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Abstract 

The aim of this thesis is to introduce the reader to nanotechnologies and 

functionally graded nanomaterials by providing definitions, classifications and 

potential applications.  

In particular, the thesis summarizes the different theories developed in recent 

decades to describe the mechanical response of such materials. Functionally graded 

materials represent an increasingly important class of advanced materials in various 

engineering applications, such as nano-microelectronic device design, precision 

sensors, and nanomechanical components. 

Initially, a brief introduction to nanotechnology and nanomaterials is provided, 

highlighting the extraordinary properties emerging at the nanoscale level. In addition, 

a comprehensive overview of functionally graded materials and micromechanical 

models used to characterize their thermo-mechanical behavior is presented. This initial 

overview defines the context and provides the foundation needed to fully understand 

the challenges and innovations addressed in the thesis. 

Subsequently, the document delves into the most commonly used nonlocal theories 

in scientific literature and their applications in nanoscale material mechanics. It 

explores the fundamental concepts of non-locality, illustrating how they can be applied 

to functionally graded nanobeams to capture long-range phenomena and nonlocal 

interactions that influence structural behavior.  

Firstly, the thesis extends the three-parameter nonlocal models of elasticity 

(L/NStrainG and L/NStressG) proposed in the literature, incorporating hygrothermal 

effects (L/NStrainGH and L/NStressGH) and evaluates their influence on static and 

dynamic responses. Moreover, the nonlocal surface stress-driven model of elasticity 

(SSDM) is extended to study the static response of functionally graded nanobeams, 

also in presence of discontinuous loads. This aspect provides an in-depth 

understanding of the behavior of such materials in real-world situations, with 

significant implications for nanodevice and nanoscale systems engineering. In 

addition, a rotational hinge-based approach is introduced to assess the effects of cracks, 

contributing to a comprehensive understanding of the factors influencing structural 
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stability. The focus on these innovative aspects and original results significantly 

enriches the field of nanoscale material mechanics and opens promising prospects for 

future development and optimization of nanomechanical devices. 

In the analysis process, the Mathematica software was used to solve the governing 

equations of the problem. In particular, Galerkin’s method has been employed to obtain 

approximate numerical solutions, and a Higher Order Hamiltonian Approach has been 

proposed to study higher order nonlinear flexural frequencies. 

In conclusion, the thesis represents a contribution to the in-depth understanding of 

functionally graded nanobeams through the use of nonlocal theories. Moreover, the 

focus on surface energy effects, as well as on hygrothermal environment and cracks, 

provides a comprehensive and detailed view of the structural and mechanical behavior 

of these nanostructures. The results obtained and methodologies established have the 

potential to exert substantial influence on improving the design and engineering of 

nanodevices and nanoscale systems. 

 

Keywords: Nanomaterial, Functionally Graded Material, Nanobeam, Local/Nonlocal 

Elasticity Theories, Hygrothermal Environments, Surface Effects, Crack.
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Figure 5.1. Increase in fraction of surface atoms as size of particle decreases. 

Figure 5.2. Coordinate system and configuration of the FG nanobeam: bulk continuum 
(mixture of ceramic and metal) and surface layer. 

Figure 5.3. Geometry and loads of an FG nanobeam with loading discontinuities at the 
abscissa d. 

 
Figure 5.4. Combined effects of the nonlocal parameter, 𝜆𝜆𝑐𝑐, the surface energy and the 
material gradient index, k, on non-dimensional deflection, 𝑤𝑤� , of a Simply-Supported (S-S) FG 
nanobeam subjected to a transverse discontinuous distributed load for both SSDM and SDM 
models of elasticity for n=1 (a) and n=2 (b). 

 
Figure 5.5. Combined effects of the nonlocal parameter, 𝜆𝜆𝑐𝑐, the surface energy and the 
material gradient index, k, on non-dimensional deflection, 𝑤𝑤� , of a Simply-Supported (S-S) FG 
nanobeam subjected to a concentrated load for both SSDM and SDM models of elasticity for 
n=1 (a) and n=2 (b). 

 
Figure 5.6. Combined effects of the nonlocal parameter, 𝜆𝜆𝑐𝑐, the surface energy and the 
material gradient index, k, on non-dimensional deflection, 𝑤𝑤� , of a Simply-Supported (S-S) FG 
nanobeam subjected to a concentrated couple for both SSDM and SDM models of elasticity 
for n=1 (a) and n=2 (b). 

 
Figure 5.7. Coordinate system and configuration of the FG nanobeam: bulk continuum 
(mixture of ceramic and metal) and surface layer. 

 
Figure 5.8. FG nanobeam with discontinuities (a crack) at the abscissa 𝑥𝑥 = 𝑑𝑑. 

  
Figure 5.9. Model of the cracked FG nanobeam. 
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Figure 5.10. Combined effects of the nonlocal parameter, 𝜆𝜆𝑐𝑐, the surface energy, the material 
gradient index, k, and the crack ratio, a, on the non-dimensional deflection, 𝑤𝑤� , of a Simply-
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for both SSDM and SDM models of elasticity for n=1 (a) and n=2 (b). 

 
Figure 5.11. Combined effects of the nonlocal parameter, 𝜆𝜆𝑐𝑐, the surface energy, the material 
gradient index, k, and the crack ratio, a, on the non-dimensional deflection, 𝑤𝑤� , of a Doubly-
Clamped (C-C) cracked FG nanobeam subjected to a uniformly transverse distributed load for 
both SSDM and SDM models of elasticity for n=1 (a) and n=2 (b). 

 
Figure 5.12. Combined effects of the nonlocal parameter, 𝜆𝜆𝑐𝑐, the surface energy, the material 
gradient index, k, and the crack ratio, a, on the non-dimensional deflection, 𝑤𝑤� , of a Clamped-
Pinned (C-P) cracked FG nanobeam subjected to a uniformly transverse distributed load for 
both SSDM and SDM models of elasticity for n=1 (a) and n=2 (b). 
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Preface 

Due to the considerable interest in the emerging fields of nanotechnology, 

nanoengineering and nanoscience, small-scale modelling and analysis able to capture 

size-dependent effects in ultrasmall materials and structures have garnered great 

attention from academic researchers. 

  A comprehensive understanding of the mechanical behavior of nanostructures, 

including nanobeams, nanoplates, and nanoshells, is essential for the design and 

optimization of small-scale electromechanical devices. Among these small-sized 

structures, nanobeams are basic structural elements widely used in several engineering 

applications like nanoactuators and nanosensors. Furthermore, to improve their 

performance, these devices are often fabricated using functionally graded composite 

or nanocomposite materials, which overcome typical problems associated with 

conventional composite materials, such as material interface discontinuities (cracking, 

delamination, and stress concentration). Furthermore, these materials are suitable for 

use in environments with severe hygrothermal conditions. Consequently, the 

mechanical analysis of functionally graded nanostructures has attracted considerable 

interest within the scientific community. 

As demonstrated by nanoscale experiments and atomistic simulations, small-scale 

phenomena (nonlocal interactions, surface effects, etc.) have a substantial impact, to 

the point that both static and dynamic structural responses are strongly size-dependent. 

Classical continuum mechanics is based on the assumption that the constitutive laws 

obey the local axiom, meaning that the response at one material point of the continuum 

is not affected by the state of the continuum at distant material points. This is true and 

produces accurate results for the structural response when the external characteristic 

length of a continuum (e.g., structural size, wavelength, etc.) is much greater than an 

internal characteristic length (granular distance, interatomic length, dimensions of 

heterogeneity, etc.). However, if the external and internal characteristic lengths are 

comparable, local theories fail to predict effective mechanical behavior, considering 

the nonlocality necessary to account for long-range interatomic interactions. 

Therefore, the locality assumption must be removed and nonlocal elasticity models 

must be considered. 
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Furthermore, unlike macroscale structures where the surface region can be 

neglected in the study of mechanical behavior and bulk properties can be used as 

general properties, nanoscale structures are characterized by a significant surface area 

relative to the volume of the material. As a result, the energy of atoms near the surface 

is significant, leading to the formation of surface residual stresses and surface 

elasticities different from the bulk material. To account for these surface energy-related 

effects, further theories are needed to capture both nonlocal interactions and surface 

effects characteristic of nanoscale structures. 

As is known, the presence of cracks in structures and nanostructures significantly 

affects their mechanical properties and stiffness. Many researchers are studying the 

static and dynamic responses of nanobeams in the presence of cracks. These studies 

can be developed through rigorous approaches, such as 2-D and 3-D numerical 

analyses based on the finite element method or using simplified methodologies that 

require less computational effort. 

The present thesis aims to provide an in-depth treatment of the modelling and analysis 

of functionally graded nanobeams using nonlocal elasticity theories. The document is 

organized in five Chapters and the main results are summarized in the Conclusions.  

Chapter 1 introduces the concepts of nanotechnologies and nanomaterials, 

providing classification and description of their properties, as well as the most 

commonly used manufacturing methods. The main small-scale effects characteristic 

of nanomaterials and their fields of application are then described. 

Chapter 2 provides a broad overview of functionally graded materials (FGM), 

starting from their origins, manufacturing methods and fields of application with 

practical examples. The micromechanical models used to study their mechanical 

behavior are described in detail, including the presence of heat sources. The chapter 

concludes with a series of numerical applications. 

Chapter 3 gives an overview of the most commonly used nonlocal theories in the 

scientific literature. In particular, fundamental concepts of nonlocal mechanics are 

explained, describing the inapplicability and mathematical inconsistency of the 

Eringen model (EDM) and the Lim model (NStrainG) for the structural response of 
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nanobeams. This requires the use of well-posed nonlocal models with a single 

parameter (SDM) or three parameters (L/NStressG and L/NStrainG). 

Since functionally graded nanobeams are suitable for use in high-temperature and 

high-humidity environments, Chapter 4 extends the aforementioned well-posed 

nonlocal models (L/NStressG and L/NStrainG) to study the static and dynamic 

structural response of porous functionally graded nanobeams in hygrothermal 

environments, considering two different types of temperature increase. This chapter 

introduces local/nonlocal gradient models that take into account hygrothermal 

boundary conditions. To solve the differential equations that govern the problem, the 

Mathematica software is first used and the Galerkin method was implemented in it, 

which allows obtaining approximate numerical solutions; subsequently, to obtain the 

nonlinear frequencies, the higher order Hamiltonian approach proposed by He was 

implemented which allows obtaining the frequency expression in closed form. Finally, 

a parametric analysis was conducted and the results were reported in tables and figures. 

The objective of Chapter 5 of this thesis is to consider not only nonlocal effects 

but also surface energy effects. First of all, the model recently proposed by Penna, 

based on the coupling of the nonlocal SDM theory with the surface elasticity theory 

introduced by Gurtin and Murdoch, is presented. An extension was first conceived for 

the study of functionally graded nanobeams in the presence of discontinuous loads and 

then for the study of cracked FG nanobeams. The chapter provides a description of the 

method used to model the crack, a discussion of the applicability and limitations of 

this approach; finally, results obtained in terms of comparison between the SDM model 

without surface effects and the proposed SSDM approach with surface effects are 

presented. 
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Chapter 1 

Nanotechnology and Nanomaterials  

 

Nanotechnology is a scientific and technological discipline dealing with the 

manipulation and engineering of matter at the atomic and molecular level. This 

extraordinary field of study offers the possibility to create, modify and control 

nanomaterials and nanostructures, enabling the invention of new paradigms and 

devices. The importance of this field is evident in the acceleration of scientific 

discoveries and in the optimization of resources, directly influencing economic 

competitiveness and social progress.  

In the scientific and technological landscape of the 21st century, few disciplines 

have generated an impact comparable to that of nanotechnology which is radically 

transforming the entire landscape of applied science and industry, as it shapes our 

world in ways that challenge traditional concepts and open unimaginable doors to 

innovation. At the same time, nanomaterials are also emerging as key players in 

materials science. The combination of nanomaterials and nanotechnology is 

revolutionizing key industries such as industry, energy, electronics, engineering and 

medicine. 

Due to their nanoscale size, nanomaterials offer unique and amazing properties 

that set them apart from traditional materials. In this chapter, after a brief overview of 

nanotechnology, the distinctive features of nanomaterials that differentiate them from 

traditional materials will explored. Particular emphasis will be placed on practical 

applications of nanomaterials, including civil engineering in order to demonstrate how 

their use may offer more efficient and environmentally friendly solutions to global 

challenges. 

 

1.1.  Introduction to Nanotechnology 

Nanotechnology, as a concept and field of study, began to take shape in the mid-

20th century but gained significant attention following a famous lecture entitled 
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<<There's Plenty of Room at the Bottom>> [1] by physicist Richard Feynman at the 

annual meeting of the American Physical Society at Caltech on December 29, 1959. 

He urged the audience to focus on understanding phenomena on a very small scale. 

The term "Nanotechnology" was first used by Taniguchi in 1974 in the article titled 

"On the basic concept of Nano-Technology: Nanotechnology mainly consists of the 

processing of separation, consolidation, and deformation of materials by one atom or 

one molecule" [2]. Since then, nanotechnology has been considered an emerging and 

multidisciplinary technology and has inspired many scientists to create new materials 

and devices by manipulating individual atoms and molecules. 

The study and practical use of nanotechnology required the development of tools 

and techniques capable of manipulating and studying structures at the nanoscale. In 

the 1980s and 1990s, with the advent of scanning tunnelling microscopes (STMs) and 

atomic force microscopes (AFMs), researchers have taken significant steps in 

understanding and manipulating nanoscale materials and structures. This period 

marked the emergence of nanoscience and nanotechnology as recognized scientific 

disciplines.  

The term "Nanotechnology" gained wide recognition at the end of the 20th 

century. The National Nanotechnology Initiative (NNI) in the United States, 

established in 2000, has played a key role in coordinating and funding research in the 

field. Many countries have followed suit by launching their own initiatives in the field 

of nanotechnology. From a scientific point of view, “Nanotechnology can be defined 

as the reference to materials and systems with structures and components that exhibit 

new and significantly improved physical, chemical, and biological properties, as well 

as to the phenomena and processes made possible by the ability to control material 

properties at the nanoscale" (definition by the National Science and Technology 

Center, NNI, USA). Advances in nanotechnology research have led to the development 

of numerous commercial devices using nanomaterials, initially primarily in the field 

of electronics (NEMs and MEMs). Today, nanotechnology is a thriving field with 

applications in various fields, including electronics, medicine, physics, biology, 

engineering, and materials science. This wide use of nanotechnology and the 

considerable interest in scientific research are due to the exceptional and unique 

properties exhibited by nanomaterials. 
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1.2.  Nanomaterials 

1.2.1. Definition, classification and properties 

Nanomaterials are materials that have at least one dimension ranging from 1 to 

100 nanometers (Figure 1.1) [3,4]. At this scale, materials exhibit unique properties 

and behaviours that differ from their macroscopic counterparts due to quantum effects 

and increased surface area. 

 

 
 

Figure 1.0.1. Scale of magnitudes of some common objects and elements. [4] 

 

On October 18, 2011, the European Commission adopted the following definition 

of nanomaterials: "A natural, incidental, or manufactured material containing 

particles, in an unbound state or as an aggregate or as an agglomerate, and where, 

for 50% or more of the particles in the number size distribution, one or more external 

dimensions is in the size range 1 nm – 100 nm. In specific cases and where warranted 

by concerns for the environment, health, safety, or competitiveness, the number size 

distribution threshold of 50% may be replaced by a threshold between 1% and 50%". 

As illustrated in Figure 1.2, nanomaterials can be classified into different groups 

according to different criteria [5], such as dimensionality, morphology, state, and 

chemical composition.  

Based on dimensionality, nanomaterials are classified into zero-dimensional 

structures (0D), when all three dimensions are at the nanoscale level; one-dimensional 

structures (1D), when only one of the three dimensions is greater than 100 nm, two-
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dimensional structures (2D), when only one of the three dimensions is at the nanoscale 

level; three-dimensional structures (3D), if  none of the three dimensions is at the 

nanoscale level [5,6]. 

  
Figure 1.0.2. Schematic illustration of the classification of nanomaterials based on different criteria. [6] 

 
 

These categories can include amorphous or crystalline materials, monocrystalline 

or polycrystalline materials, composed of one or more chemical elements, isolated or 

integrated into a matrix, and so on. Nanoscale materials can exhibit different properties 

compared to their macroscopic counterparts, allowing unique applications: opaque 

materials become transparent (copper); chemically inert materials acquire catalytic 

properties (gold, nickel, iron); stable materials become combustible (aluminium); 

insulating materials become conductive (silicon) [6]. Such changes are related to 

quantum effects such as variations in electronic structure, a high number of surface 

atoms, an increase in unsaturated bonds (dangling bonds), and variations in the 

bandgap. The morphological nature of nanomaterials includes planarity, sphericity, as 

well as proportions. For uniformity, they can be classified as isotropic and non-
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homogeneous or dispersed and agglomerated. Nanomaterials with diverse 

morphologies include nanotubes, nanozigzags, nanohooks, nanostars, nanocubes, 

nanoscrews, and nanoplates [6]. 

 

1.2.2. Methods for synthesis and fabrication of nanomaterials 

The production of nanomaterial employs two fundamental approaches that are 

often used: the chemical approach (also known as bottom-up) and the physical 

approach (also known as top-down). These two approaches are complementary and 

are chosen based on the specific needs of the production process and the desired 

properties of the nanomaterials. The bottom-up approach exploits the ability of some 

atoms and molecules to self-assemble due to their inherent nature and that of the 

substrate. On the other hand, the top-down approach involves creating very small 

structures from bulk materials. This approach entails the removal of material or the 

modification of existing structures to achieve nanoscale dimensions [6].  

Some examples of bottom-up and top-down techniques are given in the following.  

Bottom-up techniques 

 Chemical Synthesis: this is one of the most common methods for production 

of nanomaterials. It involves the reaction of chemical precursors in solution to 

form the desired nanomaterials; 

 Molecular Self-Assembly: molecules are designed to attract or bond with each 

other in a specific way to form desired nanoscale structures. One example is 

the self-assembly of DNA molecules to create nanoscale structures; 

 Atomic Layer Deposition (ALD): this technique allows for the growth of thin 

films of material one atomic layer at a time, carefully controlling the deposition 

of each layer. 

Top-down techniques 

 Lithography: is a production technique that uses masks or electron beams to 

sculpt or engrave nanoscale materials. It is widely used in the production of 

microelectronic devices (MEMs) and nanoelectronics devices (NEMs); 
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 Milling: this method involves removing material from a larger piece through 

milling or grinding to obtain nanoscale structures; 

 Chemical Etching: it is used to channel or engrave materials in a controlled 

way on a nanoscale using selective chemical reactions; 

 Chemical Vapor Deposition (CVD): this technique allows for the growth of 

thin films of nanomaterials on solid substrates by depositing atoms or 

molecules from steam. 

These top-down techniques are essential for creating nanoscale structures and models 

accurately. 

The approach chosen depends on the desired properties of the nanomaterials, the 

intended applications, and the availability of specific tools and technologies. In many 

cases, both approaches can be used in combination to achieve more sophisticated 

results. The choice of approach is fundamental for the design and production of 

nanomaterials with the desired characteristics. 

 

1.2.3. Small scale, quantum and surface effects 

There are at least three reasons why nanoscale materials exhibit different behaviour 

than macroscale materials [7]: 

1. Due to scaling laws, the dominant forces at the nanoscale and macroscale are 

markedly different (electromagnetic forces as opposed to gravitational forces). 

Gravitational force is a function of mass and is weak for nanoscale objects; on 

the other hand, electromagnetic force depends on charge and dominates at the 

nanoscale; 

2. The surface plays a fundamental role (higher surface-to-volume ratio); the 

properties of surface atoms are different from those of bulk atoms; 

3. Quantum mechanics is the appropriate model for describing the properties of 

materials at the nanoscale (quantum confinement). 
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The "small-scale effect" is a general term that refers to a series of phenomena and 

behaviours that emerge when the size of an object or system is greatly reduced, 

typically on the nanometer or sub-micrometric scale.  

Similarly, quantum effects are phenomena that arise when working with 

nanomaterials on the nanometric level, where the material dimensions approach or are 

smaller than the scale of quantum, which is the smallest unit of energy allowed by 

quantum mechanics. 

Surface effects are of great importance in nanomaterials due to the high surface-

to-volume ratios. At the nanoscale level, most atoms are located on the surface of the 

material, leading to significant changes in properties relative to macroscopic materials. 

These effects can manifest in various fields of science and technology, including 

physics, chemistry, biology, and materials science. Such effects can involve a wide 

range of changes in the properties and behaviours of materials compared to their 

macroscopic counterparts. 

The most significant effects in nanomaterials are summarized in the following. 

 Energy Quantization: in nanomaterials, energy is quantized into discrete levels 

due to their limited size. This means that electrons and other charge carriers 

can only occupy discrete energy levels, resulting in distinct energy spectra. 

This influences the electronic and optical properties of the material; 

 Tunnelling Effect: this quantum phenomenon allows particles, such as 

electrons, to pass through an energy barrier even when they do not have enough 

energy to overcome it according to the laws of classical physics. It is essential 

in devices like tunnel diodes and tunnel transistors; 

 Optical Dispersion Effects: in nanomaterials, light can interact differently than 

materials on a macro-scale due to their small size. This can lead to significant 

optical dispersion and can affect the coloring and reflectivity of the material; 

 Quantum Confinement Effect: when electrons are confined within nanoscale 

dimensions, their motion is limited. This can affect the density of states and the 

electrical conduction properties of the material; 
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 Mechanical Effects: reduced dimensions can significantly influence the 

mechanical properties of nanomaterials, leading to greater strength, elasticity, 

or fragility compared to macroscopic materials; 

 Thermal Behaviour: in nanomaterials, thermal conduction may differ 

significantly from macroscopic materials due to the limited diffusion of atoms. 

This can affect the thermal performance of nanomaterials; 

 Chemical Effects: nanomaterial surfaces have a high density of surface atoms, 

which can influence chemical reactions such as heterogeneous catalysis; 

 Quantized Luminescence: some nanomaterials, such as quantum dots, may 

exhibit quantized luminescence, signifying the emission of light with specific 

energies related to the quantized energy levels of electrons in the material; 

 Chemical Stability: surface effects may result in increased chemical stability 

or, conversely, greater sensitivity to specific environmental or reactive 

conditions. This can influence the durability and stability of nanomaterials. 

 

1.3. Fields of applications of nanomaterials 

Nanomaterials have a wide range of applications thanks to their unique 

characteristics and properties, which make them reliable and efficient in many 

industries [8,9], as shown in Figure 1.3. 

 

 
Figure 1.0.3. Applications of nanomaterials in different fields. [9] 

 
Below are some of the main fields of application of nanomaterials. 
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 Electronics: nanomaterials such as graphene and carbon nanotubes are used to 

develop smaller, faster, and more efficient electronic devices. These materials 

are valuable for high-performance transistors, flexible displays and advanced 

sensors; 

 Medicine: nanomaterials find applications in the diagnosis and treatment of 

diseases. Nanoparticles can be used as contrast agents in medical imaging, drug 

delivery vehicles and therapeutic agents for specific medical conditions; 

 Catalysis: nanomaterials act as catalysts in a wide range of chemical reactions. 

Their high surface area and surface reactivity make them effective for 

accelerating chemical reactions, such as fuel production and water purification; 

 Energy: nanomaterials are employed in energy-related applications, including 

next-generation solar cells, high-performance batteries, and energy storage 

devices; 

 Composite Materials: nanomaterials are incorporated into composites to 

improve their mechanical and thermal properties. For example, carbon 

nanotubes and metallic nanoparticles can be added to polymers or composite 

materials to increase strength and thermal conductivity; 

 Nanoelectronics: nanotechnology is crucial for development of nanoscale 

electronic devices such as solid-state memory devices, sensors, and tunnel 

transistors; 

 Textiles and Clothing Materials: fabrics enriched with nanomaterials can have 

antimicrobial, odor-resistant, and stain-resistant properties. In addition, 

nanotechnological fabrics can be water-repellent or self-regenerating; 

 Environment: nanomaterials are used to remove pollutants and contaminants 

from air and water. For example, titanium nanowires can be used to remove 

organic pollutants from water; 

 Aerospace and Lightweight Materials: nanomaterials can be used to develop 

lightweight and durable materials for aerospace applications, improving the 

efficiency of spacecraft and aircraft; 

 Nanophotonic: nanomaterials can be used for light manipulation at the 

nanoscale, allowing optical signal processing and optical devices optimization; 
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 Food: nanomaterials can be used to improve food packaging, extend shelf life 

and detect potential contaminants; 

 Quantum Electronics: nanomaterials are used in quantum devices, such as 

superconducting qubits and quantum dots, for the development of quantum 

computers. 

 

1.3.1. Applications in the field of civil engineering 

Nanotechnology and nanomaterials have various applications in the field of 

engineering, including civil engineering. The use of nanomaterials improves the 

performance of many materials such as glass, steel and concrete [10]. 

Nanomaterials and concrete 

One of the most frequent and beneficial uses of nanotechnology in the field of 

civil engineering concerns its application in concrete production. Concrete is a multi-

phase nanostructured composite material that ages over time. It consists of an 

amorphous phase, nanometric and micrometric size crystals and bound water [11]. 

There are two main approaches in the application of nanotechnology in concrete 

research: nanoscience and nano-engineering. Nanoscience deals with the measurement 

and characterization of the nano and microstructure of cement-based materials to better 

understand how this structure influences macroscopic properties and performance 

through the use of advanced characterization techniques and atomic or molecular-level 

modelling [12]. Nano-engineering involves structure manipulation at the nanometer 

level to develop a new generation of custom multifunctional cements composites with 

superior mechanical performance and durability, potentially equipped with new 

properties such as low electrical resistivity, self-diagnostic ability, self-cleaning, self-

repair, high ductility, and crack control. Concrete can be engineered at the nanometric 

level by incorporating nanoscale elements or entities (e.g., nanoparticles and 

nanotubes) to control material behaviour and add new properties or by grafting 

molecules onto cement particles, cementitious phases, aggregates and additives 

(including nanoscale additives) to provide surface functionalities that can be optimized 

to promote specific interfacial interactions [12].  
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For example, nano-silica improves endurance, resistance to water penetration and 

helps control calcium release. Nano-titanium has proven useful for self-cleaning 

concrete and offers the additional advantage of contributing to environmental cleaning 

[11]. Nano-iron and carbon nanotubes have demonstrated the ability to provide self-

healing and self-diagnosis capabilities of concrete, as well as increase flexural and 

compressive strength. 

Nanomaterials and steel 

As is well known, one of the biggest problems with steel structures is fatigue, 

which can lead to structural collapse under cyclic loads. This can occur at stresses 

significantly lower than those of the material. To address this problem, structural 

practice consists in drastically reducing the rate of work stress of the material, with a 

consequent economic impact. Stress irregularities are responsible for the onset of 

cracks and research has shown that the addition of copper nanoparticles reduces the 

irregularity of steel surface, thus limiting the number of stress start points and, As a 

result, failure by fatigue. Advances in this technology would lead to increased safety, 

less monitoring needs and more efficient use of materials in fatigue structures [12].  

Another steel problem faced by nanotechnology is welding. Welding strength is 

an extremely important concern. The heat-affected area in a weld can become brittle 

and fail unexpectedly. The addition of nanoparticles such as magnesium and calcium 

can help to solve this problem by making the grains in the area affected by the finest 

rolled steel heat, resulting in stronger welds [10]. 

Nanomaterials and glass 

Nanotechnology is also used in glass applications. Nano titanium dioxide is used 

to coat glass, giving it self-cleaning properties. Titanium dioxide decomposes waste 

and organic compounds, and because it also attracts water, glass can attract rainwater 

and use it to clean dirt on its own. 

 Another use of nanotechnology in glass is to make it fire-resistant. This can be 

achieved when a layer of silica nanoparticles is placed between glass panels. This layer 

becomes a fire shield when heated [10]. 
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Nanosensors 

Nano- and micro-electromechanical sensors have found significant applications 

in the construction industry for monitoring and controlling environmental conditions 

and material performance. These sensors can be incorporated into construction 

materials, such as concrete, to provide valuable information throughout the lifecycle 

of a structure. In concrete, for example, MEMs sensors can monitor the hardening 

process by detecting internal temperature and humidity. These data can be integrated 

into maturity methods to predict the initial strength of the concrete. Knowing the initial 

strength of concrete increases productivity by reducing formwork removal time and 

improving the efficiency of prefabricated and prefabricated elements. In addition, 

continuous monitoring of temperature and humidity during the useful life of a facility 

may provide information on how environmental factors, such as freeze/thaw cycles, 

chloride diffusion, alkali-silica reactions, carbonation, and temperature-induced 

dimensional variations [12]. Nano-sized sensors, with dimensions ranging from 1 nm 

to 10,000 nm, can also be incorporated in structures during construction. For example, 

'smart aggregates' are piezoceramic-based low-cost multifunctional devices used to 

monitor the properties of early-stage concrete such as humidity, temperature, relative 

humidity, and strength development. These sensors can also detect corrosion and 

cracks in the concrete. In addition, they have applications in structural health 

monitoring, allowing the monitoring of internal stresses, cracks and physical forces 

within structures throughout their service life. This early indication of structural health 

can help prevent failures before they occur. Overall, nanotechnology and MEMs 

sensors play a crucial role in improving the performance, safety, and sustainability of 

construction projects by providing real-time data and information for better decision-

making and maintenance [12]. 
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Chapter 2 

Functionally Graded Materials: an overview 

Materials play a fundamental role in the continuous development of humanity. 

They have always received great attention from researchers, designers, and innovators 

because they allow humans beings to shape almost everything, generating a huge sense 

of value in the objects and products that surround us [13]. 

The term “new materials” is now used to refer to that class of materials that 

provide better performance and application characteristics and benefits than traditional 

materials. Through research and experimentation over the years, it has been possible 

to develop lighter, more durable, intelligent and sustainable materials. Material 

research has always been recognised as a very important discipline; new materials 

often influence new ways of designing, producing and even living, creating a 

significant impact on society [14]. 

The current landscape of materials has taken on vast dimensions, and new 

materials can be found in various categories ranging from biology to technology. We 

are increasingly hearing about new biomaterials, nanomaterials, 3D printing materials, 

metamaterials, composite materials, smart materials, and many new categories 

emerging from the intersection of different sciences and within multidisciplinary 

concepts [13]. 

In this chapter, the focus will be on a particular class of innovative composite 

materials: Functionally Graded Materials (FGMs). 

 

2.1. Origin and definition of functionally graded materials 

Functionally Graded Materials (FGMs) are innovative materials used in 

engineering for ensure high performance in extreme working environments without 

losing their functionality [15]. They differ from conventional composite materials in 

that they exhibit physical and mechanical properties that vary gradually, thus avoiding 

abrupt transitions of properties resulting in high stress concentrations (Figure 2.1). 

Indeed, the problem of traditional composite materials stems from the interface 
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between their components, which leads to a high concentration of stresses, promoting 

crack initiation and propagation, ultimately leading to composite failure. This process 

is known as "delamination." The interface is eliminated in FGMs through the gradual 

variation of the volume fractions of their components and, consequently, their 

properties in a specific direction. 

  
Figure 2.1. Schematic diagram of (a) FGM and (b) conventional laminate composite material. [18] 

 
The concept of materials with a graded structure was first introduced in 1972 by 

Bever and Duwez [16], as well as Shen and Bever [17] (Figure 2.2). 

 
Figure 2.2. Historical overview of relevant milestones in the research and development of FGMs. [19] 

 
However, due to the lack of advanced technologies during that period for the 

production of such materials, their work had limited impact. The first practical 

application was proposed in 1984 by a group of Japanese scientists during a project on 

the thermal barrier of a spacecraft [18]. The use of this type of material has been used 

to reduce thermal stresses in conventional laminated composite materials for reusable 

rocket engines [20]. 

Researchers at the National Aerospace Laboratory (STA, Sendai) needed to 

develop a material that could withstand a huge temperature gradient. The design 

required that one side of the material be exposed to a temperature of 2000 K 
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(approximately 1700°C) without transferring this temperature to the other part of the 

composite material. As depicted in Figure 2.3, a material was needed to absorb a 

thermal gradient of about 1000 K between the inside and outside of the spacecraft [21]. 

  
 

Figure 2.3. First example for metallic FGM in Japan. [21] 

 
The presence of interfaces in conventional composite materials has led to 

delamination of material due to high stress concentration factors. To overcome this 

problem, researchers transformed the sharp interface into a gradual one, developing a 

new material called FGM [22]. In summary, the concept of FGM consists in replacing 

the abrupt change in composition that occurs at the interface between different 

materials with a gradual composite phase, with the aim of reducing stress 

concentrations within the structure [21]. Functionally graded materials consist of 

multiple materials with different properties, and the final properties of MGF material 

are unique and distinct from each constituent material. To further improve their thermal 

insulation properties, mechanical impact resistance and catalytic efficiency, the 

presence of pores plays a key role. These pores may have symmetrical, asymmetric or 

random distributions [23]. Therefore, the presence of pores can be seen both as a design 

flaw and as an additional step that can improve certain properties. 

Furthermore, FGMs can be classified into continuous and discontinuous materials, 

as illustrated in Figure 2.4. 
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Figure 2.4. Types of FGMs (a) continuous FGM (b) discontinuous FGM. [24] 

 
In the case of continuous FGMs, the material composition changes continuously 

with the position, and there is no visible separation line within the material to 

distinguish each zone. On the other hand, in discontinuous FGMs, the microstructure 

and/or the composition material of the material gradually changes, resulting in a 

multilayer structure with interfaces between discrete layers [24]. Figure 2.5 illustrates 

how the properties of the FGM material can vary from surface to surface in a 

continuous or discontinuous manner.  

 

 
Figure 2.5. Schematic diagrams illustrating: (a) discontinuous and (b) continuous FGMs, respectively. (c), 
(d) and (e) schematic diagrams showing discontinuous FGMs that contain interfaces with gradual change in 
composition, grain orientation and volume fractions of two types of second-phase particles, respectively. (f), 
(g) and (h) schematic diagrams showing continuous FGMs in absence of interfaces and with gradual change 
in grain size, fiber orientation and volume fraction of second-phase particles. [25] 

 
 

From Figure 2.5 it can be observed that the graded structures are present both in 

all the material and only in localized regions. Commonly, FGMs are made from 

isotropic components such as metals and ceramics [26-30]. Ceramics and metals have 

very different properties. Ceramics are characterized by high compressive strength, 
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high stiffness, and excellent thermal stability, while metals have high tensile strength, 

good conductivity, and excellent ductility. Therefore, the combination of these two 

materials allows the creation of a high-strength FGM material even in high-

temperature environments and good stiffness that reduces the possibility of 

catastrophic material fractures. 

Having said that, we can summarize the advantages offered by functionally graded 

materials as follows: 

 The presence of graded interfaces helps to overcome the problem of 

concentration of thermomechanical stress, preventing delamination and 

increasing the durability of structures. 

 The addition of a porous phase contributes to increased impact resistance, 

provides thermal insulation, improves catalytic efficiency, and reduces 

electrical and thermal stresses. 

 FGMs can be used as an interface layer between two incompatible 

materials, improving their junction. 

 Coating a material with FGMs reduces internal stresses. 

 The combination of ceramics and metals results in a high-performance 

material in terms of stiffness, ductility, strength, and excellent thermal and 

corrosion protection. 

In summary, thanks to their ability to gradually adjust material properties and their 

versatility in design, functionally graded materials (FGMs) are innovative materials 

that offer a range of advantages in various applications and across multiple industries. 

2.2. Methods of manufacturing FGMs 

One of the most crucial aspects of promoting a new material is undoubtedly the 

production process. Over the years, research has devoted significant efforts to 

exploring and developing new manufacturing techniques for FGM materials, as 

evidenced by Figure 2.6. 
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Figure 2.6.  The annual number of publications using the search titles “functionally graded materials”. 
(Based on the Web of Science search system in the duration of 1990–12/2019). [19] 

 
 

Figure 2.7 illustrates the contribution of production methods in the fabrication of 

FGMs based on the Web of Science research system for the period between 1990 and 

December 2019. 

  
 

 
Depending on the specific use of FGM materials, both as surface coatings and as 

bulk materials, various manufacturing techniques have been developed. 

For surface coatings with FGMs, they involve the deposition of thin FGM layers 

using various vapor-phase deposition techniques [31]. In addition, surface coatings 

may also be prepared using techniques such as plasma spraying [32], electrodeposition 

[33], electrophoresis [34], ion beam-assisted deposition (IBAD) [35], and self-

propagating high-temperature synthesis (SHS) [36]. 
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Regarding bulk FGMs, they can be fabricated using methods such as powder 

metallurgy (PM) [37], centrifugal casting [38], slip casting [39], and tape casting [40], 

among others. 

Among the advanced methods available, additive manufacturing [41] is one of the 

promising processes for FGMs. Additive manufacturing, also known as 3D printing, 

is an advanced production method that can be used to create three-dimensional objects 

by layering material using computer-aided design data. Using this technology you can 

accelerate the production process and maximize the use of the material. Figure 2.8 

provides a simplified diagram of the additive manufacturing method. 

 
Figure 2.8. Concept of functionally graded additive manufacturing method. [19] 

 

2.3. Areas of applications of FGMs 

FGM is now the ideal solution for the growing demand for applications that 

require contrasting properties within the same components, where sometimes these 

components require a high surface hardness compared to the high internal ductility. 

Furthermore, considering the significant progress and increased flexibility in the 

production of innovative materials, FGMs find applications in various industries such 

as aerospace, automotive, coatings, electronics, biomaterials, construction and cutting 

tools, as shown in Figure 2.9. 
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Figure 2.9. Areas of practical applications for FGMs. [19] 

Below are some examples of application of FGM materials in some areas. 

 

2.3.1. Aerospace applications 

As discussed earlier, FGMs were initially used in spacecraft to reduce thermal 

stresses between the interior and exterior of the vehicle. Today, many aircraft and 

spacecraft components are made from FGMs, as shown in Figure 2.10. 

 
 

Figure 2.10. FGMs parts in aerospace applications. [19] 
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2.3.2. Automotive applications 

In the automotive industry, FGMs are also used to manufacture parts of the vehicle 

that are subjected to high stresses, such as pistons, diesel engine cylinders, combustion 

chambers, racing car brakes, flywheels, as depicted in Figure 2.11. Additionally, they 

are applied in the production of automotive body coatings. 

 
 

Figure 2.11. FGMs parts in automotive applications. [19] 

 

2.3.3. Defense applications 

One of the most important characteristics of FGMs is their ability to restrict the 

propagation of cracks, making them valuable in defense applications as penetration-

resistant materials used in armored plates, bulletproof vests, and armored vehicle 

bodies. 

2.3.4. Electrical and electronical applications 

In the electrical and electronic industry, FGM materials are used to reduce stress 

at the interface between electrodes and spacers, in diodes, semiconductors, insulators, 

and sensor production. In microelectronics, FGMs based on carbon nanotubes are used 

as thermal shielding elements. 

2.3.5. Civil engineering applications 

Unlike all other sectors, Functional Graded Materials (FGMs) have received little 

attention in the field of civil engineering. This can certainly be attributed to the 

relatively low cost of concrete and, therefore, a widespread culture of over-sizing 

reinforced concrete structures. However, today the need to increase the durability of 
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structures, minimize energy and use sustainable resources has opened the doors to the 

use of so-called Functional Graded Concrete (FGC), which uses the same production 

techniques as FGM materials. Recent advances in robotics have revealed the potential 

to automate the production of FGC elements to facilitate more efficient and controlled 

production of custom components. Applications have shown that it is possible to 

achieve performance improvements in concrete structures [42], reduce mass, improve 

thermal insulation properties by increasing porosity, as well as introduce 

multifunctional properties. For example, in flexural components, such as prefabricated 

slabs, targeted placement of lighter cement mixtures in areas subjected to relatively 

small loads can reduce the mass by about 60%, which is associated with 

correspondingly lower CO2 emissions. In addition, the thermal insulation properties 

can be controlled by changing the porosity along the section height of the component. 

The highly insulating lightweight aggregates used in the core of the element enable the 

design of thin wall sections that meet structural and thermal insulation specifications 

[43].  

Figure 2.12 shows an example of FGC material production in which two types of 

cement were used, one high strength and one light. This approach results in a material 

that, in addition to having high strength, benefits from the presence of porosity, 

improving its insulating properties. 

  
 

Figure 2.12. Production of a functionally graded concrete beam in a layered casting process. [43] 

Furthermore, in Figure 2.13, it is demonstrated that as porosity increases, weight 

and strength tend to decrease, while there is a simultaneous increase in thermal 

resistance. 
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Figure 2.13. Curves of hardened concrete characteristics depending on a gradual increase in porosity. [43] 

 

2.4. Micromechanical models (homogenization) 

As discussed in the previous paragraph, Functional Graded Materials (FGMs) are 

manufactured in such a way that the composition of the constituent materials gradually 

varies in one direction, resulting in a uniform variation of mechanical and physical 

properties such as the normal elastic modulus of the bulk and surface, surface residual 

stress, tangential modulus, density, coefficient of thermal expansion, moisture 

coefficient, thermal conductivity coefficient, and so on. 

Figure 2.14 depicts the microstructure of an idealised FGM, illustrating the 

gradual change in the composition of materials. The challenge of analysing an FGM is 

that the microstructure is often not precisely known. This can be determined through 

imaging techniques such as computed tomography, but the creation of reasonable 

computational models remains difficult due to the vast number of degrees of freedom 

required to characterize the microstructure of FGMs. 

 
 

Figure 2.14. Schematic drawings of functionally graded materials (FGMs): (a) discrete and random 
microstructure, and (b) continuous gradient modelling often used. [44] 
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Since microstructural models for FGMs have a high computational cost, research 

has developed simplified methods based on homogenization. Homogenization is the 

process of evaluating a general or effective property for the entire material. These 

methods were originally developed for non-graded composites where the volume 

fractions of constituents are more or less uniform throughout the material. This 

property is called statistical homogeneity. For graded materials, homogenization is 

performed layer by layer, taking into account the local volume fraction of constituents 

in each layer rather than using overall volume fractions. Therefore, the homogenised 

model is a composite material of composites, with each layer having overall uniform 

but different properties [45]. Figure 2.15 shows a typical homogenised model of an 

FGM. 

 
Figure 2.15. A homogenized model of a functionally graded material. [45] 

Homogenization methods can be divided into three categories: direct methods, 

variational methods, and approximation methods. Direct methods seek a closed 

analytical solution to derive average properties in terms of constituent properties. 

Variational methods provide upper and lower bounds for effective properties in terms 

of volume fractions of phases. Approximation methods provide a general and effective 

property of the material. 

These methods include the so-called mixture rule, including Voigt's model [46] 

and Reuss's model [47]. Hashin-Shtrikman composite sphere assembly models [48,49] 

use the variational principle to determine effective properties. The Mori-Tanaka 

scheme [50] and Hill's self-consistent scheme [51] estimate the effective properties 

using local average stress and strain fields of the composite constituents. Further 

methods developed for the study of these materials include the Wakashima-Tsukamoto 

model [52], Halpin-Tsai [53], and Tamura [54]. In works [55-60], these models were 

used and compared with the estimated properties of FGM composite materials. 
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Below is a brief description of the Mori-Tanaka model and the mixture rule 

(Voigt's model), which fall into the category of approximation methods, as they are the 

two most commonly used models for estimating the properties of FGM. 

 

2.4.1. The Mori–Tanaka scheme 

The Mori-Tanaka model was developed to describe the mechanical behaviour of 

composite materials consisting of a continuous matrix with dispersed inclusions or 

reinforcements. This model is based on several fundamental assumptions: 

1. Isotropy: the model assumes that both the matrix and the inclusions are 

isotropic. 

2. Elastic linearity: it assumes that the material is elastic. 

3. Geometric independence: the inclusions are considered randomly distributed 

and non-interacting. 

In the following equations, the subscript “1” will indicate the phase related to the 

matrix, while the subscript “2” will denote the phase related to the inclusions. 

Based on the Mori-Tanaka model, the effective shear modulus (G) and bulk 

moduli (E) can be expressed in the following form: 

𝐺𝐺 = 𝐺𝐺1 +
𝑉𝑉

1
𝐺𝐺2 − 𝐺𝐺1

+ 6(𝐾𝐾1 + 2𝐺𝐺1)(1 − 𝑉𝑉)
5𝐺𝐺1(3𝐾𝐾1 + 4𝐺𝐺1)

 (2.1) 

𝐾𝐾 = 𝐾𝐾1 +
𝑉𝑉

1
𝐾𝐾2 − 𝐾𝐾1

+ 3(1 − 𝑉𝑉)
3𝐾𝐾1 + 4𝐺𝐺1

 (2.2) 

where V denotes the volumetric fraction of the phase relating to inclusions. 

Using effective shear and bulk modulus, the effective Young's modulus (E) and 

Poisson's ratio (ν) are expressed as follows: 

𝐸𝐸 =
9𝐺𝐺𝐾𝐾
𝐺𝐺 + 3𝐾𝐾

 (2.3) 

𝐾𝐾 =
3𝐾𝐾 − 2𝐺𝐺
2𝐺𝐺 + 3𝐾𝐾

 (2.4) 

 



Chapter 2                                                                     Functionally Graded Materials: an overview  

30 
 

2.4.2. The rule of the mixture (Voigt Model) 

The Voigt model is based on the idea of defining the elastic properties of a 

composite material by averaging the stresses across all phases, assuming uniform 

strain. According to this rule, any property of the generic material, denoted as P, is 

considered to vary uniformly along a direction depending on the volume fractions and 

the properties of the constituent materials. The generic property P can be expressed as 

a linear combination: 

𝑃𝑃 = �𝑃𝑃𝑁𝑁 𝑉𝑉𝑁𝑁

𝑒𝑒

𝑁𝑁=1

 (2.5) 

where 𝑃𝑃𝑁𝑁 and 𝑉𝑉𝑁𝑁 are respectively the material property and the volume fraction of 

the i-th constituent of the FGM, where: 

�𝑉𝑉𝑁𝑁

𝑒𝑒

𝑁𝑁=1

= 1 (2.6) 

2.5. Gradation Laws 

FGM can be studied by assuming that the material properties, such as Young's 

modulus, density, or thermal expansion coefficient, vary in the grading directions 

according to different gradation laws. Therefore, it is possible to choose the laws 

governing the variations in properties of an FGM along any direction based on design 

requirements. Various gradation laws can be found in the literature, such as the power 

law (P-FGM), the sigmoid law (S-FGM), and the exponential law (E-FGM). 

 

2.5.1. Power-law (P-FGM) 

The power law (P-FGM) was introduced by Wakashima et al. [61] and is widely 

used by researchers for the analysis of stresses in FGM structures. 

Referring to a nanobeam of thickness h, as shown in Figure 2.16, the generic 

effective material property P(z) in a specific direction (along z) can be determined 

using the following relationship: 

𝑃𝑃(𝑧𝑧) = 𝑃𝑃𝑚𝑚 + (𝑃𝑃𝑐𝑐 − 𝑃𝑃𝑚𝑚) �
1
2

+
𝑧𝑧
ℎ�

𝑒𝑒

 (2.7) 
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where 𝑃𝑃𝑚𝑚 and 𝑃𝑃𝐻𝐻 denote the generic properties of the metal and ceramic 

constituent of the FG nanobeam, respectively; n represents the material gradient index 

and is a quantity that satisfies the following relationship: 

0 ≤ 𝑛𝑛 ≤ ∞ (2.8) 

 
Figure 2.16. FG nanobeam made of ceramic (c) and metal (m). 

Specifically, when 𝑛𝑛 = 0, it results in a homogeneous nanobeam exhibiting 

ceramic properties. Conversely, when 𝑛𝑛 = ∞, the nanobeam becomes homogeneous 

with exclusively metallic properties. 

 

2.5.2. Sigmoid Law (S-FGM) 

In the case where an FGM with a single power law function is added to the multi-

layered composite, stress concentrations occur at one of the interfaces where the 

material is continuous but changes rapidly [62,63]. Therefore, Chung and Chi [64] 

defined the volume fraction using two power law functions to ensure a uniform stress 

distribution across all interfaces [65]. According to the Sigmoid law (S-FGM), the two 

power laws can be defined as: 

𝑉𝑉𝑐𝑐(𝑧𝑧) = 1 −  
1
2�

ℎ
2 − 𝑧𝑧
ℎ
2

�

𝑒𝑒

          0 ≤ 𝑧𝑧 ≤
ℎ
2

 (2.9) 

𝑉𝑉𝑚𝑚(𝑧𝑧) =  
1
2�

ℎ
2 + 𝑧𝑧
ℎ
2

�

𝑒𝑒

             −
ℎ
2
≤ 𝑧𝑧 ≤ 0 (2.10) 
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Using the mixture rule in Eq. 2.5, the effective properties of an FGM can be 

calculated as follows: 

𝑃𝑃(𝑧𝑧) = 𝑃𝑃𝑚𝑚 + (𝑃𝑃𝑐𝑐 − 𝑃𝑃𝑚𝑚)�1 −  
1
2�

ℎ
2 − 𝑧𝑧
ℎ
2

�

𝑒𝑒

�             0 ≤ 𝑧𝑧 ≤
ℎ
2

 (2.11) 

𝑃𝑃(𝑧𝑧) = 𝑃𝑃𝑚𝑚 + (𝑃𝑃𝑐𝑐 − 𝑃𝑃𝑚𝑚)� 
1
2
�
ℎ
2 + 𝑧𝑧
ℎ
2

�

𝑒𝑒

�                  −
ℎ
2
≤ 𝑧𝑧 ≤ (2.12) 

 

2.5.3. Exponential Law (E-FGM) 

Kim and Paulino in [66] proposed an exponential law (E-FGM) for the effective 

properties of FG material to address issues related to fracture mechanisms. The 

distribution of the generic property along the thickness of a nanobeam, in accordance 

with the power law, is defined as follows: 

𝑃𝑃(𝑧𝑧) = 𝑃𝑃𝑚𝑚𝑒𝑒
1
ℎ�ln

𝑃𝑃𝑚𝑚
𝑃𝑃𝑐𝑐
��𝑧𝑧+ℎ2� (2.13) 

 

2.6. Porous FG nanobeams 

Due to the significant differences in the solidification temperatures between 

ceramic and metallic constituents, FGMs may have some micro-cavities during 

preparation for sintering [67]. In addition, based on the principle of the multi-step 

sequential infiltration technique that can be employed to fabricate FGM samples, 

porosities occur mainly in the central zone due to the different infiltration process. The 

presence of pores can have a significant impact on the properties and performance of 

materials, so it is important to manage and control them in applications where porosity 

is undesirable. In other cases, porosity may be intentionally designed to modify the 

thermal and conductivity properties of FGM materials. Suppose that the FG nanobeam 

in Figure 2.17 is equipped with both even and uneven porosity distributions that spread 

within the cross-sectional area of the FG nanobeam due to defects during the 

production processes.  
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Figure 2.17. Coordinate system and configuration of a porous FG Bernoulli–Euler nanobeam: even (A) and 
uneven (B) porosity distributions across the thickness of the FG nanobeam. 

 

Wattanasakulpong et al. in [68] proposed an amendment of the P-FGM law to 

estimate the generic effective properties of a porous FGM material, both for a scenario 

with even porosity (Eq. 2.14) and uneven porosity (Eq. 2.15): 

𝑃𝑃(𝑧𝑧) = 𝑃𝑃𝑚𝑚 + (𝑃𝑃𝑐𝑐 − 𝑃𝑃𝑚𝑚) �
1
2

+
𝑧𝑧
ℎ�

𝑒𝑒

− (𝑃𝑃𝑐𝑐 + 𝑃𝑃𝑚𝑚)
𝜁𝜁
2

 (2.14) 

𝑃𝑃(𝑧𝑧) = 𝑃𝑃𝑚𝑚 + (𝑃𝑃𝑐𝑐 − 𝑃𝑃𝑚𝑚) �
1
2

+
𝑧𝑧
ℎ�

𝑒𝑒

− (𝑃𝑃𝑐𝑐 + 𝑃𝑃𝑚𝑚)
𝜁𝜁
2
�1 −

2|𝑧𝑧|
ℎ
� (2.15) 

where the term 𝜁𝜁 ≪ 1 denotes the porosity volume fraction.   

 

2.7. Thermo-mechanical properties of FG nanobeam  

Very often, FG materials are used in environments with high temperature and 

absorbed humidity, such as aerospace and marine structures. This has attracted 

particular attention from numerous scientists because the increase in temperature and 

humidity can lead to a reduction in their mechanical properties, potentially resulting in 

catastrophic failure of the structures. Therefore, it is crucial to consider the effects of 

humidity and temperature for accurate prediction of mechanical response. 

Toulokian in [69] proposed that the generic thermoelastic properties, 𝑃𝑃𝑗𝑗(𝑇𝑇), of the 

constituents of FG materials, such as Young's modulus, thermal expansion coefficient, 

humidity coefficient, etc., can be expressed as a nonlinear function of temperature: 

𝑃𝑃𝑗𝑗(𝑇𝑇) = 𝑃𝑃0𝑗𝑗 �𝑋𝑋−1𝑗𝑗𝑇𝑇
−1 + 𝑋𝑋1𝑗𝑗𝑇𝑇 + 𝑋𝑋2𝑗𝑗𝑇𝑇

2 + 𝑋𝑋3𝑗𝑗𝑇𝑇
3� ,      𝑗𝑗 = 𝑚𝑚, 𝑐𝑐 (2.16) 



Chapter 2                                                                     Functionally Graded Materials: an overview  

34 
 

in which 𝑃𝑃0𝑗𝑗  denotes the characteristic values of the thermo-elastic and physical 

properties of material and 𝑋𝑋−1𝑗𝑗, 𝑋𝑋1𝑗𝑗, 𝑋𝑋2𝑗𝑗 and 𝑋𝑋3𝑗𝑗 are the coefficients of the two material 

phases (𝑗𝑗 = 𝑚𝑚, 𝑐𝑐). 

Mass density is weakly temperature dependent and is generally considered to be 

only a function of z for FGM materials. 

The thermoelastic properties and phase coefficients of an FG material composed 

of metal (SuS3O4) and ceramic (Si3N4) are reported in Tables 2.1 and 2.2. 

 
Table 2.1. Characteristic values of thermos-elastic properties of metal (SuS3O4) and ceramic (Si3N4). [70] 

 
Ceramic (Si3N4) - 𝑃𝑃0𝑐𝑐  Metal (SuS3O4) - 𝑃𝑃0𝑚𝑚 

Ec ρc αc βc Kc  Em ρm αm βm Km 

 (GPa) (kg/m3) (K-1) (wt. % H2O)-1 (Wm-1K-1)   (GPa) (kg/m3) (K-1) (wt. % H2O)-1 (Wm-1K-1) 

348.43 2170 5.87273E-06 0 13.723  201.04 8166 12.33 E-06 0.0005 15.379 

 
 
 

Table 2.2. Coefficients of material phases for metal (SuS3O4) and ceramic (Si3N4). [70] 
 

Coefficients 
  Ceramic (Si3N4)  Metal (SuS3O4) 

Unit  Ec ρc αc βc Kc  Em ρm αm βm Km 

X-1 (K)  0 0 0 0 0  0 0 0 0 0 

X1 (K-1)  -3.07 E-04 0 9.095 E-04 0 -1.032 E-03  3.079 E-04 0 8.086 E-
04 0 -1.264 E-03 

X2  (K-2)  2.16 E-07 0 0 0 -5.466 E-07  -6.534 E-07 0 0 0 2.092 E-06 

X3  (K-3)  -8.946 E-11 0 0 0 -7.876 E-11  0 0 0 0 -7.223 E-10 

 

where 𝜌𝜌𝑐𝑐, 𝜌𝜌𝑚𝑚 and 𝐸𝐸𝑐𝑐, 𝐸𝐸𝑚𝑚 are the material densities and the Euler-Young moduli of 

ceramic and metal, respectively; 𝛼𝛼𝑐𝑐, 𝛼𝛼𝑚𝑚 and 𝛽𝛽𝑐𝑐, 𝛽𝛽𝑚𝑚 are the thermal expansion 

coefficients and the moisture expansion coefficients of the two aforementioned 

materials, respectively; 𝐾𝐾𝑐𝑐 and 𝐾𝐾𝑚𝑚 denote the bottom and top thermal conduction 

coefficients, respectively. 

As is well known, the presence of a heat source causes a change in the thermoelastic 

and physical properties of a material. Table 2.3 shows the values of the thermo-elastic 
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and physical characteristics of the metal (SuS3O4) and ceramic (Si3N4) examined for 

four temperature values (𝑇𝑇 = 305, 405, 505, 605 [𝐾𝐾]). 

 

Table 2.3. Thermo-elastic properties of metal (SuS3O4) and ceramic (Si3N4) at different temperatures. 

Material Properties Unit P(305 K) P(405 K) P(505 K) P(605 K) 

Ceramic (Si3N4) 

Ec (GPa) 321.92 315.38 309.59 304.36 
ρc (kg/m3) 2170 2170 2170 2170 

αc (K-1) 7.502 E-06 8.036 E-06 8.570 E-06 9.104 E-06 

βc (wt. % H2O)-1 0.00 0.00 0.00 0.00 

Kc (Wm-1K-1) 8.6751 6.6852 4.5190 2.1700 

Metal (SuS3O4) 

Em (GPa) 207.70 204.56 198.80 190.41 
ρm (kg/m3) 8166 8166 8166 8166 

αm (K-1) 1.537 E-05 1.637 E-05 1.736 E-05 1.836 E-05 

βm (wt. % H2O)-1 0.0005 0.0005 0.0005 0.0005 

Km (Wm-1K-1) 12.1278 12.0454 12.3366 12.9346 
 

As can be seen from Table 2.3, as the temperature increases the Young's modulus 

and the thermal conduction coefficient always decrease while with increasing 

temperature the thermal expansion coefficient increases. In addition, since the density 

mass and the moisture coefficient are independent of temperature and they do not 

change as the temperature increases. 

It can be concluded that for a correct study of the structural response it is necessary 

to take into account the influence of temperature. 

 

2.8. Determination of neutral axis position and its effects on FG nanobeam 

Consider a functionally graded (FG) nanobeam of length L in a Cartesian 

coordinate system {𝑂𝑂, 𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′} with origin in the geometric center O of its rectangular 

cross-section Σ (𝑏𝑏 × ℎ), being 𝑥𝑥′ (0 ≤ 𝑥𝑥′ ≤ 𝐿𝐿) the nanobeam axis and 𝑦𝑦’ and  𝑧𝑧’  the 

principal axes of geometric inertia of Σ (Figure 18). 
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Figure 2.18. Coordinate system and configuration of FG Bernoulli-Euler nanobeam in a hygrothermal 
environment for two different types of porosity distributions: A. even porosity distribution, B. uneven 
porosity distribution.  

 

In functionally graded materials, the position of the neutral axis varies with the 

material distribution throughout the thickness. Due to the variation in Young's 

modulus, the neutral surface does not coincide with the midplane [71], which means 

that the elastic center C does not coincide with the geometric center O. 

In order to remove any bending-stretching coupling due to the variation of the FG 

material, it is convenient to evaluate the effective thermoelastic properties of the 

material with respect to the elastic center C. The position of the elastic center C, 

depending on the current temperature T and is shifted relative to the geometric center 

O by an amount: 

𝑧𝑧𝑐𝑐′ =
∫ 𝐸𝐸(𝑧𝑧′,𝑇𝑇)𝑧𝑧′𝑑𝑑𝑑𝑑𝛴𝛴

∫ 𝐸𝐸(𝑧𝑧′,𝑇𝑇)𝑑𝑑𝑑𝑑𝛴𝛴
 (2.17) 

In the new Cartesian coordinate system with elastic coordinates, the original z-

coordinate at C is given by 𝑧𝑧 = 𝑧𝑧′ − 𝑧𝑧𝑐𝑐′ , and 𝑦𝑦 = 𝑦𝑦′ as shown in Figure 2.18. 

Consequently, the axial stiffness 𝐴𝐴𝐸𝐸, the elastic static moment 𝑆𝑆𝐸𝐸, and the bending 

stiffness 𝐼𝐼𝐸𝐸 with respect to the elastic center C of the porous FG nanobeam are 

expressed as follows: 

𝐴𝐴𝐸𝐸 = 𝑏𝑏� 𝐸𝐸(𝑧𝑧,𝑇𝑇)𝑑𝑑𝑧𝑧
ℎ
2−𝑧𝑧𝑐𝑐

′

−ℎ2−𝑧𝑧𝑐𝑐
′

 (2.18) 
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𝑆𝑆𝐸𝐸 = 𝑏𝑏� 𝐸𝐸(𝑧𝑧,𝑇𝑇) 𝑧𝑧 𝑑𝑑𝑧𝑧
ℎ
2−𝑧𝑧𝑐𝑐

′

−ℎ2−𝑧𝑧𝑐𝑐
′

 (2.19) 

𝐼𝐼𝐸𝐸 = 𝑏𝑏� 𝐸𝐸(𝑧𝑧,𝑇𝑇) 𝑧𝑧2 𝑑𝑑𝑧𝑧
ℎ
2−𝑧𝑧𝑐𝑐

′

−ℎ2−𝑧𝑧𝑐𝑐
′

 (2.20) 

 

It is worth noting that, with respect to the elastic center C, the elastic static 

moment, 𝑆𝑆𝐸𝐸, is always zero. The shifted position of the elastic center also affects the 

expressions of mass density, 𝐴𝐴𝜌𝜌, rotary inertia, 𝐼𝐼𝜌𝜌, and static moment of mass (or 

couple rotary), 𝑆𝑆𝜌𝜌, which are defined as follows: 

𝐴𝐴𝜌𝜌 = 𝑏𝑏� 𝜌𝜌(𝑧𝑧)𝑑𝑑𝑧𝑧
ℎ
2−𝑧𝑧𝑐𝑐

′

−ℎ2−𝑧𝑧𝑐𝑐
′

 (2.21) 

𝐼𝐼𝜌𝜌 = 𝑏𝑏� 𝜌𝜌(𝑧𝑧) 𝑧𝑧2 𝑑𝑑𝑧𝑧
ℎ
2−𝑧𝑧𝑐𝑐

′

−ℎ2−𝑧𝑧𝑐𝑐
′

 (2.22) 

𝑆𝑆𝜌𝜌 = 𝑏𝑏� 𝜌𝜌(𝑧𝑧) 𝑧𝑧 𝑑𝑑𝑧𝑧
ℎ
2−𝑧𝑧𝑐𝑐

′

−ℎ2−𝑧𝑧𝑐𝑐
′

 (2.23) 

 

For the sake of comprehensiveness, the quantities related to Eqs. 2.18-2.23 are 

explicitly presented in Appendix A, both for even and uneven porosity distribution. 

 

2.9 Numerical application 

Now, let’s consider the porous functionally graded nanobeam represented in 

Figure 2.18. The following are the results of the effects of the gradient index, the 

porosity volume fraction, and temperature on the following dimensionless quantities 

are shown: 

𝑧𝑧�̅�𝑐′ =
𝑧𝑧𝑐𝑐′

ℎ
 (2.24) 

�̅�𝐴𝐸𝐸 =
𝐴𝐴𝐸𝐸
𝐴𝐴𝐸𝐸𝐶𝐶

 (2.25) 
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𝐼𝐼�̅�𝐸 =
𝐼𝐼𝐸𝐸
𝐼𝐼𝐸𝐸𝐶𝐶

 (2.26) 

�̅�𝐴𝜌𝜌 =
𝐴𝐴𝜌𝜌
𝐴𝐴𝜌𝜌𝐶𝐶

 (2.27) 

𝐼𝐼�̅�𝜌 =
𝐼𝐼𝜌𝜌
𝐼𝐼𝜌𝜌𝐶𝐶

 (2.28) 

 

where 𝐴𝐴𝐸𝐸𝐶𝐶 , 𝐼𝐼𝐸𝐸𝐶𝐶 ,𝐴𝐴𝜌𝜌𝐶𝐶 , e 𝐼𝐼𝜌𝜌𝐶𝐶 refer to the values of axial stiffness, bending stiffness, 

mass density and rotary inertia of a non-porous fully ceramic FG nanobeam (n=0, ζ=0) 

at the temperature reference T=305[K].  

In Figures 2.19, we observe the influence of the gradient index (𝑛𝑛) on the 

dimensionless position of the elastic center C (𝑧𝑧𝑐𝑐
′ ) for a rectangular cross-section of an 

FG nanobeam, considering both non-porous and porous materials. A notable 

observation is that as the gradient index (𝑛𝑛) increases, the dimensionless distance 𝑧𝑧𝑐𝑐
′  

also increases, reaching a maximum value at 𝑛𝑛∗, which depends on the value of ζ and 

Τ. It's worth noting that for 𝑘𝑘 values greater than 𝑛𝑛∗, the distance 𝑧𝑧𝑐𝑐
′  gradually 

approaches zero as 𝑛𝑛 tends infinity. Additionally, Figures 2.19 reveals that the curves 

representing uneven porosity distribution show a less significant increase compared to 

those of the even porosity distribution. Furthermore, from Figure 2.19b it is possible 

to notice that as the temperature T increases the dimensionless position of the elastic 

center 𝑧𝑧𝑐𝑐
′  increases. 

The effect of porosity volume fraction, ζ, on the mechanical properties of the FG 

nanobeam is even more evident from the graphs of Figures 2.20 and 2.21. As can be 

observed, the increase in the gradient index, n, as well as in the value of the porosity 

volume fraction, ζ, cause a decrease of the dimensionless axial stiffnesses, �̅�𝐴𝐸𝐸, and 

bending stiffness, 𝐼𝐼�̅�𝐸, of porous FG nanobeam, for both the two types of porosity 

distribution considered. Furthermore, the uneven porosity distribution always provides 

greater values of the dimensionless axial and bending stiffness than the even porosity 

distribution. Additionally, from Figures 2.20b and 2.21b, an increase in temperature, 

T, always leads to a reduction of the mechanical properties of the FG nanobeam. 
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In Figure 2.22, the effects of the gradient index, n, porosity, ζ, and temperature, T, 

on dimensionless rotary inertia, 𝐼𝐼�̅�𝜌, are depicted. It is evident that with an increase in 

the gradient index, the dimensionless rotary inertia always increases, while it decreases 

with an increase in the porosity volume fraction. Specifically, an even porosity 

distribution exhibits higher values of dimensionless rotational inertia compared to an 

uneven porosity distribution. Furthermore, by observing Figure 2.22b, it can be noted 

that the influence of temperature on dimensionless rotary inertia is relatively 

insignificant. 

As can be expected from Figure 2.23, as the porosity volume fraction, ζ, increases, 

the dimensionless values of mass density, �̅�𝐴𝜌𝜌, decrease. Furthermore, an even porosity 

distribution always exhibits higher values of dimensionless mass density compared to 

an uneven porosity distribution. 

 
(a) 

 
 

(b) 
 

Figures 2.19. Effects of the gradient index (n) of the FG material on the dimensionless position of the elastic 
center C varying the porosity volume fraction (ζ) for both even and uneven porosity distribution and for two values 
of temperature T={305,605}[K]. 
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(a) 
 

 
(b) 

 
Figures 2.20. Effects of the gradient index (n) of the FG material on the dimensionless axial stiffness �̅�𝐴𝐸𝐸 varying 
the porosity volume fraction (ζ) for both even and uneven porosity distribution and for two values of temperature 
T={305,605}[K]. 
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(a) 
 

 
(b) 

 
Figures 2.21. Effects of the gradient index (n) of the FG material on the dimensionless bending stiffness 𝐼𝐼�̅�𝐸 varying 
the porosity volume fraction (ζ) for both even and uneven porosity distribution and for two values of temperature 
T={305,605}[K]. 
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(a) 

 

 
(b) 

 
Figures 2.22. Effects of the gradient index (n) of the FG material on the dimensionless rotary inertia 𝐼𝐼�̅�𝜌 varying 
the porosity volume fraction (𝜁𝜁) for both even and uneven porosity distribution and for two values of temperature 
𝑇𝑇 = {305,605}[𝐾𝐾]. 
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Figures 2.23. Effects of the gradient index (n) of the FG material on the dimensionless mass density �̅�𝐴𝜌𝜌 varying 
the porosity volume fraction (𝜁𝜁) for both even and uneven porosity distribution. 

 

The variation of the Euler-Young modulus (E), thermal coefficient (α), mass density 

(ρ), moisture coefficient (β) and thermal conduction coefficient (K) across the 

thickness of a porous and non-porous FG nanobeam are illustrated in Figures 2.24-

2.26 varying n in in the set {0, 0.2, 0.3, 0.5, 1, 2, 3, 5, ∞} at the reference temperature 

T0=305 [K]. As expected, when  𝑛𝑛 = 0 the FG material reduces to pure ceramic while, 

on the contrary for 𝑛𝑛 = ∞, the material properties tend to pure metal. The variations 

of physical and thermos-elastic properties through the thickness of the FG nanobeam 

cross section, assuming ζ=0.1, are illustrated in Figure 2.25,2.26 for even and uneven 

porosity distribution, respectively. As can be noted, the curves of the variation of 

physical and thermos-elastic properties relative to the even distribution (Figure 2.25) 

have the same behavior of those illustrated in Figure 2.26, corresponding to a non-

porous FG material, but with lower property values. Finally, Figure 2.26 shows that 

the maximum of the FG material properties for the uneven distribution of porosity is 

reached at the top and bottom of the cross-section and decrease in the direction of the 

middle zone.  
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(a) 

 

 
(b) 

 

 
 

(c) 
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(d) 
 

 
 

(e) 
 

Figures 2.24. Variations of the: a- Euler-Young modulus (E), b- thermal coefficient (α), c- mass density (ρ), d- 
moisture coefficient (β) and e- thermal conduction coefficient (K) in terms of dimensionless thickness (𝑧𝑧 = 𝑧𝑧/ℎ) with 
n ranging in the set {0, 0.2, 0.3, 0.5, 1, 2, 3, 5, ∞} for a non-porous FG nanobeam (𝜁𝜁 = 0) at the temperature reference 
T0=305 [K].  
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(a) 

 

 
(b) 

 

 
 

(c) 
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(d) 
 

 
 

(e) 
 

Figures 2.25. Variations of the: a- Euler-Young modulus (E), b- thermal coefficient (α), c- mass density (ρ), d- 
moisture coefficient (β) and e- thermal conduction coefficient (K) in terms of dimensionless thickness (𝑧𝑧 = 𝑧𝑧/ℎ) with 
n ranging in the set {0, 0.2, 0.3, 0.5, 1, 2, 3, 5, ∞} for a porous FG nanobeam with an even porosity distribution 
(𝜁𝜁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 0.1) at the temperature reference T0=305 [K]. 
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(a) 

 

 
(b) 

 

 
 

(c) 
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(d) 
 

 

 
 

(e) 
 

Figures 2.26. Variations of the: a- Euler-Young modulus (E), b- thermal coefficient (α), c- mass density (ρ), d- 
moisture coefficient (β) and e- thermal conduction coefficient (K) in terms of dimensionless thickness (𝑧𝑧 = 𝑧𝑧/ℎ) with 
n ranging in the set {0, 0.2, 0.3, 0.5, 1, 2, 3, 5, ∞} for a porous FG nanobeam with an uneven porosity distribution 
(𝜁𝜁𝑢𝑢𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 0.1) at the temperature reference T0=305 [K]. 
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Chapter 3 

Local/nonlocal gradient formulations 
 

Due to the growing interest in nanoscience and nanotechnology, as discussed in 

Chapter 1, the modeling and optimization of nanoscale devices has generated 

significant interest within the scientific community to develop increasingly effective 

mathematical tools. Since atomic approaches [72,73] require substantial 

computational effort and considerably longer lead times, the development of simple 

and computationally convenient methodologies is the main motivation behind many 

recent scientific research efforts. The behavior of nanostructures can be considered 

similar to that of macrostructures, meaning that equivalent continuum models can be 

applied to study the mechanical behavior of nanostructures. However, nanostructures 

exhibit a discrete nature due to atomic interactions and the atomic lattice, necessitating 

appropriate adjustments within the realm of continuum mechanics. Moreover, as 

observed through experimental tests and atomistic simulations, completely negligible 

forces on a macroscale play a fundamental role on a nanoscale [74]. 

Since the classical theories of the local continuum fail to reproduce small-scale 

mechanical behaviors, it becomes necessary to use the mechanics of the nonlocal 

continuum to explain specific phenomena that emerge at the nanoscale and provide a 

more accurate description of the mechanical behavior of nanostructures. Classical 

local theories are incapable of capturing effective mechanical behavior when external 

and internal characteristic lengths are comparable, and nonlocality is thus required to 

take into account for long-range interaction forces [75]. 

In summary, while classical local theories state that the stress at a given point 

depends exclusively on the strain at that point, nonlocal theories also allow us to 

capture the effects of the surrounding region.  

The use of nonlocal theories is necessary to model the mechanical behavior of 

nanostructures for several reasons: 
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 Small-Scale Effects: at the nanoscale, small-scale effects are significant, 

and nonlocal theories can describe them more accurately than classical 

elastic theories. 

 Surface Effects: surface atoms behave differently from internal atoms, 

affecting the mechanical behavior of the structure. Nonlocal theories may 

also consider the contribution of interactions between surface atoms, 

which can be crucial for understanding the behavior of nanostructures. 

 Long-Range Behavior: classical local theories assume that atomic 

interactions vanish with distance. However, at the nanoscale, long-range 

interactions can become significant. Nonlocal theories incorporate these 

interactions, allowing for a more accurate description of the mechanical 

behavior of nanostructures. 

 Improved Experimental Correspondence: nonlocal theories provide a 

better match between theoretical and experimental results, meaning they 

can be used for designing nanomaterials and nanodevices more accurately. 

Therefore, the use of nonlocal elastic laws is necessary to achieve consistent 

results. From a mathematical perspective, nonlocal theories, starting from their early 

formulations [76,77], are based on the idea that stress at a point depends on the local 

strain field over the whole domain. Nonlocal approaches provide enriched constitutive 

laws in which long-range interactions within the body are described by internal 

parameters [75]. 

One of the first integral nonlocal theories was proposed by Eringen [78], with an 

equivalent differential formulation in [79], where nonlocal stress results from an 

integral convolution between the input elastic strain field and an attenuation function 

that depends on the material's characteristic internal length. It has been demonstrated 

that the use of Eringen's model (Eringen Differential Model "EDM" or Strain-Driven 

Model) provides consistent results for studying problems such as screw dislocations 

and surface waves in unlimited domains. However, when applied to structural 

problems, it leads to inconsistencies between constitutive requirements and 

equilibrium. 
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Indeed, as demonstrated by Peddieson et al. in [80] and subsequently by other 

researchers in [81-83], the EDM model leads to known incorrect results, referred to as 

mechanical paradoxes within the scientific community. 

To overcome the problems associated with the EDM model in limited domains, 

various theories have been developed, including two-phase mixture models 

(local/nonlocal). This model was first introduced by Eringen in [78,84] and is based 

on a combination of local and nonlocal responses through a mixing parameter. To 

obtain well-posed results, it is necessary to assume that the local fraction of the 

constitutive law is not negligible. 

To address the difficulties of Eringen's formulation, Romano and Barretta in [85] 

introduced a new Stress-Driven Model (SDM) that is mathematically well-posed and 

provides a coherent approach to the study of nanostructures. This theory defines the 

nonlocal elastic strain field at a given point as a convolution integral between the local 

elastic strain and a scalar averaging kernel. In addition, Barretta et al. in [86] extended 

the Stress-Driven Model by combining it with the mixture model, which is well-posed 

for any local fraction. 

Lim et al. in [87] introduced the nonlocal strain-gradient law (NStrainGT) by 

coupling Eringen's integral law with Mindlin's elasticity strain-gradient model [88,89]. 

Although this model has been widely applied for many years by various researchers in 

numerous investigations, Zaera et al. [90] recently demonstrated that nonlocal strain-

gradient theory leads to ill-posed structural problems because constitutive boundary 

conditions conflict with both non-standard kinematic boundary conditions and higher-

order static boundary conditions. The mathematical ill-posedness of Lim's NStrainGT 

model can be advantageously circumvented by using variational-consistent 

formulations of nonlocal gradient theories, such as the local/nonlocal strain-driven 

gradient theories (L/NStrainG) and the local/nonlocal stress-driven gradient theories 

(L/NStressG), conceived by Barretta et al. [91] and Pinnola et al. [92] for both static 

and dynamic problems. These new constitutive formulations lead to well-posed 

structural problems in nanomechanics. In order to study the structural response of 

nanostructures in a hygrothermal environment, some researchers have extended the 

aforementioned theories to include hygrothermal effects [93-98].  
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The aim of this chapter is to provide an overview of the nonlocal theories 

commonly employed by the scientific community. In particular, in Chapter 3.1, the 

local/nonlocal gradient abstract formulation is introduced. In subsections 3.1.1 and 

3.1.2, the two mixture theories most commonly utilized by the scientific community, 

L/NStressG and L/NStrainG, respectively, are summarized. From the previously 

mentioned formulations, it is demonstrated how, by setting the mixture parameter and 

gradient length parameter to zero, the two models reduce to the pure nonlocal models 

SDM and EDM. 

 

3.1. Local/Nonlocal Gradient formulation 

The abstract formulation of local/nonlocal gradient elasticity is expressed by the 

following integro-differential law relating a source field, 𝑠𝑠(𝑥𝑥): [0, 𝐿𝐿] → 𝑅𝑅,  and an 

output field, 𝑓𝑓(𝑥𝑥): [0, 𝐿𝐿] → 𝑅𝑅 [91] 

𝑓𝑓(𝑥𝑥)

= 𝜉𝜉1 𝑠𝑠(𝑥𝑥) + 𝜉𝜉2  � 𝛷𝛷𝐿𝐿𝑐𝑐(𝑥𝑥 − 𝜉𝜉) s(𝜉𝜉)𝑑𝑑𝜉𝜉 − 𝐿𝐿𝑙𝑙2  
𝜕𝜕
𝜕𝜕𝑥𝑥

� 𝛷𝛷𝐿𝐿𝑐𝑐(𝑥𝑥 − 𝜉𝜉) 
𝜕𝜕 s(𝜉𝜉)
𝜕𝜕𝑥𝑥

𝑑𝑑𝜉𝜉  
𝐿𝐿

0

𝐿𝐿

0
 

(3.1) 

 

where 𝛷𝛷𝐿𝐿𝑐𝑐  is the scalar averaging kernel, depending on the length-scale 

parameter, 𝐿𝐿𝑐𝑐 , which describes the nonlocal effects; 𝐿𝐿𝑙𝑙 denotes the gradient length 

parameter, introduced to capture the effects of the higher-order axial strain;  𝜉𝜉1 and  𝜉𝜉2 

are the two-phase parameters.  

It is well-known how the aforementioned constitutive mixture equation can be seen as 

the competition between the classical local elasticity (with volume fraction 𝜉𝜉1) and the 

nonlocal elasticity (with volume fraction 𝜉𝜉2) where the two-phase parameters must 

fulfil the conditions: 0 < (𝜉𝜉1, 𝜉𝜉2) < 1 and  𝜉𝜉1 + 𝜉𝜉2 = 1. Thus, the pure nonlocal law is 

obtained by setting 𝜉𝜉1 = 0 (or 𝜉𝜉2= 1), while the well-known classical local law 

corresponds to 𝜉𝜉1 = 1 (or 𝜉𝜉2 = 0).  

In the following paragraphs, both the local/nonlocal stress-driven and strain-

driven gradient models of elasticity are introduced. 
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3.1.1. Local/Nonlocal Stress Gradient formulation (L/NStressG) 

Local/nonlocal stress gradient formulation is obtained by setting in the Eq. 3.1 the 

source field,  𝑠𝑠(𝑥𝑥) = 𝜎𝜎𝑥𝑥𝑥𝑥(𝑥𝑥)
𝐸𝐸

 and the output field 𝑓𝑓(𝑥𝑥) = 𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 , being 𝜕𝜕𝑥𝑥𝑥𝑥 the axial stress 

component, subjected to equilibrium conditions, 𝐸𝐸 is the Young’s modulus and 𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙  the 

elastic axial strain component. It follows that Eq. 3.1 is transformed into the following 

local/nonlocal constitutive mixture equation, expressing the elastic axial strain as the 

function of strains at both the reference point 𝑥𝑥 and its nearby points 𝜉𝜉: 

𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙  = 𝜉𝜉1
𝜕𝜕𝑥𝑥𝑥𝑥(𝑥𝑥)
𝐸𝐸

+
𝜉𝜉2
𝐸𝐸

 � 𝛷𝛷𝐿𝐿𝑐𝑐(𝑥𝑥 − 𝜉𝜉) 𝜕𝜕𝑥𝑥𝑥𝑥(𝜉𝜉)𝑑𝑑𝜉𝜉 −
1
𝐸𝐸
𝐿𝐿𝑙𝑙2  

𝜕𝜕
𝜕𝜕𝑥𝑥

� 𝛷𝛷𝐿𝐿𝑐𝑐(𝑥𝑥 − 𝜉𝜉) 
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥(𝜉𝜉)
𝜕𝜕𝑥𝑥

𝑑𝑑𝜉𝜉     
𝐿𝐿

0

𝐿𝐿

0
 (3.2) 

where  𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥 
𝜕𝜕𝑥𝑥

 denotes the gradient of the axial stress component and 𝐸𝐸 is the Young’s 

modulus. 

Choosing the bi-exponential function for the kernel 𝛷𝛷𝐿𝐿𝑐𝑐 depending on a positive 

nonlocal parameter, 𝐿𝐿𝑐𝑐, and satisfies the properties of symmetry, positivity and limit 

impulsivity on the real axis as: 

𝛷𝛷𝐿𝐿𝑐𝑐(𝑥𝑥, 𝐿𝐿𝑐𝑐) =
1

2𝐿𝐿𝑐𝑐
exp �−  

|𝑥𝑥|
𝐿𝐿𝑐𝑐
� (3.3) 

 

and substituting the relations 𝜉𝜉2 = 1 − 𝜉𝜉1, the integro-differential relation of Eq. 3.2 

admits the following set of solutions: 

𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 − 𝐿𝐿𝑐𝑐2  
𝜕𝜕2𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙

𝜕𝜕𝑥𝑥2
=
𝜕𝜕𝑥𝑥𝑥𝑥
𝐸𝐸

−
𝐿𝐿𝑐𝑐2

𝐸𝐸
�𝜉𝜉1 +

𝐿𝐿𝑙𝑙2

𝐿𝐿𝑐𝑐2
�

 𝜕𝜕2𝜕𝜕𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥2

 (3.4) 

 

with 𝑥𝑥 ∈ [0, L], if and only if the following two pairs of constitutive boundary 

conditions (CBCs) are satisfied at the nanobeam ends: 

𝜕𝜕𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 (0)
𝜕𝜕𝑥𝑥

− 1
𝐿𝐿𝑐𝑐
𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 (0) =  − 1

𝐸𝐸
𝜉𝜉1
𝐿𝐿𝑐𝑐
𝜕𝜕𝑥𝑥𝑥𝑥(0) + 1

𝐸𝐸
 �𝜉𝜉1 + 𝐿𝐿𝑒𝑒

2

𝐿𝐿𝑐𝑐2
� 𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥(0)

𝜕𝜕𝑥𝑥
 (3.5) 

𝜕𝜕𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 (𝐿𝐿)
𝜕𝜕𝑥𝑥

+ 1
𝐿𝐿𝑐𝑐
𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 (𝐿𝐿) =  1

𝐸𝐸
𝜉𝜉1
𝐿𝐿𝑐𝑐
𝜕𝜕𝑥𝑥𝑥𝑥(𝐿𝐿) + 1

𝐸𝐸
 �𝜉𝜉1 + 𝐿𝐿𝑒𝑒

2

𝐿𝐿𝑐𝑐2
� 𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥(𝐿𝐿)

𝜕𝜕𝑥𝑥
 (3.6) 
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Now, by setting  𝜉𝜉1 = 0 and 𝐿𝐿𝑙𝑙 = 0 in Eq. 3.4, we get the differential equation of 

a purely nonlocal stress-driven model [85]: 

𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 − 𝐿𝐿𝑐𝑐2  
𝜕𝜕2𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙

𝜕𝜕𝑥𝑥2
=
𝜕𝜕𝑥𝑥𝑥𝑥
𝐸𝐸

 (3.7) 

with the corresponding constitutive boundary conditions at the nanobeam ends: 

𝜕𝜕𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 (0)
𝜕𝜕𝑥𝑥

−
1
𝐿𝐿𝑐𝑐
ε𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 (0) =  0 (3.8) 

𝜕𝜕𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙  (𝐿𝐿)
𝜕𝜕𝑥𝑥

+
1
𝐿𝐿𝑐𝑐
ε𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 (𝐿𝐿) =   0 (3.9) 

 

3.1.2. Local/Nonlocal Strain Gradient formulation (L/NStrainG) 

Local/nonlocal strain gradient formulation is obtained by setting in Eq. 3.1 the 

source field, 𝑠𝑠(𝑥𝑥) = 𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙  and the output field  𝑓𝑓(𝑥𝑥) = 𝜎𝜎𝑥𝑥𝑥𝑥(𝑥𝑥)
𝐸𝐸

 . It follows that Eq. 3.1 is 

transformed into the following local/nonlocal constitutive mixture L/NStrainG 

formulation: 

𝜕𝜕𝑥𝑥𝑥𝑥(𝑥𝑥)
𝐸𝐸

= 𝜉𝜉1𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 + 𝜉𝜉2 � 𝛷𝛷𝐿𝐿𝑐𝑐(𝑥𝑥 − 𝜉𝜉) 𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 (𝜉𝜉)𝑑𝑑𝜉𝜉 − 𝐿𝐿𝑙𝑙2  
𝜕𝜕
𝜕𝜕𝑥𝑥

� Φ𝐿𝐿𝑐𝑐(𝑥𝑥 − 𝜉𝜉) 
𝜕𝜕𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 (𝜉𝜉)
𝜕𝜕𝑥𝑥

𝑑𝑑𝜉𝜉     
𝐿𝐿

0

𝐿𝐿

0
 (3.10) 

 

Eq. 3.10 is equivalent to the following differential law: 

𝜕𝜕𝑥𝑥𝑥𝑥 − 𝐿𝐿𝑐𝑐2  
𝜕𝜕2𝜕𝜕𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥2

= 𝐸𝐸𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 − 𝐸𝐸𝐿𝐿𝑐𝑐2 �𝜉𝜉1 +
𝐿𝐿𝑙𝑙2

𝐿𝐿𝑐𝑐2
�
𝜕𝜕2𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙

𝜕𝜕𝑥𝑥2
 (3.11) 

equipped with the following two pairs of constitutive boundary conditions: 

𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥 (0) 
𝜕𝜕𝑥𝑥

− 1
𝐿𝐿𝑐𝑐
𝜕𝜕𝑥𝑥𝑥𝑥 (0) =  −𝐸𝐸 𝜉𝜉1

𝐿𝐿𝑐𝑐
𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 (0) + 𝐸𝐸 �𝜉𝜉1 + 𝐿𝐿𝑒𝑒

2

𝐿𝐿𝑐𝑐2
�  𝜕𝜕𝜀𝜀𝑥𝑥𝑥𝑥

𝑒𝑒𝑒𝑒 (0)
𝜕𝜕𝑥𝑥

 (3.12) 

𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥 (𝐿𝐿) 
𝜕𝜕𝑥𝑥

+ 1
𝐿𝐿𝑐𝑐
𝜕𝜕𝑥𝑥𝑥𝑥 (𝐿𝐿) =  𝐸𝐸 𝜉𝜉1

𝐿𝐿𝑐𝑐
𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 (𝐿𝐿) + 𝐸𝐸 �𝜉𝜉1 + 𝐿𝐿𝑒𝑒

2

𝐿𝐿𝑐𝑐2
�  𝜕𝜕𝜀𝜀𝑥𝑥𝑥𝑥

𝑒𝑒𝑒𝑒 (𝐿𝐿)
𝜕𝜕𝑥𝑥

 (3.13) 

 

Now, by setting  𝜉𝜉1 = 0 and 𝐿𝐿𝑙𝑙 = 0 in Eq. 3.11, we get the differential equation of 

a purely nonlocal strain-driven model [70]:  
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𝜕𝜕𝑥𝑥𝑥𝑥 − 𝐿𝐿𝑐𝑐2  
𝜕𝜕2𝜕𝜕𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥2

= 𝐸𝐸𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙  (3.14) 

equipped with the corresponding constitutive boundary conditions at the nanobeam 

ends: 

𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥(0)
𝜕𝜕𝑥𝑥

−
1
𝐿𝐿𝑐𝑐
𝜕𝜕𝑥𝑥𝑥𝑥(0) =  0 (3.15) 

𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥(𝐿𝐿)
𝜕𝜕𝑥𝑥

+
1
𝐿𝐿𝑐𝑐
𝜕𝜕𝑥𝑥𝑥𝑥(𝐿𝐿) =  0 (3.16) 
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   Chapter 4 

Hygrothermal effects on the static and dynamic response of porous 

functionally graded nanobeams 
 

As widely discussed in previous chapters, nanostructures, including functionally 

graded nanobeams, are employed in a wide range of advanced technological 

applications, many of which involve hygrothermal effects. Therefore, it is of 

paramount importance to understand how these effects influence the structural 

response of nanostructures. Because of their nanoscale size, these structures are highly 

sensitive to the effects of temperature and humidity, which can cause deformations, 

stresses, and cracks that compromise their durability and reliability. To ensure optimal 

performance even under difficult conditions, researchers use models that explain how 

hygrothermal effects influence the nanostructures bending response [26,100,101]. In 

addition, as it is well known, free transverse vibrations represent a critical aspect of 

the structural behavior of any structure, including nanobeams [27,28]. In particular, 

the coupled effect of temperature and humidity significantly influences the natural 

frequency and vibration modes of the structure, as well as the stability of the structure 

itself. Understanding their effect is crucial to ensuring their proper functioning under 

specific environmental conditions. Due to the extremely small scale, vibrations in 

nanobeams can become inherently nonlinear. Nonlinear effects can significantly 

influence the structural response of nanodevices, making it essential to understand and 

study nonlinear vibrations to ensure that devices can perform their intended functions 

safely and effectively. In order to study nonlinear vibrations, many researchers have 

addressed this issue by proposing a higher-order Hamiltonian approach [29,102-105]. 

This provides a more accurate description of these phenomena that are overlooked by 

linear models, allowing for the capture of complex behaviors and the optimization of 

device designs, whereas hygrothermal effects influence not only linear but also 

nonlinear vibrations. In addition, as widely discussed in [106-111], in the case of an 

FG nanobeam, due to dependency of Young’s modulus, thermal coefficient, and 

moisture expansion coefficients from z coordinate, hygrothermal moments are 
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generated and, therefore, the “original boundary conditions”, including the 

hygrothermal moments, must be employed. On the contrary, in the case of a 

homogeneous isotropic nanobeam under uniform temperature and moistures rises, the 

hygrothermal resultants of axial forces are uniform along the thickness direction and 

the hygrothermal bending moments vanish and the corresponding boundary conditions 

coincide with the so called “simplified boundary conditions”. It should be noted that 

under heat-conduction between the bottom and the top surface of nanobeams cross‐

section, the thermal bending moment doesn’t disappear from the boundary conditions 

of both homogeneous isotropic and functionally graded nanobeams due to the fact that 

the temperature is a function of z coordinate. Therefore, in the study of a homogeneous 

isotropic nanobeam under heat-conduction it is necessary to consider the original 

boundary conditions in order to take into account the effects of thermal bending 

moment on its bending response.  

To the author’s knowledge, hygrothermal size-dependent mechanical models in 

which the hygrothermal moments appear at the flexural boundary conditions are less 

studied. Therefore, a well-posed Hygrothermal Local/Nonlocal Stress Gradient model 

(L/NStressGH) and Hygrothermal Local/Nonlocal Strain Gradient model 

(L/NStrainGH) based on the use of original boundary conditions for the bending and 

dynamic analysis of porous FG nanobeams subjected to in-plane hygrothermal 

loadings are proposed. In particular, the main results of a parametric investigation 

varying the nonlocal parameter, the gradient length parameter, the mixture parameter, 

the nonlinear oscillator amplitude and the material gradient index are presented and 

discussed for both uniform temperatures rise and heat-conduction across the thickness.  

The chapter is structured as follows. Section 4.1 describes the functionally graded 

material under examination and the corresponding laws governing its thermoelastic 

properties. Briefly, in Section 4.2, the two types of hygrothermal loads considered in 

this study are outlined. Chapter 4.3 presents case studies on the use of L/NStressGH 

and L/NStrainGH theories for studying the static behavior of a porous functionally 

graded nanobeam in a hygrothermal environment, with a summary of the most 

significant results. Finally, Section 4.3 explore the linear and nonlinear free oscillations 

(employ a higher-order Hamiltonian approach), of functionally graded porous 

nanobeams in a hygrothermal environment using the L/NStressGH model. 
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4.1. Material 

Let us consider a functionally graded (FG) nanobeam of length “L” in a Cartesian 

coordinate system {𝑂𝑂, 𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′} having the origin in the geometric center O of its 

rectangular cross-section Σ (𝑏𝑏 × ℎ), being 𝑥𝑥′ (0 ≤ 𝑥𝑥′ ≤ 𝐿𝐿) the nanobeam axis and 

𝑦𝑦’ , 𝑧𝑧’  the principal axes of geometric inertia of Σ (Figure 4.1). 

 
Figure 4.1. Coordinate system and configuration of a porous FG Bernoulli-Euler nanobeam in a hygrothermal 
environment. 

 

It is supposed that the FG nanobeam material is made of a metal-ceramic mixture 

spatially varying from the bottom surface (metal) to the top surface (ceramic); 

furthermore, the subscripts “m” and “c” refer to metal and ceramic, respectively. It is 

further assumed the nanobeam structure to have an even porosity distribution across 

the thickness, generated during its manufacturing process. Consequently, the effective 

mechanical and hygrothermal properties of the FG material, here described by the mass 

density, 𝜌𝜌 = 𝜌𝜌(𝑧𝑧′), Young’s modulus, 𝜌𝜌 = 𝐸𝐸(𝑧𝑧′,𝑇𝑇), thermal expansions coefficient, 

𝛼𝛼 = 𝛼𝛼(𝑧𝑧′,𝑇𝑇), moisture expansion coefficient, 𝛽𝛽 = 𝛽𝛽(𝑧𝑧′,𝑇𝑇), and thermal conduction 

coefficient, 𝐾𝐾 = 𝐾𝐾(𝑧𝑧′,𝑇𝑇), can be calculated according to the mixture rule of Eq. 2.7:  

𝜌𝜌 = 𝜌𝜌𝑚𝑚 + (𝜌𝜌𝑐𝑐 − 𝜌𝜌𝑚𝑚)�
1
2

+
𝑧𝑧′

ℎ
�
𝑒𝑒

−
𝜁𝜁
2

 (𝜌𝜌𝑐𝑐 + 𝜌𝜌𝑚𝑚) (4.1) 

𝐸𝐸 = 𝐸𝐸𝑚𝑚 + (𝐸𝐸𝑐𝑐 − 𝐸𝐸𝑚𝑚)�
1
2

+
𝑧𝑧′

ℎ
�
𝑒𝑒

−  
𝜁𝜁
2

 (𝐸𝐸𝑐𝑐 + 𝐸𝐸𝑚𝑚) (4.2) 

𝛼𝛼 = 𝛼𝛼𝑚𝑚 + (𝛼𝛼𝑐𝑐 − 𝛼𝛼𝑚𝑚)�
1
2

+
𝑧𝑧′

ℎ
�
𝑒𝑒

−
𝜁𝜁
2

 (𝛼𝛼𝑐𝑐 + 𝛼𝛼𝑚𝑚) (4.3) 
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𝛽𝛽 = 𝛽𝛽𝑚𝑚 + (𝛽𝛽𝑐𝑐 − 𝛽𝛽𝑚𝑚)�
1
2

+
𝑧𝑧′

ℎ
�
𝑒𝑒

−  
𝜁𝜁
2

 (𝛽𝛽𝑐𝑐 + 𝛽𝛽𝑚𝑚) (4.4) 

𝐾𝐾 = 𝐾𝐾𝑚𝑚 + (𝐾𝐾𝑐𝑐 − 𝐾𝐾𝑚𝑚)�
1
2

+
𝑧𝑧′

ℎ
�
𝑒𝑒

−  
𝜁𝜁
2

 (𝐾𝐾𝑐𝑐 + 𝐾𝐾𝑚𝑚) (4.5) 

 

where 𝜌𝜌𝑐𝑐, 𝜌𝜌𝑚𝑚 and 𝐸𝐸𝑐𝑐, 𝐸𝐸𝑚𝑚 are the material densities and the Euler-Young moduli of 

ceramic and metal, respectively; 𝛼𝛼𝑐𝑐, 𝛼𝛼𝑚𝑚 and 𝛽𝛽𝑐𝑐, 𝛽𝛽𝑚𝑚 are the thermal expansion 

coefficients and the moisture expansion coefficients of the two aforementioned 

materials, respectively; 𝐾𝐾𝑐𝑐 and 𝐾𝐾𝑚𝑚 denote the bottom and top thermal conduction 

coefficients, respectively. Furthermore, the symbols n (n≥0) and ζ (ζ<<1) denote the 

gradient index and the porosity volume fraction of the FG material, respectively. The 

characteristic values of thermo-elastic properties of the constituent nanobeam 

materials, metal (SuS3O4) and ceramic (Si3N4), as well as the values of the coefficients 

of material phases are listed in Table 2.1 and Table 2.2 (§2.7), respectively. It is well-

known that under an extreme temperature environment, the material properties are also 

assumed to be temperature-dependent in according to Eq. 2.16.  

In order to eliminate the bending–extension coupling due to the variation of the 

functionally graded material, the thermo-elastic material properties are evaluated with 

respect to a new elastic Cartesian coordinate system originating at the elastic center C 

(Figure 4.1), whose position, 𝑧𝑧𝑐𝑐′ , is given by Eq. 2.17. 

 

4.2. Types of hygrothermal loadings  

In this investigation, both a uniform temperature rise (UTR) [26,27] and heat-

conduction (HC) between the bottom and the top surface of the FG nanobeam cross‐

section, under the hypothesis of absence of heat sources [99], are considered: 

- (UTR) 

∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 − 𝑇𝑇0 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑡𝑡 (4.6) 

- (HC) 

∆𝑇𝑇𝐻𝐻𝐻𝐻(𝑧𝑧) = 𝑇𝑇𝐻𝐻𝐻𝐻(𝑧𝑧) − 𝑇𝑇0 (4.7) 
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where 

𝑇𝑇𝐻𝐻𝐻𝐻(𝑧𝑧) = 𝑇𝑇𝑚𝑚 +
(𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑚𝑚)

∑ � (−1)𝑁𝑁
𝑛𝑛 𝑖𝑖 + 1�

𝐾𝐾𝑐𝑐 − 𝐾𝐾𝑚𝑚
𝐾𝐾𝑚𝑚 − 𝜁𝜁

2 (𝐾𝐾𝑐𝑐 + 𝐾𝐾𝑚𝑚)
�

𝑁𝑁

�𝑘𝑘
𝑁𝑁=0  

��
(−1)𝑁𝑁

𝑛𝑛 𝑖𝑖 + 1 �
1
2

𝑘𝑘

𝑁𝑁=0

+
𝑧𝑧
ℎ�

𝑒𝑒 𝑁𝑁+1
�

𝐾𝐾𝑐𝑐 − 𝐾𝐾𝑚𝑚
𝜁𝜁
2 (𝐾𝐾𝑐𝑐 + 𝐾𝐾𝑚𝑚)

�

𝑁𝑁

� 

 

(4.8) 

being 𝑇𝑇0 the reference value of temperature of FG nanobeam, 𝑇𝑇𝑚𝑚 and 𝑇𝑇𝑐𝑐 the bottom 

and top temperatures, respectively, and 𝐾𝐾𝑚𝑚 and 𝐾𝐾𝑐𝑐  the thermal conduction coefficients 

of the two constituent nanobeam materials. Furthermore, the index i represents an 

adequate number of terms that must be taken into account in the solution procedure to 

ensure the convergence of series in Eq. 4.8. Whereas, for the moisture concentration 

we considered only the case of Uniform Moisture Rise, 𝛥𝛥𝛥𝛥 = 𝛥𝛥𝑈𝑈𝑈𝑈𝑈𝑈 − 𝛥𝛥0 =  𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑡𝑡, 

in which 𝛥𝛥0 denotes the reference value of the moisture concentration. 

It is now possible to introduce the hygrothermal resultants of axial force and bending 

moments respectively for both uniform temperature rise and heat-conduction as 

follows: 

- (UTR) 

𝑁𝑁𝑈𝑈 = 𝑁𝑁𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 (𝑧𝑧,𝑇𝑇) =  �𝐸𝐸𝛼𝛼∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈𝑑𝑑𝑧𝑧
𝛴𝛴

 (4.9) 

𝑀𝑀𝑈𝑈 = 𝑀𝑀𝑈𝑈𝑈𝑈𝑈𝑈
𝑈𝑈 (𝑧𝑧,𝑇𝑇) =  �𝐸𝐸𝛼𝛼∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈𝑧𝑧𝑑𝑑𝑧𝑧

𝛴𝛴

 (4.10) 

- (HC) 

𝑁𝑁𝑈𝑈 = 𝑁𝑁𝐻𝐻𝐻𝐻𝑈𝑈 (𝑧𝑧,𝑇𝑇) =  �𝐸𝐸𝛼𝛼∆𝑇𝑇𝐻𝐻𝐻𝐻(𝑧𝑧)𝑑𝑑𝑧𝑧
𝛴𝛴

 (4.11) 

𝑀𝑀𝑈𝑈 = 𝑀𝑀𝐻𝐻𝐻𝐻
𝑈𝑈 (𝑧𝑧,𝑇𝑇) =  �𝐸𝐸𝛼𝛼∆𝑇𝑇𝐻𝐻𝐻𝐻(𝑧𝑧)𝑧𝑧𝑑𝑑𝑧𝑧

𝛴𝛴

 (4.12) 

- (UMR) 
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𝑁𝑁𝐻𝐻 = 𝑁𝑁𝐻𝐻(𝑧𝑧,𝑇𝑇) =  �𝐸𝐸𝛽𝛽𝛥𝛥𝛥𝛥𝑑𝑑𝑧𝑧
𝛴𝛴

 (4.13) 

𝑀𝑀𝐻𝐻 = 𝑀𝑀𝐻𝐻(𝑧𝑧,𝑇𝑇) =  �𝐸𝐸𝛽𝛽𝛥𝛥𝛥𝛥𝑧𝑧𝑑𝑑𝑧𝑧
𝛴𝛴

 (4.14) 

 

in which 𝐸𝐸 = 𝐸𝐸(𝑧𝑧,𝑇𝑇), 𝛼𝛼 = 𝛼𝛼(𝑧𝑧,𝑇𝑇) and 𝛽𝛽 = 𝛽𝛽(𝑧𝑧,𝑇𝑇) are the Young’s modulus, the 

thermal and the moisture expansion coefficients, respectively. 

 

4.3. Hygrothermal bending behavior of porous FG nanobeams via L/NStressGH 

and L/NStrainGH theories of elasticity 

Based on Bernoulli-Euler theory, in the elastic coordinate reference system {C, x, 

y, z}, the Cartesian components of the displacement field of the nanobeam, 𝑢𝑢𝑥𝑥 =

𝑢𝑢𝑥𝑥(𝑥𝑥, 𝑧𝑧), 𝑢𝑢𝑦𝑦 = 𝑢𝑢𝑦𝑦(𝑥𝑥, 𝑧𝑧) and  𝑢𝑢𝑧𝑧 = 𝑢𝑢𝑧𝑧(𝑥𝑥, 𝑧𝑧), along x, y and z directions, respectively, 

can be expressed as: 

𝑢𝑢𝑥𝑥 = −𝑧𝑧
𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥

 (4.15) 

𝑢𝑢𝑦𝑦 = 0 (4.16) 

𝑢𝑢𝑧𝑧 = 𝑤𝑤 (4.17) 

where 𝑤𝑤 = 𝑤𝑤(𝑥𝑥) is the transverse displacements of the elastic centre C. Consequently, 

the only nonzero component deformation associated with the displacement field is the 

axial strain, defined as: 

𝜀𝜀𝑥𝑥𝑥𝑥 = − 𝑧𝑧
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

 (4.18) 

where 𝜕𝜕
2𝑤𝑤
𝜕𝜕𝑥𝑥2

 refers to the geometrical bending curvature 𝜒𝜒.  

By using the principle of virtual work, we can derive the governing equations, as 

follows: 

𝛿𝛿𝛿𝛿 + 𝛿𝛿𝛿𝛿 = 0 (4.19) 

being 𝛿𝛿𝛿𝛿 and 𝛿𝛿𝛿𝛿 the virtual strain energy and the virtual work done by external forces, 

respectively. The virtual strain energy 𝛿𝛿𝛿𝛿 is given by: 
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𝛿𝛿𝛿𝛿 =  ��𝜕𝜕𝑥𝑥𝑥𝑥𝛿𝛿𝜀𝜀𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑 𝑑𝑑𝑥𝑥 =
Σ

𝐿𝐿

0

− �𝑀𝑀
𝜕𝜕2𝛿𝛿𝑤𝑤
𝜕𝜕𝑥𝑥2

 
𝐿𝐿

0

𝑑𝑑𝑥𝑥 (4.20) 

where 𝜕𝜕𝑥𝑥𝑥𝑥 = 𝜕𝜕𝑥𝑥𝑥𝑥(𝑧𝑧,𝑇𝑇) = 𝐸𝐸(𝑧𝑧,𝑇𝑇)𝜀𝜀𝑥𝑥𝑥𝑥 = 𝐸𝐸𝜀𝜀𝑥𝑥𝑥𝑥, is the temperature-dependent axial 

stress, and 𝑀𝑀, is the moment stress resultant defined as follows:  

𝑀𝑀 = 𝑀𝑀(𝑥𝑥) = −𝐼𝐼𝐸𝐸  χ (4.21) 

in which 𝐼𝐼𝐸𝐸 denotes the bending stiffness defined Eq. 2.20. 

The expression of the virtual work of the external force 𝛿𝛿𝛿𝛿 is: 

𝛿𝛿𝛿𝛿 =  −� �𝑞𝑞𝑧𝑧𝛿𝛿𝑤𝑤 + (𝑁𝑁𝑈𝑈 + 𝑁𝑁𝐻𝐻)
𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥

𝜕𝜕𝛿𝛿𝑤𝑤
𝜕𝜕𝑥𝑥 �𝑑𝑑𝑥𝑥

𝐿𝐿

0
 (4.22) 

where 𝑞𝑞𝑧𝑧 = 𝑞𝑞𝑧𝑧(𝑥𝑥) is the transverse distributed load. 

By substituting Eq. 4.20 and Eq. 4.22 into Eq. 4.19, and using the fundamental 

lemma of variational calculus, the following equation of equilibrium can be obtained: 

𝜕𝜕2𝑀𝑀
𝜕𝜕𝑥𝑥2

− (𝑁𝑁𝑈𝑈 + 𝑁𝑁𝐻𝐻)
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝑞𝑞𝑧𝑧 = 0 (4.23) 

The corresponding boundary conditions at the nanobeam’s ends (𝑥𝑥 = 0 and 𝑥𝑥 =

𝐿𝐿) can be chosen by specifying one element of each of the following two pairs 

(standard kinematic or static boundary conditions, SBC) at 𝑥𝑥 = 0, 𝐿𝐿: 

𝑤𝑤 = 𝑤𝑤∗|𝑥𝑥=0,𝐿𝐿 or 
𝜕𝜕𝑀𝑀
𝜕𝜕𝑥𝑥

− (𝑁𝑁𝑈𝑈 + 𝑁𝑁𝐻𝐻)
𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥

= 𝑉𝑉∗|𝑥𝑥=0,𝐿𝐿 
(4.24) 

𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝑤𝑤∗

𝜕𝜕𝑥𝑥
|𝑥𝑥=0,𝐿𝐿 or 𝑀𝑀 = 𝑀𝑀∗|𝑥𝑥=0,𝐿𝐿 (4.25) 

 

being 𝑀𝑀∗ and 𝑉𝑉∗ assigned moment and vertical force acting at the nanobeam ends, 

respectively, and 𝑤𝑤∗ an assigned vertical displacement at the nanobeam ends. 

 

4.3.1. Constitutive laws 

- Local/Nonlocal Hygrothermal Stress Gradient model of elasticity 

(L/NStressGH) 
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Reference is made to the differential constitutive law of the L/NStressG model, 

with the corresponding constitutive boundary conditions previously developed in 

§3.1.1.: 

𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 − 𝐿𝐿𝑐𝑐2  
𝜕𝜕2𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙

𝜕𝜕𝑥𝑥2
=
𝜕𝜕𝑥𝑥𝑥𝑥
𝐸𝐸

−
𝐿𝐿𝑐𝑐2

𝐸𝐸
�𝜉𝜉1 +

𝐿𝐿𝑙𝑙2

𝐿𝐿𝑐𝑐2
�

 𝜕𝜕2𝜕𝜕𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥2

 (4.26) 

𝜕𝜕𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 (0)
𝜕𝜕𝑥𝑥

− 1
𝐿𝐿𝑐𝑐
𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 (0) =  − 1

𝐸𝐸
𝜉𝜉1
𝐿𝐿𝑐𝑐
𝜕𝜕𝑥𝑥𝑥𝑥(0) + 1

𝐸𝐸
 �𝜉𝜉1 + 𝐿𝐿𝑒𝑒

2

𝐿𝐿𝑐𝑐2
�  𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥(0)

𝜕𝜕𝑥𝑥
 (4.27) 

𝜕𝜕𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒  (𝐿𝐿)
𝜕𝜕𝑥𝑥

+ 1
𝐿𝐿𝑐𝑐
𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 (𝐿𝐿) =  1

𝐸𝐸
𝜉𝜉1
𝐿𝐿𝑐𝑐
𝜕𝜕𝑥𝑥𝑥𝑥(𝐿𝐿) + 1

𝐸𝐸
 �𝜉𝜉1 + 𝐿𝐿𝑒𝑒

2

𝐿𝐿𝑐𝑐2
�  𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥(𝐿𝐿)

𝜕𝜕𝑥𝑥
 (4.28) 

 

In a hygrothermal environment, the elastic axial strain is expressed as the 

difference between the total strain, 𝜀𝜀𝑥𝑥𝑥𝑥, and the non-elastic axial strain, ε𝑥𝑥𝑥𝑥∗  = 𝛼𝛼∆𝑇𝑇 +

𝛽𝛽∆𝛥𝛥, depending on the increases in temperature, ∆𝑇𝑇, and moisture concentration, ∆𝛥𝛥, 

(i.e. hygrothermal effects): 

ε𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 = 𝜀𝜀𝑥𝑥𝑥𝑥 − ε𝑥𝑥𝑥𝑥∗      (4.29) 

By manipulating Eq. 4.18 with Eq. 4.29 and substituting into Eqs. 4.26-4.29, then 

multiplying by z, the integration over the nanobeam cross section provides the following 

“L/NStressGH” equation in terms of transverse displacement: 

− 𝐼𝐼𝐸𝐸
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝐼𝐼𝐸𝐸𝐿𝐿𝑐𝑐2  
𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥4

− 𝑀𝑀𝑈𝑈 −𝑀𝑀𝐻𝐻

= 𝑀𝑀𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻 − 𝐿𝐿𝑐𝑐2 �𝜉𝜉1 +
𝐿𝐿𝑙𝑙2

𝐿𝐿𝑐𝑐2
�

 𝜕𝜕2𝑀𝑀𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻

𝜕𝜕𝑥𝑥2
 

(4.30) 

with the corresponding constitutive boundary conditions (CBCs) (at 𝑥𝑥 = 0, 𝐿𝐿): 

− 𝐼𝐼𝐸𝐸
𝜕𝜕3𝑤𝑤(0)
𝜕𝜕𝑥𝑥3

+
𝐼𝐼𝐸𝐸
𝐿𝐿𝑐𝑐
𝜕𝜕2𝑤𝑤(0)
𝜕𝜕𝑥𝑥2

+
𝑀𝑀𝑈𝑈 + 𝑀𝑀𝐻𝐻

𝐿𝐿𝑐𝑐

= −  
𝜉𝜉1
𝐿𝐿𝑐𝑐
𝑀𝑀𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(0)

+ �𝜉𝜉1 +
𝐿𝐿𝑙𝑙2

𝐿𝐿𝑐𝑐2
�  
𝜕𝜕𝑀𝑀𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(0)

𝜕𝜕𝑥𝑥
     

(4.31) 
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− 𝐼𝐼𝐸𝐸
𝜕𝜕3𝑤𝑤(𝐿𝐿)
𝜕𝜕𝑥𝑥3

−
𝐼𝐼𝐸𝐸
𝐿𝐿𝑐𝑐
𝜕𝜕2𝑤𝑤(𝐿𝐿)
𝜕𝜕𝑥𝑥2

−
𝑀𝑀𝑈𝑈 + 𝑀𝑀𝐻𝐻

𝐿𝐿𝑐𝑐

=  
𝜉𝜉1
𝐿𝐿𝑐𝑐
𝑀𝑀𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(𝐿𝐿) + �𝜉𝜉1 +

𝐿𝐿𝑙𝑙2

𝐿𝐿𝑐𝑐2
�  
𝜕𝜕𝑀𝑀𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(𝐿𝐿)

𝜕𝜕𝑥𝑥
 

(4.32) 

in which 𝑀𝑀𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻 =  𝑀𝑀𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(𝑥𝑥) denotes the hygrothermal local/nonlocal 

gradient moment. Substituting Eq. 4.23 into Eq. 4.37, the expression of the above-

mentioned moment can be expressed as follows: 

𝑀𝑀𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻 = − 𝐼𝐼𝐸𝐸
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝐼𝐼𝐸𝐸𝐿𝐿𝑐𝑐2  
𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥4

+ 𝐿𝐿𝑐𝑐2 �𝜉𝜉1 +
𝐿𝐿𝑙𝑙2

𝐿𝐿𝑐𝑐2
��(𝑁𝑁𝑈𝑈 + 𝑁𝑁𝐻𝐻)

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

− 𝑞𝑞𝑧𝑧� − (𝑀𝑀𝑈𝑈 + 𝑀𝑀𝐻𝐻) 
(4.33) 

equipped with standard boundary conditions (Eqs. 4.24 and 4.25) together with 

aforementioned constitutive boundary conditions at the ends of FG nanobeam given 

by Eqs. 4.28 and 4.29. 

- Hygrothermal Local/Nonlocal Strain Gradient model of elasticity 

(L/NStrainGH) 

Now, reference is made to the set of differential constitutive law of the L/NStrainG 

model, previously developed in §3.1.2.: 

𝜕𝜕𝑥𝑥𝑥𝑥 − 𝐿𝐿𝑐𝑐2  
𝜕𝜕2𝜕𝜕𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥2

= 𝐸𝐸𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 − 𝐸𝐸𝐿𝐿𝑐𝑐2 �𝜉𝜉1 +
𝐿𝐿𝑙𝑙2

𝐿𝐿𝑐𝑐2
�
𝜕𝜕2𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙

𝜕𝜕𝑥𝑥2
 (4.34) 

𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥 (0) 
𝜕𝜕𝑥𝑥

− 1
𝐿𝐿𝑐𝑐
𝜕𝜕𝑥𝑥𝑥𝑥 (0) =  −𝐸𝐸 𝜉𝜉1

𝐿𝐿𝑐𝑐
𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 (0) + 𝐸𝐸 �𝜉𝜉1 + 𝐿𝐿𝑒𝑒

2

𝐿𝐿𝑐𝑐2
�  𝜕𝜕𝜀𝜀𝑥𝑥𝑥𝑥

𝑒𝑒𝑒𝑒 (0)
𝜕𝜕𝑥𝑥

 (4.35) 

𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥 (𝐿𝐿) 
𝜕𝜕𝑥𝑥

+ 1
𝐿𝐿𝑐𝑐
𝜕𝜕𝑥𝑥𝑥𝑥 (𝐿𝐿) =  𝐸𝐸 𝜉𝜉1

𝐿𝐿𝑐𝑐
𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 (𝐿𝐿) + 𝐸𝐸 �𝜉𝜉1 + 𝐿𝐿𝑒𝑒

2

𝐿𝐿𝑐𝑐2
�  𝜕𝜕𝜀𝜀𝑥𝑥𝑥𝑥

𝑒𝑒𝑒𝑒 (𝐿𝐿)
𝜕𝜕𝑥𝑥

 (4.36) 

 

By repeating the same steps developed in the previous paragraph related to the 

stress gradient formulation, the following “L/NStrainGH” ordinary differential 

governing equation are obtained: 
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−𝐼𝐼𝐸𝐸
𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥4

+ 𝐼𝐼𝐸𝐸𝐿𝐿𝑐𝑐2 �𝜉𝜉1 +
𝐿𝐿𝑙𝑙2

𝐿𝐿𝑐𝑐2
�
𝜕𝜕6𝑤𝑤
𝜕𝜕𝑥𝑥6

+ 𝐿𝐿𝑐𝑐2  
𝜕𝜕2

𝜕𝜕𝑥𝑥2 �
(𝑁𝑁𝑈𝑈 + 𝑁𝑁𝐻𝐻)

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

− 𝑞𝑞𝑧𝑧�  

− (𝑁𝑁𝑈𝑈 + 𝑁𝑁𝐻𝐻)
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝑞𝑞𝑧𝑧 = 0 

(4.37) 

which can be solved by prescribing the standard boundary conditions (SBCs) 

expressed by Eqs. 4.24 and 4.25 and the following constitutive ones at 𝑥𝑥 = 0, 𝐿𝐿 

(CBCs): 

𝜕𝜕𝑀𝑀𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝐻𝐻

𝜕𝜕𝑥𝑥
(0) −

𝑀𝑀
𝐿𝐿

𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝐻𝐻

𝐿𝐿𝐻𝐻
(0)

=
𝜉𝜉1
𝐿𝐿𝑐𝑐
�𝐼𝐼𝐸𝐸

𝜕𝜕2𝑤𝑤 
𝜕𝜕𝑥𝑥2

(0) + 𝑀𝑀𝑈𝑈 + 𝑀𝑀𝐻𝐻� − 𝐼𝐼𝐸𝐸 �𝜉𝜉1 +
𝐿𝐿𝑙𝑙2

𝐿𝐿𝑐𝑐2
�
𝜕𝜕3𝑤𝑤 
𝜕𝜕𝑥𝑥3

(0)  

(4.38) 

𝜕𝜕𝑀𝑀𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝐻𝐻

𝜕𝜕𝑥𝑥
(𝐿𝐿) +

𝑀𝑀𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝐻𝐻

𝐿𝐿𝐻𝐻
(𝐿𝐿)

= −
𝜉𝜉1
𝐿𝐿𝑐𝑐
�𝐼𝐼𝐸𝐸

𝜕𝜕2𝑤𝑤 
𝜕𝜕𝑥𝑥2

(𝐿𝐿) + 𝑀𝑀𝑈𝑈 + 𝑀𝑀𝐻𝐻�

− 𝐼𝐼𝐸𝐸 �𝜉𝜉1 +
𝐿𝐿𝑙𝑙2

𝐿𝐿𝑐𝑐2
�
𝜕𝜕3𝑤𝑤 
𝜕𝜕𝑥𝑥3

(𝐿𝐿) 

(4.39) 

where the expression of 𝑀𝑀𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁 = 𝑀𝑀𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁(𝑥𝑥) is reported in the following 

equation: 

𝑀𝑀𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝐻𝐻 = − 𝐼𝐼𝐸𝐸  
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝐼𝐼𝐸𝐸𝐿𝐿𝑐𝑐2 �𝜉𝜉1 +
𝐿𝐿𝑙𝑙2

𝐿𝐿𝑐𝑐2
�
𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥4

+ 𝐿𝐿𝑐𝑐2(𝑁𝑁𝑈𝑈 + 𝑁𝑁𝐻𝐻)
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

− 𝐿𝐿𝑐𝑐2𝑞𝑞𝑧𝑧 − (𝑀𝑀𝑈𝑈 + 𝑀𝑀𝐻𝐻) 

(4.40) 

 

Remark 4.1. 

It's worth observing that when dealing with homogeneous isotropic nanobeams, 

we can derive the governing differential equation and corresponding boundary 

conditions by setting the material gradient index 'n' to either zero or infinity. 

Furthermore, in scenarios where a homogeneous isotropic nanobeam is exposed to 

both uniform temperature and moisture rise, the hygrothermal axial forces 𝑁𝑁�𝑈𝑈 and 𝑁𝑁�𝐻𝐻 

remain constant across the thickness direction (denoted as 'z'). Additionally, the 

hygrothermal bending moments 𝑀𝑀�𝑈𝑈 and 𝑀𝑀�𝐻𝐻 are eliminated from the expressions of the 
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nonlocal stress and strain gradient hygrothermal moments, Eq. 4.33 and Eq. 4.40, 

respectively. Consequently, the associated boundary conditions align with the standard 

ones, often referred to as simplified boundary conditions. Conversely, in the case of 

functionally graded (FG) nanobeams, due to the dependence of Young’s modulus, 

thermal coefficient, and moisture expansion coefficients on the 'z' coordinate, 

hygrothermal moments are generated. Consequently, the original boundary conditions 

must be applied. It's important to note that for both homogeneous isotropic and 

functionally graded nanobeams undergoing heat-conduction, the thermal bending 

moment 𝑀𝑀�𝑈𝑈 remains present in the boundary conditions due to the temperature's 

dependency on the 'z' coordinate (as shown in Eq. 4.7). Hence, even when studying 

homogeneous isotropic nanobeams under heat-conduction, it's essential to use the 

original boundary conditions to consider the influence of the thermal bending moment 

on their mechanical behavior. Finally, in cases where static schemes do not involve 

hygrothermal bending moments in the boundary conditions, like in clamped-clamped 

nanobeams, the results obtained from simplified and original boundary conditions are 

equivalent. Conversely, when hygrothermal bending moments are present in the 

boundary conditions for both FG and homogeneous isotropic nanobeams, as in the 

cases of clamped-pinned and pinned-pinned configurations, relying on simplified 

boundary conditions can lead to inaccurate outcomes. 

  

4.3.2. Static of inflected porous FG nanobeams 

In this section, the dimensionless equations governing the elastic equilibrium of 

L/NStressGH and L/NStrainGH inflected nanobeams are obtained. By introducing the 

following dimensionless quantities: 

𝑥𝑥� =
𝑥𝑥
𝐿𝐿

 𝑤𝑤� =
𝑤𝑤
𝐿𝐿

 𝑤𝑤�∗ =
𝑤𝑤∗

𝐿𝐿
 𝜆𝜆𝑐𝑐 =

𝐿𝐿𝑐𝑐
𝐿𝐿

  

𝜆𝜆𝑙𝑙 =
𝐿𝐿𝑙𝑙
𝐿𝐿

 𝑁𝑁�𝑈𝑈 =
𝑁𝑁𝑈𝑈

𝐼𝐼𝐸𝐸
𝐿𝐿2 𝑁𝑁�𝐻𝐻 =

𝑁𝑁𝐻𝐻

𝐼𝐼𝐸𝐸
𝐿𝐿2 𝑀𝑀�𝑈𝑈 =

𝑀𝑀𝑈𝑈

𝐼𝐼𝐸𝐸
𝐿𝐿 (4.41) 

𝑉𝑉� ∗ =
𝑉𝑉∗

𝐼𝐼𝐸𝐸
𝐿𝐿2 𝑞𝑞�𝑧𝑧 =

 𝑞𝑞𝑧𝑧
𝐼𝐼𝐸𝐸
𝐿𝐿3 𝑀𝑀�𝐻𝐻 =

𝑀𝑀𝑈𝑈

𝐼𝐼𝐸𝐸
𝐿𝐿 𝑀𝑀�∗ =

𝑀𝑀∗

𝐼𝐼𝐸𝐸
𝐿𝐿  

the dimensionless equations of the elastostatic problems associated with L/NStressGH 

and L/NStrainGH inflected beams can be formulated as follows. 
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- Elastostatic problem of L/NStressGH inflected nanobeams 

 

Equilibrium equation 

𝜆𝜆𝑐𝑐2
𝜕𝜕6𝑤𝑤�
𝜕𝜕𝑥𝑥�6

−
𝜕𝜕4𝑤𝑤�
𝜕𝜕𝑥𝑥�4

+ 𝜆𝜆𝑐𝑐2 �𝜉𝜉1 +
𝜆𝜆𝑙𝑙2

𝜆𝜆𝑐𝑐2
�
𝜕𝜕2

𝜕𝜕𝑥𝑥�2 �
�𝑁𝑁�𝑈𝑈 + 𝑁𝑁�𝐻𝐻�

𝜕𝜕2𝑤𝑤�
𝜕𝜕𝑥𝑥�2

− 𝑞𝑞�𝑧𝑧�

− �𝑁𝑁�𝑈𝑈 + 𝑁𝑁�𝐻𝐻�
𝜕𝜕2𝑤𝑤�
𝜕𝜕𝑥𝑥�2

+ 𝑞𝑞�𝑧𝑧 = 0   

(4.42) 

Standard boundary conditions 

𝑤𝑤� = 𝑤𝑤�∗|0,l or 
𝜕𝜕𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻

𝜕𝜕𝑥𝑥
− �𝑁𝑁�𝑈𝑈 + 𝑁𝑁�𝐻𝐻�

𝜕𝜕𝑤𝑤�
𝜕𝜕𝑥𝑥�

= 𝑉𝑉� ∗|0,1 
(4.43) 

𝜕𝜕𝑤𝑤�
𝜕𝜕𝑥𝑥�

=
𝜕𝜕𝑤𝑤�∗

𝜕𝜕𝑥𝑥�
|0,1 or 𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻 = 𝑀𝑀�∗|0,1 (4.44) 

Constitutive boundary conditions 

−
𝜕𝜕3𝑤𝑤�(0)
𝜕𝜕𝑥𝑥�3

+
1
𝜆𝜆𝑐𝑐
𝜕𝜕2𝑤𝑤�(0)
𝜕𝜕𝑥𝑥�2

+
𝑀𝑀�𝑈𝑈 + 𝑀𝑀�𝐻𝐻

𝜆𝜆𝑐𝑐

= −
𝜉𝜉1
𝜆𝜆𝑐𝑐
𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(0) + �𝜉𝜉1 +

𝜆𝜆𝑙𝑙2

𝜆𝜆𝑐𝑐2
�  
𝜕𝜕𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(0)

𝜕𝜕𝑥𝑥�
 

(4.45) 

−
𝜕𝜕3𝑤𝑤�(1)
𝜕𝜕𝑥𝑥�3

−
1
𝜆𝜆𝑐𝑐
𝜕𝜕2𝑤𝑤�(1)
𝜕𝜕𝑥𝑥�2

−
𝑀𝑀�𝑈𝑈 + 𝑀𝑀�𝐻𝐻

𝜆𝜆𝑐𝑐

=  
𝜉𝜉1
𝜆𝜆𝑐𝑐
𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(1) + �𝜉𝜉1 +

𝜆𝜆𝑙𝑙2

𝜆𝜆𝑐𝑐2
�  
𝜕𝜕𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(1)

𝜕𝜕𝑥𝑥�
 

(4.46) 

being 

𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻 = −
𝜕𝜕2𝑤𝑤�
𝜕𝜕𝑥𝑥�2

+ 𝜆𝜆𝑐𝑐2
𝜕𝜕4𝑤𝑤�
𝜕𝜕𝑥𝑥�4

+ 𝜆𝜆𝑐𝑐2 �𝜉𝜉1 +
𝜆𝜆𝑙𝑙2

𝜆𝜆𝑐𝑐2
� ��𝑁𝑁�𝑈𝑈 + 𝑁𝑁�𝐻𝐻�

𝜕𝜕2𝑤𝑤�
𝜕𝜕𝑥𝑥�2

− 𝑞𝑞�𝑧𝑧� − �𝑀𝑀�𝑈𝑈 + 𝑀𝑀�𝐻𝐻� 
(4.47) 
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- Elastostatic problem of L/NStrainG inflected nanobeams 

Equilibrium equation 

−
𝜕𝜕4𝑤𝑤�
𝜕𝜕𝑥𝑥�4

+ 𝜆𝜆𝑐𝑐2 �𝜉𝜉1 +
𝜆𝜆𝑙𝑙2

𝜆𝜆𝑐𝑐2
�
𝜕𝜕6𝑤𝑤�
𝜕𝜕𝑥𝑥�6

+ 𝜆𝜆𝑐𝑐2  
𝜕𝜕2

𝜕𝜕𝑥𝑥�2 �
�𝑁𝑁�𝑈𝑈 + 𝑁𝑁�𝐻𝐻�

𝜕𝜕2𝑤𝑤�
𝜕𝜕𝑥𝑥�2

− 𝑞𝑞�𝑧𝑧�  

− �𝑁𝑁�𝑈𝑈 + 𝑁𝑁�𝐻𝐻�
𝜕𝜕2𝑤𝑤�
𝜕𝜕𝑥𝑥�2

+ 𝑞𝑞�𝑧𝑧 = 0 

(4.48) 

Standard boundary conditions 

𝑤𝑤� = 𝑤𝑤�∗|0,l or 
𝜕𝜕𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝐻𝐻

𝜕𝜕𝑥𝑥
− �𝑁𝑁�𝑈𝑈 + 𝑁𝑁�𝐻𝐻�

𝜕𝜕𝑤𝑤�
𝜕𝜕𝑥𝑥�

= 𝑉𝑉� ∗|0,1 
(4.49) 

𝜕𝜕𝑤𝑤�
𝜕𝜕𝑥𝑥�

=
𝜕𝜕𝑤𝑤�∗

𝜕𝜕𝑥𝑥�
|0,1 or 𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝐻𝐻 = 𝑀𝑀�∗|0,1 (4.50) 

Constitutive boundary conditions 

𝜕𝜕𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝐻𝐻

𝜕𝜕𝑥𝑥�
(0) −

𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝐻𝐻

𝜆𝜆𝑐𝑐
(0)

=
𝜉𝜉1
𝜆𝜆𝑐𝑐
𝜕𝜕2𝑤𝑤�(0)
𝜕𝜕𝑥𝑥�2

− �𝜉𝜉1 +
𝜆𝜆𝑙𝑙2

𝜆𝜆𝑐𝑐2
�
𝜕𝜕3𝑤𝑤�(0)
𝜕𝜕𝑥𝑥�3

 
(4.51) 

𝜕𝜕𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝐻𝐻

𝜕𝜕𝑥𝑥�
(1) +

𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝐻𝐻

𝜆𝜆𝑐𝑐
(1)

= −
𝜉𝜉1
𝜆𝜆𝑐𝑐
𝜕𝜕2𝑤𝑤�(0)
𝜕𝜕𝑥𝑥�2

− �𝜉𝜉1 +
𝜆𝜆𝑙𝑙2

𝜆𝜆𝑐𝑐2
�
𝜕𝜕3𝑤𝑤�(0)
𝜕𝜕𝑥𝑥�3

 
(4.52) 

being 

𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝐻𝐻 = −
𝜕𝜕2𝑤𝑤�
𝜕𝜕𝑥𝑥�2

+ 𝜆𝜆𝑐𝑐2 �𝜉𝜉1 +
𝜆𝜆𝑙𝑙2

𝜆𝜆𝑐𝑐2
�
𝜕𝜕4𝑤𝑤�
𝜕𝜕𝑥𝑥�4

+ 𝜆𝜆𝑐𝑐2�𝑁𝑁�𝑈𝑈 + 𝑁𝑁�𝐻𝐻�
𝜕𝜕2𝑤𝑤�
𝜕𝜕𝑥𝑥�2

− 𝜆𝜆𝑐𝑐2𝑞𝑞�𝑧𝑧

− �𝑀𝑀�𝑈𝑈 + 𝑀𝑀�𝐻𝐻� 
(4.53) 

 

4.3.3. Results and discussion 

In this paragraph, the numerical investigation of FG porous Bernoulli-Euler 

nanobeams, with length L= 10 nm and square cross-section (b=h=0.1L) considering 

two static schemes: a Simply-Supported (S-S) nanobeam and a Doubly-Clamped (C-
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C), both subjected to hygrothermal loadings and a uniformly distributed dimensionless 

load across the complete span, 𝑞𝑞�𝑧𝑧, has been developed for both L/NStressGH and 

L/NStrainGH models of nonlocal elasticity.  

To assess the accuracy and reliability of the proposed approach, in Tables 4.1 and 4.2, 

both the pure nonlocal L/NStrainGH and L/NStressGH dimensionless values (𝜉𝜉1 = 0) 

of the of the midpoint deflection, 𝑤𝑤�(1/2), of the simply supported and doubly clamped 

nanobeam, are summarized varying the nonlocal parameter, 𝜆𝜆𝑐𝑐.  It is worth noting that, 

when the hygrothermal loadings are neglected, and considering 𝑞𝑞�𝑧𝑧 = 1,  the results 

obtained for 𝜆𝜆𝑙𝑙 = 0 coincide with those obtained in [112] and with the results presented 

in [91] for 𝜆𝜆𝑙𝑙 = 0.5. 

 
 
Table 4.1. Simply-Supported FG nanobeam under uniformly distributed load: non-dimensional midpoint deflection 
𝑤𝑤�(1/2), vs. nonlocal parameter 𝜆𝜆𝑐𝑐. Comparison between L/NStressGH and L/NStrainGH, assuming 𝜉𝜉1 = 0.0, 
∆TUTR = ∆THC = 0 and varying 𝜆𝜆𝑙𝑙 in the set (0.0, 0.5).  

 

λc 
 L/NStrainG  L/NStressG 

 λl = 0.0+ Ref. [112] λl = 0.5 Ref. [91]  λl = 0.0+ Ref. [112] λl = 0.5 Ref. [91] 

0.00+  0.01302 0.01302 0.01065 0.01065  0.01302 0.01302 0.04427 0.04427 

0.10  0.01471 0.01471 0.01075 0.01075  0.01207 0.01207 0.03592 0.03592 

0.20  0.01802 0.01802 0.01103 0.01103  0.01038 0.01038 0.02689 0.02689 

0.30  0.02427 0.02427 0.01151 0.01151  0.00888 0.00888 0.02039 0.02039 

0.40  0.03302 0.03302 0.01217 0.01217  0.00768 0.00768 0.01602 0.01602 

0.50  0.04427 0.04427 0.01302 0.01302  0.00674 0.00674 0.01302 0.01302 

 

Table 4.2. Doubly-Clamped FG nanobeam under uniformly distributed load: non-dimensional midpoint deflection 
𝑤𝑤�(1/2), vs. nonlocal parameter 𝜆𝜆𝑐𝑐. Comparison between L/NStressGH and L/NStrainGH, assuming 𝜉𝜉1 = 0.0, 
∆TUTR = ∆THC = 0 and varying 𝜆𝜆𝑙𝑙 in the set (0.0, 0.5).  

 

λc 
 L/NStrainG  L/NStressG 

 λl = 0.0+ Ref. [112] λl = 0.5 Ref. [91]  λl = 0.0+ Ref. [112] λl = 0.5 Ref. [91] 

0.00+  0.00260 0.00260 0.00024 0.00024  0.00260 0.00260 0.01823 0.01823 

0.10  0.00260 0.00260 0.00046 0.00046  0.00148 0.00148 0.01199 0.01199 

0.20  0.00260 0.00260 0.00084 0.00084  0.00078 0.00078 0.00700 0.00700 

0.30  0.00260 0.00260 0.00138 0.00138  0.00045 0.00045 0.00430 0.00430 

0.40  0.00260 0.00260 0.00210 0.00210  0.00029 0.00029 0.00284 0.00284 

0.50  0.00260 0.00260 0.00300 0.00300  0.00020 0.00020 0.00200 0.00200 
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As said before, starting from a reference value of temperature equal to 𝑇𝑇0 =

300 [𝐾𝐾] and an initial value of moisture concentration 𝛥𝛥0 = 0.0 [𝑤𝑤𝑡𝑡. %H2O], both a 

uniform temperature rise and a heat-conduction have been considered in the parametric 

thermo-elastic analysis. In particular, two different values of the uniform temperature 

rise, ΔTUTR = {0,50, 100}[𝐾𝐾] and three heat-conduction scenarios, 

𝛥𝛥𝑇𝑇𝐻𝐻𝐻𝐻 , corresponding to following choices of the bottom and top temperatures: {𝑇𝑇𝑚𝑚 =

300 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]}, {𝑇𝑇𝑚𝑚 = 350 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]} and {𝑇𝑇𝑚𝑚 = 400 [𝐾𝐾],𝑇𝑇c =

300 [𝐾𝐾]} have been taken into account while a moisture rise, Δ𝛥𝛥, is always assumed 

to be equal to 0.1 [𝑤𝑤𝑡𝑡. %H2O]. The convergence of series in Eq. 4.8 has been ensured 

by setting 𝑘𝑘 = 10. A uniform distributed load value 𝑞𝑞𝑧𝑧 = −10 𝑛𝑛𝑁𝑁/𝑛𝑛𝑚𝑚 was considered 

in the analysis. 

Furthermore, the coupled effects of the mixture parameter 𝜉𝜉1, the nonlocal 

parameter, 𝜆𝜆𝑐𝑐, the gradient length parameter, 𝜆𝜆𝑙𝑙 ,  the material gradient index, n, as well 

as of the porosity volume fraction, ζ, on the structural responses exhibited FG 

nanobeams under investigations in terms of absolute value of dimensionless deflection 

are shown in the following figures: 

-  Simply-Supported porous FG nanobeam subjected to a uniformly distributed load 
 

 
(a) 

 

 
(b) 

 
Figures 4.2. Simply-Supported non-porous FG nanobeam under a uniformly distributed load: non-
dimensional midpoint deflection 𝑤𝑤�(1/2) vs. nonlocal parameter 𝜆𝜆𝑐𝑐, with 𝜆𝜆𝑙𝑙 = 0.1, 𝜉𝜉1 = 0.5, 𝑛𝑛 = 1 and 
𝜁𝜁 = 0 evaluated by a uniform temperature rise (a) and a heat-conduction (b) via L/NStrainGH and 
L/NStressGH varying ΔTUTR in the set {0,50, 100}[𝐾𝐾] and for three heat-conduction scenarios, 
𝛥𝛥𝑇𝑇𝐻𝐻𝐻𝐻 , corresponding to following choices of the bottom and top temperatures: {𝑇𝑇𝑚𝑚 = 300 [𝐾𝐾],𝑇𝑇c =
300 [𝐾𝐾]}, {𝑇𝑇𝑚𝑚 = 350 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]} and {𝑇𝑇𝑚𝑚 = 400 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]}. 
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(a) 

 

 
(b) 

 
Figures 4.3. Simply-Supported non-porous FG nanobeam under a uniformly distributed load: absolute 
values of non-dimensional midpoint deflection 𝑤𝑤�(1/2) vs. gradient length parameter 𝜆𝜆𝑙𝑙, with 𝜆𝜆𝑐𝑐 = 0.1, 
𝜉𝜉1 = 0.5, 𝑛𝑛 = 1 and 𝜁𝜁 = 0 evaluated by a uniform temperature rise (a) and a heat-conduction (b) via 
L/NStrainGH and L/NStressGH varying ΔTUTR in the set {0,50, 100}[𝐾𝐾] and for three heat-conduction 
scenarios, 𝛥𝛥𝑇𝑇𝐻𝐻𝐻𝐻 , corresponding to following choices of the bottom and top temperatures:{𝑇𝑇𝑚𝑚 =
300 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]}, {𝑇𝑇𝑚𝑚 = 350 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]} and {𝑇𝑇𝑚𝑚 = 400 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]}. 

 

 
(a) 

 

 
(b) 

 
Figures 4.4. Simply-Supported non-porous FG nanobeam under a uniformly distributed load: absolute 
values of non-dimensional midpoint deflection 𝑤𝑤�(1/2) vs. mixture parameter 𝜉𝜉1, with 𝜆𝜆𝑐𝑐 = 0.1, 𝜆𝜆𝑙𝑙 = 0.1, 
𝑛𝑛 = 1 and 𝜁𝜁 = 0 evaluated by a uniform temperature rise (a) and a heat-conduction (b) via L/NStrainGH 
and L/NStressGH varying ΔTUTR in the set {0,50, 100}[𝐾𝐾] and for three heat-conduction scenarios, 
𝛥𝛥𝑇𝑇𝐻𝐻𝐻𝐻 , corresponding to following choices of the bottom and top temperatures: {𝑇𝑇𝑚𝑚 = 300 [𝐾𝐾],𝑇𝑇c =
300 [𝐾𝐾]}, {𝑇𝑇𝑚𝑚 = 350 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]} and {𝑇𝑇𝑚𝑚 = 400 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]}. 
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(a) 

 

 
(b) 

 
Figures 4.5. Absolute value of dimensionless deflection, 𝑤𝑤� , for a non-porous Simply-Supported FG 
nanobeam with 𝜉𝜉1 = 0.5, 𝜆𝜆𝑐𝑐 = 0.1, 𝜆𝜆𝑙𝑙 = 0.1 and 𝜁𝜁 = 0 evaluated by a uniform temperature rise (a) and a 
heat-conduction (b) via L/NStressGH varying n in the set {1,3,5} ΔTUTR in the set {0, 50, 100}[𝐾𝐾] and for 
three heat-conduction scenarios, 𝛥𝛥𝑇𝑇𝐻𝐻𝐻𝐻 , corresponding to following choices of the bottom and top 
temperatures: {𝑇𝑇𝑚𝑚 = 300 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]}, {𝑇𝑇𝑚𝑚 = 350 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]} and {𝑇𝑇𝑚𝑚 = 400 [𝐾𝐾],𝑇𝑇c =
300 [𝐾𝐾]}. 

 

 

 

 
(a) 

 

 
(b) 

 
Figures 4.6. Absolute value of dimensionless deflection, 𝑤𝑤� , for a non-porous Simply-Supported FG 
nanobeam with 𝜉𝜉1 = 0.5, 𝜆𝜆𝑐𝑐 = 0.1, 𝜆𝜆𝑙𝑙 = 0.1, 𝑛𝑛 = 1 and 𝜁𝜁 = 0 evaluated by a uniform temperature rise (a) 
and a heat-conduction (b) via L/NStrainGH varying ΔTUTR in the set {0, 50, 100}[𝐾𝐾] and for three heat-
conduction scenarios, 𝛥𝛥𝑇𝑇𝐻𝐻𝐻𝐻 , corresponding to following choices of the bottom and top temperatures: {𝑇𝑇𝑚𝑚 =
300 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]}, {𝑇𝑇𝑚𝑚 = 350 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]} and {𝑇𝑇𝑚𝑚 = 400 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]}. 

 

 
(a) 
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(b) 

 
Figures 4.7. Absolute value of dimensionless deflection, 𝑤𝑤� , for a non-porous and porous Simply-Supported 
FG nanobeam with 𝜉𝜉1 = 0.5, 𝜆𝜆𝑐𝑐 = 0.1, 𝜆𝜆𝑙𝑙 = 0.1, evaluated by a uniform temperature rise (a) and a heat-
conduction (b) via L/NStressGH assuming ΔTUTR = 50[𝐾𝐾] and a heat-conduction scenarios, 
𝛥𝛥𝑇𝑇𝐻𝐻𝐻𝐻 , corresponding to following choice of the bottom and top temperatures: {𝑇𝑇𝑚𝑚 = 350 [𝐾𝐾],𝑇𝑇c =
300 [𝐾𝐾]} and varying  n and ζ in the set {1,3,5} and {0,0.1,0.2}, respectively. 

 

 
(a) 

 

 
(b) 

 
Figures 4.8. Absolute value of dimensionless deflection, 𝑤𝑤� , for a non-porous and porous Simply-Supported 
FG nanobeam with 𝜉𝜉1 = 0.5, 𝜆𝜆𝑐𝑐 = 0.1, 𝜆𝜆𝑙𝑙 = 0.1, evaluated by a uniform temperature rise (a) and a heat-
conduction (b) via L/NStrainGH assuming ΔTUTR = 50[𝐾𝐾] and a heat-conduction scenarios, 
𝛥𝛥𝑇𝑇𝐻𝐻𝐻𝐻 , corresponding to following choice of the bottom and top temperatures: {𝑇𝑇𝑚𝑚 = 350 [𝐾𝐾],𝑇𝑇c =
300 [𝐾𝐾]} and varying  n and ζ in the set {1,3,5} and {0,0.1,0.2}, respectively. 
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- Doubly-Clamped porous FG nanobeam subjected to a uniformly distributed load 
 

  
(a) 

 

 
(b) 

 
Figures 4.9. Doubly-Clamped non-porous FG nanobeam under a uniformly distributed load: non-
dimensional midpoint deflection 𝑤𝑤�(1/2) vs. nonlocal parameter 𝜆𝜆𝑐𝑐, with 𝜆𝜆𝑙𝑙 = 0.1, 𝜉𝜉1 = 0.5, 𝑛𝑛 = 1 and 
𝜁𝜁 = 0 evaluated by a uniform temperature rise (a) and a heat-conduction (b) via L/NStrainGH and 
L/NStressGH varying ΔTUTR in the set {0,50, 100}[𝐾𝐾] and for three heat-conduction scenarios, 
𝛥𝛥𝑇𝑇𝐻𝐻𝐻𝐻 , corresponding to following choices of the bottom and top temperatures: {𝑇𝑇𝑚𝑚 = 300 [𝐾𝐾],𝑇𝑇c =
300 [𝐾𝐾]}, {𝑇𝑇𝑚𝑚 = 350 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]} and {𝑇𝑇𝑚𝑚 = 400 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]}. 

 

 
(a) 

 

 
(b) 

 
Figures 4.10. Doubly-Clamped non-porous FG nanobeam under a uniformly distributed load: absolute 
values of non-dimensional midpoint deflection 𝑤𝑤�(1/2) vs. gradient length parameter 𝜆𝜆𝑙𝑙, with 𝜆𝜆𝑐𝑐 = 0.1, 
𝜉𝜉1 = 0.5, 𝑛𝑛 = 1 and 𝜁𝜁 = 0 evaluated by a uniform temperature rise (a) and a heat-conduction (b) via 
L/NStrainGH and L/NStressGH varying ΔTUTR in the set {0,50, 100}[𝐾𝐾] and for three heat-conduction 
scenarios, 𝛥𝛥𝑇𝑇𝐻𝐻𝐻𝐻 , corresponding to following choices of the bottom and top temperatures:{𝑇𝑇𝑚𝑚 =
300 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]}, {𝑇𝑇𝑚𝑚 = 350 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]} and {𝑇𝑇𝑚𝑚 = 400 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]}. 
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(a) 

 

 
(b) 

 
Figures 4.11. Doubly-Clamped non-porous FG nanobeam under a uniformly distributed load: absolute 
values of non-dimensional midpoint deflection 𝑤𝑤�(1/2) vs. mixture parameter 𝜉𝜉1, with 𝜆𝜆𝑐𝑐 = 0.1, 𝜆𝜆𝑙𝑙 = 0.1, 
𝑛𝑛 = 1 and 𝜁𝜁 = 0 evaluated by a uniform temperature rise (a) and a heat-conduction (b) via L/NStrainGH 
and L/NStressGH varying ΔTUTR in the set {0,50, 100}[𝐾𝐾] and for three heat-conduction scenarios, 
𝛥𝛥𝑇𝑇𝐻𝐻𝐻𝐻 , corresponding to following choices of the bottom and top temperatures: {𝑇𝑇𝑚𝑚 = 300 [𝐾𝐾],𝑇𝑇c =
300 [𝐾𝐾]}, {𝑇𝑇𝑚𝑚 = 350 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]} and {𝑇𝑇𝑚𝑚 = 400 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]}. 

 

 
(a) 

 

 
(b) 

 
Figures 4.12. Absolute value of dimensionless deflection, 𝑤𝑤� , for a non-porous Doubly-Clamped FG 
nanobeam with 𝜉𝜉1 = 0.5, 𝜆𝜆𝑐𝑐 = 0.1, 𝜆𝜆𝑙𝑙 = 0.1 and 𝜁𝜁 = 0 evaluated by a uniform temperature rise (a) and a 
heat-conduction (b) via L/NStressGH varying n in the set {1,3,5} ΔTUTR in the set {0, 50, 100}[𝐾𝐾] and for 
three heat-conduction scenarios, 𝛥𝛥𝑇𝑇𝐻𝐻𝐻𝐻 , corresponding to following choices of the bottom and top 
temperatures: {𝑇𝑇𝑚𝑚 = 300 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]}, {𝑇𝑇𝑚𝑚 = 350 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]} and {𝑇𝑇𝑚𝑚 = 400 [𝐾𝐾],𝑇𝑇c =
300 [𝐾𝐾]}. 
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(a) 

 

 
(b) 

 
Figures 4.13. Absolute value of dimensionless deflection, 𝑤𝑤� , for a non-porous Doubly-Clamped FG 
nanobeam with 𝜉𝜉1 = 0.5, 𝜆𝜆𝑐𝑐 = 0.1, 𝜆𝜆𝑙𝑙 = 0.1, 𝑛𝑛 = 1 and 𝜁𝜁 = 0 evaluated by a uniform temperature rise (a) 
and a heat-conduction (b) via L/NStrainGH varying ΔTUTR in the set {0, 50, 100}[𝐾𝐾] and for three heat-
conduction scenarios, 𝛥𝛥𝑇𝑇𝐻𝐻𝐻𝐻 , corresponding to following choices of the bottom and top temperatures: {𝑇𝑇𝑚𝑚 =
300 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]}, {𝑇𝑇𝑚𝑚 = 350 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]} and {𝑇𝑇𝑚𝑚 = 400 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]}. 

 

 
(a) 

 

 
(b) 

 
Figures 4.14. Absolute value of dimensionless deflection, 𝑤𝑤� , for a non-porous and porous Doubly-Clamped 
FG nanobeam with 𝜉𝜉1 = 0.5, 𝜆𝜆𝑐𝑐 = 0.1, 𝜆𝜆𝑙𝑙 = 0.1, evaluated by a uniform temperature rise (a) and a heat-
conduction (b) via L/NStressGH assuming ΔTUTR = 50[𝐾𝐾] and a heat-conduction scenarios, 
𝛥𝛥𝑇𝑇𝐻𝐻𝐻𝐻 , corresponding to following choice of the bottom and top temperatures: {𝑇𝑇𝑚𝑚 = 350 [𝐾𝐾],𝑇𝑇c =
300 [𝐾𝐾]} and varying  n and ζ in the set {1,3,5} and {0,0.1,0.2}, respectively. 
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(a) 

 

 
(b) 

 
Figures 4.15. Absolute value of dimensionless deflection, 𝑤𝑤� , for a non-porous and porous Doubly-Clamped 
FG nanobeam with 𝜉𝜉1 = 0.5, 𝜆𝜆𝑐𝑐 = 0.1, 𝜆𝜆𝑙𝑙 = 0.1, evaluated by a uniform temperature rise (a) and a heat-
conduction (b) via L/NStrainGH assuming ΔTUTR = 50[𝐾𝐾] and a heat-conduction scenarios, 
𝛥𝛥𝑇𝑇𝐻𝐻𝐻𝐻 , corresponding to following choice of the bottom and top temperatures: {𝑇𝑇𝑚𝑚 = 350 [𝐾𝐾],𝑇𝑇c =
300 [𝐾𝐾]} and varying  n and ζ in the set {1,3,5} and {0,0.1,0.2}, respectively. 
 
From the curves plotted in Figures 4.2-4.4 and Figures 4.9-4.11, it is interesting to 

underline that stress-driven and strain-driven hygrothermal local/nonlocal gradient 

theories are able to simulate both a softening and stiffening size-dependent structural 

response of inflected nanobeams with internal uniform porosity under hygro-thermo-

mechanical loadings. A softening response is exhibited by L/NStrainGH formulation 

when increasing the nonlocal parameter, 𝜆𝜆𝑐𝑐, (see Figures 4.2 and 4.9) and a stiffening 

behavior is observed when increasing the gradient length parameter, 𝜆𝜆𝑙𝑙 (see Figures 

4.3 and 4.10) and the mixture parameter 𝜉𝜉1 (see Figures 4.4 and 4.11). On the contrary, 

a stiffening response is exhibited by L/NStressGH theory when increasing the nonlocal 

parameter, 𝜆𝜆𝑐𝑐 (see Figures 4.2 and 4.9) and a softening behavior is observed when 

increasing the gradient length parameter, 𝜆𝜆𝑙𝑙 (see Figures 4.3 and 4.10) and the mixture 

parameter 𝜉𝜉1 (see Figures 4.4 and 4.11). Furthermore, from Figures 4.5, 4.6 and 

Figures 4.12, 4.13, it can be noted that an increase in the material gradient index always 

leads to an increase in the dimensionless deflection. In addition, the graphs of Figures 

4.2-4.6 together with in Figures 4.9-4.13 show that an increase in temperature always 

leads to a softening behavior due to an abatement of the mechanical properties of the 
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FG material. Moreover, as was to be expected from figures 4.7,4.8 together with 

Figures 4.14,4.15, an increase in the porosity volume fraction always provides, for 

both elasticity models, an increase in dimensionless deflections. Finally, in the case 

studies examined, the curves relating to the uniform temperature rise always show 

higher values than those obtained by heat-conduction. 

 
4.3.4. Summary and conclusions 

It was analyzed the bending response of a non-porous and porous Bernoulli-Euler 

FG nanobeam subjected to hygro-thermo-mechanical loadings using both 

hygrothermal local/nonlocal stress-driven and strain-driven gradient formulations. The 

governing equations were derived by using the virtual work principle. A Wolfram 

language code in Mathematica was then written to carry out a parametric investigation 

for different boundary conditions including Simply-Supported and Doubly-Clamped 

configurations.  

A parametric investigation on the structural bending behavior of FG nanobeams 

varying the nonlocal parameter, the gradient length parameter, the hygro-thermo-

mechanical loadings and the mixture parameter of both local/nonlocal hygrothermal 

strain- (L/NStrainGH) and stress- gradient (L/NStressGH) formulations was 

presented. 

From the above investigation, we can draw some conclusions as follows: 

 increasing the porosity volume fraction, the gradient index and the thermal rise 

reduces the bending and axial stiffnesses of the FG nanobeam with it generally 

leading to an increase in bending flexibility; 

 a softening response has been exhibited by L/NStrainGH formulation when 

increasing the nonlocal parameter and a stiffening behavior is observed when 

increasing the gradient length parameter and the mixture parameter; 

 a stiffening behavior is exhibited by L/NStressGH theory when increasing the 

nonlocal parameter and a softening behavior is observed when increasing the 

gradient length parameter and the mixture parameter; 

 an increase in material gradient index and porosity volume fraction always 

leads to an increase in the dimensionless deflection; 
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 upon increasing the temperature always leads to an increase in the bending 

deflection of the nanobeams related to a decrease in the bending stiffness due 

to an abatement of the thermos-elastic properties of the non-porous and porous 

FG material; 

 for the cases studies examines, a uniform temperature rise always shows higher 

values than those obtained by heat-conduction. 

The results obtained in the study confirm that hygrothermal stress-driven and 

strain-driven local/nonlocal gradient formulations are able to simulate both a softening 

and stiffening size-dependent structural response of inflected nanobeams with internal 

uniform porosity under severe thermal loadings.  

In conclusion, the proposed approach represents a cost-effective method to capture 

the bending behavior of inflected porous and non-porous functionally graded 

Bernoulli–Euler nanobeams subjected to severe environmental conditions. 

 

4.4. Linear and nonlinear free vibrations analysis of porous FG nanobeams in a 

hygrothermal environment based on L/NStressGH 

In this section, the functionally graded porous nanobeam illustrated in Figure 4.1 

is analyzed to study the dynamic behavior in a hygrothermal environment based on 

hygrothermal local/nonlocal stress gradient model of elasticity introduced in 

previously paragraph.  

Based on Bernoulli-Euler theory, the Cartesian components of the displacement 

field of the FG nanobeam in the elastic coordinate reference system (𝐶𝐶, 𝑥𝑥, y, 𝑧𝑧) can be 

expressed by: 

𝑢𝑢𝑥𝑥(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) − 𝑧𝑧
𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥

(𝑥𝑥, 𝑡𝑡) (4.54) 

𝑢𝑢𝑧𝑧(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝑤𝑤(𝑥𝑥, 𝑡𝑡) (4.55) 

being 𝑢𝑢𝑥𝑥(𝑥𝑥, 𝑧𝑧, 𝑡𝑡), 𝑢𝑢𝑧𝑧(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) the displacement components along x and z directions, 

𝑢𝑢 = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) and 𝑤𝑤 = 𝑤𝑤(𝑥𝑥, 𝑡𝑡) the axial and transverse displacements of the elastic 

centre C, at time t, respectively. 
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According to conventional Von-Kármán geometrical nonlinearity, which includes 

small strains but moderately large rotation, the only nonzero kinematically compatible 

strain is given by: 

ε𝑥𝑥𝑥𝑥 = ε𝑥𝑥𝑥𝑥(𝑥𝑥, 𝑡𝑡) =
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+  
1
2 �
𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥�

2

− 𝑧𝑧
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

 (4.56) 

The nonlinear equations of motion, are derived by using the Hamilton’s principle: 

� 𝛿𝛿(𝛿𝛿 − 𝐾𝐾)
𝑁𝑁2

𝑁𝑁1
𝑑𝑑𝑡𝑡 = 0 (4.57) 

The expression of the virtual strain energy 𝛿𝛿𝛿𝛿 is: 

𝛿𝛿𝛿𝛿 = � �𝜕𝜕𝑥𝑥𝑥𝑥𝛿𝛿𝜀𝜀𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑 𝑑𝑑𝑥𝑥
𝛴𝛴

𝐿𝐿

0
= � �𝑁𝑁

𝜕𝜕𝛿𝛿𝑢𝑢
𝜕𝜕𝑥𝑥

+ 𝑁𝑁
𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥

𝜕𝜕𝛿𝛿𝑤𝑤
𝜕𝜕𝑥𝑥

−𝑀𝑀
𝜕𝜕2𝛿𝛿𝑤𝑤
𝜕𝜕𝑥𝑥2

�
𝐿𝐿

0
𝑑𝑑𝑥𝑥   (4.58) 

where 𝜕𝜕𝑥𝑥𝑥𝑥 = 𝜕𝜕𝑥𝑥𝑥𝑥(𝑧𝑧,𝑇𝑇) = 𝐸𝐸(𝑧𝑧,𝑇𝑇)𝜀𝜀𝑥𝑥𝑥𝑥 = 𝐸𝐸𝜀𝜀𝑥𝑥𝑥𝑥, is the temperature-dependent axial 

stress, while 𝑀𝑀 and 𝑁𝑁 are the moment and axial stress resultant, respectively, defined 

as follows: 

𝑀𝑀 = 𝑀𝑀(𝑥𝑥, 𝑡𝑡) = −𝐼𝐼𝐸𝐸
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

 (4.59) 

𝑁𝑁 = 𝑁𝑁(𝑥𝑥, 𝑡𝑡) =
𝐴𝐴𝐸𝐸
2 �

𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥�

2

 (4.60) 

in which 𝐼𝐼𝐸𝐸 and 𝐴𝐴𝐸𝐸 indicate the bending stiffness and axial stiffness defined in Eq. 2.18 

and Eq. 2.20, respectively; 𝑀𝑀𝑈𝑈 and 𝑀𝑀𝐻𝐻 are the hygrothermal moments previously 

defined. 

In addition, the expression of virtual kinetic energy 𝛿𝛿𝐾𝐾 is defined as follows: 

𝛿𝛿𝐾𝐾 = �� 𝜌𝜌(𝑧𝑧) �
𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑡𝑡

𝜕𝜕𝛿𝛿𝑢𝑢𝑥𝑥
𝜕𝜕𝑡𝑡

+
𝜕𝜕𝑢𝑢𝑧𝑧
𝜕𝜕𝑡𝑡

𝜕𝜕𝛿𝛿𝑢𝑢𝑧𝑧
𝜕𝜕𝑡𝑡

� 𝑑𝑑Σ 𝑑𝑑𝑥𝑥
 Σ

𝐿𝐿

0

= 

=  ��𝐴𝐴𝜌𝜌
𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡
𝜕𝜕𝛿𝛿𝑢𝑢
𝜕𝜕𝑡𝑡

+ 𝐼𝐼𝜌𝜌
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡

𝜕𝜕2𝛿𝛿𝑤𝑤
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡

+ 𝐴𝐴𝜌𝜌
𝜕𝜕𝑤𝑤
𝜕𝜕𝑡𝑡

𝜕𝜕𝛿𝛿𝑤𝑤
𝜕𝜕𝑡𝑡

�𝑑𝑑𝑥𝑥
𝐿𝐿

0

 

(4.61) 

where  𝐴𝐴𝜌𝜌, 𝑆𝑆𝜌𝜌 and 𝐼𝐼𝜌𝜌 are the mass density, couple rotary normal and rotary inertia terms 

defined in Eqs. 2.21-2.23, respectively. 



Chapter 4                                                       Hygrothermal effects on the static and dynamic response  

84 
 

By substituting Eq. 4.58 and Eq. 4.61 into Eq. 4.57, by applying the fundamental 

lemma of calculus of variations we obtain the following equations of motion: 

𝜕𝜕𝑁𝑁
𝜕𝜕𝑥𝑥

= 𝐴𝐴𝜌𝜌
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

− 𝑆𝑆𝜌𝜌
𝜕𝜕3𝑤𝑤
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2

 (4.62) 

𝜕𝜕2𝑀𝑀
𝜕𝜕𝑥𝑥2

+
𝜕𝜕
𝜕𝜕𝑥𝑥 �

𝑁𝑁
𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥�

= 𝐴𝐴𝜌𝜌
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2

+ 𝑆𝑆𝜌𝜌
𝜕𝜕3𝑢𝑢
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2

− 𝐼𝐼𝜌𝜌
𝜕𝜕4𝑤𝑤

𝜕𝜕𝑥𝑥2𝜕𝜕𝑡𝑡2
 (4.63) 

with the natural or standard boundary conditions (SBCs) (at 𝑥𝑥 = 0, 𝐿𝐿) expressed as: 

𝑢𝑢 = 𝑢𝑢∗|0,𝐿𝐿 or 𝑁𝑁 = 𝑁𝑁∗|0,𝐿𝐿 (4.64) 

𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝑤𝑤∗

𝜕𝜕𝑥𝑥
|0,𝐿𝐿 or 𝑀𝑀 = 𝑀𝑀∗|0,𝐿𝐿 (4.65) 

𝑤𝑤 = 𝑤𝑤∗|0,𝐿𝐿 or 
𝜕𝜕𝑀𝑀
𝜕𝜕𝑥𝑥

+ (𝑁𝑁 − 𝑁𝑁𝑈𝑈 − 𝑁𝑁𝐻𝐻)
𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥

+ 𝐼𝐼𝜌𝜌
𝜕𝜕3𝑤𝑤
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2

= 𝑉𝑉∗|0,𝐿𝐿 
(4.66) 

being 𝑀𝑀∗ and 𝑉𝑉∗ assigned moment and vertical force acting at the nanobeam ends, 

respectively, and 𝑢𝑢∗,𝑤𝑤∗ an assigned horizontal and vertical displacements at the 

nanobeam ends, respectively. 

As shown in §3.1.1., by using the local/nonlocal stress gradient model of elasticity, 

the elastic axial strain, 𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 , can be expressed by the following differential equation: 

𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 − 𝐿𝐿𝑐𝑐2  
𝜕𝜕2𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙

𝜕𝜕𝑥𝑥2
=
𝜕𝜕𝑥𝑥𝑥𝑥
𝐸𝐸

−
𝐿𝐿𝑐𝑐2

𝐸𝐸
�𝜉𝜉1 +

𝐿𝐿𝑙𝑙2

𝐿𝐿𝑐𝑐2
�

 𝜕𝜕2𝜕𝜕𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥2

 (4.67) 

with the following two pairs of constitutive boundary conditions (CBCs) are satisfied 

at the nanobeam ends: 

𝜕𝜕𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 (0,𝑁𝑁)
𝜕𝜕𝑥𝑥

− 1
𝐿𝐿𝑐𝑐
𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 (0, 𝑡𝑡) =  − 1

𝐸𝐸
𝜉𝜉1
𝐿𝐿𝑐𝑐
𝜕𝜕𝑥𝑥𝑥𝑥(0, 𝑡𝑡) + 1

𝐸𝐸
�𝜉𝜉1 + 𝐿𝐿𝑒𝑒

2

𝐿𝐿𝑐𝑐2
� 𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥(0,𝑁𝑁)

𝜕𝜕𝑥𝑥
  (4.68) 

𝜕𝜕𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 (𝐿𝐿,𝑁𝑁)
𝜕𝜕𝑥𝑥

+ 1
𝐿𝐿𝑐𝑐
𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 (𝐿𝐿, 𝑡𝑡) =  1

𝐸𝐸
𝜉𝜉1
𝐿𝐿𝑐𝑐
𝜕𝜕𝑥𝑥𝑥𝑥(𝐿𝐿, 𝑡𝑡) + 1

𝐸𝐸
�𝜉𝜉1 + 𝐿𝐿𝑒𝑒

2

𝐿𝐿𝑐𝑐2
� 𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥(𝐿𝐿,𝑁𝑁)

𝜕𝜕𝑥𝑥
  (4.69) 

In hygrothermal environment, the elastic axial strain, 𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 , is expressed as the 

difference between the total strain, 𝜀𝜀𝑥𝑥𝑥𝑥, and the non-elastic axial strain, ε𝑥𝑥𝑥𝑥∗  = 𝛼𝛼 ∆𝑇𝑇 +

𝛽𝛽∆𝛥𝛥: 

ε𝑥𝑥𝑥𝑥𝑒𝑒𝑙𝑙 = 𝜀𝜀𝑥𝑥𝑥𝑥 − ε𝑥𝑥𝑥𝑥∗      (4.70) 
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By manipulating Eq. 4.56 with Eq. 4.70 and substituting into Eqs. 4.67-4.69 then 

multiplying by (1, z), the integration over the nanobeam cross section provides the 

following L/NStressGH equations in terms of displacements: 

𝐴𝐴𝐸𝐸 �
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+
1
2 �
𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥�

2

� − 𝐴𝐴𝐸𝐸𝐿𝐿𝑐𝑐2
𝜕𝜕2

𝜕𝜕𝑥𝑥2
�
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+
1
2 �
𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥�

2

� − (𝑁𝑁𝑈𝑈 + 𝑁𝑁𝐻𝐻)

=  𝑁𝑁𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻 − 𝐿𝐿𝑐𝑐2 �𝜉𝜉1 +
𝐿𝐿𝑙𝑙2

𝐿𝐿𝑐𝑐2
�

 𝜕𝜕2𝑁𝑁𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻

𝜕𝜕𝑥𝑥2
 

(4.71) 

− 𝐼𝐼𝐸𝐸
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝐼𝐼𝐸𝐸𝐿𝐿𝑐𝑐2  
𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥4

− (𝑀𝑀𝑈𝑈 + 𝑀𝑀𝐻𝐻)

= 𝑀𝑀𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻 − 𝐿𝐿𝑐𝑐2 �𝜉𝜉1 +
𝐿𝐿𝑙𝑙2

𝐿𝐿𝑐𝑐2
�

 𝜕𝜕2𝑀𝑀𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻

𝜕𝜕𝑥𝑥2
 

(4.72) 

with the corresponding constitutive boundary conditions: 

𝜕𝜕
𝜕𝜕𝑥𝑥

�
𝜕𝜕𝑢𝑢(0, 𝑡𝑡)
𝜕𝜕𝑥𝑥

+
1
2 �
𝜕𝜕𝑤𝑤(0, 𝑡𝑡)
𝜕𝜕𝑥𝑥 �

2

� −
𝐴𝐴𝐸𝐸
𝐿𝐿𝑐𝑐
�
𝜕𝜕𝑢𝑢(0, 𝑡𝑡)
𝜕𝜕𝑥𝑥

+
1
2 �
𝜕𝜕𝑤𝑤(0, 𝑡𝑡)
𝜕𝜕𝑥𝑥 �

2

�

+
𝑁𝑁𝑈𝑈 + 𝑁𝑁𝐻𝐻

𝐿𝐿𝑐𝑐

= −
𝜉𝜉1
𝐿𝐿𝑐𝑐
𝑁𝑁𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(0, 𝑡𝑡) + �𝜉𝜉1 +

𝐿𝐿𝑙𝑙2

𝐿𝐿𝑐𝑐2
�
𝜕𝜕𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(0, 𝑡𝑡)

𝜕𝜕𝑥𝑥
 

(4.73) 

𝐴𝐴𝐸𝐸
𝜕𝜕
𝜕𝜕𝑥𝑥

�
𝜕𝜕𝑢𝑢(𝐿𝐿, 𝑡𝑡)
𝜕𝜕𝑥𝑥

+
1
2 �
𝜕𝜕𝑤𝑤(𝐿𝐿, 𝑡𝑡)
𝜕𝜕𝑥𝑥 �

2

� +
𝐴𝐴𝐸𝐸
𝐿𝐿𝑐𝑐
�
𝜕𝜕𝑢𝑢(𝐿𝐿, 𝑡𝑡)
𝜕𝜕𝑥𝑥

+
1
2 �
𝜕𝜕𝑤𝑤(𝐿𝐿, 𝑡𝑡)
𝜕𝜕𝑥𝑥 �

2

�

−
𝑁𝑁𝑈𝑈 + 𝑁𝑁𝐻𝐻

𝐿𝐿𝑐𝑐

=
𝜉𝜉1
𝐿𝐿𝑐𝑐
𝑁𝑁𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(𝐿𝐿, 𝑡𝑡) + �𝜉𝜉1 +

𝐿𝐿𝑙𝑙2

𝐿𝐿𝑐𝑐2
�
𝜕𝜕𝑁𝑁𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(𝐿𝐿, 𝑡𝑡)

𝜕𝜕𝑥𝑥
 

(4.74) 

− 𝐼𝐼𝐸𝐸
𝜕𝜕3𝑤𝑤(0, 𝑡𝑡)
𝜕𝜕𝑥𝑥3

+
𝐼𝐼𝐸𝐸
𝐿𝐿𝑐𝑐
𝜕𝜕2𝑤𝑤(0, 𝑡𝑡)
𝜕𝜕𝑥𝑥2

+
𝑀𝑀𝑈𝑈 + 𝑀𝑀𝐻𝐻

𝐿𝐿𝑐𝑐

= −  
𝜉𝜉1
𝐿𝐿𝑐𝑐
𝑀𝑀𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(0, 𝑡𝑡)

+ �𝜉𝜉1 +
𝐿𝐿𝑙𝑙2

𝐿𝐿𝑐𝑐2
�  
𝜕𝜕𝑀𝑀𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(0, 𝑡𝑡)

𝜕𝜕𝑥𝑥
 

(4.75) 
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− 𝐼𝐼𝐸𝐸
𝜕𝜕3𝑤𝑤(𝐿𝐿, 𝑡𝑡)
𝜕𝜕𝑥𝑥3

−
𝐼𝐼𝐸𝐸
𝐿𝐿𝑐𝑐
𝜕𝜕2𝑤𝑤(𝐿𝐿, 𝑡𝑡)
𝜕𝜕𝑥𝑥2

−
𝑀𝑀𝑈𝑈 + 𝑀𝑀𝐻𝐻

𝐿𝐿𝑐𝑐

=  
𝜉𝜉1
𝐿𝐿𝑐𝑐
𝑀𝑀𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(𝐿𝐿, 𝑡𝑡) + �𝜉𝜉1 +

𝐿𝐿𝑙𝑙2

𝐿𝐿𝑐𝑐2
�  
𝜕𝜕𝑀𝑀𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(𝐿𝐿, 𝑡𝑡)

𝜕𝜕𝑥𝑥
 

(4.76) 

 

in which 𝑁𝑁𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻 = 𝑁𝑁𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(𝑥𝑥, 𝑡𝑡) and 𝑀𝑀𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻 = 𝑀𝑀𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(𝑥𝑥, 𝑡𝑡) 

denote the hygrothermal stress gradient axial force and moment resultants, 

respectively. 

Substituting Eq. 4.62 and Eq. 4.63 into Eq. 4.71 and 4.72, respectively, the 

nonlocal stress gradient hygrothermal axial force and moment resultants can be 

expressed as follows: 

𝑁𝑁𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻 = 𝐴𝐴𝐸𝐸 �
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+
1
2 �
𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥�

2

� − 𝐴𝐴𝐸𝐸𝐿𝐿𝑐𝑐2
𝜕𝜕2

𝜕𝜕𝑥𝑥2
�
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+
1
2 �
𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥�

2

�

+ 𝐿𝐿𝑐𝑐2 �𝜉𝜉1 +
𝐿𝐿𝑙𝑙2

𝐿𝐿𝑐𝑐2
� �𝐴𝐴𝜌𝜌

𝜕𝜕3𝑢𝑢
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2

− 𝑆𝑆𝜌𝜌
𝜕𝜕4𝑤𝑤

𝜕𝜕𝑥𝑥2𝜕𝜕𝑡𝑡2
� − (𝑁𝑁𝑈𝑈 + 𝑁𝑁𝐻𝐻) 

(4.77) 

𝑀𝑀𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻 = − 𝐼𝐼𝐸𝐸
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝐼𝐼𝐸𝐸𝐿𝐿𝑐𝑐2  
𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥4

+ 𝐿𝐿𝑐𝑐2 �𝜉𝜉1 +
𝐿𝐿𝑙𝑙2

𝐿𝐿𝑐𝑐2
� �𝐴𝐴𝜌𝜌

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2

− 𝐼𝐼𝜌𝜌
𝜕𝜕4𝑤𝑤

𝜕𝜕𝑥𝑥2𝜕𝜕𝑡𝑡2
−
𝜕𝜕
𝜕𝜕𝑥𝑥 �

𝑁𝑁
𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥��

− (𝑀𝑀𝑈𝑈 + 𝑀𝑀𝐻𝐻) 

(4.78) 

 

Remark 4.2. It is supposed a nanobeam with immovable ends (𝑢𝑢|𝑥𝑥=0 = 𝑢𝑢|𝑥𝑥=𝐿𝐿 =

0  𝑎𝑎𝑛𝑛𝑑𝑑 𝑤𝑤|𝑥𝑥=0 = 𝑤𝑤|𝑥𝑥=𝐿𝐿 = 0); in order to examine the flexural response of system, it 

is assumed that the axial and the axial-rotational inertia terms have insignificant 

influence on the flexural response of system.  

Therefore, Eq. 4.77 can be rewritten as: 

𝑁𝑁𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻 =
𝐴𝐴𝐸𝐸
2 �

𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥�

2

−
𝐴𝐴𝐸𝐸
2
𝐿𝐿𝑐𝑐2

𝜕𝜕2

𝜕𝜕𝑥𝑥2 �
𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥�

2

− (𝑁𝑁𝑈𝑈 + 𝑁𝑁𝐻𝐻)

= 𝑁𝑁� − (𝑁𝑁𝑈𝑈 + 𝑁𝑁𝐻𝐻) 
(4.79) 

in which 
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𝑁𝑁� =
𝐴𝐴𝐸𝐸
2 �

𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥�

2

−
𝐴𝐴𝐸𝐸
2
𝐿𝐿𝑐𝑐2

𝜕𝜕2

𝜕𝜕𝑥𝑥2 �
𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥�

2

= 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑡𝑡. (4.80) 

 

By integrating both sides of Eq. 4.80 over the domain [0, L] yields to the following 

expression: 

𝑁𝑁� =
1
𝐿𝐿

 � �
𝐴𝐴𝐸𝐸
2 �

𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥�

2

−
𝐴𝐴𝐸𝐸
2
𝐿𝐿𝑐𝑐2

𝜕𝜕2

𝜕𝜕𝑥𝑥2 �
𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥�

2

� 𝑑𝑑𝑥𝑥
𝐿𝐿

0
 (4.81) 

which coincides with the “mid-plane stretching effect” [29].  

In addition, by substituting Eq. 4.78 into Eq. 4.63 and taking into account the 

assumption of Eq. 4.81 gives the following L/NStressGH ordinary differential 

governing equations in terms of transverse displacements: 

− 𝐼𝐼𝐸𝐸
𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥4

+ 𝐼𝐼𝐸𝐸𝐿𝐿𝑐𝑐2  
𝜕𝜕6𝑤𝑤
𝜕𝜕𝑥𝑥6

+ 𝐿𝐿𝑐𝑐2 �𝜉𝜉1 +
𝐿𝐿𝑙𝑙2

𝐿𝐿𝑐𝑐2
�
𝜕𝜕2

𝜕𝜕𝑥𝑥2
�𝐴𝐴𝜌𝜌

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2

− 𝐼𝐼𝜌𝜌
𝜕𝜕4𝑤𝑤

𝜕𝜕𝑥𝑥2𝜕𝜕𝑡𝑡2
−
𝜕𝜕
𝜕𝜕𝑥𝑥 �

𝑁𝑁�
𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥�

+ (𝑁𝑁𝑈𝑈 + 𝑁𝑁𝐻𝐻)
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

� +
𝜕𝜕
𝜕𝜕𝑥𝑥 �

𝑁𝑁�
𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥�

− (𝑁𝑁𝑈𝑈 + 𝑁𝑁𝐻𝐻)
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

= 𝐴𝐴𝜌𝜌
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2

− 𝐼𝐼𝜌𝜌
𝜕𝜕4𝑤𝑤

𝜕𝜕𝑥𝑥2𝜕𝜕𝑡𝑡2
 

(4.82) 

which describes the nonlinear transverse free vibrations of porous FG nanobeams in a 

hygrothermal environment. 

By introducing the following dimensionless quantities: 

�̃�𝐴𝜌𝜌 =
𝐴𝐴𝜌𝜌𝐿𝐿4

𝐼𝐼𝐸𝐸
 𝑔𝑔�2 =

1
𝐿𝐿2

𝐼𝐼𝜌𝜌
𝐴𝐴𝜌𝜌

 (4.83) 

in conjunction with those reported in Eq. 4.41, the dimensionless governing equations 

of the nonlinear transverse free vibrations associated with L/NStressGH constitutive 

formulation can be obtained as follows: 
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𝜆𝜆𝑐𝑐2
𝜕𝜕6𝑤𝑤�
𝜕𝜕𝑥𝑥�6

−
𝜕𝜕4𝑤𝑤�
𝜕𝜕𝑥𝑥�4

+ �̃�𝐴𝜌𝜌𝜆𝜆𝑐𝑐2 �𝜉𝜉1 +
𝜆𝜆𝑙𝑙2

𝜆𝜆𝑐𝑐2
� �

𝜕𝜕4𝑤𝑤�
𝜕𝜕𝑥𝑥�2𝜕𝜕𝑡𝑡2

− g�2
𝜕𝜕6𝑤𝑤�

𝜕𝜕𝑥𝑥�4𝜕𝜕𝑡𝑡2
�

+ 𝜆𝜆𝑐𝑐2 �𝜉𝜉1 +
𝜆𝜆𝑙𝑙2

𝜆𝜆𝑐𝑐2
� ��𝑁𝑁�𝑈𝑈 + 𝑁𝑁�𝐻𝐻�

𝜕𝜕4𝑤𝑤�
𝜕𝜕𝑥𝑥�4

− �̃�𝑟2
𝜕𝜕3

𝜕𝜕𝑥𝑥�3 �
𝑁𝑁�
𝜕𝜕𝑤𝑤�
𝜕𝜕𝑥𝑥���

+ �̃�𝑟2
𝜕𝜕
𝜕𝜕𝑥𝑥� �

𝑁𝑁�
𝜕𝜕𝑤𝑤�
𝜕𝜕𝑥𝑥��

− �𝑁𝑁�𝑈𝑈 + 𝑁𝑁�𝐻𝐻�
𝜕𝜕2𝑤𝑤�
𝜕𝜕𝑥𝑥�2

= �̃�𝐴𝜌𝜌 �
𝜕𝜕2𝑤𝑤�
𝜕𝜕𝑡𝑡2

− g�2
𝜕𝜕4𝑤𝑤�

𝜕𝜕𝑥𝑥�2𝜕𝜕𝑡𝑡2
� 

(4.84) 

where: 

𝑁𝑁� = � �
1
2 �
𝜕𝜕𝑤𝑤�
𝜕𝜕𝑥𝑥 ��

2

−
1
2
𝜆𝜆𝑐𝑐2

𝜕𝜕2

𝜕𝜕𝑥𝑥 �2 �
𝜕𝜕𝑤𝑤�
𝜕𝜕𝑥𝑥 ��

2

� 𝑑𝑑𝑥𝑥 �
1

0
 (4.85) 

�̃�𝑟2 =
𝐿𝐿2𝐴𝐴𝐸𝐸
𝐼𝐼𝐸𝐸

 (4.86) 

with the following dimensionless standard boundary conditions at the nanobeam ends: 

𝜕𝜕𝑤𝑤�
𝜕𝜕𝑥𝑥�

=
𝜕𝜕𝑤𝑤�∗

𝜕𝜕𝑥𝑥�
|0,1 or 𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻 = 𝑀𝑀�∗|0,1 (4.87) 

𝑤𝑤� = 𝑤𝑤�∗|0,1 or 𝑉𝑉�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻 = 𝑉𝑉� ∗|0,1 (4.88) 

 

together with the dimensionless constitutive boundary conditions at 𝑥𝑥� = 0,1: 

−  
𝜕𝜕3𝑤𝑤�(0, 𝑡𝑡)
𝜕𝜕𝑥𝑥�3

+
1
𝜆𝜆𝑐𝑐
𝜕𝜕2𝑤𝑤�(0, 𝑡𝑡)
𝜕𝜕𝑥𝑥�2

+
𝑀𝑀�𝑈𝑈 + 𝑀𝑀�𝐻𝐻

𝜆𝜆𝑐𝑐

=  −
𝜉𝜉1
𝜆𝜆𝑐𝑐
𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(0, 𝑡𝑡)

+ �𝜉𝜉1 +
𝜆𝜆𝑙𝑙2

𝜆𝜆𝑐𝑐2
�  
𝜕𝜕𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(0, 𝑡𝑡)

𝜕𝜕𝑥𝑥�
 

 

(4.89) 

−  
𝜕𝜕3𝑤𝑤�(1, 𝑡𝑡)
𝜕𝜕𝑥𝑥�3

−
1
𝜆𝜆𝑐𝑐
𝜕𝜕2𝑤𝑤�(1, 𝑡𝑡)
𝜕𝜕𝑥𝑥�2

−
𝑀𝑀�𝑈𝑈 + 𝑀𝑀�𝐻𝐻

𝜆𝜆𝑐𝑐

=  
𝜉𝜉1
𝜆𝜆𝑐𝑐
𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(1, 𝑡𝑡)

+ �𝜉𝜉1 +
𝜆𝜆𝑙𝑙2

𝜆𝜆𝑐𝑐2
�  
𝜕𝜕𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(1, 𝑡𝑡)

𝜕𝜕𝑥𝑥�
 

(4.90) 
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where 𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻 = 𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(𝑥𝑥�, 𝑡𝑡) and 𝑉𝑉�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻 = 𝑉𝑉�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(𝑥𝑥�, 𝑡𝑡) 

denote the hygrothermal resultant moment and shear force, respectively.  

In addition, the hygrothermal bending moment and shear force in dimensionless 

form can be rewritten as:  

𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻 = −
𝜕𝜕2𝑤𝑤�  
𝜕𝜕𝑥𝑥�2

+ 𝜆𝜆𝑐𝑐2
𝜕𝜕4𝑤𝑤�  
𝜕𝜕𝑥𝑥�4

+ �̃�𝐴𝜌𝜌(𝜆𝜆𝑐𝑐2 𝜉𝜉1 + 𝜆𝜆𝑙𝑙2)�
𝜕𝜕2𝑤𝑤�
𝜕𝜕𝑡𝑡2

− 𝑔𝑔�2
𝜕𝜕4𝑤𝑤�

𝜕𝜕𝑥𝑥�2𝜕𝜕𝑡𝑡2
�

+ (𝜆𝜆𝑐𝑐2 𝜉𝜉1 + 𝜆𝜆𝑙𝑙2)��𝑁𝑁�𝑈𝑈 + 𝑁𝑁�𝐻𝐻�
𝜕𝜕2𝑤𝑤�
𝜕𝜕𝑥𝑥�2�

− �𝑀𝑀�𝑈𝑈 + 𝑀𝑀�𝐻𝐻� 

 

(4.91) 

𝑉𝑉�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻 = −
𝜕𝜕3𝑤𝑤�  
𝜕𝜕𝑥𝑥�3

+ 𝜆𝜆𝑐𝑐2  
𝜕𝜕5𝑤𝑤�  
𝜕𝜕𝑥𝑥�5

+ �̃�𝐴𝜌𝜌(𝜆𝜆𝑐𝑐2𝜉𝜉1 + 𝜆𝜆𝑙𝑙2)�
𝜕𝜕3𝑤𝑤�
𝜕𝜕𝑥𝑥�𝜕𝜕𝑡𝑡2

− 𝑔𝑔�2
𝜕𝜕5𝑤𝑤�

𝜕𝜕𝑥𝑥�3𝜕𝜕𝑡𝑡2

+
𝑔𝑔�2

(𝜆𝜆𝑐𝑐2𝜉𝜉1 + 𝜆𝜆𝑙𝑙2)
𝜕𝜕3𝑤𝑤�
𝜕𝜕𝑥𝑥�𝜕𝜕𝑡𝑡2

�

+ (𝜆𝜆𝑐𝑐2𝜉𝜉1 + 𝜆𝜆𝑙𝑙2)��𝑁𝑁�𝑈𝑈 + 𝑁𝑁�𝐻𝐻�
𝜕𝜕3𝑤𝑤�
𝜕𝜕𝑥𝑥�3

− �̃�𝑟2
𝜕𝜕2

𝜕𝜕𝑥𝑥�2 �
𝑁𝑁�
𝜕𝜕𝑤𝑤�
𝜕𝜕𝑥𝑥���

+ ��̃�𝑟2𝑁𝑁� − 𝑁𝑁�𝑈𝑈 − 𝑁𝑁�𝐻𝐻�
𝜕𝜕𝑤𝑤�
𝜕𝜕𝑥𝑥�

 

(4.92) 

 

It should be noted that by setting the dimensionless term �̃�𝑟2 to zero, on which the 

nonlinear nature of the equations depends, from the previous equation, we obtain the 

linear transverse free vibrations associated with L/NStressGH: 
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𝜆𝜆𝑐𝑐2
𝜕𝜕6𝑤𝑤�
𝜕𝜕𝑥𝑥�6

−
𝜕𝜕4𝑤𝑤�
𝜕𝜕𝑥𝑥�4

+ �̃�𝐴𝜌𝜌𝜆𝜆𝑐𝑐2 �𝜉𝜉1 +
𝜆𝜆𝑙𝑙2

𝜆𝜆𝑐𝑐2
� �

𝜕𝜕4𝑤𝑤�
𝜕𝜕𝑥𝑥�2𝜕𝜕𝑡𝑡2

− g�2
𝜕𝜕6𝑤𝑤�

𝜕𝜕𝑥𝑥�4𝜕𝜕𝑡𝑡2
�

+ 𝜆𝜆𝑐𝑐2 �𝜉𝜉1 +
𝜆𝜆𝑙𝑙2

𝜆𝜆𝑐𝑐2
� �𝑁𝑁�𝑈𝑈 + 𝑁𝑁�𝐻𝐻�

𝜕𝜕4𝑤𝑤�
𝜕𝜕𝑥𝑥�4

− �𝑁𝑁�𝑈𝑈 + 𝑁𝑁�𝐻𝐻�
𝜕𝜕2𝑤𝑤�
𝜕𝜕𝑥𝑥�2

= �̃�𝐴𝜌𝜌 �
𝜕𝜕2𝑤𝑤�
𝜕𝜕𝑡𝑡2

− g�2
𝜕𝜕4𝑤𝑤�

𝜕𝜕𝑥𝑥�2𝜕𝜕𝑡𝑡2
� 

 

(4.93) 

 

4.4.1. Linear free vibrations: solution procedure 

Natural frequencies and mode shapes of flexural vibrations can be evaluated by 

employing the classical separation of the spatial and time variables: 

𝑤𝑤�(𝑥𝑥�, 𝑡𝑡) = 𝛿𝛿� (𝑥𝑥�) 𝑒𝑒𝑁𝑁𝑖𝑖𝑁𝑁 (4.94) 

 

being ω the natural frequency of flexural vibrations. Enforcing the separation of the 

variables Eq. 4.93 to the differential condition of dynamic equilibrium, the following 

dimensionless governing equations of the linear transverse free vibrations based on 

L/NStressGH can be rewritten in terms of non-dimensional spatial shape 𝛿𝛿� = 𝛿𝛿� (𝑥𝑥�) 

as:  

- Dimensionless free vibration equation in terms of spatial mode 

 

𝜆𝜆𝑐𝑐2  
𝜕𝜕6𝛿𝛿�
𝜕𝜕𝑥𝑥�6

+
𝜕𝜕4𝛿𝛿�
𝜕𝜕𝑥𝑥�4

�𝜔𝜔�2 (𝜆𝜆𝑐𝑐2 𝜉𝜉1 + 𝜆𝜆𝑙𝑙2)𝑔𝑔�2 + (𝜆𝜆𝑐𝑐2 𝜉𝜉1 + 𝜆𝜆𝑙𝑙2)�𝑁𝑁�𝑈𝑈 + 𝑁𝑁�𝐻𝐻� − 1�

−
∂2𝛿𝛿�
𝜕𝜕𝑥𝑥�2

�𝜔𝜔�2(𝜆𝜆𝑐𝑐2 𝜉𝜉1 + 𝜆𝜆𝑙𝑙2) + 𝑔𝑔�2𝜔𝜔�2 + �𝑁𝑁�𝑈𝑈 + 𝑁𝑁�𝐻𝐻��

+ 𝜔𝜔�2𝛿𝛿� = 0 

(4.95) 

 

- Dimensionless standard boundary conditions in terms of spatial shape 

 

𝜕𝜕𝛿𝛿�
𝜕𝜕𝑥𝑥�

=
𝜕𝜕𝛿𝛿� ∗

𝜕𝜕𝑥𝑥�
|0,1 or 𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻 = 𝑀𝑀�∗|0,1 (4.96) 

𝛿𝛿� = 𝛿𝛿� ∗|0,1 or 𝑉𝑉�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻 = 𝑉𝑉� ∗|0,1 (4.97) 
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- Dimensionless constitutive boundary conditions in terms of spatial shape 

 

−  
𝜕𝜕3𝛿𝛿� (0)
𝜕𝜕𝑥𝑥�3

+
1
𝜆𝜆𝑐𝑐
𝜕𝜕2𝛿𝛿� (0)
𝜕𝜕𝑥𝑥�2

+
𝑀𝑀�𝑈𝑈 + 𝑀𝑀�𝐻𝐻

𝜆𝜆𝑐𝑐

=  −
𝜉𝜉1
𝜆𝜆𝑐𝑐
𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(0)

+ �𝜉𝜉1 +
𝜆𝜆𝑙𝑙2

𝜆𝜆𝑐𝑐2
�  
𝜕𝜕𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(0)

𝜕𝜕𝑥𝑥�  

(4.98) 

−  
𝜕𝜕3𝛿𝛿� (1)
𝜕𝜕𝑥𝑥�3

−
1
𝜆𝜆𝑐𝑐
𝜕𝜕2𝛿𝛿� (1)
𝜕𝜕𝑥𝑥�2

−
𝑀𝑀�𝑈𝑈 + 𝑀𝑀�𝐻𝐻

𝜆𝜆𝑐𝑐

=  
𝜉𝜉1
𝜆𝜆𝑐𝑐
𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(1) + �𝜉𝜉1 +

𝜆𝜆𝑙𝑙2

𝜆𝜆𝑐𝑐2
�  
𝜕𝜕𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻(1)

𝜕𝜕𝑥𝑥�  

(4.99) 

 

- Dimensionless bending moment in terms of spatial shape 

 

𝑀𝑀�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻 = −
𝜕𝜕2𝛿𝛿�  
𝜕𝜕𝑥𝑥�2

+ 𝜆𝜆𝑐𝑐2
𝜕𝜕4𝛿𝛿�  
𝜕𝜕𝑥𝑥�4

+ 𝜔𝜔�2(𝜆𝜆𝑐𝑐2 𝜉𝜉1 + 𝜆𝜆𝑙𝑙2)�𝑔𝑔�2
𝜕𝜕2𝛿𝛿�  
𝜕𝜕𝑥𝑥�2

−𝛿𝛿��

+ (𝜆𝜆𝑐𝑐2 𝜉𝜉1 + 𝜆𝜆𝑙𝑙2)�𝑁𝑁�𝑈𝑈 + 𝑁𝑁�𝐻𝐻�
𝜕𝜕2𝛿𝛿�  
𝜕𝜕𝑥𝑥�2

− �𝑀𝑀�𝑈𝑈 + 𝑀𝑀�𝐻𝐻� 

(4.100) 

 

- Dimensionless shear force in terms of spatial shape 

𝑉𝑉�𝐿𝐿/𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻 = −
𝜕𝜕3𝛿𝛿�   
𝜕𝜕𝑥𝑥�3

+ 𝜆𝜆𝑐𝑐2  
𝜕𝜕5𝛿𝛿�  
𝜕𝜕𝑥𝑥�5

+ 𝜔𝜔�2�𝜆𝜆𝑐𝑐2𝜉𝜉1 + 𝜆𝜆𝑙𝑙2� �𝑔𝑔�2
𝜕𝜕3𝛿𝛿�   
𝜕𝜕𝑥𝑥�3

− �
𝑔𝑔�2

(𝜆𝜆𝑐𝑐2𝜉𝜉1 + 𝜆𝜆𝑙𝑙2) + 1�
𝜕𝜕𝛿𝛿�   
𝜕𝜕𝑥𝑥�

�

+ �𝜆𝜆𝑐𝑐2𝜉𝜉1 + 𝜆𝜆𝑙𝑙2� ��𝑁𝑁�𝑈𝑈 + 𝑁𝑁�𝐻𝐻�
𝜕𝜕3𝛿𝛿�  
𝜕𝜕𝑥𝑥�3

−
𝜕𝜕2

𝜕𝜕𝑥𝑥�2
�𝑁𝑁�

𝜕𝜕𝛿𝛿�  
𝜕𝜕𝑥𝑥�

��

+ �𝑁𝑁� − 𝑁𝑁�𝑈𝑈 − 𝑁𝑁�𝐻𝐻�
𝜕𝜕𝛿𝛿�  
𝜕𝜕𝑥𝑥�  

(4.101) 
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The analytical solution of the governing equation of the flexural spatial mode 

shape Eq. 4.95 can be expressed by: 

𝛿𝛿� (𝑥𝑥�) = �𝑞𝑞𝑘𝑘𝑒𝑒𝑥𝑥� 𝛽𝛽𝑘𝑘

6

𝑘𝑘=1

 (4.102) 

wherein 𝛽𝛽𝑘𝑘 are the roots of the characteristic equation, and 𝑞𝑞𝑘𝑘 are six unknown 

constants to be determined by imposing suitable boundary conditions. Note that, the 

six unknown constants can be obtained by satisfying boundary conditions Eqs. 4.96-

4.99. Lastly, the linear fundamental natural frequencies of a porous FG nanobeam 

consists into solving the eigenvalue problem expressed in terms of a six-dimensional 

array, 𝑞𝑞 = {𝑞𝑞1, . . , 𝑞𝑞6}. It can be noted that the corresponding characteristic equation is 

strongly nonlinear and is numerically solved by using a Wolfram language code written 

by the author in Mathematica. 

 

4.4.2. Higher-order Hamiltonian approach to nonlinear free vibrations: solution 

procedure 

On the basis of the Galerkin method, the transverse displacement function 𝑤𝑤�(𝑥𝑥�, 𝑡𝑡) 

in Eq. 4.84 can be defined by: 

𝑤𝑤�(𝑥𝑥�, 𝑡𝑡)  = �𝛿𝛿𝑁𝑁(𝑥𝑥�) 𝛿𝛿𝑁𝑁(𝑡𝑡)
𝑁𝑁

𝑁𝑁=1

 (4.103) 

where 𝛿𝛿𝑁𝑁(𝑥𝑥�) is the i-th test function which depends on the assigned boundary 

conditions and 𝛿𝛿𝑁𝑁(𝑡𝑡) is the unknown i-th time-dependent coefficient. 

Remark 4.3. In this study, the test function was assumed to be equal to L/NStressGH 

linear mode shape (𝑖𝑖 = 1). 

Thererefore, Eq. 4.103 can be rewritten as: 

𝑤𝑤�(𝑥𝑥�, 𝑡𝑡) = 𝛿𝛿1(𝑥𝑥�) 𝛿𝛿1(𝑡𝑡) (4.104) 

  

- First-order Hamiltonian Approach 
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Based on the First-order Hamiltonian Approach introduced by He in [102], the 

time base function, 𝛿𝛿1(𝑡𝑡), is given by the following approximate cosine solution:  

𝛿𝛿1(𝑡𝑡) = 𝒜𝒜𝑤𝑤𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔1𝑡𝑡) (4.105) 

  

being 𝜔𝜔1 the first nonlinear vibration frequency, 𝒜𝒜𝑤𝑤 the amplitude of the nonlinear 

oscillator; moreover 𝛿𝛿1(𝑥𝑥�) is assumed to be equal to the linear spatial mode based on 

the L/NStressGH model of elasticity: 

𝛿𝛿1(𝑥𝑥�) = 𝑞𝑞1𝑒𝑒−𝑥𝑥�𝛽𝛽1 + 𝑞𝑞2𝑒𝑒𝑥𝑥�𝛽𝛽1 + 𝑞𝑞3𝑒𝑒−𝑥𝑥�𝛽𝛽2 + 𝑞𝑞4𝑒𝑒𝑥𝑥�𝛽𝛽2 + 𝑞𝑞5𝑒𝑒−𝑥𝑥�𝛽𝛽3

+ 𝑞𝑞6𝑒𝑒𝑥𝑥�𝛽𝛽3  
(4.106) 

 

Now, by substituting Eq. 4.105 into Eq. 4.84 and multiplying the resulting 

equation with the fundamental vibration mode 𝛿𝛿1(𝑥𝑥�), then integrating across the 

length of the nanobeam, leads to the following equation: 

𝛿𝛿0 + 𝛿𝛿1𝛿𝛿1(𝑡𝑡) + 𝛿𝛿2𝛿𝛿1
2(𝑡𝑡) + 𝛿𝛿3𝛿𝛿1

3(𝑡𝑡) + 𝛿𝛿1
′′(𝑡𝑡) = 0 (4.107) 

 

where 𝛿𝛿0, 𝛿𝛿1, 𝛿𝛿2 and 𝛿𝛿3 are four coefficients obtained by splitting up the terms.  

Finally, in agreement with Hamiltonian Approach to nonlinear oscillators [103], it 

is easy to establish a variational principle for Eq. 4.107:  

𝛥𝛥 = � �𝛿𝛿0𝛿𝛿1(𝑡𝑡) +
1
2
𝛿𝛿1𝛿𝛿1

2(𝑡𝑡) +
1
3
𝛿𝛿2𝛿𝛿1(𝑡𝑡) +

1
4
𝛿𝛿3𝛿𝛿1(𝑡𝑡)

𝒯𝒯
4�

0

−
1
2
𝛿𝛿1

′(𝑡𝑡)2� 𝑑𝑑𝑡𝑡 

(4.108) 

 

where 𝒯𝒯 is period of the nonlinear oscillator. 

The frequency–amplitude relationship can be obtained from the following equation: 

𝜔𝜔1 =
�−48𝛿𝛿0 − 12𝜋𝜋𝒜𝒜𝑤𝑤𝛿𝛿1 − 32𝒜𝒜𝑤𝑤

2 𝛿𝛿2 − 9𝜋𝜋𝒜𝒜𝑤𝑤
3 𝛿𝛿3

2√3𝜋𝜋�𝒜𝒜𝑤𝑤
 (4.109) 
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Note that the linear vibration frequency of a porous FG nanobeam can be 

determined from the previous Eq. 4.109 by setting 𝒜𝒜𝑤𝑤 = 0.  

- Second-order Hamiltonian Approach 

In order to find the Second-order approximate solution and frequency, we assume 

that a Second-order trial solution can be expressed by: 

𝛿𝛿1(𝑡𝑡) = 𝒜𝒜1𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔1𝑡𝑡) + 𝒜𝒜2𝑐𝑐𝑐𝑐𝑠𝑠(3𝜔𝜔1𝑡𝑡) (4.110) 

 

with the following initial condition: 

𝒜𝒜𝑤𝑤 = 𝒜𝒜1 + 𝒜𝒜2 (4.111) 

 

Applying the mathematical resolution method previously introduced for the First-

order Hamiltonian Approach [104], we obtain the following system of equations: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝜕𝜕
𝜕𝜕𝒜𝒜1

�
𝜕𝜕𝛥𝛥

𝜕𝜕 1
𝜔𝜔1

� = 0

𝜕𝜕
𝜕𝜕𝒜𝒜2

�
𝜕𝜕𝛥𝛥

𝜕𝜕 1
𝜔𝜔1

� = 0

 (4.112) 

 

Solving Eq. 4.112 and Eq. 4.111 simultaneously, and assuming Eq. 4.110, one can 

obtain the Second-order solution and the approximate frequency 𝜔𝜔1 according to the 

Hamiltonian Approach. 

- Third-order Hamiltonian Approach 

The accuracy of the results will be further improved by consider the following 

equation as the response of the system: 

𝛿𝛿1(𝑡𝑡) = 𝒜𝒜1𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔1𝑡𝑡) + 𝒜𝒜2𝑐𝑐𝑐𝑐𝑠𝑠(3𝜔𝜔1𝑡𝑡) + 𝒜𝒜3𝑐𝑐𝑐𝑐𝑠𝑠(5𝜔𝜔1𝑡𝑡) (4.113) 

 

where the initial condition is: 
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𝒜𝒜𝑤𝑤 = 𝒜𝒜1 + 𝒜𝒜2 + 𝒜𝒜3 (4.114) 

 

By using the same procedure explained above, the following system of equations 

follows: 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝜕𝜕
𝜕𝜕𝒜𝒜1

�
𝜕𝜕𝛥𝛥

𝜕𝜕 1
𝜔𝜔1

� = 0

𝜕𝜕
𝜕𝜕𝒜𝒜2

�
𝜕𝜕𝛥𝛥

𝜕𝜕 1
𝜔𝜔1

� = 0

𝜕𝜕
𝜕𝜕𝒜𝒜3

�
𝜕𝜕𝛥𝛥

𝜕𝜕 1
𝜔𝜔1

� = 0

 (4.115) 

 

Similarly, by solving Eq. 4.115 simultaneously with Eq. 4.114, the amplitude-

frequency relation up to the Third-order approximation is obtained. 

 

4.4.3. Convergence and comparison study 

In order to validate the accuracy and reliability of the proposed approach, three 

numerical examples are presented in this paragraph. 

To this purpose, both a uniform temperature rise, 𝑇𝑇(𝑧𝑧) = 𝑇𝑇0 + ∆𝑇𝑇, and a moisture 

concentration, 𝛥𝛥(𝑧𝑧) = 𝛥𝛥0 + ∆𝛥𝛥, between the bottom (𝑧𝑧 = −ℎ/2) and the top surface 

(𝑧𝑧 = ℎ/2) of porous FG nanobeam cross-section are considered, being 𝑇𝑇0 = 300 [K] 

and 𝛥𝛥0 = 0 [wt. % H2O] the reference values of the temperature and moisture 

concentration at the bottom surface, respectively, and ∆𝑇𝑇, ∆𝛥𝛥 their increments. 

In the first two comparison examples, the linear normalized frequency ratio 

between the linear (𝒜𝒜𝑤𝑤 = 0) dimensionless nonlocal fundamental frequency, 𝜔𝜔�, and 

the dimensionless local natural frequency, 𝜔𝜔�𝑙𝑙𝑙𝑙𝑐𝑐, of a Clamped-Clamped (C-C) porous 

FG nanobeam in a hygrothermal environment were compared (Tables 4.3, 4.4) with 
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the results obtained by Penna et al. in [27], for 𝜆𝜆𝑐𝑐 = 0.2 and assuming: for 𝜆𝜆𝑙𝑙 =

0.0 or 0.1; ξ1 = 0.0 or 0.5;  𝛥𝛥𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 0, 50, 100 [K];  𝛥𝛥𝛥𝛥 = 2 [wt. % H2O]. 

In the third example (Table 4.5), the present approach is compared with the model 

proposed by Barretta et al. in [113] for a (C-C) porous FG nanobeam in absence of 

hygrothermal loads for 𝜆𝜆𝑙𝑙 = 0.1, varying 𝜆𝜆𝑐𝑐, in the set {0.0+, 0.2, 0.4, 0.6, 0.8, 1.0} and 

assuming ξ1 = 0.0 or 0.5, and the gyration radius, 𝑔𝑔�, equal to 1/20.   

Note that the dimensionless local natural frequency, 𝜔𝜔�𝑙𝑙𝑙𝑙𝑐𝑐, has been obtained 

assuming 𝑛𝑛 = 0, ζ = 0 (pure ceramic), 𝛥𝛥𝑇𝑇 = 𝛥𝛥𝛥𝛥 = 0 and considering a value of the 

non-dimensional gyration radius, 𝑔𝑔�, equal to zero. 

Table 4.3. Linear dimensionless natural frequencies of porous FG Clamped-Clamped (C-C) nanobeam. 

λl 

𝜉𝜉1 = 0.0, 𝒜𝒜𝑤𝑤 = 0, 𝜆𝜆𝑐𝑐 = 0.20 

∆TUTR = 0  ∆TUTR = 50  ∆TUTR = 100 

Present Approach  Ref. [27]  Present Approach  Ref. [27]  Present Approach  Ref. [27] 

0.00 1.83226  1.83226  1.82706  1.82706  1.82313  1.82313 

0.10 1.57333  1.57333  1.56718  1.56718  1.56254  1.56254 

Table 4.4. Linear dimensionless natural frequencies of porous FG Clamped-Clamped (C-C) nanobeam. 

λl 

𝜉𝜉1 = 0.5, 𝒜𝒜𝑤𝑤 = 0, 𝜆𝜆𝑐𝑐 = 0.20 

∆TUTR = 0  ∆TUTR = 50  ∆TUTR = 100 

Present Approach  Ref. [27]  Present Approach  Ref. [27]  Present Approach  Ref. [27] 

0.00 1.23148  1.23148  1.22424  1.22424  1.21876  1.21876 

0.10 1.13883  1.13883  1.13089  1.13089  1.12487  1.12487 
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Table 4.5. Normalized linear fundamental flexural frequency of Clamped-Clamped (C-C) nanobeam for 𝛥𝛥𝑇𝑇 = 𝛥𝛥𝛥𝛥 = 0. 

 𝛥𝛥𝑇𝑇 = 𝛥𝛥𝛥𝛥 = 𝒜𝒜𝑤𝑤 = 0  

𝜔𝜔�
𝜔𝜔�𝑙𝑙𝑙𝑙𝑐𝑐

 
ξ1 = 0.0  ξ1 = 0.5 

λl = 0.1 Ref. [113] λl = 0.3 Ref. [113] λl = 0.5 
Ref. 

[113] 

 
λl = 0.1 Ref. [113] λl = 0.3 Ref. [113] λl = 0.5 Ref. [113] 

0.0+ 0.89165 0.89165 0.52522 0.52522 0.34619 0.34619  0.88416 0.88416 0.52314 0.52314 0.34529 0.34529 

0.2 1.58127 1.58127 0.89822 0.89822 0.58545 0.58545  1.14531 1.14531 0.77938 0.77938 0.54126 0.54126 

0.4 2.57577 2.57577 1.38724 1.38724 0.93713 0.93713  1.28946 1.28946 1.02374 1.02374 0.77625 0.77625 

0.6 3.61940 3.61940 2.01640 2.01640 1.30727 1.30727  1.34633 1.34633 1.16750 1.16750 0.95453 0.95453 

0.8 4.67784 4.67784 2.59796 2.59796 1.68291 1.68291  1.37237 1.37237 1.24944 1.24944 1.07846 1.07846 

1.0 5.74258 5.74258 3.18308 3.18308 2.06089 2.06089  1.38608 1.38608 1.29819 1.29819 1.16320 1.16320 
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4.4.4. Results and discussion 

In this paragraph, the dynamic response of a Clamped-Clamped non-porous and 

porous Bernoulli-Euler FG nanobeam, with length L=10nm and square cross-section 

(b=h=L/10) subjected to a hygrothermal environment is investigated via 

Local/Nonlocal Stress Gradient Hygrothermal formulation here proposed. As said 

before, starting from a reference value of temperature equal to 𝑇𝑇0 = 300 [𝐾𝐾] and an 

initial value of moisture concentration 𝛥𝛥0 = 0.0 [𝑤𝑤𝑡𝑡. %H2O], both a uniform 

temperature rise and a heat-conduction have been considered in the parametric thermo-

elastic analysis. The convergence of series in Eq.6 has been ensured by setting 𝑘𝑘 = 10. 

For greater understanding, below is a brief summary of the tables that collect the 

main results of the parametric analysis. 

In particular, the effects of nonlocal parameter, 𝜆𝜆𝑐𝑐, and the gradient length 

parameter, 𝜆𝜆𝑙𝑙, as well as the mixture parameter, 𝜉𝜉1, on normalized linear fundamental 

flexural frequencies have been summarized in the following Tables 4.6-4.17: 

Table 4.6. Normalized linear fundamental flexural frequency of Clamped-Clamped (C-C) non-porous FG nanobeam 
assuming: 𝒜𝒜𝑤𝑤 = 0.0, 𝜉𝜉1 = 0.0,   𝑛𝑛 = 1, 𝛥𝛥𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 50 [𝐾𝐾] and  𝛥𝛥𝛥𝛥 = 0.1 [wt. % H2O]. 

λ𝑐𝑐 
 𝜔𝜔�/𝜔𝜔�𝑙𝑙𝑙𝑙𝑐𝑐 

 λl = 0.0 λl = 0.01 λl = 0.02 λl = 0.03 λl = 0.04 λl = 0.05 

0.0+  0.98945 0.98980 0.98687 0.98369 0.97927 0.97368 

0.01  1.01062 1.00903 1.00431 0.99659 0.98608 0.97303 

0.02  1.03462 1.03298 1.02812 1.02016 1.00933 0.99589 

0.03  1.06146 1.05977 1.05474 1.04651 1.03532 1.02144 

0.04  1.09110 1.08935 1.08413 1.07562 1.06402 1.04965 

0.05  1.12346 1.12164 1.11623 1.10739 1.09536 1.08045 
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Table 4.7. Normalized linear fundamental flexural frequency of Clamped-Clamped (C-C) non-porous FG nanobeam 
assuming: 𝒜𝒜𝑤𝑤 = 0.0, 𝜉𝜉1 = 0.0,   𝑛𝑛 = 1, 𝛥𝛥𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 100 [𝐾𝐾] and  𝛥𝛥𝛥𝛥 = 0.1 [wt. % H2O]. 

λ𝑐𝑐 
 𝜔𝜔�/𝜔𝜔�𝑙𝑙𝑙𝑙𝑐𝑐 

 λl = 0.0 λl = 0.01 λl = 0.02 λl = 0.03 λl = 0.04 λl = 0.05 

0.0+  0.97952 0.97885 0.97681 0.97345 0.96880 0.96289 

0.01  1.00073 0.99912 0.99434 0.98651 0.97585 0.96263 

0.02  1.02482 1.02316 1.01823 1.01017 0.99919 0.98557 

0.03  1.05179 1.05007 1.04498 1.03666 1.02532 1.01126 

0.04  1.08160 1.07983 1.07456 1.06594 1.05420 1.03965 

0.05  1.11417 1.11233 1.10686 1.09792 1.08575 1.07067 

 

Table 4.8. Normalized linear fundamental flexural frequency of Clamped-Clamped (C-C) non-porous FG nanobeam 
assuming: 𝒜𝒜𝑤𝑤 = 0.0, 𝜉𝜉1 = 0.0,   𝑛𝑛 = 1, 𝛥𝛥𝛥𝛥 = 0.1 [wt. % H2O], 𝛥𝛥𝑇𝑇𝐻𝐻𝐻𝐻  corresponding to 𝑇𝑇𝑚𝑚 = 350 [𝐾𝐾],𝑇𝑇c =
300 [𝐾𝐾]. 

λ𝑐𝑐 
 𝜔𝜔�/𝜔𝜔�𝑙𝑙𝑙𝑙𝑐𝑐 

 λl = 0.0 λl = 0.01 λl = 0.02 λl = 0.03 λl = 0.04 λl = 0.05 

0.0+  0.98988 0.98924 0.98732 0.98414 0.97974 0.97416 

0.01  1.01106 1.00947 1.00475 0.99704 0.98653 0.97349 

0.02  1.03505 1.03342 1.02856 1.02060 1.00977 0.99634 

0.03  1.06188 1.06019 1.05517 1.04965 1.03576 1.02188 

0.04  1.09151 1.08976 1.08455 1.07604 1.06445 1.05009 

0.05  1.12387 1.12205 1.11664 1.10780 1.09578 1.08088 

 

Table 4.9. Normalized linear fundamental flexural frequency of Clamped-Clamped (C-C) non-porous FG nanobeam 
assuming: 𝒜𝒜𝑤𝑤 = 0.0, 𝜉𝜉1 = 0.0,   𝑛𝑛 = 1, 𝛥𝛥𝛥𝛥 = 0.1 [wt. % H2O], 𝛥𝛥𝑇𝑇𝐻𝐻𝐻𝐻  corresponding to 𝑇𝑇𝑚𝑚 = 400 [𝐾𝐾],𝑇𝑇c =
300 [𝐾𝐾]. 

λ𝑐𝑐 
 𝜔𝜔�/𝜔𝜔�𝑙𝑙𝑙𝑙𝑐𝑐 

 λl = 0.0 λl = 0.01 λl = 0.02 λl = 0.03 λl = 0.04 λl = 0.05 

0.0+  0.98546 0.98480 0.98283 0.97957 0.97506 0.96934 

0.01  1.00664 1.00504 1.00030 0.99254 0.98196 0.96885 

0.02  1.03068 1.02903 1.02414 1.01614 1.00525 0.99174 

0.03  1.05756 1.05586 1.05081 1.04255 1.03129 1.01734 

0.04  1.08727 1.08551 1.08028 1.07172 1.06007 1.04562 

0.05  1.11972 1.11789 1.11246 1.10357 1.09149 1.07651 
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Table 4.10. Normalized linear fundamental flexural frequency of Clamped-Clamped (C-C) non-porous FG nanobeam 
assuming: 𝒜𝒜𝑤𝑤 = 0.5, 𝜉𝜉1 = 0.0,   𝑛𝑛 = 1, 𝛥𝛥𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 50 [𝐾𝐾] and  𝛥𝛥𝛥𝛥 = 0.1 [wt. % H2O]. 

λ𝑐𝑐 
 𝜔𝜔�/𝜔𝜔�𝑙𝑙𝑙𝑙𝑐𝑐 

 λl = 0.0 λl = 0.01 λl = 0.02 λl = 0.03 λl = 0.04 λl = 0.05 

0.0+  0.98945 0.98801 0.98687 0.98369 0.97927 0.97368 

0.01  0.99983 0.99829 0.99370 0.98619 0.97597 0.96328 

0.02  1.01114 1.00960 1.00503 0.99754 0.98734 0.97467 

0.03  1.02326 1.02173 1.01717 1.00972 0.99956 0.98693 

0.04  1.03604 1.03452 1.03000 1.02259 1.01248 0.99992 

0.05  1.04934 1.04783 1.04335 1.03600 1.02597 1.01349 

 

Table 4.11. Normalized linear fundamental flexural frequency of Clamped-Clamped (C-C) non-porous FG nanobeam 
assuming: 𝒜𝒜𝑤𝑤 = 0.5, 𝜉𝜉1 = 0.0,   𝑛𝑛 = 1, 𝛥𝛥𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 100 [𝐾𝐾] and  𝛥𝛥𝛥𝛥 = 0.1 [wt. % H2O]. 

λ𝑐𝑐 
 𝜔𝜔�/𝜔𝜔�𝑙𝑙𝑙𝑙𝑐𝑐 

 λl = 0.0 λl = 0.01 λl = 0.02 λl = 0.03 λl = 0.04 λl = 0.05 

0.0+  0.97952 0.97885 0.97681 0.97345 0.96880 0.96289 

0.01  0.98993 0.98836 0.98371 0.97610 0.96573 0.95286 

0.02  1.00128 0.99972 0.99509 0.98750 0.97716 0.96431 

0.03  1.01347 1.01192 1.00731 0.99975 0.98945 0.97665 

0.04  1.02634 1.02480 1.02022 1.01272 1.00248 0.98974 

0.05  1.03974 1.03822 1.03368 1.02624 1.01608 1.00343 

 

Table 4.12. Normalized linear fundamental flexural frequency of Clamped-Clamped (C-C) non-porous FG nanobeam 
assuming: 𝒜𝒜𝑤𝑤 = 0.5, 𝜉𝜉1 = 0.0,   𝑛𝑛 = 1, 𝛥𝛥𝛥𝛥 = 0.1 [wt. % H2O], 𝛥𝛥𝑇𝑇𝐻𝐻𝐻𝐻  corresponding to 𝑇𝑇𝑚𝑚 = 350 [𝐾𝐾],𝑇𝑇c =
300 [𝐾𝐾]. 

λ𝑐𝑐 
 𝜔𝜔�/𝜔𝜔�𝑙𝑙𝑙𝑙𝑐𝑐 

 λl = 0.0 λl = 0.01 λl = 0.02 λl = 0.03 λl = 0.04 λl = 0.05 

0.0+  0.98988 0.98924 0.98732 0.98414 0.97974 0.97416 

0.01  1.00027 0.99872 0.99414 0.98664 0.97462 0.96374 

0.02  1.01157 1.01004 1.00547 0.99799 0.98779 0.97513 

0.03  1.02369 1.02216 1.01761 1.01016 1.00000 0.98738 

0.04  1.03647 1.03495 1.03043 1.02303 1.01293 1.00037 

0.05  1.04976 1.04826 1.04377 1.03643 1.02641 1.01393 
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Table 4.13. Normalized linear fundamental flexural frequency of Clamped-Clamped (C-C) non-porous FG nanobeam 
assuming: 𝒜𝒜𝑤𝑤 = 0.5, 𝜉𝜉1 = 0.0,   𝑛𝑛 = 1, 𝛥𝛥𝛥𝛥 = 0.1 [wt. % H2O], 𝛥𝛥𝑇𝑇𝐻𝐻𝐻𝐻  corresponding to 𝑇𝑇𝑚𝑚 = 400 [𝐾𝐾],𝑇𝑇c =
300 [𝐾𝐾]. 

λ𝑐𝑐 
 𝜔𝜔�/𝜔𝜔�𝑙𝑙𝑙𝑙𝑐𝑐 

 λl = 0.0 λl = 0.01 λl = 0.02 λl = 0.03 λl = 0.04 λl = 0.05 

0.0+  0.98546 0.98480 0.98283 0.97957 0.97506 0.96934 

0.01  0.99584 0.99429 0.98968 0.98214 0.97185 0.95909 

0.02  1.00717 1.00562 1.00103 0.99350 0.98324 0.97050 

0.03  1.01932 1.01778 1.01320 1.00571 0.99549 0.98279 

0.04  1.03214 1.03061 1.02606 1.01862 1.00846 0.99582 

0.05  1.04548 1.04396 1.03945 1.03207 1.02199 1.00944 

 

Table 4.14. Normalized linear fundamental flexural frequency of Clamped-Clamped (C-C) non-porous FG nanobeam 
assuming: 𝒜𝒜𝑤𝑤 = 1.0, 𝜉𝜉1 = 0.0,   𝑛𝑛 = 1, 𝛥𝛥𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 50 [𝐾𝐾] and  𝛥𝛥𝛥𝛥 = 0.1 [wt. % H2O]. 

λ𝑐𝑐 
 𝜔𝜔�/𝜔𝜔�𝑙𝑙𝑙𝑙𝑐𝑐 

 λl = 0.0 λl = 0.01 λl = 0.02 λl = 0.03 λl = 0.04 λl = 0.05 

0.0+  0.98945 0.98880 0.98687 0.98369 0.97927 0.97368 

0.01  0.98945 0.98795 0.98349 0.97618 0.96623 0.95387 

0.02  0.98945 0.98800 0.98368 0.97662 0.96698 0.95499 

0.03  0.98945 0.98805 0.98389 0.97108 0.96777 0.95619 

0.04  0.98945 0.98810 0.98411 0.97757 0.96862 0.95746 

0.05  0.98945 0.98816 0.98434 0.97807 0.96949 0.95878 

 

Table 4.15. Normalized linear fundamental flexural frequency of Clamped-Clamped (C-C) non-porous FG nanobeam 
assuming: 𝒜𝒜𝑤𝑤 = 1.0, 𝜉𝜉1 = 0.0,   𝑛𝑛 = 1, 𝛥𝛥𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 100 [𝐾𝐾] and  𝛥𝛥𝛥𝛥 = 0.1 [wt. % H2O]. 

λ𝑐𝑐 
 𝜔𝜔�/𝜔𝜔�𝑙𝑙𝑙𝑙𝑐𝑐 

 λl = 0.0 λl = 0.01 λl = 0.02 λl = 0.03 λl = 0.04 λl = 0.05 

0.0+  0.97952 0.97885 0.97681 0.97345 0.96880 0.96289 

0.01  0.97952 0.97800 0.97348 0.96608 0.95598 0.94344 

0.02  0.97952 0.97805 0.97368 0.96651 0.95673 0.94457 

0.03  0.97952 0.97811 0.97389 0.96698 0.95754 0.94579 

0.04  0.97952 0.97816 0.97412 0.94748 0.95840 0.94708 

0.05  0.97952 0.97822 0.97435 0.96799 0.95928 0.94842 
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Table 4.16. Normalized linear fundamental flexural frequency of Clamped-Clamped (C-C) non-porous FG nanobeam 
assuming: 𝒜𝒜𝑤𝑤 = 1.0, 𝜉𝜉1 = 1.0,   𝑛𝑛 = 1, 𝛥𝛥𝛥𝛥 = 0.1 [wt. % H2O], 𝛥𝛥𝑇𝑇𝐻𝐻𝐻𝐻  corresponding to 𝑇𝑇𝑚𝑚 = 350 [𝐾𝐾],𝑇𝑇c =
300 [𝐾𝐾]. 

λ𝑐𝑐 
 𝜔𝜔�/𝜔𝜔�𝑙𝑙𝑙𝑙𝑐𝑐 

 λl = 0.0 λl = 0.01 λl = 0.02 λl = 0.03 λl = 0.04 λl = 0.05 

0.0+  0.98988 0.98924 0.98732 0.98414 0.97974 0.97416 

0.01  0.98988 0.98839 0.98393 0.97663 0.96669 0.95433 

0.02  0.98988 0.98843 0.98412 0.97706 0.96743 0.95545 

0.03  0.98988 0.98849 0.98433 0.97753 0.96823 0.95665 

0.04  0.98988 0.98854 0.98456 0.97801 0.96907 0.95792 

0.05  0.98988 0.98860 0.98478 0.97852 0.96994 0.95924 

 

Table 4.17. Normalized linear fundamental flexural frequency of Clamped-Clamped (C-C) non-porous FG nanobeam 
assuming: 𝒜𝒜𝑤𝑤 = 1.0, 𝜉𝜉1 = 1.0,   𝑛𝑛 = 1, 𝛥𝛥𝛥𝛥 = 0.1 [wt. % H2O], 𝛥𝛥𝑇𝑇𝐻𝐻𝐻𝐻  corresponding to 𝑇𝑇𝑚𝑚 = 400 [𝐾𝐾],𝑇𝑇c =
300 [𝐾𝐾]. 

λ𝑐𝑐 
 𝜔𝜔�/𝜔𝜔�𝑙𝑙𝑙𝑙𝑐𝑐 

 λl = 0.0 λl = 0.01 λl = 0.02 λl = 0.03 λl = 0.04 λl = 0.05 

0.0+  0.98546 0.98480 0.98283 0.97957 0.97506 0.96934 

0.01  0.98546 0.98395 0.97946 0.97212 0.96211 0.94968 

0.02  0.98546 0.98400 0.97966 0.97255 0.96586 0.95080 

0.03  0.98546 0.98405 0.97987 0.97302 0.96366 0.95201 

0.04  0.98546 0.98411 0.98009 0.97351 0.96451 0.95329 

0.05  0.98546 0.98416 0.98032 0.97402 0.96539 0.95461 

 

Moreover, the coupled effects of porosity volume fraction, 𝜁𝜁, and material gradient 

index, n, on normalized linear fundamental flexural frequencies of Clamped-Clamped 

(C-C) porous FG nanobeam are listed in the following Tables 4.18, 4.19: 
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Table 4.18. Coupled effects of porosity volume fraction, ζ, and material gradient index, n, on normalized linear 
fundamental flexural frequency of Clamped-Clamped (C-C) porous FG nanobeam assuming ξ1 = 0.5, λc = 0.01, λl =
0.01 and ΔH = 0.1 [wt. % H2O] for two different values of a uniform temperature rise 𝛥𝛥𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 50,100 [𝐾𝐾]. 
 

ζ 

 𝜔𝜔�/𝜔𝜔�𝑙𝑙𝑙𝑙𝑐𝑐 

 𝛥𝛥𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 50 [𝐾𝐾]  𝛥𝛥𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 100 [𝐾𝐾] 

 𝑛𝑛 = 1 𝑛𝑛 = 3 𝑛𝑛 = 5  𝑛𝑛 = 1 𝑛𝑛 = 3 𝑛𝑛 = 5 

0.00  0.99829 0.99552 0.99542  0.98836 0.98710 0.98667 

0.10  0.99888 0.99620 0.99615  0.98975 0.98858 0.98821 

0.20  0.99942 0.99684 0.99687  0.99109 0.99002 0.98973 
 
 
Table 4.19. Coupled effects of porosity volume fraction, ζ, and material gradient index, n, on normalized linear 
fundamental flexural frequency of Clamped-Clamped (C-C) porous FG nanobeam assuming ξ1 = 0.5, λc = 0.01, λl =
0.01 and ΔH = 0.1 [wt. % H2O] for two different values of heat-conduction rise, 𝛥𝛥𝑇𝑇𝐻𝐻𝐻𝐻 , corresponding to: 
{𝑇𝑇𝑚𝑚 = 350 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]. } and {𝑇𝑇𝑚𝑚 = 400 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]}. 
 

ζ 

 𝜔𝜔�/𝜔𝜔�𝑙𝑙𝑙𝑙𝑐𝑐 

 𝑇𝑇𝑚𝑚 = 350 [𝐾𝐾],𝑇𝑇𝑐𝑐 = 300 [𝐾𝐾]  𝑇𝑇𝑚𝑚 = 400 [𝐾𝐾],𝑇𝑇𝑐𝑐 = 300 [𝐾𝐾] 

 𝑛𝑛 = 1 𝑛𝑛 = 3 𝑛𝑛 = 5  𝑛𝑛 = 1 𝑛𝑛 = 3 𝑛𝑛 = 5 

0.00  0.99872 0.99881 0.99928  0.99429 0.99400 0.99445 

0.10  0.99896 0.99912 0.99933  0.99491 0.99468 0.99489 

0.20  0.99915 0.99939 0.99966  0.99548 0.99533 0.99560 

 

Furthermore, in the scientific literature, the effect of gyration radious, 𝑔𝑔�, is 

sometimes omitted to simplify computational calculations. Next, the normalized linear 

fundamental flexural frequencies with and without the effect of 𝑔𝑔�, expressing the 

differences in terms of percentage changes, are condensed in the following Tables 

4.20-4.23: 

Table 4.20. Coupled effects of porosity volume fraction, 𝜁𝜁,  material gradient index, n, and dimensionless 
gyration radious, 𝑔𝑔�, on normalized linear fundamental flexural frequency of Clamped-Clamped (C-C) porous FG 
nanobeam assuming 𝜉𝜉1 = 0.5, λ𝑐𝑐 = 0.01, λ𝑙𝑙 = 0.01 and 𝛥𝛥𝛥𝛥 = 0.1 [wt. % H2O] for a uniform temperature rise 
𝛥𝛥𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 50 [𝐾𝐾]. 

𝑛𝑛 

 𝛥𝛥𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 50 [𝐾𝐾] 

 ζ = 0.00   ζ = 0.10   ζ = 0.20  

 𝑔𝑔� ≠ 0 𝑔𝑔� = 0 Δerr[%]  𝑔𝑔� ≠ 0 𝑔𝑔� = 0 Δerr[%]  𝑔𝑔� ≠ 0 𝑔𝑔� = 0 Δerr[%] 

1  0.99829 0.99552 0.57  0.99888 1.0048 0.59  0.99942 1.00555 0.61 

3  0.99888 0.99620 0.52  0.99620 1.00144 0.52  0.99684 1.00221 0.54 

5  0.99942 0.99684 0.49  0.99615 1.00113 0.50  0.99687 1.00191 0.50 
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Table 4.21. Coupled effects of porosity volume fraction, 𝜁𝜁,  material gradient index, n, and dimensionless 
gyration radious, 𝑔𝑔�, on normalized linear fundamental flexural frequency of Clamped-Clamped (C-C) porous FG 
nanobeam assuming 𝜉𝜉1 = 0.5, λ𝑐𝑐 = 0.01, λ𝑙𝑙 = 0.01 and 𝛥𝛥𝛥𝛥 = 0.1 [wt. % H2O] for a uniform temperature rise 
𝛥𝛥𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 100 [𝐾𝐾]. 

𝑛𝑛 

 𝛥𝛥𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 100 [𝐾𝐾] 

 ζ = 0.00   ζ = 0.10   ζ = 0.20  

 𝑔𝑔� ≠ 0 𝑔𝑔� = 0 Δerr[%]  𝑔𝑔� ≠ 0 𝑔𝑔� = 0 Δerr[%]  𝑔𝑔� ≠ 0 𝑔𝑔� = 0 Δerr[%] 

1  0.98836 0.99405 0.57  0.98975 0.99559 0.59  0.99109 0.99712 0.60 

3  0.98710 0.99219 0.51  0.98858 0.99375 0.52  0.99002 0.99530 0.53 

5  0.98667 0.99155 0.49  0.98821 0.99313 0.50  0.98973 0.99471 0.50 

 

 

Table 4.22. Coupled effects of porosity volume fraction, 𝜁𝜁,  material gradient index, n, and dimensionless 
gyration radious, 𝑔𝑔�, on normalized linear fundamental flexural frequency of Clamped-Clamped (C-C) porous FG 
nanobeam assuming 𝜉𝜉1 = 0.5, λ𝑐𝑐 = 0.01, λ𝑙𝑙 = 0.01 and 𝛥𝛥𝛥𝛥 = 0.1 [wt. % H2O] for a heat-conduction 
temperature rise corresponding to: 𝑇𝑇𝑚𝑚 = 350 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]. 

𝑛𝑛 

 𝑇𝑇𝑚𝑚 = 350 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾] 

 ζ = 0.00   ζ = 0.10   ζ = 0.20  

 𝑔𝑔� ≠ 0 𝑔𝑔� = 0 Δerr[%]  𝑔𝑔� ≠ 0 𝑔𝑔� = 0 Δerr[%]  𝑔𝑔� ≠ 0 𝑔𝑔� = 0 Δerr[%] 

1  0.99872 1.00452 0.58  0.99896 1.00491 0.59  0.99915 1.00531 0.61 

3  0.99881 1.00400 0.52  0.99912 1.00439 0.52  0.99939 1.00479 0.54 

5  0.99928 1.00393 0.46  0.99933 1.00433 0.50  0.99966 1.00473 0.50 

 

 

Table 4.23. Coupled effects of porosity volume fraction, 𝜁𝜁,  material gradient index, n, and dimensionless 
gyration radious, 𝑔𝑔�, on normalized linear fundamental flexural frequency of Clamped-Clamped (C-C) porous FG 
nanobeam assuming 𝜉𝜉1 = 0.5, λ𝑐𝑐 = 0.01, λ𝑙𝑙 = 0.01 and 𝛥𝛥𝛥𝛥 = 0.1 [wt. % H2O] for a heat-conduction 
temperature rise corresponding to: 𝑇𝑇𝑚𝑚 = 400 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾]. 

𝑛𝑛 

 𝑇𝑇𝑚𝑚 = 400 [𝐾𝐾],𝑇𝑇c = 300 [𝐾𝐾] 

 ζ = 0.00   ζ = 0.10   ζ = 0.20  

 𝑔𝑔� ≠ 0 𝑔𝑔� = 0 Δerr[%]  𝑔𝑔� ≠ 0 𝑔𝑔� = 0 Δerr[%]  𝑔𝑔� ≠ 0 𝑔𝑔� = 0 Δerr[%] 

1  0.99429 1.00006 0.58  0.99491 1.00082 0.59  0.99448 1.00159 0.71 

3  0.99400 0.99915 0.52  0.99468 0.99991 0.52  0.99533 1.00068 0.53 

5  0.99445 0.99908 0.46  0.99489 0.99985 0.50  0.99560 1.00063 0.50 

 

Finally, nonlinear dimensionless natural frequencies of the porous FG nanobeam under 

investigation corresponding to the First-, Second-, and Third- Order approximate solutions are 

reported in the following Tables 4.24-4.32: 
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Table 4.24. Nonlinear dimensionless natural frequencies of porous FG clamped-clamped (C-C) nanobeam for  
ξ1 = 0.0 in the case of First-Order Hamiltonian Approach. 

ξ1 = 0.0 𝒜𝒜𝑤𝑤 
 ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 0  ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 50  ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 100 

 λl = 0.0 λl = 0.10  λl = 0.0 λl = 0.10  λl = 0.0 λl = 0.10 

λ𝑐𝑐 = 0.1 

0.00  1.33333 1.15406  1.32613 1.14551  1.32070 1.13904 

0.01  1.33469 1.15575  1.32761 1.14769  1.32236 1.14117 

0.05  1.36706 1.19553  1.36270 1.19886  1.36164 1.19121 

0.10  1.46359 1.31211  1.46697 1.34630  1.47766 1.33554 

λ𝑐𝑐 = 0.2 

0.00  1.84414 1.58369  1.83894 1.57754  1.83504 1.57291 

0.01  1.84464 1.58430  1.83950 1.57821  1.83564 1.57364 

0.05  1.85680 1.59886  1.85269 1.59406  1.85004 1.59117 

0.10  1.89429 1.64355  1.89333 1.64262  1.89435 1.64471 

 

Table 4.25. Nonlinear dimensionless natural frequencies of porous FG clamped-clamped (C-C) nanobeam for  
ξ1 = 0.5 in the case of First-Order Hamiltonian Approach. 

ξ1 = 0.5 𝒜𝒜𝑤𝑤 
 ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 0  ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 50  ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 100 

 λl = 0.0 λl = 0.10  λl = 0.0 λl = 0.10  λl = 0.0 λl = 0.10 

λ𝑐𝑐 = 0.1 

0.00  1.12891 1.01093  1.12085 1.00166  1.11477 0.99464 
0.01  1.13040 1.01267  1.12250 1.00362  1.11666 0.99695 

0.05  1.16559 1.05373 
 

1.16131 1.04952 
 

1.16128 1.05087 
0.10  1.26930 1.17279  1.27499 1.18153  1.29082 1.20390 

λ𝑐𝑐 = 0.2 

0.00  1.23896 1.14585  1.23170 1.13789  1.22623 1.13187 
0.01  1.23965 1.14660  1.23247 1.13872  1.22711 1.13284 
0.05  1.25622 1.16447  1.25082 1.15865  1.24806 1.15590 
0.10  1.30663 1.21862  1.30650 1.21884  1.31137 1.22516 

 

Table 4.26. Nonlinear dimensionless natural frequencies of porous FG clamped-clamped (C-C) nanobeam for  
ξ1 = 1.0 in the case of First-Order Hamiltonian Approach. 

ξ1 = 1.0 𝒜𝒜𝑤𝑤 
 ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 0  ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 50  ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 100 

 λl = 0.0 λl = 0.10  λl = 0.0 λl = 0.10  λl = 0.0 λl = 0.10 

λ𝑐𝑐 = 0.1 

0.00  0.99999 0.91331  0.99115 0.90336  0.98444 0.89581 
0.01  1.00161 0.91514  0.99296 0.90544  0.98658 0.89832 

0.05  1.03951 0.95786 
 

1.03544 0.95401 
 

1.03662 0.95670 
0.10  1.14994 1.08052  1.15820 1.09195  1.17937 1.11968 

λ𝑐𝑐 = 0.2 

0.00  1.11740 0.94718  1.13331 0.93774  1.14511 0.93058 
0.01  1.11837 0.94804  1.13444 0.93872  1.14645 0.93176 
0.05  1.14139 0.96837  1.16110 0.96200  1.17811 0.95983 
0.10  1.21050 1.02932  1.24073 1.03137  1.27198 1.04266 
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Table 4.27. Nonlinear dimensionless natural frequencies of porous FG clamped-clamped (C-C) nanobeam for  
ξ1 = 0.0 in the case of Second-Order Hamiltonian Approach. 

ξ1 = 0.0 𝒜𝒜𝑤𝑤 
 ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 0  ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 50  ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 100 

 λl = 0.0 λl = 0.10  λl = 0.0 λl = 0.10  λl = 0.0 λl = 0.10 

λ𝑐𝑐 = 0.1 

0.00  1.33333 1.15406  1.32613 1.14551  1.32070 1.13904 
0.01  1.33469 1.15575  1.32761 1.14769  1.32236 1.41117 

0.05  1.36699 1.19542 
 

1.36263 1.19868 
 

1.36154 1.19103 
0.10  1.46272 1.31073  1.46596 1.34421  1.47644 1.33352 

λ𝑐𝑐 = 0.2 

0.00  1.84414 1.58369  1.83894 1.57754  1.83504 1.57291 
0.01  1.84464 1.58430  1.83950 1.57821  1.83564 1.57364 
0.05  1.85679 1.59885  1.85268 1.59405  1.85003 1.59115 
0.10  1.89418 1.64338  1.89320 1.64241  1.89421 1.64447 

 

Table 4.28. Nonlinear dimensionless natural frequencies of porous FG clamped-clamped (C-C) nanobeam for  
ξ1 = 0.5 in the case of Second-Order Hamiltonian Approach. 

ξ1 = 0.5 𝒜𝒜𝑤𝑤 
 ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 0  ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 50  ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 100 

 λl = 0.0 λl = 0.10  λl = 0.0 λl = 0.10  λl = 0.0 λl = 0.10 

λ𝑐𝑐 = 0.1 

0.00  1.12891 1.01093  1.12085 1.00166  1.11477 0.99464 
0.01  1.13040 1.01267  1.12250 1.00362  1.11666 0.99695 

0.05  1.16550 1.05359 
 

1.16199 1.04935 
 

1.16133 1.05064 
0.10  1.26817 1.17121  1.27364 1.17962  1.28911 1.20143 

λ𝑐𝑐 = 0.2 

0.00  1.23896 1.14585  1.23170 1.13789  1.22623 1.13187 
0.01  1.23965 1.14660  1.23247 1.13872  1.22711 1.13284 
0.05  1.25620 1.16445  1.25080 1.15862  1.24802 1.15585 
0.10  1.30635 1.21828  1.30616 1.21842  1.31904 1.22461 

 

Table 4.29. Nonlinear dimensionless natural frequencies of porous FG clamped-clamped (C-C) nanobeam for  
ξ1 = 1.0 in the case of Second-Order Hamiltonian Approach. 

ξ1 = 0.0 𝒜𝒜𝑤𝑤 
 ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 0  ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 50  ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 100 

 λl = 0.0 λl = 0.10  λl = 0.0 λl = 0.10  λl = 0.0 λl = 0.10 

λ𝑐𝑐 = 0.1 

0.00  0.99999 0.91331  0.99115 0.90336  0.98444 0.89581 
0.01  1.00161 0.91514  0.99296 0.90544  0.98658 0.89832 

0.05  1.03939 0.95769 
 

1.03529 0.95380 
 

1.03641 0.95640 
0.10  1.14854 1.07872  1.15650 1.08974  1.17716 1.11674 

λ𝑐𝑐 = 0.2 

0.00  1.11740 0.94718  1.13331 0.93774  1.14511 0.93058 
0.01  1.11837 0.94804  1.13444 0.93872  1.14645 0.93176 
0.05  1.14135 0.96833  1.16105 0.96195  1.17804 0.95975 
0.10  1.20955 1.02882  1.24003 1.03073  1.27104 1.04178 
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Table 4.30. Nonlinear dimensionless natural frequencies of porous FG clamped-clamped (C-C) nanobeam for  
ξ1 = 0.0 in the case of Third-Order Hamiltonian Approach. 

ξ1 = 0.0 𝒜𝒜𝑤𝑤 
 ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 0  ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 50  ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 100 

 λl = 0.0 λl = 0.10  λl = 0.0 λl = 0.10  λl = 0.0 λl = 0.10 

λ𝑐𝑐 = 0.1 

0.00  1.33333 1.15406  1.32613 1.14551  1.32070 1.13904 
0.01  1.33469 1.15575  1.32761 1.14769  1.32236 1.14117 

0.05  1.36699 1.19542 
 

1.36262 1.19867 
 

1.36154 1.19102 
0.10  1.46271 1.31070  1.46595 1.34416  1.47642 1.33347 

λ𝑐𝑐 = 0.2 

0.00  1.84414 1.58369  1.83894 1.57754  1.83504 1.57291 
0.01  1.84464 1.58430  1.83850 1.57821  1.83564 1.57364 
0.05  1.85679 1.59885  1.85268 1.59405  1.85003 1.59115 
0.10  1.89417 1.64337  1.89319 1.64241  1.89420 1.64446 

 

Table 4.31. Nonlinear dimensionless natural frequencies of porous FG clamped-clamped (C-C) nanobeam for  
ξ1 = 0.5 in the case of Third-Order Hamiltonian Approach. 

ξ1 = 0.5 𝒜𝒜𝑤𝑤 
 ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 0  ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 50  ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 100 

 λl = 0.0 λl = 0.10  λl = 0.0 λl = 0.10  λl = 0.0 λl = 0.10 

λ𝑐𝑐 = 0.1 

0.00  1.12891 1.01093  1.12085 1.00166  1.11477 0.99464 
0.01  1.13040 1.01267  1.12250 1.00362  1.11666 0.99695 

0.05  1.16550 1.05359 
 

1.16199 1.04935 
 

1.16113 1.05087 
0.10  1.26815 1.17117  1.27362 1.17958  1.28907 1.20390 

λ𝑐𝑐 = 0.2 

0.00  1.23896 1.14585  1.23170 1.13789  1.22623 1.13187 
0.01  1.23965 1.14660  1.23247 1.13872  1.22711 1.13284 
0.05  1.25620 1.16445  1.25080 1.15862  1.24802 1.15585 
0.10  1.30634 1.21827  1.30615 1.21841  1.31093 1.22460 

 

Table 4.32. Nonlinear dimensionless natural frequencies of porous FG clamped-clamped (C-C) nanobeam for  
ξ1 = 1.0 in the case of third-Order Hamiltonian Approach. 

ξ1 = 1.0 𝒜𝒜𝑤𝑤 
 ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 0  ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 50  ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 = 100 

 λl = 0.0 λl = 0.10  λl = 0.0 λl = 0.10  λl = 0.0 λl = 0.10 

λ𝑐𝑐 = 0.1 

0.00  0.99999 0.91331  0.99115 0.90336  0.98444 0.89581 
0.01  1.00161 0.91514  0.99296 0.90544  0.98658 0.89832 

0.05  1.03939 0.95769 
 

1.03529 0.95380 
 

1.03641 0.95640 
0.10  1.14851 1.07868  1.15646 1.08968  1.17711 1.11665 

λ𝑐𝑐 = 0.2 

0.00  1.11740 0.94718  1.13331 0.93774  1.14511 0.93058 
0.01  1.11837 0.94804  1.13444 0.93872  1.14645 0.97176 
0.05  1.14135 0.96833  1.16105 0.96195  1.17804 0.95975 
0.10  1.20954 1.02881  1.24002 1.03072  1.27103 1.04176 
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The main results of parametric analysis can be summarized as follows: 

- Influence of nonlocal parameter, gradient length parameter and mixture 

parameter. 

From Tables 4.6-4.17 and Tables 4.24-4.32, on one hand, it can be seen that an 

increase in the values of 𝜆𝜆𝑐𝑐 results in an increase of the frequency ratio,  

𝜔𝜔�/𝜔𝜔�𝑙𝑙𝑙𝑙𝑐𝑐 but on the other, it can be found that as 𝜆𝜆𝑙𝑙 increases, the values of the 

aforementioned frequency ratio decrease. It is also possible to note that the ratio 

𝜔𝜔�/𝜔𝜔�𝑙𝑙𝑙𝑙𝑐𝑐, decreases by increasing the mixture parameter 𝜉𝜉1. 

- Influence of hygrothermal loads. 

From the numerical evidence of Tables 4.6-4.32, it is possible to underline that the 

values of the linear ( 𝒜𝒜𝑤𝑤 = 0) normalized fundamental flexural frequency based on 

local/nonlocal stress-driven hygrothermal gradient theory of elasticity decrease as the 

temperature rise increases. Furthermore, from the Tables 4.24-4.32, in the range of 

values here considered, an opposite trend is obtained for the normalized 

nonlinear ( 𝒜𝒜𝑤𝑤 ≠ 0) fundamental flexural frequency as  𝒜𝒜𝑤𝑤 and ∆𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈 increase. 

Furthermore, for the cases studies examines, a uniform temperature rise always shows 

smaller values of the normalized fundamental flexural frequency than those obtained 

by heat-conduction. 

- Influence of material gradient index and porosity volume fraction. 

From Tables 4.18-4.23, it can be observed that in the case of a uniform temperature 

rise, an increase in the material gradient index always leads to a decrease in the values 

of the normalized fundamental flexural frequency. However, for the case of heat-

conduction, a more general response is exhibited by the L/NStressGH model of 

elasticity. In particular, for small values of heat-conduction rise, as the material 

gradient index increases, the normalized fundamental flexural frequency increases. On 

the contrary, for high values of heat-conduction, it decreases. Furthermore, an increase 

in the porosity volume fraction always provides an increase in the normalized 

fundamental flexural frequency. 

- Influence of gyration radious. 
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As reported in Tables 4.20-4.23, neglecting the gyration radious results in a slight 

overestimation of the normalized linear fundamental flexural frequency values, with 

an error consistently below 0.8% for the examined cases in this analysis. 

- Influence of Higher-Order Hamiltonian Approach. 

Finally, the nonlinear dimensionless natural frequencies of the porous FG 

nanobeam under investigation corresponding to the First-, Second-, and Third-order 

approximate solutions are summarized in Tables 4.24-4.32, varying the nonlinear 

oscillator amplitude in the set {0.0, 0.01, 0.05, 0.10}. From these tables, it can be seen 

that the aforementioned flexural frequency always increases as the amplitude of the 

nonlinear oscillator increases, while they decrease as the order of the Hamiltonian 

Approach increases. The above parametrical analysis assumes relevance in the study 

of the nonlinear vibrations of porous FG nanobeams because their behavior is 

influenced by the dimensionless term �̃�𝑟2, which is proportional to the ratio between 

the axial and the bending stiffness of the nanobeam cross-section, both depending on 

the porosity distribution of the structure of the nanobeam material and on the 

temperature increment and the material gradient index. Moreover, the term �̃�𝑟2 allows 

us to take into account the nonlinear response due to the mid-plane stretching effect. 

 

4.4.5. Summary and conclusions 

In this section, both linear and nonlinear dynamic behavior of a Bernoulli–Euler 

nano-beam made of a metal-ceramic functionally graded porous material in a 

hygrothermal environment, with von Kármán type nonlinearity, has been studied, 

employing the local/nonlocal stress-driven hygrothermal theory of elasticity 

(L/NStressGH). The free vibration analysis is carried out by considering a Clamped-

Clamped (C-C) static scheme. The governing equations have been reduced to a 

nonlinear ordinary differential equation by using the Galerkin method. Then, the 

higher-order Hamiltonian approach to nonlinear oscillators was employed. In 

particular, the effects of several parameters on both the thermo-elastic material 

properties and the structural response of the FG nanobeams, such as the porosity 

volume fraction and the material gradient index, the nonlocal parameter, the gradient 
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length parameter and the mixture parameter, the nonlinear oscillator amplitude, the 

gyration radious, as well as the hygrothermal loadings, have been investigated by using 

a Wolfram language code developed in Mathematica. Moreover, a comparison 

between the results of the present approach with those already available in current 

literature has been successfully presented. 

In view of the numerical results obtained in the present study, the following main 

conclusions may be formulated: 

 as nonlocal parameter increasing the normalized fundamental flexural 

frequencies increase, while an opposite is shown by the L/NStressGH theory 

when both the gradient length parameter and the mixture parameter are 

increased; 

 on the one hand an increase in the temperature rise always leads to a decrease 

in the values of normalized linear fundamental flexural frequencies but on the 

other hand an opposite trend is obtained for the normalized nonlinear 

fundamental flexural frequencies as the temperature rise increases; 

 in the case of a uniform temperature rise, an increase in the material gradient 

index always leads to a decrease in the values of the normalized fundamental 

flexural frequency. However, for the case of heat-conduction, a more general 

response is exhibited by the L/NStressGH model of elasticity. In particular, for 

small values of heat-conduction rise, as the material gradient index increases, 

the normalized fundamental flexural frequency increases. On the contrary, for 

high values of heat-conduction, it decreases; 

 an increase in the porosity volume fraction always provides an increase in the 

normalized fundamental flexural frequency; 

 neglecting the gyration radious results in a slight overestimation of the 

normalized linear fundamental flexural frequency values, with an error 

consistently below 0.8% for the examined cases in this analysis; 

 the flexural frequency always increases as the amplitude of the nonlinear 

oscillator increases, while they decrease as the Order of the Hamiltonian 

Approach increases. 
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The results obtained in the study confirm that stress-driven local/non-local 

hygrothermal gradient formulations are capable of simulating both size-dependent 

softening and stiffening not only for static analysis but also for the dynamic response 

of the FG Bernoulli-Euler nanobeam with uniform internal porosity under severe 

thermal loads. 

In conclusion, the proposed approach, based on L/NStressGH plays an important 

role in revealing stiffness-hardening or stiffness-softening mechanical and dynamic 

behaviors in small-scaled structures, especially in temperature-dependent porous FG 

nanobeams. 
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Chapter 5 

On the combined effects of nonlocality and surface energy 
 

As extensively discussed in previous chapters, nanostructures exhibit unique and 

remarkable properties due to their small size. A key feature is the gradual attenuation 

of interatomic forces regarding the overall geometric size of nanostructures [114], 

which requires the application of nonlocal elasticity theories presented in Section 3. In 

addition, the small size introduces another significant feature of nanostructures: a 

substantially increased surface-to-bulk ratio. The surface of a solid is a region of 

practically negligible thickness, characterized by an atomic arrangement and 

properties distinct from the bulk. Indeed, in a macroscopic solid, surface effects are 

typically neglected since the ratio between the surface region to bulk is insignificant. 

However, as illustrated in Figure 5.1, this surface-to-bulk ratio increases significantly 

as the size decreases. 

 
 

Figure 5.1. Increase in fraction of surface atoms as size of particle decreases. [115] 
 

Furthermore, due to changes in the atomic environment, materials in the surface 

layer exhibit different behavior compared to bulk materials. Therefore, the energy of 

atoms close to the surface cannot be neglected, resulting in the formation of surface 

residual stresses and elastic properties distinct from those of the bulk material [116]. 

In support of this, various mechanical experiments have been conducted on nanobeams 



Chapter 5                                                      On the combined effects of nonlocality and surface energy                                                    

114 
 

and nanoplates, revealing that the effective strength properties of nanostructures 

depend heavily on their size [117].  

Therefore, for an optimal study of the structural response of nanostructures, it is 

necessary to use of nonlocal theories that take into account the significant contribution 

of surface effects. To analyze surface effects, several continuous theories have been 

formulated to describe the surface with different properties and constitutive laws 

compared to those of the bulk material. One of the earliest mathematical theories that 

incorporates surface effects was developed by Gurtin and Murdoch [118,119] for 

isotropic materials, based on rational principles of mechanics, and is commonly known 

as the Surface Elasticity Theory (SET). In this theory, the surface layer of a solid is 

modeled as a membrane with negligible thickness, perfectly adhered to the underlying 

bulk but endowed with different elastic properties and constitutive laws. The theory of 

surface elasticity has been extensively employed in the literature to investigate the 

static and dynamic response of nanostructures [120-139].  

In the scientific literature, the surface elasticity theory is often combined with 

Eringen's purely nonlocal theory (EDM) and Lim's gradient theory (NStrainG) [122-

129] to better predict surface effects and small-scale effects in the static and dynamic 

response of nanostructures. However, it is important to highlight that Gurtin and 

Murdoch's surface elasticity theory does not consider the flexural rigidity of the surface 

and, in some cases, as demonstrated in [130], may lead to deviations from atomistic 

simulations. To address this problem, Steigmann and Ogden in [131] proposed an 

extension of the surface elasticity theory that also incorporates flexural rigidity with a 

dependence on surface energy curvature. Both theories mentioned above are limited 

to local interactions between the surface and bulk, neglecting the nonlocal contribution 

[114]. Moreover, it has recently been demonstrated [127] that there is an intrinsic 

correlation between non-locality and surface elasticity, leading to what is referred to 

in the literature as the pre-coupling problem. Finally, Jiang et al. in [114] demonstrate 

the existence of an incompatibility problem between the two-dimensional settings in 

surface theories and the three-dimensional setting in local elasticity theory, creating 

difficulties in evaluating local interactions. To overcome these problems, they have 

developed a new model that couples Eringen's nonlocal theory and the Steigmann-
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Ogden model through a new interpretation of surface parameters and restoring surface 

thickness through dependence on the curvature of surface energy. 

However, as discussed earlier in Chapter 3, Eringen's elasticity model and Lim's 

gradient model provide a mathematically inconsistent approach for the study of static 

and dynamic analyses of nanobeams. In order to overcome these mathematical 

discrepancies, Penna in [132] combined Romano & Barretta's SDM model with Gurtin 

and Murdoch's surface elasticity theory, introducing the Surface Stress-Driven Model 

(SSDM) for the analysis of the bending behavior of functionally graded nanobeams 

with two types of cross-sections (rectangular and circular) subjected to a uniformly 

distributed load. This approach provided a well-posed mathematical model with a 

reasonable computational cost. Yang et al. in [133] combined non-local theories, 

N/LStressG and L/NStrainG, with surface elasticity theory to investigate the dynamic 

response of nanobeams. 

Despite the simplifications mentioned earlier, the Surface Elasticity Theory (SET) 

continues to be widely used by researchers to understand surface effects in the study 

of the structural response of nanostructures. The use of this theory has allowed for the 

identification of particular and highly significant effects to fully comprehend the 

potential at the nanoscale. In particular, it has been observed that when the surface is 

modeled using positive elastic constants, such as the surface Young's modulus and 

surface residual stress, deformations decrease while critical load and natural frequency 

increase. Conversely, an opposite behavior is observed for negative elastic constants 

[132]. Chen et al. in [133] explained that surface stress depends on two components: 

the first is an intrinsic characteristic, namely surface residual stress, while the second 

depends on structural strain and hence surface elasticity. It is important to note that the 

surface elastic modulus in the second component can be either positive or negative 

since a surface cannot exist without the bulk, and the total energy (bulk and surface) 

must satisfy the positivity condition [134]. 

In this chapter, the novel approach proposed by Penna [132], based on the coupling 

of the stress-driven model [85] and surface elasticity theory [118,119], used for the 

bending analysis of functionally graded nanobeams under uniformly distributed loads, 

is first extended to analyze their response in the case of internal load discontinuities 
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(Section 5.1.) and then further extended to the study of cracked functionally graded 

nanobeams (Section 5.2.). 

 

5.1. Bending analysis of functionally graded nanobeams with loading 

discontinuities  

In the present paragraph, the surface stress-driven model [132], in which the 

stress-driven model and the surface elasticity theory are coupled, is enriched for the 

bending analysis of Bernoulli-Euler nanobeams with loading discontinuities. 

According to the procedure proposed by Vaccaro et al. in [132] and Barretta et al. in 

[133], continuity constitutive boundary conditions are needed at nanobeam internal 

point where loading discontinuity occurs. The paragraph is structured as follows. The 

problem formulation is summarized in Section 5.1.1. In 5.1.2. the equations that 

govern the problem of elastostatic bending in the presence of discontinuities are 

reported. In addition, the constitutive law and equations governing the problem of 

elastostatic bending in the presence of a discontinuity due to external loads are 

formulated in Section 5.1.3. Finally, the results of the parametric analysis are discussed 

in Section 5.1.4. 

 

5.1.1. Problem formulation 

Let us consider an FG straight nanobeam with length L and a rectangular cross-

section Σ (𝑏𝑏 × ℎ) made of a bulk volume (B), composed of a mixture of metal (m) 

and ceramic (c), and a thin surface layer (S) perfectly adhered to the bulk continuum 

(Figure 5.2).  

According to the power-law distributions introduced by Shahab et al. in [128], the 

elastic modulus of the bulk material, denoted as 𝐸𝐸𝐵𝐵 = 𝐸𝐸𝐵𝐵(𝑧𝑧), the surface elastic 

modulus, represented as 𝐸𝐸𝑆𝑆 = 𝐸𝐸𝑆𝑆(𝑧𝑧), and the residual surface stress, indicated as 𝜏𝜏𝑆𝑆 =

𝜏𝜏𝑆𝑆(𝑧𝑧), continuously vary in the transverse direction, z, as follows: 

𝐸𝐸𝐵𝐵(𝑧𝑧) =   𝐸𝐸𝑚𝑚 + (𝐸𝐸𝑐𝑐  − 𝐸𝐸𝑚𝑚) �
1
2

+
𝑧𝑧
ℎ�

𝑒𝑒

 (5.1) 
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𝐸𝐸𝑆𝑆(𝑧𝑧) =   𝐸𝐸𝑚𝑚𝑆𝑆 + (𝐸𝐸𝑐𝑐𝑆𝑆  − 𝐸𝐸𝑚𝑚𝑆𝑆 ) �
1
2

+
𝑧𝑧
ℎ�

𝑒𝑒

 (5.2) 

𝜏𝜏𝑆𝑆(𝑧𝑧) =   𝜏𝜏𝑚𝑚𝑆𝑆 + (𝜏𝜏𝑐𝑐𝑆𝑆  − 𝜏𝜏𝑚𝑚𝑆𝑆 ) �
1
2

+
𝑧𝑧
ℎ�

𝑒𝑒

 (5.3) 

 

where 𝑛𝑛 denotes the gradient index of the FG material (𝑛𝑛 ≥ 0).  The Poisson’s ratio is 

here assumed to be constant (𝜈𝜈𝐵𝐵 = 𝜈𝜈𝑆𝑆 =  𝜈𝜈). 

 
 

Figure 5.2. Coordinate system and configuration of the FG nanobeam: bulk continuum (mixture of ceramic 
and metal) and surface layer. [138] 
 

The material properties of the FG material are listed in Table 5.1. 

Table 5.1. Material parameters of metal (m) and ceramic (c). [137] 

Material Parameters Values Unit 

Ceramic 
 

(Si) 

𝐸𝐸𝑐𝑐𝐵𝐵 210 [GPa] 

𝐸𝐸𝑐𝑐𝑆𝑆 -10.6543 [N/m] 

𝜏𝜏𝑐𝑐𝑆𝑆 0.6048 [N/m] 

Metal 
 

(Al) 

𝐸𝐸𝑚𝑚𝐵𝐵  70 [GPa] 

𝐸𝐸𝑚𝑚𝑆𝑆  5.1882 [N/m] 

𝜏𝜏𝑚𝑚𝑆𝑆  0.9108 [N/m] 

 

The Cartesian components 𝑢𝑢𝑥𝑥  = 𝑢𝑢𝑥𝑥(𝑥𝑥, 𝑧𝑧) and 𝑢𝑢𝑧𝑧 = 𝑢𝑢𝑧𝑧(𝑥𝑥, 𝑧𝑧) of the displacement 

field of the FG nanobeam along 𝑥𝑥 and 𝑧𝑧 directions, respectively, in presence of a 

loading discontinuity at the point of abscissa 𝑥𝑥 = 𝑑𝑑 (Figure 5.3) can be expressed as: 
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𝑢𝑢𝑥𝑥 = −𝑧𝑧
𝜕𝜕𝑤𝑤1
𝜕𝜕𝑥𝑥

 𝑢𝑢𝑧𝑧(𝑥𝑥, 𝑧𝑧) = 𝑤𝑤1 0 ≤ 𝑥𝑥 ≤ 𝑑𝑑 (5.4) 

𝑢𝑢𝑥𝑥 = −𝑧𝑧
𝜕𝜕𝑤𝑤2
𝜕𝜕𝑥𝑥

 𝑢𝑢𝑧𝑧(𝑥𝑥, 𝑧𝑧) = 𝑤𝑤2 0 ≤ 𝑥𝑥 ≤ 𝑑𝑑 (5.5) 

 

where 𝑤𝑤1 = 𝑤𝑤1(𝑥𝑥) and 𝑤𝑤2 = 𝑤𝑤2(𝑥𝑥) are the transverse displacements of the geometric 

center O belonging to the first and the second part of the FG nanobeam, respectively. 

The corresponding non-zero strain, 𝜀𝜀𝑥𝑥 =  𝜀𝜀𝑥𝑥(𝑥𝑥, 𝑧𝑧), can be expressed, respectively, as:  

𝜀𝜀𝑥𝑥 = −𝑧𝑧
𝜕𝜕2𝑤𝑤1
𝜕𝜕𝑥𝑥2

= −𝑧𝑧 𝜒𝜒1(𝑥𝑥) 0 ≤ 𝑥𝑥 ≤ 𝑑𝑑 (5.6) 

𝜀𝜀𝑥𝑥 = −𝑧𝑧
𝜕𝜕2𝑤𝑤2
𝜕𝜕𝑥𝑥2

= −𝑧𝑧 𝜒𝜒2(𝑥𝑥) 0 ≤ 𝑥𝑥 ≤ 𝑑𝑑 (5.7) 

 

being 𝜒𝜒𝑁𝑁(𝑥𝑥) the geometrical bending curvature (𝑖𝑖 = 1,2). 

 
 

Figure 5.3. Geometry and loads of an FG nanobeam with loading discontinuities at the abscissa d. [138] 
 

 

5.1.2. Governing equation 

According to surface elasticity theory, the surface of the nanobeam is modelled as 

zero-thickness membrane perfectly bonded to the underlying material and the bulk 

continuum and surface layer are characterized by different stress states: a uniaxial 

stress state for the bulk, 𝜕𝜕𝑥𝑥𝐵𝐵 = 𝜕𝜕𝑥𝑥𝐵𝐵(𝑥𝑥, 𝑧𝑧), and two stress state for the surface. 𝜕𝜕𝑥𝑥𝑆𝑆 =

𝜕𝜕𝑥𝑥𝑆𝑆(𝑥𝑥, 𝑧𝑧) and 𝜏𝜏𝑧𝑧𝑥𝑥𝑆𝑆 = 𝜏𝜏𝑧𝑧𝑥𝑥𝑆𝑆 (𝑥𝑥, 𝑧𝑧), respectively. Furthermore, unlike classical Bernoulli-
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Euler beam theory, the component of the bulk stress in transverse direction z, 𝜕𝜕𝑧𝑧𝐵𝐵 =

𝜕𝜕𝑧𝑧𝐵𝐵(𝑥𝑥, 𝑧𝑧), which describes the surface layer and bulk interaction, is not negligible due 

to surface effects.   

As described in [138] for a FG material in order to satisfy the surface equilibrium 

equations introduced by Gurtin and Murdoch it is necessary to assume that the 𝜕𝜕𝑧𝑧𝐵𝐵 

component to vary cubically along the nanobeam thickness according to the following 

equation: 

𝜕𝜕𝑧𝑧𝐵𝐵 = 𝑓𝑓(𝑧𝑧) �−(𝜏𝜏𝑐𝑐𝑆𝑆  − 𝜏𝜏𝑚𝑚𝑆𝑆 )
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2 �

+
1
2 �

(𝜏𝜏𝑐𝑐𝑆𝑆  − 𝜏𝜏𝑚𝑚𝑆𝑆 )
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2 �

 (5.8) 

where 

𝑓𝑓(𝑧𝑧) = 𝑧𝑧 �
𝑧𝑧
ℎ
� ��

𝑧𝑧
ℎ
�
2
−

3
4
� (5.9) 

w ≔ �𝑤𝑤1    0 ≤ 𝑥𝑥 < 𝑑𝑑 
𝑤𝑤2    𝑑𝑑 < 𝑥𝑥 ≤ 𝐿𝐿  (5.10) 

Note that a linear distribution for 𝜕𝜕𝑧𝑧𝐵𝐵 is not adequate for FG nanobeams with high 

gradient in material properties for satisfying the surface equilibrium equations of 

Gurtin and Murdoch [118,119]. 

By manipulating Eq. 5.6 and Eq. 5.7, with Eq. 5.7 it is obtained: 

𝜕𝜕𝑧𝑧𝐵𝐵 = �
𝑓𝑓(𝑧𝑧)
𝑧𝑧

(𝜏𝜏𝑐𝑐𝑆𝑆 + 𝜏𝜏𝑚𝑚𝑆𝑆 ) −
1

2 𝑧𝑧
(𝜏𝜏𝑐𝑐𝑆𝑆  − 𝜏𝜏𝑚𝑚𝑆𝑆 )� 𝜀𝜀𝑥𝑥 (5.11) 

 

In accordance with the surface elasticity theory, the stress at point x is proportional 

to the corresponding strain at the same point. Consequently, the bulk stress-strain 

relation can be expressed as: 

𝜕𝜕𝑥𝑥𝐵𝐵 = 𝐸𝐸𝐵𝐵𝜀𝜀𝑥𝑥 + 𝜈𝜈 𝜕𝜕𝑧𝑧𝐵𝐵 (5.12) 

 

For the surface layer, the two relevant constitutive relations can be formulated as: 

𝜕𝜕𝑥𝑥𝑆𝑆 = 𝜏𝜏𝑆𝑆 + 𝐸𝐸𝑆𝑆𝜀𝜀𝑥𝑥 (5.13) 

τzx = 𝜏𝜏𝑆𝑆
𝜕𝜕𝑢𝑢𝑧𝑧
𝜕𝜕𝑥𝑥

 (5.14) 
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The governing equations of the elastostatic bending problem for each part of the 

FG nanobeam are derived by using the virtual work principle, that can be expressed 

as: 

𝛿𝛿(𝛿𝛿 + 𝛿𝛿) = 0 (5.15) 

 

The expression of the virtual strain energy, 𝛿𝛿𝛿𝛿, is expressed as: 

𝛿𝛿𝛿𝛿 = � ��𝜕𝜕𝑥𝑥𝐵𝐵
𝛴𝛴

𝛿𝛿𝜀𝜀𝑥𝑥𝑑𝑑𝑑𝑑 + � 𝜕𝜕𝑥𝑥𝑆𝑆
𝜕𝜕𝛴𝛴

𝛿𝛿𝜀𝜀𝑥𝑥𝑑𝑑𝜕𝜕�
𝐿𝐿

0
𝑑𝑑𝑥𝑥 + � � 𝜏𝜏𝑧𝑧𝑥𝑥𝑆𝑆

𝜕𝜕𝛴𝛴

𝜕𝜕2𝛿𝛿𝑤𝑤
𝜕𝜕𝑥𝑥2

𝑑𝑑𝜕𝜕𝑑𝑑𝑥𝑥 =
𝐿𝐿

0

− � 𝑀𝑀
𝜕𝜕2𝛿𝛿𝑤𝑤
𝜕𝜕𝑥𝑥2

𝑑𝑑𝑥𝑥 + � 𝑇𝑇𝑆𝑆
𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥

𝜕𝜕𝛿𝛿𝑤𝑤
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥
𝐿𝐿

0

𝐿𝐿

0
 

(5.16) 

where 

𝑀𝑀 = �𝜕𝜕𝑥𝑥𝐵𝐵
𝛴𝛴

𝑧𝑧𝑑𝑑𝑑𝑑 + � 𝜕𝜕𝑥𝑥𝑆𝑆
𝜕𝜕𝛴𝛴

𝑧𝑧𝑑𝑑𝜕𝜕 (5.17) 

𝑇𝑇𝑆𝑆 = � 𝜏𝜏𝑆𝑆
𝜕𝜕𝛴𝛴

𝑑𝑑𝜕𝜕 (5.18) 

It can be noted that the quantity 𝑇𝑇𝑆𝑆 is a constant and for FG nanobeams with 

rectangular cross-section can be expressed as: 

𝑇𝑇𝑆𝑆 = 2 𝑏𝑏 𝜏𝜏𝑐𝑐𝑆𝑆 +
2ℎ(𝑛𝑛 𝜏𝜏𝑚𝑚𝑆𝑆 + 𝜏𝜏𝑐𝑐𝑆𝑆)

1 + 𝑛𝑛
 (5.19) 

 

For a homogenous material (𝑛𝑛 = 0), 𝑇𝑇𝑆𝑆 becomes equal to 𝑇𝑇𝑆𝑆 = 2(𝑏𝑏 + ℎ)τ𝑐𝑐𝑆𝑆. 

The expression of the virtual work, 𝛿𝛿𝛿𝛿, done by external force, is expressed as: 

𝛿𝛿𝛿𝛿 = −� 𝑞𝑞𝑧𝑧
𝐿𝐿

0
𝛿𝛿𝑤𝑤 𝑑𝑑𝑥𝑥 (5.20) 

By substituting Eq. 5.16 and Eq. 5.20 into Eq. 5.15 and applying the fundamental 

Lemma of variational calculus, the following governing equation for each part of the 

FG nanobeam: 

𝜕𝜕2𝑀𝑀1

𝜕𝜕𝑥𝑥2
+ 𝛵𝛵𝑆𝑆

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝑞𝑞𝑧𝑧
(1) = 0 0 ≤ 𝑥𝑥 ≤ 𝑑𝑑 (5.21) 
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𝜕𝜕2𝑀𝑀2

𝜕𝜕𝑥𝑥2
+ 𝛵𝛵𝑆𝑆

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝑞𝑞𝑧𝑧
(2) = 0 𝑑𝑑 ≤ 𝑥𝑥 ≤ 𝐿𝐿 (5.22) 

 

The corresponding boundary conditions at the FG nanobeam ends (𝑥𝑥 = 0,𝐿𝐿) can 

be chosen by specifying one element of each of the following two pairs of standard 

boundary conditions, SBCs (kinematic and static boundary conditions): 

�
𝜕𝜕𝑤𝑤1
𝜕𝜕𝑥𝑥

�
𝑥𝑥=0

= �
𝜕𝜕𝑤𝑤1∗

𝜕𝜕𝑥𝑥
�
𝑥𝑥=0

 or [𝑀𝑀1]𝑥𝑥=0 = [𝑀𝑀1
∗]𝑥𝑥=0 (5.23) 

[𝑤𝑤1]𝑥𝑥=0 = [𝑤𝑤1∗]𝑥𝑥=0 or 
�
𝜕𝜕𝑀𝑀1

𝜕𝜕𝑥𝑥
+ 𝛵𝛵𝑆𝑆

𝜕𝜕𝑤𝑤1
𝜕𝜕𝑥𝑥

�
𝑥𝑥=0

= [𝑉𝑉1∗]𝑥𝑥=0 
(5.24) 

�
𝜕𝜕𝑤𝑤2
𝜕𝜕𝑥𝑥

�
𝑥𝑥=𝐿𝐿

= �
𝜕𝜕𝑤𝑤2∗

𝜕𝜕𝑥𝑥
�
𝑥𝑥=𝐿𝐿

 or [𝑀𝑀2]𝑥𝑥=𝐿𝐿 = [𝑀𝑀2
∗]𝑥𝑥=𝐿𝐿 (5.25) 

[𝑤𝑤2]𝑥𝑥=𝐿𝐿 = [𝑤𝑤2∗]𝑥𝑥=𝐿𝐿 or 
�
𝜕𝜕𝑀𝑀2

𝜕𝜕𝑥𝑥
+ 𝛵𝛵𝑆𝑆

𝜕𝜕𝑤𝑤2
𝜕𝜕𝑥𝑥

�
𝑥𝑥=𝐿𝐿

= [𝑉𝑉2∗]𝑥𝑥=𝐿𝐿 
(5.26) 

 

In addition, it is necessary to satisfy the internal compatibility boundary conditions 

(ICBs) at the abscissa d: 

𝑤𝑤1(𝑑𝑑) = 𝑤𝑤2(𝑑𝑑) (5.27) 

𝜕𝜕𝑤𝑤1(𝑑𝑑)
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝑤𝑤2(𝑑𝑑)
𝜕𝜕𝑥𝑥

 (5.28) 

𝑀𝑀1(𝑑𝑑) − 𝐶𝐶 = 𝑀𝑀2(𝑑𝑑) (5.29) 

𝑇𝑇1(𝑑𝑑) − 𝐹𝐹 = 𝑇𝑇2(𝑑𝑑) (5.30) 

 

being 𝑀𝑀1
∗,𝑀𝑀2

∗ and 𝑉𝑉1∗,𝑉𝑉2∗ assigned moments and vertical forces acting at the nanobeam 

ends (𝑥𝑥 = 0, 𝐿𝐿), respectively, and 𝑤𝑤1∗,𝑤𝑤2∗ an assigned vertical displacements at the 

nanobeam ends; 𝑀𝑀1, 𝑀𝑀2 , 𝑇𝑇1, 𝑇𝑇2 , 𝑞𝑞𝑧𝑧
(1) and 𝑞𝑞𝑧𝑧

(2) the bending moments, the shear stress 

and the transverse distributed loads associated to the first and second part of the FG 

nanobeam, respectively, and where C and F represent a concentrated couple and a 

concentrated force applied at the abscissa d. 
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5.1.3. Constitutive law (SSDM) 

The bending curvature 𝜒𝜒 at a point of FG nanobeam at the abscissa x in absence 

of concentrated loads is defined as the following integral convolution according to 

Penna in [132]:  

𝜒𝜒 = �𝛷𝛷𝐿𝐿𝑐𝑐(𝑥𝑥 − 𝜉𝜉, 𝐿𝐿𝑐𝑐)�−
𝑀𝑀(𝜉𝜉) −𝑀𝑀𝜏𝜏

𝐼𝐼𝐸𝐸∗
�

𝐿𝐿

0

𝑑𝑑𝜉𝜉 (5.31) 

 

where M is the bending moment, 𝛷𝛷𝐿𝐿𝑐𝑐 represents an averaging kernel depending on the 

small-scale parameter Lc, and 𝐼𝐼𝐸𝐸∗  is the equivalent bending stiffness defined as: 

𝐼𝐼𝐸𝐸∗  = ��𝐸𝐸𝐵𝐵 + 𝜈𝜈 �
𝑓𝑓(𝑧𝑧)
𝑧𝑧

(𝜏𝜏𝑐𝑐𝑆𝑆 + 𝜏𝜏𝑚𝑚𝑆𝑆 ) −
1

2 𝑧𝑧
(𝜏𝜏𝑐𝑐𝑆𝑆  − 𝜏𝜏𝑚𝑚𝑆𝑆 )��𝑧𝑧2𝑑𝑑Σ

Σ

+ �𝐸𝐸𝑆𝑆𝑧𝑧2

𝜕𝜕𝛴𝛴

𝑑𝑑𝜕𝜕 

(5.32) 

 

and 

𝑀𝑀𝜏𝜏 = �𝜏𝜏𝑆𝑆𝑧𝑧
𝜕𝜕𝛴𝛴

𝑑𝑑𝜕𝜕 (5.33) 

 

The extended form expressions of 𝐼𝐼𝐸𝐸∗  and 𝑀𝑀𝜏𝜏, for a rectangular cross-section, are 

respectively: 

𝐼𝐼𝐸𝐸∗ =
1

60(1 + 𝑛𝑛)(2 + 𝑛𝑛)(3 + 𝑛𝑛) ℎ
2(30𝑏𝑏𝐸𝐸𝑐𝑐𝑆𝑆(1 + 𝑛𝑛)(2 + 𝑛𝑛)(3 + 𝑛𝑛)

+ 15𝑏𝑏𝐸𝐸𝑐𝑐𝐵𝐵ℎ(2 + 𝑛𝑛 + 𝑛𝑛2) + 5𝑏𝑏𝐸𝐸𝑚𝑚𝐵𝐵ℎ𝑛𝑛(8 + 𝑛𝑛(3 + 𝑛𝑛))

+ 10ℎ(3𝐸𝐸𝑐𝑐𝑆𝑆(2 + 𝑛𝑛 + 𝑛𝑛2) + 𝐸𝐸𝑚𝑚𝑆𝑆 𝑛𝑛(8 + 𝑛𝑛(3 + 𝑛𝑛))) − 6𝑏𝑏(1

+ 𝑛𝑛)(2 + 𝑛𝑛)(3 + 𝑛𝑛)𝜈𝜈(𝜏𝜏𝑚𝑚𝑆𝑆 + 𝜏𝜏𝑐𝑐𝑆𝑆)) 

(5.34) 

𝑀𝑀𝜏𝜏 = −
ℎ2𝑛𝑛(τmS − τcS)

(1 + 𝑛𝑛)(2 + 𝑛𝑛) + 𝑏𝑏ℎ τcS (5.35) 
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In the case of homogenous material (𝑛𝑛 = 0) Eq. 5.34 and Eq. 5.35 are reduce 

respectively to: 

𝐼𝐼𝐸𝐸∗ =
𝑏𝑏ℎ3

12
𝐸𝐸𝑐𝑐𝐵𝐵 −

𝑏𝑏ℎ2

5
𝜈𝜈 𝜏𝜏𝑐𝑐𝑆𝑆 + �

ℎ3

6
+
𝑏𝑏ℎ2

2
�𝐸𝐸𝑐𝑐𝑆𝑆 (5.36) 

𝑀𝑀𝜏𝜏 = 𝑏𝑏ℎ τcS (5.37) 

 

Note that if the Poisson’s effect is neglected, the expression of Eq. 5.36 coincide 

whit those given in [139]. 

In presence of a loading discontinuity and/or concentrated loads (force and couple) 

at an interior point of abscissa d, Eq. 5.31 can be rewritten as: 

𝜒𝜒1 = �𝛷𝛷𝐿𝐿𝑐𝑐(𝑥𝑥 − 𝜉𝜉, 𝐿𝐿𝑐𝑐)�−
𝑀𝑀1(𝜉𝜉) −𝑀𝑀𝜏𝜏

𝐼𝐼𝐸𝐸∗
�

𝑑𝑑

0

𝑑𝑑𝜉𝜉 0 ≤ 𝑥𝑥 ≤ 𝑑𝑑 (5.38) 

𝜒𝜒2 = �𝛷𝛷𝐿𝐿𝑐𝑐(𝑥𝑥 − 𝜉𝜉, 𝐿𝐿𝑐𝑐)�−
𝑀𝑀2(𝜉𝜉) −𝑀𝑀𝜏𝜏

𝐼𝐼𝐸𝐸∗
�

𝐿𝐿

𝑑𝑑

𝑑𝑑𝜉𝜉 𝑑𝑑 ≤ 𝑥𝑥 ≤ 𝐿𝐿 (5.39) 

 

As it is well-known, by choosing a special function kernel 𝛷𝛷𝐿𝐿𝑐𝑐 equal to: 

𝛷𝛷𝐿𝐿𝑐𝑐(𝑥𝑥, 𝐿𝐿𝑐𝑐) =
1

2𝐿𝐿𝑐𝑐
exp�−

|𝑥𝑥|
𝐿𝐿𝑐𝑐
� (5.40) 

the convolutions in Eqs. 5.38 and 5.39 are equivalent to following second-order 

differential equations according to Penna in [132]: 

�1 − 𝐿𝐿𝑐𝑐2
𝜕𝜕2

𝜕𝜕𝑥𝑥2
� 𝜒𝜒1 = −

𝑀𝑀1 −𝑀𝑀𝜏𝜏

𝐼𝐼𝐸𝐸∗
 0 ≤ 𝑥𝑥 ≤ 𝑑𝑑 (5.41) 

�1 − 𝐿𝐿𝑐𝑐2
𝜕𝜕2

𝜕𝜕𝑥𝑥2
� 𝜒𝜒2 = −

𝑀𝑀2 −𝑀𝑀𝜏𝜏

𝐼𝐼𝐸𝐸∗
 𝑑𝑑 ≤ 𝑥𝑥 ≤ 𝐿𝐿 (5.42) 

 

if and only if the conventional constitutive boundary conditions (CBCs) of the 

stress-driven nonlocal theory [85] and continuity constitutive boundary conditions 

(CCBCs) introduced by Vaccaro et al. in [140] e Barretta et al. in [141] are satisfied: 
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𝜕𝜕𝜒𝜒1(0)
𝜕𝜕𝑥𝑥

−
1
𝐿𝐿𝑐𝑐
𝜒𝜒1(0) = 0 (5.43) 

𝜒𝜒1(𝑑𝑑) = 𝜒𝜒2(𝑑𝑑) (5.44) 

𝜕𝜕𝜒𝜒1(𝑑𝑑)
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝜒𝜒2(𝑑𝑑)
𝜕𝜕𝑥𝑥

 (5.45) 

𝜕𝜕𝜒𝜒2(𝐿𝐿)
𝜕𝜕𝑥𝑥

+
1
𝐿𝐿𝑐𝑐
𝜒𝜒2(𝐿𝐿) = 0 (5.46) 

By manipulating Eqs. 5.41 and 5.42, the expressions of the stress-driven nonlocal 

resultant moments incorporating surface effects can be obtained as: 

𝑀𝑀1 = −𝐼𝐼𝐸𝐸∗
𝜕𝜕2𝑤𝑤1
𝜕𝜕𝑥𝑥2

+ 𝐼𝐼𝐸𝐸∗𝐿𝐿𝑐𝑐2
𝜕𝜕4𝑤𝑤1
𝜕𝜕𝑥𝑥4

+ 𝑀𝑀𝜏𝜏 0 ≤ 𝑥𝑥 ≤ 𝑑𝑑 (5.47) 

𝑀𝑀2 = −𝐼𝐼𝐸𝐸∗
𝜕𝜕2𝑤𝑤2
𝜕𝜕𝑥𝑥2

+ 𝐼𝐼𝐸𝐸∗𝐿𝐿𝑐𝑐2
𝜕𝜕4𝑤𝑤2
𝜕𝜕𝑥𝑥4

+ 𝑀𝑀𝜏𝜏 𝑑𝑑 ≤ 𝑥𝑥 ≤ 𝐿𝐿 (5.48) 

 

Finally, by substituting Eq. 5.47 and 5.48 into Eq. 5.21 and 5.22, respectively, the 

governing equations incorporating surface energy effect in terms of transverse 

displacement for the first and the second part of an inflected FG nanobeam are obtained 

as: 

𝐼𝐼𝐸𝐸∗𝐿𝐿𝑐𝑐2
𝜕𝜕6𝑤𝑤1
𝜕𝜕𝑥𝑥6

− 𝐼𝐼𝐸𝐸∗
𝜕𝜕4𝑤𝑤1
𝜕𝜕𝑥𝑥4

+ 𝛵𝛵𝑆𝑆
𝜕𝜕2𝑤𝑤1
𝜕𝜕𝑥𝑥2

+ 𝑞𝑞𝑧𝑧
(1) = 0 0 ≤ 𝑥𝑥 ≤ 𝑑𝑑 (5.49) 

𝐼𝐼𝐸𝐸∗𝐿𝐿𝑐𝑐2
𝜕𝜕6𝑤𝑤2
𝜕𝜕𝑥𝑥6

− 𝐼𝐼𝐸𝐸∗
𝜕𝜕4𝑤𝑤2
𝜕𝜕𝑥𝑥4

+ 𝛵𝛵𝑆𝑆
𝜕𝜕2𝑤𝑤2
𝜕𝜕𝑥𝑥2

+ 𝑞𝑞𝑧𝑧
(1) = 0 𝑑𝑑 ≤ 𝑥𝑥 ≤ 𝐿𝐿 (5.50) 

 

with the corresponding constitutive and constitutive continuity boundary 

conditions (Eqs. 5.43-5.46) in conjunction with the standard and compatibility 

boundary conditions (Eqs. 5.23-5.30). Now, by introducing the following 

dimensionless quantities: 

𝑥𝑥� =
𝑥𝑥
𝐿𝐿

 𝑤𝑤� =
𝑤𝑤
𝐿𝐿

 𝑤𝑤�1∗ =
𝑤𝑤1∗

𝐿𝐿
 𝑤𝑤�2∗ =

𝑤𝑤2∗

𝐿𝐿
 �̃�𝑑 =

𝑑𝑑
𝐿𝐿

  

𝑉𝑉� ∗ =
𝑉𝑉∗𝐿𝐿2

𝐼𝐼𝐸𝐸∗
 𝑀𝑀�∗ =

𝑀𝑀∗𝐿𝐿
𝐼𝐼𝐸𝐸∗

 
𝑞𝑞�𝑧𝑧

(1)

=
 𝑞𝑞𝑧𝑧

(1)𝐿𝐿3

𝐼𝐼𝐸𝐸∗
 

𝑞𝑞�𝑧𝑧
(2)

=
 𝑞𝑞𝑧𝑧

(2)𝐿𝐿3

𝐼𝐼𝐸𝐸∗
 

𝜃𝜃 =
𝛵𝛵𝑆𝑆𝐿𝐿2

𝐼𝐼𝐸𝐸∗
 (5.51) 
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𝑀𝑀�𝜏𝜏 =
𝑀𝑀𝜏𝜏𝐿𝐿
𝐼𝐼𝐸𝐸∗

 𝜆𝜆𝑐𝑐 =
𝐿𝐿𝑐𝑐
𝐿𝐿

 �̃�𝐶 =
𝐶𝐶 𝐿𝐿
𝐼𝐼𝐸𝐸∗

 𝐹𝐹� =
𝐹𝐹 𝐿𝐿2

𝐼𝐼𝐸𝐸∗
   

the dimensionless governing equations incorporating surface energy effect of the 

bending problem for the two parts of the FG nanobeam can be formulated as follow: 

𝜆𝜆𝑐𝑐2
𝜕𝜕6𝑤𝑤�1
𝜕𝜕𝑥𝑥�6

−
𝜕𝜕4𝑤𝑤�1
𝜕𝜕𝑥𝑥�4

+ 𝜃𝜃
𝜕𝜕2𝑤𝑤�1
𝜕𝜕𝑥𝑥�2

+ 𝑞𝑞�𝑧𝑧
(1) = 0 0 ≤ 𝑥𝑥� ≤ �̃�𝑑 (5.52) 

𝜆𝜆𝑐𝑐2
𝜕𝜕6𝑤𝑤�2
𝜕𝜕𝑥𝑥�6

−
𝜕𝜕4𝑤𝑤�2
𝜕𝜕𝑥𝑥�4

+ 𝜃𝜃
𝜕𝜕2𝑤𝑤�2
𝜕𝜕𝑥𝑥�2

+ 𝑞𝑞�𝑧𝑧
(2) = 0 �̃�𝑑 ≤ 𝑥𝑥� ≤ 1 (5.53) 

 

with the following boundary conditions in terms of dimensionless transverse 

displacements: 

- SBCs 

�
𝜕𝜕𝑤𝑤�1
𝜕𝜕𝑥𝑥�

�
𝑥𝑥�=0

= �
𝜕𝜕𝑤𝑤�1∗

𝜕𝜕𝑥𝑥�
�
𝑥𝑥�=0

 or �𝑀𝑀�1�𝑥𝑥=0 = �𝑀𝑀��
𝑥𝑥=0

 (5.54) 

[𝑤𝑤�1]𝑥𝑥�=0 = [𝑤𝑤�1∗]𝑥𝑥=0 or �
𝜕𝜕𝑀𝑀�1
𝜕𝜕𝑥𝑥

+ 𝜃𝜃
𝜕𝜕𝑤𝑤�1
𝜕𝜕𝑥𝑥 �𝑥𝑥=0

= [𝑉𝑉� ∗]𝑥𝑥=0 (5.55) 

�
𝜕𝜕𝑤𝑤�2
𝜕𝜕𝑥𝑥�

�
𝑥𝑥�=𝐿𝐿

= �
𝜕𝜕𝑤𝑤�2∗

𝜕𝜕𝑥𝑥�
�
𝑥𝑥�=1

 or �𝑀𝑀�2�𝑥𝑥�=1 = �𝑀𝑀��
𝑥𝑥�=1

 (5.56) 

[𝑤𝑤�2]𝑥𝑥�=𝐿𝐿 = [𝑤𝑤�2∗]𝑥𝑥�=1 or �
𝜕𝜕𝑀𝑀�2
𝜕𝜕𝑥𝑥�

+ 𝜃𝜃
𝜕𝜕𝑤𝑤�2
𝜕𝜕𝑥𝑥� �𝑥𝑥�=1

= [𝑉𝑉� ∗]𝑥𝑥�=1 (5.57) 

 

- ICBCs 

𝑤𝑤�1��̃�𝑑� = 𝑤𝑤�2��̃�𝑑� (5.58) 

𝜕𝜕𝑤𝑤�1(�̃�𝑑)
𝜕𝜕𝑥𝑥�

=
𝜕𝜕𝑤𝑤�2(�̃�𝑑)
𝜕𝜕𝑥𝑥�

 (5.59) 

𝑀𝑀�1(�̃�𝑑) − �̃�𝐶 = 𝑀𝑀2(�̃�𝑑) (5.60) 

𝑇𝑇�1(�̃�𝑑) − 𝐹𝐹� = 𝑇𝑇�2(�̃�𝑑) (5.61) 

 

- CBCs 

𝜕𝜕3𝑤𝑤�1(0)
𝜕𝜕𝑥𝑥�3

−
1
𝜆𝜆𝑐𝑐
𝜕𝜕2𝑤𝑤�1(0)
𝜕𝜕𝑥𝑥�2

= 0 (5.62) 
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𝜕𝜕3𝑤𝑤�2(1)
𝜕𝜕𝑥𝑥�3

+
1
𝜆𝜆𝑐𝑐
𝜕𝜕2𝑤𝑤�2(1)
𝜕𝜕𝑥𝑥�2

= 0 (5.63) 

 

- CCBCs 

𝜕𝜕2𝑤𝑤�1��̃�𝑑�
𝜕𝜕𝑥𝑥�2

=
𝜕𝜕2𝑤𝑤�2��̃�𝑑�
𝜕𝜕𝑥𝑥�2

 (5.64) 

𝜕𝜕3𝑤𝑤�1��̃�𝑑�
𝜕𝜕𝑥𝑥�3

=
𝜕𝜕3𝑤𝑤�2��̃�𝑑�
𝜕𝜕𝑥𝑥�3

 (5.65) 

being 

𝑀𝑀�1 = −
𝜕𝜕2𝑤𝑤�1
𝜕𝜕𝑥𝑥�2

+ 𝜆𝜆𝑐𝑐2
𝜕𝜕4𝑤𝑤�1
𝜕𝜕𝑥𝑥�4

+ 𝑀𝑀�𝜏𝜏 0 ≤ 𝑥𝑥� ≤ �̃�𝑑 (5.66) 

𝑀𝑀�2 = −
𝜕𝜕2𝑤𝑤�2
𝜕𝜕𝑥𝑥�2

+ 𝜆𝜆𝑐𝑐2
𝜕𝜕4𝑤𝑤�2
𝜕𝜕𝑥𝑥�4

+ 𝑀𝑀�𝜏𝜏 �̃�𝑑 ≤ 𝑥𝑥� ≤ 1 (5.67) 

𝑇𝑇�1 = −
𝜕𝜕3𝑤𝑤�1
𝜕𝜕𝑥𝑥�3

+ 𝜆𝜆𝑐𝑐2
𝜕𝜕5𝑤𝑤�1
𝜕𝜕𝑥𝑥�5

+ 𝜃𝜃
𝜕𝜕𝑤𝑤�1
𝜕𝜕𝑥𝑥�

 0 ≤ 𝑥𝑥� ≤ �̃�𝑑 (5.68) 

𝑇𝑇�2 = −
𝜕𝜕3𝑤𝑤�2
𝜕𝜕𝑥𝑥�3

+ 𝜆𝜆𝑐𝑐2
𝜕𝜕5𝑤𝑤�2
𝜕𝜕𝑥𝑥�5

+ 𝜃𝜃
𝜕𝜕𝑤𝑤�2
𝜕𝜕𝑥𝑥�

 �̃�𝑑 ≤ 𝑥𝑥� ≤ 1 (5.69) 

 

5.1.4. Results and discussion 

In this paragraph, the results of a parametric analysis are presented to show the 

effectiveness of the surface stress-drivel model (SSDM) for the study of the bending 

behavior of a straight Bernoulli-Euler FG nanobeam, with length L=10 nm, 𝑏𝑏 = ℎ =

0.1𝐿𝐿, in presence of discontinuous loads.  

In order to validate the proposed SSDM model, a numerical analysis has been 

carried out for a Simply-Supported (S-S) FG nanobeam by considering three different 

loading configurations: (i) a non-uniform distributed load �𝑞𝑞𝑧𝑧
(1) = 0.1 𝑁𝑁

𝑚𝑚
 𝑓𝑓𝑐𝑐𝑟𝑟 0 ≤ 𝑥𝑥 <

𝑑𝑑 , 𝑞𝑞𝑧𝑧
(2) = 10 𝑁𝑁

𝑚𝑚
 𝑓𝑓𝑐𝑐𝑟𝑟 𝑑𝑑 ≤ 𝑥𝑥 < 𝑙𝑙�, (ii) a concentrated force at the abscissa d 

(𝐹𝐹 = 10 𝑛𝑛𝑁𝑁)  and (iii) a concentrated couple at the abscissa d (𝐶𝐶 = 100 𝑛𝑛𝑁𝑁𝑛𝑛𝑚𝑚) in 

terms of dimensionless deflection. The obtained numerical results have been always 
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compared to those derived by employing the Stress-Driven Model (SDM) without 

considering surface energy effects.  

In Figures 5.4-5.6 the curves of the non-dimensional deflections corresponding to 

the SSDM (continuous) and SDM (dashed) are plotted for each statical scheme by 

setting 𝜆𝜆𝑐𝑐 ∊ {0.10, 0.30, 0.50} and n ∊ {1, 2} and show the combined effects of the 

nonlocal parameter, 𝜆𝜆𝑐𝑐, of the surface energy and of the material gradient index, n, on 

the bending behavior of the FG nanobeams.  

 

 

(a)  

 

(b) 

Figure 5.4. Combined effects of the nonlocal parameter, 𝜆𝜆𝑐𝑐, the surface energy and the material gradient index, k, 
on non-dimensional deflection, 𝑤𝑤� , of a Simply-Supported (S-S) FG nanobeam subjected to a transverse 
discontinuous distributed load for both SSDM and SDM models of elasticity for n =1 (a) and n =2 (b). 

 

 

 

(a)  

 

(b) 

Figure 5.5. Combined effects of the nonlocal parameter, 𝜆𝜆𝑐𝑐, the surface energy and the material gradient index, k, 
on non-dimensional deflection, 𝑤𝑤� , of a Simply-Supported (S-S) FG nanobeam subjected to a concentrated load for 
both SSDM and SDM models of elasticity for n =1 (a) and n =2 (b). 
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(a)  

 

(b) 

Figure 5.6. Combined effects of the nonlocal parameter, 𝜆𝜆𝑐𝑐, the surface energy and the material gradient index, k, 
on non-dimensional deflection, 𝑤𝑤� , of a Simply-Supported (S-S) FG nanobeam subjected to a concentrated couple 
for both SSDM and SDM models of elasticity for n=1 (a) and n=2 (b). 

 

5.1.5. Summary and conclusions 

The main outcomes of the present section may be summarized as follows: 

 the effective surface parameters (𝐸𝐸𝑆𝑆, 𝜏𝜏𝑆𝑆) depend on the variation of the 

material gradient, k, as well as on those of the bulk volume;  

 as the value of the nonlocal parameter increases, the value of the deflection 

decreases both for the SSDM (with surface energy effects) model and for 

the SDM model (without surface energy effects); 

 the values of the SSDM deflections evaluated in presence of surface effects 

are always lower than those obtained by the SDM model (without surface 

energy effects). 

In conclusion, the novel proposed surface stress-driven model, which combine the 

stress-driven formulation of elasticity with the surface elasticity theory, is here 

extended in order to analyses the coupled effects of the nonlocal parameter, 𝜆𝜆𝑐𝑐, the 

surface energy and the material gradient index, n, on the bending response of 

Bernoulli-Euler FG nanobeams with internal load discontinuities such as a non-

uniform distributed load and/or a concentrated force or couple at an internal point of 

the nanobeam axis. 
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5.2. Application of SSDM theory of elasticity for the study of the bending response 

of FG cracked nanobeams 

The Surface Stress-Driven Model (SSDM) recently proposed by Penna in [132] 

for uncracked FG nanobeams, in which the stress-driven model and the surface 

elasticity theory are coupled, is here enriched for the bending analysis of Bernoulli-

Euler FG cracked nanobeams. 

As is well known, the presence of cracks in structures and nanostructures has a 

significant effect on their mechanical and stiffness properties. Many researchers are 

studying the static and dynamic response of cracked structures [142-158]. In particular, 

the study of the static and dynamic responses of cracked beams can be developed by 

using both 2-D and 3-D numerical analysis based on the Finite Element Method. In 

literature, several simplified methods have been also proposed, which lead to lower 

computational efforts. For example, in the model proposed by Christides and Barr 

[142], as well as in the one by Shen and Pierre [143,144] a crack function representing 

the perturbation in the stress field induced by the rotational discontinuity is considered. 

Other simplified theories assume that a cracked beam is composed of two segments 

connected by a rotational spring whose stiffness can be related to the length of the 

crack using the Fracture Mechanics Theory [145-152]. The rotational hinge model 

assumes a linear elastic response of the beam material and neglects any interactions 

with other parts of the structure. Furthermore, the model does not account for the 

potential effects of local stresses, stress concentration and crack propagation. Its 

validity depends largely on the geometry of the crack and provides good results when 

the crack dimension is very small or negligible in size compared to the total length of 

the beam. Therefore, despite the simplifications made to the rotational hinge model, it 

can be used since, within the previously mentioned hypotheses, it provides an estimate 

of the effect of cracks through simple analysis models. 

The present paragraph is structured as follows. The problem formulation is 

summarized in Section 5.2.1. In Section 5.2.2. is reported the constitutive law and the 

nonlocal governing equations of the elastostatic bending problem in the presence of a 

discontinuity due to a crack. Results of the parametric analysis are discussed in Section 

5.3. Some closing remarks are given in Section 5.4. 
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5.2.1. Problem formulation 

Let us consider an FG straight nanobeam with length L and a rectangular cross-

section Σ (𝑏𝑏 × ℎ) made of a bulk volume (B), composed of a mixture of metal (m) 

and ceramic (c), and a thin surface layer (S) perfectly adhered to the bulk continuum 

(Figure 5.7).  

According to the power law distributions proposed by Shahab et al. in [128], the 

bulk elastic modulus of elasticity, 𝐸𝐸𝐵𝐵 = 𝐸𝐸𝐵𝐵(𝑧𝑧), the surface modulus of elasticity, 𝐸𝐸𝑆𝑆 =

𝐸𝐸𝑆𝑆(𝑧𝑧) and the residual surface stress, 𝜏𝜏𝑆𝑆 = 𝜏𝜏𝑆𝑆(𝑧𝑧), continuously vary along transverse 

direction, z, as described in Eqs. 5.1-5.3.  

 
 

Figure 5.7. Coordinate system and configuration of the FG nanobeam: bulk continuum (mixture of ceramic 
and metal) and surface layer.  
 

Let us suppose that the FG nanobeam presents a crack of depth a at the abscissa 

𝑥𝑥 = 𝑑𝑑 which divides the nanobeam into two parts B1 and B2 respectively (Figure 5.8). 

Therefore, the Cartesian components 𝑢𝑢𝑥𝑥 = 𝑢𝑢𝑥𝑥(𝑥𝑥, 𝑧𝑧) and 𝑢𝑢𝑧𝑧 = 𝑢𝑢𝑧𝑧(𝑥𝑥, 𝑧𝑧) of the 

displacement field of the FG nanobeam along 𝑥𝑥 and 𝑧𝑧 directions, respectively, can be 

expressed as: 

𝑢𝑢𝑥𝑥 = −𝑧𝑧
𝜕𝜕𝑤𝑤1
𝜕𝜕𝑥𝑥

 𝑢𝑢𝑧𝑧(𝑥𝑥, 𝑧𝑧) = 𝑤𝑤1 𝑥𝑥 ∈ [0,𝑑𝑑] (5.70) 

𝑢𝑢𝑥𝑥 = −𝑧𝑧
𝜕𝜕𝑤𝑤2
𝜕𝜕𝑥𝑥

 𝑢𝑢𝑧𝑧(𝑥𝑥, 𝑧𝑧) = 𝑤𝑤2 𝑥𝑥 ∈ [𝑑𝑑, 𝐿𝐿] (5.71) 
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where 𝑤𝑤1(𝑥𝑥) and 𝑤𝑤2(𝑥𝑥) are the transverse displacements of the geometric center 

O belonging to the first and the second part of the FG nanobeam, respectively. 

The corresponding non-zero strain, 𝜀𝜀𝑥𝑥 =  𝜀𝜀𝑥𝑥(𝑥𝑥, 𝑧𝑧), can be expressed, respectively, 

as:  

𝜀𝜀𝑥𝑥 = −𝑧𝑧
𝜕𝜕2𝑤𝑤1
𝜕𝜕𝑥𝑥2

= −𝑧𝑧 𝜒𝜒1(𝑥𝑥) 𝑥𝑥 ∈ [0,𝑑𝑑] (5.72) 

𝜀𝜀𝑥𝑥 = −𝑧𝑧
𝜕𝜕2𝑤𝑤2
𝜕𝜕𝑥𝑥2

= −𝑧𝑧 𝜒𝜒2(𝑥𝑥) 𝑥𝑥 ∈ [𝑑𝑑, 𝐿𝐿] (5.73) 

 

being 𝜒𝜒𝑁𝑁(𝑥𝑥) the geometrical bending elastic curvature (𝑖𝑖 = 1,2). 

 

Figure 5.8. FG nanobeam with discontinuities (a crack) at the abscissa 𝑥𝑥 = 𝑑𝑑. 
 

By repeating the same steps done in the previous paragraph, applying the principle 

of virtual work, it is possible to obtain the following governing equations for each part 

of the FG nanobeam: 

𝜕𝜕2𝑀𝑀1

𝜕𝜕𝑥𝑥2
+ 𝛵𝛵𝑆𝑆

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝑞𝑞𝑧𝑧
(1) = 0 𝑥𝑥 ∈ [0,𝑑𝑑] (5.74) 

𝜕𝜕2𝑀𝑀2

𝜕𝜕𝑥𝑥2
+ 𝛵𝛵𝑆𝑆

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝑞𝑞𝑧𝑧
(2) = 0 𝑥𝑥 ∈ [𝑑𝑑, 𝐿𝐿] (5.75) 
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with the corresponding standard boundary conditions previously defined in Eqs. 

5.23-5.26. As said before, it is also necessary to satisfy the following internal 

compatibility boundary conditions (ICBs) at the abscissa d: 

𝑤𝑤1(𝑑𝑑) = 𝑤𝑤2(𝑑𝑑) (5.76) 

𝜕𝜕𝑤𝑤1(𝑑𝑑)
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝑤𝑤2(𝑑𝑑)
𝜕𝜕𝑥𝑥

 (5.77) 

𝑀𝑀1(𝑑𝑑) = 𝑀𝑀2(𝑑𝑑) (5.78) 

𝑇𝑇1(𝑑𝑑) = 𝑇𝑇2(𝑑𝑑) (5.79) 

 

being 𝑀𝑀1 = 𝑀𝑀1(𝑥𝑥), 𝑀𝑀2 = 𝑀𝑀2(𝑥𝑥), 𝑇𝑇1 = 𝑇𝑇1(𝑥𝑥), 𝑇𝑇2 = 𝑇𝑇2(𝑥𝑥), 𝑞𝑞𝑧𝑧
(1) = 𝑞𝑞𝑧𝑧

(1)(𝑥𝑥) and 

𝑞𝑞𝑧𝑧
(2) = 𝑞𝑞𝑧𝑧

(2)(𝑥𝑥) the bending moments, the shear stress and the transverse distributed 

loads associated to the first and second part of the FG nanobeam, respectively. 

Moreover, the quantity 𝛵𝛵𝑆𝑆 was previously defined in Eq. 5.18.  

 

5.2.2. Constitutive law 

This section is divided in two parts: the first one presents an extension of the novel 

approach proposed by Penna in [124], in order to study the size-dependent bending 

response of FG cracked nanobeams in case of discontinuities; in the second part, the 

modeling of a cracked FG nanobeam with discontinuity is discussed in depth.  

Now, we recall the differential constitutive law introduced by Penna in [124] for 

uncracked FG nanobeams:  

𝜒𝜒 = �𝛷𝛷𝐿𝐿𝑐𝑐(𝑥𝑥 − 𝜉𝜉, 𝐿𝐿𝑐𝑐)�−
𝑀𝑀(𝜉𝜉) −𝑀𝑀𝜏𝜏

𝐼𝐼𝐸𝐸∗
�

𝐿𝐿

0

𝑑𝑑𝜉𝜉 𝑥𝑥 ∈ [0, 𝐿𝐿] (5.80) 

 

where 𝑀𝑀 is the bending moment, 𝛷𝛷𝐿𝐿𝑐𝑐 represents an averaging kernel (Eq. 5.40) 

depending on the small-scale parameter, 𝐿𝐿𝑐𝑐 = 𝜆𝜆𝑐𝑐𝐿𝐿, which describes the nonlocal 

effects and is function of nonlocal parameter, 𝜆𝜆𝑐𝑐, while 𝐼𝐼𝐸𝐸∗ ,𝑀𝑀𝜏𝜏 are the quantity 

previously defined in Eq. 5.32 and Eq. 5.33, respectively.  
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Due to the presence of a crack at an interior point of abscissa 𝑑𝑑, the assemblage 

domain [0, 𝐿𝐿] is partitioned into two parts [0,𝑑𝑑] and [𝑑𝑑, 𝐿𝐿] (with [0, 𝐿𝐿] = [0,𝑑𝑑] ∪

[𝑑𝑑, 𝐿𝐿], and Eq. 5.80 can be rewritten as: 

𝜒𝜒 = �𝛷𝛷𝐿𝐿𝑐𝑐(𝑥𝑥 − 𝜉𝜉, 𝐿𝐿𝑐𝑐)�−
𝑀𝑀(𝜉𝜉) −𝑀𝑀𝜏𝜏

𝐼𝐼𝐸𝐸∗
�

𝐿𝐿

0

𝑑𝑑𝜉𝜉 =  �𝜒𝜒1
(𝑥𝑥),         𝑥𝑥 ∈ [0,𝑑𝑑] 

𝜒𝜒2(𝑥𝑥),        𝑥𝑥 ∈ [𝑑𝑑, 𝐿𝐿]  (5.81) 

Remark 5.1. By assuming that the nonlocal effects in one subdomain are reflected 

only in that subdomain, the elastic curvature χ, as expressed by Eq. 5.83, results in 

being the unique solution of a constitutive differential problem with conventional 

constitutive boundary conditions [85] applied to the boundaries of the two 

subdomains. Hence, the constitutive continuity boundary conditions introduced in 

[140,141] are not necessary. 

Consequently, the constitutive problem is described by the equivalent system of 

second-order differential equations: 

�1 − 𝐿𝐿𝑐𝑐2
𝜕𝜕2

𝜕𝜕𝑥𝑥2
� 𝜒𝜒1 = −

𝑀𝑀1 −𝑀𝑀𝜏𝜏

𝐼𝐼𝐸𝐸∗
 𝑥𝑥 ∈ [0,𝑑𝑑] (5.82) 

�1 − 𝐿𝐿𝑐𝑐2
𝜕𝜕2

𝜕𝜕𝑥𝑥2
� 𝜒𝜒2 = −

𝑀𝑀2 −𝑀𝑀𝜏𝜏

𝐼𝐼𝐸𝐸∗
 𝑥𝑥 ∈ [𝑑𝑑, 𝐿𝐿] (5.83) 

 

if and only if the two pairs of conventional constitutive boundary conditions (CBCs) 

of the stress-driven nonlocal theory [85] are satisfied at the two nanobeams ends 

([0,𝑑𝑑] ∪ [𝑑𝑑, 𝐿𝐿]): 

𝜕𝜕𝜒𝜒1(0)
𝜕𝜕𝑥𝑥

−
1
𝐿𝐿𝑐𝑐
𝜒𝜒1(0) = 0 (5.84) 

𝜕𝜕𝜒𝜒1(𝑑𝑑)
𝜕𝜕𝑥𝑥

+
1
𝐿𝐿𝑐𝑐
𝜒𝜒1(𝑑𝑑) = 0 (5.85) 

𝜕𝜕𝜒𝜒2(𝑑𝑑)
𝜕𝜕𝑥𝑥

−
1
𝐿𝐿𝑐𝑐
𝜒𝜒2(𝑑𝑑) = 0 (5.86) 

𝜕𝜕𝜒𝜒2(𝐿𝐿)
𝜕𝜕𝑥𝑥

+
1
𝐿𝐿𝑐𝑐
𝜒𝜒2(𝐿𝐿) = 0 (5.87) 
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Now, repeating the steps performed in the previous paragraph, the dimensionless 

governing equations incorporating the surface energy effects in terms of transverse 

displacement for the first and second parts of an inflected cracked FG nanobeam are 

obtained as: 

𝜆𝜆𝑐𝑐2
𝜕𝜕6𝑤𝑤�
𝜕𝜕𝑥𝑥�6

−
𝜕𝜕4𝑤𝑤�
𝜕𝜕𝑥𝑥�4

+ 𝜃𝜃
𝜕𝜕2𝑤𝑤�
𝜕𝜕𝑥𝑥�2

+ 𝑞𝑞�𝑧𝑧
(1) = 0 𝑥𝑥� ∈ �0, �̃�𝑑� (5.88) 

𝜆𝜆𝑐𝑐2
𝜕𝜕6𝑤𝑤�
𝜕𝜕𝑥𝑥�6

−
𝜕𝜕4𝑤𝑤�
𝜕𝜕𝑥𝑥�4

+ 𝜃𝜃
𝜕𝜕2𝑤𝑤�
𝜕𝜕𝑥𝑥�2

+ 𝑞𝑞�𝑧𝑧
(2) = 0 𝑥𝑥� ∈ ��̃�𝑑, 1� (5.89) 

 

with the corresponding dimensionless conventional constitutive boundary 

conditions: 

𝜕𝜕3𝑤𝑤�1(0)
𝜕𝜕𝑥𝑥�3

−
1
𝜆𝜆𝑐𝑐
𝜕𝜕2𝑤𝑤�1(0)
𝜕𝜕𝑥𝑥�2

= 0 (5.90) 

𝜕𝜕3𝑤𝑤�1��̃�𝑑�
𝜕𝜕𝑥𝑥�3

+
1
𝜆𝜆𝑐𝑐
𝜕𝜕2𝑤𝑤�1��̃�𝑑�
𝜕𝜕𝑥𝑥�2

= 0 (5.91) 

𝜕𝜕3𝑤𝑤�2��̃�𝑑�
𝜕𝜕𝑥𝑥�3

−
1
𝜆𝜆𝑐𝑐
𝜕𝜕2𝑤𝑤�2��̃�𝑑�
𝜕𝜕𝑥𝑥�2

= 0 (5.92) 

𝜕𝜕3𝑤𝑤�2(1)
𝜕𝜕𝑥𝑥�3

+
1
𝜆𝜆𝑐𝑐
𝜕𝜕2𝑤𝑤�2(1)
𝜕𝜕𝑥𝑥�2

= 0 (5.93) 

In conjunction with the dimensionless standard and internal compatibility 

boundary conditions (Eqs. 5.54-5.61). 

 

5.2.3. Cracked FG nanobeam modeling  

Let us consider a crack in the FG nanobeam located at a distance d from origin of 

axes (𝑥𝑥 = 0). As already said, the cracked FG nanobeam is here modelled as two 

nanobeams (B1 and B2) connected by a rotational elastic spring characterized by a 

flexibility constant denoted by 𝐶𝐶𝑚𝑚 (Figure 5.9).  
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Figure 5.9. Model of the cracked FG nanobeam. 

 

The method proposed by Freund and Herrmann in [47] and followed by other 

authors in [148-153] assumes that the discontinuity in the slope, ∆∅, depends on the 

flexibility constant. 

Consequently, Eq. 5.77, can be rewritten as: 

∆∅ =  
𝜕𝜕𝑤𝑤2(𝑑𝑑)
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝑤𝑤1(𝑑𝑑)
𝜕𝜕𝑥𝑥

= 𝐶𝐶𝑚𝑚
𝜕𝜕2𝑤𝑤1(𝑑𝑑)
𝜕𝜕𝑥𝑥2

 (5.94) 

in which the spring flexibility constant 𝐶𝐶𝑚𝑚 can be calculated by: 

𝐶𝐶𝑚𝑚 =
ℎ
𝐼𝐼𝐸𝐸∗
𝛩𝛩(𝛼𝛼�, 𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠 − 𝑠𝑠𝑒𝑒𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛 𝑔𝑔𝑒𝑒𝑐𝑐𝑚𝑚𝑒𝑒𝑡𝑡𝑟𝑟𝑦𝑦) (5.95) 

where 𝐼𝐼𝐸𝐸∗  is the equivalent bending stiffness of the un-cracked nanobeam and 𝛩𝛩(𝛼𝛼�) is 

a function depending on the crack ratio 𝛼𝛼� = 𝑁𝑁
ℎ
 and on the nanobeam cross-section 

geometry. The function 𝛩𝛩(𝛼𝛼�) can be evaluated by using the Fracture Mechanics 

Theory and, in the case of a rectangular or square cross-section, can be expressed as 

[158]: 

𝛩𝛩(𝛼𝛼�) = 2 �
𝛼𝛼�

1 − 𝛼𝛼��
(5,93 − 19,69𝛼𝛼� + 37,14𝛼𝛼�2 − 35,84𝛼𝛼�3 + 13,12𝛼𝛼�4) (5.96) 

The boundary condition related to the jump in the bending slope, ∆∅� , in terms of 

dimensionless deflection, can be rewritten as: 

∆∅� =  
𝜕𝜕𝑤𝑤�2��̃�𝑑�
𝜕𝜕𝑥𝑥�

−
𝜕𝜕𝑤𝑤�1��̃�𝑑�
𝜕𝜕𝑥𝑥�

= 𝒦𝒦 
𝜕𝜕2𝑤𝑤�1��̃�𝑑�
𝜕𝜕𝑥𝑥�2

 (5.97) 

where 

𝒦𝒦 =
ℎ
𝐿𝐿
𝛩𝛩(𝛼𝛼�) (5.98) 
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The other kinematic conditions to satisfy are the continuity of displacements, the 

continuity of the bending moments and of the shear forces: 

𝑤𝑤�1��̃�𝑑� = 𝑤𝑤�2��̃�𝑑� (5.99) 

𝑀𝑀�1(�̃�𝑑) = 𝑀𝑀�2(�̃�𝑑) (5.100) 

𝑇𝑇�1(�̃�𝑑) = 𝑇𝑇�2(�̃�𝑑) (5.101) 

 

5.2.4. Applications 

In this paragraph, the results of a parametric analysis are presented to show the 

effectiveness of the surface stress-drivel model (SSDM) for the study of the bending 

behavior of a cracked Bernoulli-Euler FG nanobeam, with length L=10nm and 𝑏𝑏 =

ℎ = 0.1𝐿𝐿. The material properties of the FG nanobeam are listed in Table 5.1.  

The analysis has been carried out for three different boundary conditions at the 

ends of the FG nanobeam: Simply-Supported (S-S), Clamped-Clamped (C-C) and 

Clamped-Pinned (C-P), under a uniformly distributed load �𝑞𝑞𝑧𝑧
(1) = 𝑞𝑞𝑧𝑧

(2) = const =

10 𝑒𝑒𝑁𝑁
𝑒𝑒𝑚𝑚

 � across the complete span, assuming that FG nanobeam presents a crack at the 

abscissa 𝑥𝑥 = 𝑑𝑑 = 𝐿𝐿
2
 . 

For each example, the SSDM (continuous line) and SDM (dashed curves) of the 

non-dimensional deflections, illustrated in Figures 5.10-5.12 for 𝜆𝜆𝑐𝑐 = 0.10 and 𝛼𝛼� ∊

{0.25, 0.50, 0,75}, show the combined effects of the nonlocal parameter, 𝜆𝜆𝑐𝑐, the 

surface energy, the material gradient index, n, and the crack ratio, α, on the static 

behavior of the cracked FG nanobeam.  

In addition, for both SSDM and SDM, Tables 5.2-5.4 collect the dimensionless 

midpoint deflection, 𝑤𝑤� �1
2
�, for three values of crack ratio, 𝛼𝛼� = {0.25, 0.50, 0.75}, 

varying n and 𝜆𝜆𝑐𝑐 in the sets {0, 1, 2} and {0.00+, 0.02, 0.04, 0.06, 0.08, 0.10}, 

respectively. 
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(a)  

 

(b) 

Figure 5.10. Combined effects of the nonlocal parameter, 𝜆𝜆𝑐𝑐, the surface energy, the material gradient index, k, and 
the crack ratio, a, on the non-dimensional deflection, 𝑤𝑤� , of a Simply-Supported (S-S) cracked FG nanobeam 
subjected to a uniformly transverse distributed load for both SSDM and SDM models of elasticity for n=1 (a) and 
n=2 (b). 

 

 

(a)  

 

(b) 

Figure 5.11. Combined effects of the nonlocal parameter, 𝜆𝜆𝑐𝑐, the surface energy, the material gradient index, k, and 
the crack ratio, a, on the non-dimensional deflection, 𝑤𝑤� , of a Doubly-Clamped (C-C) cracked FG nanobeam 
subjected to a uniformly transverse distributed load for both SSDM and SDM models of elasticity for n=1 (a) and 
n=2 (b). 
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(a)  

 

(b) 

Figure 5.12. Combined effects of the nonlocal parameter, 𝜆𝜆𝑐𝑐, the surface energy, the material gradient index, k, and 
the crack ratio, a, on the non-dimensional deflection, 𝑤𝑤� , of a Clamped-Pinned (C-P) cracked FG nanobeam subjected 
to a uniformly transverse distributed load for both SSDM and SDM models of elasticity for n=1 (a) and n=2 (b). 

 

Table 5.2.  Dimensionless midpoint deflection of (S-S) FG nanobeam vs. nonlocal parameter 𝜆𝜆𝑐𝑐, varying 𝑛𝑛 in the set 

(0, 1, 2), for three different values of the crack ratio α� = {0.25, 0.50, 0.75}.   

𝜆𝜆𝑐𝑐 
  α� = 0.25  α�  = 0.50   α� = 0.75 
  𝑛𝑛 = 0 𝑛𝑛 = 1 𝑛𝑛 = 2  𝑛𝑛 = 0 𝑛𝑛 = 1 𝑛𝑛 = 2  𝑛𝑛 = 0 𝑛𝑛 = 1 𝑛𝑛 = 2 

0.00+ SDM  1.08527 1.62598 1.80743  1.35829 2.04009 2.26776  1.91151 2.87101 3.19140 
SSDM  0.39417 0.39441 0.38861  0.41387 0.40506 0.39722  0.43632 0.41596 0.40577 

0.02 SDM  0.87673 1.31681 1.46376  1.01415 1.52321 1.69319  1.28987 1.93734 2.15353 
SSDM  0.37201 0.38120 0.37789  0.38440 0.39247 0.38720  0.41207 0.40548 0.39779 

0.04 
SDM  0.83662 1.25656 1.39679  0.97271 1.46097 1.62400  1.24578 1.87111 2.07991 

SSDM  0.36765 0.37913 0.37612  0.37435 0.39122 0.38654  0.41205 0.40691 0.39971 

0.06 
SDM  0.79531 1.19452 1.32782  0.92921 1.39563 1.55137  1.19787 1.79915 1.99992 

SSDM  0.36273 0.37658 0.37415  0.36203 0.39007 0.38590  0.41107 0.40779 0.40094 

0.08 SDM  0.75414 1.13269 1.25909  0.88504 1.32930 1.47764  1.14769 1.72378 1.91614 
SSDM  0.35743 0.37377 0.37197  0.34890 0.38858 0.38496  0.40939 0.40824 0.40180 

0.10 SDM  0.71425 1.07277 1.19248  0.84152 1.26393 1.40498  1.09690 1.64749 1.83134 
SSDM  0.35182 0.37068 0.36953  0.33585 0.38670 0.39369  0.40703 0.40819 0.40223 

 

Table 5.3.  Dimensionless midpoint deflection of (C-C) FG nanobeam vs. nonlocal parameter 𝜆𝜆𝑐𝑐, varying 𝑛𝑛 in the set 

(0, 1, 2), for three different values of the crack ratio α� = {0.25, 0.50, 0.75}.   

𝜆𝜆𝑐𝑐 
  α� = 0.25  α�  = 0.50   α� = 0.75 
  𝑛𝑛 = 0 𝑛𝑛 = 1 𝑛𝑛 = 2  𝑛𝑛 = 0 𝑛𝑛 = 1 𝑛𝑛 = 2  𝑛𝑛 = 0 𝑛𝑛 = 1 𝑛𝑛 = 2 

0.00+ SDM  0.19642 0.29501 0.32793  0.22524 0.33830 0.37606  0.26686 0.40081 0.44553 
SSDM  0.18518 0.22951 0.23914  0.19675 0.23793 0.24638  0.20982 0.24653 0.25356 

0.02 
SDM  0.15630 0.23475 0.26095  0.17360 0.26704 0.28984  0.20207 0.30350 0.33737 

SSDM  0.16128 0.20724 0.21811  0.15303 0.21526 0.22596  0.18349 0.22595 0.23486 

0.04 
SDM  0.13812 0.20745 0.23060  0.15457 0.23215 0.25806  0.18144 0.27251 0.30292 

SSDM  0.14881 0.19449 0.20563  0.12327 0.20381 0.21425  0.17346 0.21587 0.22513 

0.06 SDM  0.12095 0.18166 0.20193  0.13631 0.20473 0.22757  0.16120 0.24212 0.26914 
SSDM  0.13626 0.18182 0.19340  0.09726 0.19209 0.20306  0.16209 0.20555 0.21543 

0.08 SDM  0.10536 0.15825 0.17591  0.11945 0.17940 0.19942  0.14210 0.21343 0.23725 
SSDM  0.12404 0.16922 0.18122  0.07684 0.18026 0.19178  0.15043 0.19488 0.20547 

0.10 SDM  0.09168 0.13770 0.15306  0.10443 0.15684 0.17435  0.12477 0.18740 0.20832 
SSDM  0.11243 0.15682 0.16912  0.06141 0.16837 0.18036  0.13874 0.18382 0.19508 
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Table 5.4.  Dimensionless midpoint deflection of (C-P) FG nanobeam vs. nonlocal parameter 𝜆𝜆𝑐𝑐, varying 𝑛𝑛 in the set 

(0, 1, 2), for three different values of the crack ratio α� = {0.25, 0.50, 0.75}.   

𝜆𝜆𝑐𝑐 
  α� = 0.25  α�  = 0.50   α� = 0.75 
  𝑛𝑛 = 0 𝑛𝑛 = 1 𝑛𝑛 = 2  𝑛𝑛 = 0 𝑛𝑛 = 1 𝑛𝑛 = 2  𝑛𝑛 = 0 𝑛𝑛 = 1 𝑛𝑛 = 2 

0.00+ SDM  0.39058 0.58663 0.65210  0.45068 0.67690 0.75244  0.54313 0.81576 0.90679 
SSDM  0.26403 0.29796 0.30255  0.27845 0.30728 0.31037  0.29477 0.31681 0.31812 

0.02 SDM  0.31931 0.47959 0.53311  0.35220 0.52898 0.58802  0.40833 0.61329 0.68173 
SSDM  0.23924 0.27833 0.28749  0.23399 0.28743 0.29283  0.26748 0.29900 0.30285 

0.04 SDM  0.29084 0.43683 0.48558  0.32063 0.48158 0.53532  0.37086 0.55702 0.61918 
SSDM  0.22746 0.26829 0.27550  0.20326 0.27838 0.28462  0.25714 0.29144 0.29614 

0.06 
SDM  0.26316 0.39526 0.43937  0.28959 0.43495 0.48349  0.33358 0.50102 0.55693 

SSDM  0.21541 0.25812 0.26617  0.17351 0.26906 0.27624  0.24587 0.28340 0.28914 

0.08 
SDM  0.23726 0.35635 0.39612  0.26023 0.39085 0.43446  0.29794 0.44749 0.49743 

SSDM  0.20320 0.24763 0.25655  0.14816 0.25916 0.26736  0.23358 0.27444 0.28315 

0.10 
SDM  0.21383 0.32117 0.35701  0.23347 0.35066 0.38979  0.26530 0.39846 0.44293 

SSDM  0.19111 0.23691 0.24663  0.12762 0.24871 0.25788  0.22060 0.26449 0.27262 

 

5.2.5. Results and discussion 

Several computational experiments have been carried out to investigate the size-

dependent behavior due to the nature of nonlocal elasticity and surface effects. In 

particular, a Wolfram language code in Mathematica was written to carry out the 

parametric investigation for different boundary conditions including Simply-

Supported, Doubly-Clamped and Clamped-Pinned conditions. Different materials, 

with different material gradient index, were used to study the effects of surface elastic 

constants on the bending behavior of the FG nanobeams. Moreover, a parametric 

investigation of the bending response for cracked FG nanobeams is presented by 

varying the nonlocal parameter and the material gradient index for both SDM and 

SSDM model.  

The main outcomes of the present study can be summarized as follows: 

- as the nonlocal parameter increases, a stiffening nonlocal behavior has been 

observed, with and without surface effects, for all static boundary conditions 

considered; 

- as the material gradient index increases, a softening response always occurs for 

the SDM model. However, the modified static boundary conditions introduced to 

incorporate surface energy effects result in a more general bending behavior, 

depending on the coupled effects of the nonlocal parameter and the material 

gradient index, as well as on the crack ratio; 

- when the crack ratio increases, the value of the dimensionless midpoint deflection 

increases for both SSDM and SDM model; 
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In conclusion, the results obtained in this study show that the proposed approach 

is capable of describing the static behavior of Bernoulli-Euler functionally graded 

nanobeams in presence of crack and represent a valuable reference point for engineers 

and researchers. 
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Conclusions 

The research conducted in this thesis has addressed the study of nonlocal elasticity 

theories, which represent an important theoretical framework for understanding and 

analyzing the behavior of elastic materials on a small-scale, particularly in 

nanostructures. The growing interest in nanoscience, nanoengineering and 

nanotechnology has made the development of coherent nonlocal formulations essential 

to address the challenges posed by such structures, where long-range interactions 

cannot be neglected. 

The thesis explored the theoretical foundations of nonlocal elasticity theories, 

highlighting how these theories provide a more complete and accurate framework for 

describing the behavior of elastic materials on a small-scale. In particular, it has been 

demonstrated that these theories are particularly useful in nanostructures, where 

nonlocal and surface effects play a predominant role in the mechanical behavior of 

materials. 

Another area of interest within the thesis was functionally graded materials, which 

represent an innovative solution to address complex challenges in the field of materials 

engineering. It was examined how controlled variations of physical and chemical 

properties within a single component can lead to materials with extraordinary 

performance. Furthermore, micromechanical and physical models have been applied 

to consider how the thermos-elastic properties of a material are affected by 

temperature. 

A significant contribution of this research is the proposed one-dimensional 

approach for modeling cracks in a functionally graded nanobeam. This model 
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considers not only the nonlocal effect but also the influence of surface effects, thus 

providing a more accurate understanding of the behavior of nanostructures with 

defects. 

In summary, this thesis provides a comprehensive overview of nonlocal elasticity 

theories, highlighting the challenges and opportunities that these theories present. It 

also highlights the crucial role of nonlocal theories in the engineering and materials 

science of the future. The work carried out represents a significant contribution to the 

understanding and application of these theories in a rapidly evolving context such as 

that of nanostructures and functionally graded materials. 
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Appendix A 

- Even porosity distribution 

𝐴𝐴𝐸𝐸 = −
𝑏𝑏ℎ((−2 + 𝜁𝜁 + 𝑛𝑛𝜁𝜁)𝐸𝐸𝑐𝑐 + (𝑛𝑛(−2 + 𝜁𝜁) + 𝜁𝜁)𝐸𝐸𝑚𝑚)

2(1 + 𝑛𝑛)
 (A1) 

 

𝑆𝑆𝐸𝐸 = 0 (A2) 

 

𝐼𝐼𝐸𝐸 =
𝑏𝑏ℎ3(12𝐸𝐸𝑐𝑐2 + 4𝑛𝑛(7 + 4𝑛𝑛 + 𝑛𝑛2)𝐸𝐸𝑐𝑐𝐸𝐸𝑚𝑚 + 𝑛𝑛2(7 + 4𝑛𝑛 + 𝑛𝑛2)𝐸𝐸𝑚𝑚2 )

12(2 + 𝑛𝑛)2(3 + 𝑛𝑛)(𝐸𝐸𝑐𝑐 + 𝑛𝑛𝐸𝐸𝑚𝑚)
 

 
(A3) 

 

𝐴𝐴𝜌𝜌 = −
𝑏𝑏ℎ((−2 + 𝜁𝜁 + 𝑛𝑛𝜁𝜁)𝜌𝜌𝑐𝑐 + (𝑛𝑛(−2 + 𝜁𝜁) + 𝜁𝜁)𝜌𝜌𝑚𝑚)

2(1 + 𝑛𝑛)
 (A4) 

 

𝑆𝑆𝜌𝜌 =
𝑏𝑏ℎ2𝑛𝑛(−1 + 𝜁𝜁)(𝐸𝐸𝑚𝑚𝜌𝜌𝑐𝑐 − 𝐸𝐸𝑐𝑐𝜌𝜌𝑚𝑚)

(2 + 𝑛𝑛)((−2 + 𝜁𝜁 + 𝑛𝑛𝜁𝜁)𝐸𝐸𝑐𝑐 + (𝑛𝑛(−2 + 𝜁𝜁) + 𝜁𝜁)𝐸𝐸𝑚𝑚)
 (A5) 

 

𝐼𝐼𝜌𝜌 = −((𝑏𝑏ℎ3(𝑒𝑒𝑚𝑚2 ((−24𝑛𝑛2(7 + 𝑛𝑛(4 + 𝑛𝑛)) + 4𝑛𝑛(24 + 𝑛𝑛(9 + 𝑛𝑛)(7

+ 𝑛𝑛(4 + 𝑛𝑛)))𝜁𝜁 − 2(1 + 𝑛𝑛)(2 + 𝑛𝑛)(6 + 𝑛𝑛(5 + 𝑛𝑛)(3

+ 2𝑛𝑛))𝜁𝜁2 + (1 + 𝑛𝑛)2(2 + 𝑛𝑛)2(3 + 𝑛𝑛)𝜁𝜁3)𝜌𝜌𝑐𝑐 + (𝑛𝑛(−2

+ 𝜁𝜁) + 𝜁𝜁)(4𝑛𝑛2(7 + 𝑛𝑛(4 + 𝑛𝑛)) − 4𝑛𝑛(2 + 𝑛𝑛)(7 + 𝑛𝑛(4

+ 𝑛𝑛))𝜁𝜁 + (1 + 𝑛𝑛)(2 + 𝑛𝑛)2(3 + 𝑛𝑛)𝜁𝜁2)𝜌𝜌𝑚𝑚)

+ 2𝑒𝑒𝑐𝑐𝑒𝑒𝑚𝑚((𝑛𝑛(−2 + 𝜁𝜁) + 𝜁𝜁)(48 + (2 + 𝑛𝑛)𝜁𝜁(−8(3 + 𝑛𝑛(2

+ 𝑛𝑛)) + (1 + 𝑛𝑛)(2 + 𝑛𝑛)(3 + 𝑛𝑛)𝜁𝜁))𝜌𝜌𝑐𝑐 + (−2 + 𝜁𝜁

+ 𝑛𝑛𝜁𝜁)(4𝑛𝑛2(7 + 𝑛𝑛(4 + 𝑛𝑛)) − 4𝑛𝑛(2 + 𝑛𝑛)(7 + 𝑛𝑛(4 + 𝑛𝑛))𝜁𝜁

+ (1 + 𝑛𝑛)(2 + 𝑛𝑛)2(3 + 𝑛𝑛)𝜁𝜁2)𝜌𝜌𝑚𝑚) + 𝑒𝑒𝑐𝑐2((−2 + 𝜁𝜁

+ 𝑛𝑛𝜁𝜁)(48 + (2 + 𝑛𝑛)𝜁𝜁(−8(3 + 𝑛𝑛(2 + 𝑛𝑛)) + (1 + 𝑛𝑛)(2

+ 𝑛𝑛)(3 + 𝑛𝑛)𝜁𝜁))𝜌𝜌𝑐𝑐 + (−32𝑛𝑛(2 + 𝑛𝑛)2 + 8(6 + 𝑛𝑛(24

+ 𝑛𝑛(31 + 𝑛𝑛(10 + 𝑛𝑛))))𝜁𝜁 − 2(1 + 𝑛𝑛)(2 + 𝑛𝑛)(12

+ 𝑛𝑛(18 + 𝑛𝑛(5 + 𝑛𝑛)))𝜁𝜁2 + (1 + 𝑛𝑛)2(2 + 𝑛𝑛)2(3

+ 𝑛𝑛)𝜁𝜁3)𝜌𝜌𝑚𝑚)))/(24(2 + 𝑛𝑛)2(3

+ 𝑛𝑛)((−2 + 𝜁𝜁 + 𝑛𝑛𝜁𝜁)𝑒𝑒𝑐𝑐 + (𝑛𝑛(−2 + 𝜁𝜁) + 𝜁𝜁)𝑒𝑒𝑚𝑚)2)) 

(A6) 
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- Uneven porosity distribution 

𝐴𝐴𝐸𝐸 =
𝑏𝑏(4ℎ𝐸𝐸𝑐𝑐 − ℎ𝜁𝜁𝐸𝐸𝑐𝑐 − ℎ𝑛𝑛𝜁𝜁𝐸𝐸𝑐𝑐 + 4ℎ𝑛𝑛𝐸𝐸𝑚𝑚 − ℎ𝜁𝜁𝐸𝐸𝑚𝑚 − ℎ𝑛𝑛𝜁𝜁𝐸𝐸𝑚𝑚)

4(1 + 𝑛𝑛)
 (A7) 

 

𝑆𝑆𝐸𝐸 = 0 (A8) 

 

𝐼𝐼𝐸𝐸 = −�𝑏𝑏ℎ3 ��384

+ (2 + 𝑛𝑛)𝜁𝜁(−72 − 4𝑛𝑛(11 + 7𝑛𝑛)

+ (1 + 𝑛𝑛)(2 + 𝑛𝑛)(3 + 𝑛𝑛)𝜁𝜁)�𝑒𝑒𝑐𝑐2

+ 2�64𝑛𝑛�7 + 𝑛𝑛(4 + 𝑛𝑛)� − 6(1 + 𝑛𝑛)(2 + 𝑛𝑛)2(3 + 𝑛𝑛)𝜁𝜁

+ (1 + 𝑛𝑛)(2 + 𝑛𝑛)2(3 + 𝑛𝑛)𝜁𝜁2�𝑒𝑒𝑐𝑐𝑒𝑒𝑚𝑚

+ �32𝑛𝑛2�7 + 𝑛𝑛(4 + 𝑛𝑛)�

− 4𝑛𝑛(2 + 𝑛𝑛)�22 + 𝑛𝑛(11 + 3𝑛𝑛)�𝜁𝜁

+ (1 + 𝑛𝑛)(2 + 𝑛𝑛)2(3 + 𝑛𝑛)𝜁𝜁2�𝑒𝑒𝑚𝑚2 �� /(96(2 + 𝑛𝑛)2(3

+ 𝑛𝑛)((−4 + 𝜁𝜁 + 𝑛𝑛𝜁𝜁)𝑒𝑒𝑐𝑐 + (𝑛𝑛(−4 + 𝜁𝜁) + 𝜁𝜁)𝑒𝑒𝑚𝑚))) 

 

(A9) 

 

𝐴𝐴𝜌𝜌 =
𝑏𝑏(4ℎ𝜌𝜌𝑐𝑐 − ℎ𝜁𝜁𝜌𝜌𝑐𝑐 − ℎ𝑛𝑛𝜁𝜁𝜌𝜌𝑐𝑐 + 4ℎ𝑛𝑛𝜌𝜌𝑚𝑚 − ℎ𝜁𝜁𝜌𝜌𝑚𝑚 − ℎ𝑛𝑛𝜁𝜁𝜌𝜌𝑚𝑚)

4(1 + 𝑛𝑛)
 (A10) 

 

𝑆𝑆𝜌𝜌 =
𝑏𝑏(−2ℎ2𝑛𝑛𝐸𝐸𝑚𝑚𝜌𝜌𝑐𝑐 + ℎ2𝑛𝑛𝜁𝜁𝐸𝐸𝑚𝑚𝜌𝜌𝑐𝑐 + 2ℎ2𝑛𝑛𝐸𝐸𝑐𝑐𝜌𝜌𝑚𝑚 − ℎ2𝑛𝑛𝜁𝜁𝐸𝐸𝑐𝑐𝜌𝜌𝑚𝑚)
(2 + 𝑛𝑛)(−4𝐸𝐸𝑐𝑐 + 𝜁𝜁𝐸𝐸𝑐𝑐 + 𝑛𝑛𝜁𝜁𝐸𝐸𝑐𝑐 − 4𝑛𝑛𝐸𝐸𝑚𝑚 + 𝜁𝜁𝐸𝐸𝑚𝑚 + 𝑛𝑛𝜁𝜁𝐸𝐸𝑚𝑚)

 (A11) 
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𝐼𝐼𝜌𝜌 = −((𝑏𝑏ℎ3(𝐸𝐸𝑚𝑚2 ((−384𝑛𝑛2(7 + 𝑛𝑛(4 + 𝑛𝑛)) + 16𝑛𝑛(48 + 𝑛𝑛(114 + 𝑛𝑛(5

+ 𝑛𝑛)(14 + 𝑛𝑛)))𝜁𝜁 − 8(1 + 𝑛𝑛)(2 + 𝑛𝑛)(6 + 𝑛𝑛(9 + 𝑛𝑛(8

+ 𝑛𝑛)))𝜁𝜁2 + (1 + 𝑛𝑛)2(2 + 𝑛𝑛)2(3 + 𝑛𝑛)𝜁𝜁3)𝜌𝜌𝑐𝑐 + (𝑛𝑛(−4

+ 𝜁𝜁) + 𝜁𝜁)(32𝑛𝑛2(7 + 𝑛𝑛(4 + 𝑛𝑛)) − 4𝑛𝑛(2 + 𝑛𝑛)(22

+ 𝑛𝑛(11 + 3𝑛𝑛))𝜁𝜁 + (1 + 𝑛𝑛)(2 + 𝑛𝑛)2(3 + 𝑛𝑛)𝜁𝜁2)𝜌𝜌𝑚𝑚)

+ 2𝐸𝐸𝑐𝑐𝐸𝐸𝑚𝑚((𝑛𝑛(−4 + 𝜁𝜁) + 𝜁𝜁)(384 + (2 + 𝑛𝑛)𝜁𝜁(−72

− 4𝑛𝑛(11 + 7𝑛𝑛) + (1 + 𝑛𝑛)(2 + 𝑛𝑛)(3 + 𝑛𝑛)𝜁𝜁))𝜌𝜌𝑐𝑐 + (−4

+ 𝜁𝜁 + 𝑛𝑛𝜁𝜁)(32𝑛𝑛2(7 + 𝑛𝑛(4 + 𝑛𝑛)) − 4𝑛𝑛(2 + 𝑛𝑛)(22

+ 𝑛𝑛(11 + 3𝑛𝑛))𝜁𝜁 + (1 + 𝑛𝑛)(2 + 𝑛𝑛)2(3 + 𝑛𝑛)𝜁𝜁2)𝜌𝜌𝑚𝑚)

+ 𝐸𝐸𝑐𝑐2((−4 + 𝜁𝜁 + 𝑛𝑛𝜁𝜁)(384 + (2 + 𝑛𝑛)𝜁𝜁(−72 − 4𝑛𝑛(11

+ 7𝑛𝑛) + (1 + 𝑛𝑛)(2 + 𝑛𝑛)(3 + 𝑛𝑛)𝜁𝜁))𝜌𝜌𝑐𝑐
+ (−512𝑛𝑛(2 + 𝑛𝑛)2 + 16(12 + 𝑛𝑛(80 + 𝑛𝑛(117 + 𝑛𝑛(39

+ 4𝑛𝑛))))𝜁𝜁 − 8(1 + 𝑛𝑛)(2 + 𝑛𝑛)(6 + 𝑛𝑛(13 + 𝑛𝑛(4

+ 𝑛𝑛)))𝜁𝜁2 + (1 + 𝑛𝑛)2(2 + 𝑛𝑛)2(3

+ 𝑛𝑛)𝜁𝜁3)𝜌𝜌𝑚𝑚)))/(96(2 + 𝑛𝑛)2(3

+ 𝑛𝑛)((−4 + 𝜁𝜁 + 𝑛𝑛𝜁𝜁)𝐸𝐸𝑐𝑐 + (𝑛𝑛(−4 + 𝜁𝜁) + 𝜁𝜁)𝐸𝐸𝑚𝑚)2)) 
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