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Introduction

Music is one of the arts that have most benefited from the invention of
computers. Originally, the term Computer Music was used in the scientific
community to identify the application of information technology in music
composition. It began over time to include the theory and application of
new or existing technologies in music, such as sound synthesis, sound design,
acoustic, psychoacoustic. Thanks to its interdisciplinary nature, Computer
Music can be seen as the encounter of different disciplines, including music,
computer science, etc. The Computer Music has its origin in Electronic
Music. With the advent of personal computers has become a discipline used
to describe any kind of music created with the help of computer tools. The
first attempts to play music with the computer were CSIRAC, designed and
built by Pearcey and Beard, and later a system to play popular musical
melodies, developed by Hill in 1950s. Digital sound synthesis and algorith-
mic composition were originated thanks to two major developments dating
back to the 1950s: Music I, developed by Max Mathews at Bell Laborato-
ries, and the Illiac suite, developed by the musicians and chemists Hiller and
Isaacson to compose music which resulted in a computer composed suite,
the Illiac Suite for string quartet. Early computer music programs typi-
cally did not run in real time. Programs would run for hours or days, on
multi-million-dollar computers, to generate a few minutes of music. This
was due to: (1) the enormous amount of data needed to specify a function
of sound pressure and therefore the need for a very fast program, and (2)
the need for a simple but powerful language with which it is possible to
describe the sequence of sounds. The first problem was solved with the in-
troduction of faster microprocessors. Software tools were created to solve
this second problem, and the use of these tools originated computer music.
The real-time generation of computer music began with the work on FM
synthesis of John Chowning from the 1960s to the 1970s and with and the
advent of inexpensive digital chips and microcomputers. Music III by Max
Mathews and Joan Miller introduced the concept of unit generator (units
of sound generation) in the synthesis of sound. A unit generator is used to
construct various algorithms for sound. Music V has had many descendants
in the next 30 years among which Csound developed at the Massachusetts
Institute of Technology (MIT) by Barry Vercoe. Computer music genera-
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tion and performance has become possible thanks to advances in computing
power and software for manipulation of digital media. Current-generation
micro-computers are powerful enough to perform very sophisticated audio
synthesis using a wide variety of algorithms and approaches. Nowadays the
creation of music heavily depends. In the last years technology has rede-
fined the way individuals can work, communicate, share experiences, con-
structively debate, and actively participate to any aspect of the daily life,
ranging from business to education, from political and intellectual to social,
and also in music activity, such as play music, compose music and so on. In
this new context, Computer Music has become an emerging research area for
the application of Computational Intelligence techniques, such as machine
learning, pattern recognition, bio-inspired algorithms and so on. This thesis
is concerned with the Bio-inspired and Artificial Intelligence Applications
in the Computer Music. Specifically, I face several problems: (1) automatic
composition of background music for games, films and other human activi-
ties, (2) definition of new interaction modalities during music performances
by using hands without the support of a real musical instrument, (3) defi-
nition of a new bio-inspired approach for automatic music composition in a
specific style, and (4) definition of new approaches for the learning of har-
monic and melodic rules of classical music, by using visualization techniques.
This thesis consists of five chapters. Chapter 1 describes the Music Algo-
rithmic Composition problem, in Chapter 2 we introduce a new bio-inspired
approach for automatic music composition, named Music Splicing Systems.
Chapter 3 describes our solution to the problem of automatic music compo-
sition of background music, in Chapter 4 we propose a system to define a
personalizable virtual music instrument. Finally, Chapter 5 describes some
work in progress and provides some conclusions.



Chapter 1

Algorithmic composition

1.1 Introduction

The term Algorithmic Composition refers to any process that involves the use
of a set of formal rules to compose music, without any human intervention.

Over the centuries, methods for algorithmic composition have been fre-
quently used; for example, the compositions characterizing the entire con-
trapuntal Baroque music are in fact reducible to real processes of this type.
In an attempt to make a classification of methods used in this context, one
must take into account the radical distinction between the compositions
made by means of nondeterministic procedures, such as stochastic methods,
and those implemented by deterministic processes, such as formal grammars.

If one now poses the legitimate question about which musical approaches
actually may be subsumed under the term Algorithmic Composition, an an-
swer can be found in the investigation of some general definitions of algo-
rithm.

The term algorithm may be derived from the Greek word arithmos
(number) and also from the name of the Persian mathematician Abu Jafar
Muhammad ibn Musa al-Khwarizmi1 in two different ways. Al-Khwarizmi
wrote a treatise on the calculation with Indian numerals,Around AD 820,
which was translated into latin around 1120 AD as Algorismi de numero
Indorum. In this translation, the author was given the latinized name Al-
gorismus. In Carmen de Algorismo, a mathematical treatise in rhymes by
French scholar Alexander de Villa Dei from AD 1220, calculating in the new
numeral systems is also referred to with the term Algorismus2. Later, it was
Grecized and became Algorithmus, being used as a general indication for a
controlled procedure. Now, this term can be defined as:

1“Mohammed the father of Jafar and the son of Musa, the Khwarizmian,” also referred
to as “al Khowarizmi,” lived ca. 780-850.

2In Latin also “alchorismus” and “algoarismus”; in Old French “algorisme” and “ar-
gorisme”; in Middle English “augrim” and “augrym.”

4
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• A set of mathematical instructions that must be followed in a fixed
order, and that, especially if given to a computer, will help to calculate
an answer to a mathematical problem [77].

• A systematic procedure that produces, in a finite number of steps, the
answer to a question or the solution of a problem [105].

• A set of rules that must be followed when solving a particular problem
[180].

A classical algorithm in general must terminate, i.e. produce solutions
after running for a finite time of steps, and in general it must be determin-
istic, i.e. given a particular input, it will always produce the same correct
output. However, some classes of algorithms and systems of algorithmic
composition may produce output indefinitely, or involve probability-based
decisions in the problem solving process. For example, if new material is to
be made continuously audible for the arrangement of a sound installationan,
an algorithm for the generation of musical structure will not terminate.

Approaches based on stochastic algorithms that produce different results
with the same initial values, can be found in most systems designed for
Algorithmic Composition.

An algorithm may be very generally described as a formalizable and
abstract procedure which, applied to the generation of musical structure,
determines the field of application of algorithmic composition. Accordingly,
models for generating musical structure may be obtained from nearly every
scientific discipline. Apart from that, interesting musical results may also
be reached through simple but innovative compositional strategies or an
appropriate mapping of data onto musical parameters. Procedures used in
algorithmic composition are very well suited to the generation of musical
structure, and on the other hand each represents a class of algorithms that
can process or generate musical information in a specific way.

1.2 Early Approaches

Greek music. The idea of using formal processes and instructions for
creating music historically dates back to ancient Greece. Pythagoras claimed
the existence of a direct relationship between the laws of nature and the
expression of sounds in music. This was thought to be inseparable from
the numbers, that are considered the key elements of access to the entire
universe, physical and spiritual. Tolomeo, the leading astronomer of his
time, believed in mathematical correspondences between musical intervals
and stars, and that certain notes and certain modes correspond to particular
planets, their mutual distances and movements. This idea is also present
in the works of Plato, namely the myth of the music of the spheres, which
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speaks of the music produced by the motion of the planets. The theoretical
applications of the various numbers and mathematical properties resulting
from the nature are in fact the formalism on which the musicians of ancient
Greece founded their music systems.

Micrologus. Algorithmic Composition has a century old tradition not
only in occidental music history. Guido D’Arezzo is today mainly known
for inventing solfeggio as well as due to his essential contributions to the
development of musical notation, but he also worked in the field of algo-
rithmic composition. Indeed, in one of his most significant works, Microlo-
gus, D’Arezzo invented a method for the automatic conversion of text into
melodic phrases.

He outlines a system for the automatic generation of melodies out of
text material. Letters, syllables and components of a verse are mapped
on tone pitches and melodic phrases (neumes), whereas groups of neumes
are separated by caesurae. On the level of groups of neumes, the caesurae
correspond to breathing pauses and can also be found in smaller groups in
the form of pauses or held notes. The vowels in the text can be mapped
on different tone pitches. The concrete design of the melody is subject to
musical limitations that are treated by Arezzo in his theory on Motus.

Ars Magna. In the time of Raimundus Lullus, the motet became the
dominant form of polyphonic vocal music in occidental music history. One of
the principles of this genre, the isorhythm, invented by Philippe de Vitry and
reaching its peak with Guillaume de Machaut consists of multiple repeating
melodic (color) and rhythmic (talea) models that also interfere with each
other and can occur in different proportions.

In Ars Magna, Lullus realizes the concept of a computer (music) system.
The analogies to hardware and software, data memory, program, etc. are
evident in the components, definitions and rules of the Ars Magna. Lullus
creates a system that due to its underlying structure (hardware, correspond-
ing to the diagrams), a knowledge base (data, corresponding to the defi-
nitions) as well as application instructions (software, corresponding to the
interpretation rules) independently generates statements. Because of the
given combination possibilities, some degree of chance is involved; however,
due to the interpretation rules, the system provides coherent statements in
the given context, whose exact interpretation is left to the user.

The circular statements inherent in the Ars Magna can actually also be
found in a system of Algorithmic Composition, because any compositional
premises can hardly be compared to axioms. When compositional work is
considered under this point of view, the circular statement is as inherent in
it as it is in the Ars Magna.
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Combinatorics systems of Kircher. Kircher worked in the fields of
astronomy, mathematics, medicine, music, mineralogy and physics as well
as in linguistics, where he tried to decipher the Egyptian hieroglyphs with
combinatorial methods.

In his exhaustive musicologist work Musurgia Universalis from 1650,
Kircher developed a system of algorithmic composition. This system con-
sists of three categories of labeled wooden sticks (syntagmas) on which both
numbers and rhythmic values are engraved. Kirchers system allows for the
automatic generation of contrapuntal compositions in the style of the con-
trapunctus simplex and floridus. In an advanced form, style-typical material
of particular musical genres can be produced.

In another work proposed by Kircher, the Arca Musarithmica, four-lined
number columns can be combined with four-voice rhythmic patterns by
means of the syntagmas. The number of columns represent levels of differ-
ent modes and are arranged in groups of 2 to 12 units. These units serve to
correctly transfer text passages and represent one syllable each. Each class
of tone pitch symbols of a particular size can be combined with a class of
rhythmic patterns of the same size, finally producing four-voice movements
in the style of the contrapunctus simplex. Because the number of voices
differs in a movement of the contrapunctus flores, in this form of syntagma
the voices are only combined with a selection of appropriate values.

Combinatorics is also used in another system of Kircher: the mathemat-
ical organ (Figure 1.1).

Figure 1.1: The mathematical organ by Kircher

This device is similar to a card index system and treats arithmetic, geom-
etry, the building of forts, ecclesiastic time calculations, sundials, astronomy,
astrology, cryptographs as well as music according to the above mentioned
principles. For each special field there is a collection of labeled discs whose
use (the possible combinations for solving the task), are explained in an
enclosed booklet. Not all possible procedures are created by Kircher; the
arithmetic part, for example, uses Napiers bones, for geometrical tasks the
construction of the geometrical square (a common instrument of surveyors
made up of a square frame with two scales and a rod to measure distances)
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is applied. The importance of Kircher for the development of algorithmic
thinking and finally the computer can be seen amongst other things in the
fact that as an advancement of Lullus concept, a mechanical arrangement
generates concrete outputs that may directly be used for solving a prob-
lem. Because all solutions possible in the system are also coded by the
combination possibilities of the system, Kircher also paves the way for a
comprehensive representation of knowledge in a chosen field of discourse.

1.3 Language and Music Generators

In the 18th century a game called Musical Dice Game became popular. In
this game the outputs are completely independent from the evaluation of
the user by exploring several combinatorial possibilities.

In this game, the user chose for every temporal unit a bar out of a par-
ticular table by rolling a dice, until a short piece of music of a musical genre
had been produced. The principle of this game is simple, but effective: for
each temporal position (mostly bar positions), a number of musical con-
stellations (mostly bars) must be available out of which one can be chosen
deliberately without running the danger of producing musical clashes by
doing so. The application of the musical dice games is trivial; however, its
design requires some talent in composing music, because for all musical pos-
sibilities attached one to another, not only the harmonic but also technical
aspects of voice-leading have to be taken into consideration.

The first dice game is Johann Philipp Kirnbergers Der allezeit fertige
Menuettenund Polonaisencomponist (The ever-ready minuet and polonaise
composer), designed in 1757; up to the year 1812, at least 20 other creations
of this type were built.

Even some of the most famous composers proposed their own versions
of Dice games. For example, the Einfall einen doppelten Contrapunct in der
Octave von sechs Tacten zu machen ohne die Regeln davon zu wissen ( A
method for making six bars of double counterpoint at the octave without
knowing the rules) by Carl Philipp Emanuel Bach in 1758 or Table pour
composer des minuets et des Trios a linfinie; avec deux dez a jouer (A
table for composing minuets and trios to infinity, by playing with two dice),
created around 1780 by Maximilian Stadler.

From 1793 on, also musical dice games under the names of Haydn and
Mozart appear.

1.4 The Computer in Algorithmic Composition

The first completely computer-generated composition on a symbolic level
was produced by Lejaren Hiller and Leonard Isaacson from 1955 to 1956
with the Illiac Suite on the ILLIAC computer at the University of Illinois
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[113, 114]. The symbolic level refers to the fact that the output of the system
represents note values that must be interpreted by the musician. The Illiac
Suite marked the beginning of computer-assisted algorithmic composition
whose advancement was influenced by other compositional tendencies as
well as developments in other fields of art.

With the development of higher programming languages, the first com-
puter music systems for Algorithmic Composition were also generated. Their
concepts are based either on general programming languages or have been
designed especially for the particular application. In 1963, Hiller and Robert
Baker developed Musicomp, the first computer-assisted composition environ-
ment.

The system Groove proposed by Max Mathews and Richard F. Moore
marked the beginning of the developments in the 1970s. Midi Lisp, Patch
Work and Bol Processor were the new programming environments of the
1980s. Common Music, Symbolic Composer, Open Music and many other
systems followed at the beginning of the 1990s. A number of these systems
are still in use today and are constantly being advanced.

Beginning with the languages of the MusicN family of Mathews from
the 1960s on, Barry Vercoe’s Csound (from 1986 on), Bill Schottstaedt’s
Common Lisp Music (from 1991 on) up to current developments such as
PureData (PD) and SuperCollider, there is a wide range of powerful and
flexible computer music systems.

In the following sections we present specific classes of algorithms in the
context of Algorithmic Composition, first providing a general introduction
to their development and their theoretical basics, and then describing differ-
ent musical applications. Each of these class of algorithms can be seen as a
paradigm of Algorithmic Composition because it enable a specific approach
to musical structure generation. Although there is no universal approach to
place the different categories in the algorithms used for automatic composi-
tion. Some of the main methods used are based on: generative grammars,
evolutionay methods and neural networks.

1.5 Methods based on generative grammars

Generative grammars are powerful methods for Algorithmic Composition
and musical analysis. The basic linguistic model [80] developed by Noam
Chomsky in 1957, is the initial point for the application of this and other,
more extended generative principles in musical tasks.

Fields that often use generative grammars are traditional European
art music, jazz, as well as music ethnology. Related formalisms, such as
augmented transition networks, are used for example in David Cope’s ap-
proaches [84] for automatically generating compositions conforming with a
given musical style.
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The rewriting formalism of a generative grammar finds its parallels in
different types of automata, Lindenmayer systems and Markov models. A
specialized form of generative grammar in the field of linguistics is the cate-
gorical grammar or C-Grammar, a predecessor of the PS-Grammar, created
by the Polish logicians Stanislaw Lesniewski in 1929 and Kasimierz Ad-
jukiewicz in 1935. In algorithmic composition this type of grammar is not
very common, but it is used, for example, by Mark Steedman [199] as a tool
for analyzing jazz chord sequences.

1.5.1 The Chomsky Hierarchy

Chomsky distinguishes between four types of generative grammars that show
different levels of restriction. These four types generate formal languages
and correspond to different types of automata which may check whether a
certain symbol string is part of the respective formal language and can thus
be produced by the particular grammar.

The type of grammar is related to the level of its generative capacity.
This means that a grammars generative capacity is high when it is able
to generate several expressions and to prevent incorrect productions at the
same time. However, a grammars generative capacity is low if the rules only
allow limited control over the expressions to be generated. Consequently, a
grammar of lower order has a higher generative capacity, since in this case
there are fewer limitations regarding the formulation of production rules.

Type-0 Grammar (unrestricted grammar)

• Restrictions: No restrictions

• Respective formal language: Recursively enumerable language or par-
tially decidable language

• Respective automaton: Non-deterministic Turing machine. In a non-
deterministic Turing machine, the same inputs can produce different
possibilities for resulting state transitions

• Generative capacity: Very high

• Complexity: Undecidable (up to infinite)

Type-1 Grammar (context-sensitive grammar)

• Restrictions: On both sides of the production rules, an arbitrary num-
ber of sequences of terminal or non-terminal symbols is possible, but
the number of symbols on the right-hand side must not be smaller
than the number on the left-hand side

• Formal language: Context-sensitive language
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• Respective automaton: Linear-bounded automaton

• Generative capacity: High

• Complexity: exponential

Type-2 grammar (context-free grammar)

• Restrictions: The left-hand side of the production rules consists of one
single nonterminal variable, the right-hand side of an arbitrary number
of terminal or nonterminal symbols

• Formal language: Context-free language

• Respective automaton: Pushdown automaton

• Generative capacity: Middle

• Complexity: Polynomial

Type-3 grammar (regular grammar)

• Restrictions: The left-hand side of the production rules consists of only
one variable (non-terminal of V); on the right-hand side there is a ter-
minal, followed by one nonterminal at most. This form of production
rules is also referred to as right-linear. If there is a terminal on the
right-hand side that is preceded by a non-terminal, these production
rules are also called left-linear

• Formal language: Regular language

• Respective automaton: Deterministic finite automaton (DFA) or non-
deterministic finite automaton (NFA)

• Generative capacity: Low

• Complexity: Linear

1.5.2 Generative grammars as a model of the Theory of Syn-
tax

The Theory of Syntax is an area of linguistics that deals with the formal
structure of sentences composed. In particular, it is proposed to represent
the principles and structures related to the formation of possible sentences
in a language and will determine whether a given expression is consistent
with the rules of the language or not, or whether it is syntactically correct.

The generation of new sequences in a generative grammar is by means of
production rules, through which the symbols of an expression are rewritten
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Figure 1.2: Chomsky Hierarchy

with additional symbols. We have to distinguish between symbols which
can be rewritten further (non-terminal symbols) and symbols for which it is
not possible (terminal symbols).

The process starts from a start symbol (nonterminal), continues with
the rewriting of all non-terminal symbols and ends when the string consists
entirely of terminal symbols.

A grammar can be denoted by a quadruple (V, Vt, S, P):
V finite set of nonterminals
Vt finite set of terminal symbols
S initial non-terminal symbol
P a set of production rules of the form:

α→ β, dove α ∈ V+ e β ∈ V∗

1.5.3 Generative Grammars in Algorithmic Composition

Music ethnology aims at describing different genuine music styles by
grammatical models; in European art music, hierarchical grammatical struc-
tures are often used in analysis and generation; in jazz, this formalism is
frequently used to create chord progressions on the basis of musical corpora
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and rules of jazz harmony.
The basic idea of the algorithmic composition based on generative gram-

mars is that concepts that allow a hierarchical division of the musical mate-
rial and work with the substitution of symbols can naturally be best formu-
lated by a generative grammar. If explicitly formulated rules are assumed, a
knowledge-based approach is involved that is also applied in expert systems
and comparable procedures. If a system automatically generates rewriting
rules out of a corpus, it is a non-knowledge-based approach and can also
be referred to as grammatical inference. Here, a comparison to further pro-
cedures may be drawn. For example, the expressiveness of Markov models
equals to type-3 grammars. Due to the fact that they only allow for the
treatment of a context of successive symbols, they are inferior to grammars
of lower order. Another disadvantage of Markov models results from their
fixed order, which is set before the model is generated and, in most cases,
is not able to describe the context sufficiently. Artificial neural networks
or genetic algorithms may also be used for the treatment of tasks where no
domain-specific knowledge exists.

Systems that can independently find regularities in given data can also
be found in the field of unsupervised learning of AI. These and similar al-
gorithms can represent useful tools for the analysis and modeling of musical
styles, on which there is insufficient domain-specific knowledge, but which
may, however, be performed due to some kind of implicit rule system. Here,
the generation of a terminal alphabet is necessary for the analysis of a corpus
and the further generation of new musical material. In this case, terminals
can be for example chords, harmonic movements, melodic fragments, rhyth-
mic figures or also playing techniques of a particular instrument.

Musical Analysis by Generative Models

One important predecessor of generative grammar for application in mu-
sic is Heinrich Schenkers musical analysis methods [193]. According to
Schenker, the components of a tonal structure may be referred to as an
imaginary fundamental pattern he calls the Ursatz, whose further structur-
ing creates the different levels of a composition.

Inspired by Heinrich Schenkers ideas, in A Generative Theory of Tonal
Music, Fred Lerdahl and Ray Jackendoff described an exhaustive model for
the representation of tonal music by a generative formalism. An examina-
tion of musical representation by generative grammars including extended
formalisms is also provided by Curtis Roads [190, 189].

Bol Processor

An interesting result in the application of generative grammars in the
field of music ethnology is reached by Bernard Bel and Jim Kippen in
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the study of North Indian instrumental music (music Tabla). For musical
analysis and also for improvisation, designed the Bel system Bol Processor
(BP)[70].

Tabla music does not have a written notation, but is represented in a
system of notation mouth. However, the rhythmic phrases are denoted using
onomatopoeic syllables, such bol3 (for example dha, thi, trkt, ecc.) , each of
which refers to a stroke or a phrase on the instrument. Bel and Kippen’s
research is based on a particular style of music, tabla, said qa’ida, which
provides a formal model that works with themes and variations. Here are
the first ten lines of changes in an qa’ida.

dha tr kt dha tr kt dha ge dha ti dha ge dhee na ge na
dha tr kt dha tr kt dha dha dha ti dha ge dhee na ge na
dha ti dha tr kt dha tr kt dha ti dha ge dhee na ge na
dha ti kt dha ti-dha ti dha ti dha ge dhee na ge na
dha ti kt dha ti dha tr kt dha ti dha ge dhee na ge na
ti-dha ti dha dha tr kt dha ti dha ge dhee na ge na
ti dha tr kt dha dha tr kt dha ti dha ge dhee na ge na
tr kt dha ti dha dha tr kt dha ti dha ge dhee na ge na
tr kt tr kt dha dha tr kt dha ti dha ge dhee na ge na
tr kt dha tr dha dha tr kt dha ti dha ge dhee na ge na

A variation consists of sixteen bol of the same length and duration of each
variation is between eight and twelve seconds. Bol of the valid sequences
can be represented by the following finite-state automaton:

Figure 1.3: Finite automaton for representing sequences of bol

The processor BOL is currently a powerful tool for working with gener-
ative grammars in the field of algorithmic composition. In the selection of
production rules to be applied, are regarded as likely to determine the order

3from Urdu/Hindi bolna, which means to speak
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and preferences of these rules.
A particular aspect of BOL is the representation of temporal musical.

In the representation of time, fragments of musical structures are put in
relation by means of two key players that determine whether the fragments
must be played sequentially or simultaneously.

Below is a part of generative grammar used by the system:

S → TA3 SA13
SA13 → TA3 SA10
SA10 → TC2 SA8
SA8 → TD2 SA6
SA6 → TA6
SA10 → TA2 SA8
. . .
TB3 → dhagena
TF2 → tidha
TE2 → ti-
TC5 → dhati-dhati
TA6 → dhagedheenagena
TD2 → dhati
TC2 → dhage
TA3 → dhatrkt
TB2 → trkt
TA2 → dhadha

1.6 Methods based on evolutionary algorithms

Evolutionary algorithms (EAs) are population-based metaheuristic op-
timization algorithms that use biology-inspired mechanisms like mutation,
crossover, natural selection, and survival of the fittest in order to refine a
set of solution candidates iteratively [62, 68, 69].

The advantage of evolutionary algorithms compared to other optimiza-
tion methods is their black box character that makes only few assumptions
about the underlying objective functions. Furthermore, the definition of ob-
jective functions usually requires lesser insight to the structure of the prob-
lem space than the manual construction of an admissible heuristic. EAs
therefore perform consistently well in many different problem categories.

1.6.1 The Basic Principles from Nature

In 1859, Darwin [89] published his book On the Origin of Species in
which he identified the principles of natural selection and survival of the
fittest as driving forces behind the biological evolution. His theory can be
condensed into ten observations and deductions [89, 161]:
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• The individuals of a species posses great fertility and produce more
offspring than can grow into adulthood

• Under the absence of external influences (like natural disasters, human
beings, etc.), the population size of a species roughly remains constant

• Again, if no external influences occur, the food resources are limited
but stable over time

• Since the individuals compete for these limited resources, a struggle
for survival ensues

• Especially in sexual reproducing species, no two individuals are equal

• Some of the variations between the individuals will affect their fitness
and hence, their ability to survive

• A good fraction of these variations are inheritable

• Individuals less fit are less likely to reproduce, whereas the fittest in-
dividuals will survive and produce offspring more probably

• Individuals that survive and reproduce will likely pass on their traits
to their offspring

• A species will slowly change and adapt more and more to a given
environment during this process which may finally even result in new
species

Evolutionary algorithms abstract from this biological process and also
introduce a change in semantics by being goal-driven. The search space
G in evolutionary algorithms is then an abstraction of the set of all pos-
sible DNA strings in nature and its elements g ∈ G play the role of the
natural genotypes. Therefore, we also often refer to G as the genome and
to the elements g ∈ G as genotypes. Like any creature is an instance of its
genotype formed by embryogenesis3, the solution candidates (or phenotypes)
x ∈ X in the problem space X are instances of genotypes formed by the
genotype-phenotype mapping: x = gpm(g). Their fitness is rated accord-
ing to objective functions which are subject to optimization and drive the
evolution into specific directions.

1.6.2 The Basic Cycle of Evolutionary Algorithms

We can distinguish between single-objective and multi-objective evolution-
ary algorithms, where the latter means that we try to optimize multiple, pos-
sible conflicting criteria. Our following elaborations will be based on these
MOEAs. The general area of Evolutionary Computation that deals with
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multi-objective optimization is called EMOO, evolutionary multi-objective
optimization.

A multi-objective evolutionary algorithm (MOEA) is able to perform an
optimization of multiple criteria on the basis of artificial evolution. All evo-
lutionary algorithms proceed in principle according to the scheme illustrated
in Figure 1.4:

Figure 1.4: The basic cycle of evolutionary algorithms

1. Initially, a population Pop of individuals p with a random genome p.g
is created

2. The values of the objective functions f ∈ F are computed for each
solution candidate p.x in Pop. This evaluation may incorporate com-
plicated simulations and calculations

3. With the objective functions, the utility of the different features of the
solution candi- dates have been determined and a fitness value v(p.x)
can now be assigned to each of them. This fitness assignment pro-
cess can, for instance, incorporate a prevalence comparator function
cmpF which uses the objective values to create an order amongst the
individuals.

4. A subsequent selection process filters out the solution candidates with
bad fitness and allows those with good fitness to enter the mating pool
with a higher probability. Since fitness is subject to minimization in
the context of this book, the lower the v(p.x)-values are, the higher is
the (relative) utility of the individual to whom they belong

5. In the reproduction phase, offspring is created by varying or combining
the genotypes p.g of the selected individuals p ∈Mate by applying the
search operations searchOp ∈ Op (which are called reproduction oper-
ations in the context of EAs). These offspring are then subsequently
integrated into the population
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6. If the terminationCriterion() is met, the evolution stops here. Other-
wise, the algorithm continues at step 2

1.6.3 Classification of Evolutionary Algorithms

The family of evolutionary algorithms encompasses five members, as illus-
trated in Figure 1.5.

Figure 1.5: The family of evolutionary algorithms

We will only enumerate them here in short.

• Genetic algorithms (GAs). GAs subsume all evolutionary algo-
rithms which have bit strings as search space G

• The set of evolutionary algorithms which explore the space of real
vectors X ⊂ <n is called Evolution Strategies

• For Genetic Programming (GP), we can provide two definitions:
On one hand, GP includes all evolutionary algorithms that grow pro-
grams, algorithms, and these alike. On the other hand, also all EAs
that evolve tree-shaped individuals are instances of Genetic Program-
ming

• Learning Classifier Systems (LCS), are online learning approaches
that assign output values to given input values. They internally use a
genetic algorithm to find new rules for this mapping

• Evolutionary programming (EP) is an evolutionary approach that
treats the instances of the genome as different species rather than as
individuals. Over the decades, it has more or less merged into Genetic
Programming and the other evolutionary algorithms.
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In the next section we will focus on a particular evolutionary method:
Genetic Algorithms.

1.6.4 Genetic Algorithms

Genetic algorithms are a particular class of evolutionary algorithms. The
terminology of genetic algorithms, including selection, mutation, survival
of the fittest, illustrates the principles of these algorithms as well as their
conceptual proximity to biological selection processes.

For the application of a genetic algorithm, domain-specific knowledge of
the problem to be solved is not necessary. Therefore, this class of algorithms
is especially suitable for tasks that are difficult to model mathematically or
for problem domains that do not have an explicit superior rule system.

By analogy to the biological model, the respective computer program
serves as the habitat that provides particular conditions for surviving and
heredity. In this artificial living space, populations of individuals, or chro-
mosomes, are produced whose adaptation to an objective, referred to as
objective score, is examined by means of a fitness function. The fitness
function may represent a mathematical function, a comparison set, or a
rule-based system that examines the ability of a chromosome to fulfill the
objective score. In Algorithmic Compositions, human fitness-raters are also
frequently used; this approach, however, is subject to some restrictions.

In principle, the scheme of a genetic algorithm is structured as follows:

1. Generate random starting population of n chromosomes

2. Calculate the fitness of each chromosome If good enough, dump the
result, END Else:

3. The fittest chromosomes are transferred unmodified or undergo crossover
or mutation

4. Select a number of fittest chromosomes as starting individuals

5. Create next generation and repeat from step 2

1.6.5 Genetic Algorithms in Algorithmic Composition

As one of the first applications of genetic processes in Algorithmic Compo-
sition, Andrew Horner and David Goldberg [127] described the generation
of melodic material by means of thematic bridging. This technique modifies
a start pattern using a number of functions and compares the results with
another pattern as fitness function. For the generation of a composition,
Horner and Goldberg used six such cycles in order to produce melodic ma-
terial that is then further structured by a five-voice canonical layering. The
functions that in this case undertake the tasks of crossover and mutation are,
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for example, with an initial pattern of Gb, Bb, F, Ab, Db and a reference
pattern of F, Ab, Eb, as follows:

1. Start pattern: Gb Bb F Ab Db

2. Deletion of the last element: Gb Bb F Ab

3. Random swapping of the elements: Bb F Ab Gb

4. Deletion of the last element: Bb F Ab

5. Modification of the first element: Eb F Ab

6. Random swapping of the elements: F Ab Eb

Output: Gb Bb F Ab Bb F Ab Gb Bb F Ab Eb F Ab F Ab Eb.
In a two-stage process, the fitness function compares the conformity of

the tone pitches of the output with the pitches in the reference pattern, as
well as the length of the output with a desired objective. Although Horner
and Goldbergs procedural method is very simple in this example, it describes
the possibility of arbitrarily adjusting the principles of crossover, mutation
and fitness evaluation with regard to the structuring of musical material.

Analogies to the Process of Composition.

In their applications of genetic algorithms to the generation of musical struc-
ture, Bruce L. Jacob [132] and Andrew Gartland-Jones [108, 109] empha-
sized this procedures similarity to a traditional compositional process. Ja-
cob outlines the objective of Variations, his algorithmic composition system:
The system was designed to reproduce very closely the creative process that
this author uses when composing music, and Gartland-Jones refers to the
general function principle of a genetic algorithm as follows: A commonly
used compositional process may be described as taking an existing musical
idea and changing it in some way. Musicians in various styles and genres may
follow the process differently, some through improvisation, others through
pencil and paper, but what is most often practiced is taking an existing idea
and mutating it to provide a new idea. In fact, mutation is closely related to
notions of development, which lie at the heart of western musical concepts of
form and structure. It may even be possible to see development as directed
mutation. With the core elements of GAs being mutation (including cross-
over) and fitness assessment, there appears to be a strong correlation with
at least some aspects of the human process of generating musical material.

According to Gartland-Jones, populations of phrases of two bars obtain
their fitness after the application of structure-modifying operations by a sim-
ple comparison with phrases of a given corpus. This principle finds further
application in the generation of obbligatos, interactive installations and a
software system. Distinctive parameters for notes are pitch, duration and
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velocity; the populations are generated considering both the key and mode
of the reference patterns. Ten functions are selected to serve as genetic
operations that, among other things, mirror, invert, rearrange and mutate
the material. The comparison of the patterns is applied on every note: If
a note corresponds to a note of the reference pattern, it obtains fitness 1.
Consequently, the fitness of a pattern is the total of the fitness of all single
notes, whereas the position of the notes in the pattern is not taken into
account. For the application of this principle in an installation the space
is divided into sixteen sectors that are assigned four cycles with different
fitness. Sensors capture the spatial position of the visitors and display the
corresponding patterns with speakers. Obbligatos are generated in another
application of this principle in relation to a users input. Here, each of the
last four bars of incoming MIDI data are subject to different genetic oper-
ations and made audible simultaneously. Implementations of this principle
within a software program make use of virtual building blocks that interact
musically. Each of these blocks has its own musical pattern, and is able to
send this pattern to other blocks and also receive patterns from these. When
a pattern is passed to another block, it serves as a reference pattern for the
pattern of the receiving block. The latter generates a new musical pattern
based on its own music and the music it has just been passed, which again
may be sent.

In his software project Variations, Jacob used three program modules
for the generation of musical structure by means of genetic algorithms: the
Composer,Ear and Arranger. In the Composer, variations of existing motifs
are produced with the help of different techniques. The Ear evaluates the
correctness of the motifs by permitted interval combinations and produces
musical phrases that are assembled by the Arranger into larger units, which
will be finally evaluated by a user. At the beginning, the user initializes the
Composer with a number of motifs to which the module adds further motifs
through transposition or rhythmic changes, for example. The evaluation
of the motifs in the Ear is performed automatically by applying a simple
comparison of patterns in order to examine whether all newly generated
motifs show the same intervallic relations as the entered motifs. Because a
motif in this system may be composed of both single notes and chords, in
the evaluation the horizontal as well as the vertical intervallic relations are
equally important. A valid new motif is at least a subset of the intervallic
relations of the entered motifs; similarly, the doubling of chord components
is allowed, as is the transposition of valid new generations or their rhythmic
changes.

The Ear arranges all valid motifs into phrases that are composed by the
Arranger by means of combination to larger musical units which are finally
rated by the user.
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Limits of Genetic Algorithms.

Somnuk Phon-Amnuaisuk, Andrew Tuson and Geraint Wiggins used genetic
algorithms to harmonize soprano voices. In this approach, genetic operators
such as mutation of chord type and swapping voices are applied and the
fitness functions are executed in compliance with basic rules of music theory.
The authors work is interesting also due to the fact that they point out
intrinsic weaknesses of a genetic algorithm regarding the performance of
particular tasks. An optimal fitness for all categories cannot be achieved
even within a very large number of productions; the generation of chord
progressions turns out to be extremely difficult.

First, harmonic progressions are highly context-sensitive so that when
changing a chord, the functional context of the entire environment must
be recreated. In the context of a genetic algorithm this may mean that
when improving a particular fitness dimension, the newly generated chro-
mosome provides worse values for other fitness dimensions. Another problem
is rooted in the fact that the genetic algorithm yields good results in small
musical tasks without, however, being able to generate the musical part as
a whole in a way that makes sense. Finally, consideration must be given
to the fact that the search in the state space is heuristic and not complete,
and this, as a result, is a reason for the impossibility of always reaching an
optimal solution for the musical task.

Even if the rule-based system shows a clear advantage over the genetic
algorithm in this study, the fact that the rule-based approach is also subject
to strong restrictions must be considered. The system is determined by the
implemented rules; the output is completely foreseeable so that in some cases
the gain of any insight from musical resynthesis must also be questioned.
On the other hand, the genetic algorithm is completely able to produce sur-
prising and yet musically satisfying results. Most of the algorithmic fitness
functions generalize musical information by means of knowledge-based or
rule-based strategies in order to be able to represent a uniform set of crite-
ria for the systems outputs. In the recognition of inventive solutions that
are actually violations of musical convention these fitness functions reach
their limits early. In addition to the abovementioned strategies, artificial
neural networks may also be applied for fitness evaluations; some works on
this subject were produced by Lee Spector and Adam Alpern, Brad Johan-
son and Al Biles. A neural network may produce surprising results, both
as a producing and an evaluating entity. Regarding context-sensitive struc-
ture, however, neural networks are often subject to the same restrictions as
genetic algorithms so that in these cases, rating by a user is recommended.

In order to reduce the enormously increasing search space in these cases,
Paul Pigg suggested a two-staged model for the improvement of these re-
strictions. In his approach, the user structures movements such as Intro,
Chorus, Solo, etc. and initializes them by indicating bar and key. Two
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genetic algorithms then generate the fine structure: The first genetic algo-
rithm produces a genetic pool of bars that possess all characteristics of the
corresponding movement; by this, a separate population is generated for
each movement. The chromosome is represented by two separate symbol
strings, the first referring to the pitch class and the other to the position of
the octave. In place of a pitch class, symbols for rests and holds may be
introduced in the symbol string as well. Crossover and mutation find appli-
cation as genetic operators, whereas crossover is carried out in the usual way
in the pitch classes and octaves. Mutation processes consist of shortening,
extending and changing notes as well as random octave mutation. Fitness is
rated by means of the simple principle that pitch classes are compared with
the scale degrees that are, in turn, determined by the key of the respective
movement. The evaluation of every single octave is based on the mean value
of the chromosome; each derivation reduces an optimal fitness. The second
genetic algorithm generates further variations on the basis of these chromo-
somes. In contrast to the first algorithm, this one generates chromosomes of
greater length and its fitness function additionally includes triads belonging
to the scale in the evaluation. Even when, due to the simple comparison of
patterns, the fitness functions in Piggs model have difficulties in recognizing
a coherent melodic structure, the pre-structuring of the musical material is
an interesting approach to an efficient reduction of a large search space.

Rhythmic Generators.

Genetic algorithms also find application in the production of rhythm. Da-
mon Horowitz developed a system [119] in which rhythmic patterns of dif-
ferently instrumented structure are generated by means of the preferences
and ratings of a user. Each chromosome represents a bar whose rhythmic
values may comprise pauses as well as note values between 1/16 triplets and
1/4 notes. A number of rhythmic parameters including density, repetition,
stressed beats and many more are created by the user in different ways ac-
cording to their importance for the generation of the populations. Each of
these criteria is furthermore assigned an optimal value for the fitness evalu-
ation that must be reached, as well as a weighting in relation to the other
criteria. This weighting controls how dominantly the respective criterion
is represented in the musical appearance of the chromosome. As an addi-
tional option, another genetic algorithm produces the mentioned optimal
values and weightings, and by doing this allows the generation of rhyth-
mic families, groups of structures that differ in the occurrence of rhythmic
characteristics. This Meta-GA facilitates evaluation by a user because the
selection of particular rhythmic families leads more quickly to a rhythmic
structure that is considered satisfying. Another function enables an effi-
cient generation of rhythmic patterns by further structuring chromosomes
regarding some parameters. The rhythmic structure of each chromosome
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is produced by different percussion instruments whose sound characteris-
tics are distinguished by their respective parameter ranges from each other.
Crossover and mutation are also only applied within similar instruments so
that sudden changes of sound color may be avoided by genetic operations.

For the generation of his genetic algorithms, Burton used ART (short
for Adaptive Resonance Theory) networks as fitness evaluators which are a
type of network applied to the forming of categories within unordered data.
For the fitness evaluation, the network is trained with a corpus of drum
patterns of different styles; the outputs of the genetic algorithm are com-
pared by means of the resulting categories (clusters). An interesting aspect
of this comprehensive work is also shown by a number of variants of genetic
operations that are examined regarding their suitability for producing the
rhythmic patterns.

Interactive Systems.

In numerous works Al Biles described the functioning of his program Gen-
Jam [72], developed to improvise jazz music based on genetic algorithms.
On the basis of given harmonic and rhythmic structures, GenJam generates
melodies that are rated by a user. The starting point for the melodies to
be produced is information about tempo, rhythmic articulation, parts to
be repeated and chord progressions. The chromosomes are represented as
binary strings within two populations indicating bars and phrases. A bar in
the genetic population consists of the assigned fitness as well as other values
that represent notes, ties and pauses. The chromosomes on the phase level
dispose of pointers on each four bar units. The population size in GenJam
comprises 48 phrases and 64 bars. The scale degrees for the single chro-
mosomes are selected on the bar level with respect to a number of possible
chord types, as can be seen in Figure 1.6.

Figure 1.6: Allowed tone pitches regarding chord type in GenJam.

The genetic operation carried out on both chromosome types is a one-
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point crossover, one half of the symbol string resting unmodified, the other
half being subject to a number of mutations. Holds are represented here by
15, pauses by 0. Four chromosomes of the bar level are chosen at random,
the two with the highest fitness being selected for mutation; their produc-
tion replaces the two other chromosomes. This population forms the basis
for the structuring of the phrases that in turn may be submitted to several
mutations. The operator Invert additionally changes pauses to holds and
vice versa. Genetic repair randomly chooses a new order for the elements
and also replaces the chromosome with the worst fitness by a randomly se-
lected element. Super phrase generates a completely new phrase by using
bars of greatest fitness selected from four groups that consist of three con-
secutive bars each. Lick thinner substitutes randomly selected bars that
are chosen most frequently in order to avoid the generation of material that
only differs slightly from an optimal solution. Orphan phrase works simi-
lar to super phrase with the difference that it selects those bars that occur
least frequently. By means of these genetic mutations operating on the bar
and phrase level, structurally similar phrases may be generated whose ge-
netic variety is guaranteed by functions that work against the production of
monotonous musical material. The output of the system is rated binary by
the user during playback. The fitness obtained through this is assigned to
each particular combination of phrases and bars and serves as a guideline
for the further generation of populations. In an extension of the software,
the originally random selection of note values is controlled by algorithms
that initialize the genetic populations by a structure similar to a reference
corpus. Another improvement is the integration of user improvisations that
are used as a basis for the genetic mutations.

1.7 Methods based on artificial neural networks

Artificial Neural Networks (ANN) were defined to reproduce some activi-
ties of the human brain, such as, for example, perception of images, pat-
tern recognition and language understanding. The human nervous system
is made up of billions of neurons. A neuron consists of a cell body and
several branched extensions, called dendrites, through which the neuron
receives electrical signals from other neurons. Each neuron has an axon
with filamentous extensions which are used to transmit electrical signals to
other neurons. The points of connection between the filamentous extensions
and the dendrites are called synapses. A neuron receives electrical signals
from the dendrites; when the overall received signal is bigger than a given
threshold the neuron becomes active and transmits eletrical signals to other
neurons through the filamentous extensions (see Figure 1.7). The intercon-
nection of neurons in the human brain is very complicated and depends on
the experience of the person. Such interconnection is the result of the life-
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long learning experience that the person has been subject to. In the human
brain there is no centralized control, in the sense that different brain areas
work together, in uencing each other and contributing to the achievement
of a specific task. Finally, the brain is fault tolerant. This means that if a
neuron or one of its connections are damaged, the brain continues to func-
tion, albeit with degraded performance. In particular, the capabilities of the
human brain degrades gradually as more and more neurons are destroyed
(graceful degradation). This normally happens when people get old. Artifi-
cial neural networks try to simulate the behavior of the human brain. The
activation function performs a weighted sum a =

∑n
i=0 xiwi of the input and

applies a function f to the resulting value a to produce an output y = f(a).
Usually, for the algorithmic music composition problems were used layered
feedforward artificial neural networks. In these networks the neurons are
arranged in layers. There is an input layer which receives the input signals
and an output layer which produces the output signals. In between these
two layers there might be several hidden layers each of which receives sig-
nals form the previous one and sends signals to the next one. An artificial
neural network, as a human brain, needs first to ”learn”, before being able
to solve problems. One of the most used learning techniques for an artificial
neural network is the so called supervised learning. With such a technique
we have to provide examples of problems together with the corresponding
solutions. Analyzing the relations between the provided input and output
the learning algorithm can set the synapses weights which determine the
network behavior.

1.7.1 The Architecture of Neural Networks

In this section we describe several models of ANN.

The Perceptron. The perceptron is a model of a feedforward network
that is constructed in regard to visual pattern recognition based on the
concept of an artificial eye. The perceptron of a simple form has no hidden
layer and the information from the image is passed to the input layer by
non-trainable connections and fixed weights and from the input layer to
the output layer with trainable connections and adjustable weights. In the
binary model of the perceptron, inputs and outputs may only assume binary
values and the weights are represented in real numbers. A simple threshold
function is applied here and the output layer may consist of one or more
neurons. As a training algorithm, the perceptron uses the delta rule which
is a form of supervised learning in which the weightings of the neurons are
updated corresponding to the error in the output of the perceptron. An
extended model of a perceptron has a number of trainable layers and is
known as a multi-level perceptron or also, corresponding to the learning
algorithm that is applied in this type, a back-propagation net.
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Figure 1.7: Model of a biological neuron

The Back-Propagation Network as an Extension of the Percep-
tron. A back-propagation network is a perceptron extended by additional
layers and solves the class of non-linear separable functions. This type of
ANN is trained with the backpropagation learning algorithm that also rep-
resents a method of supervised learning. The back-propagation algorithm
changes the connection weights depending on the net error, which is the
difference between the expected and the actual output of the ANN. The
weights are changed beginning with the connections to the output layer and
then continue backwards to the connections of the input layer.

Recurrent Neural Networks. When information from a previous step
is important for the actual one step, recurrent neural networks can be used,
which implement feedback in their design, like by connections leading from
units in a layer to the same layer or to previous ones. This ANN is trained
with the back-propagation algorithm. One of the first attempts to use such
type of network for algorithmic music composition was HARMONET, real-
ized by Hermann Hild, Johannes Feulner andWolfram Menzel [50]. Such a
system harmonizes melodies in the style of J.S. Bach based on neural net-
works and a rule-based system. For the generation of a harmonic skeleton, a
recurrent net with a hidden layer is used. This architecture is consequently
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extended to three parallel nets. An interesting representation form in HAR-
MONET indicates each tone pitch as the set of all harmonic functions that
may contain this pitch as a chord element. In the generation of the harmonic
skeleton, each quarter note is harmonized, taking into account its local con-
text that functions as the input of the net. The current harmony Ht consists
of the harmonic (Ht-1, Ht-2, Ht-3) and the melodic (st-1, st , st+1) context;
phrt contains information on the position of Ht relative to the beginning
or the end of a musical phrase; strt as a Boolean value indicates whether
the current harmony is a stressed quarter. For the encoding of this context,
106 neurons are used. 70 of these neurons are used within a hidden layer
and 20 form the output of the net. Having been generated by the ANN, the
harmonic progressions are controlled by constraints that examine the mate-
rial in terms of voice distances, parallels and the like. The net is trained on
two sets of Bach chorales, each containing 20 chorales in major and minor
respectively, using the back-propagation algorithm as training method. In a
final step, ornamenting eights are added to the chord skeleton by a further
net structure which also works in a contextbased manner.

Boltzmann Machines and LSTMs . Matthew Bellgrad and Lawrence
Peh Tsang [11] use a Boltzmann machine (BM) for the harmonization of
given chorale melodies composed in the Baroque period. A Boltzmann ma-
chine is one variant of a Hopfield net. As in a Hopfield net, the BM consists
in general of a single layer of completely connected neurons and serves to
assign patterns as well. In order to prevent the net from being limited to
local energy minima, in the processing of a cycle the BM may also take
on states with a higher energy potential. This process is a form of simu-
lated annealing, so called for the conceptual analogy of this algorithm to
the hardening of metals. In a BM, the net energy is temporarily increased
by means of a controllable temperature parameter that in each step may
additionally modify the activation of a neuron through a probability-based
value. For their model Bellgrad and Tsang use an extended version of a
so-called Effective Boltzmann Machine (EBM) that is trained on the local
contexts of a set of chorales. All chorales of the training set are transposed
on a mutual key. The tone pitches are represented locally by 35 neurons
that present pitches of an underlying scale. Three further neurons indicate
formal segments. According to its use by Bellgrad and Tsang, an event is
the interconnection of a number of neurons to form a chord in the short-
est appearing duration; longer durations are produced by repetitions. The
harmonic context is learned by means of nested Boltzmann machines that
each examines the immediate harmonic neighborhood of the note currently
sounding. In case the observed context is not contained in the same con-
figuration in the training set, the model may also generate harmonizations
with a differing number of voices. An extension of the system that com-
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prises restricting rules avoids undesired voice crossings and guarantees the
correct number of voices for each harmonization step. Jurgen Schmidhu-
ber and Douglas Eck [40] use a long short-term memory recurrent neural
network (LSTM) for the production of melodic material over a given chord
progression. A problem occurring in traditional network architectures lies
in their treatment of context-sensitive material. Although common recur-
rent ANNs may consider a certain number of previously produced data, in
a larger context, however, this type of network also shows some weaknesses,
as Mozer states for his system: While the local contours made sense, the
pieces were not musically coherent, lacking thematic structure and having
minimal phrase structure and rhythmic organization. It appears that the
CONCERT architecture and training procedure do not scale well as the
length of the pieces grows and as the amount of higherorder structure in-
creases. An LSTM consists of an input and output layer as well as a number
of interconnected memory blocks. Each block contains a differing number of
recurrent memory cells containing the information of previous states. Infor-
mation is exchanged through gates that, according to the input and type of
threshold function, may enable either the admission or transfer of informa-
tion, pass on information after a delay or delete the content of the memory
block. In most cases a conventional recurrent ANN may use ten to twelve
previous steps for the context treatment, while an LSTM can treat a con-
text of over 1000 timesteps. Eck and Schmidhuber use a local representation
of note values and rhythmic changes are produced by holds. For both the
chord and melody material the tonal space of an octave is applied. In a first
experiment, only chord progressions are learned using a form of twelve bar
blues. Further, parallel to the chord sequence, melody lines are built based
on a pentatonic scale. An evaluation carried out by a jazz musician finds
clearly better results for these generations than for passages produced with
a random walk method. Although a considerably larger context may be
treated by LSTMs in contrast to simple recurrent architectures, this model
also reveals certain limitations in terms of the generation of larger musical
sections. In the context of algorithmic composition neural networks are, in
most cases, not exclusively used for the generation of structure, but can
be found, however, often as an extension of other procedures (for exam-
ple, in the form of fitness raters in the field of genetic algorithms) or for
the examination of single musical aspects. Alejandro Pazos, A. Santos del
Riego, Julian Dorado and J.J. Romero-Cardalda [107] developed a system
treating agogics in Western classical music. The musical information used
is provided by means of rhythmic pulsations of a MIDI pedal made by the
musician. These data make up the training material of the ANN that is
used for the prediction of agogic variation. Artificial neural networks may
also be well applied in the field of classification where musical material is,
among other things, examined in terms of the tonality of individual musical
segments [99, 127, 128] or stylistic distinctions [28, 69]. For these analyses,
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it is mainly Kohonens self-organizing maps that are applied.

1.8 Methods based on splicing systems

Splicing systems are a formal model of a generative mechanism of words
(strings of characters), inspired by a recombinant behavior of DNA. They
are defined by a finite alphabet A, an initial set I of words and a set R of
rules. Many of the studies about splicing systems focused on the properties
of the generated language and their theoretical computational power.

Splicing is a language-theoretic word operation, introduced by Head [],
which models a DNA recombination process, namely the action of two com-
patible restriction enzymes and a ligase enzyme on two DNA strands. Ab-
stracting from the physical phenomenon, splicing is formalized as an op-
eration on two words that generates new words. It concatenates a prefix
of one string with a suffix of another string, under some conditions, repre-
sented as a (splicing) rule. A splicing system consists of a set I of words,
the initial language, defined over an alphabet A, and a set R of splicing
rules. The language generated by a splicing system contains every word
that can be obtained by repeated applications of rules to pair of words in
the initial language and in the set of generated words. Splicing systems are
a relatively old research topic in computer science and much early research
effort has been devoted to the study of the computational power of such
formal systems. The computational power mainly depends on the level of
the Chomsky hierarchy that I and R belong to. For instance, the class
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Music Splicing Systems

2.1 Introduction

Modern computers are powerful means for creating, enjoying, and sharing
art, music, film, and much more. Beside mere computations, computers are
able to produce “creative” results, especially when the creation process is
driven by clever algorithms. In the field of music, theory and application
of new and existing technologies have been successfully employed in many
aspects, such as sound synthesis, digital signal processing, sound design,
and so on. A specific music problem which has been tackled with the use of
computers is that of Algorithmic Music Composition. We can formalize such
problem as the definition of a formal process whose goal is that of producing
music with no (or minimal) human intervention.

In this chapter we describe the use of biological environment features,
specifically those that characterize splicing systems, to develop a system for
algorithmic composition([23],[24]).

2.2 Background

In this section we briefly recall the needed background to understand the
rest of this chapter.

2.2.1 Music background

We consider the tempered music system used in western countries. Such a
system, starting from a reference sound (a given frequency, normally 440Hz,
that defines a reference note) defines octaves to be those sounds with frequen-
cies which can be obtained by repeatedly doubling or halving the reference
frequency. Each octave is divided into 12 equally spaced1 notes, denoted by
the letters A, A# or Bb, B, C, C# or Db, D, D# or Eb, E, F, F# or Gb,

1To be precise if a note has frequency f the “next” note has frequency f · 2
1
12 .

31
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G and G# or Ab. This system has been developed mainly to easy transpo-
sition. Indeed tempered music is based on the notion of tonality. Roughly
speaking, a tonality is a group of notes which form a scale. Starting from
each of the 12 notes in an octave one can have a tonality (there are various
kinds for each note, like major, minor, etc.). For example, the major scale
of C is C, D, E, F, G, A, B, while the major scale of D is D, E, F#, G,
A, B, C#. The notes of a scale are often denoted also by I, II, III, IV,
V, VI, VII especially when one wants to emphasize only the degree of the
scale and not the particular note, which depends on the tonality. A piece
written in a given tonality can be easily transposed into another tonality by
simply shifting all the notes; this is possible because all the notes are equally
spaced. A good explanation of the tempered music system can be found in
Chapter 3 of [157].

Usually one tonality is considered the main tonality of the piece, and
therefore notes of the corresponding scale are considered more important
than notes outside the scale. Western music, starting from the common
practice period, is based upon harmonic and melodic rules for the tempered
system, which are very well-established. We refer the reader to any good
book on harmony, like [185], for a discussion about such rules. Here we will
only recall some important concepts relevant to our work.

We focus our attention on music composed in 4 voices; unreachable ex-
amples of such type of compositions are J.S. Bach’s chorales. A chorale
consists of 4 independent voices, called bass, tenor, alto and soprano. A
piece of music consists of a sequence of measures, each consisting of a given
number of beats. In each beat the 4 voices play (or sing) a note2. The ver-
tical set of notes in a beat is a chord. The notion of chord is fundamental.
There are numerous kinds of chords. In this work we consider only 3- and
4-note chords. Chords are built upon each degree of the scale, that is I, II,
III, IV, V, VI, VII. Often the note on which the chord is built, called the root
note of the chord, is given to the bass; however the bass can also play any
other note (chord inversions). Chord inversions are usually denoted with a
superscript that indicates the inversion (for example, III6, V46, I357). The
chords we consider are described in Table 2.1 (for each we give one example
in the tonality of C) .

One of the fundamental rules of the tempered music system is that a
vertical set of notes must be one of the allowed chords. Other rules concern
sequences of chords. Some sequences are “better” than others, where better
is hard to define since it is a subjective evaluation. Anyway it is largely
accepted that particular sequences of chords work better than others. Some
chords are “more important” than others because they suggest, prepare,
enforce or device tonal centers. The art of tonal music consists precisely in

2This a simplification of what really happens since a composition may have also passing
notes which are not part of the harmony.
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Chord An example
root note set of notes

Major triad C C, E, G
Minor triad E E, G, B
Major seventh C C, E, G, B
Minor seventh D D, F, A, C
Dominant seventh G G, B, D, F
Half-diminished seventh B B, D, F, A

Table 2.1: Chords (with examples in the tonality of C)

arranging chords in such a way that their interplay is pleasant and mean-
ingful. On the practical side, this translates into simple rules which state
things like (the following is taken from [185]):

“I is followed by IV or V, sometimes VI less often II or III.”
“II is followed by V, sometimes VI, less often I, III or IV.”

Beside rules about chord sequences, we also have rules about melodic
lines. A melodic line is simply the sequence of notes played by each single
voice. Rules about melodic lines can refer to the movement of a single voice
(for example, normally a jump bigger of an octave is not allowed; jumps
within the notes of the scale are preferred to jumps to notes not part of the
scale) or also to the movements of two voices (for example, two voices that
proceed by parallel fifth are not allowed).

We refer the interested reader to a standard textbook on harmony, like
[185], for a better and more detailed explanation.

2.2.2 Splicing Systems

Splicing is a language-theoretic word operation, introduced by Head [4],
which models a DNA recombination process, namely the action of two com-
patible restriction enzymes and a ligase enzyme on two DNA strands. Ab-
stracting from the physical phenomenon, splicing is formalized as an oper-
ation on two words (string) that generates new words. It concatenates a
prefix of one string with a suffix of another string, under some conditions,
represented as a (splicing) rule. A splicing system consists of a set I of
words, the initial language, defined over an alphabet A, and a set R of
splicing rules. The language generated by a splicing system contains every
word that can be obtained by repeated applications of rules to pair of words
in the initial language and in the set of generated words. Splicing systems
are a relatively old research topic in computer science and much early re-
search effort has been devoted to the study of the computational power of
such formal systems. The computational power mainly depends on the level
of the Chomsky hierarchy that I and R belong to. For instance, the class
of languages generated by splicing systems with a finite initial language and
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a finite set of rules, often referred to as finite splicing systems, contains all
finite languages and it is strictly contained in the class of regular languages.
This result has been proved in several works by using different approaches
(see [65, 64]). Splicing systems theory is still an interesting field of research,
with complex open problems, as shown by more recent literature on this
topic, such as [66].

In [4] Head has formalized the biochemical operation of splicing as an
operation on strings. Following Head’s work there have been further devel-
opment of such an abstraction, in particular Păun [54] and Pixton [55] have
introduced alternative operations. Each of these operations take as input
two words and can generate either one new word, 1-splicing, or 2 new words,
2-splicing.

In this work we will use the 2-splicing operation introduced by Păun.
A Păun’s 2-splicing rule r is explicited in the form r = u1#u2$u3#u4,

where u1, u2, u3, u4 are strings over a given alphabet A such that #, $ 6∈ A.
The words u1u2 (concatenation of u1 and u2), and u3u4 (concatenation of
u3 and u4) are called sites of r. Roughly speaking, a site is a substring of
the input words where we can “cut” the input words. Hence a rule identifies
two points where we can cut the input strings.

Given such a rule r, and two words x and y belonging to the current
language, if x contains the first site u1u2, that is x = x1u1u2x2, and y
contains the second site u3u4, that is y = y1u3u4y2, rule r produces the
strings z = x1u1u4y2, w = y1u3u2x2. We denote this operation by (x, y) `r
(z, w). Notice that if an input words contains a site multiple times, then the
operation can be applied multiple times so that 2 new words are generated
for each pair of 2 sites in the input words.

Let r = a#b$c#d and consider x = eabf and y = gcdh. Then eadh and
gcbf are generated by splicing. If we consider x = eabfiabl and y = gcdh,
then eadh, gcbfiabl, aebfiadh and gcbl are generated.

Splicing systems are models for generating languages based on the splic-
ing operation. In order to generate a language using a splicing system we
start from an initial set of words (often called the initial language) and we
apply the rules of the splicing system to produce new words which are added
to the initial set.

More formally a splicing system is a triple S = (A, I,R), where A is
a finite alphabet such that #, $ 6∈ A, I ⊆ A∗ is the initial language and
R ⊆ A∗#A∗$A∗#A∗ is the set of rules. A splicing system S is finite if
I and R are both finite sets. Let L ⊆ A∗. We set σ′(L) = {w′, w′′ ∈
A∗ | (x, y)`r (w′, w′′), x, y ∈ L, r ∈ R}. The splicing operation on languages
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is defined as follows:

σ0(L) = L,

σi+1(L) = σi(L) ∪ σ′(σi(L)), i ≥ 0,

σ∗(L) =
⋃
i≥0

σi(L).

Given a splicing system S = (A, I,R), the language generated by S is
L(S) = σ∗(I). A language L is S-generated (or is a Păun splicing language)
if there exists a splicing system S such that L = L(S).

2.3 Music Splicing System

In this section we describe two representations adopted to define the mu-
sic splicing systems for the problem considered: Note representation and
Tonality-degree representation.

The basic idea for both of them is the following. We start from a ground
data set of Bach’s chorales, representing them as words; such words are the
initial set of the splicing system. Then we apply the splicing system to
produce a language from the initial set. Such a language will contain many
words; the actual number depends on the initial set and the set of rules of
the splicing system. We remark that the process is deterministic. In order
to generate the final language the splicing process has to be applied many
times. This process might take a very long time, so for practical applications,
such as the one we are proposing, we may stop the generation at some point
and proceed with the language generated so far. Once we stop the splicing
process we need to choose one single word from the generated language as
the output of the system.

2.3.1 Note representation

We define a music splicing system that uses the Note representation as a Note
Music Splicing System Snmss. Such a system is defined by an initial ground
data set of Bach’s chorales, represented as words (initial set of words Inmss
on the alphabet Anmss), and a set of well-established rules in classical music
composition (set of splicing rulesRnmss) obtained by extracting information
about the notes. The language generated contains words that represent
pieces of “new” chorales in the Bach style. Formally, a Note Music Splicing
System is a triple Snmss = (Anmss, Inmss,Rnmss).

The alphabet Anmss

The alphabet we need has to allow us to specify the notes for each voice.
Let AV = {β, τ, α, σ} be the voice alphabet, where β stands for bass, τ
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Figure 2.1: A fragment of BWV 32.6

for tenor, α for alto and σ for soprano. Let AN = {C, C#, Db, D, D#,
Eb, E, F , F#, Gb, G, G#, Ab, A, A#, Bb, B} be the notes alphabet and
AO = {3, 4, 5, 6} be the octaves alphabet. Then let Anmss = AV ∪AN ∪AO.

Using Anmss we can represent 4-voice chorale-like music as words. No-
tice that the “composition” that we will represent are sequences of chords.
They might represent an entire chorale but also a fragment of it consist-
ing of a few measures or even a single chord. A chord contains the notes
sung (or played) in a specific beat by the bass, the tenor, the alto and the
soprano voice (or instrument). Hence, a 4-voice composition is a sequence
C = (c1, . . . , cn) where each ci is a chord, for each 1 ≤ i ≤ n.

We can represent each chord ci as a word over Anmss, more precisely,
for each 1 ≤ i ≤ n, ci can be represented as a word wi = βxiτyiαviσzi,
where xi, yi, vi, zi ∈ ANAO.

An entire composition C = (c1, . . . , cn) is represented as w(C) = w1w2 . . . wn.
Let C = C1, . . . , Ck be a set of 4-voice compositions (entire compositions,
fragments or even single chords). The set of words associated to C is
W(C) = w(C1), . . . , w(Ck). We also say that C is the set of 4-voice com-
positions associated to W.

Let us consider for example the 4-voice music fragment C in Figure 2.1
(a fragment of Chorale BWV 32.6), C = (c1, c2, c3, c4). We have w1 =
βG4τB4αD5σG5, w2 = βF#4τA4αD5σA5, w3 = βG4τG4αD5σB5, w4 =
βD4τG4αD5σA5, so
w = βG4τB4αD5σG5βF#4τA4αD5σA5βG4τG4αD5σB5βD4τG4αD5σA5.

The initial set of words Inmss

To define Inmss a set, called the ground set G, of 10 Bach’s chorales3 has
been considered. Each one of these 10 chorales was transposed in every
tonality. In addition other words associated to single chords have been
inserted into Inmss to define the splicing rules.

3The 10 chorales in the ground set G are BWV 3.6, BWV 10.7, BWV 11.6, BWV 12.7,
BWV 13.6, BWV 14.5, BWV 20.7, BWV 20.11, BWV 31.9 and BWV 32.6.
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The objective is to define rules that generate good music patterns. So
the chorales in G have been first analyzed, and then single chords have been
extracted so that we can generate music that is closer to that in G. During
the chord extraction we attached to the extracted chord also information
about the degree of the scale on which the chord is built. This information
will be crucial in re-arranging the chords, by means of splicing rules, so that
specific sequences of chords (e.g., cadences) will be produced. As done for
the initial set, we have transposed each extracted chord in all 12 tonalities.

Rules definition

The definition of the rules is very important because the rules determine
the language being generated. We would like to provide rules that produce
good patterns of music. In order to do so we analyze and extract single
chords from the chorales in the ground data set G so that we can (sort of)
reproduce music that is similar to that in the ground data set.

In more details, we have extracted 13 ∗ 12 = 156 chords from the BWV
3.6, 18 ∗ 12 = 216 chords from the BWV 10.7, 9 ∗ 12 = 108 chords from the
BWV 11.6, 17 ∗ 12 = 204 chords from the BWV 12.7, 19 ∗ 12 = 588 chords
from the BWV 13.6, 7 ∗ 12 = 228 chords from the BWV 14.5, 5 ∗ 12 = 60
chords from the BWV 20.7, 16 ∗ 12 = 192 chords from the BWV 20.11,
16 ∗ 12 = 192 chords from the BWV 31.9, 18 ∗ 12 = 216 chords from the
BWV 32.6, for a total of 2160 chords. We call Chords(G) the set of these
chords. The reason why we selected only some chords in each chorale and
not every one was to keep the cardinality of Chords(G) to a reasonable size.

For each extracted chord c ∈ Chords(G), we store the information, pro-
vided by the harmonic analysis, about the degree on which the chord is
built. We denote with Degree(c) the degree of c. The set of words associated
to Chords(G) is W(Chords(G)).

We model the set of splicing rules on the basis of the classical harmonic
rules (see Section 2.2.1). In particular we have decided to model as splicing
rules the following musical cadences:

1. V → I

2. II → V

3. VI → II

4. V → VI

5. IV → V

6. IV → I

7. III → VI.
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Moreover we also want that a composition starts and ends with a chord
built on the first (I) degree of the scale, since this is what happens normally.
We remark that for each of these situations (each cadence, and the starting
and ending of the composition) we will define several rules of the splicing
system.

Thus we can group all the rules in three sets of rules:

Rules for starting with I: For each pair of chords c1, c4 ∈ Chords(G),
such that Degree(c1) = I, we define a rule r = w1#ε$ε#w4 where ε is the
empty word, w1 is the word associated to c1 and w4 is the word associated
to c4. Moreover we also insert w1 in Inmss.

Rules for cadences: For each quadruple of chords c1, c2, c3, c4 ∈ Chords(G),
such that both Degree(c1) → Degree(c4) and Degree(c3) → Degree(c2) are ca-
dences, we define the rule r = w1#w2$w3#w4 where wi is the word associ-
ated to ci, for i = 1, 2, 3, 4.

Rules for ending with I: For each pair of chords c1, c4 ∈ Chords(G),
such that Degree(c4) = I we define a rule r = w1#ε$ε#w4 where w1 is the
word associated to c1 and w4 is the word associated to c4. Word w4 is also
inserted into Inmss.

The above set of rules, applied to the ground set G yields a total of 1, 658, 880
in Rnmss.

Time and space complexity

One of the most significant limitations of the Note representation is its
efficiency in terms of both space and time complexity. Indeed an empirical
evaluation has shown that the system based on that representation is quite
slow and uses a lot of memory. At an analytical level, this can be justified
by the fact that there is no information about the tonality and degree of
the chords. This means that, in order to define the rules, we have first to
transpose all the chords extracted in all the tonalities, and then we have to
build the rules by considering all possible combinations. This calls for a lot
of memory usage and consequently time consumption.

In Section 2.4.1, we report the time and memory consumption which,
for very large initial sets and executions with many iterations, can become
very large.

2.3.2 Tonality-degree Representation

In order to address the issues described in Section 2.3.1, in this section we
introduce the Tonality-degree representation. We define a music splicing
system that uses this representation as a Tonality-degree Music Splicing
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System. The basic idea is to increase the musical information in the Note
representation by also considering music degree information for each beat of
the composition.

Similarly to what done in Section 2.3.1, we start from a ground data
set of Bach’s chorales, representing them as words and proceed as done
Section 2.3.1, that is we apply the splicing system to the set of initial words
repeating it many times; to produce the output we then choose one of the
words.

As we have said in the previous section, a splicing system S consists of
three components: an alphabet A of the symbols used, an initial set I of
words and a setR of rules. In the following we will give these components for
the tonality music splicing system Stdmss = (Atdmss, Itdmss,Rtdmss).

The alphabet Atdmss

For the Tonality-degree representation we use the voice alphabet AV , the
notes alphabet AN and the octaves alphabet AO, as defined in Section
2.3.1. Additionally, we introduce the tonality alphabet AT = {C, C#,
Db, D, D#, Eb, E, F , F#, Gb, G, G#, Ab, A, A#, Bb, B}, the quality
alphabet AQ = {M,m} (where M stands for major tonality and m for minor
tonality), and the degree alphabet AD = {1, 2, 3, 4, 5, 6, 7}.

As explained in Section 2.3.1 an entire composition C = (c1, ..., cn)
is represented as w(C) = w1w2 · · ·wn. Given a set of 4-voice compo-
sitions C = {C1, . . . , Ck}, the set of words associated to C is W(C) =
{w(C1), . . . , w(Ck)}. We also say that C is the set of 4-voice compositions
associated to W(C).

Let us consider the 4-voice music fragment C in Fig. 2.1 (a fragment of
Chorale BWV 32.6), C = (c1, c2, c3, c4). We have w1 = GM1βG4τB4αD5σG5GM1,
w2 = GM5βF#4τA4αD5σA5GM5, w3 = GM1βG4τG4αD5σB5GM1,
w4 = GM5βD4τG4αD5σA5GM5, so w = w1w2w3w4.

Initial set and rules definition

The initial set is defined as described in Section 2.3.1. As for the Note repre-
sentation, we start again from the ground data set G obtained by analyzing
a set of Chorales by Bach.

Unlike to what done for the previous representation, we don’t attach the
degree of the scale on which the chord is built during the chord extraction.
Instead, we directly integrate the degree and the tonality of the chord in the
word representation of each chord. So, we do not need to transpose each
chord in all 12 tonalities, and we use only the real chords that appear in the
the ground data set.

As for the Note representation, in this representation we model the set
of splicing rules on the basis of classical harmonic rules.
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However, for the Tonality-degree representation system, we don’t build
the rules by checking all the combinations, but we use directly the chords
extracted. This guarantees a considerably smaller number of rules. Further-
more, in this representation we directly extract the rules for the modulations.

Thus we can group all the rules in four sets of rules:

Rules for starting with I: For each c1, c4 ∈ Chords(G)), such that
Degree(c1) = I and Tonality(c1) = Tonality(c4), we define a rule r = w1#ε$ε#w4

where ε is the empty word, w1 is the word associated to c1 and w4 is the
word associated to c4. Moreover we also insert w1 in Itdmss.

Rules for cadences: For each c1, c2, c3, c4 ∈ Chords(G), such that both
Degree(c1) → Degree(c4), with Tonality(c1) = Tonality(c4), and Degree(c3) →
Degree(c2), Tonality(c3) = Tonality(c2), are cadences, we define the rule r =
w1#w2$w3#w4 where wi is the word associated to ci, for i = 1, 2, 3, 4.

Rules for ending with I: For each c1, c4 ∈ Chords(G), such that Degree(c4) =
I and Tonality(c1) = Tonality(c4) we define a rule r = w1#ε$ε#w4 where w1

is the word associated to c1 and w4 is the word associated to c4. Word w4

is also inserted into Itdmss.

Rules for modulations: For each ci, cj+1, cj , ci+1 ∈ Chords(G), such that
Tonality(ci) 6= Tonality(ci+1), and ci and ci+1 are consecutive chords, and
Tonality(cj) 6= Tonality(cj+1), cj and cj+1 are consecutive chords, we define
the rule r = w1#w2$w3#w4 where wi is the word associated to ci, for
i = 1, 2, 3, 4.

Starting with G containing Bach’s chorales BWV 3.6, BWV 10.7, BWV 11.6,
BWV 12.7, BWV 13.6, BWV 14.5, BWV 20.7, BWV 20.11, BWV 31.9 and
BWV 32.6 we have |G| = 10, and so we have obtained 138 chords. The
above set of rules, applied to the ground set G yields a total of 8, 598 in
Rnmss.

Therefore, we can observe how both the number of chords and the num-
ber of rules are notably reduced compared with the Note representation (see
Section 2.3.1).

2.4 Studies

We report in this Section the results of two studies aiming at analyze: (1)
the performance of the Tonality-degree representation and (2) the easiness
of the proposed representation from the end user point of view.

About the first study (Performance evaluation), we have compared the
system with two other similar systems by measuring execution time, memory
consumption, harmonic and melodic values.



CHAPTER 2. MUSIC SPLICING SYSTEMS 41

About the second study (User evaluation) we have administered a eval-
uation test to some recruited people asking their opinion on various aspects.
The aim of this study was to derive information about both the easiness of
the representation, when compared with the same approaches used for the
Performance study, and the user satisfaction, in terms of usefulness, when
apply it to programming activities. For this study we used subjective metrics
(i.e., analysis of the Java programs produced by programmers when coding
some tasks), and objective metrics (i.e., standard quality metrics used to
evaluate the quality of the software).

Section 2.4.1 reports the results of the first study while Section 2.4.2
reports the result of the second study.

2.4.1 Performance evaluation

We have implemented both the automatic composer based on the Tonality-
degree representation and the one based on the Note representation. More-
over we also used the automatic composer EvoBassComposer [15], a multi-
objective genetic algorithm that automatically composes music when pro-
vided with a bass line input. We have run tests for each of the three im-
plementation and we have considered four metrics: execution time, memory
consumption, harmonic and melodic values.

Before discussing the results of the first study, we provide some details
about the implementation.

Implementation details. We now give details about the implementation
of the automatic composer based on a music splicing system. Let Snmss
(resp. Stdmss) be the music splicing system considered, and L = L(Snmss)
(resp. L = L(Stdmss)) the language generated. We fix a number of iter-
ations. A single iteration corresponds to an application of all the rules in
Rnmss (resp. Rtdmss); in each iterations the rules are applied to all possible
pairs of words in the current language. Let Lk(Snmss) (resp. Lk(Stdmss))
be the language obtained after k iterations. The value sof k that we have
considered are k ∈ {10, 50, 100, 500, 750, 1000, 2500, 5000, 7500, 10000}.

Given a k and the language Lk(Snmss) (resp. Lk(Stdmss)) we decide
to choose one single word w ∈ Lk(Snmss) (w ∈ Lk(Stdmss)) as the output
of the algorithmic composer. The chosen output chorale is the composition
represented by such a word. The selection of the output word is based on a
function that measures the harmonic quality of the composition, proposed
in [15]. The harmonic function is based on “weights” assigned to pairs
of consecutive chords, chosen so that good harmonic pattern have heavier
weights. In Table 2.2 we report the weights for stepping between chords in
the same tonality.

Furthermore, we also use a function for the melodic quality whose def-
inition is based on “weights” assigned to each type of melodic errors that
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Major Degree

Degree I ii iii IV V vi vii◦

I 250 200 50 200 250 50 10

ii 100 100 100 150 2000 150 10

iii 100 100 100 200 100 250 10

IV 250 150 100 200 1500 100 10

V 2000 100 100 100 250 150 10

vi 100 200 150 150 200 200 10

vii◦ 1000 50 150 50 50 100 200

Minor Degree

Degree i ii◦ III iv V vi vii◦

i 250 250 50 200 250 50 10

ii◦ 100 100 100 150 250 150 10

III 100 100 100 200 100 250 10

iv 250 150 100 200 200 100 10

V 250 100 100 100 250 150 10

vi 100 200 100 100 200 200 10

vii◦ 250 50 150 50 10 10 200

Table 2.2: Table of the weights for pair of consecutive chords in the same tonality.

occur in the composition. We remark that also this measure is the one used
in [15].

Performance results. Results of this study are summarized in Figs. 2.2
and 2.3. As shown in Fig. 2.2(a), the execution time of the implementation
based on the Tonality-degree representation is the best one. With respect
to Note representation, when considering a number of generations smaller
than 2500, the behavior of EvoBassComposer and the Tonality-degree rep-
resentation is almost the same. When increasing the number of generations,
EvoBassComposer undergoes a deterioration in its behavior, mainly due to
an increase of the size of the elite population, and therefore, to an increase
of the number of individuals to which the genetic operators were applied.

The Note representation, instead, is always slower due to the generation
of inconsistent individuals, given the absence of degrees information in the
representation.
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Figure 2.2: Performance results in terms of execution time and memory consump-
tion

We observed a similar behavior for the memory consumption, as reported
in Fig. 2.2(b)).

As shown in Fig. 2.3(a), the Tonality-degree representation generates a
better solution in terms of the harmonic metric, while from the melodic point
of view, the three approaches tend to generate solutions almost equivalent,
as shown in Fig. 2.3(b).

In summary, as result of the Performance study, we can state that the
Tonality-degree representation outperforms the other analyzed approaches
by allowing to obtain high quality results in a shorter time and using less
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Figure 2.3: Performance results in terms of harmonic and melodic metrics.

memory.

2.4.2 User evaluation

In this Section we first describe the methodology employed for the user study,
then we discuss the results obtained during a code programming phase, per-
formed by a group of people that, according to the Within-Subjects De-
sign [38], tested the Tonality-degree representation comparing it with a dif-
ferent representation chosen by each member of the group.

The objective of this evaluation was to explore the advantages that the
proposed representation is able to produce during the programming activ-
ities of programmers with background and skill in music and evolutionary
methods. The metrics we evaluated include the quality of the produced code
(both subjective and objective analysis) and the overall perception of the
participants in terms of easiness and usefulness of the proposed representa-
tion.

Method. The User study was organized in three phases in which we car-
ried out (a) a Preliminary Survey, (b) a Testing Phase, and (c) a Summary
Survey [40, 39].

The aim of the first phase was to collect information about demograph-
ics, musical and programming background. In the Testing Phase, to solve
specific problems, we asked users to write simple Java programs by using
first the Tonality-degree representation, and then, a second representation
decided by the users themselves. For each representation we asked users to
perform three tasks: (Task 1) implementing a mutation operator on a mu-
sical composition, (Task 2) implementing a single-crossover operator and
(Task 3) implementing a multiple-crossover operator.

To avoid biased results, tasks were submitted in a random order. At the
end of the Testing Phase we asked users to rate how easy was completing the
tasks (with questions from the ASQ questionnaire4), and which approach
was the simplest in terms of data structures defined and implemented. In

4http://garyperlman.com/quest/quest.cgi?form=ASQ
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the third phase we asked participants to express their overall satisfaction
when using the Tonality-degree representation, in terms of metrics such
as usefulness, ease of use, and attitude (with a subset of questions from
the TAM questionnaire [45]). The overall study took 40 minutes for each
user. Finally, the questionnaires submitted to the participants are available
online5, and their responses have been analyzed using SPSS version 206.

Results. Recruits comprised 10 participants, with 70% of them having a
master level in Computer Science. The full sample was male with a mean
age of 31. Fig. 2.4 shows that the full sample had music knowledge (no
one of the participants was Inexpert in that field), 90% consider themselves
more than Competent with regard to expertise in code programming, and
70% more than Competent with regard to expertise in evolutionary methods
programming.

Preliminary Questionnaire

0% 20% 40% 60% 80% 100%

How do you consider your experience with Musical
composition?

How do you consider your experience with
programming?

How do you consider your experience with
evolutionary methods programming?

Inexpert Beginner Competent Advanced Expert

Figure 2.4: Preliminary Survey results.

As we can see in Table 2.3, the results of the Testing Phase showed
that in terms of easiness of completing the tasks on average the users were
more satisfied when using the Tonality-degree representation (mean across
all tasks of 4.4, against 3.5 for the free representation, SD=0.1). Similarly,
about the time it took to complete the tasks, users were more satisfied with
the Tonality-degree representation.

We used statistical tests to verify if existed significant differences in terms
of user satisfaction when completing the tasks, by using the Tonality-degree
representation against the own approach. This test revealed that there is a
significant difference with regards both the easiness of completing the tasks
and the time it took to complete them (p-value < .001 for both questions).

To measure the quality of the produced code, as anticipated before, we
used both subjective and objective metrics. Specifically, for the objective
analysis we used a metric commonly used to evaluate the quality of software,
that is, the source line of codes (Fourth and octave column in Table 2.3).
The subjective analysis was intended to analyze the diligence (how carefully

5http://www.di.unisa.it/~delmal/research/usability/Splicing
6http://www-01.ibm.com/software/analytics/spss/
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the participant does her work) of the participants when completing their
tasks, that is, use of significative names for variables, code indentation, and
so on. We assigned a score (from 1 to 10) to each of the these metrics, and
the mean value across them is shown in the “Subjective Metrics” columns
of Table 2.3.

As we can see from Table 2.3, the objective analysis showed that the
Tonality-degree representation allowed participants to write a smaller num-
ber of source code lines (mean value of 98, against 195 for the representation
freely chosen by users). We also found out a significant difference with re-
gard to this metric (p-value < .001).

Table 2.3: Testing Phase results. Satisfaction measured with 5-point Likert scale
questions. Results about Software metrics are in a range between 1 and 10.

Tonality-degree representation Freely chosen representation

Satisfaction:
Easiness of
the tasks

Satisfaction:
Time to
complete
the tasks

Source
line of
codes

Subjective
Metrics

Satisfaction
easiness of
the tasks

Satisfaction
time to

complete
the tasks

Source
line of
codes

Subjective
Metrics

Task 1 4.5 4.2 91 8.5 3.6 3.6 177 7.8

Task 2 4.3 4.2 102 8.5 3.5 3.3 209 7.5

Task 3 4.4 4.4 101 8.4 3.5 3.7 200 7.6

Mean 4.4 4.3 98 8.5 3.5 3.5 195 7.7

SD 0.1 0.1 6 0.1 0.1 0.2 17 0.1

Additionally, the subjective analysis showed that although the quality
of the produced Java programs (Subjective Metrics) was high when using
both representations, a slight positive result is obtained with our approach
(mean value of 8.5 against 7.7 for the freely chosen representation).

From the analysis of the third phase, we discovered that, in general, in
terms of easy of use, participants were more satisfied when interacting with
the Tonality-degree representation (question Q1 in the Summary Question-
naire, mean = 4.1, SD = 0.9). Moreover, at the question “In terms of used
data structures and complexity of the code, which approach do you feel easier
to use?” (question Q2 in the Summary Questionnaire), on average, 87% of
participants choose the Tonality-degree representation (the remaining 13%
rated as “Equivalent” the tested approaches).

Finally, as shown in Table 2.4, all metrics about usefulness, ease of use
and attitude toward using our representation, were rated highly positive.
These results highlight how our representation was felt as easy to learn,
easy to use, and useful to accomplish tasks in a more quick and effective
way.

2.5 Conclusion

Various bio-inspired processes have been used to define algorithms for auto-
matic music composition: evolutionary algorithms, bio-inspired algorithms,
formal grammars, cellular automata, machine learning. In this work we pro-
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Table 2.4: Measures and constructs. Rating on a 7-point Likert scale.

Metric Mean SD

Usefulness

U1 Using the proposed representation would enable me to accomplish
tasks more quickly

5.7 0.9

U2 Using the proposed representation would improve my performance 6.0 0.8

U3 Using the proposed representation would enhance my effectiveness 5.9 1.0

Easy of Use

EOU1 Learning to operate the proposed representation would be easy for
me

6.4 0.8

EOU2 I would find the proposed representation easy to use 5.9 1.1

Attitude Toward Using

ATT1 Using the proposed representation is a (bad/good) idea 6.0 0.8

ATT2 Using the proposed representation is a (foolish/wise) idea 5.7 0.8

vided a new system for automatic music composition based on the splicing
model, a generative mechanism of linear words, inspired by a recombinant
behavior of linear DNA.

We have defined an augmented representation approach in which addi-
tional musical information is incorporated into the word representation of
the chords. We have showed that the use of this representation improves
musical splicing system in terms of time and memory performance, and in
terms of harmonic and melodic quality. We also showed that our represen-
tation was evaluated as easy to learn, easy to use, and useful to accomplish
tasks quickly and in a effective way.

Future work involves an investigation of other approaches based on the
representation proposed in this work. It would be interesting to study the
behavior and the efficacy of a music splicing system by changing the style
composer, the ground data set that determines the output, and also the
music information that could be integrated in the representation.



Chapter 3

EvoBackMusic

3.1 Introduction

Interest for real-time composition of background music has grown with the
increasing diffusion of Intelligent Virtual Environments, movie music pro-
duction and interactive media. A system for real-time composition of back-
ground music responds to changes of the environment by generating “ap-
propriate music” that matches the actual state of the environment and/or
of the user.

Background music has an accompanying role that enriches a particular
activity or event such as an exhibition of paintings, a theater, the scenes of
a film, a Web site, a video game or a virtual environment.

In general, the approach followed by developers, in the game or film
industry for example, is to loop pre-composed music tracks which are at-
tached to particular locations or events. One problem with this approach is
that users get accustomed to listening the same music over and over again.
Another problem is that users associate music to events, by predicting what
will be going to happen next. Only recently some commercial sound en-
gines started to include technology that allow to increase music diversity.
Microsoft DirectMusic1, for example, provides the possibility to compose
several pieces of music which are randomly arranged at run time, but con-
tinues to do this in response to some specific events.

The problem of composing real-time background music has attracted
considerable attention in the last few years. Most of the existing efforts
produce music mainly considering the emotional state of the user, without
involving objective aspects of the environment in which the user is immersed.

In this chapter, we describe a system [10] capable of: (1) learn the music
preferences of a user, and (2) generate background music according to the
current state of the environment and of the user.

From now on, when we talk about environment we implicitly include

1http://www.microsoft.com/DirectX
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the user in the environment. In other words the environment includes both
subjective aspects, the emotional state of the user, and objective aspects,
the environment in which the user is immersed. Specifically the subjective
aspects concern the emotional experiences of the user, such as happiness,
sadness and so on, while the objective aspects, regard the dynamism of the
elements in the environment, the density of the elements in the environment,
the type of the activity being performed, and a predominant color of the
environment.

In order to compose music we take into account several aspects: harmony,
melody, rhythm, and timbre. Thus, we tackle the problem of composing
background music with a multi-objective problem. Specifically, we consider:
(1) the instrumental objective, i.e., to find an appropriate instrumental or-
chestration; (2) the rhythmic objective, i.e., to find an appropriate rhythmic
section; (3) the melodic objective, i.e., to find good melodic lines; (4) the
harmonic objective, i.e., to find good harmony. Moreover, the problem can
be considered as a dynamic optimization problem in which the objective
functions (i.e., the generated music) change continuously according to the
changes of the environment.

From the technical point of view, EvoBackMusic consists of three agents:
the Observer Agent, the Composer Agent, and the Sound Agent. The Ob-
server Agent checks for environment state changes and provides such changes
to an Artificial Neural Network (ANN). The ANN, trained according to the
user preferences, maps the current environment state produced by the en-
vironment changes into a musical state. Then, the musical state is given
to the Composer Agent that, using a multi-objective dynamic genetic al-
gorithm, composes appropriate music. Finally, the Sound Agent converts
music compositions into audio.

The three Agents have been implemented in Java. The implementation
of the Artificial Neural Network uses the Encog library2. The Sound agent
communicates with a sequencer implemented using the JFugue library3.

To evaluate the overall system, we performed several tests that study its
behavior and its efficacy. The quality of the produced music, instead, was
analyzed by participants recruited for a preliminary evaluation study.

The problem of composing background music has been considered by
several researchers. Downie [101] presents a system that produces Music
Creatures following a reactive, behavior-based AI approach. Nakamura et
al. [174] implemented a prototype system that generates background music
and sound effects for short movies, based on Actors Emotions and Motions.
A work done at the University of Edinburgh [198] describes a system that
generates atmospheric music in real time to convey fear using suspense and
surprise. The system’s parameters are controlled by a human director.

2http://www.heatonresearch.com/encog
3http://www.jfugue.org/
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Several systems are grounded on research made in the areas of Com-
puter Science and Music Psychology. Systems that control the emotional
impact of musical features modify emotionally-relevant structural and per-
formative aspects of music [82, 154, 210] by using pre-composed musical
scores [154, 155] or by making musical composition [145, 78, 206]. Most
of these systems are built on empirical data obtained from works of psy-
chology [107, 197]. Scherer and Zentner [194] established the parameters
of influence for the experienced emotion. Meyer [164] analyzed structural
characteristics of music and its relation with emotional meaning.

We remark that most of these works only take into account emotional as-
pects and they use pre-composed music for generating background music. In
our approach we investigate the importance of both subjective and objective
aspects of an environment for the composition of background music. Fur-
thermore, our system always composes new music, in real-time, according
to the musical preferences of the user.

3.2 Background

3.2.1 Feed-Forward Neural Networks for Regression prob-
lems

Neural networks are widely used to reproduce some activities of the human
brain, for example, perception of images, pattern recognition and language
understanding. They are a very useful tools also for gesture recognition.

Our problem can be seen as a regression problem in which the network,
given an environment state, has to be able to predict an appropriate musical
state according to the musical preferences of the user. The input to our
problem is the environment state and the output is a musical state. The
neural network has to be trained on a data set of pairs (environment state,
musical state). We used a fully connected three-layer feed-forward neural
network with the sigmoid activation function to design and to implement
the Observer Agent component. The supervised learning process uses the
back-propagation algorithm.

3.2.2 Genetic algorithms background

In most cases a single fitness function is defined according to one particular
target and this translates into a single-objective optimization (maximization
or minimization) problem. However in some cases it is more appropriate to
consider simultaneously several objectives. A multi-objective genetic algo-
rithm assesses the fitness of individuals by using several evaluation functions.
We do use a multi-objective genetic algorithm to consider various musical
objectives.



CHAPTER 3. EVOBACKMUSIC 50

We also use the technique known as elitism [214] which helps in pre-
serving wanted characteristics and the technique known as explicit memory
which helps in keeping the most recent best individuals in the current pop-
ulation.

Genetic Algorithms have been used in several scenarios where a dynamic
output is required and the fitness value changes over time. Examples include
dynamic GA for problems in which objective functions of parameters change
periodically in a binary space [110] or in a real space [90, 111, 74].

In order to apply Genetic Algorithms to dynamic environments we need
to make some adjustments to the standards GA used for static environments.
One can adopt several kinds of strategies, each having its own advantages
and drawbacks. In the literature four broad strategies can be considered:
increase diversity after changes [83], maintaining diversity throughout the
run [111], implicit or explicit memory [74, 179, 187] and multiple subpopu-
lations [205].

3.3 Environment and Musical States

In this Section we provide details about how we selected the subjective and
objective controllers that have to be taken into account when composing
background music.

3.3.1 Environment State

The set of parameters needed to describe the environment and the musical
state has been chosen considering the results of a test questionnaire adminis-
tered to a group of 10 music teachers. The questionnaire (available online4)
consisted of 3 questions, one regarding the environment state (Question 1)
and two regarding the musical state (Questions 2 and 3).
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Question 1: Which parameters, both related to the user and the environment, should be 
taken into account for background music?

Figure 3.1: Environment parameters suggested choices (Question 1).

In Fig. 3.1 we show a summary of the responses for Question 1. As one
can see in the figure, all participants considered the emotion of the user

4https://goo.gl/qAEu4Y
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an important parameter while just one expressed his propensity to include
the emotion of other people in the set of the parameters needed to compose
background music. We decided to use the parameters that received a clear
majority of supporting answers, namely the ones specified in Table 3.1. We
refer to such parameters as controllers.

Feature description Name Range

Objective
Dynamism of the user e1 0, 1, . . . , 100
Dynamism of external objects e2 0, 1, . . . , 100
Density of the environment e3 0, 1, . . . , 100
Context e4 0, 1, . . . , 5
Predominant color e5 (x, y, z), 0 ≤, x, y, z ≤ 255

Subjective
Emotion of the user e6 (x, y) coordinate

Table 3.1: Controllers.

The parameter e1 indicates how rapidly the user is moving in the en-
vironment (0 means a slow user, 100 means a rapidly moving user). The
parameter e2 refers to the speed of other objects available in the environ-
ment. The parameter e3 indicates how dense is the environment, i.e. how
many entities, including the user, are present in the environment. The pa-
rameter e4 describes the possible “contexts”, such as: fun (e4 = 1), sport
(e4 = 2), game (e4 = 3), film (e4 = 4) and relax (e4 = 5). The parameter e5
describes the predominant color of the environment, in terms of Red-Green-
Blue (RGB) components.

Finally, e6 describes the emotion of the user, represented by using a two-
dimensional model of affective experience. Specifically, we used a graph-
ical representation of the circumplex model of affect with the horizontal
axis representing the valence dimension (i.e., the intrinsic attractiveness or
aversiveness) and the vertical axis representing the arousal (i.e., a state of
heightened activity that makes us more alert) or activation dimension [11].
As shown in Fig. 3.2, for this circular representation that includes 28 words,
a greater similarity between two words is represented by their closeness in
the space. We enhanced this model with a layered subdivision of the entire
space in three subspaces, i.e., a high (serious-like), medium (light-like) and
low subspace (quiet-like), according to the intensity of the emotion.

To summarize, we use a 6-tuple Ei = [ei1, . . . , e
i
6] to describe the state of

the environment at the ith time interval. For example E12 = [18, 12, 80, 3,
(255, 0, 0), (10,−1)] says that at the 12th time interval the user is slowly
moving (e1 = 18) and pleased (e6 = (10,−1), and there is a quite crowded
environment (e3 = 80) with other entities moving, on average, slower than
the user (e2 = 12), in a game context (e4 = 3), and that the predominant
color is red (e5 = (255, 0, 0)).
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Figure 3.2: Circumplex model of affect organized in areas according to the inten-
sity of the emotion.

3.3.2 Musical State

The environment state is built through information obtained in input from
the surrounding environment, and it is not used to create music directly.
Instead, it is used to compute a musical state.

The set of parameters included in the musical state has been chosen sim-
ilarly to the set of parameters used for the environment state. Specifically,
as shown in Fig. 3.3, we used the results of the Questions 2 and 3 that
we asked to the group of 10 music teachers. Again, the set of parameters
that we have included in the musical state, shown in Table 3.2, were chosen
among the choices with a clear majority of supporting answers.
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Question 3: Which melodic, harmonic and rhythmic characteristics 
should be given more importance in the music creation process?

(b) Question 3.

Figure 3.3: Participants choices for the musical state.

These parameters are grouped into 4 classes: instrumental, rhythmic,
harmonic and melodic class.

The instrumental class contains 5 boolean variables m1, . . . ,m5 that in-
dicate whether the corresponding instrument is used. In the rhythmic class
there are three parameters. The first one, m6, indicates the meter of the mu-
sic. We consider the following meters: 2

4 meter (m6 = 0), 3
4 meter (m6 = 1),

4
4 meter (m6 = 2), 6

8 meter (m6 = 3), 9
8 meter (m6 = 4), 12

8 meter (m6 = 5).
The second parameter m7 gives the velocity of the execution (tempo) rang-
ing from Grave (m7 = 40), that is very slow, to Prestissimo (m7 = 208),
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Feature description Name Range

Instrument
Electric guitar m1 binary value
Violin m2 binary value
Saxophone m3 binary value
Flute m4 binary value
Trumpet m5 binary value

Rhythm
Meter m6 0, 1, . . . , 5
Tempo m7 40, 41, . . . , 208

Harmony
Quality m8 binary value

Melody
Melodic thirds m9 Integer
Melodic fifths m10 Integer
Melodic octaves m11 Integer
Melodic tritons m12 Integer

Table 3.2: Melodic, harmonic and rhythmic parameters for the musical state.

that is very quick.
The harmonic class contains only one parameter, m8 which is a boolean

variable that indicates whether the music is in a minor tonality (m8 = 0) or
in a major tonality (m8 = 1).

Finally in the melodic class we have four parameters, m9, . . . ,m12, which
provide some information about the melodic lines. These parameters give
the number of jumps of thirds, fifths, octaves and tritons in the melody,
respectively.

To summarize, a musical state can be described with a 12-tuple [mi
1, . . . ,m

i
12].

As an example, the musical state M15 = (0, 1, 0, 0, 1, 2, 90, 8, 5, 6, 0) for the
15th time interval says that for such an interval the Composer agent should
use orchestral strings and a trumpet ((m1,m2,m3,m4,m5) = (0, 1, 0, 0, 1)),
the meter of the music should be 4/4 (m6 = 2), the tempo 90 beats per
minute (m7 = 90). The total melodic jumps to be used are 8,5,6,1 for, re-
spectively, thirds, fifths, octaves and tritones ((m9,m10,m11,m12) = (8, 5, 6, 1)).

3.4 EvoBackMusic components

In this Section we describe EvoBackMusic. EvoBackMusic consists of three
agents: the Observer Agent, the Composer Agent and the Sound Agent.
The Observer agent interacts with the environment getting input from it,
and, after an appropriate transformation, relays such input to the Composer
Agent. The Composer Agent is responsible of the music creation. The
created music is passed to the Sound Agent which simply plays it and the
music can be heard in the environment. Fig. 3.4 provides an overall view of
the system showing how the agents interact among themselves and with the
surrounding environment.
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Figure 3.4: EvoBackMusic architecture: components and interactions.

3.4.1 The Observer Agent

The Observer Agent checks the state of the environment looking for changes
with respect to the latest update, at fixed intervals of time. We consider
interval of times of a fixed length, say T seconds, where T is a fixed global
parameter of the system. We will denote with Ei the state of the environ-
ment at the beginning of the ith time interval, that goes from (i− 1) · T to
i · T seconds, starting with the first time interval I1.

Once obtained the environment state the Observer Agent maps it into
a Musical State. In order to do so the Observer exploits an artificial neu-
ral network. Such a network must be trained in advance according to the
musical preferences of the user. This means that the user, in a preliminary
training phase, acts has an implicit composer for the music that he will hear
later on.

The artificial neural network is a fully connected three-layer feed-forward
neural network with sigmoidal activation function. The input layer models
the environment, and therefore contains 9 neurons: e1, e2, e3, e4, e5(x),
e5(y), e5(z), e6(x), e6(y), where e5(x), e5(y), e5(z) are the x, y, z coordinates
of e5, respectively, and e6(x), e6(y) are the x, y coordinates of e6 (see the
Section 3.3.1 to recall the meaning of the variables). The output layer
represents a musical state and, therefore, contains 12 neurons: m1, . . . ,m12

(see the Section 3.3.2 to recall the meaning of the variables). We recall that
each neuron (both input and output) represents a value normalized between
0 and 1.

The number of neurons in the hidden layer is a critical choice, since a high
number could wrongly involve more equations than free variables, resulting
in a system with a smaller generalization ability, while a low number could
imply a system with a smaller learning ability and, therefore less robust.
Also the learning rate and the momentum are crucial parameters of the
neural network.
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In order to fine tune the network structure we performed a training
phase. For such a training phase we fixed a data set of 50 pairs of envi-
ronment states and musical states. For each possible choice of the number
of neurons in the hidden layer (10 random choices), value of the learning
rate and the value of the momentum (9 possible values in a range between
0 and 1), we computed 10 times the training error by running the neural
network for 100.000 epochs. Then for each of the above 810 experiments,
each repeated 10 times, we computed the average training error. Finally
we ranked all the 810 cases based on the average training error. Table 3.3
shows the best average training errors.

# Error Parameters # Error Parameters # Error Parameters

1 0.042 (18,0.7,0.5) 16 0.098 (9,0.5,0.7) 31 0.157 (18,0.5,0.7)
2 0.059 (54,0.7,0.3) 17 0.099 (36,0.5,0.7) 32 0.211 (21,0.7,0.3)
3 0.065 (41,0.7,0.7) 18 0.102 (18,0.7,0.7) 33 0.214 (9,0.7,0.5)
4 0.065 (45,0.5,0.7) 19 0.102 (13,0.5,0.7) 34 0.217 (13,0.7,0.5)
5 0.065 (54,0.5,0.7) 20 0.103 (41,0.7,0.5) 35 0.221 (36,0.7,0.5)
6 0.066 (41,0.5,0.7) 21 0.103 (30,0.7,0.3) 36 0.223 (30,0.5,0.7)
7 0.069 (13,0.5,0.5) 22 0.112 (54,0.7,0.7) 37 0.235 (36,0.7,0.7)
8 0.072 (45,0.7,0.7) 23 0.113 (45,0.7,0.5) 38 0.242 (54,0.7,0.5)
9 0.084 (13,0.7,0.3) 24 0.121 (30,0.7,0.7) 39 0.242 (36,0.7,0.3)
10 0.088 (21,0.7,0.7) 25 0.121 (27,0.5,0.7) 40 0.242 (21,0.5,0.5)
11 0.088 (27,0.7,0.7) 26 0.122 (18,0.7,0.3) 41 0.312 (30,0.7,0.5)
12 0.092 (21,0.5,0.7) 27 0.123 (9,0.5,0.5) 42 0.322 (27,0.7,0.3)
13 0.093 (9,0.7,0.7) 28 0.132 (18,0.5,0.5) 43 0.324 (9,0.7,0.3)
14 0.098 (21,0.7,0.5) 29 0.141 (13,0.7,0.7) 44 0.342 (27,0.5,0.5)
15 0.098 (27,0.7,0.5) 30 0.145 (45,0.7,0.3) 45 0.347 (41,0.7,0.3)

Table 3.3: Ranking of the training errors.

As we can see, the lowest training error is obtained by a network with
18 neurons in the hidden layer, a learning rate of 0.7 and a momentum of
0.5. Hence we choose such parameters as default values of the neural net-
work used by EvoBackMusic. Once the network has been trained its use is
straightforward: one gives the 9-value input representation of the environ-
ment state and the network produces the 13-value output that represents a
musical state.

3.4.2 The Composer Agent

The Composer agent, given as input a musical state, composes a fragment of
music lasting T seconds, using a dynamic multi-objective genetic algorithm.
For each time interval Ii the algorithm evolves one generation and then
creates a new music fragment according to the current musical state M i.

The multi-objective genetic algorithm tries to compose “good” musical
fragments. As described in Section 3.1, it considers the following objec-
tives: the instrumental, the melodic, the harmonic, and the rhythmic ob-
jective functions. We use an explicit memory approach in order to continu-
ously adapt the solution to a changing environment, reusing the information
gained in the past. In the following we provide the details of the GA used
by the Composer Agent.
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Chromosome and gene representation.

The population is composed of individuals that are fragments of music. Each
fragment lasts for T seconds which allows us to place n beats (the exact value
of n depends on the actual value of T and the speed of execution of the music,
which is a parameter in the musical state). So, each chromosome represents a
fragment of music of duration T , and each gene of the chromosome represents
a beat of the fragment.

We represent a chromosome (individual) of n genes as an array C of
dimension 14×n where we store information related to the music fragment.
For each beat j, the vector column at position j is a gene. We denote a
chromosome C with C = C1, ..., Cn where Ci is the gene at beat i. Each
gene Ci contains 14 values. Table 3.4 provides a summary of the music
information parameters.

Feature description Name Range

Instrument layer
Electric guitar activation c1 binary value
Violin activation c2 binary value
Saxophone activation c3 binary value
Flute activation c4 binary value
Trumpet activation c5 binary value

Rhythm layer
Meter c6 0, 1, . . . , 5
Tempo c7 40, 41, . . . , 208

Melody layer
Electrical guitar notes c8 array of Note
Violin notes c9 array of Note
Saxophone notes c10 array of Note
Flute notes c11 array of Note
Trumpet notes c12 array of Note

Harmony layer
Quality c13 binary value
Tone c14 0, 1, . . . , 11

Table 3.4: Gene Representation

Musical information in each gene is grouped into 4 classes: Instrumental,
Rhythmic, Melodic, and Harmonic classes. The Instrumental class contains
5 boolean variables c1, . . . , c5 that indicate whether the corresponding in-
strument is used. In the Rhythmic class there are three parameters. The
first one, i.e., c6, indicates the meter of the music: 2

4 meter (c6 = 0), 3
4

meter (c6 = 1), 4
4 meter (c6 = 2), 6

8 meter (c6 = 3), 9
8 meter (c6 = 4), 12

8
meter (c6 = 5). The second parameter c7 gives the velocity of the execution
ranging from Grave (c7 = 40), that is very slow, to Prestissimo (c7 = 208),
that is very quick.

The Melodic layer contains the sequence of notes for each instrument
in the instrument layer. Each note is represented as a triple midi-value,
duration, ligature: midi-value is an integer between 21 and 108 representing
the midi value of the note. Note that each type of instrument has a range
of possible notes that we set as parameters. Therefore, we require that for
each type of instrument, the midi value of a note has to range between the
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minimum and maximum value for the instrument itself. Duration is 0 if the
duration of the note is 4

4 , 1 if the duration of the note is 2
4 , 2 if the duration

of the note is 1
4 , 3 if the duration of the note is 1

8 , 4 if the duration of the
note is 1

16 , 5 if the duration of the note is 1
32 and 6 if the duration of the note

is 1
64 ; ligature is a binary value such that 1 means that the note is ligate to

the next note, 0 otherwise. The ligature is necessary in order to represents
note whose duration exceeds the duration of a single beat. Notice that,
although we could have use a representation that does not need ligatures
by simply using a duration equivalent to the total duration of the ligated
notes, we preferred to have at least one note in each beat because this ease
the manipulation of genes.

The Harmonic layer contains the parameter c13 which is a boolean vari-
able that indicates whether the music is in a minor tonality (c13 = 0) or
in a major tonality (c13 = 1) and the parameter c14 which is an integer
that indicates the current tone, ranging from 0 to represent C up to 11 to
represent B (with 1 representing C#, 2 representing D, and so on).

Initial population.

In the very first iteration, we start from a random initial population of K in-
dividuals, where K = 50 is a fixed parameter. Such a population is built by
selecting a random gene for each beat. In subsequent iterations, the popula-
tion is half random and half chosen among the solutions of the last iteration
before the environment change. This is motivated by somehow tying the
previous music to the current one so that to have a smooth passage from
the music corresponding to the previous environment to that corresponding
to the current environment.

Evaluation function.

The algorithm uses 4 objective functions: an instrumental objective function
fI , a rhythmic objective function fR, a melodic objective function fM and
an harmonic objective function fH .

Given a chromosome C and the current musical state M we compute:
fI(C) by defining the instrumental distance between C and M , fR(C) by
defining the rhythmic distance between C and M , fM (C) by defining the
melodic distance between C and M and fH(C) by defining the harmonic
distance between C and M . They represent measures of similarity (the
lower the distance, the similar the states), each of them with respect to one
of the classes of parameters.

The instrumental distance between C and M is fI(C) =
∑5

k=1 |mk −∑n
j=1 cjk
n |. The rhythmic distance is fR(C) =

∑7
k=6 |mk −

∑n
j=1 cjk
n |. The

harmonic distance is fh(C) = |m8 −
∑n

j=1 cj8
n | (the formula for the harmonic
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distance does not have the external summation because there is only one
harmonic musical feature).

To define the melodic distance recall that gene Ci contains 5 melodic
fragments for beat i and that there are n genes for i = 1, . . . , n. For each
i = 1, . . . , n, let ci,j be the melodic fragment for beat i and for the instrument
j, with j = 8, . . . 11, and let c3i,j , c

5
i,j , c

8
i,j and cTi,j the number of melodic

thirds, fifths, octaves and tritons in ci,j respectly. The melodic distance
between C and M is:

fm(C) = |(m9+m9+m10+m11)−
n∑
i=1

(
∑5
j=1 c

3
i,j) + (

∑5
j=1 c

5
i,j) + (

∑5
j=1 c

8
i,j) + (

∑5
j=1 c

T
i,j)

5n
|

The objective is to minimize each of the evaluation functions, that is
we want to get a chromosome that is as close as possible to the originating
musical state.

Evolution operators.

In order to evolve the population, we apply mutation and crossover oper-
ators. Moreover, we used the elitism technique to improve the individuals
in the current population by keeping an external population Pe that selects
chromosomes that have at least one of the following characteristics: (1)
genes with the same harmonic features, (2) genes with the same instru-
ments activated, and (3) genes with the same rhythmic features.

In each evolution step we apply the elitism operator to update Pe, by
inserting new elements that satisfy the above criteria; we then choose the
best K individuals to keep the external population at size K. Note that the
elitism operator does not produce new individuals; it only preserves some
individuals in the hope that future generations will inherit some of their
characteristics.

We defined the production population Pp as the set consisting of K chro-
mosomes from the current population and K chromosomes from the external
population Pe. Moreover we also included in Pp the individuals that have
been recently given in output; these individuals are kept in an explicit mem-
ory; this strategy has been suggested in [172]. The crossover and mutation
operators produce new individuals starting from the ones in Pp.

• Classic crossover. This operator works like a standard crossover op-
erator. Given two chromosomes C1, C2 ∈ Pp, it selects an index j ran-
domly, and generates the chromosome C3 = C1

1 , . . . , C
1
j , C

2
j+1, . . . , C

2
N .

• Classic mutation. This operator creates new chromosomes starting
from a chromosome of Pp. ∀C = C1, ..., Cn ∈ Pp, selects a random
j ∈ [1, n] and replaces the gene Cj with a random gene C ′j .

• Emotion-Harmony mutation. This operator acts on music qual-
ity (minor or major). Let E the actual environment state, ∀C =
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C1, ..., Cn ∈ Pp, if e6(x) ≥ 0 (positive emotion) then for the gene C ′j
set c14 = 1 else c14 = 0.

• Color-Instruments mutation. This operator acts on the total ac-
tive instruments using the number of light/dark colors. Let E the ac-
tual environment state, ∀C = C1, ..., Cn ∈ Pp and let e6(x), e6(y), e6(z)
the predominant color RGB components. Let ê6 be the average of the
three components, then:

– if 0 ≤ ê6 < 80 then ∀C ′j we set c3 = c4 = 1 and c1 = c2 = c5 = 0.

– if 80 ≤ ê6 ≤ 150 then ∀C ′j we set c1 = c2 = c5 = 1 and c3 = c4 =
0.

– if 150 < ê6 ≤ 255 then ∀C ′j we set c1 = c2 = c3 = c4 = c5 = 1.

• Dynamism-Frequency mutation. This operator acts on the dy-
namism of the environment. Let E = e1, e2, ..., e6 the current envi-
ronment state, we consider the dynamism information e1 and e2 and
let ê = (e1 + e2)/2. ∀C = C1, ..., Cn ∈ Pp, if ê ≤ 50 (slow average
dynamism), then ∀ gene C ′j , and for each sequence of notes, we first
divide the sequence in two halves of equal length, possibly splitting
the middle note, then we delete the second half of the sequence and
we double the duration of the notes in the first half. Conversely, if
ê > 50 we split each note of the sequence into two notes of duration
equal to half of the duration of the original note.

For each generation the Composer Agent selects the best individual in
the current population and writes it in Pe. Since we use a multi-objective
fitness function the best individuals are those in the Pareto’s front, that
is the set of all non-dominated chromosomes. To have a single output we
choose the rhythmic function to select the best chromosome in the Pareto’s
front.

Notice that, depending on the actual value of T , the evolution algorithm
can produce several outputs for each time interval, since it needs less than t
seconds to generate a single output. Since the Sound agent only needs one
music fragment for each time interval, the algorithm takes only one of the
generated outputs.

Music fragments are purged from the explicit memory after they become
old enough: all the outputs relative to the last Z time intervals are kept in
the memory (we used Z = 5), while all older the outputs are deleted.

3.4.3 The Sound Agent

The Sound Agent uses a JFugue sequencer to generate audio by using the
fragments generated by the Composer Agent. Whenever the Sound Agent
needs a new music fragment, that is, at the beginning of a new time interval,
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it looks in the external memory and reads the first music fragment which
has been given in output for the current time interval (eventually skipping
older music fragments). Then, it converts the fragment to audio by mapping
each fragment information (notes, rhythm and so on) into JFugue instruc-
tions (Patterns, Players and so on). The Sound agent adds also a bass and
drum accompaniment by exploiting patterns from a pre-compiled library.
Each specific pattern is chosen on the basis of the harmonic and rhythmic
information contained in the music fragment.

3.5 Evaluation Study

Judging the music that a system produces is very difficult, since this is a
uncertain process, heavily relying on personal evaluations. In fact, in [78]
and [57] authors stressed the concept of subjective vision about both per-
ceptions and emotions induced by music. They also state that music is
inherently subjective and there is a strong correlation between what is
seen and what is heard. Most of the works analyzed individuals’ feel-
ings in terms of impression adjectives (i.e., happy vs. sad, heartrending
vs. not heartrending, and so on) [122], or subjective evaluations [123]. Fi-
nally, self-reported data has been often used to evaluate music-related sys-
tems/software [82, 145].

To evaluate EvoBackMusic we performed a subjective evaluation. Our
goal was not to quantify and explain how the produced music influences the
individuals’ emotional states, but that of establishing whether the user is
satisfied by the change in the produced music as a result of changes in the
environment, which includes his/her emotional state.

3.5.1 Methodology

For our preliminary evaluation study we recruited 20 people amongst mu-
sicians and people interested in music but with little experience in music
composition. We emphasize that participation in the study was voluntary
and anonymous, and participants were not compensated for taking part in
the interviews.

The study consisted of three phases, namely: (1) a Preliminary phase
in which we administered a preliminary survey questionnaire, (2) a Testing
phase, in which we asked participants to perform specific tasks, and finally,
(3) a Summary phase, in which we asked our sample to fill out a summary
questionnaire. All questionnaires are publicly available online5.

The goal of the preliminary survey questionnaire was: to collect demo-
graphic information (i.e., age, education level), to get information about

5https://goo.gl/qAEu4Y
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the participant’s knowledge and attitude toward music, and to ask specific
questions about EvoBackMusic (e.g., context for which it would be useful).

In the Testing phase we asked participants to create a dataset of 40
pairs of (environment states, MIDI file), by repeating the following task for
40 times:

1. Using the EvoBackMusic graphical interface, select an environment
state according to some indications.

2. Select a MIDI file from a pre-defined set of MIDI files with music that
the user judges appropriate for the selected environment state (this
assumed that the user was familiar with the pre-defined set of MIDI
file).

Then the user trained the artificial neural network using the EvoBack-
Music graphical interface. Notice that although the default network uses
the best parameters (number of neurons in the hidden layer, learning rate,
momentum) that we have found in the training phase of the neural network,
the system gives the user the possibility of changing these parameters at run
time.

At the end of the Testing phase, the user evaluates (through a test ques-
tionnaire) EvoBackMusic by listening to the music it produces for the envi-
ronment states in the dataset previously created.

Finally, in the Summary phase, we administered the summary survey
questionnaire whose goal was to detect whether any change has occurred in
the users’ opinions after gaining a greater consciousness about the potential-
ities of the proposed system. The summary questionnaire consisted of three
questions that were already asked in the preliminary questionnaire plus one
final question about the output of EvoBackMusic.

3.5.2 Results

The results of the preliminary questionnaire showed that most participants
(80%) were keen on music (with 60% very keen on music), while only few
(20%) were neutral. The age ranged from 30 to 50 years, and the education
level included 30% with a bachelor degree, 30% with a master degree and
40% with a conservatory degree. Finally, 60% of the participants were ac-
quainted with computers and computer music while the remaining 40% was
not.

Results of the Testing phase showed that EvoBackMusic was very easy
to use (see Fig. 3.5(a)), and that it was able to generate appropriate music,
really matching the users’ expectations (See Fig. 3.5(b)).

From this analysis we conclude that for almost all participants EvoBack-
Music was able to produce a music suitable for their needs and individual
preferences.



CHAPTER 3. EVOBACKMUSIC 62

0 20 40 60 80 100

Task1

Task2

Percentage

Ta
sk

s
How easy was to perform the task?

Difficult

Neutral

Easy

(a) Easiness of the tasks.

0

10

20

30

40

50

60

70

EvoBackMusic was able to generate the
appropriate music

The emotion that I've perceived
corresponds with what I expected.

P
e

rc
e

n
ta

ge

Questions from the Testing phase questionnaire

Agree

Neutral

Disagree

(b) User expectations.

Figure 3.5: (a) 5-Point Likert scores, (b) Percentages of agreement/disagreement.

We recall that with the summary survey questionnaire we performed a
comparative assessment between some specific questions asked before and
after the testing phase, in order to evaluate if changes occurred in users’ opin-
ions about music importance, general knowledge about the addressed topic
and the most suitable activities for which could be useful to use EvoBack-
Music. About the last question, three activities, that is “Relax”, “Work”
and “Game”, were selected more than the previous phase (percentage in-
crease of 14%, 75%, and 25%, respectively). EvoBackMusic was also able to
increase interest in music and in background music composition. Finally, at
the question: “Overall, I am satisfied with how this system produced music
that matches my preferences”, 80% of participants expressed their satisfac-
tion.

3.6 Conclusions

In this work we have presented a real-time background music composer. The
system takes into consideration many parameters in order to guide the com-
position process. We have implemented and tested the overall system. A
video file with a simulation of the Pacman game, integrated into EvoBack-
Music, can be found online (https://goo.gl/qAEu4Y). By using EvoBack-
Music (previously trained) we change the states of the game, obtaining a
background music for each of such changes. Future works include on one
hand a more extensive test phase in order to validate the choice of the con-
trollers that describe the environment and on the other hand the integration
of the system into real or virtual environment (games, movies, augmented
reality, and so on).



Chapter 4

MarcoSmiles

4.1 Introduction

In this chapter we describe a system [22], named MarcoSmiles, specifically
designed to allow individuals to perform music in a easy and innovative way.
The idea is to design new interaction modalities while composing music using
virtual instruments, that is, by using hands without the support of a real
musical instrument.

4.2 Background

4.2.1 Natural User Interfaces

Technology is constantly moving to provide tools enhancing life in a natural
seamless manner, and engaging users in using computers, breaking the bar-
riers raised since accessibility issues, inter-generational gaps, lack of attrac-
tiveness and playfulness. In the last few years, new, advanced, and enjoyable
techniques for interacting with computers have been explored. New user in-
terfaces utilizing gestures, contextual awareness, and 3D environments, both
real and virtual, could entail a positive attitude towards modern technolo-
gies and computers, making their access and usage more easier, appealing,
and intuitive, and improving the overall user experience as well.

The main goal of Natural user interfaces is to enhance the traditional
physical interactions with a much wider set of innovative communication
modalities, by overcoming limitations imposed by traditional interactions,
and making them more enjoyable and usable. The popularity of these inno-
vative interfaces is constantly growing, given the spread of low-cost devices
for tracking movements, such as Leap Motion and Kinect, and the perva-
siveness of voice recognition solutions. Although their high popularity in
the computer games market [139], these technologies have been employed in
several fields ranging from serious games [129] to rehabilitation [130], from

63
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robotic [134] to home automation [135] and so on. Using innovative user in-
terfaces to enrich, with devices for hand tracking, the user interaction with
computers to compose music is the main objective of our work. Specifically,
we focus to the field of Music Performance, by envisioning a system that all
users, i.e., musicians, people generally interested in music, impaired users,
and so on, could use for learning activities, music composition, or simply to
entertainment activities.

In general, the approach used by developers in this field is to create
virtual musical instruments very similar to the real ones, with mechanical
or technical simplification only. Some other approaches are based on sen-
sors placed only on the hands, sometimes through gloves, which provide
information about hand gestures, used to generate music([121], [63], [95]).
However, often these approaches, do not take into account the real needs of
the musician, because they have not the objective to represent a real musical
instrument; conversely, they realize a musical synthesis process, by means of
a sound synthesizer, based on granular additive synthesis algorithms, that
exploit information about to the hands.

For most of real musical instruments, musical notes can be expressed
in terms of hand configurations. Each hand configuration contains informa-
tion about the hand position in the space and the fingers bend in a given
time. The real time mapping of gestures into music happens through the
transformation of hand and fingers positions into specific music notes.

MarcoSmiles is system that maps hands’ configurations into music in
real-time, by allowing users to feel music, even interacting with an abstrac-
tion of the real musical instrument, and not with the real instrument itself.

4.2.2 Leap Motion Controller

Our interest in this system is about the use of Leap Motion devices to track
finger movements and map them into musical notes.

Leap Motion is a small USB peripheral device whose was technology was
firstly developed in 2008 and finally released by Leap Motion Inc. company
in 2013. The device uses two monochromatic IR cameras and three infrared
LEDs to observe the area (it has a 135◦ field of view) to a distance of about 1
meter. Specifically, the device is able to track all 10 fingers up to a precision
of 1×10−3 of a millimeter [67]. The LEDs generate pattern-less IR light and
the cameras generate almost 300 frames per second of reflected data, which
is then sent through a USB cable to the host computer, where it is analyzed
by the Leap Motion controller software, synthesizing 3D position data by
comparing the 2D frames generated by the two cameras. It provides three
types of spatial information: (1) the location of fingers, the hand, and pen-
like objects in Euclidean space; (2) the motion vectors for individual fingers
and pen-like objects; and (3) the spherical representations of hand curvature.
These features enable users to interact with their desktop computer through
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natural hand gestures, such as, waving, pinching or swiping. Open API can
be used by developers to design and implement applications ranging from
3D graphic manipulation to motion games.

Important issues to be considered when using Leap Motion to implement
applications are about the types and the number of gestures. Results of a
study showed that bimanual interaction (with two hands) and linear gestures
are able to significantly improve performance [138]. However, given the
position to maintain to use it (hands in front of the body in order to perform
tasks, to avoid the “Gorilla Arm Syndrome” it is important to avoid gestures
that are overly complex and require high accuracy [139]. Finally, authors
in [142] suggest, while designing an application, to limit the number of
gestures since users can remember an average only three gestures at a time.

Several studies showed the using of the Leap Motion for music applica-
tions. In [143] the authors present a gestural composition and performance
module for the Rubato Composer [144] software originally controlled with a
mouse or multitouch trackpad, in order to support the Leap Motion device.
They interpret the usable space above Leap Motion as a three-dimensional
coordinate system where each fingertip is either interpreted as a musical
object such as a note, oscillator, or modulator, or as an active agent within
a transformation. In [49] a preliminary study and evaluation of the Leap
Motion sensor as a tool for building Digital Musical Instruments is provided.
The study focuses on conventional music gestures that can be recognized by
the device and on the analysis of precision and latency of these gestures.
Another example of system for composing music by means the Leap Mo-
tion controller is musicAir [52]. It is an interactive gesture-based technology
that allows users to create music out of thin air in a fun and engaging way.
Hand and finger gestures map to corresponding visuals and sounds in a
collaborative and playful interface.

4.2.3 Feed-Forward Neural Networks Classifier

Neural networks are widely used to reproduce some activities of the human
brain, for example, perception of images, pattern recognition and language
understanding. They are a very useful tool also for gesture recognition.

One of the most commonly used neural network is the fully connected
three-layer feed-forward neural network [9]. The neurons activation function
is the tangent function, and we used it in our work.

Our problem can be seen as a classification problem in which the network,
given an hand configuration, has to be able classify it in one of k classes
N1, N2, ..., Nk, that are the musical notes. We remark that the set of musical
notes is not fixed a priori, but is chosen by the user.
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4.3 MarcoSmiles System

In this section we present MarcoSmiles. The system uses the information
contained in the user’s hand configurations only, and maps hand configura-
tions into real-time musical notes.

The system consists of two components: an hardware component and
a software component. The hardware component is the Leap Motion Con-
troller and it is used for digitizing hands configurations. The software com-
ponent is composed of three different parts. The first, through an imple-
mented Java Graphical User Interface, allows the user to select a MIDI
instrument (reference instrumental timbre) and to choose the range of notes
to play. The second part implements the Artificial Neural Network, trained
with the preferences of the user, whose main goal is to recognize the user’s
hand configurations. The last component associates hand configurations to
musical notes.

There are not pre-represented instruments. The abstraction of physical
and structural features of a musical instrument is built by using the prefer-
ences of the user about their hands configurations. We will describe both
components in the following.

4.3.1 Input representation

An hand configuration contains information about position and orientation
of an hand and each of his fingers, in a given time. We denote with CLH a
left hand configuration, and CRH a right hand configuration. Furthermore,
a pair (CLH , CRH) is called hands configuration.

The gestures of the hands are represented as a list (sequence) of hands
configurations, as a function of the time:

(CLH , CRH)1, (CLH , CRH)2, (CLH , CRH)3, ...

So each (CLH , CRH)i represents the hands configuration at time i. We
get this list from the Leap Motion controller.

4.3.2 The hardware component

The hardware component, as aforementioned, is the Leap Motion Controller,
used to capture information about the hands. The Leap Motion Controller
is a low-price data glove suitable for gaming and 3D virtual environments.

It has been used in several works and in different fields, such as, in-
dustrial robotics [33], 2D video-based augmented reality [28], gesture and
handwriting recognition applications [35] and so on.

Leap Motion was intended to be a human-computer interface, not gen-
eral purpose 3D scanner, so it is optimised for recognizing human hands and
pointy objects. It is a small USB peripheral device which is designed to be
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placed on a physical desktop, facing upward (see from Fig. 4.1). The main
data container we get from Leap Motion API is a Frame. One frame con-
sists of hands, fingers, pointables (objects directly visible by controller), and
additional information, like gestures recognized by simple built-in recogni-
tion mechanism, frame timestamp, rotation, translation, and scaling data.
Using two monochromatic IR cameras and three infrared LEDs, the device
observes a roughly hemispherical area, to a distance of about 1 meter. The
LEDs generate pattern-less IR light and the cameras generate almost 300
frames per second of reflected data, which is then sent through a USB cable
to the host computer, where it is analyzed by the Leap Motion controller
software using complex maths in a way that has not been disclosed by the
company, in some way synthesizing 3D position data by comparing the 2D
frames generated by the two cameras.

Figure 4.1: Leap Motion controller poses.

For purposes of this project, we have created our own data format. It
contains only information necessary for us and allows to easily save captured
frames to file, and read them later for processing and testing purposes.

4.3.3 The software component

The software component is composed of three different modules, each of
them is described in the following.



CHAPTER 4. MARCOSMILES 68

The Musical module

This module provides a Java graphical interface through which the user can:

• Choose a reference instrumental timbre

• Choose the range of musical notes to play by using the Leap Motion
controller

The proposed system is continuous in the sense that the user simply uses
the Leap Motion controller without breaking down the entire sequence of
gestures into separate single gestures: the system continuously checks for
the hands configuration changes, and uses the neural network to recognize
the new notes.

The Neural Network module

In this section we describe the neural network implemented for the recogni-
tion of music hands configurations. We provide details about the layers and
the data representations.

The layers We remark that in this work we used a feed-forward three-layer
neural network. We have tested several architectures of neural networks,
with different learning rate and momentum. As we can see in the Section
4.4 we have obtained the best results by using the following feed-forward
three-layer neural network. The input layer consists of a Nin neurons that
take as input the hands configuration. The output layer consists of Nout

neurons that represents the number of notes chosen by the user. The hidden
layer consists of Nin × 2 neurons.

The actual number of input neurons depends on the particular data rep-
resentation that we use, while Nout is the number of notes in the range
chosen by the user. As we will see shortly, we have used several data rep-
resentations. Furthermore, we will show that we have obtained the best
results with learning rate 0.4 and momentum 0.7.

Data representation Our goal is to recognize hands configurations. Such
configurations, made by the user by using the Leap Motion controller, repre-
sent musical notes that the system has to play. We remark that the system
is customizable so that the set of recognized hand configurations can be
established by the final user.

In this section we describe the data representations that we use for the
neural network. We remark that the choice of the data representation is a
crucial step in the design of a neural network. The output of the network
heavily depends on such a choice. The Leap Motion software uses an internal
model of a human hand and provides information about each finger on a
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hand. Fingers are identified in the model by type name, i.e. thumb, index,
middle, ring, and pinky. For each finger, tip position and direction vectors
provide the position of a finger tip and the direction in which a finger is
pointing. All fingers contain four bones ordered from base to tip and they
are identified as metacarpal, proximal, intermediate and distal. The thumb
model, for ease of programming, includes a zero-length metacarpal bone so
that this finger has the same number of bones as the other ones.

In a classification problem, for each sample we have to consider a proper
set of features for the gesture recognition. A naive solution would be to use
the raw data from Leap Motion sensor as the feature set. But this solution
provides poor results as the raw data points are dependent on the position,
orientation and scale of hand. Even a small movement in any direction
resulted in decrease of classification accuracy. The literature suggests to
compute a set of features invariant to wanted transformations, which can
allow to fully distinguish between different classes [36, 42]. In our approach,
a gesture is treated as the same one independently with respect to the trans-
lation, rotation and scale of the hand. This assumption means that the static
gesture rotated by unknown angles, translated in the sensor coordinate sys-
tem and also with different hand sizes should still be recognized as the same
gesture.

Several feature sets were proposed and tested. For our goals, we have
considered the following features:

1. Finger flexion (FF): for each finger we obtained the flexion angle
by calculating the angle between the direction vectors associated to
metacarpal and distal bones (see Figure 4.2).
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Figure 4.2: Finger flexion θ.

2. Nearest fingers angles (NFA): we obtained the angle between each
two consecutive fingers by calculating the angle between finger direc-
tions vectors of two consecutive fingers (see Figure 4.3).

3. Fingers-palm angles (FPA): given the first finger relative to palm
position, for each other finger we calculated the angles between these.
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Figure 4.3: Nearest Finger angle θ.

To calculate this angle three positions are needed: two finger tip posi-
tions and a palm position. The next step is to determine the line seg-
ments between palm position and finger tip positions. The searched
angle is between two designated segments (see Figure 4.4).

 

 

 

θ 

Figure 4.4: Finger-palm angle θ.

We experimented 7 alternative data representations obtained by the com-
bination of the previously described features. We have compared the output
of each type to determine the best data representation among the proposed
7 alternatives. Given a configuration (CLH , CRH) in input, we use the in-
formation of the Leap Motion controller to obtain the data. We denote
with l5, l4, l3, l2, l1 the left pinky, ring, middle, index and thumb finger re-
spectly, while we denote r5, r4, r3, r2, r1 the right pinky, ring, middle, index
and thumb finger respectly.

• FF: we use only information about the finger flexion of each finger.
Thus, we set CLH = [R(l5), R(l4), R(l3), R(l2), R(l1)], and CRH =
[R(r5), R(r4), R(r3), R(r2), R(r1)], where R(li) (resp. R(ri)) is the
radiant of the finger flexion of li (resp. ri), for 1 ≤ i ≤ 5. So, by
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using this representation, the first-layer I of the network consists of
10 neurons.

• NFA: we use only information about the nearest fingers angles of
each consecutive two fingers. Thus, we set CLH = [R(l5, l4), R(l4, l3),
R(l3, l2), R(l2, l1)], and CRH = [R(r5, r4), R(r4, r3), R(r3, r2), R(r2, r1)]
where R(li, li−1) (resp. R(ri, ri−1)) is the radiant of the angle between
of li and li−1 (resp. ri and ri−1), for 2 ≤ i ≤ 5. So, by using this
representation, the first-layer I of the network consists of 8 neurons.

• FPA: we use only information about the fingers-palm angles. Thus, we
set CLH = [R(l5, l1), R(l4, l1), R(l3, l1), R(l2, l1), and CRH = [R(r5, r1),
R(r4, r1), R(r3, r1), R(r2, r1) where R(li, l1) (resp. R(ri, r1)) is the
radiant of the angle between of li and l1 (resp. ri and r1), for 2 ≤ i ≤ 5.
So, by using this representation, the first-layer I of the network consists
of 8 neurons.

• FF + NFA: we use a combination of FF and NFA representations.
So, we set CLH = [R(l5), R(l4), R(l3), R(l2), R(l1), R(l5, l4), R(l4, l3),
R(l3, l2), R(l2, l1)] and CRH = [R(r5), R(r4), R(r3), R(r2), R(r1),
R(r5, r4), R(r4, r3), R(r3, r2), R(r2, r1)] where R(li) (resp. R(ri)) and
R(li, li−1) (resp. R(ri, ri−1)) as defined before. So, by using this rep-
resentation, the first-layer I of the network consists of 18 neurons.

• FF + FPA: we use a combination of FF and FPA representations.
So, we set CLH = [R(l5), R(l4), R(l3), R(l2), R(l1), R(l5, l1), R(l4, l1),
R(l3, l1), R(l2, l1)] and CRH = [R(r5), R(r4), R(r3), R(r2), R(r1),
R(r5, r1), R(r4, r1), R(r3, r1), R(r2, r1)] where R(li) (resp. R(ri)) and
R(li, l1) (resp. R(ri, r1)) as defined before. So, by using this represen-
tation, the first-layer I of the network consists of 18 neurons.

• NFA +FPA: we use a combination of NFA and FPA representa-
tions. So, we set CLH = [R(l5, l4), R(l4, l3), R(l3, l2), R(l2, l1), R(l5, l1),
R(l4, l1), R(l3, l1), R(l2, l1)] and CRH = [R(r5, r4), R(r4, r3), R(r3, r2),
R(r2, r1), R(r5, r1), R(r4, r1), R(r3, r1), R(r2, r1)] where R(li, li−1)
(resp. R(ri, ri−1)) and R(li, l1) (resp. R(ri, r1)) as defined before. So,
by using this representation, the first-layer I of the network consists
of 16 neurons.

• FF + NFA + FPA: we use a combination of FF, NFA and FPA
representations. So, we set CLH = [R(l5), R(l4), R(l3), R(l2), R(l1),
R(l5, l4), R(l4, l3), R(l3, l2), R(l2, l1), R(l5, l1), R(l4, l1), R(l3, l1), R(l2, l1)]
and CRH = [R(r5), R(r4), R(r3), R(r2), R(r1), R(r5, r4), R(r4, r3),
R(r3, r2), R(r2, r1), R(r5, r1), R(r4, r1), R(r3, r1), R(r2, r1)] whereR(li)
(resp. R(ri)), R(li, li−1) (resp. R(ri, ri−1)) andR(li, l1) (resp. R(ri, r1))
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as defined before. So, by using this representation, the first-layer I of
the network consists of 26 neurons.

For each representation, the output of the network is a string of m bits,
where m is the number of different musical notes (classes) that we have to
recognize. Each class corresponds to a sequence of m− 1 bits set to zeroes
and exactly one but set to one. The class C1 is codified with 1, 0, . . . , 0, C2

is codified with 0, 1, . . . , 0 and so on. Hence the third layer of the network
consists of m neurons.

The Training-Playing module

The objective of this system is to learn the mapping between the hand
configurations and the musical notes, as presented by the user, and then
to play the notes. We can distinguish two phases respect to the use of the
neural network: the training phase and the playing phase.

During the training phase, the user uses the Leap Motion controller to
show the mapping between hand configurations and musical notes. In this
phase the Virtual Environment creates the training set by using several
training-sessions. Each training-session contains a list of notes randomly
selected from the range of notes that the user has defined. For each note,
the system allows the user to show the corresponding hand configuration
within a time interval. So, the serial listener builds the configuration by
using the values, according to the specific representation, and saves the
data in the training set. When the user has completed the sessions, then he
can start the training of the network.

During the playing phase, the user uses the Leap Motion controller to
test the neural network and to play music. At each time i the serial listener
receives data from the glove and builds the corresponding hand configura-
tion. Once the hand configuration has been created, the system uses the
trained network to recognize the finger configuration, and to return a music
note to play. In order to play music, a Java midi player has been developed
by using the Java Midi Library.

4.4 Efficacy Study

In MarcoSmiles each user designs his virtual musical instrument. This pro-
cess consists of two main important steps: the learning of the configurations
of the user associated to a range of musical notes by using a neural network,
and the playing of music by using a Leap Motion controller.

In order to obtain these results we faced an important problem: the
choice of the most efficient representation. To this, for each representation
we have chosen the most efficient training and architecture parameters for



CHAPTER 4. MARCOSMILES 73

the neural network. In this Section we show some results about the efficacy
of MarcoSmiles, according to the choices that we made.

We have to emphasize that in MarcoSmiles the training phase is sepa-
rated from the use of the system, in fact, before using MarcoSmiles, the user
has to train the system, in order to allow it to learn his hand configurations.

So, we give to the user the possibility to choose the training parameters
in order to obtain the preferred level of accuracy.

4.4.1 ANN parameters

The choice of the architecture and of the training parameters of a neural
network is an aspect very important. In this section we provide some results
about them. As explained before in this work, we used a fully connected
feed-forward artificial neural network with an input layer I, an hidden layer
H and an output layer O.

In order to choose the best architecture (in terms of size of the layers)
and the best training parameters, we have fixed a range of 36 musical notes
(3 octaves), a data set of 2000 pairs (configuration, note) partitioned in:
1200 for the training set, 500 for the validation set and 300 for the testing
set. We have run several tests for each of the 3 data representation described
in the previous section. All networks were trained for about 20000 epochs.

Given a representation, in order to run a test we set the number of
neurons NH of the hidden layer H, the momentum value M and the learning
rate value L, with NH ∈ {|I|, |O|, 2|I|, 2|O|, 3|I|, 3|O|, 4|I|, 4|O|, 5|I|, 5|O|},
M,L ∈ {0.3, 0.4, 0.5, 0.6, 0.7}. Each test configuration is run 10 times. For
each of these test execution we calculated the error rate (validation error)
and finally we consider the average error rate obtained with the specific test
configuration.

Table 4.1 summarizes the best average results about the recognition rate.
As we can see, in a range of 15000 epochs, we have obtained the highest
recognition rate using the representation FF + NFA + FPA, withNH = 2|I|,
M = 0.4 and L = 0.7.

4.5 Evaluation

In this Section we describe the evaluation study that we performed to ana-
lyze the users’ acceptance and, therefore, their behavioral intention to use
the developed system. We first describe the methodology and, then, the
interesting insights we derived when analyzing the results of the questions
available in the questionnaire we administered to a sample of users recruited
through word of mouth advertising.

The technology acceptance model (TAM) was first created by Davis [45],
based on the theory of reasoned action (TRA) [46] in psychology research. It
is a widely used theoretical model to explain and/or predict potential users’
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Table 4.1: Test configurations with average recognition rate.

Representation NH M L recognition rate %

FF + NFA + FPA 2|I| 0.4 0.7 97.2

FF + NFA + FPA 2|I| 0.3 0.3 94.3

FF + FPA |O| 0.3 0.5 91.3

FF + NFA 2|O| 0.4 0.5 87.4

FF + NFA + FPA |O| 0.6 0.5 84.3

NFA + FPA 2|I| 0.7 0.7 83.2

FF + FPA 2|O| 0.4 0.6 82.2

FPA 2|I| 0.3 0.3 79.5

FPA 2|I| 0.5 0.3 76.4

FF + NFA + FPA 2|I| 0.5 0.7 71.3

NFA + FPA 2|O| 0.3 0.3 70.4

NFA + FPA 2|I| 0.4 0.5 70.1

behavioral intentions to access a technology or a new system. TAM has been
applied in numerous studies testing user acceptance of information technol-
ogy, for example, word processors [45], spreadsheet applications, email, Web
browser, websites, e-collaboration, and blackboard. In TAM, perceived use-
fulness refers to “the degree to which a person believes that using a particular
system would enhance his or her job performance”, while perceived ease of
use refers to “the degree to which a person believes that using a particular
system would be free of effort”. According to Davis, a system that was
perceived to be easy to use is also likely to be accepted by users, and user
friendliness in the design of a system can increase user acceptance of that
system.

However, additional explanatory variables may be needed beyond these
two constructs. Moon and Kim [48], for example, extended TAM to a WWW
context, by introducing “playfulness” as an intrinsic belief factor that af-
fected user acceptance of the WWW. Bruner and Kumar [51] extended TAM
to hand-held Internet devices and introduced a “fun” attribute as one of the
motivational factors in the adoption of Internet devices.

We extended the TAM model in order to analyze whether perceptions
of playfulness and attitude toward using, in addition to ease of use and
usefulness, appear to influence behavioral intention to use MarcoSmiles.

4.5.1 Method

Participants

For our study we recruited 20 participants among both musicians and people
interested in music but with little experience in music composition. Some of
the musicians participants were recruited at the “Conservatorio di Potenza
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Gesualdo da Venosa”1 and at the “Conservatorio di Musica, G. Martucci”,
in Salerno2. Participants were recruited through word of mouth advertising.

We have to emphasize that the participation in the study was voluntary
and anonymous, and participants were not compensated for taking part in
the interviews. Participants were informed that all the information they
provided would remain confidential.

Procedure

The survey consisted of four sections. The first section asked for partici-
pant demographics, technical experience, attitudes toward music and music
preferences, opinions about the use of computer-based systems as tools to
support people with disabilities. The 11 questions included in this first part
were open-ended questions, closed-ended questions, dichotomous questions
(yes/no), and finally, questions with a rating on a 5-point Likert scale with
strongly agree/strongly disagree as verbal anchors.

In the second section we asked participants to wear the P5 glove and
interact with it by performing a specific task. Additionally, at the end, we
asked them to express their opinion about easiness and efficacy metrics. The
task involved the following steps:

• Setting of the range of the notes

• Training of a neural network (the user uses the P5 Glove to show the
mapping between hand configurations and musical notes)

• Testing and playing the system (the user creates testing sessions and
evaluates the learning capabilities of the system).

Next, we asked participants to answer to the extended TAM questions.
To fit the specific context of using MarcoSmiles, items about easy of use
(PEOU) and usefulness (PU) were adapted from [45], items about attitude
toward using (ATT) and playfulness (PPL) were adapted from [5, 48, 6].
All items were measured using a 7-point Likert scale, with 1 being strongly
disagree and 7 being strongly agree.

Finally, in the last section, we submitted to participants some of the
questions previously asked in the first part, in order to make a comparative
assessment and to inspect whether some changes occurred after using the
system. Similarly to the organization of the first part, the 11 questions
were open-ended questions, closed-ended questions, dichotomous questions
and questions with a rating on a 5-point Likert scale. The questionnaire
administered to participants is publicly available3 while the whole evaluation
study lasted approximately 1.5 hour.

1http://www.conservatoriopotenza.it/
2http://www.consalerno.com/
3http://music.dia.unisa.it/Studies/MarcoSmiles/Questionnaire.pdf
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Data Analysis

By using regression analysis we want to find the influence of the independent
variables usefulness, easy of use, attitude toward the use, and playfulness
(PU, PEOU, ATT, PPL), on the dependent variable behavioral intention
(BI). The internal consistency reliability among the multi-item scales was
examined with the Cronbach alpha [7]. Finally, questionnaire responses were
analyzed using SPSS version 204.

4.5.2 Results

The results of the preliminary questionnaire showed that all participants
were keen on music (50% of participants spent almost 2 hours per day playing
music, no one less that 1 hour). The sample was fully male, with a average
age of 34.6 (SD=6.8). The education level included 10% with a bachelor
degree, 20% with a master degree and 70% with a conservatory degree.
In terms of technical skills, 50% of the participants were acquainted with
computers, and only 30% had familiarity with virtual reality. Finally, only
20% of participants had a confidence with Leap Motion device.

Results of the Testing phase showed that, on average, about 80% of par-
ticipants found easy to perform the posed task. Participants also stated that
the system was able to efficiently learn their fingering (100% of agreement).
Finally, results about the efficacy (of the implemented neural network) was
very positive since MarcoSmiles was able to recognize, on average, 94% of
the notes defined during the Configuration & Training phase.

At the end of the Testing phase we asked users to respond to our modified
version of the TAM questionnaire. Reliability values (Cronbach’s Alpha) in
terms of all participants answers is 0.96 (above the recommended threshold
value of 0.70 given in the literature [2]).

As shown in Fig. 4.5, results were highly positive for all metrics. ATT
was the most rated metric, showing that our participants exhibited a positive
attitude toward the system with a positive evaluation of the overall idea
behind MarcoSmiles.

The correlation analysis between the analyzed subscales is shown in Ta-
ble 4.2.

Furthermore, in order to identify which variables influenced the use of
MarcoSmiles, a regression analysis was carried out. The dependent variable
was the behavioral intention to use metric (BI). The independent predictor
variables were the TAM subscales. The regression analysis in Table 4.3 shows
that a good predictor for the behavioral intention to use was the attitude
toward the use. Specifically, it is observed that at the 0.000 significance
level, ATT influences the behavioral intention to use the system. When
ATT increases, the BI increases by a 1.180 factor. More precisely, 85.7%

4http://www-01.ibm.com/software/analytics/spss/
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Figure 4.5: TAM results. Rating on a 7-point Likert scale. PU, Perceived Useful-
ness; EOU, Perceived Easy of Use; ATT, ATTitude toward using; BI, Behavioral
Intention to use.

Table 4.2: Correlation coefficients between subscales. PU, Perceived Usefulness;
EOU, Perceived Easy Of Use; ATT, Attitude toward using; PP, Perceived Playful-
ness. All correlations are significant at .01 level.

Subscale PU EOU ATT PP BI

PU 1.0 .885 .765 .765 .791

EOU 1.0 .950 .920 .916

ATT 1.0 .978 .933

PP 1.0 .953

BI 1.0

of the BI variation is explained by ATT. Our result shows that a positive
attitude toward the proposed system and interactions could influence its
adoption, confirming works about that some attitudes are strongly predictive
of corresponding behaviors [94].

Table 4.3: Results of multiple linear regression analysis. B, Unstandardized coef-
ficient; β Standardized coefficient; SE, Standard Error; Adjusted R2 = 85.7%.

Predictor B SE(B) β t value P value

variables

(Constant) -1.563 1.039 -1.504 .171

Attitude 1.180 .159 .934 7.416 .000

Results about users perceptions in terms of involvement are shown in
Table 4.4. All questions were positively rated. Specifically, our participants
rated very positively the responsiveness of the system (µ=6.0, σ = 0.7)
and the naturalness of the interactions (µ=6.0, σ = 0.8). Furthermore,
most importantly, participants felt the overall (virtual) experience engaging
(µ=5.9) and very consistent with the real-world experience (µ = 5.6).

Finally, results of the Summary Survey showed how the overall system
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Table 4.4: Presence and Immersion. 7-Point Likert scale. µ=mean, σ= standard
deviation.

Question µ σ

How responsive was the environment to ac-
tions that you initiated (or performed?)

6.0 0.7

How natural did your interactions with the
environment seem?

6.0 0.8

How much did your experiences in the virtual
environment seem consistent with your real-
world experiences?

5.6 0.7

How well could you identify sounds? 6.5 0.5

How involved were you in the virtual environ-
ment experience?

5.9 0.7

How much delay did you experience between
your actions and expected outcomes?

5.7 0.5

How proficient in moving and interacting
with the virtual environment did you feel at
the end of the experience?

6.6 0.5

How well could you concentrate on the as-
signed tasks or required activities rather than
on the mechanisms used to perform those
tasks or activities?

5.5 0.5

Were you involved in the experimental task
to the extent that you lost track of time?

5.6 0.5

was perceived as useful, easy to use, and with an interesting underlying
idea (µ=4.8, 4.7, and 5, respectively). Moreover, at the question “Do you
think that people with disabilities could successfully benefit of MarcoSmiles
functionalities?”, the whole sample agreed with this possibility (µ=4.6).



Chapter 5

Music Visualization

5.1 Introduction

Music is a ubiquitous activity, that exists in every human culture, in different
forms and with different users’ perceptions. Everyday, individuals listen to
music for several reasons: to create a remarkable atmosphere in which to
dream and to evoke memories, to influence emotions, to get through health
problems or to express inner feelings, to enhance creativity behaviors. The
musical everyday listening is also strongly related with the mood and/or
preferences of the people. No complex task or a special ability is needed.
Users can sense the nature of music and what music want to evoke, without
any need to understand its underlying structure.

A different situation arises listening to music requires a conscious ex-
perience and participation, when musicians have to compose music, when
students have to learn complex musical rules, and so on. Here, some efforts
are required to understand the structure of musical compositions. In partic-
ular, a difficult field in this area is the study of classical music. Untrained
people may only be able to feel the sound elements such as pitch, rhythm,
volume, and speed. Conversely, the form of the music and the harmonic,
melodic, and rhythmic structural aspects are usually known only by musi-
cians who have received extensive training in music history and theory. The
corresponding learning curve is steep and makes classical music apparently
sophisticated and of difficult comprehension.

Music expertise is the ability to understand the harmonic, melodic,
and rhythmic structural elements of music compositions by reading musical
scores or even simply listening to music performance. Learning musical rules
is hard, especially for classical music, where the rigidity of its structures and
styles require greater efforts in terms of both their understandability and ap-
plicability. The most common way to learn music is through the study of
musical scores, which contains the objective notations of a music composi-
tion. However, the analysis of musical scores is demanding and beginners

79
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have to spend considerable amount of time to learn the basics of music
theory, before being able to understand the musical notations. It is also
well-known that musicologists study the harmonic structure of pieces and
annotate them by hand. This is a time-consuming process, especially when
large corpora have to be analyzed [18]. Finally, it is important to emphasize
that the knowledge of music theory is essential to understand the harmonic
structure of musical compositions.

Making this task accessible to everyone, even for those who do not have
strong knowledge of music theory, is an issue that we address in our work.
We investigate whether Information Visualization techniques could be effi-
ciently employed to support users in quickly understand complex theoretical
rules. Furthermore, visualization could be efficiently used to convey music
concepts in a meaningful and pleasant way.

Different attempts were made to visualize the structure of the music.
A critical issue in this field is how to create an informative and insightful
visualization from which users, with a poor music background, are able to
see the sound and, at the same time, are able to semantically understand the
underlying structure of music. The most important challenges to address
when visualizing musical structures, lie in both the pre-processing of the
input data (i.e., music elements) and the design of a reasonable (meaningful
and intuitive) graphical representation for music.

In this chapter we describe and compare two color-based graphical repre-
sentations ([25], [26]), that without involving pre-processing of musical data,
allow users to understand the harmonic structure of musical compositions in
meaningful and pleasant way. We extend an earlier work presented in [26],
where a single approach was defined, and preliminarly evaluated.

We focus our attention on the Harmonic Analysis Problem: given a
musical composition, the objective is to find the harmonic structure, that
is, the best harmonic succession of chords. The harmonic succession is
fundamental to ensure coherence in tonal music. Additionally, the harmonic
succession term does not only refer to the simple sequence of chords, but also
that such a sequence is organized according to certain rules and a certain
order [12]. In most cases harmony exercises are written on two lines, using
a schema of the 4-voice chorales, which is, for example, available in the
Bach’s chorales harmonizations [12, 13]. Specifically, a chorale consists of 4
independent voices, called bass, tenor, alto and soprano, connected through
classical music rules [12]. In our work we focus on this type of music genre.

We discuss the main features of our approaches by comparing them in
terms of effectiveness (i.e., learning ability) and pleasantness (i.e., visualiza-
tion). We also implemented a tool, named VisualHarmony, that implements
the visualization approach evaluated as the best representation in a prelim-
inary study involving participants from both musicians and students in the
classical music field. Finally, the tool was tested by a different sample of
participants, in order to achieve feedback about system usability and user
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satisfaction.
The rest of the chapter is organized as follows. In Section 5.2 we present

interesting works in the same field. In Section 5.3 we define the harmonic
analysis problem while in Section 5.4 we discuss how we apply visualization
for our aims and the characteristics of the designed approaches. In Sec-
tion 5.5 we present the results of their comparison, by discussing interesting
insights about improvements suggested by the participants at the study. In
Section 5.6 we present VisualHarmony, while in Section 5.7 we discuss the
results of a usability study aiming at explore the user satisfaction when in-
teracting with it. Finally, in Section 5.8 we conclude with some final remarks
and future directions.

5.2 Related Works

The ability to understand the harmonic structure of a musical composition
is important in every genre of music, from classical to pop music. In partic-
ular, the harmonic analysis is an important step for many techniques and
problems of classical musical composition, for example in the so-called un-
figured bass harmonization problem: a bass line is given and the composer
has to write other 3 voices to have a complete 4-voice piece of music with
a 4-note chord for each bass note. Solving such a problem means finding
the appropriate chords to use for each bass note as well as find a placement
of the four notes within each chord so that melodic concerns are addressed,
especially for the highest voice (soprano). In order to correctly complete this
task, the composer needs to understand the harmonic structure inducted by
the bass line [14, 15, 16].

A rich body of works that aim at explore the harmonic analysis rules
has emerged and has attracted numerous computer music researchers to in-
vestigate the automaton of the analysis and generation of harmony. Today,
automated harmonic analysis is an important and interesting music research
topic. Many frameworks have been developed for the automatic harmonic
analysis. An example is the Rameau framework [17], that contains a collec-
tion of re-implemented existing algorithms for the harmonic analysis in the
literature and that allows to easily evaluate their accuracy, to study their
errors, and compare their merits and flaws. In [18] the authors present the
HarmTrace system, in which the relations between the structural elements
in the harmony are represented by the productions of a CFG (context-free
grammar).

From the visualization point of view, different attempts have been made
to visualize music. Arc Diagrams represents one of the first examples to vi-
sualize repetitions in music compositions using information visualization [19,
20]. The Isochords system [21] is a method for visualizing the chord struc-
ture, progression and voicing of musical compositions represented in MIDI
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format. Taking advantage of a Tonnetz grid, that emphasizes consonant
intervals and chords, Isochords shows how harmony changes over time.

Other approaches use 3D views to visualize music components. Smith
and Williams [27] discussed the possibility of visualizing MIDI in 3-dimensional
space by using color to mark timbre. The comp-i system [29] shows the struc-
ture of music as a whole by using 3-dimensional piano roll visualization. Its
main goal is to allow users to perform visual exploration of a given MIDI
dataset in an immersive and intuitive manner. In [30] authors designed and
implemented a simplified 3D particle system to generate real-time animated
particle emitter fountains choreographed by music, for visual entertainment
and for music composition. Another MIDI-based system available in lit-
erature is Music Animation Machine [31]. It encompasses a number of
visualizations including a basic 2-dimensional piano roll notation for visu-
alizing structure. This visualization is additionally expanded with colors
based on pitch classes using the well-known circle of fifths1. Colors based on
a circle of fifths for visualization of tonal distributions and for understand-
ing consonance and dissonance intervals have also been explored in other
works [32, 37].

Finally, in [34] the author visualizes hierarchy of key regions of a given
composition, where x-axis represents time (from the start to the end of the
composition) and y-axis represents the duration of key-finding algorithm’s
sliding window. When the window size increases, more notes are included
and may affect the analyzed tonality. These hierarchical key analysis dia-
grams are useful for comparing the impact of using different time scales, and
for viewing the harmonic structure and relationships between key regions in
the composition.

From the musical point of view, the most significant difference with our
work is that most of the discussed works focus on melodic patterns and
melodic intervals. Conversely, we designed a visualization approach to ad-
dress the complexities that arise when studying the harmonic structure of
music compositions, that is, understanding and remembering the strict rules
about modulations and sequences of degrees (i.e., cadences). Additionally,
in our approaches we also take into account the relations between the degrees
of a tonality, and not only between the modulations of tonalities.

From the visualization point of view, the graphical representations that
the aforementioned works propose are disconnected by the musical scores.
Conversely, our aim is to provide visual cues directly over the musical
score (and therefore, without pre-processing of musical data), to convey
augmented information, when studying harmonic compositions. Although
colors based on a circle of fifths for visualization have been already pro-
posed, none of the discussed works has conducted formal studies to assess

1The Circle of Fifths shows the relationships among the twelve tones of the chromatic
scale, their corresponding key signatures and the associated major and minor keys.
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the efficacy of the approaches they provide. In our work, we conducted a
preliminary evaluation study to compare two color-based graphical repre-
sentations with the aim of discovering the best one in terms of effectiveness,
usefulness, and pleasantness. A usability study, instead, was conducted to
assess the usability of the tool implementing this representation. Partici-
pants were both musicians with classic music skills and students without a
classical musical background.

5.3 The harmonic analysis problem

We consider the tempered music system used in Western countries. Tem-
pered music is based on the notion of tonality. To wit, a tonality is a group
of notes which form a scale. Each tonality can be either major or minor.
For example, the major scale of C is C, D, E, F, G, A, B, while the major
scale of D is D, E, F#, G, A, B, C#. Western music’s twelve well-tempered
tonalities can be arranged in the well-known circle of fifths that orders them
according to the number of alterations in their key signatures.

Usually, given a music composition, it exists a main tonality, and there-
fore notes of the corresponding scale are considered more important than
notes outside the scale. Moreover, a music composition consists of a se-
quence of measures, whereas each of them consists of a given number of
beats. Each beat is associated to a musical chord, that is a set of notes.
Chords are identified primarily by their position in the tonality or, by the
scale degree serving as root. Hence, chords succession can be reduced to root
succession (or root progression), which in turn can be translated into Roman
numerals representing a succession of scale degrees. Therefore, the notes of
a scale are often denoted also by I, II, III, IV, V, VI, VII especially when it is
important to emphasize the degree of the scale only, and not the particular
note, which depends on the tonality. We refer the interested reader to a
standard textbook on harmony for more detailed explanations [12].

Western music is based upon well-established harmonic and melodic
rules. Several rules concern sequences of chords. Some sequences are “bet-
ter” than others, where the term better is hard to define given its subjective
evaluation. Anyway, in music community it is largely accepted that partic-
ular sequences of chords work better than others. Specifically, some chords
are “more important” than others because they suggest, prepare, enforce or
device tonal centers. Overall, the art of tonal music consists precisely in
arranging chords in such a way that their interplay is pleasant and mean-
ingful.

The harmonic succession of a music composition is a sequence of chords
that represents one of the harmonic structures of the composition. It is
worth to note that, for each musical composition, is possible to find several
harmonic successions.
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We focus our attention on the harmonic analysis problem: given a mu-
sical composition, the objective is to find the best harmonic successions of
chords. Obviously, the harmonic analysis can be made on compositions of
any musical genre. In this work, as anticipated in Section 5.1, we focus
on the chorales genre. As an example, a fragment of the Bach’s BWV26.6
chorale, with the corresponding harmonic analysis, is shown in Fig. 5.1.

I V I I VI V I I III V I III IV VII I I II V I

Figure 5.1: Harmonic analysis performed on a fragment of the chorale BWV26.6.

5.4 Visualization approaches for music harmony

In this section we describe the two harmonic visualization approaches de-
signed to improve music learning activities, simplifying the process of har-
monic analysis of music compositions and making it an enjoyable experience.
For each approach we explain the mapping between musical constructs (i.e.,
tonality and degree) and the chosen graphical representations.

5.4.1 Graphical elements and concepts

In order to define a visual representation for the harmonic structure of a
chorale we need to choose: (1) a visual representation for tonalities, and
(2) a visual representation for the degrees. In the following we will provide
details about them.

Tonality representation A musical composition starts with a main tonal-
ity, but during the sequence of chords the piece can undergo a modulation,
i.e., it may change tonality. In the specific context of chorales, the harmonic
rules drive the modulation among tonalities that are close in the circle of
fifths.

Therefore, the choice for a visual representation has to ensure that similar
tonalities have similar representations. Our idea is to map similar tonalities
to similar colors, by assigning a color wheel to the circle of fifths, as shown
in Fig. 5.2. In our approaches, given the musical score, we decided to:
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• assign to each tonality a specific color in our enhanced circle of fifths
(as an example the G major tonality corresponds to the light blue
color, while the Db major tonality corresponds to the light brown
color)

• highlight the area of a Major tonality with a rectangle having con-
tinuous lines; two rectangles, having as background color the color
assigned to the tonality, are shown at the top and the bottom of the
musical score (see Fig. 5.3).

• highlight the area of a Minor tonality with a rectangle having dashed
lines; two rectangles, having as background color the color assigned to
the tonality, are shown at the top and the bottom of the musical score
(see Fig. 5.3).

C
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B
F#

Db

Ab

F

Bb

Eb

Figure 5.2: Mapping of colors to
tonalities in the circle of fifhts.

Major Minor

Figure 5.3: Mapping of Major and
Minor tonality representations.

Degree representation Given a tonality, we decided to represent the
seven degrees with rectangle shapes. It is worth to note that each degree
can be classified according to its harmonic function. Specifically, I degree
has tonic function, V degree has dominant function, and IV degree has sub-
dominant function. Given their most important role, we decided to represent
them with the primary colors (sets of colors that can be combined to make
a useful range of colors), according to the following mapping: (1) I → red,
(2) IV → green, (3) V → blue (See Fig. 5.4).

The II degree has two notes in common with the IV and the V degrees,
so we decided to represent it with the secondary color cyan, that is the
color obtained by the combination of the green (IV) and blue (V) colors.
The III degree has two notes in common with the I and the V degrees, so
we decided to represent it with the secondary color magenta, that is the
color obtained by the combination of the red and blue colors. The same
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Figure 5.4: Colors assigned to de-
grees.
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Figure 5.5: Degree representation.

happens for the VI and VII degrees whose colors, as shown in Fig. 5.4, are
yellow and azure, respectively.

As an example, let us consider the degrees for the C major tonality.
Notes for the I degree are C, E, and G; the notes for the V degree are G,
B, and D. Notice that the notes for the III degree are E, G and B and so
the III degree has two notes in common with the I degree (E, G) and two
notes in common with the V degree (G, B). As result, we decided to assign
as background color for the III degree the magenta color, that is the color
output of the combination of the background colors assigned to the I degree
(red) and the V degree (blue).

Moreover, as shown in Fig. 5.5, given a degree, the rectangle shapes
have as background color the color assigned to the degree. If the chord of
the degree is major, we use rectangle shapes having continuous lines and
conversely, if the chord of the degree is minor, we use rectangle shapes
having dashed lines. We want to emphasize that, if the tonality is major,
then degrees I, IV, V have major chords, while degrees II, III, VI, VII have
minor chords.

Finally, it is important to emphasize that we applied a slight transfor-
mation to colors (i.e., increase of transparency) in order to avoid to fully
cover the musical information on the score.

5.4.2 Design and implementation

The first approach, named “Overlay Approach”, implements the mapping of
music elements in the graphical representations presented in Section 5.4.1.
Specifically, given a degree, we show a single rectangle, embedded into the
musical score, having as background color the color corresponding to the
degree. It must be the smallest rectangle that includes all the notes in the
corresponding beat. In this way, each rectangle could also give a melodic
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description of the degree. A large rectangle denotes a beat with many notes
(horizontal view), while a tall one denotes a beat with very large vertical
intervals between the 4 voices (vertical view). In Fig. 5.6 we show an example
of the application of this approach for the chorale BWV26.6.

Am CM

I V I VI V I I III V I IV I

Am

III VII II V I

Am

Degrees based on their

harmonic function

Rectangle for tonality

I

Figure 5.6: Implementation of the Overlay Approach: visualization embedded
into the musical score.

Similar to the Overlay Approach, the “Edge Approach” uses the same
mapping described in Section 5.4.1. The main difference between them is
about the number and position of the rectangles for the degree. Specifically,
given a degree, we show two rectangles having as background color the color
corresponding to the degree, placed at the top and at the bottom of beat.
What we want to do here is to verify if embedding visualization in the musical
score may result in a confusing/disturbing/invasive representation for users
and conversely, if placing the graphical elements at the edge of the score can
avoid all the aforementioned contraindications.

Am CM

I V I VI V I I III V I IV II

Am

III VII II V I

Am

Degrees based on their
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Figure 5.7: Implementation of the Edge Approach: visualization at the edge of
the musical score.
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In Fig. 5.7 we show an example of the application of this approach for
the chorale BWV26.6 shown in Fig. 5.1.

5.5 Evaluation Study

This section begins with a description of the methodology that we employed
for our evaluation study and then we discuss the results obtained. We evalu-
ated the two approaches described in Section 5.4, in order to choose the best
representation in terms of effectiveness and pleasantness. The assessment
will be based on the participants performance while performing harmonic
analysis, and their overall satisfaction.

Specifically, we addressed the following questions:

• Are visual constructs helpful when employed to learn complex musical
rules to perform harmonic analysis?

• What is the opinion of users about the graphical representations pre-
sented? Which one impacts on their learning ability?

• What is the feeling about the best representation in terms of appreci-
ation and satisfaction?

5.5.1 Methodology

The objective of this study is to derive users’ perceptions about the best vi-
sual representation to learn classical music, in the most effective, meaningful
and pleasant way. We made this analysis by measuring the effectiveness of
both approaches, with the aim to develop a tool implementing the best
solution.

Performance of participants were tested by comparing the two defined
approaches against a standard way (“Standard Approach”) to perform the
harmonic analysis (i.e., simply looking at the musical scores). According
to the between-group design [38], we organized participants in two groups,
one for approach to be tested. To avoid biased results, the participants that
took part at the study were assigned to the groups in a random way.

The study consisted of three phases, namely, a Preliminary Survey, a
Testing Phase, and finally, a Summary Survey, as defined and implemented
in other contexts [39, 40].

In the Preliminary Survey phase, we asked participants to fill in a pre-
liminary questionnaire in order to collect: (a) demographic information, (b)
information about music background (time spent playing music, played in-
struments, and so on), (c) general attitudes toward the classical music and
harmonic analysis. The questions included in this questionnaire were ques-
tions asking to give a preference up to 9 possible choices and questions on a
5-point Likert scale (e.g., Inexpert (1) to Expert (5)). In the Testing Phase
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we asked users to perform the harmonic analysis of three different chorales,
organized in three different tasks. Tasks were submitted in a random order.
Users were provided with printed musical scores. To evaluate the quality
of the provided solution, we calculated the musical distance between such a
solution and the best musical harmonization [41]. Being the chorales chosen
from the J.S. Bach chorales, their best harmonization is well-known. Briefly,
the musical distance between two chords is given by the sum of the distance
between the tonalities of the chords and the distance between the degrees of
the chords; the distance between tonalities is given by their distance in the
circle of fifths; the distance between the degrees is given by the difference
between the inversion numbers of the bass notes. However, the shorter the
distance, the better the proposed solution. A zero value corresponds to the
optimal solution.

Next, we asked users to perform a Training Phase, looking at several
chorales enhanced with our visual representations. No information were
given to the participants about the meaning of colors, lines, and size of ob-
jects. At the end of this phase we asked participants to repeat the harmonic
analysis on the three chorales analyzed in the Testing Phase. Here, chorales
were augmented with our visual representations. We provided three different
solutions for each task, by including the best harmonization, too. Partici-
pants had to select what they thought was the best harmonization, trying to
explain (as open-ended text) the reasons behind their choice. Finally, four
further questions (5-point Likert scale with strongly agree/strongly disagree
as verbal anchors) were submitted to inspect whether participants were able
to understand the rules behind our approach. The main goal here was to
assess the efficacy of the visual approaches to understand the harmonic anal-
ysis.

In the fourth and last phase we asked participants to express their opin-
ion about the usefulness of the proposed approach. We were also interested
in gathering perceptions about the pleasantness of the aesthetic choices made
as well as perceptions about the usefulness of an instrument that automat-
ically could show different graphical representations of a given chorale.

The preliminary (first phase) questionnaire was distributed to partici-
pants once. However, the questionnaires used in the second and the third
phases were distributed to users after the testing of each approach. The
overall study lasted between 30 and 35 minutes and the full test schedule
took 2 weeks. The data set used in the study has been taken from J.S. Bach
chorales; the questionnaires that were used are available online2.

2http://www.di.unisa.it/~delmal/research/usability/VisualHarmony/

Evaluation
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5.5.2 Results

In this Section we discuss the results from each of the three test phases. First
of all, recruits comprised 30 participants, with 12 of them having a conser-
vatory degree (40%) and 19 participants with bachelor (23%) and master
(37%) levels in Computer Science, Electrical Engineering, Economics, and
Physics. Most of the sample was male (87%) with an mean age of 34.
Table 5.1 shows that 67% of participants considered themselves “Compe-
tent/Expert” in the field of classical music, and 40% “Competent/Expert”
with regard to expertise in harmonic analysis.

Table 5.1: Participant’s Demographics

Number Percentage
Total Participants 30

Gender
Male 26 87%
Female 4 13%

Age
30-35 years old 9 30%
36-40 years old 9 30%
40+ years old 12 40%

Education Level Attained
Conservatory 12 40%
University Master/Bachelor 19 60%

Time spent playing music per week
0-1 hour 4 13%
1-2 hours 9 30%
2+ hours 17 57%

Classical Music Expertise
Beginner 10 33%
Competent 11 37%
Expert 9 30%

Harmonic Analysis Expertise
Beginner 18 60%
Competent 7 23%
Expert 5 17%

Results about the Testing Phase are shown in Fig. 5.8, where we report
the results of the comparison between the Standard and our visualization
approaches in terms of overall participants’ performance. Specifically, in
Fig. 5.8(a) we show the average distance values, calculated for all tasks,
across all participants for the Overlay approach. Similarly, the same results
for the Edge approach are shown in Fig. 5.8(b). As we can see, both ap-
proaches are able to improve performance for all the analyzed tasks, whereas
high improvements are more evident for the Overlay approach.

Additionally, as shown in Fig. 5.9, although participants in both groups
were able to correctly identify the rules behind our approaches, better results
were obtained by people testing the Overlay approach.

Finally, as shown in Table 5.2, the majority of participants, in both
groups, agreed with the usefulness and with the pleasantness of the pro-
posed approaches. Most importantly, they fully agreed with the usefulness
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(a) “Overlay” Approach

(b) “Edge” Approach

Figure 5.8: Comparison between the Standard and our color-based approaches in
terms of overall participants’ performance.

1 2 3 4 5

It is evident the relationship between
tonalities and colors

In the Circle of fifths, similar tonalities
correspond to similar colors

It is evident the difference between
major and minor tonalities

Edge Approach

Overlay Approach

Figure 5.9: Assessment of the understanding of the rules behind the designed
approaches.

of a system implementing a visual approach for understanding complex clas-
sical rules. It is worth to note that the participants belonging to the group
that tested the Overlay approach, expressed more satisfaction with regard
to the choices made for the graphical representation (Question Q3 in Ta-
ble 5.2). We also found out a statistical difference between the two groups
(p-value < 0.001). We reported the questions with the same ID used in the
questionnaires that we submitted to the participants at the study and that
are available online.
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Table 5.2: Summary Survey. 5-point Likert scores.

Mean Agreement

ID Question Overlay Edge Overlay Edge

Q1
I found very useful the graphical rep-
resentation provided to understand the
harmonic rules of classical music

4.5 4.4 93% 93%

Q2
I found very interesting the idea of study-
ing the rules through a visual representa-
tions of chorales

4.3 4.1 87% 93%

Q3
I found aesthetically pleasing the graphi-
cal representation used for the visualiza-
tion of constructs on the musical score

4.7 3.7 100% 60%

Q4
Do you think it can be helpful to use
an application that automatically offers
you various graphical representation for
a chorale?

4.8 4.9 100% 100%

Finally, in the form of open ended-questions, we obtained further com-
ments and suggestions about how to improve the tested graphical represen-
tations. Specifically, the interviewed participants stated that, it could be
useful:

• remove the border of the rectangles (67%, n=30)

• use a dashed background rather than the dashed border to represent
degrees (63%, n = 30)

• clearly specify on the score, for each rectangle, the corresponding
tonalities (58%, n = 30)

• for each degree, limit the width of the corresponding rectangle, to the
width of the bass note in the score (52%, n = 15)

In summary, as result of this study, the Overlay approach was rated
most effective in terms of harmonic analysis performance and most pleasant
in terms of aesthetic choices. Moreover, we decided to take into account
the aforementioned suggestions, since they were provided by more that half
of participants. Therefore, the enhanced version of the Overlay approach
appears as in Fig. 5.10.

We decided to use this enhanced version as visual representation for the
tool to implement. Details will be provided in the following section.

5.6 VisualHarmony

In this section we first describe the tool implementing the visual approach
evaluated as the best representation in the previous section, and next we dis-
cuss some interesting insights about how to change preferences (i.e., colors)
to address the system’s accessibility.
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Figure 5.10: Enhancements made to the Overlay Approach to address users’
comments and feedback.

5.6.1 Functionalities and Use Cases

Feedback, suggestions as well as criticisms raised during the evaluation study
were addressed during the development of a visualization tool, named Vi-
sualHarmony (see Fig. 5.11). This system has been designed and developed
to provide individuals with augmented information about the music and its
background structure, in order to complement the users’ experience and fa-
cilitate the study of classical compositions. The tool is also able to assist
musicians during the composition of chorales, and in particular, during the
definition and the analysis of the harmonic structure of the composition it-
self. It must be emphasized that VisualHarmony can also be used for the
study of harmonic analysis of chorales already composed. The system has
been implemented in Java language, using the Swing API for the develop-
ment of the graphical user interface and the JFugue library [43] for Music
Programming.

The functionalities provided with this system can be summarized as
follows:

• Music editing. VisualHarmony provides a music editor for the com-
position of 4-voices music (basso, tenor, alto, and soprano). The tool
is designed to edit most of the musical figures.

• Harmonic visualization. VisualHarmony allows to display a visual
representation of the harmonic structure of a choral. The provided
representation follows the rules defined by the Overlay approach, en-
hanced with changes provided as feedback by participants at that pre-
liminary evaluation study. Users can save both the score and its cor-
responding harmonic visualization (in .vis format).

• Melodic checker. During the composition of a chorale, or during the
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Figure 5.11: VisualHarmony Tool. The enhanced version of the Overlay approach
is applied as graphical representation.

definition of the harmonic structure of the chorale, the melodic error
checker can be used by musician to improve the music composition.
VisualHarmony, in fact, allows to display the melodic errors, and to
resolve each problem by intervening on the score through the editor.

• Music playing. VisualHarmony allows to play the composed mu-
sic. During the configuration phase it is possible to assign a specific
instrument to play for each voice.

Given the main objective of VisualHarmony to be used for learning pur-
poses, we will describe in the following a typical usage of the tool, organized
in steps, within a class of Classic Harmony in a music Conservatory.

• The teacher provides students with explanations about the theoreti-
cal concepts needed to understand the harmonic structure of musical
compositions (standard learning).

• The teacher next proceeds with the explanation about the foundation
rules of our visualization approach (innovative learning).

• Students absorb the theoretical concepts as well as the idea behind
the visualization approach.

• The teacher provides students with a set of chorales for training pur-
poses (that can be loaded through the tool).
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• Students start with the learning process. They are encouraged to
harmonize bass lines to 4 parts, step by step, with the aid of the
representation provided by VisualHarmony.

Now, the teacher can assist students during the training phase, and only
observe them during the learning phase. At this stage, in fact, students can
leverage VisualHarmony functionalities, exploiting also the feedback pro-
vided by the Melodic checker. Specifically, the tool is able to show, for each
musical piece, the correct visualization. If errors were made, students will
be immediately aware of them, since the wrong visualization on the musical
score. Students, only glancing at the score, can immediately understand the
errors made, and therefore, re-perform the analysis, continuously querying
the tool for the corresponding visualization.

The software, a user guide with a detailed description of the tool func-
tionalities, and some examples of J.S. Bach’s chorales, that could be loaded
through the tool, are available online3.

5.6.2 Circle of Fifths color customization

An interesting feedback obtained during the evaluation study was about
the colors chosen for the circle of fifths. 13% of participants at the study
had a color visual deficiency. To this aim, given the usage of colors to
represent music constructs, in order to make the visualization accessible for
all people, including people with color deficiencies we decided to allow a
color customization.

We have to emphasize that the most common forms of color deficient
vision, called Protanopia and Deuteranopia, are characterized by difficulties
in distinguish between green and red. Colorblind is not normally a problem
except in cases where the colors convey important information. In our case,
since: (1) colors convey important information about how to distinguish
tonality and degree, and (2) we do not want to provide an additional means
of obtaining the same information as described, for example in [44, 47],
we decided to change the graphical representation. Specifically, with the
support of two colorblind users, we chose a different set of colors for our
circle of fifths, trying to identify distinguishable colors without violate our
rules described in Section 5.4.1 (similar colors that map similar information).
In the left side of Fig. 5.12 we show our original circle of fifths, and how
people with protanopic and deuteranopic color deficiencies perceive it4. As
we can see from that figure, most of the selected colors are indistinguishable.
In the right side of Fig. 5.12, we show how we modified colors to make them
recognizable for colorblind. In Section 5.7 we describe the results of the

3http://www.di.unisa.it/~delmal/research/usability/VisualHarmony/Tool
4Images obtained by using the Vischeck simulator, http://www.vischeck.com/
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usability study that we carried out to test the usability of the tool, and in
particular, the satisfaction of colorblind users in terms of color vision.

Figure 5.12: Changes made to our circle of fifths to make colors distinguishable
for all people, including people with protanopic and deuteranopic deficiencies.

We provided, as default option, the configuration shown in Fig. 5.2. We
allowed people to change the settings in two ways:

• selecting the configuration that we designed with the aid of two col-
orblind (top-right side of Fig. 5.12, Normal). It corresponds to the
Option 2 in Fig. 5.13.

• customizing the configuration according to the own needs (selecting
the more visible colors for each tonality). It corresponds to the Option
Custom in Fig. 5.13.

In Fig. 5.14 we show how the musical score appears when applying the
Option 2 customization, built with the aid of two colorblind people.

5.7 Usability Study

In this Section we describe the results of the usability study conducted to
test the system usability and the user satisfaction when interacting with
VisualHarmony.

5.7.1 Methodology

For this study recruits comprised 11 participants among music students
(60%) and music experts (with a Conservatory degree, 40%). The sample
was fully male with an mean age of 38. Prior research has shown that five
users is the minimum number required for usability testing, since they are
able to find approximately 80% of usability problems in an interface [50, 53].
However, other research studies stated that five users are not sufficient and
specifically, authors in [56] expressed that the appropriate number depends
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Figure 5.13: VisualHarmony Tool: how to customize colors.

Figure 5.14: VisualHarmony Tool: score with colors changed when selecting the
Option 2.

on the size of the project, with 7 users being optimal in small projects and
15 users being optimal in a medium-to-large project.

The aims of this study were: (1) derive the general audience’s opinion
and reaction to the software, (2) collect qualitative feedback on the visual-
ization, and (3) inspect opinions about the behavioral intention to use the
tool in the future.

Similar to the evaluation study, the usability study envisioned three dif-



CHAPTER 5. MUSIC VISUALIZATION 98

ferent phases in which we carried out: a Preliminary Survey, the Tool Testing
Phase, and finally, a Summary Survey, respectively. In the first phase we
asked participants to fill in a preliminary questionnaire, composed of 8 ques-
tions asking for (a) demographic information, (b) information about music
expertise and background, (c) information about ICT expertise. We also
added to the questionnaire a colorblindness test, in order to verify if partic-
ipants had some color deficiency, such as a colorblind deficiency. The test
consisted of a colored plate, called Ishihara plate [58], which contained a
circle of dots appearing randomized in color and size. Within the pattern,
dots form a number clearly visible to those with normal color vision, and
invisible, or difficult to see, to those with a red-green color vision defect,
or the other way around. In this way, we were able to identify people with
normal color vision (they will see a 42), Protanopic colorblind people (they
will see a 2) or Deuteranopic colorblind people (they will see a 4).

In the tool testing phase, we asked users to use VisualHarmony for a
15-minutes session. Users were free to make a composition or to use any of
the provided chorales (5 predefined chorales available online). We also asked
them to freely use any of the tool’s functionalities. We gave them details
about VisualHarmony goals and main features. We also provided them with
basic information on how to use it. Users were not directly monitored, so
that they could feel free to test and explore the tool, but they could call
for assistance if they did not understand any of the instructions posed. The
test was performed in an isolated environment in order to avoid distractions
due to the presence of other people. Users were also encouraged to provide
informal feedback such as general comments, suggestions or observations for
developers.

At the end of the testing phase we asked users to spend other 10 minutes
to fill in the standard QUIS [59] and CSUQ [61] questionnaires. The aim
was to provide additional information about system usability and user sat-
isfaction when using VisualHarmony. Specifically, the original QUIS ques-
tionnaire was composed of 27 questions. We dropped 8 that did not seem
to be appropriate to our tool (e.g., questions about task to execute). Each
question was a rating on a 10-point scale with appropriate anchors at each
end (e.g., “Overall Reaction to the software: Terrible/Wonderful”), where
small values corresponded to unsatisfactory or negative responses and large
values corresponded to satisfactory results. The original CSUQ question-
naire was composed of 19 questions. As we did for the QUIS questionnaire,
we dropped 3 of them that not seem appropriate for our objectives. Specif-
ically, we asked users to answer to the provided questions indicating their
agreement or disagreement through a 7-point Likert scale with strongly agree
and strongly disagree as verbal anchors.

Finally, in the third phase, we asked participants to fill in a summary
questionnaire composed of 12 questions. The questions included in this ques-
tionnaire were questions asking to give a preference up to 5 possible choices
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and questions on 5-point Likert scale (e.g., Strongly disagree to Strongly
agree). The entire study lasted between 35 and 45 minutes. The prelimi-
nary survey, the summary survey and the QUIS and CSUQ questionnaires
are publicly available5.

5.7.2 Results

In this Section we describe the results of the study aiming at inferring users
perceptions and general satisfaction about the experimented tool.

As we can see in Table 5.3, on average, all questions were rated positively.
The most positive result (mean value of 8.3) was relative to the Learning
metric, highlighting the easiness of the tool in terms of general usage and
learning to operate it.

Table 5.3: User Satisfaction Questionnaire. 9-point Likert scale.

Metric Mean Dev.st

Overall reaction to the software

Terrible/Wonderful 7.5 0.8

Difficult/Easy 8.0 1.1

Frustrating/Satisfying 7.5 1.0

Dull/Stimulating 7.5 1.1

Rigid/Flexible 7.2 1.3

Screen

Reading Characters on the screen 7.5 1.4

Organization of information 7.2 1.7

Sequence of screens 6.8 1.4

Terminology and system information

Use of terms throughout the system 7.5 0.7

Terminology is intuitive 7.5 1.0

Position of messages on the screen 6.8 1.3

Prompts for input 7.6 0.8

Error messages 6.6 1.1

Learning

Learning to operate the system 8.3 1.3

Performing tasks is straightforward 8.3 0.9

System capabilities

System speed 8.0 0.9

System reliability 7.9 0.9

System tends to be 7.3 1.3

Designed for all levels of users 7.8 1.3

Items in CSUQ relate to efficiency, ease of use, likability of the system
interface, overall satisfaction. Specifically, we computed five factor scores:
System Efficacy, Usefulness, Satisfaction, Easy of Use, and Easy of Learn-
ing. Similar to the QUIS, as we can see from Fig. 5.15, all questions were
positively evaluated, especially for the Easy of Use, Easy of Learning, and
Satisfaction metrics. The most positive answers (on average 6.6), in fact,

5http://www.di.unisa.it/~delmal/research/usability/VisualHarmony/

Usability
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were about the question 1 (“It was simple to use this system”) and question
7 (“It was easy to learn to use this system”) in the questionnaire available
online.

1

2

3

4

5

6

7
Satisfaction

Easy of Use

Easy of
Learning

Efficacy
Usefulness

Clearness

Figure 5.15: CSUQ results organized according to five metrics: Satisfaction, Easy
of Use and Learning, Efficacy/Usefulness, and Clearness.

In Tables 5.4 and 5.5 we can see the results of the summary survey.
Specifically, in Table 5.4 we can see that the reaction to the software was
strongly positive, and that the sample was fully agree with willingness to
use the tool in the future.

Table 5.4: Summary Survey. 5-point Likert scores. N=11.

ID Question Mean Dev.st

Q1 Overall, I found easy to use the proposed system 4.4 0.5

Q2 In general, the proposed system was very interesting 4.5 0.5

Q3 In general, the proposed system was very useful 4.3 0.6

Q4
In general, I find useful the functionalities offered to users
who have visual impairments

4.4 0.7

Q9 Would you consider the possibility to continue to use this
system?

4.3 0.5

Q10 Would you recommend it to a friend / colleague? 4.4 0.5

In Table 5.5 we show the results of the questions answered only by partic-
ipants with colorblind deficiency (n = 3). They rated very useful the support
for colorblind and very easy the task of configuring colors to make them dis-
tinguishable. It is worth to note that the lowest result (even if above the
mean value) was about the question Q6, i.e., “I found effective the options
provided (I was able to distinguish colors on the musical score”. One out
of three participants, a red colorblind, had difficulties in distinguishing two
colors in the circle of fifths. A possible explanation is that colors were as-
signed by taking into account the suggestions of only two colorblind people,
probably with a different color’s anomaly. A larger number of individuals
could be useful to find colors more distinguishable.
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Table 5.5: Summary Survey. 5-point Likert scores. Answers by colorblind. N=3.

ID Question Mean Dev.st

Q5 I found useful the functionalities offered to make accessi-
ble the system for colorblind users

4.0 0.0

Q6 I found effective the options provided (I was able to dis-
tinguish colors on the musical score

3.7 0.6

Q7 I found easy to select the Colorblind options 4.0 1.0

Q8 I found easy to configure the Custom option, which allows
to select the most suitable colors for me

4.3 1.2

In summary, the result of this study is that our participants found very
useful and easy to use the experimented tool. Their overall reaction to the
software was very positive, and they expressed high satisfaction and their
willingness to continue to use the system in the future.

5.8 Conclusion

The ability to understand the harmonic structure of a musical composi-
tion is important in every genre of music, from classical to pop music. In
particular, the harmonic analysis is an important step in many techniques
and problems of classical musical composition. Furthermore, the study of
the harmonic analysis of classical compositions is considered, in this field,
as a time-consuming and tedious task, given the need to understand and
remember complex music rules. In this work we defined and compared
two graphical approaches that exploit visualization techniques to unveil the
structure of 4-voices music composition with the aim of making easier, quick,
and intuitive the study of classical notations. Musicians, and general audi-
ence can be provided with a mechanism able to clarify complex relationships
in music using visual clues. A preliminary evaluation study allowed us to
assess which of these two approaches was most useful in assisting individ-
uals during music learning activities, and specifically, for the study of the
harmonic analysis techniques. The Overlay approach with some changes
suggested by participants at the study, was rated most useful in terms of
both participants performance and aesthetic choices. Results of this study
have been translated in a software implementation, named VisualHarmony,
whose main goal is to assist users during learning activities as well as during
composition activities.

VisualHarmony was finally tested in order to analyze system usability
and user satisfaction. The results of these studies provided us with positive
feedback about the effectiveness of the idea, the pleasantness of the graphical
choices, the satisfaction of the users with regard to the easiness of the tool
and the willingness of participants to advertise it and to continue to use it
in the future.

As future work we will investigate the design and the implementation
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of a visual representation for the melodic structure of a music composi-
tion. In addition to the rules about chord sequences, there exist rules about
melodic lines. In music, several rules concern the melodic voices and are
aimed at avoiding voice errors. Rules about melodic lines can refer to the
movement of a single voice (for example, normally a jump bigger than of an
octave is not allowed; transitions within the notes of the musical scale are
preferred respect to transitions to notes that are not part of the scale) or
also to the movements of two voices (for example, two voices that proceed
by parallel fifth are not allowed). The idea is to integrate the representa-
tion for the harmonic structure of a composition, that we presented in this
work, with a graphical visualization of the melody, in order to improve the
ability of the musicians to compose music. Finally, we are planning an ex-
tensive and representative experimental study involving a large sample of
students, from Conservatory classes, mainly interested in learning complex
music constructs, and musicians mainly interested in music composition. A
larger number of subjects would also provide more statistically significant
results.
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[18] , De Haas, W and Magalhães, J and Wiering, F and C.Veltkamp, R,
“Automatic Functional Harmonic Analysis,” Computer Music Journal,
vol. 37, num. 4, 2013.

[19] M. Wattenberg, “The shape of song,”
http://www.turbulence.org/Works/song

[20] Wattenberg, M., “Arc diagrams: visualizing structure in strings”, IEEE
Symposium on Information Visualization, pp. 110-116, 2002.

[21] Bergstrom, Tony and Karahalios, Karrie and Hart, John C., “Isochords:
Visualizing Structure in Music”, in Proceedings of Graphics Interface,
pp. 297-304, 2007.

[22] Roberto De Prisco, Delfina Malandrino, Gianluca Zaccagnino, Rocco
Zaccagnino, ”Natural Users Interfaces to support and enhance Real-
Time Music Performance”, AVI, 2016.



BIBLIOGRAPHY 105

[23] Clelia De Felice, Roberto De Prisco, Delfina Malandrino, Gianluca Za-
ccagnino, Rocco Zaccagnino, Rosalba Zizza, ”Splicing Music Composi-
tion”, Information Sciences Journal, 385: 196 ? 215 (2017).

[24] Clelia De Felice, Roberto De Prisco, Delfina Malandrino, Gianluca Za-
ccagnino, Rocco Zaccagnino, Rosalba Zizza, ”Chorale Music Splicing
System: An Algorithmic Music Composer Inspired by Molecular Splic-
ing”, EvoMusart, pp.50?61, 2015.

[25] Roberto De Prisco, Delfina Malandrino, Donato Pirozzi, Gianluca Za-
ccagnino, Rocco Zaccagnino, ”Understanding the structure of music
compositions: is visualization an effective approach?”, Information Vi-
sualization Journal, 2016.

[26] ? Delfina Malandrino, Donato Pirozzi, Gianluca Zaccagnino, Rocco Za-
ccagnino, ”A Color-Based Visualization Approach to Understand Har-
monic Structures of Musical Compositions”, IV 2015: 56-61.

[27] Smith, SM. and Williams, G., “A visualization of music,” in Proceed-
ings of the 8th Conference on Visualization, pp. 499-503, 1997.

[28] Regenbrecht, Holger and Collins, Jonny M. and Hoermann, Simon, in
Proceedings of the OZCHI 2013, 25th Australian Computer-Human In-
teraction Conference: Augmentation, Application, Innovation, Collabo-
ration, 2013.

[29] Miyazaki, Reiko and Fujishiro, Issei and Hiraga, Rumi, “Exploring
MIDI Datasets,” ACM SIGGRAPH 2003 Sketches &Amp; Applications,
2003.

[30] Joyce Horn Fonteles and Maria Andria Formico Rodrigues and Victor
Emanuel, “Creating and evaluating a particle system for music visual-
ization”, journal = ”Journal of Visual Languages & Computing,” vol.
24, pp. 472-482, 2013.

[31] Stephen Malinowki, “The Music Animation Machine ”Music Worth
Watching”,” http://www.musanim.com/

[32] Ciuha, Peter and Klemenc, Bojan and Solina, Franc, “Visualization of
Concurrent Tones in Music with Colours,” in Proceedings of the Inter-
national Conference on Multimedia, pp. 1677-1680, 2010.

[33] Bock, Thomas and Georgoulas, C. and Gttler, J. and Linner, Thomas,
“Intuitive and Adaptive Robotic Arm Manipulation using the Leap Mo-
tion Controller,” Proceedings of the joint conference of the 45th Inter-
national Symposium on Robotics (ISR 2014) and the 8th German Con-
ference on Robotics (ROBOTIK 2014), 2014.



BIBLIOGRAPHY 106

[34] Sapp, Craig Stuart, “Visual Hierarchical Key Analysis”, Comput. En-
tertain. vol. 3, num. 4, pp. 1-19, 2005.

[35] Sharad Vikram and Lei Li and Stuart Russell, “Handwriting and Ges-
tures in the Air, Recognizing on the Fly,” in Proceedings of the CHI
2013 Extended Abstracts, 2013.

[36] Bishop, Christopher M., “Pattern Recognition and Machine Learning
(Information Science and Statistics,”, 2006.

[37] Mardirossian, Arpi and Chew, Elaine, “Visualizing Music: Tonal Pro-
gressions and Distributions,” in Proceedings of the 8th International Con-
ference on Music Information Retrieval, pp. 189-194, 2007.

[38] Jonathan Lazar, Jinjuan Heidi Feng, Harry Hochheiser, “Research
Methods In Human-Computer Interaction,” Wiley, 2010.

[39] Malandrino, Delfina and Scarano, Vittorio and Spinelli, Raffaele, “How
Increased Awareness Can Impact Attitudes and Behaviors Toward On-
line Privacy Protection,” International Conference on Social Computing,
pp. 57.62, 2013.

[40] Malandrino, Delfina and Manno Ilaria and Palmieri, Giuseppina and
Scarano, Vittorio and Filatrella, Giovanni, “How Quiz-based Tools can
improve students’ engagement and participation in the classroom,” In-
ternational Conference on Collaboration Technologies and Systems, pp.
379-386, 2014.

[41] De Prisco, Roberto and Eletto, Antonio and Torre, Antonio and Za-
ccagnino, Rocco, “A Neural Network for Bass Functional Harmoniza-
tion,” Applications of Evolutionary Computation, vol. 6025, pp. 351-360,
2010.

[42] Chang, Chih-Chung and Lin, Chih-Jen, “LIBSVM: A Library for Sup-
port Vector Machines,” ACM Trans. Intell. Syst. Technol., vol. 2, num.
3, pp. 1-27, 2011.

[43] David Koelle, “Music Programming for Java and JVM Languages,”
http://www.jfugue.org/.

[44] Iaccarino, Gennaro and Malandrino, Delfina and Scarano, Vittorio,
“Personalizable Edge Services for Web Accessibility,” in Proceedings of
the 2006 International Cross-disciplinary Workshop on Web Accessibil-
ity (W4A): Building the Mobile Web: Rediscovering Accessibility?, pp.
23-32, 2006.

[45] Davis, Fred D., “Perceived Usefulness, Perceived Ease of Use, and User
Acceptance of Information Technology,” MIS Q., vol. 3, num. 3, pp.
319-340, 1989.



BIBLIOGRAPHY 107

[46] Martin Fishbein and Icek Ajzen, “Belief, Attitude, Intention, and Be-
havior: An Introduction to Theory and Research,”, 1975.

[47] Ugo Erra and Gennaro Iaccarino and Delfina Malandrino and Vittorio
Scarano, “Personalizable edge services for Web accessibility,” Universal
Access in the Information Society, vol. 3, num. 3, pp. 285-306, 2007.

[48] “Extending the {TAM} for a World-Wide-Web context,” Information
and Management, vol. 38, num. 4, pp. 217-230, 2001.

[49] Silva, Eduardo S. and de Abreu, Jader Anderson O and de Almeida,
Janiel Henrique P and Teichrieb, Veronica and Ramalho, Geber L, “A
preliminary evaluation of the leap motion sensor as controller of new
digital musical instruments,” 2013.

[50] Virzi, Robert A., “Refining the Test Phase of Usability Evaluation:
How Many Subjects is Enough?,” Hum. Factors, vol.34, num. 4, pp.
457-468 1992.

[51] Gordon C. Bruner II and Anand Kumar, “Explaining consumer accep-
tance of handheld Internet devices,” Journal of Business Research, vol.
58, num. 5, pp.553-558, 2000.

[52] Kwok,Irene and Lee, Charlene and Okerlund, Johanna and Zhu, Qiuyu
and Shaer, Orit, “musicAir Creating Music Through Movement,” ACM,
2014.

[53] James R. Lewis, “Legitimate Use of Small Samples in Usability Studies:
Three Examples,” IBM Human Factors, 1991.
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