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Abstract 

 

 

 

 
This study aims to demonstrate the importance of uncertainty evaluation 

in the measurement of environmental noise in the context of Italian 

legislation on noise pollution. Attention is focused on the variability of the 

measurand as a source of uncertainty and a procedure for the evaluation of 

uncertainty for environmental noise measurement is proposed. First drawing 

on several real noise datasets in order to determine suitable measurement 

time intervals for the estimation of the environmental noise, a data-driven 

sampling strategy is proposed, which takes into account the observed 

variability associated with measured sound pressure levels. Outliers are 

eliminated from the actual noise measurements using an outlier detection 

algorithm based on K-neighbors distance. As the third step, the contribution 

of measurand variability on measurement uncertainty is determined by using 

the normal bootstrap method. 

Experimental results exploring the adoption of the proposed method 

drawing upon real data from environmental noise using acquisition 

campaigns confirm the reliability of the proposal. It is shown to be very 

promising with regard to the prediction of expected values and uncertainty of 

traffic noise when a reduced dataset is considered. 
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Introduction 

 

 

 

 
The World Health Organisation has recognized noise as the most 

significant health hazard to the working population in terms of the number of 

people affected (Hansen, 2005). Perhaps the most insidious aspect of noise 

induced hearing loss is that in most cases damage accumulates over time and 

is only recognized as a problem when it is too late to do anything about it. 

Noise can also affect our daily living away from the work place. This 

problem is called environmental noise pollution, where noise is usually 

defined as unwanted sound, an undesirable by-product of society’s normal 

day-to-day activities. 

In Italy, the law establishes maximum limits of acceptable environmental 

noise levels based on the equivalent level, Leq, a parameter expressed in 

decibels (dB) referred to a 20 μPa pressure, which indicates the level of a 

continuous stationary noise having the same acoustic energy content of the 

floating noise under measurement: 
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It is important to emphasize that any comparison between a measured 

value and the maximum levels permitted in law is a complex matter. This is 

because this is not a comparison between two fixed numerical values since a 

measurement is only an approximation or estimation of the value of the 

measurand. It is essential to take into account the uncertainties associated 

with the measurement, as reported for international technical standards 

(JCGM 100:2008), because uncertainties are a quantitative indication of the 

reliability of the result. In the case of environmental acoustic noise 

measurements, exceeding thresholds may cause health risks for the public 

and then it becomes essential to find the relationship between measurement 

uncertainty and acceptable social risk. 

Thus, in last decade, the issue of the quantification of the residual doubt 

associated to the measurement of environmental noise has surfaced as a key 

issue. The aim of the research described in this work is the realization of an 
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advanced system for the environmental acoustic monitoring and for the 

assessment of uncertainty associated with measured levels. In particular, 

there has been close examination of possible sources of uncertainties 

associated in this area i.e. characteristics of measurement instrumentation, 

variability of the measurement conditions and instrumentation calibration. 

But, to provide an adequate estimation of total uncertainty associated with 

the measurement of the equivalent level of environmental noise, the intrinsic 

variability of the measurand cannot be ignored.  

This thesis is organized as follows. In the first chapter, the main features 

of sound and noise propagation are briefly discussed, in the second chapter 

environmental noise monitoring in the context of the Italian legislative 

framework and on the decision rules is described. 

In the third, fourth and fifth chapters the new algorithm for the evaluation 

of the measurement uncertainty of environmental noise is proposed and 

analysed. In particular, in the third chapter the influence of the measurement 

time on the measurement uncertainty of environmental noise is explored and 

an original procedure based on a bootstrap method is introduced to 

determine the minimum measurement time, which takes into account the 

statistical variability of the acquired sound pressure levels.  

In the fourth chapter, the specific focus is the study and the estimation of 

the influence of the occurrence of spot events on the measurement 

uncertainty and the description of the algorithm which has been applied and 

experimentally verified with real field data to detect so as to remove these 

outliers (“Outlier detection”).  

In the fifth chapter, the uncertainty associated with measurement of 

‘purified’ signals acquired during identified measurement time is 

determined.   

In order to give substance to the proposed strategy, a statistical analysis is 

carried out on measurement data from several acquisition campaigns and 

experimental results are shown. 



 

 

Chapter I 

Fundamentals of sound 

propagation 

 

 

 

 
I.1 Sound fundamentals  

As a prelude to the environmental noise pollution problem, a brief 

description of the nature and propagation of sound is presented in this 

chapter. 

  

 

I.1.1 Nature of sound 

Perception of sound requires the presence of some simple physical 

phenomena, in contrast to the very deep physiological and psychological 

effects. 

A sound source oscillates and brings the surrounding air into motion. The 

compressibility and mass of the air cause these oscillations to be transmitted 

to the listener’s ear. Generally, in this phenomenon one has momentum 

transportation without a corresponding mass transportation. Pressure 

fluctuations, referred to as sound pressure p, occur in air (or other fluid) and 

are superimposed to the constant atmospheric pressure p0.  

A spatially distributed sound field radiates from the source with different 

instantaneous sound pressures at each moment. The sound pressure is the 

most important quantity to describe sound fields and is space and time-

dependent. 

If an air particle is displaced from its original position, elastic forces of 

the air tend to restore it to its original position. Because of the inertia of the 

particle, it overshoots the resting position, bringing into play elastic forces in 

the opposite direction, and so on. Sound is the mechanical vibration of a 

gaseous, liquid or solid elastic medium through wich energy is transferred 
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away from the source by progressive sound waves. Without a medium, 

sound cannot be propagated.  

The little dots of Figure I.1 represent air molecules. The molecules 

crowded together represent areas of compression in which the air pressure is 

slightly greater than the prevailing atmospheric pressure.  

The sparse areas represent rarefactions in which the pressure is slightly 

less than atmospheric. 

The small arrows indicate that, on the average, the molecules are moving 

to the right of the compression crests and to the left in the rarefaction troughs 

between the crests. Any given molecule will move a certain distance to the 

right and then the same distance to the left of its undisplaced position as the 

sound wave progresses uniformly to the right. As a consequence a sound 

wave is a longitudinal wave, not a transverse wave. 

 

 

Figure I.1 Compressed and rarefied regions of a sound wave in air 

 

 

 

 

I.1.2 Scales for noise – the decibel 

Propagation through any elastic medium takes place in the form of a 

wave, and the most important quantity characterizing its magnitude is the 

root mean square amplitude Arms defined as: 

 

(2) 
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where T is the relevant time period over which the averaging takes place and 

a is the instantaneous amplitude. 

A spatially distributed sound field radiates from the source with different 

instantaneous sound pressures at each moment. The sound pressure is the 

most important quantity to describe sound  fields and is always space- and 

time-dependent. 

The sound has two main distinguishing attributes: `timbre' and `loudness'. 

The physical quantity for loudness is sound pressure and the quantity for 

timbre is frequency f, measured in cycles per second, or Hertz (Hz). The 

frequency range of technical interest covers more than the range that is 

audible by the human ear, which is referred to as fihearing level. The hearing 

range starts at about 16 Hz and ranges up to 16 kHz. The infrasound, which 

is located below that frequency range, is less important for air-borne sound 

problems, but becomes relevant when dealing with vibrations of structures 

(e.g. in vibration control of machinery). 

Ultrasound begins above the audible frequency range. It is used in 

applications ranging from acoustic modelling techniques to medical 

diagnosis and non-destructive material testing. 

The normal method of measuring pressure on a linear scale unfortunately 

gives rise to certain problems when related to the performance of the human 

ear. The direct application of linear scales to the measurement of sound 

pressure would therefore lead to the use of enormous and unwieldy numbers. 

Additionally, the ear responds not linearly but logarithmically to 

stimulus. For these reasons it has been found more practical to express 

acoustic parameters as a logarithmic ratio of the measured value to a 

reference value.This reduces the numbers to manageable proportions and the 

resulting unit, called the Bel (after Graham Bell) is defined as the logarithm 

to the base ten of the ratio of two acoustical powers or intensities. In practice 

this unit was found to be rather too large, and a unit of one tenth of a Bel, the 

decibel dB, is now in general use. As the acoustic intensity, the power 

passing through a unit area in space, is proportional in the far field to the 

square of the sound pressure, a convenient scale for acoustic measurements 

can be defined as Sound Pressure Level: 

 

 
(3) 

 

where p is the sound pressure being measured  

and  is the reference sound pressure, that 

corresponds to the hearing threshold (at a frequency of 1 kHz, because the 

hearing threshold is frequency-dependent). 

So that 0 dB denotes the `just perceivable' or `just not perceivable' sound 

event. If not otherwise stated, the sound pressure p stands for the root mean  
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Figure I.2 Typical sound pressure levels of common noise sources 
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square (rms-value) of the time domain signal. The specication in decibels 

(dB) is not related to a specic unit. It indicates the use of the logarithmic law. 

Use of the decibel scale reduces a dynamic range of sound pressures from 

a million to 1 to a more manageable range of sound pressure levels of only 0 

to 120, zero indicating the reference minimum threshold and 120 the 

approximate threshold of pain. 

This is far more convenient and easier to deal with as the values lie 

within a range easily conceived by the layman and one unit (1 decibel) is 

about the smallest value of significance (Passchier-Vermeer, 2000, pp. 123-

131). The big advantage when using sound pressure levels is that they 

roughly represent a measure of the perceived loudness. Figure I.2 shows 

many well-known sounds appropriately placed with regard to the sound 

pressure level at which they are normally heard and their major frequencies.  

 

I.1.3 Octave and third-octave band filters 

Sometimes a high spectral resolution is needed to decompose time 

domain signals. Measurements of the spectral components of time domain 

signals are realized using electronic circuits, filters, which let a supplied 

voltage pass only in a certain frequency band. Only filters with a constant 

relative bandwidth are used for acoustic purposes. The bandwidth is 

proportional to the centre frequency of the filter. 

With increasing centre frequency the bandwidth is also increasing. The 

most important representatives of filters with constant relative bandwidth are 

the octave and third-octave band filters. Their centre frequency is determined 

by 

 

 
 

(4) 

For octave band filters:   

 

 
 

(5) 

which results in   and 

 

 

For third-octave band filters:   

 

 
 

(6) 

which results in  and  
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The advantage of third-octave band measurements is the finer resolution 

(more data points in the same frequency range) of the spectrum. 

 

 

I.1.4 Hearing levels and A-Weighting 

The sensitivity of the human ear is strongly dependent on the tonal pitch. 

The frequency dependence is depicted in Fig. I.3. The figure is based on 

the findings from audiometric testing. The curves of perceived equal 

loudness (which have the unit `phon') are drawn in a sound pressure level 

versus frequency plot. One can imagine the development of these curves as 

follows: a test subject compares a 1 kHz tone of a certain level to a second 

tone of another frequency and has to adjust the level of the second tone in 

such a way that it is perceived with equal loudness. The curve of one hearing 

level is obtained by varying the frequency of the second tone and is simply 

defined by the level of the 1 kHz tone. The array of curves obtained by 

varying the level of the 1 kHz tone is called hearing levels. It reveals, for 

example, that a 50 Hz tone with an actual sound pressure level of 80 dB is 

perceived with the same loudness as a 1 kHz tone with 60 dB. The ear is 

more sensitive in the middle frequency range than at very high or very low 

frequencies. 

 

 

 
Figure I.3 Hearing levels 
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The relationship between the objective quantity sound pressure or sound 

pressure level, respectively, and the subjective quantity loudness is in fact 

quite complicated, as can be seen in the hearing levels shown in Fig. I.3. The 

frequency dependence of the human ear's sensitivity, for example, is also 

level dependent. The curves with a higher level are significantly flatter than 

the curves with smaller levels. The subjective perception `loudness'  not only 

depends on frequency, but also on the bandwidth of the sound incident. 

The development of measurement equipment accounting for all 

properties of the human ear could only be achieved with a very considerable 

level of effort.  

The most common weighting that is used in noise measurement is A-

Weighting. A frequency-weighted sound pressure level is used both 

nationally and internationally, which accounts for the basic aspects of the 

human ear's sensitivity and can be achieved with a reasonable level of effort. 

This socalled `A-weighted sound pressure level' includes contributions of the 

whole audible frequency range. In practical applications the dB(A)-value is 

measured using the A-filter. The A-filter characteristics roughly represent 

the inverse of the hearing level curve with 30 dB at 1 kHz (40 phone curve) 

depicted in Fig. I.3. The A-weighting function is standardized in EN 60651. 

In Fig. I.4 the frequency response functions of the A-filter, B-filter (inverse 

of 70 phone curve, rarely used), C-filter (inverse of 100 phone curve, used 

for peak measurements) and D-filter (used in assessing loud aircraft noise -

IEC 537) are drawn. 

 

Figure I.4 Frequency response functions of A (blue), B(yellow), C(red) and 

D(black) weighting filters 
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I.1.5 Equivalent sound pressure level 

It is easy to determine the noise level of constant, steady noise, such as 

from an engine with constant rpm. Due to their uniform formations, such 

noise can be sufficiently described by the A weighted sound pressure level. 

Otherwise, intermittent signals, such as speech, music or traffic noise, can be 

described by the level-over-time notation, but this description falls short, 

because a notation of various noise events along a time continuum makes an 

otherwise simple quantitative comparison of a variety of noise scenarios, 

such as traffic on different highways, quite difficult. In order to obtain 

simple comparative values, one must take the mean value over a realistic 

average time period. 

The most conventional and simplest method is the so-called 'energy 

equivalent continuous sound level' Leq,T. It reflects the sound pressure square 

over a long mean time T:  
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where peff (t) indicates the time domain function of the rms-value and   

 

 

the level gradient over time. 

 

 

The square of a time-dependent signal function is also referred to as 

'signal energy', so the energy-equivalent continuous sound level denotes the 

average signal energy. 

 

 

 

 

 

Figure I.5 Equivalent sound pressure level 
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I.2 Wave propagation 

The most important qualitative statements about wave propagation can be 

deduced from everyday life experience. When observing temporary, 

frequently repetitive sound incidences, such as a child bouncing a ball, 

hammering at a construction site, etc., a time delay can easily be observed 

between the optical perception and the arrival of the acoustic signal. This 

time delay increases with increasing distance between the observer and the 

source. Indeed, sound incidences sound the same from any vantage point, as 

the frequency components are the same. The wave form of a sound field (in 

a gas) is not altered during propagation. The propagation is called `non-

dispersive', because the form of the signal is not altered during wave 

transmission. In contrast, the propagation of bending waves in beams and 

plates, for instance, is dispersive in gases. In this chapter the physical 

properties of wave propagation in gases are described. To derive the basic 

properties, the effects as well as the attenuation with increasing distance and 

reflections are left out of consideration. The attention is focused on the 

simple case of one-dimensional sound fields, depending only on a single 

coordinate. The main properties of sound fields can be deduced from the 

basic assumption that a perfect gas is an elastically shapeable and mass-

adherent medium. 

Two investigations are necessary: it has to be discussed how air springs 

are compressed by the displacement at their boundaries to the left and to the 

right and the problem of how the air masses are accelerated by the forces of 

the springs acting on them has to be solved. Small air volumes of length x 

are used for both investigations. The elements of length x (initially 

assumed to have a finite length for illustration purposes) will finally shrink 

to the infinitesimal length dx, because the description of the physical facts is 

a lot easier with functions and their derivatives (Möser, 2009). 

The inner compression of one gas element with mobile boundaries is 

derived by the fact that the mass between the boundaries is constant. If one 

element is compressed, the density increases. The mass of the element 

depicted in Fig. I.6 is Sx  if the medium is at rest (without sound), where 

S is the cross-sectional area of the column and  is the density inside the 

element at rest. If an elastic deformation takes place (in the presence of 

sound), the motion of the left boundary defined by (x) and the motion of 

the right boundary defined by (x+x) takes place, the mass is given by S 

[x + (x+x) - (x)] t ot, where t ot  = 0 +  and is the alteration due 

to the sound field. 
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Figure I.6 Deformation of an element of the gas column leads to a change 

in internal density 

 

 

The mass is equal to the mass at rest, so  

 

0 + [x + (x+x) - (x)] S = 0 x S 

 

or, after the dividing the surface S and multiplying it out, 

 

x + 0 [(x+x) - (x)] + [(x+x) - (x)]  = 0 (8) 

 

 

The difference (x+x) - (x) is smaller than x, so the sound density in 

question here can be described by 

 

 
(9) 

 

 

 

In the limiting case of infinitesimal small gas elements x  dx, the 

difference quotient becomes the differential quotient 

 

 
 

(10) 

 

 

Sound density is directly related to the spatial derivative of the 

displacement. 

The latter is also called `elongation' (or dilatation). This derivation is 

crucial for the following investigations. It states that the relative sound 
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density is equal to the negative elongation. It should be noted that this fact 

can also be interpreted as the spring equation. If the sound density, eq (9), is 

replaced by the sound pressure from , where c is the speed of 

sound (343 metres per second), and multiplied by the cross sectional area S,  

 

 

 

(11) 

 

 

is obtained.  The left side, Sp, represents the force F produced by 

deformation of the gas spring of lenght . Hook’s law F = - s x, where s 

represents the stiffness of the spring, can be applied to the case of springs 

with moving ends, validating 

 

 
(12) 

 

Comparing  eq (11) with eq (12) it’s possible to obtain the stiffness of the 

spring: 

 

 
(13) 

 

In the case of layers of elastic material, as in a gas element, with a cross 

sectional area S and lenght   

 

 

(14) 

 

is given, where E represents a material constant, the so-called elastic 

modulus. 

It should be indicated for the interpretation of eq. (14) that producing a 

certain change in displacement at the ends requires an applied force which 

has to be larger. The larger the cross sectional area of the layer is, the smaller 

the thickness of the layer. The elastic modulus in gases is obviously related 

to the propagation speed by  

 

 (15) 

 

 

The second phenomenon pertaining to sound wave propagation that needs 

to be investigated is how gas particles are accelerated by the applied forces 

of the springs. The answer is found in Newton's law, which is applicable to 

F 
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the (small) volume element of the gas column as shown in Fig. I.7. The 

acceleration                of the enclosed mass is caused by the force `pushing 

from the left' Sp(x), from which the force `pushing back from the right'              

Sp (x+ ) must be subtracted. The acceleration caused by the change in 

force is smaller, the smaller the mass m of the element is.  

Applying Newton's law (only on x coordinate) we obtain: 

 

         and so       

 

 

 
 

Alternatively, using m = volume x density = ,  

 

 
 

 
Figure I.7 Accelerated element of the gas column 

 

 

The element is finally compressed, and using  

 

 
 

 

It’s possible to write the inertia law of acoustics 

 

 

(16) 
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Eqs. (10) and (16) form the basic equations in acoustics. They are able to 

describe all (one-dimensional) sound incidences. The compression of the 

elastic continuum ”gas” caused by space-dependent displacement is 

described in eq. (10); how the displacement is caused by compression, on the 

other hand, is described in eq. (16). If both observations are combined they 

yield the explanation for wave propagation. Combining the two observations 

in terms of equations means inserting one equation into the other. The 

displacement is consequently eliminated in eqs. (10) and (16). This can be 

achieved by a twofold differentiation of eq. (10) by time 

 

 
 

and differentiating eq. (16) by space 

 

 
 

 

Hence it follows 

 

 
 

and finally 

 

 

(17) 

 

Eq. 17 is referred to as the one dimensional wave equation [4].  In 

general, any function which is exclusively dependent on the argument 

 or  is a solution to the wave equation - eq. (17)- 

 

 (18) 

 

In particular  describes a wave moving in the +x direction 

(progressive wave) and  describes a wave moving in the -x 

direction (regressive wave). 

f(t) stands for a signal form possessing a structure which has been created 

by the emitter, that is the sound source.  

In Fig. I.8 a wave moving in the +x direction (progressive wave) for two 

different times t=0 and t=t is shown: the shape of the perturbation does not 

change, but it is simply translated of the distance x. 
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Figure I.8 Principal characteristics of   for two different 

times t=0 and t=t 

 

 

The graph depicts a set of curves of the same parallel offset space-

dependent functions which cross each other. As can be seen from the graph, 

the state of gas "`sound pressure"' migrates as at constant speed along the x 

axis. This migration of the local states is known as a "`wave"'. 

In order to explain the physical meaning of the constant c it’s possible to 

imagine a certain value of the function f (in Fig. I.8 the maximum of f is 

chosen) which is located at x at the time t and travels by the distance x 

during the time t. 

 

 

 (19) 

 

 

This is the case if   is the same in both cases, which is 

equivalent to 

 

       
 

and so 

 

       

(20) 

 

Because the speed is calculated by `speed=distance/time to travel', c 

describes the `transport speed of the function', i.e. the propagation speed of 

the wave. 
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Obviously, it is independent of the characteristics of the function f; in 

particular, all frequencies travel at the same speed. The fact that the signal 

characteristics are not altered during propagation is an important feature of 

sound propagating in gases, which is one of the most important physical 

preconditions for acoustic communication (e.g. speech). 

The one-dimensional wave propagation eq. (17) can be easily transferred 

to the more general case of three-dimensional wave propagation, using 

vector differential operators: 

 

 

 

(21) 

  

 

where  (or , called the Laplace operator or the Laplacian, is a 

differential operator given by the divergence of the gradient of a function on 

Euclidean space. 

Eq (21) is known as the D’Alembert equation and it permits us to study 

sound wavefronts propagation in every point of a free field. 





 

 

 

Chapter II 

Environmental noise pollution 

and decision rules 

 

 

 

 
II.1 Environmental noise pollution  

The current process of urbanization and the associated development of 

transport and industry in a large part of the world has been accompanied by a 

number of environmental problems such as greenhouse gas emissions, waste 

and wastewater and environmental noise pollution. 

A publication by the World Health Organization (WHO) points out that 

noise pollution is ranked second amongst factors that cause environmental 

stress in terms of public health effects and which has significant auditory and 

non-auditory heavy health impacts (World Health Organization, 2011). 

Noise is derived from the Latin word “nausea” implying ‘unwanted 

sound’ or ‘sound that is loud, unpleasant or unexpected’. Public health 

experts agree that environmental risks constitute twenty-four per cent of the 

burden of disease. Widespread exposure to environmental noise from road, 

rail, airports and industrial sites contributes to this burden. On the basis of 

the available scientific evidence and from the results collected in (World 

Health Organization, 2011), the following key noise pollution outcomes 

were briefly touched upon to highlight the effects of noise pollution effects 

the public health: 

 

• cardiovascular disease;  

• endocrine responses to noise; 

• cognitive disablement (in children); 

• sleep disturbance; 

• annoyance. 
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II.1.1 Cardiovascular disease 

Epidemiological studies on the relationship between road traffic and 

aircraft noise and cardiovascular effects was carried out both on adults and 

on children, focusing on mean blood pressure, hypertension and ischaemic 

heart diseases as cardiovascular end points. The evidence, in general, of this 

association was increased during later years (Babisch, 2000, pp. 9-32), 

(Babisch, 2006, pp. 1-29), (Cavatorta et al. 1987, pp. 463-466). 

There is increasing evidence that road traffic noise pollution increases the 

risk of ischaemic heart disease and of hypertension. Very few studies on the 

cardiovascular effects of other environmental noise sources, including rail 

traffic, are known but it is logical to assume the same consequences. 

 

 

II.1.2 Endocrine responses to noise 

Exposure to high intensity sound pressure levels was connected in many 

studies to increasing the levels of noradrenaline and adrenaline [9]. In one 

study catecholamine secretion decreased when workers wore wearing 

protection against noise. Other studies showed increase of cortisol in relation 

to noise exposure (Brandenberger, 1980, pp. 239-252).  

The general pattern of endocrine responses to noise is indicative of noise 

as a stressor, exciting short-term physiological responses, though some 

inconsistencies between studies were found. 

 

 

II.1.3 Cognitive disablement (in children) 

It is well reported in (Basner, 2014, pp. 1325-1332) and in (World Health 

Organization, 2011), that postulated mechanisms for noise effects on 

children’s cognition include communication difficulties, impaired attention, 

increased arousal, learning difficulties, frustration, noise annoyance, and 

consequences of sleep disturbance on performance. Some investigators point 

attention to the effects on children of noise pollutions due to proximity to 

airports (Evans et al. 1995, pp. 333-338), (Evans et al. 1998, pp. 75-77), 

while in (Stansfeld et al.2005, pp. 1942-1949) a comparison was made 

between the effects of road traffic and of aircraft noise on 9–10 year old 

children. This found some correlation between long-term exposure to aircraft 

noise and impaired reading comprehension and memory recognition. 
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II.1.4 Sleep disturbance 

Sleep is a physiological state that needs to be respected to allow for 

normal recuperation of the living organism. Its reduction or disruption is 

harmful in the long term and it can have a major impact on health and 

quality of life. Studies have shown (World Health Organization, 2011) that 

noise affects sleep in terms of immediate effects (e.g. arousal responses, 

sleep stage changes, awakenings, body movements, total wake time, 

autonomic responses), after effects (e.g. sleepiness, daytime performance, 

cognitive function deterioration) and long-term effects (e.g. self-reported 

chronic sleep disturbance). 

 

 

II.1.5 Annoyance 

Since annoyance varies with persons and situations it can be asserted that 

what makes a sound a noise is connected with psychology rather than 

acoustics. 

In determining whether a sound is a noise, mental attitude and 

environment are of major importance and it is interesting to note that groups 

of people with different backgrounds of work experience have differing 

annoyance thresholds.  

Then, noise annoyance may be affected by psychological or non-

acoustical characteristics, primarily on subjective noise sensitivity, attitudes 

toward noise, gender, age, health status, or socio-economic situation. 

The importance of acoustical factors (sound pressure level and frequency, 

number  and time distributions of events) is also well-documented (Miedema 

and Oudshoorn, 2001, pp. 409-416), and was incorporated into the Directive 

2002/49/EC of the European Parliament and of the Council, relating to the 

assessment and management of environmental noise. 

Noise annoyance encompasses broad psychological feelings (among 

others: irritation, discomfort, distress, frustration, and offence) when noise 

interrupts one’s psychological state or normal life activities (Guski, 1999, 

pp. 45-56) and could interferes with the quality of life, causing prolonged 

activation of physiological responses such as increased blood pressure, heart 

rate and endocrine outputs (Clark and Stansfeld, 2007, pp. 145-158). 

 

 

II.2 Traffic noise  

Traffic acoustical noise is one of the most important components of the 

environmental pollution in densely populated areas all over the world, 

because in many countries the car is the favourite means of transportation. In 
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the last years the number of vehicles in circulation has grown, but to this 

growth did not always correspond an improvement of street networks. This 

problem can be evidenced by the high growth of the traffic charges on urban, 

sub-urban and peri-urban roads, with a clear impact on costs, security and 

environment, even in term of acoustical noise. A similar tendency can be 

observed in the framework of many European countries. Traffic noise affects 

areas surrounding roads especially when high traffic load and high speed 

conditions occur and can lead to a degradation of the quality of life in 

residential areas. The impact of noise on mental and physical health and on 

daily activities has been widely documented in the scientific literature (Ouis, 

2001, pp. 101-120), (Kryter, 1982, pp. 1222-1242), (Langdon, 1976, pp. 

243-282).  

With conservative assumptions applied to the calculation methods, it is 

estimated that Disability Adjusted Life Years (the sum of years of potential 

life lost due to premature mortality) lost from environmental noise are 61000 

years for ischaemic heart disease, 45000 years for cognitive impairment of 

children, 903000 years for sleep disturbance, 22000 years for tinnitus and 

654000 years for annoyance in the European Union Member States and other 

western European countries (World Health Organization, 2011). These 

results indicate that at least one million healthy life years are lost every year 

from traffic related noise in the western part of Europe. Sleep disturbance 

and annoyance, mostly related to road traffic noise, comprise the main 

burden of environmental noise. Public health experts agree that 

environmental risks constitute 24% of the burden of disease. Widespread 

exposure to environmental noise from road, rail, airports and industrial sites 

contributes to this burden. One in three individuals is annoyed during the 

daytime and one in five has disturbed sleep at night because of traffic noise. 

Epidemiological evidence indicates that those chronically exposed to high 

levels of environmental noise have an increased risk of cardiovascular 

diseases such as myocardial infarction. 

Thus, noise pollution is considered not only an environmental nuisance 

but also a threat to public health. In order to inform policy and to develop 

management strategies and action plans for noise control, national and local 

governments need to understand and consider this new evidence on the 

health impacts of environmental noise. 

For this purpose, there should be a risk assessment to evaluate the extent 

of the potential health effects. A key consideration is that risk assessment 

cannot be carried out (using an exposure specific approach) unless both the 

exposure assessment and the exposure–response relationship utilize the 

matching noise indicators. This becomes an issue when there is evidence that 

the best relationship between a particular health effect and exposure may be 

based on one indicator, yet data on exposure are only available based on 

another. 
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While the work required by Directive 2002/49/EC will increase the 

availability of exposure assessments using the harmonized noise indicators, 

available exposure–response relationships may be reported using other 

indicators.  

A number of studies demonstrate that high levels of sound pressure can 

damage people’s health in a variety of ways, making initiatives to control 

noise a study of key importance to society (Ising and Kruppa, 2004, pp. 5-

13), (Hassall and Zaveri, 1979).  

 

 

II.3 Italian legislative framework on noise pollution 

Italian legislation on noise pollution was developed from the beginning of 

90’s through the establishment of a general law with supporting decrees. 

There follows a brief description of the main pieces of legislation.  

The Decree of the President of the Council of Ministers of 01/03/1991 

"Maximum limits of exposure to noise in residential areas and outdoors" is 

the first piece of legislation act adopted by Italy to regulate and control noise 

pollution. The Decree of Council of Ministers President of 1 March 1991 

was subsequently integrated into the General Law Act N. 447/1995. The 

decree determined immediate steps required to safeguard the quality of the 

environment and human exposure to noise across six categories of urban 

area provides and sets out the basic principles for management of the 

external and indoor environment. The General Law on noise, in addition to 

concepts contained in the Decree of the President of the Council of Ministers 

of 01/03/1991, has 17 articles and establishes the basic principles regarding 

the protection from noise pollution of external environment and indoor 

environment; it defines the responsibilities of public administrations, and of 

public and / or private entities that may be the direct or indirect cause of 

noise pollution. 

 

A number of other decrees have been promulgated to regulate limits for 

sound sources, techniques for detecting and measuring noise pollution and 

management of noise levels from transport infrastructure (Appendix). 

In summary, the main decrees and regulations to which we must pay 

particular attention are: 

· Law 26 October 1995, n. 447 "Law on Noise Pollution framework"; 

· Decree of 11 December 1996 "Application of the differential criteria for 

continuous production cycle plants"; 

· Decree of Council of Ministers President of November 14, 1997 

"Determination of limit values of sound sources"; 

· Decree of 16 March 1998 "Techniques for detecting and measuring 

noise pollution". 
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· Legislative Decree 81/2008 Title VIII - Chapter II "Protection of 

workers against the risks from  exposure to noise at work" 

 

 

II.4 Measurements and limit values  

The current legislation mainly focuses around the maximum acceptable 

limits with reference to the A-weighting equivalent level of environmental 

noise  
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which indicates the level of a continuous stationary noise having the same 

acoustic energy content of the floating noise under measurement compared 

to the average sensitivity curve  in terms of frequency of the human auditory 

system. 

It is important to emphasize that any comparison between a measured 

value and a legal threshold is a complex matter, because this is not a 

comparison between two fixed numerical values since a measurement is only 

an approximation or estimation of the value of the measurand. It is essential 

to take into account the uncertainties associated with the measurement, as 

reported for international technical standards (JCGM 100:2008), because 

uncertainties are a quantitative indication of the reliability of the result. 

The values below the limit are defined as being in a specification zone, 

that is range in which different levels below the maximum are tolerated. The 

uncertainty, associated with a measured value, is known as the confidence 

zone (Fig. II.1). 

 

 

 

Figure II.1 Specification zone and confidence zone 

 

 

In order to evaluate compliance with near limit values it is necessary to 

establish some rules, which essentially add or subtract the uncertainty from  
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the limit in order to create an acceptance zone, also known as guardband 

(ASME B89.7.3.1-2001), (Garai, 2014). Simple acceptance and simple 

rejection rules are the most basic. 

The first establishes that the result of a measurement is compliant if it 

falls within the specification zone (Fig. II.2: cases 1 and 2) while the second 

establishes non-compliance if a result of a measurement falls outside the 

specification zone (Fig. II.2: cases 3 and 4). 

 

 

Figure II.2 Simple acceptance and simple rejection rules 

 

 

The probability that a decision based on these basic rules may be 

erroneous can be very high, up to 50% if the estimated value coincides with 

a lower or upper limit value (Decree of Council of Ministers President of 

14/11/1997). 

Stringent acceptance and stringent rejection rules do not take account of 

ambiguous results, those for which the lower or higher limit value of 

specification zone is within the range of confidence zone (Fig. II.3: cases 2 

and 3). The stringent acceptance rules state that the result is compliant if the 

entire measurement including the confidence zone lies within the 

specification zone (Fig. II.3 Case 1), minimizing the risk of a erroneous 

acceptance.  
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Figure II.3 Stringent acceptance and stringent rejection rules 

 

 

On the other hand, stringent rejection rules only consider non-compliance 

for those measurement that fall entirely outside the specification zone 

including allowance for the the confidence zone (Fig. II.3 case 4), 

minimizing the risk of a false rejection. The relaxed acceptance rules state 

that the result of a measurement is compliant if it is not outside the 

specification zone including the confidence zone (Fig. II.4: cases 1, 2, 3), 

minimizing the risk of a false rejection, The relaxed rejection rules state that 

the result of a measurement is not compliant if it is outside the specification 

zone with all the confidence zone (Fig. II.4: cases 2,3,4), minimizing the risk 

of a false acceptance. The relaxed acceptance and relaxed rejection rules are 

less precise because they allow for greater flexibility around whether a 

measurement is compliant or non-compliant, when the lower or higher limit 

value of specification zone is within confidence zone (Fig. II.4: cases 2 and 

3).  

 

 

 

Figure II.4 Relaxed acceptance and relaxed rejection rules 
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In the field of environmental acoustics the choice of decision rules 

depends on the purpose of the evaluation. In particular, to protect the 

receiver, stringent acceptance + relaxed rejection rule (Fig. II.5) is chosen, 

and, to protect the source, relaxed acceptance + stringent rejection rule (Fig. 

II.6) is chosen (Ruggiero et al. 2016b, pp. 74-79). 

 

 

Figure II.5 Stringent acceptance + relaxed rejection 

 

 

An increasing number of decision-making processes, which may have 

implications not only from an economic point of view, but also on 

environmental and / or social matters, are based on the outcomes of these 

comparisons between a measured quantity and a threshold value, The task of 

establishing the decision-making rules to test the compliance of a product to 

specifications, taking into account the uncertainty of the measurement, relies 

on (JCGM 106:2012:2012), (ISO 14253-1:2013), (ASME B89.7.3.1-2001). 

Both show that the higher the uncertainty of measurement, the smaller the 

degree of compliance, but neither shows how to assess the level of 

confidence in the outcome of the comparison, therefore resulting in 

heightened levels of risk that a wrong decision is being made (JCGM 

106:2012:2012). 
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Figure II.6 Relaxed acceptance + stringent rejection  

 

 

For all these reasons, a considered uncertainty statement has to 

accompany any measurement findings. Only in this way would the 

comparison between a measurement and a corresponding reference value 

make sense, and be in accord with current technical international standard 

(JCGM 106:2012:2012). Any measurement certification has to adhere to this 

standard. 

In the case of environmental acoustic noise measurements, exceeding 

thresholds may cause health risks for the public and then it becomes 

essential to find the relationship between measurement uncertainty and 

acceptable social risk (Liguori et al. 2015a, pp. 1238-1242), (Liguori et al. 

2015b, pp. 13-14), (Liguori et al. 2016f, pp. 246-251), (Liguori et al. 2016d, 

pp. 21-24). In addition to the referenced standard, a consistent package of 

UNI standards is devoted to uncertainty in acoustics (UNI/TR 11326-
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1:2009), (UNI/TS 11326-2:2015). However, an adequate technical and 

procedural reference standard has not been yet available. Even the 

uncertainty of a noise measurement, in certain cases, may be greater than the 

reference threshold stated by the standard for that source. 

 

II.5 Sources of uncertainties in environmental noise measurement 

 

In recent years there has been considerable interest amongst the scientific 

community and experts in the field of acoustics about the quantification of 

environmental noise measurement uncertainties (Garg et al. 2014, pp. 281-

288), (Erriu et al. 2016, pp. 148-153), (Černetič and Čudina , 2011, pp. 

1293-1299), (Khodabandeh and Mohammad-Shahri, 2015, pp. 139-144). In 

particular, there has been close examination of possible sources of 

uncertainties associated in this area i.e. characteristics of measurement 

instrumentation (Guarnaccia et al. 2014, pp. 298-306), (Garg et al. 2014, pp. 

281-288), variability of the measurement conditions (Ohta and Mitani, 1989, 

pp. 68-76), (Ruggiero et al. 2015, 1277-1286), and instrumentation 

calibration (Daponte, 2013, pp. 3291-3307). 

An example of application of the Guide to the Expression of Uncertainty 

in Measurement (GUM), which involves statistical evaluation and 

consideration of the technical specifications of the instrumentation and of  

the  technical standards on electro-acoustics, is the uncertainty estimation of 

a sound level meter class 1. With reference to a generic stationary outdoor 

source, it is estimated (U20.00.135.1:2008) that value that takes into account 

the inherent uncertainties contributions, that is the deviation from the 

nominal value, i.e. weather conditions (temperature, humidity, pressure), 

linearity, A weighting curve, microphone isotropy, but which does not take 

into account the positioning of the measuring instruments, is about 0.49 dB 

[46]. The global uncertainty, assuming that its components are uncorrelated, 

can be expressed (U20.00.135.1:2008) as: 

 

 
 

 

(2) 

 

where:  

  is the uncertainty associated to the measurement 

instrumentation [dB]; 

  is the standard uncertainty associated to the distance between 

source and receiver [dB]; 

 is the standard uncertainty associated to the distance of 

microphone from reflective walls [dB]; 
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 is the standard uncertainty associated to the height of the 

microphone above the ground [dB]; 

 

However, to provide an adequate estimation of total uncertainty 

associated with the measurement of the equivalent level of environmental 

noise, the intrinsic variability of the measurand cannot be ignored (Liguori et 

al. 2016d, pp. 21-24), (Liguori et al. 2015b, pp.13-14). 

Environmental noise is composed of many independent signals, generated 

from different acoustic sources, but sometimes there are special events that 

are not characteristic of the environment under observation, although they 

modify measurement result (Ruggiero and Russo, 2016a, pp.1-9). However, 

in order to correct the effects of these spot events or outlier it is necessary to 

identify them. 

In literature there are three main approaches to the quantification of the 

contribution of environmental noise variability on the measurement 

uncertainty: i) definition of parameters for an optimal configuration of 

algorithms for the estimation of equivalent noise levels; ii) techniques for the 

identification of accidental sounds; iii) techniques for the determination of 

the uncertainty of noise estimations. 

 

II.5.1 Definition of the Measurement Time 

Maruyama et al. (Maruyama et al. 2013, pp. 317-332) determine the 

minimum measurement time for estimating the equivalent continuous A-

weighted sound pressure level during measurement time interval T, LAeqT,  of 

road traffic noise from the number of vehicle transits through simulation 

experiments based on the mathematical mode. In particular, they show the 

influence of four kinds of traffic variables exerted on LAeqT:  traffic volume, 

percentage of heavy vehicles, average vehicle speed, and the number of 

vehicle transits. In previous works in the literature about this issue, the 

probability density function of noise level or the traffic conditions are known 

in advance. Such circumstances, however, may not always be met in the 

actual measurement sites. According to the results obtained with the 

proposed model, if the time interval between about 70 vehicles passing the 

observation point placed at d0 = 25–50 m from the road is selected as the 

measurement time interval T, the measured LAeqT falls within ±1 dB around 

the long time LAeqT with the reliability of 75% or more, even though traffic 

conditions vary. If the time interval during about 170 vehicle passing is 

selected as the measurement time interval T, the errors of measured LAeqT 

may be within ±1 dB with the increased reliability of 90% or more. If the 

probability distribution of the number of vehicle transits is approximated by 

the normal distribution, on the one hand, the reliability of estimation of LAeqT 

may be improved to 95.5% and 99.7% for the same conditions as those 
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mentioned above, respectively. Hence the measurement time interval should 

be selected from the viewpoint of the reliability required for the estimation.  

Same authors in (Maruyama et al. 2014, pp. 150-155) address the issue of 

minimum measurement time interval to estimate a sound pressure level of 

road traffic noise with a designated reliability using two types of dynamic 

statistics. In this case they consider variations in the noise emission from 

passing vehicles. To verify the validity and availability, simulation 

experiments based on our dynamic model are examined under various traffic 

conditions. In the experiments, the mean time interval between two 

maximum sound pressure levels is consecutively observed during the 

reference measurement time interval. In both cases, the authors, however, 

focus on the reliability of the time interval chosen for a measurement of road 

traffic noise, but do not delve into the quantification of uncertainty.  

In (Gaja et al. 2003, pp. 45-53), with reference to 5 years of continuous 

noise measurements of LAeq,24h carried out in Valencia (Spain), the 

appropriate period of measurement over a 24-hour noise intervals in order to 

calculate the corresponding annual equivalent level has been investigated. 

The findings offer very useful information on traffic noise measurement 

techniques. In particular, the sampling strategy with a selection of at least 6 

randomly chosen days provides an accurate representation of the annual 

equivalent noise level. 

In (Kuehner, 2005), long term equivalent levels of road traffic noise 

acquired in Ladenburg, Germany, have been considered and different 

measurement approaches have been discussed. The author demonstrate that a 

sampling strategy of at least one week leads to the uncertainty of less than 

+/- 1 dB in noise equivalent levels. 

Jagniatinskis and Fiks in (Jagniatinskis and Fiks, 2014, pp. 377-385) 

focus their attention on a one-year duration noise monitoring experiment in 

the town of Vilnius (Lithuania) near an arterial road with intensive road 

traffic. They observe that, under normal weather and source emission 

conditions, the lowest uncertainty values of Lden occur when a total 

measurement time of 7 consecutive days is considered. 

In (Garg et al. 2014, 281-288), (Černetič and Čudina, 2011, pp. 1293-

1299), (Khodabandeh and Mohammad-Shahri, 2015, pp.139-144) the 

authors find that the minimum measurement time interval should be 

calculated from the error associated with LAeq on the basis of various vehicle 

distributions. More specifically, by measuring over intervals of less than an 

hour, they find it is possible to have an accurate measurement of road traffic 

noise, within a predetermined uncertainty range for the hourly values of LAeq. 

In (Abbaspour et al. 2007, pp.9-16), for the estimation of the traffic noise 

minimum measurement time interval in the city of Hamadan (West of Iran), 

the main roads are divided into 54 segments and 94 measuring stations are 

fixed. Field data obtained from 282 measurements, including 2 daily-hour 

and one nightly-hour measurements, show that 10-minutes interval 
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measurement of equivalent sound pressure level is able to forecast the hourly 

values of LAeq in each station. 

Jagniatinskis et al. in (Jagniatinskis et al. 2016, pp. 301-308) suggest the 

replacement of full year measurement by choosing a shorter time interval 

using the idea of representative time interval that contains an appropriate 

amount of transportation noise events. In particular, they analyse the 

representative sample definition for the cases of road, aircraft and rail 

transport. In Lithuania, for example, a representative measurement time 

interval for annual urban traffic noise assessment, under normal weather 

conditions, is one week. 

In (Ng and Tang, 2008, pp. 649-661) the authors focus their attention on 

the effectiveness of using short time span measurements to monitor or assess 

the acoustical environment. On the basis of data acquired in the high-rise 

residential areas of Hong Kong, they observe that short time interval results 

are much lower than the worst scenario of a site, but the energy-based Day–

night level and Day–evening–night level are acceptable.  

In (Skarlatos and Manatakis, 1989, pp. 47-55), (Skarlatos and Drakatos, 

1992, pp. 141-148) and (Skarlatos, 1993, pp. 37-50) a probabilistic method 

for determining the minimum time of observation for estimate LAeq is 

proposed, in cases in which the probability density function of noise level is 

known. 

De Donato (De Donato, 2007, pp. 526-531) discussed a minimum time 

necessary for measuring the hourly equivalent level of road traffic noise with 

a designated measurement uncertainty on LAeq and showed that minimum 

measurement time interval could be obtained from the expression of error 

associated with LAeq according to various vehicle distributions. In particular, 

the author stated that it is possible to have a correct characterization of road 

traffic noise, within a predetermined uncertainty range hourly LAeq, by 

measuring over times shorter than an hour. 

From all research so far reported, it is clear that most of the proposed 

approaches refer to the estimation of the minimum measurement time about 

long-term traffic noise indicators. On the other hand, the topic of the 

measurement of the short term equivalent sound pressure level has not been 

sufficiently explored. This may be different from the previous research 

findings of acoustic phenomenon in terms of statistical distribution and/or 

main influence parameters. 

 

II.5.2 Detection of Unwanted Sounds 

The onset of one or more acoustic events during a measurement may 

cause a significant alteration of the equivalent noise level and then it might 

induce the analyst not to consider that particular event or to arbitrarily 

extend the measurement time so as to reach a new stable reading of the 

equivalent noise level. However, it is not entirely appropriate to allow 
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operator's subjectivity in the identification and elimination of acoustic 

events, which are maybe only apparently believed not to be characteristic of 

the sources under examination. 

This indeterminateness is then intrinsic to the variability of the measure 

(i.e. the quantity under measurement) and rather than due to strictly 

metrological issues.  

In literature, there are several works about this theme. Jae- Yee Kim (Jae-

Yee Kim, 2008) uses some acoustic patterns to improve accident sound 

detection in several fields such as traffic noise. He observes that there is a 

remarkable difference between a pattern of traffic noise and one from 

accidental sound, like, for example, between vehicle horn sound and special 

purposed vehicle sirens, which have similar sound pressure to the one of 

accident acoustic patterns but their frequency waveforms are distinctive 

periodic type. Thus the author transformed various transmitted sound signals 

via microphones into frequency bands, then compared them withsound 

pressure of accident sounds which were saved in a database classified by 

frequency. With a database of various acoustic patterns and image detection 

system, which today registers at an accuracy rate of  more or less 90%,  

traffic accident detection rates will be increased at least 2~3 %.  

Schröder et al. (Schröder et al. 2013) focus their attention on Part-based 

models (PBMs) for detection of emergency siren sounds in traffic noise. In 

particular, starting from Hidden Markov Models (HMMs) that are flexible in 

time but rigid in the spectral dimension, they propose PBMs, widely used in 

computer vision, in order to detect the sound of sirens. The authors show 

that, for clean condition training, clean test samples could be classified with 

higher accuracies than all other approaches. 

In (Caligiuri et al. 2004) the author states that a lot of acoustic 

phenomena able to determine annoyance and environmental pollution are 

represented by non stationary signals. The signals associated to noise levels 

generated by railway traffic are one of the most important example of non 

stationary signals. 

For this reason it is essential to ensure the validity of the measurements 

and realize adequate health safeguard actions, to properly recognize and 

characterize the noise events produced by trains, in particular to distinguish 

them from those produced by other sources, particularly when the 

measurements are made in absence of operators. The traditional noise signal 

analysis techniques based on the Fourier Transform, as Fast Fourier 

Transform (FFT), and digital filtering show several limitations about highly 

non-stationary signals because they do not give information about the time 

location of the frequency components of the spectra.   

The authors believe that the solution to this problem is to employ time-

frequency and/or time-scale analysis techniques that get the spectra 

associated to samples of signal which can be considered sufficiently 

stationary leading to a so-called multiresolution analysis. The Wavelet 
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Transform (WT) and Wigner-Ville Transform (WVT) represent two of the 

most important examples of these techniques. They discuss the application 

of the Wavelet Transform (WT) and Smoothed Wigner-Ville Transform 

(SWVT) to the noise signals associated to the transits of the most important 

types of trains travelling in Italy, showing that, with a suitable choice of 

parameters related to these transforms it’s possible to adequately study the 

main features of railway noise sources. 

In (Lutfi and Heo, 2012) the authors compare two approaches to the 

automated detection of alarm sounds: one based on a change in overall 

sound level (RMS) and the other on a change in periodicity, as given by the 

power of the normalized autocorrelation function (PNA). They consider four 

classes of alarm sounds (bells/chimes, buzzers/beepers, horns/whistles, and 

sirens) embedded in four noise backgrounds (cafeteria, park, traffic, and 

music). The results suggest that PNA combined with RMS may be used to 

improve current alarm-sound alerting technologies for the hard of hearing. 

In (Huadong et al. 1999, pp. pp. 1005-1009) the “eigenfaces method,” is 

used to model the sound frequency distribution features. Using this 

approach, the frequency spectrum of different kind of vehicle sound 

produced under similar working conditions are classified and identified. 

Moschioni et alii in (Moschioni et al. 2007, pp. 2478-2485) compare 

methods based on the coherence and expert system techniques based on the 

intensity in order to identify the contribution of single sources to global 

sound levels. Furthermore, a new solution adopting directional sound 

measurement and consequently implementing both coherence and intensity 

approaches is proposed. 

The methods based on the retrieval of acoustic patterns from a database 

and their matching with the acquired sound equivalent level may have 

limitations in their sensitivity, due to the possible incompleteness of the 

database. 

 

 

 

II.5.3 Uncertainty Determination  

For the evaluation of the uncertainty associated with the inherent 

variability of environmental acoustic noise, it is usually assumed that results 

are associated to a normal distribution. Such an approach raises some doubts 

or even criticism. T. Wszolek and M. Klaczynski in (Wszolek and 

Klaczynski, 2006, pp. 311-318) explored this theme examining real 

statistical distributions of 24-h traffic noise levels registered in 55 reference 

points. From measurements and analysis the authors, using the Lilliefors test 

and the Kolmogorov-Smirnov test, showed that for the significance level 

α=0.05 none of the acoustic data series obtained from measuring reference 

points, neither for day-time nor night-time, exhibits characteristics of the 
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normal distribution. Additionally, they verified that the measured 

distributions are not related to any statistical distribution known in the 

literature. Based on the completed variance analysis, nevertheless, the 

observed distributions tend to Gaussian distributions both for night-time and 

day-time data with the increasing traffic intensity observed in a given 

measurement section. In other words, even if the partial results used for 

estimation of the uncertainty value have been attributed statistical 

distributions that are not normal, then the distribution of the resultant 

variable still tends to a normal distribution. 

Some authors, such as M. Paviotti and S. Kephalopoulos in (Paviotti and 

Kephalopoulos, 2008, pp. 3148-3148), performed studies on noise 

measurement uncertainty directly assuming a Gaussian model for the 

originating population. Therefore, given this assumption, they define a 

probability distribution function for data recorded during a long-term 

environmental noise measurement session in an urban situation and close to 

a road with 25000 vehicles pass-bys on average per day as: 

 

 
(3) 

 

 

 

 

where μ and σ are respectively the mean and the standard deviation of the 

population of values expressed in levels,  

 with     ,   p being the sound pressure and p0 

being a reference pressure (usually  20 Pa). 

Cogorno et al. (Cogorno et al. 2008) present a method of evaluation of 

uncertainty inherent in the acoustic phenomenon in a measure of 

environmental noise by analyzing the uncertainty arising from the 

manifestation of specific sound events and using models based on statistical 

considerations related to a Poisson distribution. In particular, assuming that a 

single spot event, identified, for example, in a vehicle transit is recorded in 

the time history, the Poisson statistics allows to conclude that, in the time 

window of the phonometric measurement, we cannot exclude the possibility 

of either observing a double transit, or the possibility of not observing any 

transit at all. These possibilities can be quantified by calculating the Poisson 

probability.  

A different approach to this theme available in literature consists in 

analyzing the uncertainty of the long-term noise indicators, day-evening-

night A-weighted noise equivalent level measured over the 24 hour period 

(LDEN) and night A-weighted noise equivalent level measured overnight 

10:00 - 6:00 a.m. (LN) with the bootstrap method. This algorithm is a 
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statistical resampling technique does not have limitations in terms of form 

and properties of considered statistics. The indicators are related to noise 

annoyance values of the long-term average sound level A in the day-

evening-night periods (LDEN) and night periods (LN) in dB (Batko and 

Stępień 2010, pp. 11-16).  

 

 

(4) 

 

 

 

(5) 

 

 

with:  

 

 

(6) 

 

 

 

(7) 

 

 

 

where K is the sample size, (LAeq,T)i is the equivalent sound level for the ith 

sample, in [dB], LD,i is the day sound A level, determined from the day–time 

noise exposure i.e. from 6:00 a.m. to 6:00 p.m., in [dB], LE,i is the evening 

sound A level, determined from the noise exposures from 6:00 p.m. to 10:00 

p.m., in [dB], and LN,i  is the night sound A level, determined for the night 

periods i.e. from 10:00 p.m. to 6:00 a.m., in [dB]. 

In particular, W. Batko and B. Stepien in (Batko and Stepien, 2010, pp. 

11-16) proposed the bootstrap method because it is very difficult to know the 

probability distribution of the long-term indicators of the noise in the 

environment. It has a wide applicability and can be very useful in many 

cases in order to get estimations, which can be difficult to be obtained with 

other methods. 

In (Farrelly et al. 2003, pp. 167-175) use also the bootstrap method, that 

is particularly effective in the real-time estimation of the confidence 
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intervals in environmental noise measurements. Namely, they associate 

lower and upper extrema of a confidence interval to the measured 

parameters, thus defining the interval where the "true" value may be found 

with a given probability.  

From all so far reported, it is clear that the estimation of the uncertainty 

related to environmental measurements can be performed adopting different 

advanced techniques of statistical analysis. The reason is that the 

environmental noise turns out to be composed of several independent 

signals, generated by different acoustic sources, which can be often localized 

in different places. Due to the large number and variety of these acoustic 

sources, the noise can be considered a multidimensional random variable. 

 

 

II.6 The proposal 
 

The aim of this work is the integration of the three different analysed 

approaches and the realization of a novel procedure, as schematized in Fig. 

II.7, for the evaluation of measurement uncertainty of environmental noise 

with reference to measurand variability, verified with real data acquired 

during measurement campaigns. 

 

Figure II.7 Block diagram of the proposal 

 

 

In the first stage a comparison was made between the five most 

commonly used bootstrap methods (normal NORM, basic percentile PER, t-

student T, bias corrected percentile CPER, bias corrected and accelerated 

percentile BCA) using the nonparametric Kruskal-Wallis and Tukey-Kramer 
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test.  A more detailed description of the bootstrap methods is given in the 

next chapter. This first comparison has shown that only the distribution on 

the t-student method differs from the others from a statistical point of view 

and that the algorithm used to guarantee maximum replicability is corrected 

percentile CPER, which estimates the confidence interval of the value in 

question based on the use percentiles of the bootstrap distribution. 

The reliability of the estimate of the environmental noise indicators 

depends significantly on the temporal variability of the noise, therefore it is 

essential to accurately choose the measurement time that takes into account 

the statistical variability of the acoustic phenomenon under observation. To 

this end, a Matlab procedure was employed, based on the bootstrap method 

CPER to locate an amount corresponding to the minimum number of sound 

pressure levels of acquisition time required to ensure statistical significance 

for the initial set of data. To define this algorithm a statistical analysis of real 

data was conducted relating to vehicle traffic noise. 

Next, a numerical algorithm was produced to ascertain and delete 

anomalous (outlier) values from a population of real data and, in order to 

determine the uncertainty associated with the signal measurement, the 

bootstrap approach was analysed. 

Summarizing, at first the measurement time that assures the statistical 

significance of the starting dataset by applying the CPER bootstrap method 

is determined, then the algorithm "outlier detection" that removes outlier 

from the signal is applied and finally the uncertainty measurement is 

calculated using the bootstrap method. 

The results of this method were then compared with the estimate of the 

expected value for the noise indicator and the corresponding uncertainty by 

applying the classical method (JCGM 100:2008). Since the quantities 

calculated with the application of the bootstrap method are very close to 

those determined with the classical method in the case of reduced number of 

samples, it can be seen that this procedure is also particularly suited to the 

indicator forecast of environmental noise when there is little available 

measurement data. 
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In this chapter the influence of the measurement time on the measurement 

uncertainty of environmental noise is explored.  

A measurement campaign composed of several measurement time 

windows randomly distributed can be carried out (ISO 1996-2) for 

evaluating the environmental noise, as suggested by the legislation. 

Each measurement time interval has to contain representative values of 

noise pressure levels, for calculating accurately the equivalent sound 

pressure level LA,eq, obtained from the sound pressure levels of the 

fluctuating noise by the cascade of  

i) the weighting filter according to a specific profile (for example the A 

curve, representative of the human ear response),  

ii) the time integration  

iii) the logarithmical average.  

 

The actual form of the technical standards do not provide practical 

criteria for the choice of the number and duration of the measurement 

episodes: ‘‘to select the measurement time interval to cover all significant 

variations in sound emission and propagation. If the noise shows periodicity, 

the measurement time interval should cover an integer number of at least 

three periods. If continuous measurements over such a period cannot be 

made, measurement time intervals shall be chosen so that each one 

constitutes a part of the cycle, so that, together, they represent the complete 

cycle’’ (ISO 1996-2). This condition is generally not applicable for 

environmental noise that is not periodic but random acoustic signal. 

The reliability of the estimate of environmental noise indicators depends 

largely on the time variability of the noise, so it is very important to choose 

accurately the sampling technique. For this reason, in this thesis, a novel 

approach is introduced for choosing the suitable measurement time interval 

that takes into account the statistical variability of the acoustic phenomenon, 

in particular a data-driven sampling strategy, taking into account the 

variability associated to the measured sound pressure levels. The data 
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variability is estimated by using the bootstrap technique (Wehrens at al. 

2000, pp. 35-52), a statistical resampling method which replicates the initial 

dataset, without any restrictions in terms of shape and properties of the 

statistical distributions under consideration. 

 

 

III.1 Choosing Bootstrap Method 

The bootstrap is a computationally intensive statistical technique that 

allows one to make inferences from data without making strong 

distributional assumptions about the statistic that is calculated and/or the 

data. 

The main idea is that a number of new data sets, which are referred to as 

bootstrap samples, can be generated from the initial data set by sampling 

with replacement. With this resampling scheme, these distributions can be 

seen as approximations to the true distributions of the estimators, and then a 

good estimate can be obtained of the distribution of a statistics of interest, 

such as bias, standard deviation and so on. Given a one-dimensional random 

variable X and a sample (x1, x2,…, xn) which is a realization of 

, the hypothesis of this method is that the probability 

density function F of X is unknown. Termed R(x, F) a certain statistics 

determined on the sample space, the basic bootstrap procedure has these 

standard steps: 

1. designing the probability distribution by means of the following 

function 

    
for k = 1,2,...,n 

called the bootstrap distribution from sample and denoted by  , where n is the 

sample size; 

2. sampling, independently, according to the distribution of values 

, which are treated as the realisation of variable                                      

                                and it is called the bootstrap sample;  

3. distribution of statistics R is approximated by means of the bootstrap 

distribution:   
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Figure III.1  Algorithm of bootstrap method 

 

 

The distribution of variable     is approximated by means the Monte Carlo 

method. The histogram of statistics    is determined as a function of the 

bootstrap samples repeated m times. The algorithm of the estimation seB of 

the expected value and the uncertainty of the long-term noise indicators 

performed by the bootstrap method is shown in Fig. III.1.   

The most important application field of bootstrap method is the 

construction of confidence intervals.  

 

 

III.1.1 Bootstrap Methods 

In literature there are various bootstrap methods for the determination of 

confidence intervals, the main ones are: 

 normal bootstrap method (NORM), which approximates confidence 

interval with bootstrapped bias and standard error (Betta et al. 2008, 

pp. 1118-1126); 

 basic percentile bootstrap method (PER), which proceeds in a 

similar way to the normal bootstrap one, using percentiles of the 

bootstrap distribution. In this case the confidence interval is 

invariant for monotonic trasformations and is range-preserving, that 

is its endpoints always fall within the range of variation of the 

parameter of interest. Confidence interval endpoints (Betta et al. 

2008, pp. 1118-1126), (Williams and MacKinnon, 2008, pp. 23-51), 

(Stepien, 2016, pp. 389-397) for the desired confidence level 1-α are                    

                                                          

                                            ; 
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 bias corrected percentile bootstrap method (CPER), which has a 

weaker assumption and allows the mean of the transformed estimate 

to differ from the population mean. CPER interval endpoints (Betta 

et al. 2008, pp. 1118-1126), (Williams and MacKinnon, 2008, pp. 

23-51), (Stepien, 2016, pp. 389-397) depend on one number  

called the bias correction, that is calculated from the bootstrap 

sampling distribution; 

 bias corrected and accelerated percentile bootstrap method (BCA), 

which is based on knowledge of percentiles of the bootstrap 

distribution. BCA interval endpoints depend on two numbers: the 

acceleration and the bias correction (Stepien, 2016, pp. 389-397); 

 bootstrap-t method (STUD), which is a more general version of the 

bootstrap, (Wehrens at al. 2000, pp. 35-52), (Betta et al. 2008, pp. 

1118-1126), (Williams and MacKinnon, 2008, pp. 23-51), (Stepien, 

2016, pp. 389-397), (Polanski, 2000, pp. 501-516), uses a Student's t 

statistic. In Fig. III.2, a flow chart of the bootstrap-t method is 

shown. The basic principle of this extension of the bootstrap method 

is the construction of the confidence  intervals  by  using  t-student  

statistics. For each bootstrap i-th resample, a second level bootstrap 

gives h new samples and the statistics                               is 

calculated by bootstrapping the resample, where   is the estimate 

from the i-th bootstrap resample and      is an estimate for standard 

deviation of the same resample. The percentiles          and        are 

used in order to approximate the confidence interval for the desired 

confidence level 1-α, equal to                                               where ϑ 

is the estimation on the original dataset and se is the standard 

deviation of the original dataset (Liguori et al. 2016g, pp. 7-8). 
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Figure III.2  The bootstrap-t method 
 

 

 

 

III.1.2 Comparison of Bootstrap Methods 

The standard uncertainty has to be evaluated as a standard deviation of 

the probability density function (PDF) attributed to the measurand (JCGM 

100:2008). In the practice, such a PDF is determined on a finite number of 

observation, collected in a sample. Moreover, in the area of traffic noise 

measurement it could be very productive to estimate the uncertainty to be 

attributed to long time periods by acquiring and processing only time 

windows of reduced duration. The analysis is carried out on measurements 

of traffic noise: the Sound Level Meter (Larson Davis 831, Class 1 

Environmental Noise & Bulding Acoustics Analyzer) is placed in close 

proximity to a motorway (at a distance of 1 m from the road and a height of 

4 m from the ground). Data collection is performed during one day (wind 

lower than 5 m/second and witouth rain) by considering the time interval 

from 9 a.m. to 12 p.m as observation time window. With regard to the 

instrument setting, the time history logging step and the measurement time 

have been considered equal to 1 second and 15 minutes respectively. More 

particularly, a set of 16 acquisitions has been collected, with each acquisition 

block including 900 equivalent noise levels LAeqi.  
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At first, the impossibility that a definite PDF could be attribute to traffic 

noise data is documented with tests on real data. 

To statistically determine the distribution of data, the simulation 

environment Matlab is used: for each measure, the histograms of the 

equivalent noise levels are determined as a first step (Fig. III.3) and then the 

2 tests (Fig. III.4) are applied to these noise level sequences, in order to 

verify if a Gaussian model can be hypothesized for the originating 

population.  

For the 2 tests, the significance level  has changed between 0 and 1, 

being  the probability of rejecting the null hypothesis when it is true. As a 

result, for all reasonable values of , all sequences except the 10th turn out 

not to be Gaussian (Figure III.4a, 4b). 

For each test, the level of statistical significance γ was also determined. 

Chosen an expected statistical distribution (Gaussian in the present case), the 

γ value is the probability of observing the given sample or one which is in 

worse agreement with the expected distribution, given that the null 

hypothesis is true. 

 

 

       Figure III.3 Comparison between histograms of the 16 Leq acquisitions 
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Figure III.4 Comparison between observed distribution and expected Gaussian 

distribution in sequences n. 10 (a) and n. 1 (b). 
 

Then, the smaller the γ value, the worse the agreement with the expected 

distribution. From Fig. III.5, it is easy to see that only the 10th sequence of 

data can be considered Gaussian, since the γ value is close to 1: Extremely 

low values of γ strongly indicate that those datasets are not Gaussian, since 

when the γ value is less than a predetermined significance level (e.g. 0.05), it 

means that the null hypotheses (H0: "dataset is Gaussian") is rejected.. 

 

 

 
Figure III.5  Levels of statistical significance γ  of all 16 acquisitions 

 

 

γ
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LAeqi[dB]

  

LAeqi[dB] 

In the following, a sequence of non-gaussian data has been considered to 

carry out the comparison of the bootstrap methods previously introduced in 

terms of the 95% confidence intervals for LAeq, .  

In detail, in Figs. III.6a, III.6b the normal probability plot, that is a 

graphical technique for assessing whether or not a data set is approximately 

normally distributed, and histogram of the corresponding LAeqi are reported 

for the 13th sequence.  

 

 

a) 

 

b) 

Figure III.6  Measured LAeqi for 13th sequence: a) Normal Probability 

Plot; b) Histogram of occurrences 
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One thousand (1000) random samples of size n = 60 are extracted from 

the considered data; the sample size is chosen with the intention to study the 

influence on the estimated LAeq of the population (13th sequence) from a 

reduced time window. 

The reconstruction of the probability density function of the noise 

indicator is performed separately on the basis of each sample, by considering 

three different values for the number of bootstrap replications (m = 250, m = 

500, m = 1000). In other words, 1000 bootstrap distributions are obtained for 

each value of m. From these bootstrap distributions 95% confidence intervals 

are calculated for each of the 5 presented bootstrap methods. Then, focus is 

devoted to the widths of estimated confidence intervals (the difference 

between the upper and the lower confidence limits). Thus, 1000-element 

distributions of 95% confidence interval widths of noise indicator LAeq are 

obtained for each combination of bootstrap model and number of replication. 

Fig. III.7 shows all the obtained distributions in terms of the corresponding 

histograms (30 class bins are considered), whereas the statistical parameters 

(minimum, maximum, mean, median, and standard deviation) are reported in 

Table III.1. 

It can be noted that the examined distributions resulting from the 

application of all the bootstrap methods have statistical parameters very 

close to each other. Only a slightly greater standard deviation is observed for 

the distribution computed with STUD method. Thus, a further statistical 

analysis has been carried out in order to exclude the revealed differences are 

statistically significant. 
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Figure III.7  Histograms of 95% Confidence Interval widths (based on 1000 

repetitions) 
 

 

 

Firstly, the Kruskal-Wallis non-parametric test is performed at confidence 

level α= 0:05; the obtained probability value (p= 5.8·10-10) indicates that 

there are statistically significant differences between the bootstrap 

techniques. 
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Table III.1 . Statistical parameters of 95% confidence intervals widths for 

different bootstrap methods 
 Parameter Unit NORM PER STUD CPER BCA 

m = 250 

min 

[dB] 

1.20 1.18 1.04 1.06 1.07 

mean 1.78 1.78 1.90 1.77 1.79 

median 1.75 1.75 1.84 1.74 1.74 

max 2.90 2.87 3.74 2.67 3.22 

std 0.26 0.27 0.39 0.26 0.30 

m = 500 

min 

[dB] 

1.12 1.22 1.01 1.17 1.15 

mean 1.79 1.79 1.93 1.78 1.80 

median 1.75 1.74 1.84 1.74 1.75 

max 2.80 2.87 4.45 2.87 2.92 

std 0.26 0.27 0.38 0.26 0.29 

m = 1000 

min 

[dB] 

1.11 1.11 1.17 1.17 1.11 

mean 1.79 1.79 1.91 1.79 1.80 

median 1.75 1.75 1.84 1.75 1.75 

max 2.84 2.84 3.69 2.69 2.81 

std 0.26 0.26 0.35 0.26 0.29 

 
 

 

 

Then, the Tukey-Kramer non-parametric test has been performed at 

confidence level α= 0:05; the corresponding result are reported in terms of 

the graphical representation in Fig. III.8. The graphs show the average value 

of rank together with the confidence level for each of the models. Any two 

compared group averages are statistically different when their intervals are 

disjoint. Overlapping intervals indicate that there are no statistically 

significant differences between the compared group averages. 

Two main results can be noted:  

i) for each bootstrap method, there are not statistically significant 

differences in the distributions resulting from different number m of 

replications;  

ii) the confidence interval widths determined with the application of the 

STUD algorithm are significantly statistically different from widths 

determined by means of other bootstrap methods, whereas there are no 

statistically significant differences between 95% confidence interval widths 

obtained by means of NORM, PER, CPER, and BCA techniques. As an 

example, the probability values obtained from the test for m= 250 are 

summarized in Table III.2. 

As a further result, for the determination of Confidence Interval (CI) 

about the LAeq, the CPER algorithm is the most suitable one, because it 

exhibits the greater repeatability (the smaller standard deviation observed for 

the computed width distribution) (Liguori et al. 2016c). 
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Figure  III.8  Multiple comparison performed through the Tukey-Kramer 

Test 
 

 

 

Table III.2  p-values of the Tukey-Kramer Test 

NORM PER STUD CPER BCA

- 1.00 4.34E-07 1.00 1.00 NORM

- 4.29E-07 1.00 1.00 PER

- 4.29E-07 4.29E-07 STUD

- 1.00 CPER 

- BCA
 

 

The results of the proposed approach are compared with the estimation of 

the expected value for the short term noise indicator and of the 

corresponding uncertainty by classic method (JCGM 100:2008). 
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More specifically, the expected value of the equivalent sound pressure 

level (referring to the observation time = 15 minutes) - in the classical 

approach - is determined by eq. (1): 

 

 

(1) 

 

where n is the size of the considered sample. 

 

The corresponding uncertainty is determined by eq. (2): 

 

 

(2) 

 

           Figure III.9  Estimation of expected value and standard uncertainty according 

           to the classical method 
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The calculation scheme according to the classical approach is depicted in 

Fig. III.9.  

According to the bootstrap approach, the expected value of the equivalent 

sound pressure level is determined as the midpoint of the CI resulting from 

the application of the CPER algorithm. The corresponding uncertainty is 

calculated as standard deviation of the expected values with respect to k 

iterations of the CPER algorithm, according to the scheme in Fig. III.10. 

 

 

 

Figure III.10 Estimation of expected value and standard uncertainty 

according to the bootstrap approach (CPER algorithm) 
 

Table III.3 summarizes the comparative results when the classical and 

bootstrap approaches are applied to the samples (with different size) 

randomly extracted by 13th sequence. With regard the classical method, for 

each sample size, both the expected value and uncertainty are achieved as 

averaged values on k = 1000 repetitions (in order to reduce the influence of 

the random sampling from the population). The same number of iterations 

are considered to estimate the uncertainty of the equivalent sound pressure 

level according to the bootstrap approach. The references are determined by 

the classical method applied to the whole population (900 samples), resulting 

in 66.74 dB and 0.14 dB for the expected value and the uncertainty 

respectively.  

As may be observed, both the classical and proposed methods lead to a 

very good estimation of the expected value for the short term noise indicator 

when a reduced number of samples are considered. Moreover, the reduced 

sample size introduces an overestimation of the true uncertainty, that is more 

evident for the classical method. Consequently, the bootstrap approach 

seems to be a very promising technique for the prediction of the 

environmental noise indicator from a reduced set of measurement data. 
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Table III.3  Comparison of classical and bootstrap method for the 

estimation of the equivalent sound pressure level 

 Classical Method Bootstrap Method 

Sample 

Size 

(n) 

Expected 

Value 

[dB] 

Uncertainty 

[dB] 

Δu 

[dB] 

Expected 

Value 

[dB] 

Uncertainty 

[dB] 

Δu 

[dB] 

50 66.72 0.58 0.44 66.70 0.50 0.35 

60 66.72 0.54 0.40 66.70 0.48 0.34 

100 66.72 0.42 0.28 66.74 0.35 0.21 

120 66.73 0.38 0.24 66.74 0.32 0.18 

150 66.74 0.34 0.20 66.74 0.27 0.13 

 

 

The minimum number of bootstrap replications (m=250) suggested in 

literature as rule of thumb is enough to estimate an accurate CI for the noise 

indicator: the adoption of greater values of m does not provide statistically 

significant differences but it introduces a greater computational burden. 

 

 

III.2 The proposed procedure  

The proposed strategy postulates a minimum acquisition time 

corresponding to the minimum number (Nmin) of sound pressure levels for 

assuring the statistical significance of the starting dataset (typically some 

hundreds of sound pressure levels should be considered).  The minimum 

measurement time  is forced to be an integer multiple of the chosen 

minimum acquisition time Tacq (as well as dependent from the time history 

logging of the sound level meter).   

The Nmin  A-weighted sound pressure levels Lt are considered to calculate 

the corresponding equivalent level: 

 

 (3) 

 

The CI of the above short time statistic (once the CL is fixed) is 

determined by applying the CPER bootstrap method and considering m 



Chapter III 

52 

 

bootstrap samples (resampling the Lt dataset). In order to take into account 

the random variability introduced by the bootstrap method, k repetitions of 

the CI calculation are suggested to determine the (mean) values for the 

interval width (𝞓CI) and extremes (CIlower and CIupper). 

 The proposed strategy for determining the minimum measurement time 

is schemed in Fig. III.11: the above mentioned steps (for calculating the CI 

information) are continuously applied to consecutive acquisition time 

windows (next to the starting point), as long as both the actual interval width 

and extremes show a data variability lower than the one observed in the 

previous windows (Liguori et al. 2017b, pp. 237-242). 
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Fig. III.11  Algorithm used to obtain the minimum measurement time 

 

More in details, the satisfaction of the following conditions, eq. (4), is 
considered as the stopping rule: 
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                    (4) 

where  is the greatest CI width calculated 

on the observed sound pressure levels, whereas the interval W i,updated takes 

into account the maximum observed CI extremes resulting from the updating 

rule, eq. (5), applied to the (i+1) time window next to the acquisition starting 
point: 

 

 

 

     (5) 

Finally, the minimum measurement time is set to the extent of the 

consecutive acquisition time windows before the stop rule is satisfied: 

Tmeas_min = j * Tacq                          (6) 

 

III.3 Experimental Results (one noise source) 

In order to characterize the proposed strategy, a statistical analysis is 

carried out on measurements of road traffic noise. In particular, the sound 

level meter (Larson Davis 831, class 1) is placed on the side of A3  

motorway near Salerno (Italy) and the chosen dataset is a time series of Lt 

continuously measured during the time interval from 10 a.m. to 1 p.m. 

(observation period Tobs). Main parameters of the noise source, recorded 

during the measurement campaign, are reported in Table III.4. 
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Table III.4  Main parameters of road traffic 

 
 

The time history logging of the sound level meter is set to 1 second, 

resulting in a dataset of consecutive 10800 sound pressure levels. The 

corresponding normal probability plot is reported in Fig. III.12, whereas the 

Anderson-Darling Test with 5% significance level leads to refuse the null 

hypothesis (p=0.0005), showing the examined population is not strictly 

Gaussian, and so the CPER bootstrap method, for CI estimation, is 

considered. 

  

 

Figure III.12  Normal probability plot 

The proposed algorithm for determining a significant measurement time 

has been applied to the chosen dataset according to the following 

parameters: minimum number Nmin of sound pressure levels equal to 300 

(that implies a minimum acquisition time Tacq of 5 minutes and the 

equivalent A-weighted sound pressure level LAeq,5 min as statistic of interest); 

application of the CPER bootstrap method with m = 1000 bootstrap samples 

and  α= 0.05 for determining the CI corresponding to 95% confidence level; 

k = 30 repetitions of the bootstrap method for each time window.  
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The proposed strategy has been executed L multiple times (L= 100) for 

different acquisition starting points within the observation period.  

 

An example of the time evolution is depicted in Fig. III.13, whereas the 

results are summarized in Table III.5, in terms of the mean value for:   

 

i. minimum measurement time Tmeas_min; 

 

ii. the 95%-CI for the equivalent sound pressure level     

  LAeq,Tmeas_min corresponding to Tmeas_min;  

 

iii. the 95%-CI for the equivalent sound pressure level LAeq,Tobs,   

  by taking into account Nlevels= Nmin * (Tmeas_min /Tacq) sound    

  pressure levels randomly distributed in the time interval from    

  the starting point to the end of the observation period. 

 

 

 

 
Table III.5  Minimum measurement time and 95% confidence intervals for 

the equivalent sound pressure level 

 
 

 

The experimental results show a very good stability of the proposed 

algorithm. With reference to Table III.4, for each acquisition starting point 

(tstart), the corresponding measurement time (Tmeas_min) is not influenced by 

the statistical variability of the bootstrap method: the observed repeatability 

of the estimated minimum measurement time is equal to 100% with the same 

L= 100.  

Moreover, the proposed algorithm is revealed effective in the estimation 

of the traffic noise from the acquisition of short episodes. Indeed, all the 

T meas_min 
[s] 

95% - CI ( L Aeq,Tmeas_min ) 95% - CI ( L Aeq,Tobs ) 
Lower limit  

L Aeq,lower [ dBA ] 
Upper limit  

L Aeq,upper [ dBA ] Width [ dBA ] Lower limit  
L Aeq,lower [ dBA ] 

Upper limit  
L Aeq,upper [ dBA ] Width [ dBA ] 

t start = 1 [s] 
(10.00.01 a.m.)  

900.00 65.6 66.5 0.9 65.0 65.9 0.9 

t start = 3601 [s] 
(11.00.01 a.m.) 

900.00 64.9 65.9 1.0 64.7 65.6 0.9 

t start = 5401 [s] 

(11.30.01 a.m.) 
1200.00 64.1 65.0 0.9 64.3 65.2 0.9 

t start = 7201 [s] 

(12.00.01 a.m.) 
300.00 64.6 66.4 1.8 64.2 66.0 1.8 
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resulting (minimum) measurement times allow the achievement of very 

accurate estimates of the equivalent sound pressure level LAeq,Tmeas_min if 

compared with the estimates calculated from the whole dataset LAeq,Tobs, both 

in terms of the CI widths (almost coincident) and CI midpoints (mean values 

between Lower limit and Upper limit) for which the maximum difference is 

less than 1%. 

It’s important to underline that values of Tmeas_min are different at varying 

tstart : this is due to the measurand variability connected with the real road 

traffic conditions. 

Furthermore, in order to test the proposed algorithm under different 

conditions, a nocturnal reference measured dataset is considered and the 

procedure is executed L multiple times (L= 200) for starting point tstart  = 

01.30.01 a.m. within the observation period Tobs (from 0.00 a.m. to 3.00 

a.m.). The achieved results show a value of Tmeas_min = 900 s with LAeq,lower = 

64.2 dBA and LAeq,upper = 65.2 dBA according to 95%-CI (LAeq,Tmeas_min), 

while LAeq,lower = 64.7 dBA and LAeq,upper = 65.7 dBA according to 95%-CI 

(LAeq,Tobs), confirming the repeatability of the estimated minimum 

measurement time equal to 100% and the achievement of very accurate 

estimates of the equivalent sound pressure level like in diurnal reference 

time case. 

 

 

Figure III.13  Sequence of sound pressure levels during diurnal observation 

period (solid blue) and resulting minimum measurement time (solid red), 

observation period 95% CI (dash black), measurement time  95% CI (dash 

red). 
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III.4 Experimental Results (three noise sources) 

The procedure, based on CPER Bootstrap Method, is experimentally 

verified also with other real data acquired in three non Gaussian scenarios 

(road traffic, outdoor air conditioner fan motor and construction site as noise 

sources), by adopting the Sound Level Meter Larson Davis 831, Class 1 

Environmental Noise & Building Acoustics Analyzer. Then, a statistical 

analysis is carried out on the measurements of environmental noise. 

With regard to the measurement of road traffic noise, the sound level 

meter is placed in close proximity to a motorway (at a distance of 1 m from 

the road and a height of 4 m from the ground). Data collection is performed 

during one day (wind lower than 5 m/second and without rain) by 

considering the time interval from 10 a.m. to 01 p.m. as acquisition period 

Tacq. With regard to the instrument setting, the time history logging  step 

(Tconst) is fixed to 1 second, resulting in a dataset of 10800 consecutive sound 

pressure levels.   

With regard to the noise measurement of the  air conditioner outdoor fan 

motor (heat pump and liquid chiller), the sound level meter is placed at a 

distance of 1 m from the nearest building facade and a height of 4 m from 

the ground. Data collection is performed during one day (wind lower than 5 

m/second and without rain) by considering 50 minutes of the air conditioner 

fan motor working both at start-up and modulation state. About the 

instrument setting, the time history logging step is fixed to 0.1 second, 

resulting in a dataset of 30000 consecutive sound pressure levels. 

With regard to the measurement of noise at a construction site, the sound 

level meter is placed at a distance of 2 m from the noise source and a height 

of 4 m from the ground. Data collection is performed during one day (wind 

lower than 5 m/second and without rain) by considering 10 consecutive 

hours (starting time: 10 p.m.). About the instrument setting, the time history 

logging step is fixed to 1 minute, resulting in a dataset of 600 consecutive 

sound pressure levels.   

With regard to the CI estimation, focus is devoted to the bootstrap 

method (CPER) because the examined populations are not strictly Gaussian.  

The proposed strategy for determining a significant measurement time is 

applied to each dataset according to the following parameters: application of 

the CPER bootstrap method with m = 1000 bootstrap samples and  α = 0.05 

for determining the CI corresponding to 95% confidence level; k = 30 

repetitions of the bootstrap method for each time window.  

In order to analyse the stability of the algorithm, the minimum number 

Nmin of sound pressure levels is varied in the range [10 ÷ 500]. Moreover, the 

proposed strategy is executed L multiple times (L=100) for the same 

acquisition starting point (randomly chosen within the observation period of 

interest).  
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Experimental results are summarized in Table III.6, in terms of the mean 

value for: 

 i) minimum measurement time Tmeas_min;  

 

ii) the 95%-CI for the equivalent sound pressure level LAeq,Tmeas_min    

       corresponding to Tmeas_min;  

 

iii) the 95%-CI for the equivalent sound pressure level LAeq.  

     corresponding to the whole dataset of interest (by randomly     

     choosing Tmeas_min/Tacq sound pressure levels).  

 

The reported Nmin represents the minimum value that assures the stability 

of the algorithm (in terms of the resulting Tmeas_min) when a sliding window 

is considered around the starting point. 

 

Table III.6  Minimum measurement time and 95% confidence intervals for 

 the equivalent sound pressure level 

 
 

A very good stability has been observed for the proposed algorithm. 

Moreover, for each type of the noise source, the corresponding measurement 

time (Tmeas_min) is not influenced by the statistical variability introduced by 

the bootstrap method: the observed repeatability of the estimated minimum 

measurement time was equal to 100%.  

Furthermore, the strategy is shown to be effective in the estimation of the 

acoustic noise through data acquisition limited to short time windows. As 

depicted in Figure III.14, all the resulting measurement times Tmeas_min allow 

for the achievement of accurate estimates of the equivalent sound pressure 

level, that are close to the mean value and width of the 95%-CI of the 

corresponding collected dataset (Liguori et al. 2017a), (Liguori et al. under 

review). 
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Figure III.14  Collected sequence of sound pressure levels (solid blue) and 

resulting minimum measurement time (solid red), LAeq 95% CI (solid red 

line) for  the measurement time, LAeq 95% CI (dash magenta line) for the 

acquisition period about different noise sources: a) traffic road; b) outdoor 

air conditioner fan motor; c) construction site. 
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III.5 Review 

In this chapter the influence of the measurement time on the measurement 

uncertainty of environmental noise is explored. An original procedure based 

on a bootstrap method is introduced to determine the suitable measurement 

time, which takes into account the statistical variability of the acquired 

sound pressure levels. 

In order to choose the most effective method for obtaining accurate 

confidence intervals CI for the indicator LAeq, at first a comparison of five 

bootstrap techniques (normal, basic percentile, t-Student, bias corrected 

percentile, bias corrected and accelerated percentile) has been performed, 

concluding that the CPER algorithm is the most suitable one, because it 

exhibits the greater repeatability (the smaller standard deviation observed for 

the computed width distribution). 

The proposal, based on CPER Bootstrap Method, has been  

experimentally verified with real data acquired both in one non Gaussian 

scenario (road traffic as noise source) by varying acquisition starting points 

and in three non Gaussian scenarios (road traffic, outdoor air conditioner fan 

motor and construction site as noise sources). The results showed a very 

good stability of the proposed algorithm in determining the minimum 

measurement time interval as well as its effectiveness in the prediction of the 

short term noise indicator (mean value and CI). Thus, the suggested data-

driven approach may be adopted in the field of the environmental acoustics 

as guideline in the choice of suitable acquisition windows during the 

measurement campaign. The proposal can be easily integrated into applied 

noise measurement instrumentation and is very useful in providing real time 

information both on the minimum measurement time interval and on the 

measurand uncertainty estimation. 



 

 

Chapter IV 

Outlier detection 

 

 

 

 
The scope of this first study is to eliminate outliers that occur when 

measuring signals in real time. 

As a matter of fact, these spot events significantly disturb the value of the 

progressive equivalent level yielded by the measurement task. For instance, 

a spot event within a measurement in an urban environment with heavy 

vehicle traffic might be the result of the transiting of a particularly heavy 

vehicle or of an ambulance. For these reasons, it is interesting to analyse the 

change of equivalent levels caused by subsequent measurements performed 

on a given environmental acoustic phenomenon and with the same 

instrument placed in the same position with the same procedure. This kind of 

analysis does not depend on the above-mentioned inevitable instrumental, 

methodological and operating uncertainties and takes into account only the 

variability of the acoustic phenomenon.  

In particular, this study addresses the issues of the identification of the 

outliers occurring in the time history of an environmental noise signal due to 

the spot event, following a histogram-based statistical approach, in order to 

allow the determination of the uncertainty associated to the measurement of 

the filtered signal. 

 

 

IV.1 The proposed procedure  

In the literature there are several methods for outliers detection with very 

diverse features, performance and application fields. Although, in general, an 

outlier is a data point significantly different from others, it is possible read 

different definitions: Barnett and Lewis in (Barnett and Lewis, 1964, p. 584) 

propose the definition: “an outlier is an observation (or a subset of 

observations) which appears to be inconsistent with the remainder of that set 

of data”. Chandola et al. in (Chandola et al. 2009, p. 15) define outliers in 

wireless sensor networks (WSNs) as “those measurements that significantly 
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deviate from the normal pattern of sensed data”. Potential sources of outliers 

in data collected by WSNs include noise, errors and actual events. 

Since the first phase of this work is the outlier detection in an acquired 

signal of environmental noise, among the techniques that could be chosen, 

the attention is turned to those designed in the context of the networks of 

sensors and particular attention is focused on non-parametric approach, 

which assumes no prior distribution (Zhang et al. 2010). After a statistical 

analysis of the acquired signal, which is the result of a measurement session 

conducted near a motorway, it is suggested that this hypothesis has a 

particularly fit for this phenomenon of traffic noise. In particular, in order to 

verify whether a distribution fixed in advance cannot be attributed to 

acoustic measurements from traffic noise, sequences of 16 acquisitions 

carried out during one day are considered with the phonometer (Larson 

Davis 831, class 1) placed on the side of a motorway and span a time 

interval from 9 a.m. to 12 p.m. Each acquisition block covers a 15-minute 

interval with equivalent noise levels measured every 1 second. These data do 

not include unwanted acoustic events in order to observe and verify the 

background noise.  

With regard to the networks of sensors and in particular the non-

parametric approach, which assumes no prior distribution, a distance 

measure is defined between a new test instance and the statistical model, and 

a threshold on this distance is used in determining whether the observation is 

an outlier. One of the most widely used approach in this category is the 

histogram (Sheng et al. 2007). This model involves counting the frequency 

of occurrence of different data instances (thereby estimating the probability 

of occurrence of a data instance), compares the test instance with each of the 

categories in the histogram and tests whether it belongs to one of them. 

In the case of sensors that generate a significant amount of data, outlier 

detection is critical to identify and store only the really useful pieces of 

information. In this context, to optimize communication costs, instead of 

collecting all the data in one central location for processing, with the model 

histogram information are collected on the distribution of the data, and, 

using the hints to filter out unnecessary data, potential outliers are identified. 

The outlier detection is based on the distance between two neighboring 

data points: the distance can be compared with a fixed threshold or with all 

the other data points. 

For a data point x, defined the distance as the absolute difference between 

two data points, all the other data points can be sorted according to their 

distances to x in an ascending order. Suppose the sorted list is  x1, x2,…, xk,… 

and | x1-x | ≤ | x2-x | ≤ … ≤ | xk - x | ≤ ….   

Let  Dk(x) = | xk - x | represent the distance between data point x and its k-

th nearest neighbor (KNN) (xk). An outlier is defined in literature in two 

different ways (Sheng et al. 2007):     

 



 Outlier detection 

63 

 

 Definition 1: A data point x is called an O(d, k) outlier if   

       Dk(x) ≥ d. 

 Definition 2: A data point x is called an O(n, k) if there are    

       no more than  n-1 other data points y, such that Dk(y)>Dk(x). 

 

Between these two definitions of outlier, the first one was chosen, 

because it is more inherent in the object of this study: if the second one had 

been chosen, a minimum of n-1 points would never been considered, in 

particular the n-1 points with the greatest distance. Even though this 

approach would not significantly affect average and standard deviation of 

the sample, removing some points reduces the ability to describe the process. 

The choice of k parameter in Definition 1 is related to the event duration 

compared to the period of observation. In the algorithm for the outlier 

detection, the value that is assigned to the k parameter is very important, 

because it determines the accuracy of the algorithm. In Fig. IV.1 there are 

four graphs that illustrate, for two different outliers (case A and case B), how 

the sensitivity of the algorithm changes when the parameter k changes.  

For each case, the top figure shows the sequence of data points and the 

bottom figure shows the corresponding trends of kth distances. In the Case A, 

the event consists of two data points. It is clear that the outlier can be 

detected only if k ≥3 is chosen with a proper threshold d. In the case B, the 

event consists of four data points. For the same threshold value d of the 

previous example, the outlier can be detected only for k ≥5. 

To establish a criterion of choice of the parameter k, in order to give the 

user the possibility to decide whether to delete an event or not, an event may 

be considered such as outlier or as an element characterizing the acoustic 

phenomenon according mainly to its duration; so the Autocorrelation 

Function has been studied for each measurement carried out. As a result, the 

value at which the autocorrelation becomes negligible is considered a valid 

reference value. For instance, from Figure IV.2, in which the 

Autocorrelation Function of all the 16 acquisitions is shown, it is clear that, 

since the time history logging step is equal to 1 s, the events that characterize 

the phenomenon under observation have an average persistence time of the 

order of about 10 s: so to characterize a spot event as outlier to be deleted, 

the user has to choose a value of k < 10. The k parameter depends on the 

measurement period as well.     
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Figure IV.2: Autocorrelation Functions for all 16 acquisitions  

(Leq measured every 1 second) 

 
           Figure  IV.1  Examples of outlier detection for different k values 
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Figure IV.3  Autocorrelation Functions for all 16 acquisitions  

(Leq measured every 30 seconds) 
 

If the data are measured each 30 seconds, the outliers are identified for 

k=1 since the phenomenon duration are comparable with the time history 

logging step. Fig. IV.3 reports the Autocorrelation Function for the 16 

sequences with a time history logging step of 30 s. In this case, the 

persistence time turns out to be close to one and this can motivate a choice of 

k=1. 

 

 

IV.2 Experimental Results 

In order to experimentally validate the proposed approach, tests are 

performed on acquired data blocks. Each acquisition block covers a 15-

minute interval with equivalent noise levels measured every 30 seconds. The 

set of 16 acquisitions has been subdivided into 2 subsets collected during the 

24 hours of a whole day. The first subset is composed of 11 non-consecutive 

acquisition blocks that have been used in the tuning of the algorithm. The 

remaining 5 non-consecutive blocks have been used for the test phase, 

whose results will be reported in the following.  
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The Dk(x) has been evaluated with k=1, for each one of the tuning 

acquisition blocks in order to have indications for the minimum value of the 

threshold d. Then outliers have been superimposed onto the test acquisition 

blocks and the percentages of false positives, FP, and true positives, TP, 

have been evaluated for different values of the threshold d. In the Fig. IV.4 

the trends of the false positive ratio (FPR) and of the true positive ratio 

(TPR) is shown versus the threshold d. In these tests the threshold d has been 

chosen equal to 2 because in correspondence with this value there is the best 

trade-off between TPR (100%) and FPR (0.04%). 

The performance of the so set-up procedure are evaluated, considering 

the signal with superimposed outliers and the equivalent levels measured on 

the sequences:  

i) before the superimposition of the outliers;  

ii) after the superimposition of the outliers;  

iii) after the elimination of the detected outliers. 

 

Figure IV.4  False positive ratio (FPR) and true positive ratio (TPR) 

versus the threshold d. 

 

The results are compared in order to quantify the removing capability of 

the procedure. In detail, the differences                between  the  data  in  ii) 

and i) have been compared to the differences                 between the data in 

iii) and i). For   each   one  of   these   two sets  of differences                   and   

                     the mean and the standard deviation have been evaluated. The 

normalized histograms of the two sets of mean differences are reported in 
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Figure IV.5 a), while the normalized histograms of the two sets of standard 

deviations of the differences are reported in Figure IV.5 b). As can be seen, 

the difference after the outlier removal,                  , is close to zero for about 

the 70% of the data, with a worst-case value of 0.37 dB. Without the 

removal algorithm, the               can reaches 1 dB and consequently Leq may 

be overestimated up to 1 dB. The analysis of the standard deviations shows 

that the removal algorithm yields a residual value of the standard deviation 

of 0.1 dB, which contributes to the overall uncertainty, while there was an 

overestimation of the standard deviation before the removal up to 4 dB. It is 

evident that the correction has a greater influence on the standard deviation 

than on the mean value.  
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Figure IV.5  Normalized histograms a) of the mean differences; b) of the 

standard deviations of the differences. 

 

Table IV.1 provides a summary of the results of a series of tests 

performed with different kinds of outliers:  

 example I: one outlier with a small value (a few dB above     

           the mean);  

 example II: no outlier; 

 example III: 2 small outliers; 

 example IV: one bigger outlier;  
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 example V: one small outlier and one big outlier, where the     

           smaller one is <5 dB, and the bigger is >10 dB above the       

           mean. 

 

Only in example 2 does the algorithm find one outlier instead of two, 

while in all the other cases the number of detected outliers is equal to the 

expected number. From Table I, it can be stated that the outlier removal 

algorithm has a minor influence on the mean value and on the standard 

deviation in the case of one outlier with a small value (example I) and two 

small outliers (example III). However, it has a significant influence on the 

standard deviation in the case of one large outlier (example IV) and in the 

case of one large outlier and one big outlier (example V). 

 

Table IV.1 Contribution of outlier removal on mean and standard 

deviation  

# example 

mean value (dB) standard deviation (dB) 

before 

algorithm 

after 

algorithm 

before 

algorithm 

after 

algorithm 

I 64.4 64.3 1.9 1.6 

II 64.9 64.9 1.7 1.7 

III 65.4 65.1 2.1 1.6 

IV 66.0 65.1 5.2 1.5 

V 66.5 65.4 5.4 1.4 

 

A second series of tests are carried out with different parameters of the 

algorithm. The 11 sequences of data points are collected, with a time history 

logging step of 5 s. Outlier are added onto these sequences at random time 

positions and with random amplitudes. The amplitudes of the imposed 

outliers follow the distribution described in Fig. IV.6 as normalized 

occurrence histograms. 

For the tests, the value of k = 11 is chosen in order to stress the algorithm. 

The percentages of false positives, FP, and true positives, TP, are evaluated 

for different values of the threshold d. In the Fig. III.7 the trends of the false 

positive ratio (FPR) and of the true positive ratio (TPR) is shown versus the 

threshold d. In these tests the threshold d is chosen equal to 3.5 

corresponding to a TPR of 58% and FPR of 0.5%. 
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For each one of these two sets of differences               and                    the 

mean and the standard deviation have been evaluated. The normalized 

histograms of the two sets of mean differences are reported in Figure IV.8a), 

while the normalized histograms of the two sets of standard deviations of the 

differences are reported in Figure IV.8b).  

 

Figure IV.6  Normalized histogram of the superimposed outliers 

 

Figure IV.7  False positive ratio (FPR) and true positive ratio (TPR) 

versus the threshold d, for the second series of tests 
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Figure IV.8  Normalized histograms for the second series of tests: a) of the 

mean differences; b) of the standard deviations of the differences 

 

From the analysis of Figure IV.8, one can observe that in this case the 

difference after the removal,                  , is close to zero for almost the 45% 

of the data, in 95% of the cases the difference is less than 0.3 dB and in the 

worst case there is an overestimation of about 0.5 dB. 

Vice versa without the removal algorithm, there is an average 

overestimation of about 0.7 dB, and in the worst case it reaches more than 

1.2 dB. The analysis of the values of the standard deviation shows that the 

overestimation of about 3 dB is reduced by the algorithm down to 0.5 dB. 

The latter value contributes to the measurement uncertainty (Liguori et al. 

2016, pp. 234-242). 
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IV.3 Review 

The specific focus of this chapter has been the study and the estimation of 

the influence of the occurrence of spot events on the measurement 

uncertainty. An algorithm has been utilized in comparing the distance 

between data point x and its k-th nearest neighbor (xk) with a fixed threshold 

and it has been experimentally verified with real field data.  

The choice of k parameter, that is related to the event duration compared 

to the period of observation, is very important, because it determines the 

accuracy of the algorithm. So, in order to give the user the possibility to 

decide whether to remove an event or not, an event is considered such as 

outlier or as an element characterizing the acoustic phenomenon according 

mainly to its duration. To this end,the Autocorrelation Function has been 

studied for each measurement carried out. As a result, the value at which the 

autocorrelation becomes negligible is considered a valid reference value. So, 

for instance, when the time history logging step is equal to 1 s, the events 

that characterize the phenomenon under observation have an average 

persistence time of the order of about 10 s, and to characterize a spot event 

as outlier to be deleted, the user has to choose a value of k < 10.  
The results showed that the outlier detection and subsequent removal 

allow a significant reduction of the systematic bias and of the contribution to 

the uncertainty of environmental acoustic noise measurement.  

In particular, these tests have highlighted that for a measurement time of 

1 s and k=1, the residual uncertainty of the algorithm is about 0.1 dB and for 

a measurement time of 5 s and k=11, the residual uncertainty of the 

algorithm is about 0.5 dB. These results can be deemed definitely 

acceptable. This proves that the outlier detection and removal are tasks of 

utmost importance for the analytical evaluation of the uncertainty in 

environmental acoustic noise measurements. 

 





 

 

Chapter V 

Uncertainty measurement 

evaluation 

 

 
In this chapter, as a final step of the study, the uncertainty associated to 

the measured environmental noise is analysed.  

In particular, after determining the suitable measurement time for 

recorded environmental noise signals by adopting the CPER method and 

applying the outlier detection algorithm, the normal bootstrap method is 

chosen to calculate the contribution of the measurand variability on 

measurement uncertainty. The results of the proposed approach have been 

compared with the estimation of the expected value for the noise indicator 

and of the corresponding uncertainty using the classical method (according 

to [2]). 

 

 

V.1 The proposed procedure 

According to the normal bootstrap approach, a number of new data sets 

(bootstrap samples) can be generated from the initial data set by sampling 

with replacement. With this resampling scheme, these distributions can be 

seen as approximations to the true distributions of the estimators, and then a 

good estimate can be obtained of the distribution of statistics of interest, such 

as bias and standard deviation. The algorithm of the expected value and 

standard uncertainty of the noise indicators performed by the normal 

bootstrap method is shown in Fig. V.1.    

 

V.2 Experimental results 

In order to experimentally validate the proposed approach, tests are 

performed on three real noise datasets (road traffic, outdoor air conditioner 

fan motor and construction site) by adopting the Sound Level Meter Larson 

Davis 831, Class 1 Environmental Noise & Building Acoustics Analyzer. 

 With regard to the measurement of road traffic noise, the sound level 

meter is placed on the side of A3  motorway near Salerno (Italy) and the 

chosen dataset is a time series of sound pressure levels continuously 

measured during one day (wind lower than 5 m/second and without rain) by 
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considering the time interval from 11.30 a.m. to 2.30 p.m. (observation 

period), whose histogram of occurrences is shown in Fig. V.2. 

 Main parameters of the noise source, recorded during a measurement 

campaign, are reported in Table V.1. 

 

Table V.1  Main parameters of road traffic 

 
 

The time history logging step of the sound level meter is set to 1 second, 

resulting in a dataset of consecutive 10800 sound pressure levels. 

The minimum measurement time, estimated as previously introduced, is 

equal to 900 s. 

The results of the proposed approach have been compared with the 

estimation of the expected value for the short term noise indicator and of the 

corresponding standard uncertainty by the classical method (according to 

[2]). 

Furthermore, the expected value of the equivalent sound pressure level 

(referring to the measurement time) - in the classical approach - is 

determined by eq. (1): 

 

 

 
 

(1) 

 

 
where n is the size of the considered sample. 
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Figure V.1  Estimation of expected value and standard uncertainty 

according to the bootstrap approach (NORM algorithm) 
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Figure V.2  Histogram of occurrences 
 

 

 

 

 

The corresponding standard uncertainty is determined by eq. (2): 

 

 
 

(2) 

The calculation scheme according to the classical approach is depicted in 

Fig. V.3.  

Table V.2 summarizes the comparison results when the classical and 

bootstrap approaches have been applied to the dataset at varying 

measurement time intervals (as multiples of the Tmeas_min). 

With regard to the bootstrap method, for each sample size, both the 

expected value and standard uncertainty are achieved as averaged values on 

k = 100 repetitions (in order to reduce the influence of the random sampling 

from the population). 
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Figure V.3  Estimation of expected value and standard uncertainty 

according to the classical method 

 

 

 

Table V.2 Comparison of classical and bootstrap method for the 

estimation of the equivalent sound pressure level and standard uncertainty 

(road traffic as noise source) 
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The uncertainty analysis has been extended to the collected data of the 

environmental noise from the other noise sources (outdoor air conditioner 

fan motor and construction site) already introduced in section IV.4.  

Furthermore, with regard to noise measurement of the outdoor air 

conditioner  fan motor (heat pump and liquid chiller), the sound level meter 

is placed at a distance of 1 m from the nearest building facade and a height 

of 4 m from the ground and dataset is acquired during one day (wind lower 

than 5 m/second and without rain) by considering 50 minutes of the air 

conditioner fan motor working both at start-up and modulation state. With 

regard to the instrument setting, the time history logging step is fixed to 0.1 

second, resulting in a dataset of 30000 consecutive sound pressure levels. 

The minimum measurement time, estimated as previously introduced, is 

equal to 120 s during start-up state and to 360 s during modulation state. 

 

 

Table V.3 Comparison of classical and bootstrap method for the 

estimation of the equivalent sound pressure level and standard uncertainty 

(outdoor air conditioner fan motor and construction site as noise sources) 

 
 

With regard to the noise measurement of construction site, the sound 

level meter is placed at a distance of 2 m from the noise source and a height 

of 4 m from the ground. Data collection is performed during one day (wind 

lower than 5 m/second and without rain) by considering 10 consecutive 

hours (starting time: 10 p.m.). With regard to the instrument setting, the time 

history logging step is fixed to 1 minute, resulting in a dataset of 600 
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consecutive sound pressure levels. The minimum measurement time, 

estimated as previously introduced, is equal to 3600 s. 

Table V.3 summarizes the comparison results when the classical and 

bootstrap approaches have been applied to the dataset acquired in the two 

scenarios at varying measurement time intervals (as multiples of the 

Tmeas_min). 

Generally the bootstrap approach allows for estimation of the equivalent 

sound pressure level with better precision (smaller measurement standard 

uncertainty ) than the results by the classical approach for all types of noise 

source. As expected, the difference between the performance exhibited by 

the approaches reduces when an increasing sample size (and measurement 

time interval) is considered. No differences exist between the two 

approaches when they are applied to the dataset concerning the construction 

site, because this particular population, unlike the other noise sources, can 

not be considered as strictly Gaussian: the Anderson-Darling Test leads to 

not refusing the null hypothesis (H0: "dataset is Gaussian"), because the p 

("probability") value (equal to 0,0786) is major than significance level of 

5%.  

Finally, Table V.4 shows the synoptic view of the experimental results, in 

which, with reference to all considered noise sources, the global contribution 

of the measurand variability on measurement uncertainty is calculated. This 

takes into account the residual value of the standard deviation of outlier 

detection algorithm too. In particular, the uncertainty is evaluated 

considering both the estimated standard deviation and the residual 

uncertainty of the outlier detection algorithm [2]. 

These references are determined by the classical method applied to the 

whole population. As may be noted, both the classical and proposed methods 

lead to a very good estimation of the expected value for the short-term noise 

indicator when a reduced number of samples are considered. Moreover, the 

reduced sample size introduces an overestimation of the true standard 

uncertainty, that is more evident with the classical method. Furthermore, by 

increasing the sample size the measurement uncertainty decreases for both 

approaches and with regard to the bootstrap method the results are closer to 

that which was expected and the uncertainty is reduced. Finally, it is 

observed that the measurement results are always compatible with a 

coverage factor at least equal to 3. 

The bootstrap approach seems to be a very promising technique for the 

prediction of the environmental noise indicator from a reduced set of 

measurement data. 
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Table V.4 Estimation of the equivalent sound pressure level and 

uncertainty in measurement time and observation period 

 

 

 

V.3 Review 

In this chapter, the global contribution of the environmental noise 

variability on equivalent sound pressure level measurement uncertainty, after 

the application of the alghoritms for minimum measurement time evaluation 

and outlier detection, is explored. This contribution takes into account both 

the equivalent sound pressure level standard uncertainty () and the residual 

uncertainty of the outlier detection algorithm.  

The proposal, based on normal bootstrap method, has been  

experimentally verified with real data acquired in three scenarios (road 

traffic, outdoor air conditioner fan motor and construction site as noise 

sources). 

On the basis of the results analysis, this procedure has been revealed to be 

effective both for the prediction of noise levels and the corresponding 

uncertainties characterizing large time intervals by measuring only a short 

time window of the acoustic phenomena.  

 



 

 

Chapter VI 

Conclusions 

 

 
Environmental noise pollution is one of the most significant 

contemporary health hazards for the working population in terms of the 

number of people affected. 

Current legislation mainly focuses on the maximum acceptable limits 

with reference to the A-weighting equivalent level of environmental noise. 

Most decision-making processes in this area, which may have also 

implications from an economic point of view, are based on the outcomes of 

these comparisons between a measured quantity and a legal threshold. The 

task of establishing decision-making rules to test the compliance of a product 

to its specifications must take into account the uncertainty of the 

measurement. 

The aim of the research described in this work has been to create an 

innovative procedure for the assessment of the uncertainty of environmental 

noise measurement. There are several studies in the literature examining 

possible sources of uncertainty associated with this area i.e. characteristics of 

measurement instrumentation, variability of the measurement conditions and 

instrumentation calibration. However, in order to provide an adequate 

estimation of total uncertainty associated with the measurement of the 

equivalent level of environmental noise it is essential to consider the intrinsic 

variability of the measurand.  

The proposal essentially consists of three phases.  

In the first, because the reliability of the estimate of the environmental 

noise indicators depends significantly on the temporal variability of the 

noise, a Matlab procedure based on the bootstrap method CPER is 

undertaken to locate a corresponding minimum number of sound pressure 

levels relating to the minimum acquisition time necessary for ensuring 

statistical significance of the initial data set. 

In the second, a numerical algorithm finds and deletes from a population 

of real data the anomalous values (outliers).  

Finally, the uncertainty associated with the inherent variability of 

environmental acoustic noise is calculated using the normal bootstrap 

method. 

It’s important to underline that in order to experimentally validate the 

proposed approach, several measurement campaigns have been carried out 

acquiring real data from different environmental noise sources, including 

road traffic, an outdoor air conditioner fan motor and a construction site. 
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The results are particularly interesting in part from the scientific point of 

view, because they demonstrate the reliability of the procedure for the 

indicator forecast of environmental noise when they are available few 

measurement data. However they are also of interest from a professional 

point of view, because they allow the experts working in this field to 

determine the appropriate measurement time range in an objective, 

automatic and independent (of the operator) way, in compliance with [75] as 

well as the contribution of the measurand variability on measurement 

uncertainty [2]. 

On the basis of this research’s results, an advanced electronic 

measurement system of  equivalent sound pressure level, with automatic 

real-time determination of the minimum measurement time and automatic 

real-time evaluation of inherent measurement uncertainty contribution, is 

introduced in the design phase. The principal intent of this is to integrate 

some additional blocks in the phonometric chain, in order to enhance to the 

traditional functions of the instrument.  

In so doing, it is suggested that the procedure may become a guideline to be 

applied during measurement campaigns of environmental noise, by 

optimizing the measurement activities of technical operators. 
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Appendix 

 

 
ITALIAN LEGISLATIVE FRAMEWORK ABOUT NOISE 

POLLUTION 

 
· Decree of 11 December 1996 "Application of the differential criteria for 

continuous production   Cycle plants"; 

· Decree of 31 October 1997 "noise measurement methodology Airport"; 

· Decree of Council of Ministers President of November 14, 1997 

"Determination of limit values of Sound sources"; 

· Presidential Decree of December 11, 1997 "Regulations for the reduction 

of noise pollution produced by civil aircraft"; 

· Decree of Council of Ministers President of December 5, 1997 

"Determination of the acoustic requirements of buildings"; 

· Decree of 16 March 1998 "Techniques for detecting and measuring noise 

pollution"; 

· Presidential Decree of November 18, 1998, n. 459 "Regulations about 

provisions of Article 11 of Law 26 October 1995, n. 447, on noise pollution 

from rail traffic"; 

· Law ·of December 9, 1998, n. 426 "New environmental interventions" 

· Decree of Council of Ministers President of April 16, 1999, n. 215 "Rules 

for determining the acoustic requirements of sound sources in places of 

detention in dancing and public entertainment  and public exercises"; 

· Decree of 20 May 1999 "Criteria for the design of monitoring systems for 

the control of environmental noise levels around airports and criteria for the 

classification of airports in relation to   the level of noise pollution"; 

· Decree of November 9, 1999, No. 476 "Regulations on amendments to the 

Decree of the President of the Republic December 11, 1997, n.496, 

concerning the prohibition of night flights"; 

· Decree of December 3, 1999 "Noise abatement procedures at airports and 

respect zones"; 

· Decree of 29 November 2000 "Criteria for the establishment by the 

companies and the managers of public services and transport entities or 

related infrastructure, the plans of containment interventions and noise 

abatement"; 
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· Decree of April 3, 2001, n. 304 "Regulations on noise emissions produced 

in the performance of motor tasks, in accordance with Article 11 of the Law 

of 26 October 1995, n, 447"; 

· Law of 31 July 2002, 179 "Environmental provisions"; 

· Ministerial Decree of 1 April 2004 entitled "Guidelines for the use of 

innovative systems in the environmental impact assessment"; 

· Presidential Decree of March 30, 2004, n. 142 "Measures for the 

containment and prevention of noise pollution resulting from road traffic, in 

accordance with Article 11 of the Law of 26 October 1995, n. 447"; 

· Legislative Decree of 17 January 2005 n. 13 "Implementation of Directive 

2002/30 / EC on the introduction of operating restrictions for the purposes 

of noise management at EU airports"; 

· Legislative Decree of 19 August 2005, n. 194 "Implementation of Directive 

2002/49 / EC relating  to the assessment and management of environmental 

noise"; 

· Legislative Decree of 19 August 2005, n. 195 laying -Implementation of 

Directive 2003/4 / EC on access to environmental information". 

· Legislative Decree of 81/2008 Title VIII - Chapter II "Protection of 

workers against the risks from exposure to noise at work". 

 

 

 
 


