
UNIVERSITY OF SALERNO
DEPARTMENT OF COMPUTER SCIENCE

PhD in COMPUTER SCIENCE

CYCLE XIII

PhD THESIS IN COMPUTER SCIENCE

Coverage in
Wireless Sensor Networks:

Models and Algorithms

Candidate

Ciriaco D’Ambrosio

Tutor Co-Tutor

Prof. Raffaele Cerulli Dr. Francesco Carrabs

Coordinator

Prof. Giuseppe Persiano

2013/2014

To my wonderful family

Acknowledgements

During my PhD I had the great pleasure to work with wonderful and

professional people and I wish to express my gratitude to everybody

for the great research experience that they have granted me. I would

like to thank Professor Raffaele Cerulli, my wise tutor, for his help,

his many precious suggestions and his constant encouragement dur-

ing my PhD He was for me a real guide. I would like also to express

my great gratitude to my exceptional co-tutor, Francesco Carrabs, for

his collaboration, his patience and for teaching me to always pursue

my goals. He was for me a precious point of reference. I am also

very grateful to Andrea Raiconi for his guidance, his patience and his

fundamental contributions to this research work. He demonstrated

great dedication to help me in this research. I am also very thankful

to Monica Gentili for her collaboration and her professional sugges-

tions. Finally, I thank all my family and my dear friend Arcangelo

Castiglione for their support and constant presence, and last but not

least, I want to thank Sara with whom I shared every moment of my

PhD.

Abstract

Due to technological advances which enabled their deployment in rel-

evant and diverse scenarios, Wireless Sensor Networks (WSNs) have

been object of intense study in the last few years. Possible applica-

tion contexts include environmental monitoring, traffic control, pa-

tient monitoring in healthcare and intrusion detection, among others

(see, for example, [4], [16], [37]). The general structure of a WSN

is composed of several hardware devices (sensors) deployed over a

given region of interest. Each sensor can collect information or mea-

sure physical quantities for a subregion of the space around it (its

sensing area), and more in particular for specific points of interest

(target points or simply targets) within this area. The targets located

in the sensing area of a given sensor s are covered by s. Individual

sensors are usually powered by batteries which make it possible to

keep them functional for a limited time interval, with obvious con-

straints related to cost and weight factors. Using a network of such

devices in a dynamic and coordinated fashion makes it possible to

overcome the limitations in terms of range extension and battery du-

ration which characterize each individual sensor, enabling elaborate

monitoring of large regions of interest. Extending the amount of time

over which such monitoring activity can be carried out represents

a very relevant issue. This problem, generally known as Maximum

Lifetime Problem (MLP), has been widely approached in the litera-

ture by proposing methods to determine: i) several subsets of sensors

each one able to provide coverage for the target points and ii) the

activation time of these subsets so that the battery constraints are

satisfied. It should be noted that while sensors could be considered

as belonging to different states during their usage in the intended ap-

plication (such as receiving, transmitting, or idle) in this context two

essential states can be identified. That is, each sensor may currently

be active (i.e. used in the current cover, and consuming its battery)

or not. Activating a cover refers therefore to switching all its sen-

sors to the active state, while switching off all the other ones. This

research thesis shows a detailed overview about the wireless sensor

networks, about their applications but mainly about typical coverage

issues in this field. In particular, this work focuses on the issue of

maximizing the amount of time over which a set of points of interest

(target points), located in a given area, can be monitored by means

of such wireless sensor networks. More in detail, in this research work

we addressed the maximum lifetime problem on wireless sensor net-

works considering the classical problem in which all targets have to

be covered (classical MLP) and a problem variant in which a portion

of them can be neglected at all times (α-MLP) in order to increase

the overall network lifetime. We propose an Column Generation ap-

proach embedding an efficient genetic algorithm aimed at producing

new covers. The obtained algorithm is shown to be very effective and

efficient outperforming the previous algorithms proposed in the liter-

ature for the same problems. In this research work we also introduce

two variants of MLP problem with heterogeneous sensors. Indeed,

wireless sensor networks can be composed of several different types of

sensor devices, which are able to monitor different aspects of the re-

gion of interest including temperature, light, chemical contaminants,

among others. Given such sensor heterogeneity, different sensor types

can be organized to work in a coordinated fashion in many relevant

application contexts. Therefore in this work, we faced the problem

of maximizing the amount of time during which such a network can

remain operational while assuring globally a minimum coverage for

all the different sensor types. We considered also some global regular-

ity conditions in order to assure that each type of sensor provides an

adequate coverage to each target. For both these problem variants we

developed another hybrid approach, which is again based on a column

generation algorithm whose subproblem is either solved heuristically

by means of an appropriate genetic algorithm or optimally by means

of ILP formulation. In our computational tests the proposed genetic

algorithm is shown to be able to meaningfully speed up the global

procedure, enabling the resolution of large-scale instances within rea-

sonable computational times. To the best of our knowledge, these two

problem variants has not been previously studied in the literature.

Contents

Contents vi

List of Figures ix

Nomenclature xii

1 Introduction 1

1.1 Wireless Sensor Network: Motivation 1

1.2 Contributions of this thesis . 3

1.3 Organization of Dissertation . 4

1.4 Reading this document . 5

2 Coverage Optimization in Wireless Sensor Networks 6

2.1 Introduction . 6

2.2 Wireless Sensor Networks Overview 8

2.2.1 Sensor Coverage Models 10

2.2.2 Coverage Problems and Design Issues 13

2.2.2.1 Coverage Problem Types 13

2.2.2.2 Design Issues . 14

2.3 Network Lifetime and Coverage Optimization 20

2.3.1 Covers Scheduling on WSN 20

2.3.2 Common Scenario and Problem Definition 22

3 Maximum Lifetime Problem: Modeling and Algorithms 25

3.1 Modeling the problem . 25

3.2 Column Generation . 28

vi

CONTENTS

3.2.1 Restricted Master Problem Formulation 29

3.2.2 Modeling the Separation Problem 30

3.2.3 Working Scheme . 34

3.2.4 How to solve the separation problem 37

3.3 Genetic Algorithms . 37

3.3.1 Generational Genetic Algorithms and Steady State Algo-

rithms . 40

4 A Hybrid Exact Approach for Maximizing Lifetime in Sensor

Networks with Complete and Partial Coverage Constraints 44

4.1 Introduction . 44

4.2 Problems Definition and Mathematical Formulation 46

4.3 Column Generation Approaches for α-MLP and MLP 50

4.3.1 Heuristic approaches to speed-up the Column Generation

Approach . 51

4.4 A Genetic Algorithm to Solve the Subproblem [SP] 52

4.4.1 Chromosome Representation and Fitness Function 54

4.4.2 Crossover . 55

4.4.3 Mutation . 57

4.4.4 Fixing and Redundancy Operators 57

4.4.5 Building the Initial Population 58

4.4.6 GA Overall Structure . 59

4.5 Computational Results . 61

5 The Maximum Lifetime Problem of Sensor Networks with Mul-

tiple Families 69

5.1 Introduction . 69

5.2 Notation and Problems Definition 73

5.2.1 Modeling Hardware Differences 75

5.2.2 MLMFP, MLMFP-R and cover redundancy 76

5.3 Column Generation Approach . 76

5.4 Genetic Algorithm . 80

5.4.1 Chromosome representation and fitness function 81

vii

CONTENTS

5.4.2 GA overall structure . 83

5.4.3 Tournament selection . 84

5.4.4 Crossover . 85

5.4.5 Mutation . 86

5.4.6 Fixing and redundancy operators 87

5.4.7 Building the initial population 88

5.5 Computational Results . 89

5.5.1 Description of instances and test scenarios 89

5.5.2 Parameter setting and CG initialization 91

5.5.3 Test and Results . 92

6 General Conclusions 103

Appendix A 105

Appendix B 108

References 118

viii

List of Figures

2.1 Components of a Sensor Node 11

2.2 Coverage Types: (a) area coverage - (b) points coverage 14

2.3 Transformation . 15

2.4 Barrier Coverage Example . 16

2.5 Layered Wireless Sensor Network 18

2.6 Covers Examples . 23

2.7 Sensor scheduling in the optimal solution for the instance in figure

2.6 . 24

3.1 Examples of covers . 27

3.2 CG Diagram . 36

3.3 GA Diagram . 43

4.1 Example Network . 47

4.2 Hybrid Scheme . 53

4.3 The chromosome representation. 54

4.4 The crossover operator. 56

5.1 Sample network. A-B: Feasible non-redundant covers C1, C2. C:

Complete network and feasible redundant cover C3. 77

5.2 Chromosome Structure . 81

5.3 Gene structure . 85

5.4 Crossover . 86

5.5 Computational time of CG+GA for both MLMFP and MLMFP-R

with |F | = 4 . 97

ix

LIST OF FIGURES

5.6 Lifetime for both MLMFP and MLMFP-R with |F | = 4 99

B.1 Computational time of CG+GA for both MLMFP and MLMFP-R

with |F | = 2 . 109

B.2 Computational time of CG+GA for both MLMFP and MLMFP-R

with |F | = 6 . 111

B.3 Lifetime for both MLMFP and MLMFP-R with |F | = 2 114

B.4 Lifetime for both MLMFP and MLMFP-R with |F | = 6 115

x

Nomenclature

List of Abbreviations

α-MLP Maximum Network Lifetime Problem with partial coverage constraint

CG Column Generation

CG+GA Exact Approach for MLMFP

CGonly Pure Exact Approach for MLMFP

Exact Deschinkel Exact Approach for MLP

GA Genetic Algorithm

GCG Genetic Column Generation, exact approach for α-MLP

GR Gentili and Raiconi Approach for α-MLP

Heur Deschinkel Heuristic Approach for MLP

ILP Integer Linear Programming

MEMS Micro-Electro-Mechanical Systems

Mixed Deschinkel Mixed Approach for MLP

MLMFP Maximum Lifetime with Multiple Families Problem

MLMFP −R Regular Maximum Lifetime with Multiple Families Problem

MLP Maximum Network Lifetime Problem

xi

LIST OF FIGURES

P Master Problem

QoS Quality of Service

RP Restricted Master Problem

SP Separation Problem

WSN Wireless Sensor Network

xii

Chapter 1

Introduction

1.1 Wireless Sensor Network: Motivation

Wireless sensors networks (WSNs) were presented as one of the most promising

technology that would change the world [88]. In the last ten years a lot of re-

search have been conducted in this field and nowadays there is a growing interest

in this technology. One could mention, for instance, the popularity of the recent

technology concept known as “The Internet of Things” [7] [81], that is based

on networks of smart objects which are globally connected to the Internet and

include modular sensors as well as other technologies to collect and process infor-

mation on the environment around them. There is therefore a current increasing

economic interest for all smarter technologies and in particular for Wireless Sen-

sor Networks, which justifies expectations of growing investments, as mentioned

in some recent market research reports to industries, such as “Semiconductor

Wireless Sensor Networks Markets at $ 2.7 billion in 2013 are forecast to reach

$ 12 billion Worldwide by 2020” [87]. In today’s world where people are con-

stantly surrounded by smartphones, smart applications and smart objects, the

sensor networks are constantly more and more widely used. Their main objective

is to reach a better knowledge of the events occurring in the environment around

people and in which people live. Sensor networks are an essential tool to bet-

ter study the impact that natural and man-made phenomena may have on the

environment including, the effects on climate, pollution, safety and many other

1

1. INTRODUCTION

aspects. Such a technology is also a useful tool for scientists interested in studying

some events and physics phenomena which still remain difficult to fully compre-

hend and predict. One could think of natural disasters such as earthquake, flood

and so on. In these scenarios such networks are very useful, since they are able to

constantly monitor the environment in unattended manner. In such scenarios the

sensors may be deployed and controlled by flying drones, enabling secure remote

control of a scenario without direct risks for the humans. Thanks to this scien-

tific and economic interest, today Wireless Sensor Networks can be considered a

mature technology even if there are some technology constraints, mainly related

to the energy resources, that encouraged the research world to study and find

new solutions. In these last years, the battery technology evolution has been less

impressive than in others, such as micro electronic systems and even if there are

new system that allow sensors to obtain a certain quantity of energy from the en-

vironment [104] [109], it remains a critical resource and should be used carefully.

The constrained energy resource of a sensor is therefore one of the main issues

in order to prolong as much as possible the sensor lifetime. Indeed, if a sensor

depletes its energy resources, it generally becomes useless because it is difficult to

supply additional energy to such sensors. These limits severely affect the avail-

ability of the network services. Prolonging the network operational time is a basic

requirement in the design of a wireless network in terms of architecture, hardware

and algorithms for the management of the sensors. For this reason, this line of

research has been object of intense studies, which led to the design of heuristic

and approximate algorithms, among others, based on distributed or centralized

approaches. The time for which a network is able to guarantee the monitoring

activities is typically called Network Lifetime. Besides energy limitations, the

networks are also subject to others environment constraints, such as coverage or

connectivity constraints. The mostly used approaches for energy efficiency can

be divided into two main families, known as power-aware scheduling and duty

scheduling of the sensors activities. A power-aware configuration algorithm aims

to identify network configurations able to minimize the energy consumption as-

sociated with the network operations/tasks. They can be generally adopted in

structured network scenarios with low-density sensors as discussed [1] [11] [94].

The second approach principally aims to assign a working status to a subset of

2

1. Introduction

sensors able to satisfy the network coverage requirements for a proper amount

of time. Only a subset of sensors is active at any given time, avoiding to waste

the energy of unnecessary nodes. This technique is widely used for high density

network scenarios, for instance in adverse scenarios with hostile environments in

which a precise placement of the sensors is not possible, nor is possible to supply

additional energy resources [17] [30] [90]. Even if the approaches of the first type

such as routing schemes and power aware nodes configurations try to address the

problem of extending the network lifetime as well, they suffer of other problems

such as the well known “Hot-spot Problem” as reported in [1]. The approaches

of the second type are generally preferable because they provide comprehensive

solutions that are not affected by this type of issue. Generally, in unstructured

networks with high density of sensors, there is a large number of possible subsets

of sensors able to satisfy the coverage constraints, named feasible covers or simply

covers. Therefore the maximum lifetime can be found by searching these covers

and activating them, one at a time, for proper amounts of time. This approach

is known as “duty scheduling”, and plans to design the activities of the sensors

in the network to ensure a monitoring for as long as possible [22] [30] [29] [54]

[84] [112]. Starting from these basic motivations, in this thesis, we study the cur-

rent literature about the Wireless Sensor Networks to design and propose exact

efficient approaches for the Maximum Network Lifetime Problem under different

coverage constraints. Motivated by heterogeneity of modern networks such as the

Internet of Things, we investigated two variants of the basic problem in the case

of heterogeneous sensor networks.

1.2 Contributions of this thesis

This thesis consists of an in-depth study on wireless sensor network on their ap-

plications and on typical coverage issues in this field. Particular focus is dedicated

to the problem of maximizing the amount of time over which a set of points of

interest (target points) located in a given geographic region can be monitored by

means of a wireless sensor network. The problem is well known in the literature

as the Maximum Network Lifetime Problem (MLP). We focused mainly on an

algorithmic aspect of the problem rather than on a technology aspect. It is exam-

3

1. INTRODUCTION

ined the column generation technique and how to apply it to the mathematical

formulation MLP and three problem variants. It is showed how to embed in the

column generation a genetic meta-heuristic aimed at solving the separation prob-

lem, that is shown to be very efficient for all the considered problem variants. The

problems studied in this work include the α-MLP problem, a variant in which a

subset of sensors can be left uncovered. However, since α-MLP is a generalization

of MLP, our algorithms can be used to solve the classical problem as well. As will

be shown in the discussion of our computational tests our algorithm is proven to

be highly efficient with respect to the previous algorithms available in the litera-

ture. The other two studied MLP variants are related to heterogeneous sensors.

Today wireless sensor networks are generally composed of several different types

of sensor devices, which are able to monitor different aspects of the region of

interest (including sound, vibrations, chemical contaminants, among others) and

may be deployed together in a heterogeneous network. In this work, we address

also the problem of maximizing the amount of time during which such a network

can remain operational while assuring globally a minimum coverage for all the

different sensor types. The second problem variant in this context also consid-

ers some global regularity conditions, in order to guarantee a fair coverage for

each sensor type to each target. In our computational tests the proposed resolu-

tion approach is shown to be very effective, enabling the resolution of large-scale

instances within reasonable computational times.

1.3 Organization of Dissertation

This work is organized as follows:

• Chapter 2 introduces some general concepts on wireless sensor networks and

their functionalities. This chapter also presents the main sensor coverage

models, some coverage issues and the related design choices. Then are

shown some aspects of coverage optimization and the main literature results

related to this field are discussed.

• Chapter 3 introduces a mathematical formulation of the MLP. Then it shows

how to apply the column generation technique to solve the problem. It is

4

1. Introduction

shown how to hybridize such an exact approach with heuristics. Finally,

the chapter presents an overview on genetic algorithms.

• Chapter 4 presents the hybrid exact approach for the MLP and α-MLP

problems. It describes all the building blocks of specialized genetic meta-

heuristic that we designed to solve the separation problem of the Column

Generation approach.

• Chapter 5 illutrates our research work on two novel variants of the MLP

problem defined on heterogeneous sensor networks. Starting from the de-

scription of the two problems, we present the related mathematical formu-

lations, the hybrid exact approaches we developed to solve both of them

and the results of our computational tests.

• Chapter 6 includes our conclusions on these works and a summary of the

obtained results. It shows also some future research directions about our

considered field of research.

1.4 Reading this document

This manuscript is structured in such a way that the six chapters can be read

independently. This first chapter briefly introduces the reader to this work and

its structure. The readers interested in the research content may directly refer

to Chapter 4 and Chapter 5. Chapter 4 refers to homogeneous wireless sensor

network with global or partial coverage requirements, and, it corresponds to a

work submitted to Journal of Network and Computer Applications. Chapter

5 refers to heterogeneous wireless sensor networks, and it corresponds to a work

published on Computers and Operations Research. Chapter 2 and Chapter 3 show

the essential background for the research content, therefore the readers interested

to the theory and the techniques adopted may start by reading Chapter 2 for an

general introduction to the Wireless Sensor Networks and Chapter 3 for a detailed

description of the column generation and its application to the problem as well

as an introduction on genetic algorithms.

5

Chapter 2

Coverage Optimization in

Wireless Sensor Networks

2.1 Introduction

Wireless Sensor Networks nowadays are one of the most advanced systems able to

collect and process information from the environment. Wireless Sensor Networks

perform monitoring through the installation of a significant number of sensors (or

sensor nodes) that detect, store and communicate local information that will be

eventually used to make global decisions on the environment. Unlike traditional

computer systems that process data and information produced by men, WSNs

deal with information coming from the environment in which they are installed

[44] [21]. This growing “symbiosis” between the world and this innovative tech-

nology has attracted and stimulated the interest of many researchers. The tech-

nological improvements, in recent years, in the field of micro-electro-mechanical

systems (MEMS), digital electronics and in the field of wireless communications,

among others, allowed the wireless sensor networks to achieve, today, the state

of very mature technology. The miniaturization of computing and sensing de-

vices encouraged the development of a type of network with a very wide range

of applications. Early research in this field was dictated by military applications

such as acoustic surveillance and target detection. Today there are systems for

360-degree monitoring, systems for the monitoring and protection of civil infras-

6

2. Introduction

tructures such as bridges, tunnels, meeting areas, power grids, water networks

and pipelines. In particular sensor networks have already been used for pollution

control, flooding, for the control of health, and in agriculture for the control of

the use of fertilizers, pesticides as well as for the control of natural water usage

in order to improve the crop’s health and production. Another interesting field

of application is the traffic control, some applications include the installation of

sensors along the main streets and on cars in order to control and improve traffic

flow and avoid jams. These and many other applications from general monitor-

ing, to healthcare, and even more generally to national security are described

and surveyed in [3] [107] [4] [36] [16] [37] and many other works. Since when

the first sensor network prototypes have been proposed, such as Smart Dust [66],

the research on wireless sensor networks has raised many optimization problems

due to both the natural development requirements of sensor networks and the

needs of developing increasingly large and efficient networks; recall for instance

the IrisNet (Internet-scale Resource-Intensive Sensor Network Services) project

at Intel Research, an ideal framework for a worldwide heterogeneous sensor web

[55]. An important class of problems is known as Coverage Problems. According

to the application of the network the concept of coverage can be defined through

different points of view. Generally given a set of targets of interest and a set

of coverage constraints, the main goal of the coverage problems is to have each

target of interest under monitoring with respect to the coverage constraints. The

concept of coverage expresses how well a physical space is monitored by a sensor

network [22] and its evaluation expresses the quality of service (QoS)[78] offered

by the network. There are different formulations of the coverage problems related

to different aspects of the network such as the type of covered object (area, tar-

get), the type of sensor placement (random or deterministic) and based on many

other properties. For example, one of the most important sensor/network char-

acteristics is the energy consumption that strongly influences the time interval

for which the network is able to satisfy the application for which it was designed,

i.e. the network lifetime. Indeed it is one of the most critical aspects of the WSN

applications and one of the most studied properties. There are different applica-

tion dependent definitions in the literature. One of the first definitions considers

the lifetime as the time interval between when the network starts to operate and

7

2. WIRELESS SENSOR NETWORKS OVERVIEW

the first node fails [95]. This definition, as others, doesn’t take in consideration

any particular characteristic of the coverage. Today there are various definitions

based on the coverage, on the node availability, and others characteristics, all

definition can be reviewed in [42]. In this thesis, the network lifetime is the time

interval for which the network is able to meet the specific coverage requests of

the application. It is the most general definition which is suited to coverage

problems. If a network cannot guarantee the desired coverage request then it is

considered as not being operational. It is well known that the energy efficiency

is one of the issues that generally arise in all kinds of wireless sensor networks

and that affects the network lifetime. The networks are composed of sensors of

limited size and weight. These structural constraints severely affect the availabil-

ity of services offered by the WSN. Since sensors generally have limited energy

resources and limited communication features. If a sensor depletes its energy

resources, it becomes useless since it is difficult to supply additional energy to

it. For these reasons, prolonging the life time of a sensor network, as much as

possible, by finding patterns of energy preservation is one of the main objectives

to be met in order to achieve energy efficiency. This chapter aims to introduce

general information about sensor networks and the basic technical details for the

formulation of coverage problems with special emphasis on the design of energy

efficient networks. In particular, we will focus on the problem of covering targets

with known positions and energy constraints.

2.2 Wireless Sensor Networks Overview

The applications listed in the previous introduction (Sec 2.1) are only a subset

of all possible uses of WSN. The underlying technology for sensor networks may

vary for architectures and functionalities, but there are some common charac-

teristics and features. The main common characteristic is the integration with

the environment. A WSN is integrated in the phenomenon or environment for

which it was developed. The sensors register the phenomenon in which they are

immersed, they monitor the target points in surrounding space, they commu-

nicate with each others, transmitting detailed informations on the environment

under monitoring. The analysis of the environment, through the capture of light,

8

2. Wireless Sensor Networks Overview

temperature, sound, vibrations and so on, can reveal the nature of the physical

space. The word “sensing” includes all the measurement activities and control

of status changes of the phenomenon or of the environment under monitoring.

Measurement, preliminary elaboration and reporting of the sensed information

are in short the main objectives of the small devices called sensors. In this work

we will use the term sensor and sensor node interchangeably. However to be pre-

cise, a sensor node is the sensing unit which includes with tools such as battery,

antenna, possible actuators among others, while sensor refers only to the actual

hardware device which is able to perceive the status changes of the phenomenon.

Another well known term used to refer to a sensor is transducer, i.e. a system

able to transform physical quantities into electrical signals. For more details on

the structure of a sensor node, see Figure 2.1. As shown in the figure, its main

four components are a sensing unit, a processing unit, a transceiver unit and a

power unit. Obviously, the sensing unit can vary depending on what is to be

monitored. In addition the sensor may be equipped, depending on the applica-

tion, with additional components such as tracking systems, eventual generators

of additional energy [109] and also actuators. The analog signals, perceived from

the environment by the ”sensor” subcomponent of the sensing unit, are converted

to digital, by the “ADC” unit. Once converted to digital, the signals are passed

to the “Processing Unit”. The processing unit, typically coupled to a “Storage

Unit”, manages the procedures and scheduling activities required to efficiently

collaborate with the other nodes in the network. The “Power Unit” is among

the most important ones and as previously said is sometimes supported by spe-

cific hardware (“Power Generator” in the Figure 2.1) to obtain energy from the

environment, see for example [109]. Some sensor nodes use location mechanisms

through which the sensor identifies its position in space and/or actuators that

allow to complete more complex sensing tasks. The sensors, as reported in Fig-

ure 2.1, can be equipped with a transceiver for the network connection through

RF or optical drives. All these components are subject to tight dimensional con-

straints. Indeed, in some cases a sensor node is contained in a box [64] of a cubic

centimeter [83]. They are also subject to many other general constraints such as

low power consumption, operational capacities in high density condition, low pro-

duction costs, absolute autonomous control and adaptation to the environment.

9

2. WIRELESS SENSOR NETWORKS OVERVIEW

Given such constraints it is straightforward to understand that the lifetime of a

WSN strongly depends on the battery duration of the sensors that compose it.

Generally sensors can be either static or mobile, however in this work we focus on

static nodes. A static (or fixed) node does not change its position, and represents

the most common case. Conversely a mobile sensor may be equipped with mo-

bility systems [33] or be positioned on moving devices such as robots or vehicles

[34] [73].

2.2.1 Sensor Coverage Models

Sensors nodes may have many different characteristics from both a physical and

a theoretical point of view. Taking into account the various aspects described in

the introduction it is straightforward to note that different sensing models may

be adopted. The sensing models can be based on the environment, on the design

choices and on the application requirements and they express a measure of the

sensing ability and its quality, evaluating the relation among the environment,

the sensors and the targets. As reported in [77] and remarked later in [111] and

other works, the sensor nodes typically have two intrinsic common characteristics:

(1) the quality of sensing diminishes as distance increases (2) the sensing ability

improves as the sensing time increases. Typically sensing models can be expressed

in function of the Euclidean Distance among target points and sensors. We

generally consider the concept of coverage, as in the majority of the works cited

in this thesis, in the two dimensional space. Given a point z in the space under

monitoring and the set of sensors S = {s1, s2, ..., sn}, spread over the area of

interest, the Euclidean Distance between a generic sensor s and point z can be

expressed as follows:

d(s, z) =

√
(sx − zx)2 + (sy − zy)2 (2.1)

where obviously s and z are individuated by their Cartesian coordinates

(sx, sy) for s and (zx, zy) for z. As reported in [102] we could also consider a

ϕ angle among the targets and the sensors with 0 ≤ ϕ(s, z) < 2π. Evaluating the

10

2. Wireless Sensor Networks Overview

Processing	
 Unit	

	

	

	

	

	

Processor	

Storage	

Sensing	
 Unit	

	

	
 Sensor	
 ADC	

T
r
a
n
s
c
e
i
v
e
r	

Power Unit

Power	
 Generator	

Loca5on	

Finding	

System	

Actuator	

	
 	
 Power Unit

Figure 2.1: Components of a Sensor Node

11

2. WIRELESS SENSOR NETWORKS OVERVIEW

Euclidean Distance of each space point with respect to the whole set of sensors,

can be considered a function f that for each space point expresses a coverage

measure through this formula f:(d(S, z), ϕ(S, z)) → <+ where S is the set of all

the sensors in the network. Also in [102] it is reported that by means of simple

modifications this evaluation can be used in three-dimensional contexts. Gener-

ally the sensing models that consider a boolean evaluation of the coverage, i.e. 0

or 1, are called Boolean or Binary Coverage Models. Models that consider non-

negative coverage measures are called General Coverage Models. Models that

do not consider the angle as function input are called Omnidirectional Coverage

Models, as opposed to Directional Coverage Models. For a more detailed and

extensive review of the sensing models the reader can refer to [102]. In our works

we considered the most studied and simplified sensing model, the binary disk

coverage model that considers as coverage function the following formulation:

f(d(s, z)) =

1, if d(s, z) ≤ Rsense

0, otherwise
(2.2)

where we can recall that d(s, z) is the Euclidean Distance between a generic

sensor s and z a generic target point that we want to monitor. Rsense is called

sensing range or sensing radius, it is defined by the sensor technology and it

defines the sensing area of the sensor centered on the device. It does not consider

an angle as input therefore it is an omnidirectional coverage model. All the space

point within the sensing area of a given sensor are defined as being covered by

it. Generally for each space point we can consider the sum of the function values

evaluated for all sensors that defines whether a space point is covered or not by

the network, as follows:

f(S, z) =
n∑
i=1

fi(d(si, z)) (2.3)

If this f(S, z) = K then the sensor can be defined as K-Covered (i.e. there

exist K sensors that cover z). There are also other models such as Boolean Sector

12

2. Wireless Sensor Networks Overview

Coverage Models, Attenuated Disk Coverage Models, Detection Coverage Models

and others [102] that model different coverage types.

2.2.2 Coverage Problems and Design Issues

Besides the previously mentioned elements there are other differentiations that

generally complicate the network design as well as other aspects. Different cover-

age problems arise from the possible design choices. Coverage Problems constitute

a research topic of crucial relevance for the design of communication protocols and

algorithms for the efficient management of the sensors. Coverage problems may

differ on the basis of the object of sensing (area or discrete points), deployment

type (random or deterministic), sensor mobility capabilities, or network structure

(simple or composite), among other factors. In the course of this chapter, we will

give a general overview on the different coverage types and their related design

issues, and will finally focus on the problem definition on which our research is

based and that, as we will see, generalizes all formulations.

2.2.2.1 Coverage Problem Types

Generally the coverage problems can belong to three main coverage families, that

is: (i) area coverage problems, (ii) point or target coverage problems and (iii)

barrier coverage problems [25]. In the former the main objective is to monitor a

whole area of interest. In the second family the objective is to monitor only a

set of discrete points which may be specific objectives within the environment.

Figure 2.2-a shows an irregular area covered completely by the sensor network.

Figure 2.2-b shows the same area and a set of targets which are covered by the

network. In the second case, the targets coverage request can leave some zones

of the area uncovered. However in the literature it is well know that an area

coverage instance can be easily transformed into a target coverage one [98] and

we can refer to both indifferently. The polynomial time transformation is based

on the concept of “field”, i.e. a subset of the area which is covered by the same set

of sensors. We achieve the transformation by replacing each field with a target

point. Figure 2.3 gives an idea of such simple transformation. Therefore, for

simplicity we generally refer to target coverage problems.

13

2. WIRELESS SENSOR NETWORKS OVERVIEW

s6

s5

s4

s3

s2

s1

s7

s8

s3

(a) (b)

t1

t6
t2

t5
t3

t4

s6s5

s4

s2s1

Figure 2.2: Coverage Types: (a) area coverage - (b) points coverage

In barrier coverage problems the main objective is to build intrusion barriers

for the detection of moving objects that can cross over or enter the area of interest.

Let us consider Figure 2.4. This figure reports an illustration of barrier coverage.

In Figure 2.4-a we can see an area that we want to monitor, a barrier coverage

made of sensors along the boundaries of the area and an intrusion movement from

the upper side of the area towards the lower side. In this case we can observe

a real barrier coverage because the area can not be crossed from a one side to

another without intersecting the sensing disk of the sensors. In Figure 2.4-b we

can see a movement that can cross the region of interest without intersecting the

sensing disk of the sensors. Therefore in this second case the network cannot

provide a barrier coverage. It is straightforward to note that the barrier coverage

doesn’t require to coverage the whole area of interest. More details on intrusion

barriers and penetration paths can be found in [102] [68] [69] [76].

2.2.2.2 Design Issues

Given the sensing models and the three main families of coverage problems, we

can now analyze the various design issues or design choices as reported in [102]

[21], that may characterize a coverage problem:

14

2. Wireless Sensor Networks Overview

s4

s3

s2

s1

(a) Area Coverage Instance (b) Fields Identification

(c) Target Coverage Instance

Figure 2.3: Transformation

15

2. WIRELESS SENSOR NETWORKS OVERVIEW

(a) (b)

Intrusion
Movement

Intrusion
Movement

t6

t1

t2

t5

t3

t4

s6
s5

s4

s3s2

s1

s7

t6

t1

t2

t5

t3

t4

s6

s5

s4

s3

s2

s1

s7

Figure 2.4: Barrier Coverage Example

• Coverage Type: as previously mentioned and described in Section 2.2.2.1

we can have area coverage, target coverage and barrier coverage problems.

• Deployment Type: there exist two deployment types that strongly affect

the network topology: deterministic (or structured) and random (or un-

structured) [107]. Deterministic installations are considered in the case of

small and easily accessible area and the positioning is designed ad-hoc for

the surrounding environment. Sensor placement can be designed to use as

few sensors as possible in order to reduce both the management and main-

tenance costs. In the case of large and/or difficult to access area, random

positioning could be preferable or mandatory. In the unstructured case,

the network is composed of a large number of sensors which are positioned

randomly and after the installation, the network is left unattended to per-

form its monitoring activities. In this type of network is it more difficult

to address the issues of a typical communication network, such as how to

manage the connectivity or possible failures. The choice of the deployment

type depends on the environment.

• Coverage Ratio: this aspect refers to how many points in the area or which

16

2. Wireless Sensor Networks Overview

percentage of the area the sensor network needs to cover in order to satisfy

the coverage requirements. Generally we refer to complete coverage when

the network covers the whole area or the whole set of targets. We refer to

partial coverage when the network needs to cover only a subset of points to

satisfy the coverage requirements. We can say that if the network covers 70

targets out of 100, its coverage ratio is 70%.

• Coverage Degree: each target can be monitored by one or more than one

sensor at each time. When each node of the sensor network is covered by at

least k sensors the networks has a k-coverage degree. Typically this aspect

is relevant when the network needs to guarantee a certain level of coverage

robustness since a sensor network that satisfies a such requirement, can

tolerate up to k − 1 damages or faults for each sensor node.

• Sensors type: technology offers different sensors and there are cases in which

monitoring is performed by sensors with different characteristics. The choice

is often application dependent, some application requires that all sensor

nodes in the network are equal or with the same characteristics, while others

require different sensor nodes types (see for example the problems faced in

Chapter 5 of this work).

• Sensors Mobility : as previously mentioned sensors may be static or mobile.

• Network Type: simple or mixed. The type is simple when a network is

composed only of sensors that send information to a single collection node

called sink, either in a centralized manner or a distributed one. The type

is mixed or layered, if the network is composed of simple sensors (also

with different technical and sensing characteristics) and a subset of more

powerful nodes that act as collection nodes. In Figure 2.5 it is showed a

dual layer sensor network in which a set of simple sensors (grey circles) can

sense and process information about the environment, and a second layer

of more powerful nodes (dotted circles) collect the information in order to

efficiently manage the sensing tasks.

• Collection Nodes Mobility : some works assume that the collection nodes are

static, other works assume that the sinks are mobile. Recent technologies

17

2. WIRELESS SENSOR NETWORKS OVERVIEW

s6s5

s4

s3

s2s1

t6
t4

t3

t2

t5
t1

Figure 2.5: Layered Wireless Sensor Network

18

2. Wireless Sensor Networks Overview

allow for instance the integration of robots which play the role of collection

nodes in sensor networks [13] [70] [99] [39].

• Events Type: a network can monitors either atomic or composite events.

As reported in [21] a fire event can be better monitored if there are more

combined information as temperature, smoke, humidity. In this case an

heterogeneous network has to satisfy specific coverage requirements for each

atomic event [27].

• Coverage Breach: a target point or an area is defined breached when it

is not covered by a sensor node. Some applications require a target or

area monitoring that minimize the time for which the targets/areas remain

uncovered. Sometimes the applications can require to minimize the total

number of breached target points.

• Activity Scheduling : refers to the ability of the network to change the state

of a sensor node. Generally it refers to the capacity of the sensor network

to switch in a sleep energy-saving state the redundant active sensors. The

main objective of this activity is typically to save energy in order to prolong

the time for which the network can operate. This activity is governed by

algorithms that belong to two main categories, namely centralized or dis-

tributed. Many centralized and distributed algorithms have been developed

in this research field. Generally the distributed algorithms allow each node

to decide about its state basing the process on the distributed information

in the network. This process generally reduces the communication energy

but intensifies the processing energy consumption. The centralized algo-

rithms, on the other hand, leave each node to only send its sensed data to

a central collector node that also makes global decisions about the working

states of all sensors. This type of algorithms highly reduce the processing

energy consumption. More details about the Activity Scheduling can be

found in the next Sections.

• Network Connectivity : even if this requirement is typically related to the

network layer it is also considered in the design of specialized algorithms to

define certain cross layer operations. Two nodes can be defined as connected

19

2. NETWORK LIFETIME AND COVERAGE OPTIMIZATION

if they are able to send and receive data directly between them. In other

cases two nodes can be defined as connected if there are some others nodes

between them that act as relays. Generally a network can be defined as

connected if each couple of sensor nodes is connected and the data of each

node can be sent to the collector node as well as to other nodes. In such a

case sensors have a communication range in addition to the sensing range.

Generally the communication range is larger than the sensing range.

All these design choices have some unifying requirements for the efficient func-

tionality of the wireless sensor network. As already discussed a crucial one is the

energy efficiency of the network in order to improve the “network lifetime”.

2.3 Network Lifetime and Coverage Optimiza-

tion

Network lifetime was originally defined as the amount of time until the first

operational failure of a sensor occurs [42]. Definitions such as the previous one

are incomplete because, especially in the case of unstructured networks with an

high density of sensors, the network can be operational even if one of the sensors

has depleted all its energy or has been damaged. These observations suggest

different definitions, mainly linked to the coverage as in our research works (see

Chapter 4 and 5), or related to the availability of nodes in the network or to the

connectivity. In [42] the reader can find a full list of the main definitions. In this

thesis, the network lifetime is the time interval for which the network is able to

meet the specific coverage requests of the application. The absence of specific

assumptions about the network, allows to adapt the definition to a wide range of

different design choices.

2.3.1 Covers Scheduling on WSN

It is straightforward to understand that optimize the usage of constrained energy

resource of a sensor is the main issue to be taken in consideration in order to

prolong as much as possible the network lifetime. In the literature there are

20

2. Network Lifetime and Coverage Optimization

different approach to address energy efficient coverage to extend the network

lifetime. The first approach, on which are based our research works, is to define

a schedule plan of the sensor activity that leaves some sensors in active state

while the others are into a sleep state that does not consume energy. A second

approach consists of designing an efficient coverage deployment plan, but is not

always practical. A third approach is based on adjusting the sensing range in

order to save energy. The first approach requires to identify covers, i.e. subsets

of sensors, able to achieve the coverage requirements of the network [22] [23] [54]

[59] [96]. This type of approach can be further divided in two main subcategories.

A first one based on disjoint set of sensors as in [98] [24] and a second one based

on non-disjoint set of sensor as in [22]. In the case of disjoint subsets, the covers

do not share sensors, that is, the subsets have empty intersections. The second

proposed approach allow the covers to share sensors among them. It has been

proved that this approach can achieve greater lifetimes than the first one. In

the case of disjoint subsets each cover is activated for all battery duration one

at time while all sensors that do not belong to it are either in sleep mode or

have been previously used. The authors in [98] proposed an heuristic algorithm

to find as many covers as possible in order to extend the network lifetime. The

duty scheduling was extensively investigated by researchers. Today there are

many approaches that follow this idea while considering different characteristic

of the network [31] [60] [65] [93] [54] [27]. It is important to note that the disjoint

covers approach doesn’t aim to maximize directly the lifetime, but rather tries to

find the maximum number of possible covers. In the second case, in addition to

the coverage constraints, covers can be activated even for very small amounts of

time. The non-disjoint covers idea was investigated only in recent years and it is

receiving more and more attention. Modeling lifetime problems on this idea has

led to more realistic formulations. This approach aims at directly maximizing the

lifetime by finding the optimal covers schedule and the related activation times,

while satisfying all battery and network coverage constraints. The algorithms

that follow this approach typically face hard optimization problems as in the case

of the problems that we face in Chapters 4 and 5.

21

2. NETWORK LIFETIME AND COVERAGE OPTIMIZATION

2.3.2 Common Scenario and Problem Definition

The scenario addressed in our work takes into account unstructured networks

with random deployment and a high density of sensors. The sensors, with limited

energy resources, are typically scattered in the region of interest and perform a

monitoring activity on target points disposed within the area. The information

gathered by the sensors is distributed among them, and we assume that such

information will be collected and delivered to a central node at the end of the

monitoring phase. The central node is also assumed to coordinate the activity of

the sensors. Generally the sensor operational states are identified TRANSMIT,

RECEIVE, IDLE or SLEEP. Taking into account the previous works in this field

[22] [26] it is well known that the power usage of most units, such as the seismic

sensor WINS Rockwell, is similar for the transmit state, the receive state and for

the idle state while the sleep state requires a much lower, not negligible amount

of energy. Therefore as in other works [54] [31], we assume for simplicity that

two main operating states exist, called ACTIVE and SLEEP, which identify,

generally, the cases in which a sensor is consuming battery for or not. Under

these assumptions, we can observe that an accurate use of covers can improve

considerably the network lifetime. Consider the example in Figure 2.6. In the

example we have three targets T={t1, t2, t3} and four sensors S={s1, s2, s3, s4}.
The sensor s1 covers the targets t1 and t2. The sensor s2 covers the targets t1

and t3. The sensor s3 covers t2 and t3 and the sensor s4 covers all targets. For

all sensors we consider an energy resource normalized to 1 unit of time, i.e. each

sensor can be in the active state for 1 unit of time before depleting all its energy.

We recall that we want to cover all targets. If we active all sensors at the same

time the overall network lifetime is equal to 1 since there are not other sensors

available for monitoring. If we consider subsets of sensor, e.g. covers C1={s1, s2},
C2={s1, s3}, C3={s2, s3}, C4={s4}, as in Figure 2.6-b-c-d-e, we can improve the

network lifetime. Each one of these covers meets the coverage request, i.e. each

subset of sensors covers all targets. Therefore we can design a strategy that

activates first cover C1={s1, s2} for 0.5 unit of time, then cover C2={s1, s3} again

for 0.5 units then C3={s2, s3} for other 0.5 units and finally C4={s4} for 1 unit.

Therefore, we can monitor the set of targets for 2.5 unit of time a value which is

22

2. Network Lifetime and Coverage Optimization

t1 t2

t3

s1

s2

s3

s4

t1 t2

t3

s1

s2

t1 t2

t3

s1

s3

t1 t2

t3s2

s3

t1 t2

t3

s4

(a)

(b) (c) (d) (e)

Figure 2.6: Covers Examples

2.5 times higher than the one obtained using the first, trivial strategy.

As shown, this approach can lead to considerable extensions of the network

lifetime. This is particularly true on dense networks where targets are redun-

dantly covered by sensors whose ranges present many overlaps. In this instances,

indeed, a large number of feasible covers can exist and can be used to identify the

optimal solution. This problem has been widely studied in recent years (refer to

the literature overviews in chapters 4 and 5) and is usually known as Maximum

Wireless Sensor Network Lifetime Problem (MLP). It has been shown to be Np-

Complete by reduction from 3-SAT problem in [22]. There are also some related

variants that consider different design choices such as the ones that we face in

our research work described in Chapters 4 and 5.

23

2. NETWORK LIFETIME AND COVERAGE OPTIMIZATION

s1 s1

s2 s2

s3 s3

s4

A
C

T
IV

E
S
en

so
rs

TIME

0,5 0,5 0,5 1

0,5 1 1,5 2,5

Figure 2.7: Sensor scheduling in the optimal solution for the instance in figure
2.6

24

Chapter 3

Maximum Lifetime Problem:

Modeling and Algorithms

3.1 Modeling the problem

As extensively detailed in previous Chapter 2, Wireless Sensor Networks are com-

posed of a huge number of sensors scattered over a geographic area that we want

to monitor. Each sensor device has limited sensing and limited computational

resources. Each of them senses the surrounding space around it defined by its

sensing range. All the sensors perform a complex sensing task about the environ-

ment around them. A sensor can gather information about all its surrounding

area or only about specific targets inside its sensing area. From now on we will

refer only to target coverage problems for the motivations given in Section 2.2.2.1.

Given the energy battery constraints, one of the main issue is to prolong as much

as possible the network lifetime, i.e. the amount of time for which the network is

able to guarantee the coverage constraints about the subject under monitoring.

As reported in Section 2.3 the network lifetime can be extended by individuating

covers and activating them, one at time, for a suitable amount time. In this

chapter we formally define the Maximum Lifetime Problem (MLP) on Wireless

Sensor Network and we describe the basic concepts of the column generation

technique and the genetic algorithms that we will use to address this problem.

Let N = (S, T) be a wireless sensor network, where S = {s1, . . . , sm} is the set of

25

3. MODELING

sensors and T = {t1, . . . tn} is the set of targets. Each sensor has a given sensing

range defined by its technical characteristics and each sensor is powered by a

battery that can keep it in an active state for a limited amount of time. Here,

for simplicity, we assume that each sensor has the same characteristics, i.e. same

sensing range and same battery lifetime normalized to 1. We consider a omnidi-

rectional binary sensing disk model (see Section 2.2.1). Therefore for each target

tk ∈ T and sensor si ∈ S, we define a binary parameter δki equal to 1 if tk is

located inside the sensing area of si (target tk is covered by the sensor si), 0 other-

wise. Let C be a subset of sensors (C ⊆ S). We formally define C to be a feasible

cover, for the network N , if all targets of the network are covered by at least one

sensor, i.e.
∑

i∈C δkixi ≥ 1 ∀k = 1, ..., n. The Maximum Lifetime Problem con-

sists in finding a collection of pairs (Cj, wj), where Cj ⊆ S is a feasible cover and

wj ≥ 0 is the amount of time for which the sensors belonging to Cj are kept in an

active state (i.e. activation time), such that the sum of the all activation times is

maximized and each sensor is used globally for an amount of time that does not

exceed its normalized energy resource. In the figure 3.1 we can see a very simple

sensor network composed of 4 sensors and 3 targets. Possible examples of covers

that can be activated to monitor all targets are: C1 = {s1, s2}, C2 = {s1, s3},
C3 = {s2, s3}, C4 = {s4}. Therefore, assuming to be able to compute the whole

set of feasible covers C1, . . . , C` in advance, MLP could then be represented using

the Linear Programming formulation [P], where wj are the variables associated

to the columns of the matrix, ∀j, with j = 1, ..., l. The variables indicate the

activation time of each cover. As seen in Section 2.3.2 we consider two particular

relevant operating states, called ACTIVE and SLEEP, which identify the cases

where a sensor is consuming battery for sensing or not. Then the binary param-

eter aij indicates if a sensor si is active in a covers Cj, i.e. aij = 1 if si ∈ Cj,

0 otherwise. We can note that each column aj is a representation of a cover,

therefore from now on we use the terms “cover” and “column” indifferently:

26

3. Modeling

t1 t2

t3

s1

s2

s3

s4

t1 t2

t3

s1

s2

t1 t2

t3

s1

s3

t1 t2

t3s2

s3

t1 t2

t3

s4

C1

C2 C3

C4

Figure 3.1: Examples of covers

[P] max
∑̀
j=1

wj (3.1)

s.t.

∑̀
j=1

aijwj ≤ 1 ∀i = 1, ...,m (3.2)

wj ≥ 0 ∀j = 1, ..., ` (3.3)

27

3. COLUMN GENERATION

The objective function (3.1) maximizes the network lifetime i.e. the sum of the

activation times wj, while constraints (3.2) require that each sensor cannot be ac-

tivated for more than its battery resource. In real world scenarios, the number of

sensors is often very large with respect to the number of targets. Consequently,

the number of covers (columns of the model) is too large (i.e. potentially ex-

ponential) for a direct application of the simplex method, both in terms of time

(needed to check the optimality condition on the exponential non-basic variables)

and space (needed to build the constraints matrix). A proper approach to the

resolution of this problem is the well known Column Generation (CG) algorithm,

a technique alternative to the Simplex algorithm, that starts by solving the model

[P] with a small subset of columns and then introduces additional columns until

the optimal solution of [P] is found. The column generation algorithm differs

from the Simplex algorithm in how it performs the optimality test of the current

basic solution and in how the new variable to eventually enter the basis is cho-

sen. Indeed, in the case of the Column Generations these steps are performed by

modeling and solving an auxiliary optimization problem.

3.2 Column Generation

As reported in [75] and in [80], the first idea of Column Generation was pre-

sented in a work of Ford & Fulkerson (1958) [46]. This work suggests for the

first time to deal with the variables of a problem in implicit manner. They con-

sider a multi-commodity maximum flow problem and their idea was to begin by

solving optimally a master LP formulation that just contains few columns (ex-

treme flows in the work) for each commodity. Then they used an optimal dual

solution to price out the columns not yet examined by means of the solution of a

shortest path problem, for each commodity. Later, Dantzig & Wolfe (1960) [35]

inspired by the work of Ford & Fulkerson [46], generalized the idea to obtain an

algorithm for solving linear programming problems individuating a set of master

constraints and a set of separation problem constraints, known as Dantzig-Wolfe

Decomposition, as also reported in [80]. Later in the two seminal works, Gilmore

and Gomory (1961-1963)[56] [57] implemented the technique to solve a problem

that involve integer variables, the Cutting Stock Problem. However, the first oc-

28

3. Column Generation

currence of the column generation naming appeared in 1969 with a paper titled

“A column generation algorithm for a ship scheduling problem” [6].

3.2.1 Restricted Master Problem Formulation

Given the mathematical model [P], let R ⊆ {1, ..., `} be a subset of the indexes of

all possible columns. Through the R columns, we build the [RP] model, named

Restricted Master Problem, as follows:

[RP] max
∑
j∈R

wj (3.4)

s.t.

∑
j∈R

aijwj ≤ 1 ∀i = 1, ...,m (3.5)

wj ≥ 0 ∀j ∈ R (3.6)

The coefficients aij, with i ∈ {1, ..,m} and j ∈ R, form the matrix AR, i.e.

the matrix obtained by considering only the columns of the original matrix A

with index belonging to the subset R. Therefore, the problem [RP] consists of

just the variables of [P] associated to the column of AR. Assuming that the R

set is not too large, this restricted formulation can be directly solved by means

of the Simplex algorithm. Let wR be the optimal solution of [RP] that from now

on we denote as the incumbent solution. Let B ⊆ {1, ..., `} be the set of the basic

columns, N ⊆ {1, ..., `} the set of the non basic columns, N
′ ⊆ R − B the set

of non basic columns related to the restricted formulation and b the righ-hand-

side column vector. It is easy to see that (wR, 0N−N ′) is a feasible solution for

the original formulation [P]. In this situation there are two conditions that may

occur:

• The optimal solution for [RP] is also optimal for [P]. Therefore the master

incumbent solution is globally optimal and the column generation procedure

stops and returns the incumbent solution.

29

3. COLUMN GENERATION

• The optimal solution for [RP] is not optimal for [P]. It means that there

exists a non-basic variable wj with j ∈ N , with zj − cj < 0, that can

improve the value of the objective function. If the existence of this variable

wj is proven, we have to construct the related column aj that has to be

introduced in the matrix AR. Once inserted the variable and the column

in the restricted formulation, the column generation algorithm repeats the

whole process.

A proper application of the method requires to face the following issues:

1. How do we find a variable wj having a negative reduced cost among the

exponential variables in N?

2. Even if we find the variable wj, how do we build the column aj of the

coefficient matrix AR?

3. How do we identify the initial set of columns R?

4. How do we update the set R once the new column to be included is found?

5. How is degeneracy dealt with?

Now we will shortly address each of the above mentioned issues. For the issues

1 and 2, the column generation tries to identify the variable wj and the column

aj, through the resolution of a new optimization problem known as Separation

Problem (or SubProblem) (SP). The separation problem is constructed in an

ad-hoc manner depending on the master problem and often it corresponds to

well known optimization problems for which efficient algorithms have already

been proposed. Since the resolution of the RP is easy, the key point to obtain

an efficient column generation algorithm is the ability to efficiently solve the

subproblem [SP].

3.2.2 Modeling the Separation Problem

Now we see how to model the separation problem for the classical Maximum

Lifetime Problem. Let w∗R be the optimal solution of the restricted problem

30

3. Column Generation

[RP]. The matrix composed only of the columns of the variables belonging to

the base will be indicated with the form AB. Instead, the matrix corresponding

to the restricted problem will be indicated with the form AR. The columns of

the matrix corresponding to non-basic variables of the restricted problem are

indicated in the form AR−B. We denote by AN all the columns not yet generated

joined to the columns in AR−B. Given the initial set of columns R, some of

them will correspond to basic variables, while the remaining N
′

will correspond

to non-basic variables. Then we can write:

w∗R =

[
wB

wR−B

]
=

[
A−1
B b

0R−B

]
(3.7)

⇓

w =

 wB

wR−B

wN−R−B

 =

 A−1
B b

0R−B

0N−R−B

 =

[
A−1
B b

0N

]
(3.8)

Taking into account the optimality conditions expressed through the reduced

cost values we can state that a current solution is globally optimal if and only

if the reduced cost values corresponding to all the non-basic AN columns are

positive, i.e. zj − cj ≥ 0 ∀j ∈ N . Considering the size of the problem it is clear

that it is not possible to evaluate these coefficients in an enumerated manner.

The idea of the column generation is based on the search for the smallest reduced

cost value evaluating the following objective function that will be the objective

of our separation problem:

min
j∈N

zj − cj (3.9)

If the value of the minimum reduced cost, corresponding to the objective

function (3.9), evaluated on the incumbent solution, is non negative then the

optimality conditions for problem [P] are met and therefore there are not non-

basic variables that can improve the incumbent solution. Otherwise there exists

a column that, once added to the restricted problem RP, may improve it. In this

31

3. COLUMN GENERATION

case, the column corresponding to the optimal solution of the separation problem

will be added to the matrix AR. We observe that:

min
j∈N

zj − cj (3.10)

⇓

min
j∈N

cTBA
−1
B aj − cj (3.11)

⇓

min
j∈N

πTaj − cj (3.12)

⇓

min
j∈N

m∑
i=1

aijπi − cj (3.13)

⇓

min
j∈N

m∑
i=1

aijπi − 1 (3.14)

By applying the above shown substitutions to objective function (3.10) we can

build the formulation of the objective function of the separation problem which is

specific for the the Maximum Lifetime Problem. As we know from the theory of

linear programming, zj = cTBA
−1
B aj then substituting in (3.10) we get the formula

(3.11). We observe that cTBA
−1
B corresponds to the simplex multipliers that appear

in the evaluation of the reduced cost values, in other words these values are the

dual prices and correspond to the vector πT . Substituting in (3.11), we get (3.12).

By explicating (3.12), we get (3.13), where aj is the j-th column of the coefficient

matrix. Finally we note that the coefficients cost cj of [P] are all equal to 1,

and then we obtain (3.14). It should be noted that in (3.14), each aij value

corresponds to the i-th entry of the new entering column aj that we want to find,

and therefore are the variables of our separation problem. Then, we rewrite the

new objective function as follows:

32

3. Column Generation

min
m∑
i=1

xiπi − 1 (3.15)

The variable xi indicates whether the i− th sensor is turned on or off in the

cover which is represented by the new column built by the separation problem.

The vector x must be a feasible cover of [P], i.e. its active sensors have to cover

all the targets. To this end, we build the following subproblem [SP] in which the

constraints impose to satisfy this covering condition.

[SP] min
m∑
i=1

πixi (3.16)

s.t.

m∑
i=1

δkixi ≥ 1 ∀k = 1, ..., n (3.17)

xi ∈ {0, 1} ∀i = 1, ...,m (3.18)

The objective function (3.16) minimizes the sum of the dual prices of the sen-

sors chosen to be part of the newly produced cover. If the optimal solution of this

formulation is greater than or equal to 1, then the incumbent solution is guar-

anteed to be optimal for the original problem, otherwise the new cover is added

to the master problem. The constraints (3.17) define a feasible coverage, that is,

every target must be covered by at least one sensor in the current cover. It is

straightforward to note that the [SP] formulation corresponds to a specialization

of the Set Covering problem, a well known Np-Hard problem.

33

3. COLUMN GENERATION

3.2.3 Working Scheme

Now we focus our attention on the working scheme of the column generation al-

gorithm. Given the linear programming formulation [P], the column generation

technique starts by considering the restricted master problem, and solving it to

optimality. The optimal solution of the restricted master problem is feasible for

the original problem [P], however there is no guarantee regarding global opti-

mality since most of its columns have been discarded. The column generation

then considers the specific separation problem which either produces an attrac-

tive cover to add to the restricted master problem for a new column generation

iteration, or certifies that the incumbent solution is optimal. We recall that an

attractive cover is a feasible cover corresponding to a non-basic variable with neg-

ative reduced cost, which could therefore improve the incumbent solution. The

column generation procedure iterates until the above presented optimality con-

dition is met. Therefore, this exact approach allows to implicitly discard most

of the variables that will be non-basic in the optimal solution. The subsequent

algorithm and the diagram 3.2 summarize the working scheme of the column gen-

eration approach:

INPUT: Maximum Lifetime Problem Instance

1. Define the initial set of columns R:

The choice of the columns has to guarantee the feasibility for the main

problem P.

2. Costruct the RP formulation with the column belonging to R:

max{cTRwR : ARwR ≤ 1, wR ≥ 0}.

3. Solve the RP formulation:

Let w∗R be the optimal solution of the RP problem.

4. Construct and solve the separation problem:

If the optimal solution of the separation problem is ≥ 1 then the solution

(w∗R, 0N−N ′) is the optimal solution also for [P] and the algorithm stops.

Otherwise the column computed by the separation problem SP is added to

the RP formulation and then we return to the step 3.

34

3. Column Generation

We can now answer to the question 3 of the section 3.2.1 that is: 3) how do we

identify the initial set of columns R? The initial choice of the set R of columns

has to guarantee the feasibility for the restricted master problem. The general

method is to use an heuristic approach to compute any feasible solution of size

R for the current problem that we have to solve. Given such heuristic solution,

the set R will be composed by columns of the matrix A related to the heuristic

solution. A simple example of heuristic solution could be the follow: for each

target choose a sensor that covers it and activate it. We don’t care about how

many targets a selected sensor covers, as long as we respect the target coverage

constraints. This is a simple way to construct a cover. The process may be

iterated to produce the desired R set. Another important question is linked to

the update of the set R of columns, i.e. 4) how do we update the set R? In

literature there exist variants of the column generation approach based on the

method used to update the set R at each iteration:

1. the set R can be composed of the basic columns deriving from the last [RP]

solution and of the new column that enters the basis. At each iteration the

column generated by the separation problem can be added to the set R and

the exiting one is deleted.

2. iteration by iteration a new column is added to the set R without deleting

previous ones.

3. columns of R which did not enter the basis for a large number of iterations

without re-entering are deleted from it.

Indeed, there are cases in which even if the separation problem individuates a

new attractive entering variable the objective function doesn’t change its value.

This is a situation that slows down the convergence of the algorithm. Generally

in case of degeneracy we can apply anti-cycling rules and perturbation rules on

the restricted problem. More details about the applicability of the approach can

be found in [12] [41] [56] [57] [75] [80].

35

3. COLUMN GENERATION

Start	

1)	
 Build	
 a	
 feasible	

ini/al	
 set	
 R	
 of	

columns	

3)	
 Solve	
 [RP]	

4)	
 Build	
 and	
 solve	

the	
 [SP]	
 from	
 [RP]	

dual	
 prices	

4.1) Is the
 optimal

[SP] value greater or
equal than 1?

Stop	
 and	
 return	

the	
 last	
 [RP]	

solu3on	

No

Yes

4.2)	
 Add	
 the	
 [SP]	

solu/on	
 to	
 R	
 	

2)	
 Build	
 [RP]	
 from	

the	
 set	
 R	

Figure 3.2: CG Diagram

36

3. Genetic Algorithms

3.2.4 How to solve the separation problem

In the previous section we saw the general working principles of the Column

Generation approach and their application to the MLP problem.

As shown in section 3.2.3, the separation subproblem for the MLP is the

well known weighted set covering problem that is NP-Hard [53][67]. Typically to

solve hard optimization problems, it is helpful to use heuristic approaches that

by improving the computational time required to solve the separation problem

may help to speed-up the whole resolution framework. The column generation

uses the optimal solution of the separation problem to test the optimality of the

problem [P], however in order to improve the current objective function of the

master problem we do not need necessarily the column with the best reduced

cost. All the columns with objective function value lower than 1 can be used

to improve the objective function of the master problem. Therefore we thought

to apply an heuristic approach that can compute more than one column at a

time. There exist various examples of column generation algorithms which use

heuristics for the resolution of the separation problem, more detail can be found

in [15] [101] [14]. Obviously, the heuristic approach does not guarantee to find

the optimal solution, therefore every time the heuristic fails in finding attractive

covers we are forced to invoke the exact resolution of the separation problem. This

implies that the [SP] formulation must be solved to optimality at least once. In

the next chapters we will show the effectiveness of genetic algorithms constructed

in an ad-hoc manner to speedup the generation of several attractive covers at

once with respect to the classical column generation approach. Indeed, we chose

a population-based metaheuristic since it allows to consider and improve several

good solutions, potentially reducing the number of required column generation

iterations and thus also the computational effort. remaining part of this chapter

we introduce genetic algorithms and their behavior in greater detail.

3.3 Genetic Algorithms

Genetic Algorithms represent a well-known and widely used meta-heuristic tech-

nique for optimization problems. Similarly to other evolutionary techniques, a

37

3. GENETIC ALGORITHMS

genetic algorithm (GA) emulates biological evolution and natural selection. The

first evolutionary ideas, inspired by Charles Darwin’s theory of evolution, ap-

peared in computer science and in the field of optimization around 1960. As

reported in [45] and [97], in 1960 Rechenberg, [86] presented the first approach

which included an evolutionary simulation in the field of computer science. He

was studying optimization problems in fluid-mechanics when he began to study

general function optimization algorithms and evolutionary strategies. With his

works he pioneered the filed of evolutionary computing. In the following years,

these ideas were studied and extended by several researchers. As reported in

[45], at that time, the concept of genetic algorithm appeared independently three

times in a decade. Indeed, it was presented by Fraser in [48], [49] (1957), in [50]

(1960), in [52] (1962), in[47] (1966), and in [51] (1968). In the same years it was

also independently studied by Bremermann in [18] (1962), and Bremermann et

al in [19] (1966). Other contributions were presented by John Holland’s students

at Michigan University (Bagley in [9] (1967), Rosenberg in [89](1967)), and Hol-

land in [62] (1969) and in [63] (1973). However, historically the birth of genetic

algorithms was assigned to Holland that in its publication “Adaption in Natural

Artificial Systems” [61] (1957), as reported in [97], developed the first genetic al-

gorithm inspired to the Darwin’s theory for an optimization problem. Holland’s

ideas were intensively studied and now genetic algorithms represent a mature the-

ory in the resolution of optimization problems and search. As reported in [97],

genetic algorithms are today an example of mathematical technology transfer be-

cause simulating the evolutionary concept can solve many problems in different

fields. We can remember genetic algorithm applications for very hard optimiza-

tion problems about scheduling, timetabling and others [97]. As in nature, a GA

considers the evolution process based on chromosomes, elements that represent

the structure of an individual for the real world and a solution (e.g. a feasible

cover in our case) for the optimization problem. The natural selection is the

process through which the GA guarantees that new solutions are typically, step

by step, better adapted to the environment. The environment is encoded by

the fitness function that is used to rank each solution. The evolutionary step is

achieved through two mechanisms, named crossover and mutation. The crossover

operator combines, in a probabilistic manner, the genetic material of typically two

38

3. Genetic Algorithms

or more selected individuals (parent solutions). The mutation operator, instead,

randomly modifies the value of one or more genes of a child chromosome derived

from the crossover phase in order to increase diversity. The overall process is

repeated until a stop condition is reached. Such a condition can be a maximum

number of generations, a specified amount of time, a lack of improvements in the

fitness function of the best individual, or other conditions related to the specific

optimization problem. The resolution of an optimization problem aims to search

the best solution in the search space, i.e. the space of feasible solutions. Genetic

algorithms take advantage of the above mentioned evolutionary concepts in order

to find the best solution, trying to avoid or escape from local optima. There are

two key aspects on which the genetic algorithms are based, that is randomness

and the current population (i.e. set of feasible solutions). The genetic algo-

rithms are stochastic algorithms, meaning that randomness is used within the

selection, reproduction and mutation procedures to better simulate the evolution

process. They do not work on a single solution, indeed they work on a big set

of solutions at the same time, which allow the genetic procedures to consider a

significant amount of diversity at each iteration. In literature there are also other

approaches inspired by Darwin’s theory of evolution and by genetic algorithms,

such as evolutionary strategies and genetic programming. Classifying this large

set of different approaches, which is still in expansion, can become difficult; for

this reason, they are generally referred to as Evolutionary Algorithms. Despite

their good features, genetic algorithms also present some drawbacks. Indeed, they

represent a general framework that works, typically, without knowing specific no-

tions about the problem, and this generality leaves them the possibility to be

applicable to a great set of problems. Obviously, specialized algorithms designed

more specifically for a given problem can outperform the performance of a more

general purpose genetic algorithm in terms of required computational effort and

solution accuracy. However, given their features genetic algorithm are often use-

ful to better investigate a big and complicated search space, or to hybridize other

approaches, either exact or not. As reported in [97] John Holland, in its work

[61], intended to investigate both the evolutionary process of natural species with

their adaptation to the environment and to design artificial systems with similar

characteristics. His main intuition has been that a set of a solutions for a given

39

3. GENETIC ALGORITHMS

problem can contain the representation of the optimal solution. The initial pop-

ulation of solutions can evolve toward better individuals (i.e. solutions) through

the combination, permutation and mutation of part of their information and the

one of other individuals, allowing new solutions to inherit the best features of

previous ones.

3.3.1 Generational Genetic Algorithms and Steady State

Algorithms

A simple genetic algorithm is composed of a set of steps that follow the paradigm

of the evolution of the species. Today, as reported in [97], we can well understand

that biological concepts such as the structure of DNA and RNA are very similar to

the mechanisms of information storage in the computer, e.g. linear data structures

or vectors or strings. This, in many cases, suggests us the natural application

of the evolutionary approaches to optimization problems. The starting step, for

the application of a genetic algorithm, is the representation of the individuals,

i.e. the design of a structure that represents efficiently the information which

represent a solution for our problem. This structure is known as chromosome.

All the solutions that follow that structure can be part of the search space of

the our problem. Obviously it is impractical to enumerate and build all possible

solutions. Indeed, as in nature, genetic algorithms work with an initial population

of individuals (solutions) of limited size, represented through the chromosome

structure. Therefore the initial search space is reduced to this set of solutions.

Given the current population and the details of the optimization problem that

we would like to solve, a genetic algorithm uses specific operators which are able

to combine two or more solutions to obtain new ones. The fitness function, as

previously reported, encodes the environment and is used to rank solutions and

give a measure of their quality. Typically the fitness function corresponds to

the objective function of the optimization problem. As in nature the process of

natural selection favors the best individuals, and genetic algorithms implement

a selection process on the current population in order to select, according to

the fitness value, only the best ones. However, during the evolutionary steps,

elements with inferior fitness values might also be combined with others as a

40

3. Genetic Algorithms

mean to increase diversity and explore new regiorns of the search space. This

diversification is further addressed by the mutation operator, which randomly

alters part of the information belonging to newly produced chromosomes. The

general structure of a genetic algorithm can be summarized in the following steps

and schematically in diagram 3.3.

General Genetic Algorithm structure:

1. Build a random Initial Population: defined the chromosome structure and

the details of the problem, we generate an initial population randomly.

2. Compute the Fitness value for each individual: once defined the fitness func-

tion that typically corresponds to the objective function of the problem, we

evaluate this function on each solution belonging to the initial population.

Therefore the algorithm can rank the quality of each solution.

3. Store the best individual and its fitness value.

4. Apply a Selection on current Population: at this point given the information

coming from the previous steps and the characteristics of the solutions, we

have to decide how to naturally select the mating pool i.e. what are the

individuals from which to evolve the current population.

5. Create a New Generation that replaces the old one by means of these steps

(a) Select two chromosomes according to their fitness: here two or more

individuals are selected by means of specific procedures, e.g. Roulette

Wheel Selection, Random Selection, Rank Selection, Tournament Se-

lection, Boltzman Selection.

(b) Apply Crossover : here the algorithm combines the genetic material of

the selected parents to generate one or more children. Typically the

selection and the crossover operator are applied on good the individuals

belonging to the mating pool since the hope is that by combining them

even better solutions might be obtained. There are several crossover

techniques such as Single point, Two Point, Multipoint, Uniform etc.

41

3. GENETIC ALGORITHMS

(c) Apply Mutation: with a predefined probability the algorithm applies

on the current children a mutation operator. This operator alters some

information in the new solution in order to allow the recovery and the

conservation of genetic material that could be lost. At the same time

it allows to vary the solution to improve the search and allows to avoid

getting stuck in local optima.

(d) Acceptance: each new produced child, will be inserted in the new

population that will replace the older population. In the described

scheme, known as generational genetic algorithm, the new children

will be used only in the new generation. In the case of steady-state

genetic algorithm instead each new child is immediately added to the

current population and replaces an outgoing older chromosome which

is selected according to various criteria, e.g. it might be the older

one, the one with the worst fitness or it might be selected through

probabilistic tournaments.

6. If any Stop condition the algorithm terminates, otherwise a new iteration

is carried out (Step 2).

The scheme 3.3 represents the operational flow of a generational genetic al-

gorithm, in its standard definition. However, there are some variations, such as

the already introduced steady state algorithm a technique that as we will see we

applied to the research problems studied in chapters 4 and 5. This type of genetic

algorithm has for many types of problems better performances, which is due to

earlier insertion of the elements in the population. In practice, each new child

is immediately available in the mating pool, making immediately a step towards

better solutions, in the early stages of the evolutionary process. For a complete

and detailed description of the genetic algorithms and their characteristics the

reader can refer to [97] [58] [38] [105].

42

3. Genetic Algorithms

Start	

1)	
 Build	
 at	
 random	
 an	
 ini/al	

feasible	
 Popula/on	

2)	
 Compute	
 the	
 fitness	
 value	

for	
 each	
 individual	

3)	
 Store	
 the	
 best	
 individual	
 and	

its	
 fitness	

4)	
 Apply	
 Selec/on	
 on	
 current	

Popula/on	

6) Stop criteria
reached

Stop	

Yes
No

7)	
 Apply	

Muta/on	
 Rules	

5.1)	
 Select	
 two	
 chromosomes	
 as	
 parents	

5.2)	
 Crossover:	
 produce	
 a	
 child	
 from	
 parents	

5.3)	
 Mutate	
 the	
 new	
 offspring	

5) Create the new generation by means of the
following step:

5.4)	
 Insert	
 new	
 offspring	
 in	
 the	
 current	
 popula/on	

Figure 3.3: GA Diagram

43

Chapter 4

A Hybrid Exact Approach for

Maximizing Lifetime in Sensor

Networks with Complete and

Partial Coverage Constraints

4.1 Introduction

In this chapter we address the well known Maximum Lifetime Problem (MLP)

in wireless sensor network with full and partial coverage constraints. Here we

describe, first, the problem and the essential literature on the problem to better

introduce, subsequently, the mathematical formulation of the problem and the

building blocks of the designed resolution approach. Wireless Sensor Networks

(WSNs) are generally composed of a huge amount of small power-constrained

sensing devices (sensors) scattered over the region of interest that we want to

monitor. Each sensor is generally capable of monitoring the space around it-

self defined by its sensing range, this area is usually called sensing area. Each

individual device has well known limits in terms of sensing capabilities and en-

ergy resources (see Section 2.2 for more details about sensors and wireless sensor

networks). A coordinated set of sensors allows to perform monitoring activities

in possibly large areas, in fields as diverse as environmental control, healthcare

44

4. Full and Partial Coverage

and military applications, and others (see, for example, Chapter 2, [4], [82], [85]).

Given the limited energy resources of the batteries that generally keep sensing de-

vices in a active state for a limited amount of time, an issue which has drawn the

attention of researchers in the last years is the optimization of energy consump-

tion in order to improve the global network lifetime. Specifically, the problem of

judiciously use a set of sensors to monitor specific points of interests (known as

targets), placed inside the environment under monitoring, as long as possible has

been widely studied. The MLP has been mainly addressed with strategies aimed

at finding covers, i.e. several, potentially overlapping subsets of active sensors

which can, one at a time, assure the coverage of all target points, as well as an

activation time for each of them, such that the sum of the activation times of

the covers in which each sensor appears is not greater than the amount of time

that its battery can guarantee. The main idea is to activate the covers one at

time, that is to turn on all the sensors which belong to the current cover, while

keeping all other sensors turned off. In [22] the authors showed that MLP can

be improved with respect to previous methods in which each sensor could only

belong to a single cover, i.e. sensors were divided into disjoint sets. They also

showed that the problem is NP-Complete and they designed an approximation

algorithm to solve it. A Column Generation algorithm aimed at solving the MLP

was proposed in [40]. In this work the authors propose a hybrid approach where

the Separation Problem of the Column Generation technique is either solved by

means of an heuristic algorithm or optimally by means of a specific ILP formu-

lations. More details about this approach are given in Section 4.3. For more

details on Column Generation and how to generally hybridize it the reader may

refer to Chapter 3. For a survey on hybrid algorithms, including the embedding

of heuristics and meta-heuristics into Column Generation frameworks, the reader

may refer to [15]. Many variants of MLP have been proposed as well, in order to

fit the original problem to different scenarios that need of different sensing mod-

els (see Section 2.2.1). Some of the suggested variants take into account cover

connectivity ([5], [110], [84], [30], [28]) or reliability issues ([32]), or consider sen-

sors with adjustable sensing ranges ([23], [31], [91]). For many of these variants,

efficient algorithms based on Column Generation have been proposed ([5], [84],

[31], [91], [92], [27], [30], [32], [28]). One of the most interesting variant of the

45

4. FULL AND PARTIAL COVERAGE

problem is the Maximum Network α-Lifetime Problem (α-MLP), which was ad-

dressed in [54]. In such a variant, a predefined quantity of the overall number

of the targets is allowed to be not monitored in each cover. As can be easily

deduced and will be better showed in Section 4.2, α-MLP generalizes MLP and

therefore each algorithm aimed at solving this problem can also be applied to

address the original one. In [54] the authors presented both a heuristic algorithm

and an exact one, showing that huge improvements in terms of global network

lifetime can usually already be achieved by neglecting a small quantity of targets

in each cover. Furthermore, the authors showed also that most of the advantage

is generally maintained even if some additional regularity conditions are taken

into account in order to assure a minimum global coverage level to each target.

In this Chapter we propose an exact approach for the α-MLP problem, named

GCG. While the general structure of the method is again based on the Column

Generation, the main contribution of this research work consists in the proposal

of a specific designed genetic meta-heuristic which is applied to solve the related

Separation Problem. For an introduction on genetic algorithms and how they work

the reader may refer to Chapter 3, while more details on evolutionary approaches

can be found in [97],[38], [58]. As will be shown by the computational tests (see

Section 4.5) our algorithm is highly efficient in terms of computational time with

respect to both the algorithms presented in [40] for MLP and in [54] for α-MLP.

The rest of this chapter is organized as follows. Section 4.2 formally introduces

the problems and a mathematical formulation to describe them. Section 4.3

briefly resumes the approaches presented in [40] and [54] to solve MLP and α-

MLP. Section 4.4 describes the design of the genetic algorithm, while Section 4.5

describes the results of our computational experiments.

4.2 Problems Definition and Mathematical For-

mulation

Let N = (T, S) be a wireless sensor network, where T = {t1, . . . tn} is the set of

the targets and S = {s1, . . . , sm} is the set of sensors. As previously introduced,

each sensor is assumed to have a given sensing range and a battery that can

46

4. Full and Partial Coverage

keep it in an active state for a limited amount of time. In this research work we

assume each sensor to be identical. All sensors have the same sensing range and

the same battery characteristics. The battery durations are normalized to 1. In

Figure 4.1(a) a sensor network is shown with a set of six sensor S = {s1, . . . , s6}
and set of six targets T = {t1, . . . , t6}. The sensing ranges are represented by

circles.

t1

t6
t2

t5t3

t4

s6s5

s4

s3

s2s1

t1

t6
t2

t5t3

t4

s6s5

s4

s3

s2s1

t1

t6
t2

t5t3

t4

s6s5

s4

s3

s2s1

t1

t6
t2

t5t3

t4

s6s5

s4

s3

s2s1

↵ = 1

↵ = 0.8

t1

t6
t2

t5t3

t4

s6s5

s4

s3

s2s1

(a)

(b) (c)

(e)(d)

Figure 4.1: Example Network

For each target tk ∈ T and sensor si ∈ S, let δki be a binary parameter equal

47

4. FULL AND PARTIAL COVERAGE

to 1 if tk is positioned within the sensing range of si (i.e. tk is covered by the

sensor si), 0 otherwise. For a subset of sensors S ′ ⊆ S and tk ∈ T , let ∆kS′ be

another binary parameter equal to 1 if δki = 1 for a given si ∈ S ′, 0 otherwise.

Given a value α ∈ (0, 1], we define C ⊆ S to be a feasible cover for the network

if its active sensors cover at least Tα = α × n targets, i.e.
∑

tk∈T ∆kC ≥ Tα.

Furthermore, we define a cover to be non-redundant if it does not contain another

cover as a proper subset.

The Maximum Network α-Lifetime Problem (α-MLP) consists then in finding

a collection of pairs (Cj, wj) where each Cj ⊆ S is a feasible cover and each wj ≥ 0

is an activation time, such that the sum of the activation times is maximized and

each sensor is used for an amount of time that does not exceed its normalized

battery duration. It is straightforward to note that an optimal solution can be

found only considering non-redundant covers.

It is also interesting to observe that, on the same wireless sensor network

instance, the maximum lifetime for the α-MLP is always greater than or equal

to the maximum lifetime for the MLP. For example, let us consider again the

network in Figure 4.1(a). It is straightforward to observe that the only two fea-

sible covers for MLP would be {s1, s2, s5, s6} (Figure 4.1(b)) and {s1, s3, s4, s6}
(Figure 4.1(c)). In this case, it is possible to achieve a network lifetime equal

to 1 time unit by activating them for any couple of time w1, w2 ≥ 0 such that

w1 + w2 = 1. However, after this operation, no more feasible covers can be ob-

tained by the remaining sensors with a non-empty battery (we can note that the

batteries of sensors s1 and s6 are exhausted), and then the final solution is equal

to 1. Let us consider now on the same network an α-MLP problem with α = 0.8,

that is 1 out of 6 targets can be uncovered. In this case there are four feasi-

ble not redundant covers {s1, s3, s4} (Figure 4.1(d)), {s2, s5, s6} (Figure 4.1(e)),

{s1, s2, s5} and {s3, s4, s6} and we can easily achieve a lifetime equal to 2 time

unit by activating in sequence the covers {s3, s4, s6} and {s1, s2, s5}, for 1 time

unit.

Assuming that we are able to compute in advance the whole set of feasi-

ble covers C1, . . . , C`, α-MLP could then be modeled using the following Linear

Programming formulation, where the binary parameter aij = 1 if si ∈ Cj, 0

otherwise:

48

4. Full and Partial Coverage

[P] max
∑̀
j=1

wj (4.1)

s.t.

∑̀
j=1

aijwj ≤ 1 ∀i = 1, ...,m (4.2)

wj ≥ 0 ∀j = 1, ..., ` (4.3)

Objective function (4.1) maximizes the global lifetime, i.e. the sum of the acti-

vation times, while constraints (4.2) enforce the respect of the lifetime constraints

for each sensor.

In the classical Maximum Network Lifetime Problem (MLP), each cover has

to collect information on the whole set of targets in order to be feasible; therefore,

MLP corresponds to the α-MLP with α = 1 (and hence Tα = n). Under these

assumptions, the problem definition and the [P] formulation presented above

represent the classical problem as well.

The potentially exponential number of covers, in particular for large scale

instances deriving from real-world scenarios, prevents us to directly apply the

previous formulation. This can be especially true for lower values of α; indeed,

it is easily to observe that given (α1, α2) ∈ (0, 1]2 with α2 < α1, each cover for

α1-MLP is also feasible for α2-MLP. For this reason, it is necessary to apply more

efficient approach to solve [P] such as Column Generation algorithms proposed

by [40] for MLP and by [54] for α-MLP. We use the same approach to solve the

[P] formulation, but we focus our attention on the Separation Problem, since

solving it efficiently is the key to obtain a fast column generation algorithm. To

this end, we design a fast genetic meta-heuristic, defined GA from now on, whose

main characteristic is the ability to return several useful feasible covers at once

and, as we will see in Section 4.5, this ability will make the difference, in terms

of computational time, with respect to the previous algorithms.

49

4. FULL AND PARTIAL COVERAGE

4.3 Column Generation Approaches for α-MLP

and MLP

Given the dual prices πi associated to each constraint of the Master Problem, all

the feasible covers with a reduced cost lower than 1 are attractive covers for the

Master Problem. We can therefore define as subproblem the following formulation

[SP], where objective function (4.4) minimizes the sum of the dual prices of the

sensors chosen to be part of the newly produced cover, while constraints (4.5)-

(4.8) define a feasible cover:

[SP] min
m∑
i=1

πixi (4.4)

s.t.

m∑
i=1

δkixi ≥ yk ∀k = 1, ..., n (4.5)

n∑
k=1

yk ≥ Tα (4.6)

xi ∈ {0, 1} ∀i = 1, ...,m (4.7)

yk ∈ {0, 1} ∀k = 1, ..., n (4.8)

For each sensor si, the binary variable xi represents the choice on including

it in the new cover, while, for each target tk, the variable yk represents whether

the target is monitored in the cover. Constraints (4.5) make sure that each yk

can have value 1 only if at least one of the sensors that cover the target has

been added, while constraints (4.6) impose that at least Tα targets are covered.

The current incumbent solution is optimal if the value of the objective function

(4.4) is greater or equal than 1, otherwise the new attractive cover is added to

the master problem. When α = 1, that is we are considering the MLP problem,

constraints (4.6) reduce to
∑m

i=1 δkixi ≥ 1 ∀k = 1, ..., n, and constraints (4.5) as

well as variables yk are not necessary.

50

4. Full and Partial Coverage

4.3.1 Heuristic approaches to speed-up the Column Gen-

eration Approach

The main disadvantage of the column generation approach proposed above is

that the [SP] is strongly NP-hard, being a specialization of the Set Covering

problem. For this reason, it is advisable to limit as much as possible the number

of times in which it is required to be solved. For instance, in [40], the author

proposes three column generation based approaches. A first exact approach,

named Exact, solves the subproblem to optimality as discussed, while the other

two (named Heur and Mixed, respectively) make use of a constructive heuristic to

attempt the generation of new attractive covers. This heuristic iteratively builds

a single cover by first choosing a random uncovered target and then selecting the

sensor with minimal dual price value that can cover it, until complete coverage

has been reached. The Heur algorithm transforms the whole CG framework into

a heuristic approach by substituting the subproblem formulation with the above

described heuristic, ending as soon as it fails. The Mixed algorithm, instead,

is again an exact approach that uses both the heuristic and the exact MILP

formulation to solve the subproblem. More in detail, the subproblem is solved to

optimality only when the heuristic fails to produce an attractive cover, in order

to find such a cover or certify that it does not indeed exist. In [54], the authors

propose instead a heuristic meant to independently produce a complete solution

for α-MLP (that is, a collection of covers and activation times). Each cover in

this approach is again built iteratively, adopting some heuristic criteria to favor

the coverage of targets which has been covered for fewer amounts of time so far in

the partial solution. Each newly produced cover is assigned a predefined amount

of time, and the algorithm ends when the residual energy in the sensors do not

allow to produce a new feasible one. Finally, the set of produced covers is used

as initial restricted set for the master problem.

In this work, we attempt to heuristically solve [SP] at each iteration, by

using a genetic meta-heuristic instead of a simple constructive heuristic as the one

proposed in [40]. As in the Mixed algorithm, the exact subproblem formulation is

used when the genetic algorithm fails in order to guarantee that an exact solution

is always found. We define this hybrid exact approach GCG. As we will see later,

51

4. FULL AND PARTIAL COVERAGE

thanks to this choice our column generation approach will overcome the above

mentioned previous algorithms for MLP and α-MLP. Here in Figure 4.2, recalling

the introduction in Chapter 3, we can see a simple working scheme that briefly

synthesizes our hybrid exact approach. In the first phase (Figure 4.2 (1)) we use

our GA to initialize the Master Formulation considered by Column Generation.

In the starting phase GA takes as input random dual prices to produce the first

set of feasible columns. The master problem restricted to this columns is then

solved and is computed and used a first set of dual prices to properly run GA

(Figure 4.2 (4)). When the GA reaches a stop condition, we check if in the current

population there are columns whose fitness value (corresponding to the objective

function of the separation problem) is lower than 1. If is it the case, we add those

columns to the RMP formulation and we go back to step 3, otherwise we solve

the [SP] problem, we check if there is a new column that we can add to the RMP

(in which case we go back to step 3) or if the current solution is the optimal one.

4.4 A Genetic Algorithm to Solve the Subprob-

lem [SP]

In this section we describe our genetic algorithm designed to hybridize and to en-

hance the column generation approach. For a complete and detailed description

about the genetic algorithms the reader can refer to [97],[38], [58]. We briefly

recall that a genetic algorithm is a naturally stochastic technique that emulates

the typical steps of the biological evolution based on the concept of natural selec-

tion, crossover and mutation. Each problem solution is expressed by an element,

named chromosome, that represents the structure of an individual. Given a

starting population P of chromosomes, the genetic algorithm produces new chro-

mosomes by means of the crossover operator that combines, in a probabilistic

manner, the genetic information of typically two or more naturally selected chro-

mosomes of the population. On the newly built chromosome, a mutation operator

is applied in order to provide a perturbation of the solution without irreversible

loss of genetic material. The natural selection together with the fitness function,

used to rank each solution, guarantee that new chromosomes are typically better

52

4. Full and Partial Coverage

Start	

1)	
 Build	
 a	
 feasible	

ini/al	
 set	
 R	
 of	
 columns	

by	
 means	
 of	
 GA	

3)	
 Solve	
 RMP	

4)Solve	
 the	
 SP	
 with	
 GA	

4.1) Are in the final
population of GA solutions with

fitness value less than 1?

Stop	

Yes

No

4.2)	
 Add	
 the	
 found	

aBrac/ve	
 covers	
 to	
 the	

RMP	
 formula/on	
 	

2)	
 Build	
 the	
 RMP	
 from	

the	
 set	
 R	
 of	
 columns	

5)Build	
 and	
 Solve	
 the	

SP	
 ILP	
 formula/on	

5.1) Is the SP
optimal solution greater

or equal than 1? No

Yes

5.2)	
 Add	
 the	
 SP	

solu/on	
 to	
 the	
 RMP	

formula/on	
 	

Figure 4.2: Hybrid Scheme

53

4. FULL AND PARTIAL COVERAGE

adapted to the environment. The genetic algorithms iterations are typically regu-

lated by stop conditions as a maximum number of iterations, a specific amount of

time, the lack of improvements in the fitness function of the best individual or by

a specific subset of conditions related to the problem. As previously introduced,

the aim of the GA algorithm is to quickly find attractive covers and return them

to the master problem. As we will see in the section 4.5, GA is very effective

since often it fails just once, i.e. when the optimal solution is found. Moreover,

our genetic approach has the ability to produce several attractive covers at once,

reducing dramatically the number of required iterations. As a consequence, our

GCG algorithm converges noticeably faster than previous approaches. In the

next subsections the details of our genetic algorithm are given.

4.4.1 Chromosome Representation and Fitness Function

GCG is based on the binary chromosome, shown in Figure 4.3, composed by

m = |S| positions, each one associated to a sensor of the network. In our genetic

algorithm, each chromosome represents a feasible not-redundant cover and each

position i of the chromosome is equal to 1 if the sensor si is active in the cover

and 0 otherwise.

0011 11 000 00 00001 1 11 11 1 11 11 0chromosome

m sensors

Figure 4.3: The chromosome representation.

The value of the i-th position (i = 1, ...,m) in the chromosome corresponds to

the binary value of the xi variable in the [SP] formulation. Analogously to covers,

a chromosome is defined to be redundant if it is possible to switch off at least

one of its active sensors, and the related cover remains feasible. Since, as already

mentioned, an optimal solution can always be found by only considering non-

redundant feasible covers, during the GA execution we only allow non-redundant

chromosomes to be part of the population.

54

4. Full and Partial Coverage

The fitness function for a given chromosome is the dot product of the binary

chromosome vector and the dual prices vector coming from the last iteration of

the Master Problem (and therefore corresponds to objective function (4.4) for

[SP]). At the end of the GA procedure, each chromosome, with a fitness lower

then 1, will be included in the Master Problem as a new column.

4.4.2 Crossover

One of the main aspects that influence the effectiveness of a genetic algorithm

is the crossover operator. This operator allows the creation of new chromosomes

starting from previous ones. In particular, the crossover usually selects two mem-

bers of the population (defined parents), and generates a new one starting from

them (the child), which hopefully inherits their best features. During the evolu-

tion process of a genetic algorithm, special care should be taken in order to avoid

the case in which several identical chromosomes exist in the population; indeed,

in that case the crossover operator has failed to create offspring that is different

from their parents. This situation penalizes the effectiveness of the algorithm and

therefore the quality of the final solutions. In our crossover, the selection of the

parents is carried out through a typical binary tournament (see Algorithm 1).

To this end, the chromosomes of the population are initially sorted, in ascending

order, according to their fitness values. Subsequently, two chromosomes (C1rand

and C2rand in Algorithm 1) are selected randomly among all them and the one

with best fitness is chosen as first parent (p1 in Algorithm 1). As we can see in

the pseudocode, the second parent p2 is chosen in the same way, avoiding the

first parent to be chosen as participant of the second tournament. Our crossover

operator works exactly like the AND logical operator. The Figure 4.4 shows,

on the left, the AND truth table and, on the right, two example chromosomes,

parent1 and parent2, from whose the crossover operator builds the child one.

This type of operator ensures the common heritage belonging to both parents to

be transmitted to the child.

55

4. FULL AND PARTIAL COVERAGE

0011 11 000 00 00001 1 11 11 1 11 11 0

1101 111101 0 01111 100 01 1111 00

0001 11 000 0 00111 0000 10 0 101 00

parent 1

parent 2

child

0

1

0

0

0

1 1

crossover operator

parent 1 parent 2 child

0

childi = parent1i ^ parents2i 8i 2 {1, ..., m}

0

0 1

1

Figure 4.4: The crossover operator.

Algorithm 1: tournament

Input: P ;
Output: couple of parents (p1, p2);

1 p1 ← ∅;
2 p2 ← ∅;
3 while p1 = ∅ ∨ p2 = ∅ do
4 C1rand ← randomSelect(P − {p1});
5 C2rand ← randomSelect(P − {p1, C1rand});
6 if p1 = ∅ then
7 if fitness(C1rand) <= fitness(C2rand) then
8 p1 ← C1rand;

9 else
10 p1 ← C2rand;

11 else
12 if fitness(C1rand) <= fitness(C2rand) then
13 p2 ← C1rand;

14 else
15 p2 ← C2rand;

56

4. Full and Partial Coverage

4.4.3 Mutation

Mutation is a genetic operator that alters one or more genes in a chromosome to

introduce perturbation and therefore provides diversification in the new generated

chromosomes. We recall that in our genetic algorithm no duplicated chromosomes

are allowed in the population. This means that generating a duplicate is a waste

of computational time since it would be rejected. Since we do not generate new

chromosomes taking into account all the chromosomes of the population, we try

to differentiate each child from at least both its parents, if possible. It is common

for a new generated chromosome to coincide with one of its parents, in particular

when they are very similar, that is the most part of their genes are identical.

Indeed, in this situation, the child generated by our crossover operator will also

be similar to the parents and the following operations carried out on it (see section

4.4.4) could make it identical to one of them. In order to face this problem, we

use mutation to change the value of one of a random single gene in the child

whose value is identical into its parents, if it exists, in order to differentiate it

from both of them. This gene will be switched back only if strictly needed by the

feasibility or redundancy operator described in the next section.

4.4.4 Fixing and Redundancy Operators

It is easy to see that the chromosome produced by the crossover and mutation

operators could be unfeasible since it is not guaranteed that the Tα coverage is

satisfied. For this reason, it is necessary to apply another operator, named fixing

operator, that restores the feasibility of this chromosome. To this end, the fixing

operator selects randomly one of the genes in the child with value equal to zero

and switches its value to one (switching the sensor in the active state). This

process is repeated until the threshold Tα is satisfied. The Algorithm 2 shows the

pseudocode of this operator. The while loop (line1) is repeated until the threshold

is reached. The procedure individuates the set of uncovered targets T̂ (line 2)

and, randomly selects one of these targets (line 3), let us say t. Then it randomly

selects and activates one of the sensors, s, that cover t (line 4). Finally, the last

two lines update the chromosome child, thus switching to 1 the gene associated

to s, and the set of covered targets, adding the new targets covered by s.

57

4. FULL AND PARTIAL COVERAGE

Algorithm 2: Fixing Operator

Input: unfeasible Child chromosome;
Output: feasible Child chromosome;

1 while |Tcovered| < Tα do

2 T̂ ← T \ Tcovered;
3 t← randomSelect(T̂);
4 s← randomSelect(S, t);
5 update(Child, s);
6 update(Tcovered);

7 return Child;

The application of the fixing operator can produce a redundant chromosome.

Since we don’t allow redundant chromosome in the population, we remove the

redundancy by applying another operator, named Redundancy. The operator

tries to switch off active sensors without compromising the feasibility. Checking

each sensor, step by step, the procedure generates a list of redundant sensors,

then it switches off a randomly chosen element of the list. The chromosome is

updated, the list is rebuilt and the procedure iterates until the list is equal to the

empty set.

4.4.5 Building the Initial Population

The initial population P is composed of SizeP different chromosomes. The pro-

cedure works iteratively applying on a starting vector, with all the positions set

to zero, the fixing and redundancy operators. As soon as a feasible chromo-

some is obtained, it is added to the population, if it is not already present in

it, otherwise it is rejected. The procedure iterate until a fixed desired number

SizeP of different chromosomes is obtained. Due to the instances given in input,

there are situations in which it is hard or not possible to generate SizeP different

chromosomes. To face these situations, we set a threshold maxinitDB and when

the number of rejected chromosomes reaches this threshold, the procedure stops

and returns the current population whatever is the number of chromosomes in it

updating the value os Sizep accordingly.

58

4. Full and Partial Coverage

Algorithm 3: InitP

Input: (S, T), SizeP ;
Output: initial population P;

1 P ← ∅;
2 doubles← 0;
3 while |P | ≤ SizeP do
4 C ← ∅;
5 C ← fixingOperator(C);
6 C ← redundancyOperator(C);
7 if C /∈ P then
8 Insert(C,P);

9 else
10 if doubles ≤ maxinitDB then
11 doubles++;

12 else
13 Sizep ← |P |;

4.4.6 GA Overall Structure

This section describes the main GA structure used in our CG approach. The

pseudocode is listed in Algorithm 4. The input consists of a wireless sensor

network (S, T), where S is the set of sensors and T the set of targets, and a vector

of dual prices DP coming from the last iteration of the current Restricted Master

Problem. The GA first generates a starting population P of feasible solutions and

identifies the initial best chromosome fitness value BestF it. During the evolution

process the population is kept ordered based on the fitness, BestF it is kept

updated to store the value of the incumbent solution and it is used as a comparison

parameter through the overall procedure. The population of individuals has a

fixed size dimension, named (SizeP), and it is initialized taking into account

the coverage requirements as described in Section 4.4.5. The genetic algorithm

iterates the typical evolutionary steps of crossover (Section 4.4.2) and mutation

(Section 4.4.3) until one or both of the stop criteria is reached. At each iteration

the GA applies two fundamental operators, fixing and redundancy (Section 4.4.4)

on each new generated chromosome. The new child produced in this way is then

59

4. FULL AND PARTIAL COVERAGE

Algorithm 4: WSNGenetic

Input: (S, T), DP ;
Output: a subset of chromosomes(i.e. columns) for the MasterProblem;

1 P ← InitP ();
2 BestF it← bestF itness(P,DP);
3 criteria← setCriterion(MaxIT,MaxDB);
4 while check(criteria) do
5 (p1, p2)← tournament(P);
6 C ← Crossover(p1, p2);
7 C ←Mutation(C);
8 C ← fixingOperator(C);
9 C ← redundancyOperator(C);

10 if C /∈ Pop then
11 Insert(C,P);
12 if fitness(C) ≥ BestF it then
13 update(criteria);

14 else
15 BestF it← fitness(C);

16 else
17 update(criteria);

18 Chromos← chromosomes with fitness ≤ 1;
19 return Chromos;

inserted in current population P only if it does not belong to it and it replaces

a randomly selected chromosome among the |P/2| individuals with worst fitness

value. Then the population is sorted according to the fitness values. The first

stop criterion is based on the MaxIT parameter, that is the maximum number

of iterations without improvements with respect to the BestF it value, it is a

parameter that is updated every time a new child has a fitness bigger or equal than

the BestF it. The second stop condition is the maximum number of consecutive

duplicate chromosomes, MaxDB, generated by the evolutionary steps, in details

this parameter is updated when a new child is already present in the current

population and it is reset when a new one child is not already resent in the

current population. Once a stopping condition is reached, the chromosomes in

the current population P with a fitness value less than 1 are introduced in the

60

4. Full and Partial Coverage

Master Problem as new columns. The GA algorithm was also used in our tests

to provide the initial set of columns which is required by the first step of the

master problem. In this case, however, the vector of dual prices which is used to

evaluate the chromosomes is not available. For this reason, in this first iteration

a random positive value is used as dual price for each sensor. The whole set of

SizeP individuals is returned to the master problem in this case.

4.5 Computational Results

The purpose of the computational experience presented in this section is to study

the performance of our GCG algorithm with respect to column generations ap-

proaches proposed in literature by [54] (GR) for the α-coverage problem and

by [40] for the case when α = 1. We tested our algorithm on the same set of

instances used in [54] and [40], which were provided by the authors. Our algo-

rithm was coded in C++ on a (SUSE) Linux platform running on a Intel Core2

Duo 2.4GHz desktop computer with 4GB RAM (single thread mode). We have

performed our column generation algorithm using the Concert library of IBM

ILOG CPLEX 12.5. We first ran a set of tuning tests to define the values of the

parameters used by the our GA algorithm. The Sizep population size was set to

be equal to 50. The population initialization threshold maxinitDB was chosen

equal to 100. Finally, the two stopping criteria MaxDB and MaxIT were set to

100 and 2000, respectively.

Let us start our comparison from the benchmark instances proposed in the

literature by Deschinkel [40]. In Table 4.1 the results of GCG, and of the ge-

netic algorithm in it embedded, are reported. Each line in the table represents

a scenario composed by 10 instances with the same characteristics but different

topologies. Therefore, the results reported in each line are the average values

on these 10 instances. For a detailed description of the characteristics of these

scenarios see [40]. The first two columns (Sensors and Targets) report the num-

ber of sensors and targets into the scenarios. The columns Lifetime and Time

report the solution values and the CPU times, in seconds. The last three columns

Inv, Col and Flr report how many times the genetic algorithm is invoked by the

restricted master problem after the initialization phase, the average number of

61

4. FULL AND PARTIAL COVERAGE

Sensors Targets Lifetime Time Inv Col Flr
50 30 3.80 0.21 1.0 0.0 1.0

60 3.00 0.31 1.0 0.0 1.0
90 2.80 0.40 1.0 0.0 1.0

120 2.70 0.51 1.0 0.0 1.0
100 30 8.70 0.44 1.6 10.1 1.0

60 7.20 0.65 1.4 6.1 1.0
90 6.90 1.11 1.6 8.5 1.0

120 6.70 1.57 1.5 7.4 1.0
150 30 14.70 0.80 2.6 20.4 1.0

60 12.30 1.41 2.4 18.8 1.0
90 11.80 2.40 2.3 19.6 1.0

120 11.30 3.38 2.3 19.9 1.0
200 30 19.60 1.24 2.9 24.4 1.0

60 17.30 2.39 2.6 23.2 1.0
90 16.60 4.10 3.0 24.5 1.0

120 15.50 5.14 2.7 24.4 1.0
Avg 1.93 12.96 1.0

Table 4.1: Results obtained by the GCG algorithm on the benchmark instances
proposed in [40].

columns (i.e. attractive covers) returned by the genetic algorithm at each invoca-

tion (again excluding the starting one), and how many times the genetic algorithm

returns zero columns (i.e. the number of failures), respectively. Finally, the last

line of the table reports the average values of the last three columns. From the

values of the Time column, it is evident that GCG is very fast because it finds

the optimal solution in few seconds on all the scenarios. However, we postpone to

the Table 4.2 the performance comparison among GCG and the other algorithms

because, with the results of Table 4.1, we want to highlight the impact of the ge-

netic algorithm inside our column generation approach. To this end, we analyze

the values reported in the last three columns of the Table 4.1. The values of the

column Inv show that very few invocations of the genetic algorithm are needed

62

4. Full and Partial Coverage

to provide to the master problem all the columns needed to find the optimal so-

lution. In particular, on the scenarios with 50 sensors, it is invoked just once and

this means that the starting columns, provided by genetic algorithm during the

initialization phase, already contain the columns of the optimal solution. Indeed,

a single invocation after the initialization means that the GA failed and the exact

subproblem certified that an optimal solution was indeed reached, otherwise GA

would have been invoked again in the following iteration. Moreover, on average,

we have less then 1.6 invocations on the instances with 100 sensors and less than

3 invocations on the instances with 150 and 200 sensors, with an overall average

equal to 1.93. The number of invocations is small since the genetic algorithm

returns a significant number of attractive covers, at each invocation, which is on

average equal to 12.96 columns, with a peak of 24.5, which brings the columns

needed to reach an optimal solution to be quickly added to the master problem.

In particular, on the largest instances with 200 sensors the average number of re-

turned columns is above 24, that is, almost 50% of the chromosomes in the final

population are attractive covers for the restricted master problem. However, the

more interesting results are these reported into the column Flr which measure

the effectiveness of the genetic algorithm. Every time the genetic algorithm does

not find any attractive cover for the restricted master problem, we are forced to

solve the subproblem exactly in order to certify the optimality of the incumbent

solution or to find a new attractive cover that the genetic algorithm has missed.

This means that the genetic algorithm have to fail at least once, that is when the

optimal solution is found. Remarkably, on all the scenarios reported in [40] the

number of failures of our genetic algorithm is always equal to 1. This means that

we solve the subproblem ILP formulation just once for each instance, when it is

used to certify the optimality of the current incumbent solution. According to

the results of the Table 4.1, we expect the effectiveness of the genetic algorithm to

be able to speed up the convergence of our column generation approach, making

it competitive with respect to the other algorithms proposed in literature. In

order to verify this, the computational times of our GCG and of Exact, Heur

and Mixed algorithms, proposed by [40], are reported in the Table 4.2. The

first three columns show the characteristics of the scenarios already mentioned

in Table 4.1 (columns sensors, targets, Lifetime). The following four columns

63

4. FULL AND PARTIAL COVERAGE

Sensors Targets Lifetime Exact Heur Mixed GCG GAP
Time Time Time Time vs Exact vs Heur vs Mixed

50 30 3.80 0.25 0.30 0.12 0.21
60 3.00 1.03 0.53 0.52 0.31
90 2.80 2.95 0.82 1.55 0.40 86.42% 74.15%

120 2.70 8.40 1.20 4.03 0.51 93.87% 87.22%
100 30 8.70 3.29 2.97 1.03 0.44 86.75% 85.32%

60 7.20 26.53 4.25 8.41 0.65 97.55% 84.71% 92.28%
90 6.90 243.95 6.82 74.19 1.11 99.55% 83.77% 98.51%

120 6.70 749.46 9.70 220.64 1.57 99.79% 83.79% 99.29%
150 30 14.70 17.17 14.51 4.94 0.80 95.37% 94.52% 83.89%

60 12.30 315.66 22.21 48.96 1.41 99.55% 93.65% 97.12%
90 11.80 2365.65 30.61 525.21 2.40 99.90% 92.17% 99.54%

120 11.30 9249.81 48.15 1987.04 3.38 99.96% 92.98% 99.83%
200 30 19.60 38.80 34.85 9.50 1.24 96.80% 96.44% 86.93%

60 17.30 750.40 56.34 126.39 2.39 99.68% 95.75% 98.11%
90 16.60 8229.53 132.46 1297.82 4.10 99.95% 96.91% 99.68%

120 15.50 28942.49 105.87 4393.04 5.14 99.98% 95.15% 99.88%
AVG 3184.09 29.47 543.96 1.63 96.79% 91.26% 93.57%

Table 4.2: Comparative of GCG, Exact, Heur and Mixed algorithms on the
Deschinkel’s benchmark instances.

report the CPU time, in seconds, required by the four algorithms. The last three

columns report the percentage gap, among GCG and the other three algorithms,

computed as 100 × (Alg − GCG)/Alg where Alg ∈ {Exact,Heur,Mixed}, and

GCG, Alg refer to the computational time of the related procedure. Finally, the

last line of the table reports the average values of the last seven columns. Note

that when the CPU Time gap between two algorithms is lower than 1 second, we

do not report the percentage gap, in the last three columns, because we consider

this gap negligible and we do not want that this value to affect the significance of

the average gaps contained in the last line of the table. As previously mentioned,

the results of the Time column for GCG show that it is able to find the opti-

mal solution in less than 6 seconds on average whatever are the characteristics

of the considered scenario. Therefore, the increment in terms of requested CPU

time, as the size of scenarios grows, is bounded to few seconds. The situation

appears to be completely different for the other three algorithms, that appear to

be much slower, and whose computational times are significantly affected by the

scenarios characteristics. More in details, from the average values of the last line

it is evident that GCG is faster than Exact by three orders of magnitude with a

gap that is always greater than 86%. It is impressive to observe the performance

64

4. Full and Partial Coverage

difference on the last scenario of the table (200 sensors and 120 targets) where

the Exact algorithm spends more than 8 hours to find the optimal solution while

GCG requires only 5 seconds. The Mixed algorithm results to be faster than the

Exact algorithm but when compared to the GCG algorithm it is slower by two

order of magnitude. Moreover, the performance gap between these two algorithm

is always greater than 83%. Finally, it is remarkable to note that GCG results

to be 20 times faster than the heuristic approach Heur, with a percentage gap

which is always greater than 74%.

It has to be highlighted that this comparison cannot be completely accurate

since the algorithms proposed in [40] were run on a different hardware and the

mathematical models were solved using GLPK. However, since the running time

gap can be quantified in orders of magnitude, we believe that the comparison still

provides solid evidence about the effectiveness of our approach.

The results of GCG, on one hand, confirm our expectations on the effectiveness

and efficiency of our GA algorithm and, on the other hand, prove that a column

generation approach, paired with a fast and effective method to generate new

columns, results to be a very suitable approach for lifetime problems on sensor

networks.

We now present the results of GCG when used to solve the Group 2 set of

benchmark instances proposed in [54] for the α-coverage problem. This is the

hardest set of instances considered in that paper, and therefore we considered the

results on it to be more revelevant and interesting. Nevertheless, we also tested

our approach on the Group 1 dataset, and the related tables are contained in the

Appendix A. As will be shown, GCG performs well on all these instances as well.

The Group 2 instances contain 100 targets, while the number of sensors is

not fixed a priori, but is rather computed assuring that each target is covered

by at least 3 sensors. The instances are further divided in two subgroups, named

Scattering and Design respectively. In the Scattering group sensors are added

randomly until the desired coverage level is reached, while in the Design group,

sensors are added only when needed to reach such coverage. For a detailed de-

scription of the characteristics of these instances see [54].

In Table 4.3 the results of GCG on the Scattering and Design are reported.

The first two columns specify the type of instance and the number of targets

65

4. FULL AND PARTIAL COVERAGE

Inst. Subgroup Targets Tα LifeTime Time Inv Col Flr
Design 100 50 8.32 0.41 4.30 19.20 1.03

75 5.42 0.77 9.90 13.63 2.00
85 4.50 0.90 11.50 12.27 2.87
93 3.65 0.52 6.97 14.03 1.57
95 3.34 0.39 4.80 11.87 1.20
97 3.04 0.26 2.13 7.43 1.00
99 3.00 0.27 2.03 11.90 1.00

100 3.00 0.29 2.37 13.63 1.00
Scattering 100 50 20.50 1.19 6.20 23.30 1.03

75 13.36 9.14 39.77 10.03 8.07
85 10.57 9.12 52.57 8.13 10.47
93 7.73 2.35 16.10 17.77 2.10
95 6.64 1.22 7.63 20.27 1.40
97 5.37 0.74 3.37 17.00 1.03
99 3.83 0.56 1.67 7.17 1.00

100 3.00 0.48 1.00 0.00 1.00
Avg 10.77 12.98 2.36

Table 4.3: Results obtained by the GCG algorithm on the Group 2 benchmark
instances proposed in [54].

present in it. The column Tα specifies the number of target that must be covered

while the columns Lifetime and Time reports the solution value and the CPU

time, respectively. Finally, the last 3 columns show the results of the genetic

algorithm already mentioned in Table 4.1. Each line in the table represents a

scenario composed by 30 instances with the same characteristics but a different

topologies. Therefore, the results reported in each line are the average values on

these 30 instances.

The results of Table 4.3 show that for these instances the number of GA

invocations is on average 10.77, the number of columns returned is approximately

12.98 and the number of average failures is 2.36. More in detail, on the Design

scenarios we register a peak of GA invocations equal to 11.50 for the case Tα = 85,

which also corresponds to the peak of failures, equal to 2.87. The average number

of columns returned for each iteration is greater than 10 in all cases except one,

in the case Tα = 97. The Scattering instances result to be harder to solve,

with a peak of GA invocations and failures corresponding to 52.57 and 10.47,

66

4. Full and Partial Coverage

Inst. Subgroup Tα GR GCG GAP

LifeTime Time LifeTime Time
Design 50 8.32 3.20 8.32 0.41 87.28%

75 5.42 13.94 5.42 0.77 94.46%
85 4.50 11.46 4.50 0.90 92.15%
93 3.65 7.03 3.65 0.52 92.56%
95 3.34 2.68 3.34 0.39 85.41%
97 3.04 1.43 3.04 0.26 81.61%
99 3.00 0.59 3.00 0.27

100 3.00 0.21 3.00 0.29
Scattering 50 20.50 11.13 20.50 1.19 89.30%

75 13.36 216.98 13.36 9.14 95.79%
85 10.56** 302.91 10.57 9.12 96.99%
93 7.38* 36.18 7.73 2.35 93.50%
95 6.64 8.02 6.64 1.22 84.78%
97 5.37 2.01 5.37 0.74 63.15%
99 3.83 0.56 3.83 0.56

100 3.00 0.05 3.00 0.48

AVG 38.65 1.79 88.08%

Table 4.4: Computational results of GCG and GR algorithms for the α-coverage
WSN problem.

respectively (again in the case Tα = 85). This can be explained considering the

additional number of sensors, and therefore the higher amount of feasible covers

which exists in such instances.

It can be noticed that also on this dataset GA only fails once for the highest

values of Tα, and therefore the problem approaches the classical MLP. In partic-

ular, this happens for each instance with Tα ≥ 97 for the Design dataset and

with Tα ≥ 99 for the Scattering one.

Despite the results appear to be less favorable than the ones presented in

4.1, the values in the Time column show that GCG is still very fast. Indeed,

the algorithm finds the optimal solution in less than 1 second on average in all

scenarios for the Design instances, and always in less than 10 seconds on average

for the Scattering ones.

In Table 4.4 a performance comparison between GCG and the GR algorithm is

67

4. FULL AND PARTIAL COVERAGE

performed. As mentioned above, we do not evaluate gaps when both procedures

report a computational time which is below 1 second. On the Design scenarios,

the GR algorithm finds all solution within the considered 1 hour time limit.

However, it is clear that GCG is generally much faster, with a percentage gap

greater than 81% on the first 6 scenarios and a CPU Time always lower than a

second. More interesting are the results on the Scattering scenarios, where some

of its instances are not solved within 1 hour time limit by the GR algorithm. More

in detail, it reaches the time limit on 2 instances of the scenario with Tα = 85 and

3 instances of the scenario with Tα = 93. The solution values of these scenarios

are marked into the table with the symbols “*” and “**” to highlight that these

values are averages evaluated only on the subset of instances which were solved

to completion.

The values of column GAP show that GCG is at least 63% faster than GR

with a peak equal to 97% and an average equal to 88%. The values reported in

the last line show that GCG is faster than GR by an order of magnitude with a

CPU time lower than 2 seconds with respect to the 38 seconds required by GR

algorithm. These results certify that GCG is the fastest algorithm and that it is

also more effective, since it can solve within 10 seconds at most on average all

the considered scenarios.

68

Chapter 5

The Maximum Lifetime Problem

of Sensor Networks with

Multiple Families

5.1 Introduction

Prompted by the heterogeneity of modern networks and by the wide range of dif-

ferent sensor devices existing nowadays, in this chapter we address the well known

Maximum Lifetime Problem (MLP) in Wireless Heterogeneous Sensor Networks.

Here we describe the problem and the essential literature to better introduce,

subsequently, the mathematical formulation of the problem and the designed res-

olution approach. Due to technological advances, introduced in Chapter 1 and

2, which enabled their deployment in relevant and diverse scenarios, WSNs have

been object of intense study in the last few years. Possible application contexts

include traffic control, environmental monitoring, intrusion detection and patient

monitoring in healthcare among others (see, for example, Chapter 1 and 2, [4],

[16], [37]). The typical structure of a WSN is composed of several hardware de-

vices (sensor nodes) installed over a given area that we want to monitor. Each

sensor can collect information or measure physical quantities about the space

around it (its sensing area defined by its sensing range), and more in particular

about specific points (target points or simply targets) within this area. The target

69

5. MULTIPLE FAMILIES

points inside the sensing area of a given sensor are defined as covered by it.

Each sensor is generally powered by a battery that can guarantee it functional

for a limited amount of time, due mainly to well known cost and structural

constraints. Using such sensing devices in a dynamic and coordinated fashion

makes it possible to realize a sensor network able to overcome the hardware

constraints in terms of range extension and battery duration which characterize

each sensor node, enabling complex sensing activities on large areas of interest.

Prolonging the amount of time (i.e. lifetime), over which such control activities

can be performed, has therefore emerged as an issue of great relevance. Generally

known as Maximum Lifetime Problem (MLP), it has been widely addressed in

the literature by proposing approaches to compute several, possibly overlapping

subsets of sensors which are independently able to guarantee the coverage request

for the target points (covers), and by activating them one at a time for proper

amounts of time such that energy constraints are not violated. It should be noted,

as reported in Chapter 2, that while sensors could be considered as belonging to

different states during their usage in the intended application (such as receiving,

transmitting, or idle) (see Section 2.3.2) in this context two essential states can be

identified. That is, each sensor may currently be active (i.e. used in the current

cover, and consuming its battery) or not. Activating a cover refers therefore to

switching all its sensors to the active state, while switching off all the other ones.

A considerable amount of research has been proposed in the literature to

approach MLP and its variants. As reported in Chapter 2, the problem was

shown to be NP-Complete in [22]. Earlier works such as [10] and [22] proposed

approximation and heuristic algorithms to solve it. Among the variants of the

problem there are cases where a certain quantity of target points may be left

uncovered by each cover ([54], [90], [103]), cases where connectivity issues are

taken into account in order to route the sensed and processed information to a

central processing facility ([5], [84], [110]), or in which the sensing ranges can

be adjusted in order to provide optimal trade-offs among energy consumption

and coverage ([23], [31], [91]). Furthermore, while the sensing radius of each

sensor node is generally only limited by a certain threshold distance (i.e. they

provide coverage on 360 degrees around them), some authors also investigated

the case in which the sensing activity is limited to an adjustable restricted angle

70

5. Multiple Families

([2], [20], [92]), as in the case of ultrasonic sensors or video cameras. Recently,

among the proposed resolution methods for MLP variants, Column Generation

approaches have proved to be efficient methods to solve reasonably large instances

to optimality ([5], [31], [32], [54], [84], [91], [92]).

Most of the above cited works take into account homogeneous networks, that

is, networks whose sensing devices are perfectly equal and therefore have the same

sensing and processing capabilities. This assumption is reasonable for scenarios

where a large number of sensor nodes based on the same hardware is installed.

Nevertheless, in the context of WSNs and coverage problems defined on them,

heterogeneity has been studied as well, in terms of different metrics. In [43], [72],

[79], [100], [8], sensors belonging to a limited subset are provided with bigger

batteries, and in other cases have longer transmission ranges and better processing

capabilities, often in relation to heterogeneous schemes (recall Section 2.2.2.1)

where such sensors serve as supernodes. Other works consider heterogeneity

in a non-hierarchical context, allowing individually different sensors or sensing

capabilities. For example, sensors with possibly variable energy resources are

discussed in [74] and [92], while heterogeneous sensing ranges were addressed in

[71] and [108].

Less attentions have been dedicated to the case of networks composed of

distinct categories of sensors, where each one fulfills a different sensing task.

This network type, as also reported in the Chapter 1 and 2, is becoming more

and more interesting thanks to the newer network conceptualizations. Indeed,

it could be necessary to monitor different characteristics of the same area of

interest. For example, during the monitoring of a certain geographical area for

environmental control purposes, different types of sensors could be installed to

check the temperatures, the pollution levels, vibrations, as well as for intrusion

detection and other peculiar properties of the area under monitoring. This kind

of heterogeneity was discussed in [106], where the authors propose a hardware

and software testbed for wireless sensor network applications, including sensors

with auxiliary systems able to gather additional energy from the ambient.

In this work, we study WSNs where sensors belong to different types, from

now on defined as families, and propose two variants of MLP defined on such

networks. We call such variants the Maximum Lifetime with Multiple Families

71

5. MULTIPLE FAMILIES

Problem (MLMFP) and the Regular Maximum Lifetime with Multiple Families

Problem (MLMFP-R).

Indeed, if each target needs to be covered by every family where the WNS is

activated, then finding a solution would merely reduce to solving MLP separately

for each family, with an objective function value equal to the minimum among

such maximum lifetimes. In fact, such separate sets of covers could be activated in

parallel, and the monitoring activity would continue until one of the families had

no covers available. However, such a hard requirement could be too restrictive

for many real-world cases. It could be reasonable for a portion of the targets to

be left uncovered by each family in each cover, as long as some minimum family-

dependent threshold is met, and coverage of all the targets is provided by at least

one of the families at all times.

Consider, for instance, a fire detection scenario which makes use of different

types of sensors to monitor heat, humidity and smoke levels. While perfect knowl-

edge using all types of sensors for all target points would be ideal, detections with

a high level of accuracy may still be possible if each target is covered by only one

or two types of sensors, and the information gathered by sensors monitoring a

subset of targets located in the same portion of the area suggest accordingly that

a fire event is indeed happening. Some sensor types may be more relevant for the

detection of the phenomenon of interest (for example, heat or smoke); therefore,

appropriate tradeoffs between network lifetime and detection accuracy may be

obtained by choosing a percentage of the targets that should be covered by such

families at all times, representing the above mentioned threshold.

The regular version of the problem (MLMFP-R) also takes into account some

regularity constraints where the aim is to maximize the minimum amount of time

for which each target is covered by each family in the solution.

For both problem variants, an exact approach based on Column Generation

(CG) is developed and presented, as well as a genetic algorithm which is embedded

within the CG to improve its performances.

The rest of the work is organized as follows. In Section 5.2 we formally intro-

duce the MLMFP and the MLMFP-R. In Section 5.3 an exact Column Generation

approach is presented. In Section 5.4 we present our genetic algorithm and de-

scribe its integration within the CG framework. Section 5.5.3 presents the results

72

5. Multiple Families

of our intensive computational experiments.

5.2 Notation and Problems Definition

Consider a wireless network (S, T, F), where S = {s1, . . . , sm} is the set of the

sensors, T = {t1, . . . , tn} is the set of the targets, and F = {f1, . . . , fz} is the

set of the sensor families. As previously introduced, each sensor is assigned to

a family and is able to monitor a subset of targets defined by its sensing range.

For each tk ∈ T and si ∈ S, let γki be a binary parameter equal to 1 if tk is

covered by si, 0 otherwise. Furthermore, let {S1, . . . , Sz} be a partition of S,

such that si ∈ Sa if the family of sensor si is fa, ∀a ∈ {1, . . . , z}. A cover

Cj ⊆ S is defined in the classical MLP problem as a subset of sensors such that

each target of T is covered by at least one sensor in Cj, that is,
∑

si∈Cj
γki ≥ 1,

∀tk ∈ T . For a cover to be feasible, we consider an additional condition which

imposes a minimal coverage threshold to be satisfied by each family. More in

detail, given the coverage requirement 0 ≤ τa ≤ n associated with fa, Cj is

feasible if and only if the sensors in Cj∩Sa cover at least τa different targets. The

MLMFP problem consists then of finding a set of feasible covers C1, . . . Cu and

of assigning a positive activation time w1, . . . , wu with each of them, such that

the overall network lifetime is maximized and the battery duration constraint for

each sensor are not violated. Let us assume that we can compute in advance the

complete set of feasible covers C = {C1, . . . , C`}. For each si ∈ S and Cj ∈ C, let

φij be a binary parameter equal to 1 if si belongs to Cj and 0 otherwise. Let us

assume that each battery duration is normalized to 1 time unit. Then, MLMFP

can be described by the following Linear Programming formulation:

[P] max
∑
Cj∈C

wj (5.1)

s.t.

∑
Cj∈C

φijwj ≤ 1 ∀si ∈ S (5.2)

wj ≥ 0 ∀Cj ∈ C (5.3)

73

5. MULTIPLE FAMILIES

The objective function (5.1) maximizes the total network lifetime. Constraints

(5.2) ensure that, for each sensor, the sum of the activation times of the covers,

where it is contained, does not exceed its normalized battery duration. Let us

consider a solution of MLMFP composed of a set of feasible covers and the related

activation times. Additionally, for each sensor tk and each family fa, let wka be

the amount of time tk is covered by sensors belonging to Sa in the solution. We

define the solution to be regular if wmin = min{wka|tk ∈ T, fa ∈ F} is maximized.

The regular version of the problem (i.e., MLMFP-R) consists of finding a regular

solution which maximizes the network lifetime. The motivation for that is to

ensure the time wka, when target tk is covered by sensors of family Sa, is balanced

among all the targets and all the families. Let us consider the full set of feasible

covers C = {C1, . . . , C`}. For each tk ∈ T , fa ∈ F and Cj ∈ C, let ψkaj be a binary

parameter equal to 1 if a sensor in Sa belongs to Cj and covers tk, 0 otherwise.

The problem is then defined as follows:

[P2] max(W + ε)wmin +
∑
Cj∈C

wj (5.4)

s.t.

(5.2), (5.3)

(
∑
Cj∈C

ψkajwj)− wmin ≥ 0 ∀tk ∈ T,∀fa ∈ F (5.5)

wmin ≥ 0 (5.6)

Constraints (5.5) ensure, for each tk ∈ T and fa ∈ F , the quantity wmin to be

not greater than wka (that is, the sum of the activation times wj for each Cj ∈ C

such that ψkaj = 1). In the objective function (5.4) the W parameter represents

an upper bound on the maximum lifetime
∑

Cj∈Cwj and ε is a small positive

coefficient, such that the weighting ensures that a regular solution is sought as

primary objective. It should be noted that while MLMFP and MLMFP-R have

different objective functions and the latter introduces additional constraints, each

individual cover which may be part of a solution has to satisfy the same conditions

74

5. Multiple Families

in order to be feasible, and therefore the set C is the same for both problem

variants. The provided formulations cannot be used to solve real world instances

of MLMFP or MLMFP-R, since the cardinality of the set of feasible covers C

is potentially exponential. For this reason, we developed Column Generation

algorithms to solve both the problems, as described in Section 5.3. Section 5.2.1

to follow discusses how to adapt model formulations [P] and [P2] when hardware

differences among the sensors are taken into account. Section 5.2.2 discusses the

issue of redundant covers in the feasible region of the two problems.

5.2.1 Modeling Hardware Differences

The above presented models represent the problems as long as different sensor

families can be assumed to have the same battery durations. Indeed, since they

may be based on widely different hardware, this may not be the case. However,

the model can be easily adapted to take this factor into account.

For each fa ∈ F , let ∆a ≥ 1 be its consumption ratio, that is, a parameter

such that the battery duration of the sensors belonging to family fa is normalized

to 1/∆a time units. Given the family fb ∈ F with the longest battery duration,

we consider ∆b = 1. Therefore, for example, if sensors of family fa consume their

batteries twice as fast as sensors of fb, then ∆a = 2 and they can be activated

for 0.5 time units.

Furthermore, sensors may individually have an initial charge level which is

different from the maximum for their family (for example, if the sensor was pre-

viously employed for different activities). For a given sensor s, let 0 < charges ≤ 1

be its initial charge percentage. Again, let s ∈ Sa with ∆a = 2, and let

charges = 0.5. Then, sensor s can be used for charges/∆a = 0.25 units of

time. For both problems, constraints (5.2) can then be modeled in the following

more general form:

∑
Cj∈C

φijwj ≤ chargesi/∆a ∀fa ∈ F, si ∈ Sa (5.7)

75

5. MULTIPLE FAMILIES

5.2.2 MLMFP, MLMFP-R and cover redundancy

Given a feasible cover C1, we define it to be redundant if it contains another

feasible cover C2 as a proper subset. It is straightforward to observe that if

an optimal solution for MLMFP contains C1, then an alternative one where C2

replaces C1 can be found. Therefore, when looking for optimal solutions for

MLMFP, in the methods described in Sections 5.3 and 5.4 we focus on individu-

ating non-redundant covers, in order to reduce the search space and speed-up the

convergence of our Column Generation algorithm. Conversely, it can be shown

that an optimal solution for MLMFP-R may involve redundant coverage. To

illustrate this, consider a simple network with T = {t1, t2}, S = {s1, s2, s3},
F = {f1, f2}, S1 = {s1, s2}, S2 = {s3}, τ1 = τ2 = ∆1 = ∆2 = charges1 =

charges2 = charges3 = 1. Furthermore, let s1 and s2 cover t1 and t2, respectively,

while s3 covers both of them. This network is shown in Figure 5.1C, where sensors

belonging to S1 and S2 are represented by dotted and dashed lines, respectively.

The only two feasible non-redundant covers in this network are C1 = {s1, s3}
and C2 = {s2, s3}, shown in Figures 5.1A-5.1B. Indeed, due to τ2 being nonzero,

s3 needs to be in each feasible cover, and since it already covers both targets

either s1 or s2 can be used to also satisfy the τ1 requirement. Using this set of

covers, the maximum achievable wmin value is 0.5, obtained when both C1 and

C2 are activated for such amount of time. This is easy to verify, since the sum

of the activation times of the two covers cannot be higher than the lifetime of

s3 which is 1, and any other feasible activation time choice (e.g., 0.6 for C1 and

0.4 for C2) would bring a reduction to the amount of time for which either t1 or

t2 are covered by sensors belonging to family f1. Conversely, by activating the

redundant cover C3 = {s1, s2, s3} for a full time unit, both wmin and the network

lifetime are equal to 1.

5.3 Column Generation Approach

Delayed Column Generation (CG) is a widely used linear programming approach

for LP problems with a large number of variables. The approach initially considers

the original LP formulation (in our case formulations [P] and [P2]), called the

76

5. Multiple Families

t1 t2

s1 s3

t1 t2

s3

s2

t1 t2

s1 s3

s2

A B

C

Figure 5.1: Sample network. A-B: Feasible non-redundant covers C1, C2. C:
Complete network and feasible redundant cover C3.

Master Problem, restricted to a subset of variables, and optimally solves it. CG

then considers a specific optimization problem (called the Separation Problem)

which either identifies a new attractive variable to be entered in the problem or

certifies the optimality of the last solution found. If a new variable is identified,

it is included in the Master Problem and the procedure iterates until optimality

test is satisfied. The solution of the Separation Problem therefore avoids the

enumerative assessment of all the (potentially exponential) variables that will be

nonbasic in the final solution. Consider the MLMFP problem first and let us call

[SP] its Separation Problem. Given the last iteration of the master problem, let

πi be the dual prices associated with its constraints, that is, with each sensor.

The current solution is optimal if and only if the reduced costs associated with

77

5. MULTIPLE FAMILIES

all nonbasic variables are non negative, i.e.
∑

i:si∈Cj
πi− cj ≥ 0 for each nonbasic

Cj. In our case cj are the coefficients of the objective function (5.1) and are all

equal to 1; therefore, the optimality condition reduces to
∑

i:φij=1 πi ≥ 1 for each

nonbasic Cj. The [SP] objective function minimizes the sum of the dual prices

of the sensors selected to be part of the new cover, and the optimality test is

satisfied if the optimum value of [SP] is greater than or equal to 1. Constraints

in [SP] define the construction of a feasible cover.

Let xi, i = 1, . . . ,m and yka, k = 1, . . . , n, a = 1, . . . , z be two sets of binary

variables. Each variable xi represents the choice of whether or not to include the

related sensor si in the new cover, while each variable yka will be set to 1 if target

tk is covered by a sensor belonging to fa in the cover, 0 otherwise. The separation

problem is as follows:

[SP] min
∑
si∈S

πixi (5.8)

s.t.

∑
si∈Sa

γkixi ≥ yka ∀fa ∈ F, tk ∈ T (5.9)

yka ≥ γkixi ∀fa ∈ F, si ∈ Sa, tk ∈ T (5.10)∑
tk∈T

yka ≥ τa ∀fa ∈ F (5.11)∑
fa∈F

yka ≥ 1 ∀tk ∈ T (5.12)

xi ∈ {0, 1} ∀si ∈ S (5.13)

yka ∈ {0, 1} ∀fa ∈ F, tk ∈ T (5.14)

The objective function (5.8) makes sure that the reduced cost of the newly

generated column is minimized. Constraints (5.9)-(5.10) bind the two sets of

variables, by letting yka be equal to 1 if and only if at least one sensor si that

belongs to fa and covers tk is selected.

Constraints (5.11) ensure that the coverage requirement for each family is

respected. Finally, Constraints (5.12) impose that all the targets are covered by

78

5. Multiple Families

at least one family (and therefore by at least one sensor).

Note that new redundant columns may be introduced when dual prices are

equal to zero. This may occur in particular in the first iterations of the CG

procedure. To avoid this, we modify objective function (5.8) by adding a small

positive coefficient ε to each dual price, as follows:

min
∑
si∈S

(πi + ε)xi (5.15)

By assigning a positive weight to each xi variable, the new objective function

(5.15) ensures that each sensor added to the new column is needed. Note that

the value of the original objective function (5.8) still has to be evaluated after

each [SP] iteration in order to determine whether the optimality test is satisfied.

We now define the [SP2] subproblem for the MLMFP-R problem. Let πi and

qka be the dual prices related to Constraints (5.2) (or their generalized form (5.7))

and (5.5) for the last iteration of the [P2] master problem; the current solution

is optimal if
∑

i:φij=1 πi +
∑

k,a:ψkaj=1 qka ≥ 1 for each nonbasic Cj. Therefore,

[SP2] can be expressed as follows:

[SP2] min
∑
si∈S

πixi +
∑
tk∈T

∑
fa∈F

qkayka (5.16)

s.t.

(5.9)-(5.14)

Finally, for both [SP] and [SP2] we consider the following set of valid in-

equalities, which limits for each family the number of selected sensors to be equal

to the cardinality of the set of targets at most:

∑
si∈Sa

xi ≤ T ∀fa ∈ F (5.17)

The main drawback of the CG approach presented above is that the subprob-

lems are NP-Hard combinatorial optimization problems, being specializations of

the set covering problem. For this reason, in the next section we introduce a

79

5. MULTIPLE FAMILIES

genetic algorithm able to quickly compute good feasible solutions for the sub-

problems. We embedded this genetic algorithm in our CG approach to improve

its performance.

5.4 Genetic Algorithm

As discussed in Section 5.3, the subproblems are NP-Hard and therefore it is

preferable to solve them heuristically, especially for instances of considerable size.

We addressed this problem by developing a genetic algorithm (GA) able to return

new attractive covers, i.e. covers with an objective value lower than 1. The

procedure generates feasible solutions for both the problems and evaluates the

associated objective function value according to (5.8) for MFMLP and (5.16)

for MFMLP-R. Furthermore, the GA for MFMLP always removes redundancy,

while redundant covers may be generated by the GA for MLMFP-R, due to the

motivations provided in Section 5.2.2.

The GA works within the CG framework as follows. After each iteration of the

master problem, the GA is called to solve the subproblem; if it can find attractive

covers, then they are added to the master problem, and the procedure iterates.

Otherwise, the separation problem, i.e. either [SP] or [SP2], is solved, such that

either an attractive cover is found or the current solution is proved to be optimal.

Our genetic algorithm has the advantage of considering several solutions at

once. This approach can find more than a single attractive cover, potentially

making it possible to reduce the number of required CG iterations and thus

further reducing the computational effort.

The GA is a well-known and widely used meta-heuristic technique for opti-

mization problems. Similarly to other evolutionary techniques, the GA emulates

biological evolution and natural selection. As in nature, GA considers the evo-

lution process based on chromosomes, elements that represent the structure of

an individual for the real world and a solution (e.g. a feasible cover) for the

optimization problem. The natural selection is the process through which the

GA guarantees that new solutions are typically, step by step, better adapted to

the environment. The environment is encoded by the fitness function that is

used to rank each solution. The evolutionary step is achieved through two mech-

80

5. Multiple Families

anisms, named crossover and mutation. The crossover operator combines, in a

probabilistic manner, the genetic material of typically two or more selected in-

dividuals (parent solutions). The mutation operator, instead, randomly modifies

the value of one or more genes of a child chromosome derived from the crossover

phase in order to increase diversity. The overall process is repeated until a stop

condition is reached. Such a condition can be a maximum number of genera-

tions, a specified amount of time, a lack of improvements in the fitness function

of the best individual, or other conditions related to the specific optimization

problem. For a complete and detailed description of the genetic algorithms and

their characteristics the reader can refer to [38].

The remaining part of this section describes in detail our genetic algorithm.

5.4.1 Chromosome representation and fitness function

The chromosome representation is based on the binary encoding represented in

Figure 5.2. It stores the set of sensors activated in a given candidate cover, as

well as the related covered targets for each sensor family.

0 0 1 …

| S1 | | S2 | | Sz | …

1 1 0 … 1 0 1 … 1 0 0

|Head|=|S| |Body|=|T|x|F|

|T | |T | |T |

…

…

… …

0 1 1 0 0 0 0 0 0 1 1

�f1
�f2

�fz↵fz
↵f2

↵f1

1 1 … 1 1 1 1

Figure 5.2: Chromosome Structure

The structure is composed of two distinct components, named Head and Body

respectively.

The Head component is a binary vector of length |S|. Each position is related

to a sensor, and is equal to 1 if it belongs to the cover, 0 otherwise. Moreover,

the sensors are sorted by family so that the first |S1| positions (defined section

αf1) of the Head contain the binary values related to the sensors of family f1,

the subsequent |S2| positions (αf2) refer to the sensors of family f2, and so on for

all families. For instance, the αf1 segment in Figure 5.2 consists of 5 positions

81

5. MULTIPLE FAMILIES

(meaning that |S1| = 5 in the network), and two of them (the third and fifth) are

currently activated in the chromosome.

The Body component represents which targets are covered by each family.

This component is partitioned in |F | segments of size |T |, sorted by family. More

in detail, the i-th position in α-th body segment, defined βfa , is equal to 1 if there

is at least one sensor of fa that covers target ti and that is currently activated in

αfa , 0 otherwise. For instance, in Figure 5.2 the segment βf1 consists of the first

|T | = 7 positions of the Body component, and it shows that the three sensors

activated in αf1 cover the targets t1, t4 and t5.

In the following, we will refer to the sections αfa and βfa of a specific chromo-

some C as αCfa and βCfa , respectively. Furthermore, let βCka be the position related

to target tk ∈ T of segment βfa of chromosome C.

The chromosome representation can be used to check whether it represents a

feasible solution. Formally, a given chromosome C is feasible if and only if the

following two conditions hold:

∑
tk∈T

βCka ≥ τa ∀fa ∈ F (5.18)∑
fa∈F

βCka ≥ 1 ∀tk ∈ T (5.19)

Condition (5.18) ensures that each family meets its coverage requirement,

while condition (5.19) states that each target must be covered at least once. For

instance, in the example in Figure 5.2, condition (5.18) is respected for family f1

if τ1 ≤ 3.

Our GA considers in each iteration a population consisting of only feasible

chromosomes. In the case of MFMLP, chromosomes will always be non-redundant

as well. The chromosomes are evaluated according to the objective function of

[SP] for MFMLP and of [SP2] for MFMLP-R. That is, in the case of MFMLP,

given the vector of dual prices provided by the last Master Problem iteration and

sorted by family, the fitness function of a given chromosome is equal to the dot

product of its Head component and the dual prices vector. For each cover that

is found to be attractive at the end of the GA procedure, the Head component

82

5. Multiple Families

Algorithm 5: Genetic Algorithm for MLMFP or MLMFP-R

Input: DP, (S, T, F);
Output: a subset of chromosomes(i.e. columns) for [P] or [P2];

1 Pop← InitPopulation();
2 BestF it← bestF itness(Pop,DP);
3 criteria← setCriterion(MaxIT,MaxDB);
4 while check(criteria) do
5 (P1, P2)← tournament(Pop);
6 C ← Crossover(P1, P2);
7 C ←Mutation(C);
8 C ← fixingOperator(C);
9 C ← redundancyOperator(C);

10 if C /∈ Pop then
11 Insert(C,Pop);
12 if fitness(C) ≥ BestF it then
13 update(criteria);

14 else
15 BestF it← fitness(C);

16 else
17 update(criteria);

18 Chromos← chromosomes with fitness ≤ fitThreshold;
19 return Chromos;

corresponds to the new column to be included in the restricted columns set of

master problem [P]. In the case of MFMLP-R, both the Head and the Body

components are used to evaluate the fitness function of a given chromosome, and

both components represent the column to be added to [P2].

5.4.2 GA overall structure

In this section we describe the general structure of the GA, whose pseudocode is

given in Algorithm 5.

The procedure takes as input the wireless sensor network (S, T, F) and the

vector DP of the dual prices provided by the Master Problem. The first step is the

generation of an initial population Pop and the identification of the chromosome

83

5. MULTIPLE FAMILIES

with the best fitness (BestF it). This chromosome is the incumbent solution and

it will be used for comparisons during the evolution process. The population

consists of a predefined number (SizePop) of feasible covers and it is initialized

by the procedure described in Section 5.4.7.

The while loop (line 4) iterates until either MaxIT consecutive iterations,

without improvements in the incumbent solution fitness BestF it, are carried out

or MaxDB consecutive duplicates chromosome are generated. A chromosome is

a duplicate if it is already present in the population. Forbidding the presence of

duplicates in the population makes it possible to avoid looping over a solution

space that has almost been exhausted.

Each iteration includes a tournament for the selection of two parent chromo-

somes (see Section 5.4.3), a crossover function (Section 5.4.4) and a mutation

function (Section 5.4.5). Furthermore, two operators, called fixing and redun-

dancy, are applied. The first one is used to check and eventually restore feasibility

for the newly generated chromosome. The redundancy operator always removes

eventual redundancy for the MFMLP while, for the MFMLP-R, it may return a

redundant cover if it is considered useful to improve the objective function. The

two operators are described in Section 5.4.6.

Each newly generated child chromosome is inserted in the current population

Pop if and only if it does not already belong to it. If this is the case, it takes

the place of one of the |Pop|/2 individuals with the worst fitness function value,

selected uniformly at random.

Finally, the chromosomes in the final population whose fitness function is

better than a predefined threshold value fitThreshold are returned to the master

problem.

5.4.3 Tournament selection

The selection of the parents is implemented by means of a random binary tour-

nament. In particular, given the current population Pop, two individuals are

selected at random, and then the one with the best fitness function is chosen

as first parent. The process is iterated to select the second parent, making sure

that both the chromosomes chosen for the second tournament differ from the first

84

5. Multiple Families

chosen parent.

5.4.4 Crossover

The crossover function represents the process of coupling between two selected

parents. Recall from the chromosome description in Section 5.4.1 that each

family-related segment αfa in the Head component is strongly linked to a specific

segment βfa in the Body section, since the former represents the selected sensors

for a given family, and the latter the related covered targets. By definition, a

feasible chromosome ensures that each couple (αfa , βfa) satisfies the related con-

straint (5.18). Therefore, in our genetic algorithm we consider such couples to be

genes of the chromosome, which will be used as building blocks for the child chro-

mosome during the crossover. A graphical representation of the gene structure is

given in Figure 5.3.

… 1 0 0 0 0 0 1 1 1 +

Gene	

�fz

↵fz

 | Sz | |T |

0 0 1 …

| S1 | | S2 | | Sz | …

1 1 0 … 1 0 1 … 1 0 0

|Head|=|S| |Body|=|T|x|F|

|T | |T | |T |

…

…

… …

0 1 1 0 0 0 0 0 0 1 1

�f1
�f2

�fz↵fz
↵f2

↵f1

1 1 … 1 1 1 1

Figure 5.3: Gene structure

Given the chromosome structure and the gene definition, the crossover func-

tion randomly selects each gene one at a time between the two input parents.

85

5. MULTIPLE FAMILIES

In particular, let C1 and C2 be the two parents, and Child the child chromo-

some to be built. For each family fa ∈ F , the gene (αChildfa
, βChildfa

) will be equal

to (αC1
fa
, βC1

fa
) with probability 0.5, otherwise it will be equal to (αC2

fa
, βC2

fa
). The

crossover is illustrated in Figure 5.4. It is straightforward to observe that this

construction ensures that the coverage requirements (5.18) are satisfied for each

family, since by definition both parents are feasible, and therefore each of their

genes satisfies the requirement as well.

0 1 1 0 1 1 1 0 1 0 0 1 +

1st gene from 2nd parent!

2nd gene from 1st parent!

… 1 0 1 1 1 … 1 1 1 +

zth gene from 1st parent!

… 1 0 0 0 0 0 1 1 1 +

0 0 1 …

| S1 | | S2 | | Sz | …

1 1 0 … 1 0 1 … 1 0 0

|Head|=|S| |Body|=|T|x|F|

|T | |T | |T |

…

…

… …

0 1 1 0 0 0 0 0 0 1 1

�f1
�f2

�fz↵fz
↵f2

↵f1

1 1 … 1 1 1 1

0 1 1 …

| S1 | | S2 | | Sz | …

1 1 0 … 1 0 1 … 1 0 0

|Head|=|S| |Body|=|T|x|F|

|T | |T | |T |

…

…

… …

0 1 1 0 0 1 0 0 0 1 1

�f1
�f2

�fz↵fz
↵f2↵f1

1 1 … 1 1 1 1

0 1 1 …

| S1 | | S2 | | Sz | …

1 1 0 … 1 1 1 … 1 0 0

|Head|=|S| |Body|=|T|x|F|

|T | |T | |T |

…

…

… …

0 1 1 0 0 1 1 0 0 1 1

�f1
�f2

�fz↵fz
↵f2↵f1

0 1 … 1 1 1 0

C1 (first parent)

C2 (second parent)

Child

Figure 5.4: Crossover

5.4.5 Mutation

The mutation randomly alters the child chromosome produced by the crossover

function in order to create diversity during the exploration of the solution space.

The mutation operates in two steps. In the first step, it randomly selects a single

family fa, 1 ≤ a ≤ z. Subsequently, it randomly selects a sensor si ∈ Sa, and

switches its position in the αfa component either from 1 to 0, or from 0 to 1. The

86

5. Multiple Families

mutation also involves a change in the βfa segment if deactivating or activating

the selected sensor leads to a different target coverage for family fa.

5.4.6 Fixing and redundancy operators

As noted in Section 5.4.4, at the end of the crossover phase, the coverage re-

quirement is respected for all families (that is, condition (5.18)). However, due

to the perturbation brought by the mutation, this may no longer be the case for

one of them. Moreover, there is no guarantee that condition (5.19) is respected;

that is, there could be targets that are not covered by any sensor. Therefore,

after crossover and mutation, the fixing operator (whose pseudocode is given in

Algorithm 6) is applied on each generated chromosome to ensure feasibility. The

operator works in two phases, one for each of the two conditions.

If the first condition is not met for some family fa (Algorithm 6, lines 1-6),

let Ŝa ⊆ Sa be the set of sensors of family fa that are currently not activated in

Child. Futhermore, let T̂a be the targets which are currently not covered by the

family in the chromosome. The procedure iteratively selects sensors in Ŝa which

cover some elements of T̂a, until τa targets are covered by the family. The gene

(αChildfa
, βChildfa

) is updated accordingly at each step.

Regarding the second feasibility condition (Algorithm 6, lines 7-12), the al-

gorithm puts all the globally uncovered targets in T̂ , if they exist. Then, the

procedure iteratively selects a target t ∈ T̂ and a sensor s ∈ S that can cover t.

The gene of Child related to the family of s is updated to include the new sensor,

and t is removed from T̂ , along with any previously uncovered target which is

covered by s. The procedure iterates until T̂ is empty.

After the application of the fixing operator, the Child chromosome may

be redundant. Redundancy is taken onto account by two procedures, namely

redundancy1 and redundancy2. The redundancy1 procedure first builds a list

Sred of redundant sensors and then it randomly selects a sensor belonging to it to

be switched off. The list of redundant sensors Sred is then recomputed, and the

process is repeated until Sred is equal to the empty set.

Also the redundancy2 operator builds the Sred list of redundant sensors. Then,

the procedure checks whether removing a random sensor sr1 ∈ Sred from Child

87

5. MULTIPLE FAMILIES

Algorithm 6: Fixing Operator

Input: Child chromosome;
Output: fixed Child chromosome;

1 for a← 1 to z do
2 while

∑
tk∈T β

Child
ka < τa do

3 Ŝa ← inactiveSensors(Child, fa);

4 T̂a ← uncoveredTargets(Child, fa);

5 s← randomSelect(Ŝa, T̂a);
6 update(Child, s);

7 T̂ ← uncoveredTargets(Child);

8 while |T̂ | > 0 do

9 t← randomSelect(T̂);
10 s← randomSelect(S, t);

11 update(T̂);
12 update(Child, s);

13 return Child;

would lead to a worse fitness function. If that is the case, a second element

sr2 ∈ Sred \ {sr1} is randomly selected and checked for removal. Iteratively, the

elements in Sred are visited according to a random order; as soon as one can be

removed is found Child is updated and Sred is recomputed. The procedure ends

when either Sred is empty or all its elements have been visited. The redundancy2

operator results to be more computationally intensive than redundancy1.

Redundancy1 operator is used when solving MFMLP. On the other hand,

when solving MFMLP-R redundancy1 is used with a given probability probred,

and redundancy2 with probability 1− probred.

5.4.7 Building the initial population

The procedure for initializing GA builds the initial population Pop, composed

of SizePop random feasible individuals. The population is built iteratively. For

each individual, the procedure applies the fixing and redundancy operators, as

discussed in Section 5.4.6, with the only difference that they start from an empty

chromosome. If a chromosome is equal to a previously generated one, it is dis-

88

5. Multiple Families

carded and generated again. If the procedure fails to build a new chromosome

for MaxInitDB consecutive iterations, it is interrupted, and SizePop is set to

the current value of |Pop|.

5.5 Computational Results

This section presents the test scenarios and the results obtained by performing

our extensive computational phase. The algorithms were coded in C++ and the

tests were performed on a computer with an Intel Xeon 2 GHz processor and 8GB

of RAM, equipped with the IBM ILOG CPLEX 12.5.1 solver and the Concert

Technology Library for the mathematical formulations. Section 5.5.1 described

our instances and the test scenarios being considered. The values used for the GA

parameters as well as a description of the CG initialization are given in Section

5.5.2. Finally Section 5.5.3 presents our computational results organized in tables,

along with several comments on them.

5.5.1 Description of instances and test scenarios

The instances were generated by randomly placing targets and sensors on an area

of size 500 × 500. We assumed the sensing range of each sensor to be equal to

150. We considered instances containing a number of target points |T |= 30, 60,

90 or 120, and whose sensors are divided in |F | = 2, 4 or 6 sensor families.

For each value of |F |, we considered 6 different values for the overall number

of sensors |S|, corresponding to the cases in which each family has on average

50, 100, 150, 200, 300 or 400 sensors, leading to the values reported in Table 5.1.

However, to better model the heterogeneity which may characterize real-world

scenarios, sensors were not evenly distributed among the different families, but

rather randomly assigned to them, leading to families with different numbers of

sensors. However, each family is always guaranteed to cover each target with at

least one sensor in order to ensure feasibility for each possible coverage request

value, as well as strictly positive wmin optimal solution value, for the whole set

of instances.

For each combination of the above mentioned parameters, we generated 5

89

5. MULTIPLE FAMILIES

avg. sensors per family overall sensors
|F | = 2 |F | = 4 |F | = 6

50 100 200 300
100 200 400 600
150 300 600 900
200 400 800 1200
300 600 1200 1800
400 800 1600 2400

Table 5.1: Settings of the |S| parameter

different instances. The total number of test instances is therefore equal to 360.

Furthermore, for each instance, two different scenarios were considered, re-

lated to the possible values of the coverage request parameters. In the uni-

form coverage request scenario, each family fa is required to provide coverage for

τa = b|T |/|F |c target in each feasible cover. In the variable coverage request sce-

nario, we assigned either 2 or 3 different coverage request values to the families,

with the lowest one being set to 0. In particular, when |F | = 2, one of the families

has a coverage request equal to b3/4|T |c, while the coverage request is equal to

0 for the other family. For |F | = 4, the coverage request is set to b3/8|T |c for a

family, b3/16|T |c for 2 of them and 0 for the remaing one. Finally, for instances

with 6 families, the three coverage request values are b3/12|T |c, b3/24|T |c and 0,

and are assigned to 2 families each. Furthermore, for both scenarios we considered

the case in which the consumption ratio of the family with index i ∈ {1, . . . |F |} is

equal to (1.0) + (0.1)(i−1). All sensors are always assumed to have fully charged

batteries at the beginning of the monitoring phase (that is, chargesi = 1 ∀si ∈ S).

The coverage request and the consumption ratio values being considered for the

two scenarios are summarized in Table 5.2.

By considering the two above mentioned coverage request scenarios for each

of the 360 instances, it follows that 720 experiments were run for each of our two

proposed approaches.

As discussed in Section 5.5.3, we also ran some tests for a “pure” CG approach

which does not embed the GA after the CG initialization, and therefore relies on

the [SP] formulation to generate new covers. We performed this comparison on

a subset of the generated instances for the MFMLP problem, as explained in

90

5. Multiple Families

uniform coverage requests
|T | |F | = 2 |F | = 4 |F | = 6
30 15;15 7;7;7;7 5;5;5;5;5;5
60 30;30 15;15;15;15 10;10;10;10;10;10
90 45;45 22;22;22;22 15;15;15;15;15;15
120 60;60 30;30;30;30 20;20;20;20;20;20

variable coverage requests
|T | |F | = 2 |F | = 4 |F | = 6
30 22;0 11;5;5;0 7;7;3;3;0;0
60 45;0 22;11;11;0 15;15;7;7;0;0
90 67;0 33;16;16;0 22;22;11;11;0;0
120 90;0 45;22;22;0 30;30;15;15;0;0

consumption ratios
|F | = 2 |F | = 4 |F | = 6
1.0;1.1 1.0;1.1;1.2;1.3 1.0;1.1;1.2;1.3;1.4;1.5

Table 5.2: Coverage request and consumption ratio values

Section 5.5.3.

5.5.2 Parameter setting and CG initialization

Parameter values were chosen after a preliminary tuning phase. The population

size SizePop was chosen to be equal to 50+d
√
|S|e. The two termination criteria,

namely the maximum number of iterations without improvements MaxIT and

the maximum number of consecutive duplicates MaxDB were chosen to be equal

to 1500 and 100, respectively. During the initialization phase, the limit on the

number of consecutive duplicates MaxInitDB was set to 100 as well. Finally, the

value 0.9 was chosen for the fitness threshold value fitThreshold when solving

MFMLP, and 0.5 when solving MFMLP-R.

As introduced in Section 5.3, in order to initialize the CG algorithm, a subset

of feasible covers has to be provided for the first iteration of the master problem.

We generated these covers using a first run of the GA. As a heuristic criterion,

during this GA execution each sensor is given an equal, strictly positive weight,

meaning that when fitness function is evaluated covers with fewer sensors are

favored. Furthermore, for this iteration the fitThreshold value is unbounded,

meaning that the whole set of SizePop covers is returned and added to the master

91

5. MULTIPLE FAMILIES

problem.

During the computational tests performed on the CG algorithm which does

not embed the GA to produce new covers, the same heuristic initialization method

is still used to identify the starting subset. Hence, the GA is executed once for

each of these tests.

5.5.3 Test and Results

We now analyze the impact of embedding the proposed GA within the CG scheme

for the easier [P] formulation to solve. We first compare our proposed algorithm

(referred to as CG+GA) with a pure CG approach (referred to as CGonly) which

only uses the genetic algorithm for its initialization as reported in Section 5.5.2,

and which generates each subsequent attractive cover by solving the [SP] formu-

lation. The two approaches are compared based on the subset of 60 instances

corresponding to the lowest values of the |S| parameter, that is |S| = 100 for

|F | = 2, |S| = 200 for |F | = 4 and |S| = 300 for |F | = 6. For each of those

instances, computational tests were performed for both the coverage request sce-

narios. The comparison is given in Table 5.3 for the basic (i.e. non regular)

version of the problem, similar conclusions can be derived for the regular ver-

sion of the problem whose results are reported in Table B.1 in the Appendix B.

As shown in the tables, the performances of the pure approach tend to degrade

quickly as the size of the instances grows, therefore, it cannot be expected to find

solutions in reasonable time on the largest ones.

Each entry reported in the table shows average values and standard deviations

for the 5 tests corresponding to the related choices of |T |, |F |, |S| and coverage

scenario type. Columns avg. and std. dev. are average and standard deviation

values computed among the five different instances generated for each scenario,

respectively. The solution column contains the average solution value computed

among the five different instances of the scenario. Heading CGonly stands for

the pure CG described above, while CG+GA is related to the algorithm that

takes full advantage of the genetic algorithm. For both procedures, column SP

it. reports the number of times the subproblem [SP] was solved to optimality

by means of the solver CPLEX, and time the requested computational time in

92

5. Multiple Families

seconds. For CG+GA, GA it. contains the number of times in which the GA

is invoked and solved. Finally, column speed-up measures the speed-up factor

between the computational time of CGonly and that of CG+GA.

Looking at the table, it can be noticed that the benefit provided by the GA is

remarkable even for the for the basic problem on these smaller instances, and the

performances of the two procedures diverge as the number of sensors increases.

The CG+GA approach consistently outperforms the pure CG approach, and

the computational times difference between the two procedures increases with the

number of sensors. The minimum average speed-up (column speed-up in Table

5.3) is equal to 7.35 for |S| = 100, 31.75 for |S| = 200, and 46.43 for |S| = 300.

Overall, the CG+GA is up to 112.85 times faster than CGonly and required a

maximum computational time of 6.83 seconds on average, on a set of 5 instances

which required on average 683.68 seconds when solved by CGonly (which is the

maximum value for this procedure as well). CG+GA shows a consistent and

robust behavior on all the instances with a coefficient of variation (i.e., the ratio

between standard deviation and average value) for the speed-up always less than

50% for the uniform coverage request scenarios and less than 42% for the variable

requests scenarios (except for two instances for |S| = 100 for both the cases).

The good performance of the CG+GA approach is due to multiple good columns

that are returned by GA and added to the master problem. The number of sub-

problem iterations (column SP it.) is much lower for CG+GA with respect to

CGonly. Note in particular that, for all instances with |S| = 100, 200, it is equal

to 1, meaning that for all the related tests it was only needed to certify the

solution optimality in the last iteration. The maximum number of subproblem

iterations on average performed by the CG+GA approach is equal to 2.2. Con-

versely, for CGonly the average number of needed subproblem iterations varies

between a minimum of 28.6 and a maximum of 354.4.

Let us analyze the performance of our approach on the entire set of instances.

We report in the paper tables and figures corresponding to the scenario with

|F | = 4, the equivalent tables and figures for |F | = 2 and |F | = 6 are given in

Appendix B.

The performances of CG+GA scale well when bigger instances are considered

93

5. MULTIPLE FAMILIES

Table 5.3: Comparison of our approach (CG+GA) and a pure column
generation approach (CGonly) when solving MFMLP.

Each entry reported in the table refers to the same scenario corresponding to different choices of |T |,
|F |, |S| and coverage requirement. Columns avg. and std. dev. are average and standard deviation values
computed among the five different instances generated for each scenario, respectively. Column solution contains
the average solution value computed among the five different instances of the scenario. Columns SP it. and
time refer to the number of times the subproblem [SP] was solved to optimality and to the computational
time in seconds for both the algorithms, respectively. Column GA it. refers to the number of times GA is in-
voked. The speed-up heading refers to the ratio between the computational time of CGonly and that of CG+GA.

|F | = 2, |S| = 100, uniform coverage requests
instance CGonly CG+GA speed-up

SP it. time GA it. SP it. time
|T | solution avg std dev avg std dev avg std dev avg std dev avg std dev avg std dev
30 10.35 104.8 67.84 8.48 9.35 6.2 4.97 1.0 0.00 0.61 0.59 12.65 3.58
60 6.22 35.6 24.06 3.60 2.14 2.8 0.84 1.0 0.00 0.35 0.09 10.44 6.01
90 6.73 29.6 25.46 5.35 4.84 2.4 0.55 1.0 0.00 0.46 0.09 11.15 8.43
120 7.15 44.8 40.57 11.50 10.57 2.8 1.30 1.0 0.00 0.66 0.26 15.56 7.54

|F | = 2, |S| = 100, variable coverage requests
instance CGonly CG+GA speed-up

SP it. time GA it. SP it. time
|T | solution avg std dev avg std dev avg std dev avg std dev avg std dev avg std dev
30 10.44 72.2 16.42 3.62 0.81 3.8 1.30 1.0 0.00 0.38 0.14 9.85 2.10
60 6.22 28.6 16.13 2.52 1.39 2.4 0.55 1.0 0.00 0.36 0.07 7.35 4.62
90 6.73 39.6 28.18 6.48 5.30 2.8 1.10 1.0 0.00 0.52 0.16 11.15 6.96
120 7.15 41.4 27.48 8.61 5.47 3.4 1.14 1.0 0.00 0.83 0.25 9.68 4.09

|F | = 4, |S| = 200, uniform coverage requests
instance CGonly CG+GA speed-up

SP it. time GA it. SP it. time
|T | solution avg std dev avg std dev avg std dev avg std dev avg std dev avg std dev
30 17.25 157.8 122.73 31.00 25.54 6.8 5.26 1.0 0.00 0.99 0.89 31.75 6.66
60 13.02 117.0 42.66 53.78 20.91 4.2 1.30 1.0 0.00 0.92 0.42 61.39 18.72
90 14.39 179.6 58.88 131.32 41.83 6.8 3.03 1.0 0.00 2.07 0.72 65.45 11.85
120 15.12 196.6 47.11 206.82 72.04 5.6 2.07 1.0 0.00 2.28 0.84 94.53 39.23

|F | = 4, |S| = 200, variable coverage requests
instance CGonly CG+GA speed-up

SP it. time GA it. SP it. time
|T | solution avg std dev avg std dev avg std dev avg std dev avg std dev avg std dev
30 17.43 180.2 125.79 32.87 22.69 7.0 4.80 1.0 0.00 0.96 0.66 35.65 6.27
60 12.12 88.8 32.58 41.30 20.17 4.4 1.67 1.0 0.00 0.95 0.28 41.69 11.11
90 14.39 149.0 43.05 103.40 33.64 5.4 2.07 1.0 0.00 1.56 0.55 71.39 28.86
120 15.12 174.0 60.45 164.13 62.48 4.8 1.48 1.0 0.00 1.89 0.50 88.01 35.89

|F | = 6, |S| = 300, uniform coverage requests
instance CGonly CG+GA speed-up

SP it. time GA it. SP it. time
|T | solution avg std dev avg std dev avg std dev avg std dev avg std dev avg std dev
30 22.34 239.4 59.18 91.96 16.03 10.4 4.72 2.2 1.64 2.02 1.26 56.99 26.68
60 19.49 267.2 124.98 239.55 128.92 9.2 3.11 1.4 0.89 2.86 1.64 93.68 47.52
90 17.50 296.2 217.06 273.03 153.98 9.0 7.07 1.6 1.34 4.43 4.46 88.39 37.70
120 19.04 351.8 118.54 683.68 246.88 11.6 5.03 1.2 0.45 6.83 3.89 112.85 30.66

|F | = 6, |S| = 300, variable coverage requests
instance CGonly CG+GA speed-up

SP it. time GA it. SP it. time
|T | solution avg std dev avg std dev avg std dev avg std dev avg std dev avg std dev
30 21.18 216.4 53.34 68.24 18.09 7.8 1.92 1.0 0.00 1.49 0.35 46.43 11.57
60 23.22 354.4 194.68 268.46 148.10 12.2 7.05 1.0 0.00 3.64 2.66 78.85 13.71
90 18.99 278.6 126.06 204.70 87.68 8.2 3.77 1.0 0.00 2.78 1.60 79.32 14.01
120 18.24 263.4 129.20 433.61 173.85 9.6 3.13 1.0 0.00 5.25 2.50 85.70 22.64

94

5. Multiple Families

and, overall, all tests could be executed within reasonable computational times for

both problems versions. In particular, the computational time increases with the

size of the instance, as expected, for both the problems and for both the two

different coverage requests scenarios.

This trend is evident from Figure 5.5 and column time of Table 5.4, where

the computational times of our algorithm when solving the basic version of the

problem and the regular version of the problem, for the uniform coverage request

scenario and the variable coverage request scenario, with |F | = 4, are shown.

The same figures and tables for |F | = 2 (Figure B.1 and Table B.2) and |F | = 6

(Figure B.2 and Table B.3) are given in Appendix B. The average computational

time when solving the basic version of the problem with uniform coverage request

is equal to 5.75 seconds (varying between 0.35 and 29.83) for |F | = 2, 27.95 sec-

onds (varying between 0.92 and 120.88) |F | = 4, and 155.06 seconds (varying

between 2.02 and 1040.16) for |F | = 6. The average computational time when

solving the basic version of the problem with variable coverage request is equal to

8.10 seconds (varying between 0.36 and 29.65) for |F | = 2, 23.36 seconds (varying

between 0.95 and 99.79) for |F | = 4, and 94.12 seconds (varying between 1.49 and

510.03) for |F | = 6. The average computational time when solving the regular

version of the problem with uniform coverage request is equal to 32.65 seconds

(varying between 0.51 and 344.57) for |F | = 2, 321.01 seconds (varying between

1.62 and 1590.86) for |F | = 4, and 1100.89 seconds (varying between 4.01 and

5219.41) for for |F | = 6, while it is equal to 37.46 seconds (varying between 0.42

and 142.02) for |F | = 2 , 262.93 seconds (varying between 1.95 and 1381.18)

|F | = 4, and 836.97 seconds (varying between 2.18 and 3563.90) for |F | = 6, on

scenarios with variable coverage requirement.

The requested average time to solve the regular version of the problem is gener-

ally higher than the average time required to solve the basic version of the problem.

Indeed, the GA requires more iterations when solving the MLMFP-R as can be

observed in our results (column GA it. in Table 5.4 for |F | = 4, and Table B.2

for |F | = 2 and Table B.3 for |F | = 6 in the Appendix B) where the number of

GA iterations is higher when solving the regular version of the problem and the

total number of returned columns is much greater. Solving the regular version of

95

5. MULTIPLE FAMILIES

Table 5.4: Results of CG+GA for |F | = 4 scenarios when solving
the basic version of the problem (MLMFP) and the regular version
(MLMFP-R).

Each entry is an average of five instances. Column lifetime contains the average lifetime (which is the
same for both the problems). Column GA it. contains the number of times GA is invoked. Column
SP it. contains the number of times the separation problem is solved to optimality. Column GA columns
reports the average number of columns generated by GA. Column time shows the computational time in seconds.

Uniform coverage requests
instance MLMFP MLMFP-R

|T | |S| lifetime GA it. SP it. GA columns time GA it. SP it. GA columns time
30 200 17.25 6.8 1.0 368.4 0.99 12.0 1.2 648.0 2.71
60 200 13.02 4.2 1.0 205.8 0.92 6.6 1.0 356.0 1.62
90 200 14.39 6.8 1.0 371.2 2.07 8.0 1.0 439.8 2.94
120 200 15.12 5.6 1.0 295.0 2.28 9.0 1.0 500.6 3.93
30 400 25.85 6.6 1.0 385.2 1.42 12.2 1.0 770.6 4.18
60 400 28.00 8.4 1.0 509.8 2.57 17.0 1.0 1098.8 8.41
90 400 33.24 13.4 1.0 860.4 6.52 24.2 1.0 1565.6 24.93
120 400 28.64 10.2 1.0 637.4 6.03 16.0 1.2 1005.6 12.64
30 600 46.17 11.8 1.0 797.2 4.70 25.2 1.0 1729.6 14.53
60 600 38.42 8.2 1.0 534.6 3.66 20.6 1.0 1438.8 14.74
90 600 40.47 10.2 1.0 682.6 6.40 23.0 1.0 1612.8 20.40
120 600 40.42 12.6 1.0 862.2 11.56 26.0 1.0 1830.6 37.60
30 800 63.49 13.0 1.2 922.0 6.60 39.0 1.0 2956.4 38.65
60 800 59.14 15.0 1.0 1099.6 10.87 39.6 1.0 3002.0 58.11
90 800 55.31 14.4 1.0 1045.2 13.64 33.2 1.0 2484.6 60.36
120 800 55.30 16.0 1.0 1174.4 24.19 37.0 1.0 2780.8 139.75
30 1200 130.22 35.8 1.0 2935.0 59.64 98.4 1.0 8048.2 704.44
60 1200 99.19 36.2 1.0 2970.8 120.88 84.2 4.8 6433.6 1555.31
90 1200 84.25 23.8 1.0 1918.8 46.09 61.2 1.0 5005.6 477.89
120 1200 75.51 18.6 1.0 1485.4 37.36 56.4 1.0 4640.4 480.58
30 1600 149.97 33.4 1.0 2888.2 101.12 94.6 1.2 8225.4 978.93
60 1600 116.75 21.0 1.0 1782.8 49.63 79.0 1.2 6843.2 729.54
90 1600 108.17 25.0 1.2 2123.6 83.00 82.0 1.0 7150.4 1590.86
120 1600 99.55 21.0 1.0 1784.0 68.66 67.0 1.4 5796.6 741.10

Variable coverage requests
instance MLMFP MLMFP-R

|T | |S| lifetime GA it. SP it. GA columns time GA it. SP it. GA columns time
30 200 17.43 7.0 1.0 378.4 0.96 11.6 1.2 647.0 1.95
60 200 12.12 4.4 1.0 217.4 0.95 7.8 2.4 341.8 2.50
90 200 14.39 5.4 1.0 283.0 1.56 7.2 1.0 391.2 2.07
120 200 15.12 4.8 1.0 245.2 1.89 9.6 1.0 541.8 3.85
30 400 24.69 6.2 1.0 359.4 1.37 12.0 1.2 734.4 3.20
60 400 28.00 7.2 1.0 432.0 2.24 18.0 1.0 1165.2 7.43
90 400 33.24 12.2 1.0 779.6 5.47 22.0 1.0 1436.0 15.72
120 400 28.64 9.8 1.0 609.4 5.39 16.4 1.0 1053.0 10.92
30 600 46.17 9.6 1.0 636.2 3.10 19.0 1.0 1309.0 7.99
60 600 38.42 8.8 1.0 575.8 4.20 21.8 1.0 1531.4 14.75
90 600 40.47 9.2 1.2 591.8 5.99 24.8 1.0 1748.0 23.44
120 600 40.42 11.6 1.0 789.0 9.93 27.0 1.4 1876.0 38.97
30 800 63.49 13.4 1.2 951.0 6.66 38.8 1.2 2927.2 39.19
60 800 59.14 12.0 1.2 844.2 8.07 38.6 1.0 2919.8 49.34
90 800 55.31 13.8 1.0 1001.0 13.39 36.4 1.0 2749.6 60.72
120 800 55.30 15.0 1.2 1078.4 19.00 36.8 1.0 2771.4 107.64
30 1200 130.22 33.2 1.0 2717.8 46.27 96.8 1.0 7991.0 525.88
60 1200 99.19 32.4 1.0 2641.2 99.79 75.2 3.0 5905.8 820.74
90 1200 84.25 21.2 1.0 1698.0 34.33 55.6 1.4 4511.8 337.06
120 1200 75.51 18.2 1.0 1452.6 34.28 53.4 1.0 4380.8 385.51
30 1600 149.97 33.6 1.4 2871.0 85.19 94.6 1.8 8157.8 1185.02
60 1600 116.75 23.2 1.2 1963.0 48.70 75.4 1.0 6584.2 669.72
90 1600 108.17 25.2 1.2 2145.2 75.31 81.8 1.4 7122.2 1381.18
120 1600 99.55 18.0 1.0 1516.6 46.67 63.0 1.0 5504.6 615.62

96

5. Multiple Families

30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	

200	
 400	
 600	
 800	
 1200	
 1600	

Time	
 2.71	
 1.62	
 2.94	
 3.93	
 4.18	
 8.41	
 24.93	
 12.64	
 14.53	
 14.74	
 20.40	
 37.60	
 38.65	
 58.11	
 60.36	
 139.75	
 704.44	
 1555.31	
 477.89	
 480.58	
 978.93	
 729.54	
 1590.86	
 741.10	

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

Co
m
pu

ta
(o

na
l	
 	

Ti
m
e	

	
 (s
ec
.)	

	

MLMFP-­‐R:	
 |F|=4	
 -­‐	
 	
 Uniform	
 Coverage	

30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	

200	
 400	
 600	
 800	
 1200	
 1600	

Time	
 1.95	
 2.50	
 2.07	
 3.85	
 3.20	
 7.43	
 15.72	
 10.92	
 7.99	
 14.75	
 23.44	
 38.97	
 39.19	
 49.34	
 60.72	
 107.64	
 525.88	
 820.74	
 337.06	
 385.51	
 1185.02	
 669.72	
 1381.18	
 615.62	

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

Co
m
pu

ta
(o

na
l	
 	

Ti
m
e	

	
 (s
ec
.)	

MLMFP-­‐R:	
 |F|=4	
 -­‐	
 Variable	
 Coverage	

30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	

200	
 400	
 600	
 800	
 1200	
 1600	

Time	
 0.96	
 0.95	
 1.56	
 1.89	
 1.37	
 2.24	
 5.47	
 5.39	
 3.10	
 4.20	
 5.99	
 9.93	
 6.66	
 8.07	
 13.39	
 19.00	
 46.27	
 99.79	
 34.33	
 34.28	
 85.19	
 48.70	
 75.31	
 46.67	

0	

20	

40	

60	

80	

100	

120	

Co
m
pu

ta
(o

na
l	
 	

Ti
m
e	

	
 (s
ec
.)	

	

MLMFP:	
 |F|=4	
 -­‐	
 Variable	
 Coverage	

30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	

200	
 400	
 600	
 800	
 1200	
 1600	

Time	
 0.99	
 0.92	
 2.07	
 2.28	
 1.42	
 2.57	
 6.52	
 6.03	
 4.70	
 3.66	
 6.40	
 11.56	
 6.60	
 10.87	
 13.64	
 24.19	
 59.64	
 120.88	
 46.09	
 37.36	
 101.12	
 49.63	
 83.00	
 68.66	

0	

20	

40	

60	

80	

100	

120	

140	

Co
m
pu

ta
(o

na
l	
 	

Ti
m
e	

	
 (s
ec
.)	

MLMFP:	
 |F|=4	
 -­‐	
 	
 Uniform	
 Coverage	

Figure 5.5: Computational time of CG+GA when solving the basic version of the
problem (on the top half) and the regular version of the problem (on the bottom
half), for the uniform coverage request scenario and the variable coverage request
scenario, with |F | = 4.

97

5. MULTIPLE FAMILIES

the problem, with uniform coverage requests, requires on average 124.86% more

GA iterations with respect to the solution of the basic version of the problem

for |F | = 2, 141.23% more iterations for |F | = 4, and 98.09% more iterations

for |F | = 6. Solving the regular version of the problem, with variable coverage

requests, requires on average 104.16% more iterations with respect to the solu-

tion of the basic version of the problem for |F | = 2, 154.50% more iterations for

|F | = 4, and 117.80% more iterations for |F | = 6. We believe that this could be

due to the different objective function of the regular problem which forces the

GA to explore more deeply the solution space to find the right combination of

covers to satisfy the regularity condition. The number of subproblem iterations

(column SP it. in the tables) keeps being low for both problem variants, wit-

nessing the effectiveness of the GA algorithm. More in particular, for MLMFP

and uniform coverage requests, the subproblem is solved on average 1.43, 1.02

and 1.42 times for |F = 2|, |F = 4| and |F = 6|, respectively, while for variable

coverage requests it is solved on average 2.39, 1.07 and 1.1 times. For MLMFP-R,

the correspondent numbers of subproblem invocations are 6.78, 1.21 and 2.84 for

uniform coverage requests and 6.38, 1.25 and 1.72 for variable coverage requests.

When comparing the quality of the solutions returned by the two problems

we can observe that the maximum lifetime is the same on all the instances both

for the original version of the problem and for the regular version. This is a

counterintuitive result since, by enforcing the individuation of a regular solution,

one would expect a deterioration in terms of lifetime for MLMFP-R with respect

to MLMFP. Furthermore, as will be discussed later, MLMFP-R is indeed able to

improve significantly the value of wmin in the returned solution, in particular for

the variable scenario. Therefore, we believe that this result is due to the existence

of several alternative solutions corresponding to the same optimal lifetime value

in the feasible region on each instance. Hence, a regular solution could always

be found for the considered set of instances without compromising the maximum

lifetime value which can be obtained when regularity is not enforced.

The maximum lifetime increases, as expected, with the size of the instance for

both the problem variants, as we can observe in Figure 5.6 for |F | = 4 (Figure

98

5. Multiple Families

B.3, B.4 in Appendix B for |F | = 2 and |F | = 6, respectively). This was an easily

expected result since a larger number of sensors allow more covers to exist.

30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	

200	
 400	
 600	
 800	
 1200	
 1600	

Life.me	
 17.25	
 13.02	
 14.39	
 15.12	
 25.85	
 28.00	
 33.24	
 28.64	
 46.17	
 38.42	
 40.47	
 40.42	
 63.49	
 59.14	
 55.31	
 55.30	
 130.22	
 99.19	
 84.25	
 75.51	
 149.97	
 116.75	
 108.17	
 99.55	

0	

20	

40	

60	

80	

100	

120	

140	

160	

Li
fe
%m

e	

|F|=4	
 -­‐	
 Uniform	
 Coverage	

30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	

200	
 400	
 600	
 800	
 1200	
 1600	

Life.me	
 17.43	
 12.12	
 14.39	
 15.12	
 24.69	
 28.00	
 33.24	
 28.64	
 46.17	
 38.42	
 40.47	
 40.42	
 63.49	
 59.14	
 55.31	
 55.30	
 130.22	
 99.19	
 84.25	
 75.51	
 149.97	
 116.75	
 108.17	
 99.55	

0	

20	

40	

60	

80	

100	

120	

140	

160	

Li
fe
%m

e	

|F|=4	
 -­‐	
 Variable	
 Coverage	

Figure 5.6: Lifetime values when solving the two problems for the uniform cover-
age request scenario (on the top) and the variable coverage request scenario (on
the bottom), with |F | = 4.

For a given version of the problem, the network lifetime is usually the same

for the two coverage requirement scenarios, except for instances with fewer num-

ber of sensors. For example, identical solutions values were found in 21 out of

24 cases for |F | = 4 except for two cases with |S| = 200, and one case with

|S| = 400. Overall, in these three cases the difference between average solutions

is always less than 7.43%. On these datasets, one could expect a fewer number

99

5. MULTIPLE FAMILIES

of feasible covers to exist. Therefore, if some of the covers are feasible for a given

type of coverage requirement and not for the other, on bigger instances a larger

set of alternative covers may be available and help to converge to the same op-

timal lifetime. This result is significant, since it suggests that when a particular

robustness level is needed for a given application in terms of coverage request for

a subset of particularly relevant sensor families, it can be expected to be obtained

with reasonable trade-offs in terms of solution quality, especially if many sensors

are available in the network.

We can also compare the quality of the optimal solutions of the two problems

with respect to the level of regularity by comparing the value of the variable

wmin, which, we recall, is the minimum amount of time, among all the families,

for which a target is covered. Refer to Table 5.5 for |F | = 4, and Tables B.4 and

B.5 in the Appendix B for |F | = 2 and |F | = 6, respectively.

Solving the regular version of the problem improves the value of wmin. This

is an expected result, since, when solving the regular version of the problem, we

look for solutions such that wmin is maximized, while there are no requirements

for wmin in the basic version of the problem. Hence, alternative optimal solutions

with the same lifetime but lower value of wmin can be generally selected when

solving the basic variant of the problem. In particular, the average percentage

difference between the optimum wmin obtained when solving MLMFP-R, and the

value of wmin, obtained when solving MLMFP, with uniform coverage requests

is equal to 11.89% for |F | = 2, 11.66% for |F | = 4, and 4.60% for |F | = 6. The

average percentage difference when solving the problems with variable coverage

requests is equal to 86.03% for |F | = 2, 28.11% for |F | = 4, and 52.43% for

|F | = 6.

The value of wmin, when solving the regular version of the problem are the

same for both the uniform and the variable request scenarios. This is due to

the fact that the wmin value depends on target-family combinations of the most

unfortunate coverage situations for each instance. In order to investigate this

aspect, we checked for each solution provided by MLMFP-R, which target-family

100

5. Multiple Families

Table 5.5: Values of wmin for |F | = 4 scenarios.

Each entry is an average of five instances. Results are reported for both the problems and for both
the coverage requirements. Column wmin for MLMFP is evaluated by checking the minimum amount of time
for which, among all the families, a target is covered in the optimum solution. Column wmin for MLMFP-R is
the optimum value of the related variable obtained when solving this problem variant. Column % Gap reports
the percentage difference between the optimum wmin obtained when solving MLMFP-R and the value of wmin

obtained when solving MLMFP.

|F |=4 Uniform coverage requests Variable coverage requests

Instance MLMFP MLMFP-R % Gap MLMFP MLMFP-R % Gap
|T | |S| wmin wmin wmin wmin

30 200 1.74 2.11 21.26 1.41 2.11 49.65
60 200 1.12 1.40 25.00 1.09 1.40 28.44
90 200 0.59 1.07 81.36 0.80 1.07 33.75

120 200 1.26 1.34 6.35 0.81 1.34 65.43

30 400 3.95 3.96 0.25 2.87 3.96 37.98
60 400 3.34 4.19 25.45 3.06 4.19 36.93
90 400 4.21 4.41 4.75 4.27 4.41 3.28

120 400 3.36 3.72 10.71 3.03 3.72 22.77

30 600 6.34 6.34 0.00 5.54 6.34 14.44
60 600 4.78 6.02 25.94 3.57 6.02 68.63
90 600 6.24 6.58 5.45 5.02 6.58 31.08

120 600 6.02 6.20 2.99 5.64 6.20 9.93

30 800 11.04 12.19 10.42 7.61 12.19 60.18
60 800 9.33 10.11 8.36 7.55 10.11 33.91
90 800 8.96 9.44 5.36 8.43 9.44 11.98

120 800 8.74 9.11 4.23 8.10 9.11 12.47

30 1200 24.01 24.35 1.42 21.88 24.35 11.29
60 1200 16.81 17.78 5.77 15.85 17.78 12.18
90 1200 15.45 15.54 0.58 12.90 15.54 20.47

120 1200 13.49 14.91 10.53 13.42 14.91 11.10

30 1600 28.60 29.45 2.97 22.94 29.45 28.38
60 1600 21.50 22.31 3.77 18.22 22.31 22.45
90 1600 18.02 20.27 12.49 15.39 20.27 31.71

120 1600 16.98 17.72 4.36 15.26 17.72 16.12

combinations corresponded to the wmin coverage level. We found that, for any

given input instance at least one of such unfortunate combinations was always

found to be common to the uniform and variable scenarios.

The value of wmin, when solving the basic version of the problem, is higher

101

5. MULTIPLE FAMILIES

for the uniform coverage request scenario. This result can be explained by the

fact that in the uniform request scenarios, targets are roughly uniformly divided

between the families in each cover. This may bring naturally to a fair level of

coverage between targets and families, which brings the minimal coverage level to

approach the optimum value of wmin. On the other hand, in the case of variable

coverage requests there are unconstrained families which could bring to more un-

predictable coverage levels.

102

Chapter 6

General Conclusions

This research thesis presents an overview about the wireless sensor networks, their

applications and typical coverage issues. Our research focus has been dedicated

to one of the most important issues in this field, which is related to maximizing

the amount of time over which a set of points of interest located in a given area

can be monitored by means of such wireless sensor networks. This problem is

well known in the literature as the Maximum Network Lifetime Problem. The

exact column generation technique has been investigated and it has been showed

how to apply the technique to this problem, such an exact approach has then

been adapted to solve three variants of the classical problem. This research work

also presents the basic idea about how to embed heuristics in such type of exact

approach. This idea has been used to embed in the above mentioned column

generation algorithms an ad-hoc designed genetic algorithm for each of the stud-

ied problem variants, which proved to be very efficient. More in detail, in this

work we addressed the maximum lifetime problem on wireless sensor networks

considering both the classical variants in which all sensors have to be covered

and the one in which a portion of them can be neglected at all times (α-MLP) in

order to increase the overall network lifetime. Our proposed algorithm is shown

to be highly efficient and to outperform significantly the algorithms available in

literature for both these cases. The other two problem variants considered in

this research work have been proposed for the first time by us and are related

to wireless sensors networks with heterogeneous sensors. Nowadays wireless sen-

sor networks can be composed of several different types of sensor devices, which

103

6. GENERAL CONCLUSIONS

are able to monitor different aspects of the region of interest (including sound,

vibrations, chemical contaminants, among others). These different sensors can

be organized to work in a coordinated fashion in many relevant application con-

texts. Therefore we faced the problem of maximizing the amount of time during

which such a network can remain operational while assuring globally a minimum

coverage for all the different sensor types. In one of the two problem variants

considered in this context we considered also some global regularity conditions,

in order to guarantee an adeguate coverage for each sensor type to each tar-

get. In our computational tests the proposed specific genetic algorithm has been

shown to be able to meaningful speed up the global column generation procedure,

enabling the resolution of large-scale instances within reasonable computational

times. Indeed we were able to solve several large scale instances to optimality in

less than one thousand seconds. Therefore we believe that this study represents

an important contribution in this research area. With respect to future research

there are many directions that can be followed. First of all the general column

generation framework might be improved by trying to adopt more specific ini-

tialization strategies to obtain fast good feasible covers early in the procedure.

Moreover, the use of multiple sensor families will be further addressed, due to its

great relevance for real world scenarios. In particular, several well known design

issues deriving from well known variants of the classical problem such as connec-

tivity, routing and robustness (i.e. fault tolerance), which may arise in specific

applications will be faced in this heterogeneous context.

104

Appendix A

Tables A.1 and A.2 contain the results related to the Group 1 instances proposed

in [54] solved using the GCG and GR algorithms (see chapter 4). Each instance

in this group contain 15 targets, while the number of sensors for the different

scenarios is specified by the Sensor heading in the tables. Each line in the tables

contain averages over 5 different instances with the same characteristics. For a

description of the table headings, refer to the description of Tables 4.3 and 4.4 in

the paper.

105

. APPENDIX A

Sensors Tα Lifetime Time Inv Col Flr
25 8 13.60 0.29 3.00 11.80 1.00

11 10.40 0.26 3.40 16.40 1.00
13 6.60 0.19 2.80 17.00 1.00
15 3.60 0.19 2.00 19.60 1.00

50 8 27.23 0.59 4.60 19.40 1.00
11 19.40 0.40 4.60 18.80 1.00
13 13.93 0.33 3.60 21.00 1.00
15 9.40 0.26 2.40 15.20 1.00

100 8 54.90 1.27 9.20 21.00 1.00
11 41.49 1.25 11.00 23.20 1.20
13 30.40 0.87 7.00 26.60 1.00
15 15.40 0.52 3.00 21.80 1.00

150 8 87.60 2.39 11.80 22.00 1.00
11 66.98 2.40 15.40 22.80 1.40
13 51.72 1.97 12.20 27.60 1.00
15 25.00 0.89 4.00 24.60 1.00

AVG 6.25 20.55 1.04

Table A.1: Results obtained by the GCG algorithm on the Group 1 benchmark
instances proposed in [54].

106

Sensors Tα GR GCG GAP

LifeTime Time LifeTime Time

25 8 13.60 0.26 13.60 0.29
11 10.40 0.44 10.40 0.26
13 6.60 0.11 6.60 0.19
15 3.60 0.01 3.60 0.19

50 8 27.23 1.11 27.23 0.59
11 19.40 0.68 19.40 0.40
13 13.93 0.39 13.93 0.33
15 9.40 0.01 9.40 0.26

100 8 54.90 5.95 54.90 1.27 78.72%
11 41.49 8.03 41.49 1.25 84.39%
13 30.40 2.74 30.40 0.87 68.42%
15 15.40 0.02 15.40 0.52

150 8 87.60 15.24 87.60 2.39 84.31%
11 66.98 13.90 66.98 2.40 82.74%
13 51.72 9.79 51.72 1.97 79.86%
15 25.00 0.02 25.00 0.89

AVG 3.67 0.88 79.74%

Table A.2: Computational results of GCG and GR algorithms on the Group 1
benchmark instances proposed in [54].

107

Appendix B

This appendix contains additional figures and captions for chapter 5.

108

30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	

100	
 200	
 300	
 400	
 600	
 800	

Time	
 0.61	
 0.35	
 0.46	
 0.66	
 0.75	
 1.33	
 1.14	
 1.05	
 0.67	
 1.12	
 2.33	
 2.45	
 29.83	
 2.97	
 4.52	
 2.99	
 7.03	
 4.58	
 7.46	
 11.18	
 6.34	
 11.15	
 21.40	
 15.62	

0	

5	

10	

15	

20	

25	

30	

35	

Co
m
pu

ta
(o

na
l	
 	

Ti
m
e	

	
 (s
ec
.)	

	

MLMFP:	
 |F|=2	
 -­‐	
 Uniform	
 Coverage	

30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	

100	
 200	
 300	
 400	
 600	
 800	

Time	
 0.38	
 0.36	
 0.52	
 0.83	
 29.65	
 2.31	
 1.35	
 1.35	
 0.91	
 2.07	
 3.78	
 3.76	
 3.09	
 5.45	
 8.47	
 5.77	
 21.84	
 6.55	
 9.09	
 17.18	
 9.24	
 13.79	
 26.29	
 20.27	

0	

5	

10	

15	

20	

25	

30	

35	

Co
m
pu

ta
(o

na
l	
 	

Ti
m
e	

	
 (s
ec
.)	

	

MLMFP:	
 |F|=2	
 -­‐	
 Variable	
 Coverage	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	
 21	
 22	
 23	
 24	

Time	
 2.21	
 0.51	
 0.69	
 0.95	
 1.47	
 2.31	
 1.74	
 2.21	
 1.40	
 3.48	
 6.66	
 5.64	
 344.57	
 10.47	
 22.21	
 9.74	
 31.54	
 15.16	
 33.70	
 64.69	
 34.71	
 38.71	
 85.71	
 63.08	

0	

50	

100	

150	

200	

250	

300	

350	

400	

Co
m
pu

ta
(o

na
l	
 	

Ti
m
e	

	
 (s
ec
.)	

	

MLMFP-­‐R:	
 |F|=2	
 -­‐	
 Uniform	
 Coverage	

30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	

100	
 200	
 300	
 400	
 600	
 800	

Time	
 0.50	
 0.42	
 0.67	
 0.92	
 82.64	
 3.59	
 2.28	
 2.53	
 1.75	
 4.16	
 11.02	
 6.71	
 6.75	
 13.90	
 36.27	
 13.12	
 132.09	
 26.84	
 53.57	
 97.65	
 53.59	
 72.27	
 142.02	
 133.87	

0	

20	

40	

60	

80	

100	

120	

140	

160	

Co
m
pu

ta
(o

na
l	
 	

Ti
m
e	

	
 (s
ec
.)	

	

MLMFP-­‐R:	
 |F|=2	
 -­‐	
 Variable	
 Coverage	

Figure B.1: Computational time of CG+GA when solving the basic version of the
problem (on the top half) and the regular version of the problem (on the bottom
half), for the uniform coverage request scenario and the variable coverage request
scenario, with |F | = 2.

109

. APPENDIX B

Table B.1: Comparison of our approach (CG+GA) and a pure column
generation approach (CGonly) when solving MFMLP-R.

Each entry reported in the table refers to the same scenario corresponding to different choices of |T |,
|F |, |S| and coverage requirement. Columns avg. and std. dev. are average and standard deviation values
computed among the five different instances generated for each scenario, respectively. Column solution contains
the average solution value computed among the five different instances of the scenario. Columns SP it. and
time refer to the number of times the subproblem [SP] was solved to optimality and to the computational
time in seconds for both the algorithms, respectively. Column GA it. refers to the number of times GA is in-
voked. The speed-up heading refers to the ratio between the computational time of CGonly and that of CG+GA.

|F | = 2, |S| = 100, uniform coverage requests
instance CGonly CG+GA speed-up

SP it. time GA it. SP it. time
|T | solution avg std dev avg std dev avg std dev avg std dev avg std dev avg std dev
30 10.35 120.6 63.33 9.39 9.43 12.6 17.01 7.6 14.76 2.21 3.89 9.33 5.53
60 6.22 33.6 22.10 3.31 1.95 3.8 1.64 1.0 0.00 0.51 0.20 6.54 3.07
90 6.73 42.0 35.33 6.82 5.83 3.8 1.64 1.0 0.00 0.69 0.20 9.08 5.15
120 7.15 51.0 36.28 12.32 9.00 4.0 2.35 1.0 0.00 0.95 0.55 12.45 3.69

|F | = 2, |S| = 100, variable coverage requests
instance CGonly CG+GA speed-up

SP it. time GA it. SP it. time
|T | solution avg std dev avg std dev avg std dev avg std dev avg std dev avg std dev
30 10.44 111.2 51.83 5.72 2.92 5.8 1.64 1.0 0.00 0.50 0.15 11.55 4.36
60 6.22 36.8 15.94 3.18 1.38 3.4 1.14 1.0 0.00 0.42 0.10 7.54 3.31
90 6.73 47.6 36.47 6.87 5.50 4.0 2.00 1.0 0.00 0.67 0.27 9.19 4.47
120 7.15 57.0 26.01 11.78 4.89 4.2 1.79 1.0 0.00 0.92 0.39 12.77 2.72

|F | = 4, |S| = 200, uniform coverage requests
instance CGonly CG+GA speed-up

SP it. time GA it. SP it. time
|T | solution avg std dev avg std dev avg std dev avg std dev avg std dev avg std dev
30 17.25 239.4 259.96 44.88 57.63 12.0 10.17 1.2 0.45 2.71 3.64 16.64 4.78
60 13.02 131.4 64.37 58.04 29.55 6.6 3.65 1.0 0.00 1.62 1.04 38.16 12.99
90 14.39 174.6 66.21 126.81 50.65 8.0 2.65 1.0 0.00 2.94 1.40 44.13 3.86
120 15.12 201.2 49.50 197.79 66.78 9.0 3.08 1.0 0.00 3.93 1.73 54.76 25.05

|F | = 4, |S| = 200, variable coverage requests
instance CGonly CG+GA speed-up

SP it. time GA it. SP it. time
|T | solution avg std dev avg std dev avg std dev avg std dev avg std dev avg std dev
30 17.43 225.8 158.32 37.19 28.53 11.6 7.83 1.2 0.45 1.95 1.87 22.28 5.37
60 12.12 109.4 51.03 47.42 26.65 7.8 2.77 2.4 3.13 2.50 2.69 25.89 11.38
90 14.39 148.8 57.70 98.46 42.23 7.2 2.68 1.0 0.00 2.07 0.80 47.69 12
120 15.12 167.4 60.59 147.08 55.89 9.6 5.13 1.0 0.00 3.85 2.70 45.37 23.31

|F | = 6, |S| = 300, uniform coverage requests
instance CGonly CG+GA speed-up

SP it. time GA it. SP it. time
|T | solution avg std dev avg std dev avg std dev avg std dev avg std dev avg std dev
30 22.34 298.0 78.04 99.81 18.78 14.8 4.76 3.0 3.08 4.01 2.30 32.07 18.78
60 19.49 282.6 115.50 244.68 121.84 12.6 1.34 1.0 0.00 4.49 0.33 54.86 27.58
90 17.50 282.2 213.34 277.24 182.21 12.8 7.50 1.8 1.79 7.66 6.89 44.52 13.65
120 19.04 386.4 154.33 708.71 311.89 18.0 7.31 3.2 2.68 17.77 14.60 55.28 24.82

|F | = 6, |S| = 300, variable coverage requests
instance CGonly CG+GA speed-up

SP it. time GA it. SP it. time
|T | solution avg std dev avg std dev avg std dev avg std dev avg std dev avg std dev
30 21.18 278.8 42.41 74.74 16.02 11.2 2.28 1.0 0.00 2.18 0.65 36.73 12.88
60 23.22 408.2 232.85 326.88 203.10 18.0 8.69 1.6 1.34 8.96 9.29 44.72 12.05
90 18.99 235.2 122.47 185.30 99.77 11.8 4.44 1.0 0.00 4.56 2.63 42.01 14.21
120 18.24 287.4 160.52 452.93 220.10 15.2 6.06 1.6 1.34 10.83 7.40 50.09 22.58

110

30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	

300	
 600	
 900	
 1200	
 1800	
 2400	

Time	
 2.02	
 2.86	
 4.43	
 6.83	
 5.62	
 11.00	
 14.37	
 18.40	
 24.04	
 32.49	
 30.06	
 25.15	
 55.48	
 102.87	
 51.55	
 78.07	
 134.20	
 430.62	
 577.66	
 224.25	
 1040.16	
 364.97	
 262.20	
 222.15	

0	

200	

400	

600	

800	

1000	

1200	

Co
m
pu

ta
(o

na
l	
 (

m
e	

(s
ec
.)	

MLMFP:|F|=6	
 -­‐	
 Uniform	
 Coverage	

30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	

300	
 600	
 900	
 1200	
 1800	
 2400	

Time	
 1.49	
 3.64	
 2.78	
 5.25	
 6.14	
 11.73	
 16.29	
 14.44	
 13.04	
 22.83	
 13.51	
 33.95	
 22.78	
 21.71	
 50.39	
 60.26	
 52.26	
 352.24	
 420.99	
 144.32	
 510.03	
 157.87	
 171.92	
 149.12	

0	

100	

200	

300	

400	

500	

600	

Co
m
pu

ta
(o

na
l	
 (

m
e	

(s
ec
.)	

	

MLMFP:|F|=6	
 -­‐	
 Variable	
 Coverage	

30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	

300	
 600	
 900	
 1200	
 1800	
 2400	

Time	
 4.01	
 4.49	
 7.66	
 17.77	
 18.06	
 65.67	
 44.40	
 76.93	
 57.74	
 161.74	
 126.63	
 176.58	
 193.18	
 881.52	
 310.49	
 526.68	
 1429.75	
 2600.42	
 4456.89	
 1241.28	
 5219.41	
 3019.98	
 2573.16	
 3206.81	

0	

1000	

2000	

3000	

4000	

5000	

6000	

Co
m
pu

ta
(o

na
l	
 (

m
e	

(s
ec
.)	

	

MLMFP-­‐R:|F|=6	
 -­‐	
 Uniform	
 Coverage	

30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	

300	
 600	
 900	
 1200	
 1800	
 2400	

Time	
 2.18	
 8.96	
 4.56	
 10.83	
 20.17	
 60.22	
 44.25	
 55.02	
 34.49	
 90.69	
 64.02	
 245.15	
 68.60	
 275.33	
 218.43	
 528.15	
 809.27	
 1939.62	
 3523.63	
 991.79	
 3563.90	
 2550.06	
 2070.06	
 2907.83	

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

Co
m
pu

ta
(o

na
l	
 (

m
e	

(s
ec
.)	

	

MLMFP-­‐R:|F|=6	
 -­‐	
 Variable	
 Coverage	

Figure B.2: Computational time of CG+GA when solving the basic version of the
problem (on the top half) and the regular version of the problem (on the bottom
half), for the uniform coverage request scenario and the variable coverage request
scenario, with |F | = 6.

111

. APPENDIX B

Table B.2: Results of CG+GA for |F | = 2 scenarios when solving
the basic version of the problem (MLMFP) and the regular version
(MLMFP-R).

Each entry is an average of five instances. Column lifetime contains the average llifetime (which is the
same for both the problems). Column GA it. contains the number of times GA is invoked. Column
SP it. contains the number of times the separation problem is solved to optimality. Column GA columns
reports the average number of columns generated by GA. Column time shows the computational time in seconds.

Uniform coverage requests
instance MLMFP MLMFP-R

|T | |S| lifetime GA it. SP it. GA columns time GA it. SP it. GA columns time
30 100 10.35 6.2 1.0 273.4 0.61 12.6 7.6 279.2 2.21
60 100 6.22 2.8 1.0 104.2 0.35 3.8 1.0 165.2 0.51
90 100 6.73 2.4 1.0 82.0 0.46 3.8 1.0 166.2 0.69
120 100 7.15 2.8 1.0 104.8 0.66 4.0 1.0 176.2 0.95
30 200 19.65 5.6 1.0 294.4 0.75 9.2 1.4 475.6 1.47
60 200 18.62 6.8 1.0 370.6 1.33 10.0 1.0 569.6 2.31
90 200 13.69 4.4 1.0 218.2 1.14 6.0 1.0 319.6 1.74
120 200 12.29 3.6 1.0 165.8 1.05 6.2 1.4 305.8 2.21
30 300 20.78 3.8 1.0 187.8 0.67 7.2 1.0 412.6 1.40
60 300 21.31 4.4 1.0 227.8 1.12 10.8 1.0 657.8 3.48
90 300 24.04 7.2 1.0 417.2 2.33 14.2 1.0 883.8 6.66
120 300 20.20 6.0 1.0 338.2 2.45 10.4 1.0 627.0 5.64
30 400 36.90 27.8 11.0 1030.2 29.83 149.8 131.4 1200.6 344.57
60 400 32.91 8.4 1.0 510.2 2.97 19.2 1.0 1237.8 10.47
90 400 33.33 10.2 1.0 636.8 4.52 26.4 1.0 1756.2 22.21
120 400 26.93 5.8 1.0 333.8 2.99 15.2 1.0 978.8 9.74
30 600 67.44 16.0 1.0 1111.8 7.03 42.2 1.4 3002.8 31.54
60 600 44.71 8.8 1.0 576.6 4.58 23.2 1.0 1633.8 15.16
90 600 41.73 11.0 1.2 727.4 7.46 25.0 1.0 1776.8 33.70
120 600 43.09 12.0 1.0 817.2 11.18 32.6 1.2 2316.4 64.69
30 800 74.44 12.0 1.2 837.8 6.34 39.4 1.2 2966.4 34.71
60 800 59.25 13.6 1.0 983.2 11.15 34.6 1.0 2609.8 38.71
90 800 63.64 16.6 1.0 1224.6 21.40 39.6 1.0 2975.2 85.71
120 800 55.58 9.4 1.0 657.2 15.62 29.8 1.0 2243.8 63.08

Variable coverage requests
instance MLMFP MLMFP-R

|T | |S| lifetime GA it. SP it. GA columns time GA it. SP it. GA columns time
30 100 10.44 3.8 1.0 165.0 0.38 5.8 1.0 280.6 0.50
60 100 6.22 2.4 1.0 80.4 0.36 3.4 1.0 140.6 0.42
90 100 6.73 2.8 1.0 106.0 0.52 4.0 1.0 178.2 0.67
120 100 7.15 3.4 1.0 142.6 0.83 4.2 1.0 189.8 0.92
30 200 18.74 45.6 34.0 660.4 29.65 128.2 118.6 611.0 82.64
60 200 18.62 10.4 1.0 606.4 2.31 14.4 1.0 854.2 3.59
90 200 13.69 5.0 1.0 258.8 1.35 8.2 1.0 462.0 2.28
120 200 12.29 4.2 1.0 204.4 1.35 7.8 1.0 437.6 2.53
30 300 20.78 4.6 1.0 243.2 0.91 9.8 1.0 592.2 1.75
60 300 21.31 7.4 1.0 428.4 2.07 13.4 1.0 833.0 4.16
90 300 24.04 9.8 1.0 592.8 3.78 20.8 1.0 1326.2 11.02
120 300 20.20 8.0 1.0 473.4 3.76 12.8 1.4 760.8 6.71
30 400 38.35 10.4 1.0 647.8 3.09 19.2 1.0 1246.0 6.75
60 400 32.91 13.4 1.0 858.6 5.45 23.2 1.0 1518.8 13.90
90 400 33.33 16.0 1.0 1044.0 8.47 32.6 1.0 2173.8 36.27
120 400 26.93 9.8 1.0 613.4 5.77 17.6 1.0 1145.2 13.12
30 600 67.44 28.6 1.0 2047.4 21.84 60.8 11.4 3569.4 132.09
60 600 44.71 11.8 1.0 802.8 6.55 31.0 1.0 2215.4 26.84
90 600 41.73 11.6 1.0 786.2 9.09 31.8 1.2 2268.8 53.57
120 600 43.09 15.2 1.0 1056.8 17.18 37.4 1.2 2664.6 97.65
30 800 74.44 15.8 1.0 1155.4 9.24 46.6 1.2 3542.8 53.59
60 800 59.25 17.4 1.4 1255.4 13.79 40.6 1.0 3081.0 72.27
90 800 63.64 21.8 1.0 1633.6 26.29 45.0 1.0 3416.4 142.02
120 800 55.58 14.0 1.0 1021.2 20.27 38.8 1.0 2952.0 133.87

112

Table B.3: Results of CG+GA for |F | = 6 scenarios when solving
the basic version of the problem (MLMFP) and the regular version
(MLMFP-R).

Each entry is an average of five instances. Column lifetime contains the average llifetime (which is the
same for both the problems). Column GA it. contains the number of times GA is invoked. Column
SP it. contains the number of times the separation problem is solved to optimality. Column GA columns
reports the average number of columns generated by GA. Column time shows the computational time in seconds.

Uniform coverage requests
instance MLMFP MLMFP-R

|T | |S| lifetime GA it. SP it. GA columns time GA it. SP it. GA columns time
30 300 22.34 10.4 2.2 545.4 2.02 14.8 3.0 774.0 4.01
60 300 19.49 9.2 1.4 518.8 2.86 12.6 1.0 767.0 4.49
90 300 17.50 9.0 1.6 495.6 4.43 12.8 1.8 721.6 7.66
120 300 19.04 11.6 1.2 693.4 6.83 18.0 3.2 969.8 17.77
30 600 43.18 14.8 1.0 1022.8 5.62 26.4 2.0 1781.0 18.06
60 600 46.43 19.0 1.2 1327.0 11.00 38.2 2.2 2611.4 65.67
90 600 38.08 16.4 1.4 1109.8 14.37 27.6 1.4 1904.8 44.40
120 600 35.75 16.8 1.0 1172.2 18.40 28.6 2.0 1928.6 76.93
30 900 66.35 24.4 3.0 1681.6 24.04 35.6 2.8 2539.0 57.74
60 900 62.70 27.2 1.6 2021.4 32.49 48.0 4.6 3346.2 161.74
90 900 55.85 19.4 1.8 1391.8 30.06 37.2 2.6 2691.8 126.63
120 900 56.06 18.4 1.0 1381.6 25.15 39.0 1.0 2973.0 176.58
30 1200 85.99 28.8 1.4 2312.4 55.48 53.8 6.0 3929.2 193.18
60 1200 85.29 30.8 1.0 2521.4 102.87 69.8 3.8 5421.8 881.52
90 1200 74.84 23.2 1.0 1867.0 51.55 46.4 2.6 3605.0 310.49
120 1200 82.27 29.0 1.0 2367.8 78.07 60.0 1.2 4882.4 526.68
30 1800 141.09 34.2 1.0 3072.4 134.20 102.0 1.0 9226.8 1429.75
60 1800 148.89 58.6 3.2 5095.2 430.62 112.0 7.8 9397.6 2600.42
90 1800 129.12 51.4 1.0 4640.8 577.66 109.2 6.8 9085.8 4456.89
120 1800 109.60 34.2 1.2 3047.4 224.25 68.8 1.2 6142.8 1241.28
30 2400 206.46 74.4 1.6 7126.8 1040.16 160.2 5.8 14837.0 5219.41
60 2400 143.24 33.8 1.0 3224.4 364.97 94.2 1.2 9013.6 3019.98
90 2400 144.00 34.8 1.2 3305.8 262.20 90.6 2.0 8576.8 2573.16
120 2400 142.28 29.6 1.0 2814.6 222.15 97.6 1.2 9381.8 3206.81

Variable coverage requests
instance MLMFP MLMFP-R

|T | |S| lifetime GA it. SP it. GA columns time GA it. SP it. GA columns time
30 300 21.18 7.8 1.0 452.6 1.49 11.2 1.0 673.4 2.18
60 300 23.22 12.2 1.0 755.6 3.64 18.0 1.6 1073.8 8.96
90 300 18.99 8.2 1.0 484.2 2.78 11.8 1.0 713.2 4.56
120 300 18.24 9.6 1.0 577.0 5.25 15.2 1.6 901.8 10.83
30 600 45.86 14.4 1.0 997.0 6.14 28.2 1.0 1975.4 20.17
60 600 47.45 20.4 1.0 1442.4 11.73 39.0 3.2 2587.4 60.22
90 600 37.25 18.4 1.4 1249.8 16.29 28.8 2.2 1938.4 44.25
120 600 35.65 15.2 1.0 1051.6 14.44 28.0 1.2 1965.8 55.02
30 900 68.27 19.4 1.6 1408.8 13.04 33.4 2.2 2425.4 34.49
60 900 67.55 23.0 1.0 1746.2 22.83 42.8 1.0 3252.8 90.69
90 900 56.07 14.0 1.0 1032.2 13.51 33.6 1.0 2559.6 64.02
120 900 55.74 18.8 1.0 1409.8 33.95 41.6 2.8 3031.4 245.15
30 1200 86.45 20.8 1.0 1665.8 22.78 44.2 1.0 3575.8 68.60
60 1200 79.42 18.8 1.0 1499.8 21.71 55.4 3.2 4357.0 275.33
90 1200 76.24 21.6 1.0 1737.2 50.39 42.4 1.4 3395.6 218.43
120 1200 82.27 27.8 1.0 2264.0 60.26 62.4 1.0 5104.2 528.15
30 1800 141.09 27.0 1.2 2376.6 52.26 92.4 1.4 8336.8 809.27
60 1800 149.74 58.4 2.0 5186.2 352.24 108.0 3.6 9365.6 1939.62
90 1800 134.89 52.0 1.0 4714.6 420.99 110.2 3.6 9470.6 3523.63
120 1800 109.60 31.6 1.0 2829.2 144.32 68.8 1.0 6164.2 991.79
30 2400 215.23 59.6 1.2 5736.8 510.03 151.8 1.4 14514.8 3563.90
60 2400 143.24 25.8 1.0 2417.0 157.87 86.8 1.4 8307.0 2550.06
90 2400 144.00 32.0 1.0 3040.2 171.92 85.8 1.4 8194.0 2070.06
120 2400 142.28 26.8 1.0 2537.2 149.12 91.8 1.0 8861.0 2907.83

113

. APPENDIX B

30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	

100	
 200	
 300	
 400	
 600	
 800	

Life.me	
 10.35	
 6.22	
 6.73	
 7.15	
 19.65	
 18.62	
 13.69	
 12.29	
 20.78	
 21.31	
 24.04	
 20.20	
 36.90	
 32.91	
 33.33	
 26.93	
 67.44	
 44.71	
 41.73	
 43.09	
 74.44	
 59.25	
 63.64	
 55.58	

0	

10	

20	

30	

40	

50	

60	

70	

80	

Li
fe
%m

e	

|F|=2	
 -­‐	
 Uniform	
 Coverage	

30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	

100	
 200	
 300	
 400	
 600	
 800	

Life.me	
 10.44	
 6.22	
 6.73	
 7.15	
 18.74	
 18.62	
 13.69	
 12.29	
 20.78	
 21.31	
 24.04	
 20.20	
 38.35	
 32.91	
 33.33	
 26.93	
 67.44	
 44.71	
 41.73	
 43.09	
 74.44	
 59.25	
 63.64	
 55.58	

0	

10	

20	

30	

40	

50	

60	

70	

80	

Li
fe
%m

e	

|F|=2	
 -­‐	
 Variable	
 Coverage	

Figure B.3: Lifetime values when solving the two problems for the uniform cover-
age request scenario (on the top) and the variable coverage request scenario (on
the bottom), with |F | = 2.

114

30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	

300	
 600	
 900	
 1200	
 1800	
 2400	

Life.me	
 22.34	
 19.49	
 17.50	
 19.04	
 43.18	
 46.43	
 38.08	
 35.75	
 66.35	
 62.70	
 55.85	
 56.06	
 85.99	
 85.29	
 74.84	
 82.27	
 141.09	
 148.89	
 129.12	
 109.60	
 206.46	
 143.24	
 144.00	
 142.28	

0	

50	

100	

150	

200	

250	

Li
fe
%m

e	

|F|=6	
 -­‐	
 Uniform	
 Coverage	

30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	
 30	
 60	
 90	
 120	

300	
 600	
 900	
 1200	
 1800	
 2400	

Life.me	
 21.18	
 23.22	
 18.99	
 18.24	
 45.86	
 47.45	
 37.25	
 35.65	
 68.27	
 67.55	
 56.07	
 55.74	
 86.45	
 79.42	
 76.24	
 82.27	
 141.09	
 149.74	
 134.89	
 109.60	
 215.23	
 143.24	
 144.00	
 142.28	

0	

50	

100	

150	

200	

250	

Li
fe
%m

e	

|F|=6	
 -­‐	
 Variable	
 Coverage	

Figure B.4: Lifetime values when solving the two problems for the uniform cover-
age request scenario (on the top) and the variable coverage request scenario (on
the bottom), with |F | = 6.

115

. APPENDIX B

Table B.4: Values of wmin for |F | = 2 scenarios.

Each entry is an average of five instances. Results are reported for both the problems and for both
the coverage requirements. Column wmin for MLMFP is evaluated by checking the minimum amount of time
for which, among all the families, a target is covered in the optimum solution. Column wmin for MLMFP-R is
the optimum value of the related variable obtained when solving this problem variant. Column % Gap reports
the percentage difference between the optimum wmin obtained when solving MLMFP-R and the value of wmin

obtained when solving MLMFP.

|F |=2 Uniform coverage requests Variable coverage requests

Instance MLMFP MLMFP-R % Gap MLMFP MLMFP-R % Gap
|T | |S| wmin wmin wmin wmin

30 100 2.42 2.78 14.88 1.23 2.78 126.02
60 100 1.13 1.27 12.39 0.41 1.27 209.76
90 100 1.47 2.07 40.82 0.65 2.07 218.46

120 100 1.22 1.65 35.25 0.67 1.65 146.27

30 200 6.63 7.18 8.30 4.96 7.18 44.76
60 200 5.20 6.07 16.73 4.31 6.07 40.84
90 200 4.60 5.40 17.39 2.96 5.40 82.43

120 200 3.36 4.25 26.49 2.12 4.25 100.47

30 300 7.23 7.89 9.13 3.31 7.89 138.37
60 300 6.65 7.64 14.89 4.61 7.64 65.73
90 300 7.95 9.25 16.35 4.80 9.25 92.71

120 300 6.45 7.09 9.92 3.99 7.09 77.69

30 400 13.00 13.31 2.38 5.94 13.31 124.07
60 400 11.77 12.22 3.82 9.43 12.22 29.59
90 400 13.65 14.45 5.86 9.06 14.45 59.49

120 400 9.39 10.33 10.01 6.42 10.33 60.90

30 600 28.74 29.25 1.77 20.32 29.25 43.95
60 600 18.26 19.22 5.26 11.02 19.22 74.41
90 600 16.41 17.55 6.95 10.19 17.55 72.23

120 600 17.95 20.04 11.64 13.20 20.04 51.82

30 800 31.42 32.87 4.61 19.57 32.87 67.96
60 800 24.04 25.02 4.08 15.78 25.02 58.56
90 800 22.75 23.58 3.65 18.96 23.58 24.37

120 800 23.41 24.09 2.90 15.65 24.09 53.93

116

Table B.5: Values of wmin for |F | = 6 scenarios. Each entry is an average of five
instances. Results are reported for both the problems and for both the coverage requirements. Column wmin

for MLMFP is evaluated by checking the minimum amount of time for which, among all the families, a target
is covered in the optimum solution. Column wmin for MLMFP-R is the optimum value of the related variable
obtained when solving this problem variant. Column % Gap reports the percentage difference between the
optimum wmin obtained when solving MLMFP-R and the value of wmin obtained when solving MLMFP.

|F |=6 Uniform coverage requests Variable coverage requests

Instance MLMFP MLMFP-R % Gap MLMFP MLMFP-R % Gap
|T | |S| wmin wmin wmin wmin

30 300 1.21 1.48 22.31 0.36 1.48 311.11
60 300 0.92 1.15 25.00 0.71 1.15 61.97
90 300 0.70 0.78 11.43 0.55 0.78 41.82

120 300 1.09 1.09 0.00 0.38 1.09 186.84

30 600 3.38 3.50 3.55 2.57 3.50 36.19
60 600 4.17 4.36 4.56 3.38 4.36 28.99
90 600 3.14 3.31 5.41 2.34 3.31 41.45

120 600 2.96 2.96 0.00 1.73 2.96 71.10

30 900 5.21 5.21 0.00 4.39 5.21 18.68
60 900 5.48 5.63 2.74 4.29 5.63 31.24
90 900 5.20 5.21 0.19 3.42 5.21 52.34

120 900 5.36 5.36 0.00 4.27 5.36 25.53

30 1200 7.22 7.63 5.68 5.94 7.63 28.45
60 1200 8.85 9.05 2.26 6.34 9.05 42.74
90 1200 6.40 6.65 3.91 5.82 6.65 14.26

120 1200 7.60 7.88 3.68 7.22 7.88 9.14

30 1800 17.55 18.27 4.10 11.37 18.27 60.69
60 1800 14.91 14.99 0.54 13.84 14.99 8.31
90 1800 14.15 14.17 0.14 12.59 14.17 12.55

120 1800 10.33 10.33 0.00 9.02 10.33 14.52

30 2400 22.94 23.53 2.57 16.80 23.53 40.06
60 2400 16.31 16.85 3.31 10.91 16.85 54.45
90 2400 15.01 15.09 0.53 11.89 15.09 26.91

120 2400 15.88 17.24 8.56 12.40 17.24 39.03

117

References

[1] A.E.A.A. Abdulla, H. Nishiyama, and N. Kato. Extending the lifetime of

wireless sensor networks: A hybrid routing algorithm. Computer Commu-

nications, 35(9):1056–1063, 2012.

[2] J. Ai and A. A. Abouzeid. Coverage by directional sensors in randomly

deployed wireless sensor networks. Journal of Combinatorial Optimization,

11(1):21–41, 2006.

[3] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless

sensor networks: A survey. Computer Networks, 38(4):393–422, 2002.

[4] H. Alemdar and C. Ersoy. Wireless sensor networks for healthcare: a survey.

Computer Networks, 54(15):2688–2710, 2010.

[5] A. Alfieri, A. Bianco, P. Brandimarte, and C. F. Chiasserini. Maximizing

system lifetime in wireless sensor networks. European Journal of Opera-

tional Research, 181(1):390–402, 2007.

[6] Leif H Appelgren. A column generation algorithm for a ship scheduling

problem. Transportation Science, 3(1):53–68, 1969.

[7] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things:

A survey. Computer networks, 54(15):2787–2805, 2010.

[8] W. Awada and M. Cardei. Energy-efficient data gathering in heterogeneous

wireless sensor networks. In Proceedings of the IEEE International Confer-

ence on Wireless and Mobile Computing, Networking and Communications,

pages 53–60, 2006.

118

REFERENCES

[9] John Daniel Bagley. The behavior of adaptive systems which employ genetic

and correlation algorithms. Ann Arbor: The University of Michigan, 1967.

[10] P. Berman, G. Calinescu, C. Shah, and A. Zelikovsky. Power efficient mon-

itoring management in sensor networks. In Proceedings of the Wireless

Communications and Networking Conference, volume 4, pages 2329 – 2334,

2004.

[11] P. Berman, G. Calinescu, C. Shah, and A. Zelikovsky. Efficient energy

management in sensor networks. In Ad Hoc and Sensor Networks. Nova

Science Publishers. Nova Science Publisher, 2005.

[12] Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimiza-

tion, volume 6. Athena Scientific Belmont, MA, 1997.

[13] Yanzhong Bi, Limin Sun, Jian Ma, Na Li, Imran Ali Khan, and Canfeng

Chen. Hums: an autonomous moving strategy for mobile sinks in data-

gathering sensor networks. EURASIP Journal on Wireless Communications

and Networking, 2007, 2007.

[14] Maria J. Blesa, Christian Blum, and Stefan Voß, editors. Hybrid Meta-

heuristics - 9th International Workshop, HM 2014, Hamburg, Germany,

June 11-13, 2014. Proceedings, volume 8457 of Lecture Notes in Computer

Science. Springer, 2014.

[15] C. Blum, M. J. Blesa Aguilera, A. Roli, and M. Sampels, editors. Hybrid

Metaheuristics - An Emerging Approach to Optimization, volume 114 of

Studies in Computational Intelligence. Springer-Verlag, Berlin/Heidelberg,

2008.

[16] V. L. Boginski, C. W. Commander, P. M. Pardalos, and Y. Ye, editors.

Sensors: theory, algorithms, and applications, volume 61 of Springer Opti-

mization and Its Applications. Springer-Verlag, New York, 2011.

[17] T. Bokareva, W. Hu, S. Kanhere, B. Ristic, T. Bessell, M. Rutten, and

S. Jha. Wireless sensor networks for battlefield surveillance. In in Proc. of

the Land Warfare Conference, 2006.

119

REFERENCES

[18] Hans J Bremermann. Optimization through evolution and recombination.

Self-organizing systems, pages 93–106, 1962.

[19] Hans J Bremermann, M Rogson, and S Salaff. Global properties of evolution

processes. Natural automata and useful simulations, pages 3–41, 1966.

[20] Y. Cai, W. Lou, M. Li, and X.-Y. Li. Energy efficient target-oriented

scheduling in directional sensor networks. IEEE Transactions on Comput-

ers, 58(9):1259–1274, 2009.

[21] M. Cardei. Coverage problems in sensors networks. In P. M. Pardalos, D. Z.

Du, and R. Graham, editors, Handbook of Combinatorial Optimization (2nd

edition), pages 899–927. Springer, New York, 2013.

[22] M. Cardei, M. T. Thai, Y. Li, and W. Wu. Energy-efficient target coverage

in wireless sensor networks. In Proceedings of the 24th conference of the

IEEE Communications Society, volume 3, pages 1976–1984, 2005.

[23] M. Cardei, J. Wu, and M. Lu. Improving network lifetime using sensors

with adjustable sensing ranges. International Journal of Sensor Networks,

1(1-2):41–49, 2006.

[24] Mihaela Cardei and Ding-Zhu Du. Improving wireless sensor network life-

time through power aware organization. Wireless Networks, 11(3):333–340,

2005.

[25] Mihaela Cardei and Jie Wu. Coverage in wireless sensor networks. Handbook

of Sensor Networks, pages 422–433, 2004.

[26] Mihaela Cardei and Jie Wu. Energy-efficient coverage problems in wireless

ad-hoc sensor networks. Computer communications, 29(4):413–420, 2006.

[27] F. Carrabs, R. Cerulli, C. D’Ambrosio, M. Gentili, and A. Raiconi. The

maximum lifetime problem for sensor networks with multiple sensor fami-

lies. Submitted, 2014.

[28] F. Castaño, E. Bourreau, N. Velasco, A. Rossi, and M. Sevaux. Exact

approaches for lifetime maximization in connectivity constrained wireless

120

REFERENCES

multi-role sensor networks. European Journal of Operational Research,

241(1):28–38, 2015.

[29] F. Castaño, A. Rossi, M. Sevaux, and N. Velasco. On the use of multiple

sinks to extend the lifetime in connected wireless sensor networks. Electronic

Notes in Discrete Mathematics, 41:77–84, 2013.

[30] F. Castaño, A. Rossi, M. Sevaux, and N. Velasco. A column generation

approach to extend lifetime in wireless sensor networks with coverage and

connectivity constraints. Computers & Operations Research, 52(B):220–

230, 2014.

[31] R. Cerulli, R. De Donato, and A. Raiconi. Exact and heuristic methods

to maximize network lifetime in wireless sensor networks with adjustable

sensing ranges. European Journal of Operational Research, 220(1):58–66,

2012.

[32] R. Cerulli, M. Gentili, and A. Raiconi. Maximizing lifetime and handling

reliability in wireless sensor networks. Networks, 64(4):321–338, 2014.

[33] Sriram Chellappan, Xiaole Bai, Bin Ma, Dong Xuan, and Changqing Xu.

Mobility limited flip-based sensor networks deployment. Parallel and Dis-

tributed Systems, IEEE Transactions on, 18(2):199–211, 2007.

[34] Karthik Dantu, Mohammad Rahimi, Hardik Shah, Sandeep Babel, Amit

Dhariwal, and Gaurav S Sukhatme. Robomote: enabling mobility in sensor

networks. In Proceedings of the 4th international symposium on Information

processing in sensor networks, page 55. IEEE Press, 2005.

[35] George B Dantzig and Philip Wolfe. Decomposition principle for linear

programs. Operations research, 8(1):101–111, 1960.

[36] W. Dargie and C. Poellabauer, editors. Fundamentals of Wireless Sensor

Networks: Theory and Practice. John Wiley and Sons, London, 2010.

[37] S. K. Das, G. Ghidini, A. Navarra, and C. M. Pinotti. Localization and

scheduling protocols for actor-centric sensor networks. Networks, 59(3):299–

319, 2012.

121

REFERENCES

[38] L. Davis, editor. Handbook of Genetic Algorithms. Van Nostrand Reinhold,

New York, 1991.

[39] Ioan Deaconu and Andrei Voinescu. Mobile gateway for wireless sensor

networks utilizing drones. In RoEduNet Conference 13th Edition: Net-

working in Education and Research Joint Event RENAM 8th Conference,

2014, pages 1–5. IEEE, 2014.

[40] K. Deschinkel. A column generation based heuristic for maximum lifetime

coverage in wireless sensor networks. In SENSORCOMM 11, 5th Int. Conf.

on Sensor Technologies and Applications, volume 4, pages 209 – 214, 2011.

[41] Jacques Desrosiers and Marco E Lübbecke. A primer in column generation.

Springer, 2005.

[42] I. Dietrich and F. Dressler. On the lifetime of wireless sensor networks.

ACM Transactions on Sensor Networks, 5(1), 2009.

[43] E. J. Duarte-Melo and M Liu. Analysis of energy consumption and life-

time of heterogeneous wireless sensor networks. In Proceedings of the IEEE

Global Telecommunications Conference, volume 1, pages 21–25, 2002.

[44] Jeremy Elson and Deborah Estrin. Wireless sensor networks. chapter Sensor

Networks: A Bridge to the Physical World, pages 3–20. Kluwer Academic

Publishers, Norwell, MA, USA, 2004.

[45] David B Fogel. Evolutionary computation: toward a new philosophy of

machine intelligence, volume 1. John Wiley & Sons, 2006.

[46] Lester Randolph Ford Jr and Delbert R Fulkerson. A suggested compu-

tation for maximal multi-commodity network flows. Management Science,

5(1):97–101, 1958.

[47] A Fraser. Comments on mathematical challenges to the neo-darwinian con-

cept of evolution. In The Wistar Institute symposium monograph, volume 5,

pages 107–107, 1966.

122

REFERENCES

[48] Alex S Fraser. Simulation of genetic systems by automatic digital computers

i. introduction. Australian Journal of Biological Sciences, 10:484–491, 1957.

[49] Alex S Fraser. Simulation of genetic systems by automatic digital computers

ii. effects of linkage on rates of advance under selection. Australian Journal

of Biological Sciences, 10:492–499, 1957.

[50] Alex S Fraser. Simulation of genetic systems by automatic digital computers

vi. epistasis. Australian Journal of Biological Sciences, 13(2):150–162, 1960.

[51] Alexander S Fraser. The evolution of purposive behavior, 1968.

[52] AS Fraser. Simulation of genetic systems. Journal of Theoretical Biology,

2(3):329–346, 1962.

[53] Michael R Garey and David S Johnson. Computers and intractability, vol-

ume 29. wh freeman, 2002.

[54] M. Gentili and A. Raiconi. α−coverage to extend network lifetime on wire-

less sensor networks. Optimization Letters, 7(1):157–172, 2013.

[55] P.B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. Irisnet: an ar-

chitecture for a worldwide sensor web. IEEE Pervasive Comput., 2:22–33,

2003.

[56] Paul C Gilmore and Ralph E Gomory. A linear programming approach to

the cutting-stock problem. Operations research, 9(6):849–859, 1961.

[57] Paul C Gilmore and Ralph E Gomory. A linear programming approach

to the cutting stock problem-part ii. Operations research, 11(6):863–888,

1963.

[58] David E. Goldberg. Genetic Algorithms in Search, Optimization and Ma-

chine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1st edition, 1989.

[59] Y. Gu, B.-H. Zhao, Y.-S. Ji, and J. Li. Theoretical treatment of target

coverage in wireless sensor networks. Journal of Computer Science and

Technology, 26(1):117–129, 2010.

123

REFERENCES

[60] Yu Gu, Yusheng Ji, Jie Li, and Baohua Zhao. Qos-aware target coverage in

wireless sensor networks. Wireless Communications and Mobile Computing,

9(12):1645–1659, 2009.

[61] JH Holland. Adaption in natural and artificial systems. Ann Arbor MI:

The University of Michigan Press, 1975.

[62] John H Holland. Adaptive plans optimal for payoff-only environments.

Technical report, DTIC Document, 1969.

[63] John H Holland. Genetic algorithms and the optimal allocation of trials.

SIAM Journal on Computing, 2(2):88–105, 1973.

[64] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Di-

rected diffusion: a scalable and robust communication paradigm for sensor

networks. In Proceedings of the 6th annual international conference on Mo-

bile computing and networking, pages 56–67. ACM, 2000.

[65] Jie JIA, Jian Chen, Gui-Ran Chang, and Ying-You WEN. Efficient cover set

selection in wireless sensor networks. Acta Automatica Sinica, 34(9):1157–

1162, 2008.

[66] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges:

Mobile networking for “Smart Dust”. In Proceedings of the 5th Annual

ACM/IEEE International Conference on Mobile Computing and Network-

ing, MobiCom ’99, pages 271–278, New York, NY, USA, 1999. ACM.

[67] Richard M Karp. Reducibility among combinatorial problems. Springer,

1972.

[68] Santosh Kumar, Ten H Lai, and Anish Arora. Barrier coverage with wire-

less sensors. In Proceedings of the 11th annual international conference on

Mobile computing and networking, pages 284–298. ACM, 2005.

[69] Santosh Kumar, Ten H Lai, and Anish Arora. Barrier coverage with wireless

sensors. Wireless Networks, 13(6):817–834, 2007.

124

REFERENCES

[70] Anthony LaMarca, Waylon Brunette, David Koizumi, Matthew Lease, Ste-

fan B Sigurdsson, Kevin Sikorski, Dieter Fox, and Gaetano Borriello. Mak-

ing sensor networks practical with robots. In Pervasive Computing, pages

152–166. Springer, 2002.

[71] L. Lazos and R. Poovendran. Stochastic coverage in heterogeneous sensor

networks. ACM Transactions on Sensor Networks, 2(3):325–358, 2006.

[72] J.-J. Lee, B. Krishnamachari, and C.-C. J. Kuo. Impact of heterogeneous

deployment on lifetime sensing coverage in sensor networks. In Proceedings

of the Annual IEEE Communications Society Conference on Sensor and Ad

Hoc Communications and Networks, pages 367–376, 2004.

[73] Uichin Lee, Eugenio Magistretti, Biao Zhou, Mario Gerla, Paolo Bellavista,

and Antonio Corradi. Efficient data harvesting in mobile sensor platforms.

In Pervasive Computing and Communications Workshops, 2006. PerCom

Workshops 2006. Fourth Annual IEEE International Conference on, pages

5–pp. IEEE, 2006.

[74] H. Liu, P. Wan, C.-W. Yi, X. Jia, S. Makki, and N. Pissinou. Maximal

lifetime scheduling in sensor surveillance networks. In Proceedings of the

Annual Joint Conference of the IEEE Computer and Communications So-

cieties, volume 4, pages 2482–2491, 2005.

[75] M.E. Lbbecke and J. Desrosiers. Selected topics in column generation.

Operations Research, 53(6):1007–1023, 2005.

[76] Seapahn Megerian, Farinaz Koushanfar, Miodrag Potkonjak, and Mani B

Srivastava. Worst and best-case coverage in sensor networks. Mobile Com-

puting, IEEE Transactions on, 4(1):84–92, 2005.

[77] Seapahn Megerian, Farinaz Koushanfar, Gang Qu, Giacomino Veltri, and

Miodrag Potkonjak. Exposure in wireless sensor networks: theory and

practical solutions. Wireless Networks, 8(5):443–454, 2002.

125

REFERENCES

[78] Seapahn Meguerdichian, Farinaz Koushanfar, Miodrag Potkonjak, and

Mani B. Srivastava. Coverage problems in wireless ad-hoc sensor networks.

In in IEEE INFOCOM, pages 1380–1387, 2001.

[79] V. P. Mhatre, C. Rosenberg, D. Kofman, R. Mazumdar, and N. Shroff.

A minimum cost heterogeneous sensor network with a lifetime constraint.

IEEE Transactions on Mobile Computing, 4(1):4–15, 2005.

[80] G. L. Nemhauser. Column generation for linear and integer programming.

Documenta Mathematica, EXTRA VOLUME ISMP:65–73, 2012.

[81] The Array of Things. The array of things project.

“https://arrayofthings.github.io”, 2014.

[82] M. Pejanovic Durisic, Z. Tafa, G. Dimic, and V. Milutinovic. A survey

of military applications of wireless sensor networks. In Proceedings of the

Mediterranean Conference on Embedded Computing, pages 196–199, 2012.

[83] Gregory J Pottie and William J Kaiser. Wireless integrated network sensors.

Communications of the ACM, 43(5):51–58, 2000.

[84] A. Raiconi and M. Gentili. Exact and metaheuristic approaches to ex-

tend lifetime and maintain connectivity in wireless sensors networks. In

J. Pahl, T. Reiners, and S. Voss, editors, Network Optimization, vol-

ume 6701 of Lecture Notes in Computer Science, pages 607–619. Springer,

Berlin/Heidelberg, 2011.

[85] P. Rawat, K. D. Singh, H. Chaouchi, and J. M. Bonnin. Wireless sensor

networks: a survey on recent developments and potential synergies. The

Journal of Supercomputing, 68(1):1–48, 2014.

[86] I. Rechenberg. Cybernetic solution path of an experimental problem. In

Royal Aircraft Establishment Translation No. 1122, B. F. Toms, Trans.

Ministry of Aviation, Royal Aircraft Establishment, 1965.

[87] ReportsnReports. Semiconductor wireless sensor internet of things

(iot): Market shares, strategies, and forecasts, worldwide, 2014 to

126

REFERENCES

2020. “www.reportsnreports.com/reports/271010-wireless-sensor-networks-

market-shares-strategies-and-forecasts-worldwide-2013-to-2019.html”, 2014.

[88] Mit Technology Review. 10 emerging technologies that will change the

world. “www2.technologyreview.com/featured-story/401775/10-emerging-

technologies-that-will-change-the/2/”, 2003.

[89] Richard S Rosenberg. Stimulation of genetic populations with biochemical

properties. Ann Arbor: The University of Michigan, 1967.

[90] A. Rossi, A. Singh, and M. Sevaux. Column generation algorithm for sensor

coverage scheduling under bandwidth constraints. Networks, 60(3):141–154,

2012.

[91] A. Rossi, A. Singh, and M. Sevaux. An exact approach for maximizing the

lifetime of sensor networks with adjustable sensing ranges. Computers &

Operations Research, 39(12):3166–3176, 2012.

[92] A. Rossi, A. Singh, and M. Sevaux. Lifetime maximization in wireless

directional sensor network. European Journal of Operational Research,

231(1):229–241, 2013.

[93] André Rossi, Alok Singh, and Marc Sevaux. Lifetime maximization in wire-

less directional sensor network. European Journal of Operational Research,

231(1):229–241, 2013.

[94] A.C. Santos, C. Duhamel, L.S. Belisrio, and L.M. Guedes. Strategies for

designing energy-efficient clusters-based wsn topologies. Journal of Heuris-

tics, 18(4):657–675, 2012.

[95] Yi Shi. Algorithms and Optimization for Wireless Networks. PhD thesis,

Virginia Polytechnic Institute and State University, 2007.

[96] A. Singh, A. Rossi, and M. Sevaux. Matheuristic approaches for q-coverage

problem versions in wireless sensor networks. Engineering Optimization,

45(5):609–626, 2013.

127

REFERENCES

[97] S.N. Sivanandam and S.N. Deepa. Introduction to genetic algorithms.

Springer, 2008.

[98] S. Slijepcevic and M. Potkonjak. Power efficient organization of wireless

sensor networks. volume 2, pages 472–476, 2001.

[99] Arun A Somasundara, Aman Kansal, David D Jea, Deborah Estrin, and

Mani B Srivastava. Controllably mobile infrastructure for low energy em-

bedded networks. Mobile Computing, IEEE Transactions on, 5(8):958–973,

2006.

[100] S. Soro and W. B. Heinzelman. Prolonging the lifetime of wireless sensor

networks via unequal clustering. In Proceedings of the IEEE International

Parallel and Distributed Processing Symposium, 2005.

[101] EG Talbi. Hybrid metaheuristics, volume 434 of studies in computational

intelligence, 2013.

[102] Bang Wang. Coverage problems in sensor networks: A survey. ACM Com-

puting Surveys (CSUR), 43(4):32, 2011.

[103] C. Wang, M. T. Thai, Y. Li, F. Wang, and W. Wu. Minimum coverage

breach and maximum network lifetime in wireless sensor networks. In Pro-

ceedings of the IEEE Global Telecommunications Conference, pages 1118–

1123, 2007.

[104] Roy Want, Keith I Farkas, and Chandrasekhar Narayanaswami. Guest

editors’ introduction: Energy harvesting and conservation. Pervasive Com-

puting, IEEE, 4(1):14–17, 2005.

[105] Thomas Weise. Global optimization algorithms ? theory and application

?, 2008.

[106] E. Welsh, W. Fish, and J. P. Frantz. GNOMES: a testbed for low power

heterogeneous wireless sensor networks. In Proceedings of the International

Symposium on Circuits and Systems, volume 4, pages 836–839, 2003.

128

REFERENCES

[107] J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network survey.

Computer Networks, 52(12):2292–2330, 2008.

[108] H. Zhang and J. C. Hou. Maintaining sensing coverage and connectivity in

large sensor networks. Ad Hoc & Sensor Wireless Networks, 1(1-2):89–124,

2005.

[109] Chen Zhao, Sam Yisrael, Joshua R Smith, and Shwetak N Patel. Powering

wireless sensor nodes with ambient temperature changes. In Proceedings of

the 2014 ACM International Joint Conference on Pervasive and Ubiquitous

Computing, pages 383–387. ACM, 2014.

[110] Q. Zhao and M. Gurusamy. Lifetime maximization for connected target

coverage in wireless sensor networks. IEEE/ACM Transactions on Net-

working, 16(6):1378–1391, 2008.

[111] Chuan Zhu, Chunlin Zheng, Lei Shu, and Guangjie Han. A survey on

coverage and connectivity issues in wireless sensor networks. Journal of

Network and Computer Applications, 35(2):619–632, 2012.

[112] D. Zorbas, D. Glynos, P. Kotzanikolaou, and C. Douligeris. Solving coverage

problems in wireless sensor networks using cover sets. Ad Hoc Networks,

8(4):400–415, 2010.

129

