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Abstract

This thesis presents a non-conventional approach in analytic number theory. In particular,
fractional calculus is used in order to compute the fractional derivative of the Riemann ζ

function, which represents the starting point of this thesis. In particular, the convergence
of the real and imaginary parts reveals that the half-plane of convergence depends on the
fractional order of the derivative. In order to obtain the aforementioned computation the
Ortigueira generalization of the Caputo derivative is used. It emphasizes that these results are
a natural generalization of the integer order derivative of ζ . Some interesting properties of
ζ (α) are also presented in order to show the chaotic decay to zero and a promising expression
as a complex power series is provided.

The functional equation is given in Chapter 2 together with its simplified forms, in
accordance with Apostol (1985) and Spira (1965). Since the Caputo-Ortigueira fractional
derivative does not satisfy the generalized Leibniz rule, the Grünwald-Letnikov fractional
derivative is introduced. By applying the previous derivative to the asymmetric functional
equation of ζ , the functional equation is easily derived. Further properties of this equation
are proposed and discussed.

Generalizations of the previous results are given using a Dirichlet series, the Hurwitz ζ

function and the Lerch zeta function. Their fractional derivatives are computed together with
the associated functional equations. In particular, the Lerch zeta function provides several
new results in fractional functional analysis. By introducing Bernoulli numbers an integral
representation of ζ (α) is provided. All the aforementioned results are in accordance with the
classical theory of the Riemann ζ function.

In order to investigate the link between ζ (α) and the distribution of prime numbers, Euler
products were recalled and the logarithmic fractional derivative of the Riemann ζ function
was computed. The behavior of ζ (α) on the critical strip was studied by computing the
α-order fractional derivative of the classical Dirichlet η function. The convergence half-
plane of η(α) is given by Res > α , hence ζ (α) and η(α) suggest the strip α < Res < 1+α

as a fractional counterpart of the classical critical strip. Moreover, two signal processing
networks associated with η(α) and its Fourier transform, respectively, are briefly described.
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The symmetry revealed by the one-sided Fourier transform of η(α) might be used in order to
find a suitable application of ζ (α) in quantum mechanics.

The fractional derivative of the Riemann ζ function seems to have plenty of promising
applications in pure and applied mathematics. In fact, by satisfying the Leibniz rule, ζ (α)

might be generalized in a differential algebra. Several complex functions can be studied in a
suitable function space in order to solve a given problem. One of the most famous examples
is represented by the Hilbert spaces of entire functions. In particular, de Branges (1986,
1994) linked the Riemann hypothesis with a positivity condition on some particular Hilbert
spaces. Despite all controversies around the papers of de Branges (Sabbagh, 2004), it appears
to be clear from his work that the Riemann ζ function is strongly related to the Hilbert space
theory. By taking into account the widespread interest that the fractional calculus has had
in recent years, ζ (α) can bring interesting results in fractional Hilbert spaces and open new
frontiers in research.

Outline
The thesis begins with some remarks on analytic number theory, the theory of zeta functions
with their fundamental properties and fractional calculus in Chapter 1. In Chapter 2, the
computation of ζ α is given, together with its generalizations to the Hurwitz ζ function and
to the Dirichlet series. The convergence of ζ α is studied and its half-plane of convergence
is determined. The functional equation of ζ α is described in Chapter 3 and its simplified
versions are reported. These results are generalized by using the Hurwitz ζ function and the
Lerch zeta function. In Chapter 4, the link between ζ α and the distribution of prime numbers
is discussed. By introducing the Dirichlet η function, the fractional counterpart of the critical
strip is given. Signal processing networks associated to ηα are presented in Chapter 5.

2010 Mathematics Subject Classification – 11M06, 11M35, 11N05, 26A33, 30D05,
94A12.

Keywords – Fractional derivative, prime number, Riemann ζ function, Hurwitz ζ function,
Dirichlet η function, functional equation, critical strip, signal processing network.
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Chapter 1

Preliminary remarks

1.1 Introduction

The importance of the prime numbers is well known in the international mathematical
community. Despite their central role in pure mathematics, in recent years the prime numbers
have been widely applied in science as well as engineering. In particular, they have several
applications in cryptography, quantum mechanics, biology, etc.

Prime numbers can be used in cryptography due to the extreme difficulty of certain
computations like factoring and the discrete logarithm problem. Indeed, the Rivest-Shamir-
Adleman cryptosystem and the Diffie-Hellman key exchange are based on them. In particular,
the security information depends on the difficulty of finding higher prime numbers (Koblitz,
1994, Chap. 4). Quantum computation represents one of the prevalent computational
paradigms for the 21st century (Bennet and Brossard, 2014). In the quantum model, the
encrypted data are transmitted via a public channel by using a secret key, a sequence of
random bits carried by an invulnerable channel (the so-called quantum channel). Currently,
this topic is receiving a lot of attention, since quantum computers are able to find the prime
factors of large numbers (Jennewein et al., 2000), despite the presence of different problems
associated with any quantum system with links to the classical world (often connected to the
accuracy of the results of computation). In recent years, the distribution of prime numbers
was widely used in biology. Hibbs (2010) has shown that prime numbers might have a fractal
behavior. In his paper, for the first 500 prime numbers, the growth rate is related to the
effects of a double-threaded physical model (with a 2-thread and a 4-thread). By taking into
account the overlap of these impacts (that is, their corresponding cause and effect, which
increment by multiples of 6), a double-helix structure is obtained. Removing the multiple
of 6 growth gaps, the 2-4 growth thread happens in a linear form as an alternating sequence
of elements from two sets (namely the operator Modulo 6 provides the common structure).
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Furthermore, fractal dimension and lacunarity are used for the evaluation of skin lesions, in
case of psoriasis. In particular, in molecular biology, some amino acid sequences in genetic
matter show patterns of binary representations of prime numbers (Yan et al., 1991). Moreover,
since Cattani (2010a,b) has shown that DNA sequences follow some fractal behavior (by
observing both correlation matrix and DNA walks) and that the distribution of prime numbers
presents hidden fractal shapes and symmetries, the link between DNA and prime numbers
appears to be more than a simple hypothesis.

Chapter 1 contains six sections. In Section 1.2, the role of the prime numbers in physics
is discussed. In Section 1.3 and 1.4, some general remarks on analytic number theory
and the Riemann ζ function, respectively, are provided. Section 1.5 presents two main
generalizations of ζ , that is the Dirichlet series and the Hurwitz ζ function. Fractional
calculus is presented in Section 1.6 with particular emphasis on its generalizations to the
complex plane.

1.2 Prime numbers in physics

Prime numbers have found several legitimate applications in physics. Some applications are
industrial (applied mathematics, quantum cryptography, etc.) while others are used only in
theoretical physics. In the following, just a few examples of these applications are given,
however sufficient to show the many links the prime numbers present in theoretical and
experimental physics.

A free Riemann gas (sometimes called a primon gas) is composed of non-interacting
particles (primons) and it represents a model used to describe quantum phenomena. The
partition function Z of the gas is described by the Riemann ζ function, since

Z(T ) def
=

∞

∑
n=1

e−βEn =
∞

∑
n=1

e−
En

KBT =
∞

∑
n=1

e−
E0 logn

KBT =
∞

∑
n=1

1
ns = ζ (s) ,

(
s = E0/(kBT )

)
where the energy of each particles is given by En = E0 logn, kB is the Boltzmann’s constant,

T is the absolute temperature of the system while β =
1

KBT
(called the thermodynamic

beta). Since in s = 1, the Riemann ζ function has a simple pole with residue 1 (see section
1.4), there is a critical temperature TH = E0/kB (called Hagedorn temperature), above which
the gas cannot be warmed up. A recent result claims that the mean energy density of a
bosonic Riemann gas with randomness depends on the distribution of the Riemann zeros
(Dueñas and Svaiter, 2015), that is, on the distribution of prime numbers. More specifically,
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the energy density of the system is expressed in terms of
ζ ′

ζ
that is strictly related to the

non-trivial Riemann zeros (see section 1.4). In the computation of the average energy density
the divergent contributions are avoided by applying an analytic regularization procedure.

Hilbert and Pólya suggested that the behavior of the Riemann ζ function on the critical
line Res = 1/2 might depend on an (Hermitian) operator, where the Riemann zeros should be
its eigenvalues. Nowadays this is called the Hilbert-Pólya conjecture and it is still unproven.
The importance of this conjecture lies in the link established between the distribution of
eigenvalues of a random matrix and the critical line. These eigenvalues were studied with
several spectral techniques. The physical interpretation of the results of Odlyzko (1987) is that
the critical zeros present a "long-range correlation", which has applications in chaos theory
(Berry, 1987). Schumayer et al. (2008) have constructed potentials with energy eigenvalues
equal to the prime numbers and to the Riemann zeros. Moreover, the multifractal nature of
these potentials has been showed using the Rényi dimension. Borwein et al. (2000) have
found a connection between the Riemann ζ function and quantum oscillators. Additionally,
by using an experimental procedure, they provided the first seven critical zeros with a good
approximation. Following this path, critical zeros can be approximated as the eigenvalues
of an Hessenberg matrix, which again presents applications in chaos theory. In the 1940s,
van der Pol showed his interest in a Fourier decomposition that was a special case of the
following relation (Borwein et al., 2000):

ζ (s) = s
∫

∞

−∞

e−σω
(
⌊eω⌋− eω

)
e−iωtdt , (s = σ + it)

which holds for 0 < σ < 1. He designed an electronic circuit to compute the transform above
for σ = 1/2. It is still an open problem whether this circuit can represent a sort of Fourier
fast transform to approximate the previous integral. Hence, the work of van der Pol suggests
that a device that might reveal the prime numbers could be devised.

In recent years, several authors have begun to investigate the fractal structure of prime
numbers. For instance, Ares and Castro (2004) tried to explain the hidden structure of
prime numbers through both spin systems and Sierpinski gasket, while Selvam (2014)
has discovered that the frequency of occurrence of prime numbers is related to the fractal
fluctuations concomitant with inverse power law form for a power spectrum generic to
dynamical systems. This study was done with the prime numbers in the first 10 million
numbers. It is well known that Cantorian fractal space-time fluctuations are associated with
quantum systems (Ord, 1983). The most important result of the work is that the prime number
distribution shows quantum-like chaos, because the apparently chaotic fractal fluctuations
of a dynamical system exhibit self-similar behavior. Van Zyl and Hutchinson (2003) have
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provided an interesting result by characterizing a quantum potential whose eigenvalues are
prime numbers. Thereafter, they have computed that the fractal dimension of this potential
is 1.8, which shows its irregular nature. Wolf (1997) has considered a signal where each
component is the count of a prime number on some interval. By using the discrete Fourier
transform, the power spectrum shows a 1/ f α behavior with α ≃ 1.64. The invariance of
α from the length of the sampled intervals represents a clue of the self-similarity for the
distribution of prime numbers. Recently, Cattani and Ciancio (2016) carried out an empiric
procedure in order to show that the prime distribution is a quasi self-similar fractal (Batchko,
2014). In particular, by using the correlation matrix to evaluate the invariance of binary
images, the authors have shown the fractal nature of the distribution of prime-indexed primes
by two parameters, fractal dimension and lacunarity.

1.3 Preliminary remarks on analytic number theory

In this section, the main results and basic properties of analytic number theory are shortly
summarized (Apostol, 1998). In particular, the main arithmetical functions will be recalled
together with basic concepts of analytic number theory (prime number theorem, Riemann ζ

function, etc.

1.3.1 Prime numbers and arithmetical functions

Gauss used to say that "mathematics is the queen of the sciences and number theory is
the queen of mathematics". Thus 200 years ago, when number theory did not yet have
applications for the real world, mathematicians had already understood its importance. The
centrality of number theory in (pure and applied) mathematics is thus clear (Hardy, 1940,
p. 33). The most important class of numbers is that of the primes, due to the following
important result.

Theorem 1.3.1 (fundamental theorem of arithmetic). Any n ∈ N>1 can be uniquely written
as a product of primes (up to ordering and unit factors).

Proof : See Apostol (1998, pp. 17-18).
□

Hence, prime numbers in the set N play the role of atoms of the world of numbers. This type
of numbers can be defined by the concept of divisibility (Apostol, 1998, Chap. 2).

Definition 1.3.2 (divisibility). Let a, b and c elements of Z. The integer a is said to divide
c, and denoted with the notation a | c, whenever c = ab. In the opposite case, in order to
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indicate that a does not divides c, the notation a ̸ | b is used. When a | b, a is also called
divisor of b.

Definition 1.3.3 (prime and composite number). Let n ∈ N>1 and let

Div(n) def
= {k ∈ N : k | n} ,

be the set of all the divisor of n and #Div(n) its cardinality, respectively. Any natural number
n > 1 is called prime if #Div(p) = 2 (i.e. its only divisors are 1 and p). Each n ∈ N>1 is
called composite if is not prime.

By using the above definition, the set of prime numbers, indicated with P, is defined as usual
by

P de f
= {p ∈ N : #Div(p) = 2} .

Euclid showed that that #P= ∞, i.e. the set of the prime numbers is infinite, although their
distribution within N is still an unsolved problem. This represents a significant mathematical
challenge and an decided advantage in terms of information security (Koblitz, 1994, Chap.
4). Another important class of integer is that of squarefree numbers, that is, all integers which
are not divisible by the square of any prime (Apostol, 1998, Chap. 1). Recalling that the
counting function π : R+ → N is defined by

π(x) = #Px ,

where Px
def
= {p ∈ P : p ≤ x} and Px ⊆ P, it appears to be clear that π(x) provides the number

of primes ≤ x. By using the counting function, the following important result can be shown
(Mollin, 2010).

Theorem 1.3.4 (prime number theorem). For x ∈ R+ it is

π(x)∼
x

logx
. (1.1)

Proof : See Mollin (2010, p. 221).
□

Eq. (1.1) is an asymptotic estimation, i.e.

π(x) x→∞−−−−−→ x
logx

,

that is
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lim
x→∞

π(x)
x/ logx

= 1 .

The Eulerian logarithmic integral is given (Abramowitz and Stegun, 2014) by

Li(x) def
=
∫ x

2

dt
log t

, (x ≥ 2)

hence the prime number theorem becomes (Mollin, 2010)

Li(x)∼ π(x) . (1.2)

Eq. (1.2) represents the final version of the prime number theorem given by Gauss (1863).
Below are some basic definitions which play a fundamental role in number theory.

Definition 1.3.5 (arithmetical function). A function f : N → C is called an arithmetical
function (sometimes number-theoretic function). An arithmetical function f is called multi-
plicative if  f (1) ̸= 0 ,

f (mn) = f (m) f (n) whenever (m,n) = 1 ,
(1.3)

where (m,n) indicates the greatest common divisor of m and n (Apostol, 1998, p. 15). If
condition (1.3)2 holds ∀m,n ∈ N, the multiplicative function f is called completely multi-
plicative.

Some examples of arithmetic functions with an important role in analytic number theory are
provided below (Apostol, 1998, Chap. 2).

Definition 1.3.6 (Möbius function). Let n ∈ N. The Möbius function, denoted with µ , is an
arithmetical function defined as follows

µ(n) def
=


1 , n = 1 ,

(−1)k , n is squarefree ,

0 , otherwise .

(1.4)

In the previous definition k represents the number of distinct factors in its prime factorization.

Example 1.3.1. According to (1.4), µ(10) = (−1)2 = 1, µ(30) = (−1)3 =−1 and µ(20) =
0 since µ(n) = 0 taking into account the definition of squarefree numbers.
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The Möbius function appears in many different places in number theory. One of its funda-
mental properties is given below.

Proposition 1.3.7. Let I be the unit function defined by

I(n) def
=

⌊
1
n

⌋
=


1 , n = 1 ,

0 , n ∈ N>1 .

For every n ∈ N it is

∑
d|n

µ(d) = I(n) . (for all n)

Proof : See Apostol (1998, p. 25).
□

Definition 1.3.8 (Euler totient). Let n ∈ N.The Euler totient, denoted with φ , is an arithmeti-
cal function defined as the number of positive integers not greater than n and coprime with
n.

Example 1.3.2. The previous definition can be applied to easily compute the values of φ(n)
for no large values of n. In fact, φ(5) = #

(
{1,2,3,4}

)
= 4, φ(6) = #

(
{1,5}

)
= 2 and

φ(10) = #
(
{1,3,7,9}

)
= 4.

The Euler totient is widely used in number theory, algebra and cryptography. Its main
properties are reported below.

Theorem 1.3.9. Let n ∈ N and p ∈ P. The following assertions hold:

1) φ(p) = p−1 ,

2) ∑
d|n

φ(d) = n ,

3) φ(n) = ∑
d|n

µ(d)
n
d
,

4) φ(n) = n∏
p|n

(
1− 1

p

)
.

Proof : See Apostol (1998, Chap. 2).
□
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Definition 1.3.10 (Liouville function). The Liouville function, denoted with λ , is an arith-
metical function defined by

λ (n) def
=


1 , n = 1 ,

(−1)a1+...+ak , n = pa1
1 · · · pak

k ,
(1.5)

where pi ∈ P and ai ∈ N for i = 1, . . . ,k.

According to definition (1.5), the Liouville function is completely multiplicative. The divisor
sum of λ is given in the proposition below.

Proposition 1.3.11. For every n ∈ N it is

∑
d|n

λ (d) =


1 , n is a square ,

0 , otherwise .

Proof : See Apostol (1998, p. 38).
□

The Liouville function is linked with the Riemann ζ function (see Example 1.5.10) by

∞

∑
n=1

λ (n)
ns =

ζ (2s)
ζ (s)

. (Res > 1) (1.6)

Definition 1.3.12 (von Mangoldt function). Let n ∈ N. The von Mangoldt function, defined
with Λ, is an arithmetical function defined by

Λ(n) =


log p , if n is a prime power ,

0 , otherwise .

The von Mangoldt function plays a central role in the distribution of primes since it is strongly
linked to the Riemann ζ function (Apostol, 1998, Chap. 12). Its main properties are given
below.

Proposition 1.3.13. For every n ∈ N it is

1) logn = ∑
d|n

Λ(d) ,

2) Λ(n) = ∑
d|n

µ(d) log
n
d
=−∑

d|n
µ(d) logd .
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Proof : See Apostol (1998, p. 32–33).
□

Finally, consider another arithmetical function, the Dirichlet character, which plays a key
role in the theory of modular forms (Apostol, 1997, Chap. 6).

Definition 1.3.14 (Dirichlet character). Let k ∈N. The Dirichlet character modulo k, denoted
with χ , is a completely multiplicative function χ such that

1) χ is periodic of period k, that is χ(n+q) = χ(n), ∀n ∈ N for every n ∈ N;

2) χ vanishes whenever (n,k)> 1, that is χ(n) ̸= 0 if and only if (n,q) = 1.

The principal character (Apostol, 1998, p. 138), denoted with χ1, is such that

χ1(n) =


1 , (n,k) = 1 ,

0 , otherwise .

Example 1.3.3 (character modulo 1). The constant 1 clearly satisfies the conditions above
with k = 1. Furthermore, since character modulo 1 must be periodic modulo 1 and equal to
1 in n = 1, it follows that χ = 1 is the only Dirichlet character modulo 1. It represents also
the principal character modulo 1.

Example 1.3.4 (character modulo 2). The coprimality condition implies that a character
modulo 2 is 0 for even integers, while the periodicity condition together with the requirement
χ(1) = 1 entails that χ(n) have to be equal to 1 for odd integers. Hence, there is only one
character modulo 2, that is the principal character is given by

χ1(n) =


1 , (n,2) = 1 ,

0 , otherwise .

In the following section one of the most important mathematical functions (especially in
analytic number theory), the Riemann ζ function, is introduced.

1.4 Riemann ζ function

Let s be a complex variable such that s = x+ iy with x,y ∈ R. The Riemann ζ function is
defined by
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ζ (s) def
=

∞

∑
n=1

1
ns , (1.7)

and it converges for all complex numbers s such that x > 1 (Riemann, 1859). The Riemann ζ

function has several integral representations, among which the most famous one is given by

ζ (s) =
1

Γ(s)

∫
∞

0

xs−1

ex −1
dx , (x > 1) (1.8)

where

Γ(t) def
=
∫

∞

0
xt−1e−xdx , (t ∈ C) (1.9)

is the gamma function (Apostol, 1998) that converges if Re t > 0 (Abramowitz and Stegun,
2014). The Riemann ζ function can be defined only for x > 1, otherwise the series in (1.7)
would diverge. According to Riemann (1859) this function ζ owns a unique analytical
continuation to the entire complex plane, excluding the points s = 1, where it presents a
simple pole with residue 1. Riemann (1859) discovered the functional equation of ζ , given
by

ζ (s) = 2(2π)s−1 sin
(

π s
2

)
Γ(1− s)ζ (1− s) , (for all s ∈ C) (1.10)

that is

ζ (1− s) = 2(2π)−s cos
(

π s
2

)
Γ(s)ζ (s) , (for all s ∈ C) (1.11)

by replacing s with 1− s. In the literature, equations (1.10) and (1.11) are known as asym-
metric forms of the functional equation for ζ since it can also be written in a symmetrical
form (Apostol, 1998, Chap. 12) as follows

π
−s/2

Γ

(
s
2

)
ζ (s) = π

−(1−s)/2
Γ

(
1− s

2

)
ζ (1− s) . (for all s ∈ C) . (1.12)

Several proofs of (1.10) and (1.12) can be found in current literature (see for instance Apostol,
1998, Chap. 12). Introducing a variant of the Riemann ζ function, called Riemann ξ function
and defined by

ξ (s) def
=

1
2

s(1− s)π
−s/2

Γ

(
s
2

)
ζ (s) ,
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eq. (1.12) becomes

ξ (s) = ξ (1− s) , (for all s ∈ C)

where ξ is an entire function of s since π−s/2Γ
( s

2

)
ζ (s) has simple poles at s = 0 and s = 1.

Concerning its zeros, it is easy to show (Edwards, 1974) that ζ (s) = 0 at the negative even
integers, that is −2,−4−,6, . . . (called trivial zeros). Since ζ is a multiplicative Dirichlet
series, the classical theorem about the Euler product (see corollary 4.2.2) holds

ζ (s) = ∏
p∈P

1
1− p−s , (1.13)

The previous classical result shows that there are no zeros in the half-plane Res > 1, so that
the only non-trivial zeros must belong to the so-called critical strip 0 < Res < 1 (Apostol,
1998). Being ζ (s) = ζ (s), all the zeros of ζ are symmetrically distributed with respect
to the real axis Ims = 0. According to the Riemann conjecture, all its non-trivial zeros
should be distributed along the (critical) line Res = 1/2. The first significant result about
this conjecture is due to Hardy (1914), who showed that ζ has infinitely many non-trivial
zeros on the critical line (Hardy and Littlewood, 1921).

1.4.1 Uniform convergence

In this subsection, two main results that widely applied in this thesis, are briefly discussed,
namely the Weierstrass M-test and the uniform convergence of the Riemann ζ function.

Theorem 1.4.1 (Weieirstrass M-test). Let
(

f j
)

j∈N
be a sequence of complex functions defined

on a common complex domain D. Assume that there exists a sequence (Mi)i∈N
of non-negative

constants such that the two following conditions
∣∣ f j(z)

∣∣≤ M j , (for all z ∈ D and for all i ≥ 1)

∞

∑
j=1

M j < ∞ ,
(1.14)

hold. Then the series
∞

∑
j=1

f j(z) converges uniformly on D.

Proof : See Mathews and Howell (2006, pp. 251–252).
□
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Example 1.4.1. The complex series of general term cn =
sin
(
z/n
)

n2 +1
converges uniformly on

the unit disc D(0,1). In fact, for all z ∈ D(0,1), we get∣∣∣∣∣sin
(
z/n
)

n2 +1

∣∣∣∣∣< 1
n2 ,

hence from the Weierstrass M-test, taking Mn =
1
n2 and being (proposition 3.2.2)

∞

∑
n=1

1
n2 = ζ (2) =

π2

6
,

the uniform convergence of
∞

∑
n=1

cn in D(0,1) follows immediately.

In particular, uniform convergence of the Riemann ζ function is a property that is widely
used in the thesis since it represents the main hypothesis for interchanging limit, series,
derivative and integral signs (see Walnut, 2002, Chap. 1).

Theorem 1.4.2 (uniform convergence of ζ ). The Riemann ζ function converges uniformly
in the half-plane Res > 1.

Proof : It is sufficient to show that the series (1.7) converges uniformly in Res ≥ 1+ δ ,

with δ > 0. By using the Weierstrass M-test with Mn =
1

n1+δ
, since

∣∣∣∣ 1
ns

∣∣∣∣≤ 1
n1+δ

,

∞

∑
n=1

1
n1+δ

< ∞ ,

(1.15)

it follows that the uniform convergence of the Riemann ζ function in Res > 1, where the
domain of uniform convergence follows directly by taking into account (1.15)1.

□

1.5 Generalizations of the Riemann ζ function

Let s be a complex variable such that s = x+ iy with x,y ∈ R. Two generalizations of the
Riemann ζ function are provided by both the Hurwitz ζ function and the Dirichlet series.
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1.5.1 Hurwitz ζ function

The Hurwitz ζ function is defined by

ζ (s,a) =
∞

∑
n=0

1
(n+a)s , (s ∈ C) (1.16)

with Res > 1 and a ∈ R : 0 < a ≤ 1 (Apostol, 1998, Chap. 12). Thus, ζ (s,1) = ζ (s). Like
the Riemann ζ function, the Hurwitz ζ function can also be extended analytically for all
complex numbers s ̸= 1; moreover in s = 1 it owns a simple pole with residue 1 (Apostol,
1998, Chap. 12). This function admits an integral representation (Abramowitz and Stegun,
2014), which generalizes (1.8), given by

ζ (s,a) =
1

Γ(s)

∫
∞

0

e−at xs−1

1− e−x dx , (x > 1)

hence it can be easily expressed in terms of the Mellin transform. In the literature, it was
first introduced in the problem of the analytic continuation of the Dirichlet L-function, i.e.
a function defined by a Dirichlet L-series (see Sections 1.5.2). In fact, if χ is a Dirichlet
character modulo k, it can be shown that (Apostol, 1998, p. 249)

L(s,χ) = k−s
k

∑
r=1

χ(r)ζ

(
s,

r
k

)
, (1.17)

that provides a representation of L-functions as a linear combination of Hurwitz ζ functions.
Hence, the properties of every L-function depends on those of its associated Hurwitz ζ

function by using eq. (1.17).
The functional equation of the Hurwitz ζ function (sometimes called Rademacher’s

formula) states that given p and q such that 1 ≤ p ≤ q then for all s ∈ C (Apostol, 1998,
Chap. 12)

ζ (s,a) = 2(2πq)s−1
Γ(1− s)

q

∑
m=1

sin
(

πs
2
+

2πmp
q

)
ζ

(
1− s,

m
q

)
. (1.18)

It follows that when p = q = 1 the sum in (1.18) reduces to only one term, obtaining eq.
(1.11).

1.5.2 Dirichlet series

The series (1.7) is an example of the so-called Dirichlet series.
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Definition 1.5.1 (Dirichlet series). A Dirichlet series is a series of the form (Apostol, 1998,
Chap. 11)

F(s) def
=

∞

∑
n=1

f (n)
ns , (s ∈ C) (1.19)

where f is an arithmetical function.

Thus, the positive term series associated with (1.19) is given by

∞

∑
n=1

∣∣∣∣ f (n)
ns

∣∣∣∣ . (s ∈ C) (1.20)

Now some remarks on the convergence of complex series are briefly discussed (Mathews
and Howell, 2006, Chap. 4).

Convergence of complex series

Definition 1.5.2 (pointwise convergence of complex series). Let (zn)n∈N
be a complex se-

quence. A complex infinite series

∞

∑
n=1

zn , (1.21)

converges to S if it exists S ∈ C (called sum of series) for which

S = lim
n→∞

Sn = lim
n→∞

n

∑
k=1

zk , (1.22)

where (Sn)n∈N
is called the sequence of partial sums and defined by

S1 = z1 ,

S2 = z1 + z2 ,

...

Sn = z1 + z2 + ...+ zn ,

...

The series (1.21) is said to be absolutely convergent if the series of moduli
∞

∑
n=1

|zn| converges,

while (1.21) is said conditionally convergent if it converges without absolutely converges.
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If the limit (1.22) is either infinite or do not converge, the series (1.21) si said to be either
divergent or oscillating, respectively.

Many of the results concerning the real series theory carry over to the complex case, as the
following statement shows.

Proposition 1.5.3. Let (zn)n∈N
be a complex sequence such that zn = xn + iyn and let S =

ξ + iη be a complex number. The complex series (1.21) converges to S if and only if

ξ = lim
n→∞

xn and η = lim
n→∞

yn .

Proof : See Mathews and Howell (2006, p. 125–126).
□

For a function f defined on a complex domain D, the sequence of functions ( fn)n∈N
at the

point z0 ∈ D if limn→∞ fn(z0) = f (z0). Hence, for a particular point z0, it is well know that
there exists a positive integer nε,z0 (that is, depending on both ε and z0) such that

n ≥ nε,z0 ⇒
∣∣ fn(z0)− f (z0)

∣∣< ε (for all z ∈ D) . (1.23)

Thus, for a given value of ε , the integer nε,z0 has to satisfy (1.23). This is not a case of the
uniform convergence. In fact, for a uniformly convergent series, the integer nε,z0 in (1.23) is
substituted by nε , that is, it depends only on ε . Hence, the pointwise convergence provides a
weaker notion so that the uniform convergence (Mathews and Howell, 2006, Chap. 7) plays
a fundamental role in the complex analysis.

Definition 1.5.4 (uniform convergence). Let ( fn)n∈N
be a sequence of complex functions

defined on a common complex domain D. The previous sequence converges uniformly to f
on D if

∀ε > 0 ∃nε ∈ N : n ≥ nε ⇒
∣∣ fn(z)− f (z)

∣∣< ε . (for all z ∈ D) (1.24)

Moreover, it appears to be clear that if fn = Sn is the nth partial sum of the series

∞

∑
k=0

ck(z−a)k , (a ∈ C) (1.25)

the previous definition can be used here and the series (1.25) is said to be uniformly conver-
gent to f on D.

Example 1.5.1. Let fn(z) = ez + 1
n be the general term of a complex sequence chosen. It

converges uniformly to the complex exponential f (z) = ez on the entire complex plane,
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since for any ε > 0, the condition (1.24) is true for all z ∈ C and for all n ≥ nε , where
nε ∈ N : nε >

1
ε

(Mathews and Howell, 2006, p. 250).

Convergence of Dirichlet series

Dirichlet series enjoy a large number of useful properties given by the following theorems
(see Apostol, 1998, Chap. 11). First, consider the absolute convergence of a Dirichlet series.

Theorem 1.5.5 (absolute convergence). Suppose the series (1.20) does not converge every-
where or diverge everywhere. Under these hypotheses, a real number exists, called abscissa
of absolute convergence and denoted by xa, such that the series (1.19) converges absolutely
in the half-plane x > xa and does not converge absolutely in x < xa.

Proof : See Apostol (1998, p. 225).
□

Hence, its domain of absolute convergence can given by the empty set, R, a half-infinite
interval of the form [xa,+∞[ and an half-infinite interval of the form ]xa,+∞[. In all these
cases (Apostol, 1998, Chap. 11), there is a unique xa ∈ [−∞,+∞] such that

1) series (1.19) converges absolutely ∀x > xa ,

2) series (1.19) does not converge absolutely ∀x < xa .

The (unique) number xa is called abscissa of absolute convergence associated with (1.19).
Clearly, xa presents an infinite value in two cases, i.e. if (1.19) converges absolutely ev-
erywhere (assume xa = −∞) and if it converges absolutely nowhere (assume xa = +∞)
(Apostol, 1998, Chap. 11). The following important result holds, which represents the
specular counterpart of theorem 1.5.5 for the usual definition of convergence.

Theorem 1.5.6 (convergence). Let (1.19) be a Dirichlet series not converge everywhere or
diverge everywhere. Then there exists a real number, called abscissa of convergence and
denoted by xc, such that it converges in the half-plane x > xc and does not converge in x < xc.

Proof : See Apostol (1998, p. 233).
□

In accordance with theorem 1.5.5, if series (1.19) converges everywhere, xc =−∞, while if it
converges nowhere, xc =+∞ (Apostol, 1998, Chap. 11). Since absolute convergence implies
convergence, it is always xa ≥ xc. When xa > xc, there is an infinite strip xc < x < xa where
the series (1.19) converges conditionally. It can be proved (see Apostol, 1998, p. 233–234)
that 0 ≤ xa − xc ≤ 1, that is the width of the strip xc < x < xa does not exceed 1. The next
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definition provides a fundamental concept in analytic number theory that gives the possibility
to multiply arithmetical functions (Apostol, 1998, p. 29–30).

Definition 1.5.7 (Dirichlet convolution). Given two arithmetical functions f and g, their
Dirichlet convolution (sometimes called Dirichlet product), indicated with f ∗g, is defined as
the arithmetical function h such that

( f ∗g)(n) def
= ∑

d|n
f (n)g

(
n
d

)
, (1.26)

where the sum is extended over all positive divisors d of n.

Example 1.5.2. Let f (n) = 1 and g(n) = nα . Their Dirichlet convolution is given by

( f ∗g)(n) = 1∗nα = ∑
d|n

dα = σα(n) ,

where σα is the divisor function,that is, the sum of the αth powers of the divisors of n
(Apostol, 1998, p. 38).

Example 1.5.3. The Dirichlet series associated with the unit function I is given by

∞

∑
n=1

I(n)
ns = 1+

∞

∑
n=2

0
ns = 1 .

Since

f ∗ I = I ∗ f = f , (for all arithmetic functions f )

I represents the unit element for the Dirichlet convolution.

It can easily be shown that the arithmetic functions are a commutative ring, the Dirichlet ring,
where sum and product are defined by ( f + g)(n) = f (n)+ g(n) and (1.26), respectively
(Apostol, 1998, Chap. 2). Moreover, for any couple of arithmetical functions, their product
can be expressed by the Dirichlet product as claimed in the following statement.

Theorem 1.5.8. Let f and g be two arithmetical functions that satisfy (1.19),

F(s) =
∞

∑
n=1

f (n)
ns and G(s) =

∞

∑
n=1

g(n)
ns ,

and let F and G be absolutely convergent for x > xa and x > xb, respectively. Under these
hypotheses, for all x > max{xa,xb} (that is, in the half-plane where both series converge
absolutely), it is
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F(s)G(s) =
∞

∑
n=1

( f ∗g)(n)
ns .

Proof : See Apostol (1998, p. 228).
□

The next statement links the Dirichlet series and uniform convergence.

Proposition 1.5.9. A Dirichlet series (1.19) converges uniformly on compact subsets strictly
contained in the half-plane x > xc.

Proof : See Apostol (1998, p. 235).
□

The convergence properties of Dirichlet series can easily be compared with those of power
series. In fact, for a (general) power series

∞

∑
n=0

an sn , (s ∈ C)

a radius of convergence R can be defined such that the series converges in |s|< R and diverges
in |s|> R. It follows that each power series has a its own disk of convergence, whereas each
Dirichlet series owns a half-plane of convergence. Moreover, a power series represents an
analytical function inside its disk of convergence. A similar result for the Dirichlet series,
derived as a consequence of theorem 1.5.9, is reported below (Apostol, 1998, p. 236).

Corollary 1.5.10. The function F(s), defined by (1.19), is a analytic in its half-plane of
convergence x > xc . Moreover, in this half-plane of convergence, by differentiating term by
term, its derivative is given by

F ′(s) =−
∞

∑
n=1

f (n) logn
ns . (x > xc)

Proof : The second part of the theorem will be shown in Example 1.5.6. In order to show

the first part, let FN(s) =
N

∑
n=1

f (n)
ns denote the partial sums of F(s). Since each term of

f (n)n−s = f (n)e−s logn is the image of an entire function, the functions FN are also entire.
From theorem 1.5.9, it follows that

FN(s)
N→+∞−−−−−−→ F(s) ,

uniformly on compact subsets of the half-plane x > xc. By using the Weierstrass theorem
on uniformly convergent sequences of analytic functions (Apostol, 1998, p. 234–235), it
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becomes clear that F is analytic in every compact subset of x > xc and thus in the entire
half-plane of convergence.

□

The corollary 1.5.10 represents one of the most important properties in the general theory of
Dirichlet series. Another consequence of theorem 1.5.9 is that, due to the uniform conver-
gence on compact subsets of the half-plane of convergence, a Dirichlet series can differentiate
and integrated term by term. Dirichlet series can be used to obtain approximations of the
values of the Riemann ζ function inside the critical strip. Furthermore, the coefficients of
these series present several number-theoretical properties (Beliakov and Matiyasevich, 2014).

1.5.3 Examples of Dirichlet series

Previous theorems can be used to evaluate the Dirichlet series of many familiar arithmetic
functions, as is shown by the following examples (Apostol, 1998, Chap. 11).

Example 1.5.4 (Riemann ζ function). It is surely the famous Dirichlet series. From (1.7) it
is immediate to see that xa = xc = 1.

Example 1.5.5. (Dirichlet L series) It is defined by

L(s,χ) def
=

∞

∑
n=1

χn

ns , (s ∈ C) , (1.27)

in which χ represents the Dirichlet character. If f is bounded, namely
∣∣ f (n)∣∣≤ M for all n ≥

1, it follows that
∞

∑
n=1

f (n)
ns converges absolutely for x > 1, thus xa = 1. Thus, if χ is a Dirichlet

character the L-series (1.27) has xa = 1 (Apostol, 1998, p. 225).

Example 1.5.6 (logarithm). The first derivative of (1.19) is given by

F ′(s) = −
∞

∑
n=1

logn
f (n)
ns .

In fact, the partial sums FN(s) =
N

∑
n=1

f (n)
ns can be differentiated term by term with derivative

F ′
N(s) =−

N

∑
n=1

logn
f (n)
ns . By using the Weierstrass M-test, we get

F ′
N(s)

N→+∞−−−−−−→ F ′(s) ,

in the half-plane x > xc (see theorem 1.5.6). The main consequence of this result is that, for
f (n) = 1, the function log has Dirichlet series equal to −ζ ′.
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Example 1.5.7. (Möbius function) Here This is a Dirichlet series with f = µ that converges
absolutely in x > 1 like the Riemann ζ function. Using theorem 1.5.8, it follows that

ζ (s)
∞

∑
n=1

µ(n)
ns = 1 , (x > 1) (1.28)

being their Dirichlet convolution given by
⌊

1
n

⌋
. From (1.28) it can be derived that ζ (s) ̸= 0

for x > 1 and

∞

∑
n=1

µ(n)
ns =

1
ζ (s)

. (x > 1)

Example 1.5.8. (identity function) The Dirichlet series associated is given by

∞

∑
n=1

id(n)
ns =

∞

∑
n=1

1
ns−1 = ζ (s−1) .

Hence, it converges absolutely in x > 2.

Example 1.5.9. (Euler totient) Since φ = id ∗µ , where ∗ is the Dirichlet convolution, from
Examples 1.5.7 and 1.5.8 it follows that

∞

∑
n=1

φ(n)
ns =

ζ (s−1)
ζ (s)

,

by using theorem 1.5.8. Hence, it converges absolutely for x > 2.

Example 1.5.10. (Liouville function) Let f = 1 and g = λ . It is

( f ∗g)(n) = ∑
d|n

λ (n) =

1, n = k2 for some k ,

0, otherwise .
(1.29)

hence from theorem 1.5.8, it follows that

ζ (s)
∞

∑
n=1

λ (n)
ns =

∞

∑
k=1

1
k2s = ζ (2s) .

Therefore

λ (n)
ns =

ζ (2s)
ζ (s)

. (x > 1)

Example 1.5.11 (divisor function). Since d = 1∗1 it is
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∞

∑
n=1

d(n)
ns = ζ

2(s) ,

by using theorem 1.5.8. Therefore, it converges absolutely for x > 1.

Example 1.5.12. (von Mangoldt function) (1.3.13)1 shows that Λ ∗ 1 = log. Since the
Dirichlet series of the function log is given by −ζ ′ (see Example 1.5.6), it follows that

∞

∑
n=1

Λ(n)
ns ζ (s) =−ζ

′(s) ,

so that

∞

∑
n=1

Λ(n)
ns =−ζ ′(s)

ζ (s)
, (1.30)

where all the series involved converge absolutely for x > 1. The relation (1.30) has a crucial
role in the (analytic) proof of the prime number theorem. Moreover, since each zero of
the Riemann ζ function represents a singularity of (1.30), the link between the location
of ζ -zeros and the distribution of prime numbers appears evident. Moreover, it shows the
influence of the location of zeta zeros on the distribution of prime numbers (see Apostol,
1998, Chaps. 12-13).

1.6 Preliminary remarks on fractional calculus

Fractional calculus has been developed and several applications have emerged in many
areas of scientific knowledge since 1974, after the first congress at the University of New
Haven (de Oliveira et al., 2014). In the past, Leibniz and Newton had been the first to study
problems of fractional calculus, so it is at least as old as the traditional differential calculus.
The main problem lies in developing a theory similar to differential calculus, in which the
exponent for all its operators (as, for instance, derivative operator, integral operator, etc.)
is not integer. Many mathematicians, like Euler or Fourier, have helped to develop this
theory, but only Riemann and Liouville have given a significant contribution, introducing the
fractional derivative that bears their name. Recall the following

Definition 1.6.1 (convolution product). The convolution product (or simply convolution) of
two functions f and g, denoted with ( f ∗g), is defined (Beerends et al., 2003, chap. 6) by

( f ∗g)(t) =

∞∫
−∞

f (τ)g(t − τ)dτ , (1.31)



1.6 Preliminary remarks on fractional calculus 22

whenever the integral 1.31 makes sense.

In the previous definition, f and g are real (or complex) functions. For instance, the previous
definition is satisfied whenever f and g both belong to L1(R). In fact, under this hypothesis.
f ∗g is also in L1(R) (see Walnut, 2002, pp. 68–72). The symbol ∗ is used to indicate both
the convolution product and the Dirichlet convolution. It will cause no confusion, since
the Dirichlet convolution is defined only on arithmetic functions. Generally, the fractional
calculus is introduced by recalling the Cauchy formula for repeated integration, given by

f−n(x) =
1

(n−1)!

∫ x

a
(x− t)(n−1) f (t)dt , (1.32)

where f ∈ C 0 ([a,b]). Relation (1.32) suggests a way to generalize an integral of any real
degree α . Being Γ(n−1) = n! with n ∈ N, the idea is to replace in the integral (1.32) the
natural number n with some α ∈

(
R>0 \N

)
(Li et al., 2009). The fractional integrals by

convolution kernel are introduced first.

Definition 1.6.2 (convolution kernel). Let α ∈ R>0. The convolution kernel of order α for
fractional integrals, denoted by Yα , is defined as follows (Li et al., 2009):

Yα(t)
def
=

tα−1
+

Γ(α)
∈ L1

loc (R>0) ,

where L1
loc(R>0) is the space of locally integrable functions over R>0 and

tα−1
+

def
=


tα−1 , t > 0 ,

0 , t ≤ 0 .

Definition 1.6.3 (fractional integral). Let f ∈ C 0 ([a,b]) and α ∈
(
R>0 \N

)
. The α-order

fractional integral (called the Riemann-Liouville integral) of f is denoted with D−α
t,a f and

defined by

D−α
t,a f (t) def

= (Yα ∗ f )(t) =
1

Γ(α)

∫ t

a
(t − x)α−1 f (x)dx . (1.33)

Since the convolution property holds for Yα , that is, Yα ∗Yβ = Yα+β for α,β ∈
(
R>0 \N

)
, it

follows (Li et al., 2009) that

D−α
t,a D−β

t,a = D−α−β

t,a .

Now the fractional differentiation defined by the fractional integral (1.33) can be introduced.
There are several definition of fractional derivatives that represent one of its weak points.
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Here, two of the commonly used definitions in fractional calculus are reported (Ortigueira,
2011; Pudlubny, 1999).

Definition 1.6.4 (Riemann-Liouville fractional derivative). Let f ∈ C 0 ([0, t]) and m−1 <

α < m ∈ Z>0. The α-order Riemann-Liouville fractional derivative of f is defined by

RLDα f (t) def
=

dm

dtm D−(m−α)
t,0 f (t) =

1
Γ(m−α)

dm

dtm

∫ t

0
(t − x)m−α−1 f (x)dx .

Definition 1.6.5 (Caputo fractional derivative). Let f ∈C 0 ([0, t]) and m−1<α <m∈Z>0.
The α-order Caputo fractional derivative of f is defined by

CDα f (t) def
= D−(m−α)

t,0
dm

dtm f (t) =
1

Γ(m−α)

∫ t

0
(t − x)m−α−1 f (m)(x)dx .

In the classical Grünwald-Letnikov fractional derivative f ∈ C m ([0, t]) (see Chapter 2),
hence it provides a narrow function space. In order to weaken the conditions on f , definitions
1.6.4 and 1.6.5 are introduced (Li et al., 2009). The links between Riemann-Liouville
and Caputo fractional derivatives are discussed in several books. The main difference is
represented by the position of the differentiation that is applied before (respectively after)
the fractional integral in definition 1.6.4 (respectively 1.6.5). Both definitions can be easily
generalized to all real powers (Boyadjiev et al., 2005). Thus, integration and differentiation
are unified in one operator, called differintegral (Ortigueira and Coito, 2004). A remarkable
result is that the difference between these two definitions is only a singular term that contains
the initial value of the function f (Bagley, 2007).

In recent years, fractional calculus has become a gold mine for researchers. In fact,
everyday, new properties and new physical applications are discovered. The geometrical
interpretation of fractional operators is an especially interesting topic. Since the ordinary
derivative is the linear approximation of a smooth function, the fractional derivative might
provide a non-linear approximation of the local behavior of non-differentiable functions.
The main disadvantage of definitions 1.6.4 and 1.6.5 is that both use an integral. On the
other hand, the applications of fractional calculus in physics, continuum mechanics, signal
processing and electromagnetism continue to grow (Dalir and Bashour, 2010; Tarasov, 2008).

1.6.1 The fractional derivative in the complex plane

Recently, Ortigueira (2006) has proposed the following generalization of the fractional
derivative in the complex plane
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ODα f (s) =
ei(π−θ)α

Γ(−α)

∫
∞

0

f (xeiθ + s)−
m

∑
k=0

f (k)(s)
k!

eikθ xk

xα+1 dx , (1.34)

in which m = ⌊α⌋, s ∈ C and θ ∈ [0,2π). Starting from the generalized Cauchy integral

Dα f (s) =
Γ(α +1)

2πi

∫
C

f (w)
(w− s)α+1 dw , (s ∈ C)

where C is a U-shaped contour that encircles the branch-cut line of wα−1 (Li et al., 2009), he
has defined the fractional operator (1.34) that provides the fractional derivative in θ -direction
of the complex plane. This fractional derivative, called the Ortigueira fractional derivative
and denoted with ODα , has several properties. Its most important ones are reported below (Li
et al., 2009; Ortigueira and Tenreiro Machado, 2014).

1. Consistency with integer-order derivative
Let m−1 < α < m ∈ Z>0 and let f be analytic in a region that contains the Hankel
contour C. Without loss of generality it can be supposed in (1.34) that x ∈ R>0. Under
these hypotheses, it is easy to show (Li et al., 2009) that

lim
α→m− ODα f (s) = f (m)

θ
(s) ,

lim
α→(m−1)+

ODα f (s) = f (m−1)
θ

(s) ,

where f (m)
θ

is the mth directional derivative in θ -direction.

2. Composition with integer-order derivatives
Let Ak be the set of complex functions f of the complex variable s such that

dk

dsk

∫
∞

0
f (xeiθ + s)dx =

∫
∞

0

dk

dsk f (xeiθ + s)dx ,

in which θ ∈ [0,2π) and k ∈ N. If f ∈ Ak and m < α < (m+1) ∈ Z>0, it is easy to
show (Li et al., 2009) with a direct computation that

dk

dsk

(
ODα f (s)

)
= ODα

(
dk

dsk f (s)

)
.
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3. Composition with itself
Let us give m < α < (m+ 1) ∈ Z>0, k < β < (k+ 1) ∈ Z>0 and f ∈ Am. Li et al.
(2009) have shown that

(a) OD−α

(
ODα f (s)

)
= ODα

(
OD−α f (s)

)
,

(b) ODα

(
OD−β f (s)

)
= OD−β

(
ODα f (s)

)
,

(c) ODα

(
ODβ f (s)

)
= ODβ

(
ODα f (s)

)
̸= ODα+β f (s) ,

where (c) holds for f ∈ Amax[m,k].

For the purpose of this thesis, the most relevant property of the Ortigueira fractional derivative
is represented by the possibility to generalize the classical Caputo derivative (Caputo, 1967;
de Oliveira et al., 2014) in the complex plane. In fact, by using the Ortigueira derivative, the
α-order Caputo derivative along with θ -direction in the complex plane.

Definition 1.6.6 (Caputo-Ortigueira fractional derivative). Let f be a complex function of the
complex variable s and let m−1 < α < m ∈ Z>0. The α-order Caputo-Ortigueira fractional
derivative of f is defined (Li et al., 2009) by

CDα f (s) def
= ODα−m

(
f (m)(s)

)
=

ei(π−θ)(α−m)

Γ(m−α)

∫
∞

0

f (m)(xeiθ + s)
xα−m+1 dx . (1.35)

In the literature, (1.35) is called the Ortigueira generalization of the Caputo fractional
derivative, or simply Caputo-Ortigueira fractional derivative.



Chapter 2

ζ (α) and generalizations

2.1 Introduction

The Riemann ζ function plays an important role both in number theory and in several
applications of quantum mechanics (see Chapter 1). In particular, the Riemann hypothesis
can be formulated by using quantum terminology (Pozdnyakov, 2012) and its zeros are
associated with the Hamiltonian of a quantum mechanical system (Sierra, 2010).

In recent years, fractional calculus have proven to be a powerful tool in several areas
of research, both in theory and in applications, spreading over almost all fields of science
and technology (Dalir and Bashour, 2010). Several authors have defined a generalization
of the fractional derivative to C. In particular, it has been shown (Owa, 1987) how to
extend the fractional derivative to the class of analytical functions f on the unit circle
U = {z ∈ C : |z|< 1} such that

f (z) = z+
∞

∑
n=2

an zn . (z ∈ C) (2.1)

It appears to be clear that the Riemann ζ function does not belong to the previous class since
it can not be expressed as (2.1). By using the definition 1.6.6, the fractional derivative of
the Riemann ζ function is easily computed. Its convergence domain, which depends on the
fractional order of the derivative, is widely studied and plotted. Moreover, the fractional
derivates of both the Hurwitz ζ function and the Dirichlet series are computed by using the
fractional derivative (1.35), which are in accordance with the classical theory (Apostol, 1998,
Chaps. 11–12; Srivastava and Choi, 2011, Chap.2). The previous fractional derivatives have
some interesting properties. In particular, the chaotic decay of (2.2) to zero, suggests that the
fractional derivative of the Riemann ζ function can be a non-differentiable function around
zero. It might open new perspectives in the applications to the theory of dynamical systems.
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This chapter consists of four sections. The α-order fractional derivative of the Riemann
ζ function is computed in Section 2.2, together with the half-plane of convergence. The
fractional derivatives of both the Dirichlet series and the Hurwitz ζ function are given in
Section 2.3. Finally, the first properties of ζ (α) and decay to zero are presented in Section 2.4.

2.2 The fractional derivative of ζ and convergence

In Chapter 1, all the mathematical tools needed to compute the α-order fractional derivative
of the Riemann ζ function have been presented.

Theorem 2.2.1 (Guariglia 2015). Let s be a complex variable such that s = x+ iy with
x,y ∈ R and let m−1 < α < m ∈ Z>0. The α-order fractional derivative of the Riemann ζ

function is given by

ζ
(α)(s) = eiπα

∞

∑
n=2

logα n
ns . (2.2)

Moreover, the real and imaginary parts of (2.2) are

Re
(

ζ
(α)(s)

)
=

∞

∑
n=2

logα n
nx cos(πα − y logn) ,

Im
(

ζ
(α)(s)

)
=

∞

∑
n=2

logα n
nx sin(πα − y logn) .

(2.3)

Proof : By using (1.35), it follows that

ζ
(α)(s) =

ei(π−θ)(α−m)

Γ(m−α)

∫
∞

0

dm

dsm

(
ζ

(
xeiθ + s

)) 1
xα−m+1 dx

=
ei(π−θ)(α−m)

Γ(m−α)

∫
∞

0

dm

dsm

(
∞

∑
n=1

n−sn−xeiθ
xm−α−1

)
dx .

Bringing the integral sign under both derivative and summation, gives

ζ
(α)(s) =

ei(π−θ)(α−m)

Γ(m−α)

dm

dsm

(
∞

∑
n=1

n−s
∫

∞

0
n−xeiθ

xm−α−1dx

)
. (2.4)

Begin by computing the integral on the right hand side (RHS) of (2.4). By a change of
variables xeiθ = z, it follows that
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∫
∞

0
n−xeiθ

xm−α−1dx =
∫

∞

0
n−z e−iθ(m−α)zm−α−1dz

= e−iθ(m−α)
∫

∞

0
e−z lognzm−α−1dz

= e−iθ(m−α)
∫

∞

0
e−xxm−α−1 logα−m n dx

= e−iθ(m−α) logα−m n Γ(m−α) ,

(2.5)

where another change of variable has been performed, i.e. z logn = x and the definition of
gamma function (section 1.4) has been used. Since m−α > 0, the last RHS of the continued
equality above makes sense. By substituting (2.5) into (2.4), it is

ζ
(α)(s) = eiπ(α−m) dm

dsm

∞

∑
n=1

n−s logα−m n

= eiπ(α−m)
∞

∑
n=1

logα−m n
dm

dsm

(
n−s
)
,

where the derivative on the RHS is given by

d
ds

(
n−s
)
=−n−s logn ,

d2

ds2

(
n−s
)
= (−1)2n−s log2 n ,

...
dm

dsm

(
n−s
)
= (−1)m n−s logm n ,

so that

ζ
(α)(s) = (−1)meiπ(α−m)

∞

∑
n=1

logα n
ns

= eiπα
∞

∑
n=2

logα n
ns ,

(2.6)

In order to show the second part of the theorem, (2.6) has to be written in rectangular form
(see Mathews and Howell, 2006, Chap. 1). Since s = x+ iy, it is
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n−s = n−xn−iy = n−xe−iy logn = n−x (cos(y logn)− isin(y logn)
)
,

hence

ζ
(α)(s) =

(
cos(πα)+ isin(πα)

) ∞

∑
n=2

logα n
nx

(
cos(y logn)− isin(y logn)

)
=

∞

∑
n=2

logα n
nx

(
cos(πα)cos(y logn)+ sin(πα)sin(y logn)

+ i
(

sin(πα)cos(y logn)− cos(πα)sin(y logn)
))

.

It follows that

Re
(

ζ
(α)(s)

)
=

∞

∑
n=2

logα n
nx

(
cos(πα)cos(y logn)+ sin(πα)sin(y logn)

)
=

∞

∑
n=2

logα n
nx cos(πα − y logn) ,

and similarly

Im
(

ζ
(α)(s)

)
=

∞

∑
n=2

logα n
nx

(
sin(πα)cos(y logn)− cos(πα)sin(y logn)

)
=

∞

∑
n=2

logα n
nx sin(πα − y logn) ,

which completes the proof.
□

2.2.1 Convergence of ζ (α)

By using the classical comparison test and a generalization of the well-known harmonic
series, the convergence of ζ (α) is easily derived.

Theorem 2.2.2 (Comparison test). Suppose that
∞

∑
n=1

an converges and 0 ≤ bn ≤ an. In these

hypotheses, the series
∞

∑
n=1

bn converges.
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Proof : See Stirling (2009, pp. 99–100).
□

Corollary 2.2.3. Let p ∈ R. The series
∞

∑
n=1

1
np converges if p > 1 and diverges if p ≤ 1.

Proof : It directly follows from the convergence domain of the harmonic series.
□

The previous series is called the p-series and it is equal to ζ (p) for p > 1 . These two
properties are essential for showing the following statement.

Proposition 2.2.4. Under the same hypotheses of theorem 2.2.1, (2.3)1 and (2.3)2 converge
in the half-plane

x > 1+α . (2.7)

Proof : Since the sine is a bounded function in [−1,1], it is

sinx ≤ |sinx| ≤ 1 ,

hence

logα n
nx sin(πα − y logn)≤ logα n

nx <
nα

nx =
1

nx−α
. (2.8)

The last RHS in (2.8) is that of a p-series, hence it converges for

x−α > 1 .

By using the comparison test, it appears to be clear that Im
(

ζ (α)
)

also converges in the

half-plane (2.7). Similarly, it can be shown that the same holds true for Re
(

ζ (α)
)

.
□

A direct consequence of the previous theorem is given by the following

Corollary 2.2.5. Let α ∈
(
R>0 \N

)
. ζ (α) converges in the half-plane (2.7).

Proof : Since a complex series converges if and only if both the real and imaginary parts
converge (Mathews and Howell, 2006, Chap. 4), the proof follows directly from theorem
2.2.4.

□

Figure 2.1 shows that ζ converges for x > 1 and its α-order fractional derivative converges
for x > 1+α . In Figures 2.2 and 2.3, Re

(
ζ (α)

)
and Im

(
ζ (α)

)
are shown, respectively,

with α = 0.4 and the upper limit of the series n = 60. In Figure 2.4, ζ (α) is plotted as a 3D
surface of its real part (orange surface) and imaginary part (blue surface).
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Figure 2.1: Convergence half-plane of ζ (α).

2.3 Fractional derivatives of the Dirichlet Series and of the
Hurwitz ζ function

In this section, the fractional derivative of a function defined by the Dirichlet series (Apostol,
1998, Chap. 11) and by the Hurwitz ζ function are given. They represents a consistent
generalization of the computation obtained in the previous section for the Riemann ζ function.

Theorem 2.3.1 (Cattani and Guariglia 2016). Let s be a complex variable such that s = x+ iy
with x,y∈R and let m−1<α <m∈Z>0. The α-order fractional derivatives of the Dirichlet
series and of the Hurwitz ζ function are given by

F(α)(s) = eiπα
∞

∑
n=1

f (n)
logα n

ns ,

ζ
(α)(s,a) = eiπα

∞

∑
n=0

logα(n+a)
(n+a)s . (0 < a ≤ 1)

(2.9)

Proof : By substituting (1.19) into (1.35), it is
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F(α)(s) =
ei(π−θ)(α−m)

Γ(m−α)

∫
∞

0

dm

dsm

∞

∑
n=1

(
f (n)n−xeiθ−sxm−α−1

)
dx

=
ei(π−θ)(α−m)

Γ(m−α)

dm

dsm

∞

∑
n=1

f (n)n−s
∫

∞

0

(
n−xeiθ

xm−α−1
)

dx .

From (2.5), it follows that

F(α)(s) = eiπ(α−m) dm

dsm

∞

∑
n=1

f (n)n−s logα−m n

= eiπ(α−m)
∞

∑
n=1

f (n) logα−m n
dm

dsm

(
n−s
)
.

Since

dm

dsm

(
n−s
)
= (−1)m n−s logm n ,

it is

F(α)(s) = (−1)meiπ(α−m)
∞

∑
n=1

f (n)
logα n

ns

= eiπα
∞

∑
n=1

f (n)
logα n

ns .

The second part of the theorem can be proven in the same way. In fact, (1.35) for f (s) =
ζ (s,a) becomes

ζ
(α)(s,a) =

ei(π−θ)(α−m)

Γ(m−α)

∫
∞

0

dm

dsm

∞

∑
n=0

(
(n+a)−xeiθ−s xm−α−1

)
dx

=
ei(π−θ)(α−m)

Γ(m−α)

dm

dsm

∞

∑
n=0

(n+a)−s
∫

∞

0
(n+a)−xeiθ

xm−α−1dx .

The integral in the last RHS is given by
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∫
∞

0
(n+a)−z e−iθ(m−α) zm−α−1dz

= e−iθ(m−α)
∫

∞

0
e−z log(n+a)zm−α−1dz

= e−iθ(m−α)
∫

∞

0
e−xxm−α−1 logα−m(n+a)dx

= e−iθ(m−α) logα−m(n+a) Γ(m−α) ,

which was obtained by changing variables twice (xiθ = z and z log(n+a) = x, respectively).
Hence

ζ
(α)(s,a) = eiπ(α−m) dm

dsm

∞

∑
n=0

(n+a)−s logα−m(n+a)

= eiπ(α−m)
∞

∑
n=0

logα−m(n+a)
dm

dsm

(
(n+a)−s

)
.

Being

d
ds

(
(n+a)−s

)
=−(n+a)−s log(n+a) ,

d2

ds2

(
(n+a)−s

)
= (−1)2 (n+a)−s log2(n+a) ,

...
dm

dsm

(
(n+a)−s

)
= (−1)m (n+a)−s logm(n+a) ,

we finally have

ζ
(α)(s,a) = (−1)meiπ(α−m)

∞

∑
n=0

logα−m(n+a) (n+a)−s logm(n+a)

= eiπα
∞

∑
n=0

logα(n+a)
(n+a)s .

□

The results (2.9) consistently generalize (2.2), so that the fractional derivative of the Riemann
ζ function can be seen in a more general scheme. In fact, if in Fα(s) we put f (n) = 1,
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we have ζ α(s), according to ζ (s) = F(s; f (n) = 1). Analogously to that, in the Hurwitz
ζ function, (2.9)2 becomes (2.2) for a = 1. Moreover, theorem 2.2.1 underlines that the
Caputo-Ortigueira fractional derivative gives a natural generalization of the integer order
derivative of the Riemann ζ function. In fact, the integer derivative of (1.7) is given (Apostol,
1998, Chap. 11) by

ζ
(k)(s) = eiπk

∞

∑
n=1

logk n
ns , (k ∈ N0)

which represents the integer counterpart of (2.2).

2.4 Properties of ζ (α)

In this section the main properties of the fractional derivative (2.2) are given. If the variable s
is a pure real number s =−x, the partial sum (for a fixed n) in (2.2) is a function with rapid
decay to zero. For a pure complex number, i.e. s =−iy the real part of ζ (α) is a slow decay
even function (see Figure 2.5) while the imaginary part is a slow decay odd function (Figure
2.6). If the real and imaginary parts of the function (2.2) are plotted in the same plane, then
we have the parametric plot of ζ (α), with x = 0 and upper bound y = 30 (Figure 2.7). Hence,
the parametric plot of (2.2) is a spiral with an asymptotic attractor as origin. However, a
zoom around the origin shows that the spiral becomes a self-intersecting, non-differentiable
function.

Proposition 2.4.1. In the half-plane of convergence (2.7), it is

ζ
(α)(s) =

∞

∑
n=1

∞

∑
h=0

(
−

∞

∑
k=1

(
n−1
n+1

)2k−1 2
2k−1

)h+α

sh

h!
. (2.10)

Proof : Since

n−s logα n = e−s logn logα n =
∞

∑
h=0

(−s logn)h

h!
logα n =

∞

∑
h=0

eiπh logh+α n
h!

sh ,

and (Abramowitz and Stegun, 2014, p. 68)

logn =
∞

∑
k=1

(
n−1
n+1

)2k−1 2
2k−1

, (n > 0)

it follows that
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ζ
(α)(s) = eiπα

∞

∑
n=1

∞

∑
h=0

eiπh sh

h!

(
∞

∑
k=1

(
n−1
n+1

)2k−1 2
2k−1

)h+α

=
∞

∑
n=1

∞

∑
h=0

eiπ(h+α)

(
∞

∑
k=1

(
n−1
n+1

)2k−1 2
2k−1

)h+α

sh

h!
.

□

The proposition 2.4.1 shows that the fractional derivative of the Riemann ζ function can also
be expressed as a complex power series.

2.4.1 Further properties of ζ (α)

In the following, two important properties of the fractional derivative (2.2) are presented.
The first property concerns the composition of ζ (α) with integer-order derivatives. Since

d
ds

(
ζ
(α)(s)

)
= eiπα d

ds

(
∞

∑
n=1

logα n
ns

)
= eiπα

∞

∑
n=1

logα n
d
ds

(
1
ns

)
= eiπ(α+1)

∞

∑
n=1

logα+1 n
ns ,

and iterating k times, with k ∈ N, we get

dk

dsk

(
ζ
(α)(s)

)
= eiπ(α+k)

∞

∑
n=1

logα+k n
ns . (2.11)

Eq. (2.11) shows that the derivatives of ζ dump their order (integer or fractional) on the
complex exponent and on the logarithm (inside the summation). The second property
provides an interesting characterization of the product of the Riemann ζ function and its
α-order fractional derivative and is reported below.

Proposition 2.4.2. Let s be a complex variable such that s = x+ iy with x,y ∈ R and let
α ∈

(
R>0 \N

)
. The product of the Riemann ζ function and its α-order fractional derivative

is given by

ζ
(α)(s)ζ (s) = eiπα

∞

∑
n=1

∑
d|n

logα d
ns , (2.12)

in the half-plane x > 1+α .

Proof : From theorem 1.5.8 it is
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ζ
(α)(s)ζ (s) = eiπα

∞

∑
n=1

logα n
ns

∞

∑
n=1

1
ns = eiπα

∞

∑
n=1

logα n∗1
ns .

Since

logα n∗1 = ∑
d|n

logα d ,

and the fractional derivative (2.2) converges in x > 1+α , the proof follows.
□
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Figure 2.2: Real part of ζ (α) with α = 0.4 and upper limit of the series n = 60.
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Figure 2.3: Imaginary part of ζ (α) with α = 0.4 and upper limit of the series n = 60.
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Figure 2.4: ζ (α) with α = 0.4 and upper limit of the series n = 60.
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Figure 2.5: Real part of ζ (α) with x = 0, α = 0.6 and upper limit of the series n = 60..
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Figure 2.6: Imaginary part of ζ (α) with x = 0, α = 0.6 and upper limit of the series n = 60..
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Figure 2.7: Parametric plot of ζ (α) with x = 0, α = 0.6 and upper limit of the series n = 60.



Chapter 3

Functional equations

3.1 Introduction

In this chapter, the functional equation of ζ (α) is computed and extensively discussed,
together with some of its generalizations. In order to realize these tasks, the α-order
fractional derivative of ζ is recomputed by a generalization of the Grünwald-Letnikov
fractional derivative (Ortigueira, 2011, Chap. 2). Since it satisfies the generalized Leibniz
rule, by applying the previous fractional operator to the asymmetric functional equation of ζ ,
the result sought is easily derived. By using Bernoulli numbers, an integral representation
for ζ (α) is obtained. According to the classical results of Apostol (1985) and Spira (1965),
the functional equation of ζ (α) is written as a sum of sines and cosines and its simplified
version is presented in what follows. By introducing the Hurwitz ζ function and the Lerch
zeta function, two main generalizations of the aforementioned functional equation are given.
Starting from the so-called Euler summation formula, an integral representation of (2.9)2

is derived. By taking into account that the Grünwald-Letnikov fractional derivative defines
a differential C-algebra (see Kolchin, 2012, Chap. 1), the Lerch zeta function provides a
further generalization of these results.

The Chapter is organized as follows. Some details on the link between Bernoulli numbers
and the Riemann ζ function are given in Section 3.2. The computation of ζ (α) by the
Grünwald-Letnikov fractional derivative and some of its properties are expounded upon
in Section 3.3, and an integral representation of ζ (α) via Bernoulli numbers is reported in
Section 3.4. In Section 3.5, results concerning the functional equation of ζ (α) are given.
Section 3.6 and Section 3.7 present a generalization of the functional equation associated with
ζ (α) with respect to the Hurwitz ζ function and with the Lerch zeta function, respectively.
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3.2 Bernoulli numbers and the Riemann ζ function

Bernoulli numbers show their importance in several fields of pure and applied mathematics.
In particular, in analytic number theory, some values of the Riemann ζ function can be
written using them. Bernoulli polynomials Bn(s) are an interesting class of functions of the
complex variable s. The functions Bn = Bn(s) are defined by

zesz

ez −1
=

∞

∑
n=0

Bn(s)
n!

zn , (z ∈ C : |z|< 2π) (3.1)

where the numbers Bn(0) are called Bernoulli numbers and denoted by Bn (Apostol, 1998,
Chap. 12). Hence,

z
ez −1

=
∞

∑
n=0

Bn

n!
zn . (z ∈ C : |z|< 2π)

The main properties of Bernoulli numbers are summarized in the following statement.

Proposition 3.2.1. Let n ∈ N0. The functions (3.1) are polynomials of the complex variable
s given by

Bn(s) =
n

∑
k=0

(
n
k

)
Bk sn−k , (n ≥ 2) (3.2)

and satisfy the difference equation

Bn(s+1)−Bn(s) = nsn−1 . (n ≥ 1) (3.3)

Proof : See Apostol (1998, pp. 264–265).
□

By evaluating eq. (3.3) for s = 0, it is

Bn(1) = Bn(0) . (n ≥ 2) (3.4)

Eqs. (3.3), (3.4) do not provide any formula for computing Bernoulli numbers. On the
contrary, they can be recursively obtained via (3.2). In fact, it is easy to compute that B0 = 1,

B1 =−1
2

, B2 =
1
6

, etc. Some values of the Riemann ζ function can be expressed in terms of
Bernoulli numbers. In particular, the following statement holds.

Proposition 3.2.2. Let k ∈ N0 and let n ∈ N. The values of ζ for non-positive integers and
positive even numbers are given, respectively, by
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ζ (−k) =−Bk+1(1)
k+1

=


−1

2
, n = 0 ,

−Bk+1

k+1
, n ≥ 1 ,

and

ζ (2n) = (−1)n+1 (2π)2n B2n

2(2n)!
.

Proof : See Apostol (1998, p. 266).
□

Functional equation (1.11) provides no information about ζ (2n+1) (since both its members
vanish). No simple formula for positive odd values of ζ is known. Except for ζ (3) (whose
irrationality was shown by Apéry in 1979), the rationality of ζ (2n+ 1) is still an open
problem (Apostol, 1998, Chap. 12). Moreover, the derivative of the Riemann ζ function is
linked with Bernoulli numbers by the following

Proposition 3.2.3. Let n ∈ N0. The derivative of ζ at the negative even integers is given by

ζ
′(−2n) = (−1)n (2n)!

2(2π)2n ζ (2n+1) . (3.5)

In particular, it is

ζ
′(0) =− log(2π)

2
. (3.6)

Proof : By differentiating eq. (1.10) term by term, we have

ζ
′(s)=

(
2(2π)s−1

Γ(1− s)ζ (1− s)
)′

sin
(

π s
2

)
+2(2π)s−1

Γ(1−s)ζ (1−s)
π

2
cos
(

π s
2

)
.

For s =−2n, since sin(−πn) = 0 and cos(−πn) = (−1)n, it is

ζ
′(−2n) = π(2π)−(2n+1)

Γ(2n+1)ζ (2n+1)
π

2
(−1)n .

Furthermore, eq. (3.5) for s = 0 becomes

ζ
′(0) =

1
2

∞

∑
n=1

(−1)n

n
=−1

2

∞

∑
n=1

(−1)n−1

n
=− log(2π)

2
,
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by taking into account that the sum of the alternating harmonic series is log(2π) (Hudelson,
2010).

□

At the end of this section, the classical definition of generalized binomial coefficient is given.

Definition 3.2.4 (generalized binomial coefficient). Let α ∈ R and let n ∈ N0. The binomial

coefficient
(

α

n

)
is defined (Graham et al., 1994, pp. 153–154) as usual by(

α

n

)
=

α
n

n!
=

α · (α −1) · · ·(α −n+1)
n!

, (3.7)

where α
n

represents the so-called falling factorial (Graham et al., 1994, pp. 47–48).

3.3 Grünwald-Letnikov fractional derivative and recom-
putation of ζ (α)

The Caputo-Ortigueira fractional derivative is not particularly suitable for deriving a func-
tional equation for (2.2). Hence, it is been necessary to change the fractional operator. In
particular, the problem can be reformulated in terms of the Grünwald-Letnikov fractional
derivative (Pudlubny, 1999, Chap. 2), which together with the generalized Leibniz rule,
easily provides the functional equation sought. First, the fractional derivative of the Riemann
ζ function has to be recomputed by this new fractional derivative in order to show that it is
in accordance with (2.2).

Definition 3.3.1 (generalized Grünwald-Letnikov fractional derivative). Let f be a complex-
valued function of the complex variable s and let α ∈

(
R>0 \N

)
. The α-order Grünwald-

Letnikov fractional derivative of f is defined (Ortigueira, 2011, Chap. 2) by

Dα
θ f (s) def

= e−iθα lim
|h|→0+

∞

∑
k=0

(
α

k

)
(−1)k f (s− kh)

|h|α
, (3.8)

where h ∈ C and θ = Argh.

The previous definition clearly generalizes the Grünwald-Letnikov fractional derivative
based on the incremental ratio (Pudlubny, 1999, Chap. 2) to the whole complex plane. The
problem of proving the weakest conditions with regards to the existence of (3.8) appears
to be complicated enough, even if some necessary conditions exist. In fact, since binomial
coefficients satisfy
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∣∣∣∣(α

k

)∣∣∣∣≤ C
kα+1 , (for some constant C > 0)

the product f (s)
C

kα+1 has to decrease at least as
C

kα+1 for k → ∞ (Ortigueira, 2011, Chap.
2). In order to get a physical interpretation of (3.8), assume that s is a time variable and
that h ∈ R, i.e. θ ∈ {0,π}. In the first case (θ = 0), definition 3.3.1 provides the following
fractional derivative

Dα
f f (s) = lim

h→0+

∞

∑
k=0

(
α

k

)
(−1)k f (s− kh)

hα
, (3.9)

since |h| = h ≥ 0. In the literature, this is called the α-order forward Grünwald-Letnikov
derivative since the future values cannot be used. By using the terminology of signal theory,
(3.9) provides a linear and casual system. In the other case (θ = π), the past values cannot be
used, hence the associated operator is known as the backward Grünwald-Letnikov derivative
(Ortigueira, 2011, Chap. 2). The fractional derivative of the Riemann ζ function can be
recomputed by using (3.9).

Theorem 3.3.2. Let s be a complex variable and let α ∈
(
R>0 \N

)
. The α-order fractional

derivative of the Riemann ζ function, computed by (3.9), is given by

ζ
(α)(s) = eiπα

∞

∑
n=2

logα n
ns . (3.10)

Proof : From (3.9), by writing f (s) = ζ (s), it is

ζ
(α)(s) = lim

h→0+

∞

∑
k=0

(
α

k

)
(−1)kζ (s− kh)

hα
= lim

h→0+

1
hα

∞

∑
k=0

∞

∑
n=1

(
α

k

)
(−1)k 1

ns−kh

=
∞

∑
n=1

1
ns lim

h→0+

1
hα

∞

∑
k=0

(
α

k

)
(−1)knkh .

(3.11)

Taking into account the well know binomial series expansion, it follows that

∞

∑
k=0

(
α

k

)
(−1)knkh =

∞

∑
k=0

(
α

k

)
(−nh)k =

(
1−nh

)α

, (3.12)

so that
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ζ
(α)(s) =

∞

∑
n=1

1
ns lim

h→0+

(
1−nh

)α

hα
. (3.13)

The RHS of (3.11) can converge even if the binomial series (3.12) diverges. In fact,

lim
h→0+

(
1−nh

h

)α

, (3.14)

provides an indeterminate form 0
0 . By L’Hôpital’s rule, it is

lim
h→0+

(
1−nh

h

)α

=

(
lim

h→0+

1−nh

h

)α

=

(
− lim

h→0+
nh logn

)α

= eiπα logα n .

(3.15)

By substituting (3.15) into (3.13), the proof follows.
□

Theorem 3.3.2 shows that two different fractional derivatives provide the same result with
regards to the computation of ζ (α). In fact, up till now there has not been a unique definition
of the fractional derivative. It represents a weak point of the fractional calculus. A direct
consequence of theorem 3.3.2 is reported below.

Corollary 3.3.3. Under the same hypotheses of theorem 3.3.2, it is

Dα
f (2π)s = (2π)s eiπα logα (2π) . (3.16)

Proof : The thesis follows from the theorem 3.3.2 by replacing n with 2π and s with −s.
□

Corollary 3.3.3 takes on great importance in the proof of theorem 3.5.1, while the fundamental
property that provides the functional equation of ζ (α) is derived (Ortigueira, 2011, pp. 18–19)
from the following

Theorem 3.3.4 (generalized Leibniz rule for Dα
f ). Let f and g be two complex-valued

functions of the complex variable s. If f is analytic in a region D ⊆ C, it is

Dα
f
(

f (s)g(s)
)
=

∞

∑
n=0

(
α

n

)
f (n)(s)g(α−n)(s) . (3.17)
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Proof : Let ψ be a complex-valued function of s such that ψ(s) = f (s)g(s) for every s ∈ C.
The direct difference operator ∆h is defined (Ortigueira, 2011, pp. 12–13) by

∆hψ(s) = ψ(s)−ψ(s−h) , (3.18)

where h ∈ C. Iterating N times ∆h, it follows that

∆
N
h ψ(s) =

N

∑
k=0

(−1)k
(

N
k

)
ψ(s− kh) , (3.19)

so that

k

∑
n=0

(−1)n
(

k
n

)
∆

n
hψ(s) =

k

∑
n=0

(−1)n
(

k
n

) n

∑
k=0

(−1)k
(

n
k

)
ψ(s− kh) = ψ(s− kh) ,

that is

ψ(s− kh) =
k

∑
n=0

(−1)n
(

k
n

)
∆

n
hψ(s) . (3.20)

Eq. (3.19) can easily be extended to the fractional case (Diaz and Osler, 1974) by

∆
α
h ψ(s) =

∞

∑
k=0

(−1)k
(

α

k

)
ψ(s− kh) , (3.21)

hence (3.9) becomes

Dα
f ψ(s) = lim

h→0+

∆α
h ψ(s)
hα

, (3.22)

where

∆
α
h ψ(s) (3.21)

=
∞

∑
k=0

(−1)k
(

α

k

)
f (s− kh)g(s− kh) .

Since g(s− kh) can be written by using (3.20), it follows that
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∆
α
h ψ(s) =

∞

∑
k=0

(−1)k
(

α

k

)
f (s− kh)

k

∑
n=0

(−1)n
(

k
n

)
∆

n
hg(s)

=
∞

∑
n=0

(−1)n
∆

n
hg(s)

∞

∑
k=n

(−1)k
(

k
n

)(
α

k

)
f (s− kh)

=
∞

∑
n=0

∆
n
hg(s)

∞

∑
k=0

(−1)k
(

k+n
n

)(
α

k+n

)
f (s− kh−nh)

=
∞

∑
n=0

(
α

n

)
∆

n
hg(s)

∞

∑
k=0

(−1)k
(

α −n
k

)
f (s− kh−nh) ,

since

(
k+n

n

)(
α

k+n

)
=

α
k+n

n!k!
=

α · (α −1) · · ·(α − (k+n)+1)
n!k!

=

(
α

n

)(
α −n

k

)
.

Therefore

∆α
h ψ(s)
hα

=

∞

∑
n=0

(
α

k

)
∆n

hg(s)
∞

∑
k=0

(−1)k (α−n
k

)
f (s− kh−nh)

hα

=
∞

∑
n=0

(
α

n

)
∆n

h g(s)
hn

∞

∑
k=0

(−1)k (α−n
k

)
f (s− kh−nh)

hα−n
h→0+−−−−−→

∞

∑
n=0

(
α

n

)
f (n)(s)

·g(α−n)(s) .

By taking into account (3.22), the proof follows.
□

Eq. (3.17) holds in the analytic region D ⊆ C except over an eventual branch cut line. The
hypotheses of theorem 3.3.4 ensure that the RHS of (3.17) is non-commutative, while the
commutativity follows if both f and g are analytic in the complex region D. Moreover, a
direct consequence of definition (3.22), that will be used in the following, is reported below.

Proposition 3.3.5 (consistency with integer-order derivative). Let m− 1 < α < m ∈ Z>0

and let f be a complex-valued function of the complex variable s analytic in a region D ⊆ C

such that
∆α

h f (s)
hα

(called fractional incremental ratio) is uniformly convergent in D. Under
these hypotheses, the α-order forward Grünwald-Letnikov derivative of f is given by
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
Dα

f f (s) α→m−
−−−−−→ f (m)(s) ,

Dα
f f (s)

α→(m−1)+−−−−−−−−→ f (m−1)(s) .

(3.23)

Proof : Taking into account (3.22), it is

lim
α→m−

Dα
f f (s) = lim

α→m−
lim

h→0+

∆α
h f (s)
hα

= lim
h→0+

lim
α→m−

∆α
h f (s)
hα

= lim
h→0+

∆m
h f (s)
hm = f (m)(s) ,

i.e. (3.23)1. Analogously (3.23)2 can be derived, which completes the proof.
□

In order to show the importance of the previous proposition, let us consider the case of the
Riemann ζ function. From (3.11), (3.12) and (3.21), it follows that

∆α
h ζ (s)
hα

=
∞

∑
n=1

1
ns

(
1−nh

h

)α

. (3.24)

Therefore, by applying the Weierstrass M-test, the Riemann ζ function satisfies the hypothe-
ses of proposition 3.3.5.

3.4 Integral representation of ζ (α) via Bernoulli numbers

In this section, an integral representation of ζ (α) in terms of Bernoulli numbers is provided.
It is based on the following result (Abramowitz and Stegun, 2014, p. 807)

ζ (s) =
1

s−1
+

1
2
+

n

∑
r=1

B2r

2r

(
s+2r−2

2r−1

)
−
(

s+2n
2n+1

) ∫ ∞

1

P2n+1(x)

xs+2n+1 dx , (3.25)

where B2r are Bernoulli numbers and

P2n+1 = (−1)n+1 2(2n+1)!
(2π)2n+1

∞

∑
k=1

sin2kπx
k2n+1 ,

is nothing more than the periodic Bernoulli function (Apostol, 1998, p. 267). Eq. (3.25)
gives an integral representation of ζ through Bernoulli numbers and holds in the half-plane
Res >−2n (with n ∈ N). For simplicity of notation, by introducing
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
Qm(s)

def
=

(
s+m−1

m

)
, (m ∈ N0) ,

Im(s)
def
=

∫
∞

1

Pm(x)
xs+m dx , (m ∈ N0) ,

(3.26)

eq. (3.25) becomes

ζ (s) =
1

s−1
+

1
2
+

n

∑
r=1

B2r

2r
Q2r−1(s)−Q2n+1(s) I2n+1(s) . (3.27)

Apostol (1985) has shown that the integer derivative ζ (k) admits the following integral
representation

ζ
(k)(s) =

(−1)kk!
(s−1)k+1 +

n

∑
r=1

B2r

2r
Q(k)

2r−1(s)−
k

∑
j=0

(
k
j

)
Q( j)

2n+1(s) I(k− j)
2n+1 (s) , (3.28)

which holds in the half-plane Res >−2n (with n ∈ N). A fractional version of eq. (3.28),
that is an integral representation of ζ (α) via Bernoulli numbers is given in the following

Theorem 3.4.1. Let s be a complex variable such that Res> 1 and let α ∈
(
R>0 \N

)
. Under

these hypotheses, it is

ζ (α)(s) =
sα

s−1
+

n

∑
r=1

B2r

2r
Q(α)

2r−1(s)−
∞

∑
j=0

(
α

j

)
Q( j)

2n+1(s) I(α− j)
2n+1 (s) , (3.29)

where Qm and Im are given by (3.26).

Proof : By applying the fractional operator Dα
f to both members of (3.27), it is

ζ
(α)(s) = Dα

f

(
1

s−1

)
+Dα

f

(
1
2

)
+

n

∑
r=1

B2r

2r
Q(α)

2r−1(s)−
∞

∑
k=0

(
α

k

)
Q(k)

2r−1I(α−k)
2n+1 , (3.30)

by taking into account theorem 3.3.4. Being α > 0, it follows (Ortigueira, 2011, p. 23) that

Dα
f

(
1
2

)
= 0 .

In order to compute Dα
f

(
1

s−1

)
, let us recall (Ortigueira, 2011, p. 59) that

L
(

Dα
f
(

f (t)
))

= sα L
(

f (t)
)
, (Res > 0)
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where L represents the (two-sided) Laplace transform. From the Laplace transform theory
(Beerends et al., 2003, Chap. 12), it is well know that

L
(
et)= 1

s−1
. (Res > 1)

Since the exponential function is uniformly convergent in its domain, L and Dα
f can be

exchanged by using the classical theorems on passing to the limit under the integral sign and
on term by term integration (Walnut, 2002, Chap. 1). It follows that

Dα
f

(
1

s−1

)
= Dα

f

(
L
(
et))= L

(
Dα

f
(
et))= sα

s−1
. (Res > 1) (3.31)

By substituting (3.31) into (3.30) and given that eq. (3.27) holds in Res >−2n, the proof
follows directly.

□

The importance of theorem 3.4.1 lies in the link between ζ (α) and Bernoulli numbers. In
order to show the consistency of (3.29), it is sufficient to show that it reduces to (3.25). This
property cannot be easily derived by starting from eq. (3.29). Nevertheless, reading the
previous proof backwards, eq. (3.30) converges to (3.25) as α approaches 0+,.

3.5 Functional equation of ζ (α)

In this section, the functional equation for ζ (α) is presented. In particular, the α-order
fractional derivatives of ζ fulfills the following

Theorem 3.5.1 (Guariglia and Silvestrov 2017). Let s be a complex variable and let α ∈(
R>0 \N

)
. For all s ∈ C, it is

ζ
(α)(s) = 2(2π)s−1 eiπα

∞

∑
n=0

∞

∑
j=0

∞

∑
k=0

Aα
n, j,k ζ

(n)(1− s)
(
−π

2

) j

· sin
(

π

2
(s+ j)

)
Γ(k)(1− s)

logn+ j+k−α(2π)
,

(3.32)

where Aα
n, j,k =

α
n+ j+k

n! j!k!
.

Proof : By applying (3.9) to both members of (1.10), we have
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ζ
(α)(s) =

1
π

Dα
f

(
ζ (1− s) sin

(
πs
2

)
Γ(1− s)(2π)s

)
. (3.33)

For reasons of simplicity, the fractional derivative in the RHS of (3.33) will be indicated with
I. The iteration of the generalized Leibniz rule gives

I =
∞

∑
n=0

(
α

n

)
dn

dsn

(
ζ (1− s)

)
Dα−n

f

(
sin
(

πs
2

)
Γ(1− s)(2π)s

)

=
∞

∑
n=0

(
α

n

)
dn

dsn

(
ζ (1− s)

) ∞

∑
j=0

(
α −n

j

)
d j

ds j

(
sin
(

πs
2

))
Dα−n− j

f

(
Γ(1− s)(2π)s

)
=

∞

∑
n=0

(
α

n

)
dn

dsn

(
ζ (1− s)

) ∞

∑
j=0

(
α −n

j

)
d j

ds j

(
sin
(

πs
2

))
∞

∑
k=0

(
α −n− j

k

)
· dk

dsk

(
Γ(1− s)

)
Dα−n− j−k

f (2π)s .

Being 

dn

dsn

(
ζ (1− s)

)
= eiπn

ζ
(n)(1− s) ,

d j

ds j

(
sin
(

πs
2

))
=

(
π

2

) j

sin
(

π

2
(s+ j)

)
,

dk

dsk

(
Γ(1− s)

)
= eiπk

Γ
(k)(1− s) ,

and since 
Dα−n− j−k

f (2π)s = (2π)s eiπ(α−n− j−k) logα−n− j−k(2π) ,

Aα
n, j,k

def
=

(
α

n

)(
α −n

j

)(
α −n− j

k

)
=

α
n+ j+k

n! j!k!
,

it follows that

I =
∞

∑
n=0

∞

∑
j=0

∞

∑
k=0

Aα
n, j,k ζ

(n)(1− s)
(

π

2

) j

sin
(

π

2
(s+ j)

)
Γ
(k)(1− s)

· (2π)s eiπ(α− j) logα−n− j−k(2π) = (2π)s eiπα
∞

∑
n=0

∞

∑
j=0

∞

∑
k=0

Aα
n, j,k

·ζ (n)(1− s)
(
−π

2

) j

sin
(

π

2
(s+ j)

)
Γ(k)(1− s)

logn+ j+k−α(2π)
.

(3.34)
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By substituting (3.34) into (3.33), it is

ζ
(α)(s) =

1
π

eiπα (2π)s
∞

∑
n=0

∞

∑
j=0

∞

∑
k=0

Aα
n, j,k ζ

(n)(1− s)
(
−π

2

) j

sin
(

π

2
(s+ j)

)

· Γ(k)(1− s)
logn+ j+k−α(2π)

= 2(2π)s−1 eiπα
∞

∑
n=0

∞

∑
j=0

∞

∑
k=0

Aα
n, j,k ζ

(n)(1− s)
(
−π

2

) j

· sin
(

π

2
(s+ j)

)
Γ(k)(1− s)

logn+ j+k−α(2π)
.

Eq. (3.32) holds for all s ∈ C since (1.10) is well-defined for every complex number s
(Apostol, 1998, Chap. 12).

□

Theorem 3.5.1 gives a functional equation for ζ (α). Unfortunately, starting from eq. (1.12)
and repeating the previous proof, a symmetrical version of (3.32) cannot be determined
since the invariance transformation s → 1− s is no longer preserved by using (3.9) for both
members of (1.12). In order to show the consistency of eq. (3.32), it is sufficient to show that
it reduces to (1.10) as α → 0+. Since proposition 3.3.5 holds for the Riemann ζ function, it
is

ζ
(α)(s) α→0+−−−−−−→ ζ (s) .

The same holds for their RHSs. In fact, even if the RHS of (3.32) appears to be sufficiently
complicated, the proof (of the theorem) 3.5.1 can be read backwards in order to obtain (3.33).
From (3.23)1, it follows that

Dα
f f (s) α→0+−−−−−→ f (0)(s) = f (s) , (3.35)

hence the RHS of (3.32) converges to the RHS of (1.10) as α goes to 0+. The simulations
showed that the RHS of (3.32) is far more complicated than that of (1.10), since each of its
approximations with finite upper limits has produced a buffer overflow in several numerical
tools for mathematical computation.

3.5.1 Simplified version

In order to minimize the computational cost of eq. (3.32), the approach proposed by Apostol
(1985) and Spira (1965) for the integer order derivative of ζ was followed. The computational
cost of the above-mentioned RHS was considerably reduced to only one infinite series (see
theorem 3.5.4). In the literature, Apostol and Spira were the first researchers to investigate
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the properties of the integer derivative ζ (k). In particular, Spira discovered the following
functional equation

(−1)k
ζ
(k)(1− s) = 2(2π)−s

k

∑
h=0

k

∑
n=0

(
ahkn cos

(
πs
2

)
+bhkn sin

(
πs
2

))
·Γ(h)(s)ζ (n)(s) ,

(3.36)

where ahkn and bhkn are constants. By replacing s with 1− s, eq. (3.36) becomes

ζ
(k)(s) = 2(2π)s−1 eiπk

k

∑
h=0

k

∑
n=0

(
ahkn cos

(
π

2
(1− s)

)
+bhkn sin

(
π

2
(1− s)

))
·Γ(h)(1− s)ζ (n)(1− s) .

(3.37)

The importance of eqs. (3.36), (3.37) lies in the fact that they provide the functional equation
of ζ (k) in terms of sines and cosines. Furthermore, Apostol (1985) showed that they can be
easily written in terms of complex exponentials. A modified version of this result is reported
below.

Proposition 3.5.2. Let k ∈ N. For all s ∈ C, it is

ζ
(k)(s) =

k

∑
h=0

(
k
h

)
eiπ(k−h)

(
e(1−s)wwk−h − e(1−s)w+iπ (w)k−h

)
·
(
Γ(1− s)ζ (1− s)

)(h)
,

(3.38)

where w =− log(2π)− iπ/2 .

Proof : Eq. (1.10) can be written as follows

ζ (s) = Γ(1− s)ζ (1− s)(2π)s−1 2sin
(

πs
2

)
= Γ(1− s)ζ (1− s)

(
e(1−s)[− log(2π)−iπ/2]− e(1−s)[− log(2π)+iπ/2]−iπ

)
,

being
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

(2π)s−1 = e(s−1) log(2π) ,

2sin
(

πs
2

)
=

ei πs
2 − e−i πs

2

i
= ei π

2 (s−1)− e−i π

2 (s+1) ,

e−i π

2 (s+1) = e−i π

2 s+i π

2 −iπ = ei π

2 (1−s)−iπ .

By introducing the complex function ψ given by

ψ(s,w,z) def
= Γ(s)ζ (s)esw+z , (z ∈ C)

it is

ζ (s) = ψ(1− s,w)−ψ(1− s,w,−iπ) , (3.39)

with ψ(1− s,w) = ψ(1− s,w,0). Differentiating (3.39) k times, we have

ζ
(k)(s) =

dk

dsk

(
ψ(1− s,w)

)
− dk

dsk

(
ψ(1− s,w,−iπ)

)
.

Since

dk

dsk

(
ψ(1− s,w,z)

)
=

dk

dsk

(
Γ(1− s)ζ (1− s)e(1−s)w+z

)
=

k

∑
h=0

(
k
h

)(
Γ(1− s)ζ (1− s)

)(h)(e(1−s)w+z
)(k−h)

,

and (
e(1−s)w+z

)(k−h)
= eiπ(k−h)w(k−h) e(1−s)w+z ,

it follows that

dk

dsk

(
ψ(1− s,w,z)

)
=

k

∑
h=0

(
k
h

)
eiπ(k−h) e(1−s)w+z w(k−h) (

Γ(1− s)ζ (1− s)
)(h)

.

Therefore
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ζ
(k)(s) =

k

∑
h=0

(
k
h

)
eiπ(k−h)

(
e(1−s)w w(k−h)− e(1−s)w+iπ (w)(k−h)

)
·
(
Γ(1− s)ζ (1− s)

)(h)
,

given that the complex exponential is a 2πi – periodic function.
□

Eq. (3.38) differs from the classical results of Apostol (1985), since it is derived from (1.10)
instead of (1.11). In order to find a fractional counterpart of (3.38), the following result is
given.

Lemma 3.5.3. Let s be a complex variable, let α ∈
(
R>0 \N

)
and let h ∈ N0. For all s ∈ C

and for all w ∈ C such that Rew < 0, it is

Dα−h
f

(
e(1−s)w

)
= eiπ(α−h)wα−he(1−s)w ,

where h ∈ N0 .

Proof : The fractional operator (3.9) for f (s) = e(1−s)w becomes

Dα−h
f

(
e(1−s)w

)
= e(1−s)w lim

l→0+

∞

∑
k=0

(−1)k(α−h
k

)
eklw

lα−h . (3.40)

The series in the RHS of (3.40) converges to g(w) =
(

1− elw
)α−h

if
∣∣elw
∣∣ < 1, that is

Rew < 0. By using L’Hôpital’s rule, we finally get

Dα−h
f

(
e(1−s)w

)
= e(1−s)w lim

l→0+

(
1− ewl

)α−h

lα−h = e(1−s)w

(
lim

l→0+

1− ewl

l

)α−h

= eiπ(α−h)wα−h e(1−s)w .

□

A generalization of (3.38) to the fractional case is provided by the next statement.

Theorem 3.5.4. Let s be a complex variable and let α ∈
(
R>0 \N

)
. For all s ∈C, eq. (3.32)

can be rewritten as
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ζ
(α)(s) =

∞

∑
h=0

(
α

h

)
eiπ(α−h)

(
e(1−s)wwα−h − e(1−s)w+iπ (w)α−h

)
·
(
Γ(1− s)ζ (1− s)

)(h)
,

(3.41)

where w =− log(2π)− iπ/2 .

Proof : By applying the fractional operator (3.9) to both members of (3.39), it is

ζ
(α)(s) = Dα

f ψ(1− s,w)−Dα
f ψ(1− s,w,−iπ) , (3.42)

so that

Dα
f ψ(1− s,w,z) =

∞

∑
h=0

(
α

h

)(
Γ(1− s)ζ (1− s)

)(h)(e(1−s)w+z
)(α−h)

=
∞

∑
h=0

(
α

h

)(
Γ(1− s)ζ (1− s)

)(h) ez
(

e(1−s)w
)(α−h)

,

being the constants transparent in Dα
f . Therefore, taking into account lemma 3.5.3, it follows

that

Dα−h
f ψ(1− s,w,z) =

∞

∑
h=0

(
α

h

)
eiπ(α−h)wα−he(1−s)w+z (

Γ(1− s)ζ (1− s)
)(h)

. (3.43)

Since eq. (1.10) is well defined in the whole complex plane C (Apostol, 1998, Chap. 12) and
by substituting (3.43) into (3.42), the proof follows.

□

The RHS of (3.41) has less computational cost than that of (3.32). Moreover, the fractional
counterpart of eq. (3.37) is given by the following

Theorem 3.5.5. Under the same hypothesis of theorem 3.5.4, it is

ζ
(α)(s) = 2(2π)s−1 eiπα

∞

∑
h=0

∞

∑
n=0

(
ahαn sin

(
πs
2

)
+bhαn cos

(
πs
2

))
·Γ(h)(1− s)ζ (n)(1− s) , (for all s ∈ C)

(3.44)

where the coefficients ahαn and bhαn are given by
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
ahαn

def
=

∞

∑
j=0

Aα
h, j,n

logh+ j+n−α(2π)

(
−π

2

) j

cos
(

π j
2

)
,

bhαn
def
=

∞

∑
j=0

Aα
h, j,n

logh+ j+n−α(2π)

(
−π

2

) j

sin
(

π j
2

)
.

Proof : Eq. (3.44) follows by substituting the identity

sin
(

π

2
(s+ j)

)
= sin

(
πs
2

)
cos
(

π j
2

)
+ cos

(
πs
2

)
sin
(

π j
2

)
,

into (3.32).
□

The previous theorem takes on a particular relevance. In fact, eq. (3.44) can be suitable for
several applications in harmonic analysis since it expresses the functional equation of ζ (α)

as a sum of sines and cosines. Therefore, eqs. (3.41), (3.44) represent two different and
interesting forms of (3.32).

3.6 Generalizations to the Hurwitz ζ function

In the literature, Apostol (1985) showed that the analysis developed in Section 3.5.1 can be
extended to the Hurwitz ζ function. In this section, the results given in the previous section
are generalized with respect to the Hurwitz ζ function.

Theorem 3.6.1. Let s be a complex variable, let α ∈
(
R>0 \N

)
and let p and q be two

integers such that 1 ≤ p ≤ q. For all s ∈ C, it is

ζ
(α)

(
s,

p
q

)
= 2(2πq)s−1 eiπα

∞

∑
h=0

∞

∑
j=0

∞

∑
n=0

Aα
h, j,n

Γ(h)(1− s)
logh+ j+n−α (2πq)

(
−π

2

) j

·
q

∑
m=1

sin
(

π

2
(s+ j)+

2πmp
q

)
ζ
(n)
(

1− s,
m
q

)
.

(3.45)

Proof : The generalized Leibniz rule can also be applied here. From eq. (1.18) it follows
that
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ζ
(α)

(
s,

p
q

)
= 2 Dα

f

(
(2πq)s−1

Γ(1− s)
q

∑
m=1

sin
(

πs
2
+

2πmp
q

)
ζ

(
1− s,

m
q

))

= 2
∞

∑
h=0

(
α

h

)
dh

dsh

(
Γ(1− s)

)
Dα−h

f

(2πq)s−1
q

∑
m=1

sin
(

πs
2
+

2πmp
q

)

·ζ
(

1− s,
m
q

)= 2
∞

∑
h=0

(
α

h

)
dh

dsh

(
Γ(1− s)

)
∞

∑
j=0

q

∑
m=1

(
α −h

j

)

· d j

ds j

(
sin
(

πs
2
+

2πmp
q

))
Dα−h− j

f

(
(2πq)s−1

ζ

(
1− s,

m
q

))

= 2
∞

∑
h=0

(
α

h

)
dh

dsh

(
Γ(1− s)

)
∞

∑
j=0

q

∑
m=1

(
α −h

j

)
d j

ds j

(
sin
(

πs
2
+

2πmp
q

))

·
∞

∑
n=0

(
α −h− j

n

)
dn

dsn

(
ζ

(
1− s,

m
q

))
Dα−h− j−n

f

(
(2πq)s−1

)
,

(3.46)

Since 

dh

dsh

(
Γ(1− s)

)
= eiπh

Γ
(h)(1− s) ,

d j

ds j

(
sin
(

πs
2
+

2πmp
q

))
=

(
π

2

) j

sin
(

π

2
(s+ j)+

2πmp
q

)
,

dn

dsn

(
ζ

(
1− s,

m
q

))
= eiπn

ζ

(
1− s,

m
q

)
,

and 
Dα−h− j−n

f

(
(2πq)s−1

)
= (2πq)s−1 eiπ(α−h− j−n) logα−h− j−n(2πq) ,(

α

h

)(
α −h

j

)(
α −h− j

n

)
=

α
h+ j+n

h! j!n!
= Aα

h, j,n ,

hence

ζ
(α)

(
s,

p
q

)
= 2

∞

∑
h=0

∞

∑
j=0

∞

∑
n=0

Aα
h, j,n

Γ(h)(1− s)
logh+ j+n−α(2πq)

(2πq)s−1 eiπ(α− j)
(

π

2

) j

·
q

∑
m=1

sin
(

π

2
(s+ j)+

2πmp
q

)
ζ

(
1− s,

m
q

)
.
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Eq. (3.45) holds for all s ∈ C since (1.10) is well defined in the whole complex plane C
(Apostol, 1998, Chap. 12), therefore the proof follows.

□

In order to show the consistency of (3.45), it is sufficient to show that it reduces to (1.18).
The Hurwitz ζ function fulfills hypotheses of proposition 3.3.5, hence

ζ
(α)

(
s,

p
q

)
α→0+−−−−−−→ ζ

(
s,

p
q

)
.

Even if the RHS of (3.45) appears to be sufficiently complicated, the proof (of the theorem)
3.6.1 can be read backwards until eq. (3.46). From (3.23)1, we have

Dα
f f (s) α→0+−−−−−→ f (0)(s) = f (s) ,

therefore the RHS of (3.46) converges to the RHS of (1.18) as α goes to 0+. Equivalent
forms of theorem 3.5.4 and theorem 3.5.5 hold also for the Hurwitz ζ function and are
reported below, respectively.

Theorem 3.6.2. Under the same hypotheses of theorem 3.6.1, eq. (3.45) can be rewritten by

ζ
(α)

(
s,

p
q

)
=

q

∑
m=1

∞

∑
h=0

(
α

h

)(
e(1−s)wq+i 2πmp

q wα−h − e(1−s)wq+i
(

π− 2πmp
q

)
(w)α−h

)

·

(
Γ(1− s)ζ

(
1− s,

m
q

))(h)

, (for all s ∈ C)

(3.47)

where wq =− log(2πq)− iπ/2 .

Proof : Since

2sin
(

πs
2
+

2πmp
q

)
=

ei
(

πs
2 + 2πmp

q

)
− e−i

(
πs
2 + 2πmp

q

)
i

= ei
(

π

2 (s−1)+ 2πmp
q

)

− e−i
(

π

2 (s+1)+ 2πmp
q

)
,

it is
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2(2πq)s−1 sin
(

πs
2
+

2πmp
q

)
= e(1−s)[− log(2πq)−i π

2 ]+i 2πmp
q

− e(1−s)[− log(2πq)+i π

2 ]−i
(

π+ 2πmp
q

)
,

so that

ζ

(
s,

p
q

)
=

q

∑
m=1

Γ(1− s)ζ

(
1− s,

m
q

)
2(2πq)s−1 sin

(
πs
2
+

2πmp
q

)
=

q

∑
m=1

Γ(1− s)

·ζ
(

1− s,
m
q

)(
e(1−s)[− log(2πq)−i π

2 ]+i 2πmp
q − e(1−s)[− log(2πq)+i π

2 ]−i
(

π+ 2πmp
q

))

=
q

∑
m=1

Γ(1− s)ζ
(

1− s,
m
q

)(
e(1−s)[− log(2πq)−i π

2 ]+i 2πmp
q

− e(1−s)[− log(2πq)+i π

2 ]+i
(

π− 2πmp
q

))
,

(3.48)

since the complex exponential is a 2πi – periodic function. The natural extension of ψ

(introduced in the proof of proposition 3.5.2) for the Hurwitz ζ function is given by

ψq

(
s,

m
q
,wq,z

)
def
= Γ(s)ζ

(
s,

m
q

)
eswq+z , (z ∈ C)

where wq =− log(2πq)− iπ/2. Hence, eq. (3.48) becomes

ζ

(
s,

p
q

)
=

q

∑
m=1

ψq

(
1− s,

m
q
,wq, i

2πmp
q

)
−ψq

(
1− s,

m
q
,wq, i

(
π − 2πmp

q

)) .

By proceeding as in the proof of theorem 3.5.4, we have

ζ
(α)

(
s,

p
q

)
=

q

∑
m=1

Dα
f ψq

(
1− s,

m
q
,wq, i

2πmp
q

)

− Dα
f ψq

(
1− s,

m
q
,wq, i

(
π − 2πmp

q

)) .

(3.49)
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Taking into account that (3.43) holds here by replacing ψ(1− s,w,z) and ζ (1− s) with

ψq

(
1− s,

m
q
,wq,z

)
and ζ

(
1− s,

m
q

)
, respectively, it follows that

Dα−h
f ψ

(
1− s,

m
q
,w,z

)
=

∞

∑
h=0

(
α

h

)
eiπ(α−h)wα−h

q e(1−s)wq+z

·

(
Γ(1− s)ζ

(
1− s,

m
q

))(h)

.

(3.50)

Given that eq. (1.10) is well defined in the whole complex plane, by substituting (3.50) into
(3.49) the proof follows.

□

Theorem 3.6.3. Under the same hypotheses of theorem 3.6.1, it is

ζ
(α)

(
s,

p
q

)
= 2(2πq)s−1 eiπα

∞

∑
h=0

∞

∑
n=0

Γ
(h)(1− s)

q

∑
m=1

ap,q
hαmn sin

(
π

2
s
)

+bp,q
hαmn cos

(
π

2
s
)ζ

(n)
(

s,
m
q

)
, (for all s ∈ C)

(3.51)

where the coefficients ap,q
hαmn and bp,q

hαmn are given by
ap,q

hαmn
def
=

∞

∑
j=0

Aα
h, j,n

logh+ j+n−α(2πq)

(
−π

2

) j

cos
(

π

2
j+

2πmp
q

)
,

bp,q
hαmn

def
=

∞

∑
j=0

Aα
h, j,n

logh+ j+n−α(2πq)

(
−π

2

) j

sin
(

π

2
j+

2πmp
q

)
.

(3.52)

Proof : Eq. (3.51) follows by substituting the identity

sin
(

π

2
(s+ j)+

2πmp
q

)
= sin

(
π

2
s+
(

π

2
j+

2πmp
q

))

= sin
(

π

2
s
)

cos
(

π

2
j+

2πmp
q

)
+ cos

(
π

2
s
)

sin
(

π

2
j+

2πmp
q

)
,

into (3.45).
□
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The coefficients (3.52) are constant as in theorem 3.5.5. Theorem 3.6.3 represents a consistent
generalization of theorem 3.5.5 since eq. (3.51) reduces to (3.44) for p = q = 1. In particular,
the functional equations of both ζ (α) and (2.9)2 can be written in terms of sines and cosines.

3.6.1 Integral representation via Euler summation formula

The integral representation of (2.9)2 is presented here. It is based on the Euler summation
formula, which approximates a finite sum by an integral.

Theorem 3.6.4 (Euler summation formula). Let f ∈ C 1 ([y,x]) such that 0 < y < x. It holds
that

∑
y<n≤x

f (n) =
∫ x

y
f (t)dt +

∫ x

y

(
t −⌊t⌋

)
f ′(t)dt + f (x)

(
⌊x⌋− x

)
− f (y)

(
⌊y⌋− y

)
.

Proof : See Apostol (1998, pp. 54–55).
□

Apostol (1985) provided an integral representation for the k-order integer derivative of (1.16).
Its fractional generalization is given by the following

Theorem 3.6.5. Let s be a complex variable such that Res >−1, let α ∈
(
R>0 \N

)
and let

a ∈ R : 0 < a ≤ 1. The integral representation of (2.9)2 is given by

ζ
(α) (s,a) = eiπα

(
logα a

2as +a1−s
∞

∑
j=0

α
j logα− j a
(s−1) j+1 − s(s+1)

·
∫

∞

0

ϕ2(x) logα(x+a)
(x+a)s+2 dx+α(2s+1)

∫
∞

0

ϕ2(x) logα−1(x+a)
(x+a)s+2 dx

−α(α −1)
∫

∞

0

ϕ2(x) logα−2(x+a)
(x+a)s+2 dx

)
,

(3.53)

where

ϕ2(x)
def
=
∫ x

0

(
t −⌊t⌋−1

)
dt ,

is a 1 – periodic function (Apostol, 1985) satisfying the following condition

ϕ2(x) =
1
2

x(x−1) . (0 ≤ x ≤ 1)

Proof : The Euler summation formula gives the following representation (Apostol, 1985) for
the Hurwitz ζ function
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ζ (s,a) = a−s
(

1
2
+

a
s−1

)
− s(s+1)

∫
∞

0

ϕ2(x)
(x+a)s+2 dx , (Res >−1) (3.54)

and since Dα
f is a linear operator, it is

ζ
(α) (s,a) = Dα

f

(
1

2as

)
+Dα

f

(
a1−s

s−1

)
−Dα

f

(
s(s−1)

∫
∞

0

ϕ2(x)
(x+a)s+2 dx

)
. (3.55)

From (3.10) it follows that

Dα
f

(
1

2as

)
=

eiπα

2
logα a

as . (3.56)

By taking into account the generalized Leibniz rule (theorem 3.3.4), we have

Dα
f

(
a1−s

s−1

)
=

∞

∑
j=0

(
α

j

)(
1

s−1

)( j)( 1
as−1

)(α− j)

.

Since (
1

s−1

)( j)

= eiπ j j!
(s−1) j+1 ,

and (
1

as−1

)(α− j)

= eiπ(α− j) logα− j a
as−1 ,

it is

Dα
f

(
a1−s

s−1

)
=

∞

∑
j=0

(
α

j

)
j!

eiπα

(s−1) j+1
logα− j a

as−1

= eiπα a1−s
∞

∑
j=0

α
j logα− j a
(s−1) j+1 .

(3.57)

Analogously, we have

Dα
f

(
s(s+1)

∫
∞

0

ϕ2(x)
(x+a)s+2 dx

)
=

∞

∑
m=0

(
α

m

)(
s(s+1)

)(m)
∫

∞

0
ϕ2(x)

(
1

(x+a)s+2

)(α−m)

dx .

(3.58)
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Being

(
s(s+1)

)(m)
= 0 , (∀m > 2)

the series in (3.58) reduces to only three terms, hence

Dα
f

(
s(s−1)

∫
∞

0

ϕ2(x)
(x+a)s+2 dx

)
=

(
α

0

)
s(s+1)eiπα

∫
∞

0

ϕ2(x) logα(x+a)
(x+a)s+2 dx

+

(
α

1

)
(2s+1)eiπ(α−1)

∫
∞

0

ϕ2(x) logα−1(x+a)
(x+a)s+2 dx

+

(
α

2

)
2eiπ(α−2)

∫
∞

0

ϕ2(x) logα−2(x+a)
(x+a)s+2 dx

= s(s+1)eiπα

∫
∞

0

ϕ2(x) logα(x+a)
(x+a)s+2 dx

−α(2s+1)eiπα

∫
∞

0

ϕ2(x) logα−1(x+a)
(x+a)s+2 dx

+α(α −1) eiπα

∫
∞

0

ϕ2(x) logα−2(x+a)
(x+a)s+2 dx .

(3.59)

By substituting (3.56), (3.57), and (3.59) into (3.55), the proof follows.
□

According to (3.53), we have

ζ
(α) (0,a) = eiπα

(
logα a

2
+a

∞

∑
j=0

α
j logα− j a
(−1) j+1 +α

∫
∞

0

ϕ2(x) logα−1(x+a)
(x+a)2 dx

−α(α −1)
∫

∞

0

ϕ2(x) logα−2(x+a)
(x+a)2 dx

)
,

and since ζ (α) (s,1) = ζ (α)(s), it follows that

ζ
(α)(0) = eiπα

(
α

∫
∞

0

ϕ2(x) logα−1(x+1)
(x+1)2 dx−α(α −1)

∫
∞

0

ϕ2(x) logα−2(x+1)
(x+1)2 dx

)
= α eiπα

∫
∞

0

ϕ2(x) logα−1(x+1)
(x+1)2

(
1− (α −1) log−1(x+1)

)
dx .

Hence
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ζ
(α)(0) α→1−−−−−→ ζ

′(0) =−1−
∫

∞

0

ϕ2(x)
(x+1)2 dx =−1−

∫
∞

1

ϕ2(x)
x2 dx =− log(2π)

2
,

by taking into account (Apostol, 1969, p. 616) that

1+
∫

∞

1

ϕ2(x)
x2 dx =

log(2π)

2
.

Therefore, eq. (3.53) is in accordance with the classical theory of the Riemann ζ function
since it reduced to (3.6) as α → 1.

3.7 Fractional derivative of the Lerch zeta function and
functional equation

In this section, the Lerch zeta function is introduced in order to compute its fractional
derivative and to discuss the associated functional equation.

3.7.1 Remarks

First, some preliminaries on the Lerch zeta function are given.

Definition 3.7.1 (Lerch zeta function). Let s be a complex variable, let λ ∈ R and let
a∈R : 0< a≤ 1. The Lerch zeta function, denoted by L, is given (Laurinčikas and Garunkštis,
2002, Chap. 2) by

L(λ ,s,a) def
=

∞

∑
n=0

e2πiλn

(n+a)s , (3.60)

with

Res >


1 , λ ∈ Z ,

0 , λ /∈ Z .

(3.61)

Thus, the Lerch zeta function reduces to the Hurwitz ζ function for λ ∈Z and L(λ ∈ Z,s,1)=
ζ (s,1) = ζ (s). Moreover, it is

L
(

1
2
,s,1

)
=

∞

∑
n=1

(−1)n−1

ns = η(s) ,
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hence L also generalizes the Dirichlet η function (see Chapter 4). The Lerch zeta function is
a particular case of a general Dirichlet series (Apostol, 1997, Chap. 8), that is

∞

∑
n=0

ane−λns , (3.62)

where (λn)n∈N is a strictly increasing sequence of real numbers such that λn
n→∞−−−−→ ∞.

It appears to be clear that for the Lerch zeta function an = e2πiλn and λn = log(n+a).
According to the fundamental convergence theorem on (3.62), the Lerch zeta function
converges uniformly on compact subsets of Res > 1 (Apostol, 1997, Chap. 8; Laurinčikas
and Garunkštis, 2002, Chap. 2). The Lerch zeta function (like the Riemann ζ function
and the Hurwitz ζ function) is analytically continuable to an entire function (Laurinčikas
and Garunkštis, 2002, Chap. 2). A generalization of L is given by the so-called Lerch
transcendent function, denoted with Φ and defined (Srivastava and Choi, 2011, Chap. 2) as
follows

Φ(z,s,a) def
=

∞

∑
n=0

zn

(n+a)s . (s ∈ C)

with a /∈ Z≤0 and z ∈C : |z| ≤ 1. In particular, the previous definition makes sense whenever
s ∈ C , |z|< 1 ,

Res > 1 , |z|= 1 .

Obviously, L(λ ,s,a) = Φ

(
e2πiλ ,s,a

)
. Fermi-Dirac and Bose-Einstein distributions can be

written by using the function Φ. Under the assumption that 0 < λ < 1, Lerch (1883) derived
the following three-term functional equation (Laurinčikas and Garunkštis, 2002, pp. 22–23)

L(λ ,1− s,a) =
Γ(s)
(2π)s

(
e

iπs
2 −2πiaλ L(−a,s,λ )

+ e
−iπs

2 +2πia(1−λ )L(a,s,1−λ )

)
, (for all s ∈ C)

(3.63)

that is

L(λ ,s,a) =
Γ(1− s)
(2π)1−s

(
e

iπ(1−s)
2 −2πiaλ L(−a,1− s,λ )+ e

−iπ(1−s)
2 +2πia(1−λ )

·L(a,1− s,1−λ )

)
. (for all s ∈ C)

(3.64)
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Eq. (3.64) reduces to (1.10) for λ ∈ Z and a = 1 since L(λ ∈ Z,s,1) = ζ (s), so that the
previous functional equation is in accordance with the classical theory of the Riemann ζ

function. Moreover, an approximation of the Lerch zeta function by finite sum is given
(Garunkštis, 2004; Laurinčikas and Garunkštis, 2002, pp. 32–34) by

L(λ ,s,a) =
x

∑
n=0

e2πiλn

(n+a)s +O
(

x−σ

)
, (s = σ + i t) (3.65)

where the RHS is written by Landau notation (Graham et al., 1994, Chap. 9) and
0 < λ < 1 ,

σ > 0 ,

|t| ≤ π λ x .

(3.66)

However, the RHS of (3.65) often appears to be too long for applications. An approximate
functional equation for (3.60), which gives more precise results, is reported below.

Theorem 3.7.2. Let 0 < λ ≤ 1, 0 < a ≤ 1 and let s = σ + i t be a complex variable with
σ , t ∈ R : 0 < σ ≤ 1 and t ≥ 1. Under the following conditions

y =
(
t/2π

)1/2
,

q = ⌊y⌋ ,

k = ⌊y−a⌋ ,

β = q− k .

it is

L(λ ,s,a) =
k

∑
n=0

e2πiλn

(n+a)s +

(
2π

t

)σ− 1
2+it

eit+ π i
4 −2πi{λ}a

q

∑
n=0

e−2πian

(n+λ )1−s

+

(
2π

t

)σ

2

eπ i f (λ ,t,a)
ψ
(
2y−q− k−{λ}−a

)
+O

(
t

σ−2
2

)
,

(3.67)

where the functions f and ψ are given, respectively, by

f (λ , t,a) =− t
2π

log
t

2πe
− 7

8
+

1
2

(
a2 −{λ}2

)
−aβ

+2y
(
β +{λ}−a

)
− 1

2
(q+ k)−{λ}(β +a) ,
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and

ψ(b) =
cos
(

π

(
b2

2 −b− 1
8

))
cos(πb)

.

Proof : See Laurinčikas and Garunkštis (2002, pp. 53–59).
□

It is not hard to show that eq. (3.67) holds uniformly in λ and a (Garunkštis, 2004).

3.7.2 Functional equation of L(α)

First and foremost, the fractional derivative of the Lerch zeta function is computed.

Theorem 3.7.3. Let λ ∈ R and let α ∈
(
R>0 \N

)
. Moreover, let s be a complex variable

such that the conditions (3.61) hold. The α-order fractional derivative of L is given by

L(α)(λ ,s,a) = eiπα
∞

∑
n=0

logα(n+a)
(n+a)s e2πiλn . (0 < a ≤ 1) (3.68)

Proof : As in the proof of theorem 3.3.2, it is

Dα
f L(λ ,a,s) = lim

h→0+

∞

∑
k=0

(
α

k

)
(−1)kL(s− kh)

hα
= lim

h→0+

1
hα

∞

∑
k=0

∞

∑
n=0

(
α

k

)
(−1)k e2πiλn

(n+a)s−kh

=
∞

∑
n=0

e2πiλn

(n+a)s lim
h→0+

1
hα

∞

∑
k=0

(
α

k

)
(−1)k(n+a)kh ,

and

∞

∑
k=0

(
α

k

)
(−1)k(n+a)kh =

∞

∑
k=0

(
α

k

)
(−(n+a)h)k =

(
1− (n+a)h

)α

,

It follows that

Dα
f L(λ ,a,s) =

∞

∑
n=0

e2πiλn

(n+a)s lim
h→0+

(
1− (n+a)h

)α

hα
. (3.69)

By L’Hôpital’s rule, we have
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lim
h→0+

(
1− (n+a)h

h

)α

=

(
lim

h→0+

1− (n+a)h

h

)α

=

(
− lim

h→0+
(n+a)h log(n+a)

)α

= eiπα logα(n+a) .

(3.70)

By substituting (3.70) into (3.69), the proof follows directly.
□

Eq. (3.68) consistently generalizes (3.10) since L(α) (λ ∈ Z,s,a) = ζ (α)(s,a). By using the
generalized Leibniz rule, a three-term functional equation for L(α) can easily be derived and
is reported below.

Theorem 3.7.4. Let λ ∈ R, 0 < a ≤ 1 and let α ∈
(
R>0 \N

)
. Moreover, let s = σ + i t be a

complex variable with with σ , t ∈ R. The following assertions hold.

(i) If 0 < λ < 1, for all s ∈ C we have

L(α)(λ ,s,a) =
eiπα

(2π)1−s

∞

∑
m=0

∞

∑
j=0

m

∑
k=0

Cα
m, j,k

(
e

iπ(1−s)
2 −2πiaλ

(
iπ
2

)k

L(m−k)(−a,1− s,λ )

+ e
−iπ(1−s)

2 −2πia(1−λ )

(
− iπ

2

)k

L(m−k)(a,1− s,1−λ )

)
Γ( j)(1− s)

logm+ j−α(2π)
,

(3.71)

where Cα
m, j,k =

α
m+ j

j!k!(m− k)!
.

(ii) Under the conditions (3.66), it is

L(α)(λ ,s,a) = eiπα
∑

0≤n≤x

log(α)(n+a)
(n+a)s e2πiλn +O

(
logα x

xσ

)
. (3.72)

Proof : (i) By applying Dα
f to both members of (3.64), it follows that

L(α)(λ ,s,a) =
1

2π
Dα

f

((
e

iπ(1−s)
2 −2πiaλ L(−a,1− s,λ )+ e

−iπ(1−s)
2 +2πia(1−λ )

·L(a,1− s,1−λ )

)
Γ(1− s)(2π)s

)
.

(3.73)

The RHS of (3.73) is given by
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Dα
f

((
e

iπ(1−s)
2 −2πiaλ L(−a,1− s,λ )+ e

−iπ(1−s)
2 +2πia(1−λ )L(a,1− s,1−λ )

)
·Γ(1− s)(2π)s

)
(3.17)
=

∞

∑
m=0

(
α

m

)
dm

dsm

(
e

iπ(1−s)
2 −2πiaλ L(−a,1− s,λ )+ e

−iπ(1−s)
2 +2πia(1−λ )

·L(a,1− s,1−λ )

)
∞

∑
j=0

(
α −m

j

)
d j

ds j

(
Γ(1− s)

)
Dα−m− j

f (2π)s .

Since

dm

dsm

(
e

iπ(1−s)
2 −2πiaλ L(−a,1− s,λ )+ e

−iπ(1−s)
2 +2πia(1−λ )L(a,1− s,1−λ )

)
=

dm

dsm

(
e

iπ(1−s)
2 −2πiaλ L(−a,1− s,λ )

)
+

dm

dsm

(
e
−iπ(1−s)

2 +2πia(1−λ )L(a,1− s,1−λ )

)
=

m

∑
k=0

(
m
k

)(
e

iπ(1−s)
2 −2πiaλ

(
−iπ

2

)k

L(m−k)(−a,1− s,λ )+ e
−iπ(1−s)

2 −2πia(1−λ )

(
iπ
2

)k

·L(m−k)(a,1− s,1−λ )

)
eiπ(m−k) ,

and 

Dα−m− j
f (2π)s = (2π)s eiπ(α−m− j) logα−m− j(2π) ,

d j

ds j

(
Γ(1− s)

)
= eiπ j

Γ
( j)(1− s) ,

Cα
m, j,k

def
=

(
α

m

)(
α −m

j

)(
m
k

)
=

α
m+ j

j!k!(m− k)!
,(

± iπ
2

)k

= eiπk
(
∓ iπ

2

)k

⇒
(
± iπ

2

)k

eiπ(m−k) =

(
∓ iπ

2

)k

eiπm ,

it is

L(α)(λ ,a,s) =
eiπα

2π

∞

∑
m=0

∞

∑
j=0

m

∑
k=0

Cα
m, j,k

(
e

iπ(1−s)
2 −2πiaλ

(
iπ
2

)k

L(m−k)(−a,1− s,λ )

+ e
−iπ(1−s)

2 −2πia(1−λ )

(
− iπ

2

)k

L(m−k)(a,1− s,1−λ )

)
(2π)s Γ( j)(1− s)

logm+ j−α(2π)
,

therefore eq. (3.71) follows directly. (ii) From eq. (3.65), it follows that
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L(α)(λ ,a,s) = Dα
f

(
∑

0≤n≤x

e2πiλn

(n+a)s

)
+Dα

f

(
O
(

x−σ

))
. (3.74)

From (2.9)2 we have

Dα
f

(
∑

0≤n≤x

e2πiλn

(n+a)s

)
= eiπα

∑
0≤n≤x

log(α)(n+a)
(n+a)s e2πiλn , (3.75)

and being σ = Res, by using the classical definition of the Grünwald-Letnikov fractional
derivative (Pudlubny, 1999, Chap. 2), it is

Dα
f

(
O
(

x−σ

))
=O

(
logα x

xσ

)
. (3.76)

Consequently, by substituting (3.75) and (3.76) into (3.74), the approximation (3.72) follows.
□

Eqs. (3.71) and (3.72) clearly represent the fractional counterpart of (3.64) and (3.65),
respectively. In particular, eq. (3.72) provides a finite-sum approximation of L(α). The
results given in theorem 3.7.4 are in accordance with the theory of the Lerch zeta function
(Laurinčikas and Garunkštis, 2002, Chaps. 2–4).



Chapter 4

On the critical strip of ζ (α)

4.1 Introduction

In this chapter, the link between ζ (α) and the distribution of prime numbers is studied and
discussed extensively. In the first part of the chapter, Euler products are briefly described and
the logarithmic fractional derivative of the Riemann ζ function is computed. Furthermore, the
α-order fractional derivative of the Dirichlet η function is explicitly computed and discussed
in order to better investigate the behavior of ζ (α) on the critical strip and its main properties.
In fact, η has the same zeros on the critical line (Borwein et al., 2008, Chap. 5), so that
this function can provide better knowledge of prime numbers through the Riemann ζ . The
convergence of η(α) is carefully studied by showing that it converges for Res > α , hence
the two functions η(α) and ζ (α) characterize the complex strip α < Res < 1+α as η and ζ

do for the classical critical strip.
Chapter 4 is outlined as follows. In the next section, Euler products are introduced in

order to discuss the link between ζ (α) and prime numbers. In Section 4.3, the α-order
fractional derivative of the Dirichlet η function is explicitly computed and its half-plane of
convergence is studied. The investigation into the link between ζ (α) and η(α) is introduced
in this section and is developed in Section 4.4 together with the fractional counterpart of the
critical strip.

4.2 Prime numbers and ζ (α)

The problem of the link between ζ (α) and the prime numbers is here presented and discussed.
In particular, in the first part some remarks on the representation of the Dirichlet series as an
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infinite product over the set of all prime numbers are given, while in the second part, the link
between ζ (α) and the distribution of prime numbers is proposed and discussed.

4.2.1 Remarks on Euler products

The Dirichlet series can be introduced in order to generalize the Euler formula (1.13). Euler
(1737) provided the following statement (Apostol, 1998, pp. 230–231), which represents a
fundamental step for our purpose.

Theorem 4.2.1. Let s be a complex variable and suppose f is a multiplicative function.

Under the hypothesis that
∞

∑
n=1

f (n) is absolutely convergent, it is

∞

∑
n=1

f (n) = ∏
p∈P

{
1+ f (p)+ f (p2)+ · · ·

}
. (4.1)

Moreover, if f is completely multiplicative, we have

∞

∑
n=1

f (n) = ∏
p∈P

1
1− f (p)

. (4.2)

Proof : Let

P(x) = ∏
p≤x

{
1+ f (p)+ f (p2)+ · · ·

}
, (4.3)

be the finite product extended on all prime numbers p ≤ x. Since the RHS of (4.3) is the
product of a finite number of absolutely convergent series, they can be multiplied and the
terms can be rewritten without modifying the sum. It is evident that its typical term is given
by

f
(

pk1
1

)
f
(

pk2
2

)
· · · f

(
pkt

t

)
= f

(
pk1

1 pk2
2 · · · pkt

t

)
.

Hence, from theorem 1.3.1, it is

P(x) = ∑
n∈C

f (n) ,

where C = {n ∈ N : p | n ⇒ p ≤ x} being p ∈ P. Consequently, we get

∞

∑
n=1

f (n)−P(x) = ∑
n̸∈C

f (n) .

It follows that
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∣∣∣∣∣ ∞

∑
n=1

f (n)−P(x)

∣∣∣∣∣≤ ∑
n̸∈C

∣∣ f (n)∣∣≤ ∑
n>x

∣∣ f (n)∣∣ x→∞−−−−−→ 0 ,

given that
∞

∑
n=1

| f (n)| is convergent. Hence

P(x) x→∞−−−−−→
∞

∑
n=1

f (n) .

Recall that an infinite product of the form ∏(1+ cn) converges absolutely whenever the
associated series ∑cn converges absolutely (Knopp, 1990, Chap. 7). Since

∑
p≤x

∣∣∣ f (p)+ f (p2)+ · · ·
∣∣∣≤ ∑

p≤x

(∣∣ f (p)
∣∣+ ∣∣∣ f (p2)

∣∣∣+ · · ·
)
≤

∞

∑
n=2

∣∣ f (n)∣∣ x→∞−−−−−→ 0 ,

and since all the partial sums are bounded, the following series

∑
p≤x

∣∣∣ f (p)+ f (p2)+ · · ·
∣∣∣ ,

converges therefore the product in (4.1) converges absolutely. Whenever f is completely
multiplicative, it follows that f (pk) = f (p)k so that each series on the RHS of (4.1) is nothing

more than a geometric series with sum
1

1− f (p)
.

□

In eqs. (4.1), (4.2), the infinite product is usually called the Euler product of the associated
series. The previous theorem performs an important role in analytic number theory owing to
the following

Corollary 4.2.2. Let s be a complex variable such that s = x+ iy with x,y ∈ R and let the
Dirichlet series (1.19) be absolutely convergent for x > xa. It follows that

∞

∑
n=1

f (n)
ns = ∏

p∈P

{
1+

f (p)
ps +

f (p2)

p2s + · · ·

}
. (x > xa) (4.4)

Furthermore, if f is completely multiplicative, it is

∞

∑
n=1

f (n)
ns = ∏

p∈P

1
1− f (p)p−s . (x > xa) (4.5)
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Proof : It follows directly from applying theorem 4.2.1 to absolutely convergent Dirichlet
series.

□

The previous corollary can be applied by using many of the arithmetical functions presented
in Chapter 1. In fact, from Section 1.5, it is

f = I ⇒ ζ (s) = ∏
p∈P

1
1− p−s , (Res > 1)

f = µ ⇒
∞

∑
n=1

µ(n)
ns = ∏

p∈P
(1− p−s) , (Res > 1)

f = φ ⇒
∞

∑
n=1

φ(n)
ns =

ζ (s−1)
ζ (s)

= ∏
p∈P

1− p−s

1− p1−s , (Res > 2)

f = λ ⇒
∞

∑
n=1

λ (n)
ns =

ζ (2s)
ζ (s)

= ∏
p∈P

1
1+ p−s . (Res > 1)

The scientific literature contains no one further generalization of (1.13), that is, a non-
multiplicative version of (4.4). Hence, this represents an interesting open problem in the
theory of Dirichlet series. Nevertheless, in the next subsection the link between ζ (α) and the
distribution of prime numbers is discussed is some detail.

4.2.2 The role of ζ (α) in the distribution of prime numbers

Theorem 4.2.1 cannot utilized to obtain a link between ζ (α) and the distribution of prime
numbers, since logα is a non-multiplicative function. A partial result towards the repre-
sentation sought can be obtained by the logarithmic fractional derivative of the Riemann ζ

function, which is given by the following

Theorem 4.2.3. Let s be a complex variable such that s = x + iy with x,y ∈ R and let
α ∈

(
R>0 \N

)
. In the half-plane of convergence x > 1, it is

CDα logζ (s) = eiπα
∑
p∈P

∞

∑
k=1

p−ks logα p kα−1 . (4.6)

where the fractional derivative CDα is computed on all the complex numbers xeiθ such that
Re(xeiθ )> 0.



4.2 Prime numbers and ζ (α) 79

Proof : From (1.13), it follows that

logζ (s) = log

∏
p∈P

1
1− p−s

= ∑
p∈P

log
1

1− p−s =− ∑
p∈P

log
(

1− p−s
)
,

hence

CDα logζ (s) =
ei(π−θ)(α−m)

Γ(m−α)

∫
∞

0

dm

dsm

(
logζ

(
s+ xeiθ

)) dx
xα−m+1

=−ei(π−θ)(α−m)

Γ(m−α) ∑
p∈P

dm−1

dsm−1

∫
∞

0

d
ds

(
log
(

1− p−s−xeiθ
)) dx

xα−m+1 ,

by taking into account the uniform convergence of the Riemann ζ function. Being

d
ds

(
log
(

1− p−s−xeiθ
))

=
p−s−xeiθ

1− p−s−xeiθ log p ,

and by using the change of variables xeiθ = z, it follows that

CDα logζ (s) =−ei(π−θ)(α−m)

Γ(m−α) ∑
p∈P

log p
dm−1

dsm−1

(
p−s

∫
∞

0

p−xeiθ
xm−α−1

1− p−s−xeiθ dx

)

=−ei(π−θ)(α−m)

Γ(m−α) ∑
p∈P

log p
dm−1

dsm−1

(
p−s

∫
∞

0

p−z zm−α−1

1− p−s−z e−iθ(m−α) dz

)

=− eiπ(α−m)

Γ(m−α) ∑
p∈P

log p
dm−1

dsm−1

(
p−s

∫
∞

0

p−z zm−α−1

1− p−s−z dz

)
.

(4.7)

Since (Mathews and Howell, 2006, p. 141)

1
1− p−s−z =

∞

∑
k=0

p−k(s+z) ,
(∣∣p−s−z∣∣< 1

)
, (4.8)

it is

∫
∞

0

p−z zm−α−1

1− p−s−z dz =
∞

∑
k=0

p−ks
∫

∞

0
p−(k+1)zzm−α−1 dz

=
∞

∑
k=0

p−ks
∫

∞

0
e−x xm−α−1

(k+1)m−α logm−α p
dx

= Γ(m−α) logα−m p
∞

∑
k=0

p−ks(k+1)α−m ,

(4.9)
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where being m−α > 0, the last RHS of the continued equality above makes sense. By
substituting (4.9) into (4.7), it follows that

CDα logζ (s) =−eiπ(α−m)
∑
p∈P

logα−m+1 p
dm−1

dsm−1

(
∞

∑
k=0

p−s(k+1)(k+1)α−m

)
.

Thus,

∞

∑
k=0

p−s(k+1)(k+1)α−m =
∞

∑
k=1

p−sk kα−m ,

and since

d
ds

(
p−sk

)
= p−sk log p (−k) ,

d2

ds2

(
p−sk

)
= p−sk log2 p (−k)2 ,

...

dm−1

dsm−1

(
p−sk

)
= p−sk logm−1 p eiπ(m−1) km−1 ,

consequently

CDα logζ (s) = eiπα
∑
p∈P

logα p
∞

∑
k=1

p−skkαk−1

= eiπα
∑
p∈P

∞

∑
k=1

p−sk logα p kα−1 .

Let σ + it be the rectangular form of the complex number z = xeiθ . The condition (4.8) is
satisfied being 

x > 1 ,

σ > 1 ,∣∣p−s−z∣∣= ∣∣∣∣ 1
ps

∣∣∣∣ ∣∣∣∣ 1
pz

∣∣∣∣= 1
px

1
pσ

= p−x−σ ,

which completes the proof.
□
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Eq. 4.6 represents a fractional counterpart of the integer case. In fact, it is easy to show that

dm

dsm logζ (s) = eiπm
∑
p∈P

∞

∑
k=1

p−ks logm p km−1 , (m ∈ Z>0) (4.10)

therefore eq. (4.10) can be simply derived by (4.6) by replacing m with α . Theorem 4.2.3
does not clearly solve the problem of the link between ζ (α) and the distribution of prime
numbers. In fact, eq. 4.6 gives no information on it. Eulerian-type proofs have shown no
appreciable results due to the presence of logα n in (3.10). A direct computation by Caputo-
Ortigueira fractional derivative does not appear possible, since infinite product (1.13) and
integral symbol cannot be interchanged. Therefore, the link between ζ (α) and the distribution
of prime numbers is currently an open problem. By taking into account the introduction of
the fractional critical strip (see Section 4.4), the proposed problem can provide interesting
results in the near future.

4.3 The fractional derivative of the Dirichlet η function

In this section, the fractional derivative of the Dirichlet η function is computed and its
half-plane of convergence is determined.

Definition 4.3.1 (Dirichlet η function). Let s be a complex variable. The Dirichlet η

function (called also alternating Riemann ζ function) is given (Srivastava and Choi, 2011,
pp. 384–385) by

η(s) def
=

∞

∑
n=1

(−1)n−1

ns . (Res > 0) (4.11)

By a direct computation it is

η(s) = 1−2−s +3−s −4−s + . . .= 1+
(
−2 ·2−s +2−s

)
+3−s+

+
(
−2 ·4−s +4−s

)
+ . . .=

(
1−21−s

)
ζ (s) ,

(4.12)

that is

ζ (s) =
η(s)

1−21−s . (Res > 1) (4.13)

Since η(1) coincides with the harmonic series, that is η(1) = log2, the pole of ζ at s = 1 is
canceled by the vanishing of the factor 1−21−s. It follows that the half-plane of convergence
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associated with (4.11) is Res > 0 (Adams, 2005), hence the introduction of an alternating
factor (−1)n−1 within the series provides an extension of the convergence domain. It can
also be shown that the Riemann hypothesis is true if and only if the zeros of η , which belong
to the strip 0 < Res < 1, are also distributed along the critical line (Borwein et al., 2008,
Chap. 5). Considering the correspondent domains of convergence, it appears to be clear that
η , as with ζ , can be used to investigate the zeros belonging to the critical line. In fact, both ζ

and η have the same zeros on the critical line Res = 1/2. The α-order fractional derivative
of η can easily be computed by both (1.35) and (3.9). From (3.10), it follows directly that

η
(α)(s) = eiπα

∞

∑
n=2

(−1)n−1 logα n
ns . (4.14)

The convergence of the series in (4.14) is given by the following

Theorem 4.3.2. Let s be a complex variable such that s = x + iy with x,y ∈ R and let
α ∈

(
R>0 \N

)
. The α-order fractional derivative of (4.11) is a complex function of s which

converges absolutely in the half-plane

x > α . (4.15)

Proof : Since η(α) and ζ (α) differ only in the alternating factor (−1)n−1, from (2.3) it
follows that 

Re
(

η(α)(s)
)
=

∞

∑
n=1

(−1)n−1 logα n
nx cos(πα − y logn) ,

Im
(

η(α)(s)
)
=

∞

∑
n=1

(−1)n−1 logα n
nx sin(πα − y logn) .

Being sinx ≤ |sinx| ≤ 1 for all x ∈ R, it is

(−1)n−1 logα n
nx sin(πα − y logn)≤ (−1)n−1 logα n

nx |sin(πα − y logn) |

≤ (−1)n−1 logα n
nx < (−1)n−1 nα

nx =
(−1)n−1

nx−α
.

Clearly,
(−1)n−1

nx−α
represents the general term of η(x−α) which converges for x−α > 0

(see Figure 4.1), therefore Im
(

η(α)
)

converges absolutely in the half-plane (4.15) by using

the comparison test (theorem 2.2.2). Analogously, the same holds for Re
(

η(α)
)

.
□
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Figure 4.1: Convergence half-plane of η(α).

Interestingly, η and its α-order fractional derivative converge for x > 0 and x > α , respec-
tively. Moreover, by taking into account (4.14) and the link between η and ζ functions
(4.13), it can be shown that

Theorem 4.3.3. Let s be a complex variable and let α ∈
(
R>0 \N

)
. The relation between

η(α) and ζ (α) is given by

η
(α)(s) = ζ

(α)(s)− eiπα ·21−s
∞

∑
n=1

logα(2n)
ns . (4.16)

Proof : From (4.14), it is

η
(α)(s) = eiπα

(
− logα 2

2s +
logα 3

3s − logα 4
4s + . . .

)
= eiπα

((
−2

logα 2
2s +

logα 2
2s

)
+

logα 3
3s +

(
−2

logα 4
4s +

logα 4
4s

)
+ . . .

)

= eiπα
∞

∑
n=1

logα n
ns − eiπα ·2

∞

∑
n=1

logα(2n)
(2n)s = ζ

(α)(s)− eiπα ·21−s
∞

∑
n=1

logα(2n)
ns .

□



4.4 Fractional counterpart of the critical strip 84

4.4 Fractional counterpart of the critical strip

In Section 4.3, the α-order fractional derivative of the Dirichlet η function has been computed
in order to single out the connection with ζ (α), on the half-plane of convergence, and on the
critical strip. In the previous section, it was also recalled that η owns as many zeros as ζ on
the same critical line and converges in the half-plane Res > 0, with a well-defined behavior
in the critical strip 0 < Res < 1.

On the other hand, ζ (α) converges for Res > 1+α while the convergence half-plane of
η(α) is Res > α . Hence, ζ (α) and η(α) suggest the strip α < Res < 1+α as a fractional
counterpart of the critical strip (Cattani et al., 2017). By comparing these two complex strips,
the fractional operator CDα implies a positive shift in the half-plane of convergence by an
amount equal to α . Therefore, every α-order fractional derivative is associated with a unique
complex strip α < Res < 1+α , to be considered as the fractional strip corresponding to the
classical critical strip (Figure 4.2). Consequently(

α,1+α

)
α→0−−−−−→

(
0,1
)
.

-1 -0.5 0.5 1 1.5 2
Re(s)

-3

-2

-1

1

2

3
Im(s)

-1 -0.5 0.5 1 1.5 2
Re(s)

-3

-2

-1

1

2

3
Im(s)

Figure 4.2: Critical strip (on the left side) and fractional critical strip with α = 0.4 (on the right
side).
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The aforementioned fractional counterpart opens up new scenarios in research. In fact, some
properties of the critical strip can be invariant by passing to α < Res < 1+α (distribution
of the zeros, zero-free regions, etc.). They make ζ (α) extremely interesting for applications
in analytic number theory and applied science. In fact, some applications of η(α) in signal
processing with interesting perspectives in the theory of quantum circuits, are discussed in
Chapter 5.

4.4.1 Series characterising the fractional critical strip

The aim of this section is to obtain a fractional counterpart of (4.13), i.e. to express series
(4.16) in terms of ζ α . Since the Caputo-Ortigueira fractional derivative does not satisfy
the generalized Leibniz rule, the investigation on the infinite series (4.16) appears to be
complicated enough. On the other hand, eq. (4.13) can also be derived by using the forward
Grünwald-Letnikov fractional derivative, which satisfies the generalized Leibniz rule. Hence,
by applying (3.9) to both sides of (4.13), it is

η
(α)(s) = ζ

(α)(s)−Dα
f

(
21−s

ζ (s)
)
. (4.17)

The following statement holds.

Theorem 4.4.1. Let s be a complex variable and let α ∈
(
R>0 \N

)
. The functions η(α) and

ζ (α) are linked by

η(α)(s) = ζ (α)(s)−21−s
∞

∑
k=0

(
α

k

)
logk 2 eiπk

ζ
(α−k)(s) . (4.18)

Moreover, the series

∞

∑
n=1

logα(2n)
ns ,

can be expressed in terms of ζ (α) via

∞

∑
n=1

logα(2n)
ns =

∞

∑
k=0

(
α

k

)
logk 2 eiπk

ζ
(α−k)(s) . (4.19)

Proof : Since Dα
f satisfies the generalized Leibniz rule, it is
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Dα
f

(
21−s

ζ (s)
)
=

∞

∑
k=0

(
α

k

)(
21−s

)(k)
ζ
(α−k)(s)

=
∞

∑
k=0

(
α

k

)
21−s logk 2 eiπk

ζ
(α−k)(s)

= 21−s
∞

∑
k=0

(
α

k

)
logk 2 eiπk

ζ
(α−k)(s) ,

Therefore, from eq. (4.17), we have

η
(α)(s) = ζ

(α)(s)−21−s
∞

∑
k=0

(
α

k

)
logk 2 eiπk

ζ
(α−k)(s) . (4.20)

Comparing (4.16) with (4.20), the proof follows.
□

Eq. (4.18) is nothing other than the fractional counterpart of (4.12). In fact, we get

ζ
(α)(s)−21−s

∞

∑
k=0

(
α

k

)
logk 2 eiπk

ζ
(α−k)(s) α→0+−−−−−−→ ζ (s)−21−s

ζ (s)

= ζ (s)
(

1−21−s
)
.

Furthermore, (4.19) also represents a fractional generalization since

∞

∑
n=1

log(2n)
ns = log2 ·ζ (s)−ζ

′(s) =
1

∑
k=0

(
1
k

)
logk 2(−1)1−k

ζ
(1−k)(s) ,

∞

∑
n=1

log2(2n)
ns = log2 2 ·ζ (s)−2log(2) ·ζ ′(s)+ζ

′′(s) =
2

∑
k=0

(
2
k

)
logk 2(−1)2−k

ζ
(2−k)(s) ,

...
∞

∑
n=1

logm(2n)
ns =

m

∑
k=0

(
m
k

)
logk 2(−1)m−k

ζ
(m−k)(s) =

m

∑
k=0

(
m
k

)
logk 2eiπ(m−k)

ζ
(m−k)(s) ,

(4.21)

where m ∈ N. Hence, the proposition below unifies both cases.

Corollary 4.4.2. Let s be a complex variable and let α ∈ R>0. The series
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∞

∑
n=1

logα(2n)
ns ,

can be expressed in terms of ζ (α) by

∞

∑
n=1

logα(2n)
ns =

k̃

∑
k=0

(
α

k

)
logk 2 eiπk

ζ
(α−k)(s) , (4.22)

in which k̃ is an element of R̃>0 = R>0 ∪{∞} and given by

k̃ def
=


α , α ∈ N ,

∞ , α ∈
(
R>0 \N

)
.

Proof : (4.19) for α ∈
(
R>0 \N

)
and (4.21)3 for α ∈ N show that the proposition holds

for all α ∈ R>0.
□



Chapter 5

Application to signal processing

5.1 Introduction

In this chapter, suitable signal processing networks associated with η(α) and ζ (α) are pre-
sented. The Riemann hypothesis can be recast in terms of signal theory by designing signal
processing networks with respect to the Riemann ζ function and to the Dirichlet η function.
The signal processing paradigm associated with the Riemann ζ function is called a discrete
log-time system, since it only presents weighted ideal delay units with delays that fall on
an logarithmic time grid (see Adams, 2005). In particular, a variant of the discrete log-time
systems is presented . The main difference between this signal processing paradigm and the
discrete log-time system is that the proposed model is based on a non-multiplicative operator.
Consequently, the network associated with η(α) and ζ (α) cannot be characterized by using
the Euler product formula (1.13). Moreover, the Fourier transform of η(α) is also computed
and its associated signal processing network is briefly described. The symmetry showed by
the one-sided Fourier transform of η(α) can be used in the analysis of the Riemann quantum
circuits (see Ramos and Mendes, 2014). Their analysis provides an interesting intersection
between signal processing theory and analytic number theory.

Chapter 5 is organized as follows. In section 5.2 a signal processing network based on
η(α) is presented. Section 5.3 presents the Fourier transform of η(α) as filter bank. Finally,
the the one-sided Fourier transform of η(α) and its symmetry are presented in Section 5.4.

5.2 Signal processing model associated to η (α)

In this section, a signal processing interpretation of η(α) by using some analogies with
classical systems theory (Beerends et al., 2003, parts 3–4) is given. In order to compute
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an integral transform of (4.14), let us shift the complex plane by 1/2 with the change of
variables

s̃ = s− 1
2
,

where s̃ represents the Laplace transform variable. Since

ns = n1/2ns̃ = n1/2es̃ logn ,

it is

η
(α)(s) = eiπα

∞

∑
n=2

(−1)n−1 logα n
ns = eiπα

(
− logα 2

2s +
logα 3

3s − logα 4
4s + . . .

)
= eiπα

(
− logα 2

21/2 e−s̃ log2 +
logα 3
31/2 e−s̃ log3 − logα 4

41/2 e−s̃ log4 + . . .

)
.

(5.1)

From the systems theory (Beerends et al., 2003, part 4), it is well know that

L
(
δ (t −a)

)
= e−as , (a > 0)

where L and δ are the Laplace transform and the Dirac delta, respectively. Therefore, (5.1)
can be viewed as the summation of weighted ideal delay units, where each term has a Laplace

transfer function given by eiπα (logn)α

n1/2 e−s̃ logn, hence it represents the transfer function of
some network. Figure 5.1 shows how (5.1) can be interpreted as a network of linear weighted
delays where a FIR implementation (that is, a filter with a finite impulse response) is also
possible by using a tapped delay line (Adams, 2005; Horner, 1987, Chap. 7) instead of the
delay blocks. Figure 5.1 shows a linear network with weighted ideal delay units having
delays that can be modeled as discrete log-time (DLT) systems. In fact, (5.1) shows that the
delay falls on logn time grid. The operator wld defined (Adams, 2005) by

wld(n) =
1

n1/2 e−s̃ logn , (n ∈ N)

can be introduced in order to represent η . Analogously, η(α) can be rewritten by introducing
the α-order fractional counterpart of wld, that is

wldα(n) = eiπα logα n
n1/2 e−s̃ logn . (n ∈ N)

Hence, (5.1) can be rewritten as follows
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η
(α)(s) =−wldα(2)+wldα(3)−wldα(4)+ . . . ,

and despite the fact that wld is a multiplicative function, its fractional counterpart wldα is no
longer multiplicative.

DLT systems have different properties such as series connection, time-shift and convolu-
tion (Adams, 2005). In particular, the impulse response of two DLT systems (which is the
convolution of their impulse responses), plays a fundamental role. Further, at a fixed time
t = logk, the output is obtained by adding all paths through the network having a delay equal
to logk. Since wld is multiplicative, the output at time t = log p, with p ∈ P, can present only
a single element of delay (from theorem 1.3.1). Clearly, the same cannot be true for wldα

(due to the lack of multiplicativity). Therefore, the network associated with η(α) is more
complicated than that associated with η . In particular, it cannot be characterized by using
the Euler product (1.13) unlike the network associated with η (Adams, 2005).

Figure 5.1: Signal processing network for η(α).

5.3 Fourier transform of η (α) as filter bank

In order to investigate the relation between ζ (α) and its Fourier transform, the Fourier
transform of η(α) is computed (Cattani et al., 2017). In particular, analogously to the integer
order derivative, it can be shown that
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Theorem 5.3.1. Let s be a complex variable such that s = x + iy with x,y ∈ R and let
α ∈

(
R>0 \N

)
. Under these hypotheses, it is

f̂ (α)(ω) = (iω)α f̂ (ω) , (5.2)

where f̂ is the Fourier transform defined as follows

f̂ (ω) =
∫

∞

−∞

f (s)e−iωs ds . (5.3)

Proof : See Li et al. (2009).
□

However, in what follows we will consider the integral transform of complex functions that
are defined only in the half-plane Res > 0, so that we have to limit ourselves to integral
transforms defined in the half-plane. In particular, the Laplace transform L is given (Beerends
et al., 2003, part 4) by

L
(

f (t)
) def
=
∫

∞

0
f (t)e−st dt ,

while the one-sided Fourier transform is defined by

f̂
+
(ω) =

∫
∞

0
f (s)e−iωs ds . (5.4)

Alternatively, (5.3) and (5.4) can also be indicated with F and F+, respectively. Hence, we
can show that

Theorem 5.3.2. Under the same hypotheses of theorem 5.3.1, the Fourier transform of ζ (α)

is given by

ζ̂ (α)(y) = (iy)α
∞

∑
n=1

L
(

e−iy logn
)
. (5.5)

Proof : From (5.2) by taking f (s) = ζ (s), we get

ζ̂ (α)(y) = (iy)α
ζ̂ (y) , (5.6)

and since

ζ (s) =
∞

∑
n=1

1
ns =

∞

∑
n=1

e−s logn =
∞

∑
n=1

L
(
δ (t − logn)

)
,

we have
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ζ̂ (y) =
∞

∑
n=1

F
(
L
(
δ (t − logn)

))
=

∞

∑
n=1

L
(
F
(
δ (t − logn)

))
=

∞

∑
n=1

L
(

e−iy logn
)
, (5.7)

by taking into account that s = x+ iy. By substituting (5.7) into (5.6), the proof follows.
□

Analogously to (5.7), it is

η̂(y) =
∞

∑
n=1

(−1)n−1L
(

e−iy logn
)
, (5.8)

hence, by using (5.5), we get

η̂(α)(y) = (iy)α
∞

∑
n=1

(−1)n−1L
(

e−iy logn
)
. (5.9)

It follows that the Fourier transform of η(α) provides another signal processing network. In
Figure 5.2 the RHS of (5.9) is represented as a Laplace filter bank where the main block
can be simplified by using a fast numerical method for the Laplace transform (see Rokhlin,
1988).

Figure 5.2: η̂(α) as Laplace bank filter.
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5.4 Symmetry of η̂ (α)
+

The one-sided Fourier transform provides information only for a causal signal (Beerends et
al., 2003, part 4). However, it does not represent a restriction in Physics and Engineering
applications (such as radio-frequency circuits or general telecommunications systems) since

the input is almost always a causal signal. Consequently, the explicit computation of η̂(α)
+

is given and discussed here, together with its symmetry.

Theorem 5.4.1. Under the same hypotheses of theorem 5.3.1, the double one-sided Fourier
transform of η(α) is given by

η̂(α)
+ (

ω,ξ
)
= eiπα

∞

∑
n=1

(−1)n−1 logα n
(log n+ξ )(i log n−ω)

. (5.10)

Proof : From the theory of n-dimensional Fourier transforms (see e.g. Beerends et al., 2003,
Part 3), for all f ∈ L1(R2) it is

f (x1,x2) = f (x1) f (x2) =⇒ f̂
+
(ω,ξ ) = f̂

+
(ω) f̂

+
(ξ ) ,

and being n−s = n−xn−iy, we get

n̂−s
+
= n̂−x

+
n̂−iy

+
=
∫

∞

0
n−xe−iωx dx

∫
∞

0
n−iye−iξ y dy

=
∫

∞

0
e−x logne−iωx dx

∫
∞

0
e−iy logne−iξ y dy =

∫
∞

0
e−x(logn+iω) dx

·
∫

∞

0
e−iy(logn+ξ ) dy =

1
− log n− iω

e−x(logn+iω)
∣∣∣∞
0

i
log n+ξ

· e−iy(logn+ξ )
∣∣∣∞
0
=

1
log n+ iω

−i
log n+ξ

=
1

(log n+ξ )(i log n−ω)
.

Since

ζ̂ (α)
+ (

ω,ξ
)
=

∞

∑
n=1

F+

(
CDα

(
n−s
))

,

and

CDα

(
n−s
)
= eiπα logα n

ns ,

it follows that the double one-sided Fourier transform of ζ (α) is given by
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ζ̂ (α)
+ (

ω,ξ
)
= eiπα

∞

∑
n=1

logα n n̂−s
+

= eiπα
∞

∑
n=1

logα n
(log n+ξ )(i log n−ω)

.

(5.11)

Taking into account (4.14), the proof follows.
□

Figures 5.3 and 5.4 show the real part and imaginary part of ζ (α), respectively. Likewise, in
Figures 5.5 and 5.6 the real part and imaginary part of η(α) are represented, respectively. In
each of these figures, areas where the function becomes nonreal are excluded (white color).
Furthermore, the surfaces are split in the presence of discontinuities. Both surfaces show a
symmetry induced by the Fourier transform, given by the following

Proposition 5.4.2. The real (respectively imaginary) part of both (5.10) and (5.11) is an odd
(respectively even) function with regard to ω .

Proof : Since
1

(logn+ξ )(i logn−ω)
=

1
−ω(logn+ξ )+ i logn(logn+ξ )

=
−ω(logn+ξ )− i logn(logn+ξ )

ω2(logn+ξ )2 + log2 n(logn+ξ )2
,

by taking into account (5.10), it follows that
Re
(

η̂(α)
+ (

−ω,ξ
))

=−Re
(

η̂(α)
+ (

ω,ξ
))

,

Im
(

η̂(α)
+ (

−ω,ξ
))

= Im
(

η̂(α)
+ (

ω,ξ
))

,

The same result holds for (5.11) since (5.10) and (5.11) differ only in the alternating factor
(−1)n. Hence the assertion of the proposition follows.

□

Let z be the axes orthogonal to the ωξ -plane. Geometrically, proposition 5.4.2 shows that

the real (respectively imaginary) parts of both η̂(α)
+

and ζ̂ (α)
+

are symmetrical with respect
to the ξ -axis (respectively ξ z-plane). More details on the aforementioned complex functions
are shown in Figures 5.7 and 5.8. In both figures, the real part (orange surface) and imaginary
part (blue surface) overlap in the half-plane ξ ≳ 0 while they present an extremely irregular
behavior in ξ < 0. Integral transforms (5.10) and (5.11) can be applied in the analysis of
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the so-called Riemann quantum circuits. In fact, the (double) one-sided Fourier transform is
already used in circuits theory and Riemann quantum circuits have become very popular in
recent years (see Ramos and Mendes, 2014) by opening new frontiers in research.
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Figure 5.3: Real part of ζ̂ (α)
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with α = 0.4 and upper limit of the series n = 60.
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Figure 5.4: Imaginary part of ζ̂ (α)
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with α = 0.4 and upper limit of the series n = 60.
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Figure 5.5: Real part of η̂(α)
+

with α = 0.4 and upper limit of the series n = 60.
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Figure 5.6: Imaginary part of η̂(α)
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with α = 0.4 and upper limit of the series n = 60.
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Figure 5.7: ζ̂ (α)
+

with α = 0.4 and upper limit of the series n = 60.



5.4 Symmetry of η̂(α)
+

101

Figure 5.8: η̂(α)
+

with α = 0.4 and upper limit of the series n = 60.



Conclusion

In this thesis, the α-order fractional derivative of the Riemann ζ function was computed,
using the Ortigueira generalization of the Caputo derivative to the complex plane. The
computation of its real and imaginary parts shows that the half-plane of convergence depends
on the fractional order α . In order to generalize this result, the fractional derivatives of the
Hurwitz ζ function and of the Dirichlet series were computed. A chaotic decay to zero
was shown that might suggest that the fractional derivative of the Riemann ζ function is a
non-differentiable function around zero (Chapter 2).

The fractional derivative ζ (α) has been recomputed by the Grünwald-Letnikov fractional
derivative in order to determine its functional equation. Moreover, an integral representation
of ζ (α) via Bernoulli numbers was given, which represents the fractional version based
on a result of Apostol (1985). Thereafter, following the same approach of Apostol (1985)
and Spira (1965), a simplified version of this functional equation was found, as well as its
generalization to the Hurwitz ζ function and Lerch zeta function (Chapter 3).

The problem of the link between ζ (α) and the distribution of prime numbers was discussed
in computing the logarithmic fractional derivative of the Riemann ζ function. By introducing
the Dirichlet η function, it was shown that the complex strip α < Res < 1+α represents
the fractional counterpart of the critical strip. It was emphasized how the infinite series
associated with the strip α < Res < 1+α can be written in terms of ζ (α) (Chapter 4). Two
signal processing networks associated with η(α) and its Fourier transform were presented in
order to provide an application in quantum signal processing. Moreover, the symmetry of

both ζ̂ (α)
+

and η̂(α)
+

was shown (Chapter 5).
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