances
correctly classified and the total number of considered
instances;

• Precision(Ci): is the ratio between the number of instances
of class Ci correctly classified and the total number of in-
stances to which the classifier associates class Ci;

• Recall(Ci): is the ratio between the number of instances
of class Ci correctly classified and the total number of in-
stances of the test set labeled with class Ci;

• F1-score(Ci): is the harmonic mean of Precision and Recall;

where Ci is one of the four classes of damage. We also compute
the average of the per-class metrics, weighted by the number of
samples for each class in the test set (WAvg).

6.6.3 Results and Discussion

ts_2k evaluation Tables 6.2-6.5 report the values of Accu-
racy, Precision, Recall, and F1-score obtained by the different
models on the dataset TS_2k. We can observe that the worst
results are achieved by the models trained considering discrete
features only (i.e., NN-2c and BERT-2c), whereas the best results
are achieved by the BERT model trained on all features (BERT-3c),
which obtained 88% for all the metrics.

LSTM-3c and BERT-1c are the models that obtained results
closer to those of BERT-3c. However, it is worth noting that the
LSTM-3c model achieves a Precision for class 0 (72%) lower than
BERT-3c. This means that it classifies many applets that provide
damage as Innocuous, and this is particularly dangerous for
users. At the same time, this model obtains higher values for
Recall of classes 0, 1, and 2, but a very low value for class 3

(22%). This means that it rarely classifies an applet with class 3,
as also highlighted by the high Recall values of the other classes.
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Table 6.2: Accuracy of the considered models on TS_2k
Model Accuracy (%)
LSTM-1c 80

BERT-1c 86

NN-2c 31

BERT-2c 72

LSTM-3c 79

BERT-3c 88

Table 6.3: Precision of the considered models on TS_2k
Precision (%)

Model class 0 class 1 class 2 class 3 WAvg
LSTM-1c 73 80 86 87 80

BERT-1c 90 80 85 88 86

NN-2c 47 26 31 25 35

BERT-2c 73 66 80 69 72

LSTM-3c 72 77 91 93 81

BERT-3c 89 87 88 87 88

Table 6.4: Recall of the considered models on TS_2k
Recall (%)

Model class 0 class 1 class 2 class 3 WAvg
LSTM-1c 81 62 90 86 80

BERT-1c 77 82 98 95 86

NN-2c 24 32 48 28 31

BERT-2c 54 78 94 78 72

LSTM-3c 90 93 99 22 79

BERT-3c 86 79 97 91 88

Table 6.5: F1-score of the considered models on TS_2k
F1-score (%)

Model class 0 class 1 class 2 class 3 WAvg
LSTM-1c 77 70 88 86 80

BERT-1c 83 81 91 91 86

NN-2c 32 28 37 27 31

BERT-2c 62 71 87 73 71

LSTM-3c 80 84 95 36 75

BERT-3c 87 83 92 89 88
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In addition, since the lowest Precision values are obtained by
LSTM-3c for classes 0 and 1 (72% and 77%, respectively), we infer
that the model erroneously classifies most of class 3 applets with
one of these two classes.

The BERT-1c model is characterized by performances very
similar to those of BERT-3c, achieving slightly higher Recall (for
classes 1, 2, and 3) and Precision (for classes 0 and 3) values,
but lower values for Accuracy (86%) and weighted average re-
sults. Concerning the F1-score metric, the BERT-1c model shows a
slightly higher value only for class 3, confirming that the BERT-3c
model performs better on average. Since the BERT-1c model clas-
sifies the applets by only considering their title and description,
the performances of the model strongly depend on the semantic
consistency of the applets’ title and description contained in the
training set. This information is specified by the user when cre-
ating the applet, and it might happen that it is inconsistent with
the applet’s behavior. In these cases, the BERT-3c model can ex-
ploit the discrete features (trigger, action, and the corresponding
channels) populated by the IFTTT platform.

By focusing on the results per class, we can observe that for
some models the applets of classes 1 and 3 are the most difficult
to identify. For class 1 applets, the reason is that they could be er-
roneously classified with class 2 or 3 due to their slight differences
in the context of use. As an example, the applet “Any new photo

by me uploaded in a specific Google Drive folder, publish

it on Twitter” should be classified as class 1 because a user
could share an embarrassing photo unintentionally, whereas the
applet “Any new photo uploaded by anyone in a specific Google

Drive folder, publish it on Twitter” should be classified as
class 3, because the user’s privacy may be compromised as it is
not possible to know who will upload the photo that will appear
on his/her Twitter profile. On the other hand, the applet “New
tweet by me with a specific hashtag, turn off lights” could
be used by a user to turn off lights with a goodnight tweet, but
it might be triggered also in other situations causing the lights
to go off unintentionally, and consequently, the applet should be
classified as class 1. Instead, the applet “New tweet by anyone

in the area with a specific tag, turn on lights” allows a
user to know if there are people that published a tweet in the
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zone, but its behavior might be compromised by a third party
causing damage to the lights, and consequently, the applet should
be classified as class 2. The differences between these applets are
hard to grasp, and justify the low performances of the models in
the discrimination of class 1 applets with respect to other classes.

Regarding class 3 applets, as said above, they are difficult to
classify by the LSTM-3c model and by the models using only
the information provided by the IFTTT platform (the discrete
features on trigger and action). This might be due to the fact
that the dataset considered for this work does not contain in-
formation about the Fields of the applets. To understand this
aspect, let us consider the following applet: “Record your daily

Fitbit activity in a Google Spreadsheet”. In this case, the
IFTTT platform upon creating such an applet requires the user to
specify the spreadsheet to be involved in the automation, which
is a field of the applet. Depending on the selected spreadsheet,
the applet may or may not compromise the user’s privacy. This
is because, if the user specifies a private spreadsheet, which
only s/he can access, then such an applet would not pose any
risk. Conversely, if the user specifies a shared spreadsheet, then
his/her privacy may be compromised as private information may
be leaked to other people.

ts_500 evaluation To verify if the considered models gen-
eralize well on new applets, we perform an additional evaluation
by considering a new test set obtained through the random se-
lection of 500 applets among those discarded by the ensemble
approach (i.e., the applets that obtained conflicting predictions by
the three semi-supervised techniques). The result of the manual
classification on these new applets is the TS_500 dataset contain-
ing: 264 applets belonging to class 0, 161 to class 1, 28 to class 2,
and 47 to class 3.

Table 6.6 reports the values of Accuracy and F1-score obtained
by the classification models on TS_500. We can observe that all
models perform worse than the evaluation on TS_2k, except for
BERT-3c, which increases its Accuracy (F1-score, resp.) from 88%
to 91% (92%, resp.). In the following, we provide a detailed anal-
ysis of the results achieved by BERT-3c. For this model, we also
analyze whether semantically consistent titles and descriptions
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influence its performances. To this end, we manually verify the
consistency of the applet’s titles and descriptions with respect to
the applet’s behavior. This process leads to the identification of
75 applets whose titles and descriptions do not describe the goal
of the automation. The dataset without these applets (named
TS_425) consists of 209 class 0 applets, 147 of class 1, 27 of class
2, and 42 of class 3.

Table 6.6: Accuracy and F1-score achieved by the considered models
on TS_500

Model Accuracy (%) WAvg F1-score (%)
LSTM-1c 60 57

BERT-1c 71 71

NN-2c 29 29

BERT-2c 63 61

LSTM-3c 75 73

BERT-3c 91 92

Table 6.9 reports the values of the metrics obtained by BERT-3c
on TS_500 and TS_425. The results are better than those obtained
on TS_2k in almost all classes, as also highlighted by F1-score. In
fact, BERT-3c correctly discriminates class 1 applets, differently
from what happened previously. However, the results for class 2

applets are considerably worsened.
Tables 6.7 and 6.8 show the confusion matrices obtained from

the classification results on TS_500 and TS_425. We can observe
that the model’s performances are slightly better when only
consistent applets are classified, confirming that this applet’s
property allows the model to better discriminate among classes.
By analyzing the Recall, we can observe that BERT-3c correctly
classifies all class 2 and class 3 applets, while it makes some
mistakes on the other two classes. In fact, with this evaluation,
we discover another ambiguity in discriminating between class 2

and class 0 applets. As an example, the applet with description
“Email a map of where I parked” might be classified as class 2

because a user could share his/her car position unintentionally,
and a third party might exploit this information to cause damage.
However, as the ActionTitle of this applet is “Send me an email”,
it should be classified as class 0 because the information remains
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Table 6.7: Confusion Matrix Obtained for TS_500
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Table 6.8: Confusion Matrix Obtained for TS_425
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private. Since the number of class 0 applets is much higher than
those of class 2, it happens that these misclassifications for class
0 applets are relatively frequent with respect to class 2 applets,
leading to a very low precision value for class 2.

6.6.4 Comparative Evaluation

To further assess the validity of the proposed approach, we com-
pare the performances of the BERT-3c model with those of a
baseline system implementing an information flow analysis sim-
ilar to the one proposed in [138]. The latter exploits a secrecy
lattice to identify possible violations caused by an IFTTT applet.
The lattice of the baseline system introduces two levels of restric-
tion, namely public and private, asserting that a secrecy violation
occurs when the information flows from the private level toward
the public one. Considering this type of approach, we devise a
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Table 6.9: Performances of BERT-3c on TS_500 and its subset of “consistent” applets
TS_425

Accuracy (%) Precision (%) Recall (%) F1-score (%)
TS_500 TS_425 TS_500 TS_425 TS_500 TS_425 TS_500 TS_425

Class 0 97 98 88 89 92 94

Class 1 94 99 94 95 94 97

Class 2 54 59 100 100 70 74

Class 3 90 89 96 100 93 94

WAvg 91 93 93 95 91 93 92 93

Table 6.10: A comparison of the results obtained by IFC and
BinaryBERT-3c for TS_2k

Accuracy (%) Precision (%) Recall (%) F1-score (%)
Methodology class HL class HF class HL class HF class HL class HF
IFC 46 41 70 87 20 56 32

BinaryBERT-3c 92 89 93 90 93 89 93

methodology following such a principle for classifying an applet
through the analysis of its channels, namely Information Flow
Classifier (IFC). The classification labels of IFC are:

• Harmless: indicates that the applet contains no elements
that may lead to violations;

• Harmful: indicates that the applet contains elements that
may lead to violations.

To implement the baseline system, we first extract all the chan-
nels of the IFTTT platform from the constructed dataset. Each
channel belongs to one of the following categories:

• Smart Objects;

• Cloud Services;

• Social Networks.

We assign to each channel one of the following labels:

• Private: refers to channels that by default tend to privatize
the information they manage, e.g., Google Drive by default
allows users to privately store their files;
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• Public: refers to channels that by default tend to publicly
share the information they manage, e.g., Facebook by de-
fault allows other people to view the content that a user
uploads on the platform.

The channels belonging to the “Smart Objects” or “Cloud Ser-
vices” categories are categorized as operating in private contexts,
while the “Social Networks” channels are categorized as operat-
ing in public contexts.

The process of applet labeling is performed as follows:

• If the trigger channel is labeled as “Private” and the action
channel as “Public”, then the applet is labeled as “Harm-
ful”;

• in all other cases the applet is labeled as “Harmless”.

The reasoning behind such a choice is based on the assumption
made in [138], where the authors state that “it is safe to allow
information to flow from a lower (public or trusted) label to a higher
(private or untrusted) label, but not the other way around”. Here, the
terms higher and lower refer to the nodes of the secrecy lattice.

Since this methodology allows us to classify an applet as Harm-
ful or not, it is necessary to modify the labels of our dataset in
terms of binary classification. In particular, the previous applets
of classes 1, 2, and 3 are modified with the new class HF, which
corresponds to “Harmful”, whereas the class 0 applets are la-
beled with the new class HL, corresponding to “Harmless”. Thus,
to compare the two classifiers, we train the BERT-3c model on
the dataset with binary labels. We will refer to this model as
BinaryBERT-3c.

For the evaluation phase, we use the test set TS_2k obtaining
the results reported in Table 6.10. We can observe that IFC is not
capable of accurately identifying Harmful applets as highlighted
by the Recall value of class HF (20%) and the Precision value of
class HL (41%). This is due to the prominent lack of contextual
information available when IFC classifies an applet. In particu-
lar, a static approach that considers only the trigger and action
channels provides a too high generalization of the applet’s be-
havior. In fact, as highlighted by the literature, the classification
of an applet with respect to different classes of damage can be
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strongly derived from the analysis of its semantic components
[39, 130]. As an example, if we consider the classification with
IFC of the applet introduced in Section 6.6.3, the trigger channel
“Fitbit” and the action channel “Google Drive” would be labeled
as Private, and the applet is classified as Harmless. Conversely,
BinaryBERT-3c exploits NLP techniques that allow extracting
the semantic meaning of the descriptions and understanding the
applet’s action context, which helps to disambiguate the rules
that are difficult to classify by analyzing only the trigger and the
action. In fact, as shown in Table 6.10, BinaryBERT-3c is capable
of correctly classifying 92% of applets, as highlighted by the Ac-
curacy value. In addition, high values for Precision, Recall, and
F1-score in both classes provide a further hint about the ability
of the model to classify them.

In conclusion, the evaluation of the results revealed that the
BERT-3c classifier, which was fine-tuned considering all rule’s
features, achieved the highest Precision and Recall values, scoring
an average of 88% for the TS_2k test set and 93% for the TS_425

test set. Furthermore, the BERT-3c classifier was compared to an
information flow analysis-based approach on a binary classifica-
tion task, which proved that our approach is the most suitable for
classifying harmful ECA rules because it can extract the semantic
and contextual meaning of the rules. This empirical evaluation
has confirmed the capability of our classification model to high-
light underlying security and privacy issues concealed within
ECA rules. Therefore, this model could be promptly capable of
supporting end-users, making them feel safer and at ease in us-
ing TAPs, contributing to providing a concrete response directed
toward RQ0. It is worth mentioning, that a complete and concrete
answer to the RQ0 could only be achieved by means of a user
study we are already planning to conduct, where we will assess
the impact of such a solution on end-user perceptions.
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E X P L A I N I N G R I S K S R E L AT E D T O B E H AV I O R A L
R U L E S

The work presented in the previous chapter allows for the identi-
fication, with respect to 3 different risk classes, of vulnerabilities
that can be introduced within smart environments following the
activation of certain ECA rules.

However, the results produced by classification models can
be difficult to understand without expert knowledge. Thus, it is
fundamental to provide end-users with valid explanations de-
scribing the risks connected to a rule in a comprehensible manner,
with the aim of enhancing the end-users trust. Such a task can
be faced by employing the Explainable Security (XSec) paradigm,
which is inspired by the eXplainable Artificial Intelligence (XAI)
research field [74]. The latter deals with elucidating, in total
transparency, the reason behind the outputs of a classification
model.

In this chapter, we will present an approach for automatically
generating natural language justifications, end-users understand-
able, related to Security and privacy harms caused by ECA rules.

7.1 literature review

In this section, we revise the literature concerning solutions for
producing users’ understandable explanations of AI-based sys-
tems. We first discuss popular agnostic approaches for explaining
AI-model’s results, then we review solutions tailored to providing
explanations of security and privacy-related issues. Finally, we
discuss works presenting explanations using natural language.

7.1.1 Explainable Security

The term Explainable Security (XSec) has been first presented
as a novel paradigm, an extension of XAI, in [147]. It includes
those security research proposals focused on bridging the gap
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between the actual security identified and the perceived security.
In fact, with respect to explanations focused on acquiring trust,
i.e., explanation-for-trust, which entails unveiling the black-box
nature of models by explaining how a system works, the XSec
research field focuses more on providing explanation-for-confidence,
in order to make the user feeling confident in using the system,
but without opening the black box [120].

A first approach for explaining security policy requirements
has been proposed in [20]. The authors have designed a model
for explaining why, due to a lack of permissions required for
accessing data, queries might fail. Instead of only rejecting an
unauthorized query, the explainable security model illustrates
why the query failed and which permissions are required in
order for the request to be granted.

In [116], the authors have proposed IoTSan, a model-checking-
based approach for identifying inconsistencies within IoT Sys-
tems with respect to a set of safety properties. Downstream the
model-checking process, the authors included a module called
"Output Analyzer" which performs the task of analyzing and
verifying the logs, classifying a violation either as a misconfig-
uration or behavior caused by a malicious app. The output of
such an analysis is then presented to the user in the form of
suggestions to either remove the app or change its configuration.

The approach presented in [162] is capable of detecting im-
plicit rule interferences, a scenario where two or more rules are
triggered simultaneously, causing contradictory effects for the
environment. To allow the user to understand the nature of the
interference problem and its cause, the authors generate explana-
tions consisting of four parts, i.e., the scope of the actuators, the
effect of the actuators on the environment, the list of function-
alities it provides, and the type of interference produced. With
a similar purpose, the authors in [153] proposed ProvThings, a
platform-centric approach for performing an automated analysis
of IoT apps and device APIs leading to the identification of faulty
relationships between them. The authors aim at providing holistic
behavioral explanations through a simplified front-end, specif-
ically designed for the typical user, with not many computer
skills.
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In [132], the authors propose a real-time intrusion detection
and mitigation system aimed at providing autonomous security
in the IoT networks through flow analysis. The approach also
aims at achieving a high degree of interpretability thanks to the
employment of the Random Forest Machine Learning algorithm
as a classifier.

Finally, in [151], the authors defined a SHAP-based framework
that, alongside the execution of intrusion detection systems (IDs)
mechanisms, combines local and global explanations to improve
the interpretability of any IDs. The ultimate goal is both to im-
prove understanding of the predictions made by the IDS and to
build cyber users’ trust in the IDSs themselves.

7.1.2 Explainable AI with Natural Language Explanations

The generation of explanations using natural language has gained
increasing interest in the field of research, particularly in the gen-
eration of personalized recommendations [45, 93, 114, 170]. In
fact, solutions falling in this research topic try to enforce recom-
mendation systems by supporting their output with interpretable
justifications of the items. Providing justifications using natural
language sentences is ideal for this task both for the consider-
able availability of textual data in form of reviews and for the
advancement in natural language generation techniques [93].

In [170], the authors introduced an approach for providing
human-like justification for a song recommendation system to im-
prove users’ awareness. With the purpose of training a language
model to generate motivations related to the recommendation of
a specific song, the authors generated a training set by crawling
the comments associated with 1.2M songs posted on a music
streaming platform, collecting a total of 80M samples with which
they trained the language model. Then, by combining informa-
tion related to the user’s reasons, such as his or her mood or job
position, with the details of the recommended song, the proposed
solution is able to generate a justification for choosing it.

Musto et al. present a framework for building post hoc nat-
ural language justifications providing textual motivation to a
recommendation algorithm [114]. The proposed approach stands
as a black box solution that can generate justifications on any



134 explaining risks related to behavioral rules

topic, starting from a recommendation and a set of revisions to
generate post hoc justifications in natural language. To this end,
the authors have developed three different implementations, pro-
gressively more complex, for solving the problem. The first uses
sentiment analysis and natural language processing techniques
to identify relevantly and distinguishing features highlighted in
the reviews, combining them into a natural language justification
of the suggested article. The second methodology builds on the
first by including more advanced machine learning techniques,
such as automatic feature extraction and text summarization.
It uses these techniques to produce a distinctive summary that
encapsulates the primary qualities of the item. Finally, the last
approach addresses the issue of creating context-aware justifi-
cations by automatically learning a vocabulary for each context
and utilizing that vocabulary to diversify the justifications based
on the various contextual circumstances.

7.2 methodology

In this section, we present the methodology for generating post-
hoc natural language justifications that describe why an automation
rule might cause specific harm. In particular, we define the prob-
lem and explain how to adapt pre-trained language models in
producing contextual sentences that support the decisions of
algorithms that identify harmful rules.

User Trigger-Action Platform Automation Rule
Trigger

Action

A new email in
your inbox with
an attachment

Upload file to
Google Drive

Harm
Identification

Algorithm

x1 
x2 
...
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y2 
...
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a malicious file that will

be automatically
synchronized across

multiple devices,
increasing the chance

for a user to open it

Generated Justification

Figure 7.1: Workflow for generating justifications concerning harmful
rules



7.2 methodology 135

7.2.1 Problem Formulation and System Overview

In the natural language generation task considered, we assume
that a user has defined an automation rule r using a TAP and that
an algorithm has identified a harm h associated with r. The goal
is to generate a justification j that justifies why h could arise from
r. Here, language models maximize P(j | r, h), i.e., the probability
of producing a justification j given the information of a rule r
and the harm h identified by the algorithm.

It is worth noting that our proposal is algorithm-independent.
Indeed, the harm could be identified by an AI-based classifier
[23], a system that performs information-flow analysis [118] or
applies model checking [32].

The methodology requires a dataset D = (R, H, J) consisting of
(r, h, j) triplets employed to guide language models in construct-
ing comprehensible justifications. Clearly, defining a justification
dataset involves high human effort, so it may be challenging to
have a large dataset for training an effective language model.
However, thanks to the latest achievements in the field of AI, it is
possible to obtain effective models even having a small amount
of data. For example, pre-trained models make it possible to
reuse the knowledge learned from a specific purpose to a prob-
lem in a related context. Many studies use pre-trained models
on millions of data and specialize them in downstream tasks,
achieving cutting-edge results [156]. Therefore, we suggest using
pre-trained language models to generate high-quality justifica-
tions in the TAP domain, exploiting their knowledge gained from
training on large amounts of raw textual data.

Figure 7.1 shows an example of the workflow for generating
a justification concerning a harmful rule. Initially, information
about the rule, i.e., triggers, actions, and services, is exploited
by an algorithm to identify potential harm. Then, the rule infor-
mation and classification result feed into a pre-trained language
model that tries to connect them with the target justification: “An
attacker might send a malicious file that will be automatically synchro-
nized across multiple devices, increasing the chance for a user to open
it”.

In this chapter, we propose three strategies to implement pre-
trained language models for justification generation in the TAP
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domain. First, we consider an approach based on a Keywords to
Sentences model that requires a parser for extracting keywords
from rules’ information. Then, inspired by recent advancements
in prompt learning [98], we introduce two strategies that leverage
prompt-based finetuning. Here, instead of modifying the struc-
ture of pre-trained language models, we try to adapt them to our
task by adding a prompt. In particular, the first strategy is based
on discrete prompt learning as natural language words are added
to every training and test example. Instead, the second strategy
focuses on continuous prompt learning as we embed some rule
information into continuous vectors by means of a customized
version of the Skip-Gram neural network model [110, 111].

7.2.2 Justifications based on Keywords to Sentences Model

Keyword-based sentence generation can be viewed as a machine
translation task [143]. Specifically, given the source sentence x =
{x1, ..., xs}, its respective translation into the target language is
determined by finding the best sentence y = {y1, ..., yt}. Assuming
the application of a pre-trained language model that consists of
pre-trained parameters Θ, we can formally write the goal as

ybest = arg max
y

P(y | x, Θ) (7.1)

where the sentence y that maximizes the conditional probabil-
ity P(y | x, Θ) is calculated.
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Figure 7.2: Workflow for generating justifications using keywords



7.2 methodology 137

In our context, we need to replace the source sentence x with r
and h, i.e., the information of a rule and associated harm, respec-
tively, and the target translated text y with j, i.e., the justification.
Furthermore, we assume that the pre-trained language model
does not receive a complete set of words to generate natural
language justifications but a set of keywords, and learns how to
provide the complementary information needed. If we denote K
as a set of keywords in the TAP domain, we can express Eq. (7.1)
as

jbest = arg max
j

P(j | K, Θ)

This equation is the same as Eq. (7.1) when a source text
sentence is replaced with a set of keywords. Therefore, the task
can be regarded as a model that translates keywords into text
sentences.

As one would expect, such an approach requires a parser ca-
pable of inferring relevant words from sentences that describe
rule triggers, actions, and associated harm. Fig. 7.2 depicts the
process yielding the generation of a justification. Given a rule r
and the potential harm h, we extract keywords from the rule trig-
gers (TKr), rule actions (AKr), and rule harm (HKh), respectively.
Moreover, we take service names (e.g., Facebook and IoS Pho-
tos) used to define triggers (TSr) and actions (ASr) as additional
keywords. To avoid redundant information in selected keywords,
we consider two groups: the intersection of the five sets Ir,h =
TKr ∩ AKr ∩ HKh ∩ TSr ∩ ASr and the remaining keywords Fr,h =
(TKr ∪ AKr ∪ HKh ∪ TSr ∪ ASr)/Ir,h. Thus, the final set is defined
as:

Kr,h = [Ir,h, Fr,h]

During training, the model learns to correlate the combination
of input keywords to the actual text. Instead, during inference,
the model attempts to generate the output justification keeping
the set of keywords in mind.

Ideally, the greater the number of keywords employed, the
better the understanding of the model and the chances that it
will generate a well-structured and coherent justification. This
is because adding more keywords helps narrow the scope of
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knowledge and possibilities where these keywords occur in the
training data distribution. However, if most of the keywords used
represent noise, the model may consider irrelevant contexts and
generate incorrect justifications. At the same time, it is plausible
to think that if we provide only one keyword, the chance of the
model generating a correct justification is quite low because the
keyword might occur in several contexts in the training data,
creating confusion.

7.2.3 Justifications based on Prompt Learning

Recently, prompt learning is becoming increasingly popular in
training pre-trained language models because it enables promis-
ing results in scenarios with few or no labeled data [98]. The key
idea is to push pre-trained language models in the right direction
to solve an end-task by encoding training and test examples with
a prompt. In this manner, we can exploit the prior knowledge
exhibited in the model and manipulate its behavior to produce
the desired output.

The first step is to apply a prompting function f to each exam-
ple x of the dataset. Specifically, f adds some information to x and
an unfilled slot [Y] that the model has to predict. The result is a
prompt x’ that feeds a pre-trained language model. Here, given
pre-trained parameters Θ, the model maximizes P(y | x′, Θ), i.e.,
the probability that an answer y should fill the slot [Y].

Although its ease to use, this paradigm introduces a new
challenge: finding the most appropriate prompt to solve the
end-task. In particular, there are two different types of prompts:
discrete prompts (a.k.a hard prompts) and continuous prompts (a.k.a
soft prompts). The first type is to define a textual string so that the
prompt consists of real words of the same type as those on which
pre-trained language models were trained. This approach does
not add new parameters and is known as discrete prompt learning.
For example, we can recognize the sentiment of the sentence “I
like this product.” by adding a prompt such as “It is very [Y]” and
asking the pre-trained language model to predict a word to fill the
blank. Finally, the model’s prediction is mapped into a sentiment,
e.g., positive or negative. However, since the goal is to find a
prompt that enables pre-trained language models to perform a
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task, it is not necessary to limit the prompt to natural language
interpretable by humans. In this regard, we can consider the
definition of a soft prompt, which consists of a prompt composed
of virtual tokens (e.g., represented by numeric ids) embedded
in a continuous space [91, 94, 99]. This approach, known as
continuous prompt learning, allows us not to use only natural
language words in a prompt and not to parameterize it with pre-
trained parameters. In fact, the prompt has additional learnable
parameters that can be tuned on the training examples. Finally,
there is also the opportunity to combine previous approaches by
inserting tunable embeddings into a hard prompt. This approach
is known as hard-soft prompt hybrid tuning [75, 98, 99].

As can be seen, we can design prompts for justification gen-
eration in the TAP domain. In this section, we describe our
prompting approaches that leverage both discrete and contin-
uous prompt learning. In particular, we discuss a span-infilling
prompt, a question-answering prompt, and a prompt designed by
combining hard and soft prompts. The latter approach applies
a non-substantial amendment to the input, replacing the pre-
trained language model embeddings of some rule information
with embeddings inferred using a customized version of the
Skip-Gram neural network model.

7.2.3.1 Discrete Prompt Learning

Traditionally, given a pre-trained language model, its embed-
ding layer e is employed to embed the input token sequence x
= {x1, ..., xn} into embeddings {e(x1), ..., e(xn)}. In a downstream
task, x is conditioned by a specific context c, which influences
the model’s behavior in producing the target sentence j. Instead,
in discrete prompt learning, we use a prompting function that
arranges c, j, and a prompt p into a template T. For example,
in our case, the additional natural language tokens represent
the prompt, the rule information and associated harm consti-
tute the context, and the justification is the target sentence.
Therefore, assuming that pi refers to the ith prompt token in
a template T, we consider T = {p1, ..., pm, x, j} and map it into
{e(p1), ..., e(pm), e(x), e(j)}.
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Figure 7.3: Workflow for generating justifications using hard prompts

In this section, we approach justification generation with prompt-
based finetuning using hard prompts. The goal is to encode the
rule information and the associated harm and apply manually-
designed prompts described in discrete space (i.e., natural lan-
guage sentences) to directly model pre-trained language models
text probability. Specifically, we propose two different prompts
where the input is placed entirely before the slot to be filled,
named prefix prompts [98].

The most natural way to create prompts is to analyze the task
under consideration and formulate an intuitive template. There-
fore, we propose a prefix prompt with a format relatable to what
a human would expect in a justification for an identified harm.
In particular, it is a simple span consisting of a natural language
tokens sequence placed after the encoded rule information:
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[r]. This rule might cause a [h] harm because [j]

On the other hand, it has been proven that using the question-
answering format can be very useful in transferring linguistic
or other knowledge learned from one task to a related task [69].
In this regard, we propose a question-answering prompt on the
assumption that: it is possible to redefine a non-question-answering
task into an equivalent question-answering form [104]. Again, we deal
with a prefix prompt since it is necessary to continue a string
prefix, but the encoded rule information are placed in the middle
of the prompt. Here, the prompting function receives as input
the encoded rule r and harm h, and outputs

Why might rule [r] cause a [h] harm? [j]

Figure 7.3 shows an example of the workflow for generating a
justification using the span-infilling/question-answering prompt.
In detail, given the rule information r and the associated harm
h, we first apply the prompting function to transform the input
example x in x’. Then, x’ is fed into a pre-trained language model,
which has to determine an appropriate justification to replace [j].

In both cases, prompts are fixed, and training and test examples
share the same prompt. The hypothesis is that the additional
natural language tokens could be beneficial because they force
the model to compute similarities between the input text and the
words in the human-written templates, suggesting the subset of
the vocabulary that provides better information in generating
justifications.

7.2.3.2 Continuous Prompt Learning

In the previous section, we introduced a way to generate justi-
fications for harmful rules using hard prompts. However, upon
studying the characteristics of the rules more carefully, we found
that this approach has weaknesses. Specifically, using discrete
tokens to represent service names could result in the loss of
semantic information. In fact, services are fundamental compo-
nents in the TAP domain, as they allow us to determine a rule’s
context of execution. For example, if a rule uses Philips Hue as
a service for trigger or action, it is clear that the rule acts on a
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physical device. Conversely, if it uses Facebook, we can easily
deduce that software operations will be performed.

Pre-trained models map words in contextualized representa-
tions by leveraging the attention mechanism [146]. The latter
assigns a different amount of weight or “attention” to the el-
ements in a sequence, producing representations that encode
some contextual information. Clearly, this solution is much more
efficient than a static word embeddings approach because it can
generate different representations for words with which differ-
ent meanings can be associated. For example, the word “mouse”
may refer to a small rodent or a pointing device if the words
“bluetooth” or “wireless” are close to it. Here, a static approach
assigns the same vector to both situations even though the word
mouse has a different meaning. However, in the TAP domain
could be challenging to identify the functionality of a service
by analyzing its context, as there may be words that obscure it.
For example, whether the word “post”, recalling a social media
post, falls within the context of the Philips Hue service, it may be
considered in the definition of the service’s embedding, adversely
affecting the inference of the rule’s context of execution. In fact,
we require that Philips Hue is represented by using words such
as “light” and “bulb” since it enables effective management of
smart bulbs. Therefore, if we consider services as discrete tokens,
we may have hoped for efficient mapping, but this is in no way
guaranteed since language models are not trained to encode their
similarity.

The key idea is to have embeddings for services such that if
two services expose the same functionality (e.g., camera or light
services), they must have similar embeddings. In this way, in the
inference phase, we can guide the model in deducing the rule’s
context of execution as the services with which a rule is defined
might be similar to others, enabling a more effective selection
of tokens to use in constructing the justification related to the
identified harm. In this regard, we can use soft prompts in which
services are mapped as continuous word embeddings rather
than discrete tokens. Thus, unlike the previous solution, we
introduce additional prompt parameters, i.e., a set of embeddings
for services made available by a TAP, which are inserted into the
embedded input and optimized during the model training.
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Training soft prompts requires addressing two challenges [99]:
1) they cannot be initialized randomly and optimized by stochas-
tic gradient descent because sub-optimal results might be ob-
tained [2], and 2) their values should be dependent on each
other. In our context, we handle the dependence among services
according to the functionalities they expose and derive their
embeddings by leveraging the architecture of the Skip-Gram
model.

Skip-Gram is part of the Word2vec [110] family consisting of
neural network model architectures that can learn word embed-
dings of a vocabulary, ensuring that similar words have similar
representations. The key idea is a word can be represented ac-
cording to its context, i.e., the words preceding and following
it in documents. Thus, words with similar contexts should have
close meanings.

From a general perspective, the model is trained to solve a
subtask by using word embeddings as input. During training,
the model tries to improve the subtask accuracy by perform-
ing several iterations and backpropagation steps. Meanwhile,
the embeddings are modeled and become ever more accurate.
Finally, model predictions are discarded, and only optimized
embeddings are considered.

The subtask of the Skip-Gram model is to predict the context
words of a given target word. To this end, we need to model the
Skip-Gram architecture as a deep learning classification model
capable of predicting the context words. As is well known, classi-
fication model training needs a suitable dataset. In particular, we
need to build (target, context words) pairs since we have multiple
words within the context of a word. They can be easily collected
by analyzing the available documents. In fact, given a context
window, i.e., the number of words we want to consider that
precede and follow the target word, the pairs can be automati-
cally built by looking at each unique word as a target word and
examining its context. In addition, we can simplify the task by
breaking down each (target, context words) pair into several (target,
context word) pairs in order to have only one word at a time in a
context. However, as is well known, we need a labeled dataset
to train a classification model. Specifically, we need to train the
model to discriminate if a word is contextual concerning a target
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word or not. In this regard, we feed the Skip-Gram model with
pairs (x, y) where x is a (target, context word) pair and y is the label.
The latter assumes the value 1 if the context word occurs near
the target word in the text, indicating a contextually relevant pair
named positive input sample. On the other hand, contextually ir-
relevant pairs named negative input samples (to which is assigned
the label 0) are built by considering (target, random) pairs where
target is the word of interest and random is just a randomly
selected word from the vocabulary.

Source Text Training Samples

Yesterday I posted a photo of my new Philips Hue bulb kit on Facebook

Yesterday I posted a photo of my new Philips Hue bulb kit on Facebook

(Philips Hue, photo)

(Philips Hue, of)

(Philips Hue, my)

(Philips Hue, new)

(Philips Hue, bulb)

(Philips Hue, kit)

(Philips Hue, on)

(Philips Hue, Facebook)

(Facebook, Philips Hue)

(Facebook, bulb)

(Facebook, kit)

(Facebook, on)

Figure 7.4: Example of erroneous positive input samples (highlighted
in red) generated through Skip-Gram

In our context, the vocabulary contains the service names,
and the goal is to get their embeddings. As already anticipated,
we want to model the similarities of services according to their
functionalities. Therefore, we cannot build a labeled dataset per-
forming previously described steps. In fact, if a service occurs in
the context of (and thus it is near in the text to) a target service,
they may not necessarily expose a similar functionality, yielding
incorrect samples. Fig. 7.4 shows cases of mistaken generation.
In particular, using a context window size of 4 and the source
text “Yesterday I posted a photo of my new Philips Hue bulb kit on
Facebook”, we get the words “photo”, “of”, “my”, “new”, “bulb”,
“kit”, “on” and “Facebook” as the context of Philips Hue. For
example, the pairs (Philips Hue, Facebook) and (Philips Hue, photo)
are labeled with the value 1, even though Facebook is a social
network and Philips Hue is a solution for organizing, controlling,
and customizing lights. Likewise, using Facebook as the target
service, we get the words “Philips Hue”, “bulb”, “kit”, and “on”
in its context, generating the pair (Facebook, bulb) as a positive
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input sample even though Facebook is not in the business of
managing bulbs.

Again, the key idea is a service can be represented according
to its context, but we need to slightly change the definition of
“context”. In particular, we consider a service contextual with
respect to a target service if it exposes a similar functionality.
Thus, services with similar contexts should have close embed-
dings. Precisely in order to avoid erroneous training samples, we
consider only pairs characterized by services. Indeed, as shown,
it is challenging to automatically infer correct and relevant words
from documents (e.g., post for Facebook and bulb for Philips
Hue). Likewise, we cannot manually define such words because
the number of services might be very high, which would be
time-consuming. Also, it is conceivable that different platforms
expose different services, requiring a custom set of words for
each platform. To alleviate these problems, we propose a novel
automated solution to define increasingly reliable positive and
negative input samples according to a threshold.
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Figure 7.5: Workflow for computing the embedding of services

As shown in Figure 7.5, the architecture involves four compo-
nents: a virtual store, an embedding module, a similarity function
paired with a threshold, and the Skip-Gram mechanism. The con-
cept of the methodology is that services with similar functionality
should have similar descriptions on the virtual stores that enable
their download (e.g., Google Play Store and App Store). Specif-
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ically, given the service set exhibited by a TAP, we fix a virtual
store and crawl the service descriptions d1, d2, ..., dn. The latter
are embedded with an embedding module, yielding vector rep-
resentations W(d1), W(d2), ..., W(dn) that summarize the semantic
information of services’ functioning. Finally, given a threshold
ϕ ∈ [-1,1], we compare each embedding pair (W(di), W(dj)) with
a similarity function and assign the label 1 to the service pair (si,
sj) if the similarity between their embedding descriptions exceeds
ϕ, 0 otherwise. In this way, the greater the fixed threshold, the
more reliable the generated pairs are. However, as one might
expect, a high threshold does not always lead to good results
because services with similar functionality may have slightly
different descriptions, resulting in false negative input samples.
In addition, there is no need to set a context window size because
the value of ϕ already affects the services’ context size. In fact, the
smaller it is, the greater the number of pairs labeled with 1, and
so the number of services that fall within the context of a target
service, and vice versa. Therefore, it is necessary to fine-tune ϕ

depending on the case and available information.
In the last step, we need to build the deep learning architecture

for the Skip-Gram model. Once again, the subtask consists of
predicting the context words (services) of a target word (service)
while modeling the vector representation of the latter. In partic-
ular, we want to learn an N-dimensional word embedding for
|V| services, where V is the vocabulary. It is worth noting that
N cannot be fixed arbitrarily but is dictated by the constraints of
the pre-trained language models. On the other hand, V contains
services of a specific TAP. The model’s input is pair of input
words consisting of one input target service and one context
service. These pairs go by an embedding layer (initialized with
random weights) having size (|V| × N) that produces a dense
word embedding (1 × N) for both services. Then, a merge layer
computes the dot product of the two embeddings and sends
the result to a dense layer. The latter predicts either a 1 or 0,
depending on whether or not the service pair is contextually
relevant. We want to maximize the likelihood of the positive
input samples, such as (Facebook, Twitter), and minimize the
likelihood of the negative input samples, like (Facebook, Philips
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Hue). To this end, we leverage the sigmoid function intending to
maximize

P(y = 1 | t, c, Θ) = σ(vT
c vt) =

1
1 + e(−vT

c vt)

where Θ is the model parameter, t is a target service, c is a context
service, and (t, c) ∈ P is a positive input sample. Meanwhile, we
need to maximize

P(y = 0 | t, c, Θ) = 1 − P(y = 1 | t, c, Θ) =
1

1 + e(vT
c vt)

when a negative input sample (t, c) ∈ N is considered. For-
mally,

Θ = arg max
Θ

∏
(t,c)∈P

P(y = 1 | t, c, Θ) · ∏
(t,c)∈N

P(y = 0 | t, c, Θ)

Finally, we compare the prediction y’ with the actual label
y, compute the loss by leveraging the mean squared error, and
backpropagate the errors to adjust the weights in the embedding
layer. This process is repeated cyclically on all (target service,
context service) pairs for multiple epochs, yielding a set of ser-
vice embeddings S ∈ R|V|xN . In this way, the model can learn the
contextually relevant service pairs and generate similar embed-
dings for services with similar functionalities. Moreover, in the
inference phase, we only need the output embeddings and can
discard the model.

Although it is advisable to map services with additional em-
beddings inferred through Skip-Gram, we cannot use them as the
only inputs in the prompt due to the fact that rules with the same
services as trigger and action might have different behaviors. For
example, let us consider the following two rules: “New tweet

by you, turn off lights” and “New tweet by anyone in the

area, turn on lights”. Both rules can be defined using Twitter
as a trigger service and Philips Hue as an action service. However,
as is easy to guess, they have different behaviors, exposing a user
to different harms. In fact, the former might be triggered unin-
tentionally by the user causing the lights to go off. Instead, the
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second might be compromised by an attacker to damage lights.
Therefore, we still need to use rule information and the related
harm in the prompt to better understand the behavior of a rule.
In this regard, we insert the Skip-Gram representations within
the hard prompts presented in the previous section, yielding
hard-soft prompts that allow us to grasp both the rule’s con-
text of execution and the rule behavior and generate a technical
justification consistent with the harm involved.

Input x:

Identified harm

Routine exposure

Trigger

You leave home

Action

Turn lights off

Span-infilling
prompt addition

Question-answering
prompt addition

r h

Prompting function 
fspan-infilling(x): 

Prompting function 
fquestion-answering(x): 

"[r]. This rule might cause a
[h] harm because [j]" 

"Why might rule [r] cause
a [h] harm? [j]" 

Prompt x':

Routine exposure

This rule might cause a

harm because [j]

Pre-trained
Language Model

Prompt x':

Why might rule

cause a

harm? [j]

You leave home

Action

Turn lights off

Trigger

Routine exposure

Pre-trained
Language Model

Output j':

Turning off the lights in a predictable
way signals that the house is empty,

making it easier for an attacker to plan
malicious actions

t a

Embedding
Look-up

Trigger

You leave home

Action

Turn lights off

Figure 7.6: Workflow for generating justifications using hard-soft
prompts
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Conceptually, assuming that pi refers to the ith prompt to-
ken, t is the rule trigger service, a is the rule action service,
x represents the remaining rule information and the identi-
fied harm, and j relates to the target justification, the template
can be represented as T = {p1, ..., pm, t, a, x, j}. As shown in Fig-
ure 7.6, we regard t and a as pseudo tokens and map T into
{e(p1), ..., e(pm), s(t), s(a), e(x), e(j)}, where s(t) and s(a) denote the
Skip-Gram representations retrieved from S.

7.2.3.3 Training Strategies

As opposed to the traditional approach, where we only consider
the parameters of a pre-trained model, in prompt learning-based
tasks, we have to consider also prompts as additional parameters.
Hence, the choice of what parameters to update is an essential
part of the design process, as it may affect the performance of
a model. In this section, we summarize the main strategies for
tuning pre-trained language models, highlighting those that fit
best for our proposals.

In particular, existing training strategies differ in the parame-
ters to be considered for the update [98]. For example, Promptless
Fine-Tuning refers to the strategy that performs pre-training and
fine-tuning without the involvement of prompts, so we do not
consider it. Instead, Tuning-free Prompting enables the generation
of texts by leveraging frozen pre-trained language models based
on a prompt. It does not require parameter updates and is usually
applied in zero-shot settings. Thus, we omit it as our propos-
als include the training on a justification dataset. Fixed-prompt
LM Tuning tunes the parameters of pre-trained language mod-
els and usually applies a discrete template to training and test
examples. Accordingly, it can be used with our discrete prompt
learning-based solution. In fact, as presented in Section 7.2.3.1,
both in the span infilling and question-answering prompts, we
consider the input text, i.e., rule information, identified harm,
and prompt tokens, as discrete tokens to be employed for feed-
ing the pre-trained language models. Finally, Fixed-LM Prompt
Tuning and Prompt+LM Fine-tuning strategies include prompt
parameters updating, and thus they can be used with our con-
tinuous prompt learning-based solution. Specifically, the former
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updates only the prompt parameters while freezing those of the
pre-trained language models, whereas the second updates both
the prompt parameters and all or some of the parameters of
the pre-trained language models. In the proposed solution, we
initially encode prompts, i.e., rule services, through a revised
version of Skip-Gram. Successively, the soft prompts are further
optimized during the training of the pre-trained language model.

7.3 experimental evaluation

In this section, we illustrate the experiments performed to evalu-
ate the performance of the proposed solutions, including the user
studies conducted to collect and examine a justification dataset
in the TAP domain. In particular, we consider both human-based
and automatic metrics. The former allows for analyzing the qual-
ity of the dataset, whereas the latter enable us to determine
the readability of model-generated justifications and compare
them against the gold human-written justifications. Finally, we
detail how pre-trained language models are customized for the
generation task.

7.3.1 Evaluation Metrics

Here, we discuss two automatic metrics commonly used in nat-
ural language generation tasks that have proven to have a high
correlation with human ratings, namely the Bilingual Evaluation
Understudy with Representations from Transformers (BLEURT) and
the Automatic NT Translation Metric (METEOR) [38, 58]. For last,
we consider the Coleman-Liau index readability test to further
investigate the understandability of the generated justifications.

7.3.1.1 Automatic Evaluation

This section describes the automatic metrics selected in this study.
In particular, we regard a word-overlap metric, i.e., METEOR [14],
an embedding-based metric, i.e., BLEURT [134], and a grammar-
based metric, i.e., the Coleman-Liau index [40]. The first two met-
rics compare a generated text (candidate) with a “gold standard”
(reference), i.e., a natural language text annotated by humans as
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a correct solution for a given task. In general, the higher the score
is, the more similar to the reference the output is. On the other
hand, the Coleman-Liau index does not consider references but
focuses on a fundamental property of texts, readability.

• METEOR: It relies on the harmonic mean of unigram preci-
sion and recall. More specifically, it tries to find the largest
subset of words that can form an alignment between the
reference and a candidate. To this end, it computes word-
to-word matches and considers Porter stemming and syn-
onyms from the WordNet dictionary when there is no exact
match. Finally, the result is given to a function that penal-
izes candidates containing correct words but in the wrong
order.

• BLEURT: It is a learned evaluation metric based on Bidi-
rectional Encoder Representations from Transformers (BERT)
[51] capable of capturing non-trivial semantic similarities
between sentences. In particular, it is trained on the WMT
Metrics Shared Task dataset1 and uses the contextual word
representations of BERT. Furthermore, in order to avoid the
domain drift problem, it also takes into account additional
training data generated by applying random perturbations
to Wikipedia sentences.

We use METEOR and BLEURT as they try to identify whether
two sentences convey the same meaning even though they are
phrased differently. In fact, in the TAP domain, the harm associ-
ated with a rule might be expressed in different ways, resulting
in a low score when a generated justification is correct but syn-
tactically different with respect to the reference. For example, a
well-known metric such as BLUE, which relies solely on lexical
match analysis, unfairly rewards candidates who resemble the
references but do not capture their meaning and penalizes other
paraphrases. Instead, METEOR considers important additional
features such as stemming and synonym matching. Moreover,
BLUE only considers precision, while researchers have shown
that using both precision and recall leads to a higher correlation
with human judgments [14]. Likewise, an evaluation of sentence

1 http://www.statmt.org/wmt20/metrics-task.html

http://www.statmt.org/wmt20/metrics-task.html
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meanings using embeddings, such as that performed by BLEURT,
could capture some relevant characteristics of justifications be-
cause words are dynamically represented by considering the
words around them.

Another important aspect we analyze is the complexity of the
generated texts. In fact, as the major beneficiaries of TAPs are
users with little technical knowledge, either in the areas of secu-
rity and privacy [152] or in the context of IoT technology [171],
justifications should describe scenarios in which harm may occur
but not provide too many low-level technical details that might
confuse a user. For this reason, we evaluate the readability of
justifications, i.e., the difficulty with which a reader understands
a text.

• Coleman-Liau Index: It is a readability assessment test de-
signed to approximate the U.S. grade level needed to un-
derstand a text (from straightforward texts with an index
below 1 to academically challenging texts with an index
above 16). In particular, the test is standardized for English
texts and uses sentences and letters as variables. As an
example, a score of 8 corresponds to the 8th grade in the
U.S. educational system.

7.3.2 Dataset Collection

We evaluated the proposed methodologies using rules created
through the IFTTT platform, which has been extensively studied
in the literature due to its popularity [39, 138, 145]. In the follow-
ing, we describe the process of creating the justification dataset
for our case study.

7.3.2.1 IFTTT Dataset

The dataset on which we performed our study was initially col-
lected in 2017 by Mi et al. through a scraping process [109]. The
dataset comprised over 320,000 rules (also known as applets)
gathered over a six-month period, with each applet consisting
of (i) a title (Title), (ii) a description of its behavior (Desc), (iii)
the trigger component divided into its trigger (TriggerTitle) and
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relative channel (TriggerChannelTitle), and (iv) the action com-
ponent divided into its action (ActionTitle) and relative channel
(ActionChannelTitle). To train and evaluate our language models,
we considered a subset of 525 applets randomly selected that
were classified as harmful by our harm identification algorithm
proposed in [23]. In particular, the algorithm can classify an ap-
plet according to three classes of harm, namely Personal harm,
identifying the applets that may result in the loss or compromise
of sensitive data, which is solely due to the user’s behavior, Phys-
ical harm, which refers to all the applets that may cause physical
harm or damage to goods, and the harm is external, i.e., inflicted
by third parties, and Cybersecurity harm, encompassing applets
that may disrupt online services or distribute malware, and the
harm is external as well. The subset of applets comprised 183

applets for the Personal harm class, 153 applets for the Physical
harm class, and 189 applets for the Cybersecurity harm class.

7.3.2.2 Gathering justifications

The 525 applets underwent annotation by 13 independent anno-
tators, who provided a justification as a real-life threat scenario
for each of the harmful rules assigned to them. The procedure
followed to collect these justifications has been organized as
follows:

• A group of 10 annotators, comprised of both master’s and
bachelor’s degree computer science students, provided jus-
tifications for 400 applets randomly selected. We assessed
the grammatical correctness of the justifications, manually
correcting any misspellings or missing punctuation.

• We annotated the remaining 125 applets.

7.3.3 Implementation details

In the following, we provide the implementation details of the
proposed Continuous prompt learning-based strategy and the
two baseline models, namely the discrete prompt learning-based
strategy, and the Keyword to Sentences model. All of them rely
on pre-trained language models based on Transformer [146]. The
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dataset of applets was split into three sets: a training set with 435

applets, a validation set with 30 applets, and a test set with 60

applets.

7.3.3.1 Keyword to Sentences strategy

The objective is to generate justifications through the use of a
pre-trained language model that is fed with keywords obtained
from applet information and the associated harms. To this end,
we adopted the method outlined in [72], which introduced a key-
word extraction technique leveraging DistilRoBERTa embeddings
[131]. The first step involves creating a set of keyword candidates
by selecting all n-grams from texts. For the purpose of this study,
we considered n values between 1 and 2 in order to capture short
and concise keywords, and we extracted keyword candidates
from three sources: the applet behavior description, the applet’s
title, and a text in the format “IF TriggerTitle THEN ActionTi-
tle”, which is a reference to the traditional rule format on the
IFTTT platform. After generating a list of n-grams, we selected
the keyword candidates that accurately reflect the semantics of
the text by comparing their embeddings using cosine similarity.
The candidates were sorted based on their similarity scores and
the top-m candidates were selected. Once the list of n-grams that
fall within the specified range is produced for each text, we filter
the keywords that accurately capture the semantics of the text.
Here, the intuition is that the embeddings of the best keywords
live close to the embedding of the main text into the same latent
embedding space. Therefore, keyword extraction is reduced to
applying a similarity function between the main text embedding
and candidate keywords embeddings. Concerning this matter,
we use the embeddings of the DistilRoBERTa model to represent
texts and compare them by applying the cosine similarity. The
final set of keywords is obtained by combining the keywords
extracted from D, TI, and SD, as well as the identified harm and
the channel names, and removing duplicates, as shown in the
following: Finally, we can sort candidates based on the similarity
scores and select the top n candidates closest to a text. We com-
bine the keywords extracted from D, TI, and SD, consider the
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identified harm and the channel names as additional keywords,
and then remove duplicates, yielding the final set of keywords

{kD1 , kD2 , ..., kDM , kTI1 , kTI2 , ..., kTIP , kSD1 , kSD2 , ..., kSDQ , H, TC, AC}

The final set of keywords is obtained by concatenating the key-
words extracted from D, TI, and SD, as well as the identified
harm and the channel names, and removing duplicates.

Ideally, the greater the number of keywords employed for
training the better the model understands the task and gener-
ates well-structured and coherent justifications. This is because
adding more keywords helps narrow the scope of knowledge and
possibilities where these keywords occur in the training data dis-
tribution. However, if most of the keywords represent noise, the
model may consider irrelevant contexts and generate incorrect
justifications. For this reason, we conducted several experiments
using m = {4, 5, 6, 7, 8} as the number of keywords extracted from
each text.

Transformer models have proven to be effective in tasks such
as machine translation and summarization by incorporating both
encoder and decoder components [124, 146, 166]. We, therefore,
chose the Text-To-Text Transfer Transformer (T5) model [123] as the
backbone for our keyword-based justification generation task.
T5 trains by masking words in sentences with a special token
and learns to predict them. This technique, known as corrupting
span denoising objective, enables the model to produce a sequence
as an output. We used the base version of T5, with 11 billion
parameters trained on diverse internet text and fine-tuned for
various NLP tasks such as text summarization and text-to-text
generation.

To assist the model in determining the specific task it should
perform, we added a task-specific text prefix to the original input
that is fed to the model. In this case, we used the text “justifi-
cation generation:” as the prefix. This allows the model to focus
its attention on our target task, restricting its generation scope.
Training data were obtained by combining keywords through
the “|” symbol. Additionally, in accordance with the pre-trained
T5 format, we included the </s> token and added it to both the
input and output text. The training process utilized the Fixed-
prompt LM Tuning strategy, treating the keywords as discrete
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tokens and using a discrete template for applets. We adopted
the cross-entropy as a loss function, the Adafactor algorithm as an
optimizer, a learning rate of 1e − 2, 30 epochs, and a batch size of
10. During generation, the keywords were concatenated using
the “|” symbol, and the model produced the output justification
through greedy decoding.

7.3.3.2 Continuous prompt learning-based strategy

As described in Section 7.2.3.2, the prompt strategy relies on
pre-trained language models to extend a prefix prompt and
generate a justification. To accomplish this, we adopted the GPT-
2 model [122], which only incorporates the decoder component
of the Transformer architecture and represents a given token
through the masked self-attention mechanism. During training, the
model’s aim is to predict one word at each step, based on all
previous words, and append it to the input sequence, producing
a modified sequence that feeds the model in the next step. Thus,
the left-to-right nature of GPT-2, combined with its ability to
finish a sequence by iteratively predicting the next most likely
word, makes it a suitable choice for the proposed span-infilling
and question-answering hard prompts.

We used the small version of GPT-2, consisting of 12 trans-
former blocks, 117 million parameters, and an embedding size of
768.

We applied hard-soft prompts by augmenting applets with
the span-infilling or question-answering prompt, considering the
features Title, Desc, TriggerTitle, ActionTitle, and Harm as discrete
tokens and treating the TriggerChannelTitle and ActionChannelTitle
features (i.e., the channel used for the trigger and the action,
respectively) as continuous tokens. The latter were computed
by applying the Channel2Vec embedding strategy. We extracted
the list of IFTTT channels to be mapped into embeddings from
the dataset we proposed in [23]. It contains a variety of cate-
gories, ranging from online services and content providers to
smart home devices, for a total of 435 channels. Channel de-
scriptions were crawled on the Google Play Store app using the
selenium Python module. Sentence embeddings of descriptions
were calculated by SentenceBERT [126], whereas we used the
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cosine similarity to compare the embeddings. To study the effect
of having more or fewer channels in the channel context of a
target channel, we conducted several experiments using ϕ = {0.7,
0.75, 0.8, 0.85, 0.9} as a threshold for constructing the labeled
pairs (target channel, context channel). The size of embeddings
in GPT-2 is 768, so we built 768-dimensional representations.
We leveraged the TensorFlow Python library to build the deep
learning architecture for the Skip-Gram model and trained it
on the labeled pairs for 50 epochs using a batch size of 80. Once
the Skip-Gram model was trained, we extracted channel embed-
dings from the embedding layer and trained GPT-2 using the
Prompt+LM Fine-tuning strategy. Therefore, we initially encoded
rules’ channels through Channel2Vec and then fine-tuned soft
prompts together with all GPT-2 parameters during training. We
adopted the negative log-likelihood as a loss function, the AdamW
algorithm as an optimizer, a batch size of 128, a learning rate of
1e-3, and stopped the process when the loss did not decrease for
25 times. It is important to mention that we placed the channel
embeddings as the initial parameters in the input to influence
the representation processing of all tokens associated with the
features of an applet. Moreover, we did not freeze the GPT-2
parameters because it has been shown that the gap between
prompt-tuning and fine-tuning disappears only when the model
size climbs to 10 billion parameters [91]. Thus, we did not apply
the Fixed-LM Prompt Tuning strategy.

Finally, we used the greedy decoding method and incorpo-
rated two special tokens, <bos> (begin-of-sequence token) and
<eos> (end-of-sequence token), into the vocabulary. At each step,
we selected the word with the highest probability as the predic-
tion, and appended it to the sequence to create the new input
sequence for the following step. This process continued until the
<eos> token was produced or the loss did not decrease for 25

consecutive times.

7.3.3.3 Discrete prompt learning-based strategy

To generate justifications, this model considers the information of
training and testing applets as discrete tokens and exploits a hard
prompt. Thus, we employed the GPT-2 model and conducted
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training via the Fixed-prompt LM Tuning strategy. Specifically, for
both span-infilling and question-answering prompts, we consid-
ered the input text, i.e., applet information, identified harm, and
prompt tokens, as discrete tokens to be employed for feeding the
pre-trained language model. We adopted the negative log-likelihood
as a loss function, the AdamW algorithm as an optimizer, a batch
size of 35, a learning rate of 1e − 3, greedy decoding, and stopped
the process when the loss failed to decrease for 25 consecutive
times.

7.3.4 Results and analysis

In this section, we will thoroughly assess the effectiveness of
the justification generation methods outlined previously. This
includes an examination of whether certain harms are more
challenging to justify than others. Furthermore, we will perform
a qualitative analysis of the justifications generated for three
potentially harmful rules, in order to evaluate the impact of our
continuous prompt learning-based strategy.

7.3.4.1 Quantitative Analysis on Justifications

Tables 7.1-7.3 report the values of BLEURT, METEOR, and Coleman-
Liau index obtained by the different strategies on the test set. As
previously stated, the first two metrics assess the Explainability of
the generated justifications, measuring how well they align with
the gold standards. Thus, high values are better. Conversely, the
Coleman-Liau index evaluates the Readability of the generated
justifications, determining their level of difficulty to read. In this
case, low values are desirable as they indicate that the generated
justifications are easily understandable by a wider audience. We
apply the Coleman-Liau index to each generated justification and
calculate several statistics (i.e., median, mean, maximum, and
minimum) to assess the overall performance of the models, as
well as to identify cases where the Readability of the justifications
is particularly high or low.

From Tables 7.1 and 7.2, we can observe that the T5 model
performs worse, in terms of Explainability, than the GPT-2 model
trained with discrete prompt learning, when provided a list of
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Table 7.1: Discrete Prompt Learning by T5 - Fixed-prompt LM Tuning

Explainability Readability

n BLEURT METEOR Median Mean Max Min

4 23 55 10.4 11.01 14.75 7.03

5 24 56 12.69 12.15 16.71 7.2

6 27 57 12.47 12.19 17.23 8.88

7 25 56 11.81 11.94 16.94 6.21

8 24 55 11.41 11.57 15.55 6.51

Table 7.2: Discrete Prompt Learning by GPT-2 - Fixed-prompt LM Tun-
ing

Explainability Readability

Prompt BLEURT METEOR Median Mean Max Min

Span-infilling 33 60 10.51 10.92 15.44 5.53

Question-answering 34 61 10.35 10.83 15.33 7.72

keywords as input. This discrepancy can be attributed to the
parser employed to extract the keywords. Specifically, compared
to the other strategies, errors may occur that are not due to the
model’s poor capabilities in generating high-quality justifications
but rather to the presence of irrelevant input keyword sets. Addi-
tionally, it is worth noting that the number of keywords extracted
has a significant impact on the model’s performance. In particu-
lar, when a low number of keywords is used, the model cannot
fully understand the behavior of a rule, resulting in the inability
to generate a correct justification. On the other hand, when the
number of keywords considered is excessive, noise is introduced,
which negatively affects the generation process. Concerning this
matter, we achieve the best results when considering n = 6 (27%
and 57% for BLEURT and METEOR, respectively), which allows
for the appropriate balance between relevant keywords to be
considered and those that represent noise to be discarded. How-
ever, the best results in terms of Readability are obtained with
n = 4. Through manual analysis of the generated justifications,
we notice that these values are dictated by the fact that the model
generates meaningless justifications composed of a few repeat-
ing words. We can affirm that the Coleman-Liau index values
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Table 7.3: Continuous Prompt Learning by GPT-2 - Prompt+LM Fine-
tuning

Explainability Readability

Prompt ϕ BLEURT METEOR Median Mean Max Min

Span-infilling

0.7 36 61 10.51 11.23 16.31 8.71

0.75 39 63 10.51 10.91 15.79 7.61

0.8 42 68 10.35 10.71 15.04 6.51

0.85 39 63 10.86 11.03 15.85 7.43

0.9 36 62 10.71 11.77 16.44 8.26

Question-answering

0.7 38 64 10.51 11.32 16.31 8.65

0.75 41 67 10.51 11.09 15.04 8.72

0.8 39 64 10.51 10.87 15.33 7.55

0.85 40 67 10.51 11.26 16.71 6.68

0.9 36 63 10.51 11.40 16.94 8.89

become relevant only when the values of BLEURT and METEOR
are relatively high. Thus, we do not consider Readability results
in this case.

The GPT-2 model trained on training samples that are pro-
vided with a hard prompt achieves better results, for both span-
infilling and question-answering prompts, in comparison to those
obtained with the T5 model. In particular, there is a marked
improvement in the quality of the generated justifications, high-
lighted by higher values of BLEURT and METEOR. This is be-
cause adding a prompt to the training samples enables the model
to be steered in the right direction, as the prompt provides addi-
tional semantic knowledge that the model can exploit to more
effectively understand the relationship between the behavior of
a rule and the associated harm. In addition, the justifications
exhibit a satisfactory level of Readability, as evidenced by the
values of the median (10.51 and 10.35, corresponding to the 11th
and 10th grades in the U.S. educational system, respectively)
and the mean (10.92 and 10.83, corresponding to the 11th grade
in the U.S. educational system). This means that, on average,
the justifications are understandable by a user with a secondary
school education grade. In both cases, two justifications are gener-
ated that correctly justify the corresponding harmful rule but are
characterized by many words and cyclic periods (highlighted by
Max values). At the same time, when analyzing the Min values,
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it is worth noting that the model is also capable of generating
justifications that are extremely easy to read.

As the utilization of GPT-2 with hard prompts has yielded
satisfactory results, we also employ it with our strategy based on
continuous prompt learning, in which service names are mapped
via the Skip-Gram model. In fact, as evidenced by manual anal-
ysis, mapping service names to discrete tokens often leads to
the generation of justifications where the rule context of execu-
tion is totally distorted. For this reason, we combine hard and
soft prompts and employ GPT-2 for the generation task. Table
7.3 shows the results obtained from training GPT-2 with the
Prompt+LM Fine-Tuning training strategy. It is noticeable that
the GPT-2 model consistently achieves superior results when
compared to the utilization of discrete tokens for mapping ser-
vice names. In particular, the best results are achieved when
using the span-infilling prompt and a threshold ϕ of 0.8. In gen-
eral, we can observe that ϕ deeply affects the performance of
the model, as it establishes the service context size of a service
when its embedding is modeled by Skip-Gram. In fact, when a
low threshold is used, many services providing unrelated func-
tionalities may be included within the service context of a target
service, negatively affecting the definition of embeddings and,
consequently, the identification of the rule context of execution.
By increasing the threshold, we can discard more and more ser-
vices and focus attention solely on those that are truly relevant.
However, when using thresholds that are too high, the number
of identifiable related services turns out to be very low, making
the task of service functionalities similarity mapping to the Skip-
Gram model challenging. Looking at Table 7.3, we can see that
the worst results are obtained when 0.7 and 0.9 are used as thresh-
olds, which reflects the aforementioned intuition. Furthermore,
it is worth noting that the choice of threshold not only affects
Explainability but also Readability. Indeed, when we employ a
very low (0.7) or very high (0.9) threshold, satisfactory values
can still be obtained for the BLEURT and METEOR metrics, but
the generated justifications are more complex. This is due to the
fact that when a low (high, resp.) threshold is used and thus a
high (low, resp.) number of services is included in the service
contexts, the model cannot promptly identify the rule’s context
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of execution and needs to generate more words to obtain a cor-
rect justification. Instead, using more reasonable thresholds (e.g.,
0.75, 0.8, and 0.85) allows for a balance between correctly and
improperly included services in the service contexts, enabling
more efficient service mapping and quicker identification of the
rule context of execution, resulting in more terse justifications.

7.3.4.2 Performances on Applets with Unknown Channels

To further demonstrate the superiority of our continuous prompt
learning-based strategy, we present and compare justifications
generated by the GPT-2 model using both discrete and contin-
uous prompt learning for three new harmful rules, each repre-
senting a different class of harm. In particular, we analyze the
scenario where a rule is defined through services not present
within the training set employed to train the model. Table 7.4
shows the characteristics, associated harm, and justifications gen-
erated by the corresponding models for each rule. Discrete - QA
and Discrete - SI represents the GPT-2 model trained on sam-
ples augmented by the question-answering and span-infilling
prompts, respectively. Conversely, Continuous - QA/0.75 and
Continuous - SI/0.8 depict the GPT-2 model trained using one of
the hard prompts and the Skip-Gram-based process with a spe-
cific threshold. We consider these configurations for the model
as they provided the best results in terms of Explainability and
Readability on the test set. Red sentences denote events that do
not reflect the behavior of the corresponding rule, while green
sentences indicate consistent descriptions. Blue words for the
TriggerChannelTitle and ActionChannelTitle features highlight
services not present within the training set.

We can observe that the models based on our continuous strat-
egy accurately identify discriminating characteristics of rules and
provide reasoning behind the associated harm. Even when faced
with new services, models are able to exploit similarities with
other services exhibiting same functionalities, effectively captur-
ing the rule context of execution and thus generating a correct
justification. Furthermore, it is worth noting that such models
have the capability to generate both more general justifications,
such as mentioning “user’s device”, as well as more specific
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ones. For example, the Continuous - SI/0.8 model can deduce
that the second harmful rule, associated with the Physical class,
could lead to unexpected changes in temperature if an attacker
sends malicious emails. Similarly, this model can also infer that
the third harmful rule, associated with the Cybersecurity class,
could cause spam emails to be sent to the “user’s mailbox” rather
than simply stating “user’s device” as the Continuous - QA/0.75

model does. This also highlights the slight superiority in terms
of Explainability achieved by the Continuous - SI/0.8 model
compared to the Continuous - QA/0.75 model.

Regarding models that map service names to discrete tokens
(i.e., Discrete - QA and Discrete - SI), we can observe that they
consistently fail to generate a completely correct justification,
committing errors in either the event that triggers the rule or the
final action that leads to the harm, or both. This echoes their poor
abilities to disambiguate the rule context of execution. In reality,
these models can only accurately capture a rule’s behavior in a
few cases. For example, the Discrete - QA model correctly detects
that harm could be inflicted if the user posts on the social network
in the first harmful rule. However, it incorrectly states that the
potential harm refers to an attacker learning the user’s location.
Similarly, in the second harmful rule, both the Discrete - QA and
Discrete - SI models recognize that an attacker could inflict harm
by sending malicious emails to the user. However, they fail to
infer the right harm to be reported to the user. Such findings
highlight a significant issue with these models: they are unable
to comprehend the context of execution when handling a service
that they have not seen during the training phase. In fact, they
can only generate a correct event when it is related to a service
they are familiar with, such as Facebook and Gmail. Conversely,
they provide inconsistent descriptions when encountering new
services such as Yeelight, Nest Thermostat, and Ooma.

7.3.5 Discussion

The ultimate goal of this study led to the definition of models for
generation natural language explanations with the aim of raising
users’ awareness regarding how harmful some rules can be if
defined improperly. Our post-hoc approach for justification gener-
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Table 7.4: Justifications generated for three harmful rules, one for each
class of harm considered. Blue words highlight services not
included in the training set. Green sentences indicate cases
where the execution context of the trigger (action, resp.) is
correctly identified, while red sentences show cases where a
wrong event is generated.

Personal Harm

TriggerChannelTitle: Facebook, ActionChannelTitle: Yeelight,
TriggerTitle: New status message by you with hashtag,
ActionTitle: Turn on lights,
Title: Turn on lights with a message,
Desc: If new status message with #light, turn on lights

Continuous - QA/0.75
The state of the user’s device could also be altered when the user does not want to if he or she posts
on social networks with the specific hashtag.

Discrete - QA An attacker could learn the user’s location posted on the social network to plan malicious actions.

Continuous - SI/0.8
If the user forgets to have defined the rule and publishes a social network post with the chosen hashtag,
the state of the user’s device would unintentionally change.

Discrete - SI
An attacker could like many posts on the social network to allow unwanted notifications to be sent
to the user’s device.

Physical Harm

TriggerChannelTitle: Gmail, ActionChannelTitle: Nest Thermostat,
TriggerTitle: New email in inbox matches search,
ActionTitle: Set temperature,
Title: Change my nest temperature,
Desc: Setup a feed that controls temperature and have an email turn it on!

Continuous - QA/0.75 An attacker could send emails in such a way as to change the state of the user’s device.
Discrete - QA An attacker could send malicious emails so as to automatically send spam SMS or advertisements.
Continuous - SI/0.8 An attacker could send malicious emails so as to change the temperature.
Discrete - SI An attacker could send emails with malicious links to allow them to be set as wallpaper on the user’s device.

Cybersecurity Harm

TriggerChannelTitle: Ooma, ActionChannelTitle: Gmail,
TriggerTitle: Any phone call missed,
ActionTitle: Send an email,
Title: Email me when I miss a call,
Desc: Send yourself an email if you miss a call

Continuous - QA/0.75 An attacker could make multiple calls to allow spam emails to be sent to the user’s device.
Discrete - QA An attacker could send multiple SMS to the user causing the lights to flash extremely, damaging them.
Continuous - SI/0.8 An attacker could make repeated calls to allow spam emails to be sent to the user’s mailbox.
Discrete - SI An attacker could send an email to allow the publications of tasks on work organization platforms.

ation is independent of the algorithm used for harm classification
and exploits a combination of hard and soft prompts derived
from the components that characterize an automation rule. We
found that the justifications generated using the proposed mod-
els are highly readable and are deemed to accurately describe the
security risks. Furthermore, the CLI values demonstrated that the
justifications produced by this model can be easily understood
by users with a secondary school education. Although the eval-
uation using automatic metrics yielded more than satisfactory
results, these are still merely indicative assessments. In fact, the
metrics considered express results in terms of correlation with
a human judgment, reasoning that although the possible range
of values for BLEURT and METEOR varies between 0 and 1, at
the sentence level a value of 0.403 is on average recognized in
the literature as more than valid [14]. This recalibrates the results
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obtained from our experimental evaluations by enhancing the
importance and validity of the scores. However, a final indication
could be provided by studies carried out on users to assess not
only the readability but also the plausibility of the motivations
generated, with reference to both the rules and the highlighted
risk.

In conclusion, net of the results obtained so far, the strate-
gies adopted for generating natural language justifications have
proven to be largely capable of highlighting real-life risk scenar-
ios related to the activation of risky ECA rules. This could be an
important added value for end users, who would be supported
not only in identifying risks but also in explaining risk scenar-
ios that emphasize their severity. This provides an important
contribution to the RQ0.
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C O N C L U S I O N A N D F U T U R E W O R K

This section presents the conclusion and the future direction of
this thesis.

thesis summary In this thesis, we formalized the following
research question as the guiding thread for our contributions:

RQ0. “Can we support end-users in dealing with security and
privacy concerns within smart environments?”

In seeking for providing an answer, we presented solutions
that are focused on end-users, with the goal of safeguarding
both privacy and overall security in the increasingly popular
Trigger-Action Platforms. In particular, a review of the state of
the art highlighted the need for solutions that support end-users
in achieving a more secure smart ecosystem that reflects their
needs, Thus, in this thesis, we discussed the tasks and challenges
associated with TAPs, as well as the security and privacy risks
that can arise from TAPs and the rules that can be created through
them.

Among these challenges, we first examined the primary re-
search papers in the literature that analyze IFTTT, the most
popular and used TAP. These studies delved into the platform’s
proposed creation paradigm and the types of rules created by
end-users, highlighting several security and privacy risks caused
by a lack of end-user oversight during rule design. As the most
recent study on IFTTT was conducted in 2017, we conducted an
empirical analysis to evaluate the platform’s evolution over the
past five years. To do so, we retrieved over 70,000 applets from the
website through a custom web-scraping process and conducted a
preliminary analysis that revealed a significant increase in both
the number of rules and the platform’s user base.

Among the findings that emerged during our empirical analy-
sis was an important percentage of rules whose title and descrip-
tion, i.e., those fields to which the author is given full freedom

169
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by the IFTTT platform, did not match the actual behavior of the
rule. To address this issue, we proposed a model using Google
BERT to accurately determine the semantic consistency between
the rule description and its actual behavior, taking into account
the static parameters (trigger and action) that users must enter
when creating the rule.

Next, we presented a solution that allows end users to set
rules based on security events. To accomplish this, we integrated
a custom-made IoT device called Intrusion Defender (ID) into a
trigger-action platform. The ID is able to detect unusual network
activity that may indicate a cybersecurity attack. The events
captured by the ID are presented to the end user in a simplified
way, making it easy for them to create a rule that responds
to a specific event, such as a Denial-of-Service attack. A user
study involving 20 participants showed that using embedded
metaphors makes it possible for inexperienced users to set rules
for their smart environment just as effectively as someone with
more experience in cybersecurity.

Creating trigger-action rules through various TAPs can some-
times lead to the definition of behaviors that put both the security
of the smart environment and the privacy of end users at risk. To
address this issue, we proposed a model for identifying different
types of harm associated with trigger-action rules. The model,
which is based on BERT and trained on a dataset of over 80,000

rules defined through the IFTTT platform, is able to classify
different types of risks by semantically analyzing the various
components of a rule. The model can identify three different
risk classes: personal harm, physical harm, and cybersecurity
harm, with an average accuracy of 92%. Comparison with other
solutions proposed in literature, such as information flow analy-
sis and recurrent neural network architecture, revealed that our
BERT-based model, which takes into account semantic properties,
is better able to distinguish between different types of risks.

Finally, we have linked a model for identifying risks in trigger-
action rules with an explainability component. This component
generates a scenario, called “justifications”, that shows how the
rule’s activation could lead to harm. We use prompt-based fine-
tuning to generate these justifications, testing both hard and
soft prompts. Soft prompts, which use virtual tokens embedded
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in a continuous space, produced more consistent results. This
approach allows the model to understand the context in which
the rule is used, as similar rules can be grouped together, leading
to more accurate justifications for identified risks. We assessed the
effectiveness of the suggested solutions by utilizing a widely used
automatic metric in natural language generation tasks, known as
BLEURT. This metric has been shown to have a strong correlation
with human evaluations. Our evaluations revealed a relatively
high BLEURT score, with an average score of 0.412 for the QA
Prompt and 0.416 for the Span Prompt for the test set under
consideration.

In conclusion, we can affirm that the three major contributions
introduced in this thesis work could result relevant to the research
question, providing valuable support to end-users in protecting
their smart environment from security and privacy threats which
could both derive from external malicious individuals or could
be introduced by the end-users themselves without realizing.

limitations As detailed several times throughout this pa-
per, while the work conducted has provided important insights
into solutions for supporting and protecting end users from se-
curity and privacy issues in IoT scenarios, the work lavished
still has some limitations. Primarily, part of the user studies
that could and should have been carried out was undermined
by the outbreak of the COVID-19 pandemic, which prevented
the involvement of end-users in controlled environments that
could simulate the smart environments we went to work on by
defining the approaches presented in this thesis. In addition, the
approaches for identifying the risks associated with rule-making,
and for generating real-life threat scenarios are based on specific
models whose rationale is mainly related to the use of English.
This represents a major limitation on the inclusivity front, in light
of the fact that the user group that is the ultimate target of our
solutions, i.e., people of all age groups and with widely varying
knowledge, may be unlikely to be able to understand the English
language.

future work In the future, further evaluation of the impact
the proposed solutions have in supporting the end users will
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play a critical role. In particular, we would like to assess the
capabilities of the discussed approaches in protecting the security
of the smart environment and user privacy. Additionally, an
area that has yet to receive adequate attention is access control
mechanisms from the end user’s perspective. Currently, there are
no solutions that address this issue. Therefore, significant effort
will need to be invested in developing automated or streamlined
approaches for end users to set access rules for IoT devices and
services in the smart environment.
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