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INTRODUCTION

Stochastic processes play an essential role in various fields of science and en-

gineering. The theory of stochastic processes is based on probability theory

and is widely used in modeling phenomena subject to random perturbations.

In some cases these processes have a deterministic behaviour, such as models

for population growth, competition, predation, and epidemics. One of the

most relevant differences between deterministic and stochastic models is that

deterministic models predict an outcome with absolute certainty, whereas

stochastic models give only the probability of an outcome. More precisely,

in a deterministic model, described for instance by a difference equation or

differential equation with initial conditions at time t = 0, the solution is

given by the trajectory in the solution space. In the stochastic model, the

process is described by a system of difference equations (transition matrix)

or differential equations (forward Kolmogorov equations or stochastic differ-

ential equations). The solution of these equations is more complicated in the

sense that a single solution trajectory does not describe the entire behavior

of the model but represents only a single realization of the processes. In

order to understand the behaviour of a stochastic model, it is important to
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know the entire probability distribution of the process over time. If this is

not feasible, the qualitative behaviour of the process is studied by obtaining

other quantities of interest, such as the moments (mean, variance, etc) of

the distribution. In population models, where the population size is large, a

deterministic formulation is used. Instead, when population sizes are small,

and then population extinction can occur, it is more realistic to model the

variation in size by a stochastic formulation. Stochastic models may be used

to analyse the probability of population extinction or the expected duration

of time until population extinction. Random variations associated with de-

mography and environment can be taken into account in stochastic models.

In this thesis some mathematical techniques are introduced and stochastic

models are developed according to the classical theory. In particular, we

focus on analysis of a birth and death process with alternating rates and

of a telegraph process with underlying random walk. The birth and death

processes are special Markov chains involving only countably many states

and depending on a continuous time parameter where changes may occur at

any time. The Markov chains are stochastic processes in which the future

development depends only on the present state, and not on the past history of

the process or the manner in which the present state was reached. Indeed, to

describe the past of the process we must specify the epochs at which changes

have occurred, and this involves probabilities in a continuum. These process

involve only countably many states E1, E2, . . . and depend on a discrete time

parameter, that is, changes occur only at fixed epochs t ≥ 0. The transition

probability pk,n(t) is the conditional probability of the state En at epoch

t + s given that at epoch s < t + s the system was in state Ek. Such

transition probabilities are called stationary or time-homogeneous and satisfy
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the Chapman–Kolmogorov equation:

pk,n(t+ τ) =
∑
j

pk,j(τ)pj,n(t). (1)

This relation means that at epoch 0 the system is in state Ek. The j-th term

on the right then represents the probability of the event of finding the system

at epoch τ in the state En. But a transition from Ek at epoch 0 to En at

epoch t+ τ necessarily occurs through some intermediary state Ej at epoch

τ and summing over all possible Ej for arbitrary fixed τ > 0 and t > 0.

Birth and death processes were introduced by Feller in 1939 with the

aim of modeling the growth of biological populations. The wide variety of

dynamic behavior exhibited by plants, insects and animals justifies the great

interest of scientists in the development of mathematical models and the con-

sequent intensive study of BDPs (see Ricciardi [68] for an accurate analysis of

birth and death processes in the context of population dynamics). Further-

more, such processes arise as natural descriptors of time-varying phenomena

in many other applied fields, such as queueing systems, epidemiology, epi-

demics, optics, neurophysiology, etc. An extensive survey text on birth and

death processes has been published by Parthasarathy and Lenin [61]. In

this work the authors adopt standard methods of analysis (such as power

series technique and Laplace transforms) to find explicit expressions for the

transient and stationary distributions of BDPs and provide applications of

such results to specific fields (communication systems, chemical and biologi-

cal models). In particular, in Section 9 they use BDPs to describe the time

changes in the concentrations of the components of a chemical reaction and

discuss the role of BDPs in the study of diatomic molecular chains. The

paper by StockMayer et al. [73] gives an example of application of stochastic

processes in the study of chain molecular diffusion. In this work a molecule is

modeled as a freely-joined chain of two regularly alternating kinds of atoms.
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All bonds have the same length but the two kinds of atoms have alternating

jump rates, i.e. the forward and backward jump rates for even labeled beads

are α and β, respectively, and these rates are reversed for odd labeled beads.

By invoking the master equations for even and odd numbered bonds, the

authors obtain the exact time-dependent average length of bond vectors.

Inspired by this work, Conolly [12] studies an infinitely long chain of atoms

joined by links of equal length. The links are assumed to be subject to

random shocks, that force the atoms to move and the molecule to diffuse.

The shock mechanism is different according to whether the atom occupies an

odd or an even position on the chain. The originating stochastic model is a

randomized random walk on the integers with an unusual exponential pattern

for the inter-step time intervals. The authors analyze some features of this

process and investigate also its queue counterpart, where the walk is confined

to the non negative integers. Some results concerning this queueing system

with “chemical” rules (the so-called “chemical queue”) have been obtained

also by Tarabia and El-Baz (see [74] and [75]).

Stimulated by the above researches, a birth and death process N(t) on

the integers with a transition rate λ from even states and a possibly dif-

ferent rate µ from odd states has been studied in Chapter 2 of this thesis.

A detailed description of the model is performed, the probability generat-

ing functions of even and odd states and the transition probabilities of the

process are obtained for arbitrary initial state. Certain symmetry properties

of the transition probabilities are also given. Hence, the birth and death

process obtained by superimposing a reflecting boundary in the zero-state is

analyzed. In particular, by making use of a Laplace transform approach, the

probability of a transition from state 1 to the zero-state is obtained. Formu-

las for mean and variance of both processes are also provided. Furthermore,
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some preliminary results on the process under investigation are given in the

case of zero initial state.

The second part of the thesis is dedicated to the study of the telegraph

process. Some aspects of the telegraph process have been analyzed by many

authors in several fields, such as engineering, mathematical finance, queue-

ing and reliability theory etc. This process has been largely investigated in

mathematical physics as a model of finite-velocity random motion with al-

ternating velocities, whose probability density satisfies a hyperbolic partial

differential equation (see Goldstein [39] and Kac [43], for instance). Various

results involving absorption and first passage times problems are given in

Foong et al. [34], Orsingher [55] and Orsingher [56]. Recently, the telegraph

process has been considered also in mathematical finance to describe stochas-

tic volatility and in actuarial problems, for obtaining a telegraph analog of

the Black-Scholes model (see, for instance, Ratanov [65]). The author intro-

duces a new class of financial market models based on generalized telegraph

processes by alternating velocities and jumps occuring at switching veloci-

ties. A further model was studied in Di Crescenzo and Pellerey [30], where a

geometric telegraph process was proposed to describe price evolution of risky

assets of alternating type.

The telegraph process describes the motion of a particle on the real line,

traveling at constant velocity, whose direction is reversed at random times

according to the arrival epochs of a Poisson counting process N(t), with rate

λ, during (0, t). The initial velocity is given by V (0) = ±c (c > 0), with

equal probability. We assume that at time t = 0 the particle is located at

the origin of the real line and then moves in a positive or negative direction.

The particle position at time t is given by

X(t) := V (0)

∫ t

0

(−1)N(s)ds,



7

where N(0) = 0 and V (t) := V (0) (−1)N(t) is the particle velocity at time

t. The particle moves on the real line and its speed changes direction at

any epoch. Notice that, in this simple model, the length of the time periods

during which the particle is traveling in the positive or negative direction

are described by independent and identically distributed (i.i.d.) exponential

random variables. In particular, it is interesting to note that the probability

density of the process X(t), say p(x, t), when the particle starts at x0 = 0,

at time t0 = 0, is a solution of the telegraph equation

c2 ∂
2p

∂x2
=
∂2p

∂t2
+ 2λ

∂p

∂t

(see Goldstein [39], for instance). This result is investigated in many papers

and books, see for example Cane [10], Orsingher [52], and Orsingher [57].

Other results on the telegraph process are recalled in Chapter 3.

Stimulated by the above results a generalized telegraph process with un-

derlying random walk has been studied in Chapter 4. This process is char-

acterized by random times separating consecutive changes of direction of the

moving particle having a general distribution and forming a non-regular al-

ternating renewal process. Starting from the origin, the particle performs

an alternating motion with velocities c and −v (c, v > 0). The direction of

the motion (forward and backward) is determined by the velocity sign. The

particle changes the direction according to the outcome of a Bernoulli trial.

Hence, the novelty of this model is the inclusion of an underlying (possibly

asymmetric) random walk governing the choice of the velocity at any epoch.

We determine the general form of probability law and the mean of the

process, and then investigate two instances in which the random intertimes

are exponentially distributed with (i) constant rates and with (ii) linearly

increasing rates. In the first case explicit expressions of the transition den-

sity and of the conditional mean of the process are given as series of Gauss
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hypergeometric functions. In the second case, which leads to a damped ran-

dom motion, we obtain the transition density in closed form and a logistic

stationary density.

The thesis is organized in four chapters.

CHAPTER 1. In this chapter we recall some definitions and properties of

birth and death processes.

CHAPTER 2. In this chapter we analyze two birth and death processes

on the set of integers Z and on the set of non-negative integers {0, 1, 2, . . .}

with a reflecting boundary in the zero-state. They are characterized by a

transition rate λ from any even state and a different transition rate µ from

any odd state. Explicit expressions of the probability densities and moments

are obtained in both cases.

CHAPTER 3. This chapter contains some results and definition on the

telegraph process.

CHAPTER 4. In this chapter, we present a new model of telegraph process

with an underlying random walk. The aim is to determine the closed-form

of probability density and moments in the case in which the random times

are exponentially distributed with constant rates and with linearly increasing

rates.



PART 1

Analysis of a birth and death process
with alternating rates



CHAPTER 1

BACKGROUND ON STOCHASTIC PROCESSES

1.1 Introduction

In this chapter we present methods for studying stochastic processes, includ-

ing the forward and backward Kolmogorov equations and generating function–

based techniques. Applications of these methods show that the generating

functions of probabilities of stochastic processes satisfy a partial differential

equation. In some cases, the partial differential equation is linear and of

first order, so that a closed-form solution to the generating function can be

obtained. We consider a stochastic process {X(t), t ≥ 0} for a continuous-

time Markov chain when the state space is (i) the set of nonnegative integers

{0, 1, 2, . . .}, or (ii) the set of integers Z.

In Section 1.2, some definitions and notations on stochastic processes are

given in order to introduce the continuous-time Markov chains. The Marko-

vian property may be interpreted as stating that the conditional distribution

of any future state X(tj+1), given the past states X(t0), X(t1), . . . , X(tj−1)

and the present state X(tj), is independent of the past states and dependes
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only on the present state, for all j ≥ 0.

In Section 1.3, we introduce a class of continuous-time Markov chains

known as birth and death processes. These processes are used to model pop-

ulations whose size changes at any time by a single unit. It is well know

in the literature that the probability distribution of a simple birth process is

negative binomial, whereas it is binomial for a simple death process. For birth

and death processes explicit formulas have been derived in the past using the

generating function technique. First, we discuss the general birth and death

processes with infinite state space N0 = {0, 1, 2, . . .}, for which transition

from any state n can only go to either state n− 1 or state n+ 1. If the pop-

ulation size is n, then the birth and death rates will be denoted respectively

as λn and µn, n ≥ 0 (see Karlin and Taylor [45], [46]). A relevant application

of birth and death processes is in queueing theory, where the state of the

system is the number of customers in the queue. The arrival and departure

processes of a queuing system are analogous to birth and death processes,

respectively. A queueing process involves three components: arrival process,

queue discipline, and service mechanism. The arrival process involves the

arrival of customers for service and specifies the sequence of arrival times for

the customers. The queue discipline is a rule specifying how custumers form

a queue and how they behave while waiting. The service mechanism involves

how customers are serviced and specifies the sequence of service time. When

the arrival process is a Poisson process with parameter λ (mean arrival or

birth rate) and the service time is exponentially distributed with parameter

µ (mean departure or death rate), the process is a queueing system of type

M/M/1. In this case, if λ and µ are constant, then the process is a birth

and death process, as is described in Example 1.3.2 (λ = p and µ = q).

In Section 1.4, we introduce a bilateral birth and death process whose
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space state is the whole set of integers Z. We give same examples of bilateral

birth and death processes, whereas a new stochastic model will be discussed

in Chapter 2.

Finally, in Section 1.5 a classification of states, some definitions and sim-

ple sufficient conditions for boundaries are exhibited. A boundary classifica-

tion at infinity and a recurrent-transient classification are also performed in

the case in which the birth and death process have state space N0 and Z.

1.2 Definitions and notations

A stochastic process is a collection of random variables. More specifically,

the following definition holds.

Definition 1.2.1. A stochastic process is a collection of random variables

{Xt(s) : t ∈ T, s ∈ S}, where T is the index set and S is the common sample

space of the random variables (finite or infinite). For each fixed s ∈ S, Xt(s)

(or X(t)) corresponds to a function defined on T , and is called sample path

or stochastic realization of the process.

A stochastic model is based on a stochastic process in which specific

relationships among the set of random variables {X(t)} are assumed to hold.

There are different methods and techniques for analyzing a stochastic process

that depend on whether the random variables and index set are discrete or

continuous. Generally, the set T represents the time.

In the following chapters, we discuss some continuous-time stochastic

models having discrete state space. We now introduce continuous time

Markov chain models. In particular, these stochastic processes are used to

model many types of phenomena from variety of applied areas, including

biology, physics, chemistry, finance, economics, and engineering.
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Definition 1.2.2. A stochastic process {X(t); t ≥ 0} is a continuous time

Markov chain if for any sequence of real numbers 0 ≤ t1 < t2 < · · · < tj <

tj+1, and nonnegative integers k1, k2, . . . , kj−1, k, n such that

P{X(tj) = k,X(tj−1) = kj−1, . . . , X(t1) = k1} > 0,

one has:

P{X(tj+1) = n |X(tj) = k,X(tj−1) = kj−1, . . . , X(t1) = k1}

= P{X(tj+1) = n |X(tj) = k}.

The latter condition in Definition 1.2.2 is the Markovian property. The

transition to state n at time tj+1 depends only on the value of the state at the

most recent time tj and does not depend on the history of the process. Each

random variable X(t) has an associated probability distribution {pk(t)}k≥0,

where

pk(t) = P{X(t) = k}.

A relation between the random variables X(s) and X(t), with s < t, is

defined by the transition probabilities. Define the transition probabilities of

the process at time t as the functions

pk,n(t) = P{X(t) = n |X(s) = k}, t ≥ 0, s < t

for k, n = 0, 1, 2, . . .. If the transition probabilities do not depend on s or

t but depend only on the lenght t − s of the time interval (s, t), then the

continuous time Markov chain is said to have stationary or homogeneous

transition probabilities. Unless otherwise stated, we shall assume that the

transition probabilities are stationary; that is

pk,n(t− s) = P{X(t) = n |X(s) = k} = P{X(t− s) = n |X(0) = k}

for s < t. In general the transition probabilities satisfy the following proper-

ties:
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• pk,n(t) ≥ 0 for all k, n ∈ S and∑
n∈S

pk,n(t) =
∑
n∈S

P{X(t) = n |X(0) = k}

= P{X(t) ∈ S |X(0) = k} = 1

for any k ∈ S;

• pk,n(0) = P{X(0) = n |X(0) = k} = δk,n, where δk,n is the Kronecker’s

delta;

• for any s, t ≥ 0 and k, n ∈ S, by the Markovian property we have the

following identity:

pk,n(t+ s) = P{X(t+ s) = n |X(0) = k}

=
∞∑
j=0

P{X(t+ s) = n,X(s) = j |X(0) = k}

=
∞∑
j=0

P{X(t+ s) = n |X(s) = j,X(0) = k}

× P{X(s) = j |X(0) = k}

=
∞∑
j=0

pk,j(s) pj,n(t),

that is the Chapman-Kolmogorov equation.

1.3 General Birth and Death Process

Let {X(t); t ≥ 0} be a continuous time Markov chain with X(t) the random

variable for the total population size at time t. Let the initial population size

belong to the set of nonnegative integers N0 and assume that the transition

probabilities of a general birth and death process are:

pk,n(t) = P{X(t) = n|X(0) = k}, t ≥ 0. (1.1)
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The transition probability pk,n(t+∆t) can be expressed as follows, by apply-

ing the Chapman–Kolmogorov equations,

pk,n(t+ ∆t) =
∞∑
j=0

pk,j(t) pj,n(∆t).

The transition probability (1.1) satisfies the conditions

lim
∆t→0+

d

dt
pk,n(∆t) =



λk if n = k + 1,

−(λk + µk) if n = k,

µk if n = k − 1,

0 otherwise,

namely,

pk,n(∆t) =



λk ∆t+ o(∆t) if n = k + 1,

1− (λk + µk) ∆t+ o(∆t) if n = k,

µk ∆t+ o(∆t) if n = k − 1,

o(∆t) otherwise.

(1.2)

for ∆t sufficiently small. We recall that o(∆t) represents a function φ(∆t)

such that φ(∆t)/∆t→ 0 as ∆t→ 0. The above processes are characterized

by a birth rate λn ≥ 0 and a possibly different death rate µn ≥ 0, for

n ≥ 0, and µ0 = 0. The quantities λn, µn determine respectively the rate of

transition from state n to state n+ 1, if a birth occurs, and to state n− 1 if

a death occurs (where n is the population size). In the case in which λ0 > 0

and µ0 = 0 we assume a reflecting state at state zero. Such processes are

defined as basic (Callaert and Keilson [9]).

The forward Kolmogorov differential equations for pk,n(t) can be derived

directly from the assumptions in (1.2). Assume ∆t sufficiently small and
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consider the transition probability pk,n(t + ∆t). This transition probability

can be expressed in terms of the transition probabilities at time t as follows:

pk,n(t+ ∆t) = pk,n−1(t) [λn−1∆t+ o(∆t)] + pk,n+1(t) [µn+1∆t+ o(∆t)]

+ pk,n(t) [1− (λn + µn)∆t+ o(∆t)] +
∞∑

m 6=−1,0,1

pk,n+m(t)o(∆t)

= pk,n−1(t)λn−1∆t+ pk,n+1(t)µn+1∆t

+ pk,n(t) [1− (λn + µn)∆t] + o(∆t), (1.3)

which holds for all k, n in the state space. If n = 0, then

pk,0(t+ ∆t) = pk,1(t)µ1∆t+ pk,0(t)µ1∆t [1− λ0∆t] + o(∆t). (1.4)

Hence, subtracting pk,n(t) and pk,0(t) from Eqs. (1.3) and (1.4), respectively,

dividing by ∆t and taking the limit as ∆t→ 0, the Kolmogorov differential

equations are obtained for the general birth and death process,
d

dt
pk,n(t) = λn−1 pk,n−1(t)− (λn + µn) pk,n(t) + µn+1 pk,n+1(t)

d

dt
pk,0(t) = −λ0 pk,0(t) + µ1 pk,1(t)

(1.5)

with initial condition

lim
t→0+

pk,n(t) = δk,n, (1.6)

where δk,n is the Kronecker’s delta.

1.3.1 Matrix form

The system of equations (1.5) can be expressed also in matrix form. The

transition probabilities pk,n(t) satisfy the following differential equation

dP (t)/dt = QP (t), (1.7)
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Figure 1.1: The Markov chain of a general birth and death process when

λ0 > 0 and λn + µn > 0 for n = 1, 2, . . .

where P (t) = {pk,n(t)} is the matrix of transition probabilities and Q =

{qk,n} is the generator matrix. Matrix Q containes information based on the

birth and death rates λn, µn of the process. In particular, we assume that

the transition probabilities pk,n(t) are continuous and differentiable for t ≥ 0

and for t = 0, they satisfy

pk,n(0) = 0, k 6= n, pk,k(0) = 1.

Hence, we define the rates qk,n as following:

qk,n = lim
∆t→0+

pk,n(t)− pk,n(0)

∆t
= lim

∆t→0+

pk,n(t)

∆t
, k 6= n.

When the state space is infinite the generator matrix Q has the following

form:

Q =



−λ0 µ1 0 0 . . .

λ0 −λ1 − µ1 µ2 0 . . .

0 λ1 −λ2 − µ2 µ3 0 . . .

0 0 λ2 λ3 − µ3 0 . . .
...

...
...

...


.

If the initial distribution X(0) is a fixed value, the state probabilities p(t) =

(pk,0(t), pk,1(t), . . .)T satisfy the forward Kolmogorov differential equations

dp(t)/dt = Qp(t). (1.8)
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These differential equations can be derived in the same manner as in Eqs.

(1.3), (1.4) and (1.5). Denoting by N = {νk,n} the transition matrix, from

the generator matrix Q, we have:

N =



0 µ1/(λ1 + µ1) 0 0 . . .

1 0 µ2/(λ2 + µ2) 0 . . .

0 λ1/(λ1 + µ1) 0 µ3/(λ3 + µ3) . . .

0 0 λ2/(λ2 + µ2) 0 . . .
...

...
...

...


.

It is assumed that λn + µn > 0 for n = 0, 1, 2, . . .. If, for any n, λn + µn = 0,

then the state n is absorbing.

The embedded Markov chain can be thought of as a generalized random

walk model with a reflecting boundary in zero. The probability of moving

right (due to a birth) is νn+1,n = λn/(λn +µn) and the probability of moving

left (due to a death) is νn−1,n = µn/(λn + µn). See the graph in Figure 1.1.

It is possible to verify from the graph that the chain is irreducible1 if and

only if λn > 0 and µn+1 > 0 for n = 1, 2, . . .. If any λn = 0, then ν(m)
n+1,n = 0

for all m, and if any µn = 0, then ν(m)
n−1,n = 0 for all m.

The Kolmogorov differential equations can be used to define a stationary

probability distribution. A constant solution to system (1.5) is a stationary

probability distribution. A formal definition is given next.

Definition 1.3.1. Let {X(t); t ≥ 0} be a continuous-time Markov chain with

generator matrix Q. Suppose π = (π0, π1, . . .)
T is nonnegative and satisfies

Qπ = 0
∞∑
i=0

πi = 1

1A Markov chain is irreducible if there is only one class, i.e. if all states communicate

with each other. In particular, two states k and n accessible to each other are said to

communicate, and we write k ↔ n.
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for n = 0, 1, 2, . . .. Then π is called a stationary probability distribution of

the continuous-time Markov chain.

For birth and death processes, there is an iterative procedure for com-

puting the stationary probability distribution when the state space is finite

or infinite. In this context it is possible to define the potential coefficients of

the process X(t) as follows:

π0 = 1, πn =
λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
(n = 1, 2, . . .). (1.9)

In particular, if the state space is infinite {0, 1, 2, . . .}, an unique positive

stationary probability distribution π exists if and only if µn > 0 and λn−1 > 0

for n = 1, 2, . . . and
∞∑
n=1

λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
<∞.

For ergodic2 processes the coefficients πn are summable and then the ergodic

probabilities are given by

pn = lim
t→∞

pk,n(t) = πn

(
∞∑
i=0

πi

)−1

(n = 0, 1, . . .).

Example 1.3.2. Consider a continuous-time birth and death Markov process

such that λn = p > 0, for n ≥ 0 and µn = q > 0, for n ≥ 1 where

p + q = 1. The embedded Markov chain is a semi-infinite random walk

model with reflecting boundary conditions at zero (see Figure 1.1). We have

p = νn+1,n and q = νn−1,n. The chain has a unique stationary probability

distribution if and only if
∞∑
n=1

(
p

q

)n
<∞

2When the continuous-time Markov chain is irreducible and pn = limt→∞ pk,n(t) > 0

for all n, we say that the chain is ergodic.
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with p < q. The stationary probability distribution is

πn =
(

1− p

q

)(p
q

)n
(n = 0, 1, . . .).

In queueing theory, if p = λ and q = µ are costant, the ratio λ/µ is referred to

as the traffic intensity, with λ < µ. If λ ≥ µ, then the queue length will tend

to infinity. The mean of the stationary probability distribution represents

the average number of customers C in the system (at equilibrium),

C =
∞∑
n=1

nπn =

(
1− λ

µ

) ∞∑
n=1

n

(
λ

µ

)n
.

This summation can be simplified by applying an analytic identity3:

C =
λ/µ

1− λ/µ
=

λ

µ− λ
.

The average amount of time W a customer spends in the system (at equilib-

rium) is the average number of customers divided by the average arrival rate

λ:

W =
C

λ
=

1

µ− λ
.

1.4 Bilateral Birth and Death processes

In this section we review some results on bilateral birth and death processes.

Let {X(t); t ≥ 0} be a birth and death process whose state-space is the set of

integers Z. Assume that X(t) has birth and death rates λn, µn for all n ∈ Z,

i.e.

λn = lim
h→0

1

h
P{X(t+ h) = n+ 1 |X(t) = n},

3The summation satisfies

(1− x)2 =

∞∑
i=1

i xi−1.
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µn = lim
h→0

1

h
P{X(t+ h) = n− 1 |X(t) = n}.

For every n ∈ Z, the parameters λn, µn determine respectively the transition

rate from state n to state n + 1, if a birth occurs, and to state n − 1, if a

death occurs. We assume also that the rates λn, µn are positive, so that the

birth and death process has no absorbing or reflecting states. This type of

process is called bilateral birth and death process. We assume that X(t) is

simple (it means that the boundary ∞ and −∞ are both non-regular), so

that the set of rates uniquely determines the birth and death process. In

particular, according to Callaert e Keilson [9], a bilateral birth and death

process is simple if and only if the two component birth and death processes,

obtained by setting at n = 0 a reflecting boundary in both directions, are

simple. As X(t) is simple, the transition probabilities pk,n(t) are the unique

solution of the following system of equations:

d

dt
pk,n(t) = λn−1 pk,n−1(t)−

(
λn + µn

)
pk,n(t) + µn+1 pk,n+1(t) (n ∈ Z),

(1.10)

with initial condition (1.6).

We remark that a bilateral birth and death process has been introduced

by Pruitt [64] as a continuous parameter Markov process with path function

X(t) assuming integer values and with stationary probabilities (1.1) satis-

fying the relations (1.2). A closed form for the Laplace transform of the

general solution of (1.10) has been obtained by Pruitt [64] in terms of or-

thogonal polynomials. Some results on the associated system of orthogonal

polynomials and their limit functions are given in order to have a careful

examination of the convergence of the sequences of polynomials.

A simplest, possible unit step, linear, unrestricted random-walk in which

the time intervals between steps are negative exponentially distributed has

been analyzed in Conolly [11]. The position of the particle at time t is
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governed by two independent Poisson streams with parameters

λn = λ, µn = µ, n ∈ Z (1.11)

for motion to the right and left, respectively. A crucial role is played by

the probability density in the queueing context. Removing the barrier at the

origin and allowing departures even when the system state is zero or negative,

a time-dependent random walk with interstep intervals having probability

density function proporzional to e−(λ+µ)t has been obtained. This process

identifies with the so-called randomized random walk.

An example of randomized random walk has been given in Baccelli and

Massey [4], in which the closed form solutions for the transient distribution of

a queue lenght and for the busy period of aM/M/1 queue have been provided

in terms of modified Bessel functions. The authors analyse a M/M/1 queue

length process, using an analytical approach based on Laplace transform.

Hence, let {Z(t); t ≥ 0} be a process defined by setting:

Z(t) = Z(0) +Nλ(t)−Nµ(t),

where Nλ(t) and Nµ(t) are two independent Poisson processes with rate λ

and µ respectively, and Z(0) = m. The transition probability of such process,

for all integers m,n ∈ Z is

Pm {Z(t) = n |Z(0) = m} = e−(λ+µ)t

(
λ

µ

)(n−m)/2

In−m(2t
√
λµ),

where In(·) is the modified Bessel function.

An extention of this model has also been given in Di Crescenzo [15] in

which the author shows how to construct a new birth and death process

X̃(t) having state space Z, whose rates are obtained from those of X(t) such

that the transition probabilities of the two process are mutually related by a
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product-form relation. The trasformation from X(t) to X̃(t) can be viewed

as a method to construct new stochastic models.

The case treated in [15] has been extended to another example of bilat-

eral birth and death process with sigmoidal-type rates in Di Crescenzo and

Martinucci [26]. The authors discuss the bimodality behaviour and symme-

try properties of the transition probabilities when birth and death rates are

respectively

λn = λ
1 + c

(
µ
λ

)n+1

1 + c
(
µ
λ

)n , µn = µ
1 + c

(
µ
λ

)n−1

1 + c
(
µ
λ

)n , n ∈ Z (1.12)

with λ, µ > 0 and c ≥ 0. In particular, thanks to certain symmetry properties

they obtain the avoiding transition probabilities in the presence of a pair of

absorbing boundaries, expressed as a series. Note that when c = 0 and

c→∞ the rates in (1.12) became constant in n, and then in both cases the

process identifies with the randomized random walk with birth and death

rates given respectively by λ and µ (when c = 0) or µ and λ (when c→∞).

In addition, the rates in (1.12) are equal and constant in n when λ = µ.

In Chapter 2 we study a new bilateral birth and death process N(t) char-

acterized by a transition rate λ from any even state to the two neighboring

states, and by a transition rate µ from any odd state to the neighboring

states. Denoting by

νj,n = lim
h→0

1

h
P{N(t+ h) = n |N(t) = j}

the transition rates of N(t) from state j to state n, we assume that the

allowed transitions are characterized by the following rates:

ν2n,2n±1 = λ, ν2n±1,2n = µ, ∀n ∈ Z, (1.13)

with λ, µ > 0. Note that in the case when λ = µ the process N(t) iden-

tifies with the randomized random walk on the integers with exponentially
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distributed intertimes (see Conolly [11]). We purpose to determine the tran-

sition probabilities of N(t) for arbitrary initial state.

1.5 Classification of states

A boundary classification for birth and death processes based on properties

of a natural scale and a canonical measure associated with these processes is

given in Feller [33]. Feller’s conditions have been reformulated subsequently

in a more suitable form by Callaert and Keilson [9]. Hence, the following

conditions according to Feller’s boundary classification scheme have been

defined:

A ⇔
∞∑
n=0

1

λnπn
<∞, B ⇔

∞∑
n=0

πn <∞,

C ⇔
∞∑
n=0

1

λnπn

n∑
i=1

πi <∞, D ⇔
∞∑
n=1

1

µnπn

∞∑
i=n

πi <∞.

Feller’s boundary classification is given in the second column of the Table

1.1 in terms of conditions A, B, C and D, while the third column containes

equivalent conditions proposed by Keilson and Callaert (A denotes negation

of A). In particular, we observe from the third column that every birth and

death process has a boundary at infinity of one of the four listed types. A

reflecting or absorbing character is necessary to complete the characterization

of the process. This may be achieved for example by treating the process

as the limit of a sequence of birth and death processes with reflecting or

absorbing boundaries.

A birth and death process may also be classified in another way. If the

process X(t) leaves state n, one may ask (α) whether it returns to state n

with probability one and (β) whether the mean time to reach state n is finite.

Definition 1.5.1. A process is transient if the return to any state is not a
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Classification Feller’s Callaert and Keilson

of boundary ∞ conditions conditions

Regular A,B C,D

Exit A,B,C C,D

Entrance A,B,D C,D

Natural


A,B

o A,B,C

o A,B,D

C,D

Table 1.1: Feller’s conditions and Callaert and Keilson conditions.

certain event; it is null-recurrent if the return is certain in any state and the

mean return is infinity; it is positive recurrent if the return in any state is

certainly with finite mean return time.

If the process is non-regular, then necessary and sufficient conditions are

given by (Karlin and McGregor [44]):

• X(t) transient (α) ⇔ A,B;

• X(t) null-recurrent (α e β) ⇔ A,B;

• X(t) positive-recurrent (α e β) ⇔ A,B.

The process has a regular boundary if both conditions A and B are satisfied.

For this class of processes, denoted by C1, the recurrent-transient classifi-

cation of such regular processes depends on the conditions imposed on the
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transient null–recurrent positive–recurrent

Natural C2 C4 C5

Exit C3 ∅ ∅

Entrance ∅ ∅ C6

Table 1.2: Classification of states of a birth and death process.

boundary at infinity. If this boundary is a reflecting one, the answer to

(α) and (β) above will be affirmative so that the process will be positive-

recurrent. If the boundary at ∞ is absorbing (the process stops when it

reaches infinity), the process will be transient.

Note that non-regular birth and death processes are uniquely determined

by the initial condition and the transitions rates λn and µn. For these pro-

cesses the boundary classification at infinity and the recurrent-transient clas-

sification are not independent of each other, in the sense that a combination

of two properties (one property of each classification system) can be con-

tradictory. The other classes for birth and death processes are denoted by

Ci, 2 ≤ i ≤ 6, and listed in Table 1.2. The ∅ sign means that the class is

empty. It is interesting to observe that for any birth and death process the

implication

lim inf
n→∞

(λn + µn) <∞ ⇒ natural

is true. It follows that if the boundary infinity is non–natural, then

lim
n→∞

λn =∞ or lim
n→∞

µn =∞.

More precisely, one has:
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• entrance ⇒ limn→∞ µn =∞;

• exit ⇒ limn→∞ λn =∞;

• regular ⇒ limn→∞ λn =∞ and limn→∞ µn =∞.

We now establish some simple and sufficient conditions for the classifica-

tion of bith and death processes. By setting %n = λn/µn and %∗n = λn−1/µn

for n = 1, 2, . . ., one has:

• lim infn→∞ %n > 1, lim supn→∞ %
∗
n < 1 ⇒ C1;

• lim infn→∞ %n > 1, |{n : %∗n ≥ 1}| =∞,
∑∞

n=0
1
λn

=∞ ⇒ C2;

• lim infn→∞ %
∗
n > 1,

∑∞
n=0

1
λn
<∞ ⇒ C3;

• |{n : %n ≤ 1}| =∞, |{n : %∗n ≥ 1}| =∞ ⇒ C4;

• |{n : %n ≤ 1}| =∞, lim supn→∞ %
∗
n < 1,

∑∞
n=1

1
µn

=∞ ⇒ C5;

• lim supn→∞ %n < 1,
∑∞

n=1
1
µn
<∞ ⇒ C6.

It is possible to classify also the boundary ∞ and −∞ of bilateral birth

and death processes proceeding in a similar way to the case of basic processes.

Recalling (1.9) the following sequence of positive constants πn are also given:

π0 = 1, πn =
λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
π−n =

µ0µ−1 · · ·µ−n+1

λ−1λ−2 · · ·λ−n
(n = 1, 2, . . .).

(1.14)

Let us introduce the series:

S+
1 =

∞∑
n=1

1

λnπn

n∑
i=1

πi , S+
2 =

∞∑
n=1

πn

n−1∑
i=1

1

λiπi
,

S−1 =
−1∑

n=−∞

1

λnπn

−1∑
i=n+1

πi , S−2 =
−1∑

n=−∞

πn

−1∑
i=n

1

λiπi
.
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Classification boundary ∞ boundary −∞

Regular S+
1 <∞, S+

2 <∞ S−1 <∞, S−2 <∞

Exit S+
1 <∞, S+

2 =∞ S−1 <∞, S−2 =∞

Entrance S+
1 =∞, S+

2 <∞ S−1 =∞, S−2 <∞

Natural S+
1 =∞, S+

2 =∞ S−1 =∞, S−2 =∞

Table 1.3: Classification of states of a bilateral birth and death process.

Table 1.3 shows the conditions that classify the boundary ∞ and −∞ for

bilateral birth and death processes.



CHAPTER 2

BIRTH AND DEATH PROCESS WITH

ALTERNATING RATES

2.1 Introduction

Birth and death processes were introduced to describe random growth (see,

for instance, Ricciardi [68] for an accurate description of birth and death

processes in the context of population dynamics). Furthermore, they arise

as natural descriptors of time-varying phenomena in several applied fields

such as queueing, epidemiology, epidemics, optics, neurophysiology, etc. An

extensive survey has been provided in Parthasarathy and Lenin [61]. In

particular, in Section 9 of such paper certain birth and death processes are

used to describe the time changes in the concentrations of the components of

a chemical reaction, and their role in the study of diatomic molecular chains

is emphasized.

Moreover, Stockmayer et al. [73] gave an example of application of stochas-

tic processes in the study of chain molecular diffusion, by modeling a molecule
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as a freely-joined chain of two regularly alternating kinds of atoms. The two

kinds of atoms have alternating jump rates, and these rates are reversed for

odd labeled beads. By invoking the master equations for even and odd num-

bered bonds, the authors obtained the exact time-dependent average length

of bond vectors.

Inspired by this work, Conolly et al. [12] studied an infinitely long chain

of atoms joined by links of equal length. The links are assumed to be subject

to random shocks, that force the atoms to move and the molecule to diffuse.

The shock mechanism is different according to whether the atom occupies

an odd or an even position on the chain. The originating stochastic model

is a randomized random walk on the integers with an unusual exponential

pattern for the inter-step time intervals. The authors analyze some features

of this process and investigate also its queue counterpart, where the walk

is confined to the non negative integers. Various results concerning such

queueing system with “chemical” rules (the so-called “chemical queue”) were

obtained also by Tarabia and El-Baz [74], [75] and more recently by Tarabia

et al. [76].

Another example arising in a chemical context where the role of parity

is crucial is provided in Lente [49], where the probability of a more stable

enantiomer is different according on whether the number of chiral molecules

is even or odd.

Stimulated by the above investigations, in this chapter we consider a birth

and death process N(t) on the integers with a transition rate λ from even

states and a possibly different rate µ from odd states. This model arises by

suitably modifying the death rates of the process considered in the above

papers. A detailed description of the model is performed in Section 2.2,

where the probability generating functions of even and odd states and the
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Figure 2.1: Transition rate diagram of N(t).

transition probabilities of the process are obtained for arbitrary initial state.

Certain symmetry properties of the transition probabilities are also given. In

Section 2.3, we study the birth and death process obtained by superimposing

a reflecting boundary in the zero-state. In particular, by making use of a

Laplace transform-based approach, we obtain the probability of a transition

from state 1 to the zero-state. Formulas for mean and variance of both

processes are also provided. We remark that some preliminary results on the

process under investigation are given in Iuliano and Martinucci [42] for the

case of zero initial state.

It should be mentioned that closed-form results on bilateral birth and

death processes have been obtained in the past only in few solvable cases, such

as those in the above mentioned papers, and those given in Di Crescenzo [15],

Di Crescenzo and Martinucci [26], Pollett [63]. Moreover some results on

birth and death processes with alternating rates that will be given in the

following sections have been presented in Di Crescenzo et al. [21].

2.2 Transient probability distribution

We consider a birth and death process {N(t); t ≥ 0} with state-space Z, and

denote by

pk,n(t) = P{N(t) = n |N(0) = k}, t ≥ 0, n ∈ Z
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its transition probabilities, where k ∈ Z is the initial state. We assume that

N(t) is characterized by a transition rate λ from any even state to the two

neighboring states, and by a possibly different transition rate µ from any odd

state to the neighboring states. In other terms, denoting by

νj,n = lim
h→0

1

h
P{N(t+ h) = n |N(t) = j}

the time-homogeneous transition rates of N(t) from state j to state n, we

assume that the allowed transitions are characterized by the following rates:

ν2n,2n±1 = λ, ν2n±1,2n = µ, ∀n ∈ Z, (2.1)

with λ, µ > 0. The associated transition rate diagram of this process is given

in Figure 2.1. We note that rates (2.1) are different from those of the birth

and death model considered in Conolly et al. [12] and Tarabia et al. [76],

where ν2n,2n+1 = ν2n+1,2n = λ and ν2n−1,2n = ν2n,2n−1 = µ for any n ∈ Z.

Due to assumptions (2.1), the transition probabilities of N(t) satisfy the

following system of Kolmogorov differential-difference equations:
d

dt
pk,2n(t) = µ pk,2n−1(t)− 2λ pk,2n(t) + µ pk,2n+1(t),

d

dt
pk,2n+1(t) = λ pk,2n(t)− 2µ pk,2n+1(t) + λ pk,2n+2(t),

(2.2)

for any t ≥ 0, n ∈ Z and for any initial state k ∈ Z. The initial condition is

expressed by:

pk,n(0) = δn,k, (2.3)

where δn,k is the Kronecker’s delta. We notice that in the special case when

λ = µ process N(t) identifies with the so-called “randomized random walk”

(see, for instance, Conolly [11]).

In order to obtain the state probabilities of N(t), hereafter we develop a

probability generating function-based approach. We recall that this method



2.2 Transient probability distribution 33

has been used in the past to determine probabilities of interest in several

stochastic models (see, for instance, Giorno and Nobile [36] and Ricciardi

and Sato [69] for the distribution of the range of one-dimensional random

walks). Let us define the probability generating functions of the sets of even

and odd states of N(t), respectively:

Fk(z, t) :=
+∞∑
j=−∞

z2jpk,2j(t), Gk(z, t) :=
+∞∑
j=−∞

z2j+1pk,2j+1(t), (2.4)

with z ∈ Z. Note that, due to (2.3), the following initial conditions hold:

Fk(z, 0) =

 zk k even

0 k odd,
Gk(z, 0) =

 0 k even

zk k odd.
(2.5)

From system (4.22) we have that the generating functions (2.5) satisfy the

following differential system:
∂

∂t
Fk(z, t) = µ zGk(z, t)− 2λFk(z, t) +

µ

z
Gk(z, t),

∂

∂t
Gk(z, t) = λ zFk(z, t)− 2µGk(z, t) +

λ

z
Fk(z, t),

so that

∂

∂t

 Fk(z, t)

Gk(z, t)

 = A ·

 Fk(z, t)

Gk(z, t)

 , A :=

 −2λ µ
z2 + 1

z

λ
z2 + 1

z
−2µ

 .

Hence, by use of standard methods, due to conditions (2.5) we obtain F2k(z, t)

G2k(z, t)

 = eAt ·

 z2k

0

 , (2.6)

and  F2k+1(z, t)

G2k+1(z, t)

 = eAt ·

 0

z2k+1

 , (2.7)
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where

eAt = exp


 −2λ µ

z2 + 1

z

λ
z2 + 1

z
−2µ

 t

 .

To determine the eigenvalues of matrix A, we consider the following equation

det(A− vI) ≡ (2λ+ v)(2µ+ v)− λµ(z2 + 1)2

z2
= 0,

whose roots are given by

v1, v2 = −(λ+ µ)± 1

z
h(z), v1 < v2,

with

h(z) =
√

(µz2 + λ)(λz2 + µ).

In the sequel we shall denote by

V ≡

 −(λ+ µ)− h(z)/z 0

0 −(λ+ µ) + h(z)/z

 (2.8)

the matrix eigenvalues of A, and by

S =

 S11 S12

S21 S22


the corresponding matrix eigenvectors. By setting

S21 = S22 = λ
(z2 + 1)

z
,

the following system holds:
−2λS11 + µλ

(z2 + 1)2

z2
= S11(−λ− µ− h(z)/z),

−2λS12 + µλ
(z2 + 1)2

z2
= S12(−λ− µ+ h(z)/z).

(2.9)
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By straightforward calculations we have A = S · V · S−1, where

S =


µ− λ− h(z)

z
µ− λ+

h(z)

z

λ
z2 + 1

z
λ
z2 + 1

z

 , V =


v1 0

0 v2

 . (2.10)

S−1 = − z

2λ(z2 + 1)h(z)

 λ(z2 + 1) z(λ− µ)− h(z)

−λ(z2 + 1) z(µ− λ)− h(z)

 . (2.11)

If the initial state is even (2k), Eqs. (2.6) and (2.10)–(2.11) give

eAt ·

 z2k

0

 =


µ− λ− h(z)

z
µ− λ+

h(z)

z

λ
(z2 + 1)

z
λ

(z2 + 1)

z




ev1t 0

0 ev2t



− z

2k+1

2h(z)

z2k+1

2h(z)

 ,

and then

eAt ·

 z2k

0

 = e−(λ+µ)t · z
2k

h(z)


h(z) cosh

[
t
h(z)

z

]
+ z(µ− λ) sinh

[
t
h(z)

z

]
,

λ(z2 + 1) sinh

[
t
h(z)

z

]
 .

(2.12)

Hence, from Eqs. (2.6) and (2.12) we obtain the explicit expression of the

probability generating functions when the initial state is even:

F2k(z, t) = e−(λ+µ)t z
2k

h(z)

{
h(z) cosh

[
t
h(z)

z

]
+ z(µ− λ) sinh

[
t
h(z)

z

]}
(2.13)

G2k(z, t) = e−(λ+µ)t z
2k

h(z)
λ
(
z2 + 1

)
sinh

[
t
h(z)

z

]
. (2.14)
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Similarly, if the initial state is odd (2k+1), Eqs. (2.7) and (2.10)-(2.11) give:

eAt ·

 0

z2k+1

 =


µ− λ− h(z)

z
µ− λ+

h(z)

z

λ
(z2 + 1)

z
λ

(z2 + 1)

z




ev1t 0

0 ev2t




θ1(z)

θ2(z)

 ,

where

θ1(z) =
[h(z)− z(λ− µ)]

2λ(z2 + 1)h(z)
z2k+2, θ2(z) =

[h(z)− z(µ− λ)]

2λ(z2 + 1)h(z)
z2k+2

and then,

eAt ·

 0

z2k+1

 = e−(λ+µ)t · z
2k+1

h(z)


µ(z2 + 1) sinh

[
t
h(z)

z

]
,

h(z) cosh

[
t
h(z)

z

]
+ z(λ− µ) sinh

[
t
h(z)

z

]
.

(2.15)

Hence, the explicit expression of the probability generating functions are:

F2k+1(z, t) = e−(λ+µ)t z
2k+1

h(z)
µ
(
z2 + 1

)
sinh

[
t
h(z)

z

]
, (2.16)

G2k+1(z, t) = e−(λ+µ)t z
2k+1

h(z)

{
h(z) cosh

[
t
h(z)

z

]
+ z(λ− µ) sinh

[
t
h(z)

z

]}
.

(2.17)

We are now able to evaluate the state probabilities of the process.
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2.2.1 Zero initial state

Proposition 2.2.1. For all r ∈ Z and t ≥ 0 the transition probabilities of

N(t), when the initial state is zero, are:

p0,0(t) = e−(λ+µ)t

+∞∑
n=0

[
(λt)2n

(2n)!
+

(
µ− λ
λ

)
(λt)2n+1

(2n+ 1)!

] n∑
k=0

(
n

k

)(
n

k

)(
λ

µ

)−2k

,

p0,2r(t) = p−2r(t) = e−(λ+µ)t

+∞∑
n=r

[
(λt)2n

(2n)!
+

(
µ− λ
λ

)
(λt)2n+1

(2n+ 1)!

]

×
n−r∑
k=0

(
n

k

)(
n

r + k

)(
λ

µ

)−2k−r

, r ≥ 1; (2.18)

p0,2r+1(t) = p−(2r+1)(t) = e−(λ+µ)t

{
+∞∑
n=r

(λt)2n+1

(2n+ 1)!

n−r∑
k=0

(
n

k

)(
n

r + k

)(
λ

µ

)−2k−r

+
+∞∑

n=r+1

(λt)2n+1

(2n+ 1)!

n−r−1∑
k=0

(
n

k

)(
n

r + k + 1

)(
λ

µ

)−2k−r−1
}
.

(2.19)

Proof. Recalling (2.5) we have:

F2n(z, t) = e−(λ+µ)t

{ +∞∑
n=0

[
t h(z)

z

]2n

(2n)!
− z(µ− λ)

h(z)

+∞∑
n=0

[
t h(z)

z

]2n+1

(2n+ 1)!

}

= e−(λ+µ)t

{ +∞∑
n=0

(λt)2n

z2n(2n)!

(
1 +

µ

λ
z2
)n (

z2 +
µ

λ

)n
+ (µ− λ)

+∞∑
n=0

(λt)2n+1

z2n(2n+ 1)!

(
1 +

µ

λ
z2
)n (

z2 +
µ

λ

)n}
. (2.20)

Consider the following identity:(
1 +

µ z2

λ

)n (
z2 +

µ

λ

)n
=

n∑
x=0

z2x

x∑
k=0

(
n

k

)(
n

n− k

)(
λ

µ

)−n−2k+x

+ z2n+2

n−1∑
x=0

z2x

n−x−1x∑
k=0

(
n

k

)(
n

n+ k + 1

)(
λ

µ

)−x−2k−1

. (2.21)
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Figure 2.2: Plots of p0(t) = p0,0(t) for (λ, µ) = (2, 1) (solid line), (λ, µ) = (2, 2)

(dashed line) and (λ, µ) = (1, 2) (dotted line).

By substituting (2.21) in (2.20) and by setting n − x = r, with r ≥ 1, we

obtain

F2n(z, t) = e−(λ+µ)t

+∞∑
n=r

[
(λt)2n

(2n)!
+

(
µ− λ
λ

)
(λ t)2n+1

(2n+ 1)!

]

×
n−r∑
k=0

(
n

k

)(
n

r + k

)(
λ

µ

)−2k−r { +∞∑
r=0

1

z2r
+

+∞∑
r=1

z2r

}
. (2.22)

Extracting the coefficients of z2r in (2.22) the even probabilities are given.

Similarly, from (2.5) and (2.16)-(2.17), for r ≥ 0, the odd state probabilities

follow.

Some plots of the transition probabilities of the process N(t), when initial

state is zero, are given in Figures 2.2, 2.3, 2.4 and 2.5.
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Figure 2.3: Plots of p2r(t) = p0,2r(t) for (λ, µ) = (2, 1) and r = 0 (solid line),

r = 1 (dashed line) and r = 2 (dotted line).
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Figure 2.4: Plots of p2r(t) = p0,2r(t) for (λ, µ) = (1, 2) and r = 0 (solid line),

r = 1 (dashed line) and r = 2 (dotted line).
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Figure 2.5: Plots of p2r+1(t) = p0,2r+1(t) for (λ, µ) = (2, 1) and r = 0 (solid line),

r = 1 (dashed line) and r = 2 (dotted line).

2.2.2 Non-zero initial state

Proposition 2.2.2. For all l, r ∈ Z and t ≥ 0 the transition probabilities of

N(t), when the initial state is arbitrary, are:

p2l,2r(t) = e−(λ+µ)t

+∞∑
n=|r−l|

[
(λt)2n

(2n)!
+

(
µ− λ
λ

)
(λt)2n+1

(2n+ 1)!

]

×
n−|r−l|∑
k=0

(
n

k

)(
n

k + |r − l|

)(
λ

µ

)−2k−|r−l|

, (2.23)

p2l,2r+1(t) = e−(λ+µ)t


+∞∑

n=|r−l|

(λt)2n+1

(2n+ 1)!

n−|r−l|∑
k=0

(
n

k

)(
n

k + |r − l|

)(
λ

µ

)−2k−|r−l|

+
+∞∑

n=|r−l+1|

(λt)2n+1

(2n+ 1)!

n−|r−l+1|∑
k=0

(
n

k

)(
n

k + |r − l + 1|

)(
λ

µ

)−2k−|r−l+1|
 ,

(2.24)
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p2l+1,2r(t) = e−(λ+µ)t

{ +∞∑
n=|r−l−1|

(µt)2n+1

(2n+ 1)!

×
n−|r−l−1|∑

k=0

(
n

k

)(
n

k + |r − l − 1|

)(µ
λ

)−2k−|r−l−1|

+
+∞∑

n=|r−l|

(µt)2n+1

(2n+ 1)!

n−|r−l|∑
k=0

(
n

k

)(
n

k + |r − l|

)(µ
λ

)−2k−|r−l|
}
,

p2l+1,2r+1(t) = e−(λ+µ)t

+∞∑
n=|r−l|

[
(µt)2n

(2n)!
+

(
λ− µ
λ

)
(µt)2n+1

(2n+ 1)!

]

×
n−|r−l|∑
k=0

(
n

k

)(
n

k + |r − l|

)(µ
λ

)−2k−|r−l|
. (2.25)

Proof. Recalling (2.13) and (2.21), when 2k is even, we consider the following

generating function:

F2k(z, t) = e−(λ+µ)t

+∞∑
n=0

[
(λt)2n

(2n)!
+

(
µ− λ
λ

)
(λt)2n+1

(2n+ 1)!

]
×z

2k

z2n

n∑
k=0

n∑
j=0

(
n

k

)(
n

j

)(
λ

µ

)−n−k+j

z2(k+j). (2.26)

By setting k + j = r and l = k in (2.26), when n > l > 0 and l ≥ n ≥ 0, we

obtain the generating function:

F2k(z, t) = e−(λ+µ)t

{ +∞∑
n=1

[
(λt)2n

(2n)!
+

(
µ− λ
λ

)
(λt)2n+1

(2n+ 1)!

]

×
l+n∑
r=l+1

yr
n−r+l∑
k=0

(
n

k

)(
n

k + r − l

)(
λ

µ

)−2k−r+l

+
l∑

n=0

[
(λt)2n

(2n)!
+

(
µ− λ
λ

)
(λt)2n+1

(2n+ 1)!

]
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×
l∑

r=l−r

yr
n+r−l∑
k=0

(
n

k

)(
n

k + l − r

)(
λ

µ

)−2k+r−l

+
+∞∑
n=l+1

[
(λt)2n

(2n)!
+

(
µ− λ
λ

)
(λt)2n+1

(2n+ 1)!

]

×
l∑

r=0

yr
n+r−l∑
k=0

(
n

k

)(
n

k + l − r

)(
λ

µ

)−2k+r−l

+
+∞∑
n=l+1

[
(λt)2n

(2n)!
+

(
µ− λ
λ

)
(λt)2n+1

(2n+ 1)!

]

×
n−l∑
r=1

1

yr

n−r−l∑
k=0

(
n

k

)(
n

k + l + r

)(
λ

µ

)−2k−r−l}
, (2.27)

where y = z2. By Fubini’s Theorem, after some calculations, we have:

F2k(z, t) = e−(λ+µ)t

{ l∑
r=0

yr
+∞∑
n=l−r

[
(λt)2n

(2n)!
+

(
µ− λ
λ

)
(λt)2n+1

(2n+ 1)!

]

×
n−l+r∑
k=0

(
n

k

)(
n

k + l − r

)(
λ

µ

)−2k+r−l

+
+∞∑
r=l+1

yr
+∞∑
n=r−l

[
(λt)2n

(2n)!
+

(
µ− λ
λ

)
(λt)2n+1

(2n+ 1)!

]

×
n+l−r∑
k=0

(
n

k

)(
n

k − l + r

)(
λ

µ

)−2k−r+l

+
+∞∑
r=1

1

yr

+∞∑
n=r+l

[
(λt)2n

(2n)!
+

(
µ− λ
λ

)
(λt)2n+1

(2n+ 1)!

]

×
n−l−r∑
k=0

(
n

k

)(
n

k + l + r

)(
λ

µ

)−2k−r−l}
. (2.28)

Hence, we analyse the case in which 1 ≤ |l| < n and |l| ≥ n ≥ 0. After some
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calculations we obtain:

F2k(z, t) = e−(λ+µ)t

{ +∞∑
r=|l|

1

xr

+∞∑
n=r−|l|

[
(λt)2n

(2n)!
+

(
µ− λ
λ

)
(λt)2n+1

(2n+ 1)!

]

×
n+|l|−r∑
k=0

(
n

k

)(
n

k − |l|+ r

)(
λ

µ

)−2k−r+|l|

+

|l|−1∑
r=0

1

xr

+∞∑
n=|l|−r

[
(λt)2n

(2n)!
+

(
µ− λ
λ

)
(λt)2n+1

(2n+ 1)!

]

×
n−|l|+r∑
k=0

(
n

k

)(
n

k + |l| − r

)(
λ

µ

)−2k+r−|l|

+
∞∑
r=1

xr
+∞∑

n=|l|+r

[
(λt)2n

(2n)!
+

(
µ− λ
λ

)
(λt)2n+1

(2n+ 1)!

]

×
n−r−|l|∑
k=0

(
n

k

)(
n

k + |l|+ r

)(
λ

µ

)−2k−r−|l|}
, (2.29)

with x = z2. Hence, Eqs. (2.23) follow by extracting the coefficients of z2r in

(2.28) and (2.29). Similarly, when 2k is even, by extracting the coefficients of

z2r in (2.14), Eq.(2.24) follows. Then, when 2k + 1 is odd by extracting the

coefficients of z2r+1 in (2.16)-(2.17), Eqs. (2.25) and (2.25) finally follow.

Figure 2.6 shows some plots of transition probabilities given in Proposi-

tion 2.2.2.

2.2.3 Symmetry properties

The relevance of symmetry properties of transition functions of birth and

death processes has been emphasized in Anderson and McDunnough [2] and

in Di Crescenzo [16], for instance. We stress that the role of symmetry is

closely connected to the analysis of the first-passage-time problem in Markov

processes. See, for instance, the contributions of Giorno et al. [37], [38] and

Di Crescenzo et al. [18], [19], where some relations involving the transition
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Figure 2.6: Plots of some transition probabilities for (λ, µ) = (1, 2) (solid

line), (λ, µ) = (2, 2) (dotted line), (λ, µ) = (2, 1) (dashed line).

probability density functions and the first-passage-time density functions of

symmetric diffusion processes in the presence of suitable time-varying bound-

aries.

Hereafter we analyze some symmetry properties of the transition proba-

bilities obtained in Proposition 2.2.1 and Proposition 2.2.2. When necessary

we emphasize the dependence on the parameters by writing pk,n(t;λ, µ) in-

stead of pk,n(t).

Remark 2.2.3. From Proposition 2.2.1, denoting by p2r+1(t;λ, µ) the right-

hand-side of (2.19) and , due to Eq. (2.14), the following symmetry property

holds:

p0,2r+1(t;λ, µ) =
λ

µ
p0,2r+1(t;µ, λ).
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Proposition 2.2.4. For every t ≥ 0 and n, k ∈ Z the following symmetry

relations hold:

(i) pN−k,N−n(t) = pk,n(t), if N is even

(ii) pN−k,N−n(t;λ, µ) = pk,n(t;µ, λ), if N is odd;

(iii) pn,k(t;λ, µ) = pk,n(t;µ, λ);

(iv) pN+k,N+n(t) = pk,n(t), if N is even

(v) pN+k,N+n(t;λ, µ) = pk,n(t;µ, λ), if N is odd.

Proof. These properties follow from direct analysis of the probabilities (2.18)-

(2.19) and (2.23)-(2.25). In particular, hereafter we prove the property (ii).

If N = 2m + 1 is odd, by setting k = 2s (even) and j = 2q (odd) and by

recalling Eq. (2.25) the following relation holds:

pN−k,N−j(t) = p2(m−s)+1,2(m−q)+1(t) = e−(λ+µ)t

×
+∞∑

n=|s−q|

[
(µt)2n

(2n)!
+

(
λ− µ
µ

)
(µt)2n+1

(2n+ 1)!

]

×
n−|s−q|∑
k=0

(
n

k

)(
n

k + |s− q|

)(µ
λ

)−2k−|s−q|
, (2.30)

whereas, recalling (2.23), we have:

pk,j(t) = p2s,2q(t) = e−(λ+µ)t

+∞∑
n=|q−s|

[
(λt)2n

(2n)!
+

(
µ− λ
λ

)
(λt)2n+1

(2n+ 1)!

]

×
n−|q−s|∑
k=0

(
n

k

)(
n

k + |q − s|

)(
λ

µ

)−2k−|q−s|

. (2.31)

The other cases can be proved similarly.

In Figure 2.6 the plots of p−2,1(t) and p1,−2(t) illustrate a case in which

property (ii) of Proposition 2.2.4 holds.
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2.2.4 Moments

Hereafter we express in closed form the mean and the variance of N(t). In

particular, we shall obtain that the mean is equal to the initial state. This

result is intuitively justified by the symmetry of the Markov chain. Indeed,

by choosing N = 2k and n = k − r in identity (i) of Proposition 2.2.4 we

have pk,k+r(t) = pk,k−r(t) ∀k, r ∈ Z, and t ≥ 0.

Proposition 2.2.5. For t ≥ 0 and k ∈ Z we have

E[N(t)|N(0) = k] = k, (2.32)

V ar[N(t)|N(0) = k] =
4λµ

λ+ µ
t+ (−1)k

λ(λ− µ)

(λ+ µ)2

[
1− e−2(λ+µ)t

]
. (2.33)

Proof. The mean (2.32) easily follows from Eqs. (4.22) and (2.3). Moreover,

by setting ψk(t) := E[N2(t)|N(0) = k] from system (4.22) we obtain:

d

dt
ψk(t) = 2µ

+∞∑
n=−∞

pk,2n+1(t) + 2λ
+∞∑

n=−∞

pk,2n(t)

= 2µGk(1, t) + 2λFk(1, t), t ≥ 0,

where Fk and Gk have been defined in (2.5). Hence, recalling Eqs. (2.13)–

(2.17), after some calculations we have

d

dt
ψk(t) =


4λµ

λ+ µ
+

2λ(λ− µ)

λ+ µ
e−2(λ+µ)t, k even

4λµ

λ+ µ
+

2µ(µ− λ)

λ+ µ
e−2(λ+µ)t, k odd

with ψk(0) = k2. Finally, Eq. (2.33) follows.

2.3 A reflecting boundary

In this section we consider the case in which the state-space is reduced to

the set of non-negative integers. We shall denote by {R(t); t ≥ 0} the birth
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and death process having state-space {0, 1, 2, . . .}, with 0 reflecting, whose

rates are identical to those of N(t). This describes, for instance, the number

of customers in a queueing system with alternating rates. For n = 0, 1, 2, . . .,

let us introduce the transition probabilities

qk,n(t) = P{R(t) = n |R(0) = k}, t ≥ 0.

The related differential-difference equations are, for n = 1, 2, . . . ,



d

dt
qk,0(t) = µ qk,1(t)− λ qk,0(t),

d

dt
qk,2n(t) = µ qk,2n−1(t)− 2λ qk,2n(t) + µ qk,2n+1(t),

d

dt
qk,2n−1(t) = λ qk,2n(t)− 2µ qk,2n−1(t) + λ qk,2n−2(t),

(2.34)

with

qk,n(0) = δn,k. (2.35)

Remark 2.3.1. We point out that the steady-state distribution of R(t) does

not exist. Indeed, from system (2.34) it is not hard to see that

lim
t→∞

qk,n(t) = 0, ∀k, n ∈ Z.

2.3.1 Moments

Let us now set, for k ∈ Z,

Pk(t) = P {R(t) even |R(0) = k} =
+∞∑
n=0

qk,2n(t), t ≥ 0. (2.36)

Now mean and variance of R(t) will be formally expressed in terms of (2.36).
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Proposition 2.3.2. For t ≥ 0 we have

E[R(t)|R(0) = k] = λ

∫ t

0

qk,0(τ)dτ + k, (2.37)

V ar[R(t)|R(0) = k] = 2(λ− µ)

∫ t

0

Pk(τ)dτ − λ(2k + 1)

∫ t

0

qk,0(τ)dτ

−λ2

[∫ t

0

qk,0(τ)dτ

]2

+ 2µt, (2.38)

where

Pk(t) =
2µ

λ+ µ
+
λ− µ
λ+ µ

e−2(λ+µ)t + λ

∫ t

0

e−2(λ+µ)(t−τ)qk,0(τ)dτ. (2.39)

Proof. The mean (2.37) easily follows from system (2.34) and condition

(2.35). Moreover, from Eqs. (2.34) we obtain

d

dt
E[R2(t)|R(0) = k] = 2µ

+∞∑
n=1

qk,2n+1(t) + 2µqk,1(t) + λqk,0(t) + 2λ
+∞∑
n=1

qk,2n(t)

= 2µ[1− Pk(t)− qk,1(t)] + 2µqk,1(t) + λqk,0(t) + 2λ [Pk(t)− qk,0(t)]

= 2(λ− µ)Pk(t) + λqk,0(t) + 2µ,

where Pk(t) satisfies the differential equation

d

dt
Pk(t) = −2(µ+ λ)Pk(t) + λ qk,0(t) + 2µ. (2.40)

Since the solution of (2.40) is Eq. (2.39), the conditional variance (2.38) easily

follows.

2.3.2 Probabilities

In the case in which the initial state k is zero, recalling (2.34) and (2.35) and

denoting by

πk,n(s) := Ls[qk,n(t)] =

∫ ∞
0

e−st qk,n(t) dt, s > 0, (2.41)
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the Laplace transform of the transition probabilities of R(t), we have:

(λ+ s) π0,0(s) = 1 + µπ0,1(s),

(2λ+ s) π0,2n(s) = µπ0,2n−1(s) + µπ0,2n+1(s),

(2µ+ s) π0,2n−1(s) = λπ0,2n(s) + λπ0,2n−2(s).

(2.42)

The solution of system (2.42) involves the roots of the biquadratic equation

λµx4 −
[
(λ+ µ+ s)2 − λ2 − µ2

]
x2 + λµ = 0,

which are given by

ψ2
1(s) =

(A+B)2

a2 − b2
, ψ2

2(s) =
(A−B)2

a2 − b2
,

where

a = λ+ µ, b = λ− µ.

and

A2 = (a+ s)2 − a2, B2 = (a+ s)2 − b2.

Since ψ2
1(s) > 1 and 0 < ψ2

2(s) < 1, from system (2.42) we have

π0,2n(s) =
2(2µ+ s)

s(2µ+ s) + AB

[
(A−B)2

a2 − b2

]n
, n = 0, 1, . . . (2.43)

and, similarly,

π0,2n−1(s) =
2λ

s(2µ+ s) + AB

[
(A−B)2

a2 − b2

]n−1
[

1 +
(A−B)2

a2 − b2

]
, n = 1, 2, . . .

In particular, from Eq. (2.43) we have

π0,0(s) =
2

s

[
1 +

√
1 +

2λ

s

√
1 +

2λ

2µ+ s

]−1

. (2.44)
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To obtain the expression of the zero-state probability q0,0(t), we note that

Eq. (2.44) can be written as

π0,0(s) =
1

a+ b

[√
2a+ s

s
−
√
a+ s− b
a+ s+ b

]

×

(
1− b2

(a+ s)(
√

(a+ s)2 − b2 + a+ s)

)
.

Hence, by making use of Eqs. (19) and (24) of [32], after some calculations,

we obtain

q0,0(t) =
e−at

a+ b

{
a
[
I0(at) + I1(at)

]
+ b
[
I0(bt)− I1(bt)

]}
+

a e−at

2(a+ b)

∫ t

0

s 1F2

(
1

2
,
3

2
, 2,

b2s2

4

)[
I0(a(t− s)) + I1(a(t− s))

]
ds

+
b e−at

2(a+ b)

∫ t

0

s 1F2

(
1

2
,
3

2
, 2,

b2s2

4

)[
I0(b(t− s))− I1(b(t− s))

]
ds,

(2.45)

where

In(x) =
+∞∑
k=0

1

k!(k + n)!

(x
2

)2k+n

is the modified Bessel function of the first kind and

1F2 (c1, c2, c3, x) =
+∞∑
k=0

(c1)k x
k

(c2)k (c3)k k!

is the hypergeometric function, with (·)k denoting the Pochhammer sym-

bol. The evaluation of the integrals in Eq. (2.45) finally gives the transition

probability (see Section 3 of Iuliano and Martinucci [42]).

q0,0(t) =
e−at

a+ b

+∞∑
k=0

(t/2)2k

k!2

{
(a2k+1 + b2k+1) 1F2

(
−1

2
, k +

1

2
, k + 1,

b2t2

4

)
+
t(a2k+2 − b2k+2)

2(k + 1)
1F2

(
−1

2
, k + 1, k +

3

2
,
b2t2

4

)}
, t ≥ 0,

Some plots of the transition probability q0(t) = q0,0(t) are shown in Figure

2.7 for various choices of λ and µ. Now we analyse the case in which the
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Figure 2.7: Plots of q0(t) = q0,0(t) for (λ, µ) = (2, 1) (solid line), (λ, µ) = (2, 2)

(dashed line) and (λ, µ) = (1, 2) (dotted line).

initial state is k = 1. By using (2.41) the transition probabilities of R(t),

from Eqs. (2.34) we have

(λ+ s)π1,0(s) = µπ1,1(s)

(2µ+ s) π1,1(s) = 1 + λπ1,2(s) + λπ1,0(s)

(2λ+ s)π1,2n(s) = µπ1,2n−1(s) + µπ1,2n+1(s), n ≥ 1

(2µ+ s) π1,2n−1(s) = λπ1,2n(s) + λπ1,2n−2(s), n ≥ 2.

(2.46)

After some calculation, we obtain:

π1,2n(s) =
(2µ+ s)(λ+ s) [ψ2

2(s)]
n+1

λ2 [µ(1− ψ2
2(s))− s ψ2

2(s)]
, n ≥ 1, (2.47)

and, similarly,

π1,2n−1(s) =
(λ+ s) [ψ2

2(s)]
n

[1 + ψ2
2(s)]

λ [µ(1− ψ2
2(s))− s ψ2

2(s)]
, n ≥ 1. (2.48)

In particular, when the initial state is 1 and the final state is zero, by making

use of Eqs. (2.47) and (2.48) and substituting in (2.46), we have

π1,0(s) =
(2λ+ s)(2µ+ s)− AB
λ [s(2µ+ s) + AB]

. (2.49)
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By inversion of (2.49), after some calculations, we obtain

q1,0(t) =
e−at

2λ(a+ b)

∫ t

0

[
−b2 I1(b(t− s))

b(t− s)
+ a2 I1(a(t− s))

a(t− s)

]
h(s)ds +

+
e−at

2λ(a+ b)
(a2 − b2)

∫ t

0

b(t− s)
2

1F2

(
1

2
,
3

2
, 2,

b2(t− s)2

4

)
h(s)ds,

(2.50)

where

h(x) := a [I0(ax) + I1(ax)] + b [I0(bx)− I1(bx)] ,

with In(·) denoting the modified Bessel function of the first kind. Evaluating

of the integrals in Eq. (2.50) the following result finally follows.

Proposition 2.3.3. For t ≥ 0, we have

q1,0(t) =
e−at

λ(a+ b)

{ +∞∑
n=0

t2n

n!(n+ 1)!

[(a
2

)2n+2

−
(
b

2

)2n+2
]
ξ

(
1

2
, 1, a, b

)

+
+∞∑
n=0

t2n+1

n!(n+ 1)!(2n+ 1)

[
a2 − b2

2

(
b

2

)2n+1
]
ξ

(
1,

3

2
, a, b

)

+
+∞∑
n=0

t2n+1

n!(n+ 1)!(2n+ 1)

[(a
2

)2n+2

−
(
b

2

)2n+2
]
η

(
1,

3

2
, a, b

)

+
+∞∑
n=0

t2n+2

n!(n+ 1)!(2n+ 1)(2n+ 2)

[
a2 − b2

2

(
b

2

)2n+1
]
η

(
3

2
, 2, a, b

)}
,

where

ξ(u, v, a, b) = 1F2

(
1

2
;n+ u, n+ v;

a2t2

4

)
− 1F2

(
1

2
;n+ v, n+ u;

b2t2

4

)
,

η(u, v, a, b) = a 1F2

(
1

2
;n+ u, n+ v;

a2t2

4

)
+ b 1F2

(
1

2
;n+ v, n+ u;

b2t2

4

)
.

Some illustrative plots of q1,0(t) are shown in Figure 2.8.

Stimulated by some previous works on the applications of stochastic pro-

cesses to the study of chain molecular diffusion, in this chapter we have
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Figure 2.8: Plots of q1,0(t) for (λ, µ) = (1, 2), (2, 2), (2, 1), from top to bottom.

analyzed a birth and death process on Z characterized by alternating transi-

tion rates. The probability generating functions of even and odd states and

the transition probabilities of the bilateral process have been obtained in two

special cases: (i) when the initial and final state is zero and (ii) when the

initial state is arbitrary. A preliminary investigation on the transient behav-

ior of the birth and death process obtained by superimposing a reflecting

boundary in the zero-state has also been performed in both cases.

In conclusion, the results given in this chapter deserve also special interest

in the fields of chemical queueing processes and two-periodic random walks,

according to the lines traced in various papers, such as Conolly et al. [12]

and Böhm and Hornik [7], for instance.



PART 2

Analysis of a telegraph process with
underlying random walk



CHAPTER 3

TELEGRAPH PROCESS

3.1 Introduction

In this chapter we analyze a random motion governed by the telegraph equa-

tion. Models of random evolution deserve large interest in mathematical

biology, as they naturally appear in many contexts involving biological phe-

nomena. Among those, we recall the telegraph random process, which arises

also in other applied fields, such as engineering, mathematical finance, queue-

ing and reliability theory.

The telegraph random process has been studied in the past by many au-

thors aiming to describe the motion of a particle on the real line, traveling

at constant speed, whose direction is reversed randomly according to the ar-

rival epochs of a Poisson counting process (for instance, see Kac [43]). The

telegraph random process first appeared in the literature in a work of Gold-

stein [39] in fluid dynamics. In this paper, a particle, starting from the origin,

moves in steps of length ∆ = vτ , the duration of each step being τ . At each

time the particle has probability p of maintaining and the probability q = 1−p
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of reversing the direction of the previous step (at τ = 0 both directions are

equiprobable). The probability distribution of the position is calculated ex-

actly and various asymptotic expressions are found. In particular limit the

solution can be obtained by solving the telegraph equation. This is remark-

able since the equation is hyperbolic and one usually encounters equations

of parabolic type. Some aspects of this process, including absorption and

first-passage-time problems, have been studied in Foong and Kanno [34] and

Orsingher [55]. Several Markovian generalizations of the telegraph random

process have been proposed in the recent literature, in which the reversals of

velocities of the motion are still driven by a homogeneous Poisson process,

and the transition probability density function governing the process is usu-

ally a solution of a hyperbolic partial differential equation. This solution is

very complicated when the number of velocities is high (see Kolesnik [47]),

so that closed-form solutions have been found in the past only in very few

cases. Restricting our attention to one-dimensional models, various kinds of

generalizations of the telegraph process have been proposed towards motion

characterized by random velocities (see Stadje and Zacks [72]); models char-

acterized by more than two directions, for instance, see Orsingher et al. [58]

and by Kolesnik [47]; velocities alternating at gamma or Erlang-distributed

random times (see Di Crescenzo et al. [17], [24] and Pogorui et al. [62]).

The interest for this process has increased with the years and many impor-

tant features obtained from different viewpoints and different techniques have

been proposed. Recently, the telegraph process has been exploited in proba-

bilistic financial fields, such as for stochastic volatility modeling and actuarial

problems based on generalized telegraph process characterized by alternating

velocities and jumps occurring at switching velocities (see Ratanov [65] and

Ratanov [66], for instance). Among other applications these processes have
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been exploited for stochastic volatility models (see Di Masi et al. [31]). A new

model based on a geometric telegraph process to study the price evolution

of risky assets has been analized in Di Crescenzo and Pellerey [30].

In the following sections the standard telegraph process is introduced

and the relative properties are analyzed in order to show the explicit expres-

sions of the transition probabilities of the stochastic process. In Section 3.2,

the telegraph process is formally defined. Some preliminary results of the

transition probabilities of the process V (t) and relative moments are intro-

duced. In Section 3.3 the integrated telegraph process X(t) is analyzed and

the relative probability densities of the process X(t) are defined in order to

introduce the telegraph equation and moments of particle position. Then,

in Section 3.4, the probability law of the process (X(t), V (t)) characterized

by a discrete component on the extremes of the domain [−ct, ct] and by an

absolutely component over the domain is exhibited. Finally, in Section 3.5

moment genarating function of the telegraph process is evaluated.

3.2 Telegraph process

In this section we give some results on the telegraph process. We consider a

stochastic process {(X(t), V (t)); t ≥ 0}, where X(t) and V (t) denote respec-

tively position and velocity at time t of a particle moving on the real line

with two alternating velocities and opposite directions. The random times

separating consecutive changes of direction of the motion have a general dis-

tribution and perform an alternating renewal process. In the basic model

such random times have exponential distribution with parameter λ.

Starting from the origin, the particle moves following an alternating mo-

tion with velocities c and −c (c > 0). The direction of the motion (forward
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and backward) is determinated by the sign of the velocity that forces the

particle to change the direction. The telegraph process was introduced to

represent a random motion with finite velocity, in order to superate the seri-

ous limitations of the Brownian motion process in the realistic representation

of real random motions:

• infinite speed with which it travels the trajectories,

• the non-differentiability of trajectory (which implies total absence of

inertia).

The Brownian motion process describes the motion exhibited by a small

particle that is totaly immersed in a liquid or gas. Moreover, it is suitably

defined as the limit of a symmetric random walk.

Let {N(t), t ≥ 0} be a homogeneous Poisson process with parameter λ,

so that

P{N(t) = k} =
e−λt(λt)k

k!
, k = 0, 1, 2, . . .

For a finite number of time points

0 ≤ t1 < t2 < t3 < . . . < tn

the increments

N(t2)−N(t1), N(t3)−N(t2), . . . , N(tn)−N(tn−1)

are independent. If the particle starts with positive velocity, then the velocity

is c (c > 0). When there is a collision, the particle velocity changes becoming

negative, i.e. −c. The velocity remains the same until another collision, and

so on. Now we derive the distribution of the velocity of the particle. The

number of collisions at time t is just N(t) and the sign of velocity changes

at any collision. We assume that at time t = 0 the particle is located at the
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origin and moves in a positive or negative direction. Hence, the velocity of

the particle at time t is

V (t) := V (0)(−1)N(t), t ≥ 0, (3.1)

where N(t) is the number of events of an homogeneous Poisson process with

intensity λ during (0, t) and V (0) is a random variable independent from

N(t) such that

P{V (0) = c} = P{V (0) = −c} =
1

2
.

The process V (t) can be interpreted as the velocity at time t of a particle

moving on the real line. It is easy to see that the following theorem holds:

Theorem 3.2.1. The probabilities of the process V (t) conditional on initial

velocity V (0) = c are:

P {V (t) = c |V (0) = c} =
1

2
(1 + e−2λt),

P {V (t) = −c |V (0) = c} =
1

2
(1− e−2λt). (3.2)

Proof. The probabilities

pc(t) = P {V (t) = c |V (0) = c}

p−c(t) = P {V (t) = −c |V (0) = c} (3.3)

satisfy the following system:
pc(t+ ∆t) = pc(t)(1− λ∆t) + p−c(t)λ∆t+ o(∆t)

p−c(t+ ∆t) = p−c(t)(1− λ∆t) + pc(t)λ∆t+ o(∆t).

(3.4)

Hence, the following system of differential equations holds:
∂

∂t
pc(t) = −λpc(t) + λp−c(t)

∂

∂t
p−c(t) = −λp−c(t) + λpc(t)

(3.5)
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From system (3.5) we obtain the equation

∂2

∂t2
pc(t) + 2λ

∂

∂t
pc(t) = 0 (3.6)

with initial conditions: 
pc(0) = 1

∂

∂t
p−c(0) = −λ.

(3.7)

Finally, Eqs. (3.2) follow from (3.6) and (3.7).

Similarly, from the symmetry of the process V (t), it is possible to prove

that the following probabilities conditional on V (0) = −c hold:

P {V (t) = ±c |V (0) = −c} =
1

2
(1± e−2λt). (3.8)

3.2.1 Moments of the particle velocity

It is easy to derive, from Eqs. (3.2), the conditional mean and the conditional

variance of process V (t)

E [V (t) |V (0) = c] = c [pc(t)− p−c(t)] = c e−2λt, (3.9)

V ar [V (t) |V (0) = c] = c2
(
1− e−4λt

)
. (3.10)

The covariance is given by

Cov [V (t), V (s)] = c2e−2λ|t−s| −
(
c e−2λt · e−2λs

)
, (3.11)

with 0 < s < t.

Symilarly, the following relations conditional on V (0) = −c hold:

E [V (t) |V (0) = −c] = −c e−2λt, (3.12)

V ar [V (t) |V (0) = −c] = c2
(
1− e−4λt

)
, (3.13)
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Cov [V (t), V (s)] = c2e−2λ|t−s| +
(
c e−2λt · e−2λs

)
, 0 < s < t. (3.14)

We note that when t → ∞, the means (3.9) and (3.12) tend to 0 and the

variances (3.10) and (3.13) tend to the constant c2.

3.3 Integrated telegraph process

The integrated telegraph process is obtained as integral of Eq. (3.1). This

process describes the position of a particle during its motion. Hence, the

istantaneous position of the particle at time t is

X(t) := V (0)

∫ t

0

(−1)N(s)ds, t ≥ 0. (3.15)

We assume that N(0) = 0. Notice that, in this model, the length of times

at which the particle is traveling in the positive or negative direction are

indipendent and identically distributed (i.i.d.) exponential random variables.

Definition 3.3.1. For t ≥ 0 and −ct < x < ct, we introduce the following

probability densities of X(t) conditional on initial velocity V (0) = c:

f(x, t | c)dx =
∂

∂x
P {X(t) ≤ x |V (t) = c} , (3.16)

b(x, t | c)dx =
∂

∂x
P {X(t) ≤ x |V (t) = c} . (3.17)

The densities f(x, t | − c) and b(x, t | − c), conditional on initial velocity

V (0) = −c can be defined similarly.

The functions f and b are defined respectively as the density that the

particle occupies location near x at time t with forward velocity, and that

the particle is located in x at time t with backward velocity.

Definition 3.3.2. Define for t ≥ 0 and −ct < x < ct the forward density

f(x, t) and backward density b(x, t):

f(x, t) =
1

2
[f(x, t | c) + f(x, t | − c)] ,
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b(x, t) =
1

2
[b(x, t | c) + b(x, t | − c)] .

Hence, the probability density of X(t), when the particle stars at x0 = 0,

at time t0 = 0 is denoted as follows:

p(x, t) =
∂

∂x
P{X(t) ≤ x} = f(x, t) + b(x, t). (3.18)

The probability density p(x, t) introduced in Eq. (3.18) is the solution of the

telegraph equation:

c2 ∂
2p

∂x2
=
∂2p

∂t2
+ 2λ

∂p

∂t
(3.19)

(for istance, see Goldstein [39]). The explicit form of the associated flow

function

w(x, t) = f(x, t)− b(x, t) (3.20)

of a random motion governed by the telegraph equation is also introduced.

This function represents, at each time t, the excess of forward moving particle

with respect to backward moving ones near point x.

In the following sections the closed form of the density p(x, t) is given. It

is interesting to note that the solution of the process X(t) is similar to the

solution of the equation of the vibrating string:

G(x, t) =


e−λtI0

(
λ

c

√
c2t2 − x2

)
, |x| ≤ ct

0, otherwise.

(3.21)

where the time t is replaced by the randomized time
∫ t

0
(−1)N(s)ds. The func-

tion G(x, t) represents the instantaneous form of a string perfoming damped

vibration initiated at time t = 0 by a unit impulse at x = 0, where

I0(x) =
∞∑
k=0

1

k!

(
1

2
x

)2k
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is the Bessel function with imaginary argument of order zero. An expression

for the probability density p(x, t), based on G(x, t), is obtained in Orsingher

[52]. Finally, the telegraph process has been generalized in many direction for

one-dimensional generalizations (see Orsingher [54]) and for two-dimensional

generalizations (see Orsingher [53]).

3.3.1 Moments of particle position

The variance and the covariance of the process X(t) follow from Eq. (3.15).

These results are contained in the following proposition.

Proposition 3.3.3.

V ar[X(t)] =
1

2
c2

[
2t

λ
− (1− e−λt)

λ2

]
(3.22)

Cov[X(t), X(s)] =
1

4
c2

[
4 min(t, s)

λ
− (1− e−2λmin(t,s))(1 + e−2λ|t,s|)

λ2

]
.

(3.23)

Proof. Using Eq. (3.30), we have

EX2(t) =

∫ ct

ct

x2p(x, t)dx+ c2t2e−λt

=
e−λt

2c

[
λ

∫ ct

ct

x2I0

(
λ

c

√
c2t2 − x2

)
dx

]
+
∂

∂t

∫ ct

ct

x2I0

(
λ

c

√
c2t2 − x2

)
dx.

Note that ∫ ct

ct

x2I0

(
λ

c

√
c2t2 − x2

)
dx =

c3t

λ

(
eλt − e−λt

)
,

so that Eq. (3.22) follows. Instead, from Eq. (3.15) we obtain

EX2(t) = E

[
V 2(0)

∫ t

0

∫ t

0

(−1)N(s)+N(z)dsdz

]
= c2

∫ t

0

∫ t

0

E((−1)N(s)+N(z))dsdz.
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When z > s, we obtain

E[(−1)N(s)+N(z)] = E[(−1)N(z)−N(s)]

= P{N(z)−N(s) = even} − P{N(z)−N(s) = odd}

= e−2λ(z−s).

Therefore

EX2(t) = c2

∫ t

0

∫ t

0

e−2λ|z−s|dsdz2c2

∫ t

0

∫ s

0

e−2λ(s−z)dsdz.

Then, after same calculation Eq. (3.23) is obtained.

3.3.2 Connection with Brownian motion

Kac [43] showed that the wave equation (3.19) becomes the heat equation

when λ tends to∞ and c2/λ tends to σ2. Letting λ→∞ means that velocity

changes occur continuously, while c2/λ → σ2 implies that also the speed of

the particle tends to ∞. Therefore, the limiting behaviour of the integrated

telegraph process is similar to that of the Brownian motion process. In

particular, the density function p(x, t) defined in (3.18), when λ tends to ∞

and c2/λ tends to σ2, becomes the Gaussian transition function of Brownian

motion:

lim
λ→∞

c2/λ→σ2

p(x, t) =
1√

2πσ2t
exp

{
− x2

2σ2t

}
,

for x ∈ R and t > 0.

3.4 The probability law of the process

The probability law of the stochastic process (X(t), V (t)), when at time

t ≥ 0 the particle is located in the domain [−ct, ct], has a discrete component
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concentrated on {−ct, ct}, with

P{X(t) = ct, V (t) = c} = P{V (0) = c,N(t) = 0} =
1

2
e−λt,

P{X(t) = −ct, V (t) = −c} = P{V (0) = −c,N(t) = 0} =
1

2
e−λt,

(3.24)

and an absolutely continuous component over the domain (−ct, ct). This is

expressed given by the densities f(x, t | c) and b(x, t | c), defined in Eqs. (3.16)

and (3.17), when the initial velocity is c (resp. f(x, t | − c) and b(x, t | − c)

when the initial velocity is −c). Hereafter, we provide densities f(x, t) and

b(x, t) in closed-form. We give olso the density f(x, t | c) conditonal on initial

velocity c.

We start by considering the following relations:

f(x, t+ ∆t) = f(x− c∆t, t)(1− λ∆t) + b(x+ c∆t, t)λ∆t+ o(∆t), (3.25)

b(x, t+ ∆t) = b(x+ c∆t, t)(1− λ∆t) + f(x− c∆t, t)λ∆t+ o(∆t). (3.26)

Expanding the latter equations up to the second order terms with respect to

x and to the first order terms with respect to t, dividing for ∆t and letting

∆t→ 0, the densities f and b are solution of the differential system:
∂f

∂t
= −c∂f

∂x
+ λ(b− f)

∂b

∂t
= c

∂b

∂x
+ λ(f − b).

(3.27)

The explicit solution of the system (3.27) is proved in Cane [10] and in

Orsingher [52] and [54]. It is easy to see that the latter differential system

can be written in terms of the transition density p = f+b, Eq. (3.18) and the

flow function w = f−b, defined in Eq. (3.20). By adding and subtracting the
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equations in the system (3.27), we have that the density p and the function

w are solution of the system
∂p

∂t
= −c∂w

∂x

∂w

∂t
= −c∂p

∂x
− 2λw.

(3.28)

Deriving two times equations in (3.28) and substituting the function w in

the first equation of the system, we obtain equation (3.19).

Remark 3.4.1. If λ = 0 in Eq. (3.19), then the classical wave equation

∂2p

∂t2
= c2 ∂

2p

∂x2
(3.29)

can be obtained.

Hence, the probability law p(x, t) of the process (X(t), V (t)), with t ≥ 0,

is the solution of the telegraph equation. Symilarly, the functions w, f and

b are solutions of Eq. (3.19). It follows directly from system (3.28), deriving

the first equation with respect to t and substituting the second derivative

with respect to x. In the following theorem the density p(x, t) and the flow

function w(x, t) are given (see the proof in Section 2 of Orsingher [55], for

instance).

Theorem 3.4.2. The explicit form of p(x, t) is

p(x, t) =
eλt

2c

[
λI0

(
λ

c

√
c2t2 − x2

)
+
∂

∂t
I0

(
λ

c

√
c2t2 − x2

)]
, (3.30)

while w(x, t) is given by

w(x, t) =
1

2
e−λt

∂

∂t
I0

(
λ

c

√
c2t2 − x2

)
(3.31)

when |x| < ct. Furthemore

P{X(t) = ct} = P{X(t) = −ct} =
1

2
e−λt. (3.32)
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We remark that the forward density is given by:

f(x, t) =
e−λt

4c

{
λI0

(
λ

c

√
c2t2 − x2

)
+
∂

∂t
I0

(
λ

c

√
c2t2 − x2

)
−c ∂

∂x
I0

(
λ

c

√
c2t2 − x2

)}
, (3.33)

for |x| < ct.

It is interesting to observe that the flow function (3.31) shows that in

(0, ct) the particles moving forward exceed those moving backward in (−ct, 0).

This is in agreement with the fact that the particles diffuse out of the real

line as time proceeds.

Remark 3.4.3. We note that, when t→∞, the discrete component (3.32)

decreases, the interval domain (−ct, ct) increases, and the probability mass

tends to zero:

lim
t→∞

p(x, t) = 0.

Some results suggest that the motion of certain micro-organisms can be

approximated by trajectories which change directions at exponentially dis-

tributed random times. Let Uk and Dk denote the random duration of the

k-th time period during which the particle moves forward, with velocity c and

backward, with velocity −c, respectively. Furthermore, {Uk; k = 1, 2, . . .}

and {Dk; k = 1, 2, . . .} are mutually independent sequences of non-negative

and absolutely continuous independent random variables. This leads to con-

sider the telegraph process with alternating velocity in the case when the

random alternating times Uk and Dk are exponentially distributed with pa-

rameters λ. We denote by Tk the k-th random epoch at which the motion

changes velocity, T0 = 0, and the amplitudes of intervals [Tn, Tn+1) constitute

a sequence of non-negative random variables (see Figure 3.1). In particular,
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Figure 3.1: A sample-path of X(t) with V (0) = c.

a crucial role is played by the random variables

U (k) = U1 + U2 + · · ·+ Uk, D(k) = D1 +D2 + · · ·+Dk, k = 1, 2, . . . .

(3.34)

Following an usual approach within the models of random evolution, it

is possible to show hereafter that the probability densities of the motion are

solution of the differential system (3.27). Conditioning on the number k of

velocity reversals from −c to c in [0, t], and on the last instant s preceding

t in which the particle changes velocity from −c to c, by setting V (0) = c,

the density f(x, t | c) (resp. b(x, t | c)) can be determined as shown in Di

Crescenzo [17] in the case of Erlang-distributed inter-renewal times.

We consider, for instance, the case in which the random times separat-

ing consecutive velocity reversals are assumed to have Erlang distribution.

Hence, for t ≥ 0, the forward density conditional on initial velocity V (0) = c
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can be evaluated by noting that

f(x, t | c)dx =
+∞∑
k=1

∫ t

0

P{T2k ∈ ds,X(s) + c(t− s) = x, T2k+1 − T2k > t− s}.

Recalling V (0) = c, we have T2k ≡ U (k) +D(k) = s and X(s) = cU (k)−vD(k),

so that

f(x, t | c)dx =
+∞∑
k=1

∫ t

0

P{U (k) +D(k) ∈ ds, cU (k) − cD(k) = x− c(t− s),

T2k+1 − T2k > t− s}.

We observe that conditions X(s) + c(t− s) = x and X(s) ≥ −cs give

s ≥ (ct− x)/2c.

This implies that

f(x, t | c) =
1

2c

+∞∑
k=1

∫ t

ct−x
2c

f
(k)
U

(
s− ct− x

2c

)
· f (k)

D

(
ct− x
c+ v

)
× P{T2k+1 − T2k > t− s}ds,

where fU(k) and fD(k) are Erlang densities of U (k) and D(k), and P{T2k+1 −

T2k > t − s} = eλ(t−s). After some calculations we obtain the expression of

the forward density in terms of Bessel function:

f(x, t | c) =
e−λ t

2c

+∞∑
k=1

λ2k

[(k − 1)!]2

(
ct− x

2c

)k−1 ∫ t

ct−x
2c

(
s− ct− x

2c

)k−1

ds

=
e−λ t

ct− x

+∞∑
k=1

1

k[(k − 1)!]2

[
λ
√
c2t2 − x2

2c

]2k

=
e−λ t

ct− x

(
λ
√
c2t2 − x2

2c

)2 +∞∑
s=0

1

(s+ 1)[(s)!]2

[
λ
√
c2t2 − x2

2c

]2s

=
e−λ t

2c

(
λ

√
ct+ x

ct− x

)
I1

(
λ

c

√
c2t2 − x2

)
.
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Finally, we have the explicit expression of the forward density conditional on

initial velocity1 V (0) = c:

f(x, t | c) =
e−λ t

2c

{
∂

∂t
I0

(
λ

c

√
c2t2 − x2

)
− c ∂

∂x
I0

(
λ

c

√
c2t2 − x2

)}
.

3.5 Moment generating function

In the following proposition (see Section 2 of Di Crescenzo and Martinucci

[23], for instance) we give the moment generating function of the integrated

telegraph process.

Proposition 3.5.1. For all s ∈ R and t ≥ 0 the moment generating function

of X(t) is

M(s, t) := E
[
esX(t)

]
= e−λ t

[
cosh

(
t
√
λ2 + s2c2

)
+

λ√
λ2 + s2c2

sinh
(
t
√
λ2 + s2c2

)]
.

(3.35)

Proof. From Eqs. (3.24) and (3.30) it follows

M(s, t) =
e−λt

2

(
esct + e−sct

)
(3.36)

+
e−λt

2c

∫ ct

−ct
esx
[
λ I0

(
λ

c

√
c2t2 − x2

)
+
∂

∂t
I0

(
λ

c

√
c2t2 − x2

)]
dx

=
e−λt

2c

[
λQ(s, t) +

∂

∂t
Q(s, t)

]
, s ∈ R, t ≥ 0,

(3.37)
1We need to know that

I1

(
λ

c

√
c2t2 − x2

)
= −c

√
c2t2 − x2
λx

∂

∂x
I0

(
λ

c

√
c2t2 − x2

)
,

I1

(
λ

c

√
c2t2 − x2

)
=

√
c2t2 − x2
λct

∂

∂t
I0

(
λ

c

√
c2t2 − x2

)
.
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where we have set

Q(s, t) :=

∫ ct

−ct
esx I0

(
λ

c

√
c2t2 − x2

)
dx.

Making use of Eq. (25), from Orsingher [55] we obtain:∫ ct

−ct
esx

∂2

∂t2
I0

(
λ

c

√
c2t2 − x2

)
dx =

∫ ct

−ct
esxc2 ∂

2

∂x2
I0

(
λ

c

√
c2t2 − x2

)
dx+λ2Q(s, t).

A two-fold integration by parts shows that

d2

dt2
Q(s, t) = (λ2 + s2c2)Q(s, t).

Solving this equation with initial conditions Q(s, 0) = 0 and d2

dt2
Q(s, t)

∣∣
t=0

=

2c we have:

Q(s, t) =
c√

λ2 + s2c2

[
et
√
λ2+s2c2 − e−t

√
λ2+s2c2

]
, s ∈ R, t ≥ 0.

Using this formula in the right-hand-side of (3.37), expression (3.35) finally

follows.

It should be noticed that (3.15) could also be obtained from the initial-

value problem for the telegraph equation

∂2

∂t2
p+ 2λ ∂

∂t
p = c2 ∂2

∂x2
p

p(x, 0) = δ(x)

∂
∂t
p(x, t)

∣∣∣
t=0

= 0,

(3.38)

where δ(x) is the Dirac delta function. Indeed, M is solution of

d2

dt2
M + 2λ d

dt
M = s2c2M

M(s, 0) = 1

∂
∂t
M(s, t)

∣∣∣
t=0

= 0.



CHAPTER 4

TELEGRAPH PROCESS WITH UNDERLYING

RANDOM WALK

4.1 Introduction

The interest for the (integrated) telegraph process as a realistic model of

random motion (see Goldstein [39] and Bartlett [5]) is increased with the

years and many important features are investigated from several authors

since the 1950s. Such process describes a motion of a particle on the real

line characterized by constant speed, the direction being reversed at the ran-

dom epochs of a Poisson process. The probability density of the particle

position satisfies a hyperbolic differential equation, whose probabilistic prop-

erties have been studied for example by Orsingher [55], Orsingher [56], Foong

and Kanno [34], and more recently by Beghin et al. [6]. Other authors pro-

posed one-dimensional generalizations of the telegraph process, where the

intertimes between two consecutive changes of direction have more general

distributions. We recall the papers by Di Crescenzo [17] for the case of Erlang
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distribution, Di Crescenzo and Martinucci [24] for that of gamma distribu-

tion, Di Crescenzo and Martinucci [27] for the case of exponential distribu-

tion with linearly increasing rate. Moreover, Stadje and Zacks [72] studied a

telegraph process with random velocities, as well as De Gregorio [13] inves-

tigated a motion with finite random velocities that randomly change when

a Poissonian event occurs. A generalized telegraph process governed by an

alternating renewal process was analyzed by Zacks [77]. The time-fractional

telegraph equation was studied by Orsingher and Beghin [59], which in a spe-

cial case leads to the distribution of a telegraph process with Brownian time.

An inhomogeneous telegraph process is investigated in Iacus [41], giving a

rare example where an explicit law of the process has been obtained.

The aim of this chapter is to consider a generalized telegraph process with

underlying random walk. This model describes a two-velocity random motion

performed by a particle on the real line, such that the random intertimes

separating consecutive time epochs have a general distribution. Moreover,

differently from the classical telegraph process, whose positive and negative

velocities alternate, we assume that at each time epoch the new velocity is

determined by the outcome of a Bernoulli trial.

Hence, in the following Section 4.2, we present the description of the

mathematical model of the motion giving the formal expression of the po-

sition and velocity of the particle at time t, with t ≥ 0. Then, in Section

4.3 we study the position and the velocity of the particle. More precisely, by

exploiting a suitable renewal-based procedure we obtain the general form of

the probability law of stochastic process {(X(t), V (t)); t ≥ 0}. Our attention

is also devoted to the means of the motion conditional on the initial velocity.

Specific choices of the distribution of the random intertimes Uk and Dk, with

k = 0, 1, 2, . . ., yield the probability law and the conditional mean of the
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motion. Those are explicitly achieved when the random intertimes are as-

sumed to have exponential distributions with constant rates, in Section 4.4,

and with increasing linear rates, in Section 4.5. We point out that the latter

case produces a kind of damped motion, which in a special case exhibits a

truncated logistic density, yielding a logistic stationary density.

4.2 The stochastic model

Let {(X(t), V (t)); t ≥ 0} be a continuous-time stochastic process, where X(t)

and V (t) denote respectively position and velocity at time t of the moving

particle. The motion is characterized by two velocities, c and −v, with

c, v > 0, the direction of the motion being specified by the sign of the velocity.

At time T0 = 0 the particle starts from the origin, thus X(0) = 0. The initial

velocity V (0) is determined by a Bernoulli trial, such that

P{V (0) = c} = p, P{V (0) = −v} = 1− p, (4.1)

for 0 < p < 1. At the random time T1 > 0 the particle is subject to an

event, whose effect possibly changes the velocity according to a Bernoulli

trial independent from the previous one. This behavior is repeated ciclically

at every instant of a sequence of random epochs T1 < T2 < T3 < · · · .

We assume that the durations of time intervals [Tn, Tn+1), n = 0, 1, 2, . . .,

constitute a sequence of non-negative random variables. Precisely, let Uk

and Dk denote the random duration of the k-th time period during which

the particle moves forward, with velocity c and backward, with velocity −v,

respectively. Furthermore, {Uk; k = 1, 2, . . .} and {Dk; k = 1, 2, . . .} are

mutually independent sequences of non-negative and absolutely continuous

independent random variables. Denoting by Zn the velocity of the particle

during interval [Tn, Tn+1), we assume that {Zn;n = 0, 1, . . .} is a sequence of
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Figure 4.1: A sample-path of X(t) with V (0) = c.

i.i.d. random variables identically distributed as the initial velocity V (0) at

time t = 0, and independent from random variables Uk and Dk. Recalling

Eq. (4.1), iteratively, at the random time Tn (n = 0, 1, 2, . . .) we have:

P{Zn = c} = p, P{Zn = −v} = 1− p, n = 0, 1, . . . . (4.2)

4.2.1 Position and velocity of the particle

Position and velocity of the particle at time t can thus be formally expressed

as:

V (t) =
+∞∑
k=0

Zk 1{Tk≤t<Tk+1}, X(t) =

∫ t

0

V (s) ds, t > 0. (4.3)

Figure 4.1 shows a sample-path of X(t), with indication of random intertimes

Uk and Dk.

The novelty of the present model is the inclusion of a sequence of Bernoulli

trials that regulate the velocity of the particle. This introduces an underlying

(possibly asymmetric) random walk governing the random motion at epochs

Tn.
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Indeed, the following stochastic equation holds:

XTn+1 = XTn +Wn, n = 0, 1, . . . ,

where {Wn;n = 0, 1, . . .} is a sequence of independent random variables such

that

W0 =d

 cU1 if Z0 = c

−vD1 if Z0 = −v,

and, for n = 1, 2, . . .,

Wn =d

 cUk if Zn = c and B0 +Nn−1 = k − 1

−vDk if Zn = −v and B0 +Nn−1 = n− k + 1,
(4.4)

with ‘=d’ meaning equality in distribution. The random variables appearing

in Eq. (4.4) are defined as follows: B0 is the Bernoulli variable describing

the first trial outcome, i.e. B0 = 1 if Z0 = c and B0 = 0 if Z0 = −v;

moreover Nn−1 is the binomial variable that counts the number of Bernoulli

trials yielding velocity c among the trials going from the 2-nd to the n-th

one, i.e.

N0 = 0, Nn−1 =
n−1∑
i=1

1{Zi=c} (n = 2, 3, . . .). (4.5)

Hence, we have

P{Nn−1 = j} =

(
k − 1

j

)
pj(1− p)k−1−j, j = 0, 1, . . . , k − 2. (4.6)

Example 4.2.1. Recalling (4.6), in the case in which k = 2, we obtain the

following probability density (see Figure 4.2)

P{N1 = j} =

(
1

j

)
pj(1− p)1−j = 1− p, j = 0.

For k = 3 and then, for k = 4, we have (see Figure 4.4 and Figure 4.3)

P{N2 = j} =

(
2

j

)
pj(1− p)2−j =

 (1− p)2, j = 0

2p(1− p), j = 1,



4.2 The stochastic model 77

6

-�
�
�
�
�
�
�
�@
@
@
@
@
@�
�
�
�
�

r

r
s t t

Xt

Figure 4.2: A sample-path of X(t) with k = 2 and j = 0.

P{N3 = j} =

(
3

j

)
pj(1− p)3−j =


(1− p)3, j = 0

2p(1− p)2, j = 1

2p2(1− p), j = 2.
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Figure 4.3: A sample-path of X(t) with k = 3 and j = 1.

Another generalization of the telegraph process that includes the choice

of velocities by means of random schemes have been proposed by Kolesnik

[47], where the nth-order hyperbolic equation for the partial densities of the
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Figure 4.4: A sample-path of X(t) with k = 4 and j = 2.

particle position is obtained. See also the paper by Orsingher and Bassan [58],

where the telegraph process is extended to the case when cyclic changes of n

velocities and changes of the sign velocity are governed by two independent

Poisson processes.

We remark that an example of stochastic processes describing a motion

characterized by randomly chosen directions is given in Leorato and Ors-

ingher [50]. In that paper the authors study the motion of a particle falling

on a Sierpinski gasket, where the particle at each time unit can move down-

wards to the 2 vertices of a triangular atom or can fall on its base with

probability 1/3.

Various recent articles have pinpointed the interest on stochastic mod-

els based on functionals of stationary alternating Poisson renewal processes

within applied fields such as mathematical insurance and finance, reliability

theory, queueing theory, mathematical biology (see, for instance, Lachal [48]).

Indeed, stochastic processes characterized by upward and downward periods

are often employed to describe the evolution of (i) positive incomes and

payments due to claims, (ii) working periods and repair times in repairable
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systems, (iii) busy-periods and idle-periods in service stations, (iv) growth

periods and loss periods of prices in financial markets (see e.g. Di Crescenzo

and Pellerey [30]), (v) sequence of alternating pauses and runs in the dispersal

of cells and organisms (cf. Othmer et al. [60] and Garcia et al. [35]).

4.3 General form of the probability law

At time t ≥ 0 the particle is located in the domain [−vt, ct]. The probability

law of X(t), t ≥ 0, thus possesses an absolutely continuous component over

(−vt, ct) and a discrete component on the points −vt and ct. Hence, for

y ∈ {−v, c} and t ≥ 0 we define the probability density of X(t) conditional

on initial velocity y:

p(x, t | y) =
∂

∂x
P{X(t) ≤ x |X(0) = 0, V (0) = y}, x ∈ (−vt, ct). (4.7)

This can be expressed as

p(x, t | y) = f(x, t | y) + b(x, t | y), (4.8)

where f and b denote the densities of particle position when the motion at

time t is characterized by forward and backward velocity, respectively, i.e.

f(x, t | y) =
∂

∂x
P{X(t) ≤ x, V (t) = c |X(0) = 0, V (0) = y}, (4.9)

b(x, t | y) =
∂

∂x
P{X(t) ≤ x, V (t) = −v |X(0) = 0, V (0) = y}. (4.10)

We denote by fUk (resp. FUk , FUk) and by fDk (resp. FDk , FDk) the prob-

ability densities (resp. distribution functions, survival functions) of Uk and

Dk, respectively.

In the following theorem we obtain the formal probability law of (X(t), V (t))
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conditioned by V (0) = c. A crucial role is played by the partial sums

U (k) = U1 + U2 + · · ·+ Uk, D(k) = D1 +D2 + · · ·+Dk, k = 1, 2, . . . ,

(4.11)

whose densities will be denoted by f (k)
U and f (k)

D , respectively.

Theorem 4.3.1. For all t ≥ 0 we have

P{X(t) = ct, V (t) = c |X(0) = 0, V (0) = c}

= FU1(t) +
+∞∑
k=1

pk
∫ t

0

f
(k)
U (s)FUk+1

(t− s) ds; (4.12)

moreover, for −vt < x < ct, the densities (4.9) and (4.10) are given by

f(x, t | c) =
1

c+ v

+∞∑
k=2

k−2∑
j=0

(
k − 1

j

)
pj+1(1− p)k−1−j

× f (k−j−1)
D (t− τ∗)

∫ t

t−τ∗
f

(j+1)
U (s− t+ τ∗)FUj+2

(t− s)ds, (4.13)

b(x, t | c) =
1

c+ v

{ +∞∑
k=1

(1− p)pk−1FD1(t− τ∗)f
(k)
U (τ∗) +

+∞∑
k=1

k−2∑
j=0

(
k − 1

j

)
× pj(1− p)k−jf (j+1)

U (τ∗)

∫ t

τ∗

f
(k−j−1)
D (s− τ∗)FDk−j(t− s)ds

}
,

(4.14)

where

τ∗ = τ∗(x, t) =
vt+ x

c+ v
. (4.15)

Proof. Eq. (4.12) follows by conditioning on the number k of epochs Ti oc-

curring before t and on the instant s when the last epoch Tk takes place

before t, and by requiring that every Bernoulli trial occurring at epochs

T1, T2, . . . , Tk yields velocity c. Recalling (4.5) and (4.9) with y = c, for t ≥ 0

and −vt < x < ct we have

f(x, t | c)dx =
+∞∑
k=2

∫ t

0

P{Tk ∈ ds, Zk = c,X(s) + c(t− s) ∈ dx,

Tk+1 − Tk > t− s, 0 ≤ Nk−1 ≤ k − 2 |X(0) = 0, Z0 = c}.
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Conditioning on Nk−1, and taking into account the number of time periods

during which the particle moved upward and backward, we obtain

f(x, t | c)dx =
+∞∑
k=2

k−2∑
j=0

∫ t

0

P{U (j+1) +D(k−j−1) ∈ ds,

cU (j+1) − vD(k−j−1) + c(t− s) ∈ dx}P{Zk = c}

×P{Uj+2 > t− s}P{Nk−1 = j}.

Note that conditions X(s) + c(t− s) = x and X(s) ≥ −vs provide

s ≥ (ct− x)/(c+ v) ≡ t− τ∗.

This inequality and the independence of U (k) and D(k) thus give

f(x, t | c) =
+∞∑
k=2

k−2∑
j=0

∫ t

t−τ∗
h(s, x− c(t− s))P{Zk = c}

×P{Uj+2 > t− s}P{Nk−1 = j}ds,

where h(·, ·) is the joint probability density of

(U (j+1) +D(k−j−1), cU (j+1) − vD(k−j−1)). (4.16)

Since

h(s, x− c(t− s)) =
1

c+ v
f

(j+1)
U

(
s− ct− x

c+ v

)
f

(k−j−1)
D

(
ct− x
c+ v

)
and Nk−1 is binomial with parameters k − 1 and p ∈ (0, 1), we have

f(x, t | c) =
1

c+ v

+∞∑
k=2

k−2∑
j=0

∫ t

t−τ∗
f

(j+1)
U

(
s− ct− x

c+ v

)
f

(k−j−1)
D

(
ct− x
c+ v

)
×FUj+2

(t− s)
(
k − 1

j

)
pj+1(1− p)k−j−1ds. (4.17)

Eq. (4.13) thus follows directly from (4.17). Similarly, recalling (4.5) and
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(4.10) with y = c, for t ≥ 0 and −vt < x < ct we have

b(x, t | c)dx =
1

c+ v

+∞∑
k=1

P

{
Tk =

vt+ x

c+ v
, Zk = −v, Tk+1 − Tk > t− vt+ x

c+ v
,

Nk−1 = k − 1 |X(0) = 0, Z0 = c

}
+

+∞∑
k=1

∫ t

0

P{Tk ∈ ds, Zk = −v,X(s)− v(t− s) ∈ dx,

Tk+1 − Tk > t− s, 0 ≤ Nk−2 ≤ k − 2 |X(0) = 0, Z0 = c}.

Hence, we obtain that

b(x, t | c)dx =
1

c+ v

+∞∑
k=1

(1− p)pk−1f
(k)
U (τ∗)FD1(t− τ∗)

+(1− p)
+∞∑
k=1

k−2∑
j=0

∫ t

0

P{U (j+1) +D(k−j−1) ∈ ds,

cU (j+1) − vD(k−j−1) − v(t− s) ∈ dx}

×P{Dk−j > t− s}P{Nk−1 = j}.

Note that conditions X(s)− v(t− s) = x and X(s) ≥ cs provide

s ≥ (vt+ x)/(c+ v) ≡ τ∗.

By recalling Eq. (4.16) we have

b(x, t | c)dx =
1

c+ v

{ +∞∑
k=1

(1− p)pk−1f
(k)
U (τ∗)FD1(t− τ∗)

+
+∞∑
k=1

k−2∑
j=0

∫ t

τ∗

f
(j+1)
U (τ∗)f

(k−j−1)
D (s− τ∗)

×FUk−j(t− s)
(
k − 1

j

)
pj(1− p)k−jds

}
. (4.18)

Finally, Eq. (4.14) thus follows directly from (4.18).
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Remark 4.3.2. The equations in Theorem 4.3.1 are similar to some relation

obtained by Masoliver et al. [51] based on Fourier-Laplace transforms of the

transition law of continuous random walks on the real line.

Remark 4.3.3. Due to symmetry, the probability law of (X(t), V (t)) condi-

tional on V (0) = −v follows from Theorem 4.3.1 by interchanging f with b,

Uk with Dk, c with v, x with −x, p with 1− p. This would allow to evaluate

the density of the particle position

p(x, t) :=
∂

∂x
P{X(t) ≤ x |X(0) = 0} = p(x, t | c) p+ p(x, t | − v)(1− p).

(4.19)

Remark 4.3.4. Indeed, we note that, from Eq. (4.12),

lim
p→1−

P{X(t) = ct, V (t) = c |X(0) = 0, V (0) = c} = 1.

It is now essential to show that the probability mass of X(t) is unity over

[−vt, ct].

Proposition 4.3.5. For all t ≥ 0 we have

P{−vt ≤ X(t) ≤ ct |X(0) = 0, V (0) = c} = 1, (4.20)

P{−vt ≤ X(t) ≤ ct |X(0) = 0, V (0) = −v} = 1. (4.21)

Proof. By setting z = (vt+ x)/(c+ v), from (4.13) and (4.15) we obtain∫ ct

−vt
f(x, t | c)dx =

1

c+ v

+∞∑
k=2

k−2∑
j=0

(
k − 1

j

)
pj+1(1− p)k−j−1

×
∫ ct

−vt
dx

∫ t

t−τ∗
f

(j+1)
U

(
s− t+

vt+ x

c+ v

)
f

(j+1)
D

(
t− vt+ x

c+ v

)
FUj+2

(t− s)ds

=
+∞∑
k=2

k−2∑
j=0

(
k − 1

j

)
pj+1(1− p)k−j−1

×
∫ t

0

dz

∫ t

t−z
f

(j+1)
U (s− t+ z) f

(k−j−1)
D (t− z)FUj+2

(t− s)ds
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so that, by Fubini’s theorem,∫ ct

−vt
f(x, t | c)dx =

+∞∑
k=2

k−2∑
j=0

(
k − 1

j

)
pj+1(1− p)k−j−1

×
∫ t

0

FUj+2
(t− s)P{U (j+1) +D(k−j−1) ∈ ds}. (4.22)

Similarly, from (4.14) we have∫ ct

−vt
b(x, t | c)dx =

+∞∑
k=1

(1− p)pk−1

∫ t

0

FD1(t− s)f
(k)
U (z)

+
+∞∑
k=1

k−2∑
j=0

(
k − 1

j

)
pj(1− p)k−j

∫ t

0

f
(j+1)
U (s− z)

∫ t

z

f
(k−j−1)
D (t− z)FDk−j(t− s)dsdz

=
+∞∑
k=1

(1− p)pk−1

∫ t

0

FD1(t− s)P{U (k) ∈ ds}+
+∞∑
k=1

k−2∑
j=0

(
k − 1

j

)
pj(1− p)k−j

×
∫ t

0

FDk−j(t− s)P{U (j+1) +D(k−j−1) ∈ ds}

=
+∞∑
k=1

k−1∑
j=0

(
k − 1

j

)
pj(1− p)k−j

∫ t

0

FDk−j(t− s)P{U (j+1) +D(k−j−1) ∈ ds}.

(4.23)

Making use of Eqs. (4.8), (4.12), (4.22) and (4.23), and recalling (4.5), some

calculations finally yield:

P{X(t) = ct, V (t) = c |X(0) = 0, V (0) = c}+

∫ ct

−vt
p(x, t | c)dx

= FU1(t) + p

∫ t

0

f
(k)
U (s)FUk+1

(t− s)ds+

+
+∞∑
k=2

k−2∑
j=0

(
k − 1

j

)
pj+1(1− p)k−j−1

∫ t

0

FUj+2
(t− s)P{U (j+1) +D(k−j−1) ∈ ds}

+
+∞∑
k=1

k−1∑
j=0

(
k − 1

j

)
pj(1− p)k−j

∫ t

0

FDk−j(t− s)P{U (j+1) +D(k−j−1) ∈ ds}
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= FU1(t) + p
+∞∑
k=1

k−1∑
j=0

P{Nk−1 = j}
∫ t

0

FUj+2
(t− s)P{U (j+1) +D(k−j−1) ∈ ds}

+(1− p)
+∞∑
k=1

k−1∑
j=0

P{Nk−1 = j}
∫ t

0

FDk−j(t− s)P{U (j+1) +D(k−j−1) ∈ ds}

= FU1(t) +
+∞∑
k=1

k−1∑
j=0

P{Nk−1 = j}
∑

z∈{−v,c}

P{Zk = z}
∫ t

0

P{U (j+1) +D(k−j−1) ∈ ds}

×P{Tk+1 − Tk > t− s}

= FU1(t) +
+∞∑
k=1

k−1∑
j=0

∑
z∈{−v,c}

P{Zk = z}P{Nk−1 = j}
∫ t

0

P{Tk ∈ ds}

× P{Tk+1 − Tk > t− s} = P{U1 > t}+ P{T1 ≤ t} = 1,

since U1=dT1 when V (0) = c. Finally, Eq. (4.21) can be obtained similarly.

4.3.1 The means of particle velocity and position

Hereafter, we evaluate the conditional means of he process V (t) and X(t)

when the initial velocity is positive.

Proposition 4.3.6. For all t ≥ 0 we have

E[V (t) |V (0) = c] = c FU1(t)

+p c

{ +∞∑
k=1

∫ t

0

fUk+1
(s)ds

∫ t

t−s
fTk(x)dx+

+∞∑
k=1

FUk+1
(t)FTk(t)

}

+ (1− p)(−v)

{ +∞∑
k=1

∫ t

0

fDk+1
(s)ds

∫ t

t−s
fTk(x)dx+

+∞∑
k=1

FDk+1
(t)FTk(t)

}
(4.24)
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and

E[X(t) |V (0) = c] = c

∫ t

0

FU1(s)ds

+ p c

{ +∞∑
k=1

∫ t

0

dz

∫ z

0

fUk+1
(s)ds

∫ z

z−s
fTk(x)dx+

+∞∑
k=1

∫ t

0

FUk+1
(y)FTk(y)dy

}

+ (1− p)(−v)

{ +∞∑
k=1

∫ t

0

dz

∫ z

0

fDk+1
(s)ds

∫ z

z−s
fTk(x)dx+

+∞∑
k=1

∫ t

0

FDk+1
FTk(y)dy

}
.

(4.25)

Proof. For every positive integer k the following equations holds:

E[Zk 1{Tk≤t<Tk+1}] = E[E[Zk 1{Tk≤t<Tk+1}|Zk]]

= E[Zk 1{Tk≤t<Tk+1} |Zk = c] p + E[Zk 1{Tk≤t<Tk+1} |Zk = −v] (1− p)

= c pE[1{Tk≤t<Tk+1} |Zk = c] + (1− p)(−v) E[1{Tk≤t<Tk+1} |Zk = −v]

= c p P{Tk ≤ t < Tk+1 |Zk = c} + (1− p)(−v)P{Tk ≤ t < Tk+1 |Zk = −v}.

Hence, we have

E[Zk 1{Tk≤t<Tk+1}] = p c

∫ ∞
0

P{t− s ≤ Tk ≤ t)}fUk+1
(s)ds

+ (1− p)(−v)

∫ ∞
0

P{t− s ≤ Tk ≤ t}fDk+1
(s)ds

= p c

{∫ t

0

P{t− s ≤ Tk ≤ t}fUk+1
(s)ds +

∫ ∞
t

fUk+1
(s)ds P{Tk ≤ t}

}
+ (1− p)(−v)

{∫ t

0

P{t− s ≤ Tk ≤ t}fDk+1
(s)ds +

∫ ∞
t

fDk+1
(s)ds P{Tk ≤ t}

}
= p c

{∫ t

0

fUk+1
(s)ds

∫ t

t−s
fTk(x)dx + FUk+1

(t)FTk(t)

}
+ (1− p)(−v)

{∫ t

0

fDk+1
(s)ds

∫ t

t−s
fTk(x)dx + FDk+1

(t)FTk(t)

}
.

Eq. (4.24) thus follows by recalling the first identity of (4.3). Moreover, the

conditional mean E[X(t) |V (0) = c] can be easily expressed making use of

the second of (4.3) and Eq. (4.24).
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In the following sections we analyse two special cases arising when the

random intertimes Uk and Dk have exponential distributions with constant

rates and with linear increasing rates.

4.4 Intertimes with i.i.d. exponential distri-

butions

Let us assume that each of the two sequences of intertimes is formed by

i.i.d. exponential random variables with parameters λ, µ > 0. Therefore, the

survival functions of Uk and Dk, k = 1, 2, . . . , are

FUk(x) = e−λx, FDk(x) = e−µx, x ≥ 0, (4.26)

respectively. The above assumptions can be interpreted as follows: the par-

ticle is subject to events arriving according to a Poisson process with alter-

nating rate, where the rate is λ if the motion is forward, and µ if the motion

is backward. We notice that an example of asymmetric random walk with

exponentially distributed up and down steps is studied in Boutsikas et al. [8].

Some simulations of X(t) for the case addressed in this section are showed in

Figure 4.5. They illustrate the intuitive result that the motion drifts forward

or backward when p is close to 1 or close to 0, respectively.

Under the assumptions indicated in (4.26) the following theorem gives the

probability law of (X(t), V (t)) in terms of the Gauss hypergeometric function

2F1(a, b, c; z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
. (4.27)

We recall that in this case the probability densities of (4.11) are of Erlang

type:

f
(k)
U (x) =

λk xk−1 e−λx

(k − 1)!
, f

(k)
D (x) =

µk xk−1 e−µx

(k − 1)!
, x ≥ 0. (4.28)
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Figure 4.5: Simulated sample-paths of X(t) for the exponential case (4.26),

with λ = µ = c = v = 1 and different choices of p.

Theorem 4.4.1. Let Uk and Dk be exponentially distributed with parameter

λ and µ, respectively, for k = 1, 2, . . . . For all t ≥ 0 we have

P{X(t) = ct, V (t) = c |X(0) = 0, V (0) = c} = e−λ(1−p)t, (4.29)

moreover, for −vt < x < ct,

f(x, t | c) = ξ(x, t)λµ p(1− p) τ∗
+∞∑
k=2

[µ(1− p)(t− τ∗)]k−2

(k − 2)!

× 2F1

(
1− k, 2− k, 2;

λpτ∗
µ(1− p)(t− τ∗)

)
, (4.30)

b(x, t | c) = ξ(x, t)λ(1− p)
+∞∑
k=1

[µ(1− p)(t− τ∗)]k−1

(k − 1)!

× 2F1

(
1− k, 1− k, 1;

λpτ∗
µ(1− p)(t− τ∗)

)
, (4.31)

where τ∗ is defined in (4.15) and

ξ(x, t) =
1

c+ v
exp {−λτ∗ − µ(t− τ∗)} . (4.32)

Proof. Due to (4.26) and (4.28), from Eq. (4.12), for t ≥ 0 using direct



4.4 Intertimes with i.i.d. exponential distributions 89

calculations

P{X(t) = ct, V (t) = c|X(0) = 0, V (0) = c} = e−λt

+
+∞∑
k=1

pk
∫ t

0

λksk−1e−λse−λ(t−s)

(k − 1)!
ds

= e−λt + e−λt
+∞∑
k=1

(pλ)k

(k − 1)!

∫ t

0

sk−1ds

= e−λt + e−λt
+∞∑
k=1

(pλt)k

k!

= e−λt + e−λt(epλt − 1) = e−λ(1−p)t. (4.33)

Eq. (4.29) can be obtained. Moreover, Eq. (4.13) gives

f(x, t | c) =
1

c+ v

+∞∑
k=2

k−2∑
j=0

(
k − 1

j

)
pj+1(1− p)k−j−1

∫ t

t−τ∗

λj+1(s− t+ τ∗)
j

j!

× e−λ(s−t+τ∗)µ
k−j−1(t− τ∗)k−j−2

(k − j − 2)!
e−µ(t−τ∗)e−λ(t−s)ds

= ξ(x, t)
+∞∑
k=2

k−2∑
j=0

(
k − 1

j

)
pj+1(1− p)k−j−1

×
∫ t

t−τ∗

λj+1(s− t+ τ∗)
j

j!

µk−j−1(t− τ∗)k−j−2

(k − j − 2)!
ds.

By making use of Eq. 15.4.1 of Abramowitz and Stegun [1] and recalling

(4.27) Eq. (4.30) follows from

f(x, t | c) = ξ(x, t)
+∞∑
k=2

k−2∑
j=0

(
k − 1

j

)
pj+1(1− p)k−j−1

× λ
j+1

j!

τ j+1
∗
j + 1

µk−j−1(t− τ∗)k−j−2

(k − j − 2)!
.
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Similarly, from density (4.14) we have

b(x, t | c) =
1

c+ v

{ +∞∑
k=1

(1− p)pk−1e−µ(t−τ∗) λ
kτ∗

k−1e−λτ∗

(k − 1)!

+
+∞∑
k=1

k−2∑
j=0

(
k − 1

j

)
pj(1− p)k−j

× λ
j+1τ j∗e

−λτ∗

j!

∫ t

τ∗

µk−j−1(s− τ∗)k−j−2e−µ(s−τ∗)

(k − j − 2)!
e−µ(t−s)ds

}
=

1

c+ v

{ +∞∑
k=1

(1− p)pk−1e−µ(t−τ∗) λ
kτ∗

k−1e−λτ∗

(k − 1)!
+

+∞∑
k=1

k−2∑
j=0

(
k − 1

j

)

×pj(1− p)k−j λ
j+1τ j∗e

−λτ∗

j!

µk−j−1e−µ(t−τ∗)

(k − j − 2)!

∫ t

τ∗

(s− τ∗)k−j−2ds

}
=

1

c+ v

{ +∞∑
k=1

(1− p)pk−1 λ
kτ∗

k−1

(k − 1)!
e−µ(t−τ∗)−λτ∗ +

+∞∑
k=1

k−2∑
j=0

(
k − 1

j

)
× pj(1− p)k−j λ

j+1τ j∗
j!

µk−j−1

(k − j − 2)!

(t− τ∗)k−j−1

(k − j − 1)!
e−µ(t−τ∗)−λτ∗

}
.

Hence, after some calculations we obtain

b(x, t | c) = ξ(x, t)

{
λ(1− p)eλpτ∗ +

+∞∑
k=1

k−2∑
j=0

(
k − 1

j

)
pj(1− p)k−j λ

j+1τ j∗
j!

× µk−j−1

(k − j − 2)!

(t− τ∗)k−j−1

(k − j − 1)!

}
.

Finally, as before, Eq. (4.31) follows by making use of Eq. 15.4.1 of Abramowitz

and Stegun [1] and recalling (4.27).

We remark that, due to Eq. (4.8), the probability density p(x, t | c) can be

immediately obtained from Eqs. (4.30) and (4.31). Moreover, as specified in

Remark 4.3.3, the probability law of p(x, t | − v), conditional on V (0) = −v,

can be determined via Theorem 4.4.1.

Theorem 4.4.2. Under the assumptions of Theorem 4.4.1, for t ≥ 0 and

k = 0, 1, 2, . . . we have

P{X(t) = ct |X(0) = 0} = p e−λ(1−p)t, (4.34)
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P{X(t) = −vt |X(0) = 0} = (1− p) e−µpt, (4.35)

moreover, for −vt < x < ct,

p(x, t) = ξ(x, t)λ (1− p)
{
µ p τ∗Φ(x, t) + Ψ(x, t)

}
+ η(x, t)µ p

{
λ(1− p)(t− τ∗)Θ(x, t) + Γ(x, t)

}
,

(4.36)

where ξ(x, t) is defined in (4.32) and

η(x, t) =
1

c+ v
exp {−λ(t− τ∗)− µτ∗} ,

and

Φ(x, t) =
+∞∑
k=2

[µ(1− p)(t− τ∗)]k−2

(k − 2)!
2F1

(
1− k, 2− k, 2;

λpτ∗
µ(1− p)(t− τ∗)

)
,

Ψ(x, t) =
+∞∑
k=1

[µ(1− p)(t− τ∗)]k−1

(k − 1)!
2F1

(
1− k, 1− k, 1;

λ p τ∗
µ(1− p)(t− τ∗)

)
,

Θ(x, t) =
+∞∑
k=2

[λ p τ∗]
k−2

(k − 2)!
2F1

(
1− k, 2− k, 2;

µ(1− p)(t− τ∗)
λpτ∗

)
,

Γ(x, t) =
+∞∑
k=1

[λ p τ∗]
k−1

(k − 1)!
2F1

(
1− k, 1− k, 1;

µ(1− p)(t− τ∗)
λpτ∗

)
.

Proof. From Eq. (4.12) by using direct calculations we obtain Eq. (4.34) and

(4.35), whereas density p(x, t) follows immediately from (4.19).

Some plots of such density are shown in Figure 4.6.

4.4.1 The conditional means of V (t) and X(t)

We evaluate the conditional means of V (t) and X(t) on V (0) = c in this

special case of exponentially distributed intertimes in terms of the confluent

hypergeometric function

1F1(a, b; z) =
∞∑
k=0

(a)k
(b)k

zk

k!
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Figure 4.6: Density p(x, t) for the exponential case (4.26), with t = 10,

λ = c = v = 1, µ = 1 (left) and µ = 2 (right), and different choices of p.

and of the Gaussian hypergeometric function defined in (4.27).

Proposition 4.4.3. Under the assumptions of Theorem 4.4.1, for t ≥ 0 and

k = 1, 2, . . . we have

E[V (t) |V (0) = c] = c e−λ(1−p)t + λ e−λt

×
{
p c

+∞∑
k=2

tk

k!

k−2∑
j=0

(
k − 1

j

)
(λp)j[µ(1− p)]k−j−1

1F1(k − j − 1, k + 1; (λ− µ)t)

+(1− p)(−v)
+∞∑
k=1

tk

k!

k−1∑
j=0

(
k − 1

j

)
(λp)j[µ(1− p)]k−j−1

1F1(k − j, k + 1; (λ− µ)t)

}
,

(4.37)
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and

E[X(t) |V0 = c] = c

(
1− e−λ(1−p)t

λ(1− p)

)
+ λ e−λt

+∞∑
r=0

(λ− µ)r

×
{
p c

∞∑
k=2

(
k + r − 2

r

)
[µ(1− p)]k−1 tk+r+1

(k + r + 1)!

× 1F1 (1, k + r + 2;λ t) 2F1

(
1− k, 2− k, 2− k − r; −λp

µ(1− p)

)
+(1− p)(−v)

∞∑
k=1

(
k + r − 1

r

)
[µ(1− p)]k−1 tk+r+1

(k + r + 1)!

× 1F1 (1, k + r + 2;λ t) 2F1

(
1− k, 1− k, 1− k − r; −λp

µ(1− p)

)}
.

(4.38)

Proof. Recalling (4.5), for the probability density of random epoch Tk, with

k = 1, 2, . . . , we have

fTk(s)ds =
k−1∑
j=0

P{Tk ∈ ds, Nk−1 = j}

=
k−1∑
j=0

P{U (j+1) +D(k−j−1) ∈ ds}P{Nk−1 = j}.

Thus implies, recalling (4.28), that

fTk(s) =
k−1∑
j=0

(
k − 1

j

)
pj(1− p)k−j−1

∫ s

0

f
(j+1)
U (x) f

(k−j−1)
D (s− x)dx

=
λ e−µssk−1

(k − 1)!

k−1∑
j=0

(
k − 1

j

)
(λ p)j[µ(1− p)]k−j−1

1F1 (j + 1, k; (µ− λ)s) .

(4.39)

From Eq. (4.24), making use of (4.39), of Eq. 7.613.1 of Gradshteyn and

Ryzhik [40] and of Eq. 13.1.27 of Abramowitz and Stegun [1], after some
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calculations we have

E[V (t) |V (0) = c] = c e−λt

+ p c e−λt
∞∑
k=1

∫ t

0

e−λxfTk(x)dx + (1− p)(−v) e−µt
∞∑
k=1

∫ t

0

e−µxfTk(x)dx

= c e−λt + p c e−λt
∞∑
k=1

tk

k!

k−1∑
j=0

(
k − 1

j

)
λ (λ p)j[µ(1− p)]k−j−1

× 1F1 (k − j − 1, k + 1;−(µ− λ)t)

+ (1− p)(−v) e−λt
∞∑
k=1

tk

k!

k−1∑
j=0

(
k − 1

j

)
λ (λ p)j[µ(1− p)]k−j−1

× 1F1 (k − j, k + 1;−(µ− λ)t) .

Hence, Eq. (4.37) immediately can be obtained. By expressing the confluent

hypergeometric functions in (4.37) as series, recalling the second of (4.3) we

have

E[X(t) |V (0) = c] = c

∫ t

0

e−λ(1−p)ydy +

× p c
+∞∑
r=0

(λ− µ)r

r!

+∞∑
k=2

[∫ t

0

λ e−λy
yk+r

(k + r)!
dy

]
[µ(1− p)]k−1 (k + r − 2)!

(k − 2)!

× 2F1

(
1− k, 2− k, 2− k − r; −λp

µ(1− p)

)
+ (1− p)(−v)

+∞∑
r=0

(λ− µ)r

r!

+∞∑
k=2

[∫ t

0

λ e−λy
yk+r

(k + r)!
dy

]
[µ(1− p)]k−1

× (k + r − 1)!

(k − 1)!
2F1

(
1− k, 1− k, 1− k − r; −λp

µ(1− p)

)
where, ∫ t

0

λ e−λy
yk+r

(k + r)!
dy = λ e−λt

tk+r+1

(k + r + 1)!
1F1 (1, k + r + 2;λt) .

Finally, Eq. (4.38) can be obtained.

Some plots of E[X(t) |V (0) = c] are shown in Figure 4.7 for various choices

of the involved parameters.
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Figure 4.7: Conditional mean (4.38) on V0 = V (0) = c, with λ = c = v = 1,

µ = 1 (left) and µ = 2 (right), for p = 0.1, 0.3, 0.5, 0.7, 0.9 (from bottom to

top).

Remark 4.4.4. Due to symmetry the conditional mean E[X(t) |V (0) = −v]

follows from Proposition 4.4.3.

Remark 4.4.5. In the particular case when λ = µ and p = 1
2
it is interesting

to note that Eqs. (4.37) and (4.38) become

E[V (t) |V (0) = c] =
1

2

{
(c−v)+(c+v)e−λt

}
, E[X(t) |V (0) = c] =

t

2
(c−v),

respectively (see also Eq. (39) of Di Crescenzo et al. [28], with α = β = 0,

for instance).

4.5 Intertimes exponentially distributed with

linear rates

Stimulated by previous studies (see Di Crescenzo and Martinucci [27] and Di

Crescenzo et al. [29]) involving random motions with finite velocities char-

acterized by stochastically decreasing random intertimes. In this section we

assume that the random variables Uk and Dk have exponential distribution
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Figure 4.8: Simulated sample-paths of X(t) in the exponential damped case,

with λ = µ = c = v = 1, for different choices of p.

with linear rates λk and µk. Since the parameters λk and µk are linear

increasing in k, the process X(t) exhibits a damped behavior, in the sense

that its sample-paths are composed by line segments that become stochasti-

cally smaller and smaller. The assumption that such parameters are linear

in k implies that the random times separating consecutive velocity reversals

have the same distribution of the intertimes of a simple birth process (see

Ricciardi [68], for instance). Hence, the survival functions are

FUk(x) = e−λk x, FDk(x) = e−µk x, x ≥ 0, (4.40)

with λ, µ > 0. Figure 4.8 shows some simulations of X(t) in the present case,

where the particle exhibits a kind of damped motion. Due to assumption

(4.40), U (k) and D(k), k ≥ 1, have generalized exponential densities

f
(k)
U (x) = k(1− e−λx)k−1λe−λx, f

(k)
D (x) = k(1− e−µx)k−1µe−µx, x > 0.

(4.41)

Hence, U (k) and D(k) are distributed as the maximum of k i.i.d. random

variables having exponential distributions with rates λ and µ, respectively.

By making use of Theorem 4.3.1 hereafter we obtain the conditional prob-

ability law of the process (X(t), V (t)).
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Theorem 4.5.1. Let Uk and Dk be esponentially distributed with rates λk

and µk, k = 1, 2, · · · , respectively. For all t ≥ 0, we have

P{X(t) = ct, V (t) = c |X(0) = 0, V (0) = c} =
e−λt

(1− p) + p e−λt
; (4.42)

moreover, for −vt < x < ct,

f(x, t | c) =
µ p(1− p)eµ(t+τ∗)(eλτ∗ − 1)

(c+ v) [(1− p)e(λ+µ)τ∗ + p eµt]
2 , (4.43)

b(x, t | c) =
λ e−µt+(λ+µ)τ∗(1− p)

(c+ v) [(1− p)eλτ∗ + p]2

{
1 + (1− p)(eµτ∗ − eµt)

×
[
p eµt(p− (1− p)e2λτ∗ − 2 p eλ τ∗)− (1− p)e(2λ+µ)τ∗

]
[(1− p)e(λ+µ)τ∗ + p eµt]

2

}
,

(4.44)

where τ∗ is defined in (4.15).

Proof. Since U1 and Uk+1 are exponentially distributed with parameters λ

and λ(k+1), respectively, making use of the first of (4.41), Eq. (4.42) follows

from (4.12). Furthermore, due to (4.40) and (4.41), from (4.13) we have

f(x, t | c) =
µ

c+ v

+∞∑
k=2

k−2∑
j=0

(
k − 1

j

)
pj+1(1− p)k−1−j(k − j − 1)e−µ(t−τ∗)

×
[
1− e−µ(t−τ∗)

]k−j−2
∫ t

t−τ∗
λ(j + 1)e−λ(s−t+τ∗)

[
1− e−λ(s−t+τ∗)

]j
e−λ(t−s)(j+2)ds

=
µ

c+ v
e−µ(t−τ∗)−2λτ∗

+∞∑
k=2

k−2∑
j=0

(
k − 1

j

)
pj+1(1− p)k−1−j(k − j − 1)

×
[
1− e−µ(t−τ∗)

]k−j−2
(1− e−λτ∗)j(eλτ∗ − 1)

=
µ

c+ v
e−µ(t−τ∗)−2λτ∗(eλτ∗ − 1)

{
p(1− p)e2µt+2λτ∗

[(1− p)e(λ+µ)τ∗ + p eµt]
2

}
.

The latter equation yields density (4.43). Similarly, from (4.14) we obtain
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the following expression

b(x, t | c) =
1

c+ v

{
λ(1− p)e−µt+(λ+µ)τ∗

[(1− p)eλτ∗ + p]2

+
+∞∑
k=1

k−2∑
j=0

(
k − 1

j

)
pj(1− p)k−jλ(j + 1)e−λτ∗(1− e−λτ∗)j

×
∫ t

t−τ∗
µ(k − j − 1)e−µ(s−τ∗)

[
1− e−µ(s−τ∗)

]k−j−2
e−µ(t−s)(k−j)ds

}
=

1

c+ v

{
λ(1− p)e−µt+(λ+µ)τ∗

[(1− p)eλτ∗ + p]2

+
+∞∑
k=1

k−2∑
j=0

(
k − 1

j

)
pj(1− p)k−jλ(j + 1)e−λτ∗(1− e−λτ∗)j

× eµ(t−τ∗)(1− eµ(t−τ∗))k−j−1

}
.

After some calculations we have

b(x, t | c) =
1

c+ v

{
λ(1− p)e−µt+(λ+µ)τ∗

[(1− p)eλτ∗ + p]2
+ λ(1− p)2e(λ+µ)τ∗

×
(eµ(τ∗−t) − 1)

[
peµt(p− e2λτ∗(1− p)− 2peλτ∗)− (1− p)e(2λ+µ)τ∗

]
[(1− p)eλτ∗ + p]2 [e(λ+µ)τ∗(1− p) + peµτ∗ ]

2

}
.

Finally, Eq. (4.44) can be obtained.

Let us now analyse the behavior of the densities (4.43) and (4.44) when

x tends to the endpoints of the state space [−vt, ct].

Corollary 4.5.2. Under the assumptions of Theorem 4.5.1, for t ≥ 0 we

have

lim
x↓−vt

f(x, t | c) = 0, lim
x↑ct

f(x, t | c) =
µ p(1− p)e−λt(1− e−λt)

(c+ v) [(1− p) + p e−λt]2
,

and

lim
x↓−vt

b(x, t | c) =
λ(1− p)

(c+ v) [(1− p) + p eµt]
,

lim
x↑ct

b(x, t | c) =
λ(1− p) e−λt

(c+ v) [(1− p) + p e−λt]2
.
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Remark 4.5.3. By recalling (4.8), from densities (4.43) and (4.44) we obtain

p(x, t | c) =
1− p
c+ v

{
λ(1− p)e(λ+2µ)τ∗ + p eµ(t+τ∗)

[
(λ+ µ)eλτ∗ − µ

]
[(1− p)e(λ+µ)τ∗ + p eµt]

2

}
.

(4.45)

Density p(x, t | − v) can be expressed from (4.45) by interchanching x with

−x, c with v, t∗ with t− τ∗, λ with µ, and p with (1− p).

We are now able to find out the probability law of X(t) in closed form.

Theorem 4.5.4. Under the assumptions of Theorem 4.5.1, for all t ≥ 0, we

have

P{X(t) = ct |X(0) = 0} =
p e−λt

(1− p) + p e−λt
, (4.46)

P{X(t) = −vt |X(0) = 0} =
(1− p) e−µt

(1− p) + p e−µt
; (4.47)

moreover, for −vt < x < ct,

p(x, t) =
p

1− p
1

s

exp
{

(µ− v
s
)t− 1

s
x)
}[

1 + p
1−p exp

{
(µ− v

s
)t− 1

s
x
}]2 , (4.48)

where s = (c+ v)/(λ+ µ).

Proof. Probabilities (4.47) and () follow from (4.42) and by symmetry of the

process. From (4.19) and Remark 4.5.3 we have

p(x, t) =
p(1− p)(λ+ µ) eµt+(λ+µ)τ∗

(c+ v)[(1− p) e(λ+µ)τ∗ + p eµt]2
, −vt < x < ct,

where τ∗ is defined in (4.15). Eq. (4.48) then follows.

Plots of density (4.48) are given in Figures 4.9 and 4.10 for various choices

of the parameters.

Let us now evaluate the limits of density (4.48) when x tends to −vt and

x to ct.



4.5 Intertimes exponentially distributed with linear rates 100

!10 !5 0 5 10
x

0.05

0.10

0.15

0.20

0.25

p!x,t"

!4 !2 0 2 4 6 8 10
x

0.1

0.2

0.3

0.4
p!x,t"

Figure 4.9: Density p(x, t) for the exponential case with linear rates (4.40),

with t = 10, λ = c = v = 1, µ = 1 (left plot) and µ = 2 (right plot), and

p = 0.1, 0.3, 0.5, 0.7, 0.9 (from left to right in both plots).

Corollary 4.5.5. From Theorem 4.5.4 we have, for t ≥ 0,

lim
x↓−vt

p(x, t) =
p

1− p
1

s

eµt[
1 + p

1−p eµt
]2 , lim

x↑ct
p(x, t) =

p

1− p
1

s

e−λt[
1 + p

1−p e−λt
]2 .

The following special case follows by straightforward calculations.

Proposition 4.5.6. Under the assumptions of Theorem 4.5.4, if λ v = µ c

then density (4.48) can be expressed as:

p(x, t) =
e−(x−m)/s

s [1 + e−(x−m)/s]
2 , −vt < x < ct, (4.49)

where

m = s ln

(
p

1− p

)
, s =

v

µ
=
c

λ
. (4.50)

It is interesting to note that (4.49) is a truncated logistic density. Here-

after we investigate the stationary behavior of density (4.48).

Corollary 4.5.7. Under the assumptions of Theorem 4.5.4, if λ v = µ c then

lim
t→+∞

p(x, t) =
e−(x−m)/s

s [1 + e−(x−m)/s]
2 , x ∈ R, (4.51)
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Figure 4.10: Same as Figure 4.6, for p = 0.1 (left plot) and p = 0.5 (right

plot), with µ = 1, 2, 3, 4 (from left to right in both plots).

where m and s are defined in (4.50); if λ v 6= µ c then

lim
t→+∞

p(x, t) = 0, x ∈ R.

We note that the right-hand-side of Eq. (4.51) is a logistic density with

mean m and variance π2s2/3. In addition, if p = 1/2 then the mean m

vanishes, and the density identifies with the stationary p.d.f. of a damped

telegraph process, as obtained in Corollary 3.3 of Di Crescenzo and Martin-

ucci [27].

4.5.1 The conditional means of V (t) and X(t)

For the case under investigation, we express the conditional means of V (t)

and X(t) in terms of hypergeometric functions

F̃ (z) := 1F1(1, 2; z), and F̂ (z) := 1F1(2, 3; z).

Proposition 4.5.8. Under the assumptions of Theorem 4.5.1, for t ≥ 0 we
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have

E[V (t) |V (0) = c] = c e−λt + (1− e−λt)
[
p c e−2λ t + (1− p)(−v)e−2µt

]
+λ t

+∞∑
k=2

k−1∑
j=0

(
k − 1

j

)
pj(1− p)k−1−j(j + 1)

k−j−1∑
`=0

(
k − j − 1

`

)
(−1)`

j∑
r=0

(
j

r

)
× (−1)re−µ ` tF̃ ((µ `− λ(r + 1))t)

(
p c e−λ(k+1)t + (1− p)(−v)e−µ(k+1)t

)
(4.52)

and

E[X(t) |V (0) = c] =
c

λ
(1− e−λ t) + p c t

[
F̃ (−2λ)− F̃ (−3λ t)

]
+(1− p)(−v)t

[
F̃ (−2µ t)− F̃ (−(2µ+ λ)t)

]
+λ

∞∑
k=2

k−1∑
j=0

(
k − 1

j

)
pj(1− p)k−j−1(j + 1)

k−j−1∑
`=0

(
k − j − 1

`

)
(−1)`

j∑
r=0

(
j

r

)
(−1)r

×
{
1{µ `=λ(r+1)}

t2

2

[
p c F̂ (− (λ(k + 1) + ` µ) t)− (1− p)v F̂ (−µ(k + `+ 1)t)

]
+1{µ ` 6=λ(r+1)}

[
p c t

µ `− λ(r + 1)
[F̃ (−λ (r + k + 2) t)− F̃ (− (λ(k + 1) + µ `) t)]

]
+

(1− p)(−v)t

µ `− λ(r + 1)

[
F̃ (− (λ(r + 1) + µ(k + 1)) t)− F̃ (−µ(k + `+ 1)t)

]}
.

(4.53)

Proof. For every positive integer k the following equations holds:

E[Zk 1{Tk≤t<Tk+1}]

= p c

{∫ t

0

P{t− s ≤ Tk ≤ t}fUk+1
(s)ds +

∫ ∞
t

P{Tk ≤ t} fUk+1
(s)ds

}
+ (1− p)(−v)

{∫ t

0

P{t− s ≤ Tk ≤ t}fDk+1
(s)ds +

∫ ∞
t

P{Tk ≤ t} fDk+1
(s)ds

}
= p c

{∫ t

0

fUk+1
(s)ds

∫ t

t−s
fTk(x)dx + FUk+1

(t)FTk(t)

}
+ (1− p)(−v)

{∫ t

0

fDk+1
(s)ds

∫ t

t−s
fTk(x)dx + FDk+1

(t)FTk(t)

}
.

(4.54)
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Recalling (4.5) and (4.41) the probability density and the distribution func-

tion of random times Tk, for k ≥ 2 and t > 0 are given by

fTk(s)ds =
k−1∑
j=0

(
k − 1

j

)
pj(1− p)k−j−1

∫ s

0

f
(j+1)
U (x) f

(k−j−1)
D (s− x)dx

=
k−2∑
j=0

(
k − 1

j

)
pj(1− p)k−1−j

{
λµ s(j + 1)(k − 1− j)

k−j−2∑
`=0

(
k − j − 2

`

)
(−1)`

×
j∑
r=0

(
j

r

)
(−1)r e−µ(`+1)sF̃ (µ(`+ 1)− λ(r + 1))s)

}
+pk−1k λ e−λ s(1− e−λ s)k−1

and

FTk(s) =
k−1∑
j=0

(
k − 1

j

)
pj(1− p)k−1−j

∫ s

0

f
(j+1)
U (x)F

(k−j−1)
D (s− x)dx

= λ s
k−1∑
j=0

(
k − 1

j

)
pj(1− p)k−1−j(j + 1)

k−j−1∑
`=0

(
k − j − 1

`

)
(−1)`

j∑
r=0

(
j

r

)
(−1)r

× e−µ ` sF̃ ((µ `− λ(r + 1))s),

respectively. By recalling Eq. (4.54), we thus obtain that

E[Zk·1{Tk≤t<Tk+1}] =



(1− e−λ t)
[
p c e−2λ t + (1− p)(−v)e−2µ t

]
, k = 1,

λ t

k−1∑
j=0

(
k − 1

j

)
pj(1− p)k−1−j(j + 1)

k−j−1∑
`=0

(
k − j − 1

`

)
× (−1)`

j∑
r=0

(
j

r

)
(−1)re−µ ` tF̃ ((µ `− λ(r + 1))t)

×
(
p c e−λ(k+1)t + (1− p)(−v)e−µ(k+1)t

)
, k ≥ 2.

(4.55)

Hence, by recalling the first of (4.3) and (4.55), Eqs. (4.52) can be obtained.
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Moreover, making use the second of (4.3) we have

E[X(t) |V (0) = c] = c

∫ t

0

e−λ sds

+

∫ t

0

(1− e−λ s)
[
p c e−2λ s + (1− p)(−v)e−2µ s

]
ds

+λ
k−1∑
j=0

(
k − 1

j

)
pj(1− p)k−1−j(j + 1)

k−j−1∑
`=0

(
k − j − 1

`

)
(−1)`

j∑
r=0

(
j

r

)
(−1)r

×
∫ t

0

s e−µ ` sF̃ ((µ `− λ(r + 1))s)
(
p c e−λ(k+1)s + (1− p)(−v)e−µ(k+1)s

)
ds

where∫ t

0

(1− e−λ s)
[
p c e−2λ s + (1− p)(−v)e−2µ s

]
ds

= p c t
[
F̃ (−2λ)− F̃ (−3λ t)

]
+ (1− p)(−v)t

[
F̃ (−2µ t)− F̃ (−(2µ+ λ)t)

]
.

By analyzing separately the cases µ ` = λ(r + 1) and µ ` 6= λ(r + 1) we can

obtained that∫ t

0

s e−µ ` s
(
p c e−λ(k+1)s + (1− p)(−v)e−µ(k+1)s

)
ds

= p c
t2

2
F̃ (−(λ(k + 1) + ` µ)t) + (1− p)(−v)

t2

2
F̃ (−(µ t(k + `+ 1))

and∫ t

0

s e−µ ` sF̃ ((µ `− λ(r + 1))s)
(
p c e−λ(k+1)s + (1− p)(−v)e−µ(k+1)s

)
ds

=
p c t

µ `+ λ(r + 1)

{
F̃ (−λ(r + k + 2)t)− F̃ (−(λ(k + 1) + µ `)t)

}
+

(1− p)(−v) t

µ `+ λ(r + 1)

{
F̃ (−λ(k + 1) + µ(k + 1)t)− F̃ (−µ(k + `+ 1)t)

}
,

respectively. Finally, Eq. (4.53) follows.

In conclusion, Figure 4.11 shows some plots of E[X(t) |V (0) = c].
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Figure 4.11: Conditional mean (4.53) on V0 = V (0) = c for λ = µ = c = v =

1, with p = 0.1, 0.3, 0.5, 0.7, 0.9 (from bottom to top).

4.6 Concluding remarks

The telegraph process has attracted the attention of several mathematicians,

including Bartlett [5], Kac [43], Cane [10], and Orsingher [55] just to men-

tion a few. This process describes the motion of a particle on the real line,

traveling at constant speed, whose direction is reversed at the arrival epochs

of a Poisson process. Often the distribution of the process has been derived

by solving Cauchy problems, defined such as in (3.38). In this chapter we

have analyzed a generalized telegraph process characterized by underlying

random walk. The probability law of the process has been obtained in a

general form, and then in two special cases: (i) when the random times have

exponential distribution with constant rates and (ii) when the intertimes

have exponential distribution with increasing linear rates. In particular, the

second case exhibits a kind of damped motion, which leads to a stationary

logistic density. Hence, in this chapter we have applied recent results on

the telegraph process to derive new properties of a more general integrated

telegraph process with the inclusion of a sequence of Bernoulli trials that
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regulate the velocity of the particle at any epochs.

The role of the telegraph process in mathematical finance has been pin-

pointed in various articles, where the alternating behaviour of its sample-

paths has been useful to construct suitable models. Recall, for instance,

paper Di Masi et al. [31], where the classical Black-Scholes model is gener-

alized to the case where the price of a stock satisfies a stochastic differential

equation involving a Markov process (independent of the Wiener process)

which can be viewed as the velocity process of a telegraph process. A further

model was studied in Di Crescenzo et al. [30], where a geometric telegraph

process was proposed to describe price evolutions of alternating type. Such

a model has been refined in Ratanov [66] and [67], in which the inclusion of

jumps in a generalized telegraph processes, occurring when the velocities are

switching, allows to construct an arbitrage-free and complete market model

and to obtain explicit formulas for prices of European options using perfect

and quantile hedging. Other recent papers that explore properties and prob-

ability laws of generalized telegraph process with deterministic jumps and

damped geometric telegraph process are Di Crescenzo et al. [27] and [28], re-

spectively. An inhomogeneous telegraph process is investigated in Iacus [41],

giving a rare example where an explicit law has been obtained means of statis-

tical techniques. Moreover, in De Gregorio et al. [14] a parametric estimation

for the standard and geometric telegraph process is observed at equidistant

times in view of financial applications.

On the ground of the above mentioned researches, the future activity

will be finalized to extend some of the previous results to a more general

and flexible model, in which the occurrence of jumps with random ampli-

tudes is included. Precisely, we purpose to obtain closed-form results for the

probability densities of financial models based on the jump-telegraph pro-
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cess characterized by exponentially distributed jumps. Therefore, we aim

to give a rigorous description of the process throught analitical techniques,

simulation algorithms and codes, to obtain quantitative results that are ex-

pected to be of interest especially in financial contexts. Indeed, we purpose

to incorporate different trends and extreme events of market evolution.
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