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Introduction

Supply chains management represents one of the most important challenges in

the industrial production context. The growth of competitiveness, in the vision of

a globalized economic scenario, induced companies and managers to change their

strategic positioning, reducing costs and improving product quality and offered

services.

The concept of supply chain (SC ) expresses a sequence of integrated operations

and services ranging from the acceptance of consumers demand to the production

and finally to delivery. Then, the trend of managers is to find new optimization

techniques in order to improve the whole productive cycle and to maximize the

total level of service, integrating informations between stakeholders, logistics and

multimodal transports, and cash flows.

The main processes of a SC can be divided in:

• production planning and inventory control, i.e. creation of an asset, material

procurement, manufacturing and assembly, and storage

• logistics, i.e. demand management and distribution to final clients.

In this context, one of the major issue is the definition of storage level of goods

required to satisfy the market demand. So, stocks have a great importance for the

life of companies, especially when the amount of required materials is uncertain,

since from it companies can draw resources in emergency situations, avoiding to

lose a slice of market. For this reason, the inventory management is a core activity

which, however, can not be separated from the coordination of the flow of products

and informations. In fact, if each entity of supply chain is not perfectly aligned

and not has a correct vision of the customers demand, the level and typology

of stocks may not be optimized causing negative effects, such as the ”Forrester”
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Introduction

effect, known as bullwhip. This effect consists of an amplification of demand from

downstream to upstream that a variation of 10% in the sales of retailers may cause

a variation of more than 40% in demand of producers. It can be reduced if the

information on consumption are carefully shared throughout the supply chain.

The importance of implementing strategies and policies for an efficient manage-

ment of the supply chain has stimulated the interest of many researchers proposing

different scientific approaches attempting to model and simulate the operational

flow of the various stages of a production process. Then, the increasing technologi-

cal innovations and the growth of ICT allowed managers to get software simulation

tools supporting the decision process.

The main goal of this thesis is to present and implement some simulation

models to show some critical phenomena appearing in planning and managing

such systems in order to prevent the resulting negative effects.

In particular some macroscopic models for supply chains and networks able to

reproduce the goods dynamics are discussed.

The analyzed macroscopic models are based on the conservation laws, which

are represented by special partial differential equations where the variable is a con-

served quantity, physically a quantity which can neither be created nor destroyed.

The main idea is to look at large scales so to consider the processed parts as small

particles which flow in a continuous way and to assume the conservation of their

density.

Depending on the observation scale supply networks modeling is characterized

by different mathematical approaches: discrete event simulations and continuous

models. Since discrete event models (see [12]) are based on considerations of

individual parts, their main drawback is, however, an enormous computational

effort. Then a cost-effective alternative to them is continuous models, described

by some partial differential equation. The first proposed continuous models date

back to the early 60’s and started with the work of [5] and [21], but the most

significant in this direction was [11], where the authors, via a limit procedure on

the number of parts and suppliers, have obtained a conservation law ([3], [10]),

whose flux involves either the parts density or the maximal productive capacity.

Then, in recent years continuous and homogenous product flow models have

been introduced, for example in [9], [11], [16], [23], [24], and they have been built in
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Introduction

close connection to other transport problems like vehicular traffic flow and queuing

theory. Extensions on networks have been also treated in [15], [25], [26].

In this thesis, starting by the historical model of Armbruster - Degond -

Ringhofer, we have compared two different macroscopic models, i.e. the Klar

model, based on a differential partial equation for density and an ordinary dif-

ferential equation to capture the evolution of queues, and a continuum-discrete

model, formed by a conservation law for the density and an evolution equation for

processing rate. Both the models can be applied for supply chains and networks.

A supply network is characterized by a set of interconnected suppliers which,

in general, consist of a processor and, if we deal with the Klar model, a buffer

or a queue. Each processor is characterized by a maximum processing rate µj ,

length Lj , and processing time Tj . The quantity
Lj

Tj
represents the processing

velocity. To study the dynamics at the connection points or junctions, some special

parameters are introduced; in particular when the number of incoming suppliers

is greater than the outgoing ones, we consider the priority parameters (q1, ..., qn),

where qi ∈ ]0, 1[ determines a level of priority at the junction of incoming suppliers,

while, on the contrary, we consider the flux distribution parameters (α1, ..., αm),

where αj ∈ ]0, 1[, with

m∑
j=1

αj = 1, indicates the percentage of parts addressed from

an incoming supplier to an outgoing one. At junctions, a way to solve Riemann

problems, i.e. Cauchy problems with constant initial data on each arc, is prescribed

for the continuum-discrete model and a solution at junctions guaranteeing the

conservation of fluxes is defined.

We have to notice some differences between the Klar and continuum-discrete

model. In fact, the first one considers the formation and propagation of queue,

under the assumption that the processing rate µj is constant, while the second

one do not taking account of queues but describes the evolution of µj which is

a time-spatial dependent function. It is evident that the two models complete

each other. In fact, the approach of Klar is more suitable when the presence

of queue with buffer is fundamental to manage goods production. On the other

hand, the mixed continuum-discrete model is useful when there is the possibility

to reorganize the supply chain, i.e when the productive capacity can be readapted

for some contingent necessity. In order to make a comparison of the two models,

some numerical results are shown via simulations.
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Since the Armbruster and Klar models were defined taking into account an

ideal queue, i.e. a buffer with infinity capacity, we analyzed the more realistic

case in which a finite length buffer at each processor is considered. The finite size

buffers lead to a discontinuous clearing function describing the throughput as a

function of the Work In Progress (WIP), dependent on the production stage and

decaying linearly as a function of the distance from the end of the production

line. Then, starting from the Dallery and Gershwin’s approach ([13]), we focused

on a continuum model of a production line with finite buffers that allows us to

study transient and other time dependent phenomena. In particular the interest is

concerned in the time evolution of a major temporary shutdown of the production

line due to a failure and the time evolution of the recovery of the production line

once the failure has been repaired.

Chapter 1 presents the main macroscopic models for supply chains and net-

works, based on conservation laws. Chapter 2 is devoted to numerical methods

used to discretize the proposed models in Chapter 1. In chapter 3, finally, we show

some simulation results from the Klar and continuum-discrete models for both

chains and networks.
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Chapter 1

Macroscopic models for supply

chain and networks

In this chapter, starting by the Armbruster-Degond-Ringhofer model, we present

the Göttlich-Herty-Klar model and a continuum-discrete model for supply chains

and networks.

1.1 The Armbruster-Degond-Ringhofer model

Consider a production line formed byM suppliers S0, ...SM , in which a certain

good is processed by each supplier and is fed in the next one.

Labeling the processed part by index n, we denote by τ (m,n) the time at

which the part n passes from m−1 to m supplier. Then, in order to model generic

supply chain, the goal is to derive rules governing the evolution of each τ (m,n).

A hierarchy of models is available for this purpose, but the focus is centralized

on the so called fluid models, which replace the individual parts by a continuum

and use rate equations for the flow of product through a supplier (see [1], [6] for

an overview). For a large number of parts, these are computationally much less

expensive than discrete event simulation models, but they necessarily represent an

approximation to the actual situation.

Then we derive a fluid dynamic model, namely a conservation law for a partial

differential equation, out of very simple principles governing the evolution of the

times τ (m,n). Basically we assume that each supplier works as a single processor

1



The Armbruster-Degond-Ringhofer model

characterized by its processing time T (m) as well as its maximal production rate

(capacity) µ (m) and a buffer queue in front of it. The processing policy is supposed

to be ‘first come first served’; T (m) represents the time which is needed to produce

a single part while µ (m) is defined as the maximal amount of parts per unit time

which can handled by each single processor m = 0, ...M − 1. In this model both

T (m) and µ (m) are fixed.

We denote by an, n = 1, 2, .., the time part number n arrives at the end of

queue and by bn the ’release time’, i.e. the time part number n reaches the front

of the queue and is fed into the processor. If the queue is full, the interval between

two consecutive times bn will be given by the processing rate µ (m), i.e.

bn = bn−1 +
1

µ (m)

will hold as long as an ≤ bn−1 +
1

µ(m) holds, meaning that part number n has

already arrived when we want to feed it into the processor m. Instead, if the queue

is empty, we wait that part n arrives to the end of queue and immediately feed it

into the processor. In this case the condition an > bn−1+
1

µ(m) will imply bn = an.

Then, combining the two previous, we obtain the relation:

bn = max

{
an, bn−1 +

1

µ (m)

}
. (1.1)

If T (m) is the processing time to finish the part, we denote by en = bn+T (m)

the time the part leaves the processor and enters the next queue. So, the (1.1) can

be re-write as:

en = max

{
an + T (m) , en−1 +

1

µ (m)

}
. (1.2)

which represents the basic relationship between the arrival times an and the

exit times en.

Referring now to the previous definition of τ (m,n) and using the obvious

change of notation an → τ (m,n) and en → τ (m+ 1, n) we obtain from (1.2)

τ (m+ 1, n) = max

{
τ (m,n) + T (m) , τ (m+ 1, n− 1) +

1

µ (m)

}
, (1.3)

n ≥ 1, m = 0, ..,M − 1.

2



The Armbruster-Degond-Ringhofer model

The (1.3) needs initial and boundary conditions which are:

τ (0, n) = τA (n) , n ≥ 0, τ (m, 0) = τ I (m) , m = 0, ...M, (1.4)

where τA (n) simply denotes the arrival time of part n in the first processor

and τ I (m) denotes the time the first part has arrived at supplier Sm. The (1.3)

and (1.4) define completely a discrete event simulation model. So, τ I (m+ 1) −
τ I (m)− T (m) denotes the time the first part has waited in the buffer in front of

processor at Sm, while, assuming a constant service rate µ in the past,

µ (m, 0)
[
τ I (m+ 1)− τ I (m)− T (m)

]
would be the number of parts in the queue

at the time part number 0 arrives. This definition indicates that, for an actual

simulation, we have to start somewhere. But this issue will be resolved once the

problem is formulated in terms of a conservation law. Then, given the times

τ (m,n), conservation of the number of parts is expressed via the introduction of

the Newell-curves (see [11], [31]), which describe how the information of (1.3) can

be organized to facilitate the computation of performance measures, e.g. the Work

in Progress (WIP ). In this context, the N-curve U (m, t) at supplier Sm is given

by the number of parts which have passed from processor Sm−1 to Sm at any time

t, i.e by

U (m, t) =
∞∑
n=0

H (t− τ (m,n)) , t > 0, (1.5)

where H is the Heavyside function, i.e.

H (y) =

{
0 if y < 0

1 if y ≥ 0
.

The WIP W (m, t) of processor Sm, the total number of parts (including all

parts in the queue as well) actually produced at Sm at time t, is given by the

difference of two consecutive N-curves:

W (m, t) = U (m, t)− U (m+ 1, t) +K (m) , m = 0, ...M, (1.6)

where the time independent constants K (m) are determined by initial situa-

tion. If each of processors Sm has a given minimal processing time T (m) then
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The Armbruster-Degond-Ringhofer model

τ (m+ 1, n) ≥ τ (m,n) + T (m) will hold and this implies that W (m, t) can never

become negative.

Considering the first derivative of W (m, t) with respect to t, we obtain:

d

dt
W (m, t) =

d

dt
U (m, t)− d

dt
U (m+ 1, t) = (1.7)

∞∑
n=0

δ (t− τ (m,n))−
∞∑
n=0

δ (t− τ (m+ 1, n)) =

= F (m, t)− F (m+ 1, t) ,

where, by definition, the flux F (m, t) from processor Sm−1 to Sm is given by

the first derivative of U (m, t) and it can be interpreted as a superposition of δ-

distributions. To avoid this inconvenience, the (1.7) is replaced by a conservation

law with a simple constitutive relation between the density ρ and the flux f ,

in which continuous averaged quantities are considered and the dependence on

individual parts is completely removed.

By a reformulation of the problem, necessary to prevent analytical difficulties,

it can be shown that the asymptotic limit leads to a partial differential equation.

First, we map (1.7) onto a grid in an artificial spatial variable x, called the ‘Degree

of Completion’ (DOC). We define a mesh 0 = x0 < ..... < xM = X and replace

F (m, t) by F (xm, t). So the parts enter and leave the supply chain respectively

at the DOC x = 0 and DOC x = X. Next, multiplying the flux by an arbitrary

smooth test function ψ (t), the integral

∫ ∞

τI(m)
ψ (t)F (xm, t) dt =

∞∑
n=0

∫ ∞

τI(m)
ψ (t) δ (t− τ (m,n)) dt =

∞∑
n=0

ψ (τ (m,n))

(1.8)

holds. Then we can rewrite the (1.8) into a Riemann sum as

∫ ∞

τI(m)
ψ (t)F (xm, t) dt =

∞∑
n=0

ψ (τ (m,n))∆nτ (m,n) f (xm, τ (m,n))

where the increment is given by the difference of τ (m,n) in the index n, i.e.

∆nτ (m,n) = τ (m,n+ 1)− τ (m,n), and, as consequence from (1.8), the function
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The Armbruster-Degond-Ringhofer model

f (xm, τ (m,n)) is provided by the inverse of ∆nτ (m,n). For a ∆nτ (m,n) small,

i.e. ∆nτ (m,n) → 0, we obtain the approximate relation

∫ ∞

τI(m)
ψ (t)F (xm, t) dt ≈

∫ ∞

τI(m)
ψ (t) f (xm, t) dt

where the function f is the approximate flux for t = τ (m,n) and x = xm, i.e.

f (xm, τ (m,n)) =
1

τ (m,n+ 1)− τ (m,n)
, n ≥ 0, m = 0, ...,M. (1.9)

Assuming now that the arrival times τ are continuously distributed, i.e. ex-

pressed in terms of continuous variables such as τ (x, y), we rewrite the approxi-

mate flux as f (x, τ (x, y)) = 1
∂yτ(x,y)

. In the similar way, it is possible to find an

approximation of part density ρ.

We can observe that the N-function U (x, t), the antiderivative of the flux,

satisfies the relations

(a)
d

dy
U (x, τ (x, y)) = ∂tU (x, τ) ∂yτ = 1, (1.10)

(b)
d

dx
U (x, τ (x, y)) = ∂xU (x, τ) + ∂tU (x, τ) ∂xτ.

In analogy to (1.6) setting ρ (x, t) = K (x) − ∂xU (x, t), with K an arbitrary

function, and since ∂tU (x, τ) = f (x, τ), the (1.10) becomes

d

dx
U (x, τ (x, y)) = K (x)− ρ (x, t) + f (x, τ) ∂xτ.

Moreover the (1.10-a) implies that d
dyU (x, τ (x, y)) can be set to an arbitrary

chosen function K (x), since it is a function of the DOC variable x only. So for a

continuum τ (x, y) we set ρ (x, t) = ∂xτ
∂yτ

. ρ and f satisfy a conservation law of the

form ∂tρ+ ∂xf = 0.

Thus, on a discrete level, the approximate density is given by

ρ (xm, τ (m+ 1, n)) =
τ (m+ 1, n+ 1)− τ (m,n+ 1)

hm (τ (m+ 1, n+ 1)− τ (m+ 1, n))
(1.11)

with n ≥ 0, m = 0, ...,M − 1, hm := xm+1 − xm.

The definitions in (1.9) and (1.11) allow to derive a simple constitutive relation

between flux and density as shown in the following theorem.
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The Armbruster-Degond-Ringhofer model

Theorem 1 Let the arrival times τ (m,n) satisfy the time recursion (1.3) and let

the approximate density ρ and flux f be defined by (1.11) and (1.9).Then the ap-

proximate flux can be written in terms of the approximate density via a constitutive

relation of the form

f (xm, τ (m,n)) = min

{
µ (m− 1, n) ,

hm−1ρ (xm−1, τ (m,n))

T (m− 1)

}
,

with n ≥ 0, m = 1, 2, ....

Proof. The proof was done by Armbruster et al. and it can be found in [2].

Now, it will be shown that the approximate density ρ and flux f , defined by

(1.11) and (1.9), satisfy a conservation law of the form ∂tρ+ ∂xf = 0, asymptoti-

cally, i.e. for a large time and nodes scales (N,M → ∞). Moreover the asymptotic

validity can be divided into three parts: scaling, interpolation and weak formula-

tion.

1.1.1 Scaling and dimensionless formulation

We define the average processing time T0 as

T0 =
1

M

M−1∑
m=0

T (m) ,

and so MT0 describes the time a part spent to be processed in the empty

system without any waiting times. Then, T0 is used as a scale basis over all time

scales, and we denote all scaled variables and functions by the subindex s.

τ (m,n) =MT0τs (m,n) , T (m) = T0Ts(xm), µ (m,n) = (1.12)

=
µs (xm, τs (m+ 1, n))

T0
.

Consider a regime where M >> 1 and set ε = 1
M << 1. Inserting (1.12) into

(1.3), for n = 0, 1, .. and m = 0, ..M − 1 we get:
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τs (m+ 1, n+ 1) = (1.13)

max

{
τs (m,n+ 1) + εTs(xm), τs (m+ 1, n) +

ε

µs (xm, τs (m+ 1, n))

}
,

where the initial and boundary condition, respectively τAs = τs (0, n) and τ
I
s =

τs (m, 0), are scaled in the same way as τ (m,n).

It is assumed that the differences between two consecutive arrival times τ are

of the same order as the average processing time T0. This is reasonable since

otherwise the total WIP would either go to zero or infinity. So it is set

∆nτ (m,n) = τ (m,n+ 1)− τ (m,n) = T0∆nsτs (m,n) ,

∆mτ (m,n) = τ (m+ 1, n)− τ (m,n) = T0∆msτs (m,n) ,

giving

τs (m+ 1, n) = τs (m,n) + ε∆msτs (m,n) ,

τs (m,n+ 1) = τs (m,n) + ε∆nsτs (m,n) .

Then, scaling the density ρ (1.11) and the flux f (1.9) we get

f (x, t) =
1

T0
fs

(
x,

t

MT0

)
,

ρ (x, t) =
M

X
ρs

(
x,

t

MT0

)
,

where X is the length of the DOC interval. Finally

fs (xm, τs (m,n)) =
1

∆nsτs(m,n) , m = 0, ..,M, n = 0, 1, ..

ρs (xm, τs (m+ 1, n)) = εX∆msτs(m,n+1)
hm∆nsτs(m+1,n) , m = 0, ..,M, n = 0, 1, ...

(1.14)

1.1.2 Interpolation and weak formulation

In this section, it will be show the asymptotic validity of a conservation law in

the regime situation, which is considered supposing M >> 1 or ε = 1
M << 1. The

goal is an initial boundary value problem for the conservation law

7



The Armbruster-Degond-Ringhofer model

∂tρ+ ∂xf = 0, f = min {µ (x, t) , ρ} , f (0, t) = fA (t) , (1.15)

together with some initial condition ρ (x, 0) = ρ0 (t).

Several complications appear in this approach; in fact, the main difficulty aris-

ing from M → ∞, or equivalently ε → 0, is that the flux function f can become

discontinuous due to the assumption of different maximal capacities. Consider the

following bottleneck scenario: if processor xm has a higher capacity than xm+1, i.e.

µ (xm+1) < µ (xm), a queue in front of xm+1 will grow. But, since mass still has to

be conserved, this discontinuity has to be compensated by a δ-distribution in the

density ρ which, hence, will not be a classical function. To deal with this issue, an

asymptotic analysis for the Newell-curve U (m, t) (1.5) is performed. Denoting the

approximation of U by u, setting ρ (x, t) = −∂xu (x, t) and integrating the (1.15)

once respect to x, we get

∂tu (x, t)−min {µ (x, t) ,−∂xu} , lim
x→0−

u (x, t) = gA (t) ,
d

dt
gA (t) = fA (t)

(1.16)

The last equation allows for shock solutions appearing as a δ-distribution in

u. In this case, although the x-derivative of u becomes unbounded, the flux (i.e.

∂tu (x, t)) will be bounded because of the min−function. It is possible to show

that, in the limit ε → 0, u satisfies the hyperbolic problem in (1.16) weakly in

space x and time t. First we have to define the interpolating elements in the

form of scaled functions ũs and f̃s. An effective method towards a continuum is a

piecewise constant interpolation in space and time. Then, the next theorem will

show that the N-curve ũs satisfies the (1.16) weakly in x and t as ε→ 0.

Theorem 2 Given the scaled density and flux at the discrete points xm, τs (m,n),

as defined in (1.13). Let the scaled throughput times Ts (xm) stay uniformly

bounded, i.e. hm = O (ε) holds uniformly in m. Assume finitely many bottlenecks

for a finite amount of time, i.e. let ∆mτs (m,n) be bounded for ε → 0 expect for

a certain number of nodes m and a finite number of parts n, which stays bounded

as ε→ 0. Then, for ε→ 0, and maxhm → 0 the interpolated N-function and flux

8



The Armbruster-Göttlich-Herty model with finite buffers

ũs, f̃s satisfy the initial boundary value problem

∂tũs = f̃s, f̃s = min {µ,−∂xũs} , t > τ̃ Is (x) , 0 < x < X, (1.17)

ũs
(
x, τ̃ Is (x)

)
= 0, lim

x→0−
ũs (x, t) =

∫ t

τ̃s(0,0)
fA (s) ds

in the limit ε→ 0, weakly in x and t.

Proof. The proof was done by Armbruster et al. and it can be found in [2].

Then, through this theorem, it is proved the asymptotic validity of the inte-

grated conservation law (1.17), for any N-curve u and any flux f , derived from

an arbitrary sequence τ via the definitions (1.9) and (1.11) and the interpolating

elements ũs, f̃s.

Moreover, considering the unscaled variables, Theorem (2) implies that density

ρ (x, t) can be approximately computed as ρ = −∂xu.

1.2 The Armbruster-Göttlich-Herty model with finite

buffers

Let consider an M/M/1 queue, from elementary queueing theory, the mean

cycle-time through the queue is given by τ = 1
ν−λ where ν is the average processing

rate, identical for all processors, and λ is the arrival rate of parts. Calling ρ the

average number of parts in the queueing system, Little’s law becomes λτ = ρ, and

solving for λ, the clearing function is

λ =
νρ

1 + ρ
(1.18)

If we identify λ with the steady state flux F and ρ with the amount of WIP

in the production process, the equation (1.18) is the state equation for our PDE

(Partial Differential Equation) model and theM/M/1 clearing function is the same

used in [2]. Moreover Little’s law [30] still holds true and hence the structure of

the model is still a conservation law as

ρt + Fx = 0, x ∈ [0, 1] , t ≥ 0 (1.19)

9
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where ρ (x, t) is the density with maximum value M and F is the flux.

Let observe that the probability to move through the generic jth processor and

arrive at the (j + 1)th one depends on two stochastic processes:

• the exponentially distributed departure time process with a mean of ν;

• the buffer levels process, i.e. the probabilities that the buffer level become

M and hence the j + 1 buffer is full and the jth processor has to be idle.

Let assume that the probability the next buffer is full linearly increases with

the distance from the end of production line. In particular, that probability is

zero for the last processor since it feeds the outside and it is assumed an infinite

outside inventory. Then, based on this assumptions, the processing rate becomes

inhomogeneous of the form
∼
v = c (x) ν, where c (1) = 1, c (x) linearly increases

with the steady state influx λ and linearly decreases as a function of x. Concerning

with all three assumptions, we get

∼
v = c (x) ν = λk (x− 1) + ν,

where k > 0 is the decay rate of
∼
v along x, and it is a monotone increasing

function of M . As done to find (1.18), the clearing function is given by

F (ρ, x) =

{
νρ

1+ρ+kρ(1−x) ρ < M

0 ρ ≥M
(1.20)

Both (1.18) and (1.20) have to be completed with suitable boundary conditions.

1.2.1 Boundary conditions

An inflow λ (t) at x = 0 and an outflow µ (t) at x = 1 is assigned. Due

to the lack of monotonicity of F we might not be able to fulfill the conditions

λ (t) = F (ρ (0, t) , 0) and µ (t) = F (ρ (1, t) , 1) at each time instant t. So, we use

the weak formulations as in [4].

We denote by ρ (0+, t) = limx→0,x≥0 ρ (x, t) and ρ (1−, t) = limx→1,x≤1 ρ (x, t).

Let ρλ ∈ [0,M) be the unique density such that

F (ρλ, 0) = λ, (1.21)

10
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and ρµ ∈ (0,M ] such that

F (ρµ, 0) = µ. (1.22)

Then, the following boundary conditions are hold.

max
k∈I(ρλ(t),ρ(0+,t))

{sgn (ρ (0+, t)− ρλ (t)) (F (ρ (0+, t) , 0)− F (k, 0))} = 0 (1.23)

max
k∈I(ρµ(t),ρ(0+,t))

{sgn (ρ (1−, t)− ρµ (t)) (F (ρ (1−, t) , 1)− F (k, 1))} = 0 (1.24)

We can notice that these two conditions are consistent with the behaviour

of supply chains. In fact, for example, if ρ (0+, t) = M , then (1.23) holds true

independent from the choice of ρλ, and it means that no more parts can enter

the supply chain. But, if ρ (0+, t) < M , (1.23) implies that ρ (0+, t) = ρλ or

F (ρ (0+, t) , 0) = λ.

1.2.2 Steady states

Through the boundary conditions, it is possible to compute the WIP profiles

in equilibrium. In steady state we have

∂F (ρ (x) , x)

∂x
= 0 (1.25)

and hence

F (ρ (x) , x) = c, (1.26)

where the constant c is given by the boundary conditions (1.23) and (1.24) at

x = 0 and x = 1, respectively.

ρ (x) = 0 is a steady state if and only if ρλ = 0 and this state satisfies the

boundary condition at x = 1 for any boundary density ρµ. If at some point x0 we

have ρ (x0) = M , then c = 0, necessarily. Hence, (1.26) implies that at any other

point x we either have ρ (x) = 0 or ρ (x) = M , and the only continuous steady

state in this case is ρ (x) =M , satisfying the boundary condition at x = 0 for any

incoming density ρλ implying ρµ =M .

11
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If 0 < ρ < M for all x, the (1.24) is satisfied for all ρµ and ρ (x = 0) = ρλ

defines c = νρλ
1+ρλ(1+k) . Since F (ρ, x), defined as in (1.20), is strictly monotone in

ρ for all x, then

ρ (x) = F−1 (c, x) = − c

c (1 + k − kx)− ν
, (1.27)

which is the well-defined steady state.

Finally we get the following result.

Proposition 3 Consider the conservation law (1.19) with flux function (1.20)

and boundary conditions as in (1.23) and (1.24). Assume inflow λ and outflow

µ are such that ρλ (1.21) and ρµ (1.22) are well defined. Then, there exist three

continuous steady states x→ ρ (x) of the conservation law: i) If µ = 0 and λ = 0,

then ρ = 0; ii) if µ = 0 and λ > 0, then ρ = M ; iii)in all other cases the steady

state is given by equation (1.27).

1.2.3 Riemann Problem

Taking into account the discontinuity in the flux function and neglecting the

dependence of the flux on x, the conservation law can be write as

ρt + ∂xH (M − ρ) f (ρ) = 0, (1.28)

where f is some strictly monotone and smooth function and H (·) represents

the Heaviside function.

To capture the dynamics of (1.28), we study the associated Riemann problem,

which is a Cauchy problem with the following initial condition

ρ (x) =

(
ρl x < 0

ρr x > 0

)
(1.29)

where ρl and ρr are constant.

Starting from the topics discussed in [17], [18], [19], [20] about entropic solution

, if we apply this notion to the case H (M − ρ) f (ρ), we can characterize the

solutions of (1.28) as follows:

• For 0 ≤ ρl < ρr < M , the solution is a classical shock wave with speed

s = f(ρr)−f(ρl)
ρr−ρl

.

12
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• For 0 ≤ ρr < ρl < M , the solution is a classical rarefaction wave traveling

with speed s̃ = f ′ (ρ).

• For 0 ≤ ρl < ρr =M , the solution is again a shock wave traveling with speed

s = f(ρl)
ρl−M .

• For 0 ≤ ρr < ρl =M (this case is not covered in [18]), the solution is a wave

with speed negative infinity connecting the points (M, 0) and (M,f (M)) in

the phase space ρ− ρν. This wave is followed by a classical rarefaction wave

of positive speed connecting on the left (M,f (M)) to (ρr, f (ρr)).

1.3 The Göttlich-Herty-Klar model

In this section, we present a model for large queuing supply chain networks

based on the work of Armbruster, Degond and Ringhofer [2]. Mainly, we formulate

a PDE network problem and a separate modeling of the queues, taking advantage

of existence theory of the network problem.

First, we state the definition of a supply chain network describing the connec-

tion between it and the suppliers.

Definition 4 . A supply chain network is a finite, connected directed, simple

graph consisting of arcs J = {1, ..., N} and vertices V = {1, ..., N − 1}. Each

supplier j is modeled by an arc j, which is again parameterized by an interval

[aj , bj ]. We use a1 = −∞ and bN = +∞ for the first respectively the last supplier

in the supply chain.

First we consider the special case where each vertex is connected to exactly

two arcs. As shown in Fig.1.1, we conventionally assume that bj = aj−1. Then,

we state that a supplier j is defined by a processor and a queue in front of it, i.e.

at x = aj (for simplicity we assume that the first supplier consists of a processor

only).

Each processor j is characterized by a maximum processing capacity µj , its

length Lj and the processing time Tj . The rate
Lj

Tj
defines the processing velocity.

The evolution of parts inside the processor j is modeled by the function ρj (x, t)

indicating the density of parts in j at point x and time t.

13
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Figure 1.1: Example of a simple network structure.

The dynamics of each processor on an arc j are governed by the following

advection equation:

 ∂tρj (x, t) + ∂xmin
{
µj ,

Lj

Tj
ρj (x, t)

}
= 0, ∀x ∈ [aj , bj ] , t ∈ R+

ρj (x, 0) = ρj,0 (x) , ∀x ∈ [aj , bj ]
(1.30)

Note that we use the flux functions defined as

f : R+
0 → [0, µ] , f (ρ) = min

{
µ,
L

T
ρ

}
, (1.31)

where the maximal rate for the processor is a positive constant µ. Clearly, f

is Lipschitz with constant Lf = L
T .

Figure 1.2: Relation between flow and density.

Remark 5 Usually, an inflow profile f1 (t) for the supply chain is given. This pro-

file can be translated into initial data ρ1 (x, 0) := ρ1,0 (b1 − t) = f1 (t) on artificial

first arc, where it’s assumed µ1 > max f1 and L1
T1

= 1.
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Each queue is a time-dependent function t → qj (t) and buffered demands for

the generic processor j when the capacity of processor j − 1 is different from the

demand of processor j (in fact, in this case the queue qj increases or decreases its

buffer).

Mathematically, we require each queue qj to satisfy the following equation:

∂tqj (t) = fj−1 (ρj−1 (bj−1, t))− fj (ρj (aj , t)) , j = 2, ..., N (1.32)

Due to the advection, we can define the flux on the outgoing arc j as

fj (ρj (aj , t)) =

{
min {fj−1 (ρj−1 (bj−1, t)) , µj} qj (t) = 0

µj qj (t) > 0
(1.33)

where the flux fj (ρj (aj , t)) is dependent on the capacity of the queue. The

(1.33) allows for the following interpretation: if the outgoing buffer is empty, we

process as many parts as possible but at most µj , while if it contains some parts,

then we process at maximal possible rate, i.e. again µj .

Finally, we have the following coupled system of partial and ordinary differen-

tial equations on a network

∂tρj (x, t) = −∂xmin

{
µj ,

Lj

Tj
ρj (x, t)

}
(1.34)

ρj (x, 0) = ρj,0 (x) (1.34)

∂tqj (t) = fj−1 (ρj−1 (bj−1, t))− fj (ρj (aj , t)) (1.35)

qj (0) = qj,0 (1.36)

fj (ρj (aj , t)) =

{
min {fj−1 (ρj−1 (bj−1, t)) , µj} qj (t) = 0

µj qj (t) > 0
(1.37)

Consider the very special flux function in (1.31), the Riemann problem for

(1.30) and (x, t) ∈ R × R+ admits one of the following two solutions. Let the

initial data such as
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ρj,0 (x) =

{
ρl for x < 0

ρr for x ≥ 0
,

with ρl, ρr ∈ R+
0 . Then, for ρl < ρr the solution ρj is given by

ρj (x, t) =

{
ρl −∞ < x

t ≤ fj(ρr)−fj(ρl)
ρr−ρl

ρr
fj(ρr)−fj(ρl)

ρr−ρl
< x

t <∞
(1.38)

while for ρr < ρl, if ρl ≤ µj or ρr ≥ µj the solution is the same, i.e. (1.38).

Otherwise, in the case ρr < µj < ρl, the solution will be

ρ (x, t) =


ρl −∞ < x

t ≤ fj(ρl)−µj

ρl−µj

µj
fj(ρl)−µj

ρl−µj
< x

t ≤ µj−fj(ρr)
µj−ρr

ρr
µj−fj(ρr)
µj−ρr

< x
t <∞

(1.39)

where it holds
µj−fj(ρr)
µj−ρr

and
fj(ρl)−µj

ρl−µj
= 1.

We can introduce the following definition:

Definition 6 (Network solution) A family of functions {ρj , qj}j∈J is called an

admissible solution for a network as in 1.1 if, for all j, ρj is a weak entropic

solutions [28] to (1.30), qj is absolutely continuous and, in the sense of traces for

ρjs, equations (1.32) and (1.33) hold for a.e. t.

In particular, considering a single vertex v ∈ V with incoming arc j = 1 and

outgoing arc j = 2 and constant initial data ρj,0 (x) ≤ µj , there exists an admissible

solution {ρ1, ρ2, q2} which has the form:

ρ1 (x, t) = ρ1,0 (1.40)

ρ2 (x, t) =


f1 (ρ1,0) < µ2


ρ1,0 0 ≤ x−t0

t < 1 =
f2(µ2)−f2(ρ1,0)

µ2−ρ1,0

µ2 1 ≤ x−t0
t and x

t < 1

ρ2,0 1 ≤ x
t <∞

f1 (ρ1,0) ≥ µ2

{
µ2 0 ≤ x

t < 1 =
f2(µ2)−f2(ρ2,0)

µ2−ρ2,0

ρ2,0 1 ≤ x
t <∞

(1.41)

q2 (t) = q2,0 +

∫ t

0
f1 (ρ1,0)− f2 (ρ2 (a2+, τ)) dτ (1.42)
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where t0 =
q2,0

µ2−f1(ρ1,0)
.

For a network as in Fig.1.1 with initial values qj (0) = 0 and initial data

{ρj,0 (x)}j where each ρj,0 is a step function, there exists an admissible solution

{ρj , qj}j to the network problem (1.34) to (1.37) whose construction is based on

wave-front tracking algorithm.

1.3.1 Modeling general networks

Consider now a generic vertex v ∈ V with mv incoming and nv outcoming arcs

(as, for example, in Fig.1.3).

Figure 1.3: Geometry of a vertex with multiple incoming and outcoming arcs.

We denote by δ−v and δ+v the set of arc indexes of incoming and outcoming

arcs. If we have more than one outgoing arc, we need to define and successively

to model the distribution of the goods from the incoming arcs. Assuming that

for each vertex v a matrix Av := A (αi,j) ∈ Rmv×nv is given, hence, the total flux

willing to go to arc j ∈ δ+v is given by

∑
i∈δ−v

αi,jfi (ρi (bi−, t)) .

Moreover we assume that, for all i ∈ δ−v and j ∈ δ+v , the matrix A satisfies:

0 ≤ αi,j ≤ 1,

∑
j∈δ+v

αi,j = 1.

Then, the supply chain network is modeling by (1.30) and,for each junction

(vertex) v, by the following equation for the queues
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∀j ∈ δ+v : ∂tqj (t) =
∑
i∈δ−v

αi,jfi (ρi (bi−, t))− fj (ρj (aj+, t)) , (1.43)

and the boundary values ∀j ∈ δ+v ,

fj (ρj (aj+, t)) =

 min
{∑

i∈δ−v αi,jfi (ρi (bi−, t)) , µj
}

qj (t) = 0

µj qj (t) > 0
.

(1.44)

Starting by the empty queue, if the outgoing flux is a percentage of the sum

of all incoming fluxes given by Av the queue remains empty, while if it is equal to

the maximal processing capacity, the queue increases. Finally if the queue is full,

it is always reduced with a capacity determined by Av and the capacities of the

connected arcs.

Note that due to the positive velocity of the occurring waves the boundary

conditions are well-defined. Moreover, due to (1.43) and the assumptions on A,

the total flux at each vertex v is conserved for all times t > 0, i.e.

∑
j∈δ+v

(∂tqj (t) + fj (ρj (aj+, t))) =
∑
i∈δ−v

fi (ρi (bi−, t)) .

The construction of a solution to the network problem given by (1.30), (1.43),

(1.44) is as before.

Now, let η = minj (bj − aj) be the minimum length of a supplier; since all

waves move at positive velocity at most equal to 1, two interactions with vertices

of the same wave can happen at most every η units of time. If N is the number of

suppliers, than there is at most a multiplication by N every η unit of time, thus

we can control the number of waves and interactions.

Therefore, for given piecewise constant initial data ρδj,0 on a network, a solution(
ρδ, qδ

)
can be defined by the wave-tracking method up to any time T .

18



A continuum-discrete model for supply chain network

1.4 A continuum-discrete model for supply chain net-

work

In this section we introduce a supply chains model extending the Armbruster,

Degond and Ringhofer one presented in the section 2.1, in which each arc is mod-

eled by a conservation law for the good density ρ and an evolution equation for

the processing rate µ.

Starting by the approach used in [14], once introduced the model, we discuss

about possible choices of solutions at nodes guaranteeing the conservation of fluxes

given by the general equation

ρt + fε (ρ, µ)x = 0,

where, for ε > 0 the flux fε is given by:

fε (ρ, µ) =

{
mρ, if ρ ≤ µ,

mµ+ ε (ρ− µ) , if ρ ≥ µ,

with m the processing velocity.

Keeping the analogy to Riemann problems, we call the solutions at junctions

as Riemann Solver at nodes. The first choice is to fix the rule:

SC1 The incoming density flux is equal to the outgoing density flux. So, if a

solution with only waves in the density ρ exists, then such solution is taken,

otherwise the minimal µ wave is produced.

Rule SC1 corresponds to the case in which processing rate adjustments are

done only if necessary, while the density ρ can be regulated more freely. In par-

ticular, it is justified in all situations in which processing rate adjustments require

re-building of the supply chain, while density adjustments are operated easily (e.g.

by stocking).

Even if rule SC1 is the most natural also from a geometric point of view, in

the space of Riemann data, it produces waves only to lower the value of µ and this

involves, as consequence, that, in some cases, the value of the processing rate does

not increase and it is not possible to maximize the flux.

In order to avoid this problem, two additional rules to solve dynamics at a

node are analyzed:
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SC2 The objects are processed in order to maximize the flux with minimal value

of the processing rate.

SC3 The objects are processed in order to maximize the flux. Then, if a solution

with only waves in the density ρ exists, then such solution is taken, otherwise

the minimal µ wave is produced.

The Riemann Problems are solved fixing two ”routing” algorithms:

RA1 Goods from an incoming arc are sent to outgoing ones according to their

final destination in order to maximize the flux over incoming arcs. Goods

are processed ordered by arrival time (FIFO policy).

RA2 Goods are processed by arrival time (FIFO policy) and are sent to outgoing

arcs in order to maximize the flux over incoming and outgoing arcs.

For both routing algorithms the flux of goods is maximized considering one of

the two additional rules, SC2 and SC3.

In order to understand the mechanism of the two previous rules, a simple

example is shown.

Suppose to have a supply chain network for assembling orange and lemon fruit

juice bottles as in Fig.1.4-a.

Bottles coming from the first arc are sterilized in node v1 and are re-direct

with a certain probability α to node v2 where some is filled with lemon fruit juice

and with probability 1− α to node v3 where some is filled with orange fruit juice.

Assume that lemon and orange fruit juice bottles have two different shapes. In

nodes v4 and v5, bottles are labeled as their own fruit juice. Finally in node v6,

produced bottles are corked. In this situation the dynamics at node v1 is solved

using the RA1 algorithm. In fact, the redirection of bottles in order to maximize

the production is not possible, since bottles have different shapes for any kind of

juice.

Consider now a supply network as shown in Fig.1.4-b in which the white cups

are addressed towards n arcs (or sub-chains) to be colored using different colors.

Since the aim is to maximize the cups production independently from the colors, a

mechanism is realized which addresses the cups on the outgoing sub-chains taking

into account their loads in such way as to maximize flux on both incoming and
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Figure 1.4: Supply network.

outgoing sub-chains. So, a model based on rule RA2 is realized to capture the

behavior of this network.

1.4.1 Basic Definitions

We start from the conservation law model

ρt + (min {µ (t, x) , ρ})x = 0. (1.45)

To avoid problems of existence of solutions, we assume µ piecewise constant

and an evolution equation of semi-linear type:

µt + V̄ µx = 0, (1.46)

where V̄ is some constant velocity. Taking V̄ = 0, it can be no solution to

a Riemann Problem for the system (1.45)-(1.46) with data (ρl, µl) and (ρr, µr) if

min {ρl, µl} > µr. Since we expect the chain to influence backward the processing

rate we assume V̄ < 0 and for simplicity we set V̄ = −1.

A supply network consists of N + 1 sub-chains I1, ...., IN+1, modeled by real

intervals
[
ak, bk

]
⊂ R, k = 1, ..., N + 1, ak < bk, possible with either ak = −∞ or
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bk = +∞ and M suppliers or processors P1, ..., PM with certain throughput times

and capacity.

Each supplier processes a certain good, measured in units of parts. It is as-

sumed that a node P consists of a processor, which decides how to manage the

flow among sub-chains, with a maximal processing rate µ.

The evolution on each arc is given by (1.45)-(1.46), while at each nodes vertex

the evolution is given by solving Riemann Problems for the density equation (1.45)

with µs as parameters. Since such Riemann Problems may still admit no solution

keeping the values of µs constant, then we expect µ waves to be generated following

equation (1.46). Moreover the vanishing of the characteristic velocity for (1.45),

in case ρ > µ, can provoke resonances with the nodes (which can be presented

schematically as waves with zero velocities). Then, for this reason, the model is

modified as follows.

Each sub-chain Ik is characterized by a maximum density ρmax
k , a maximum

processing rate µmax
k and a flux fkε . Then the dynamics is given by:{

ρt + fkε (ρ, µ)x = 0,

µt − µx = 0.
(1.47)

The flux is defined as:

(F) fkε (ρ, µ) =

{
ρ, 0 ≤ ρ ≤ µ,

µ+ ε (ρ− µ) , µ ≤ ρ ≤ ρmax
k ,

fkε (ρ, µ) =

{
ερ+ (1− ε)µ, 0 ≤ µ ≤ ρ,

ρ, ρ ≤ µ ≤ µmax
k ,

as shown in (Fig.1.5).

The conservation law for the good density in (1.47) is a ε perturbation of (1.45)

in the sense that ||f − fε||∞ ≤ Cε where f is the flux of (1.47). The equation

has the advantage of producing waves with always strictly positive speed, thus

avoiding resonance with the “boundary” problems at each node.

From now on, fixing ε > 0 and dropping the indices, the flux will be indicated

by f (ρ, µ).

Remark 7 It is possible to generalize all following definitions and results to the

case of different fluxes fkεk for each sub-chain Ik (also choosing ε dependent on
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Figure 1.5: Flux (F): Left, f (ρ̄, µ). Right, f (ρ, µ̄).

k). In fact, all statements are in terms of values of fluxes at endpoints of the

sub-chains, thus it is sufficient that the ranges of fluxes intersect. Moreover, we

can consider different slopes mk for each sub-chain Ik, considering the following

flux

fkε (ρ, µ) =

{
mkρ, 0 ≤ ρ ≤ µ,

mkµ+ ε (ρ− µ) , µ ≤ ρ ≤ ρmax
k ,

where mk ≥ 0 represents the velocity of each processor and is given by

mk =
Lk

Tk
,

with Lk and Tk, respectively, fixed length and processing time of processor k.

Assuming that the sub-chains are connected by some junction J , each of them

is given by a finite number of incoming and outgoing sub-chains, then J is identified

with ((i1, ..., in) , (j1, ..., jm)) (see Fig.1.6) where the first n-tuple and the secondm-

tuple indicate respectively the set of incoming and outgoing sub-chains. Moreover,

each sub-chain can be incoming or outgoing at most for one junction. Hence, the

complete model is given by a couple (I, P ), where I = {Ik : k = 1, ..., N + 1} is

the collection of sub-chains and P is the collection of junctions.

The supply network evolution is described by a finite set of functions ρk, µk

defined on [0,+∞[ × Ik. On each sub-chain Ik, we say that Uk := (ρk, µk) :

[0,+∞[ × Ik → R is a weak solution to (1.47) if, for every C∞-function φ :

[0,+∞[× Ik → R2 with compact support in ]0,+∞[× ]ak, bk[,
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Figure 1.6: A junction.

∫ +∞

0

∫ bk

ak

(
Uk
∂φ

∂t
+ f (Uk)

∂φ

∂x

)
dxdt = 0,

where

f (Uk) =

(
f (ρk, µk)

−µk

)
,

is the flux function of the system (1.47). For definition of entropic solution, see

at [7].

For a scalar conservation law, a Riemann Problem (RP) is a Cauchy problem

for an initial data of Heavyside type, that is a piecewise constant with only one

discontinuity. The solutions are formed by continuous waves called rarefactions

and by traveling discontinuities called shocks.

Analogously, we call Riemann problem for a junction the Cauchy problem

corresponding to an initial data which is constant on each supply sub-chain.

Definition 8 A Riemann Solver (RS) for the junction P with n incoming sub-

chains and m outgoing ones consists in a map that associates to a Riemann

data (ρ0, µ0) = (ρ1,0, µ1,0, ..., ρn,0, µn,0, ρn+1,0, µn+1,0, ..., ρn+m,0, µn+m,0) at P a

vector (ρ̂0, µ̂0) = (ρ̂1, µ̂1, ..., ρ̂n, µ̂n, ρ̂n+1, µ̂n+1, ..., ρ̂n+m, µ̂n+m) so that the solution

is given by the waves (ρi,0, ρ̂i) and (µi,0, µ̂i) on the sub-chain Ii, i = 1, ..., n and

by the waves (ρ̂j , ρj,0) on the sub-chain Ij, j = n + 1, ..., n +m. We require the

consistency condition
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(CC) RS (RS ((ρ0, µ0))) = RS ((ρ0, µ0)) .

Once a Riemann Solver is assigned, we can define admissible solutions at P .

Definition 9 Assume a Riemann Solver RS is assigned for the supplier P . Let

U = (U1, ..., Un+m) be such that U is of bounded variation for every t ≥ 0. Then

U is an admissible weak solution of (1.47) related to RS at the junction P if and

only if the following property holds for almost every t. Setting

Ũp (t) = (U1 (·, b1−) , ..., Un (·, bn−) , Un+1 (·, an+1+) , ..., Un+m (·, an+m+))

we have RS
(
Ũp (t)

)
= Ũp (t).

The aim is to solve the Cauchy problem on [0,+∞[ for a given initial and

boundary data as in next definition.

Definition 10 Given Uk : Ik → [0, 1], k = 1, ...N + 1, measurable BV functions,

a collection of functions U = (U1, ..., UN+1), with Uk : [0,+∞[ × Ik → [0, 1] con-

tinuous as functions from [0,+∞[ into L1
loc and Uk (t, ·) BV function for almost

every t, is an admissible solution to the Cauchy problem on the supply chain if Uk

is a weak entropic solution to (1.47) on Ik, Uk (0, x) = Ūk (x) a.e., and, at each

supplier Pk, U is an admissible weak solution.

1.4.2 Riemann Solvers for suppliers

Fixing a sub-chain Ik, we analyze system (1.47) as a system of conservation

laws in the variables U = (ρ, µ):

Ut + F (U)x = 0, (1.48)

with flux function given by F (U) = (f (ρ, µ) ,−µ), thus the Jacobian matrix

of the flux is:

DF (ρ, µ) =



(
1 0

0 −1

)
, if ρ < µ,(

ε 1− ε

0 −1

)
, if ρ > µ.
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The eigenvalues and eigenvectors are given by:

λ1 (ρ, µ) ≡ −1, r1 (ρ, µ) =



(
0

1

)
, if ρ < µ,(

−1−ε
1+ε

1

)
, if ρ > µ,

λ2 (ρ, µ) =

{
1 if ρ < µ,

ε if ρ > µ,
r1 (ρ, µ) ≡

(
0

1

)
.

Hence the Hugoniot curves for the first family are vertical lines above the secant

ρ = µ and lines with slope close to −1
2 below the same secant. The Hugoniot

curves for the second family are just horizontal lines. Since we consider positive

and bounded values for the variables, we fix the invariant region (see Fig.1.7):

D = {(ρ, µ) : 0 ≤ ρ ≤ ρmax, 0 ≤ µ ≤ µmax,

0 ≤ (1 + ε) ρ+ (1− ε)µ ≤ (1 + ε) ρmax = 2 (1− ε)µmax}

Figure 1.7: First and second family curves.

Observe that

ρmax = µmax
2

1 + ε
. (1.49)

First, some results, widely proved for sequential supply chains in [14], are

reported.
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Proposition 11 Given (ρ0, µ0), the minimal value of the flux at points of the

curve of the first family passing through (ρ0, µ0) is given by:

fmin ((ρ0, µ0)) =

{
2ε
1+ερ0, if ρ0 ≤ µ0,

ερ0 +
ε(1−ε)
1+ε µ0, if ρ0 > µ0.

Lemma 12 Given an initial datum (ρ0, µ0), the maximum value of the density

of the curve of the second family passing through (ρ0, µ0) and belonging to the

invariant region is given by

ρM (µ0) = ρmax − µ0
ρmax − µmax

µmax
. (1.50)

Proof. From Fig.1.7 the maximum value is obtained by the intersection of the

curve of the second family passing through (ρ0, µ0) and the line connecting the

points (ρmax, 0) and (µmax, µmax):

ρM (µ0) = ρmax − µ0
ρmax − µmax

µmax
.

From (1.49) we get

ρM (µ0) =
2

1 + ε
µmax −

(1− ε)

1 + ε
µ0.

The following estimate holds [14]:

Proposition 13 Assume that a second family wave ((ρl, µl) , (ρm, µm)) interacts

with a first family wave ((ρm, µm) , (ρr, µr)). If µr < µm then the flux variation

decreases.

Considering now a node P with n and m respectively incoming and outgoing

sub-chains and a Riemann initial datum (ρ1,0, µ1,0, ...., ρn,0, µn,0) and

(ρn+1,0, µn+1,0, ...., ρm+n,0, µm+n,0), the following Lemma holds:

Lemma 14 On the incoming sub-chain, only waves of the first family may be

produced, while on the outgoing sub-chain only waves of the second family may be

produced.

From the last Lemma, assigned the initial datum, for each Riemann Solver it

follows that
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ρ̂i = φ (µ̂i) , i = 1, ..., n,

µ̂j = µj,0, j = n+ 1, ..., n+m.
(1.51)

where the function φ (·) describes the first family curve (ρi,0, µi,0) as function

of µ̂i. The expression of such curve changes at a particular value µ̄i, given by:

µ̄i =

{
ρi,0, if ρi,0 ≤ µi,0,
1+ε
2 ρi,0 +

1−ε
2 µi,0, if ρi,0 > µi,0.

The case of sequential supply chain.

Considering a node Pk with one incoming arc k and one outgoing arc k + 1.

Let us now to discuss how ρ̂k+1 and µ̂k (from 1.51 we set i = k and j = k+1) can

be chosen.

The conservation of flux at the node can be written as

f (φ (µ̂k) , µ̂k) = f (ρ̂k+1, µk+1,0) . (1.52)

We have:

Case α): µk+1,0 < µ̄k;

Case β): µ̄k ≤ µk+1,0.

In both cases µ̄k and µk+1,0 individuate in the plane (ρ̂k+1, µ̂k) four regions so

defined:

A = {(ρ̂k+1, µ̂k) : 0 ≤ ρ̂k+1 ≤ µk+1,0, µ̄k ≤ µ̂k ≤ µmax
k } ;

B =
{
(ρ̂k+1, µ̂k) : µk+1,0 ≤ ρ̂k+1 ≤ ρMk+1, µ̄k ≤ µ̂k ≤ µmax

k

}
;

A = {(ρ̂k+1, µ̂k) : 0 ≤ ρ̂k+1 ≤ µk+1,0, 0 ≤ µ̂k ≤ µ̄} ;
B =

{
(ρ̂k+1, µ̂k) : µk+1,0 ≤ ρ̂k+1 ≤ ρMk+1, 0 ≤ µ̂k ≤ µ̄k

}
;

The (1.52) is satisfied in case β) along the line depicted in Fig.1.8 and in case

α) (Fig.1.9) there are solutions, only under some conditions, along the dashed line.

For details, see [14].
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Figure 1.8: Case α).

Figure 1.9: Case β).

A Riemann Solver according to rule SC1. Geometrically, in case β), we

can define a Riemann Solver mapping every initial datum on the line µ̂k = c to the

intersection of the same line with that drawn in Fig.1.9. While in case α), it may

happen that there is no admissible solution on a given line µ̂k = c. Therefore, we

can use the same procedure if the line µ̂k = c intersects the dashed line of Fig.1.8,

while mapping all other points to the admissible solution with the highest value

of µ̂k. This Riemann Solver is shown in Fig.1.10 and Fig.1.11.

Remark 15 If ρ̂k+1 ≤ µk+1,0, then the solution (ρ̂k+1, ρk+1,0) is a contact discon-

tinuity. The same happens if ρ̂k+1 ≥ µk+1,0 and ρk+1,0 > µk+1,0. If ρ̂k+1 ≥ µk+1,0

and ρk+1,0 < µk+1,0, the solution consists of two discontinuities.
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Figure 1.10: An example of Riemann Solver: case α.

Figure 1.11: An example of Riemann Solver: case β.

A Riemann Solver according to rule SC2. Rule SC2 identifies a specific

Riemann Solver:

Theorem 16 Fix a node Pk. For every Riemann initial datum (ρk,0, µk,0, ρk+1,0, µk+1,0)

at Pk there exists a unique vector (ρ̂k, µ̂k, ρ̂k+1, µ̂k+1) solution of the Riemann Prob-

lem according to rule SC2.

Proof. Given the initial datum (ρk,0, µk,0, ρk+1,0, µk+1,0), it holds

ρ̂k = φ (µ̂k) ,

µ̂k+1 = µk+1,0,

where φ (µ̂k) has been defined by (1.51). We have to distinguish again two cases:
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Case α): µk+1,0 < µ̄k. Let

ρ∗ =
µ̄k − (1− ε)µk+1,0

ε
, (1.53)

we consider two subcases which correspond to the situation in which solutions

in region B exist or do not exist.

Case α1): ρ
∗ ≤ ρM (µk+1,0). Since µk+1,0 < µ̄k we get

ρ∗ =
µ̄k
ε

−
(
1

ε
− 1

)
µk+1,0 >

µ̄k
ε

−
(
1

ε
− 1

)
µ̄k = µ̄k.

Considering the lines of Fig.1.8, to every µ it corresponds a value of the

flux. We claim the following:

Claim 17 If ρ∗ ≤ ρM the flux increases with respect to µ along the

dashed lines in region C,D and in B for µmax
k ≤ µ ≤ ρ∗ and, finally, it

is constant along the dashed line in region B for ρ∗ ≤ µ ≤ µmax
k .

It holds

f (ρ∗, µ) =

{
ερ∗ + (1 + ε)µ, 0 ≤ µ ≤ ρ∗,

ρ∗, ρ∗ ≤ µ ≤ µmax
k ,

whose derivative, with respect to µ, is given by

∂f (ρ∗, µ)

∂µ
=

{
(1 + ε) , 0 ≤ µ ≤ ρ∗,

0, ρ∗ ≤ µ ≤ µmax
k .

It follows that for ρ∗ ≤ µ ≤ µmax
k the flux is constant along the dashed

line in region B.

Let us now prove that the flux is increasing with respect to µ along the

dashed lines in regions C andD. The line connecting the points
(

2ε
1+ε µ̄k, 0

)
and (µk+1,0, µ

∗) with µ∗ = 1+ε
1−ε

(
µ̂k+1 − 2ε

1+ε µ̄k

)
has equation

ρ− 1

µ∗

(
µk+1,0 −

2ε

1 + ε
µ̄k

)
µ− 2ε

1 + ε
µ̄k = 0,

and a directional vector is given by

rCα =

( 1
µ∗

(
µk+1,0 − 2ε

1+ε µ̄k

)
1

)
.
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Therefore, the directional derivative of the flux is equal to

∇f (ρ, µ) · rCα =

(
ε

1− ε

)( 1
µ∗

(
µk+1,0 − 2ε

1+ε µ̄k

)
1

)
=

=
ε

µ∗

(
µk+1,0 −

2ε

1 + ε
µ̄k

)
+ (1− ε) > 0.

The latter inequality is fulfilled if µk+1,0 >
2ε
1+ε µ̄k, which is true when-

ever we have solutions in region C.

In region D a directional vector of the line connecting the points (µk+1,0, µ
∗)

and (ρ∗, µ̄k) is the following

rDα =

(ρ∗−µk+1,0

µ̄k−µ∗

1

)
.

It implies that

∇f (ρ, µ) · rDα =

(
ε

1− ε

)(ρ∗−µk+1,0

µ̄k−µ∗

1

)
= ε

ρ∗ − µk+1,0

µ̄k − µ∗
+ (1 + ε) > 0,

since ρ∗ > µ̄k > µk+1,0 and µ̄k − µ∗ > 0.

In order to respect rule SC2 we set

ρk+1 = ρ∗,

µ̂k = min {µmax
k , ρ∗} .

Case α2): If ρ∗ > ρM (µk+1,0), there are not solutions in region B and since

the flux increases with respect to µ in region D we set

ρ̂k+1 = ρM ,

µ̂k = µ̃,

where µ̃ is obtained from

(1− ε)µk+1,0 + ερ̂k+1 = (1− ε) µ̂k + ερ̂k,

setting ρ̂k+1 = ρM , i.e.

µ̃ =
ε (1 + ε)

1− ε
ρM − 2ε

1− ε
µ̄k + (1 + ε)µk+1,0 =

=
2ε

1− ε
(µmax

k − µ̄k) + µk+1,0.
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Case β): µ̄k ≤ µk+1,0. Consider the line of Fig.1.9. In this case the flux is

constant with respect to µ along the line in the region A and is an increasing

function along the line in region C.

In fact, since the line in region A is given by ρ̂k+1 = µ̄k, it follows that

f (ρ̂k+1, µ) =

{
εµ̄k + (1− ε)µ, 0 ≤ µ ≤ µ̄k,

ρ, µ̄k ≤ µ ≤ µmax
k ,

from which

∂f (ρ̂k+1, µ)

∂µ
=

{
(1− ε) , 0 ≤ µ ≤ µ̄k,

0, µ̄k ≤ µ ≤ µmax
k .

In region C the line connecting the points
(

2ε
1−ε µ̄k, 0

)
and (µ̄k, µ̄k) has equa-

tion

ρ− 1− ε

1 + ε
− 2ε

1 + ε
µ̄k = 0,

and a directional vector is given by

rCβ
=

(1−ε
1+ε

1

)
.

The directional derivative is the following

∇f (ρ, µ) · rCβ
=

(
ε

1− ε

)(1−ε
1+ε

1

)
= ε

1− ε

1 + ε
+ (1− ε) > 0.

It follows that rule SC2 is satisfied if we define

ρ̂k+1 = µ̄k,

µ̂k = µ̄k.

Finally the Riemann Solver is the following:

Case α): µk+1,0 < µ̄k

Case α1): ρ
∗ ≤ ρM (µk+1,0)

ρ̂k+1 = ρ∗,

µ̂k = min {µmax
k , ρ∗} .
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Case α2): ρ
∗ > ρM (µk+1,0)

ρ̂k+1 = ρM (µk+1,0) ,

µ̂k = µ̃.

Case β): µk+1,0 ≥ µ̄k

ρ̂k+1 = µ̄k,

µ̂k = µ̄k.

Figure 1.12: Case α) for the Riemann Solver SC2.

Figure 1.13: Case β) for the Riemann Solver SC2.

The Riemann Solver is shown in Fig.1.12 and Fig.1.13. In case α) we can define

a Riemann Solver mapping every initial datum to the circle or to the square point

if ρ∗ ≤ ρM and to the filled point if ρ∗ > ρM . In case β) we can define a Riemann

Solver mapping every initial datum to the point (µ̄k, µ̄k), indicated by the arrow.
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A Riemann Solver according to rule SC3 Also with rule SC3, we have a

precise Riemann Solver.

Theorem 18 Fix a node Pk. For every Riemann initial datum (ρk,0, µk,0, ρk+1,0, µk+1,0)

at Pk there exists a unique vector (ρ̂k, µ̂k, ρ̂k+1, µ̂k+1) solution of the Riemann Prob-

lem according to rule SC3.

Proof. As for the Riemann Solver for rule SC2, given the initial datum

(ρk,0, µk,0, ρk+1,0, µk+1,0), we have

ρ̂k = φ (µ̂k) ,

µ̂k+1 = µk+1,0,

We distinguish:

Case α): This case is splitted in two subcases:

Case α1): ρ
∗ ≤ ρM (µk+1,0). In theorem 64 it was proved that the flux

increases with respect to µ along the dashed lines in regions C, D and

B for µmax
k ≤ µ ≤ ρ∗ and, finally, it is constant along the line in region

B for ρ∗ ≤ µ ≤ µmax
k . It follows that we have to consider two situations:

Case α11): ρ
∗ > µmax

k . According to rule SC3 we set

ρ̂k+1 = ρ∗,

µ̂k = µmax
k .

Case α12): ρ
∗ ≤ µmax

k . We set

ρ̂k+1 = ρ∗,

µ̂k = max {ρ∗, µk+1} .

Case α2): ρ
∗ > ρM (µk+1,0). In this case, there are not solutions in region

B and since the flux increases with respect to µ in region D we set, as

for the Riemann Solver SC2,

ρ̂k+1 = ρM (µk+1,0) ,

µ̂k = µ̃.
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Case β): The flux is constant with respect to µ along the line in the region A and

is an increasing function along the line in region C, then we set

ρ̂k+1 = µ̄k,

µ̂k =

{
µ̄k, if µk,0 < µ̄k,

µk,0, if µk,0 ≥ µ̄k.

The obtained Riemann Solver is shown in Fig.1.14: all points of the white

region are mapped horizontally and all points of the dark regions are mapped to

the point indicated by the arrows.

Figure 1.14: Case β) and α) (namely α1) and α2)) for the Riemann Solver SC3.

Analogously to the case of rule SC1, we can give conditions for solvability of

Riemann Problems, more precisely:

Lemma 19 Consider a supply chain on which the initial datum verifies µk,0 =

µmax
k , i.e. the production rate is at its maximum. A sufficient condition for the

solvability of all Riemann Problems, according to rule SC2 or SC3, on the supply

chain at every time is

ρmax
k+2 ≥ ρmax

k , ∀k.

The case of a supply chain networks

Now, two different Riemann Solvers at junction are defined according to the

routing algorithms RA1 and RA2. For both these algorithms, the flux of goods

can be maximized considering the two additional rules SC2 and SC3.
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In order to define Riemann problems according to RA1 and RA2 let us in-

troduce the notation:

fk = f (ρk, µk) .

The maximum flux obtainable by a wave solution on each production sub-chain:

fmax
k =

{
µ̄k, k = 1, ..., n,

µk,0 + ε
(
ρM (µk,0)− µk,0

)
, k = n+ 1, ..., n+m.

Since f̂i ∈
[
fmin
i , fmax

i = µ̄i
]
, i = 1, ..., n and

f̂j ∈
[
0, fmax

j = µj,0 + ε
(
ρM (µj,0)− µj,0

)]
, j = n+ 1, ..., n+m it follows that if

n∑
i=1

fmax
i >

n+m∑
j=n+1

fmax
j

the Riemann Problem does not admit solution. For the solvability of the supply

network the following conditions hold:

Lemma 20 A necessary and sufficient condition for the solvability of the Riemann

Problem is that
n∑

i=1

fmax
i ≤

n+m∑
j=n+1

µj,0 + ε
(
ρM (µj,0)− µj,0

)
.

Lemma 21 A sufficient condition for the solvability of the Riemann Problems,

independent of the initial data, is the following

n∑
i=1

ρmax
i ≤

n+m∑
j=n+1

µmax
j .

Proof. Since f̂i ∈
[
fmin
i , fmax

i

]
, i = 1, ..., n and f̂j ∈

[
0, fmax

j

]
, j = n+1, ..., n+

m, the worst case to fulfill the condition of Lemma XX(prec) happens when fmin
i

assumes the greatest value and fmax
j the lowest one

n∑
i=1

ερmax
i ≤ ε

n+m∑
j=n+1

µmax
j .

Now, considering a single junction P , we analyze two cases:

1. P with n− 1 incoming arcs and 1 outgoing arc (i.e. (n− 1)× 1 node);

2. P with 1 incoming arc and m− 1 outgoing arcs (i.e. 1× (m− 1) node).
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One outgoing sub-chain

In this case, since there is only one outgoing sub-chain, the algorithms RA1

and RA2 coincide.

Fixing a Riemann initial datum (ρ0, µ0) = (ρ1,0, µ1,0, ...., ρn−1,0, µn−1,0, ρn,0, µn,0),

let us denote the solution of the Riemann Problem with (ρ̂, µ̂) =

(ρ̂1, µ̂1, ...., ρ̂n−1, µ̂n−1, ρ̂n, µ̂n) and introduce the priority parameters (q1, q2, ..., qn−1)

which determine a level of priority at the junction sub-chains (see Fig.1.15).

Figure 1.15: One outgoing sub-chain.

Let us define

Γinc =

n−1∑
i=1

fmax
i ,

Γout = fmax
n ,

and Γ = min {Γinc,Γout}.
For simplicity, we analyze a junction with n = 3, so we need only one priority

parameter q ∈ ]0, 1[. Think, for example, of a filling station for soda cans. The sub-

chain 3 fills the cans, whereas sub-chains 1 and 2 produce plastic and aluminium

cans, respectively.

First, we compute f̂i i = 1, 2, 3 and then ρ̂i and µ̂i, i = 1, 2, 3.

We have to distinguish two cases:

Case 1): Γ = Γinc.

Case 2): Γ < Γinc.

38



A continuum-discrete model for supply chain network

In the first case we set f̂i = fmax
i , i = 1, 2.

Instead, in the second case we have to use the priority parameter q. Since not

all objects can enters the junction, letting C be the amount of objects that can go

through, then qC and (1− q)C are the objects coming respectively from first and

second sub-chain.

Considering the space (f1, f2), we define the following line:

rq : f2 =
1− q

q
f1,

rΓ : f1 + f2 = Γ.

Define P to be the point of intersection of the lines rq and rΓ. Recall that the

final fluxes should belong to the region (as in Fig.1.16):

Ω = {(f1, f2) : 0 ≤ fi ≤ fmax
i , i = 1, 2} .

Figure 1.16: P belongs to Ω and P is outside Ω.

We distinguish two cases:

a) P belongs to Ω,

b) P is outside Ω.

In the first case we set
(
f̂1, f̂2

)
= P , while in the second case we set

(
f̂1, f̂2

)
=

Q, with Q = projΩ∩rΓ (P ) where proj is the usual projection on a convex set

(Fig.1.16). Notice that f̂3 = Γ.
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Remark 22 The same reasoning can be done also in the case of n− 1 incoming

sub-chains. In Rn−1 we get the line rq = tvq, t ∈ R, with vq ∈ ∆n−2 where

∆n−2 =

{
(f1, ..., fn−1) : fi ≥ 0, i = 1, ..., n− 1,

n−1∑
i=1

fi = 1

}

is the (n− 2) dimensional simplex and

HΓ =

{
(f1, ..., fn−1) :

n−1∑
i=1

fi = 1

}

is a hyperplane. Since vq ∈ ∆n−2, there exists an unique point P = rq ∩ HΓ. If

P ∈ Ω, then we set
(
f̂1, ..., f̂n−1

)
= P . If P /∈ Ω, then we set

(
f̂1, ..., f̂n−1

)
= Q =

projΩ∩rΓ (P ), the projection over the subset Ω ∩ HΓ. Observe that the projection

is unique since Ω ∩HΓ is a closed convex subset of HΓ.

In order to compute ρ̂i and µ̂i, i = 1, 2, 3, on the incoming sub-chains we have

to distinguish two subcases:

Case 2.1): f̂i = fmax
i . We set according to rules SC2 and SC3,

SC2 :
ρ̂i = µ̄i,

µ̂i = µ̄i,
i = 1, 2,

SC3 :
ρ̂i = µ̄i,

µ̂i = max {µ̄i, µi,0} ,
i = 1, 2.

In this case ρ̂i = φ (µ̂i) = µ̄i, i = 1, 2.

Case 2.2): f̂i < fmax
i . There exists an unique µ̂i such that µ̂i + ε (φ (µ̂i)− µ̂i) =

f̂i. According to (1.51), we set ρ̂i = φ (µ̂i), i = 1, 2.

On the outgoing sub-chain we have:

µ̂3 = µ3,0,

while ρ̂3 is the unique value such that fε (µ3,0, ρ̂3) = f̂3.
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One incoming sub-chain

Fixing a node P with 1 incoming arc and m− 1 outgoing ones (see Fig.1.17),

and a Riemann initial datum (ρ0, µ0) = (ρ1,0, µ1,0, ρ2,0, µ2,0, ...., ρm,0, µm,0), let us

denote the solution of the Riemann Problem (ρ̂, µ̂) = (ρ̂1, µ̂1, ρ̂2, µ̂2, ...., ρ̂m, µ̂m).

For this configuration, we need to define the distribution of goods from the in-

coming arc. Then, we introduce the flux distribution parameters αj , j = 2, ...,m,

where

0 < αj < 1,

m∑
j=2

αj = 1.

Figure 1.17: One incoming sub-chain.

The coefficient αj represents the percentage of objects addressed from the arc

1 to the sub-chain j. The flux on the arc j is thus given by

fj = αjf1, j = 2, ...,m,

where f1 is the incoming flux on the arc 1.

Let us define

Γinc = fmax
1 ,

Γout =
m∑
j=2

fmax
j ,

and Γ = min {Γinc,Γout}.
We have to determine µ̂k and ρ̂k, k = 1, ...,m, for both algorithms RA1 and

RA2.
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Riemann solver according to RA1 Analyze the general case with m sub-

chains. For example, we refer to the filling station for orange and lemon fruit juice

bottles as shown in Fig.1.4-a, where the dynamics at node v1 is solved using the

algorithm we are going to describe.

Since fj ≤ fmax
j it follows that

f1 ≤
fmax
j

αj
, j = 2, ...,m.

We set

f̂1 = min
{
fmax
1 ,

fmax
j

αj

}
,

f̂j = αj f̂1,
j = 2, ...,m.

On the incoming sub-chain we have to distinguish two subcases:

Case 1): f̂1 = fmax
1 . According to rule SC2 and SC3, respectively, we set:

SC2 :
ρ̂1 = µ̄1,

µ̂1 = µ̄1,

SC3 :
ρ̂1 = µ̄1,

µ̂1 = max {µ̄1, µ1,0} .

Case 2): f̂1 < fmax
1 . In this case there exists an unique µ̂1 such that µ̂1 +

ε (φ (µ̂1)− µ̂1) = f̂1. According to (1.51), we set ρ̂1 = φ (µ̂1).

On the outgoing sub-chain we have:

µ̂j = µj,0, j = 2, 3, ..,m

while ρ̂i is the unique value such that fε (µj,0, ρ̂j) = f̂j , j = 2, 3, ..,m.

Riemann solver according to RA2 For simplicity let us consider a node with

m = 3 and in this case we need only one distribution parameter α ∈ ]0, 1[ (referred

to the cups production as shown in Fig.1.4-b). The dynamics at the node is solved

according to the algorithm RA2. Compute f̂k, k = 1, 2, 3.

We have to distinguish two cases:

Case 1): Γ = Γout.
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Case 2): Γ < Γout.

In the first case we set f̂j = fmax
j , j = 2, 3, while in the second one we use the

priority parameter α.

Then, if we indicate with C the amount of objects that can go through the

junction, let αC and (1− α)C be the objects that respectively coming from the

first and second sub-chain. Considering the space (f2, f3), define the following

lines:

rα : f3 =
1−α
α f2,

rΓ : f2 + f3 = Γ.

Define P to be the point of intersection of the lines rα and rΓ. Recall that the

final fluxes should belong to the region:

Ω =
{
(f2, f3) : 0 ≤ fj ≤ fmax

j , j = 2, 3
}
.

We distinguish two cases:

a) P belongs to Ω,

b) P is outside Ω.

In the first case we set
(
f̂2, f̂3

)
= P , while in the second case we set

(
f̂2, f̂3

)
=

Q, with Q = projΩ∩rΓ (P ) where proj is the usual projection on a convex set.

Notice that f̂1 = Γ.

Again, we can extend the reasoning to the case of m − 1 outgoing sub-chains

as for the incoming ones defining the hyperplane

HΓ =

(f2, ..., fm) :

m∑
j=2

fj = Γ


and choosing a vector vα ∈ ∆m−2. Moreover, we compute ρ̂k and µ̂k in the

same way described for the Riemann Solver RA1.

Remark 23 In alternative, assuming that a traffic distribution matrix A is as-

signed, then we can compute f̂1 and choose the vector vα ∈ ∆m−2 by

vα = ∆m−2 ∩
{
tA
(
f̂1

)
: t ∈ R

}
.
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Remark 24 The classical Kruzkov entropy inequalities at nodes [7] read∑
inc

sgn (ρ− k) (f (ρ)− f (k)) ≥
∑
out

sgn (ρ− k) (f (ρ)− f (k))

over the sums are respectively over incoming and outgoing sub-chains and k is

arbitrary. The fluxes are always monotone with respect to ρ, while the precise

values taken by fluxes and densities on the sub-chains may be different. Thus we

can not expect the inequality to hold in general.

1.4.3 Waves production

In this section let us discuss the waves production on an incoming and an

outgoing sub-chain with initial datum (ρi,0, µi,0) and (ρj,0, µj,0) respectively.

Since the load dynamic is described by a conservation law in ρ and an evolution

equation in µ, we have ρ-waves and µ-waves of two types:

• shocks waves which are discontinuities in ρ and/or µ traveling at a constant

speed,

• contact discontinuities, which separate two constant states with the same

speed but different values.

The last one are contact discontinuities in ρ and µ with speed λ = −1 connect-

ing the states ρi,0 and ρ̂i and µi,0 and µ̂i.

On the outgoing sub-chain only ρ-waves of the second family can be produced.

Then we must consider two cases:

Case a): ρj,0 ≤ µj,0.

Case b): ρj,0 > µj,0.

For the case a), two subcases have to be distinguished:

Case a.1): If ρ̂j ∈ [0, µj,0] then the solution of the Riemann Problem consists of

a contact discontinuity connecting ρ̂j and ρi,0 with speed 1 (for t = 1);

Case a.2): If ρ̂j ∈
]
µj,0, µ

max
j

]
then the solution of the Riemann Problem consists

of two shocks: one connecting ρ̂j and µj,0 with speed ε (for t = 1) followed
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Figure 1.18: Waves production on an outgoing sub-chain: case a.2).

by another one connecting µj,0 and ρj,0 traveling with speed 1 (for t = 1)

(see Fig.1.18).

In the case b) we have to consider two subcases:

Case b.1): If ρ̂j ∈ [0, µj,0] then the solution of the Riemann Problem consists of

a shock wave connecting the states ρ̂j and ρj,0 with speed (for t = 1) equal

to slope λ of the line connecting the two states:

λ =
µj,0 + ε (ρj,0 − µj,0)− ρ̂j

ρj,0 − ρ̂j
.

Case b.2): If ρ̂j ∈
]
µj,0, µ

max
j

]
then the solution of the Riemann Problem consists

of a contact discontinuity connecting ρ̂j and ρj,0 with speed ε (for t = 1).

1.5 Equilibrium analysis

Fixing a node P and a Riemann initial datum (ρ0, µ0), now we introduce some

notions about the equilibria at nodes.

Definition 25 Define (ρ̂, µ̂) = RS ((ρ0, µ0)). The datum (ρ0, µ0) is an equilibrium

if

(ρ̂, µ̂) = RS ((ρ0, µ0)) = (ρ0, µ0) .

Distinguishing two types of nodes, (n− 1)× 1 and 1× (m− 1), and equilibria

with active and not active constraints for the maximization problem, we consider

generic equilibria for the Riemann Problem at a junction.
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1.5.1 A node with one outgoing sub-chain

If the n-th sub-chain is an active constraint then we have:

ρn = ρM (µn) ,

otherwise, if it is not an active constraint, we have:

ρn < ρM (µn) .

For the incoming sub-chains Ii, i = 1, ..., n− 1, it will be: if the i-th sub-chain

is an active constraint then

SC2 : µi = ρi

SC3 : µi ≥ ρi
, i = 1, ..., n− 1,

otherwise

ρi ≥ µi.

Figure 1.19: The outgoing sub-chain is an active constraint and the incoming ones

are not active constraints.

In Fig.1.19 and Fig.1.20 the equilibria are shown. In the latter the equilibria

for the algorithm SC2 are depicted in bold, while for SC3 in bold and grey.

The first type of equilibria (Fig.1.19) represents the situation in which the

outgoing sub-chain exhibit the maximal production effort, while the incoming ones

adjust accordingly their production flows.
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Figure 1.20: The incoming sub-chains are active constraints and the outgoing one

is not an active constraint.

The second type (Fig.1.20) shows the situation in which the incoming sub-

chains have a low level of part densities and, consequently, the outgoing sub-chain

is not used at maximal level. In this case, then, since the whole plant is not used

suitably, a re-building is in order, in fact it can be considered either the incoming

sub-chains should be powered such that the production rate is improved or the

outgoing ones should be restricted such that the production costs would be lower.

1.5.2 A node with one incoming sub-chain

The equilibria for the two algorithms RA1 and RA2 coincide. In particular,

if the incoming sub-chain is an active constraint then

SC2 : ρ1 = µ1,

SC3 : ρ1 ≤ µ1,

otherwise ρ1 ≥ µ1.

Considering the outgoing sub-chains Ij , j = 2, ...,m, if Ij is an active constraint

then ρj = ρM (µj) for both SC2 and SC3 algorithms, otherwise ρj < ρM (µj).

For both algorithms RA1 and RA2, the case of incoming sub-chain as active

constraint should happen only with ρ1 = µ1, in such a way that the goods fill up

appropriately the sub-chain. Otherwise the incoming sub-chain should be powered.

For the outgoing sub-chains as active constraints, the situation is different. In fact,

the latter represents a projecting error for the algorithm RA1, while it may well

happen for RA2.
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1.5.3 Bullwhip effect

The Bullwhip effect is a well known oscillation phenomenon in supply chain

theory, see [12]. Since this effect consists in oscillations moving backwards, the

most interesting case consists of nodes with n − 1 incoming sub-chains and one

outgoing sub-chain.

Then, to study the Bullwhip effect, we have to compute the oscillations on

incoming sub-chains produced by the interaction with the node of a wave from

the outgoing one. Since the wave must have negative speed, it is a first family

wave. Fixing the notation, we denote with − and + the values before and after

the interaction, and with ∆ the jump in the values from the left to the right along

waves traveling on sub-chains. Let (ρ−, µ−) be an equilibrium configuration at the

node and ((ρ−n , µ
−
n ) , (ρ̃n, µ̃n)) the wave coming to the same node.

The effect of the interaction of the wave is the production of n − 1 waves on

the incoming sub-chains.

The oscillation amplitude in the production rate before the interaction is given

by:

∆µ− = µ̃n − µ−n .

The maximum flux on the outgoing sub-chain as function of µ is the following

fmax
n (µ) = µ

1− ε

1 + ε
+ ερmax

n ,

thus it is an increasing function. The oscillation of the flux after the interaction

is

∆f+ =
1− ε

1 + ε
∆µ−.

Now, assuming first that the incoming sub-chains are not active constraints,

for both algorithms SC2 and SC3, we have ρ−i ≥ µ−i , i = 1, ..., n − 1. Then the

first family curve passing through
(
ρ−i , µ

−
i

)
, belonging to the region ρ ≥ µ, is given

by

ρ = ρ−i +
(
µ− µ−i

)(
−1− ε

1 + ε

)
.

From which, for small oscillations we obtain
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∆ρ+ = −1− ε

1 + ε
∆µ+.

If the oscillation is not small the same relation holds with an inequality sign.

Observe that

∆f+ = ∆µ+ (1− ε) + ε∆ρ+ =
1− ε

1 + ε
∆µ+,

from which

∆µ+ =
1 + ε

1− ε
∆f+,

and then

∆µ+ = ∆µ−.

Assume now that the incoming sub-chains are active constraints, which means

that µ−i = ρ−i and µ−i = ρ−i respectively for SC2 and SC3 algorithm. Along the

curve of the first family belonging to the region ρ ≤ µ we have ∆f = 0, i.e. a

dumping effect is possible, while in the region ρ ≥ µ we have

∆f =
1− ε

1 + ε
∆µ.

Considering the SC2 algorithm, if the first family wave from the outgoing road

increases the flux, then it is reflected as a second family wave. In the opposite case,

we get the same estimates as above.

Considering the SC3 algorithm, if the first family wave from the outgoing

road increases the flux, then it is again reflected as a second family wave. In the

opposite case, we get:

∆µ+ = ∆µ− +
(
µ−i − ρ−i

)
with an increase in the production rate oscillation.

In conclusion we get the following:

Proposition 26 The algorithm SC3 may produce the Bullwhip effect. On the

contrary, the algorithm SC2 conserves oscillations or produce a dumping effect,

thus not permitting the Bullwhip effect.
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Chapter 2

Numerical Schemes

In this chapter we present the numerical schemes for the Göttlich-Herty-Klar

model and the continuum-discrete model for supply chains.

2.1 Numerical methods for Göttlich-Herty-Klar model

Considering the system (1.34)-(1.37), we want to obtain numerical results for

parts dynamics inside a supply chain finding, for each arc j, a suitable approxima-

tion for the density ρj (x, t) and the queue qj (t), with 0 ≤ x ≤ Lj and t ∈ [0, T ].

In particular, we use the upwind scheme for densities (i.e referred to PDE of the

model) and the explicit Euler scheme for queues (i.e referred to ODE of the model).

For each arc j ∈ J , define e numerical grid in [0, Lj ]× [0, T ] using the following

notations:

• ∆xj =
Lj

Nj
is the space grid size, where Nj is the number of segments into

which we divide Lj (the length of j-th supplier);

• ∆tj =
T
ηj

is the time grid size, where ηj is the number of segments into which

we divide the interval [0, T ];

• (xi, t
n) = (i∆xj , n∆tj), i = 0, ..., Nj , n = 0, ..., ηj are the grid points.

For the density function ρj defined on the grid, we set jρni as the approximation

of ρj (xi, t
n),with j ∈ J , i = 0, ..., Nj , n = 0, ..., ηj . For the queue qj , q

n
j is the

approximation of qj (t
n).
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Without loss of generality, we can assume that for each arc j, ∆xj = ∆x and

∆tj = ∆t, with ∆x and ∆t fixed.

A numerical scheme to solve conservation laws at each arc is the upwind

method:

jρn+1
i =j ρni − ∆t

∆x

Lj

Tj

(
jρni −j ρni−1

)
, j ∈ J, i = 0, ..., Nj , n = 0, ..., ηj . (2.1)

The evolution of queues is described by the explicit Euler method:

qn+1
j = qnj +∆t

(
fnj−1,out − fnj,inc

)
, j ∈ J − {1} , n = 0, ..., ηj , (2.2)

where fnj−1,out and fnj,inc are the approximation of fj−1 (ρj−1 (bj−1, t
n)) and

fj (ρj (aj , t
n)), respectively, both depending on values of densities computed by

(2.1).

In order to consider boundary data, we refer to equation (2.1) for i = 0. We

proceed by inserting a ghost cell and defining

jρn+1
0 =j ρn0 − ∆t

∆x

Lj

Tj

(
jρn0 −j un0

)
, j ∈ J, n = 0, ..., ηj ,

where jun0 takes the place of jρn−1. Two different cases can occur:

1. if the arc j is the incoming one to the supply chain (namely aj = −∞), and

inflow profile φ (t) is assigned, and we set jun0 = φ (tn).

2. if the arc j is inside the supply chain, or aj ̸= −∞, we set jun0 =
Tj

Lj
fnj , where

fnj obeys equation (1.37).

2.1.1 Correction of numerical fluxes in case of negative queues

The following lemma holds:

Lemma 27 Consider a supply chain evolution ρj (xi, t), qj (t), i.e. a solution of

(1.34)-(1.37). Then for every j ∈ J , t ≥ 0 and x, it holds ρj (xi, t) ≥ 0, qj (t) ≥ 0.

Since the ODE numerical scheme does not necessarily maintain the positivity

proprieties of the Lemma 1, we have to modify the Euler scheme.
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Consider the arc j of a supply chain and suppose that, in the time interval[
tn, tn+1

[
, ρj (xi, t) is approximated by the constant value jρni . Then, from (2.2),

qj (t) has a linear shape (see Fig. 2.1), namely

qj (t) =
qn+1
j − qnj

∆t
t+

qnj t
n+1 − qn+1

j tn

∆t
, t ∈

[
tn, tn+1

[
. (2.3)

Figure 2.1: Negative queue buffer occupancy at tn+1.

Assume that qnj > 0 and qn+1
j < 0. Then, the queue vanishes at an instant of

time t̄ > tn, which is computed by (2.3):

t̄ = tn +∆t′, ∆t′ =
qnj

qnj − qn−1
j

∆t =
qnj

µj − fnj−1,out

.

Forcing to zero the behaviour of qj (t), t ∈
[
t̄, tn+1

]
, the following numerical

correction for the entering flux fnj,inc is needed:

fnj,inc =
1

∆t

[
∆t′µj −

(
∆t−∆t′

)
fnj−1,out

]
(2.4)

This correction on the boundary incoming data for the arc j influences the

approximation of ρj (x, t), with consequent effects on dynamics for following arcs

and queues.

2.1.2 Different space and time grid meshes

Considering the general case in which Lj have not rational ratios, we have to

consider the possibility of choosing different space and/or time grid meshes.
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Different space meshes for different suppliers

For each supplier j ∈ J , the numerical grid in [0, Lj ]× [0, T ] is defined choosing

a fixed grid mesh ∆t, then different space grid meshes are necessary and we set

∆xj = vj∆t, where vj :=
Lj

Tj
is the processing velocity. In this case, grid points

are (xi, t
n)j = (i∆xj , n∆t), i = 0, ...Nj , n = 0, ..., ηj . Then the upwind scheme for

the parts density of the arc j now reads:

jρn+1
i =j ρni − ∆t

∆xj
vj
(
jρni −j ρni−1

)
, j ∈ J, i = 0, ..., Nj , n = 0, ..., ηj . (2.5)

To respect CFL condition (see [29]) the time mesh satisfy:

∆t ≤ min {vj∆xj : j ∈ J} . (2.6)

For queues we refer again to equation (2.2).

Different time meshes for different suppliers

Now, fix two consecutive arcs j − 1 and j. Then two different numerical grids

are defined, whose points are, respectively:

(xk, t
nj−1)j−1 = (k∆x, nj−1∆tj−1) , k = 0, ..., Nj−1, nj−1 = 0, ..., ηj−1,

(
jxk, t

n
)
= (k∆x, nj∆tj) , k = 0, ..., Nj , nj = 0, ..., ηj .

For the queue buffer occupancy the explicit Euler is given by:

q
nj−1

j = q
nj

j +∆tj

(
f
nj

j−1,out − f
nj

j,inc

)
, (2.7)

where

f
nj

j,inc =

 min
{
fj−1

(
j−1ρnNj−1

)
, µj

}
, qnj (t) = 0,

µj , qnj (t) > 0,
(2.8)

while f
nj

j−1,out must be suitably defined. If ∆tj−1 < ∆tj (see Fig.2.2), we define

m (nj) and M (nj) as:
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m (nj) = sup {m : m∆tj−1 ≤ nj∆tj} ,

M (nj) = inf {M :M∆tj−1 ≥ (nj + 1)∆tj} ,

and set

f
nj

j−1,out =

M(nj)−m(nj)−1∑
l=1

∆tj−1fj−1

(
j−1ρ

m(nj)+l
Nj−1

)
+

+ [(m (nj) + 1)∆tj−1 − nj∆tj ] fj−1

(
j−1ρ

m(nj)
Nj−1

)
+

+ [(nj + 1)∆tj − (M (nj)− 1)∆tj−1] fj−1

(
j−1ρ

M(nj)−1
Nj−1

)
.

Figure 2.2: Case ∆tj−1 < ∆tj . Left: not proportional case. Right: proportional

case.

Notice that, in the special case ∆tj = γ∆tj−1, γ ∈ N− {1}, we simply have:

f
nj

j−1,out =

M(nj)−m(nj)−1∑
l=1

∆tj−1fj−1

(
j−1ρ

m(nj)+l
Nj−1

)
= f

nj

j−1,out =

=

γ∑
l=1

∆tj−1fj−1

(
j−1ρ

γnj+l
Nj−1

)
.

If, on the contrary, ∆tj−1 > ∆tj (see Fig.2.3), we set
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f
nj

j−1,out = f

∣∣∣∣ nj∆tj
∆tj−1

∣∣∣∣
j−1 ,

where |·| indicates the floor function.

Figure 2.3: Case ∆tj−1 > ∆tj .

Finally, in this case, the approximation scheme for densities is the classical

upwind method.

Fluxes corrections

In case of negative values of queues, flux corrections have to be considered also

for the variants of numerical method seen before.

For the modified upwind scheme, fluxes corrections are the same as in the

previous section.

Now, for the modified Euler scheme for queue (2.7), we consider two consecutive

arcs, j − 1 and j, with approximation grids characterized by equal spatial meshes

∆x and different temporal meshes ∆tj−1 and ∆tj .

Assuming q
nj

j > 0 and q
nj+1
j < 0, if ∆tj−1 < ∆tj (see 2.4 left, for an example),

more precisely ∆tj = N∆tj−1, a possible correction for the flux entering the arc j

is the following:

fBj,inc =

∑N−1
k=0 f

k
j−1,out

N + 1
,
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where fkj−1 and f
B
j are, respectively, the approximations of fj−1

(
ρj−1

(
bj−2, t

k
))

and fj
(
ρj
(
aj , t

B
))
. If ∆tj−1 > ∆tj (Fig.2.4 right), precisely ∆tj−1 = N∆tj , we

indicate with t̄ the instant such that qj (t̄) = 0.

Figure 2.4: Different time meshes for fluxes corrections.

Then if

tnum = ∆tjδ, with δ =

∣∣∣∣ t̄

∆tj

∣∣∣∣ ,
is the numerical approximation of t̄, a suitable correction for the flux entering

the arc j can be

fkj,inc =

{
µj , if qj

(
tk
)
> 0,

µj(t
num=∆tjδ)+[(δ+1)∆tj−tnum]fj−1,out

∆tj
, otherwise,

∀k = 0, .., N − 1
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2.1.3 Convergence

According to study the convergence of the previously presented numerical

schemes, the main idea is to relate the solution to those produced by Wave Front

Tracking (WFT) and control the norm of generalized tangent vectors as in [27].

Consider the Cauchy problem of type (1.34)-(1.37), with initial conditions ρj,0

in the space of bounded variation functions BV . For simplicity, we consider the

case of equal processing velocity and equal space and time meshes for all suppliers;

the general case is similar.

Fix an initial space mesh ∆x0 and define a sequence of approximate solutions

v,jρni , generated sampling the initial datum ρj,0 on grids of mesh ∆xv = 2−v∆x0

and using the time mesh:

∆tv = v∆xv = v2−v∆x0, (2.9)

where v is the common velocity to all suppliers. More precisely:

v,jρ0i = ρj,0
((
aj + i2−v∆x

)
+
)

where (·+) indicates the limit from the right, which exists because of the as-

sumption of BV initial data.

We can define a projection of the approximate solution over the space of piece-

wise constant functions by setting:

πPC

(
v,jρn

)
=

Lj

2−v∆x−1
v,j∑

i=0

ρnχ[aj+i2−v∆x,aj+(i+1)2−v∆x[

where χ[a,b] is the indicator function of the set [a, b]. Similarly we define the

corresponding buffer occupancy approximations vqnj . We will also consider the

WFT solution jρWFT
v starting from the initial datum:

πPC

(
v,jρ0

)
.

A WFT solution is given by:

• Solve the Riemann problems corresponding to discontinuities of πPC

(
v,jρ0i

)
,

replacing rarefactions by a set of small non entropic shocks of size 2−v;
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• Use the piecewise constant solution obtained piecing together the solutions

to Riemann problems up to the first time of interaction of two shocks;

• Then solve a new Riemann problem created by interaction of waves and

prolong the solution up to next interaction time, and so on.

In order to ensure the existence of WFT solutions and their convergence, it

is enough to control the number of interactions, waves and the BV norm. In the

scalar case, this is easily done since both number of waves and the BV norm are

decreasing in time (for details [7]).

For queues we use the exact solutions to (1.35) which are indicate by vqWFT
j .

BV estimates for complete set of ODE -PDE model (1.34)-(1.37) are proved in

[27].

We have:

Lemma 28 Assume that all suppliers have the common velocity v, ρj,0 are BV

functions, ρj,0 (x) ≤ µj for every x and (2.9) holds true. Then:∣∣∣∣πPC

(
v,jρn

)
−j ρWFT

v (n∆tv)
∣∣∣∣
L1+

∑
j

∣∣vqnj −v qWFT
j (n∆tv)

∣∣ ≤ C2−v∆x0
∑
j

TV (ρj,0)

where C > 0 and TV (·) indicates the total variation.

As in [27], we define generalized tangent vectors (v, ξ, η) to WFT solutions.

As proved in the Lemma 2.7 of [27], the norms of tangent are decreasing along

WFT solutions.

Now, we define the convergence error as:

Ev (n) =
∑
j

∑
i

2−v∆x0
∣∣v,jρni −v+1,j ρni

∣∣+∑
j

∣∣vqnj −v+1 qnj
∣∣ = (2.10)

=
∑
j

∣∣∣∣πPC

(
v,jρni

)
− πPC

(
v+1,jρni

)∣∣∣∣
L1 +

∑
j

∣∣vqnj −v+1 qnj
∣∣ .

Moreover, we have:

Ev (0) =
∣∣∣∣jρWFT

v (0)−j ρWFT
v+1 (0)

∣∣∣∣
L1 ≤ 2−(v+1)∆x0

∑
j

TV (ρj,0) . (2.11)
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We can notice that the initial datum πPC

(
v+1,jρ0i

)
can be obtained from

πPC

(
v,jρ0i

)
by possible shifting waves with tangent vectors of the 2v+1∆x, in fact

both functions are obtained sampling the same BV function on different sub-grids.

Then, again by the Lemma 2.7 of [27], we can control the distance writing:

∣∣∣∣jρWFT
v (t)−j ρWFT

v+1 (t)
∣∣∣∣
L1+

∑
j

∣∣vqWFT
j (t)−v+1 qWFT

j (t)
∣∣ ≤ ∣∣∣∣jρWFT

v (0)−j ρWFT
v+1 (0)

∣∣∣∣
L1 .

By the Lemma 75 and (2.11) we get:

Ev (n) =
∣∣∣∣jρWFT

v (n∆tv)−j ρWFT
v+1 (n∆tv)

∣∣∣∣
L1 +

∑
j

∣∣vqWFT
j (n∆tv)−v+1 qWFT

j (n∆tv)
∣∣

+ C
(
2−v + 2−(v+1)

)
∆x0

∑
j

TV (ρj,0)

≤
∣∣∣∣jρWFT

v (0)−j ρWFT
v+1 (0)

∣∣∣∣
L1 + C

(
2−v + 2−(v+1)

)
∆x0

∑
j

TV (ρj,0)

≤ 2−(v+1)∆x0
∑
j

TV (ρj,0) + C
(
2−v + 2−(v+1)

)
∆x0

∑
j

TV (ρj,0) .

Finally we get the following:

Theorem 29 Assume that all suppliers have the common velocity v, ρj,0 are BV

functions, ρj,0 (x) ≤ µj for every x and (2.9) holds true. Then the convergence

error Ev (n) (defined in (2.10)) tends to zero uniformly in n with linear convergence

rate in ∆xv = 2−v∆x0.

2.2 Godunov scheme for 2× 2 systems

In order to describe Godunov numerical method as applied to the system (1.47),

we rewrite it as the 2× 2 hyperbolic system (1.48).

The Godunov scheme is based on the construction of the Riemann problem for

(1.48), [UL, UR], which is the initial value problem for initial data given by a jump

discontinuity

U (0, x) =

{
UL, x < 0,

UR, x > 0,
(2.12)
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and it has a unique entropy solution

U (t, x) = UR

(x
t
;UL, UR

)
. (2.13)

We discretize [0,+∞)×R by a time and spatial mesh length, respectively, ∆t

and ∆x, and we let tn = n∆t and xj = j∆x, so that
(
tn, x

j
)
denotes the mesh

points of the approximate solution v∆ (t, x) = vjn. Starting by the approximation

vn =
(
vjn
)
j∈Z

of U (tn, ·), with v a column vector of R2, an approximation vjn+1,

with j ∈ Z, of U (tn+1, ·) can be defined as follows:

• extension of the sequence vn as a piecewise constant function v∆ (t, ·):

v∆ (t, ·) = vjn, xj−
1
2 < x < xj+

1
2 ; (2.14)

solution of the Cauchy problem{
Ut + F (U)x = 0, x ∈ R, t > 0,

U (0, x) = v∆ (tn, ·) ,
(2.15)

in the cell (tn, tn+1)×
(
xj−1, xj

)
;

• computation of the solution as the average value of the preceding solution

in the interval
(
xj−

1
2 , xj+

1
2

)
obtained projecting U (∆t, ·) onto the piecewise

constant functions:

vjn+1 =
1

∆x

∫ xj+1
2

xj− 1
2

U (∆t, x) dx. (2.16)

To avoid the interaction of waves in two neighbouring cells before time ∆t, we

impose a CFL(Courent-Friedrichs-Lewy) condition as:

∆t

∆x
max {|λ0| , |λ1|} ≤ 1

2
, (2.17)

where λ0 and λ1 are the eigenvalues. Since, in this case, we have that |λ0| = 1

and |λ1| ≤ 1, the CFL condition reads as:

∆t

∆x
≤ 1

2
.

The solution of (2.15) is obtained by solving a sequence of neighbouring Rie-

mann problems and we have
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U (t, x) = UR

(
x− xj+

1
2

∆t
; vjn, v

j+1
n

)
, xj < x < xj+1, j ∈ Z. (2.18)

Then, a more explicit expression of the scheme can be obtained integrating the

equation (2.15) over the rectangle (0,∆t) ×
(
xj−

1
2 , xj+

1
2

)
. Since the function is

piecewise smooth, we get:

∫ xj+1
2

xj− 1
2

(U (∆t, 0)− U (0, x)) dx+

+

∫ ∆t

0

(
F
(
U
(
t, xj+

1
2 − 0

))
− F

(
U
(
t, xj−

1
2 + 0

)))
dt = 0.

Now, using (2.14) and projecting the solution on piecewise constant functions

we obtain:

∆x
(
vjn+1 − vjn

)
+

∫ ∆t

0

(
F
(
U
(
t, xj+

1
2 − 0

))
− F

(
U
(
t, xj−

1
2 + 0

)))
dt = 0

(2.19)

and, recalling (2.18), we derive:

vjn+1 = vjn − ∆t

∆x

{
F
(
UR

(
0−; vjn, v

j+1
n

))
− F

(
UR

(
0+; vj−1

n , vjn
))}

. (2.20)

Since the function ξ → F (UR (ξ;UL, UR)) is continuous at the origin due to

the Rankine-Hugoniot conditions (see [22]), Godunov scheme can be written in

the form:

vjn+1 = vjn − ∆t

∆x

{
F
(
UR

(
0; vjn, v

j+1
n

))
− F

(
UR

(
0; vj−1

n , vjn
))}

, (2.21)

and the numerical flux computed in V = (v1, v2) and W = (w1, w2), is

G (V,W ) = F (UR (0;V,W )) . (2.22)

The numerical flux can be written in a general form as:

G (V,W ) =

{
minz1∈[v1,w1] F (Z) if v1 ≤ w1

maxz1∈[v1,w1] F (Z) if v1 ≥ w1
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where the second variable z2 in Z = (z1, z2) is assumed to be fixed. The final

expression of Godunov scheme for the problem (2.15) is:

vjn+1 = vjn − ∆t

∆x

(
G
(
vjn, v

j+1
n

)
−G

(
vj−1
n , vjn

))
. (2.23)

More precisely, for the system (1.48), the scheme reads as: ρjn+1 = ρjn − ∆t
∆x

(
g
(
ρjn, ρ

j+1
n

)
− g

(
ρj−1
n , ρjn

))
,

µjn+1 = µjn − ∆t
∆x

(
µjn+1 − µjn

)
,

(2.24)

where the approximate values of ρ (x, t) and µ (x, t) on the numerical grid is

indicated as, respectively, ρjn and µjn for j = 0, ..., L and n = 0, ...,M − 1. In the

(2.24) we can observe that the Godunov scheme for the second equation reduces

to forward upwind scheme.

2.2.1 Fast Godunov for 2× 2 system

In order to find a simplified expression for the numerical flux of Godunov

scheme, considering as numerical flux the function F (U) with f (ρ, µ) defined in

(1.47), we solve Riemann problems between the two states: (ρ−, µ−) on the left

and (ρ+, µ+) on the right. In particular, referring to relation (2.22), we compute

the value of F (U) in the separation point between waves of different speed.

Theorem 30 The numerical flux function G (V,W ) = F (UR (0;V,W )) is

G (ρ−, µ−, ρ+, µ+) =



(ρ−,−µ+) if ρ− < µ− ∨ ρ− ≤ µ+,(
1−ε
1+εµ+ + 2ε

1+ερ−,−µ+
)

if ρ− < µ− ∨ ρ− > µ+,(
1+ε
2 ρ− + 1−ε

2 µ−,−µ+
)

if ρ− ≥ µ− ∨ µ+ > µ̃,(
1−ε
1+ε (µ+ + εµ−) + ερ−,−µ+

)
if ρ− ≥ µ− ∨ µ+ ≤ µ̃,

(2.25)

with

µ̃ = µ− +
1 + ε

2
(ρ− − µ−) . (2.26)

Proof. Let P be the intersection point between the first family curve pass-

ing through (ρ−, µ−) and the line ρ = µ, namely P =

(
ρ−

ρ−

)
. The second

family curve passing through P splits the invariant region into two regions A =
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{(ρ, µ) : µ > ρ−} and B = {(ρ, µ) : µ ≤ ρ−} as shown in Fig.2.5 and Fig.2.6. Each

Riemann problem solution presents waves traveling with two velocities, namely

λ0 = −1 and 0 < ε ≤ λ1 ≤ 1. If (ρ∗, µ∗) is the intermediate state (see Fig.2.7),

we compute the numerical flux function G (ρ−, ρ+) given by (f (ρ∗, µ∗) , µ∗). We

distinguish two different cases:

Case1: ρ− < µ−. In this case, if (ρ+, µ+) ∈ A then (ρ∗, µ∗) = (ρ−, µ+). If

(ρ+, µ+) ∈ B, the needed value of flux is that corresponding to (f (ρ∗, µ+) ,−µ+)
(see Fig.2.5). We have

(ρ∗, µ∗) = (ρ∗, µ+) =

(
ρ−

ρ−

)
+ t

(
−1−ε

1+ε

ρ−

)
(2.27)

and ρ∗ is computed as:

ρ∗ = ρ− + (ρ− − µ+)
1− ε

1 + ε
. (2.28)

Finally, since ρ∗ > ρ− > µ+ we get the expression in the second line of (2.25).

Case 2: ρ− ≥ µ−. In this case, if (ρ+, µ+) ∈ A then (ρ∗, µ∗) = (ρ̃, µ+), where

ρ̃ =
1 + ε

2
ρ− +

1− ε

2
µ− (2.29)

is obtained as follows. The point (ρ̃, µ̃) is:

(ρ̃, µ̃) =

(
ρ−

µ−

)
+ t

(
−1−ε

1+ε

1

)
,

and, using that ρ̃ = µ̃, it is possible to get (2.29). Assuming (ρ+, µ+) ∈ B,

the value of flux we need is f (ρ∗, µ+) with ρ∗ given by

(ρ∗, µ∗) = (ρ∗, µ+) =

(
ρ−

µ−

)
+ t

(
−1−ε

1+ε

1

)
, (2.30)

and, making simple computations, one gets:

ρ∗ = ρ− + (µ− − µ+)
1− ε

1 + ε
. (2.31)

Taking into account that ρ∗ > µ+, we obtain the expression of flux as in the

last line of (2.25).
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Figure 2.5: Case 1, with (ρ+, µ+) ∈ B.

Figure 2.6: Case 2, with (ρ+, µ+) ∈ A.

2.3 Numerics for Riemann Solvers

In this sub-section, in order to describe the numerical framework for the so-

lution of Riemann problems at junctions, we refer to the general Riemann solver

called SC1 [14] and to SC2 and SC3.

For simplicity, we focus on a single supplier ve, and on two consecutive sub-

chains, e and e+ 1.

Let us introduce the following notations:

• ρe,Ln ,µe,Ln are the approximate values, respectively, of density and processing

rate at time tn at the outgoing endpoint xL = L∆x of sub-chain e;
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Figure 2.7: Intermediate state between the two waves.

• ρe,0n ,µe,0n are the approximate values, respectively, of density and processing

rate at time tn at the incoming endpoint x0 = 0 of sub-chain e+ 1;

2.3.1 Discretization of the Riemann Solver SC1

Setting

• γ̂ = f
(
ρe,Ln , µe,Ln

)
,

• γe+1
max = f

(
ρemax, µ

e+1,0
n

)
,

we consider two cases:

Case α) If γ̂ ≤ γe+1
max:

ρe,L+1
n = ρe,Ln ,

µe,L+1
n = µe,Ln ,

ρe+1,−1
n =

 f
(
ρe,Ln , µe,Ln

)
if f

(
ρe,Ln , µe,Ln

)
≤ µe+1,0

n ,

f(ρe,Ln ,µe,L
n )−µe+1,0

n

ε − µe+1,0
n otherwise,

µe+1,−1
n = µe+1,0

n ;

Case β) If γ̂ > γe+1
max:

ρe,L+1
n = ρe,Ln ,

µe,L+1
n =

γe+1
max − ερe,Ln

1− ε
,

ρe+1,−1
n = ρemax,

µe+1,−1
n = µe+1,0

n .
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2.3.2 Discretization of the Riemann Solver SC2

Case α) We have two subcases:

α1) if ρ∗ < ρM , we set:

ρe,L+1
n = ρe,Ln ,

µe,L+1
n = min {ρ∗, µemax} ,

ρe+1,−1
n = ρ∗,

µe+1,−1
n = µe+1,0

n ;

α2) if ρ∗ ≥ ρM , the new values are:

ρe,L+1
n = ρe,Ln ,

µe,L+1
n = ε

1 + ε

1− ε
ρ̃− 2ε

1− ε
µ̄e + (1 + ε)µe+1,0

n ,

ρe+1,−1
n = ρ̃,

µe+1,−1
n = µe+1,0

n ;

Case β)

ρe,L+1
n = ρe,Ln ,

µe,L+1
n = µ̄e,

ρe+1,−1
n = µ̄e,

µe+1,−1
n = µe+1,0

n .

2.3.3 Discretization of the Riemann Solver SC3

Case α) two subcases occur:

α1) if ρ∗ < ρM , we set:

ρe,L+1
n = ρe,Ln ,

µe,L+1
n = max

{
ρ∗, µe,Ln

}
,

ρe+1,−1
n = ρ∗,

µe+1,−1
n = µe+1,0

n ;
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α2) if ρ∗ ≥ ρM , we compute the new values as in SC2:

ρe,L+1
n = ρe,Ln ,

µe,L+1
n = ε

1 + ε

1− ε
ρ̃− 2ε

1− ε
µ̄e + (1 + ε)µe+1,0

n ,

ρe+1,−1
n = ρ̃,

µe+1,−1
n = µe+1,0

n ;

Case β)

ρe,L+1
n = ρe,Ln ,

β1) if µe,L+1
n ≥ µ̄e, we set:

µe,L+1
n = µe,Ln ,

β2) otherwise, we assign:

µe,L+1
n = µ̄e,

ρe+1,−1
n = µ̄e,

µe+1,−1
n = µe+1,0

n .
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Chapter 3

Simulations

In this section, first, we report some numerical results analyzing the use of

the Klar model and the continuum-discrete model for supply chain. Then we will

compare, via simulations, performances between the two previous model showing

some differences.

Moreover, we report the behaviour of a supply chain network based on both

models.

Finally we discuss about some optimization techniques related to Klar model

for supply chain.

3.1 Numerical results

3.1.1 An example of supply chain network with more incoming

and outgoing subchains

Göttlich-Herty-Klar model for supply chain network

Consider the supply chain with four arcs represented in figure 3.1.

It consists of seven processors with queues characterized by length Lj , capacity

µj , processing time Tj , and the distribution coefficient αj for j = 1, .., 7 and an

inflow arc. Then we summarize these quantities for each processor in the following
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PP1

P2

P3 P4

P5

P7

P6

Figure 3.1: A simple network.

table:

Processor j µj Tj Lj αj

P1 1 0.4 1 0.8

P2 1.5 0.2 0.2 0.2

P3 2 1 1 1

P4 3 1 0.5 1

P5 0.5 1 1 0.4

P6 0.8 1 1 0.5

P7 1.2 1 0.2 0.1

We suppose that at time t = 0, all arcs are empty, i.e. ρj,0 = 0 ∀x ∈ [0, Lj ] and

the queues are assumed zero, i.e. qj,0 = 0, j = 3, 4, 5, 6, 7. The initial inflow profile

for processors P1 and P2 is the same and is given by the following expression:

f1,2 (t) =


18
35 t, 0 ≤ t ≤ 10,

36− 18
35 t, 10 < t ≤ 18,

20, 18 < t ≤ T.

(3.1)

Let assume a total simulation time T = 30 and discretization spatial and

time step constants for each arc, respectively ∆x = 0.02 and ∆t = 0.1 (such

that the CFL condition is satisfied). The output solution queue at the last node

have only two components due to processors P5 and P6, while P7 has not queue

component(Fig. 3.2).

In figure 3.3 it shows the evolutionary behaviour of the density on each output

processor. We have to notice that after a period of increasing, the density remains

constant to the value of maximum capacity as we expect.
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Figure 3.2: queue values vs. time given by processors P5 and P6.

Continuum-discrete model for supply chain

In order to compare the continuum-discrete model and the Klar model, we

refer to the previous example considering the flux function with different slopes

mk (see Remark 54). The expression of numerical flux G (ρ−, µ−, ρ+, µ+) of fast

Godunov scheme for supplier Ik is:

G =



(mkρ−,−µ+) if ρ− < µ− ∨ ρ− ≤ µ+,((
mk − 2ε

1+ε

)
µ+ + 2ε

1+ερ−,−µ+
)

if ρ− < µ− ∨ ρ− > µ+,(
mk

(
1+ε
2 ρ− + 1−ε

2 µ−
)
,−µ+

)
if ρ− ≥ µ− ∨ µ+ > µ̃,((

mk − 2ε
1+ε

)
µ+ + 1−ε

1+εεµ− + ερ−,−µ+
)

if ρ− ≥ µ− ∨ µ+ ≤ µ̃,

(3.2)

with µ̃ as in (2.26). Then, we have again N = 7 processors described by the

following table:

Processor k µk Lk mk αj

P1 1 1 1 0.8

P2 1.5 0.2 0.2 0.2

P3 2 1 1 1

P4 3 0.5 1 1

P5 0.5 1 0.2 0.4

P6 0.8 1 0.2 0.5

P7 1.2 0.2 0.5 0.1
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Figure 3.3: density values vs. time and space of processors P5, P6 and P7.

Let us assume the initial data as ρk (t, x) = 0, k = 1, .., 7 and the boundary

data, for both the processors P1 and P2, is still given by 3.1.

The simulation time is assumed to be T = 30, with ∆x = 0.02 and ∆t = 0.01.

The evolution in time and space of density, considering the Riemann Solver

SC2 for ε = 0.2 is shown in Fig. 3.4.

3.1.2 Example of a network with one incoming and outgoing sub-

chain

Let consider the supply chain network, with 8 processors as in Fig. 3.5.

We assume the following quantities for each processor.
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Figure 3.4: density values vs. time and space of processors P5, P6 and P7.

Processor j µmax Tj Lj αj

P1 1.3 1.5 1.5 1

P2 2.5 3 3 0.3

P3 2 1 1 0.7

P4 1.2 1.5 1.5 1

P5 1 2 2 1

P6 1.5 2 2 0.2

P7 1 2 2 0.8

P8 0.2 1 1 1

Let assume that at time t = 0 ρj,0 = 0 ∀x ∈ [0, Lj ] and qj,0 = 0, j = 3, 4, 5, 6, 7.

The initial inflow profile for processors P1 is given by
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P1

P2 

P3 

P4 

P5 

P6 

P7 

P8 

Figure 3.5: A network with 8 processors.

f1 (t) =

{
100, 0 ≤ t ≤ 500,

120, 500 < t ≤ T,

where T = 1000. To satisfy the CFL condition we assume ∆x = 0.2 and

∆t = 0.1. Then, considereing the Göttlich-Herty-Klar model, the output queue

and the density on processor P8 is represented in figures, respectively, Fig. 3.6

and Fig. 3.7.

200 400 600 800 1000
t

100

200

300

400

500

600

queue

Figure 3.6: queue values vs. time at processors P8.

Instead, according to the continuum-discrete model we obtain the behavior of

density on processor P8 as in Fig. 3.8.
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density

t

x

Figure 3.7: density values vs. time and space at processors P8.

density

t

x

Figure 3.8: density values vs. time and space at processors P8.
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