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Nomenclature

S̃ Adjoint stress

α Streamwise wavenumber

β Spanwise wavenumber

δ Boundary layer height

δ∗ Boundary layer displacement thickness

δr Characteristic length

ǫ̃ Parameter for multiple–scale method

γ Specific heat ratio

λk Eigenvalue

ṽk Left eigenvector

A Coefficient matrix of zero–order problem

uk Right eigenvector

C Coefficient matrix of first–order problem

G Coefficient matrix of first–order problem

H Coefficient matrix of first–order problem

µ Dynamic viscosity

ν Kinematic viscosity

ω Frequency
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ρ Density

Ŝ Source terms in Navier–Stokes equations

θ Boundary layer momentum thickness

θ Eikonal function

r Receptivity vector

y Source Vector

A Wave amplitude

A0 Wave amplitude in the first neutral point

c Phase velocity

ck Coefficients of the eigenvalue problem

h Wall shape function

k Roughness height

M Mach number

N N factor

P Mean component of pressure

p Variable component of pressure

r Thermal recovery factor

rh Sensitivity

Rn Nose radius

Re Reynolds number

T Temperature

t Time

Tu Turbulence

U Mean component of streamwise velocity

u Variable component of streamwise velocity
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V Mean component of normal velocity

v Variable component of normal velocity

W Mean component of spanwise velocity

w Variable component of spanwise velocity

x Streamwise coordinate

y Normal coordinate

z Spanwise coordinate

Subscripts

0 Initial value

∞ Free–stream value

aw Adiabatic wall

cr Critical value

e External value

i Imaginary part of complex number

ip Inflection point

r Real part of complex number

tr Value at transition

w Value at wall

x Chordwise value

Acronyms

ALTTA Application of hybrid Laminar flow Technology on Transport Air-
craft

CF Crossflow

CFD Computational Fluid Dynamics

CIRA Italian Aerospace Research Center
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DNS Direct Numerical Simulation

ELFIN European Laminar Flow INvestigation

ETW European Transonic Wind Tunnel

EUROLIFT EUROpean high LIFT programme

EUROTRANS EUROpean program for TRANsition prediction

FOI Swedish Defence Research Agency

HLFC Hybrid Laminar Flow Control

LES Large Eddy Simulation

LFC Laminar Flow Technology

LST Linear Stability Theory

NLF Natural Laminar Flow

OSE Orr–Sommerfeld Equation

PANT PAssive NoseTip program

PSE Parabolic Stability Equations

PSJ Plasma Synthetic Jet

RANS Reynolds-Averaged Navier-Stokes

RECEPT RECEPTivity and amplitude-based transition prediction

SDBD Single–Dielectric Barrier Discharge

SUPERTRAC SUPERsonic TRAnsition Control

TELFONA TEsting for Laminar Flow On New Aircraft

TS Tollmien–Schlichting

UAV Unmanned Aerial Vehicle
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Chapter 1

Introduction

The topic of laminar turbulent transition constitutes one of the most
important research fields for aerodynamic teams. As a matter of fact, the
laminar-turbulent transition is a complex phenomenon, which has many
multidisciplinary applications such as skin friction drag reduction, anti-icing
and de-icing system performance prediction (civilian aircraft), air intake
performance (UAV, missile) and heat transfer rates prediction (reentry ve-
hicles). These applications need an accurate prediction of the boundary
layer state and the control of its thickness by active or passive systems.
Providing pertinent and realizable technological solutions, encompassing all
Mach number flight regimes from subsonic up to hypersonic vehicles (civil
or military), will become a strategic task for industry.

The state of the boundary layer is of high importance since skin friction
drag and heat transfer rates in a turbulent boundary layer can be several
times higher than those in laminar one. Last but not least, predicting the
state of the boundary layer in wind tunnels and ensuring the same state
during the real flight by taking into account disturbances resulting from the
experimental set up leads to the design of transition triggering devices.

In order to reduce development costs, experiments are iteratively com-
pared to numerical simulations mainly based on LST and/or CFD to predict
the natural and triggered transition. The extension of CFD into applica-
tion areas such as transition prediction is still in the start-up phase and
is only made possible by increasing computer resources. The most com-
monly applied Reynolds-Averaged Navier-Stokes (RANS) methods are not
able to simulate flow features occurring in the boundary layer, but some
semi-empirical criteria based on stability theory and the eN method [1] are
implemented in CFD solvers for subsonic and supersonic flow regimes.

Several projects had the objective to investigate the laminar to turbulent
transition and an overview of them is described below. ELFIN (European
Laminar Flow INvestigation), 1989-1992, was an European funded programs
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on laminar flow technology. In the framework of ELFIN, natural laminar
flow experiments were conducted on a glove bonded to the wing surface of a
Fokker 100 aircraft. In the following project ELFIN II, 1993-1995, a series
of analyses by using local stability methods were performed based on flight
tests data, followed by wind tunnel experiments. In the EUROTRANS
project (EUROpean program for TRANsition prediction), 1996-1998, non-
local stability methods were applied to test cases from ELFIN I and II,
while ALTTA (Application of hybrid Laminar flow Technology on Transport
Aircraft), 2000-2003, was intended to apply hybrid laminar flow technology
with the aim of reducing the aerodynamic drag of an aircraft by delaying
the laminar/turbulent transition. EUROLIFT I (EUROpean high LIFT
programme), 2000-2003, had the objectives to perform experiments in order
to create an experimental data base and to assess and improve available
numerical tools. The experiments were carried out in the cryogenic very
high Reynolds number test facility ETW to bridge the gap between sub-
scale testing and flight conditions to understand and incorporate scaling
effects. In the framework of EUROLIFT II, 2004-2007, the objective was to
provide specific physical understanding of the various vortex dominated flow
effects at the cut-outs of a high lift system including the scale effects up to
flight conditions. The major objective of the TELFONA project (TEsting
for Laminar Flow On New Aircraft), 2005-2009, was the development of
the capability to predict the in-flight performance of a future laminar flow
aircraft using a combination of wind tunnel tests and CFD calculations.
During the project, two wings aimed to pro-green aircraft configuration were
designed and manufactured for wind tunnel experiments, the Pathfinder
and Performance, namely. The research responded to an opportunity to
design a wing with a significantly higher aspect ratio and lower sweep than
today’s standard. The objective of the SUPERTRAC project (SUPERsonic
TRAnsition Control), 2005-2007, was to explore the possibilities of viscous
drag reduction on supersonic aircraft wings.

The last project relative to laminar to turbulent transition topic is the
RECEPT program (RECEPTivity and amplitude-based transition predic-
tion), 2011-on going, whose major objective is the development of the capa-
bility to predict the in-flight performance of a future laminar flow aircraft
through development of more accurate transition prediction tools. The idea
is to develop a transition prediction method which includes the effects of
the initial disturbance amplitude. The main issue for such method is the in-
formation about the process of how the external disturbances interact with
the boundary layer, e.g. the receptivity process.

The main subject of the present research relates to the objectives of the
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RECEPT project through the study of the boundary layer instabilities and
their receptivity to disturbances. The goals of the present work therefore
are:

• to develop a fast tool that can be integrated in an industrial code for
transition prediction

• to introduce corrections for non–parallel flow in order to assess their
importance in real wing designs and more general and complex bound-
ary layers.

Fluid dynamic instabilities leading to transition from laminar to turbu-
lent flow in an incompressible boundary layer are considered, paying atten-
tion to the receptivity process.

The problem of boundary-layer receptivity is solved by introducing the
multiple-scale technique and applying it to the linearized Navier-Stokes
equations reducing it to an Orr-Sommerfeld non–homogeneous formulation
case. The resulting algorithm is not computationally expensive and can be
efficiently included in industrial codes for transition prediction.

The route to transition, in boundary layer flows, can be divided into
different stages. First, the external disturbances are internalized in the
boundary layer through the receptivity process. Then a wave, due to the
external perturbations, originates inside the boundary layer, growing and
leading to a linear amplification or decay as described by the linearized
Navier-Stokes equations. If the amplitude of the excited wave is greater
than a certain threshold, a further instability called secondary instability
can occur, provoking a non-linear breakdown and causing transition from
laminar to turbulent flow. It can happen that this transition scenario, re-
lated to the exponential growth of Tollmien–Schlichting waves (modal dis-
turbances), is bypassed by another strongly amplifying mechanism due to
linear phenomena but caused by other than exponential instabilities. In
fact, the linear theory for the instability analysis sometimes fails predicting
a stable behavior for flows which experiments show to be unstable. This
is called bypass transition and basically regards algebraic instabilities and
transient growth.

Since transition turns out to have a quite heavy economic impact, transi-
tion prediction criteria are usually applied in order to estimate the location
of transition during the aerodynamic design of aircraft wings. The most used
and apparently most reliable criterion is the eN method. It was introduced
only for the exponentially growing disturbances like Tollmien–Schlichting
waves and is based on the idea that when the amplitude of the unstable
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wave is eN times (where N is between 9 and 11) the amplitude of the wave
at the first neutral point, transition occurs. Clearly, the external environ-
ment and its influence on the boundary layer stability is not accounted for
by this technique. On the contrary, the goal of a receptivity study is to
improve transition prediction methods extending transition criteria to in-
clude the free–stream disturbance environment. In other words, receptivity
allows us to relate the amplitude of the instability wave produced inside the
boundary layer (Tollmien–Schlichting wave) to the physical amplitude of
the external exciting disturbance. The main excitation sources are usually
acoustic waves, vorticity waves and wall vibrations. However, their tempo-
ral frequency and spatial wavelength are not in the same range as those of
the Tollmien–Schlichting waves, so that resonance can be reached only via
an “adaptation mechanism”, for instance produced by wall roughness.

In the present thesis, following the approach presented by Zuccher [2],
multiple scales are introduced in a non–homogeneous form in order to in-
vestigate the interaction between different disturbances. This technique is
not usually used in fluid dynamic problems, but can be preferable to other
methods for the study of boundary layer receptivity, because it offers the
possibility to account for nonparallel effects due to boundary layer growth,
it does not have numerical stability problems, it is not computationally
expensive, and therefore can be included in industrial codes for transition
prediction.

The second chapter of this thesis is devoted to stability and transition in
order to briefly introduce an overview on boundary layer theory, instability
and transition prediction and control. In the third chapter, the multiple
scale method is described for homogeneous and non-homogeneous cases,
while in the fourth one, the receptivity problem is considered using multiple
scales, identifying a receptivity function. In the fifth chapter an application
is shown in order to validate the code for stability analysis and report the
results on receptivity function. The last chapter is relative to the receptiv-
ity to free-stream disturbances and some results are shown relative to the
interaction between roughness–acoustic wave and roughness–vortical wave.



Chapter 2

Boundary layer stability and
transition

The classical example relative to the flow regimes called laminar and
turbulent one is the smoke flowing from a cigarette while standing in a
vertical position. In the proximity of the burning region, it is possible to
observe a “regular” path in the smoke which remains detached from the air,
while at a certain distance the pattern becomes irregular and the smoke is
completely mixed with the air. The former region is characterized by the
laminar regime, while the latter is the turbulent regime. The passage from
the first to the second is called transition.

The example of the smoke is just intended to introduce the concept of
flow instability. The laminar flow is defined stable if it returns to its original
state after a perturbation is applied. It is unstable if the disturbance gener-
ated by the perturbation does not decay but grows triggering the turbulent
flow.

The boundary layer on a body interacting with a fluid in motion can be
laminar or turbulent, as the flow near a cigarette. The study of laminar–
turbulent transition phenomena in a boundary layer is of vital importance
to the design of modern commercial aircraft. Laminar flow over selected
parts of the wings and fuselage is highly desired in order to achieve low skin–
friction drag and low surface heating. A low skin–friction drag is essential for
the optimisation of the fuel consumption and can lead to a drastic reduction
in the actual cost of a commercial airplane. The heating rates generated
inside a turbulent boundary layer may be several times higher than those of
a laminar boundary layer, so a detailed knowledge of the transition point is
crucial during the design stage, determining the choice of materials required
in the structure of the wings and the fuselage, especially for re-entry vehicles.
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2.1 Boundary layer

Prandtl [3] introduced the concept of “boundary layer” as a thin fluid
layer on the surface of a body in a flow (see figure 2.1). Prandtl assumed
that on the body the fluid velocity is zero (no slip, no suction or blowing
condition), increasing to the free stream value across a very thin layer. Thus,

the wall–normal component of the derivative of the velocity
du

dy
becomes

large inside the boundary layer and the shear stress is relevant even in fluid
with low viscosity.

Figure 2.1: Boundary layer

As described above, the flow regime can be divided into three different
regions, when the fluid is regularly moving the flow is called laminar, when
the motion is irregular it is called turbulent and the passage from the former
to the latter is called transition. The laminar flow is unstable if the distur-
bance generated by a perturbation does not disappear but grows changing
the laminar state to the turbulent one. A common feature under which
the flow becomes unstable seems to be the dependence on the Reynolds
number, which represents the relative importance of the convective and in-
ertial mechanisms to the dissipative ones. Experiments show that in very
high Reynolds–number flows, turbulence eventually develops. The first ex-
perimental evidence of this dependence was demonstrated by Reynolds [4]:
he observed that transition from laminar to turbulent flow can occur if
Reynolds number Re is larger than a certain characteristic value, called
critical Reynolds number Recr. It is important to remark that Recr is a
threshold from which the laminar flow can evolve to turbulent state but
does not necessarily mean that the flow will develop towards turbulence,
since damping effects could occur. Retr is instead the transitional Reynolds
number defined as the value at which the flow begins to be fully turbulent.
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2.2 Boundary layer instabilities

The equations governing the motion of a fluid are the Navier–Stokes
equations, a set of nonlinear partial differential equations. A practical ap-
proach for this kind of equations is to study the local stability, i.e. the
stability of a particular flow field to infinitesimal small disturbances. This
can be accomplished by performing a linearization of the governing equa-
tions and studying the resulting system according to the theory of linear
differential equations.

The concept of stability can be temporal or spatial. In the temporal
analysis, a perturbation is applied at a certain initial time and its evolution is
observed as a function of time. On the contrary, for the spatial analysis, the
perturbation is applied at a certain location and is followed, observing the
spatial evolution. Another classification relative to spatial theory is if the
perturbation is applied everywhere or locally. Moreover, in the second case,
it is possible to introduce the concepts of convective or absolute instability
if the disturbance grows everywhere but in the application point or it grows
also in the point where it is applied, respectively. Such definitions will be
briefly described in §2.3.1.

As we are interested in spatial stability analysis, it is necessary to de-
scribe the different zones that can be identified in figure 2.2. Close to the

Figure 2.2: Transition scenario

leading edge, the external disturbances are introduced in the boundary layer
in the so–called receptivity zone, where waves are excited by some pertur-
bations coming from the environment. Downstream the linear amplification
zone is found, where the disturbances grow (amplified) or decay (dumped)
determined by the linearized Navier–Stokes equations, then the secondary
instability zone follows and eventually nonlinear breakdown leading to tur-
bulence. Transition can be delayed controlling any of these stages, but
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receptivity seems to be one of the most important because it is related to
the origin of the instability. On the other hand, if the external perturba-
tion is sufficiently strong, the transition can occur because of the bypass
mechanism instead of the receptivity mechanism.

Although linear theory can only give a good description of the instabil-
ity process in the linear amplification region of the transitional process, it
represents one of the most powerful tool used nowadays by the industry for
the design of commercial components.

2.2.1 Historical review

The first major theoretical contributions to the study of hydrodynamic
stability were made by Helmholtz [5], Kelvin [6, 7], Rayleigh [8, 9] and
Reynolds [4] between 1868 and 1883. Rayleigh derived for the first time
the linearized equation describing the evolution of the disturbances in a
parallel, inviscid incompressible flow. The systems described by this equa-
tion show the peculiar characteristic to be at most marginally stable but
never asymptotically stable. The main result derived from the Rayleigh
equation is the inflectional point criterion according to which basic velocity
profiles without inflectional points are (marginally) stable with respect to
two–dimensional disturbances. Viscous effects were for the first time taken
into account by Orr[10] and Sommerfeld [11] who, separately, developed
an ordinary differential equation (the Orr–Sommerfeld equation or OSE)
to study the linear stability of two dimensional disturbances in an incom-
pressible parallel flow. In 1928, Tollmien [12] was able to find approximate
analytical solutions for the OSE. In 1933, Schlichting [13] obtained a first
estimate for the critical Reynolds number at which instability first arises
and calculated approximated amplification rates for a two–dimensional dis-
turbance. Later, Squire [14] accounted for three–dimensional disturbances
using his transformation: his analysis shows that, according to linear theory,
the critical Reynolds number in an incompressible boundary layer is always
attained by two-dimensional waves. A first experimental proof showing
the validity of linear theory was given by Taylor in 1923 [15] in his ex-
periment on the stability of flows between two rotating cylinders. Further
analytical progresses were made by Lees & Lin [16] in 1946 while Schubauer
& Skramstadt [17] in 1947 performed an experiment which unequivocally
showed the existence of Tollmien–Schlichting (TS) waves in the boundary
layer and confirmed their role in the transition process. In 1953, Thomas
[18] gave a numerical method to evaluate the stability of the Poiseuille flow
and in 1964 Kaplan[19] obtained for the first time the neutral curve in the
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Frequency–Reynolds number plane for a boundary layer flow. Van Ingen [1]
and Smith & Gamberoni [20] in 1956 developed a semi-empirical method for
the transition prediction based exclusively on linear theory: this is termed
the eN method. Although the eN method neglects most of the physical
processes in the transition phenomena (like the receptivity, nonlinear mech-
anisms, resonances, real spatio–temporal evolution of the perturbation), it
has been applied successfully in many practical cases and it is still the pre-
ferred tool used by the industry. Together with the development of new
spectral techniques (Orszag [21]) for the solution of eigenvalue problems in
a finite domain, other numerical methods for the determination of higher
modes of the stability equations become available. Mack [22] in 1969 re-
ported the existence of a second unstable mode which can be found for
free-stream Mach numbers larger than 2.2. He investigated the effects of
suction and heat transfer on the stability of the boundary layer showing
that the first mode is stabilised if the wall is cooled while the second mode
is simultaneously destabilised. These conclusions were also verified experi-
mentally by Lysenko & Maslov [23]. Mack [24] studied the behavior of the
spectrum of the Orr–Sommerfeld equation for different kinds of mean flow
profiles. He observed that for unbounded flows only a discrete number of
modes exists, suggesting the existence of a continuous spectrum. Grosch &
Salwen [25, 26] showed the validity of this hypothesis in both the temporal
and the spatial problem and built biorthogonality relations which allow to
use the spectrum as a filter. Further progress on the stability of boundary
layers were made by Saric & Nayfeh [27], who derived the OSE through
a multiple–scale expansion of the Navier–Stokes equations. After the ex-
periments conducted by Klebanoff [28], a renewed interest in the effects of
three–dimensional disturbances in a two–dimensional boundary layer led to
a new series of theoretical investigations. In fact, although Squire’s theo-
rem asserts that for incompressible flows the critical Reynolds number is first
reached by two-dimensional waves, Stuart [29] showed that the maximum
amplification rate happens for three-dimensional disturbances. Simultane-
ously to the development of linear theory, new researches were conducted
to study the effects of nonlinear mechanisms. The linear theory is in fact
an accurate tool for the description of the fluid dynamics instabilities in the
early stages of transition, but it cannot give reliable information when the
disturbance reaches a finite amplitude. After a linear amplification stage,
well predicted by the OSE, the disturbance enters a region where nonlinear
phenomena give rise to violent high frequency motions via a secondary in-
stability mechanism: nonlinear effects and parametric excitation play here
a major role, as first realized by C. L. Maseev [30]. Asymptotic methods,
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essentially based on the triple–deck theory of Stewartson [31], Neiland [32]
and Messiter [33], and new powerful computational techniques have been
developed in order to shed light on the later stages of the transitional pro-
cess. The fast growing power of modern digital computer has enabled the
study of secondary instability mechanisms, nonlinear modes interaction and
effects of mean flow distortion using direct numerical simulations (DNS) of
the whole Navier–Stokes equations (Kleiser & Zang [34]). Fasel, Meitz &
Bachman [35] discussed the use of “Large Eddy Simulation” (LES) to in-
vestigate the final breakdown stage. These methods, anyway, require a
considerable computational effort. The Parabolic Stability equations (PSE)
(Bertolotti, Herbert & Spalart [36]) offers a more economic method to in-
vestigate the stability properties of a boundary layer. These equations are
derived from the Navier–Stokes equations with a multiple scale expansion
similar to the one used to obtain the OSE: the main difference here is that
some of the streamwise derivatives are retained in the process, leading to
a system of partial differential equations instead of an ODE. Under some
constraints, the PSE can be shown to be parabolic and can be solved with a
simple marching procedure. Grea [37] applied the ray theory to the analysis
and control of flow instability in boundary layers.

2.3 Linear stability theory

The classical approach to the boundary layer stability theory [38, 39, 40]
is based on the linearization of the Navier–Stokes equations about a given
base flow, obtaining the equations for the disturbance. The behavior of
the disturbance is then determined: if it grows, the base flow is unstable;
if it decays, the base flow is stable. Supposing that the base flow is two–
dimensional (only the streamwise component U and wall–normal component
V of the velocity are present) and parallel (V = 0 and U depends only on
the wall–normal coordinate, U = U(y) so that Ux = 0), and considering a
two–dimensional perturbation, the linearized Navier–Stokes equations are

ux + vy = 0 (2.1)

ut + Uux + vUy = −px +
1

Re
∇2u (2.2)

vt + Uvx = −py +
1

Re
∇2v (2.3)

where the subscript stands for the derivation variable and the perturbation
is expressed as a traveling wave:

(u, v, p) = (u(y), v(y), p(y))ei(αx−ωt) (2.4)
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so that, simplifying the previous system, the classical equation for the
velocity v can be derived [41]:

i
[

(αU − ω)
(

vyy − α2
)

− αUyyv
]

=
1

Re

(

vyyyy − 2α2vyy + α4v
)

(2.5)

It is a fourth–order linear homogeneous ordinary differential equation,
called Orr–Sommerfeld equation, derived independently by Orr [10] and
Sommerfeld [11]. The boundary conditions require the perturbation to van-
ish at the borders of the domain

v(0) = vy(0) = 0 (2.6)

v(∞) = vy(∞) = 0 (2.7)

Since both the equation and boundary conditions are homogeneous, an
eigenvalue problem is derived which furnishes the dispersion relation:

D(α, ω,Re) = 0 (2.8)

The dispersion represents the dependence of wave speed upon wave-
lenght [42], i.e. waves of different wavelengths travel at different phase
speeds. Recalling that stability can be temporal or spatial, when the tem-
poral stability is considered, α and Re are fixed and real while ω is complex
and its imaginary part gives the temporal growth rate; for the spatial sta-
bility ω and Re are fixed and real, and the imaginary part of α furnishes the
spatial growth rate. The solution v(y) is called eigenfunction. From this
analysis, the neutral stability curve can be obtained: it represents the locus
of points for which the growth rate (spatial or temporal) is zero, identifying
regions of stability or instability in the α−Re or ω−Re plane respectively.

2.3.1 Type of instabilities

Fluid dynamic instabilities [41] can be classified as inviscid, viscous and
algebraic. Not only the nature of the instability is important in determining
the transition location but also its spatio–temporal evolution which differs
between convective and absolute instabilities.

Inviscid instability

Inviscid instabilities are relative to large Reynolds-numbers flows, in the
limit Re → ∞. This instability can be divided into non–local and local
one. Non–local instabilities are characterised by a low frequency and a
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fast growth and a classical example is given by the centrifugal instabilities
like Görtler vortices. Local instabilities, instead, are typical of jets, wakes
and boundary layer with inflectional mean flow profiles and are essentially
characterised by high frequencies and fast growth.

Neglecting the viscous terms in the Orr–Sommerfeld equation, i.e. the
ones containing Re−1, the Rayleigh equation is found:

vyy −
(

Uyy

U − c + α2

)

v = 0 (2.9)

where c = ω/α is the phase velocity.

The most important conclusions regarding inviscid stability are summa-
rized in the following theorems [39]:

Theorem 1 (Rayleigh (1880)) For the inviscid instability it is necessary
for the velocity profile U(y) to have an inflection point: Uyy(yip) = 0 where
yip is the y location of the inflection point

Theorem 2 (Fjørtof (1950)) For the inviscid instability it is necessary
for the shear ‖Uy‖ to be maximum at the inflection point yip

Theorem 3 (Fjørtof (1950)) If an inflection point exists, for the inviscid
instability it is further necessary Uyy(U − U(yip)) = 0 somewhere on the
profile

Theorem 4 (Lin (1945)) Let yc be the position at which U − c = 0: if
U(y) has an inflection point at y = yc, a neutral disturbance (ci = 0) may
exists whose phase velocity cr = U(yc)

Theorem 5 (Rayleigh (1880)) The phase velocity cr of an amplified dis-
turbance must always lie between the minimum and maximum value of U(y)

The most important consequence of these theorems is that velocity pro-
files with an inflection point are unstable in real life at high Reynolds num-
ber. On the other hand, for many years it was believed that viscous profiles
without a point of inflection would be stable. Indeed the viscosity can be
destabilizing in certain cases: Poiseuille flow is stable in the inviscid case,
unstable in the viscous one.
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Viscous instability

Viscous instability can be identified by the eigenvalues of the Orr–
Sommerfeld equation. Considering as base flow a parallel one (Poiseuille,
Couette or Blasius profile) the unstable perturbation wave is called Tollmien–
Schlichting wave which is characterized by high frequency and low growth.
From the Orr–Sommerfeld equation the neutral stability curve can be ob-
tained. In the spatial stability framework, it represents the locus of points,
in ω −Re plane, for which αi = 0.

For Blasius profile on a flat plate the following results are obtained [39]:
the minimal critical Reynolds number, which represents the first neutral
point, is Rcr = 520 or Rex = 91000 where Rex = Uex/ν and R =

√
Rex.

In the first neutral point, the wave parameters are: αδ∗ = 0.3012, ω/αr =
0.3961Ue and ων/U2

e = 2.29 10−4 where δ∗ is the displacement thickness.
The maximum wavenumber for the instability is αδ∗ = 0.35.

Convective instability

Convective instabilities are characterised by the fact that the disturbance
is convected away by the mean flow. The flow can then remain laminar until
the disturbance has traveled a considerable distance over which it grows
according to the specific amplification rate of the instability, eventually
leading to transition. The typical example is represented by the TS waves.

Absolute instability

Absolute instabilities are characterised by the fact that a disturbance
grows in time at a fixed location until nonlinear effects become important
and secondary instabilities lead to transition. They are present in flows like
near wake flows, over compliant surfaces or rotating disk.

2.3.2 Algebraic instability

During the 1980s and 1990s, attention was paid to a physical mecha-
nism called lift-up. The name derives from the fact that low-velocity fluid is
lifted up and high-velocity fluid pushed down so that a streak-like spanwise
non-uniformity originates in the velocity field close to wall [2]. From the the-
oretical point of view, this mechanism can be explained by transient growth
due to algebraic instability. This kind of instability is not related to the
eigenvalues of Orr–Sommerfeld equations and can manifest both in inviscid
and viscous flows. Their study can explain the bypass mechanism which is
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observed in some transition processes, a phenomenon quite common in high
freestream turbulence environments. The evolution of the disturbance in-
side the boundary layer does not involve a linear amplification stage like that
one predicted by the OSE, but transition is promoted by fast amplification
of low frequency three–dimensional streaks.

2.4 Transition prediction

Since transition can occur by means of different processes a globally valid
method for the prediction does not exist. Direct numerical simulation (DNS)
or large eddy simulation (LES) could be applied, but the computation effort
is still too high for engineering applications. Simpler approaches, based on
empirical correlations, require less resources but provide only the transition
location and do not model any physical process.

2.4.1 Correlation methods

In the following sections, an overview relative to several empirical and
semi-empirical criteria is reported.

Database method

The general principle is to compute the disturbance growth rate from
tabulated values or from analytical relationships which have been estab-
lished from exact stability computations performed, in general, for self-
similar mean velocity profiles (Falkner-Skan profiles in 2D, incompressible
flows). For this reason, these methods are often referred to as “database”
methods. As soon as the growth rate is known, the N factor can be esti-
mated in a classical way. Such methods have been proposed by Gaster and
Jiang (1994), van Ingen (1996), Stock (1996).

Empirical criteria

Many empirical correlations have been proposed for 2D, incompressible
flows. They were deduced from experimental data collected in low turbu-
lence wind tunnel; they take the pressure gradient effects into account, for
low values of turbulence Tu (which does not appear explicitly in the corre-
lations). Michel, for example (1952) correlated the values of two Reynolds
numbers at transition, Reθ and Rex. Granville (1953) developed a cor-
relation which takes two important parameters into account, namely the
stability properties and the flow history. The stability is characterized by
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the difference ReθT −Reθcr in momentum thickness Reynolds number from
the neutral stability point to the transition location. The flow history is
characterized by an averaged Pohlhausen parameter.

As far as crossflow instability is concerned, some specific criteria have
been developed. As an example, the so-called C1 criterion, proposed by Ar-
nal et al, 1984, is an empirical correlation between the crossflow Reynolds
number Reδ2 and the streamwise shape factor at transition. For incom-
pressible flows: δ2 = −

∫ δ
0

W
Ue
dy.

Semi-empirical criteria

Anderson and Bowcutt [43] proposed a correlation based on experimen-
tal data on cones:

log10Retr = 6.421 exp
(

1.209 10−4M2.641
e

)

(2.10)

The correlation links Reynolds number based on transition abscissa to the
Mach number at the edge of boundary layer Me. However, the relation is
limited to slender and axisymmetric geometries (such as cones) [44] and the
effect of roughness is not considered. The transition point is located where
Res, i.e. Reynolds number based on curvilinear abscissa, intersects Retr.

PANT criterion is based on classical supersonic and hypersonic wind
tunnel tests conducted during the “PAssive NoseTip Program” [45, 46, 47].
The criterion, developed by Anderson in 1975, finds out the transition point
when the parameter

Ψ1 = Reθtr

(

kTe
θTw

)n

(2.11)

is equal to 215 for n = 0.7. Reθtr is the transition parameter, while kTe

θTw

is the disturbance parameter [48]. The criterion is suitable for hypersonic
fields with no reactions as experimental data were obtained in supersonic
and hypersonic low enthalpy wind tunnels while coefficients were calculated
for perfect gas. The correlation fails for sharp bodies and too blunt bodies
and it should be modified with a parameter based on the radius of the nose
[49], [50], [51]. Reda [50] suggested different parameter values corresponding
to Ψ1 = 574 and n = 1.3.

Batt & Legner criterion was defined based on the PANT data and
smooth wall transition data, intending to model both natural and roughness
induced transition. The correlation includes a curvature correction on the
disturbance parameter [48, 47].

Reθtr = 500

(

kTe

θTw

1 + 350 k
Rn

)−1.5

(2.12)
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so that the stabilizing effects of favorable pressure gradient due to the
convexity of the vehicle shape are included via the parameter Rn [48, 50].

Van Driest & Blumer criterion, developed for isolated spherical rough-
ness elements placed over cones, is written in a general form:

Reδ∗ =

(

k

δ∗

)p

A.B.C. (2.13)

where p ≈ −1, A =
(

1 + γ−1
2 M2

e

)

is the compressibility correction, B =

f
(

T̃
Te

)

is the temperature correction and C is the pressure gradient correc-

tion i.e. curvature correction [47].
The correlation is:

k =
33.4

Reθ
θ

(

1 +
γ − 1

2
M2

e − 0.81
Taw − Tw

Te

)

Re0.25s (2.14)

where Taw = Te

(

1 + r γ−1
2 M2

e

)

and r = 0.85. This is one of the most com-

plex criteria as it takes curvature into account, compressibility and thermal
effects. A modified version of the previous correlation ignores the tempera-
ture correction term simplifying the criterion (VDB/NASA):

k = 147.7δ∗
(

1 + γ−1
2 M2

e

Reδ∗

)0.91

(2.15)

Reshotko and Tumin criterion is still based on the PANT database and it
was developed considering the role of transient growth in roughness–induced
transition [51, 52]. They performed several spatial transient growth calcu-
lations for boundary layers developed on flat plates or cones and in case of
stagnation point flows. The main hypothesis that they introduced is the
assumption that the roughness–induced disturbance velocities are assumed
proportional to the roughness height k. They presented the following sum-
mary relation for the PANT [53] data:

k = 180
θ

Re θ

(

2Tw
Te

)1.27

(2.16)

Dirling criterion is based on the properties of the flow field at the height
parameter k for distributed roughness, as it is the effective disturbance
parameter.

Rekk =
ρkkUk

µw
200 < Rekk < 400 (2.17)

The large interval for Rekk may represent the variation from distributed
(200) to large isolated (400) roughness [50].



17 2.5 Transition control

2.4.2 The e
N method

One of the main drawbacks of the previous methods is that the sta-
bility equations are not taken into account. Instead, the eN method is
based on the linear behavior of instability waves as described by the Orr–
Sommerfeld equation. This method was developed independently by van
Ingen [1] and Smith & Gamberoni [20] who proposed a correlation between
the amplification of linear waves with the onset of transition. Such method,
anyway, does not take account of non–linear instability.

Transition is assumed to occur when the wave amplitude A is eN times
the wave amplitude at the beginning of amplification A0, corresponding to
the first neutral point of the neutral stability curve in the ω − Re plane.
The first neutral point represents the point where the imaginary part of the
eigenvalue equals zero, αi = 0, for the first time. The factor N is defined as

N = −
∫ x

x0

αi(x
′)dx′ (2.18)

where x0 is the streamwise location corresponding to the first neutral point
and αi is the imaginary part of the wavenumber α = αr+iαi. At the neutral
point αi = 0. In a low disturbance environment, transition is experimentally
observed when the factor N is between 9 and 11.

This method neglects the receptivity mechanism as the amplitude of
the initial disturbance is not considered. In order to consider somehow the
disturbance, Mack [54] suggested a dependence of N from the free–stream
turbulent intensity level Tu

N = −8.43 − 2.4 ln(Tu)

valid for Tu < 3%. Transition location is found at the location x where
N(x) is equal to the given threshold.

2.5 Transition control

Delaying transition from laminar to turbulent flow provides many ob-
vious advantages. Flow control aims not only at transition delay but also
at separation delay, lift increase, drag reduction, turbulence control, relam-
inarization and noise suppression.

Control strategies can be classified in different ways. One possibility is
to consider the energy or power required in order to control the flow field,
obtaining a first main division in passive or active control. In the former
case no energy is needed (see the successful development of NACA 6–series
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airfoils for which transition was delayed just by shaping the wall in a specific
way), in the latter energy is required. Active control can be further divided
into open–loop or reactive. Open–loop control consists in the application
of steady or unsteady energy input without regard to the particular state
of the flow. For this reason, no sensors are required. On the other hand,
when a variable characterizing the flow field is measured and used in order to
change the flow itself, reactive control is applied. Therefore, reactive control
is a special class of active control where the control input is continuously
adjusted based on measurements of some kind.

Another possible classification can be based on whether the control tech-
nique directly modifies the shape of the base flow, making it more sta-
ble, or directly influences the perturbation generated inside the boundary
layer, avoiding its amplification. Suction at the wall, shaping, wall heat-
ing/cooling, wall motion, streamwise or spanwise pressure gradient can be
grouped in the former class of techniques, whereas wave cancellation belong
to the techniques that directly act on the disturbance.

2.5.1 Laminar flow control

“Laminar Flow Control” technology (LFC) is an active boundary layer
control technique employed to maintain the laminar state. LFC can be
achieved using devices such as synthetic jets or plasma actuators, but the
major drawback of this technology is the energy consumption which could
be higher than the resulted savings.

Synthetic jet

Synthetic jet is an active control technique that seems to be particu-
larly interesting for efficient low–cost applications. A deforming membrane
oscillates inside a close cavity, producing periodic suction/blowing with a
zero–net mass flux across its small exit orifice, so momentum is added into
the external boundary layer. The interaction of synthetic jets with an in-
coming boundary layer results in an apparent modification of the surface
shape and enables significant global modification of the embedding flow [55].

Plasma actuator

A scheme of a single–dielectric barrier discharge (SDBD) plasma actu-
ator [56] is reported in figure 2.3. The device consists of thin electrodes
separated by dielectric material. One of the electrode is exposed to air and
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Figure 2.3: Schematic drawing of a single–dielectric barrier discharge actu-
ator

the other is fully covered by the dielectric material. A high voltage alternat-
ing current (a. c.) is supplied to the electrodes. When the a. c. amplitude
is large enough, the air ionizes in the region of the largest electric potential.
The ionized air under the action of a gradient of the electric field produces
a body force on the ambient air. This induces a virtual aerodynamic shape
and a change in the pressure distribution over the body on which the actu-
ator is placed. The air near the electrodes is weakly ionized and the heating
of the air is limited.

Plasma synthetic jet

Another type of actuator is the plasma synthetic jet (PSJ) . A PSJ is
made of a plasma arc positioned inside a cavity containing a small orifice
adjacent to the surface where the actuation has to be applied. The heating
of the gas inside the cavity increases the pressure and the gas exits the orifice
with a velocity that can reach 500 − 600 m/s with pulsations frequencies
up to 5000 Hz. The device provides a zero–net mass flux jet and can be
operated for flow control or thrust generation.

2.5.2 Natural laminar flow control

An alternative concept of drag reduction which does not require a supply
of energy is referred to as “Natural Laminar Flow” (NLF). NLF employs
a favorable pressure gradient to delay the transition process. Proper wall
shaping has been employed to design laminar flow wings which have shown
good performances especially when used in a low sweep configuration. The
stabilization of a boundary layer over an airplane wing by pushing the lon-
gitudinal location of the pressure minimum as far as possible downstream
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dates 1930s and led to the successful development of NACA 6–series air-
foils. Factors that limit the utility of this technique include performance
degradation at angles of attack different from the one for which the shape
was optimized, insect impact, dirty particulates, ice formation.

In most of the high speed aircraft, anyway, a strong sweep is usually
required in order to achieve better aerodynamic performances. Application
of common NLF techniques in these cases proved to be unsuccessful because
the flow field becomes vulnerable to a boundary layer instability termed
“cross–flow vortex instability” (CF). An active system is usually required
to prevent the appearance of CF from causing the laminar flow to become
turbulent.

2.5.3 Hybrid laminar flow control

A significant advance made in the development of laminar flow tech-
niques is the concept of “Hybrid Laminar Flow Control” (HLFC). HLFC
integrates the concepts of NLF and LFC to reduce suction or heat transfer
requirements and reduce the system complexity. The key features of HLFC
are:

1. Suction is required only in the leading edge region ahead of the front
spar

2. NLF is maintained through proper tailoring of the geometry

3. The HFLC wing design shows good performances in the turbulent
regime

The application of wall suction was the first method historically intro-
duced in order to delay boundary–layer transition. It was used by Prandtl
in 1904 to prevent flow separation from the surface of a cylinder.

The main effect of suction at the wall is the modification of the ve-
locity profile in the neighborhood of the surface, implying the change of
the stability characteristics of the flow. Additionally, suction inhibits the
growth of boundary layer and thus the critical Reynolds number based on
boundary–layer thickness may never be reached.

Although laminar flow can be maintained to extremely high Reynolds
numbers, provided that enough fluid is sucked away, the goal is to reach
the delay of transition with the minimum suction flow rate, since this will
reduce the power necessary and the momentum loss due to suction.

Assuming continuous and uniform suction (for instance through a porous
wall) and that the flow outside the boundary layer is not affected by the
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loss of mass at the wall, the asymptotic velocity profile inside the boundary
layer is an exact solution of the Navier–Stokes equations and is expressed
as

U(y) = U∞

[

1− exp

(

−|vw|y
ν

)]

(2.19)

where vw is a negative constant representing the value of the uniform suction
velocity at the wall [38].

A problem arising from the application of this technique is that structure
is negatively affected by the presence of holes in it and also manufacturing
matters arise. Another problem is related to the protection of the surface of
an aircraft wing from insect impacts, ice formations or other small particles.

2.5.4 Wave cancellation

An alternative approach to the previously proposed methods is wave
cancellation. This technique is not based on the modification of the bound-
ary layer profile, but aims at acting directly on the perturbation. If the
frequency, orientation and phase angle of the dominant element of the spec-
trum of a linear growing disturbance is detected, a control system and ap-
propriate located disturbance generators may then be used to produce a
desired cancellation or suppression of the detected disturbance. Wave can-
cellation is feasible only when the disturbances are still relatively small, their
growth is governed by linear equations and the principle of superimposition
is still valid.

2.6 Receptivity

The transition point is strongly affected by the amount of “noise” present
in the external environment. Increased free–stream disturbance level en-
hances the amplitude of the instability wave, hastening transition. The
typical external disturbances can be acoustic waves, free stream vorticity
waves or wall vibrations. For all of them, even if the frequency is the same
as the TS waves, the typical wavelength is much greater than the TS one.
It means that this kind of disturbances cannot create any coupling with the
boundary layer instability waves, i. e. disturbances are not resonant with
the TS waves.

A “mechanism” is therefore needed in order to allow the adaptation of
the exciting wavelength to the TS one and Morkovin [57] introduced the
term “receptivity” in order to indicate qualitatively the physical process by
which free–stream external disturbances enter the boundary layer and excite
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instability waves. This effect can be obtained by the boundary layer growing
near the leading edge or by a fast surface variation like wall roughness
and two main receptivity configurations can be identified: leading edge
receptivity and sudden boundary layer forced adjustment receptivity. The
methodological approaches used to tackle the receptivity problem can be
separated into three main categories: asymptotic approach, direct numerical
simulation and finite Reynolds number approach, and in this thesis the
latter, based on the Orr–Sommerfeld formulation, will be adopted (see §4).



Chapter 3

Multiple–scales method

In mathematics and physics, multiple–scale analysis (also called the
method of multiple scales) comprises techniques used to construct uniformly
valid approximations to the solutions of perturbation problems [58]. This is
done by introducing fast-scale and slow-scale variables for an independent
variable, and subsequently treating these variables, fast and slow, as if they
are independent. In the solution process of the perturbation problem there-
after, the resulting additional freedom introduced by the new independent
variables is used to remove unwanted secular terms. The latter puts con-
straints on the approximate solution, which are called solvability conditions
[59].

Multiple–scale method can be applied to the boundary layer where there
is a slow variation of the fluid dynamic quantities along the streamwise
coordinate with reference to the normal one. So, in order to deal with
the analysis of the perturbation of flow field, it is useful to describe such
approach. In the following sections both the homogeneous case and non-
homogeneous one will be described following [2].

3.1 Homogeneous case

Let
dx(t)

dt
= A(t)x(t) (3.1)

be the evolution equation of a generic time–dependent linear system. By
fixing the coefficient of the system at a certain time t = t0 , i.e. setting
A(t) = A(t0), the solution of eq. 3.1 can be expressed in terms of eigenvalues
λk(t0) and eigenvectors uk(t0) of matrix A(t0) as:

x(t) =

N
∑

k=1

ckuk(t0)e
λk(t0)t (3.2)
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with N arbitrary coefficients ck.
Let matrix A be slowly varying, i.e. a long time (with respect to the

typical characteristic time) is required in order to appreciate a variation of
the eigenvalues λk and eigenvectors uk. It can be introduced a parameter
ǫ̃ through the scaling T = ǫ̃t, where T is a new time, so that an order–one
variation of T occurs for a large variation of t and consequently of A.

With this substitution, equations (3.1) and (3.2) become, respectively:

ǫ̃
dx(T )

dT
= A(T )x(T ) (3.3)

x(T ) =

N
∑

k=1

ckuk(T0)e
λk(T0)T/ǫ̃ (3.4)

Let solve eq. 3.3 in the limit of ǫ̃→ 0, with the hypothesis that the solution
is the same of eq. 3.4, with uk(T ) and λk(T ) instead of uk(T0) and λk(T0),
and that the coefficients ck function of T and ǫ̃ can be developed as series
of parameter ǫ̃.

A single term in eq. (3.4), in the case of a constant coefficient matrix
A = A(T0), is

x(T ) = uk(T0)e
λk(T0)T/ǫ̃

while, when the coefficient matrix A is slowing varying, the corresponding
term can be written as

x(T ) = f(T, ǫ̃)eφ(T )/ǫ̃

so that in the constant coefficient case f(T, ǫ̃) and φ(T ) respectively reduce
to f(T, ǫ̃) = uk(T0) and φ(T ) = λk(T0)T . We now assume that the vector
f(T, ǫ̃) is expandable in a power series of ǫ̃ so that

f(T, ǫ̃) =

∞
∑

n=0

fn(T )ǫ̃
n

which implies

x(T ) = f(T, ǫ̃)eφ(T )/ǫ̃ =
(

f0(T ) + ǫ̃f1(T ) + ǫ̃2f2(T ) + · · ·
)

eφ(T )/ǫ̃ (3.5)

With this expression for the solution x(T ), the term ǫ̃dx/dT becomes

ǫ̃
dx(T )

dT
= ǫ̃

[(

df0(T )

dT
+ ǫ̃

df1(T )

dT
+ · · ·

)

eφ(T )/ǫ̃+

1

ǫ̃

dφ(T )

dT
(f0(T ) + ǫ̃f1(T ) + · · · )eφ(T )/ǫ̃

]

=

[

dφ(T )

dT
f0(T ) + ǫ̃

(

dφ(T )

dT
f1(T ) +

df0(T )

dT

)

+O(ǫ̃2)
]

eφ(T )/ǫ̃
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substituting the previous derivative and the expansion (3.5) in the system
(3.3), collecting terms with respect to ǫ̃ order, and dividing by the exponen-
tial part, the following hierarchy of equations is found:

dφ

dT
f0(T ) = A(T )f0(T )

ǫ̃

(

dφ

dT
f1(T ) +

df0
dT

)

= ǫ̃A(T )f1(T )

... =
...

ǫ̃n
(

dφ

dT
fn(T ) +

dfn-1
dT

)

= ǫ̃nA(T )fn(T )

The first equation reduces to the eigenvalue problem

[λk(T )I −A(T )] f0(T ) = 0 (3.6)

that admits a non trivial solution if

λk(T ) =
dφ

dT

The solution is actually f0(T ) = uk(T ), as expected, but it is defined up to
a multiplicative factor since the normalization of the eigenvector f0(T ) can
be performed in different ways. In order to express this feature, the solution
at order zero is written as f0(T ) = ck(T )ũk(T ) where the coefficient ck(T )
is unknown and ũk(T ) is normalized in a certain way. The second equation,
at order ǫ̃, can be written

[λk(T )I−A(T )] f1(T ) = −
df0
dT

(3.7)

which represents a singular problem because the coefficient matrix
dφ

dT
I−

A(T ) is the same as the one at order zero, where the singularity of the
matrix was required in order to obtain a non trivial solution. However,
at order ǫ̃ an inhomogeneous known term is present, so the solution exists
if a proper “compatibility condition” is satisfied (see appendix A), which
states that the dot product between the known term and the left eigenvector
corresponding to the vanishing eigenvalue must be zero:

ṽk(T ) ·
df0
dT

= 0 (3.8)
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By expanding the previous equation and recalling that f0(T ) = ck(T )ũk(T ),
an equation for the unknown coefficient ck(T ) is obtained:

ṽk(T ) · ũk(T )
dck
dT

+ ṽk(T ) ·
dũk(T )

dT
ck = 0 (3.9)

It is easy to verify that eq. (3.9) is a first order homogeneous ordinary
differential equation, for which a closed form solution exists. Its solution
provides the coefficient ck(T ) so that the product ck(T )ũk(T ) is computed.
It is important to remark that the latter vector is unique, independent of
the normalization, while ũk(T ) was not.

Summarizing, the solution at order zero is not uniquely determined,
but it is defined up to a multiplicative factor ck(T ) which depends on T .
ck(T ) can be an arbitrary function of T and the “compatibility condition”
of eq. (3.8) is used as a constraint in order to determine the unknown factor
ck(T ). The same compatibility problem found at order ǫ̃ is present also
at the next orders because the generic equation contains always the same
singular matrix. In practical applications the solution is usually truncated
at order zero. However, it is interesting to evaluate the error when order–ǫ̃
terms are neglected. This can be done using the relation (A.5), so that the
solution at order ǫ̃ is written as

ǫ̃f1(t) =
∑

h 6=k

[λh(t)− λk(t)]−1

(

vT
k (t) ·

duk(t)

dt

)

uk(t)

where t = T/ǫ̃ has been substituted and λh(t) is another eigenvalue of
A(t). From this expression, it is clear that in order for ǫ̃f1(T ) to be small
and negligible with respect to f0(T ), the derivative duk/dT must be small
with respect to λh(t)−λk(t). This basically implies that the multiple–scale
approximation can be applied if the parameters of the system are slowly
varying with respect to the characteristic frequency given by the difference
between the considered eigenvalue and the other eigenvalues of the system.
Therefore, multiple scales can be applied if the eigenvalues are distinct but
sufficiently far, independent of how small they are.

By retaining only the order–zero term, the state vector x(T ) is expressed
as

x(T ) = ck(T )ũk(T )e
φ(T )/ǫ̃ +O(ǫ̃)
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3.2 Non–homogeneous case

Let us consider the non–homogeneous system

dx(t)

dt
−A (t)x(t) = ǫ̃y(t) (3.10)

where y is an order–one known term which enters at order ǫ̃. Introducing
the substitution T = ǫ̃t, from (3.10) follows:

ǫ̃ (T )
dx(T )

dT
−A (T )x = ǫ̃y(T ) (3.11)

As for homogeneous case:

x(T ) =
(

f0(T ) + ǫ̃f1(T ) + ǫ̃2f2(T ) + · · ·
)

e
φ(T )

ǫ̃ (3.12)

and substituting the expansion (3.12) in (3.11) and collecting powers of ǫ̃,
the following hierarchy of equations is derived:

(

dφ

dT
f0(T )−A(T )f0(T )

)

e
φ(T )

ǫ̃ = 0

ǫ̃

(

dφ

dT
f1(T ) +

df0
dT
−A (T ) f1(T )

)

e
φ(T )

ǫ̃ = ǫ̃y(T )

· · · = · · ·
ǫ̃n
(

dφ

dT
fn(T ) +

dfn−1

dT
−A (T ) fn

)

e
φ(T )

ǫ̃ = 0

(3.13)

At zero order, the problem reduces to the homogeneous one:
(

dφ

dT
I −A(T )

)

f0(T ) = 0 (3.14)

While the first–order equation is:

ǫ̃

(

dφ

dT
f1(T ) +

df0
dT
−A (T ) f1(T )

)

e
φ(T )

ǫ̃ = ǫ̃y(T ) (3.15)

which can be written in the following form:
[

dφ

dT
I −A(T )

]

f1(T ) = −
df0
dT

+ y(T )e−
φ(T )

ǫ̃ (3.16)

In order to solve the linear system (3.16), the solvability condition has to
be satisfied, i.e.:

ṽk(T ) ·
(

−df0
dT

+ y(T )e−
φ(T )

ǫ̃

)

= 0 (3.17)
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where the ṽk(T ) is the left eigenfunction of
dφ

dT
I − A(T ). The condition

(3.17) allows the computation of ck(T ) and the unique determination of the
solution f0(T ). Substituting f0(T ) = ck(T )ũk(T ) in (3.17), the following
first–order linear differential equation for ck(T ) is obtained:

ṽk(T ) · ũk(T )
dck
dT

+ ṽk(T ) ·
dũk(T )

dT
ck = ṽk(T ) · y(T )e−

φ(T )
ǫ̃ (3.18)

whose solution is well known in a closed form:

ck(Tf ) =

∫ Tf

T0

ṽk(T ) · y(T )
ṽk(T ) · ũk(T )

e−
φ(T )

ǫ̃ e

∫ Tf

T

ṽk(T
′) · dũk(T

′)

dT ′

ṽk(T ′) · ũk(T ′)
dT ′

dT (3.19)

or can be found numerically, by discretizing the differential equation. So
the solution x is expressed as:

x(Tf ) = f0(Tf )e
φ(Tf )

ǫ̃ +O(ǫ̃) = ck(Tf )ũk(Tf )e
φ(Tf )

ǫ̃ +O(ǫ̃) (3.20)

3.3 Remarks on multiple–scales

The solution (3.20) with (3.19) can be rewritten in the following compact
form:

x(Tf ) = ũk(Tf )

∫ Tf

T0

r(T ) · y(T ) dT +O(ǫ̃) (3.21)

where r(T ) is defined as the receptivity vector to the known source vector
y(T ). The idea is to reduce the solution to a very simple form in which it
is possible to recognize a receptivity function r(T ), that multiplied by the
source term y(T ), gives the amplitude of the final solution x(Tf ). The re-
ceptivity vector r(T ) represents a measure of how much the physical system
is “receptive” to the source of disturbance y(T ), or, in other words, it rep-
resents the sensitivity of the state vector x(Tf ) to the distributed exciting
source y(T ).

In practical interesting cases, such as acoustic receptivity to wall rough-
ness or to wall suction/blowing, the vector y(T ) can be a simple scalar
quantity, for example the wall shape h(x) accounting for the roughness in
the first case, or the imposed normal velocity at the wall vw(x) in the second
one. This means that the dot product r(T ) · y(T ) between the receptivity
and the source vectors can be replaced by a simple product between two
constants:

x(Tf ) = ũk(Tf )

∫ Tf

T0

r(T )y(T ) dT +O(ǫ̃) (3.22)
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obtaining, for the example of acoustic receptivity to wall roughness, a simple
expression

x(xf ) = ũk(xf )

∫ xf

x0

rh(x)h(x) dx +O(ǫ̃) (3.23)

where h(x) is the wall shape and rh(x) is the sensitivity of the state vector
x(xf ) to the wall roughness.
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Chapter 4

Three-dimensional receptivity
formulation

Let us consider the general receptivity problem which takes place in a
boundary layer developing on a generic surface.

4.1 Governing equations

We consider a three–dimensional unsteady incompressible flow, governed
by Navier–Stokes equations:

∂u

∂x̂
+
∂v

∂ŷ
+
∂w

∂ẑ
= 0 (4.1)

∂u

∂t̂
+ u

∂u

∂x̂
+ v

∂u

∂ŷ
+ w

∂u

∂ẑ
= −∂p

∂x̂
+

1

R
∇2u (4.2)

∂v

∂t̂
+ u

∂v

∂x̂
+ v

∂v

∂ŷ
+ w

∂v

∂ẑ
= −∂p

∂ŷ
+

1

R
∇2v (4.3)

∂w

∂t̂
+ u

∂w

∂x̂
+ v

∂w

∂ŷ
+ w

∂w

∂ẑ
= −∂p

∂ẑ
+

1

R
∇2w (4.4)

The equations are already non-dimensionalized by the free–stream velocity
U∞, the pressure ρU2

∞, the characteristic length δr =
√

νxr/U∞ (xr is
the streamwise length) and the time δr/U∞. With this parameters, the
Reynolds number reads:

R =
δrU∞
ν

=

√

xrU∞
ν

=
√

Rexr (4.5)

Linearizing the dimensionless solution as sum of a steady quantity:

(Û (x̂, ŷ, ẑ), V̂ (x̂, ŷ, ẑ), Ŵ (x̂, ŷ, ẑ), P̂ (x̂, ŷ, ẑ))
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solution of the base flow, and an unsteady one

(û(x̂, ŷ, ẑ, t̂), v̂(x̂, ŷ, ẑ, t̂), ŵ(x̂, ŷ, ẑ, t̂), p̂(x̂, ŷ, ẑ, t̂))

the previous set of equations becomes:

∂û

∂x̂
+
∂v̂

∂ŷ
+
∂ŵ

∂ẑ
= ǫ̃Ŝm (4.6)

∂û

∂t̂
+ Û

∂û

∂x̂
+ û

∂Û

∂x̂
+ V̂

∂û

∂ŷ
+ v̂

∂Û

∂ŷ
+ Ŵ

∂û

∂ẑ
+ ŵ

∂Û

∂ẑ
= −∂p̂

∂x̂
+ (4.7)

+
1

R
∇2û+ ǫ̃Ŝx

∂v̂

∂t̂
+ Û

∂v̂

∂x̂
+ û

∂V̂

∂x̂
+ V̂

∂v̂

∂ŷ
+ v̂

∂V̂

∂ŷ
+ Ŵ

∂v̂

∂ẑ
+ ŵ

∂V̂

∂ẑ
= −∂p̂

∂ŷ
+ (4.8)

+
1

R
∇2v̂ + ǫ̃Ŝy

∂ŵ

∂t̂
+ Û

∂ŵ

∂x̂
+ û

∂Ŵ

∂x̂
+ V̂

∂ŵ

∂ŷ
+ v̂

∂Ŵ

∂ŷ
+ Ŵ

∂ŵ

∂ẑ
+ ŵ

∂Ŵ

∂ẑ
= −∂p̂

∂ẑ
+ (4.9)

+
1

R
∇2ŵ + ǫ̃Ŝz

where source terms S of order ǫ̃ enter as perturbations. ǫ̃ is the param-
eter that accounts for slow streamwise variation of the quantities, Ŝm is
the source mass term, Ŝx is the x–momentum source term, Ŝy is the y–
momentum source term and Ŝz is the z–momentum source term.

The boundary conditions for eqs. from (4.6) to (4.10) depend on the
specific problem and can be homogeneous or non–homogeneous. In any
case, the boundary conditions for the perturbations require them to be zero
at the wall (û(x̂, 0, ẑ, t̂), v̂(x̂, 0, ẑ, t̂), ŵ(x̂, 0, ẑ, t̂)) = (0, 0, 0) and to go to zero
far from the wall (û(x̂,∞, ẑ, t̂), v̂(x̂,∞, ẑ, t̂), ŵ(x̂,∞, ẑ, t̂)) → (0, 0, 0). This
implies that if there are non–homogeneous boundary conditions, they must
enter at order ǫ̃ as for the excitation source.





û(x̂, 0, ẑ, t̂)

v̂(x̂, 0, ẑ, t̂)

ŵ(x̂, 0, ẑ, t̂)



 = ǫ̃





ûwall(x̂, ẑ, t̂)

v̂wall(x̂, ẑ, t̂)

ŵwall(x̂, ẑ, t̂)









û(x̂, ŷ →∞, ẑ, t̂)
v̂(x̂, ŷ →∞, ẑ, t̂)
ŵ(x̂, ŷ →∞, ẑ, t̂)



 → ǫ̃





û∞(x̂, ẑ, t̂)

v̂∞(x̂, ẑ, t̂)

ŵ∞(x̂, ẑ, t̂)





(4.10)
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4.2 Base flow

In a stability analysis, the base flow (Û (x̂, ŷ, ẑ), V̂ (x̂, ŷ, ẑ), Ŵ (x̂, ŷ, ẑ),
P̂ (x̂, ŷ, ẑ)) is always known because it is the solution around which the sta-
bility is considered. The base flow depends on the particular case which
is considered in the single problem under investigation and for the bound-
ary layer over a flat plate the base flow is given by the Blasius solution,
while for more complex boundary layers, it could be obtained through CFD
analysis. Usually, for the base flow, the zero–order terms are considered,
but it is possible to introduce corrections of higher order as it is done for
the perturbation. What is important is that the base flow, at this stage, is
considered like a “known term” in the receptivity problem.

4.3 Perturbation and multiple–scales application

Once the base flow has been obtained, equations from (4.6) to (4.10) can
be solved for the unknown (û(x̂, ŷ, ẑ, t̂), v̂(x̂, ŷ, ẑ, t̂), ŵ(x̂, ŷ, ẑ), p̂(x̂, ŷ, ẑ, t̂)).

Since we want to account for the boundary layer growing, we derive the
equations for the perturbation in the multiple scale framework, expanding
the solution as powers of a small parameter ǫ̃ which accounts for the non–
parallelism of the base flow.

Starting from equations (4.6) to (4.10) we operate the following substi-
tutions:

x = ǫ̃x̂
y = ŷ
z = ǫ̃ẑ

t = ǫ̃t̂

U(x, y, z) = Û(x̂, ŷ, ẑ)

V (x, y, z) =
V̂ (x̂, ŷ, ẑ)

ǫ̃
W (x, y, z) = Ŵ (x̂, ŷ, ẑ)

P (x, y, z) = P̂ (x̂, ŷ, ẑ)

S(x, y, z, t) = Ŝ(x̂, ŷ, ẑ, t̂)

(4.11)

so that all the derivatives have the same order. The general quantity
q(x, y, z, t), which can be u, v, w, p, in the multiple-scale system can be writ-
ten in the following form:

q(x, y, z, t) =
(

q0(x, y, z) + ǫ̃q1(x, y, z) + ǫ̃2q2(x, y, z) + · · ·
)

e
iθ(x,z,t)

ǫ̃ (4.12)

where q0, q1 and q2 are functions with a weak dependence on the stream-
wise coordinate, while θ is a fast–varying function. The eikonal function θ
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is a non-linear partial differential equation encountered in problems of wave
propagation, when the wave equation is approximated using the WKB the-
ory [37], and represents the phase of the disturbance. The derivatives of the
eikonal function, with reference to time and space:

ω = −∂θ
∂t

(4.13)

α =
∂θ

∂x
(4.14)

β =
∂θ

∂z
(4.15)

define the frequency, the chordwise wavenumber and spanwise wavenumber,
respectively.

The partial derivatives of the general quantity q(x, y, z, t) are expressed
as follows:

∂q

∂t
= − iω

ǫ̃

(

q0(x, y, z) + ǫ̃q1(x, y, z) + ǫ̃2q2(x, y, z) + · · ·
)

e
iθ(x,z,t)

ǫ̃

∂q

∂x
=

[

iα

ǫ̃

(

q0(x, y, z) + ǫ̃q1(x, y, z) + ǫ̃2q2(x, y, z) + · · ·
)

+
(

∂q0(x, y, z)

∂x
+ ǫ̃

∂q1(x, y, z)

∂x
+ ǫ̃2

∂q2(x, y, z)

∂x
+ · · ·

)]

e
iθ(x,z,t)

ǫ̃

∂q

∂y
=

(

∂q0(x, y, z)

∂y
+ ǫ̃

∂q1(x, y, z)

∂y
+ ǫ̃2

∂q2(x, y, z)

∂y
+ · · ·

)

e
iθ(x,z,t)

ǫ̃

∂q

∂z
=

[

iβ

ǫ̃

(

q0(x, y, z) + ǫ̃q1(x, y, z) + ǫ̃2q2(x, y, z) + · · ·
)

+
(

∂q0(x, y, z)

∂z
+ ǫ̃

∂q1(x, y, z)

∂z
+ ǫ̃2

∂q2(x, y, z)

∂z
+ · · ·

)]

e
iθ(x,z,t)

ǫ̃

(4.16)
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∂2q

∂x2
=

[

−α
2

ǫ̃2
(

q0(x, y, z) + ǫ̃q1(x, y, z) + ǫ̃2q2(x, y, z) + · · ·
)

+

2
iα

ǫ̃

(

∂q0(x, y, z)

∂x
+ ǫ̃

∂q1(x, y, z)

∂x
+ ǫ̃2

∂q2(x, y, z)

∂x
+ · · ·

)

+

i

ǫ̃

∂α

∂x

(

q0(x, y, z) + ǫ̃q1(x, y, z) + ǫ̃2q2(x, y, z) + · · ·
)

+
(

∂2q0(x, y, z)

∂x2
+ ǫ̃

∂2q1(x, y, z)

∂x2
+ ǫ̃2

∂2q2(x, y, z)

∂x2
+ · · ·

)]

e
iθ(x,z,t)

ǫ̃

∂2q

∂y2
=

(

∂2q0(x, y, z)

∂y2
+ ǫ̃

∂2q1(x, y, z)

∂y2
+ ǫ̃2

∂2q2(x, y, z)

∂y2
+ · · ·

)

e
iθ(x,z,t)

ǫ̃

∂2q

∂z2
=

[

−β
2

ǫ̃2
(

q0(x, y, z) + ǫ̃q1(x, y, z) + ǫ̃2q2(x, y, z) + · · ·
)

+

2
iβ

ǫ̃

(

∂q0(x, y, z)

∂z
+ ǫ̃

∂q1(x, y, z)

∂z
+ ǫ̃2

∂q2(x, y, z)

∂z
+ · · ·

)

+

i

ǫ̃

∂β

∂z

(

q0(x, y, z) + ǫ̃q1(x, y, z) + ǫ̃2q2(x, y, z) + · · ·
)

+
(

∂2q0(x, y, z)

∂z2
+ ǫ̃

∂2q1(x, y, z)

∂z2
+ ǫ̃2

∂2q2(x, y, z)

∂z2
+ · · ·

)]

e
iθ(x,z,t)

ǫ̃

(4.17)
Substituting the partial derivatives in the original system (4.6)-(4.10) and
collecting powers of the small parameter ǫ̃, a system of four equations at
each order is obtained.

Zero order

At zero order, the set of equations is:

iαu0 + iβw0 +
∂v0
∂y

= 0

[

i (αU + βW − ω) + 1

R

(

α2 + β2 − ∂2

∂y2

)]

u0 +
∂U

∂y
v0 + iαp0 = 0

[

i (αU + βW − ω) + 1

R

(

α2 + β2 − ∂2

∂y2

)]

v0 +
∂p0
∂y

= 0

[

i (αU + βW − ω) + 1

R

(

α2 + β2 − ∂2

∂y2

)]

w0 +
∂W

∂y
v0 + iβp0 = 0

(4.18)
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with boundary conditions:

u0(x, 0, z) = 0
v0(x, 0, z) = 0
w0(x, 0, z) = 0

u0(x, y →∞, z) → 0
v0(x, y →∞, z) → 0
w0(x, y →∞, z) → 0

(4.19)

The previous system of equations and the corresponding boundary condi-
tions can be discretized in order to solve them numerically. If we think
about the discretized form, we can write the previous sets of equations and
boundary conditions as

A (α, β, ω,R) f0 = 0 (4.20)

where f0 contains the unknowns at order zero evaluated at streamwise loca-
tion x and at each y location. f0 contains 4Ny lines where Ny is the number
of nodes in y direction:

f0 =









u0(x, y, z)
v0(x, y, z)
w0(x, y, z)
p0(x, y, z)









(4.21)

A is the coefficient matrix 4.22:

A (α, β, ω,R) =



































iα
∂

∂y
iβ 0

D
∂U

∂y
0 iα

0 D 0
∂

∂y

0
∂W

∂y
D iβ



































(4.22)

where D = i (αU + βW − ω) + 1

R

(

α2 + β2 − ∂2

∂y2

)

System (4.20) is homogeneous because both equations and boundary
conditions for the perturbation at zero order are homogeneous, so that it
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reduces to an eigenvalue problem. The system (4.20) is formally the same
as system (3.14). The only difference is that now the eigenvalue is the local
wavelength α and the matrix A (α, β, ω,R) is a non–linear function of α.
In the spatial stability problem, β, ω and R are known, while α has to be
determined. In order to do that, we expand A (α, β, ω,R) around a known
value α0 and call Ã (α, β, ω,R) the new matrix:

Ã (α, β, ω,R) = A (α0, β, ω,R) +
∂A (α, β, ω,R)

∂α

∣

∣

∣

∣

α=α0

(α− α0) (4.23)

The system (4.20) can be replaced by

Ã (α, β, ω,R) f0 = 0 (4.24)

or

A (α0, β, ω,R) f0 +B (α0, β, ω,R) (α− α0) f0 = 0 (4.25)

where

B (α0, β, ω,R) =
∂A (α, β, ω,R)

∂α

∣

∣

∣

∣

α=α0

(4.26)

The algorithm to compute the eigenvalue is discussed in Appendix B. It
is important to remark that in an eigenvalue problem a singular matrix is
obtained. Another remark is that Ã(α0) singular implies A(α0) singular as
well.
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First order

At first order, the multiple–scales approach leads to the system of equa-
tions:

iαu1 +
∂v1
∂y

+ iβw1 = −
∂u0
∂x
− ∂w0

∂z
+ Sme−

iθ(x,z,t)
ǫ̃

Du1 +
∂U

∂y
v1 + iαp1 = −

∂p0
∂x
−
[

U − 2iα

R

]

∂u0
∂x
−
[

W − 2iβ

R

]

∂u0
∂z

−
[

∂U

∂x
− i

R

∂α

∂x
− i

R

∂β

∂z
+ V

∂

∂y

]

u0 −
∂U

∂z
w0 + Sxe−

iθ(x,z,t)
ǫ̃

Dv1 +
∂p1
∂y

= −
[

U − 2iα

R

]

∂v0
∂x
−
[

W − 2iβ

R

]

∂v0
∂z

−
[

∂V

∂y
− i

R

∂α

∂x
− i

R

∂β

∂z
+ V

∂

∂y

]

v0 + Sye−
iθ(x,z,t)

ǫ̃

∂W

∂y
v1 +Dw1 + iβp1 = −

∂p0
∂z
−
[

U − 2iα

R

]

∂w0

∂x
−
[

W − 2iβ

R

]

∂w0

∂z

−
[

∂W

∂z
− i

R

∂α

∂x
− i

R

∂β

∂z
+ V

∂

∂y

]

w0 −
∂W

∂x
u0 + Sze−

iθ(x,z,t)
ǫ̃

(4.27)
with boundary conditions:

u1(x, 0, z) = uwall(x, z, ω)e
− iθ(x,z,t)

ǫ̃

v1(x, 0, z) = vwall(x, z, ω)e
− iθ(x,z,t)

ǫ̃

w1(x, 0, z) = wwall(x, z, ω)e
− iθ(x,z,t)

ǫ̃

u1(x, y →∞, z) → u∞(x, z, ω)e−
iθ(x,z,t)

ǫ̃

v1(x, y →∞, z) → v∞(x, z, ω)e−
iθ(x,z,t)

ǫ̃

w1(x, y →∞, z) → w∞(x, z, ω)e−
iθ(x,z,t)

ǫ̃

(4.28)

Again, if we think about the discretized form of the previous sets of equa-
tions and corresponding boundary conditions, they can be written in fol-
lowing compact way:

Af1 = −H
df0
dx
−G

df0
dz
−Cf0 + ye−

iθ(x,z,t)
ǫ̃ (4.29)

The number of lines in each vector or matrix is always 4Ny where Ny is the
number of nodes in y direction. The matrix A is the same as order zero
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and defined by eq (4.22), f0 is defined by eq (4.21), and

f1 =









u1(x, y)
v1(x, y)
w1(x, y)
p1(x, y)









(4.30)

H =

































1 0 0 0

[

U − 2iα

R

]

0 0 1

0

[

U − 2iα

R

]

0 0

0 0

[

U − 2iα

R

]

0

































(4.31)

G =

































0 0 1 0

[

W − 2iβ

R

]

0 0 1

0

[

W − 2iβ

R

]

0 0

0 0

[

W − 2iβ

R

]

1

































(4.32)

C =

































0 0 0

[

∂U

∂x
+G

]

0
∂U

∂z
0

0

[

∂V

∂y
+G

]

0 0

∂W

∂x
0

[

∂W

∂z
+G

]

0

































(4.33)

y =





fwall(x, z, ω)
s(x, y, z, ω)
f∞(x, z, ω)



 (4.34)



40 4.3 Perturbation and multiple–scales application

with G = V
∂

∂y
− i

R

(

∂α

∂x
+
∂β

∂z

)

. In the source term y we have included

the sources coming from the equations s and the boundary conditions fwall
and f∞, where

s =









Sm(x, y, z, ω)
Sx(x, y, z, ω)
Sy(x, y, z, ω)
Sz(x, y, z, ω)









(4.35)

fwall =









uwall(x, z, ω)
vwall(x, z, ω)
wwall(x, z, ω)
pwall(x, z, ω)









; f∞ =









u∞(x, z, ω)
v∞(x, z, ω)
w∞(x, z, ω)
p∞(x, z, ω)









(4.36)

Since the system defined by eq (4.29) is no more homogeneous and the
coefficient matrix A is singular because it has been imposed at order zero,
the solvability condition (3.17) is required:

y∗
0 ·
(

−H df0
dx
−G

df0
dz
−Cf0 + ye−

iθ(x,z,t)
ǫ̃

)

= 0 (4.37)

where y∗
0 is the left–eigenvector of the eigenvalue problem (the adjoint of

the solution).
Observing that the eigenvector f0 is not unique since it has been obtained

by an eigenvalue problem, so that instead of f0 we can substitute cf0, eq
(4.37) reads

y∗
0 ·
(

−cH df0
dx
−Hf0

dc

dx
− cCf0 + ye−

iθ(x,z,t)
ǫ̃

)

= 0 (4.38)

or

[y∗
0 · (Hf0)]

dc

dx
+

[

y∗
0 ·
(

H
df0
dx

+Cf0

)]

c = y∗
0 · ye−

iθ
ǫ̃ (4.39)

where H , C, f0, y
∗
0, y and c are all functions of the streamwise coordinate

x. Substituting

a1 = y∗
0 · (Hf0) (4.40)

a2 = y∗
0 ·
(

H
df0
dx

+G
df0
dz

+Cf0

)

(4.41)

eq. (4.39) can be written in the compact form:

dc

dx
+
a2
a1
c =

y∗
0 · y
a1

e−
iθ
ǫ̃ (4.42)
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The conclusion, from the first–order analysis, is that an equation for c has
been obtained in order to make cf0 univocally defined even if f0, coming
from zero–order analysis, was not unique.

4.4 Receptivity analysis

The solvability condition (4.42) can be integrated in a closed form, ob-
taining:

c(xf , z, t) =

∫ xf

x0

y∗
0(x) · y(x)
a1(x)

e−
iθ(x,z,t)

ǫ̃ e
−

∫ xf

x

a2(x
′)

a1(x′)
dx′

dx (4.43)

which yields

f(xf ) =







∫ xf

x0

y∗
0(x) · y(x)
a1(x)

e−
iθ(x,z,t)

ǫ̃ e
−

∫ xf

x

a2(x
′)

a1(x′)
dx′

dx






f0(xf )e

iθ(xf ,z,t)

ǫ̃ +O(ǫ̃)

(4.44)

It is worth observing that if y(x) behaves like e
iθ(x,z,t)

ǫ̃ , the integral in eq.
(4.44) is non–zero which means that y(x) produces a considerable effect.

Observing that

θ(x, z, t) =

∫ x

x0

α(x′) dx′ −
∫ t

t0

ω(t′) dt′ (4.45)

which, in the case of spatial instabilities at fixed frequency, since α varies
with x and ω is constant, reduces to

θ(x, z, t) =

∫ x

x0

α(x′) dx′ − ωt (4.46)

and substituting in eq. (4.44), f(xf ) reads:






∫ xf

x0

y∗
0(x) · y(x)
a1(x)

e−
i
∫x
x0

α(x′) dx′

ǫ̃ e
i
∫xf
x0

α(x′) dx′

ǫ̃ e
−

∫ xf

x

a2(x
′)

a1(x′)
dx′

dx






f0(xf )+O(ǫ̃)

(4.47)
or simply:

f(xf ) =







∫ xf

x0

y∗
0(x) · y(x)
a1(x)

e
−

∫ xf

x

(

a2(x
′)

a1(x′)
− iα(x′)

ǫ̃

)

dx′

dx






f0(xf )+O(ǫ̃)

(4.48)
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and finally

f(xf ) =







∫ xf

x0

y∗
0(x) · y(x)
a1(x)

e
−

∫ xf

x
a(x′) dx′

dx






f0(xf ) +O(ǫ̃) (4.49)

where

a(x′) =
a2(x

′)

a1(x′)
− iα(x′)

ǫ̃
(4.50)

The solution (4.49) can be rewritten in the following compact form:

f(xf ) = f0(xf )

∫ xf

x0

r(x) · y(x) dx +O(ǫ̃) (4.51)

where

r(x) =
y∗
0(x)

a1(x)
e
−

∫ xf

x
a(x′) dx′

(4.52)

We know that f0(xf ) has been obtained by solving an eigenvalue prob-
lem, which means that it is not unique. Nevertheless, the solution (4.44) and
(4.51) are unique because the solvability condition provides the constraint
in order to resolve the uncertainty.

The final vector f(xf ) written in the form (4.51) shows a sensitivity to
the known vector y(x) via r(x). This means that we can define r(x) as the
receptivity vector to the known source vector y(x).

The known vector y(x) can contain source terms coming from the con-
tinuity or the momentum equations and from non–homogeneous boundary
conditions.

It is important to note that the receptivity vector r(x) can be expressed
as

r(x) = a3(x)y
∗
0(x) (4.53)

where

a3(x) =
1

a1(x)
e
−

∫ xf

x
a(x′) dx′

(4.54)

which means that, apart from a constant a3(x), the receptivity is simply
the adjoint solution or the left–eigenvector of the direct problem.



Chapter 5

Results

In the present section, results obtained from the application of the code
are discussed. The first analyses are aimed to validate the stability code
on the ASU test case, while the second test case refers to the computations
of the receptivity function to a bump on a Falkner-Skan-Cooke boundary
layer.

5.1 ASU Test Case

This case comes from experiments performed by Bill Saric and coworkers
[60]. It is chosen as reference as it minimizes presence of attachment-line,
TS or Görtler instabilities and encourages growth of crossflow disturbances.
The ASU(67)-0315 is installed in the low-turbulence Klebanoff-Saric Wind
Tunnel at Texas A&M University. It has a 1.83 m chord and a pressure
minimum at 71% chord. Naphthalene flow visualization, used to deter-
mine transition location, and detailed velocity profile scans using hotwire
anemometry are provided. RANS computations have been performed [61]
in order to obtain a pressure distribution which agrees well with the exper-
imental data from the ASU(67)-0315 tests. Different RANS computations
atM = 0.04 and a chord-Reynolds-number 2.4 106 have been performed for
the wing mounted in the wind tunnel using the infinite-swept wing approx-
imation. In these computations the flow over the airfoil has been assumed
to be either fully turbulent or transitional. The wind tunnel walls have
either been approximated by slip boundary conditions or no-slip boundary
conditions with turbulent boundary layer. The transition was triggered at
x/c = 70% on the upper surface and at x/c = 10% on lower surface of the
wing.

Stability analyses on the ASU(67)-0315 are performed for steady and
unsteady modes. The spanwise wavelength is fixed at β = 400 1/m, while
frequency ranges from 0 Hz to 200 Hz. The results at O(0), in terms of
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growth rate α and N factor curves, are compared with the data supplied by
FOI and shown from figure 5.1 to figure 5.5. As it can be seen, the results
are in good agreement for all the frequencies.

-5

 0

 5

 10

 15

 20

 25

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

− 
ℑ (

α)

x

FOI/KTH
CIRA O(0)

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

N

x

FOI/KTH
CIRA O(0)

Figure 5.1: ASU test case, comparisons with FOI data at F = 0 Hz
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Figure 5.2: ASU test case, comparisons with FOI data at F = 50 Hz
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Figure 5.3: ASU test case, comparisons with FOI data at F = 100 Hz
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Figure 5.4: ASU test case, comparisons with FOI data at F = 150 Hz
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Figure 5.5: ASU test case, comparisons with FOI data at F = 200 Hz

The results at O(0) and O(1), obtained by the developed stability code,
are compared in order to show the effect of the first order correction. The
computations refer to the same frequencies and spanwise wavelength as
before and are shown from figure 5.6 to figure 5.10.
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Figure 5.6: ASU test case, comparisons for O(0) and O(1) at F = 0 Hz
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Figure 5.7: ASU test case, comparisons for O(0) and O(1) at F = 50 Hz
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Figure 5.8: ASU test case, comparisons for O(0) and O(1) at F = 100 Hz
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Figure 5.9: ASU test case, comparisons for O(0) and O(1) at F = 150 Hz
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Figure 5.10: ASU test case, comparisons for O(0) and O(1) at F = 200 Hz

5.2 Falkner-Skan-Cooke Test Case

For the receptivity analysis, a boundary-layer flow over a swept flat plate
is considered. The mean flow is obtained by solving the Navier-Stokes equa-
tions with Falkner-Skan-Cooke (FSC) velocity profiles [62, 63] as the initial
condition. This configuration often serves as a prototype for swept-wing
boundary-layer flow, including many of its characteristics such as chordwise
pressure gradient, streamline curvature and crossflow, while leading edge
and surface curvature are not taken into account. The flow configuration
corresponds to the direct numerical simulations performed by Schrader et
al. [64] of a FSC boundary layer with a Hartree parameter of βH = 0.333.
All the quantities are non-dimensionalized with reference to δ∗ and Ue at
x = 167.

The stability analysis is relative to the stationary mode (F = 0 Hz) and
a spanwise wavelength β = 0.19 1/m. In figure 5.11 the growth rate and N
curve are compared with the available data, while in figure 5.12 the results
at O(0) and O(1) are compared.
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Figure 5.11: Falkner-Skan-Cooke test case, comparisons with FOI data
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Figure 5.12: Falkner-Skan-Cooke test case, comparisons for O(0) and O(1)

5.3 Receptivity analysis

The receptivity function is computed for the Falkner-Skan-Cooke bound-
ary layer. The function is computed with reference to the roughness element
at different chordwise locations. The considered element is a bump whose
shape is described by the following equation:

hx(x) =

[

S

(

x− hstart
hrise

)

− S
(

x− hend
hfall

+ 1

)]

S(ξ) =











0 ξ ≤ 0

1/(1 + e1/(ξ−1)+1/ξ) 0 < ξ < 1

1 ξ ≥ 1

In figure 5.13 the shape of the bump is shown.
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Figure 5.13: Shape of the bump

The values hstart, hrise, hend and hfall are constant for a given location.
In order to introduce the disturbance related to the presence of the bump
as a wall–disturbance to superimpose on the base flow, a Taylor series is
applied:

u(x, h(x), z) = 0 ≈ u(x, 0, z) +
∂Vb

∂y

∣

∣

∣

∣

y=0

h(x)

u(x, 0, z) = −∂Vb

∂y

∣

∣

∣

∣

y=0

h(x) (5.1)

By using the expansion, it is not necessary to modify the geometry of the
test case, but the disturbance enters in the flow as a velocity.

Computations were performed placing the bump in different locations,
in order to observe the effect on the base flow. In figure 5.14, the bump
(solid line) and the equivalent disturbance (dashed line) are shown for the
chordwise position xr = 305. Note that the bump height is scaled by a
factor 0.018. In figure 5.15 three bumps are shown at different chordwise
stations, in particular at xr = 305, xr = 628 and xr = 962 in order to
compare the relative perturbations on the base flow.

As it can be seen, even though the shape is the same, the disturbance
is different as it depends on the value at the wall of the y-derivative of the
base flow velocity, eq. 5.1.
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Figure 5.14: Bump shape and relative disturbance at xr = 305
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Figure 5.15: Comparison of the disturbances at xr = 305, xr = 628 and
xr = 962

Recalling eq. 4.54, the constant a3(x), whose expression is reported
below, is computed and shown in figure 5.16.

a3(x) =
1

a1(x)
e
−

∫ xf

x
a(x′) dx′
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As it depends only on the stability analysis and not on the disturbance
element, it is unique for the test case considered once fixed frequency F and
spanwise wavenumber β.
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Figure 5.16: Coefficient a3 for receptivity vector

Once the coefficient a3 is computed, and consequently the receptivity
vector r (eq. 4.53) , the computation of

c =

∫ xf

x0

r(x) · y(x)dx

is straightforward. From figure 5.17 to 5.25, the value of the receptivity
constant c (solid line) is shown as function of the chordwise coordinate
for different roughness positions. In the same figures, the disturbance is
superimposed (dashed line). The first roughness location is xr = 305 while
the first neutral point is x = 297.
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Figure 5.17: Receptivity coefficient for roughness at xr = 305
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Figure 5.18: Receptivity coefficient for roughness at xr = 405
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Figure 5.19: Receptivity coefficient for roughness at xr = 516
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Figure 5.20: Receptivity coefficient for roughness at xr = 628
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Figure 5.21: Receptivity coefficient for roughness at xr = 739
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Figure 5.22: Receptivity coefficient for roughness at xr = 851
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Figure 5.23: Receptivity coefficient for roughness at xr = 962
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Figure 5.24: Receptivity coefficient for roughness at xr = 1074



56 5.3 Receptivity analysis

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 200  400  600  800  1000  1200  1400  1600

x

xr=1185

Figure 5.25: Receptivity coefficient for roughness at xr = 1185

In figure 5.26 the value of c is shown as function of the roughness location
xr. It is worth noting that the receptivity coefficient c presents a minimum,
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Figure 5.26: Receptivity coefficient at different chordwise locations

for this simulation at xr = 405, which corresponds to the second station
analyzed. Two main conclusions can be achieved. The first is that the same
bump introduces a different disturbance in function of the applied location.
The second is that the function is not monotonic and the minimum does not
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necessarily coincide with the roughness location nearest to the first neutral
point.
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Chapter 6

Receptivity to free-stream dis-
turbances

The aim of this chapter is the formulation of a theory for the prediction
of boundary-layer receptivity arising from the interaction of free-stream dis-
turbances with local or distributed surface inhomogeneities. The attention
will be focused on the generation of TS waves by the interaction of surface
roughness with an acoustic- or vortical-wave induced perturbation. The
aim is to express the amplitude of the resulting TS wave downstream of the
interaction zone in the simple form:

|A(xf )| =
∣

∣

∣

∣

∫ xf

x0

r(x) y(x) dx

∣

∣

∣

∣

(6.1)

Recalling eq. 4.52, the generic function y(x) represents a known forcing
term and the function r(x) is the receptivity of A(xf ) with respect to y(x).
Within this formulation it is clear that the receptivity function r(x) repre-
sents the sensitivity of the solution to the specific forcing term and plays
the role of a Green’s function.

As an example, consider the interaction of an acoustic wave with a sur-
face bump of shape y = δh(x), where δ is the typical length-scale of the
bump and h(x) is a shape function of O(1). In this case the function r(x)
will depend on the characteristics of the impinging disturbance and linearly
on its amplitude ǫ if weak enough. Thus r(x) = ǫrh(x) and the resulting
TS amplitude can be expressed as

A(xf ) =

∣

∣

∣

∣

ǫδ

∫ xf

x0

rh(x)h(x)dx

∣

∣

∣

∣

. (6.2)
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6.1 Problem formulation and governing equations

We will focus our attention on an incompressible two-dimensional bound-
ary layer over a flat plate. The set of equations can be written in a compact
form through the notation

L [q] +N [q,q] = 0 , (6.3)

where

L =

























∂

∂x

∂

∂y
0

∂

∂t
− 1

Re

(

∂2

∂x2
+

∂2

∂y2

)

0
∂

∂x

0
∂

∂t
− 1

Re

(

∂2

∂x2
+

∂2

∂y2

)

∂

∂y

























(6.4)

N [q1,q2] =



















0

∂U1U2

∂x
+

1

2

∂U1V2 + U2V1
∂y

∂V1V2
∂y

+
1

2

∂U1V2 + U2V1
∂x



















(6.5)

and q(x, y, t) = [u(x, y, t), v(x, y, t), p(x, y, t)] with boundary conditions at
wall

{

Û = 0

V̂ = ǫv̂wall(x, y, t)
at y = δh(x) (6.6)

and in the free-stream











Û → 1 + ǫû∞(x, y, t)

V̂ = ǫv̂∞(x, y, t)

P̂ = 1 + ǫp̂∞(x, y, t)

as y →∞ (6.7)

In the previous conditions, an unsteady perturbation, with a typical
velocity scale u∞ << U∞ and frequency ωǫ, is superimposed on the mean
flow. The receptivity mechanism is assumed to occur for the presence of
surface roughness distribution of shape y∗ = ℓ∗h(x), where ℓ∗ is a typical
length-scale of the roughness height, much shorter than the boundary layer
thickness δ∗
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In eqs. 6.6 and 6.7, û∞(x, y, t), v̂∞(x, y, t) and p̂∞(x, y, t) are the non-
dimensional far-field velocities and pressure of the unsteady perturbation,
while v̂wall(x, y, t) is a possible unsteady suction velocity, δ = ℓ∗/δ∗xr

<< 1
and ǫ = u∞/U∞ << 1. The function h(x) is considered to be O(1) with
respect to δ and the functions û∞(x, y, t), v̂∞(x, y, t) and v̂wall(x, y, t) are
both assumed to be O(1) with respect to ǫ.

Since we have considered both the unsteady and the roughness induced
perturbation to be small, solution of NS equations with the previous bound-
ary conditions can be found in the form of an asymptotic series in the small
parameters ǫ and δ

q̂(x, y, t) = Q(x, y) + ǫqǫ(x, y)e
iωǫt + δqδ(x, y) (6.8)

+ ǫ2qǫ2(x, y)e
i2ωǫt + ǫδqǫδ(x, y)e

iωǫt + δ2qδ2(x, y) + . . .

The first term in the expansion is the steady base flow in the absence of
any kind of perturbation and can be approximated by

Q(x, y) = QB(εx, y)+O(ε) with ε = 1/Re << 1 (6.9)

under the assumption Re >> 1, where QB(εx, y) is the Blasius profile. The
second term in the expansion represents a non stationary wave of amplitude
ǫ and non-dimensional frequency ωǫ which models an acoustic- or vortical-
induced perturbation. The third term is a stationary standing wave and
accounts for the mean-flow distortion induced by the steady surface rough-
ness distribution. All the other terms in the expansion are caused by the
nonlinear interaction between the base flow and the steady and unsteady
disturbances. Only the O(ǫδ) term has the correct time-spatial character-
istics typical of the TS instability wave among the nonlinear interaction.
Thus, only that term will be considered, neglecting all the other second
order contributions. Substituting eqs. 6.8 and 6.9 in the Navier–Stokes
equations and collecting coefficient of powers in ǫ and δ yields
O(ǫ)

L0qǫ(x, y)e
iωǫt = 0 (6.10a)







uǫ(x, y)e
iωǫt → uǫ∞(x, y)eiωǫt

vǫ(x, y)e
iωǫt → vǫ∞(x, y)eiωǫt

pǫ(x, y)e
iωǫt → pǫ∞(x, y)eiωǫt

as y →∞ (6.10b)

{

uǫ(x, y) = 0
vǫ(x, y)e

iωǫt = vǫ wall(x, y)e
iωǫt at y = 0 (x > 0) (6.10c)
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O(δ)

L0qδ(x, y) = 0 (6.11a)







uδ(x, y)→ 0
vδ(x, y)→ 0
pδ(x, y)→ 0

as y →∞ (6.11b)







uδ(x, y) = −
∂UB

∂y
h(x)

vδ(x, y) = 0
at y = 0 (x > 0) (6.11c)

O(ǫδ)

L0qǫδ(x, y)e
iωǫt = S [qδ;qǫ] e

iωǫt (6.12a)







uǫδ(x, y)e
iωǫt → 0

vǫδ(x, y)e
iωǫt → 0

pǫδ(x, y)e
iωǫt → 0

as y →∞ (6.12b)











uǫδ(x, y)e
iωǫt = −∂uǫ

∂y
h(x)eiωǫt

vǫδ(x, y)e
iωǫt = −∂vǫ

∂y
h(x)eiωǫt

at y = 0 (x > 0) (6.12c)

where S[q1,q2] ≡ −2N[q1,q2] and L0 is defined as L0q ≡ L(q)+2N(Q,q).
Since it is assumed that δ << 1, the boundary conditions at y = δ h(x) are
moved to y = 0, by making use of a Taylor series expansion about q(x, 0, t) :

q(x, δ h(x)) = q(x, 0) +
∂q

∂y
(x, 0)δ h(x) +O(δ2) (6.13)

The linearization is valid only if the typical height of the surface roughness
is much smaller than the typical lengthscale over which the surface shape
changes in the streamwise direction.

For sake of simplicity the multiple scale approach is not demonstrated
here, but follows the development in [65]. The formula for the amplitude
of the TS wave at any station x > x2, where x2 represents the end of the
roughness element, is

A =

∫ x2

x1

a 3(x)

a1(εx)
e
i

∫ x

x0

κǫδ(εx
′) dx′

dx+O(ε) (6.14)
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where κǫδ(X) is given by

κǫδ(X) = αǫδ(X) − iεa2(X)

a1(X)
(6.15)

and a1, a2 and a3 are defined respectively as

a1(X) =

∫ ∞

0
vǫδ(X, y) ·

[

H
duǫδ,0(X, y)

dX
+Cuǫδ,0(X, y)

]

dy(6.16a)

a2(X) =

∫ ∞

0
vǫδ(X, y) ·

[

Huǫδ,0(X, y)

]

dy (6.16b)

a3(x) =

∫ ∞

0
vǫδ(X, y) · S(x, y) dy + uǫδ(x, 0) · S̃ (X) (6.16c)

where H and C are the operators defined in §4 and A is the amplitude of
the excited wave. Note that while a1 and a2 are functions of X, a3 is not
slowly varying but depends on the fast variable x. Furthermore a3 contains
two different terms: the first one derives from the forcing of equation 6.12a,
while the second accounts for the forcing in the wall boundary conditions
6.12c. The vector S̃ (X), which is usually referred to as adjoint stress, is
explicitly found to be

S̃ (X) =





















0

1

Re

∂u†ǫδ
∂y

∣

∣

∣

∣

∣

y=0

p†ǫδ(X, 0)





















(6.17)

The forcing term S(x, y) in its explicit form is given by

S(x, y) ≡ −2N(qǫ,qδ) = −



















0

∂uǫ
∂x

uδ + uǫ
∂uδ
∂x

+ vǫ
∂uδ
∂y

+ vδ
∂uǫ
∂y

∂vǫ
∂x

uδ + uǫ
∂vδ
∂x

+ vǫ
∂vδ
∂y

+ vδ
∂vǫ
∂y



















(6.18)

The dependence of the integrand in eq. 6.14 on the arbitrary initial
position X0 can be eliminated by introducing the position XN = εxN of the
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neutral point, i.e. the position where the function

κǫδ(X) = αǫδ(X) − iεa2(X)

a1(X)
(6.19)

crosses the imaginary axis, i.e. where ℑ(κ(XN )) = 0. The solution of the
receptivity problem can be re-written as

qεδ(X, y) = AT uǫδ ,0(X, y) e
− i

ε

∫ X

XN

κǫδ(X)dX ′

+O(ε) (6.20)

where we have re-defined the total amplitude AT as

AT =

x2
∫

x1

a 3(x)

a1(εx)
e
i

∫ x

xN

κǫδ(εx
′)dx′

dx (6.21)

This solution can now be used to evaluate the effects of the streamwise
growth of the boundary layer for different kinds of external disturbances.
In order to obtain quantitative results we must now evaluate the coefficient
a1, a2 and a3 which depends on the solution of the O(ǫ) and O(δ) problem.

6.2 The unsteady perturbation

We consider unsteady perturbations which can be locally approximated
in the far field by planar waves:

qǫ ∼ uǫ(εx, y, ε)e
−iφǫ(X)/ε = uǫ(εx, y, ε)e

−i

∫

αǫ dx

(6.22)

where φǫ(X) is a known function. A local solution of eq. 6.10 can be found
by imposing the multiple scale expansion

qǫ(X, y) = e−iφǫ(X)/εuǫ (X, y, ε) = e−iφǫ(X)/ε
∑

n

uǫ ,n(X, y) ε
n (6.23)

which substituted in eq. 6.10 gives rise to a series of problems for the
determination of the leading order solution and its corrections:

O(ε0)

A(αǫ, ωǫ, Re)uǫ,0(X, y) = 0 (6.24a)
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





uǫ,0(X, y)→ uǫ,0 ∞(X, y)
vǫ,0(X, y)→ vǫ,0 ∞(X, y)
pǫ,0(X, y)→ pǫ,0 ∞(X, y)

as y →∞ (6.24b)

{

uǫ,0(X, y) = 0
vǫ,0(X, y) = vǫ,0 wall(X, y)

at y = 0 (6.24c)

O(ε1)

A(αǫ, ωǫ, Re)uǫ,1(X, y) = −H(αǫ, Re)
duǫ,0

dX
−C(αǫ,Re)uǫ,0(6.25a)







uǫ,1(X, y)→ 0
vǫ,1(X, y)→ 0
pǫ,1(X, y)→ 0

as y →∞ (6.25b)

{

uǫ,1(X, y) = 0
vǫ,1(X, y) = 0

at y = 0 (6.25c)

where

αǫ =
dφǫ
dX

(6.26)

is the wave-number of the unsteady perturbation and A,H,C are the op-
erators defined in §4. We now specify two different kinds of perturbations
which will be used to evaluate the amplitude of the TS wave generated by
their interaction with the surface roughness.

6.2.1 Sound wave

Here we consider the response of the boundary layer to a time harmonic
pulsation of frequency ωε such that αε = 0, uǫ∞(x, y) = 1, vǫ∞(x, y) =
0 and vǫ wall(x, y) = 0 in eq. 6.24. In the low Mach number limit this
represents an acoustic wave propagating parallel to the plate direction. No
diffraction effects are originated at the leading edge of the plate and the
multiple scale expansion results in this particular case are uniformly valid
in the y direction. At order ε, we get the following equations describing the
acoustic signature inside the boundary layer:

∂vǫ,0
∂y

= 0 (6.27a)
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iωǫuǫ,0 −
1

Re

∂2uǫ,0
∂y2

+
∂UB

∂y
vǫ,0 = 0 (6.27b)

iωǫvǫ,0 −
1

Re

∂2vǫ,0
∂y2

+
∂pǫ,0
∂y

= 0 (6.27c)

with boundary conditions

uǫ,0 → 1 for y →∞
pǫ,0 → 0 for y →∞
uǫ,0 = 0 at y = 0
vǫ,0 = 0 at y = 0 .

(6.28)

The problem is easily solved and the solution corresponds to the well-known
Stokes shear wave

uǫ,0 = 1− e−
√
iωǫRe y

vǫ,0 = 0
pǫ,0 = 0

(6.29)

Figure 6.1 shows the modulus and the argument of the solution (6.29)
at the neutral location for an impinging perturbation of frequency F =
38× 10−6.
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Figure 6.1: Stokes wave at the neutral position for F = 38 10−6

Using the multiple scale approach we can also include non-parallel cor-
rection terms from the next-order equation. At O(ε1), in fact, we have
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∂vǫ,1
∂y

= 0 (6.30a)

iωǫuǫ,1 −
1

Re

∂2uǫ,1
∂y2

= −uǫ,0
∂UB

∂X
− VB

∂uǫ,0
∂y

(6.30b)

iωǫvǫ,1 −
1

Re

∂2vǫ,1
∂y2

+
∂pǫ,1
∂y

= 0 (6.30c)

with boundary conditions

uǫ,1 → 0 for y →∞
pǫ,1 → 0 for y →∞
uǫ,1 = 0 at y = 0

vǫ,1 = 0 at y = 0

(6.31)

where UB , VB are the velocity components of the Blasius solution. The
leading order solution appears as a forcing term in the right hand side
of the equations. In the present case, for typical values of the Reynolds
number Re and frequency parameter F used for the receptivity calculations,
|uǫ,1|max ≃ 0.01 |uǫ,0|. Thus non-parallel corrections are quite small and can
be effectively neglected.

6.2.2 Vortical wave

For a vortical wave the gust is convected by the free-stream and therefore
αǫ ∼ ωǫ. Assuming the perturbation to be bounded at ∞, i.e.

∂ψ

∂y
= u(y) ∼ e−iγǫy as y →∞ (6.32)

where γ is real and positive, we get the dispersion relation

α2
ε + iReδ (ωε − αε) = −γ2ǫ , (6.33)

which relates the vertical and the streamwise wave number of the pertur-
bation. If γǫ = 0 and the vortical signature is attenuated in the streamwise
direction, the value of αǫ to be used in the Orr-Sommerfeld operator is given
by

αǫ =
iRe− i

√
Re2 + 4iωǫRe

2
. (6.34)
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The boundary conditions become






uǫ,0(X, y)→ −αǫZ1e
−αǫy + Z4

vǫ,0(X, y)→ −iαǫ (Z1e
−αǫy + Z3 + Z4y)

pǫ,0 = 0
as y →∞ (6.35a)

{

uǫ,0(X, y) = 0
vǫ,0(X, y) = 0

at y = 0 (6.35b)

where Z1 and Z3 are constant to be determined and Z4 is fixed and assumed
here to be 1. Figure 6.2 shows the modulus and the argument of the solution
at the neutral location for the frequency F = 38 × 10−6. Numerical tests
on the second-order problem 6.25 have confirmed that for typical values of
the frequency parameter and Reynolds number non-parallel corrections are
quite small for the Blasius boundary layer and can be therefore effectively
neglected in the present context.
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Figure 6.2: Vortical wave components at the neutral position for F =
38 10−6

6.3 The steady perturbation

The equations describing the steady perturbation to the base flow in-
duced by the surface roughness are given by 6.11. The formula for the final
amplitude can be rewritten as

AT =

x2
∫

x1

< vǫδ , S(qǫ,qδ) > +uǫδ(x, 0) · S̃ (X)

< vǫδ , Hqǫδ,0 >
e
i

∫ x

xN

κǫδ(εx
′)dx′

dX (6.36)
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where the unsteady perturbation is assumed to have the local wave form

qǫ = uε,0(εx, y)e
− i
ε

∫ X

XN

αǫdX

(6.37)

and where, using the boundary conditions in 6.12c, we can replace uǫδ(x, 0)

with − dqǫ

dy

∣

∣

∣

∣

y=0

h(x). The leading-order approximation is obtained by con-

sidering only the Fourier component of qδ which satisfies the resonance
condition

αδ = κ− αε (6.38)

Since the base flow is slowly evolving, the Green’s function for the O(δ)
problem is a slowly-varying function of the streamwise coordinate x, and
consequently we can write locally the broad-band response of the boundary
layer as

qδ(x, y) =

∫∫

uδ (X, y, ε, αδ)e
iαδ(x−x0)h(x0)dx0 dαδ (6.39)

=
∑

n

εn
∫∫

uδ,n(X, y, α) e
iαδ (x−x0)h(x0)dαδdx0

where uδ (X, y, ε, α) represents the local Fourier transform of the solution.
So, considering only the resonating term, eq. 6.39 is approximated as:

qδ(x, y) ∼
∑

n

εnuδ,n(X, y, αδ)

∫∫

eiαδ(x−x0)h(x0) dαδ dx0 (6.40)

= uδ,0(X, y, αδ)

∫

δ(x− x0)h(x0)dx0 +O(ε)

= uδ,0(X, y, αδ) h(x)

where uδ,0(X, y, αδ) is now a solution of

A(αδ, 0, Re)uδ,0 = 0 (6.41)

with wall boundary conditions given by







uδ,0 = −
∂UB

∂y
vδ,0 = 0

at y = 0 (6.42)
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The free-stream conditions for eq. 6.41 must be imposed so that the solution
of eq. 6.41 must decay as y → ∞, to the resonant value αδ determined by
eq. 6.38. Figure 6.3 shows the typical shape of the steady boundary layer
response components used to evaluate the receptivity in case of an impinging
vortical wave at F = 38× 10−6.
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Figure 6.3: Resonant Fourier mode at the neutral point for F = 38 10−6

6.4 Final TS wave amplitude

Having expressed both the solution of the O(ǫ) and O(δ) problems with a
local wave-form approximation, the final solution for the excited TS wave
becomes

qǫδ(X, y) = AT uǫδ ,0(X, y) e
− i

ε

∫ X

XN

κǫδ(X
′) dX ′

+O(ε) (6.43)

where AT simplifies at order ε to

AT ≈
∫ x2

x1

Λ(x) e
i

∫ x

xN

αδ(εx
′) dx′

h(x) dx (6.44)

The function

Λ (x) =

< vǫδ , S̄(uǫ,0,uδ,0) > −
duǫ,0

dy

∣

∣

∣

∣

y=0

· S̃ (X)

< vǫδ , Hqǫδ,0 >
(6.45)

is a local efficiency function which returns the amplitude of a TS wave
generated by a point-wise roughness element of unit strength. The vector
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term S̄(uǫ,0,uδ,0) is, up to the factor h(x), the leading-order approximation
of the forcing S and is explicitly given by

S̄(uǫ,0,uδ,0, αǫ, αδ) = −





















0

−iαǫuǫ,0uδ,0 − iαδuǫ,0uδ,0 + vǫ,0
∂uδ,0
∂y

+ vδ,0
∂uǫ,0
∂y

−iαǫvǫ,0uδ,0 − iαδuǫ,0vδ,0 + vǫ,0
∂vδ,0
∂y

+ vδ,0
∂vǫ,0
∂y





















(6.46)
Equation 6.44 is the same of 6.1 by setting

rh(x) = Λ (x) e

i
ε

∫ X

XN

αδ(X)dX

(6.47)

where αδ satisfies eq. 6.38. In cases in which the roughness is localized,
rewriting eq. 6.44 in term of xr and considering that the inhomogeneity has
compact support, the coefficient becomes

AT = e
−

∫ x

xr

iαδdx
∞
∫

−∞

Λ(x) e

∫ x

xr

iαδdx

h(x)dx (6.48)

In particular at x = xr the first exponential reduce to 1

AT =

∞
∫

−∞

Λ(x) e

∫ x

xr

iαδdx

h(x)dx (6.49)

If we now assume the flow to be locally parallel then αδ = αTS − αǫ. As
Λ(x) and αδ change only of a small quantity over the roughness element, we
can assume them to be constant and equal to their value at x = xr (Λ(xr)
and αδr ). Thus

AT = Λ(xr)

∞
∫

−∞

eiαδrxh(x)dx = Λ(xr)H(αδr ) , (6.50)

where H(αδr) is the Fourier transform of the wall-shape evaluated at the
resonating wavenumber αδr .
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6.5 Numerical results

We now report some numerical results obtained using the previously de-
scribed theory. The mean flow profile is assumed to be the Blasius boundary
layer.

Note that expression 6.44 gives the value of the coupling coefficient using
an nondimensionalization based on a fixed δ∗r . Taking as reference length
the local boundary-layer thickness the coupling coefficient reads:

AT ≈
Re2
∫

Re1

rx(Re) h(Re) dRe (6.51)

with

rx(Re) = 2Λx(Re)e
i

∫ Re

ReN

2αδ dRe′

(6.52)

and

Λx(Re) = Λδr(x)

(

Reδx
Reδr

)2

(6.53)

In the previous equations Re1 and Re2 stand respectively for the Reynolds
numbers of the locations x1 and x2 which delimit the support of the rough-
ness shape function h(x).
In figure 6.4 the modulus of the efficiency function Λx and of the Green’s
function rx relative to the interaction of the wall-roughness with the Stokes
wave (6.29) for different values of the frequency parameter F are plotted.
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Figure 6.4: Efficiency and Green function for the acoustic wave case
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Both functions are normalized on the local boundary-layer thickness δ∗x.
Crosses and circles indicate respectively the branch I and II locations. The
efficiency function retains its typical shape for the whole range of frequen-
cies investigated, shifting upward as F is decreased. The Green’s function
rx(x) shows a typical bell shape, which attains its maximum in a region
close to branch I, decaying exponentially as we move away from that lo-
cation. The magnitude and the bandwidth of the Green’s function change
only slowly with the frequency, the first one increasing and the second one
decreasing as F is lowered. Comparing these results with those relative
to the vorticity-roughness interaction, shown in figure 6.5, we immediately
realize that acoustic perturbations are much more efficient TS wave gener-
ators than vortical gusts: the modulus of the Green’s function, in fact, is
now almost two orders of magnitude smaller than in the previous case.
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Figure 6.5: Efficiency and Green function for the vortical wave case

In figure 6.6 we plot the N factor

N =

∫ x

xN

α(i) + ε∆α(i)dx =

∫ x

xN

κ(i)dx (6.54)

based on the non-parallel growth rate κ(i) for different values of the fre-
quency parameter F .
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Figure 6.6: N factor for different values of F

In figure 6.7 we evaluate the non-parallel effects at a fixed frequency F =
38 × 10−6, comparing the Green’s functions obtained using the previously
developed theory and those derived by the classical parallel flow assumption.
In the same picture we also plot the N factor for the parallel and non-parallel
case. As we can see the slow variation of the mean flow profile produces in
this case only a small change in the value of rx and N . Thus, we can claim
that for a Blasius boundary layer profile non-parallel effects are definitely
weak and could be ignored in a transition prediction analysis. Anyway, tests
currently in progress at CIRA have shown that in real wing configurations
the corrections can be quite large and must be considered for an effective
transition prediction.
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Chapter 7

Conclusions

In this thesis, the problem of the transition from laminar to turbulent
flow in an incompressible boundary layer has been considered. Fluid dy-
namics instabilities have been analyzed and, in particular, attention has
been payed to the receptivity process of wall disturbances.

In order to solve the receptivity problem a multiple–scale approach has
been introduced in non–homogeneous formulation. A receptivity function
is obtained which relates the amplitude of the unstable wave to the external
disturbances. Non–parallel effects are also taken into account. From the
numerical point of view, the multiple–scale method is not computationally
expensive, does not have numerical stability problems and can be applied
to any base flow, obtained from computations or experimental data. For all
these reasons, the receptivity analysis using multiple scales can be efficiently
included in an industrial code for transition prediction.

Two test cases have been analyzed and the results compared with the
ones available from FOI . The first, relative to ASU test case performed by
Saric et al., has been selected in order to validate the numerical tool. Sta-
bility analyses have been performed at different frequencies and the results
compared to the ones obtained by the FOI. At zero–order the agreement
between the curves proved good. The first–order correction has been also
plotted. The second test case, relative to a Falkner–Skan–Cooke flow, has
been selected for the wall–roughness receptivity analysis. The roughness
element is a bump, whose location has been shifted in order to compute the
receptivity coefficient as function of chordwise abscissa. The chosen loca-
tions start from the first neutral point, x = 297, onward and the simulation
shows that the receptivity coefficient function is not monotonic. The mini-
mum does not correspond to the first roughness location (xr = 305), but is
reached in the second analyzed station (xr = 405).

Receptivity related to the interaction of free-stream disturbances with
local or distributed surface inhomogeneities has also been analyzed. The
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attention was focused on the generation of TS waves by the interaction of
surface roughness with an acoustic- or vortical-wave induced perturbation.
The formulation for such analyses is performed in two-dimensional flowfield
and a Blasius boundary layer on a flat plate is considered.

The comparison of the efficiency function and the Green’s function shows
that the acoustic perturbations are much more efficient TS wave generators
than vortical gusts. In fact, the modulus of the Green’s function is almost
two orders of magnitude higher for acoustic wave than for vortical distur-
bance. The evaluation of the non-parallel effects, compared to parallel one,
shows that they are weak and could be ignored in a transition prediction
analysis, in the particular case of Blasius profile.



Appendix A

Basic matrix properties

Let us consider a complex square matrix A. The eigenvalue problem

Au = λu

furnishes n generally complex values λi (the eigenvalues) and, if all the eigen-
values are distinct, the eigenvector ui which are defined up to a constant
and can be arbitrarily normalized. Under these hypotheses, the eigenvectors
ui are linearly independent so that the matrix

U = (u1 · · ·un)

is invertible. The problem
vTA = λvT

gives the eigenvalues λi and the left eigenvector vi, defined up to a constant
too. One possibility is to normalize vi in such a way that

vT
i ui = 1

If all the eigenvalues λi are distinct the left eigenvectors vi are linearly
independent and the matrix

V =







vT
1
...
vT
n







is non singular and therefore invertible.
It can be proved that, if vT

i ui = 1, then VU = I. From the right– and
left–eigenvalue problems

Aui = λiui (A.1)

vT
j A = λjv

T
j
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left multiplying the first expression by vT
j one gets

vT
j Aui = λiv

T
j ui

but since vT
j A = λjv

T
j :

λjv
T
j ui = λiv

T
j ui =⇒ (λj − λi)vT

j ui = 0

λj 6= λi implies
vT
j ui = 0

This result, together with the normalization vT
i ui = 1 leads to

VU = I

which is what we wanted to prove and furnishes U = V−1 so that UV =
V−1V = I and therefore

VU = UV = I

We now prove a more useful property which allows the decomposition of a
matrix in the form:

A =
n
∑

k=1

λkukv
T
k

The equations (A.1) can be written in a matrix form as

AU = ΛU (A.2)

VA = ΛV

where Λ = diag(λ1, . . . , λn). Left multiplying the second equation by U
and remembering that UV = I:

UVA = UΛV =⇒ IA = UΛV =⇒ A = UΛV (A.3)

The matrix UΛV is obviously

UΛV = (u1 · · ·un)







λ1 0 0

0
. . . 0

0 0 λn













vT
1
...
vT
n







= (u1 · · ·un)







λ1v
T
1

...
λnv

T
n






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Indicating with
u1 =

(

u11 u
1
2 · · · u1n−1 u

1
n

)

u2 =
(

u21 u
2
2 · · · u2n−1 u

2
n

)

... =
...

vT
1 =

(

v11 v
1
2 · · · v1n−1 v

1
n

)

vT
2 =

(

v21 v
2
2 · · · v2n−1 v

2
n

)

... =
...

the general ij–th term of the matrix UΛV is:

(UΛV)ij =
n
∑

k=1

uki λkv
k
j =

n
∑

k=1

λkā
k
ij

Basically, the matrix UΛV has been decomposed in the sum of n matrices
λkā

k
ij where ākij = uki v

k
j so that

[ākij ] = [uki v
k
j ] = ukv

T
k

Finally, A = UΛV implies

A =

n
∑

k=1

λkukv
T
k

which is what we wanted to prove.
A couple of other interesting properties can be derived for singular ma-

trices or for matrices with an eigenvalue that goes to zero as a function of
a parameter. Referring to the general linear system

Ax = b

if all the eigenvalues λi are distinct, the right eigenvalues form a basis so
that the solution can be expressed as

x = Uh

and
AUh = b

left multiplying by V
VAUh = Vb

and noticing that from the left–eigenvalue problem VA = ΛV

VAU = ΛVU = ΛI = Λ
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the original linear system reduces to

Λh = Vb

or
λih = vT

i b

If the initial matrix A is singular, all the eigenvalues are distinct and λi = 0,
the only possibility for the solution h, and therefore x, to exist is

vT
i b = 0 (A.4)

Expression (A.4) is usually called “compatibility condition” for linear sys-
tems with a singular matrix and is another way to express the Rouché–
Capelli theorem.

Finally, the last interesting feature regards system with an eigenvalue
going to zero as a function of a parameter. In this case, from the previous
developments, the linear system Ax = b can be reduced to Λh = Vb with
x = Uh. The solution is therefore

x = UΛ−1Vb

Since
Λ−1 = diag(λ−1

1 , · · · , λ−1
n )

when λi → 0 the greatest contribution in Λ−1 is simply the term λ−1
i so

that

x→ 1

λi
ui(v

T
i b) for λi → 0 (A.5)

This expression leads to the conclusion that the RHS of a linear system
with an eigenvalue going to zero as a function of a parameter produces a
contribution of order λ−1

i and, moreover, the solution x behaves like the
corresponding right eigenvector ui.
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Numerical method

In order to solve the eigenvalue problem, the relative differential prob-
lems have to be discretized and the boundary conditions included in the
right way.

B.1 Discretization

The discretization is necessary in order to solve the differential problems.
The second–order finite difference operators were applied and a staggering
of the pressure has been introduced. This means that velocity components
are computed in the nodal point i, while the pressure is computed for the
point i+ 1/2 as shown in figure B.1.

Figure B.1: Staggered grid
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B.2 Boundary conditions

The boundary conditions are included in the coefficient matrix (4.22),
imposing that perturbations go to zero at the wall and vanish at infinity.
In fact, the Orr–Sommerfeld equation for y → ∞ reduces to a constant
coefficient ordinary differential equation which can be easily solved finding
that there are four possible exponential solution:

q(y) =

4
∑

n=1

cne
−pny (B.1)

where

p1 = α (B.2)

p2 = −α (B.3)

p3 =
√

α2 + iR (ω − αU) (B.4)

p4 = −
√

α2 + iR (ω − αU) (B.5)

Since the disturbance q(y) vanishes at infinity (q(y)→ 0 as y →∞), p2 and
p4 imply c2 = c4 = 0. It can be demonstrated that the inviscid root p1 has
a slower decay than the viscous root p3, which means that it is sufficient to
impose that the perturbation at infinity behaves like e−αy:

q(y)→ ce−αy as y →∞ (B.6)

So we can impose the disturbance to behave like e−αy in a y position far from
the wall but not so far as required for imposing it to be zero. This implies
that in the coefficient matrix the perturbation in the last point q(yNy) is
imposed to behave like the exponential starting from the previous point:

q(yNy) = q(yNy−1)e
−α

(

yNy − yNy−1

)

(B.7)

B.3 Eigenvalue–finding algorithm

The eigenvalue–finding algorithm is based on the inverse–iteration al-
gorithm which is based on the direct–iteration algorithm. The idea of the
direct–iteration algorithm is that it is easy to find the eigenvalue of maxi-
mum modulus of a matrix A using:

xn ≃ Axn−1 = A
nx0 (B.8)
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since A = vMλMuM , where λM is the eigenvalue of maximum modulus and
vM and uM respectively the left and right eigenvector associated to λM , we
can write

xn ≃ A
nx0 = vM · x0λ

n
MuM (B.9)

so that the eigenvalue of maximum modulus is easily obtained by:

λM =
vM · x0λ

n
MuM · p

vM · x0λ
n−1
M uM · p

xn ≃
xn · p
xn−1 · p

(B.10)

where p is a projecting vector which can be simply p = xn−1 in order to be
sure not to have division by zero.

The direct–iteration algorithm can be summarized in the following steps:

1. guess value for x0

↓

2. xn ← Axn−1

↓

3. (λM )n ←
xn · p
xn−1 · p

where p could be p = xn−1

↓

4. normalization of xn

↓

5. if |(λM )n − (λM )n−1| is small enough end,
otherwise xn−1 ← xn and go to 2.

This algorithm has two drawbacks: it allows the calculation of only the
eigenvalue of maximum modulus and only if it is real.

The inverse–iteration algorithm, which is based on a modification of the
previous one, requires a lower number of iteration and works also in the
complex case. The idea of the inverse–iteration algorithm is based on the
consideration that the eigenvalues of B = f(A) are f(λk) where λk are the
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eigenvalues of A: if we are looking for λ and we know a guess value λguess
for it, so that (λ− λguess) is small, (λ− λguess)−1 will be the eigenvalue of
maximum modulus of the matrix (A− λguessI)−1 since (λk − λguess)−1 are
its eigenvalues.

This means that we can substitute (A− λguessI)−1 instead of A in the
direct iterative algorithm, obtaining:

1. guess value for λ0 and x0

↓

2. xn ← (A− λn−1I)
−1 xn−1

↓

3. (λ)n ← (λ)n−1 +
xn · p
xn−1 · p

where p could be p = xn−1 or p = x∗
n

with x∗
n complex conjugated of xn

↓

4. normalization of xn

↓

5. if |(λ)n − (λ)n−1| is small enough end,
otherwise (λ)n−1 ← (λ)n, xn−1 ← xn and go to 2.

It can be demonstrated that this algorithm works if the guess values are
close to the right ones, that the convergence is quadratic and that it works
also for the complex case. On the other hand, it requires the inversion of
a matrix at point (2.), which could be computationally hard, but since the
matrix is usually a band–matrix, the inversion algorithm is very fast.

The problem we have to solve (4.20) is:

A(λ)x = 0 (B.11)

where A(λ) is a non–linear function of λ. In order to solve the eigenvalue
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problem (B.11), the matrix A is linearized around a guess value λ0:

Ã(λ) = A(λ0) +
∂A(λ)

∂λ

∣

∣

∣

∣

λ=λ0

(λ− λ0) (B.12)

so that the system (B.11) is replaced by

[A(λ0) +B(λ0) (λ− λ0)]x = 0 (B.13)

where

B(λ0) =
∂A(λ)

∂λ

∣

∣

∣

∣

λ=λ0

(B.14)

the inverse–iteration algorithm in this case becomes:

1. guess value for λ0, x0 and x∗
0

↓

2. xn ← [A(λ0)]
−1 [B(λ0)]xn−1 and

x∗
n ← [B(λ0)]

T [
A

T (λ0)
]−1

x∗
n−1

↓

3. (λ)n ← (λ)n−1 −
x∗
nA(λ0)xn

x∗
nB(λ0)xn

where x∗
nA(λ0)xn = x∗

nB(λ0)xn−1 = x∗
n−1B(λ0)xn

↓

4. normalization of xn and x∗
n

↓

5. if |(λ)n − (λ)n−1| is small enough end, otherwise
(λ)n−1 ← (λ)n, xn−1 ← xn, x

∗
n−1 ← x∗

n and go to 2.

This last algorithm is more efficient than the standard inverse iteration one,
yields the left eigenvector (or adjoint) and when marching in x direction
can use previous step as guess.



86 B.3 Eigenvalue–finding algorithm



Bibliography

[1] J. L. Van Ingen. A suggested semi–empirical method for the calculation
of the boundary layer transition region. Technical Report VTH-74,
University of Technology, Delft, 1956.

[2] S. Zuccher. Receptivity and Control of Flow Instabilities in a Boundary
Layer. PhD thesis, University of Milan - Aerospace Engineer Depart-
ment, 2001.
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