Mostra i principali dati dell'item

dc.contributor.authorMilito, Sara
dc.date.accessioned2023-05-15T14:11:27Z
dc.date.available2023-05-15T14:11:27Z
dc.date.issued2020-05-18
dc.identifier.urihttp://elea.unisa.it/xmlui/handle/10556/6580
dc.identifier.urihttp://dx.doi.org/10.14273/unisa-4645
dc.description2018 - 2019it_IT
dc.description.abstractThis thesis aims at proposing a new method of solving the nonparametric and non-additive regression problem in presence of ultra-high dimensional data. In this context, there are two relevant aspects: variable selection and structure discovery, such as identification of the variables that affect the response variable and the type of effects (linear or non linear), respectively. In this thesis we propose a nonparametric method of variable selection that works in two stages. At the first stage, a screening procedure is performed: selecting a subset of variables which contains the true covariates with probability 1. .. [edited by the Author]it_IT
dc.language.isoenit_IT
dc.publisherUniversita degli studi di Salernoit_IT
dc.subjectScreening selectionit_IT
dc.titleA screening selection procedure for nonparametric regression and survival analysisit_IT
dc.typeDoctoral Thesisit_IT
dc.subject.miurSECS-S/01 STATISTICAit_IT
dc.contributor.coordinatoreAmendola, Alessandrait_IT
dc.description.cicloXXXII cicloit_IT
dc.contributor.tutorGiordano, Francescoit_IT
dc.identifier.DipartimentoEconomie e Politiche dei Mercati e delle Impreseit_IT
 Find Full text

Files in questo item

Thumbnail
Thumbnail

Questo item appare nelle seguenti collezioni

Mostra i principali dati dell'item