
Efficient Distributed Load
Balancing for Parallel Algorithms

Biagio Cosenza

November 2010

Dottorato di Ricerca in Informatica
IX Ciclo Nuova Serie

Università degli Studi di Salerno

Supervisor PhD Program Chair

Prof. Vittorio Scarano Prof. Margherita Napoli

Supervisor

Prof. Vittorio Scarano, Dip. di Informatica,
Università degli Studi di Salerno, Italy

PhD Program Chair

Prof. Margherita Napoli, Dip. di Informatica,
Università degli Studi di Salerno, Italy

PhD Committee

Prof. Domenico Talia, Università della Calabria, Italy
Prof. Marco Faella, Università degli Studi di Napoli Federico II, Italy
Prof. Alfredo De Santis, Università degli Studi di Salerno, Italy

Dean

Prof. Alberto Negro, Dip. di Informatica,
Università degli Studi di Salerno, Italy

Thesis submitted on

November 30th, 2010

Date of defense

April 29th, 2011

Biagio Cosenza
ISISLab, Dip. di Informatica
Università degli Studi di Salerno
Via Ponte don Melillo, 84084 Fisciano (Salerno), Italy
cosenza@dia.unisa.it

1

Abstract

With the advent of massive parallel processing technology, exploiting the power
offered by hundreds, or even thousands of processors is all but a trivial task.
Computing by using multi-processor, multi-core or many-core adds a number of
additional challenges related to the cooperation and communication of multiple
processing units.

The uneven distribution of data among the various processors, i.e. the load
imbalance, represents one of the major problems in data parallel applications.
Without good load distribution strategies, we cannot reach good speedup, thus
good efficiency.

Load balancing strategies can be classified in several ways, according to the
methods used to balance workload. For instance, dynamic load balancing algo-
rithms make scheduling decisions during the execution and commonly results
in better performance compared to static approaches, where task assignment is
done before the execution.

Even more important is the difference between centralized and distributed
load balancing approaches. In fact, despite that centralized algorithms have
a wider vision of the computation, hence may exploit smarter balancing tech-
niques, they expose global synchronization and communication bottlenecks in-
volving the master node. This definitely does not assure scalability with the
number of processors.

This dissertation studies the impact of different load balancing strategies.
In particular, one of the key observations driving our work is that distributed
algorithms work better than centralized ones in the context of load balancing
for multi-processors (alike for multi-cores and many-cores as well).

We first show a centralized approach for load balancing, then we propose sev-
eral distributed approaches for problems having different parallelization, work-
load distribution and communication pattern. We try to efficiently combine sev-
eral approaches to improve performance, in particular using predictive metrics
to obtain a per task compute-time estimation, using adaptive subdivision, im-
proving dynamic load balancing and addressing distributed balancing schemas.
The main challenge tackled on this thesis has been to combine all these ap-
proaches together in new and efficient load balancing schemas.

We assess the proposed balancing techniques, starting from centralized ap-
proaches to distributed ones, in distinctive real case scenarios: Mesh-like com-
putation, Parallel Ray Tracing, and Agent-based Simulations. Moreover, we
test our algorithms with parallel hardware such has cluster of workstations,
multi-core processors and exploiting SIMD vectorial instruction set.

Finally, we conclude the thesis with several remarks, about the impact of
distributed techniques, the effect of the communication pattern and workload
distribution, the use of cost estimation for adaptive partitioning, the trade-off
fast versus accuracy in prediction-based approaches, the effectiveness of work
stealing combined with sorting, and a non-trivial way to exploit hybrid CPU-
GPU computations.

3

Keywords: parallel computing, load balancing, distributed algorithms,
adaptive subdivision, dynamic load balancing, scheduling, scalability, task sort-
ing, work stealing, agent-based simulations, Reynolds’s behavioral model, mesh-
like computation, ray tracing algorithms, parallel ray tracing, image space tech-
niques, path tracing, Whitted ray tracing, SIMD parallelism, message passing,
multi threading, GPU techniques

4

Acknowledgments

This dissertation could not have come about without the help and support of
many people.

First, I would like to thank my advisor, Prof. Vittorio Scarano.
He has taught me how to articulate my ideas and how to step back to see the
bigger picture. Particularly, I appreciate the freedom he gave me to explore my
ideas; while this freedom has taken me down some garden paths, it has taught
me a lot about the research process and strengthened my skills as a researcher.
Moreover, the most important contribution that he has made in my life is that
he has taught me how important is to have fun in my job.

I would like to express my gratitude to all members of the ISIS Research
Lab: Gennaro, Rosario, Delfina, Raffaele, Bernardo, Ugo, Ilaria and Pina –
and Prof. Alberto Negro and Filomena De Santis. A special mention is to
Gennaro Cordasco, for his useful feedback and suggestions on my thesis, and to
Rosario De Chiara, with his hints and fancy graphs.

There are several friends who I should thank for making my stay in Salerno
enjoyable. Is a long list, comprising Edoardo, Raffaele, Pina, Nazario, Terry,
my PhD mates, and many others countless friends.

A Dankeschön is to Prof. Carsten Dachsbacher, for patiently teaching me
most of the bells and whistles of computer graphics. I entered the field of
graphics with few prior experience, and he took me on and was patient as I
learned the ropes. Working with him has been a wonderful learning experience,
and I appreciate the time and effort he has taken to improve my work.

I should greatly appreciate people at VISUS in Stuttgart, especially Prof.
Thomas Ertl for hosting me in several projects and thereby introducing me into
his group, Guido Reina for letting me feel at home, Gregor, Filip, Sven, Michael
and Thomas for many helpful discussions, and all other people at VISUS that
have certainly broadened my view and made my stay there a great experience.

I would like to thank the PhD Committee members for kindly accepting to
review this thesis.

I have to mention many other people (in random order): Alexander Schultz
and Rainer Keller from HLRS Stuttgart, for always helping out once help was
needed during the two HPC-Europa Projects; Manta team from University of
Utah for sharing their code on ray tracing and for their feedbacks; Björn Knafla
from Universität Kassel, for its insightful thoughts on Agent-based Simulation;
Ursula Habel from IZ Stuttgart, for being helpful during the DAAD Scholarship;
Elena Orsini from Universität Hohenheim, for her invaluable friendship; Gio-
vanni Erbacci from CINECA Bologna for his helpful support with both ISCRA
and HPC-Europa grants; Roberto Ciavarella from ENEA Portici for his quick
solutions to my complex setup problems at ENEA Grid; the Italians group in
Stuttgart for their nice Stammtisch.

My work has been funded by several grants: HPC-Europa++, HPC-Europa2,
a DAAD (Deutscher Akademischer Austausch Dienst) Scholarship, and a IS-
CRA Cineca. I want to thank people behind these organizations for offering
similar opportunities.

5

Last but not least, I would like to thank my family: my father Fabio, my
mother Caterina, and my little brother Giuseppe.

Beyond people, I have a final thanksgiving for a place. A place where I had
inspiring thoughts and ideas, where friendly people always have something to
tell and ask, and their smiles made my time there valuable. This place is my
hometown, la Calabria.

6

Contents

1 Introduction 15

1.1 Introducing Parallel Computing 16
1.1.1 The Need of Parallel Computing 16
1.1.2 Why Now? . 17
1.1.3 Parallel Architectures . 17
1.1.4 Scalability and Efficiency 20
1.1.5 Challenges on Parallel Programming 22

1.2 Why do we care about Load Balancing? 23
1.2.1 The Problem of Load Balancing 23
1.2.2 Aspects of Load Balancing 24
1.2.3 Intuition: Distributed Load Balancing is More Efficient . 25

1.3 Previous work . 25
1.4 Contributions of This Dissertation 27

1.4.1 Assessing Load Balancing Algorithms in Real Applications 27
1.4.2 Parallel Ray Tracing . 28
1.4.3 Agent-based Simulation 28
1.4.4 Organization of the Thesis 29

2 Load Balancing on Mesh-like Computations 31

2.1 Introduction . 31
2.1.1 Mesh-like computations 32
2.1.2 Our result . 33
2.1.3 Previous Works . 34

2.2 Our Strategy . 35
2.2.1 The Prediction Binary Tree 36

2.3 Case study: Parallel Ray Tracing 40
2.3.1 Exploiting PBT for Parallel Ray Tracing 43

2.4 Experiments and Results . 43
2.4.1 Setting of the experiments 44
2.4.2 Results . 45

2.5 Conclusion . 50

3 Load Balancing based on Cost Evaluation 53

3.1 Introduction . 54
3.2 Previous Work . 55
3.3 Overview . 56
3.4 The Cost Map . 57

3.4.1 Rendering Cost Evaluation 58
3.4.2 A GPU-based Cost Map 58
3.4.3 Cost Estimation Error Analysis 61

3.5 Load Balancing . 63
3.6 Implementation . 65

3.6.1 Tile-to-Packet Mapping 65

7

CONTENTS

3.6.2 Work Stealing . 65
3.6.3 Multi-threading Parallelization for Multi-core CPUs . . . 66
3.6.4 Network and Latency Hiding 68
3.6.5 Asynchronous Prediction 68

3.7 Results . 68
3.8 Discussion . 70
3.9 Conclusion . 73

4 Distributed Load Balancing on Agent-Based Simulations 77

4.1 Introduction . 78
4.1.1 Related work . 79
4.1.2 Our Result . 81

4.2 Background . 81
4.2.1 Behavior Model . 81
4.2.2 Parallel Agent Simulation 82

4.3 Agents partitioning . 82
4.3.1 Handling the boundary 83
4.3.2 Special Cases . 84

4.4 Distributed load balancing schemes 85
4.4.1 Static partitioning (static) 86
4.4.2 Region wide load balancing (dynamic1) 86
4.4.3 Mitigated region wide load balancing (dynamic2) 86
4.4.4 Restricted assumption load balancing (dynamic3) 87
4.4.5 Generalization to multiple workers 88

4.5 Tests and performances . 88
4.5.1 Test setting . 88
4.5.2 Load balancing analysis 89

4.6 Conclusion . 92

5 Conclusion: Lesson Learned 95

A Listing of test hardware platforms 99

A.1 HLRS, Universität Stuttgart . 99
A.2 ENEA Supercomputing, Portici 99
A.3 VISUS Stuttgart . 100
A.4 ISISLab, Università degli Studi di Salerno 100
A.5 CINECA Supercomputing, Bologna 101

B List of Related Publications 103

8

List of Figures

2.1 Interaction between components of a parallel scheduler using a
Predictor . 33

2.2 An example of a PBT tree . 37
2.3 A merge and split operation on the PBT tree 39
2.4 A frame in the walk-trough for scene ERW6-4 44
2.5 Average per frame rendering time on increasing k, comparing

regular and PBT-based job assignments 45
2.6 Optimal subdivision granularity with both regular and PBT sub-

division . 46
2.7 Scalability of the PBT-based approach 48
2.8 Amphitheater test scene . 48
2.9 Average frame rate using different resolutions 50
2.10 Contributions in rendering time with 32 and 64 processors 51

3.1 Example of rendering, cost map, tiling and GPU-based images
used in this work . 54

3.2 A comparison of the real cost and our GPU-based cost estimate . 57
3.3 Estimating the rendering cost . 59
3.4 Sampling pattern . 61
3.5 Off-screen geometry problem . 62
3.6 Error distribution of the estimation 63
3.7 Work stealing and tile assignment 66
3.8 Multi-threading with tile buffering 67
3.9 Summary of the parameters used for rendering and cost map

computation . 70
3.10 Steal transfers analysis . 70
3.11 Scalability for up to 16 workers measured for the Cornell box . . 72
3.12 Images rendered with our parallel ray tracer 74
3.13 Effectiveness of the cost map generation in different test scenes . 76

4.1 Agent-based Simulation snapshots 80
4.2 The simulation carried out on 4 workers 81
4.3 Load balancing with two workers 83
4.4 Four cases for agent position when moving to a new simulation

step. 84
4.5 Load balancing with multiple workers 87
4.6 Distribution of agents per worker 88
4.7 Number of agents per worker . 90
4.8 Scalability . 91

9

List of Tables

2.1 Results of the predictions in 85th, 90th and 95th percentile. . . . 47
2.2 Description of the test scenes used for spatial coherence tests . . 49

3.1 Cost map computation timings 61
3.2 Performance comparison for our four test scenes 75
3.3 Exploiting multi-threading scalability with a different number of

threads and setups . 75
3.4 Scalability for the Cornell box test scene using different balancing

techniques . 75

4.1 Load balancing/communication results 94

11

List of Algorithms

1 PBT-Update . 38
2 Approximated cost map computation algorithm 60
3 The SAT-tiling algorithm . 64
4 Handling the boundary (code for worker pl) 85

13

1
Introduction

In 1965 Gordon Moore made a prediction about the semiconductor industry that
has become the stuff of legend. Moore’s Law predicted the incredibly growth
that the semiconductor industry has experienced over the last 50 years [70].
Starting from nothing, it has now passed $200 billion in annual revenue and
Moore’s Law has become the foundation of a trillion-dollar electronics industry.
However, many parameters relating to the industry have changed almost expo-
nentially with time, including chip complexity, chip performance, feature size,
and the numbers of transistors produced each year. Several times in the past,
it appeared that technological barriers such as power consumption would slow
or even stop the growth trends.

Lately, the same Moore [71] admitted that a new, more fundamental barrier
is emerging that the technology is approaching atomic dimensions, raising all
sorts of new challenges. He said:

No exponential change of a physical quantity can, however, con-
tinue forever. For one reason or another something limits continued
growth. For our industry many of the exponential trends are ap-
proaching limits that require new means for circumvention if we are
to continue the historic rate of progress.

Nevertheless, Moore’s Law is not dead yet. The number of transistors on
modern processors continues to double every 18 months, but those transistors
are now just manifesting themselves as additional processing cores.

In single-core processor1, one way to increase performance is to increase
clock rates, but with heating and energy concerns, that only goes so far. The
increased density of multi-core processors 2 allows each core to be clocked well
below its theoretical maximum, which assists with heat dissipation and power
management.

Despite, in the past, the promise of parallelism has fascinated researchers,
for at least three decades single-processor computing always prevailed. Such a

1Here the term indicates a single processor with a single core
2An architecture that supports multiple cores in a single processor package that replicates

the cache coherent, shared address space architecture common to traditional multi-processor
computers. Typically, multi-core processors put multiple cores in a given thermal envelope
and emphasize the best-possible single-thread (or single-core) performance [59]

15

CHAPTER 1. INTRODUCTION

switch to parallel microprocessors is a milestone in the history of computing
and the new belief now is that the number of cores on a chip doubles with each
silicon generation.

In this new era, programmers who care about performance must get up
off their recliners and start making their programs parallel. Today, increasing
parallelism is the primary method of improving performance.

A major reason slowing deployment of parallel programs is that efficient
parallel programs are difficult to write. Parallel programming adds a second di-
mension to programming: not just when will a particular operation be executed,
but where, i.e. what processor will perform it. A vast number of parallelizable
applications do not have a regular structure for efficient parallelization. Such
applications require load balancing to perform efficiently in parallel. The load
in these applications may also change over time, requiring rebalancing. The
programmer is left with the choice of either distributing computation naively,
producing poorly-performing programs, or spending more development time in-
cluding load balancing code in the application.

1.1 Introducing Parallel Computing

1.1.1 The need of Parallel Computing

Nowadays, there is a strong need for computational power.
CFD (Computational Fluid Dynamics) applications require millions of cal-

culations to simulate the interaction of liquids and gases with surfaces defined by
boundary conditions. Even with high-speed supercomputers, only approximate
solutions can be achieved in many cases. Numerical weather prediction uses cur-
rent weather conditions as input into mathematical models of the atmosphere
to predict the weather. In order to handle such as huge datasets and to perform
complex calculations on a resolution fine enough to make the results useful, some
of the most powerful supercomputers in the world are required. In chemistry,
MD (Molecular Dynamics) simulations, in which atoms and molecules are al-
lowed to interact for a period of time by approximations of known physics, give
a view of the motion of the particles. This kind of simulation may involve from
few thousand to millions of atoms. The huge datasets used by bioinformatics
and astrophysics need time-consuming algorithms for their analysis. Compu-
tational finance utilizes various computationally intensive methods like Monte
Carlo simulations, in order to understand financial risk of a specific financial
instrument.

These represent just a fast outlook to a wide and growing area of applications
for high performance computing, all having a strong need of computational
power.

Simultaneously, the only way to assure higher compute availability is towards
parallel computing. Hence, future high performance hardware will be inherently
parallel, exposing together several forms of parallelism, such as (well known)
multi-processors and (new) many-cores.

16

1.1. INTRODUCING PARALLEL COMPUTING

Luckily, real world applications are naturally parallel. But unluckily, parallel
programming is hard.

Computing with multiple processors involves the same effort we had when
computing single processor, but yet adds a number of new challenges related to
the cooperation and communication of multiple processors. None of these new
factors are trivial, giving a good reason of why scientist and programmers find
parallel computing so challenging.

1.1.2 Why Now?

Researchers are discussing in deep this step toward parallel architectures and
its impact in hardware and software [3]. In fact, today three walls are forcing
microprocessor manufacturers to bet their futures on parallel microprocessors:
the Power wall, the Memory wall [108] and the Instruction Level Parallelism
(ILP) wall.

In the past, we stated that power is free but transistors are expensive. Now
a Power wall let us deduce the opposite: power is expensive, but transistors
are free. Hence, we can put more transistors on a chip than we have the power
to turn on. This forces us to concede the battle for maximum performance of
individual processing elements, in order to win the war for application efficiency
through optimizing total system performance.

The Memory wall, i.e. the growing disparity of speed between CPU and
memory outside the CPU chip [108], would become an overwhelming bottleneck
in computer performance and it will change the way to optimize programs.
Thus, multiply is no longer considered a harming slow operation, if compared
to load and store.

Similarly, there are diminishing returns on finding more ILP [55].
Furthermore, performance improvements do not yield both lower latency and

higher bandwidth, this because (across many technologies) bandwidth improves
by at least the square of the improvement in latency [82].

It is clear that many-core 3 is the future of computing. Furthermore, it is
unwise to presume that multi-core architectures and programming models suit-
able for 2 to 32 processors (or cores) can incrementally evolve to serve systems
equipped with more than 1,000 processors. The elaborate tuning of next gener-
ation hardware let us suppose that auto-tuner tools should be more important
than conventional compilers in translating parallel programs.

1.1.3 Parallel Architectures

In this thesis, we exploit several kinds of parallel architectures. In Appendix A,
we show a list of hardware platforms used. We tried to exploit parallelism in

3The term many-core indicates to an architecture that supports multiple cores in a single
processor package where the supporting infrastructure (interconnect, memory hierarchy, etc)
is designed to support high levels of scalability, going well beyond that encountered in multi-
processor computer. Many-core processors put more cores in a given thermal envelop than
the corresponding multi-core processors, consciously compromising single-core performance in
favor of parallel performance [58].

17

CHAPTER 1. INTRODUCTION

different ways, using different parallel programming paradigms (e.g. message
passing, multi threading and vectorial instructions) and hardware architectures
(e.g. cluster of workstations with distribute memory and multi-core with shared
memory).

Processing element and processor We often use the word processor. How-
ever, sometime is more indicated the generic term processing element. A process-
ing element refers to a hardware element that executes a stream of instructions.
The context defines what unit of hardware is considered a processing element
(e.g. core, processor, or computer). Note that the context depends on both
hardware and software platform configuration. For example, let us consider a
cluster of SMP workstations. In some programming environments, each work-
station is viewed as executing a single instruction stream; in this case, a pro-
cessing element is a workstation. A different programming environment running
on the same hardware, however, may view each processor or core of the indi-
vidual workstation as executing an individual instruction stream; in this case,
the processing element is the processor or core rather than the workstation.

Data processing Following Flynn’s classification of parallel architectures, an
architecture can be classified by whether it processes a single instruction at a
time or multiple instructions simultaneously, and whether it operates on one or
multiple data sets [47].

SISD (Single Instruction Single Data) machines are conventional serial com-
puters that process only one stream of instructions and one stream of data.
Instructions are executed sequentially but may be overlapped by pipelining. As
long as everything can be regarded as a single processing element, the architec-
ture remains SISD.

SIMD (Single Instruction Multiple Data) encompasses computers that have
many identical interconnected processing elements under the supervision of a
single control unit. The control unit transmits the same instruction, simulta-
neously, to all processing elements. Processing elements simultaneously execute
the same instruction and are said to be lock-stepped together. Each process-
ing element works on data from its own memory and hence on distinct data
streams. The execution of instructions is said to be synchronous, because every
processing element must be allowed to complete its instruction before the next
instruction is taken for execution. For example, array processors and GPU are
SIMD machines (for GPU, is often preferred the acronym SIMT, Single Instruc-
tion Multiple Threads). Another well-known example of SIMD is the Intel SSE
vectorial instruction set (such instructions are explored in Chapter 3).

In MISD (Multiple Instruction Single Data), multiple instructions operate
on a single data stream. It is an uncommon architecture, which is generally
used for fault tolerance. There are few examples of such computer.

When using MIMD (Multiple Instruction Multiple Data), multiple autonomous
processing elements simultaneously execute different instructions on different
data. Computers have many interconnected processing elements, each of which

18

1.1. INTRODUCING PARALLEL COMPUTING

has their own control unit. The processing elements work on their own data
with their own instructions. Tasks executed by different processing elements
can start or finish at different times. They are not lock-stepped, as in SIMD
computers, but run asynchronously. Distributed systems are usually MIMD
architectures, exploiting either a single shared memory space or a distributed
one. Examples of such platforms are cluster of workstations, multi-processors
PCs, and IBM SP. In this dissertation, all our works exploit MIMD parallelism,
in particular cluster of workstations (Chapters 2, 3 and 4) and multi-threading
(Chapter 3).

Memory Flynn classification is limited to data processing. However, with
next generation parallel hardware, memory will be more important than pro-
cessing. By a memory-centric viewpoint, we roughly classify parallel platforms
in three categories: distributed memory, shared memory and shared address
space.

Distributed memory machines are considered those in which each processor
has a local memory with its own address space. A processor’s memory cannot
be accessed directly by another processor, requiring both processors to be in-
volved when communicating values from one memory to another. An example
of distributed memory machines is a cluster of workstations. All hardware ar-
chitectures used in this dissertation and enlisted in Appendix A are clusters of
workstations with distributed memory system.

Shared memory machines are those in which a single address space and
global memory are shared between multiple processors. Each processor owns
a local cache, and its values are kept coherent with the global memory by the
operating system. Data exchange between processors happens simply by placing
the values, or pointers to values, in a predefined location and synchronizing
appropriately

In this dissertation, we developed some specific techniques for shared mem-
ory machines (in particular in Chapter 3).

Shared address space architectures are those in which each processor has
its own local memory, but a single shared address space is mapped across dis-
tinct memories. Such architectures allow a processor to access other processors’
memory without their direct involvement, but they differ from shared mem-
ory machines in that there is no implicit caching of values located on remote
machines.

Many modern machines are also built using a combination of these technolo-
gies in a hierarchical fashion. For instance, most clusters consist of a number
of shared memory machines connected by a network, resulting in a hybrid of
shared and distributed memory characteristics. IBM’s large-scale SP machines
are an example of this design (Appendix A.5).

We may further distinguish UMA (Uniform Memory Access) from NUMA
(Non-Uniform Memory Access) machines: In the first, access time to a memory
location is independent of which processor makes the request or which memory
chip contains the transferred data; in the latter, memory access time depends

19

CHAPTER 1. INTRODUCTION

on the memory location relative to a processor.

1.1.4 Scalability and Efficiency

As in the sequential world, many metrics from program execution provide hints
to the overall efficiency and effectiveness of a running program. These metrics
are crucial in order to understand and evaluate implementations running on such
new parallel architectures. We introduce some measures of the effectiveness of
a parallel program commonly used in parallel computing: speedup, scalability
and efficiency. Thus, we discuss about two tools used to predict and estimate
parallel speedup: The Amdahl and Gustafson’s Laws.

Speedup In parallel computing, speedup refers to how much a parallel al-
gorithm is faster than a corresponding sequential one. It is defined as the
single-processor execution time divided by the execution time on p processors:

speedupp =
T1

Tp

where p is the number of processors, T1 is the execution time of the sequential
algorithm, Tp is the execution time of the parallel algorithm with p processors.

When running an algorithm with linear speedup, doubling the number of
processors doubles the speed. As this is ideal, it is considered very good scala-
bility.

There are two ways to indicate T1. If we consider the execution time of
the best sequential algorithm, then we have an absolute speedup. Instead, if we
consider the execution time of the same parallel algorithm on one processor, we
have a relative speedup. Of course, the best serial implementation is faster than
the parallel one with one processor. Relative speedup is usually implied if the
type of speedup is not specified, because it does not require implementation of
the sequential algorithm.

It is a challenging task to achieve a good speedup. This because the parallel
implementation of most interesting programs requires work beyond, which is not
required for the sequential algorithm (e.g. synchronization and communication
between processors).

In some rare cases, a super linear speedup may happen. The rationale behind
a super linear speedup is that the parallelization of many algorithms requires,
on each processor, allocating approximately 1/p of the sequential program’s
memory. This causes the working set of each processor to decrease as p increases,
allowing it to make better use of the memory hierarchy. If this effect overcomes
the overhead of communication, we can reach a linear, or even a super linear
speedup. An example of problem where super linear speedup can occur is a
problem performing backtracking in parallel: One processor can prune a branch
of the exhaustive search that another processor would have taken otherwise.

20

1.1. INTRODUCING PARALLEL COMPUTING

Scalability Generally speaking, scalability indicates the ability of a paral-
lel system to handle a growing amount of processors. In the context of high
performance computing there are two common notions of scalability: strong
scalability and weak scalability. The first defines how the solution time varies
with the number of processors, for a fixed total problem size. The latter de-
fines how the solution time varies with the problem size, for a fixed number of
processors. In this dissertation, if not specified, we indicate with scalability the
strong scalability.

When we discuss about scalability, we often refer to the parallel speedup of
a program. In fact, parallel performance scalability is typically reported using
a graph showing speedup versus the number of processors.

Efficiency A further metric used to measure parallel performance is efficiency.
Parallel efficiency is so defined:

efficiencyp =
speedupp

p
=

T1

pTp

Efficiency is a value between zero and one (or a percentage value), indicating
how much the processors are utilized in solving the problem. Algorithms with
linear speedup show an efficiency of 1, while algorithms difficult to parallelize
have efficiency that approaches zero as the number of processors increases (e.g.
1/logp).

Amdahl’s Law As Amdahl observed 40 years ago, the less parallel portion
of a program can limit performance on a parallel computer [2]. Amdahl’s law
states that, if p is the number of processors, α is the amount of time spent (by
a serial processor) on serial parts of a program and (1 − α) is the amount of
time spent (by a serial processor) on parts of the program that can be done in
parallel, then speedup is given by

speedupp =
1

α+ 1−α
p

This law is used to find the maximum expected improvement to an overall
system when only part of the system is improved. For instance, it can be used
to predict the theoretical maximum speedup using multiple processors

Gustafson’s Law Amdahl’s law has been criticized for several reasons, e.g.
it does not scale the availability of computing power as the number of machines
increases. In 1988, Gustafson introduced a new law [52]. He proposed that the
programmer sets the size of problems in order to use the available equipment
to solve problems within a practical fixed time. According to the Gustafson’s
Law, the speedup is defined as:

speedupp = p− α(p− 1)

21

CHAPTER 1. INTRODUCTION

Gustafson’s Law says that more processors are available, larger problems can
be solved in the same time. Here, the target is to reformulate problems so that
solving a larger problem in the same amount of time would be possible.

Both Amdahl and Gustafson’s Laws are yet useful tools to predict the
speedup using multiple processors.

1.1.5 Challenges on Parallel Programming

The development of parallel system will focus on new aspects.

On the parallel hardware front, things seem to be clearer. Hardware archi-
tects working on many-core systems seem to have a deep understanding about
troubles and issues of designing future multi-core and multi-processor system.
They know that there will be many-cores, and these cores in a single processor
may be different. They know there will be a scalable on-die interconnect and
caches will need to adapt to the workloads to maximize locality.

Conversely, on the software front, it’s chaos. Do we need new programming
languages? Alternatively, is it enough to extend existing languages?
New programming models and languages, to be successful, should be indepen-
dent of the number of processors. We cannot think that languages designed for
16-32 threads can even work well with thousands of threads.

An aspect like synchronization is critical. The latency of synchronization is
high and so it is advantageous to synchronize as little as possible. By converse,
most modern networks perform best with large data transfers, hence using a
higher granularity of data movement.

Data can be accessed by computational tasks that are spread over differ-
ent processing elements. Thus, we need to optimize data placement so that
communication is minimized, and to minimize remote accesses.

Efficient parallel programs should support together several models of paral-
lelism: task-level parallelism, word-level parallelism, and bit-level parallelism.

Finally, the mapping of computational tasks to processing elements must be
performed in such a way that the elements are idle (waiting for data or syn-
chronization) as little as possible. This well-known problem, the load balancing
problem, is probably one of the harder challenge for parallel programming.

Reconsidering metrics The advent of these new parallel architectures intro-
duces new way to consider performance. In particular, several old beliefs about
parallel performance metric should be reconsidered.

An old belief was that less than linear scaling for a multi-processor applica-
tion is failure. Nowadays, with the current trends in parallel computing, any
speedup via parallelism is a success.

Another old belief was that scalability is almost free. To build scalable ap-
plications requires to have care of load balance, locality, and resource contention
for shared resources. Moreover, reaching scalability for architectures having a
huge amount of processors is all but easy.

22

1.2. WHY DO WE CARE ABOUT LOAD BALANCING?

1.2 Why do we care about Load Balancing?

A way to introduce the load balancing problem is by using an analogy.

A construction company having hundreds of workers has to build a new
district in a city. The district comprises several houses, each of which having
several floors. Supposing that more are the worker, shorter is the time to build
a house, the aim of the company manager is to build the whole amount of house
as soon as possible. This seems a classical easy to parallelize problem: If we
have w workers and h houses, the best way to assign job is to assign about
w/h workers to each house. However, if we suppose houses are not equal, the
problem increases of complexity: Some houses have more floors, or more rooms,
or they need extra-time for furniture and details. This means that the time
need by a house to be built is not the same for each house. This inequality in
house workload affects the overall finishing time: if half the house requires the
double of the time need by the remaining house, half the worker will be idle for
half the working time. As a result, the total time need by using a näıve worker
strategy is +33% higher than time need by the optimal one. Depending by the
problem, things may be even worse. The workload can be extremely various
(e.g. house A need 10x the time required by house B), with task arranged in a
more complex way (e.g. that house A should be built before house B), having
thousands of workers, or the building time cannot be exactly estimated a priori.

This analogy is helpful to understand how important is load balancing in
parallel computing. To build houses in shorter time means to solve problem
effectively. To have idle workers means to waste computational resources (i.e.
processors). To have tasks not well balanced means to lose efficiency.

1.2.1 The Problem of Load Balancing

The execution time of a parallel algorithm on a given processor is determined by
the time required to perform its portion of the computation plus the overhead
of any time spent performing communication or waiting for remote data values
to arrive. Instead, the execution time of the algorithm as a whole is determined
by the longest execution time of any of the processors. For this reason, it is
advisable to balance the computation and communication between processors
in such a way that the maximum per-processor execution time is minimal.

This is referred to as load balancing, since the conventional wisdom is that
dividing work between the processors as evenly as possible will minimize idle
time on each processor, thereby reducing the total execution time.

For some applications with constant workloads, using static load balancing
is sufficient. However, a wide range of applications has workload that are un-
predictable and/or change during the computation; such applications require
dynamic load balancers that adjust the decomposition as the computation pro-
ceeds.

Load imbalance is one of the major problems in data parallel applications.
In fact, a common source of load imbalance is the uneven distribution of data

23

CHAPTER 1. INTRODUCTION

among the various processors in the system. Without good load distribution
strategies, we cannot aims to reach good speedup, thus good efficiency.

The combination of both irregular and dynamic parallel applications with
large-scale multi-core clusters poses significant challenges to achieving scalable
performance. New scalable dynamic load balancing strategies are need that is
why today it is yet a challenging problem.

1.2.2 Aspects of Load Balancing

Load balancing and Mapping Dividing a computation (henceforth, de-
composition) into smaller computations (tasks) and assigning them to different
processors for parallel executions (named mapping), represent two key steps in
the design of parallel algorithms [65]. The whole computation is usually repre-
sented via a directed acyclic graph (DAG) G = {N , E} which consists of a set
of nodes N representing the tasks and a set of edges E representing interactions
and/or dependencies among tasks. The number and, consequently, the size of
tasks into which a given computation is decomposed determines the granularity
of the decomposition. It may appear that the time required to solve a problem
can be easily reduced, by simply increasing the granularity of decomposition, in
order to perform more and more tasks in parallel, but this is not always true.
Typically, interactions between tasks, and/or other important factors, limit our
choice to coarse-grained granularity. Indeed, when the tasks being computed are
mutually independent, the granularity of the decomposition does not affect the
performances. However, dependencies among tasks incur inevitable communi-
cation overhead when tasks are assigned to different processors. Moreover, the
finer is the adopted granularity by the system, the more is the generated inter-
tasks communication. The interaction between tasks is a direct consequence of
the fact that exchanging information (e.g. input, output, or intermediate data)
is usually needed.

Load balancing and mapping are two closely related problems. In fact,
a good mapping strategy should strive to achieve two conflicting goals: (1)
balance the overall load distribution, and (2) minimize tasks inter-processors
dependency; by mapping tasks with a high degree of mutual dependency onto
the same processor. As an example of dependency, many mapping strategies
exploits tasks’ locality to reduce inter-processors communications [78] but it
should be emphasized that dependency can also refer to other issues such as
locality of access to memory (effective usage of caching).

Load balancing strategies can be classified in several ways, according to the
method used to balance workload.

Static vs Dynamic Static load balancing makes the tasks distribution before
execution according to the information of the system workload. Such a decision
may not apply to a dynamical environment. Dynamic load balancing, on the
other hand, makes more informative load balancing decisions during execution
by the runtime state information. In general, dynamic approaches result in

24

1.3. PREVIOUS WORK

better performance. However, the drawbacks of the dynamic approaches include
the runtime overhead for collecting the resource status and the need of precise
information about performance prediction.

Centralized vs Distributed Load balancing mechanisms can also be clas-
sified as centralized and decentralized. The centralized approach adopts one
computing node as the scheduler which gathers the system informations and
performs load balancing decisions. Instead, the decentralized approach allows
the nodes in the system involving in the load balancing decisions. However, it
is very costly to obtain and maintain the dynamic system information. Despite
that centralized algorithm have a wider vision of the computation, hence may
exploit smarter balancing techniques, they have two problems: the presence of
a global synchronization, and the communication bottleneck that involves the
master node.

Prediction Prediction-based approach offers a further change to improve load
balancing: If we know in advance an estimation of the computational time need
by a task, we may use this information to distribute workload between proces-
sors in a better way. Such prediction could be exploited in several ways. For
instance, we can perform an adaptive partitioning during decomposition, or in-
stead improve load balancing decision at runtime (i.e. dynamic load balancing).

1.2.3 Intuition: Distributed Load Balancing is More Effi-
cient

The key observation for improving load balancing of multi-processor (rather
multi-core or many-core) architectures is that, in this context, distributed al-
gorithms work better than centralized ones. This is due to several emerging
factors.

First, having a huge amount of processors, synchronizations should be han-
dled carefully. Global centralized synchronizations are a bottleneck and kill
performance, especially when the number of processor is high. We need to syn-
chronize the fewer possible number of processors, hence to move from centralized
synchronization schemas to distributed ones.

Second, in modern architecture using several level of memory hierarchies,
only coherent memory accesses are fast. Data locality is even good when per-
forming data transfers: processor sharing a level of memory (e.g. L2 or L3)
have faster transfer rate. This is another point that advantage distributed load
balancing schemas.

1.3 Previous work

Several effective distributed load balancing strategies have been developed in
the last couple of years, for a number of various applications [68].

25

CHAPTER 1. INTRODUCTION

According to [3], we roughly identify seven categories of parallel problem,
discussing related approaches to load balancing.

Dense Linear Algebra, where data sets are dense matrices or vectors, is
implemented by library such as BLAS [9] and SCALAPACK [21]. Generally,
such applications use unit-stride memory accesses to read data from rows, and
strided accesses to read data from columns. A classical approach to balance
workload in SCALAPACK is the cyclic block data distribution, in order to
assure scalability [42].

In Sparse Linear Algebra, data sets include many zero values. Data is usually
stored in compressed matrices to reduce the storage and bandwidth requirements
to access all of the nonzero values. An example is block compressed sparse row
(BCSR). Because of the compressed formats, data is generally accessed with
indexed loads and stores. DLA methods often present a higher load unbalance
than SLA ones. For instance, the LU factorization approached in [39] requires
accurate implementations and strategies when ported to a distributed memory
parallel architecture [67].

Fast Fourier Transform (FFT) is an example of Spectral methods. They use
multiple butterfly stages, which combine multiply-add operations and a specific
pattern of data permutation, with all-to-all communication for some stages and
strictly local for others. This class of problems usually requires all-to-all commu-
nication to implement a 3D transpose, which requires communication between
every link. If we consider the FFT, there have been many implementations for
different architectures, ranging from hypercube [62] to CRAY-2 [14]. Recently,
Chen et al. optimized FFT on a multi-core architecture introducing strategies
to balance workload among threads [20].

N-Body methods compute the interactions between many discrete points.
Variations include particle-particle methods, where every point depends on all
others, leading to an O(N2) calculation, and hierarchical particle methods,
which combine forces or potentials from multiple points to reduce the com-
putational complexity to O(N logN) or O(N). Load balancing is critical for
this class of problems, and several solution have been proposed [5, 4], even for
more recent multi-core GPU architectures [61].

In Structured Grids, points inside a regular grid are conceptually updated
together. Similar techniques have a high spatial locality. Updates may be in
place or between two versions of the grid. In areas of interest, grid may be
subdivided into finer grids (e.g. Adaptive Mesh Refinement) and the transition
between granularities may happen dynamically. An interesting problem belong-
ing to this class is Lattice Boltzmann simulations. Recent work in this topic
introduced an auto-tuning approach in order improve performance on multi-core
architectures [107].

In Unstructured (or irregular) Grids, location and connectivity of neighbor-
ing points must be explicit. Unlike structured grids, unstructured grids require
a connectivity list, which specifies the way a given set of vertexes make up in-
dividual elements. Grids of this type may be used in finite element analysis
when the input to be analyzed has an irregular shape. The points on the grid
are updated together. Updates typically involve multiple levels of memory ref-

26

1.4. CONTRIBUTIONS OF THIS DISSERTATION

erence indirection, as an update to any point requires first determining a list
of neighboring points, and then loading values from those neighboring points.
Finite Element Method (FEM) is a known problem where adaptive refinement
solutions introduce troubles in load balancing [40, 64, 109].

On Monte Carlo methods, calculations depend on statistical results of re-
peated random trials. Usually, they are considered an embarrassingly parallel
problem, whereas communication is typically not dominant. An example of such
methods is the Quasi-Monte Carlo Ray tracing (we will consider Parallel Ray
Tracing as a case study). This class of computational problem often presents
high irregularity, therefore load unbalance. For example, in the context of Par-
allel Ray Tracing, several previous works afford the problem of load balancing
[35, 103].

There are many other problems not included in this classification, such as
Graph Traversal applications, Finite State Machines, Combinational Logic, and
many others Computer Graphics problems.

1.4 Contributions of This Dissertation

In this dissertation, we first show a centralized approach to load balancing
(Chapter 2), then we propose some distributed approaches for two specific prob-
lems having different parallelization and communication pattern (Chapter 3 and
4). We try to efficiently combine different approaches to improve performance,
in particular using predictive metrics to obtain a per task compute-time es-
timation, using adaptive subdivision, improving dynamic load balancing and
addressing distributed balancing schemas. The main challenge tackled on this
thesis has been to combine all these approaches together in new and efficient
load balancing schemas.

1.4.1 Assessing Load Balancing Algorithms in Real Ap-
plications

Despite several theoretical works address load balancing with theoretical models
and elegant solutions, we believe that nowadays architectures, which expose
complex memories arrangement and different kind of parallelism together, are
too complex and need real world case studies. The conventional way to guide and
evaluate architecture innovation is to study a benchmark suite based on existing
programs. Similarly, [3] introduces the Seven Dwarfs, which constitute class of
parallel problems where membership in a class defines similarity in computation
and data movement. The Dwarfs specifies a high-level abstraction, in order
to allow reasoning about their behavior across a broad range of applications.
Problems that are members of a particular class can be implemented differently
and the underlying numerical methods may change over time, but the claim is
that the underlying patterns have persisted through generations of changes and
will remain important into the future.

27

CHAPTER 1. INTRODUCTION

In this dissertation, we contribute to each proposed technique with imple-
mentations in real world scenario and well-known problems, discussing results
and issues emerging from implementations on parallel hardware.

1.4.2 Parallel Ray Tracing

Many applications exhibit irregularity between units of parallel computation.
Such as irregularities can be due to several factors.

Algorithm presenting recursion, where each branch of recursion reaches dif-
ferent deep, are a typical class of problem presenting load imbalance. An ex-
ample of this kind of problem comes from the Computer Graphics: Parallel
Ray Tracing . Depending by the particular rendering technique we use, we may
have a difference of computation between pixels that is high. The paradox of ray
tracing algorithms is that they present both an embarrassingly parallel pattern
and a high work unbalance. Hence, a little or no effort is required to separate
the problem into a number of parallel tasks, and there is not dependency (or
communication) between those parallel tasks; however, a näıve subdivision and
assignment policy do not guarantee best performance.

We study in deep this problem: First, we introduce Parallel Ray Tracing
such as a case of mesh-based computations, proposing an interesting centralized
balancing technique called Prediction Binary Tree (Chapter 2). Second, we
develop a state of the art implementation that exploit parallelism in several ways
(using SIMD, multi-threading, and MPI between node clusters), and we apply
several techniques to improve load balancing in all parallelism levels (Chapter
3). In particular, we use a various and powerful set of tools like:

• randomized work stealing, a distributed dynamic load balancing scheme,
popularized by the runtime system for the Cilk parallel programming lan-
guage [10]

• GPU-based rendering techniques to compute a per-task prediction

• adaptive subdivision techniques based on cost prediction

• pooling strategy to best combine multi-threading parallelism with dis-
tributed multi-processors balancing techniques

The combined use of these tools is a winning strategy, in particular when we
address complex parallel architecture having a high number of processors.

1.4.3 Agent-based Simulation

Irregularity often arises due to the sparsity present in the data. For example, in
scientific simulations spatial sparsity of the system often translates into sparsity
in the numerical model. An example of this kind of irregularity is a class of
simulations dubbed Agent-based Simulations. These simulations represent a
challenging problem for parallel load balancing for several reasons. First, data
locality strongly leverages good parallel performance. Thus, we should carefully

28

1.4. CONTRIBUTIONS OF THIS DISSERTATION

handle expensive data movement between processors. In the context of agent-
based simulation on distributed memory architecture, in particular, the use
of algorithms like work stealing with very random steals is not suitable. By
converse, such simulations seem to be a perfect candidate to experience different
kind of distributed strategies. The second reason is that agent models often lend
to clusterize agents, hence producing a high load unbalance. We afford in detail
problems and issues of Agent-based Simulations in Chapter 4, proposing a new
distributed dynamic load balancing schema.

1.4.4 Organization of the Thesis

In Chapter 2 we introduce the problem of load balancing in mesh-like compu-
tations to be mapped on a cluster of processors. We show a centralized and
effective algorithm called Prediction Binary Tree in order to subdivide work
in equally computationally-balanced tasks. Thus, we asset the problem on a
significant problem, Parallel Ray Tracing.

In Chapter 3 we show a state of the art parallel implementation of the
ray tracing algorithm, tuned for an hybrid cluster of multi-core workstations
and a GPU visualization node. The highly optimized packet-based ray tracing
implementation allows the computation of millions of ray-triangle intersections
per second, and fully exploit modern multi-core CPUs or GPUs. Load balancing
is attacked by presenting a method that uses a cheap GPU rendering technique
to compute a cost map: an estimation of the per-pixel cost when rendering the
image using ray tracing. Using this information, we improve load balancing,
task scheduling, and work stealing strategies.

In Chapter 4, we focus on Agent-based Simulation where a large number of
agents move in the space, obeying to some simple rules. We present a novel
distributed load balancing schema for a parallel implementation of such sim-
ulations. The purpose of such schema is to achieve a high scalability. Our
load balancing approach is designed to be lightweight and totally distributed:
the calculations for the balancing take place at each computational step, and
influences the successive step.

Finally, Chapter 5 outlines some important considerations emerged among
all the work presented in such dissertation.

Appendix A enlists the hardware platforms used; Appendix B enlists the
publications related to the dissertation.

29

2
Load Balancing on Mesh-like

Computations

In this Chapter we consider mesh-like computations, where a set of t indepen-
dent tasks are represented as items in a bidimensional mesh. We are interested
in decomposition/mapping strategy for step-wise mesh-like computations, i.e.
data is computed in successive phases.

We aim at exploiting the temporal coherence among successive phases of a
computation, in order to implement a load balancing technique to be mapped
on a cluster of processors. A key concept, on which the load balancing schema
is built on, is the use of a Predictor component that is in charge of providing
an estimation of the unbalancing between successive phases. By using this in-
formation, our method partitions the computation in balanced tasks through
the Prediction Binary Tree (PBT). At each new phase, current PBT is updated
by using previous phase computing time for each task as next-phases cost esti-
mate. The PBT is designed so that it balances the load across the tasks as well
as reduces dependency among processors for higher performances. Reducing de-
pendency is obtained by using rectangular tiles of the mesh, of almost-square
shape (i.e. one dimension is at most twice the other). By reducing dependency,
one can reduce inter-processors communication or exploit local dependencies
among tasks (such as data locality). Furthermore, we also provide two heuris-
tics which take advantage of data-locality.

Our strategy has been assessed on a significant problem, Parallel Ray Trac-
ing. Our implementation shows a good scalability, and improves performance in
both cheaper commodity cluster and high performance clusters with low latency
networks. We report different measurements showing that tasks granularity is
a key point for the performances of our decomposition/mapping strategy.

2.1 Introduction

The number, and as a result, the size of tasks into which a given computation
is decomposed determines the granularity of the decomposition. Increasing the
granularity of decomposition, may help to have a better load balancing. How-

31

CHAPTER 2. LOAD BALANCING ON MESH-LIKE COMPUTATIONS

ever, several factors force our choice to coarse-grained granularity. For instance,
dependencies among tasks incur inevitable communication overhead when tasks
are assigned to different processors. Moreover, the finer is the adopted granu-
larity by the system, the more is the generated inter-tasks communication. The
interaction between tasks is a direct consequence of the fact that exchanging
information (e.g. input, output, or intermediate data) is usually needed.

A good mapping strategy should strive to achieve two conflicting goals: (1)
balance the overall load distribution, and (2) minimize tasks inter-processors
dependency; by mapping tasks with a high degree of mutual dependency onto
the same processor. As an example of dependency, many mapping strategies
exploits tasks’ locality to reduce inter-processors communications [78] but it
should be emphasized that dependency can also refer to other issues such as
locality of access to memory (effective usage of caching).

The mapping problem becomes quite intricate if one has to consider that:

1. task sizes are not uniform, that is, the amount of time required by each
task may vary significantly;

2. task sizes are not known a priori;

3. different mapping strategies may provide different overheads (such as
scheduling and data-movement overhead).

Indeed, even when task sizes are known, in general, the problem of obtaining
an optimal mapping is an NP-complete problem for non-uniform tasks (to wit,
it can be reduced to the 0-1 Knapsack problem [24]).

2.1.1 Mesh-like computations

Ore study focus on mesh-like computations, where a set of t independent tasks
are represented as items in a bidimensional mesh. Edges among items in this
mesh represent tasks dependencies. In particular, we are interested in tiled map-
ping strategies where the whole mesh is partitioned into m tiles (i.e., contiguous
2-dimensional blocks of items). Tiles have almost-square shape, that is, one di-
mension is at most twice the other: in this way, assuming the load in processors
is balanced (in terms of nodes), the dependencies inter-processors are minimized
because of isoperimetric inequality in the Manhattan grid.

Tiled mappings are particularly suitable to exploit the local dependencies
among tasks, be it the locality of interaction, i.e., when computation of an item
requires other nearby items in the mesh or when there is a spatial coherence,
i.e., when computation of neighbors item access to some common data. Hence,
tiled mapping, in the former case, reduces the interaction overhead, and, in the
latter case, improves the reuse of recently data access (cache).

We are interested in decomposition/mapping strategy for step-wise mesh-
like computations, i.e. data is computed in successive phases. We assume that
each task size is roughly similar among consecutive phases, that is, the amount
of time required by item p in phase f is comparable to the amount of time
required by p in phase f + 1 (temporal coherence).

32

2.1. INTRODUCTION

Figure 2.1: Interaction between components of a parallel scheduler using a Pre-
dictor. Arrows indicate how components influence each others: (left) Traditional
approach; (right) Our system with the Predictor.

2.1.2 Our result

In this Chapter we present a decomposition/mapping strategy for parallel mesh-
like computations that exploits the temporal coherence, among computation
phases, to perform load balancing on tasks. Our goal is to use temporal coher-
ence to estimate the computing time of a new computation phase using previous
phase computing time.

We introduce an iterative novel approach to implement decomposition/mapping
scheduling. Our solution (see Figure 2.1) introduces a new component in the
system design, dubbed Predictor that is in charge of providing an estimation of
the computation time needed by a given tile, at each “phase”.

The key idea is that, by using the Predictor, it is possible to obtain a balanced
decomposition without using a fine-grained granularity that may increase the
inter-tasks communication of the systems, due to the interaction between clients,
and, therefore, may harm the performances of the whole computation.

Our strategy performs a semi-static load balancing (decisions are made be-
fore each computing phase). Temporal coherence is exploited using a Prediction
Binary Tree where each leaf represents a tile which will be assigned to a worker
as a task. At the beginning of every new phase, the mapping strategy, taking
into account the previous phase times as estimates, evaluates the chance of up-
dating the binary tree. Due to the temporal coherence property it provides a
roughly balanced mapping. We also provide two heuristics which exploit the
PBT in order to leverage on data locality.

We validate our strategy by using interactive rendering with Parallel Ray
Tracing [106] algorithm, as a significant example of such a kind of computations.
In this example our technique is applied rather naturally. Indeed, interactive
Ray Tracing can be seen as a step-wise computation, where each frame to be
rendered represents a phase. Moreover, each frame can be described as a mesh
of items (pixels) and successive computations are typically characterized by
temporal coherence.

For Parallel Ray Tracing, our technique experimentally exhibits good per-
formances improvements, with different granularity (size of tiles), with respect
to the static assignment of tiles (tasks) to processors. Furthermore we also
provided an extensive set of experiments in order to evaluate:

33

CHAPTER 2. LOAD BALANCING ON MESH-LIKE COMPUTATIONS

1. the optimal granularity with different number of processors;

2. the scalability of our proposed system;

3. the correctness of the predictions exploiting temporal coherence;

4. the effectiveness of the locality coherence heuristics exploiting spatial co-
herence;

5. the impact of resolution;

6. the overhead induced by the PBT.

It should be said that, besides other graphical applications (e.g. image
dithering), there are further examples of mesh-like computations where our
techniques can be fruitfully used, covering simple cases, such as matrix mul-
tiplication, but also more complex computations, such as Distributed Adaptive
Grid Hierarchies [79].

2.1.3 Previous Works

Decomposition/Mapping scheduling algorithms can be divided into two main
approaches: list scheduling and cluster-based scheduling. In list scheduling
[80], each task is first assigned a priority by considering the position of the
task within the computation DAG G. Then tasks are sorted on priority and
scheduled following this order on a set of available processors. Although this
algorithm has a low complexity, the quality of scheduling is generally worse
than that of algorithms in other classes. In cluster-based scheduling, processors
are treated as clusters and the completion time is minimized by moving tasks
among clusters [13, 65, 111]. At the end of clustering, heavily communicating
tasks are assigned to the same processor. While this reduces inter-processor
communication, it may lead to load imbalances or idle time slots [65].

In [76], a greedy strategy is proposed for the dynamic remapping of step-wise
data parallel applications, such as fluid dynamics problems, on a homogeneous
architecture. In these types of problems, multiple processors work independently
on different regions of the data domain during each step. Between iterations,
remapping is used for balancing the workload across the processors and thus,
reducing the execution time. Unfortunately, this approach does not take care
of locality of interaction and/or spatial coherence.

Several online approaches have also been proposed. An example is the work
stealing model [12]. In this model when a processor completes its task it at-
tempts to steal tasks assigned to other processors. We notice that, although
online strategies are shown to be effective [12] and stable [7], they introduce
communication overhead anyway. Furthermore, it is worth noting that online
strategies, like work stealing, can be integrated with our assignment policy. In
that case, being our load balancing efficient, online strategies introduce smaller
overheads.

34

2.2. OUR STRATEGY

Many researchers have explored the use of time-balancing models to predict
execution time in heterogeneous and dynamic environments. In these environ-
ments, performance processors are both irregular and time-varying because of
uneven underlying load on the various resources. In [110] authors use a conser-
vative load prediction in order to predict the resource capacity over the future
time interval. They use expected mean and variance of future resource capabil-
ities in order to define an appropriate data mappings for dynamic resources.

2.2 Our Strategy

Our strategy is based on a traditional data parallel model. In this model, tasks
are mapped onto processors and each task performs similar operations on differ-
ent pieces of data (Principal Data Items (PDIs)). Auxiliary global information
(Additional Data Items (ADIs)) is replicated on all the workers. This paral-
lelization approach is particularly suited to the Master-workers paradigm.

In this paradigm, the master divides the whole job (the whole mesh) into a
set of tasks, usually represented by tiles. Then, each task is sent to a worker
which elaborates the tile and sends back the output. If other tiles are not yet
computed, the master sends another task to the worker. Finally, the master
obtains the results of the whole computation reassembling partial outputs.

Crucial point in this paradigm is the granularity of the mesh decomposition:
in fact, the relationship between m, number of tiles, and n, number of workers,
strongly influences the performances.

There are two opposite driving forces that act upon this design choice. The
first one is concerned about the load balancing and requires m to be larger
than n. In fact, if a tile corresponds to a zone of the mesh which requires a
large amount of computation, then, it requires much more time with respect
to a simpler tile. Then, a simple strategy to obtain a fair load balancing is to
increase the number of tiles, so that the complexity of a zone of the mesh is
shared among different items.

On the opposite side, two following considerations suggest a smaller m. An
algorithm that has large m requires larger communication costs than an algo-
rithm with smallerm, considering both the latency (more messages are required;
therefore, messages may be queued up) and the bandwidth (communication
overhead for each message). Other considerations that would suggest to use
small m are (a) the locality of interaction and (b) the spatial coherence that
are motivated because (i) computation of a task relies usually on nearby tasks
and (ii) two close tasks usually access some common data. Then, in order to
make an effective usage of the local cache for each node, it is important that
the tiles are large enough, so that each worker can exploit spatial coherence of
tiles, having a good degree of (local) cache hits.

Our strategy takes into account all the considerations above, by addressing
the uneven spread of the load by using a Predictor component (the PBT), with
a negligible overhead. The goal we aim to is to keep the load balanced with-
out resorting to increase the number of tiles. Thereby, our solution does not

35

CHAPTER 2. LOAD BALANCING ON MESH-LIKE COMPUTATIONS

increase significantly the data-movement overhead and it reduces tasks interac-
tions. Therefore, we are able to address simultaneously and positively all the
issues above, by providing a technique that uses a moderate amount of tiles.

2.2.1 The Prediction Binary Tree

In this section we present how we use the Prediction Binary Tree (PBT) to help
balancing the load among the computing items. The PBT is in charge of direct-
ing the tiling-based load balancing strategy as follows: each computing phase
is split into a set of m tiles (we assume, here, for sake of simplicity that m = n
but the arguments apply to general cases) and tiles size is adjusted accordingly
to (an estimated) tile computing time that is set as the computational time as
measured during the preceding phase. The hypothesis is that the computing
time required by a tile on two consecutive phases are quite similar because of
temporal coherence.

Now we define the Prediction Binary Trees and then describe an on-line
algorithm which, before each computing phase, resizes unbalanced tiles in such
a way to minimize the mesh computing time. A PBT T stores the current
tiling being defined as a rooted binary tree with exactly m leaves, in which each
(internal) node has 2 children. The root of T , called r, represents the complete
mesh. The two children of an internal node v store the two halves (more details
follow on how the mesh is split) of the mesh represented by v. Consequently,
each level of T represents a partition of the mesh. Moreover, each internal node
v represents a tile which is the sum of the tile assigned to the leaves of the
tree rooted in v and consequently, the leaves of T (henceforth L(T)) represents
a partition of the mesh. In order to maintain a good spatial coherence and
minimize tasks interaction, the children of an internal node v which belongs
to an odd (resp. even) level of T are obtained halving the tile in t along two
horizontal (resp. vertical) axes. This assures that tiles have an almost-square
shape (i.e. one dimension is at most twice the other). Each leaf ell ∈ L(T) also
stores two variables: e(ℓ) that is the estimate of the time for computing tile in ℓ
and t(ℓ) that is time used by a worker to compute (in the last phase) the tile in
ℓ. Figure 2.2 gives an example of a PBT, with the corresponding mesh partition
on the left.

The PBT stores the subdivision of tiles and each leaf of T is a task to be
assigned to a worker. At the end of each phase, the PBT receives (with the
tile output) also the information about the time that each worker has spent
on the tile. This time is received as t(ℓ) for each leaf, and is used as estimate
by copying it into e(ℓ). By using the previous phase times as estimates, the
PBT is efficiently updated for the next phase. Here we describe an effective
and efficient way of changing the PBT structure so that the next phase can be
executed (given the temporal coherence) more efficiently, i.e., equally balancing
the load among the processors.

First we define the variance as a metric to measure the (estimated) com-
putational unbalance that is expected given the tiling provided by the PBT

36

2.2. OUR STRATEGY

Figure 2.2: An example of a PBT tree: the mesh on the left has been computed
with the computation times (in ms) for each tile shown on the leaves.

T :

σ2
T =

1

m

∑

ℓ∈L(T)

(e(ℓ)− µT)
2,

where e(ℓ) represents the estimated time to compute the corresponding tile to
the leaf ℓ of T and µT is the estimated average computational time, that is,
µT = 1

m

∑

ℓ∈L(T) e(ℓ). Clearly, the smaller the variance σ2
T is, the better is T ’s

balancing of the load to the processors.
Given a PBT T at the end of a phase, the estimated computation time

associated to each leaf, e(ℓ), is taken by the computation time t(ℓ) at the phase
just executed; then, we use a greedy algorithm that finds the new PBT T ∗.
The idea of the algorithm PBT-Update (shown as Algorithm 1) is to perform a
sequence of simultaneous split-merge operations, that consists in splitting a tile
whose estimated load is “high”, and merge two tiles (stored at sibling nodes)
whose (combined) estimated load is “small”.

We now prove, by means of the following theorem, that the PBT-Update
algorithm terminates.

Theorem 1. Algorithm PBT-Update terminates after a finite number of
iterations.

Proof. We will show that PBT-Update goes from a PBT T = T (0) to a
PBT T (s) = T ∗ through a set of PBTs T (1), T (2), . . . , T (s−1) in such a way that
σ2
T (i) > σ2

T (i+1) for each i = 0, . . . , s− 1.
Let T be a PBT tree and T ′ be obtained from T by halving a leaf ℓa into

two leaves ℓa1
and ℓa2

and merging two sibling leaves ℓb1 and ℓb2 into ℓb.
We prove first that, if e(ℓa)

2 > 4e(ℓb1)e(ℓb2) then σ2
T > σ2

T ′ . So, it is not
possible to improve the variance of the (estimation of the) computational time

37

CHAPTER 2. LOAD BALANCING ON MESH-LIKE COMPUTATIONS

by means of a simultaneous split-merge operation if e(ℓa)
2 ≤ 4e(ℓb1)e(ℓb2) which

is the test in line 8 of the algorithm.

Algorithm 1 PBT-Update
1: T ← CurrentPBT
2: for all ℓ ∈ L(T) do

3: copy computational time t(ℓ) in estimated time e(ℓ)
4: end for

5: while true do

6: let ℓa be the leaf in T with max e(ℓ), ∀ℓ ∈ L(T)
7: let ℓb1 , ℓb2 be the two siblings such that e(ℓb1) · e(ℓb2) is minimized over all the pairs

of siblings in L(T)
8: if e(ℓa)2 ≤ 4 e(ℓb1) · e(ℓb2) then

9: return T
10: else

11: Split ℓa in ℓa1 and ℓa2 // Now ℓa is internal
12: e(ℓa1)← e(ℓa)/2
13: e(ℓa2)← e(ℓa)/2
14: Merge ℓb1 and ℓb2 into ℓb // Now ℓb is a leaf
15: e(ℓb)← e(ℓb1) + e(ℓb2)
16: end if

17: end while

Let us evaluate the difference between the variance on T and the variance
on T ′.

σ2
T =

1

m

∑

ℓ∈L(T)

(e(ℓ)− µT)
2 =

1

m







∑

ℓ∈L(T)

e(ℓ)2 −
1

m





∑

ℓ∈L(T)

e(ℓ)





2





.

Hence, we have

σ2
T − σ2

T ′ =
1

m







∑

ℓ∈L(T)

e(ℓ)2 −
1

m





∑

ℓ∈L(T)

e(ℓ)





2





−

1

m







∑

ℓ∈L(T ′)

e(ℓ)2 −
1

m





∑

ℓ∈L(T ′)

e(ℓ)





2





.

Since, by the operations executed in lines 12-13 and 15 of the algorithm, it holds
that

∑

ℓ∈L(T) e(ℓ) =
∑

ℓ∈L(T ′) e(ℓ), then, we have that:

σ2
T − σ2

T ′ =
1

m

(

e(ℓa)
2

2
− 2e(ℓb1)e(ℓb2)

)

Then, if e(ℓa)
2 > 4e(ℓb1)e(ℓb2), a split-merge operation can improve the variance

of the times on the tree. The result follows by the observation that the variance
is positive, by definition.

38

2.2. OUR STRATEGY

Figure 2.3: A merge and split operation on the PBT tree of Figure 2.2 where
the estimation times e(ℓ) drive the updates.

Finally, it should be noticed that the improvement on the variance is pro-
portional to e(ℓa)

2 − 4e(ℓb1)e(ℓb2). Then at each step, the greedy algorithm
PBT-Update chooses ℓa and the siblings pair ℓb1 and ℓb2 (in lines 6-7) in order
to have the higher (local) improvement in variance.

An example of a PBT is shown in Figure 2.2, and one of the updates of the
PBT-Update algorithm is shown in Figure 2.3.

Exploiting Local Coherence In this paragraph we investigate how to lever-
age the PBT in order to better exploit data locality: the rationale behind this
investigation is that jobs carried out by two siblings workers in the PBT, or by
the same worker in consecutive computing phases, will probably follow similar
memory access patterns.

In order to exploit locality we define the concept of affine tiles ; in particular
we will consider two kinds of affinity: processor-tile affinity and tile-tile affinity.
A tile is affine to a processor if it has been assigned to that processor in the
previous phase; two tiles are affine if they are neighbors in the mesh. When a
worker asks for a tile the master node tries to assign it an affine tile. Then, the
intent is to use affine tiles in order to exploit data-locality.

We implemented two heuristics in order to determinate affine tiles. The
first heuristic is based on a greedy strategy, dubbed PBT-Greedy. For each
computing phase, if a tile is not involved in a merge/split operation then it
maintains his affinity with the processor it has been assigned to during previous
phase. In case of tiles involved in a merge/split operation, let’s consider a tile
a split in tiles a1 and a2 and tiles b1 and b2 merged into tile b: a1 is assigned
to processor that handled a before; b is assigned to processor that handled b2
before; a2 is assigned to processor that handled b1. Just this last assignment,
on a total of 3 assignments, will, probably, not exploit cache and for this reason
we say that this heuristic is 2/3 effective in leveraging locality.

In the second heuristic, named PBT-Visit the affinity is defined by visiting

39

CHAPTER 2. LOAD BALANCING ON MESH-LIKE COMPUTATIONS

the PBT: tiles are assigned following the in order visit. One can easily check
that a subset of affine tiles, tiles “near” in the mesh, is assigned to the same
processor phase-by-phase.

2.3 Case study: Parallel Ray Tracing

Ray Tracing algorithms [94, 96] are a widely used class of techniques for ren-
dering images with the intent of achieving a high grade of realism. Ray Tracing
is at the core of many global illumination algorithms. The input for Ray Trac-
ing is a scene description that specifies the geometry of objects together with
the definition of every object materials, position/orientation of the lights. The
output is an image of the scene as seen through a virtual camera.

For sake of clarity we will shortly summarize the simplest form of Ray Trac-
ing algorithm. For each pixel (x, y) in the final image a ray is casted from the
virtual camera through the scene: this is called the primary ray. If an intersec-
tion between the primary ray and a surface is found then different parameters
are considered in order to compute the light intensity at the point: the material
of the surface, the position and the color of lights, whether or not the point is
shadowed by other surfaces. In the Whitted-style Ray Tracing [106] a ray can
be reflected and/or refracted according to surface properties and the process is
repeated recursively with these new rays. At the end, the process adds the light
intensities at all intersection points in order to get the final color of the pixel.
Ray Tracing is considered a computationally intensive algorithm because it de-
pends on the amount of rays shot throughout the scene and this amount can be
easily increased by modifying lights properties, objects positions and materials.

Since its introduction several techniques have been explored to accelerate
Ray Tracing. In animated scenes we report an interesting observation about the
fact that a new frame can be very similar to the previous frame if the viewpoint
did not change drastically. This similarity is an instance of the concept of
temporal coherence (cft. Section 2.1) and can be exploited to reduce the amount
of calculations needed for every new frame [18].

Let p be the pixel of generic coordinates (x, y) in frame fi and let p′ be the
pixel with the same coordinates (x, y) (i.e. the same pixel) in frame fi+1. Let r
be the ray through p and r′ the ray through pixel p′. The idea of the temporal
coherence is based upon a simple consideration: the ray r and the ray r′ will
follow similar paths across the scene.

Introducing Ray Tracing algorithms

Ray Tracing is not just an algorithm, but instead a wide class of tech-
niques used to generate photo-realistic images.

We briefly describe some known ray tracing flavor by using the path
notation. A path represent a ray starting from the eye (E), traced through
the path to the light source (L). Hence, each path is terminated by the
eye and a light. Each bounce involves an interaction with a surface. We

40

2.3. CASE STUDY: PARALLEL RAY TRACING

characterize the interaction as either reflection or transmission. There are
different types of reflection and transmission functions. At a high-level, we
characterize them as

• D, diffuse reflection or transmission

• G, glossy reflection or transmission

• S, specular reflection or refraction

Diffuse implies that light is equally likely to be scattered in any direction.
Specular implies that there is a single direction; that is, given an incoming
direction there is a unique outgoing direction. Finally, glossy is somewhere
in between. Particular ray tracing techniques may be characterized by the
paths that they consider (using regular expression):

• Appel ray casting: E(D|G)L. It is a simple local illumination model
that just calculate the first ray bounce from the eye, and traces a
single light ray to the light source. Appel’s algorithm traces only
path of length 3, ignoring longer paths. Thus only direct lighting is
considered.

• Whitted ray tracing: E[S∗](D|G)L. Specular reflection/refraction is
recursively calculated for each single primary ray. It traces paths of
any length, but all paths begin with a sequence of 0 or more mirror
reflection and refraction steps. Whitted’s algorithm ignores paths as
EDSDSL or E(D|G)S∗L, hence cannot simulate effect where there
are multiple light bounces from a light source (e.g. caustic).

• Kajiya path tracing: E[(D|G|S)+(D|G)]L. In respect of Whitted
ray tracing, it traces glossy and diffuse reflection rays, hence is more
compute expensive. Like others Monte Carlo methods, Kajiya path
tracing uses a random walk to generate paths: we move from sample
to sample, or from point to point, where the samples are drawn from
a continuous probability distribution. Hence, the huge amount of rays
generated by the technique is pruned by using a continuous probability
distribution (Russian roulette).

• Radiosity: ED∗L. It recursively handles (Lambertian) diffuse reflec-
tions.

• An accurate method that correctly evaluate all path must handle the
expression: E(D|S|G)∗L.

41

CHAPTER 2. LOAD BALANCING ON MESH-LIKE COMPUTATIONS

Whitted ray tracing Kajila path tracing

In this thesis we just focus on two ray tracing techniques: Whitted
ray tracing, and Monte Carlo Kajila path tracing (used in Chapter 3). Of
course, Kajila path tracing is computational more expensive than Whitted,
but produces images of higher quality.

We do not discuss here the rendering equation used to calculate the
incoming radiance for each ray. Philip Dutré wrote a good introduction to
formulas and equations for global illumination algorithms [43, 44].

Parallel Ray Tracing The Ray Tracing algorithm has been defined embar-
rassingly parallel [48] because no particular effort is needed to segment an in-
stance of the problem in tasks considering that there is no strict dependency
between parallel tasks. Each task can be computed independently from every
other task in order to achieve a speed up by executing them in parallel. There
are two different approaches in designing a parallel ray tracer: object-based and
screen-based [17]. In objects-based approach the scene is distributed among
clients. For each ray casted the clients forward rays between clients. In the
screen-based approach the scene is replicated on each client and the render-
ing of pixels is assigned to different clients. The second approach is the one
investigated in this Chapter by a frame-to-frame load partitioning schema.

Speeding up Parallel Ray Tracing for interactive use on multi-processor ma-
chine has received a big impulse during last years, thanks to an efficient imple-
mentation designed to fit the capabilities of modern CPUs [8] and the use of
commodity PC clusters [101]. In particular, several techniques are employed to
amortize communication costs and manage load balancing. In [101] is suggested
a task prefetching and work stealing, whereas [36] is presented a distributed load
balancer.

42

2.4. EXPERIMENTS AND RESULTS

2.3.1 Exploiting PBT for Parallel Ray Tracing

In order to exploit the PBT to accelerate Parallel Ray Tracing (PRT) algorithm
we provide here a mapping between the concepts of the general case, introduced
in previous sections, and the concepts strictly bounded to the Ray Tracing.
The computation carried out in the PRT is the rendering of a sequence of
frames. Every frame is rendered pixel by pixel; in terms of PBT acceleration
each of these pixels is an item of the mesh. The memory buffer where each
frame of the sequence is rendered can be considered a bidimensional mesh that
represents an image: the PDIs managed by nodes are portions of this frame.
The information that is available on every worker (ADI) and used to perform
the assigned task is the scene description. The number of primitives, usually
triangles, the dimension of the textures to be mapped on the geometry and the
number of light sources are elements that increase the computational complexity
of a scene to be rendered.

The master divides the frame buffer in tiles, which are rectangular areas of
pixels. These tiles are assigned to workers to be rendered. Since two rays will
follow similar path if they are close, in order to make an effective usage of the
local cache for each node, it is important that the tiles are contiguous and large
enough, so that each worker can exploit spatial coherence of tiles, having a good
degree of (local) cache hits. Another task performed by the master is to handle
the frame buffer for both visualization or to save it into a file.

The granularity of our decomposition strategy is chosen defining m = k · n
wherem is the number of tiles, n is the number of workers and k is multiplicative
constant. The greater is k, the smaller is tiles sizes. We experimentally tested
several values of k and found that no large k is needed since, after small values
of k, performances degrades due to the higher communication cost (cf. Section
2.4.2).

2.4 Experiments and Results

Our serial implementation of Ray Tracing algorithm exploits some, but not
all, optimizations techniques used by last cutting-edge ray tracers. Actually,
the kind of serial implementation that is used is not relevant for our purposes.
Special attention is paid to the acceleration structure. We use a Kd-tree built
to minimize the number of traversal and intersection steps, done using the well-
know Surface Area Heuristic [104]. Our Kd-tree implementation also provides
a fast Kd-tree traversal by using a cache friendly data-layout [99].

We implemented a synchronous render system, with a synchronization bar-
rier at the end of each frame for visualization and camera update purpose. Fur-
thermore, we adopt a demand driven task management strategy where a task
manager maintains a pool of already constituted tasks. On receipt of a request
from a worker, the task manager dispatches the next available task from the
pool (for k > 1). We also added a threshold to the number of single merge/split
updates into the PBT-Update algorithm in order to avoid to perform many

43

CHAPTER 2. LOAD BALANCING ON MESH-LIKE COMPUTATIONS

Figure 2.4: A frame in the walk-trough for scene ERW6-4, with the tiling shown.

small changes to the tree that would not affect much the overall performances.

We coded our system in C++, compiling it with Intel C++ Compiler 10.1
for Linux. We used MPI [69] for node communications, having care to disable
Nagle algorithm [74] in order to decrease latency.

2.4.1 Setting of the experiments

Because the aim of this work is to exploit temporal coherence in load balancing,
we decided to use a distributed memory system, as a cluster of workstations,
and test scenes with remarkable unbalance between tiles. We ran several tests
on three hardware platforms:

Test platform

44

2.4. EXPERIMENTS AND RESULTS

Figure 2.5: Average per frame rendering time on increasing k, comparing regular
and PBT-based job assignments. (Left: ERW6. Right: ERW6-4)

List of test plaforms used in this Chapter. Appendix A contains addi-
tional details for each single platform.

Hydra IBM BladeCenter Cluster of 33 nodes (1 master node, 32 worker
nodes) 7−→ details on Appendix A.4

Cacau a NEC Xeon EM64T Cluster of 64 nodes 7−→ details on Appendix
A.1

ENEA Cresco Sezione 2 an IBM HS21 Cluster with 256 nodes 7−→ de-
tails on Appendix A.2

We tested our scheme on two scenes, each of them with different shading
aspects. Since the focus is on manage unbalancing, we used a modified standard
ERW6 test scene (see Figure 2.4) (about one thousand primitives in total).
Unbalancing is due to the surface shading properties used in the scene. We
developed two versions of this test scene: ERW6, has one point light source;
ERW6-4 has four light sources. The more light sources are present in the scene
the bigger is unbalancing because of the increased number of rays to be shot. In
both test scenes, we have a predefined walk-through of the camera around the
scene, with movements in all directions and rotations too. The image resolution
is 512× 512 pixels, unless differently stated.

2.4.2 Results

We performed several test in order to evaluate and estimate: the effectiveness
of the PBT, its scalability, the optimal tiles granularity for different number of
processors, the impact of temporal and spatial coherence, how the resolution
affects the scheduling technique, the overhead incurred by the calculations for
the PBT on the total computing time.

45

CHAPTER 2. LOAD BALANCING ON MESH-LIKE COMPUTATIONS

In some tests, we compared the technique that uses PBT with a regular
subdivision technique of equal-sized tiles.

Effectiveness of Prediction Binary Tree In these tests, ran on Hydra,
we evaluate the improvement provided by using the PBT instead of a regular
subdivision strategy.

The results are shown in Figure 2.5 for both scenes. Results are obtained
using different granularity and n = 32 workers. Our technique offers a speedup,
ranging from 5 to 15 percent, for all the values of k tested. When k is large,
the performances degrade due to two factors: the number of updates on the
PBT increases. Our test shows that there are few updates for smaller values of
k, but they grow quickly as k increases. The second is related to the heuristic
that we have chosen. Indeed, measuring the rendering time for tiny tile has
some approximation problems due to discretization. Our algorithm gives good
performances for small values of m. For big values of m, the decomposition
algorithm may be a bottleneck.

Figure 2.6: Optimal subdivision granularity with both regular and PBT sub-
division. Test done with 8 (top-left), 16 (top-right), 32 (bottom-left) and 64
(bottom-right) processors. The horizontal axis represents the number of tiles,
whereas vertical axis represents rendering time. ERW6-4 test scene.

Optimal Granularity We tried to estimate the optimal granularity of the
schema, i.e., the optimal choice of the number of tiles m, with 8, 16, 32 and 64

46

2.4. EXPERIMENTS AND RESULTS

processors (see Figure 2.6). The rationale behind this test is to determinate how
our schema affects the tuning of the granularity in the parallel implementation,
compared with the regular subdivision schema.

Test results, performed on Cacau, raise several interesting considerations.
The optimal granularity for the PBT comes with a lower number of tiles, in
respect of the normal regular approach. In particular the PBT works better
with coarser tiles, introducing beneficial effects because of the lower overhead
of communication.

Scalability We compared our schema based on the PBT against the regular
subdivision schema with 2, 4, 8, 16, 32 and 64 processors, in order to evaluate
the efficiency of our strategy (see Figure 2.7). The tests, ran on ENEA, shows
that our schema works always better than the regular one, and presents almost
linear scalability. In all the tests the granularity coefficient k is fixed to 4.
However, the test with 64 processors also shows that when the number of tiles
increases the use of an adaptive subdivision is still not enough in order to assure
a good scalability. We conjecture that, in order to improve scalability, the value
of k should be tuned in such a way that tile’s sizes do not become extremely
small.

Temporal coherence tests In order to explore the performances of the PBT
in exploiting temporal coherence, we checked it under different conditions. We
ran a set of tests on Hydra in order to evaluate the correctness of the prediction
made using the PBT. First we tested two different task granularity (we recall
that we consider m = k ·n, where m is the number of tiles and n is the number of
worker): we have chosen k = 1 (one tiles for each worker) and k = 4 (four tiles,
on average, for each workers). Moreover, we considered two different camera
speeds (1x and 2x). In all the tests the number of workers n is 32. To make
a comparison, we measured the total amount of tiles which has been estimated
correctly using 85th, 90th and 95th percentile (see Table 2.1). As an example
row 2 (Perc. 90th) represents the percentile of estimations having an error up
to 10%. In other words, when k = 1 and the camera speed is 1x the 93.2% of
estimations have an error smaller than 10%, while when k = 4 and the camera
speed is 2x the 79.8% of estimations have an error smaller than 10%.

Corr. Perc. k = 1 k = 1 k = 4 k = 4

1x 2x 1x 2x

85 96.2% 95.3% 92.1% 89.7%
90 93.2% 92% 86.2% 79.8%
95 92.6% 84% 68% 55%

Table 2.1: Results of the predictions in 85th, 90th and 95th percentile.

47

CHAPTER 2. LOAD BALANCING ON MESH-LIKE COMPUTATIONS

Figure 2.7: Scalability. Frame rates on increasing number of processors compar-
ing the regular subdivision, our PBT-based subdivision and the optimal linear
speedup. ERW6-4 test scene.

Figure 2.8: Amphitheater test scene, used in spatial coherence test set.

Spatial coherence tests In this paragraph we investigate how the PBT ex-
ploits data locality using the two locality-aware heuristic described in Section
2.2.1. The idea is to let workers to better use their CPU cache.

The test considers 4 different scenes with an increasing number of triangles,
ranging from less than 30000 to about 950000. In Table 2.2 are reported the
number of triangles and the number of nodes in the Kd-tree. The difference
between scenes is an increasing number of amphitheaters, all of them with a
simple diffusive shader (see Figure 2.8). Scenes are animated by a predefined
walk-through of the camera.

The rationale behind the test is to verify that, whenever the size of the Kd-
tree is bigger than the cache size, a drop of the performance can be measured,
due to the number of cache misses.

48

2.4. EXPERIMENTS AND RESULTS

Test scene Triangles Nodes in Kd-tree
1 Amphitheater 29759 251017
4 Amphitheaters 119026 999237
16 Amphitheaters 476098 3970097
32 Amphitheaters 952130 7970097

Table 2.2: Description of the test scenes used for spatial coherence tests. For
each scene, we report the corresponding number of primitives and the Kd-tree’s
size.

All tests shows that improvements obtained by using the PBT (with both the
locality-aware heuristics and a random assignment named PBT-Random) with
respect to the regular assignment (cf. Exploiting Local Coherence, Subsection
2.2.1). With more details, on small scenes, the whole scene fits into the cache
and then the assignment strategy does not matter. When the scene becomes
larger, so that it does not fit into the cache, the data locality also provides a
modest improvement of the performances of the system (around 1−5 ms) using
both the locality-aware heuristics. This test has been performed on Hydra.

Impact of Resolution In Parallel Ray Tracing the resolution represents the
total amount of work. We ran a set of tests on ENEA, with a fixed task gran-
ularity (k = 4), using different resolutions in order to show that our implemen-
tation of PRT scales linearly with the number of the primary rays. In order
to have a measure of the effectiveness of our technique with higher workloads,
we tested the PBT with three well-known resolutions. In particular we com-
pared both techniques (PBT and regular subdivision) with PAL (720 × 576),
HD720 (1280 × 720) and HD1080 (1920 × 1080) resolutions on the same test
scene (ERW6-4).

The tests show that the PBT is effective with all the workloads and its ability
in balancing the work between nodes is beneficial with heavy loads (see Figure
2.9).

Total time analysis The last test is focused on how the whole computing
time (i.e., the parallel rendering time) is spent.

The time spent by the master node in computing out PBT-based subdivision
schema from a given prediction is serial code and pure overhead introduced by
our approach. This overhead corresponds to the time spent in subdividing the
image in tiles and updating the PBT.

Our purpose is to determinate: the ratio between time spent by the workers
in local rendering and communications; how unbalancing affects performance;
how much time is spent by the master node in serial code.

Figure 2.10 shows the test results for 16 and 32 processors at different gran-
ularity. The time spent in updating the PBT is proportional to m, hence to the
granularity and the number of processors, but in our test is always lower than

49

CHAPTER 2. LOAD BALANCING ON MESH-LIKE COMPUTATIONS

Figure 2.9: Average frame rate using different resolutions: PAL(720 × 576),
HD720(1280 × 720), HD1080(1920 × 1080), comparing regular and PBT-based
job assignments. ERW6-4 test scene.

5 ms. Thus the overhead by the adaptive subdivision is small compared with
the gain in balancing. This test has been performed on Cacau.

2.5 Conclusion

In this Chapter we presented a scheduling strategy based on a data structure
called PBT. To assess the effectiveness of the proposed scheduling strategy we
carried out some experiments, that provided a large amount of results. Our
scheduling strategy: (i) improves load balancing; (ii) allows to exploit tempo-
ral coherence among successive computation phases; (iii) minimizes the inter-
processors dependency. By some assumptions on temporal coherence, we showed
that an estimate of next phase workload can be used to quickly divide the mesh
in almost-squared tiles assigned to each worker. PBT is effectively used to eval-
uate the load balance of each phase and, eventually, to update tasks assignment
in order to reduce their completion time.

We tested our strategy on a significant problem: Parallel Ray Tracing. We
carried out an extensive set of experiments where our PBT-based strategy is
compared against the regular subdivision schema. We showed that by using our
technique, the optimal granularity comes with a lower number of tiles. Moreover,
the PBT approach assures a better scalability.

The predictions used in our approach are based on temporal coherence. We
proved that for simple scenes (e.g. a predefined walk-through of the camera

50

2.5. CONCLUSION

Figure 2.10: Contributions in rendering time with 32 (up) and 64 (down) pro-
cessors, at different granularities, with both adaptive and regular subdivision
techniques. The total rendering time is split in: the time spent in subdivision
(i.e. update the PBT for adaptive subdivision); the maximum per-node com-
pute time, such as an estimate of the load balancing; the remaining time, mostly
due by communications. Rendering times shown are the average in a test scene
(ERW6-4) of 600 frames.

around the scene), the proposed estimation heuristic is affordable. Spatial co-
herence for data locality has been exploited by using two locality-aware heuristic
during assignment. However we showed that such heuristic provides an improve-
ment on performance only with larger scene (at least 1 million of triangles).

Tests with higher resolutions show the ability of the PBT in balancing the
work with heavy loads.

Finally we provided a total time analysis of the computing time and the
overhead introduced by the PBT. The time spent in updating the PBT is pro-
portional to the number of tiles, but in our test is always lower than 5 ms.
Indeed, the overhead of the adaptive subdivision is small compared with the

51

CHAPTER 2. LOAD BALANCING ON MESH-LIKE COMPUTATIONS

gain in balancing.
The variety of architectures used on our tests suggests that the technique im-

proves performances in both cheaper commodity cluster and high performance
clusters with low latency networks.

Acknowledgments

A portion of this work was carried out under the HPC-EUROPA++ project
(project number: 211437), with the support of the European Community -
Research Infrastructure Action of the FP7.

We gratefully thank for their collaboration in providing some of the com-
putational resources the ENEA (Ente per le Nuove Tecnologie, l’Energia e
l’Ambiente) – Research Center in Portici (Napoli, Italy) and the HLRS Su-
percomputing Center at Universität Stuttgart (Germany).

52

3
Load Balancing based on Cost

Evaluation

If we known in advance a cost estimate of a task, we could take smarter subdi-
vision decisions in order to improve load balancing. The Prediction Binary Tree
showed in Chapter 2 is an example of such use of a cost evaluation by using a
centralized load balancing schema. However, the test case proposed (Parallel
Ray Tracing) can be improved in two ways: (1) by taking advantage of a faster
serial ray tracing implementation; (2) by enhancing the proposed parallelization
(e.g. shifting from a centralized balancing technique to a distributed one).

Ray tracing algorithms have seen enormous progress in recent years. Highly
optimized packet-based ray tracing implementations allow the computation of
millions of ray-triangle intersections per second, and fully exploit modern multi-
core CPUs or GPUs. Anyway, complex scenes and lighting, and high quality
renderings with anti-aliasing are still not feasible at interactive speed, and only
possible when using compute clusters. As we showed in Chapter 2, good load
balancing is crucial in order to exploit the computational power, and not to
suffer from communication overhead and synchronization barriers.

In this Chapter, we resume the Parallel Ray Tracing problem: Instead of use
it as a test scenario for our proposed balancing strategies, we begin from a state
of the art implementation of ray tracing1, thus we parallelize it being aware of
the underlying hardware architecture. Our implementation successfully exploit:
SIMD vectorial parallelism, by using ray-packets (i.e. the algorithm traces more
rays at once, instead of a single one); multi-core parallelism, by scheduling ray-
packets among multiple threads; multi-computer parallelism, by assigning tile
(i.e. set of pixel, further subdivided in ray-packets) to remote compute-node in
a cluster of workstation. In addition, GPU availability at the visualization node
is exploited using ad hoc techniques. For these reasons, implementation used
here outperforms to one used in Chapter 22.

1Implementation used in Chapter 2 is different from the one developed here
2Important differences: SIMD vectorial instructions have been used as a wrapper for color

and vector, resulting in a less effective implementation compared to ray-packets; MPI paral-
lelization was on-demand and centralized, did not use pooling neither asynchronous prediction
techniques; the only rendering technique supported was Whitted ray tracing

53

CHAPTER 3. LOAD BALANCING BASED ON COST EVALUATION

Figure 3.1: Left to right: the ray-traced image, the GPU-based estimation of the
rendering cost, the actual packet-based rendering cost, position and normals in
eye-space (used for the cost estimation), and using our method for an adaptive
tiling of the image for parallel rendering.

We present a method that uses a cheap GPU rendering technique to compute
a cost map: an estimation of the per-pixel cost when rendering the image using
ray tracing. Using this information, we improve load balancing, task scheduling,
and work stealing strategies.

3.1 Introduction

Ray tracing algorithms [51] model physical light transport by shooting rays into
the scene with the ultimate goal of producing photorealistic images. Consid-
erable efforts have been made in order to investigate new ways to reduce the
high computational demands of ray tracing. In particular, recent advances in
ray tracing include exploiting coherence between neighboring pixels with packet
traversals [100], frustum traversal [88], and fast updating of the acceleration
data structure for animated scenes [114]. Thanks to the recent advances in
both software and hardware, Whitted-style ray tracing reaches interactive frame
rates on single CPUs [77] and GPUs [66]. However, if we want to provide more
realism in the produced images, e.g. by computing global illumination, we need
to drastically increase the number of secondary rays.

Even though several optimizations strategies [88] allow a certain amount of
interactivity on static scenes, the use of complex shading, shadows, and reflec-
tions requiring a large number of secondary rays, increases the computation
cost. Indeed, the number of rays grows from less than one million of typically
coherent rays, up to several millions of mostly incoherent rays. In this context,
distributing ray tracing among several workers is the only solution to reach
interactive frame rates.

In this Chapter, we describe a parallel ray tracing system exploiting balanc-
ing and distributing rendering tasks across workers in a network. We use efficient
GPU-techniques for an efficient estimate of the per-pixel ray tracing cost, and
then use this information for work stealing, in-frame steals, and dynamic load
balancing algorithms.

54

3.2. PREVIOUS WORK

3.2 Previous Work

Ray tracing parallelization approaches can be classified into two main categories:
image space parallel decomposition, and scene geometry parallel decomposition
(SGPD), sometime referred as data parallel [1]. With image parallel methods,
each worker is responsible for a region of the image (e.g. a pixel or a tile), while
the scene data is replicated in the memory of each node. In contrary, in SGPD
methods, each worker is responsible for a part of the scene, while rays propagate
among the nodes. Image space parallelism is typically the better solution for
scenes that can be stored in a single node.

For complex models, where the scene exceeds the capability of a single worker
node, the scene data has to be distributed among all nodes. However, additional
efforts are necessary to manage the scene data and to minimize the impact of
remote data requests with caching and prefetching strategies. Several interme-
diate solutions can be obtained by merging the two models; see for example [86].

Shared memory systems Early works in parallel ray tracing reaching in-
teractive performance used massively parallel shared memory supercomputers,
e.g. [72]. Current hardware trends in processor designs are turning towards
multi-core architectures, and parallel ray tracing is well suited for off-the-shelf
hardware. Manta [8] is an interactive ray tracing system combining a high level
of parallelism with modern packet-based acceleration structures. It uses a multi-
threaded scalable parallel pipeline in order to exploit parallelism on multi-core
processors. Manta has been successfully used in the context of massive model
interaction, providing the capability of easily visualizing huge aircraft models in
an inspection and maintenance scenario [95]. Recently, more systems have been
developed focusing on exploiting the massive parallelism of multi-core hardware;
for example [49].

Distributed memory systems Developing interactive ray tracing systems
for distributed memory systems is an intricate process. Extending a renderer’s
architecture to a cluster of workstations requires implementing several compo-
nents, such as a high-performance communication layer and an efficient dynamic
load balancer. Without these techniques, the overhead of the communication
causes poor scalability and performance penalties. Commodity-based clusters
offer a cost-effective solution to speed up ray tracing and are becoming more
widely available.

In [105] the authors used coherent ray tracing techniques in distributed mem-
ory architectures. In particular, they exploit spatial coherence in the accelera-
tion data structure, and temporal coherence between subsequent frames. Their
system design was centralized, but they were able to render large and complex
models at interactive rates by using a two level BSP for per-node caching of
geometry. Later, several works improved these techniques in order to render
massively complex models, e.g. [103] and [41].

DeMarle et al. [35] presented a distributed interactive ray tracing system

55

CHAPTER 3. LOAD BALANCING BASED ON COST EVALUATION

using page-based distributed shared memory. Each node of the cluster manages
different parts of the scene data and reserves space to cache remote parts. The
hybrid parallel design of their system allows the rendering of large data sets
quickly, even if a single node’s memory can store a fraction of the total data
only.

Load balancing is one of the challenges of parallel ray tracing. In particu-
lar, if a rendering system is subject to a barrier synchronization point (e.g., in
synchronous rendering), then the slowest task will determine the overall perfor-
mance. Achieving a good load balance is not trivial and can be achieved using
two main strategies: trying to equally partition tasks, or using dynamic work
assignment. In this context, choosing the granularity of the subdivision (i.e.
the number of tiles of the image distributed among all nodes) is non-trivial. For
example, a fine granularity facilitates load balancing, but it also results in high
communication overhead, which is critical in slow networks.

Researchers have proposed many strategies for addressing load balancing
in this context. Heirich and Arvo [54] discussed the importance of dynamic
load balancing for ray tracing in interactive settings. They also showed that
strategies based on image tiling and predictions are ineffective when used with
static load balancing.

Further related work examines the importance of the subdivision granular-
ity [83], and suggests adaptive subdivision to balance the workload [29].

In demand driven approaches, the image is usually subdivided in tiles of
fixed size. Typically, the rendering times per tile vary, thus a simple static
load balancing scheme is not suitable and a dynamic assignment is required
instead. Although a demand driven centralized balancing scheme achieves a
well balanced workload, it involves significant master-to-worker communication
which becomes a bottleneck network network transmission delay and the num-
ber of workers increases. A decentralized load balancing scheme, such as work
stealing [11] or work redistribution, eliminates the communication bottleneck
thus improving performance and scalability. For instance, DeMarle et al. [38]
improved performance by moving from a centralized demand driven load bal-
ancing scheme to a decentralized scheme based on work stealing. Later in [37],
work stealing has also been used to balance work between two different frames:
once a worker finishes its assignments for a given frame, it picks a node at
random and requests more work form it. That node only responds, if it has
work available to share. In their implementation, task migration is done at the
beginning of the next frame (frame-to-frame steals), and the synchronization
bottleneck at the master node is hidden by an asynchronous task assignment.

3.3 Overview

Our method described in this chapter follows the paradigm of image-based par-
allelization, tailored for a cluster of workstations, and scenes that can be stored
on a single node. It uses ray-packets, is synchronous, and introduces several
heuristics in order to better distribute work between nodes.

56

3.4. THE COST MAP

The target hardware is a cluster of workstations, where a master node,
equipped with a GPU, is also responsible for displaying the solution, and several
workers, equipped with multi-core CPU, perform ray tracing computation.

Our rendering system is based on a packet-based ray tracing implementation,
and considers a task as the rendering of a tile of an image. Our parallel render-
ing architecture uses GPU-techniques to estimate the ray tracing cost and by
this improve dynamic load balancing strategies. This yields good load balanc-
ing while maintaining a coarse granularity, and thus allows for high rendering
performance even with slow networks.

Our method performs the following steps to balance the rendering load,
which we discuss in detail in the following sections:

1. Compute a per-pixel, image-based estimate of the rendering cost, called
cost map.

2. Use the cost map for subdivision and/or scheduling in order to balance
the load between workers.

3. A dynamic load balancing scheme improves balancing after the initial tile
assignment.

3.4 The Cost Map

In this section we show how to obtain the cost map, i.e. an image-based, per-
pixel cost estimate of the rendering process (see Fig. 3.1 and 3.2). First, we
define the problem statement and related approaches. Then, we introduce a
GPU technique capable quickly compute an approximate cost map. Finally, we
analyze the cost estimate error.

Figure 3.2: A comparison of the real cost (left) and our GPU-based cost estimate
(right).

57

CHAPTER 3. LOAD BALANCING BASED ON COST EVALUATION

3.4.1 Rendering Cost Evaluation

Sources of load unbalance Several factors affect the rendering cost in ray
tracing, such as scene size, resolution, rendering technique, coherence between
rays, and material properties. In particular, shading algorithms affect the num-
ber of secondary rays traced into the scene, and cause load unbalance among
different pixels in the image (Figure 3.3).

Our work focus on calculating an image-based cost estimation by using the
information that is available in a geometry buffer rendered on a GPU.

Cost evaluation approaches Before introducing our technique, we briefly
discuss some techniques known in literature. In [50] the authors suggest that
an approximated cost map can be generated from a rasterized scene preview.
This technique has been used combined with a profiling strategy in order to
achieve an accurate cost prediction. They made a comparison of different pixel
profiling strategies which may be used to predict the overall rendering cost of a
high fidelity global illumination solution.

Albeit samples measuring and profiling techniques have been successfully
exploited in a global illumination scenario, they fit badly our rendering system.
In a distributed memory architecture, profiling may be performed on the master
rather than the workers. However, in the latter case, workers need to send back
sample measures. This drastically increase the time spent to compute load
balancing calculation (at least, if we suppose to be performed centrally by the
master node). Furthermore, recent advances in ray tracing (i.e. packet traversal)
assume that rays are coherent. This means that usually, ray tracing of few
incoherent rays is slow. For these reasons, despite this approach performs well
in a global illumination scenario, it is not suitable for distributed architecture
aiming at interactive visualization.

Beyond image-space approaches, rendering cost estimation has been explored
even for SGPD. For example, Reinhard et al. [87] used a voxel-based cost esti-
mate to efficiently distribute the scene across processors.

3.4.2 A GPU-based Cost Map

We propose a fast method to compute an approximate cost map by only using
the GPU. We combine well-known GPU techniques like geometry buffers from
deferred shading [53] and image-space sampling to accomplish our goal. The
underlying idea is that it is often possible to detect potentially expensive areas,
e.g. with multiple inter-reflections, performing a fast image-space search.

Algorithm description Our algorithm (Algorithm 2) works in image-space,
and assume that for each pixel, information on material properties are available.
Every pixel Pi has a certain basic cost depending on its material (e.g. the cost
for evaluatin the BRDF model).

In addition to this basic shading cost (for every surface point Pi), we per-
form an image-space search if the surface at Pi is reflective. The sampling step

58

3.4. THE COST MAP

Figure 3.3: Estimating the ren-
dering cost: diffuse surfaces typ-
ically have lower cost (in particu-
lar for Whitted-style ray tracing),
while specular surfaces generate
more secondary rays thus caus-
ing higher rendering cost. Regions
where multiple reflections occur
are typically more expensive and
can be found by a search in image-
space. When using Monte Carlo-
based techniques, the image-space
search can be adapted accord-
ing to the specular coefficient of
the surface (see the sphere in the
images).

is performed in order to detect expensive areas, e. g. with multiple intereflec-
tions. For this, we use a uniformly distributed set of sampling points which is
transformed before sampling. The sampling pattern is computed according to
shading properties, rendering technique and the reflection vector R. The pattern
is scaled to become more narrow for surfaces with higher Phong exponents, thus
positioned at the surface point Pi in question and oriented along the projection
of its reflection vector (Figure 3.3).

For every sample Sj , we retrieve its surface location and orientation from the
geometry buffer. Next, for each sample we perform a test in its surroundings
to detect the sample cost. We test if Pi and Sj are mutually front-facing (line
11). Later, a test detects if the sampled surface is reflective (line 13). If the
surface at S is reflective as well, and the specular reflection (e.g. the Phong
lobe) of Sj points towards Pi then we detected a region with a potentially high
number of inter-reflections, and further increase the cost estimate. Afterward
all the samples contributions are gathered and the resulting cost is calculated.

Sampling pattern The sampling pattern is randomly generated (a) and
scaled (b) according to the surface properties. Thus, the pattern is translated
(c) and rotated (d) towards the R vector. Step (b) depends by shading material
and rendering technique. In particular, we distinguish a wide sampling pattern
for path tracing and Lambertian materials. Instead, the pattern collapse to a
line for Whitted-style ray tracing and for path tracing using a specular mate-
rial. In fact, the wideness of the sampling lobe depend by the spreading of the
secondary rays, i.e. the Phong specular coefficient. The sampling is performed
once per pixel, not recursively.

Sample gathering Once sampling has been performed, we gather the con-
tribution from all samples. This step is somewhat correlated to the rendering

59

CHAPTER 3. LOAD BALANCING BASED ON COST EVALUATION

Algorithm 2 Approximated cost map computation algorithm. Code for pixel
Pi

1: //All the data of the hit surface on the pixel Pi are available
2: costi ← basic material cost of the hit surface
3: if Pi is reflective then

4: // Determinate the sampling pattern toward the reflection vector R
5: S = compute sampling pattern(Pi, R)
6: // Calculate cost contribution, for each samples
7: for each sample Sj in S do

8: samplej ← 0
9: if visibility check(Sj , Pi) then

10: increase samplej
11: if secondary reflection check(Sj , Pi) then
12: increase samplej
13: end if

14: end if

15: end for

16: // Samples gathering
17: costi = costi + gather(S)
18: end if

19: return costi

technique. In particular, the cost may be computed in two ways: by summing
up the sample contribution, or by taking the maximum. The first approach
is used in path tracing, where we suppose that secondary rays spread along a
wide area. In the contrary, using Whitted ray tracing, all samples belong to one
secondary ray and we consecutively estimate the cost by taking the maximum.

Edge detection Whenever packet-based ray tracing is used, packet splitting
raises the cost because of the lose of coherence between rays. This occurs at
depth discontinuities that we detect using a simple edge-detection filter on the
geometry buffer. We experienced that this extra-cost is relatively remarkable
only when using Whitted ray tracing. By further increasing the cost estimate
at edges, we account for the impact of packet splitting.

Implementation details The algorithm has been implemented in a two pass
shader. In a first pass, we render the scene to a geometry buffer, using multiple
render targets to store data. For every pixel we store the position, the normal,
and a value indicating if the surface is reflective, for the first visible surface seen
from the camera (Figure 3.3). We also store three additional values: The basic
shader cost, the specular coefficient and the Phong exponent. In the second
pass, we generate the cost map using the image-space information stored in the
geometry buffer. The basic value has been used in several points of the algorithm
(i.e. lines 2 and 12). The other values both contribute in the sampling phase

60

3.4. THE COST MAP

(line 5 and Figure 3.4). Details about cost map computation parameters are
shown in Table 3.9.

The cost map generation is fast: Whereas both CPU and GPU computa-
tions take less than 1 ms, the most expensive task is the data transfer between
GPU and CPU (Table 3.1). However, this time is spent by the master node
in barrier, i.e. when preparing the cost map before distributing the work load.
For that reason, this time is further hidden using an asynchronous prediction
optimization (see Section 3.6.5).

Task Time in ms
cost map generation < 1
SAT computation < 1
SAT transfer 5-6
CPU tasks (i.e. sorting or adaptive tiling) < 1
Total 6

Table 3.1: Cost map computation timings. They are similar for all test scenes.

3.4.3 Cost Estimation Error Analysis

Obviously, the resulting cost map is approximate. We analyze the error in order
to understand where and why the estimate is inaccurate. First, we measure
a per-packet difference between real and estimated cost. Second, we analyze
a difference maps between real and estimated cost map, showing where the
estimate is less accurate. Later in Section 3.7, we measure performance of the
whole system, evaluating how much the balancing techniques described in this
Chapter are sensitive to the cost map accuracy.

Limitation of the approach Our technique produces a good estimate in all
our test scenes, for almost all view points (Figure 3.13). However, the above

(a) (b) (c) (d)

Figure 3.4: Sampling pattern. The sampling patterns used in the cost map
generation algorithm. At first, an uniformly distributed set of points is gen-
erated (a). According to the shading properties, the pattern is scaled (b) and
translated to the origin (c). In the last step, it is transformed according to the
projection of the reflection vector in the image plane(d).

61

CHAPTER 3. LOAD BALANCING BASED ON COST EVALUATION

algorithm leaves one issue unaddressed: the off-screen geometry problem. Be-
cause our strategy works on a rasterized fast scene preview, our algorithm only
works on visible geometry. Starting from this, our algorithm try its best work-
ing on image space, estimating the cost of each pixel. Nevertheless, reflected
rays may fall in geometry not present in the frame buffer. When this happens,
the algorithm is not able to detect a reflected surface and the resulting calcu-
lated cost is under-estimated in respect to the real one. Figure 3.5 shows an
explanatory example.

(a) (b) (c)

Figure 3.5: Off-screen geometry problem. We show a particular where the
problem is emphasized: The image indicates an area where secondary rays fall
outside geometry in the rendering buffer (a), hence raising the cost of these
pixels (b). Our GPU technique under-estimates the cost of this area (c).

Some advanced rendering techniques may partially settle this problem. For
instance, a trivial solution consist in rendering the cost map in an extended im-
age plane in order to compute surfaces outside the current view. The use of the
A-buffer guarantees that the whole geometry is available on the render buffer
[15]. Further errors may arise when sampling phase fails to detect high cost
regions, for instance because the number of samples is not sufficient. Neverthe-
less, in this Chapter we do not investigate other intricate techniques, focusing
on the effectiveness of the proposed one.

Error distribution Figure 3.6 shows the error distribution from 4 test scene,
each of which shows the (packet-based) difference between the real computing
time and the GPU computed one. The analysis shows that the estimate is
accurate, and errors usually lead to a positive difference (hence we have an
under-estimation, caused by reasons discussed above). The Cornell box scene is
the more accurate one. Instead, the Ekklesiasterion is the one with less accurate
in estimation.

Figure 3.13 shows real cost map, GPU calculated cost map, and difference
map between real and approximate cost map. Figure 3.12 shows final renderings.

Error impact in our framework As we will show later in this Chapter,
we use the cost estimation in two different ways. We anticipate that, while

62

3.5. LOAD BALANCING

Figure 3.6: Error distribution of the estimation. Each packet-based rendering
time is subtract to the cost map estimate, for the same corresponding packet of
pixel. The x-axis shows the difference in error intervals, from negative values
(left, over-estimation) to positive ones (right, under-estimation). The y-axis
plots error occurrences for each error interval. These tests have been performed
on one Intel Pentium IV CPU 3.40GHz with 2048KB cache size.

adaptive techniques may suffer of inaccuracy, using estimation for sorting-based
approaches relax the requirement of an accurate cost estimation.

3.5 Load Balancing

In this section, we describe how we use the cost map, and a summed area
table [34] created from it, for two different load balancing strategies. Summed
area tables (SATs) allow us to compute the sum of values in a rectangular
region of an image in constant time. Given a cost map of dimension n × n we
can compute a SAT directly on the GPU in O(log n) time [56].

SAT Sorting A direct use of the SAT is to compute the cost of a tile after
subdividing the image in equally sized tiles. Next, we can sort the tiles for
decreasing cost, assuring that computationally more expensive tiles are sched-
uled before cheaper ones. The reason for this approach is that dynamic load
balancing typically works better if nodes work on more expensive tasks at first,
and task transfers or steals are performed for smaller tasks afterwards.

63

CHAPTER 3. LOAD BALANCING BASED ON COST EVALUATION

SAT Adaptive Tiling We can alternatively use the SAT to achieve an adap-
tive subdivision of the image into tiles of roughly equal cost. Our adaptive sub-
division algorithm can be figured as a weighted kd-tree split using the SAT to
locate the optimal split in each step.

We introduce two temporary deques (double-ended queues), P and Q, and
the cost map C and the number of iterations l as input. During subdivision,
we use Q to store the current tiles to be split, and P to store the tiles that
have already been split. The resulting subdivision of our algorithm, shown in
pseudo-code below, is well balanced and all tiles exhibit almost equal cost:

Algorithm 3 The SAT-tiling algorithm. Starting with a single tile covering
the entire image (i.e. of the same size as the cost map), each iteration chooses
a split-axis and subdivides the tile using a binary search in order to obtain two
tiles T1 and T2 with approximately the same cost. These new tiles are enqueued
in P and might be further split in subsequent iterations. The running time T (n)
of SAT-tiling, for a SAT of n× n pixels, is O(n log n).

1: // Set the first split axis (0=x-axis, 1=y-axis)
2: Axis ← 0
3: // Create and enqueue the initial tile (covering the entire image) to P
4: Enqueue(P, CreateTile())
5: // Loop l times to obtain 2l tiles
6: for i← 0 to l do
7: // Q contains all tiles to be split
8: Q ← P
9: // P stores the newly split tiles

10: P ← ∅
11: while Q 6= ∅ do
12: // Remove a tile T from the queue
13: T ← Dequeue(Q)
14: if axis = 0 then

15: (T1, T2)← SplitX(T)
16: else

17: (T1, T2)← SplitY(T)
18: end if

19: // Enqueue two tiles T1 and T2 and select the next split axis
20: Enqueue(P, T1)
21: Enqueue(P, T2)
22: Axis ← 1 - Axis
23: end while

24: end for

64

3.6. IMPLEMENTATION

3.6 Implementation

Our implementation of the work assignment, scheduling and dynamic load bal-
ancing is decoupled from the ray tracing implementation that is running on the
individual worker. We base our ray tracing implementation on Manta [8], which
provides the components of a modern ray tracing architecture: the synchronous
parallel pipeline and the set of modular components, such as shaders and image
traversal. We extended this system with new image traversal algorithms, load
balancers, shaders, and by adding new components. In particular, our parallel
code is hidden behind the traversal logic, with a master-side and a worker-side
component. The first is responsible for the prediction and assignment, and
implements a GPU-based rendering system with programmable shaders. The
latter hides the CPU-based ray tracing system and the dynamic distributed
load balancer. A material table is in charge of linking the ray tracer shading
information with the GPU-cost map generation. As we use static scenes, we use
precomputed kd-trees built with a SAH metric as acceleration data structure.

In the following, we discuss the main challenges of our ray tracing system:
the tile-to-packet mapping, the dynamic load balancing, the multi-threading
parallelization, the network optimizations, and the asynchronous prediction.

3.6.1 Tile-to-Packet Mapping

The use of two different levels of parallelism, one being the packets of the ray
tracer, and one being the splitting of the image into tiles, raises the problem
of how to map a tile to packets. Each packet-based ray tracer usually has
an optimal packet-size, mainly depending on the scene, the acceleration data
structure, and the hardware architecture. Recent work encourages the usage
of large ray packets for Whitted-style ray tracing [77]. Similarly, a parallel
distributed memory system has an optimal task size that depends on the ratio
of computation to the amount of communication, being critical in systems like a
cluster of workstations. Fixing the same granularity for both with an one-to-one
approach does not reach optimal performance of the whole system. A one-to-
one approach also complicates, and limits, the exploitation of the cost map for
adaptive subdivision. Our system uses a one-to-many approach instead: each
tile is subdivided into packets of fixed optimal size, e.g. each tile is subdivided
in packets of 8×8 rays per packet.

3.6.2 Work Stealing

Our parallel system performs in-frame steals to improve the load balancing
computed from the cost estimation. Note that a perfect cost map would make
work stealing superfluous; however, this cannot be expected from an image-space
estimation. Our work stealing implementation follows the scheme suggested
in [11] where each worker has a queue3: each worker first processes his own tasks

3According to [11] we use the term queue. However, as our work stealing algorithm performs
operations in both the top and the bottom of the queue, the correct term would be deque.

65

CHAPTER 3. LOAD BALANCING BASED ON COST EVALUATION

Figure 3.7: A master node is responsible for the first task assignment. Using
work stealing idle workers search among the other workers in order to find
unprocessed tiles.

starting from the top of his queue. When the queue is empty, workers start
stealing tasks from another randomly chosen worker (Figure 3.7). Although
dynamic load balancing is distributed, our task assignment is not distributed.
All tiles are assigned at the beginning of the frame by the master node, using
prefetching to hide latency and assuring fairness. Then the dynamic distributed
load balancing algorithm takes care of an initially unbalanced work distribution.
Further optimizations in the work stealing protocol can save communication
when, for instance, two nodes send crossed steal requests. In this case, we
can avoid sending the two negative ack messages. An important aspect when
implementing in-frame steals is to take care of the frame synchronization barrier.
A node entering into stealing mode performs steal requests until a new frame
starts. The new frame message, however, is sent by the master node without a
guarantee for order-preserving and delivery, i.e. it may happen that a node at
frame f + 1 receives an old steal request by a node at the frame f . We solve
this problem by adding the frame number to the steal request and steal ack
messages, avoiding transfer to nodes that are still unaware of the new frame.

3.6.3 Multi-threading Parallelization for Multi-core CPUs

In the previous section, we discussed the problem of parallelization across dis-
tributed worker nodes. On each node the ray tracing itself can also be paral-
lelized via ray packets if multi-core CPUs or SIMD instruction sets are available.
The parallelization of multi-threaded ray tracing engines has been explored in
several works. Manta uses a centralized on-demand scheduler, which assigns
groups of packets to threads; in order to increase balancing, groups are bigger
at the beginning and smaller at the end, assuring a fine grained balancing. The
implementation of the scheduler takes advantage of a fast atomic counter for
synchronization; the only barrier in this approach is the frame barrier (one for

66

3.6. IMPLEMENTATION

Figure 3.8: Multi-threading with tile buffering. A small number of tiles are
moved from the queue to the buffer. This allows separating the work stealing
algorithm, working on the queue, from the multi-threading parallelization, work-
ing on the tile buffer. The tile buffer can effectively improve multi-threading
performance avoiding expensive synchronizations.

each frame).

On top of Manta, our distributed parallel architecture introduces the queue
of tiles as an additional element, which raises new questions on exploiting multi-
threading parallelism.

A first, trivial attempt to parallelize the queue access is to take a tile from
the queue, and distribute packets to threads by using the same approach that
is used in Manta. The main problem of this approach is that it introduces a
thread synchronization for each tile, leaving threads idle and waiting for the
last one that finishes rendering. In fact, this approach shows a bad scalability
and the speed-up is 2-3× for scenes where the native Manta is close to 4× (on
a quad-core CPU obviously).

We addressed this problem by introducing a tile buffer (Fig. 3.8). At the
beginning, a thread moves T tiles from the queue into the tile buffer. When a
thread finishes working on a tile, it continues with the next tile in the buffer.

When the last thread working on a tile finishes, it is in charge of sending
the image to the master node and moving the next tile from the queue to the
buffer. The last thread working on a tile can be easily determined by using an
atomic counter for each tile. If the queue is empty, the work stealing protocol
may perform one or more steals in order to detect the next tile to be inserted
into the buffer.

As we will show in Section 3.7, this approach improves scalability and assures
that threads have almost no idle time during rendering. However, the size of
the buffer should be carefully chosen. If the size is too large, then the work
stealing protocol may not function properly since only tiles in the queue are
subject to steal. In contrary, a smaller buffer may introduce thread idle times.

67

CHAPTER 3. LOAD BALANCING BASED ON COST EVALUATION

In our test we measured higher performance for T = 2 . . . 4 with few workers,
whereas T = 2 was the optimal value for 8 workers.

3.6.4 Network and Latency Hiding

We utilize MPI as a means to exchange data between nodes [69]. MPI is the
dominant programming model in the high performance computation domain.
It provides message passing utilities with a transparent interface to communi-
cate between distributed processes without considering the underlying network
configurations. However, for interactive purposes often an ad hoc low-level im-
plementation is preferred (for example [102] use an optimized TCP version,
whereas [37] use both TCP and MPI). The main problem in using libraries is
the lack of control of low-level mechanisms, such as the Nagle optimization in
TCP [73]. In [102] the authors illustrate that enabling the Nagle algorithm is
desirable for scene updates and scene data streaming, but it is less favorable for
operations that require a minimal latency (e.g. sending tile requests). Despite
that, our image-based ray tracer does not perform any scene data streaming.
Moreover, current MPI implementations often set up the best configuration to
hide latency (for instance, OpenMPI disables Nagle algorithm by default when
using TCP network). Another advantage in using MPI is the ease of adapting
our system to different networks and their optimized vendor-provided MPI ver-
sions (e.g. Myrinet or Infiniband). In this work, we incorporate MPI as the
basic means to communicate data between distributed computation nodes. Our
system hides latency by implementing task prefetching and using asynchronous
data transfer where possible. At the beginning of each frame, the camera posi-
tion and a list of prefetched tiles is sent to each worker.

3.6.5 Asynchronous Prediction

The overhead introduced for generating the cost map and the SAT and to com-
pute the tiling causes a longer barrier. Thus, our approach is only effective if we
have a significant improvement in balancing. We hide this overhead by doing
an asynchronous prediction: after the task assignment for the frame f , when all
workers are busy, the master node starts computing the prediction for the frame
f + 1. The overall architecture is still synchronous, whereas just the prediction
phase is computed asynchronously.

3.7 Results

Test platform

We ran several benchmarks on a test platform consisting of a cluster
of workstations equipped with Xeon Quad-Core Clovertown CPUs running
at 2.33 GHz and having 16 GByte RAM. Nodes are interconnected with

68

3.7. RESULTS

an Infiniband network (7−→ additional details on Appendix A.2). Our code
has been compiled using the Intel C++ Compiler. The cost map com-
putation has been implemented using OpenGL and the OpenGL Shading
Language. Running the master and the worker node on a single host may
reduce performance. For this reason, we used a specific visualization host
as the master node. The master and visualization node is equipped with
an NVidia GeForce 8800 GTX.

Test scenes All images have been rendered at a resolution of 1024×1024
pixels, with 64 tiles and a maximum recursion depth of 4, resulting in highly
varying rendering cost in regions with inter-reflections. Asynchronous predic-
tion has been enabled in all tests. In order to understand the impact of our
techniques, we used four different test scenes (Figure 3.12), having different ren-
dering parameters, rendering technique and overall workload: First two scenes
use Kajiya path tracing and are computationally expensive. The First is a Cor-
nell box with a reflective Bunny and an area light. For each pixel, we apply
a jitter pattern of 128 rays/pixel, shooting 134.2 million of primary rays. The
Ekklesiasterion scene contains an ancient Greek building. For this scene, we
used 32 rays/pixel. Other two test scenes, instead, make use of Whitted ray
tracing with respectively 8 and 1 rays/pixel. Toaster and Poseidonia-Paestum
temple both present a large number of reflective surfaces. Table 3.9 shows ray-
packet size, the number of primary rays and the rendering parameters used for
each test scene. We run first two test scene (the more computational expensive)
using up to 16 workers, the last two using up to 8 workers. Each worker uses 4
threads.

Notice that our work differs from [6] in two aspects: First, we use Whitted
ray tracing and Kajiya path tracing instead of Instant Global Illumination;
second, our test scene present high variance in shaders and geometry. Both
contribute to have a high workload unbalance per pixel (as shown by real cost
map in Figure 3.13), whose directly impacts on system scalability. For these
reasons we have a difference approach to scalability, much similar to frameworks
like [16].

For each test scene, we show results using 4 different balancing approaches:
A simple not-balanced static approach, using equally sized tiles (Regular without
WS); a regular approach using work stealing for load balancing (Regular); an
adaptive approach build over a SAT of the cost map, and enabling work stealing
(SAT Adaptive); a sorting-based approach exploiting SAT and enabling work
stealing.

Table 3.2 shows performance for 8 workers. In addition, we calculate parallel
speedup and efficiency.

A steal transfer analysis has been shown for all the test scenes and 8 workers.
This analysis is helpful to understand how different tiling algorithms work and,
once an initial tile set is assigned, how balancing algorithms integrate with work
stealing algorithm.

69

CHAPTER 3. LOAD BALANCING BASED ON COST EVALUATION

Scene Cornell box Ekklesiasterion Toasters Temple
triangles 69495 3346 11141 13556
Rendering tech. path tracing path tracing whitted whitted
Rays/pixel 128 jitter 32 jitter 8 jitter 1
Packet size 8 16 16 32
Primary rays 134.2M 33.6M 8.4M 1.0M
Sampling pattern wide pattern wide pattern collapsed collapsed

to a line to a line
Edge detection no no yes yes
Samples gathering sum sum max max

Figure 3.9: Summary of the parameters used for rendering and cost map com-
putation. The packet size is the optimal value for the test scene.

Figure 3.10: Steal transfers analysis. The graph shows the average number of
steal transfers performed during 10 frames. The analysis refers to the 4 workers
test asset. Note that nodes may steal even more than one tile per frame.

3.8 Discussion

SAT Adaptive Tiling Our results with adaptive tiling show that, compared
to a Regular approach, provides some slight improvement in performance. How-
ever, it never overcomes the SAT Sorting approach. Steal transfers analysis
(Figure 3.10) furnishes some significant additional informations. An important
issue is that the number of steal transfers of adaptive tiling is often the lowest.
This means that: (1) the initial tile assignment provided by the adaptive tiling
is more balanced than the regular one; (2) however, work stealing do not work
well with such kind of (almost balanced) workload. In fact dynamic load bal-
ancing, in our case the work stealing strategy, rivals adaptive tiling since both
try to balance the workload: a fine grained balancing with dynamic techniques
requires more expensive tiles at the beginning and the cheaper ones at the end;
but in contrast to that, adaptive tiling aims to equally balance cost between tiles.

70

3.8. DISCUSSION

The adaptive tiling performance is the worst for the Ekklesiasterion scene.
In fact, this scene shows the least accuracy (see Figure 3.6). This indicates that
the accuracy required by an adaptive approach is critical, and in general a very
accurate cost map is required in order to significantly increase rendering speed.

SAT Sorting The use of the SAT for sorting tiles always improves perfor-
mance. Contrary to adaptive tiling, this technique does not require an exact
estimation of the rendering cost: it just needs a correct tiles ordering. In par-
ticular, the use of the SAT Sorting strategy, combined with a distributed load
balancing algorithm helps assuring a good load balance. The combined use
of both techniques, sorting and dynamic load balancing, also achieves a good
scalability with the number of workers (Table 3.2).

Multi-threading Scalability Multi-threading parallelization addresses the
problem of accessing the tile queue and handling the send request communica-
tion (Section 3.6.3). In order to determine its efficiency we performed 3 tests
(Table 3.3). First, we measured the rendering performance for a standard scene
on a single node and the scalability for 1 to 4 threads. Afterwards, we per-
formed a test by using a master and a worker node running on two different
hosts measuring the multi-threading scalability up to 4 threads (for the work-
ers) and the MPI overhead. Note that in this case, MPI calls use the OpenIB
protocol (Infiniband network). Finally, we performed a similar test where both
master and worker are running on the same host. In this test, MPI uses the fast
shared memory protocol, but both processes compete for the same resources,
i.e. primarily CPU cores. This test has been performed in a Intel Core 2 Quad
Q6600 CPUs running at 2.40 GHz, using a Cornell box scene with different
rendering parameters.

This test indicates that whenever we decide to use the same host for both
visualization (hence image gathering) and computation, we should be aware
that we potentially lose computational power in this host, and hence introduce
a small load unbalance.

Distributed Memory System Scalability In order to determine how our
system scales with the number of distributed workers, we did a scalability test
with 1, 4, 8 and 16 workers. Table 3.4 and Figure 3.11 show the scalability
for the Cornell box test scene. Results indicate that the SAT Sorting approach
provides higher scalability and is particularly useful with high workload. The
improvement of SAT Sorting strategy, compared to a näıve balancing-unaware
approach is about 10-15% with 8 workers, 20-25% with 16 workers. Efficiency is
always superior to 90% in Whitted test scenes. Instead, using path tracing we
cannot assure similar performance, with an efficiency of 80-90% with 16 workers.
We think that such correlation between parallel efficiency and rendering tech-
niques is a new argument in the context of parallel scalability of high parallel
rendering systems.

71

CHAPTER 3. LOAD BALANCING BASED ON COST EVALUATION

Despite work stealing is a popular approach to distributed dynamic load
balancing, its performance had not well understood yet. The effectiveness of
our sorting-based approach raises new interesting applications in the context
of massively parallel processing. In our system, work stealing is particularly
efficient when we have more than 8 workers. Hence, it represents a perfect
candidate for today and future massively parallel systems.

Steal analysis also shows that the number of steal transfers is lower with
high workloads. We suppose that this is related to the fixed number of tiles size
and we plan to investigate how to beneficially change this number accordingly
to the workload.

Increasing the quality, e.g. with more samples per pixel and using path
tracing, just slightly affects the scalability of the system. However, we will
show the raw MRays/sec provided by our system strongly change with different
rendering quality settings.

Figure 3.11:
Scalability for up
to 16 workers mea-
sured for the Cornell
box. Timings are in
frame per second.

Performance evaluation and coherence Despite our test platform do not
represent the best CPU architecture available nowadays on the market, using
our load balancing approach we provide a high efficiency up to 16 workers.
Mrays/sec is a common unit to measure the computational power of a ray tracer.
In this context, we try to have a Mrays/sec estimation for our architecture.
Anyway, for several reasons (e.g. the difference between rays and shadow rays)
this measure should be used carefully.

If we consider the Toasters test scene, using Whitted ray tracing and 8
rays/pixel, we have 33.6M of primary rays. Because we set a maximum depth
of 4, the total amount of rays is roughly estimated as 536.871M. Moreover, we
must sum to this value the amount of shadow rays generated by a point light
source. Hence, a rough estimate of the performance with 8 workers is about 240
Mrays/sec. A similar value has been observed for the Temple test scene.

72

3.9. CONCLUSION

Instead, if we consider the Cornell box scene, using Kajiya path tracing and
128 rays/pixel, we have 134.218M of primary rays. We set a maximum depth of
4; hence the total amount of rays is roughly estimated as 536.871M. According
to the test result, we have about 60Mrays/sec with 8 nodes and 100 with 16
nodes (note that Ekklesiasterion presents similar values). That’s means that the
system shows a good parallel efficiency, but the computational power exposed
by a single node is rather lower than excepted, if compared to other test scenes
rendered with Whitted ray tracing.

We argue that a chunk of performance is missing for some coherence-related
issues. Global effects (e.g. path tracing) are incoherent, and packet-based tech-
niques too do not help whenever rendering algorithm lack of coherence between
rays. However, our path tracing implementation do not use any optimization to
increase coherence, e.g. rays sorting. Also in Whitted ray tracing there is some
coherence missing after first bounces.

3.9 Conclusion

In this Chapter, we described a parallel ray tracer for distributed memory ar-
chitectures. Our method demonstrates a combination of different techniques to
improve load balancing. We compute a per-pixel ray tracing cost estimate using
fast GPU algorithms. We further exploit this information, and use work stealing,
and in-frame steals, for dynamic load balancing algorithms. These techniques
are combined with a fast packet-based ray tracer, and further network optimiza-
tions. Our results indicate that tile sorting based on a cost estimate fits well
into dynamic load balancing, and provides good scalability for multiple workers.

In future work, we would like to see how effective these techniques might be
for GPU-based ray tracing implementations (e.g. Nvidia OptiX [81] employs a
three-tiered dynamic load balancing approach on multi-GPUs).

With increasingly computational power available for commodity hardware,
we believe that similar balancing techniques will become of growing interest.

Acknowledgments

This work has been partially funded by a DAAD Scholarship and a HPC-
EUROPA2 project (#228398). We wish to acknowledge Thomas Ertl and Vit-
torio Scarano for supporting this work. We also acknowledge the members of
the SCI Institute at the University of Utah for their support with Manta code.
Many thanks to the modelers Roberto Andreoli for the Paestum Temple and
Ekklesiasterion, and Veronica Sundstedt (Computer Graphics Group, Univer-
sity of Bristol) for the Kalabsha temple. The Toasters scene is from the Utah
3D Repository, Cornell Box from the Cornell University, the bunny from the
Stanford 3D Scanning Repository; Environment maps are taken from Debevec
repository.

73

CHAPTER 3. LOAD BALANCING BASED ON COST EVALUATION

Figure 3.12: Images rendered with our parallel ray tracer.

74

3.9. CONCLUSION

Scene Cornell box Ekklesiasterion Toasters Temple
Regular without WS 11.1645 2.90615 0.262 0.0481
Regular 10.7078 2.88738 0.254 0.0433
SAT Adaptive Tiling 10.3100 2.86813 0.245 0.0417
SAT Sorting 9.8027 2.45724 0.225 0.0390
1 worker 74.656 16.494 1.778 0.2920
speedup* 6.7 - 7.6x 5.7 - 6.7x 6.8 - 7.9x 6.1 - 7.5x
efficiency* 83 - 95% 70 - 83% 84 - 98% 75 - 93%

+12% +15% +14% +19%

Table 3.2: Performance comparison for our four test scenes; timings are given
in seconds per frame. Tests have been performed with 8 workers and multi-
threading. (*) Speedup and efficiency are shown for Regular without WS and
SAT Sorting approach

Test setup 1 2 3 4 Speed-up
Manta standalone 0.160 0.319 0.475 0.629 3.93×
Master + a remote node worker 0.159 0.315 0.468 0.617 3.88×
Master + a worker (same host) 0.159 0.314 0.464 0.468 2.94×

Table 3.3: Exploiting multi-threading scalability with a different number of
threads and setups. Timings are given in frames per second. This test uses the
Cornell box scene with maximum recursion depth of 4, 8 samples per pixel, and
a resolution of 1024×1024. For the load balancing, we used the SAT sorting
approaches.

Workers 1 4 8 16
Regular without WS 74.656 20.615 11.165 7.203
Regular // 19.514 10.708 6.303
SAT Adaptive Tiling // 19.300 10.610 6.142
SAT Sorting // 18.705 9.823 5.770

Table 3.4: Scalability for the Cornell box test scene using different balancing
techniques. Timings are given in second per frame.

75

CHAPTER 3. LOAD BALANCING BASED ON COST EVALUATION

(a) (b) (c) (d)

Figure 3.13: Effectiveness of the cost map generation in different test scenes.
For each scene, we show real the packet-based cost map based on timings (a),
the GPU-based cost map estimate (b), an explanatory difference map (c), and
the resulting adaptive tiling (d). The cost maps are obtained mapping the cost
of the pixel/packet into the range [0, 1]. The difference map is mapped on a
gradient: In blue areas, estimation is more precise, whereas in red areas is less
accurate.

76

4
Distributed Load Balancing on

Agent-Based Simulations

We have shown that even an embarrassingly parallel problem may present high
irregularities in the workload. Hence, we should care of load balancing by using
advanced techniques and combining them together keeping in mind the under-
lying hardware architecture we are using. Tackling of load balancing is even
trickier when tasks present dependencies to other tasks and we should carefully
handle expensive data movement between processors. For instance, scientific
simulations present both an intricate task dependency pattern and workload
irregularity (i.e. load balancing problems). In this context, implementations
on distributed memory architecture do not suit the use of algorithms like work
stealing with very random steals. By converse, such simulations seem to be a
perfect candidate to experience different kind of distributed strategies.

In this Chapter, we focus on a class of simulations dubbed Agent-based Sim-
ulation where a large number of agents move in the space, obeying to some
simple rules. Since such kind of simulations are computational intensive, it is
challenging, for this contest, to let the number of agents to grow and to increase
the quality of the simulation. A fascinating way to answer to this need is by
exploiting parallel architectures.

We present a novel distributed load balancing schema for a parallel imple-
mentation of such simulations. The purpose of such schema is to achieve an high
scalability. Our approach to load balancing is designed to be lightweight and
totally distributed: the calculations for the balancing take place at each compu-
tational step, and influences the successive step. To the best of our knowledge,
our approach is the first distributed load balancing schema in this context. We
present both the design and the implementation that allowed us to perform a
number of experiments, with up-to 1, 000, 000 agents. Tests show that, in spite
of the fact that the load balancing algorithm is local, the workload distribution
is balanced while the communication overhead is negligible.

77

CHAPTER 4. DISTRIBUTED LOAD BALANCING ON AGENT-BASED

SIMULATIONS

4.1 Introduction

The simulation of groups of agents moving in a virtual world is a topic that has
been investigated since the 1980s. A widespread approach to this kind of simu-
lations has been introduced in [91] and it takes inspiration from particles system
[85]. In a particle system there is an emitter that generates a number of particles
that move accordingly to a set of physics-inspired parameters (e.g. initial ve-
locity, gravity). The particle system approach is expanded with the purpose of
simulating a group of more complex entities, dubbed autonomous agents, whose
movements are related to social interactions among group members.

A classical example of use of this approach is the flocking model proposed
by Reynolds [91], which allows to simulate a flock of birds in the most natural
possible way. Elements of this simulated flock are usually named boids (from
birdoid) and got instilled a range of behaviors that induces some kind of per-
sonality. The behaviors are, in the most of cases, simply geometric calculations
performed on each boid. Commonly, every boid is subject to three different be-
haviors: separation from other boids, alignment to other boids flight direction,
and cohesion to other boids. Each of these behaviors is rendered by a force that
is applied on the boid, and whose intensity depends on a fixed number of near
flockmates, within a given radius which determines the boid’s Area Of Interest
(AOI). Actual implementations of the boid model may vary [45, 75, 90, 97] but
the idea is the following: at every step of the simulation, for every boid b and for
each behavior in the personality the system calculates a request to accelerate in
a certain direction as the result of a weighted sum of all the forces applied on b.

As a counterpart of the realism of the model the computation complexity
of the model is O(n2), where n is the number of agents in the simulation.
A way to achieve good performances, as the number of the agents increases,
we can distribute the calculation on a number of workers. Several parallel
implementation of the flocking model have been proposed (cf. [45, 46, 90, 113]).
A good parallel implementation should strive to achieve two conflicting goals:
(1) balance the overall load distribution, and (2) minimize the communication
overhead due to tasks interdependencies.

A simple way to partition the whole work into different tasks is to assign
a fixed number of agents to each available worker [93]. This approach named
agents partitioning allows a balanced workload but introduce a significant com-
munication overhead (an all–to–all communication is required).

By noticing that social forces decay exponentially with distance, most of
agent-based simulations systems limit the interaction between agents to a fixed
range that is agent’s Area of Interest (AOI). Using this observation, several space
partitioning approaches have been proposed [46, 112, 113] in order to reduce the
communication overhead.

In this approach, the space to be simulated is partitioned into regions. Each
region, together with the agents contained are assigned to a worker. Since the
AOI radius of an agent is small compared with the size of a region, in this
approach the communication is limited to local messages (messages between

78

4.1. INTRODUCTION

workers, managing neighboring spaces, etc.). On the other hand, since agents
can migrate between regions, load imbalance may occur among the workers. To
maintain an even distribution a dynamic partition mechanism is needed: during
the simulation, the space partition is updated according to the observed density
(number of agents) of the regions. Again the dynamic partitioning should be
conducted without introducing too much communication. For instance, it may
be not reasonable to update the partitioning using a centralized approach, i.e.
the master decides which agents are to be migrated to which worker, since it
would require an all–to–all communications.

Briefly introducing the Reynolds’s behavioral model

The behavioral model used in this Chapter has been introduced by Craig
Reynolds [91] in order to simulate the animal motion of bird flocks and fish
schools, also known as boid. The basic flocking model consists of three
simple steering behaviors which describe how an individual boid maneuvers
based on the positions and velocities of its nearby flock-mates:

• Alignment, steer towards the average heading of local flock-mates

• Cohesion, steer to move toward the average position of local flock-
mates

• Separation, steer to avoid crowding local flock-mates

Alignment Cohesion Separation
The radius used to detect local flock-mates are usually different for each
single behavior.

4.1.1 Related work

Parallel Agent-based Simulation While the area of agent-based simula-
tions has been actively investigated for decades, commonly the results are con-
centrated on small scale simulations, i.e. with few thousands agents. Scientific
interest raised in studying large scale simulation, with the interaction of more
than 100, 000 agents [112].

Several shared memory agent-based simulations implementations have been
proposed, on a large variety of hardware platforms.

In [45] the mapping of the flocking behavioral model with obstacles avoidance

79

CHAPTER 4. DISTRIBUTED LOAD BALANCING ON AGENT-BASED

SIMULATIONS

Figure 4.1: Two snapshots showing 1, 000 agents simulated by 4 workers: (left) a
simulation step corresponding to a sparse distribution of agents; (right) a dense
distribution (middle regions are thinner). This screenshots have been obtained
by gathering simulation data on a single worker that performed the rendering.
A video is available [60].

on streaming-based GPUs is presented. An agent-based simulation optimized for
large shared-memory platforms is described in [63]. Similarly, [90] implemented
crowds and other flock-like group motion on a multi-core Cell Processor.

Different approaches have been tried on cluster of high performances PCs.
Such architectures still require some efforts to tackle the communication/load
balancing trade-off. In [84] a 2D parallel framework is proposed that is capable
of simulating and rendering the motion of 10, 000 pedestrians in real time. This
framework is based on a master/worker paradigm: for each simulation step, the
master assigns a portion of pedestrian to each worker. Each worker simulates
the pedestrian assigned and sends back the result of its computation.

In [112] a result is presented that is particularly relevant to our discussion but
from a different point of view: it present a non-conventional use of the flocking
model for document clustering, furthermore they implement such algorithms as
an hybrid solution, on a cluster of GPUs.

Dynamic load balancing Dynamic load balancing schemes represent a chal-
lenge for parallel implementation in several context [57]. For instance, in [23]
a dynamic portioning schema have been proposed for Parallel Ray Tracing.
In [113] the authors implemented Reynolds’ model using a space partitioning
scheme with centralized load balancing. Unfortunately, the high computational
cost of the proposed load balancing schema precludes the use of such approach
on each simulation step, as the authors report.

Other approaches have been explored to parallelize massive simulations on
different architectures; for instance in [22] a system is presented that exploits a
Peer-to-Peer infrastructure in order to distribute the computational load.

More complex partitioning approaches tackle the load balancing from a ge-
ometrical point of view: irregular shape regions (convex hulls) [98]; quad tree,
k-d tree, and region growing [92]; Orthogonal Recursive Bisection [46].

80

4.2. BACKGROUND

Figure 4.2: The simulation carried out on 4 workers: upper part the steps each
worker executes; lower part the main region divided into 4 slices of different
sizes, associated to workers.

4.1.2 Our Result

All the works previously cited in this sections exploits centralized load balanc-
ing schemes, i.e. involving a worker→master→worker communication pattern
every time load balancing is needed. There are two reasons that let us suppose
that centralized schema may not be the way to improve significantly the perfor-
mances, especially in case of large simulations, where all-to-all communication
is prohibitively expensive. First, the centralizing communications is bottleneck
and may have a negative impact to the system scalability. Second, whereas a
centralized balancing schema is used, complex calculations are usually involved,
harming system performances.

In this Chapter we present a novel distributed load balancing schema whose
purpose is to achieve efficiency and an high scalability. Our approach to load
balancing is designed to be lightweight and totally distributed: the calculations
for the balancing take place at each computational step, and influence the suc-
cessive step. To the best of our knowledge, our approach is the first distributed
load balancing schema in this context.

We present both the design and the implementation that allowed us to per-
form a number of experiments, with up-to 1, 000, 000 agents, whose results are
discussed in the following sections.

4.2 Background

4.2.1 Behavior Model

Our work is based on the flocking model developed by Reynolds [91]. Every
agent has its own personality that is the result of a weighted sum of a number
of behaviors. The simulation is performed in successive steps: at each step,

81

CHAPTER 4. DISTRIBUTED LOAD BALANCING ON AGENT-BASED

SIMULATIONS

for each agent and for each behavior in the personality, the system calculates
a request to accelerate in a certain direction in the space, and sums up all of
these requests; then the agent is moved along this result.

The most trivial implementation of the neighborhood calculation consists in
a O(n2) proximity screening, and for this reason the efficiency of the implemen-
tation is yet to be considered an issue. Actual implementations rely on the fact
that the behavior model is designed to mimic natural-inspired models where the
limited visibility of real birds allow to bound the range of interaction.

4.2.2 Parallel Agent Simulation

We developed a distributed agent-based simulation in order to evaluate and
compare the performances of several fully distributed load balancing schemes
(cf. Section 4.4).

We use a space partitioning model where each worker maintains a portion
of the simulated space, henceforth region, and is responsible for the simulation
of agents belonging to such region. In order to guarantee the consistency of
parallel implementation with respect to the sequential one, each worker needs
to collect information about the neighboring regions.

At the beginning of the simulation, the system randomly generates a quantity
of agents within the main region. Each simulation step is formed by three
phases (cf. Figure 4.2). We describe here the execution of a single step for a
single worker. First of all the worker sends to its neighbors the information
about the agents belonging its region but that also may fall into the AOI of
the neighbor’s agents. This information exchange is locally synchronized in
order to let the simulation run consistently. During the simulation phase the
contribution of each behavior for each agent is calculated as a weighted sum.
At the end of simulation phase, each worker is able to yield some statistics on
the distribution of the agents within the region. These statistics are shared
with neighbors workers in such a way that all the workers are able to calculate
the novel partitioning on their own. We emphasize that the load balancing
algorithm, which moves the boundary between neighbor regions, is quite simple
(cf. Section 4.4) and fully distributed, hence it will not represent a bottleneck
for the system.

4.3 Agents partitioning

In order to better exploit the computing power provided by the worker of the
system, it is necessary to design the system so that the simulation always evolves
in parallel, avoiding bottlenecks. Since the simulation is synchronized after each
step, the whole simulation advances with the same speed provided by the slower
worker in the system. For this reason it is necessary to design the system in
order to balance the load between the workers.

The whole simulation will be carried out in a tridimensional space that will
be partitioned along one single dimension in regions (cf. Figure 4.1). Depending

82

4.3. AGENTS PARTITIONING

on the kind of simulation, we define a number of parameters that will influence
the load balancing schema. A main region will be set large enough to contain all
the agents in each step of the simulation; this to assure that agents will not move
outside this region. The radius for the agents’ AOI is named ǫ. This radius,
as well as the shape of the AOI, is correlated to the type of simulation. In the
following we assume that ǫ is small compared to the size of a region and each
agent, in a single step of simulation, is not allowed to move for more than ǫ. The
value of ǫ is important because it will influence the amount of communication
between two contiguous workers (i.e., workers with adjacent regions).

4.3.1 Handling the boundary

For sake of clarity we will discuss the rationale behind the design of our load
balancing schema by describing it in the simpler case of two workers. In Section
4.4.5 we will generalize the schema to a any number of workers.

Figure 4.3: Load balancing with two workers: the main region is partitioned
into Sl, simulated by pl and Sr simulated by pr. El (resp. Er) represents
the portion of Sr, (resp. Sl) that needs to exchange information before each
simulation step.

The main region is partitioned into two regions, Sl and Sr. In Figure 4.3
we depict this situation, please note that even if our system is designed for
tridimensional space, for sake of clarity, our figures will present a bidimensional
space. For brevity, we will describe the idea for worker pl, without loss of
generality. The agents present in the region Sl are simulated by worker pl. AOI
of some of the agents in Sl will intersect Sr and, for this reason, throughout the
simulation it will be necessary to share the information about the agents in such
AOI. To handle this situation we define El as the portion of Sr that contains

83

CHAPTER 4. DISTRIBUTED LOAD BALANCING ON AGENT-BASED

SIMULATIONS

Figure 4.4: Four cases for agent position when moving to a new simulation step.

the agents laying in the AOI of some of the agents in Sl. In other words, El is
the leftmost ǫ-wide slice of Sr.

The worker pl, to carry out the simulation of agents in Sl, needs all the
agents lying in both Sl and El. Before each simulation phase, the position of
the agents lying in El needs to be updated with information coming from pr,
the same happens for Er and pl.

When more than two workers are involved, each worker, except for the first
and the last one, has two neighbors. In this case before each simulation phase,
each worker communicates with both its neighbor in order to be updated about
the position of agents close to its boundaries.

4.3.2 Special Cases

The exchange of information between pr and pl needs to take into account the
fact that agents may move across the regions and different cases may raise (cf.
Figure 4.4): (a) an agent laying in Sl before and after the simulation step; (b)
an agent laying in El before and after the simulation step; (c) an agent moves
from Sl to El; (d) an agent moves from El to Sl. Case (a) and (b) are easy to
be handled because the agent continues to be simulated by the same worker.
Cases (c) and (d) is where communication between pl and pr is needed to hand
over the agent.

We will shortly discuss case (c) in Algorithm 4 where an agent moves from
Sl to El, in this case two things must be taken into account: the agent will be

84

4.4. DISTRIBUTED LOAD BALANCING SCHEMES

sent to pr (line 6) and it must be also kept by pl because it may belong to the
AOI of some of the agents in Sl (line 9).

Algorithm 4 Handling the boundary (code for worker pl)

1: {Partition agent’s set in 4 subset}
2: Ma ←− { agents in case (a) }
3: Mc ←− { agents in case (c) }
4: Oc ←− { agents in Ma belonging to Er }
5: Oa ←− Mc

6: send Oa and Oc to pr
7: receive Ia and Ic from pr
8: agents in Sl ←− {Ma ∪ Ia}
9: agents in El ←− {Mc ∪ Ic}

4.4 Distributed load balancing schemes

In this Section we present three load balancing schemes we have developed and
tested on our system. The rationale of these schemes is to provide a distributed
load balancing by using just local communication.

As described above, the main region is partitioned into regions by slicing it
along one single dimension (cf. Figure 4.3). We denote with αl the size of Sl

along such dimension. Let sl (resp. sr, el, er) be the number of agents in Sl

(resp. Sr, El, Er). Based on the load observed by pl and its neighbor, the load
balancing algorithm will modify the value of αl by moving the boundary; the
purpose is to improve the load balancing for the successive step of computation.

More formally, the load balancing algorithm aims to select the best value of
αl in order to:

1. minimize the unbalancing, that is |sl − sr|;

2. minimize the communication required for the synchronization phase, that
is |el + er|

To apply each one of the following load balancing schema, the workers, pl
and pr, need some additional information that will be exchanged during the load
balancing phase. We will shortly discuss this overhead for each of the following
algorithms.

Assumptions Our load balancing schema relays on two assumptions: (i) the
measure of the computational load of each worker is linear in the number of
agents (ii) the agents are uniformly distributed along the dimension the split-
ting occurs. The effect of the first approximation will be mitigated by succes-
sive refinements of the method, the effects of the second approximation deserve

85

CHAPTER 4. DISTRIBUTED LOAD BALANCING ON AGENT-BASED

SIMULATIONS

further investigations but we emphasize that, regardless of the effect of this as-
sumption, we experienced good performances also with a large number of agents
(cf. Section 4.5).

4.4.1 Static partitioning (static)

In order to provide a baseline scheme which will be compared with our proposals,
we have implemented a static partitioning, where the value of α is fixed, for each
worker, to dx/w, where w is the number of workers/regions and dx is the size
of the main region along the splitting dimension. The scheme will be also used
to evaluate the degree of unbalancing of a given testbed simulation.

4.4.2 Region wide load balancing (dynamic1)

Assuming that agents are uniformly distributed along the splitting dimension
in the whole region assigned to a worker, we may define a simple algorithm that
moves the boundary by evaluating the values of sl and sr.

Let αl(t) be the value of αl at simulation step t. The load balancing algo-
rithm updates the value of αl according to the following equation:

αl(t+ 1) = αl(t) +
sr − sl

2
·
αl(t) + αr(t)

sl + sr
,

�

�

�

�4.1

where the first fraction represents the number of agents to be moved to bal-
ance the load between pl and pr and the second one is the amount of linear space
containing a single agent, under the “uniformly distributed agents” assumption
stated above.

The overhead of communication, for pl, is the transmission of sr and αr.
Thus, after each simulation phase, pl exchanges such information with pr and
then both, use Eq. 4.1 to compute the new partitioning. Notice that no ad-
ditional communication is required to spread the updated boundary position.
Clearly this communication does not represent a bottleneck because it is limited
to only two values, for each step. Notice that when the number of worker is 2
the exchange of information is not strictly required because both sr and αr can
be calculate by pl by using sl and αl, respectively. Of course this is not true in
the most general case with more workers.

4.4.3 Mitigated region wide load balancing (dynamic2)

In this algorithm we aim at mitigate the effects of approximation of considering
agents uniformly distributed across the space. In general, such distribution
depends on the behavioral model and is usually not uniform. For instance
several flock simulations models converge to a state where agents aggregate into
few dense groups [19]. On the other hand, if the distribution had been uniform,
a static partitioning would be enough to achieve a good load balancing.

The load balancing schema above is prone to a phenomenon, when a large
flock of agents rapidly moves between the two workers: the boundary is moved

86

4.4. DISTRIBUTED LOAD BALANCING SCHEMES

Figure 4.5: Load balancing with multiple workers. Each worker, after each
simulation step, updates, by turns, one of is boundaries. Turns are chosen in
such a way that neighbor workers always update the position of their shared
boundary at the same simulation steps.

too aggressively in the attempt of balancing the flock movement (cf. Section
4.5 for test results) and it oscillates. Such oscillation is an effect of the assump-
tion of uniformity of distribution, that underestimates the amount of agents
approaching the boundary. Clearly the wider this oscillation is the larger is the
number of agents to be handed over between pl and pr.

To mitigate this effect we have slightly changed the balancing equation, by
adding a constant k that adds some inertia in moving the boundary:

αl(t+ 1) = αl(t) + k ·
sr − sl

2
·
αl(t) + αr(t)

sl + sr

�

�

�

�4.2

We experimentally observed that this version of the equation with k = 1/2
provides good results in alleviating the oscillations.

4.4.4 Restricted assumption load balancing (dynamic3)

We refined the algorithm even more by relaxing the assumption of uniformity
of the distribution of the agents: the assumption will be applied just to the
spaces El and Er, instead of Sl and Sr. As a counterpart we had to limit the
per-step movement of the boundary to ǫ which represent the size of both El and
Er along the splitting dimension. However such restriction does not represent a
real limitation since during the test we have performed, the requested movement
was always smaller than ǫ.

αl(t+ 1) = αl(t) +







min
(

ǫ, sr−sl
2 · ǫ

el

)

if sr > sl,

max
(

−ǫ, sr−sl
2 · ǫ

er

)

otherwise.

In this new equation the overhead of communication consists in exchanging
the values of sl, el and αl. Again such information can be rapidly shared between
neighbor workers.

87

CHAPTER 4. DISTRIBUTED LOAD BALANCING ON AGENT-BASED

SIMULATIONS

4.4.5 Generalization to multiple workers

The load balancing schemes we defined above for two workers can be easily
generalized to any number of workers. We describe here a distributed load
balancing schema for parallel agent based simulations. The system is composed
by a set of n workers having a linear topology, i.e. worker pi has two neighbors,
pi−1 and pi+1. Obviously, p0 and pn−1 have a single neighbor.

The rationale behind the generalization is straightforward, in the 2-workers
load balancing schema we used pl and pr to indicate the two workers. The
workers will be distinguished, by their index, in even workers and odd workers.
The idea is to apply the same 2-workers schema to couples of neighbors workers,
on alternate steps: on even simulation steps, even workers play the role of pl
and the odd workers play the role of pr, while in the odd simulation steps even
workers will be pr and odd workers will be pl. In Figure 4.5 is depicted the
generalization in the case of 8 workers: two successive step of simulation are
shown. In the visualization it appears clear how on alternate steps worker 0
and worker n will not perform any load balancing.

Figure 4.6: Distribution of agents per worker. Each color represents a different
worker. x-axis indicates the simulation step (1, 000 simulation steps are de-
picted) while th y-axis represents the number of agents. (a) (100, 000; 8; static)
(b) (100, 000; 8; dynamic1) (c) (100, 000; 8; dynamic2) and (d) (100, 000; 8;
dynamic3).

4.5 Tests and performances

4.5.1 Test setting

We have implemented the 4 methods by developing a parallel version of OpenSteer[89].
OpenSteer is an open-source C++ library that implements a plurality of steering
behaviors to be used as a standard library for videogames.

88

4.5. TESTS AND PERFORMANCES

Test platform

Test machine is an IBM HS21 Cluster with 256 nodes available at
CRESCO Project computing platform, Portici ENEA Center. Each node
is equipped with 2 Xeon Quad-Core Clovertown E5345 at 2.33 GHz and
16 GByte RAM. The nodes are interconnected with an Infiniband network
(7−→ additional details on Appendix A.2).

Software details Our parallelization is based on MPI [69]. In particular the
system mapped MPI processes onto cores. Underlying MPI implementation im-
plicitly switches between most suitable protocol to let workers to communicate
(e.g. Infiniband rather than Inter-Processes Communication).

We performed tests using a different number of agents, but fixed agent den-
sity (hence setting the main region volume accordingly). We set a bounding
radius in order to assure that agents does not go outside the main region. For
each agent overtaking this radius, an additional backward steering force is added
to the standard model.

The state of an agent comprises two vectors: position and speed. Other
common properties (i.e. mass) are defined constant and are not shared/sent
between workers. Of course, the bigger is the state of an agent, the more
expensive will be the communication overhead of the parallelization.

4.5.2 Load balancing analysis

The batch of tests we performed simulates 1, 000, 10, 000, 100, 000 agents run-
ning on 8, 16, 32 and 64 cores. Each tests lasts 11, 000 simulation steps, the first
1, 000 steps have been discarded in order to let the simulation to stabilize. The
set of tests we performed is the result of the Cartesian product {1, 000, 10, 000,
100, 000} × {8, 16, 32, 64} × {static, dynamic1, dynamic2, dynamic3}. In the
next paragraphs and in figures we will indicate the test setting by using a triple
took from such set.

For each simulation step run, we collected the number of agents simulated
by each worker/core, the number of agents exchanged between neighbor workers
(communication).

The test results are encouraging and confirm that dynamic2 and dynamic3
handle the balancing of the agents between neighbor workers pretty well. More-
over, the amount of communication overhead injected by the hand over of the
agents between neighbor workers is negligible. To avoid cluttering we illus-
trate the (100, 000; 8; ∗) cases in Figure 4.6, reporting the distribution of agents
among workers, in each simulation step, from upper left and clock-wise we have:
static, dynamic1, dynamic2, dynamic3. In Figure 4.6.(a) (100, 000; 8; static) is
shown and it depicts the heavy unbalancing in the distribution of the load: two
of the workers simulate ≈ 30, 000 agents instead of the ideal 12, 500. Figure
4.6.(b) shows the dynamic1 algorithm which provides a better balancing but
suffers of the oscillation phenomenon mentioned in Section 4.4.3. To ameliorate

89

CHAPTER 4. DISTRIBUTED LOAD BALANCING ON AGENT-BASED

SIMULATIONS

Figure 4.7: Number of agents per worker: each series indicates the number of
agents per worker. x-axis indicates the simulation step (1, 000 simulation step
are depicted) while the y-axis represents the number of agents. (a) (100, 000; 8;
dynamic2). (b) (100, 000; 8; dynamic3).

the visibility of such phenomenon we provides a zoomed section of the graph (50
simulation steps). The two successive algorithms, dynamic2 and dynamic3, are
shown in Figure 4.6.(c) and (d), respectively. The figure represents an almost op-
timal balanced graph showing that each worker handles ≈ 12, 500 agents. Both
the algorithms sensibly reduce the oscillations, even if they are still measurable,
shown in Figure 4.7; please note how dynamic3 (b) behaves slightly better than
dynamic2 (a), by providing oscillations that have smaller amplitude.

In Table 4.1 we summarize the results we measured in other test settings.
For each test we report the standard deviation (σ) of the number of agents
per worker and the total number of agents exchanged during the communica-
tion phase of the algorithm (communication). The results indicates that to-
gether with a good performance in reducing the unbalancing we measure an
increase in the communication cost. The best refinement of the load balanc-
ing schema, dynamic3 provides substantially smaller standard deviation but

90

4.5. TESTS AND PERFORMANCES

needed more than the double of agents exchange between workers, respect to
the static partitioning. The oscillations we noted in dynamic1 deeply impact
on the communication cost, this can be noticed by comparing the performances
of (100, 000; 8/16; dynamic1) and (100, 000; 8/16; dynamic2/dynamic3). On
the other hand, when the number of workers is higher, dynamic1 behaves as
dynamic2 and dynamic3 in terms of communication but the balancing worsens.
Overall the dynamic3 algorithm performs pretty well on all test cases. More-
over, the improvement provided by dynamic algorithms seems to be increasing
as the number of either workers or agents grow (see scalability in Figure 4.8).

Figure 4.8: Scalability.
Continuous line is
(100, 000; ∗; dynamic3);
dotted line is (100, 000;
∗; static). x-axis in-
dicates the number of
processors; y-axis plots
the average number
of simulation step/per
second measured during
a test of 12, 000 steps.

Discussion Finally, we performed a quite massive simulation: (1, 000, 000; 64;
dynamic3). The objective of this test is to measure the system performances in
circumstances that can hardly be managed by a single machine. The execution
of a run of 2, 000 steps required1 140, 754 ms, which correspond to 14.21 sim-
ulation steps computed per second. We have also observed that, after a small
number of steps (around 100), where the load balancing algorithm stabilizes,
the performances of the system are quite constant.

Our load balancing strategy even simplifies the tuning of the proximity data
structure (e.g. selecting the 3d grid resolution). In fact, whenever workload bal-
ance is assured, we may assume that the number of agent per worker is roughly
constant, hence to choose the right data structure tuning for this configuration.

1In order to measure the total parallel computation time, we used a specific worker that,
on every step, collects information about the completion time for each.

91

CHAPTER 4. DISTRIBUTED LOAD BALANCING ON AGENT-BASED

SIMULATIONS

4.6 Conclusion

Agent based simulations, due to their computational power requirements, ap-
pear to be a natural application for parallel architectures. In this context it
is challenging to design the system so that the simulation evolves in parallel,
avoiding bottlenecks, in order to better exploit such computing power. Since
the simulation must be synchronized after each step, the system advances with
the same speed as the slower worker in the system is capable of. For this reason
it is necessary to take into account a good implementation of a load balancing
mechanism. Several centralized load balancing schemes have been proposed.
A common problem with these approaches is that the centralized management
usually requires a large amount of communication – between workers and the
master node, which act as a load balancing manager – that consumes bandwidth
and introduces latency.

We presented a novel distributed load balancing schema whose purpose is to
achieve an effective load balancing introducing a low communication overhead.
Our schema is designed to be lightweight and totally distributed: the calcula-
tions for the balancing take place on every worker at each computational step,
and influences the successive step; each communication is local (i.e., between
neighbor workers). To the best of our knowledge, our approach is the first
distributed load balancing schema in this context.

We presented both the design and the implementation that allowed us to
perform a number of experiments, with up-to 1, 000, 000 agents. The tests
revealed that the architecture presents a quite good scalability: the commu-
nication overhead, due to the local workers interaction, is dominated by the
speed-up achieved thanks to the better load balancing, provided by our schema.

Future works Our load balancing schema aims at balancing along a single
dimension the uneven distribution of agents in a tridimensional space. A rea-
sonable evolution of such schema is to take into account the fact that the space
is 3d: current implementation does not properly balance work when agent clus-
tering fully exploits the three dimensions. For instance, in the simulation of a
flock of birds or a school of fishes we may find several flocks overlapping and
spreading across the whole space and not just lying along one single dimension.
We plan to extend our technique to a multi dimensional space.

We reported some early tests of a simulation with 1, 000, 000 agents. One
technical problem we solved was the creation of such amount of agents: this
phase is still centralized, in the current version of the system, and for this
reason the number of agents in the system was limited by the memory (and
the capability of representation) of a single worker. We plan to distribute such
phase in order to reach a number of agents that is proportional to the number
of workers in the system and it is clear that in such scenario we would easily
reach the goal of a multi-millions agents simulation.

92

4.6. CONCLUSION

Acknowledgments

We gratefully thank for its collaboration in providing some of the computa-
tional resources ENEA (Ente per le Nuove Tecnologie, l’Energia e l’Ambiente)
Research Center in Portici (Napoli, Italy). This work has been supported by a
ISCRA CINECA. We would like to thank Craig Reynolds for OpenSteer.

93

C
H
A
P
T
E
R

4
.

D
IS
T
R
IB

U
T
E
D

L
O
A
D

B
A
L
A
N
C
IN

G
O
N

A
G
E
N
T
-B

A
S
E
D

S
IM

U
L
A
T
IO

N
ST
ab

le
4.1:

L
oad

b
alan

cin
g/com

m
u
n
ication

resu
lts

× (static) (dynamic1) (dynamic2) (dynamic3)

(1, 000; 8){σ - com.} 131.16 - 272, 976 36.03 - 624, 562 12.44 - 573, 275 6.39 - 584, 961

(10, 000; 8){σ - com.} 1292.54 - 581, 611 550.83 - 2, 336, 951 13.44 - 1, 355, 381 6.49 - 1, 236, 951

(100, 000; 8){σ - com.} 11, 480.80 - 746, 753 5, 324.28 - 22, 261, 600 10.94 - 1, 278, 788 5.14 - 1, 217, 074

(100, 000; 16){σ - com.} 5, 815.35 - 1, 407, 684 2, 146.36 - 16, 067, 865 12.13 - 3, 504, 703 7.43 - 3, 484, 038

(100, 000; 32){σ - com.} 3, 945.53 - 2, 927, 194 743.21 - 12, 714, 472 30.55 - 6, 896, 584 9.12 - 6, 877, 622

(100, 000; 64){σ - com.} 1, 975.22 - 5, 622, 336 260.21 - 15, 888, 243 106.06 - 13, 679, 714 19.44 - 13, 204, 903

9
4

5
Conclusion: Lesson Learned

In this dissertation, we discussed about the emerging problem of load balancing
in parallel computing.

The approach used places emphasis on real world practical aspects: We
proposed new models and algorithms for specific applications, hence we imple-
mented such techniques in nowadays parallel architectures in order to assess
their effectiveness.

In this Chapter we discuss about several interesting aspects emerged in this
dissertation, introducing our considerations about some key points that, for our
opinion, represent a remarkable lesson to attack the problem of load balancing
today.

Towards Massive Parallelism

Nowadays, it is clear that multi- and many-core is the future of computing. We
discussed in details about the reasons of that, in particular about three points
(Section 1.1.2): the power wall, the memory wall and the ILP wall. That said,
researcher in parallel computing will spend more and more time in effective
parallelization and load balancing techniques oriented to such architectures.

Distributed is efficient

While centralized algorithms could be smarter, because of the wider knowledge
of the computation they have (e.g. the Prediction Binary Tree in Chapter 2),
they represent a serious limit to the scalability of a parallel system. For sake
of clarity, we resume here the example of the PBT introduced in Chapter 2.
For instance, we assume that the time to compute the PBT is 1ms (actually
it costs fairly less). During this time, master cannot send new task, hence this
time is an overhead. The time lost during this phase is about n ∗ 1ms, thus
it increases linearly with the number of processors. We cannot assure that, for
higher number of processors, the gain in load balancing overtakes such overhead.
This is a clear limit to the scalability.

In the opposite, if the load balancing technique is distributed, this overhead
is essentially lower (it increases sub-linearly over the number of processors). For

95

CHAPTER 5. CONCLUSION: LESSON LEARNED

example, in Chapter 4, such overhead is bounded to the data exchange of few
bytes between close processors (i.e. two processors). Hence, instead of a global
centralized synchronization, we have a local distributed one.

Load balancing algorithms should be fast

To introduce a new load balancing technique in a parallel system often means
to introduce a new overhead. Such overhead is what we pay to run extra load
balancing computation. Obliviously, if the overhead is higher than the advan-
tage we have in balancing the workload, we fail to improve overall performance.
Usually, more is the whole computing time, higher is the change we have to use
more complex (i.e. time consuming) load balancing techniques. In the opposite,
in some interactive contexts, every single computation spent in load balancing
is valuable. In Chapter 3, we show that where the overhead is high (6 ms for
such example), the only way to have an improvement with load balancing is
by using a context-specific hiding technique (in the example, the asynchronous
prediction).

When using cost evaluation approaches, we should pay at-
tention to the fast vs accurate trade-off

In Chapter 4 we showed that an adaptive algorithm, i.e. an algorithm that
adapts the work distribution according to a work estimate, increases scalability.
Even if the adaptive approach is not new, our is the first one that effectively
works in an interactive context, performing balancing decision at each com-
putational step. This is possible because the proposed balancing technique is
totally distributed, and do not perform complicated compute-intensive calcula-
tion. Hence, the resulting approach is fast to compute. Moreover, our adaptive
approach is based on accurate predictive workload estimation (i.e. the number
of agents in a given volume). We showed that our approach overtakes in per-
formance several previous works based on expensive and elaborate centralized
computations, which usually implies a global synchronization.

Adaptive load balancing algorithm is a suitable solution
even for parallel computing and interactive context

For a long time, in context like Grid Computing researchers exploited adaptive
load balancing schema in their works. However, in Parallel Computing often
they are not considered an effective solution because of the high computation
time usually involved. In this dissertation, we showed several approaches using
adaptive technique. In works based on ray tracing and agent-based simulations
(Chapter 2 and 4), nevertheless computing time is not high in respect of com-
munication need, overhead easily overcomes the gain in balancing. Even in our
work based on cost map (Chapter 3), we showed that a trivial adaptive schema
is at least competitive with a dynamic one. We indicated two critical factors
that may affect the effectiveness of an adaptive schema:

96

• First, the time spent in computing the estimation. This includes the time
to obtain a prediction, the time spent in synchronization (usually present)
and the time to compute the new task assignment. As short it is, as small
will be the overhead of the approach.

• The second factor is the accuracy of the estimation. Depending by the
problem, we may have accurate prediction based on trivial properties of
the data set (e.g. the geometrical agent distribution used in Chapter 4),
or we may assume some restriction to have a good enough estimate. The
example of the Parallel Ray Tracing comes up in help. In Chapter 2,
for instance, we assumed a strong temporal coherence in order to obtain
estimation. Instead, in Chapter 3, we showed that a GPU technique does
not require temporal coherence between successive frames.

We have to trade-off these two factors in order to exploit both the problem and
hardware features.

Work stealing effectiveness strongly depends on task size
and task dependencies

Work stealing algorithm is great in balancing workload, but we should point
some considerations. In fact, depending by the context, steals could badly
affect performance for two reasons:

• A steal is a task transfer, hence it involves in (perhaps expensive) data
transfer.

• Random steals may involve tasks that are all but locals, hence badly af-
fecting data locality.

For these reasons, it is not suitable for an application like Agent-based Simu-
lation. Instead, it is perfect for Parallel Ray Tracing. Interestingly, like other
dynamic balancing techniques, work-stealing performance strongly depends on
task sizes. In Chapter 3, we showed that if load is almost balanced, it works
poorly. In the opposite, we obtained best performance when combining work
stealing on a regular subdivision with task-sorting based on estimation, i.e. with
not balanced workload.

Ease of parallelization does not necessarily mean ease to
balance workload.

The problem of Parallel Ray Tracing on a cluster of workstation represents
the paradox that embarrassingly parallel problems are not necessarily embar-
rassingly evenly balanced. In the contrary, the irregularity that may arise pose
challenges to balance the workload, requiring not ease balancing techniques. We
also showed that Parallel Ray Tracing exhibits different workload characteristics
with different techniques (in Chapter 3, Whitted ray tracing’s workload is more
balanced than Kajiya path tracing one).

97

CHAPTER 5. CONCLUSION: LESSON LEARNED

Hybrid architectures may offer not-trivial design

The way that we can asset parallel computation on hybrid hardware may be
very various. A first approach, for instance, is the one to run the same algorithm
on all platforms available, i.e. using the same implementation. A second more
efficient approach consists to distribute tasks between platforms as we do in
the first approach, hence to use specialized implementations for each platform.
This means that the underling algorithm used by the platform can be extremely
varying depending by the platform characteristics. A third approach, instead, is
to run completely different tasks for different platform architectures. In Chapter
3, we had very specific hybrid architecture, i.e. a cluster of multi core CPUs
+ a single visualization node equipped with a GPU. For such architecture, we
showed an effective parallelization strategy were effective CPU computations
are performed by the CPU, meanwhile a GPU spent its computational time to
improve overall load balancing by producing a cost map.

98

A
Listing of test hardware platforms

A.1 HLRS, Universität Stuttgart

Cacau cluster

Institute HLRS, High Performance Computing Center Stuttgart
(Höchstleistungsrechenzentrum Universität Stuttgart)

Location Stuttgart (Germany)
Cluster type NEC Xeon EM64T Cluster
Cluster nodes 64 used
Node characteristic each equipped with 2 Intel Xeon EM64T

processors (dual SMP)
Node main memory 2 GB
Network Infiniband

A.2 ENEA Supercomputing, Portici

ENEA Portici Sezione 1, Alto Parallelismo

Institute Ente per le Nuove Tecnologie, l’Energia e l’Ambiente
Location Portici (Napoli, Italy)
Cluster type Cluster IBM x3850-M2
Cluster nodes 42 SMP nodes
Node characteristic 4 Xeon Quad-Core Tigerton E7330

clock 2.4GHz/1066MHz/6MB L2
Node main memory 32/64 GB
Network Infiniband 4XDDR

99

APPENDIX A. LISTING OF TEST HARDWARE PLATFORMS

ENEA Portici Sezione 2

Institute Ente per le Nuove Tecnologie, l’Energia e l’Ambiente
Location Portici (Napoli, Italy)
Cluster type Cluster IBM HS21
Cluster nodes 256
Node characteristic 2 Xeon Quad-Core Clovertown E5345

clock 2.33 GHz
Node main memory 16 GB
Network Infiniband 4DDR

A.3 VISUS Stuttgart

VISUS cluster

Institute VISUS, Universität Stuttgart
Location Stuttgart (Germany)
Cluster type Cluster of commodity workstations
Cluster nodes 8+1 (used)
Node characteristic Intel Quadcore

clock 3 GH z
Node main memory 2GB
Network Infiniband

A.4 ISISLab, Università degli Studi di Salerno

Hydra

Institute ISISLab, Università degli Studi di Salerno
Location Salerno (Italy)
Cluster type IBM HS20
Cluster nodes 32+1 (used)
Node characteristic Intel Quadcore

clock 3.20 GHz
Node main memory 1GB
Network Gigabit Ethernet
Software CentOS 5 linux, OpenMPI 1.1.1, Intel compiler

100

A.5. CINECA SUPERCOMPUTING, BOLOGNA

A.5 CINECA Supercomputing, Bologna

IBM SP6

Institute CINECA
Location Bologna (Italy)
Cluster type IBM pSeries P6-575
Cluster nodes 168 (available)
Node characteristic IBM Power6, 32 cores

clock 4.7 GHz
Node main memory 128 GB
Network Infiniband x4 DDR
Software OS AIX 6, MPI, OpenMP, IBM compiler

101

B
List of Related Publications

Parts of this dissertation have already been published in several publications.
The following is a list of papers, journals and technical reports that have con-
tributed to this thesis, and that might contain additional informations. Some
of these publications by now are significantly older than the thesis, and thus
may contain information (such as performance data) that is already outdated.
Technical reports have been made as a summary articles for research projects
(e.g. HPC-Europa projects). Their data and results are included in more recent
papers or journals, where these results are discussed in deep.

[23] Gennaro Cordasco, Biagio Cosenza, Rosario De Chiara, Ugo Erra, and
Vittorio Scarano.
Experiences with Mesh-like computations using Prediction Binary Trees.
Scalable Computing: Practice and Experience, Scientific International
Journal for Parallel and Distributed Computing (SCPE), 10(2):173187,
June 2009.

[30] Biagio Cosenza, Gennaro Cordasco, Rosario De Chiara, Ugo Erra, and
Vittorio Scarano.
Load balancing in mesh-like computations using prediction binary trees.
In ISPDC, pages 139146, 2008.

[25] Biagio Cosenza.
A Survey on Exploiting Grids for Ray Tracing.
In Eurographics Italian Chapter Conference, pages 8996, 2008.

[31] Biagio Cosenza, Gennaro Cordasco, Rosario De Chiara, Ugo Erra, and
Vittorio Scarano.
On Estimating the Effectiveness of Temporal and Spatial Coherence in
Parallel Ray Tracing.
In Eurographics Italian Chapter Conference, pages 97104, 2008.

[27] Biagio Cosenza.
Load Balancing Techniques for Parallel Ray Tracing, 2008.
Poster at HPC-Europa++ TAM-Workshop 2008, presented on 15-17/12/08
at HLRS Supercomputing Center, Universität Stuttgart.

103

APPENDIX B. LIST OF RELATED PUBLICATIONS

[28] Biagio Cosenza.
Synergy Effects of Hybrid CPU-GPU architectures for Interactive Parallel
Ray Tracing.
Science and Supercomputing in Europe, Research Highlights 2009. HPC-
Europa2 Technical Reports ISBN 978-88-86037-23-5, CINECA, 2009. ISBN
978-88-86037-23-5.

[26] Biagio Cosenza.
Evaluation of Adaptive Subdivision Schemas for Parallel Ray Tracing.
HPC-Europa: Science and Supercomputing in Europe, Technical Reports
2008 ISBN 978-88-86037-22-8, 2008. ISBN 978-88-86037-22-8.

[33] Biagio Cosenza, Carsten Dachsbacher, and Ugo Erra.
GPU Cost Estimation for Load Balancing in Parallel Ray Tracing.
(Submitted for journal publication)

[32] Biagio Cosenza, Gennaro Cordasco, Rosario De Chiara, and Vittorio
Scarano.
Distributed Load Balancing for Parallel Agent-based Simulations.
In PDP2011 - 19th Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Computing, 2011.

104

Bibliography

[1] Timothy Davis Alan Chalmers and Erik Reinhard. Pratical Parallel Ren-
dering. AKPeters, 2002.

[2] Gene M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In AFIPS ’67 (Spring): Proceedings of
the April 18-20, 1967, spring joint computer conference, pages 483–485,
New York, NY, USA, 1967. ACM.

[3] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James
Gebis, Parry Husbands, Kurt Keutzer, David A. Patterson,
William Lester Plishker, John Shalf, Samuel Webb Williams, and
Katherine A. Yelick. The landscape of parallel computing research:
A view from berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, Dec 2006.

[4] F. Baiardi, P. Becuzzi, P. Mori, and M. Paoli. Load balancing and lo-
cality in hierarchical n-body algorithms on distributed memory architec-
tures. In Peter Sloot, Marian Bubak, and Bob Hertzberger, editors, High-
Performance Computing and Networking, volume 1401 of Lecture Notes
in Computer Science, pages 284–293. Springer Berlin / Heidelberg, 1998.
10.1007/BFb0037155.

[5] Ioana Banicescu and Susan Flynn Hummel. Balancing processor loads
and exploiting data locality in n-body simulations. In In Proceedings of
Supercomputing95, 1995.

[6] Carsten Benthin, Ingo Wald, and Philipp Slusallek. A Scalable Approach
to Interactive Global Illumination. 22(3), 2003.

[7] Petra Berenbrink, Tom Friedetzky, and Leslie Ann Goldberg. The natural
work-stealing algorithm is stable. SIAM J. Comput., 32(5):1260–1279,
2003.

[8] J. Bigler, A. Stephens, and S.G. Parker. Design for parallel interactive ray
tracing systems. IEEE Symposium on Interactive Ray Tracing, 0:187–196,
2006.

[9] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling,
G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo,
K. Remington, and R. C. Whaley. An updated set of basic linear alge-
bra subprograms (blas). ACM Transactions on Mathematical Software,
28:135–151, 2001.

[10] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An effi-
cient multithreaded runtime system. In Proceedings of the Fifth ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPoPP), pages 207–216, Santa Barbara, California, July 1995.

105

BIBLIOGRAPHY

[11] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded
computations by work stealing. In Proceedings of the 35th Annual Sym-
posium on Foundations of Computer Science, pages 356–368, 1994.

[12] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded
computations by work stealing. Journal of ACM, 46(5):720–748, 1999.

[13] C. Boeres and V. Rebello. Cluster-based static scheduling: Theory and
practice. In SBAC-PAD ’02: Proceedings of the 14th Symposium on Com-
puter Architecture and High Performance Computing (SCAB-PAD’02),
page 133, Washington, DC, USA, 2002. IEEE Computer Society.

[14] David A. Carlson. Using local memory to boost the performance of fft
algorithms on the cray-2 supercomputer. The Journal of Supercomputing,
4:345–356, 1991. 10.1007/BF00129835.

[15] Loren Carpenter. The a -buffer, an antialiased hidden surface method.
SIGGRAPH Comput. Graph., 18(3):103–108, 1984.

[16] Alan Chalmers, Kurt Debattista, Veronica Sundstedt, Peter Longhurst,
and Richard Gillibrand. Rendering on Demand. In Eurographics Sympo-
sium on Parallel Graphics and Visualization, 2006.

[17] Alan Chalmers and Erik Reinhard, editors. Practical Parallel Rendering.
A. K. Peters, Ltd., Natick, MA, USA, 2002.

[18] J. Chapman, T. W. Calvert, and J. Dill. Exploiting temporal coherence
in ray tracing. In Proceedings on Graphics interface ’90, pages 196–204,
Toronto, Canada, 1990.

[19] Bernard Chazelle. Natural algorithms. In SODA ’09: Proceedings of the
twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
422–431, Philadelphia, PA, USA, 2009. Society for Industrial and Applied
Mathematics.

[20] Long Chen, Junmin Lin, and Guang R. Gao. Optimizing fast fourier
transform on a multi-core architecture. In in IEEE International Parallel
and Distributed Processing Symposium, 2007.

[21] Jaeyoung Choi and J.J. Dongarra. Scalable linear algebra software li-
braries for distributed memory concurrent computers. In Distributed Com-
puting Systems, 1995., Proceedings of the Fifth IEEE Computer Society
Workshop on Future Trends of, pages 170 –177, August 1995.

[22] Gennaro Cordasco, Rosario De Chiara, Ugo Erra, and Vittorio Scarano.
Some considerations on the design of a p2p infrastructure for massive
simulations. In International Conference on Ultra Modern Telecommuni-
cations (ICUMT ’09), October 2009.

106

BIBLIOGRAPHY

[23] Gennaro Cordasco, Biagio Cosenza, Rosario De Chiara, Ugo Erra, and
Vittorio Scarano. Experiences with Mesh-like computations using Predic-
tion Binary Trees. Scalable Computing: Practice and Experience, Scien-
tific international journal for parallel and distributed computing (SCPE),
10(2):173–187, June 2009.

[24] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms, Second Edition. The MIT Press,
September 2001.

[25] Biagio Cosenza. A Survey on Exploiting Grids for Ray Tracing. In Euro-
graphics Italian Chapter Conference, pages 89–96, 2008.

[26] Biagio Cosenza. Evaluation of adaptive subdivision schemas for parallel
ray tracing. HPC-Europa: Science and Supercomputing in Europe, Tech-
nical Reports 2008 ISBN 978-88-86037-22-8, 2008. ISBN 978-88-86037-22-
8.

[27] Biagio Cosenza. Load Balancing Techniques for Parallel Ray Tracing,
2008. Poster at HPC-Europa++ TAM-Workshop 2008, presented on 15-
17/12/08 at HLRS Supercomputing Center, Universität Stuttgart.

[28] Biagio Cosenza. Synergy effects of hybrid cpu-gpu architectures for in-
teractive parallel ray tracing. Science and Supercomputing in Europe,
Research Highlights 2009. HPC-Europa2 Technical Reports ISBN 978-88-
86037-23-5, CINECA, 2009. ISBN 978-88-86037-23-5.

[29] Biagio Cosenza, Gennaro Cordasco, Rosario De Chiara, Ugo Erra, and
Vittorio Scarano. Load balancing in mesh-like computations using pre-
diction binary trees. In 7th International Symposium on Parallel and
Distributed Computing, pages 139–146, 2008.

[30] Biagio Cosenza, Gennaro Cordasco, Rosario De Chiara, Ugo Erra, and
Vittorio Scarano. Load balancing in mesh-like computations using predic-
tion binary trees. In ISPDC, pages 139–146, 2008.

[31] Biagio Cosenza, Gennaro Cordasco, Rosario De Chiara, Ugo Erra, and
Vittorio Scarano. On Estimating the Effectiveness of Temporal and Spa-
tial Coherence in Parallel Ray Tracing. In Eurographics Italian Chapter
Conference, pages 97–104, 2008.

[32] Biagio Cosenza, Gennaro Cordasco, Rosario De Chiara, and Vittorio
Scarano. Distributed load balancing for parallel agent-based simulations.
In PDP2011 - 19th Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Computing, 2011.

[33] Biagio Cosenza, Carsten Dachsbacher, and Ugo Erra. [Submitted for jour-
nal publication] GPU Cost Estimation for Load Balancing in Parallel Ray
Tracing.

107

BIBLIOGRAPHY

[34] Franklin C. Crow. Summed-area tables for texture mapping. In SIG-
GRAPH ’84 Conference Proceedings, pages 207–212, New York, NY, USA,
1984. ACM.

[35] David E. DeMarle, Christiaan Gribble, and Steven G. Parker. Memory-
savvy distributed interactive ray tracing. In Eurographics Symposium on
Parallel Graphics and Visualization, pages 93–100, June 2004.

[36] David E. DeMarle, Christiaan P. Gribble, Solomon Boulos, and Steven G.
Parker. Memory sharing for interactive ray tracing on clusters. Parallel
Computing, 31(2):221–242, 2005.

[37] David E. DeMarle, Christiaan P. Gribble, Solomon Boulos, and Steven G.
Parker. Memory sharing for interactive ray tracing on clusters. Parallel
Computing, 31(2):221–242, 2005.

[38] David E DeMarle, Steven Parker, Mark Hartner, Christiaan Gribble, and
Charles Hansen. Distributed interactive ray tracing for large volume visu-
alization. In IEEE Symposium on Parallel and Large-Data Visualization
and Graphics, pages 87–94, October 2003.

[39] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li,
and Joseph W. H. Liu. A supernodal approach to sparse partial pivoting.
SIAM J. Matrix Analysis and Applications, 20(3):720–755, 1999.

[40] K. D. Devine, J. E. Flaherty, S. R. Wheat, and A. B. Maccabe. A massively
parallel adaptive finite element method with dynamic load balancing. In
Proceedings of the 1993 ACM/IEEE conference on Supercomputing, Su-
percomputing ’93, pages 2–11, New York, NY, USA, 1993. ACM.

[41] A. Dietrich, A. Stephens, and I. Wald. Exploring a Boeing 777: Ray Trac-
ing Large-Scale CAD Data. IEEE Computer Graphics and Applications,
27-6:36–46, 2007.

[42] Jack J. Dongarra, Robert A. van de Geijn, and David W. Walker. Scalabil-
ity Issues Affecting the Design of a Dense Linear Algebra Library. Journal
of Parallel and Distributed Computing, 22:523–537, 1994.

[43] Philip Dutré. Global Illumination Compendium.

[44] Philip Dutré, Kavita Bala, and Philippe Bekaert. Advanced Global Illu-
mination. A. K. Peters, Ltd., Natick, MA, USA, 2002.

[45] Ugo Erra, Rosario De Chiara, Vittorio Scarano, and Maurizio Tatafiore.
Massive simulation using gpu of a distributed behavioral model of a flock
with obstacle avoidance. In Proceedings of Vision, Modeling and Visual-
ization 2004 (VMV), November 2004.

108

BIBLIOGRAPHY

[46] Florian Fleissner and Peter Eberhard. Load Balanced Parallel Simulation
of Particle-Fluid DEM-SPH Systems with Moving Boundaries. In Parallel
Computing: Architectures, Algorithms and Applications, Proceedings of
the International Conference ParCo 2007. IOS Press, 2007.

[47] Michael J. Flynn. Some computer organizations and their effectiveness.
Computers, IEEE Transactions on, C-21(9):948 –960, sep. 1972.

[48] Geoffrey C. Fox, Roy D. Williams, and Paul C. Messina. Parallel Com-
puting Works! Morgan Kaufmann, May 1994.

[49] Iliyan Georgiev and Philipp Slusallek. RTfact: Generic Concepts for Flex-
ible and High Performance Ray Tracing. In IEEE/Eurographics Sympo-
sium on Interactive Ray Tracing, 2008.

[50] R. Gillibrand, P. Longhurst, K. Debattista, and A. Chalmers. Cost Pre-
diction for Global Illumination Using a Fast Rasterised Scene Preview. In
Proceedings of AFRIGRAPH ’06, 2006.

[51] Andrew S. Glassner. An Introduction to Ray Tracing. Morgan Kaufmann,
1989.

[52] John L. Gustafson. Reevaluating amdahl’s law. Communication of ACM,
31(5):532–533, 1988.

[53] Shawn Hargraves. Deferred shading. In Game Developers Conference,
Talks, 2004.

[54] Alan Heirich and James Arvo. A competitive analysis of load balancing
strategies for parallel ray tracing. The Journal of Supercomputing, 12(1-
2):57–68, 1998.

[55] John Hennessy and David Patterson. Computer Architecture: A Quanti-
tative Approach, 4th Edition. Morgan Kaufmann, 2006.

[56] Justin Hensley, Thorsten Scheuermann, Greg Coombe, and Montek Singh.
Fast summed-area table generation and its applications. Computer Graph-
ics Forum, 24:547–555(9), 2005.

[57] Kai Hwang and Zhiwei Xu. Scalable Parallel Computing: Technol-
ogy,Architecture,Programming. McGraw-Hill, Inc., New York, NY, USA,
1998.

[58] Intel Software Network. Many-core processor definition from the Glossary
of Technical Terms.

[59] Intel Software Network. Multi-core processor definition from the Glossary
of Technical Terms.

[60] ISISLab. Distributded Steer Video.

109

BIBLIOGRAPHY

[61] Pritish Jetley, Lukasz Wesolowski, Filippo Gioachin, Laxmikant V. Kalé,
and Thomas R. Quinn. Scaling Hierarchical N -body Simulations on GPU
Clusters. In Proceedings of the ACM/IEEE Supercomputing Conference
2010 (to appear), 2010.

[62] S. L. Johnsson, R. L. Krawitz, R. Frye, and D. MacDonald. A radix-2 fft
on connection machine. SC Conference, 0:809–819, 1989.

[63] Bjoern Knafla and Claudia Leopold. Parallelizing a Real-Time Steering
Simulation for Computer Games with OpenMP. In Parallel Computing:
Architectures, Algorithms and Applications, Proceedings of the Interna-
tional Conference ParCo 2007. IOS Press, 2007.

[64] Sergey Kopyssov and Alexander Novikov. Parallel adaptive mesh refine-
ment with load balancing for finite element method. In Victor Malyshkin,
editor, Parallel Computing Technologies, volume 2127 of Lecture Notes in
Computer Science, pages 266–276. Springer Berlin / Heidelberg, 2001.

[65] Yu-Kwong Kwok and Ishfaq Ahmad. Benchmarking and comparison of
the task graph scheduling algorithms. Journal of Parallel and Distributed
Computing, 59(3):381–422, 1999.

[66] Christian Lauterbach, Micheal Garland, Shubahbratav Sengupta, Davide
Luebke, and Dinesh Manocha. Fast BVH Construction on GPUs. In
Proceedings of Eurographics, 2009.

[67] Xiaoye S. Li and James W. Demmel. SuperLU DIST: A Scalable
Distributed-Memory Sparse Direct Solver for Unsymmetric Linear Sys-
tems. ACM Trans. Mathematical Software, 29(2):110–140, June 2003.

[68] R. Lling, B. Monien, and F. Ramme. Load balancing in large networks:
A comparative study (extended abstract). In In Proceedings of the 3rd
IEEE Symposium on Parallel and Distributed Processing, pages 686–689,
1991.

[69] Message Passing Interface Forum. The Message Passing Interface (MPI)
standard.

[70] Gordon E. Moore. Cramming more components onto integrated circuits,
April 1965.

[71] Gordon E. Moore. No exponential is forever: but ”Forever” can be de-
layed! In Solid-State Circuits Conference, 2003. Digest of Technical Pa-
pers. ISSCC. 2003 IEEE International, volume 1, pages 20–23, 2003.

[72] Michael J. Muuss. Towards real-time ray-tracing of combinatorial solid
geometric models. In Proceedings of BRL-CAD Symposium, 1995.

[73] John Nagle, 1984. RFC 896. Congestion control in IP/TCP internetworks.

110

BIBLIOGRAPHY

[74] John Nagle. Rfc 896: Congestion control in ip/tcp internerworks, 1984.

[75] Rahul Narain, Abhinav Golas, Sean Curtis, and Ming C. Lin. Aggregate
dynamics for dense crowd simulation. In SIGGRAPH Asia ’09: ACM
SIGGRAPH Asia 2009 papers, pages 1–8, New York, NY, USA, 2009.
ACM.

[76] D. M. Nicol and Joel H. Saltz. Dynamic remapping of parallel compu-
tations with varying resource demands. IEEE Transaction on Computer,
37(9):1073–1087, 1988.

[77] Ryan Overbeck, Ravi Ramamoorthi, and William R. Mark. Large ray
packets for real-time whitted ray tracing. IEEE Symposium on Interactive
Ray Tracing, pages 41–48, 2008.

[78] Manish Parashar and James C. Browne. Distributed dynamic data-
structures for parallel adaptive meshrefinement. In Proceedings of the
International Conference on High Performance Computing, 1995.

[79] Manish Parashar and James C. Browne. On partitioning dynamic adaptive
grid hierarchies. In HICSS ’96: Proceedings of the 29th Hawaii Interna-
tional Conference on System Sciences (HICSS’96) Volume 1: Software
Technology and Architecture. IEEE Computer Society, 1996.

[80] Gyung-Leen Park, Behrooz Shirazi, and Jeff Marquis. Mapping of paral-
lel tasks to multiprocessors with duplication. In HICSS ’98: Proceedings
of the Thirty-First Annual Hawaii International Conference on System
Sciences-Volume 7, page 96, Washington, DC, USA, 1998. IEEE Com-
puter Society.

[81] Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared
Hoberock, David Luebke, David McAllister, Morgan McGuire, Keith Mor-
ley, Austin Robison, and Martin Stich. Optix: A general purpose ray
tracing engine. ACM Transactions on Graphics, August 2010.

[82] David Patterson. Latency lags bandwidth. In ICCD ’05: Proceedings
of the 2005 International Conference on Computer Design, pages 3–6,
Washington, DC, USA, 2005. IEEE Computer Society.

[83] Tomas Plachetka. Perfect load balancing for demand-driven parallel ray
tracing. In Euro-Par ’02: Proceedings of the 8th International Euro-Par
Conference on Parallel Processing, pages 410–419, London, UK, 2002.
Springer-Verlag.

[84] Michael J. Quinn, Ronald A. Metoyer, and Katharine Hunterzaworski.
Parallel implementation of the social forces model. In in Proceedings of the
Second International Conference in Pedestrian and Evacuation Dynamics,
pages 63–74, 2003.

111

BIBLIOGRAPHY

[85] William T. Reeves. Particle systems—a technique for modeling a class
of fuzzy objects. In SIGGRAPH ’83: Proceedings of the 10th annual
conference on Computer graphics and interactive techniques, pages 359–
375, New York, NY, USA, 1983. ACM.

[86] Erik Reinhard and Frederik W. Jansen. Rendering large scenes using
parallel ray tracing. Parallel Computing, 23:67–80, 1997.

[87] Erik Reinhard, Arjan J. F. Kok, and Alan Chalmers. Cost distribution
prediction for parallel ray tracing. In Second Eurographics Workshop on
Parallel Graphics and Visualisation, pages 77–90. Eurographics, Septem-
ber 1998.

[88] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-level ray
tracing algorithm. In SIGGRAPH ’05 Conference Proceedings, pages
1176–1185, New York, NY, USA, 2005. ACM.

[89] Craig Reynolds. OpenSteer, Steering Behaviors for Autonomous Charac-
ters.

[90] Craig Reynolds. Big fast crowds on ps3. In Sandbox ’06: Proceedings of
the 2006 ACM SIGGRAPH symposium on Videogames, pages 113–121,
New York, NY, USA, 2006. ACM.

[91] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral
model. In SIGGRAPH ’87: Proceedings of the 14th annual conference
on Computer graphics and interactive techniques, pages 25–34, New York,
NY, USA, 1987. ACM.

[92] Anthony Steed Roula, Anthony Steed, and Roula Abou-haidar. Partition-
ing crowded virtual environments. In In Proceedings of the ACM sympo-
sium on Virtual reality software and technology, pages 7–14, 2003.

[93] Plimpton S. Fast parallel algorithms for short range molecular dynamics.
Journal of Computational Physics, 117 n.1:1–19, 1995.

[94] Peter Shirley and R. Keith Morley. Realistic Ray Tracing. A. K. Peters,
Ltd., Natick, MA, USA, 2003.

[95] Abe Stephens, Solomon Boulos, James Bigler, Ingo Wald, and Steven
Parker. An Application of Scalable Massive Model Interaction using
Shared-Memory Systems . In Eurographics Symposium on Parallel Graph-
ics and Visualization, pages 19–26, 2006.

[96] Kevin Suffern. Ray Tracing from the Ground Up. A. K. Peters, Ltd.,
Natick, MA, USA, 2007.

[97] Adrien Treuille, Seth Cooper, and Zoran Popović. Continuum crowds. In
SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers, pages 1160–1168, New
York, NY, USA, 2006. ACM.

112

BIBLIOGRAPHY

[98] G. Vigueras, M. Lozano, J. M. Ordu na, and F. Grimaldo. A comparative
study of partitioning methods for crowd simulations. Appl. Soft Comput.,
10(1):225–235, 2010.

[99] Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination.
PhD thesis, Saarland University, 2004.

[100] Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination.
PhD thesis, Computer Graphics Group, Saarland University, 2004.

[101] Ingo Wald, Carsten Benthin, Andreas Dietrich, and Philipp Slusallek.
Interactive Distributed Ray Tracing on Commodity PC Clusters – State
of the Art and Practical Applications. In Proceedings of EuroPar ’03,
Lecture Notes on Computer Science, 2790:499–508, 2003.

[102] Ingo Wald, Carsten Benthin, Andreas Dietrich, and Philipp Slusallek.
Interactive Distributed Ray Tracing on Commodity PC Clusters – State
of the Art and Practical Applications. In Proceedings of EuroPar, volume
2790, pages 499–508, 2003.

[103] Ingo Wald, Andreas Dietrich, and Philipp Slusallek. An interactive out-
of-core rendering framework for visualizing massive complex models. In
Proceedings of the Eurographics Symposium on Rendering, pages 81–92,
2004.

[104] Ingo Wald and Vlastimil Havran. On building fast kd-trees for ray trac-
ing, and on doing that in O(N log N). In Proceedings of the 2006 IEEE
Symposium on Interactive Ray Tracing, pages 61–69, 2006.

[105] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner. In-
teractive distributed ray tracing of highly complex models. In Proceedings
of the 12th Eurographics Workshop on Rendering Techniques, pages 277–
288, London, UK, 2001. Springer-Verlag.

[106] Turner Whitted. An improved illumination model for shaded display.
Communications of the ACM, 1980.

[107] Samuel Williams, Jonathan Carter, Leonid Oliker, John Shalf, and
Katherine Yelick. Lattice boltzmann simulation optimization on lead-
ing multicore platforms. In in International Conference on Parallel and
Distributed Computing Systems (IPDPS, 2008.

[108] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: implications
of the obvious. SIGARCH Comput. Archit. News, 23(1):20–24, 1995.

[109] Roman Wyrzykowski, Jack Dongarra, Marcin Paprzycki, and Jerzy Was-
niewski, editors. Parallel Processing and Applied Mathematics, 5th Inter-
national Conference, PPAM 2003, Czestochowa, Poland, September 7-10,
2003. Revised Papers, volume 3019 of Lecture Notes in Computer Science.
Springer, 2004.

113

BIBLIOGRAPHY

[110] Lingyun Yang, Jennifer M. Schopf, and Ian Foster. Conservative schedul-
ing: Using predicted variance to improve scheduling decisions in dynamic
environments. In SC ’03: Proceedings of the 2003 ACM/IEEE conference
on Supercomputing, page 31. IEEE Computer Society, 2003.

[111] Tao Yang and Apostolos Gerasoulis. Dsc: Scheduling parallel tasks on
an unbounded number of processors. IEEE Transactions on Parallel and
Distributed Systems, 5:951–967, 1994.

[112] Yongpeng Zhang, Frank Mueller, Xiaohui Cui, and Thomas Potok. Large-
Scale Multi-Dimensional Document Clustering on GPU Clusters. In IEEE
International Parallel and Distributed Processing Symposium, 2010.

[113] Bo Zhou and Suiping Zhou. Parallel simulation of group behaviors. In
WSC ’04: Proceedings of the 36th conference on Winter simulation, pages
364–370. Winter Simulation Conference, 2004.

[114] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. Real-time kd-
tree construction on graphics hardware. ACM Transaction on Graphics,
27(5):1–11, 2008.

114

Le persone viaggiano per stupirsi delle montagne,

dei mari, dei fiumi, delle stelle;

e passano accanto a se stesse senza provare meraviglia.

. . .

Sant’Agostino d’Ippona

