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Abstract 

 

 

 

 
To comply with fatigue life requirements, it is often necessary to carry out 

fracture mechanics assessments of structural components undergoing cyclic 

loadings. Fatigue growth analysis of cracks is one of the most important 

aspects of the structural integrity prediction for components (bars, wires, bolts, 

shafts, etc.) in presence of initial or accumulated in‐ service damage. Stresses 

and strains due to mechanical as well as thermal, electromagnetical, etc., 

loading conditions are typical for the components of engineering structures. 

The problem of residual fatigue life prediction of such type of structural 

elements is complex, and a closed form solution is usually not available 

because the applied loads not rarely lead to mixed-mode conditions. 

Frequently, engineering structures are modelled by using the Finite Element 

Method (FEM) due to the availability of many well‐ known commercial 

packages, a widespread use of the method and its well-known flexibility when 

dealing with complex structures. However, modelling crack-growth with 

FEM involves complex remeshing processes as the crack propagates, 

especially when mixed‐ mode conditions occur. Hence, extended FEMs 

(XFEMs) and meshless methods have been widely and successfully applied 

to crack propagation analyses in the last years. These techniques allow a 

mesh‐ independent crack representation, and remeshing is not even required 

to model the crack growth. The drawbacks of such mesh independency consist 

of high complexity of the finite elements, of material law formulation and 

solver algorithm. 

On the other hand, the Dual Boundary Element Method (DBEM) both 

simplifies the meshing processes and accurately characterizes the singular 

stress fields at the crack tips (linear assumption must be verified). 

Furthermore, it can be easily used in combination with FEM and, such a 

combination between DBEM and FEM, allows to simulate fracture problems 

leveraging on the high accuracy of DBEM when working on fracture, and on 

the versatility of FEM when working on complex structural problems. 

Generally, FEM is used to tackle the global complex structural problem, 

assessing the fields of displacements, strains and stresses; subsequently, such 

fields are used to obtain the boundary conditions to apply on a DBEM 

submodel that bounds the region in which the crack is present. In this way, the 
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fracture problem is solved in the DBEM environment allowing to take 

advantage of its inherently simpler remeshing process. Such FEM-DBEM 

“classical” approach has been previously implemented under fixed either 

displacements or tractions boundary conditions applied on the DBEM 

submodel cut surfaces, without updating of their values during the 

propagation. Such boundary conditions are consequently assumed to be 

insensitive to the submodel stiffness variation due to the crack-growth, with 

the consequent introduction of an element of approximation that limits the 

accuracy of results. In case of traction boundary conditions the approach 

provides conservative results in terms of residual life cycles, whereas, non-

conservative results are obtained in case of fixed displacements boundary 

conditions. Interestingly, the here proposed alternative approach provides 

results comprised between the upper and lower bounds given by such two 

classical approaches. 

This work presents an enhanced FEM-DBEM submodelling approach to 

simulate fracture problems through the adoption of the principle of linear 

superposition. Theoretical background can be found in the literature, where 

the J-integral for a thermal-stress crack problem was retrieved by a simple 

application of a load distribution on the crack faces (as provided by the 

uncracked problem solution) instead of the application of the inherent 

displacement or traction condition on the model boundary. This idea has been 

here widely extended to more complex analyses allowing to solve fracture 

problems with very high accuracy by means of relatively simple DBEM stress 

analyses, even when the global analyses present thermal loads, contacts, 

friction, electromagnetic fields, etc. As a matter of fact, all the complexities 

are tackled by a global FEM analysis on the uncracked domain, whereas, the 

objectives of correctly predicting the whole crack-growth are completely 

demanded to the DBEM. 

The methodology has been validated comparing the results with those 

provided by different numerical approaches, like the well-established classical 

FEM-DBEM approaches or fully FEM based approaches, as available from 

literature. 

Then, some industrial applications have been analysed by means of this new 

methodology showing that the procedure can also handle problems of higher 

complexity leading to an accuracy on the results that, in some cases, could not 

even be obtained with the classical approaches. 

 



 

 

Introduction 

 

 

 

 
I General aspects 

Starting from the industrial revolution around the late 18th century, metals 

were seen as the most successful and all-purpose construction materials. They 

were mainly chosen for their high strength to weight ratio, workability and 

availability. Today many buildings, ships, aircrafts and many other 

engineering structures are still largely built out of metals. Unfortunately, many 

of this metal structures did not live as per their expectations and many of them 

collapsed catastrophically under regular service conditions. Furthermore, 

most of these structural failures occurred very often without adequate 

warnings and, as a result, many human lives have been lost. The cause of such 

catastrophic failures (Figs. 1-2) could often be attributed to a combination of 

material deficiencies in the form of pre-existing flaws in the material, poor 

designs, in-service damages, etc. 

To ensure safety, current specific standards require routine periodic checks 

for detecting possible cracks. Then, cracked components have to be monitored 

and, if necessary, replaced or repaired before they become critical. 

Improvement at the design stage, where high stress concentrations in the 

structure should be avoided, better production methods as well as 

enhancement of material properties have all helped to minimize the 

criticalities and consequently have reduced the number of failures. However, 

total elimination of cracks is not only impractical but also impossible because 

cracks often develop well below the material yield strength. To further 

mitigate fracture failures, the so called design philosophy “Damage 

Tolerance” has been introduced in recent years at the design stage where 

engineers have to anticipate the likelihood of cracks in the structural 

components. 

As structures are becoming more complex, the need for an accurate and 

reliable assessment of the structural safety has become mandatory. A simple 

arbitrary safety factor is no longer an acceptable safety margin, nor is it 

justified in terms of economy and efficiency. The need for reliable engineering 

decisions has prompted the development of a methodology to compensate for 

the inadequacies of conventional design concepts. Although the conventional 
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design criteria based on the material strength can be adequate for many 

engineering structures, they are insufficient when there is the likelihood of 

native and/or accumulated in-service defects. 

In this framework, Fracture Mechanics is often used to provide the 

necessary additional safety checks, understandings of the fracture processes 

and, even more important, obtaining reliable predictions on the residual 

strength of the structure. 

 

Figure 1 Example of brittle fracture of a Liberty ship after splitting in two at 

her outfitting dock; welded structure, rather than bolted, offered a continuous 

path to cracks to propagate throughout the entire structure (Parker, 1957) 
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Figure 2 Example of fatigue crack-growth in a turbofan engine (Pratt & 

Whitney JT8D) occurred during the take-off roll; a fan disk penetrated the left 

aft fuselage determining two fatalities (www.wikipedia.it). 

 

 

II Fracture Mechanics 

Beginning with catastrophic failures of railway components through to 

serious failures of many Liberty ships during World War II, there are many 

grim examples of the debilitating effects of flaws on the material strength. It 

has also emerged during this century that the conventional criteria of tensile 

strength, yield strength and buckling stress are not always sufficient to 

guarantee the overall component integrity. This has been especially evident 

with the introduction of high strength materials, which are correspondingly 

low in crack resistance. Furthermore, structural engineers are continuously 

struggling to reduce safety margins between the stresses expected during the 

working conditions and the strength of materials. All of these conditions have 

spurred the development of Fracture Mechanics, especially in the last two 

decades, to enable dedicated analyses of components with crack-like defects. 

The discipline of Fracture Mechanics (Anderson, 1991) enables the 

prediction of crack behaviour to be quantitatively achieved. Namely, Fracture 

Mechanics has been used to predict the crack size below which no crack-

growth would occur, or, the crack size at which a component would fail given 

a certain applied fatigue load. In between these two limits, Fracture Mechanics 

allows to estimate the rate of crack-growth and then allows to predict the life 

of a cracked component under fatigue loading. This allowed going beyond the 
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traditional design standpoint (Fig. 3a), in which only the requested loads were 

compared with the material strength, to the concept of Damage Tolerance 

design process (Fig. 3b), in which also the presence of defects has to be taken 

into account in the process. Fracture Mechanics analyses are then carried out 

to obtain the component life with a pre-defined initial flaw size and the 

expected fatigue loading conditions. Such life must exceed the operational life 

needed for a given structure otherwise the component geometry has to be 

redesigned or, otherwise, the loading revised. Inspection intervals can then be 

set to ensure that crack-growth is less than that predicted or, if not, the 

component has to be either repaired or replaced. 

Fracture Mechanics is based on continuum mechanics concepts, which 

express given relationships between the stress and displacement fields at the 

crack tips. Under the small strains and linear elastic assumptions, it is found 

that the stress fields in close vicinity of the crack tip are inversely proportional 

to the square root of the distance from the tip itself. The constant of 

proportionality is the Stress Intensity Factor (SIF), which defines the intensity 

of the singular stress field at the crack tip. It is also found from experiments 

that failure occurs when, under static load conditions, the SIF reaches the 

critical value for the material and, therefore, an accurate determination of SIF 

is of extreme importance for the consequent estimate of the structural 

integrity. Moreover, when dealing with fatigue loading conditions, the precise 

SIF evaluation is of utmost importance for the Crack-Growth Rate (CGR) 

prediction and eventually for the residual fatigue life assessment. 

 

(a) 

 

(b) 

Figure 3 (a) Traditional designing philosophy vs. (b) Damage Tolerance 

designing philosophy. 
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III Numerical analyses 

Obviously, analytical techniques cannot tackle all the complexities 

encountered in all the engineering structural components. Therefore, 

numerical techniques have been widely developed in recent years, encouraged 

especially by the enormous advances in the computer technology. 

Nowadays, FEM is the most widely used in the engineering designing 

process thanks to its advantages when simulating several physical phenomena. 

The method is widely used in the industries since it is able to face problems 

involving: contacts, frictions, mechanical, thermal and electromagnetical 

loads, complex constitutive law formulations, impacts, etc. There are various 

ways of tackling Fracture Mechanics by FEM and, definitely, FEM has been 

efficiently used along the years in several applications. However, it typically 

needs long model preparation times. In addition, especially when the crack 

propagates generating complex three-dimensional shapes, the method is not 

anymore suitable to simulate the fracture process due to distortion of elements 

nearby the crack, too long runtimes, etc. 

The Boundary Element Method, together with its enhanced version Dual 

BEM, can circumvent the limitations of FEM on complex crack propagation 

problems (Aliabadi, 1991, 1992; Brebbia, 1984, 1989). This method is based 

on the solution of integral equations, that govern elasticity and potential 

theory. Such a method works with the discretization of the only boundary into 

elements over which the product of shape functions, Green’s functions and 

element Jacobians, are numerically integrated. This results in higher accuracy 

particularly when the domain to be discretised contains regions of high stress 

gradients (such as cracks) which would necessitate a considerable 

concentration of FEM elements and nodes. Hence, DBEM is particularly 

suited to Fracture Mechanics analyses due to the accuracy of the results and 

the inherently better and simpler remeshing process as the crack increases in 

size. 

Since only the boundaries of the domain are discretised, the dimensionality 

of the domain is reduced by one, reducing then the size of the mathematical 

problem to handle (Fig. 4). However, the system matrix is unsymmetric and 

fully populated and therefore, generally, it takes longer runtimes than those 

needed by FEM to obtain the solution. More generally, considering the 

computational power nowadays available, DBEM remains more attractive, 

when working on fracture, comparing the preprocessing efforts of the two 

aforesaid numerical methods (Fig. 5). 



FEM-DBEM approaches to Fracture Mechanics 

6 

   
(a)    (b) 

Figure 4 Example of a 2D model via (a) FEM and (b) BEM. 

 
(a)     (b) 

Figure 5 Example of (a) FEM and (b) BEM models of a reinforced curved 

fuselage panel (Aliabadi, 2002) 

 

 

IV Boundary Element Method (BEM) and Dual BEM 

BEM has become established as an effective alternative to FEM in several 

important areas of engineering analysis. Although the BEM, also known as 

the Boundary Integral Equation (BIE) method, is a relatively new technique 

for engineering analysis the fundamentals can be traced back to classical 

mathematical formulations by Fredholm (Fredholm, 1903) and Mikhlin 

(Mikhlin, 1957) in potential theory and Betti (Betti, 1872), Somigliana 

(Somigliana, 1886) and Kupradze (Kupradze, 1965) in elasticity. 
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Basically, the aim is to transform the governing differential equations 

defined in the domain into an integral equation which applies only to the 

boundary of the domain. Such an integral equation depends on the availability 

of: 

 a fundamental solution to the governing differential equation for a 

point force; 

 a reciprocal relationship (such as Green’s theorem; Green, 1828) 

between two functions which are continuous and possess 

continuous first derivatives. 

The choice of the unknowns has led to two formulations of the boundary 

integral equations: the direct method, where the unknowns are the actual 

physical variables in the problem, such as displacement or traction in 

elasticity; the indirect method that historically precedes the previous one. In 

the latter approach, the unknowns are fictitious density functions which have 

no physical significance but from which the physical unknowns can be 

obtained by postprocess. 

In order to obtain the boundary integral equations, a powerful and general 

technique is the weighted residual method of Brebbia (1977, 1978) where the 

error residual is minimized. Jeng and Wexler used a variational formulation 

similar to that of the finite elements and Cruse and Rizzo (Rizzo, 1967; Cruse, 

1969) employed Betti’s reciprocal work theorem. 

For many years, the potential of boundary integral equations was not 

realized due to the difficulty of attaining analytical solutions to the integral 

equations for practical problems and due its essentially mathematical origins. 

However, research into the numerical solution of boundary integral equations 

was prompted by the advent of high speed computing. As computers grew in 

power and storage, the amenable problems became more complex. This 

resulted in the numerical method now known as BEM. Brebbia demonstrated 

that not only it is related to FEM but that both methods can be derived from 

the same variational equation (Brebbia, 1978). 

In the BEM, the boundary integral equations are discretized so that 

numerical integration is carried out over a small part (element) of the 

boundary, over which the variation of the boundary variables is expected to 

be small. Variation over an element is handled in a similar way to that of the 

finite elements. For example, considering an elastostatic problem, the 

variation of displacements and tractions over an element is approximated by 

opportune shape functions related to nodal values of displacements and 

tractions respectively. Each collocation node will yield either two or three 

boundary integral equations depending on the dimensionality of the problem. 

By moving this collocation point to each node in the model, a system of 

equations is built up in which the displacement at each point is related to the 

displacement and tractions on all points on the boundary. The resulting 

matrices are therefore fully populated and unsymmetric. This is in contrast to 
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the sparse and banded FEM system matrix which, however, are generally 

much larger for an equivalent problem. 

It is worth noting that only the boundary of the model needs to be 

discretized as the governing (elastostatic) differential equations are satisfied 

in the interior region. The data preparation is carried out only for the boundary, 

avoiding the domain discretization used by the FEM. This results in a method 

that is particularly suited to Fracture Mechanics analyses due to the accuracy 

of the results both on the surface and at selected interior points. 

The introduction of isoparametric variation over the boundary elements by 

Lachat and Lachat & Watson (Lachat, 1975, 1976) provided a further 

possibility to the BEM to fulfil its potential of high accuracy and efficiency. 

Quadratic variation of geometry was used over the elements and linear, 

isoparametric quadratic and cubic variation of the unknown displacement and 

traction were catered for. This enables the BEM to be more economical than 

FEM for certain types of problems, although FEM will be more appropriate 

for others. Anyway, both techniques should be made available to engineers. 

The adopted DBEM approach (Portela, 1990, 1993; Apicella, 1994; Mi, 1994; 

Fedelinsky, 1994) is a BEM enriched with special discontinuous elements 

appropriate to consider nodes and faces of the crack topologically coincident. 

The three-dimensional domain boundary is discretized into either 4, 8 or 9 

noded quadrilateral elements, or 3 or 6 noded triangular elements. The 

boundary integral equations here adopted apply to a homogeneous isotropic 

domain and the linear elastic assumption must also be held. As aforesaid, with 

DBEM, only the crack faces and the other boundaries are discretized. Traction 

boundary integral equations are used for one crack face and displacement 

boundary integral equations are used for the second crack face and the 

remaining boundaries. So doing, being the traction and displacement 

equations independent, the system coefficient matrix turns out to be non-

singular and, therefore, the solution can be retrieved. 

 

 

V Description of Thesis 

After an introduction, in chapter I it has been discussed on how to couple 

the FEM and DBEM methods to work out general Fracture Mechanics 

problems. At first, the need to adopt a submodelling strategy when solving 

fracture problems on large structures has been introduced. Then, it has been 

argued on how to implement such a submodelling technique by using the FEM 

and DBEM methods. Three FEM-DBEM submodelling approaches have been 

presented and the advantages of using the “Loaded Crack” (LC) approach 

highlighted. By means of such an approach, based on loading only the DBEM 

crack faces, the most accurate results in terms of SIFs, CGRs and crack paths 

can be obtained. 
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In chapter II, it has been shown how the LC approach has been applied on 

a shaft-hub coupling that undergoes different loading conditions. The results 

have been compared with those obtained by leveraging on a pure DBEM 

approach and with two different FEM codes showing a very sound agreement. 

A first industrial application of the LC approach has been presented in 

chapter III. It consisted in a crack propagation simulation in an airfoil of a 

statoric segment of a GE-Aviation aeroengine. The LC approach turned out to 

be more efficient in terms of computational effort and more accurate in terms 

of fatigue life estimate, when compared with a classical FEM-DBEM 

approach. 

In chapter IV, it has been presented a further industrial application of the 

three FEM-DBEM approaches on a component of the magnetic cage of the 

nuclear fusion experiment “Wendelstein 7-X”. The residual fatigue life has 

been estimated with all the approaches and the results compared and 

discussed. Again, the LC approach turned out to be more accurate than the 

classical approaches. 

All the DBEM and FEM-DBEM calculations shown in chapters II-IV were 

executed on a workstation with the following general configuration: 

motherboard MSI X99S SLI Plus, CPU Intel i7-5820K with 15MB L3 cache, 

RAM 8x 8GB HyperX Fury DDR4, SSD Samsung 850 2x 250GB and 

Windows 7 Professional 64bit SP1. 

At the end, final conclusions have been summarised. 

 





 

 

Chapter I 

FEM-DBEM approaches to 

Fracture Mechanics 

 

 

 

 
I.1 Introduction 

FEM and BEM are effective tools for the numerical analysis of many 

physical problems described with a set of partial differential equations and 

frequently impossible to solve analytically. 

With regard to particular aspects, the two methodologies are 

complementary, each of them having preferential applications. Namely, FEM 

is well suited for complex analyses containing nonlinearities, massive meshes, 

contacts, anisotropic materials, etc., whereas BEM and in particular DBEM 

(Dual BEM) (Aliabadi, 1992a, 1992b; Portela, 1990; Fedelinsky, 1994) are 

generally preferred in the Linear Elastic Fracture Mechanics (LEFM) context, 

to get accurate SIFs (Stress Intensity Factors) evaluations and automatic crack 

propagations (Apicella, 1994). 

Although the fracture phenomenon plays essentially a local effect if 

compared to the overall structure (i.e. the singular fields at crack tip, the 

possible crack propagation, etc.), it cannot be overlooked. An initial small 

crack, after it propagates throughout the structure, can lead to the failure of 

the entire structure as taught by well-known past catastrophic failures (Figs. 

I.1, I.2). Numerical analysis can be used as a tool to better understand how 

fracture phenomena affect structures in order to prevent catastrophic failures. 

When one or more cracks have to be numerically modelled in large 

structures, a submodelling approach is generally mandatory in order to make 

the approach amenable from a computational standpoint and also to reduce 

the size of the models to handle. Especially when such structures are modelled 

by FEM, this submodelling approach plays an even more important role since 

the cracks would need very fine meshes in their surroundings with the 

consequent sharp increase of runtimes. The DBEM would be more attractive 

in this context thanks to its intrinsic nature of meshing only the model 

boundaries and one or multiple cracks can be modelled more easily than by 
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FEM. However, the inherent restrictions of the DBEM do not allow tackling 

all the industrial problems as a standalone tool. 

As a consequence, great research efforts have been aimed along the years 

at improving the synergetic usage of the two previously mentioned 

methodologies (McNamee), in order to exploit the FEM versatility in 

combination with the intrinsic better features of DBEM for modelling fracture. 

This work presents three approaches that allow to adopt a submodelling 

approach (Fig. I.1), to strongly reduce the runtimes, and specifically a FEM-

DBEM coupling, to get the highest accuracy on results by benefiting from 

both the diverse advantages of FEM and DBEM. 

Two approaches are based on replicating the FEM global fields in a DBEM 

local submodel, where the fracture problem is worked out. These two 

approaches provide an upper and a lower bound in terms of residual fatigue 

life estimate. We will see how, the third approach, based on the application of 

the superposition principle to Fracture Mechanics problems, provides the most 

efficient and accurate fracture assessment. 

 

Figure I. 1 Example of a (a) FEM and a (b) DBEM submodelling of a gear 

tooth with a crack (2D problem). 

 

 



Chapter I 

 13 

I.2 Superposition principle for Linear Elastic Fracture Mechanics 

Wilson (Wilson, 1979) showed that the SIFs for a crack in a 2D thermal-

stress problem could be calculated by means of a simpler stress analysis in 

which no external loads were applied but just tractions on the crack faces. This 

was possible leveraging on the principle of linear superposition applied to a 

Fracture Mechanics problem, as explained in the followings. 

 

Figure I. 2 Superposition principle applied to a fracture problem; 𝜎0 is the 

pre-existing stress field generated by the applied prescribed conditions, etc. 

Extending the Wilson’s example to the most general crack problem 

schematically shown in Fig. I.2, the superposition principle can be then 

applied as explained in the following steps: 

 from an original uncracked domain (A), a crack can be opened (B) 

and loaded with tractions equal to those calculated over the same 

dashed line in (A); 

 the new configuration (B), perfectly equivalent to (A), can then be 

transformed by using the superposition principle, splitting the 

boundary conditions as in (C) and (D); 

 (C = C’) represents the real fracture problem to be solved, whereas 

(D), after the tractions sign inversion, turns in an equivalent 

problem (D’) that will be effectively tackled. 
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In conclusion, using boundary conditions retrieved from the considered 

uncracked problem (A), a purely stress crack problem (D’) can be considered 

for the fracture assessment; in such equivalent problem, the crack faces 

undergo tractions equal in magnitude but opposite in sign to those calculated 

over the same (dashed) crack line in (A). In other words, SIFs for case (C’) 

are equal to those calculated for the simpler problem (D’). In final, the use of 

the superposition principle enables a faster convergence for the simpler 

DBEM pure stress analyses, in comparison with that provided by the more 

traditional FEM-DBEM approaches (those with transfer of displacement or 

traction boundary conditions on the submodel cut surfaces), with consequent 

reduction of computational burden. 

 

 

I.3 FEM-DBEM coupled approaches 

Considering the different FEM and DBEM capabilities, the most 

promising idea would be to use FEM to calculate the global displacement-

strain-stress fields and to adopt such results to solve the local fracture problem 

by means of DBEM. 

Here, two FEM-DBEM approaches are presented and, by considering the 

superposition principle explained in §I.2, a third one is proposed. The three 

approaches can be schematically explained by means of Fig. I.3. With 

reference to cases (b) and (c) in Fig. I.3, all the rigid body degrees of freedom 

have to be eliminated and this can done, as instance, by applying springs of 

negligible stiffness on few elements. 

Basically, all the approaches are based on the submodelling technique in 

order to strongly reduce the computational efforts. The basic assumption is 

that the analysed fracture phenomena do not introduce a significant 

perturbation on the overall fields far from the crack area, so that, there is no 

need to explicitly model the entire structure for the fracture assessment. 

A DBEM submodel can be then extracted by a Boolean operation of 

subtraction between the FEM model and a user defined cutting domain, 

providing, in the DBEM environment, a smaller model that surrounds the 

crack insertion area with just a surface mesh at its boundaries. 

After the DBEM submodel extraction, a crack is inserted in the submodel 

and a remeshing, which typically involves just the crack surroundings, is 

realised. Subsequently, such DBEM cracked submodel is loaded with apposite 

boundary conditions in order to compute SIFs representative of those 

occurring in the real cracked component. Then, when requested, the crack 

propagation can be simulated by increasing step-by-step the crack dimensions, 

with the ith crack kinking and growth rate evaluated as a function of the SIFs 

evaluated for the (i-1)th geometry. Moreover, for fatigue crack propagation 

simulations, one or more load cases are used to assemble the needed fatigue 

load spectra representative of the loads occurring during the real operation of 
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the components. Also, it has to be guaranteed that the crack tips remain 

adequately far from the cut surface boundaries over which displacements or 

traction were imposed. 

 

Figure I. 3 Different approaches for the selection of the DBEM submodel 

loading conditions for a gear tooth with a crack: (a) Fixed Displacement 

(FD); (b) Fixed Load (FL); (c) Loaded Crack (LC). 

The DBEM submodel loading process can follow one of the three different 

previously mentioned approaches (example in Fig. I.3) explained in the 

following: 

 Fixed Displacement (FD) approach: the DBEM volume cut 

surfaces are loaded with displacement boundary conditions; 

 Fixed Load (FL) approach: the DBEM volume cut surfaces are 

loaded with traction boundary conditions; 

 Loaded Crack (LC) approach: the DBEM crack faces are loaded 

with traction boundary conditions. 

In detail, two kind of inaccuracies unavoidably arise when using both FD 

or FL approaches. Firstly, such two approaches use boundary conditions that 

applied to a cracked model come from an uncracked global model. Secondly, 

boundary conditions are kept as fixed during the crack propagation simulation 

and therefore they are considered as insensitive to the continuously decreasing 

DBEM submodel stiffness induced by the growing crack. Both inaccuracies 

could be overcome by using a larger submodel but this would affect the 

runtimes without even completely eliminate such drawbacks. Anyway, the FD 

approach has been satisfactorily implemented in the past as in some works 

available in the literature (Citarella, 2013, 2014). 

On the contrary, the LC approach allows to inherently consider step-by-

step updated boundary conditions, since additional loading is provided on the 

crack extension area at each step of the incremental crack-growth simulation. 

In addition, the SIFs are rigorously calculated even by using boundary 

conditions that are coming from an uncracked model, as dictated by the 

superposition principle (§I.2). Moreover, there is no need to replicate the 

global FEM fields in the DBEM submodel and this widen the range of 
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amenable applications, namely more complex analyses can be restricted solely 

to FEM approach. 

For these reasons, in the following it is shown that the LC approach 

represents the most enhanced strategy to couple FEM and DBEM, providing 

results with the highest accuracy in terms of SIF assessment and therefore also 

in terms of residual fatigue life estimate and crack path assessment. Such an 

approach is proposed in the current work by means of a FEM-DBEM 

submodelling strategy but, however, it can clearly be also applicable to FEM-

FEM submodelling strategies or equivalents. It is worth noting that, for 

embedded cracks far enough from the external boundaries (e.g. voids, internal 

cracks), it would be possible to consider the cracks as in an infinite body so 

the DBEM boundary would be just the loaded crack faces and the 

corresponding mathematical problem notably reduced. 

Besides the submodel loading conditions, in order to predict a Linear 

Elastic Fracture Mechanics (LEFM) incremental crack-growth, three basic 

criteria are required for the separate phases of: SIF evaluation, kink angle 

prediction and Crack-Growth Rate (CGR) assessment. The criteria that have 

been used in the current work are described in the followings together with 

some references about the most widely accepted ones. 

 

 

I.4 Crack-growth criteria 

A crack-growth simulation is typically worked out by means of an 

incremental crack-extension analysis in which the three distinct phases of SIF 

evaluation, kink angle prediction and CGR assessment are basically repeated 

until either a requested crack size or a critical K value is reached. Namely, for 

each crack extension, the SIFs are calculated and used to predict both the 

direction of the growth and the corresponding fatigue cycles. Various criteria 

have been proposed along the years and those adopted in this work are 

described in the followings. 

 

 

I.4.1 SIF evaluation 

There are several approaches to calculate SIFs such as: crack tip opening 

displacement (CTOD) approach (Citarella, 2010), crack tip stress field 

approach (Dhondt, 2014) and SIF extraction method from J-integral 

(Citarella, 2010). The J-integral, being an energy approach, has the advantage 

that elaborate representation of the crack tip singular fields is not necessary. 

This is due to the relatively small contribution that the crack tip fields make 

to the total J (i.e. strain energy) of the body. Therefore, in the present work, 

the SIFs are extracted from the J-integral calculation by leveraging on the 

method illustrated in the following. 

Path independent J-integral is defined as: 
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𝐽 = ∫ (Wn1 − tj𝑢j,1)
𝑆

dS (I.1) 

where 𝑆 is an arbitrary closed contour, oriented in the anti-clockwise 

direction, starting from the lower crack surface to the upper one and 

incorporating the crack tip, 𝑑𝑆 is an element of the contour 𝑆, 𝑊 is the strain 

energy per unit volume, n1 is the component in the x1 direction of the outward 

normal to the path 𝑆, and tj(= σijnj) and uj,1 are the components of the 

interior tractions and strains, respectively. 

J-integral can be related to a combination of the values of K𝐼 and K𝐼𝐼. 

Ishikawa, Kitagawa and Okamura (Ishikawa, 1980) suggested a simple 

procedure for doing so and Aliabadi (Aliabadi, 1990) demonstrated that it can 

be implemented in the DBEM in a straightforward manner. 

The application of the J-integral to 3D crack problems was presented by 

Rigby and Aliabadi (Rigby, 1993, 1998) and Huber and Kuhn (Huber, 1993). 

The application of the 3D J-integral to thermoelastic crack problems can be 

found in dell’Erba and Aliabadi (dell’Erba, 2000). 

The J-integral for 3D is defined as 

𝐽 = ∫ (Wn1 − 𝜎ij

𝜕𝑢𝑖

𝜕𝑥1
𝑛j) dΓ

Γ𝜌

= 

= ∫ (Wn1 − 𝜎ij
𝜕𝑢𝑖

𝜕𝑥1
𝑛j) dΓ

𝐶+𝜔
− ∫

𝜕

𝜕𝑥3
(𝜎𝑖3

𝜕𝑢𝑖

𝜕𝑥1
) dΩ

Ω(𝐶)
 (I.2) 

where Γ𝜌 is a contour identical to C𝜌 but proceeding in an anti-clockwise 

direction (Fig. I.4). The integral J is defined in the plane x3 = 0 for any 

position on the crack front. Considering a traction free crack, the contour 

integral over the crack faces 𝜔 is zero, instead, with loaded crack faces, as for 

the LC approach here presented, the contribution of ∫ −𝜎ij
𝜕𝑢𝑖

𝜕𝑥1
𝑛jdω

𝜔
 has to 

be added. 

 

Figure I. 4 Closed path around crack tip (Wilson, 1976). 
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For mixed-mode 3D problems, the J-integral is related to the three basic 

fracture modes through the components JI, JII and JIII: 

J = JI + JII + JIII (I.3) 

Rigby and Aliabadi (Rigby, 1998) presented a decomposition method 

through which the integrals JI, JII and JIII in elastic problems can be calculated 

directly from J. Firstly, J was divided into two components: 

J = JS + J𝐴𝑆 (I.4) 

J𝑆 and JAS are obtained from symmetric and anti-symmetric elastic fields 

around the crack plane, respectively. As the mode I elastic fields are 

symmetric to the crack plane, the following relationship holds: 

JS = J𝐼 and JAS = J𝐼𝐼 + J𝐼𝐼𝐼 (I.5) 

JII and JIII integrals can be calculated from J𝐴𝑆 by making an additional 

analysis on the anti-symmetric fields. Then, when J-integral is calculated as 

sum of the three separated contributions of mode I, II and III, the Stress 

Intensity Factors 𝐾i can be obtained as: 

J = JI + JII + JIII =
1

𝐸′
(𝐾𝐼

2 + 𝐾𝐼𝐼
2) +

1

2𝐺
𝐾𝐼𝐼𝐼

2  (I.6) 

where 𝐺 is the shear modulus and 𝐸′ = 𝐸 (Young’s modulus) for plane 

stress, or 𝐸′ = 𝐸 (1 − 𝜈2)⁄  for plane strain. 

The method for deriving the three separate K values from J can be found 

in (Aliabadi, 2002) or (Rigby, 1998). 

 

 

I.4.2 Kink angle assessment 

Well-established criteria proposed for calculating the crack deflection 

angles in isotropic media can be: Maximum Tangential Stress (MTS) 

(Erdogan, 1963), Maximum Energy Release Rate (MERR) (Griffith, 1921, 

1924), Minimum Strain Energy Density (MSED) (Sih, 1974), Maximum 

Principal Asymptotic Stress (MPAS) field (Dhondt, 2001). The MSED 

criterion has been adopted in the current work and some aspects about this 

criterion are here provided. 

MSED criterion is developed on the basis of the strain energy (𝑊) density 

𝑑𝑊 𝑑𝑉⁄  concept (𝑑𝑉 is the differential volume). Fracture is assumed to 

initiate from the nearest neighbour element located by a set of cylindrical 

coordinates (𝑟, 𝜃, 𝜑) attached to the crack border. The new fracture surface is 

described by a locus of these elements whose locations correspond to the strain 

energy function being a minimum. The explicit expression of strain energy 

density around the crack front tip can be written as: 

𝑑𝑊

𝑑𝑉
=

𝑆(𝜃)

𝑟 cos 𝜑
+ 𝑂(1) (I.7) 
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where 𝑆(𝜃) is given by 

𝑆(𝜃) = 𝑎11𝐾𝐼
2 + 2𝑎12𝐾𝐼𝐾𝐼𝐼 + 𝑎22𝐾𝐼𝐼

2 + 𝑎33𝐾𝐼𝐼𝐼
2  (I.8) 

and 

𝑎11 =
1+cos 𝜃

16𝜋𝐺
(3 − 4𝜈 − cos 𝜃) (I.9) 

𝑎12 =
sin 𝜃

8𝜋𝐺
[cos 𝜃 − (1 − 2𝜈)] (I.10) 

𝑎22 =
1

16𝐺
[4(1 − 𝜈)(1 − cos 𝜃) + (1 + cos 𝜃)(3 cos 𝜃 − 1)] (I.11) 

𝑎33 =
1

4𝜋𝐺
 (I.12) 

in which 𝐺 is the shear modulus of elasticity and 𝜈 is the Poisson ratio. 

𝑆 rcos 𝜑⁄  represents the amplitude of the intensity of the strain energy density 

field and it varies with the angle 𝜑 and 𝜃. It is apparent that the minimum of 

𝑆 rcos 𝜑⁄  always occur in the normal plane of the crack front curve, namely 

𝜑 = 0. 𝑆 is known as strain energy density factor and plays a similar role to 

the SIF. 

Such a criterion is based on three hypotheses: 

1. the direction of the crack-growth at any point along the crack front 

is toward the region with the minimum value of strain energy 

density factor 𝑆 as compared with other regions on the same 

spherical surface surrounding the point. 

2. crack extension occurs when the strain energy density factor in the 

region determined by hypothesis 𝑆 = 𝑆𝑚𝑖𝑛 reaches a critical value, 

say 𝑆𝑐𝑟. 

3. the length, 𝑟0, of the initial crack extension is assumed to be 

proportional to 𝑆𝑚𝑖𝑛 such that 𝑆𝑚𝑖𝑛 𝑟0⁄  remains constant along the 

new crack front. 

It can be seen that the Minimum Strain Energy Density criterion can be 

used both in two and three dimensions. Note that the direction evaluated by 

the criterion in three-dimensional cases is insensitive to 𝐾𝐼𝐼𝐼 since the 𝑎33 does 

not have a 𝜃 dependency (eq. I.12). 

The crack-growth direction angle is obtained by minimising the strain 

energy density factor 𝑆(𝜃) of eq. I.8 with respect to 𝜃. The minimum strain 

energy density factor 𝑆𝑚𝑖𝑛 is then: 

𝑑𝑆(𝜃)

𝑑𝜃
= 0  − 𝜋 < 𝜃 < 𝜋 (I.13) 

𝜃∗: {𝑚𝑖𝑛𝑆(𝜃)} = 𝑆𝑚𝑖𝑛 = 𝑆(𝜃∗) (I.14) 
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I.4.3 Crack-Growth Rate (CGR) assessment 

The simplest fatigue crack-growth law was introduced in 1962 by Paris 

(Paris, 1961) who linearly connected (in a log-log plot) the crack-growth rate 

𝑑𝑎 𝑑𝑁⁄  with the SIF range ∆𝐾 (𝑎 is the crack length, 𝑁 is the number of 

fatigue cycles) by means of the law: 

𝑑𝑎

𝑑𝑁
= 𝐶∆𝐾𝑚 (I.15) 

where 𝐶 and 𝑚 are constants that depend on the material. ∆𝐾 is defined as 

∆𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛 and it is the SIF variation attained during the fatigue 

cycling. Being a power law relationship between the crack growth rate during 

cyclic loading and the range of SIF, the Paris law can be visualized as a 

straight line on a log-log plot where the x-axis is denoted by the SIF range ∆𝐾 

and the y-axis by the crack-growth rate 𝑑𝑎 𝑑𝑁⁄  (Fig. I.6). 

 

 

Figure I. 5 Schematic plot of the typical 𝑑𝑎 𝑑𝑁⁄  vs. ∆𝐾 relationship; the Paris 

law is calibrated to model the linear part of the graph. 

Since Paris discovered such relationship, a lot of research has been devoted 

to the development of appropriate crack propagation laws. They mostly 

consist of a Paris range, denoting the linear range, and one or more 

modifications to cover the drop at the threshold value, the rise to infinity at 

the critical value and the overall 𝑅-dependence (𝑅 is the stress ratio defined 

as 𝑅 = 𝐾𝑚𝑖𝑛 𝐾𝑚𝑎𝑥⁄ ). An example of such laws is the Forman law (Forman, 

1967): 

𝑑𝑎

𝑑𝑁
=

𝐶∆𝐾𝑚

(1−𝑅)𝐾𝑐−∆𝐾
 (I.16) 



Chapter I 

 21 

where 𝐾𝑐 is a further material parameter representative of the critical value 

of 𝐾 that leads to the final fracture. A further example is the Walker law 

(Walker, 1970) that takes into account of the R-dependence in the form of:  

𝑑𝑎

𝑑𝑁
= 𝐶 [

∆𝐾

(1−𝑅)1−𝑤]
𝑚

 (I.17) 

with 𝑤 as a material parameter that defines the material sensibility to the 

mean stress. The most complete crack-growth law is the NASGRO law 

(NASGRO®, 2002) defined as: 

𝑑𝑎

𝑑𝑁
= 𝐶 (

(1−𝑓)

(1−𝑅)
∆𝐾)

𝑚 (1−
∆𝐾𝑡ℎ

∆𝐾
)

𝑝

(1−
𝐾𝑚𝑎𝑥

𝐾𝑐
)

𝑞 (I.18) 

where the number of material parameters needed to calibrate the law rises 

up to 8. Further details can be found in (NASGRO®, 2002), however, the law 

takes into account of the dependencies on the stress ratio 𝑅, 𝐾𝑡ℎ threshold 

value, critical 𝐾𝑐 value and small crack propagation phenomenon. 

Further crack-growth laws have been proposed in the literature (Dhondt, 

2015). 

 

 

I.4.4 Mixed-mode crack-growth 

All the crack-growth laws defined in §I.4.3 are functions of the variability 

of SIFs ∆𝐾 during the fatigue cycling. However, as described in §I.4.1, three 

separate 𝐾 values (𝐾𝐼 , 𝐾𝐼𝐼 , 𝐾𝐼𝐼𝐼), representative of the three basic fracture 

modes, are generally obtained by the J-integral decomposition. Therefore, it 

is necessary to blend together the three distinct 𝐾 values in one single 

“equivalent” 𝐾𝑒𝑞 value to use in a CGR law, this especially when all the three 

𝐾 values are non-negligible (mixed-mode conditions). Some equations to 

calculate 𝐾𝑒𝑞 from (𝐾𝐼 , 𝐾𝐼𝐼 , 𝐾𝐼𝐼𝐼), calibrated on experimental data, are 

available in the literature and the most relevant ones are here presented: 

 Yaoming-Mi (Mi, 1995) formula: 

𝐾𝑒𝑞 = √(𝐾𝐼 + |𝐾𝐼𝐼𝐼|)2 + 2𝐾𝐼𝐼
2 (I.19) 

 Sum of squares (Beasy, 2011) formula: 

𝐾𝑒𝑞 = √𝐾𝐼
2 + 𝐾𝐼𝐼

2 + 𝐾𝐼𝐼𝐼
2  (I.20) 

 Tanaka (Tanaka, 1974) formula: 

𝐾𝑒𝑞 = √𝐾𝐼
4 + 8𝐾𝐼𝐼

4 +
8

1−𝜈
𝐾𝐼𝐼𝐼

44
 (I.21) 
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II.1 Introduction 

The work presented in this chapter is based on a benchmarking activity 

between different numerical approaches to solve a fracture problem. Two 

FEM codes, ZENCRACK (Zencrack, 2005) and CRACKTRACER3D 

(Bremberg, 2008, 2009), a DBEM code (BEASY, 2011) and a FEM-DBEM 

coupled approach have been separately used to calculate Stress Intensity 

Factors (SIFs), Crack Growth Rates (CGRs) and crack paths for a crack 

initiated from the outer surface of a shaft undergoing different load cases. The 

main goal was to get a cross comparison on the results obtained by means of 

different codes and eventually validate the coupled FEM-DBEM “Loaded 

Crack” (LC) approach. The comparison was carried out in terms of the so 

obtained SIFs, kink angles and CGRs and the result are here compared and 

discussed showing a mutual agreement. Further details can be found in the 

literature (Citarella, 2017; Giannella, 2017b). 

 

 

II.2 Problem description 

The here presented study case, proposed by Dr. G. Dhondt (MTU 

Aeroengines) in an attempt to enhance the level of mode mixity against a 

similar configuration previously analysed (Citarella, 2015a), represents a hub 

and a hollow shaft, in a symmetric configuration with respect to a mid-plane 

perpendicular to the shaft axis (Fig. II.1). 

Three different load cases have been considered (Fig. II.2): 

 “coupled” (Fig. II.2a): consisting of a uniform transversal traction 

distribution on the shaft end surface, with resultant magnitude 

equal to 200 kN, and a corresponding point radial force on the hub 

with same magnitude and opposite direction; in addition, there is 

a press-fit condition, introducing contact stresses, based on an 
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interference 𝛿 = 0.28 𝑚𝑚 at shaft/hub contact surface with a 

static friction coefficient 𝑓𝑠 = 0.6; 

 “shear” (Fig. II.2b): consisting of a uniform transversal force 

distribution, with resultant magnitude equal to 200 kN, along the 

hub perimeter line (dotted red line of Fig. II.1b);  

 “torque” (Fig. II.2c): consisting of a uniform torque distribution, 

with resultant magnitude equal to 22.5 kN m, again distributed 

along the hub perimeter line (dotted red line of Fig. II.1b). 

 

(a) 

 

(b) 

Figure II. 1 Drawings of the (a) shaft with highlight of the crack and fillet 

radii, (b) hub with the dotted red line representing the loading application 

zone. 
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(a) 

 

(b) 

 

(c) 

Figure II. 2 Considered load cases: (a) ‘‘coupled”, (b) ‘‘shear” and (c) 

‘‘torque”. 

The material is a steel, whose behaviour is assumed being linear-elastic, 

with the main mechanical and fracture material data listed in Tab. II.1. The 

geometry of the initially considered part-through crack is an arch of ellipse; 

the crack is initiated from the external surface of the shaft, having dimensions 

of 𝑎 = 3.8 𝑚𝑚 and 𝑐 = 1.9 𝑚𝑚 (Fig. II.1a). 

Four different numerical approaches have been compared to simulate the 

crack propagation: 

 “BEASY” DBEM code: the modelling, the propagation and the 

stress calculations are performed within the DBEM environment; 

 “ZENCRACK” FEM code (hereinafter “ZC”): the stress 

calculations are performed by the FEM‐ solver ABAQUS 
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(ABAQUS, 2011), and both the modelling and the propagation are 

performed within ZC; 

 “CRACKTRACER3D” FEM code (hereinafter “CT3D”): 

CalculiX (Dhondt, 2016) is used as FE solver whereas the fracture 

problem is left to CT3D; 

 “Loaded Crack” approach (hereinafter “LC”): a FEM code 

(ABAQUS, 2011) is used to compute the global stress field in the 

uncracked domain and such results are used to perform the DBEM 

(BEASY, 2011) fracture analysis on the cracked subdomain (§I.3). 

The adopted propagation law is a pure Paris‐ type (no threshold nor critical 

value, §I.4.3). The needed Stress Intensity Factors (SIFs) were calculated by 

using the J‐ integral approach in BEASY (Rigby, 1993, 1998) and ZC, 

whereas in CT3D, the crack tip stress method was applied (Dhondt, 2001). 

Because some of the loadings were truly mixed‐ mode (especially the 

torque load case; Marcon, 2014; Berto, 2013; Citarella, 2015b), predictive 

capabilities for out‐ of‐ plane crack-growth were particularly important for 

this analyses. To this end, the propagation angle predictions were based on: 

Minimum Strain Energy Density criterion (MSED; Sih, 1974) in BEASY, 

Maximum Energy Release Rate (MERR) in ZC and, finally, the maximum 

principal asymptotic stress criterion (Dhondt, 2014) in CT3D. 

 

Table II. 1 Main material data for mechanical and fracture analyses. 

Parameter Value 

E [GPa] 210 

ν [-] 0.3 

C [mm/cycle/(MPa mm)0.5)n] 1.23085E-12 

m [-] 2.8 

ΔKth [(MPa mm)0.5] 0 

Kc [(MPa mm)0.5] 1E6 

 

 

II.3 DBEM modelling 

The DBEM model is made up of two different zones (one for the shaft and 

one for the hub), with a mesh of quadrilateral 9-noded boundary elements for 

both functional and geometrical variables. 

A part‐ through crack was inserted on the shaft external surface, see Fig. 

II.3. After the crack insertion (fully automatic together with the inherent local 

remeshing with 6 noded triangular boundary elements), the number of 

elements increased from 2500 to nearly 3100. 
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Figure II. 3 DBEM uncracked model with close‐ up of the remeshed area 

surrounding the crack insertion point and details of the initial crack geometry 

with J‐ paths along the crack front (purple) for the J‐ integral computation. 

 

 

II.4 FEM modelling 

The ZC uncracked model (Fig. II.4), created in ABAQUS, consisted of 

three different volumes: one for the shaft without crack-growth domain, one 

for the hub and the last for the crack-growth domain. A mesh of 8 noded brick 

elements with reduced integration was used throughout the model except for 

the crack-growth domain (i.e. the “large” elements shown in Fig. II.4) that was 

meshed with 20‐ node brick elements with full integration. The uncracked 

FEM model, with nearly 194,000 elements, was then processed by the ZC 

Graphical User Interface (GUI), substituting each “large” brick with a crack 

block selected from the ZC crack block library (Zencrack, 2005). In this work, 

the crack blocks belong to the L02 family and have a maximum of 12 ring 

contours delimitating the user defined crack front. Each crack block includes 

nearly 4000 elements, enclosing a rosette of fully quadratics and collapsed 

quarter‐ point elements surrounding the crack tip. Loads and boundary 

conditions were applied in the same way as for the DBEM model (§II.3). 
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Figure II. 4 ZENCRACK (ZC)/ABAQUS uncracked model with highlight on 

the brick elements that are subsequently substituted with crack blocks. 

The CT3D uncracked model (Fig. II.5) was created with CalculiX GraphiX 

(Dhondt, 2016) by using 20‐ node brick elements with reduced integration. 

The yellow elements in the figure constitute the domain, which is the set of 

elements that is remeshed to accommodate the crack. Fig. II.5 shows also such 

domain after remeshing: a flexible tube was introduced along the crack front 

and filled with 20 noded hexahedral elements with reduced integration, 

whereas, quadratic (10 noded) tetrahedral elements were used to fill the 

remaining space. The hexahedral mesh in the tube and the hexahedral mesh in 

the structure outside the domain are connected with the tetrahedral mesh by 

using linear multiple point constraints. At the crack tip, collapsed quarter‐
point elements are used to enforce the correct linear elastic stress and strain 

singularity. 

The boundary conditions for the coupled load case consisted of a 

suppression of all degrees of freedom in the geometrical symmetry plane and 

a true surface‐ to‐ surface contact with a static friction coefficient of 0.6, a 

normal contact stiffness of 10 MN/mm3, and a stick stiffness of 0.1 MN/mm3. 

For the shear loading, the boundary conditions were the same as for 

bending but, in addition, a tied contact between hub and shaft was adopted (no 
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relative motion possible between shaft and hub). Finally, for the torsion 

loading, the displacements in axial and circumferential directions in the 

geometrical symmetry plane were set to 0 and tied contact was applied 

between the shaft and the hub. 

 

Figure II. 5 CRACKTRACER3D (CT3D)/CalculiX uncracked model with the 

subsequent cracked mesh and details of the crack. 

 

 

II.5 FEM-DBEM modelling 

The global FEM model, similar to that shown in Fig. II.4, was also 

considered as the global model from which to extract a DBEM submodel 

useful to work out the fracture simulations. The adopted approach for the 

submodelling strategy was the Loaded Crack (LC) (§II.3) approach in which, 

only the crack face loads were considered as driving force for the whole crack-

growth. Such DBEM crack face loads come from the FEM model of Fig. II.4 
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in which, the large crack elements were substituted with a fine mesh. In 

particular, the stresses along the virtual surface traced by the crack have to be 

evaluated with the highest possible precision, because they represent the 

driving force for the following DBEM crack propagation. 

When using such an LC approach, the FEM mesh in the cracked area has 

to be very fine to retrieve accurate tractions to be applied on the DBEM crack 

faces. For this reason, a FEM submodel (Fig. II.6a), containing a small portion 

of the shaft, was extracted from the FEM global model to accurately calculate 

the local stress field. Such submodel, containing only the volume surrounding 

the crack insertion point, has size and mesh refinement capable to guarantee a 

very high accuracy when evaluating the stress field in the neighbourhood of 

the crack (higher than that provided by the global model). To get the needed 

precision, especially for the torque load case, it has been necessary to strongly 

refine the FEM submodel mesh. This was due to the high kink angles predicted 

for the torque load case (nearly 90° for the initial propagation steps) that 

required small crack advances per step and consequent heavy DBEM mesh 

refinements. 

Subsequently, a BEM submodel (Fig. II.6a) is created containing the zone 

surrounding the crack initiation point (the crack is not yet modelled and that 

is why the DBEM formulation is not yet enforced). In addition to the FEM 

stresses, applied as tractions on the crack faces (Fig. II.6b), springs of 

negligible stiffness (in purple in Fig. II.6a) are applied to a few BEM elements 

in order to prevent rigid body motion (nodal rigid body constraints are 

prevented in case of crack propagation). Due to the loading conditions 

consisting of just a self-equilibrated load, a large part of the DBEM cracked 

submodel (now the crack has been introduced with automatic remeshing in 

the surrounding area) turns out to have a null stress field. For this reason, the 

fracture problem can be analysed considering a very small portion of the entire 

model, with inherent decrease of the needed computational effort. 
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(a) 

 

(b) 

Figure II. 6 (a) FEM and DBEM submodel used for the FEM-DBEM 

approach; (b) DBEM submodel after that the crack has been inserted and 

loaded. 

The FEM submodel of Fig. II.6a, when used for the coupled and shear load 

cases, comprised nearly 25,000 hexahedral elements whereas, for the torque 

load case, comprised nearly 130,000 hexahedral elements. 

A preliminary study was aimed at assessing the minimum needed 

dimensions of the DBEM submodel, useful to guarantee a complete vanishing 

of stresses from the crack area to the boundaries. Such uncracked DBEM 

model comprises nearly 1200 linear elements and this number rises up to 

nearly 1800 when the initial crack is inserted. The remeshing zone and the 

crack faces are discretised with 9 noded quadratic elements whereas 4 noded 

linear elements are used for the bulk of the remaining mesh. 

 

 

II.6 Results 

A crack-growth was simulated for each of the four abovementioned 

approaches in correspondence of three loading conditions. Results are here 
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compared and discussed in terms of SIFs for the initially considered crack and 

in terms of CGRs obtained during the crack-growth simulations. No stress-

displacement fields were available for comparison between all the 

methodologies since the FEM-DBEM LC approach does not allow to replicate 

the FEM fields in the DBEM environment: only the crack tip singularities can 

be correctly captured as stated by the superposition principle. Namely, the 

DBEM solution aims just at the appropriate characterization of the crack tip 

stress behaviour in order to correctly compute SIFs, but it cannot provide a 

realistic stress scenario throughout the domain. 

In summary, for the LC approach, FEM stresses were applied as tractions 

to the crack faces of the DBEM submodel and then SIFs along the crack front 

were obtained by using the J-integral. All the so calculated SIFs are compared 

in the Fig. II.7 showing a very good agreement between the four 

methodologies and three load cases. 

 

(a) 

 

(b) 

 

(c) 

Figure II. 7 SIFs calculated by the considered methodologies for load cases: 

(a) coupled, (b) shear and (c) torque; X-axis is the normalised abscissa drawn 

along crack front. 
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Crack propagation simulations were run considering a 0-max fatigue load 

cycle with the maximum value corresponding to the loads defined in §II.2. 

The simulations were all performed through a step-by-step growth of the 

crack, involving a remeshing and a stress field evaluation (with corresponding 

SIFs) at each crack-growth increment. The codes used in this work calculate 

the kink angles in different ways: MSED by BEASY, MERR by ZC, and 

maximum principal asymptotic stress criterion by CT3D. 

A pure Paris’ law (§I.4.4; Paris, 1961) was adopted to predict the Crack 

Propagation Rates for all the codes: 

da

𝑑𝑁
= 𝐶∆𝐾𝑒𝑞

𝑚 (II.1) 

where the material parameters 𝐶 and 𝑚 are listed in Tab. II.1. ∆𝐾𝑒𝑞 is an 

equivalent SIF, calculated by different combinations of mode I, II, and III 

SIFs, depending on the considered code. 

In particular, for the DBEM and FEM-DBEM approaches here adopted, 

the procedure based on the decomposition of the elastic field into respective 

symmetric and antisymmetric mode components, available in §I.4.1 (Rigby, 

1993, 1998), was adopted to obtain the three separate 𝐾𝐼, 𝐾𝐼𝐼 and 𝐾𝐼𝐼𝐼 values. 

Then, the ∆𝐾𝑒𝑞, in case of 𝑅 = 0, can be obtained by means of the Tanaka 

formula (§II.4.4) here reported: 

𝐾𝑒𝑞 = √𝐾𝐼
4+8𝐾𝐼𝐼

4+
8

1−𝜈
𝐾𝐼𝐼𝐼

44
 (I.19) 

Regarding the ZC code, the total energy release rate was used for 

calculating the 𝐾𝑒𝑞: 

𝐾𝑒𝑞 = √[
𝐸

1−(𝛼𝜈)2 𝐺𝑒𝑓𝑓], (II.2) 

where α is a measure for the stress state taking values between 0 and 1 (0 

for plane stress state and for plane strain state) whereas 𝐺𝑒𝑓𝑓, in case of 𝑅 =

0, corresponds to:  

𝐺𝑒𝑓𝑓 =
𝐵

𝐸
(𝐾𝐼

2 + 𝐾𝐼𝐼
2) +

1

2𝐺
𝐾𝐼𝐼𝐼

2 , (II.3) 

where 𝐵 = 1 − 𝜈2 for plane strain and 𝐵 = 1 for plane stress, and 𝐺 is the 

shear modulus. 

Finally, the calculation of the equivalent SIF is more cumbersome in the 

CT3D code. Using the K‐ values of the three modes, the asymptotic stress 

field is considered at each position along the crack front; the 𝐾𝑒𝑞 is then 

defined as the principal self‐ similar stress evaluated in correspondence of the 

deflection angle φ for which the principal plane contains the crack tip. The 

corresponding principal plane dictates also the propagation direction. For any 

details, the reader is referred to the paper by Dhondt (Dhondt, 2014). 
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Using the crack‐ size definitions in Fig. II.8, the graphs of the crack size 

versus number of cycles are shown in Fig. II.9 for all the simulations. Based 

on the K‐ values along the initial crack front, it was possible to envisage that 

both the coupled and shear load cases lead to in-plane crack-growth. The 

calculations confirmed this. Looking at the curves in Figure II.9, the 𝑐/𝑎 ratio 

changes for the coupled case from 0.5 to about 0.75, i.e., the form of the crack 

becomes less skewed during the propagation. This, too, was to be expected 

because the initial K‐ values in the middle of the crack front were much higher 

than those at the free surface. For the torque loading, the mode I is clearly 

dominated by mode II and especially mode III. Therefore, out‐ of‐ plane 

crack-growth was expected to be important in both cases. 

 

Figure II. 8 Crack size definitions. 

 

(a) 

 

(b) 



Chapter II 

 35 

 

(c) 

Figure II. 9 Plots of crack sizes vs. total fatigue cycles for the load cases of: 

(a) coupled; (b) shear; (c) torque. 

Runtimes for performing the various crack propagation simulations were 

compared between the four codes. The average runtimes calculated for one 

step of crack advance are listed in Tab. II.2. An average value was calculated 

because during the propagation, the number of elements needed to discretise 

the crack increases and consequently so do runtimes. 

Tab. II.2 clearly shows that the FEM-DBEM LC approach takes much 

lower time then that required for the same calculation using DBEM and the 

ratio is even more advantageous if compared to a FEM code. This was 

expected since the LC model to handle is smaller than the others and the kind 

of analysis is generally simpler (pure stress analysis). In addition, a high 

accuracy is guaranteed. 

 

Table II. 2 Runtime for the entire propagation for the coupled load case for 

the various adopted approaches. 

Code Runtime [min] 

DBEM 1360 

FEM-DBEM 231 

FEM (ZC) 500 

 

 

II.7 Remarks 

Four approaches were applied to three mixed‐ mode crack propagation test 

cases. Although the codes use completely different methods to modify the 

mesh at the crack tip and to calculate the stresses, the SIFs, the kink angles, 

the CGRs and the shape of the resulting crack are quite similar. The most 

advanced approach appeared to be the FEM-DBEM one since such 

submodelling strategy allows to get an accurate SIF assessment along the 

crack front together with runtimes much lower than those needed by pure 

DBEM and FEM approaches. Moreover, the LC approach allows to 

circumvent some of the inaccuracies inherent to the “classical” submodelling 



FEM-DBEM benchmark 

36 

implementations. One of the reasons is that, with the LC approach, the loads 

on the submodel (namely on the crack faces), are rigorously updated for each 

step of the incremental crack-growth. 

 



 

 

Chapter III 

FEM-DBEM application on an 

aeroengine turbine 

 

 

 

 
III.1 Introduction 

A realistic application of two distinct approaches based on the Dual 

Boundary Element Method (DBEM) to solve a Fracture Mechanics (FM) 

problem on a GE-AVIO aeroengine turbine is presented in this chapter. A 

“Fixed Displacement” (FD) and a “Loaded Crack” (LC) FEM-DBEM 

submodelling approaches have been used to simulate the thermo-mechanical 

fatigue crack-growth of an initial metallurgical defect as detected on a statoric 

segment. The results in terms of SIFs and CGRs are here compared showing 

that the LC approach allowed to overcome the inaccuracies that inevitably 

arise when using classical submodelling strategies such as FD (or similarly 

“Fixed Load”, FL). 

 

 

III.2 Problem description 

Design of turbine rotor blades and vanes for aircraft engines asks for 

cutting-edge modelling capabilities, because such structural components are 

subjected to high temperatures, complex mechanical loads, corrosive 

environment and long expected lifetimes, to not mention the catastrophic 

consequences of a structural failure. 

Turbine operating conditions vary drastically from take-off to landing 

phases of a common aircraft operating cycle, with temperatures reaching up 

to 1300 K, imposing severe thermo-mechanical fatigue loadings on the 

stressed materials. Extreme temperature gradients and transients induce cyclic 

thermal-stresses on the turbine vanes and consequent Thermo-Mechanical 

Fatigue (TMF) conditions. It is therefore of utmost importance to accurately 

evaluate the impact of potential detected defects on these components. 
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To this aim, two FEM-DBEM submodelling strategies have been adopted 

in this work to solve a realistic fracture problem in an aircraft engine turbine 

stage. As proved in recent works, FEM and DBEM methods can efficiently 

work together when tackling large structures (Citarella, 2013, 2014), residual 

stresses generated by plastic deformations (Citarella, 2014, 2016a, 2016c; 

Carlone, 2015) or load spectrum effects (Citarella, 2009). 

The two procedures are tested on the crack scenario detected on a turbine 

vane of a commercial aircraft engine. The load spectrum driving the fatigue 

crack propagation is representative of a GAG (ground-air-ground) cycle. The 

range of Stress Intensity Factors (∆𝐾) is used as the crack driving force and 

Crack Growth Rates (CGRs) are calculated by using a Paris’ law (§I.4.3; Paris, 

1961) calibrated by material fatigue crack-growth data obtained at the 

temperature of interest. 

The FEM and DBEM used codes are ANSYS (ANSYS, 2007) and BEASY 

(BEASY, 2011) respectively. 

 

 

III.3 FEM modelling 

The global FEM model considered in the analyses is representative of a 

statoric segment, made of six airfoils, of a low pressure turbine stage of a 

commercial aircraft engine. It was modelled considering a typical turbine 

blade superalloy, with mechanical and thermal isotropic material properties, 

whose variations against temperature are illustrated in Fig. III.1. Fluid 

pressure was modelled as a mechanical load, applied on both sides of the 

airfoils, in addition to the temperature scenario, previously calculated by 

thermo-fluid-dynamic analyses (Fig. III.2a). In addition, cyclic symmetry 

boundary conditions were enforced on the casing that couples with the statoric 

segment, in order to simulate the circumferential periodicity of the entire stage 

(Fig. III.2b). Surface to surface contacts were applied on the interfaces 

between statoric hooks and casing. Thermal and mechanical loads applied on 

the global model were representative of the most severe conditions for an 

aircraft engine during its mission, namely, those reached at take-off. As a 

matter of fact, during the take-off, there is the need for the maximum boost of 

the engines and, consequently, vane temperatures get the highest magnitudes 

and the highest gradients with consequent enhancement of the so generated 

thermal-stresses. 

In correspondence of the boundary conditions related to the most critical 

mission point, a tangential displacement distribution was evaluated (Fig. 

III.3a). Due to a combination of mechanical and thermal cyclic stresses, 

fatigue cracks can nucleate, most likely from locations with highest stresses, 

localized in-between airfoils and casing (Fig. III.3b, the figure shows also the 

crack insertion point for the subsequent fracture analyses). 
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(a) 

 

(b) 

 

(c) 

Figure III. 1 Material properties vs. temperature for the considered 

superalloy: Young’s modulus (a), thermal expansion coefficient (b) and 

Poisson’s ratio (c). 
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(a)     (b) 

Figure III. 2 FEM model: (a) thermal scenario and (b) cyclic symmetry 

boundary conditions (highlighted in green). 

 

(a)     (b) 

Figure III. 3 Tangential displacements (a) and max principal stresses (b) on 

the statoric segment. 

 

 

III.4 Metallographic post-mortem investigation 

A post-mortem metallographic investigation was developed on the 

damaged vane, in order to assess the causes of the engine failure (Fig. III.4). 
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(a)     (b) 

Figure III. 4 Segment affected by fatigue failure: (a) damaged airfoil with 

highlight (yellow arrows) of the undesired double radius on the trailing edge; 

(b) estimated initial crack front (red line). 

The affected airfoil was the N. 6 of a statoric segment of the fifth low-

pressure turbine stadium. The fatigue crack nucleation (Fig. III.4b) was likely 

caused by: 

 a combined effect of two initial manufacturing defects: an irregular 

trailing edge profile (double radius visible in Fig. III.4) and a 

metallurgical discontinuity (enclosed by the red line in Fig. III.4b); 

 an operational anomalous stress intensification at the crack 

location caused by off mission envelope test conditions. 

 

 

III.5 DBEM submodelling approach 

From the mission profile of Fig. III.5a, a simplified thermo-mechanical 

fatigue load cycle was extracted, with its maximum value corresponding to 

the take-off phase and its minimum value corresponding to the engine shut-

off (zero load; Fig. III.5b). 

Mechanical, thermal and fatigue properties for the considered superalloy, 

evaluated at an average temperature of the DBEM submodel, are listed in Tab. 

III.1. In detail, the calibration of the Paris’ law (I.4.3) used to calculate the 

CGRs was performed at the average submodel temperature. The DBEM 

submodel cannot allow for the spatial variability of the material properties 

caused by the gradients, consequently, uniform material properties were used 

as evaluated in correspondence of the average submodel temperature. 

Nevertheless, for the analysed problem, the impact of such approximation on 

the final results (e.g. SIFs along the crack front) turns out to be negligible due 

to the limited temperature variation in the very small submodel adopted for 

the analyses. 
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SIFs were calculated resorting to the J-integral approach (Wilson, 1979; 

Rigby, 1993; Dell’Erba, 1998, 2001) and the crack path assessment is based 

on the Minimum Strain Energy Density (MSED) criterion (Sih, 1974). In this 

work, a comparison on different crack path criteria was not provided because 

the crack evolves under nearly pure mode I, so that, the crack kinking 

assessment did not represent a critical step. 

 

(a) 

 

(b) 

Figure III. 5 (a) Realistic engine mission profile and (b) its simplified profile 

adopted in this work. 

A small portion of the whole FEM model (Fig. III.2) was extracted by 

means of a spherical cutting domain and converted in a DBEM submodel by 

a skinning procedure (BEASY software provides an interface utility capable 

to enforce automatically such an extraction). Then, a crack was introduced and 

propagated taking advantage of the automatic remeshing capabilities of the 

adopted DBEM code. 

In particular, two DBEM submodels (Fig. III.7) were cut by two spherical 

domains, both centred in the same position, the crack initiation point of Fig. 

III.3b, but having different sphere radii of 𝑟 = 1 in. and 𝑟 = 0.3 in. Such 

submodels were imported in the DBEM environment in order to assess the 
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minimum submodel size capable to ensure insensitivity of boundary 

conditions against the crack-growth results. FD submodel was loaded with 

displacement boundary conditions at subdomain cut surfaces (fluid pressure 

on the airfoils was negligible) whereas LC submodel was loaded with only 

tractions on crack faces. 

Using FD procedure, then without allowing for an update of boundary 

conditions during the crack-growth, it turns out mandatory to cut a submodel 

sufficiently larger than crack sizes. Such drawback can be circumvented by 

resorting to LC approach, where the submodel minimum size can be much 

lower, with consequent reduction of computational effort. As a matter of fact, 

having applied just a self-equilibrated load on the crack faces, it is sufficient 

to enclose in the sphere cut just that restricted volume portion surrounding the 

crack affected by non-null stresses, as shown in the following. 

 

Table III. 1 Mechanical, thermal and fatigue properties at the sub-model 

average temperature. 

Parameter Value 

Young’s modulus [psi] 23.5E6 

Poisson’ ratio [-] 0.337 

Thermal expansion coeff. [in./(in.*°F)]  8.75E-6 

Reference temperature [°F] 77 

Paris’ law coeff. C [psi1-n/in.n/2] 2.62E-24 

Paris’ exponent m [-] 4.37 

Threshold limit Kth [psi*in0.5] 7410 

Fracture toughness Kc [psi*in0.5] 46153 
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(a)     (b) 

Figure III. 6 Considered loading strategies for DBEM analyses: (a) LC and 

(b) FD; model for LC comprises the self-equilibrated load on the crack face 

elements and few constraints to prevent rigid body motion; model for FD 

comprises temperature on all the elements and displacement field on all the 

cut surface elements. 

 

Figure III. 7 Max principal stresses before crack introduction on the two 

DBEM submodels used for FD approach; highlight of the crack insertion 

position. 
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III.6 Results 

The first goal was to assess the minimum required submodel size 

“compatible” with the boundary conditions that were updated or not during 

crack-growth for LC and FD respectively. In more details, submodel boundary 

conditions for both FD and LC approaches come from the FEM analysis of 

the uncracked global model but, for the FD approach, this represents an 

element of approximation. In fact, the displacement boundary conditions 

applied on the cutting surfaces should, in principle, be updated at each step of 

crack advance, to allow for the submodel stiffness variation when solving the 

global model. On the contrary, with the LC approach, the self-equilibrated 

tractions applied on both faces of the crack are correctly extracted from an 

uncracked body solution, as rigorous dictated by the superposition principle 

implementation (§I.2). Moreover, such tractions are updated step-by-step 

because new crack surfaces are continuously created and loaded during the 

crack-growth simulation. Thus, for LC approach there is no need to guarantee 

a submodel much larger than the crack extension, being sufficient to enclose 

the volume surrounding the crack with non-zero stresses; such stress ‘‘fading 

distance” can be very short because of a self-equilibrated load applied to the 

model. 

The crack representing the initial detected defect (red line in Fig. III.4b) 

was modelled and inserted in both LC and FD DBEM submodels. Introducing 

the crack into DBEM submodels, with the inherent automatic remeshing of 

the cracked surroundings, two different stress scenarios came out from FD and 

LC approaches (Fig. III.8): the former produces a realistic stress scenario 

throughout the whole DBEM submodel whereas the latter is meaningful only 

for the SIFs evaluation. Hence, a comparison between the two methodologies 

can just involve SIFs along the crack front and, therefore, the CGRs and kink 

angles that are directly connected to the SIFs calculation. 
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Figure III. 8 Von Mises stresses [psi] for the initial cracked FD (a) and LC 

(b) models, with close-up of the cracked area (cutting sphere radius R = 1 

in.). 

A convergence study (Fig. III.9-10) was performed for both the FD and LC 

methodologies, varying the submodel size and the mesh refinement on and 

nearby the crack (Fig. III.9), in order to benchmark the respective convergence 

rates and computational efficiencies. Analysing the so obtained SIFs, it was 

possible to observe a high convergence rate of LC methodology (Fig. III.10a), 

rapidly providing a convergent SIF distribution along the crack front even for 

coarse meshes, i.e. with high crack front element size (hereinafter “cfes”, 

BEASY, 2011) values. On the contrary, the FD methodology needed strong 

mesh refinements (Fig. III.10b) to get convergent results but, anyhow, 

perfectly coincident SIFs could not even be obtained since too fine meshes 
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were needed. Fig. III.10 shows the mode I SIFs but the same behaviour was 

obtained also for 𝐾𝐼𝐼 and 𝐾𝐼𝐼𝐼. 

However, comparing the results provided by the two methodologies in 

correspondence of the initial cracked configuration (Fig. III.10), it was 

possible to guarantee the correctness on the implementation of the proposed 

LC approach. 

 

Figure III. 9 Different meshes on the crack face, as used for the convergence 

study. 

 
(a)     (b) 

Figure III. 10 Different meshes on the crack face, as used for the convergence 

study between (a) LC and (b) FD methods; X axis is the normalised abscissa 

drawn along the crack front. 

Crack size vs. cycles, calculated with LC and FD methodologies are 

compared in Fig. III.11. Crack propagation has been stopped when the 

maximum equivalent SIF 𝐾𝑒𝑞, calculate by means of the eq. I.19: 

𝐾𝑒𝑞 = √(𝐾𝐼 + |𝐾𝐼𝐼𝐼|)2 + 2𝐾𝐼𝐼
2 (I.19) 

and, in this case, nearly coincident with 𝐾𝐼 due to the reduced level of mode 

mixity, reaches 96% of fracture toughness 𝐾𝑐. 

 



Aeroengine turbine FEM-DBEM application 

48 

Due to the complex shape of the crack, Fig. III.11 reports on the y-axis an 

equivalent crack length defined as. 

𝐸𝑞. 𝐿𝑒𝑛𝑔𝑡ℎ =
𝐶𝑟𝑎𝑐𝑘 𝑎𝑟𝑒𝑎

𝐶𝑟𝑎𝑐𝑘 𝑓𝑟𝑜𝑛𝑡 𝑙𝑒𝑛𝑔𝑡ℎ
 (III.1) 

Convergent crack propagation results related to the classical FD approach 

could not be calculated due to the excessive mesh refinement needed and the 

prohibitive runtimes. 

LC SIFs for both small and large submodels are nearly overlapped along 

the whole propagation and consequently the same holds true for the crack size 

vs. cycles (Fig. III.11a). On the contrary, SIFs from FD approach are 

overlapped for small and large submodels just for the initial crack propagation 

steps, i.e. when the DBEM cut surfaces are still sufficiently far from the 

advancing crack, whereas, a progressive divarication between the curves of 

crack size vs. cycles occurs as the crack grows (Fig. III.11b). 

In conclusion, the performed analyses clearly show that the LC approach 

allows to consider a smaller submodel than that needed by the FD approach 

without affecting the accuracy, with a consequent benefit in terms of runtimes. 

Indeed, runtimes for the solution of the initial crack scenarios (step 0) are 

compared in Tab III.2, clearly showing the advantage of using LC instead of 

FD. In order to obtain the same accuracy on SIFs assessment, the adopted 

meshes are: 

 crack front element size “cfes” equal to 0.00015 in. for FD model; 

 crack front element size “cfes” equal to 0.002 in. for LC model. 

 

(a)     (b) 

Figure III. 11 Comparison on crack sizes vs. cycles plots for small and large 

submodels and both the methodologies: (a) LC and (b) FD. 
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Table III. 2 Runtimes compared for FD and LC approaches. 

- DOFs x103 Step 0 solving phase [min] 

FD, r = 1 in. 109 773 

LC, r = 1 in. 33 22 

FD, r = 0.3 in. 68 224 

LC, r = 0.3 in. 14 7 

 

 

III.7 Remarks 

An enhanced FEM-DBEM submodelling approach, based on the principle 

of linear superposition to solve fracture problems, has been implemented for 

a crack-growth simulation in a GE-AVIO aeroengine turbine vane. A 

benchmark of such enhanced LC approach against a classical FD procedure 

has been proposed and the advantages in terms of runtimes and accuracy are 

summarized in the following: 

 LC approach is fully automated and permits to predict SIF, then 

also CGRs and kink angles, with higher accuracy and lower 

runtimes than for FD approach. 

 LC approach allows a remarkable decrease in terms of runtimes 

for SIF calculations because resorting to pure stress analyses 

instead of, in this case, thermal-stress analyses (needed for the FD 

procedure), also needing a less refined mesh to get convergent 

results. 

 LC approach accuracy is enhanced because the boundary 

conditions on the advancing crack are theoretically “correct” since 

they are correctly extracted from an uncracked FEM global model, 

as dictated by the superposition principle. Moreover, this allows 

also considering continuously updating boundary conditions 

during the simulation, whereas the FD approach is based on 

boundary conditions with no update during propagation (even if 

such update would be theoretically needed). 

 LC guarantees a lower sensitivity of results against the distance 

between the cutting surfaces and crack as proven considering 

different submodel sizes. 

 The fine tuning of crack propagation parameters with the FD 

procedure is more complex because of two contrasting 

requirements during a crack-growth simulation: a coarse mesh in 

order to facilitate the remeshing procedure and, at the same time, 

a very fine mesh in order to guarantee sufficient accuracy for SIFs 

calculations. 
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Future developments of present activity will concern an introduction of 

more realistic fatigue spectrum, representative of more phases of the turbine 

engine mission profile (Fig. III.5). 

 



 

 

Chapter IV 

FEM-DBEM application on 

Wendelstein 7-X structure 

 

 

 

 
IV.1 Introduction 

In this paragraph a realistic fatigue life assessment of a structural element 

of the supporting structure of the machine for the fusion experiment 

“Wendelstein 7-X” (W7-X) is presented. In particular, several cracks were 

detected on a Lateral Support Element (LSE) of the W7-X machine and the 

most critical crack has been here analysed by three distinct FEM-DBEM 

approaches (§II.2.3): Fixed Displacements (FD), Fixed Loads (FL) and 

Loaded Crack (LC). Two complex fatigue spectra were adopted to realistically 

reproduce the operating conditions of the machine. We will show how FD and 

FL approaches provide an upper and a lower bound for fatigue life predictions, 

whereas the LC results lye in between such bounds, confirming again that LC 

approach represents an accurate submodelling strategy by means of which it 

is possible to solve a generic fracture problem. Further details can be found in 

the literature (Giannella, 2017a). 

 

 

IV.2 Problem description 

Wendelstein 7-X (W7-X) is the world’s largest nuclear fusion experiment 

of stellarator type (Spitzer, 21958; Xu, 2016) that started operation in 2015 at 

the Max-Planck-Institute for Plasma-Physics in Greifswald, Germany (Fig. 

IV.1a; Wolf, 2017). In the machine, a hot helium or hydrogen plasma is 

confined in a Plasma Vessel (PV) by means of an electromagnetic (EM) field 

(Fig. IV.1b), reaching a magnitude up to 3 T, provided by 50 non-planar and 

20 planar superconducting coils (Fig. IV.1c). In the vacuum created inside the 

cryostat, the coils are cooled down to a superconducting temperature, close to 

absolute zero (4 K), using liquid helium. The magnetic cage keeps the 30 cubic 

metres of ultra-thin plasma suspended inside the PV. Such plasma is heated 
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up to fusion temperature by microwave heating, allowing for the separation of 

the electrons from the nuclei of the helium or hydrogen atoms. During the 

initial operations (Wolf, 2017), helium and subsequently hydrogen plasma 

were continuously produced in the W7-X with pulse lengths varying from half 

a second to six seconds and temperatures up to 100 million °C (Klinger, 2017). 

 

(a) 
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(b) 

 

(c) 
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(d) 

Figure IV. 1 (a) Modular-type stellarator Wendelstein 7-X; (b) Hot plasma 

confined by EM field generated by the coils; (c) FEM assembly of one-fifth of 

the magnet system of W7-X; (d) W7-X magnet system: FEM detail of a half 

module with the LSEs; highlights on the investigated LSE-05. 

The superconducting coils are bolted onto a central support ring and 

interconnected by welded Lateral Support Elements (LSEs; Fig. IV.1d): 100–

150 mm long hollow tubes of 30–35 mm thickness made of forged stainless 

steel (EN 1.4429). 

After the welding of the LSEs to the coil cases (weld depth 15–30 mm), 

several surface cracks larger than 8 mm (typical acceptance limit of EN 23277, 

2010) were found near the welds that could potentially limit the W7-X 

operations. Cracks were found with visual inspection and dye penetration tests 

at the accessible surfaces, particularly at the coil side of the weld within the 

cast steel, oriented mainly parallel to the weld seam (Fig. IV.2). Such cracks, 

in coils and superconducting cables areas where high stresses develop (Corato, 

2015), can become critical during operations. 

In order to take advantage of the high accuracy and flexibility of DBEM 

(Kuranakov, 2016; Alatawi, 2015; Chen, 1999; Hong, 1988) when handling 

3D crack-growth under mixed-mode conditions, in (Citarella, 2013) such 

cracks were modelled using a coupled FEM-DBEM approach (Citarella, 2014, 

2016b, 2016c). Crack sizes as well as stress-states and SIFs along the crack 

front were step-by-step updated through the entire simulation, and the crack-

growth was continued until the critical SIF was reached. The crack depth was 

not pointed out by NDI (Non-Destructive Inspection) tests; however, from 

repair experience it was found that such size is typically smaller than half the 

superficial crack length. In (Citarella, 2016c), the same problem was tackled 
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considering the simultaneous propagation of multiple cracks up to a condition 

of coalescence. 

In this work, the most critical discovered crack (Fig. IV.2) has been 

modelled with three different FEM-DBEM approaches. The complex global 

analysis of one fifth of the fivefold W7-X magnet system was worked out with 

a FEM approach, whereas the fracture problem was tackled by means of a 

DBEM submodelling strategy. In particular, the adopted approaches are the 

three loading methods of a generic submodelling problem already presented 

in §I.3 and shown in Fig. I.3. 

 

Figure IV. 2 LSE-05: real component with highlight of discovered surface 

cracks; continuous circle (red line) surrounding the most critical (and 

modelled) crack. 

The SIF values corresponding to the initial crack configuration are 

expected to be equal among the FD, FL and LC approaches, whereas 

differences will start to emerge during the propagation, because boundary 

conditions are continuously updated along the propagation for LC (as 

theoretically requested) and are instead kept as “frozen” for FD and FL with 

consequent introduction of an element of approximation. Moreover, LC life-
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prediction is expected to be in between the predictions computed by FD and 

FL approaches. 

The ABAQUS (ABAQUS, 2011) and BEASY (BEASY, 2011) 

commercial codes are used for FEM and DBEM analyses respectively. 

 

 

IV.3 FEM modelling 

A global FEM model of one fifth of the fivefold symmetric W7-X magnetic 

cage has been developed (Fig. IV.3a) considering, in addition to the magnetic 

loads (“HJ” refers to the most critical magnetic field configuration, better 

explained in §IV.5): bolt preloading, dead weight and cooling. Then, a first 

FEM submodel (Fig. IV.3b) involving the whole LSE-05 (Fig. IV.3b) has 

been made (without any crack introduction). In final, a second FEM submodel, 

involving a smaller part of LSE-05, has been built up (Fig. IV.3c) in order to 

get a more accurate stress assessment on the cracked area. Namely, with such 

submodel it has been possible to provide more accurate stress field to load the 

DBEM crack faces, as requested by the LC approach. 

 

(a) 
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(b) 

 

(c) 

Figure IV. 3 Von Mises stresses [Pa], related to the load case with EM field 

of 3 T “HJ”, on the: (a) FEM global model, (b) first FEM LSE-05 submodel, 

(c) furtherly reduced FEM submodel. Red arrow in (a) pointing out the 

submodelled LSE-05 in (b). Dashed red square in (b) representing the area 

that has been furtherly refined in (c). 
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IV.4 DBEM modelling 

The DBEM modelling was aimed at simulating the propagation of a semi-

circular crack. For this purpose, the crack-growth simulations were performed 

by using a DBEM cracked submodel, loaded in three different ways as 

illustrated in §I.3 (Fig. I.3). The crack paths were assessed by resorting to the 

Minimum Strain Energy Density criterion (§I.4.2; Sih, 1974) and the Stress 

Intensity Factors (SIFs) along the crack front were calculated by the J-integral 

approach (§I.4.1; Rigby, 1993, 1998). 

An uncracked BEM model (Fig. IV.4b) was extracted from the first 

aforementioned FEM submodel (Fig. IV.3b) by a Boolean operation of 

subtraction of a spherical domain having the centre on the most critical crack. 

Then, a semi-circular crack with radius equal to 7 mm was inserted (Fig. IV.5), 

switching from a BEM to a DBEM formulation, in order to tackle the 

singularity introduced by the crack modelling. 

The spherical domain must be sized in such a way to have a sufficiently 

large distance between the crack and the cutting surfaces. FD and FL 

approaches impose this constraint in order to guarantee a sufficient 

insensitivity of the applied fixed boundary conditions, coming from the 

uncracked corresponding global model, against the changes introduced by the 

growing crack. On the other hand, the LC approach generally requests a 

smaller submodel since it just need to have available a sufficiently large 

“fading” distance, from the crack to the subdomain boundaries, for the stress 

field dying out. Nonetheless, the same submodel size has been used in this 

work for all the three approaches since it satisfied all the different requests. 

To this aim, a preliminary convergence study was aimed at evaluating such 

minimum submodel size and the results for this optimal submodel dimension 

are here presented. As a consequence, the chosen spherical cut has a radius 

equal to 0.11 m. 

The adopted material properties are listed in Tab. IV.1 (see Fig. IV.5 for 

zone definition). The initial DBEM mesh comprises nearly 5300 elements: the 

crack faces as well as the crack surroundings are remeshed step-by-step by 

using quadrilateral 8-node elements and triangular 6-node elements, whereas 

the non-remeshed areas keep 3 node triangular and 4 node quadrilateral 

elements for LC and 6 node triangular and 9 node quadrilateral elements for 

FD/FL. At the last considered propagation step, in correspondence with the 

biggest crack size, the number of elements rises up to nearly 5800 for all the 

approaches. 
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(a)    (b) 

Figure IV. 4 (a) FEM submodel and (b) DBEM uncracked submodel (the 

red dot is the crack insertion point), obtained by a Boolean subtraction with 

a sphere of radius 0.11 m. 

 

Figure IV. 5 DBEM cracked submodel with highlight of the different modelled 

zones. 

 

Table IV. 1 Mechanical properties at temperature of 4 K. 

Parameter Zone 1 

EN 1.4429 

Zone 2, 3 

EN 1.3960 

Young’s modulus E [GPa] 197 158 

Poisson’ ratio ν [-] 0.3 0.3 

Thermal expansion coefficient α [µm/(mK)]  10.38 10.2 
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As anticipated, different alternatives of boundary conditions were taken 

into account for the current LEFM problem (Fig. IV.6). Fig. IV.6b represents 

the DBEM model with LC approach: boundary conditions were only applied 

on the crack faces and continuously updated along the crack extension. 

Alternatively, Fig. IV.6a and IV.6c show boundary conditions applied on the 

DBEM cut surfaces, in terms of either displacements or tractions respectively. 

In this case, the crack-growth was solved under either FD or FL assumption 

with no update of BCs during the crack propagation. FD model was already 

constrained in the three directions whereas some springs of negligible stiffness 

were added to constrain the model used for FL). Furthermore, BCs for FD/FL 

are typically computed by a FEM global model that does not contain a crack, 

then with an inherent approximation whose impact on the results can be 

restricted only by resorting to a large enough DBEM submodel, in such a way 

to keep the cut surfaces sufficiently far from crack boundaries. On the other 

hand, enlarging the submodel will affect the computational burden. 

When using the LC approach, an uncracked FEM model is necessary to 

accurately compute the stress field in the surroundings of the cracked zone, 

whereas the fracture problem is completely left to the DBEM analysis. All the 

loads applied to the real component (viz. thermal, electro-magnetic, dead 

weight, bolt preloading) are incorporated by the FEM analyses, whereas the 

SIFs evaluation and subsequently the whole crack-growth is worked out into 

the DBEM environment by means of step-by-step pure stress analyses. 

A further advantage of such LC approach is given by the possibility to 

study crack propagation with a smaller model than that needed by FD/FL 

approaches, as enabled by the self-equilibrated nature of the load applied with 

LC and its rapidly vanishing effects when getting slightly far from the crack. 

Such reduction of the DBEM model size enables a strongly speed up of the 

calculations. 

 

(a)   (b)   (c) 

Figure IV. 6 DBEM submodel loaded with different BCs: either (a) 

displacements (FD) or (c) tractions (FL) applied on cut surfaces; (b) tractions 

applied on the crack faces (LC). 
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IV.5 Fatigue load spectra 

The fatigue load spectra, corresponding to the sequence of five load 

changes on the magnet, were applied to the DBEM submodel through different 

boundary condition sets. Such boundary condition sets were obtained from 

five different FEM global analyses and corresponding FEM submodel 

analyses. A qualitative visual description of the loading history due to the 

Lorentz forces is provided in Fig. IV.7. 

The FEM analyses were performed using different electromagnetic 

loadings, so as to build up the following five load cases: 

i. magnetic field with magnitude equal to 2.5 T with a given 

orientation (termed “HJ”); 

ii. magnetic field with magnitude equal to 2.5 T with a different 

orientation (termed “LS”); 

iii. magnetic field with magnitude equal to 3 T in “HJ” configuration; 

iv. magnetic field with magnitude equal to 3 T in “LS” configuration; 

v. magnetic field with magnitude equal to 1.7 T in “HJ” 

configuration. This load corresponds to the reduced magnetic field 

at night. 

Such five load cases were combined for building up two sequences up that 

corresponded to two fatigue load spectra: 

 daily spectrum, using only the load steps from i to iv (load step v 

was excluded assuming that the magnets are turned off at night); 

the sequence showed in Tab. IV.2 was repeated up to a condition 

of crack instability; 

 weekly spectrum, using all of the five load cases i to v; again, the 

sequence showed in Tab. IV.3 was repeated up to the condition of 

crack instability. 

The plan was that the magnet system remained loaded for a 5-days week 

of experimental operations, with or without a limited reduction of the 

electromagnetic (EM) field at nights (Fig. IV.7). During an experimental 

campaign, the EM field could be shifted several times from one configuration 

to another (“HJ” to “LS” and vice versa) with changes involving the EM field 

direction; moreover, there could be also changes to the EM field magnitude, 

from 2.5 T to 3 T and vice versa. 

Consequently, in order to estimate the operational limits of the machine, 

the following SIF increments were considered: 

 ∆𝐾0−2.5𝑇 due to start-up of the machine on Monday morning from 

0 to 2.5 T; 

 ∆𝐾2.5𝑇−3𝑇 due to increase from 2.5 T to 3 T; 

 ∆𝐾2.5𝑇𝑖𝑗 and ∆𝐾3𝑇𝑖𝑗, each one due to shift from one EM 

configuration to another, considering a magnetic field of and 2.5 

or 3 T respectively. 
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In case of weekly spectrum, ∆𝐾𝑛𝑖𝑔ℎ𝑡, related to a moderate reduction of 

the magnetic field at night, was added. Changes in the EM field for plasma 

ripple control were considered as small enough to be neglected. 

 

Figure IV. 7 Schematic loading history due to EM forces. 

 

Table IV. 2 Fatigue elementary block corresponding to 10 working days 

with the daily spectrum (12.1 cycles per working day). 

Cycles per 

block 

EM field (minimum 

magnitude) 

EM field (maximum 

magnitude) 

10 0 2.5 T (“HJ” config.) 

100 2.5 T (“LS” config.) 2.5 T (“HJ” config.) 

1 0 3 T (“HJ” config.) 

10 3 T (“LS” config.) 3 T (“HJ” config.) 

 

Table IV. 3 Fatigue elementary block corresponding to 50 working days 

with the weekly spectrum (5.42 cycles per working day). 

Cycles per 

block 

EM field (minimum 

magnitude) 

EM field (maximum 

magnitude) 

10 0 2.5 T (“HJ” config.) 

200 2.5 T (“LS” config.) 2.5 T (“HJ” config.) 

1 0 3 T (“HJ” config.) 

20 3 T (“LS” config.) 3 T (“HJ” config.) 

40 1.7 T (“HJ” config.) 2.5 T (“HJ” config.) 

 

The crack-growth for the load cycles from 0 to 2.5 T was predicted by 

using a Paris’ law (§I.4.3; Paris, 1961): 

𝑑𝑎

𝑑𝑁
= 𝐶∆𝐾𝑚 (I.15) 

with the related Paris’ parameters listed in Tab. IV.4, as derived from 

Fatigue Crack-Growth Rate (FCGR) test series carried out at cryogenic 
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temperatures. On the other hand, the Crack-Growth-Rates (CGRs) for the 

other cycles related to a stress ratio 𝑅 ≠  0 were predicted using a Forman’s 

law (§I.4.3; Forman, 1967): 

𝑑𝑎

𝑑𝑁
=

𝐶∆𝐾𝑚

(1−𝑅)𝐾𝑐−∆𝐾
 (I.16) 

with the related Forman’s parameters listed in Tab. IV.5. 

C values are consistent with ∆𝐾 units [𝑃𝑎 ∗ 𝑚0.5] and da units [𝑚𝑚]. 

 

Table IV. 4 Paris’ law parameters at temperature of 4 K. 

Parameter Zone 2, 3 

EN 1.3960 

C [-] 3.314E-32 

m [-] 3.23 

∆K𝑡ℎ [𝑃𝑎 ∗ 𝑚0.5]  15 

K𝑐 [𝑃𝑎 ∗ 𝑚0.5] 1.6E8 

 

Table IV. 5 Forman’s law parameters at temperature of 4 K. 

Parameter Zone 2, 3 

EN 1.3960 

C [-] 1.167E-17 

m [-] 2.36 

∆K𝑡ℎ [𝑃𝑎 ∗ 𝑚0.5]  15 

K𝑐 [𝑃𝑎 ∗ 𝑚0.5] 1.6E8 

 

 

IV.6 Results 

The boundary conditions of DBEM submodels were provided by the 

analyses on the FEM submodels for the five different magnetic configurations. 

Then, the two mentioned fatigue spectra, conforming to the daily and weekly 

W7-X operating conditions, were built up. 

In doing this, three DBEM submodels have been separately loaded 

applying the boundary condition sets requested by the FD, FL and LC 

approaches. Regarding the LC, a first attempt of using stresses coming from 

the FEM submodel shown in Fig. IV.3b did not produce accurate results, so it 

was necessary to furtherly refine the FEM mesh in the crack surroundings 

(Fig. IV.3c). This was expected since the accuracy of DBEM results (i.e. SIFs) 

was completely dependent on the accuracy of stress evaluations on the virtual 

crack faces provided by the FEM submodel solution. 

The crack size definition is shown in Fig. IV.8b; sizes A, C and B were 

calculated as linear distances between the crack insertion point and the points 
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on the crack front positioned at a normalised abscissa of 0, 0.5 and 1 

respectively. 

The DBEM stress field from the LC approach (Fig. IV.9) is not 

representative of the real stress scenario throughout the whole component that 

can be instead obtained by FD/FL approaches (Fig. IV.10). Anyway, it is 

useful to determine accurately SIFs along the crack front (just the crack tip 

stress singularity can be properly obtained) as dictated by the superposition 

principle. 

 
(a)    (b) 

Figure IV. 8 (a) DBEM crack (deformed shape) with the applied tractions 

(in orange) for the LC approach; (b) crack sizes definition with J-paths 

along crack front (in purple). 

 
(a)    (b) 

Figure IV. 9 (a) Von Mises stress scenario for LC approach; initial crack 

configuration and load case iii; (b) close up of the von Mises stress scenario 

in the crack surroundings for LC approach; initial crack configuration and 

load case iii. 
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Figure IV. 10 Von Mises stress scenario from FD/FL approach; initial crack 

configuration and load case iii. 

SIFs computed by the three approaches are compared in Fig. IV.11 for all 

the five different load cases from i to v. Such SIFs for the initial crack 

configuration show a perfect match between the adopted approaches, proving 

also the correct implementation of the superposition principle to the 

considered LEFM problem. 

Once the FEM analyses were completed and the DBEM submodel created 

and loaded, step-by-step crack-growths were simulated. Each single growth 

step was comprehensive of the following phases: 

1) crack insertion; 

2) crack faces loading (needed only by the LC approach); 

3) linear-elastic DBEM analysis and corresponding SIFs evaluation; 

4) life prediction; 

5) new crack front prediction. 

As previously said, the application of either traction (FL) or displacement 

(FD) boundary conditions to the DBEM cut surfaces would represent an 

approximation due to the continuously increasing crack dimensions and the 

consequential continuously decreasing DBEM model stiffness. In addition, 

such boundary conditions generally come from a FEM global model in which 

the presence of the crack is not considered at all. On the contrary, the LC 

approach does not present such approximations, as the traction boundary 

conditions applied on the crack faces are rigorously computed from an 

uncracked FEM domain, as theoretically dictated by the superposition 

principle. In addition, such crack faces loads are continuously updated through 

the simulation since further loads are applied on the continuously created 

crack extensions. 
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Figure IV. 11 SIF values along the crack front for FD, FL and LC approaches 

for all the load cases from i to v. 

 

Figure IV. 12 Final crack shape; traction BCs (in orange) applied on the 

crack face elements for LC approach; dashed black line representing the 

initial edge of the inserted crack. 

The crack propagations, subdivided in 16 steps, were computed 

considering an average crack advance per step ranging between 1 mm for the 

initial steps and 1.5 mm for the last steps. The final considered crack shape, 
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with the related tractions applied on the crack face elements for LC, is shown 

in Fig. IV.12: a slight kinking of the growing crack is visible consistently with 

the slight mixed-mode conditions shown in Fig. IV.11. 

Results in terms of crack advance vs. fatigue cycles and 𝐾𝑒𝑞 during growth 

for both daily and weekly fatigue spectra are reported in Figs. IV.13 and IV.14 

respectively: it is possible to observe that the 𝐾𝑒𝑞 values, even if higher than 

threshold, turn out to be lower than 𝐾𝑐 up to the final considered scenario, 

which consequently was judged subcritical. 

Equivalent SIF values were computed by using the Yaoming-Mi formula 

(§I.4.3; Mi, 1995): 

𝐾𝑒𝑞 = √(𝐾𝐼 + |𝐾𝐼𝐼𝐼|)2 + 2𝐾𝐼𝐼
2 (I.19) 

and its variation in the cycle provided the ∆𝐾𝑒𝑞 to be used in the Paris’ and 

Forman’s laws (eqs. I.14 and I.15). 

From fig. IV.13, it is possible to observe the progressively increasing 

difference between the three approaches, dictated by SIF values that are 

precisely overlapped at the initial step (step 0; Fig. IV.11) and progressively 

diverging along with the crack extension (Fig. IV.14). 

Daily and weekly load spectra appeared to give quite similar fatigue life 

predictions, as visible from Fig. IV.13, but differences came out if considering 

on the abscissa the working days rather than the fatigue cycles. As a matter of 

fact, the daily spectrum predicted a much lower number of working days, 

before than reaching a critical condition, because the EM field was considered 

as turned down at night, with consequent less frequent main cycles (those 

related to the switch-off of the EM field with corresponding strongest 

variation on SIFs). 

In final, a comparison on the runtimes needed by the three different FEM-

DBEM approaches is provided in Tab. IV.6. Such runtimes were averaged 

between analyses with daily and weekly load spectra. LC runtimes were 

strongly lower than that needed by FD, or equivalently FL. This was due to 

the smaller DBEM meshes to handle for LC since FD/FL required finer 

meshes to get convergent results. 
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(a) 

 

(b) 

Figure IV. 13 Crack sizes vs. number of cycles under (a) daily and (b) 

weekly load spectra. 
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(a) 

 

(b) 

Figure IV. 14 Equivalent SIFs vs. number of cycles under (a) daily and (b) 

weekly load spectra. 
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Table IV. 6 Runtimes comparison between FD/FL and LC. 

DBEM analyses FD/FL LC FD/FL – LC comparison 

SIFs at initial step 59 21 -64% 

SIFs at final step 151 27 -82% 

Whole crack-growth 1704 414 -76% 

 

 

IV.7 Remarks 

Crack-growth simulations have been performed to analyse the behaviour 

of the most critical crack detected on the Wendelstein 7-X Lateral Support 

Element 05. The simulations have been performed realistically considering 

the machine operations by means of the adoption of two different fatigue load 

spectra: weekly and daily operating conditions. 

The proposed approach leverages on a submodelling technique to strongly 

reduce the computational efforts. Moreover, such submodelling has been put 

in place by using the coupling of FEM and DBEM methods in three different 

ways: two “classical” “Fixed Displacements” and “Fixed Loads” approaches 

have been compared with an enhanced “Loaded Crack” approach. Such LC 

approach, in which the DBEM loads consist of just tractions calculated in the 

global FEM analysis and applied on the DBEM crack face elements, allowed 

to work out the LEFM problem with some advantages over the FD or FL 

approaches, in terms of accuracy and runtimes. 

Although SIF values along crack front provided by the FD, FL and LC 

were perfectly overlapped for the initial crack configuration, differences 

arisen when the crack grew through the DBEM domain. The reason was 

twofold: the FD/FL methods did not consider the variability of BCs along with 

the crack-growth and suffer from an approximation when using a FEM 

uncracked model to obtain the DBEM boundary conditions. On the contrary, 

the LC approach, updating step-by-step the BCs with which it computes SIFs, 

circumvents the approximations above described, predicting CGRs whose 

values lies in between those provided by the conservative FL and non-

conservative FD approaches. 

Several advantages of LC, in terms of accuracy as well as runtimes, against 

the classical approaches with fixed displacement/traction boundary 

conditions, have been presented and discussed in this work. 

This work turned out to be a very useful example of how it is possible to 

judge the risk of unstable crack-growth when considering very large and 

complex structures. 

 



 

 

Conclusions 

 

 

 

 
The thesis presented a smart submodelling procedure to numerically 

simulate general Linear Elastic Fracture Mechanics (LEFM) problems. 

Such procedure leverages on the implementation of the principle of linear 

superposition to submodelling for Fracture Mechanics (FM) problems. 

Fundamentally, with the proposed procedure, the crack tip stress singularity 

can be properly captured without considering any external load but just load 

applied on the crack faces, evaluated from the original global problem without 

the crack insertion (the latter will be only introduced in the submodel). 

The numerical procedure exploits simultaneously the different advantages 

of the Finite Element Method (FEM) and the Dual Boundary Element Method 

(DBEM), with the aim to achieve very accurate assessments of the LEFM 

parameters, i.e. Stress Intensity Factors (SIFs) along the crack fronts, 

deflection angles of the cracks, Crack Growth Rates (CGRs), etc. 

When facing fracture problems, it is often needed to resort to submodelling 

techniques to strongly reduce the computational burden, especially when 

dealing with very large engineering structures. 

The procedure presented in this thesis is based on a smart submodelling 

strategy in which the FEM is used to work out the non-damaged problem 

while the DBEM is used for the fracture assessment on a submodel extracted 

from the global domain. This allows profiting by both the wide versatility of 

FEM together with the high potentials of DBEM to manage the fracture 

aspects. 

The thesis presented some theoretical background about the BEM and 

DBEM and well-established criteria for predicting various FM parameters. 

Then, some applications of the proposed FEM-DBEM “Loaded Crack” (LC) 

approach have been presented and compared with experimental results and 

with numerical results provided by different fracture codes and alternative 

submodelling approaches, such as “Fixed Displacements” (FD) and “Fixed 

Loads” (FL). 

LC approach demonstrated to be the most accurate submodelling strategy 

among all the considered approaches, allowing circumventing all the 

approximations unavoidably introduced by FD/FL. Moreover, LC approach, 

as implemented through DBEM, turned out to be more efficient then FEM 
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implementations, since the adoption of DBEM allowed bypassing well-known 

problems of finite elements when tackling three-dimensional complex shaped 

cracks (like distortion, huge meshes, etc.). Finally, LC approach demonstrated 

to be also the most efficient in terms of runtimes for all the benchmarks 

presented in this work. 

The presented LC submodelling procedure can then be adopted as an 

effective tool for very accurate fracture assessments, becoming very attractive 

especially when dealing with complex industrial applications, thanks to the 

fact that it only needs as inputs FEM results of uncracked problems, easily 

retrievable in the industrial CAE engineering departments. 
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Nomenclature 

 

 

 

 
K Stress Intensity Factor (SIF) 

𝐾𝐼 Mode I Stress Intensity Factor 

𝐾𝐼𝐼 Mode II Stress Intensity Factor 

𝐾𝐼𝐼𝐼 Mode III Stress Intensity Factor 

𝐾𝑚𝑖𝑛 Minimum value of Stress Intensity Factor 

𝐾𝑚𝑎𝑥 Maximum value of Stress Intensity Factor 

𝐾𝑐 Critical value of Stress Intensity Factor 

𝐾𝑡ℎ Threshold value of Stress Intensity Factor 

𝐾𝑒𝑞 Equivalent value of Stress Intensity Factor 

J J-integral 

Γρ Closed path enclosing the crack tip 

W Strain energy 

ω Path defined by the crack faces 

σij Total stress tensor 

σ0 Precracking stress field 

JI Mode I J-integral 

JII Mode II J-integral 

JIII Mode III J-integral 

J𝑆 J-integral symmetric part 

JAS J-integral anti-symmetric part 

𝐸 Young’s modulus 

𝜈 Poisson’s ratio 

𝜇 Shear modulus 

𝑆(𝜃) Strain energy density 

𝑟 Cylindrical coordinate N°1 at crack tip 

𝜃 Cylindrical coordinate N°2 at crack tip 

𝜑 Cylindrical coordinate N°3 at crack tip 

𝑎𝑖𝑗 MSED parameter ij 

𝑆𝑚𝑖𝑛 Minimum value of strain energy density 

𝑆𝑐𝑟 Critical value of strain energy density 

𝑑𝑎 𝑑𝑁⁄  Crack-Growth Rate (CGR) 

∆𝐾 Range of Stress Intensity Factor 
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𝐶 Crack-growth law coefficient 

𝑚 Crack-growth law exponent 

𝑅 Stress ratio 

𝑤 Walker law parameter 

𝑓 NASGRO law parameter N° 1 

𝑝 NASGRO law parameter N° 2 

𝑞 NASGRO law parameter N° 3 

𝑓𝑠 Static friction coefficient 

𝛿 Shaft/hub interface clearance 

𝑎 Crack dimension N° 1 

𝑐 Crack dimension N° 2 

𝐺𝑒𝑓𝑓 Effective value of energy release rate 

α ZENCRACK parameter N° 1 

𝐵 ZENCRACK parameter N° 2 

𝑟 DBEM cut sphere radius 

cfes Crack front element size 

DOFs Degrees of freedom 

α Thermal expansion coefficient 

 


