
Università degli Studi di Salerno

Dipartimento di Informatica

Dottorato di Ricerca in Informatica

(Ciclo XIV - Nuova Serie)

Tesi di Dottorato in Informatica

The Role of Distributed Computing
in Big Data Science: Case Studies
in Forensics and Bioinformatics

Abstract

Candidato:

Gianluca Roscigno

Matr.: 8880900108

Tutor:

Prof. Giuseppe Cattaneo

Coordinatore: Prof. Gennaro Costagliola

A.A. 2014/2015



Abstract

The era of Big Data is leading the generation of large amounts of data,

which require storage and analysis capabilities that can be only ad-

dressed by distributed computing systems. To facilitate large-scale

distributed computing, many programming paradigms and frame-

works have been proposed, such as MapReduce and Apache Hadoop,

which transparently address some issues of distributed systems and

hide most of their technical details.

Hadoop is currently the most popular and mature framework sup-

porting the MapReduce paradigm, and it is widely used to store and

process Big Data using a cluster of computers. The solutions such

as Hadoop are attractive, since they simplify the �transformation�

of an application from non-parallel to the distributed one by means

of general utilities and without many skills. However, without any

algorithm engineering activity, some target applications are not alto-

gether fast and e�cient, and they can su�er from several problems

and drawbacks when are executed on a distributed system. In fact, a

distributed implementation is a necessary but not su�cient condition

to obtain remarkable performance with respect to a non-parallel coun-

terpart. Therefore, it is required to assess how distributed solutions

are run on a Hadoop cluster, and/or how their performance can be

improved to reduce resources consumption and completion times.

In this dissertation, we will show how Hadoop-based implementations

can be enhanced by using carefully algorithm engineering activity,

tuning, pro�ling and code improvements. It is also analyzed how to

achieve these goals by working on some critical points, such as: data

local computation, input split size, number and granularity of tasks,

cluster con�guration, input/output representation, etc.

i



In particular, to address these issues, we choose some case studies

coming from two research areas where the amount of data is rapidly

increasing, namely, Digital Image Forensics and Bioinformatics. We

mainly describe full-�edged implementations to show how to design,

engineer, improve and evaluate Hadoop-based solutions for Source

Camera Identi�cation problem, i.e., recognizing the camera used for

taking a given digital image, adopting the algorithm by Fridrich et al.,

and for two of the main problems in Bioinformatics, i.e., alignment-

free sequence comparison and extraction of k-mer cumulative or local

statistics.

The results achieved by our improved implementations show that they

are substantially faster than the non-parallel counterparts, and re-

markably faster than the corresponding Hadoop-based naive imple-

mentations. In some cases, for example, our solution for k-mer statis-

tics is approximately 30× faster than our Hadoop-based naive im-

plementation, and about 40× faster than an analogous tool build on

Hadoop. In addition, our applications are also scalable, i.e., execution

times are (approximately) halved by doubling the computing units.

Indeed, algorithm engineering activities based on the implementation

of smart improvements and supported by careful pro�ling and tun-

ing may lead to a much better experimental performance avoiding

potential problems.

We also highlight how the proposed solutions, tips, tricks and insights

can be used in other research areas and problems.

Although Hadoop simpli�es some tasks of the distributed environ-

ments, we must thoroughly know it to achieve remarkable perfor-

mance. It is not enough to be an expert of the application domain

to build Hadop-based implementations, indeed, in order to achieve

good performance, an expert of distributed systems, algorithm engi-

neering, tuning, pro�ling, etc. is also required. Therefore, the best

performance depend heavily on the cooperation degree between the

domain expert and the distributed algorithm engineer.

ii


