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 Abstract - Calcium (Ca
2+

) is a universal second 

messenger that regulates a number of diverse cellular 

processes including cell proliferation, development, 

motility, secretion, learning and memory
1, 2

. A variety of 

stimuli, such as hormones, growth factors, cytokines, and 

neurotransmitters induce changes in the intracellular 

levels of Ca
2+

. The most ubiquitous and abundant protein 

that serves as a receptor to sense changes in Ca
2+

 

concentrations is Calmodulin (CaM), thus mediating  the 

role as second messenger of this ion. The Ca
2+

/CaM 

complex initiates a plethora of signaling cascades that 

culminate in alteration of cell functions. Among the many 

Ca
2+

/CaM binding proteins, the multifunctional protein 

kinases CaMKII and CaMKIV play pivotal roles in the 

cell. 
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I.  INTRODUCTION 

 

 The general structure of CaMKs includes an N-

terminal kinase domain, an autoregulatory domain, an 

overlapping CaM-binding domain and, in phosphorylase 

kinase and CaMKII, a C-terminal association domain that 

is  essential for multimerization and targeting.  

The best characterized CaM Kinase is CaMKII
3
.CaMKII 

is a multimeric enzyme composed of 12 subunits and it is 

encoded by 4 separate genes () with at least 24 

peptides generated by alternate splicing
4, 5

and at least one 

isoform expressed in every cell type
6
. CaMKII has a 

distinct mechanism of regulation that differs from the 

others CaM kinases. One catalytic subunit phosphorylates 

the autoinhibitory domain of the adjacent subunit on T286 

(in the  isoform). This event requires that both the 

catalytic subunit and the substrate subunit are bound to 

Ca
2+

/CaM
7, 8

. T286 phosphorylation then results in 20–

80% Ca
2+

/CaM-independent activity
4, 9-13

. 

Autophosphorylation of T286 increases affinity for CaM 

by decreasing the rate of CaM dissociation. CaM is 

trapped by autophosphorylation, so that even when Ca
2+

 

levels are reduced, the kinase is fully active until CaM 

dissociates (several hundreds of seconds
13

). This could 

serve as a mechanism to increase the sensitivity of 

CaMKII to the changes in intracellular Ca
2+

 

concentration
7, 13

. 

 

 
 

Anderson et al., Journal of Molecular and Cellular Cardiology, 2011 

 

CaMKIV is a serine/threonine protein kinase that has 

been localized also in the nucleus
14

. Its expression is 

tissue-specific, with expression restricted primarily to 

distinct regions of the brain, T-lymphocytes, and 

postmeiotic germ cells,
15, 16

 although it has been found in 

other cell types 
17

, being especially enriched in cerebellar 

granule cells. CaMKIV (one gene, two splice variants)
18

 – 

is a monomeric enzyme, and apart from activation by 

Ca
2+

/CaM, shows very different modes of regulation by 

phosphorylation compared to CaMKII. CaMKIV has an 

“activation loop” phosphorylation site that is absent in 

CaMKII. Binding of Ca2+/CaM to CaMKIV exposes this 

activation loop site to allow phosphorylation by the 

upstream CaMKK, when it is simultaneously activated by 

Ca
2+

/CaM
19

. Phosphorylation of the activation loop in 

CaMKIV primarily increases its Ca
2+

/CaM-dependent 

activities. 
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II.  CaMK-MEDIATED ACTIVATION OF 

TRANSCRIPTION. 

 

 CaMKII and CREB 

 

 As CaM kinases II and IV have quite similar substrate 

specificity determinants, it is not completely surprising 

that they sometimes phosphorylate the same proteins. One 

such in vitro substrate for these kinases is the cAMP-

response element binding protein, CREB. CaMKII can  

phosphorylate CREB at Ser133 residue  leading to the 

speculation that CaMKII mediates the Ca
2+

 requirement 

for expression of the immediate early genes
5
. However, 

while the truncated form of CaMKII can stimulate CREB-

mediated transcription in some cells, it is inhibitory in 

others. Sun et al. 
20

discovered that in addition to Ser-133, 

CaMKII also phosphorylated a second residue on CREB, 

Ser-142. Indeed, phosphorylation of Ser-142 was not only 

inhibitory, but this modification was also dominant and 

could reverse the activation of CREB resulting from its 

phosphorylation on Ser-133 by PKA. This 

phosphorylation seems to be destabilizing for the 

association between CREB and CBP
21

. Interestingly, the 

nature of the effect of CaMKII on transcription is both 

cell and promoter dependent. 

 

CaMKIV AND CREB 

 

CaMKIV shows very strong nuclear localization
22, 23

, 

and many studies support the idea that it is responsible for 

Ca
2+

-dependent stimulation of transcription through 

phosphorylation of CREB and serum response factor 

(SRF)
5, 22, 24

. Activation by CaMKIV occurs via direct 

phosphorylation of the activating serines of these 

transcription factors, Ser133 (CREB), Ser63 (ATF-1), and 

Ser103(SRF), respectively
25

. CaMKIV phosphorylates 

CREB Ser133, the same site that is phosphorylated by 

PKA. Transfected CaMKIV alone is a relatively poor 

stimulator of transcriptional activation by CREB: indeed, 

cotransfection of CaMKK with CaMKIV gives a 14-fold 

enhancement of transcription
26

. Studies in cultured 

hippocampal neurons indicate that CaMKIV regulates 

CREB-dependent gene transcription in response to 

electrical stimulation or KCl depolarization
27

. This role of 

CaMKIV in CREB-mediated transcription has been 

confirmed in transgenic mice that express an inactive 

form of CaMKIV only in T cells in the thymus
27

. 

Overexpression of inactive CaMKIV would be expected 

to function in a dominant negative manner. These thymic 

T cells have a reduced ability, upon stimulation, to 

phosphorylate CREB, induce transcription of FosB and 

produce interleukin 2 (IL-2)
28

. There is also good 

evidence for involvement of CaMKIV in transcriptional 

regulation of the BDNF gene through phosphorylation of 

a CREB family member
29

. 

These observations provide a mechanism that would 

permit the Ca
2+

 signaling pathway to be either 

antagonistic or additive with the cAMP pathway for 

activation of CREB, depending on the relative activity of 

specific CaM kinases. 
 

 

III.  CaMKs MEDIATED REGULATION OF 

APOPTOSIS 

 

Bok et al
30

 observed that CaMKII promotes SGN 

survival, at least in part, by functionally inactivating Bad. 

The ability of Bad to move from the cytoplasm to the 

mitochondria, where it can carry out its pro-apoptotic 

function, is regulated by phosphorylation 
31, 32

. Thus, Bad 

plays a central role in the regulation of apoptosis. CaMKII 

also regulates apoptosis by inactivating Bad. One 

phosphorylation site on Bad, Ser170
33

, is a potential 

CaMKII target, raising the possibility that CaMKII 

phosphorylates Bad directly. However, co-expression of 

Bad and truncated form of CaMKII(1-290) in PC12 cells 

results in Bad hyper-phosphorylation, including 

phosphorylation of Ser112. This implies an indirect 

pathway for Bad phosphorylation by CaMKII. The 

mechanism by which CaMKII inactivates Bad involves 

multiple signaling pathways, and  differs among cell 

types. CaMKII also suppresses nuclear translocation of 

histone deacetylase, thereby promoting neuronal 

survival
34

.  Indeed, CaMKII has been shown to activate 

the pro-survival transcriptional regulator NF-κB in T 

lymphocytes and in neurons
35

. Because dominant-

negative CREB constructs do not reduce the pro-survival 

effect of CaMKII, it is unlikely that CREB is the nuclear 

target of CaMKII. The depolarization also promotes 

survival by recruiting a nuclear pathway involving 

CaMKIV and CREB
30

. This is supported by the 

observations that dominant-inhibitory CaMKIV and 

dominant-inhibitory CREB both reduce the ability of 

depolarization to promote survival and dominant-

inhibitory CREB blocks the ability of CaMKIV to 

promote survival. They also used a constitutively-active 

CREB mutant, CREBDIEDML, and found that it failed to 

support SGN survival. Probably the level of 

transcriptional activation given by CREBDIEDML is 

insufficient to promote survival. Alternatively, 

recruitment of CBP by CREB is necessary but is not 

sufficient for promotion of survival via CREB-dependent 

gene expression.  

 

 

IV. CaMKs MEDIATED REGULATION OF 

PROLIFERATION 

 

Cell proliferation is regulated by converging signals on 

the cell cycle machinery that determine whether the cell 

stays in the G1 phase or proceeds to S phase. The 

progression through G1 into the DNA synthesizing S 

phase is driven by cyclin-dependent kinase (CDK)4 and 

CDK6, that interact with the cyclin D family of proteins, 

and CDK2, that interacts with cyclins A/E  
36

. The 

Ras/Raf/Mek/Erk cascade plays a pivotal role in the 
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control of this process: indeed, sustained Erk activation is 

required to pass the G1 restriction point and regulate 

cyclin D1 expression during mid-G1 phase 
37, 38

. CaMKII 

plays a pivotal role in the modulation of Erk activation in 

a number of cell models. A crosstalk between CaMKII 

and Erk pathway was first demonstrated in response to 

cell adhesion to the extracellular matrix in thyroid cells. 

CaMKII participates to Raf1 activation and controls Erk 

phosphorylation following integrin stimulation by 

fibronectin 
39, 40

. Indeed, the link between Ca
2+

 signaling 

and the ERK pathway has been documented 
38, 41

: ERK is 

activated by a CaMKII and Raf-dependent mechanism 
42

, 

and CaMKII facilitates adhesion-dependent activation of 

ERK in VSMCs 
41, 43

. CaM antagonist or  CaMKII 

inhibitors attenuate ERK activation in response to several 

stimuli 
44

, and coexpression of CaMKII or a CaMKII 

inactive mutant in CHO cells down-regulates Ca
2+

-

induced ERK activation 
15, 45

. These data suggest that 

CaMKII and ERK are essential mediators of cell 

proliferation 
46, 47

. The role of CaMKII in cell 

proliferation is not a restricted mechanism, but it is a 

general phenomenon that may be relevant for the 

biological effects of many growth factors and hormones. 

 

 

 

V. CaMKs MEDIATED REGULATION OF 

DIFFERENTIATED FUNCTIONS. 

 

SURVIVAL 

 

The multifunctional CaMKs family proteins are involved 

in the control of differentiation and survival of neurons 

and hematopoietic stem cells 
48

. In the cerebellum, 

granule and Purkinje cells (PCs) develop synergistically, 

and alterations in the developmental program of either 

cell type affects the other  
45

. Many studies showed that 

the absence of CaMKIV results in abnormal PCs, 

characterized by a decreased number of mature cells 

together with stunted arborization and altered parallel 

fiber synaptic currents of the remaining cells 
21, 49

. 

Kobubo et al hypothesized that these adult defects may 

arise from developmental issues involving CGCs in 

addition to PCs. These cells only express CaMKIV during 

a briefperiod between late embryogenesis and early 

postnatal development, whereas CGCs express both 

CaMKIV and its upstream activator CaMKK2 from early 

postnatal development through adulthood 
50

 .CaMKIV 

exert prosurvival functions. Inneurons, BDNF signaling 

through TrKB inhibits apoptosis through the MAP and PI-

3 kinase/AKT pathways 
15

.CaMKIV has a prosurvival 

role in multiple cell types including hematopoietic stem 

cells(HSCs) 
51

, and dendritic cells 
52

.  

Kitsos 

The hematopoietic stem cell (HSC) gives rise to all 

mature, terminally differentiated cells of the blood. 

CaMKIV is involved in early hematopoietic development, 

and  the absence of CaMKIV results in a reduction in the 

number of c-Kit
+
ScaI

+
Lin

-/low
cells (KLScells), a cell 

population that includes long-term and short term 

hematopoietic stem cells as well as other multipotent 

progenitor cells 
53

. Camk4 gene is expressed in KLS cells, 

and CaMKIV is required for KLS cells to repopulate the 

bone marrow in transplantation assays. Camk4
-/-

KLS cells 

display enhanced proliferation as well as increased 

apoptosis, in vivo and in vitro, compared with wild type 

(WT) cells and have decreased levels of phospho-CREB 

(pCREB), CBP, Bcl-2 mRNA and Bcl-2 protein. Re-

expression of CaMKIV in Camk4
-/-

KLS cells restores 

Bcl-2 and CBP levels and rescues the proliferation 

defects. 

Many critical biological functions involve Ca
2+

 signaling 

in DC. For example, apoptotic body engulfment and 

processing are accompanied by a rise in intracellular 

Ca
2+

 and are dependent on external Ca
2+

 
54

.In addition, 

chemotactic molecules produce Ca
2+

 increases in DC, 
55

 

suggesting the involvement of a Ca
2+

-dependent pathway 

in the regulation of DC migration. The role of a Ca
2+

-

dependent pathway in the mechanism regulating DC 

maturation is suggested by the opposite effects induced by 

Ca
2+

 ionophores or chelation of extracellular Ca
2+

 on this 

process
56

. The pharmacologic inhibition of CaMKs as 

well as ectopic expression of kinase-inactive CaMKIV 

decrease the viability of monocyte-derived DCs exposed 

to bacterial LPS. Although isolated Camk4
−/−

 DCs are 

able to acquire the phenotype typical of mature cells and 

release normal amounts of cytokines in response to LPS, 

they fail to accumulate pCREB, Bcl-2, and Bcl-xL and 

therefore do not survive.   

 

 

CARDIAC HYPERTROPHY 

 

CaMKII has been implicated in several key aspects of 

acute cellular Ca
2+

 regulation related to cardiac excitation-

contraction (E-C) coupling. CaMKII phosphorylates 

sarcoplasmic reticulum
57

 proteins, including the 

ryanodine receptors (RyR2) and phospholamban (PLB)
57

 . 

Contractile dysfunction develops with hypertrophy, 

characterizes heart failure, and is associated with changes 

in cardiomyocyte Ca
2+

 homeostasis 
58

. CaMKII 

expression and activity are altered in the myocardium of 

rat models of hypertensive cardiac hypertrophy 
59

 and 

heart failure 
60

, and in cardiac tissue from patients with 

dilated cardiomyopathy 
61

.Several transgenic mouse 

models have confirmed a role for CaMK in the 

development of cardiac hypertrophy. Hypertrophy 

develops in transgenic mice that overexpress CaMKIV  
62

, 

but this isoform is not detectable in the heart and 

CaMKIV knockout mice still develop hypertrophy 

following transverse aortic constriction (TAC) 
63

. CaMKII 

regulates expression of several hypertrophic marker 

genes, including ANF
64

 BNP
65

, h-MHC
66

 and a-skeletal 

actin
61

. The nuclear localization signal of CaMKIIB was 

shown to be required for this hypertrophic response, as 

transfection of CaMKIIC did not result in enhanced 

ANF expression
67, 68

. MEF2 has been suggested to act as a 
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common endpoint for hypertrophic signaling pathways in 

the myocardium,
66

 and studies using CaMKIV transgenic 

mice crossed with MEF2 indicator mice suggest that 

MEF2 is a downstream target for CaMKIV 
69

. Recent 

studies have demonstrated that MEF2 can interact with 

class II histone deacetylases (HDACs), a family of 

transcriptional repressors, as well as with other repressors 

that limit MEF2-dependent gene expression. Notably, 

constitutively activated CaMKIV have been shown to 

activate MEF2 by phosphorylating and dissociating 

HDACs, leading to its subsequent nuclear export 
70

.  

 

VI. CaMKs AND INFLAMMATION 

 

Sepsis is a special type of host inflammatory response to 

bacterial infection that originates from massive and 

widespread release of pro-inflammatory mediators. 

Bacterial endotoxins, such as LPS, are the major 

offending factors in sepsis that activate TLR-mediated 

signaling to generate inflammatory response that is 

amplified in a self-sustaining manner. There are meny 

evidences of a  correlation between multifunctional CaM 

kinases and TLR-4 signaling. CaMKII directly 

phosphorylates components of TLR signaling, and 

promotes cytokine production in macrophages
71

. 

Complement activation is also a recognized factor in the 

pathogenesis of sepsis. Inhibition of the complement 

cascade decreases inflammation and improves mortality 

in animal models
51

. Differentiation and survival of 

antigen presenting dendritic cells (DC) uponTLR-4 

activation requires CaMKIV
72

. DC from 

CaMKIV−/−mice failed to survive upon LPS-mediated 

TLR-4 induction. However, ectopic expression of 

CaMKIV was able to rescue this defect. In another study, 

the selective inhibition of CaMKII interfered with 

terminal differentiation of monocyte-derived DCs by 

preventing up-regulation of co-stimulatory and MHC II 

molecules as well as secretion of cytokines induced by 

TLR-4 agonists
73

. Thus, CaM kinases seem to play a 

general role in inflammatory processes 

 

VII. CONCLUSIONS 

CaMKs define a family of ser-thr kinases that direct a 

wide range of cellular processes and cell fate decisions. 

Since their discovery, much of the focus has been on their 

regulation of memory and learning. In recent years, 

studies on CaMKII and CaMKIV signaling in a number of 

cell models have established the importance of the Ca
2+-

CaM-CaMKK-CaMKs pathways in effecting 

proliferation, survival, differentiation and associated 

molecular events. Intriguing new findings also indicate 

that, although the two kinases might share some 

substrates, there is specificity in the pathways they 

contribute, thus reflecting both shared and unique 

properties. The emergence of ERK as a critical CaMKII 

regulatory target for cell proliferation has united 

membrane proximal regulatory events orchestrated by the 

Ras activated cascade with key transcriptional CaMKs 

targets.  
Ca

2+
 is ubiquitously present in the cells, hence its 

compartimentalization and the regulation of its 

downstream kinases need to be finely tuned, in order to 

efficiently regulate biological functions. The involvement 

of CaMKII and CaMKIV in pathways that regulate 

functions as different as proliferation, survival and 

differentiation imply numerous cross-talks and their 

harmonization. Both kinases require Ca
2+

 increases to be 

activated, although other events are required to support 

their differential activation. Subcellular 

compartimentalization provides another tool to 

distinctively activate CaMKII and CaMKIV depending 

upon the cell’s needs. It is possible, though, to 

hypothesize a further mechanism of counter-regulation 

between the two kinases: insights into the regulation and 

impact of a crosstalk between CaMKII and CaMKIV 

signaling might bring in new highlights for biological 

functions, and their disruption in human diseases.  
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