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Abstract

Current threats, such as terrorism and cyber-terrorism, pose new
challenges to security and defence communities, and the ability to
reason with different perspectives and detecting connections be-
tween facts, relationships and events becomes crucial to address
these challenges. To this purpose, a less procedural and standard-
ized approach is useful, able to leverage current computational
and artificial intelligence technologies to detect threats and pro-
tect physical and cyber-physical systems. This raises a strong in-
terest in defining and adopting new methods and techniques that,
to a certain extent, are such as to replicate, or at least to sup-
port, human cognitive processes. If we consider the ”creativity”
behind some recent attacks, such as that one of 09/11/2011, we
can understand the need to rethink security in situational rather
than procedural terms, and this has an important implication that
helps to frame the problem and research objectives of this the-
sis. This implication is a shift from being aware of what we need
to prevent (and the related rules and procedures to that end) to
gaining greater awareness of what might happen. From this con-
sideration, it emerges the need of methods and tools that support
decision makers in their ability to carry out analyses that allow to
hypothesize different threat scenarios, and to reason about their
evolutions. This is, essentially, the main objective of the so-called
intelligence activities.

The research problem investigated in the Ph.D period is how to
improve the awareness of analysts and decision makers in the early
stages of an intelligence analysis to prevent intentional attacks,
and the specific objectives concern the definition and validation of
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reasoning methods based on Granular Computing (GrC) for this
purpose. Specifically, methods to:

• carry out analysis and assessment of hypotheses of inten-
tional attacks, and to attribute these hypotheses to terrorist
groups;

• Define security perimeters to protect a target of attack;

• Analyse evolutions of an attack, considering also the depen-
dencies between components of a target, and estimate the
resilience of a target.

The results share a common methodological basis consisting of the
use of rough sets and their extensions, such as fuzzy probabilistic
rough sets and dominance based rough sets, for data analysis and
processing, and models of 3 way decisions to reduce the cognitive
effort of decision makers in the decision-making phase.

The three methods defined are intended to support the intelli-
gence cycle stages.

The first method combines probability theory, fuzzy and rough
sets to analyse different attack scenarios, such as high probability -
low risk and low probability - high risk, and attribute the assump-
tions of attack to known groups. It starts from a minimum set
of information, vague and preliminary, to derive hypotheses con-
cerning attack events and evaluate them with respect to a body of
evidence collected from historical data on terrorism events. The
body of evidence is defined in terms of similarity of behaviour of
known groups. This is constructed with an algorithm that com-
bines equivalence classes and fuzzy equivalence classes to derive
similarity matrices of terrorist groups behaviours. After the phase
of evidence collection, the proposed method uses two parameters
that allow the derivation and assessment of a wide range of hy-
potheses, starting from intelligence information on possible attack
strategies, weapon types and target types. This happens through
the use of Ordered Weighted Averaging (OWA) operators with
probability distribution to aggregate information coming from in-
telligence sources, and the use of a probabilistic three way decisions
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model based on Bayesian rough sets to carry out a tri-partition of
terrorist groups into groups that can be: associated to the created
hypotheses (POS), not associated (NEG) or for which no decision
can be made (BND). The evaluation of results has been carried
out on real data relating to five years (2012-2016) of terrorist ac-
tivities extracted from the Global Terrorism Database (GTD). To
consider only information that is assumed to be available in the
initial phases of an intelligence analysis, we have reduced the de-
scriptive features of the GTD from 135 to 3: attack strategy, type
of target and type of weapon. The method has been experimented
on three representative cases: 1) a rare pattern, 2) a distinctive
pattern, 3) a combination of patterns. The results have been eval-
uated with respect to error metrics such as Sensitivity, Specificity
and Balanced accuracy.

The second method aims at defining security perimeters to
defend targets of attack. Based on the information previously de-
rived, and including estimates of expected losses, Threat Scenarios
are defined and analysed to increase the security level of the tar-
get. The method supports decision makers in the analysis and
protection of targets (i.e., large-scale infrastructures or urban ar-
eas) by identifying an adequate partition of the infrastructure or
area being analysed. The method works on a very limited set of
information related to components vulnerabilities and probabilis-
tic information on how vulnerabilities can impact on significant
partitions. Based on this information, the method involves the
definition of Threat Scenarios, triples that include: attacks, ex-
pected losses, and probability of having losses whose value is at
most equal to the expected one. Threat Scenarios are compared
based on the principle of stochastic dominance using an approach
based on Dominance Rough Sets, specifically Dominance-based
Rough Set Approach under uncertainty. The results of the case
study, based on a hypothesis of a terrorist attack derived from
GTD events, show that the method provides approximate solu-
tions that allow reasoning at different levels of granularity (such
as a single attack or groups of attacks). A measure to understand
the goodness of resulting partitions, both overall and with respect
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to specific attacks, has been defined by contextualizing quality
measures traditionally used in the 3 way partitions.

The third method is devoted to analyse the evolution of an
attack, and evaluates the resilience of the target considering also
the dependencies between components of the target. The method
relies on a hierarchical granular modelling approach to define in-
formation granules of the attack. Dependencies, of various kinds
(such as physical, cybernetic, logical or geographical), are mod-
elled with granular structures. The attack informative granules
are used to estimate the resilience of the target, based on an op-
erational resilience model adapted for interval operations. The
method has as its element of originality the systemic integration
of the GrC for resilience analysis, and has been validated on a case
study modelled on a smart grid. However, it requires further de-
velopment in order to be better contextualized to the application
sector of this thesis.
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Chapter 1

Introduction

Mica Endsley defines Situation Awareness (SA) as [1] ”the percep-
tion of elements in the environment within a volume of time and
space, the comprehension of their meaning, and the projection of
their status in the near future”. Being aware of a situation sup-
ports better decision making, and better decisions can save the life
in so many contexts that it seems superfluous to mention them.

Achieving a good awareness of the situation is not, however, a
result of the case or a purely accidental event, but comes from the
combination of numerous factors. In [2], the authors report three
perspectives of situation awareness and discuss ”whether situation
awareness is a phenomenon best described by psychology, engineer-
ing or systems ergonomics”. The three perspectives associated to
these disciplines are, respectively, refereed to as situation aware-
ness ”in-mind”, ”in-world” or ”in-interaction” and, in [2], it is
suggested to consider these perspectives as declaration of levels or
boundaries for a correct analysis of the SA phenomenon.

These are, however, like fuzzy boundaries in the sense that,
as Endsley and Jones argue [3] ”SA does not exist by creating in-
formation in some technical system. SA exists only when it is
developed within the cognition of a person who assesses the in-
formation” and, in our opinion, data and information processing
methods have to be aligned to individual cognitive views and ca-
pabilities, and support human way of reasoning.

1



To this purpose, Granular Computing (GrC) [4] is gaining at-
tention as a paradigm to represent, reason on, and process basic
chunks of information, namely granules, where a a granule is de-
fined as ”a clump of points (objects) drawn together by indistin-
guishability, similarity, proximity or functionality”. GrC allows
to group objects in the same fashion humans observe elements of
an environment, and perceive them by proximity, shape or simi-
larity, making our cognitive process more effective. Besides this,
GrC is useful to explore the multi-level granularity that exists in
the physical world, helping us to arrive at accurate and natural
descriptions, as well as in-depth understanding, of the inherent
structures and complexity of the real world [5].

GrC seems to be a natural way to improve awareness and com-
prehension of situations but, so far, the adoption of GrC to en-
hance SA has not received much attention from researchers and
practitioners, and these two research areas are still today consid-
ered as silos. What is missing is a systematic approach to study
interactions and correlations between GrC and SA, and before my
Ph.D period I have collaborated in a research activity devoted to
analyse this gap and propose a direction for further investigations
[6].

In [6] the integration between GrC and SA is envisioned via: i)
the definition of an high-level view describing how concepts, prin-
ciples and perspectives of GrC fit into the Endsley’s SA model, ii)
an overview of GrC methods and techniques that can be useful to
address some issues of the three levels of the Endsleys model, and
iii) a proposal showing the adoption of computational intelligence
and Semantic Web techniques to support the development of a
multi-agent based framework for SA aligned with the GrC princi-
ples. This last (i.e., iii)) point, however, has been covered with a
discussion on some methodological and architectural aspects of a
SA framework without any claim of completeness, and examples
of concrete applications.

The research conducted in these three years and re-

ported in this thesis starts from here and continues in the

direction of the definition and validation of approximate
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Figure 1.1: Research results of the thesis

reasoning methods based on GrC to improve awareness

of decision makers operating in security and defence do-

mains. An overview is presented in fig. 1.1 that shows the three
methods reported in this thesis.

1.1 The Context: re-thinking security

To describe the context of the study, we answer three key ques-
tions: why?, what?, and so what?, with the last one referring
to implications and limitations of the results for stakeholders.

1.1.1 Why? - Problem Statement and Research

objectives

Current threats, such as terrorism and cyber-terrorism, pose new
challenges to security and defence communities. It appears crucial
to find a way of being able to reason with different perspectives
and to detect connections between facts, relations and events. In
other words, it is required a more creative approach, able to apply
current Computational and Artificial Intelligence technologies pat-
terned on human thought processes to detect threats and protect
physical and cyber-physical systems. This raises a strong interest
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within the security and defence communities in the definition and
adoption of new methods and techniques for solving challenging
problems.

If we consider the ”creativity” behind some recent attacks, we
can understand the need of rethinking security in situational terms
more than procedural ones, and this has an important implication
that helps to frame our problem and research objectives.

This implication is a shift from ”being aware of what we need
to prevent” to ”gaining awareness of what could happen”. In other
words, as reported in [7] ”researching situational awareness reaches
its fullest challenge when security personnel and ordinary people
alike figure out live what is happening and what needs to be done,
in the face of a kind of event that has not occurred yet, when the
nature of the danger and the imminent dynamics must be specu-
lated upon, by all sorts of non-orchestrated agencies”. Here the
keyword is ”speculation”, and indicates the necessity of analysis
and assessment of different hypotheses about ”the nature of the
danger and the imminent dynamics” and, indeed, this requires
reasoning in the early stages of analysis on who can be the per-
petrator of an attack, what can be the consequences of the attack
and how is it possible to defend a target.

The problem afforded in this research study is how to im-

prove awareness of analysts and decision makers in the

early stages of a security analysis on intentional attacks

and the research objectives relate to the definition and valida-

tion of approximate reasoning methods supporting deci-

sion making on perpetrators and consequences of an attack.
To be more concrete, we refer to ”early stages” of a security

analysis as those phases typical of an intelligence cycle that are
devoted to produce rapid decisions and guidance based on the
available (usually scarce and uncertain) information. As reported
in [8], guidance can be provided at different levels such as:

• to shape a strategy, for instance decision makers must choose
for which hypotheses and scenarios to develop response plans,

• to inform operational decisions, such as how to deploy re-
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Figure 1.2: The enhanced intelligence cycle

sources and modify operations to enhance security,

• on a tactical level informing, for instance, critical infrastruc-
ture owners and operators when greater security is required.

Fig. 1.2 shows the intelligence cycle [9] and its connections to
the methods proposed in this thesis.

The intelligence cycle [9] presents five phases: definition of
the direction of intelligence activities, collection of information,
its processing, analysis and production of new information, and
its dissemination and adoption. As such, the goal of an intel-
ligence cycle is to create new information and, as challenge, the
new information is ”more valuable if the intelligence cycle operates
faster than the opponent’s” [8]. Feeding the information cycle with
methods of approximate reasoning and rapid decision making can
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support faster recognition of threats and adaptation to attackers
changes.

In fig. 1.2 the grey ovals represent phases and artefacts sup-
ported or created by the methods presented in this thesis. The
different shades refer to the guidance levels reported in the previ-
ous bullet points. Even if fig. 1.2 shows a clear distinction, some
phases and artefacts are shared among the three methods.

Let us firstly consider the intelligence cycle devoted to offer
strategic guidance. The planning and direction phase is, there-
fore, focused on planning intelligence analysis activities to gener-
ate and assess hypotheses and threat scenarios. This can start
with the collection of information on past terrorism events, and
information from intelligence sources on possible attack strategies,
targets and weapon types. This information is processed and anal-
ysed to produce models of terrorist groups behaviour and attack
patterns. These can be further processed and analysed to derive
a set of attack hypotheses that can be assessed against available
evidence to identify perpetrators. The steps described follow the
operations of the method reported in section 3.1.1 of this thesis.

The hypotheses of intentional attacks can be used in a second
intelligence cycle to inform decision makers on how to partition a
target (e.g., an urban area or infrastructure) under attack in or-
der to better deploy resources and/or modify security operations
to fulfil requirements about expected losses. Besides the derived
hypotheses, in this cycle it is necessary to collect, process and
analyse information on vulnerabilities of the target area or in-
frastructure. This information is combined to formalize a threat
scenario including also outcomes, in terms of looses and/or dam-
ages, and a probability distribution of these outcomes. Following
the method reported in section 3.1.2 of this thesis, threat scenarios
are analysed to identify a suitable partition of the target to de-
fend, allowing to deploy resources and security operations to fulfil
the initial requirements.

This partition is, lastly, analysed with regards to consequences
and evolutions of some attacks. Additional information, such as
nature and type of dependencies among the objects of an area, or
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components of an infrastructure, is required to perform evaluation
of attacks evolutions. This cycle is such to inform decision makers
on the level of resilience of the target area or infrastructure in
order to implement additional security operations. The resilience
analysis is the objective of the method reported in section 3.1.3.

Fig. 1.2 is a way to show how the results achieved during
these three years can be correlated within intelligence cycles, in
order to support the shift towards a situational-oriented security
where decision makers can operate at different levels (strategic,
tactic, operative). Another view, which gives a methodological
perspective, is reported in fig. 3.1 of chapter 3.

1.1.2 What? - Overview of the results

The results achieved during this period consist of:

• a method to create, analyse and assess hypotheses of inten-
tional attacks;

• A method for protecting target areas or infrastructures from
intentional attacks by identifying a suitable partition of the
target;

• A method to analyse the resilience of infrastructures in the
case of intentional attacks.

After the description of the methods in section 3.1, section 3.2
presents an overall comparison with other methods and techniques
for supporting intelligence cycles. However, it is useful to summa-
rize here the distinctive aspects of each one of the methods with
a brief comparison with the main competitors.

The first method is devoted to create, analyse and assess hy-
potheses of intentional attacks (i.e., terrorism events). It combines
probability, fuzzy and rough set theories and supports decision
makers and analysts of counter-terrorism in the analysis of intel-
ligence information and its correlation to behaviours of terrorist
groups. In comparison with other approaches based on structured

7



analytic techniques for intelligence analysis (e.g., [10]), compu-
tational intelligence techniques (e.g., [11], [12], [13]), evidential
reasoning (e.g., [14]) or combinations of structured analytic tech-
niques with Bayesian probabilistic framework (e.g., [15]), we pro-
vide an interesting enhancement with the inclusion of a three way
decisions model that allows decision makers to reason in a sim-
plest and more immediate way [16]. Furthermore, the method is
interactive and such to analyse and assess hypotheses on the basis
of a very limited and coarse-grained set of information.

The second method works in continuity with the results of the
first one. Once assessed attack hypotheses, this method has the
objective of supporting decision makers in analysing and protect-
ing targets of attack, such as large-scale infrastructures or urban
areas, by identifying a secure partition of the target area. The
method works on a limited set of information relating to the vul-
nerabilities of targets, and probability information regarding how
vulnerabilities can impact meaningful partitions. This method is
a heuristic for rapid decision making on how to defend targets
by splitting these targets into parts. It can be compared with i)
zone partition methods (e.g., [17], [18], [19]), and ii) game the-
ory heuristics based on attacker-defender models ([20], [21], [22],
[23], [24]). With respect to i), the proposed method introduces
concepts and ideas originating from resilience programmes, such
as risk and vulnerability indexes, and uses the concept of stochas-
tic dominance to analyse and compare different threat scenarios.
Moreover, an important objective of our method is to maintain the
human (i.e., the decision maker) in the loop by explicitly consider-
ing her/his perspective into the definition of parts, and supporting
her/him in the analysis of results at different levels of granularity.
With regards to ii), the basic assumptions of the proposed method
differ from these works, since there are no strict assumptions on
the utility for an attacker, which may be reasonable in the early
stages of analysis in most cases.

With the third method, concepts of resilience analysis are in-
tegrated in the Granular Situation Awareness (GSA) model. GSA
[25] is a cognitive model based on the application of GrC in and
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across all the levels of a SA model. The objects of computation in
GSA are granules and granular structures that can be constructed
according to different criteria. We consider the definition of re-
silience of a system provided by the National Academy of Science,
i.e. the ability to plan and prepare for, absorb, respond to, and
recover from disasters and adapt to new conditions [26], and use
the model defined in [27] that is aligned with the above reported
definition. The main merit of this last result lies in the proposal
of a general frame that clearly underpins the adoption of GrC for
resilience analysis allowing to support the shift previously outlined
concerning the rethinking of security in situational and resilience
terms.

1.1.3 So what? - Implications and limitations

for the stakeholders

The results reported in this thesis are intended for analysts and
decision makers that want to have an improved awareness on what
happens under an intentional attack, and take rapid decisions on
possible perpetrators of an attack, on assets that have to be better
protected and/or to preserve an adequate level of resilience. The
improved awareness has to be gained at both the levels of causes
(e.g., analysis and assessment of attacks hypotheses) and effects
(e.g., consequences of the attacks). The rationale behind the pro-
posed approaches is to maintain the human in the loop of this
process by providing granular information allowing him to rapidly
perceive, comprehend and project a situation of attack in terms
of potential perpetrators, threat consequences, attack evolutions.

However, to improve awareness, information must be provided
in a simple and effective way to take decisions. To this purpose,
the methods proposed in this thesis share a common approach that
models a particular class of human ways of problem solving and
information processing: the theory of three-way decisions (3WD)
[28]. As Yao precisely discusses in [28]1, 3WD are built on solid
cognitive foundations and offer cognitive advantages and benefits.

1See section ”Cognitive Basis and Advantages of Three-Way Decisions” of
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Instead of repeating the considerations already done in [28], we
only evidence how 3WD are used in several real scenarios such as
triage systems in emergency departments, medical decision making
(i.e., treatment, further test, or non-treatment), hypothesis testing
(i.e., accept, reject, or continue testing).

In all these settings, the adoption of 3WD offers advantages in
terms of reduction of cognitive load, simplicity and flexibility that
can enable rapid decision making, allowing decision makers make
quick and right decisions for some cases and focus more efforts on
some other cases. However, 3WD are based on human heuristics
and, as such, suffer from cognitive biases and errors.

In intelligence analysis, cognitive biases and errors are well
analysed by Heuer in [29]. Even if biases and errors can not be
eliminated, they can be reduced adopting structured analytic tech-
niques [10] involving a step-by-step process that ”externalizes” the
analysts thinking. In other words, the idea behind the adoption
of these techniques is to make explicit some implicit assumptions
of the analysts. This makes easier to identify biases and errors.

The methods presented in this thesis share the rationale behind
the structured analytic techniques, i.e., to generate a wide set of
hypotheses and scenarios that can challenge the analysts thinking.
Furthermore, the methods defined use probability theory allowing
to ”include mechanisms to ensure analysts reason probabilistically”
and to ”be less likely to over-estimate the likelihood of rare out-
comes and more likely to make calibrated assessments that properly
identify the relative strengths of the arrayed hypotheses” [30].

1.2 Structure of the thesis and Publi-

cations

The structure of this thesis is as follows:

• Chapter 2 provides background information on GrC. Since
3WD, Rough Sets and their extensions are the principal for-

[28]
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mal setting of GrC employed in this thesis, the chapter also
reports information on these models.

• Chapter 3 presents the three methods contextualised in an
unifying scenario. It positions also the presented results with
respect to competitors. Specifically:

– section 3.1.1 presents the method to derive, analyse and
assess hypotheses of intentional attacks,

– section 3.1.2 presents the method for secure partition
of targets of intentional attacks,

– section 3.1.3 presents the method to analyse the re-
silience of infrastructures or urban areas in the case of
intentional attacks.

• Chapter 4 presents experimental results and an evaluation
based on a case study for, respectively, the first and second
methods above mentioned.

• Chapter 5 presents conclusions and draws future works.

• Appendices A and B report tables related to experimenta-
tion of the method to create, analyse and assess intentional
attacks hypotheses.

The results presented in this thesis have been accepted for
publication or published in international journals. Specifically:

• The method described in section 3.1.1 and evaluated in 4.1
has been accepted for publication in IEEE Transactions on
Fuzzy Systems journal with the title ”Hypotheses Analysis
and Assessment in counter-terrorism activities: a method
based on OWA and Fuzzy Probabilistic Rough Sets” (Au-
thors: H. Fujita, A. Gaeta, V. Loia, and F. Orciuoli) [31].

• The method described in section 3.1.2 has been published
in the paper ”Improving awareness in early stages of secu-
rity analysis: A zone partition method based on GrC.” in

11



Applied Intelligence, 2019, 49.3: 1063-1077 [32]. The evalu-
ation of this method in section 4.2 has been contextualised,
starting from [32], to terrorism events from GTD.

• The method described in section 3.1.3 has been published
in the paper ”Resilience Analysis of Critical Infrastructures:
A Cognitive Approach Based on Granular Computing” in
IEEE Transactions on Cybernetics, vol. 49, no. 5, pp. 1835-
1848, May 2019 [33].

In addition, the Granular Situation Awareness model, at the
core of the resilience analysis, has been published in the chapter
”Ambient Intelligence: A Perspective of Granular Computing.” In
Wiley Encyclopedia of Electrical and Electronics Engineering, J.
G. Webster (Ed.) [25].
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Chapter 2

Background on Granular

Computing

GrC is a computational paradigm devoted to represent, reason
on and process basic information, namely granules. Zadeh [4] de-
fines a granule as a clump of points (objects) drawn together by
indistinguishability, similarity, proximity or functionality.

GrC can be defined according to different perspectives. Yao [5]
defines a triarchic theory of granular computing combining three
perspectives: philosophy of structured thinking, methodology of
structured problem solving, and mechanism of structured informa-
tion processing. As structured thinking, GrC allows discovering
and reasoning on multi-level abstractions that exist in the real
world, and supports analysts in achieving both an accurate and
natural description, as well as in-depth understanding, of the in-
herent structures and complexity of the real world. As a structured
problem solving method, GrC is based on a divide and conquer
strategy, which promotes the creation and adoption of hierarchi-
cal organizations and structures. With this strategy, a problem
described with larger granules can be decomposed into a family
of sub-problems (top-down) described with smaller granules, and
the solution of the problem is obtained by combining the solutions
of sub-problems (bottom-up). With respect to the perspective of
information processing, GrC offers a way to create and process
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information granules. The creation of granules is usually refereed
to as granulation. The created granules can be considered as basic
elements of knowledge. Granules may be built at different levels of
abstraction and, by changing the size of the granules, it is possible
to hide or reveal a certain amount of details.

Different formal settings, such as set theory, interval calculus,
fuzzy sets, rough sets, shadowed sets, can be used for granulation.
In each one of these environments, granules and granulation are
defined in different ways but, in all cases, granules can be organized
in more complex Granular Structures. A wide set of relationships
has been developed [34] [28] to organize granules in hierarchies,
trees, networks, and so on.

A challenge in GrC is how to design granules in an appropri-
ate way, where the term ”appropriate” refers to the creation of
information suitable and representative of experiential evidence, a
specific context or application domain. Pedrycz et al. [35] [36]
have proposed the principle of justifiable granularity as a way
to evaluate the performance of informative granules. This prin-
ciple is based on a trade-off between two measures that do not
strictly depend on the specific application: coverage and speci-
ficity. In general, coverage is related to the ability of covering
data and specificity deals with the level of abstraction of the gran-
ule by considering its size. Another criterion to design granules
is the principle of uncertainty level preservation [37] [38] that is
mainly focused on evaluating the quality of the granulation itself.
By considering information granulation as a mapping between in-
put and output, this principle considers the quantification of the
uncertainty as an invariant property to be preserved during the
process of granulation. The difference between the input and out-
put entropy is considered as an error to be reduced for a proper
granulation of information.

As mentioned, for the results presented in this thesis, we have
adopted mainly rough sets and some of their extensions (namely,
dominance based rough sets and fuzzy probabilistic rough sets)
as principal formal setting for granulation, and Ordered Weighted
Averaging (OWA) operators to perform aggregations on fuzzy val-
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ues. Background information on these approaches is given in the
following sections.

2.1 Rough Sets and three way decisions

The Rough Set Theory (RST) of Pawlak is a well-known math-
ematical tool that is useful to deal with imprecise, inconsistent,
incomplete information and knowledge [39]. RST can be used to
form concepts and infer rules through an equivalence relation [40].

The basic concepts and definitions of RST are reported in the
following.

First of all, being S an information system defined as the 4-
tuple: S =< U,R, V, f >, R = C ∪ D, where U is a finite non
empty set of objects, R is a finite non empty set of attributes,
the subsets C and D are called condition and decision attribute
sets, respectively. V =

⋃

a∈R Va, where Va is the set of values
of attribute a, and f : R → V is an information or a description
function. Given any subset of attribute setB ⊆ R, an indiscernible
relation IND(B) on the universe U can be defined as follows,

IND (B) =
{

(x, y) | (x, y) ∈ U2, ∀b∈B (b(x) = b(y))
}

(2.1)

The equivalence relation is an indiscernible relation, the equiv-
alence class of an object x is denoted by [x]IND(B) and the pair
(

U, [x]IND(B)

)

is an approximation space.

Given an information system S =< U,R, V, f >, for a subset
X ⊆ U , its lower approximation set is defined as:

apr (X) = {x ∈ U | [x] ⊆ X} (2.2)

and its upper approximation set by:

apr (X) = {x ∈ U | [x] ∩X 6= ∅} , (2.3)

where [x] is the equivalence class of x.
The rough membership for the element x ∈ U can be defined

as:
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µX (x) =
|X ∩ [x]|

|[x]| (2.4)

and can be used to describe inaccuracy for x ∈ X.
The Three-way Decisions Theory (3WDT) [41] has been intro-

duced to divide the universe U into three disjoint regions: pos-
itive (POS), negative (NEG) and boundary (BND). These three
regions are viewed, respectively, as the regions of acceptance, re-
jection, and non-commitment in a ternary classification [42]. More
formally, it is possible to define:

POS(X) = apr (X) ,
BND(X) = apr (X)− apr (X) ,

NEG = U − apr (X) .
(2.5)

If x ∈ POS(X), then it belongs to target set X certainly.
If x ∈ NEG(X), then it doesn’t belong to target set X cer-
tainly. As third option, there is the non-commitment region: if
x ∈ BND(X), then it cannot be determined whether the object
x belongs to target set X or not.

A variant of traditional rough sets is represented by probabilis-
tic rough sets [43]. In particular, suppose U the universe and let
E ⊆ X × X be an equivalence relation on U . For an element
x ∈ U , the equivalence class containing x is [x]E = {y ∈ U |xEy}
and the quotient set of U is denoted by U/E = {[x]E|x ∈ U}. For
a particular X ⊆ U containing instances of a concept, Pr (X|[x]E)
denotes the conditional probability of an object in X given that
the object is in [x]E. The lower and upper approximations of
a concept X are defined by using a threshold pair (α, β) (with
0 ≤ β < α ≤ 1) as follows:

apr
(α, β)

(X) =
⋃

{[x]E ∈ U/E|Pr (X|[x]E) ≥ α}, (2.6)

apr(α, β) (X) =
⋃

{[x]E ∈ U/E|Pr (X|[x]E) > β}. (2.7)
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Similarly to eq. (2.5), the (α, β)-probabilistic positive, nega-
tive and boundary regions can be defined based on (α, β)-lower
and upper approximations, which are also named as probabilistic
three-way decision model [44]:

POS(α,β) (X) = apr
(α,β)

(X) , (2.8)

NEG(α,β) (X) = {[x]E ∈ U/E|Pr (X|[x]E) ≤ β} , (2.9)

BND(α,β) (X) = {[x]E ∈ U/E| β < Pr (X|[x]E) < α} . (2.10)

The conditional probability may be defined as a degree of con-
fidence that an object having the same description as x belongs to
X. We accept it to be in X if the confidence level is greater than
or equal to level α. The same object may be rejected to be in X if
the confidence level is less than or equal to level β. The decision
about object may be deferred if the confidence is between the two
levels.

In 3WD models [45], it is of fundamental importance the de-
termination of the thresholds, α and β. Several approaches have
been proposed based on Shannon entropy [46], chi-square statistic
[47], game theory [48].

In [49], authors present a Bayesian Rough Set (BRS) model,
where the three regions are defined by using the prior probability
as a reference. The two thresholds value is settled to Pr(X). As
a consequence, in the BRS model, an object X is classified in the
positive region if the posterior probability Pr(X|E) is grater than
the prior probability Pr(X). In [49], the local gain g(X|E) =
Pr(X|E)

Pr(X)
− 1 is associated with every elementary set E, and can

be used as quality measure to evaluate the increase of the de-
gree of certainty of decision making. In [50], the BRS model is
further elaborated, and the inverse probabilities (Pr(E|X) and
Pr(E|Xc)) are compared to define the thresholds. The rule for
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positive region Pr(X|E) > Pr(X) is equivalent to the inequali-
ties Pr(E|X) > Pr(E|Xc) meaning that the observed evidence
is more probable assuming hypothesis X instead of its comple-
ment Xc. A pair of thresholds values can be defined on the basis

of the likelihood ratio
Pr(E|X)

Pr(E|Xc)
that is called Bayes Factor. A

formulation of α and β proposed in [50] is:

α =
Pr(X)

Pr(X) + ε01(1− Pr(X))
(2.11)

β =
ε10Pr(X)

ε10Pr(X) + (1− Pr(X))
(2.12)

where α and β are function of prior probabilities Pr(X) and
Pr(Xc), and of two parameters ε01 and ε10 correlated to the Bayes
factor.

It is admissible to set ε01 = ε10 = ε ∈ [0, 1), and we can see that
if ε ≈ 0 then α ≈ 1 and β ≈ 0, leading to the traditional rough
set regions. If ε ≈ 1 it leads to the BRS model with α ≈ Pr(X)
and β ≈ Pr(X). Significance scale values for Bayes factor and
ε are reported in [50]. Those values are also used in the method
presented in section 3.1.1.

2.1.1 Fuzzy Probabilistic Rough Sets

Fuzzy Rough Sets are fuzzy generalization of rough sets introduced
in [51]. The idea was the following. Let be X a non-empty uni-
verse, R a similarity relation on X, and F ∈ F(X) a fuzzy set. A
fuzzy rough set is a pair (R∗(F ), R∗(F )) s.t. for every x ∈ X:

R∗(F )(x) = infy∈Xmax{1−R(x, y), F (y)} (2.13)

R∗(F )(x) = supy∈Xmin{R(x, y), F (y)} (2.14)

Dubois and Prade fuzzy rough sets have been generalized from
max, min to border implicators and T-norm. For an overview
readers can refer to [52].
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Traditional models of fuzzy rough sets do not account for prob-
ability distribution. Among the works that integrate probability
into fuzzy rough sets, we consider [53] and [54].

Hu et al. [53] introduce the concept of fuzzy probabilistic ap-
proximation space as a three-tuple < U,P,R > where U is a non
empty universe, P is a probability distribution over U and R is a
fuzzy equivalence relation. On a fuzzy probabilistic approximation
space, Hu et al. define a measure that can be of interest for us.
First, they define the expected cardinality of a fuzzy equivalence
class [xi]R as:

τi =
n

∑

j=1

p(xj)rij (2.15)

where p(xj) is the probability of xj and rij is the degree of equiva-
lence between xi and xj. On the basis of this measure of cardinality
they also define the information quantity of a fuzzy relation RA

as:

H(RA, P ) = −
n

∑

i=1

p(xi) log τi (2.16)

The information quantity measures the discernibly power of the
subset A.

In [54], fuzzy probabilistic approximation spaces are investi-
gated in relation to 3WD. Authors of [54] recall that the concept
of fuzzy event can be useful in situations in which an ”event” is
fuzzy rather than crisp, such as a group is mostly characterized
by the attack strategy bombing/explosion. If U = {x1, ..., xn} is a
finite set and pi = Pr(xi) for i = (1, 2, ..., n), the probability of a
fuzzy event Ω is [55]:

Pr(Ω) =
n

∑

i=1

Ω(xi)pi (2.17)

Given a fuzzy approximation space, a fuzzy event Ω, and a pair
of thresholds α and β s.t. 0 6 β < Pr(Ω) < α 6 1, Zhao and
Hu define the α-lower and β-upper approximation spaces of Ω as
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[54]: Rα(Ω) = {x ∈ U : Pr(Ω|[x]R) > α}, and Rβ(Ω) = {x ∈ U :
Pr(Ω|[x]R) > β} that in terms of regions is equivalent to:

POS(Ω) = Rα(Ω) = {x ∈ U : Pr(Ω|[x]R) > α}
NEG(Ω) = (Rβ(Ω))c = {x ∈ U : Pr(Ω|[x]R) 6 β}

BND(Ω) = Rβ(Ω)−Rα(Ω) = {x ∈ U : β < Pr(Ω|[x]R) < α}
(2.18)

The computation of the conditional probability is defined as fol-
lows:

Pr(Ω|[xt]R) =

∑n

i=1 p(xi)rtiΩ(xi)
∑n

i=1 p(xi)rti
∀xt ∈ U (2.19)

that can be written also in terms of the expected cardinality of eq.
(2.15).

2.1.2 Dominance Based Rough Sets

Another extension of the rough set model is the dominance-based
rough set approach (DRSA) [56] that uses the dominance relation
� instead of the equivalence one. This approach defines a pref-
erence relation �a s.t. x �a y means that x is preferable to y
with respect to the attribute a ∈ A. If x �a y for every a ∈ A,
we say that x dominates y, i.e., xDAy. For every object x, we
can define a set of objects that dominates x and a set of objects
that are dominated by x, and these are called cones of dominance
and are formalized, respectively, as D+

A(x) = {y | yDAx} and
D−

A(x) = {y | xDAy}.
In our results, we use traditional DRSA for the third method

devoted to analyse resilience of targets of attacks in section 3.1.3,
and a variant of the DRSA that is based on the concept of stochas-
tic dominance [57], for the secure partition method in section 3.1.2.
We report in the following, when possible directly from [57], basic
notations and definitions of this DRSA variant, called dominance
rough set approach under uncertainty:

• U = {u1, ..., um} is a set of objects.
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• Q = D ∪ V is a set of attributes that describe the objects.
In the context of our applications, let be D ⊆ Q a set of
domain and/or performance attributes, and V ⊆ Q a set of
attributes related to attacks.

• Let P = {p1, ..., pn} be a set of states of the universe that
are mutually exclusive and collectively exhaustive. Let λ =
{λ1, ..., λn} be an a priori probability distribution over the
states, s.t. Σn

i=1λi = 1.

• Let A = {a1, ..., aj} be a set of acts.

• L = {L1, ..., Lr} is a set of outcomes, l : P × A → L is a
function that associates with a pair (pn, aj) a value of L. In
our context, the outcomes can be considered losses.

• Π = {π ∈ [0, 1] s.t. π = P (W ),W ⊆ P} is a set of probabili-
ties, where P (W ) = Σi:pi∈Wλi is the probability that one of
the states of W ⊆ P is verified.

• z : A × P → Π and z
′

: A × P → Π are two functions
assigning to each couple (aj, pn) a probability of Π as follows:

z(aj, pn) = Σy:l(aj ,py)≥l(aj ,pn)λy (2.20)

z
′

(aj, pn) = Σy:l(aj ,py)≤l(aj ,pn)λy (2.21)

Therefore, z(aj, pn) represents the probability of obtaining
an outcome whose value is at least l(aj, pn) by act aj. Analo-
gously, z

′

represents the probability of obtaining an outcome
whose value is at most l(aj, pn) by act aj.

• ρ : A×Π → L and ρ
′

: A×Π → L are two functions defined
as follows:

ρ(aj, π) = maxi:z(aj ,pi)≥π{l(aj, pi)} (2.22)

ρ
′

(aj, π) = mini:z
′
(aj ,pi)≥π{l(aj, pi)} (2.23)

These functions report information on outcomes with prob-
abilities. Specifically, ρ(aj, π) = x means that by the act aj,
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the outcome is at least (i.e., greater than or equal to) x with
a probability of at least π. For ρ

′

= x, by the act aj, the
outcome is at most (i.e., smaller than or equal to) x with a
probability of at least π.

As reported in [57], if we order the probabilities of Π, e.g., 0 =
π0, π1, π2..., πn = 1 where n = |Π|, we have ρ(aj, πi) = ρ

′

(aj, π1−i);
therefore, we can reason in terms of ρ or ρ

′

independently.
Before concluding this section, we report a definition of stochas-

tic dominance as follows [58] [57]: given two acts a and b, a domi-
nates b iff, for each outcome x, a gives an outcome at least as good
as x with a probability at least as great as the probability that b
gives the same outcome.

2.2 Ordered Weighted Averaging op-

erators

The Ordered Weighted Averaging (OWA) operator has been de-
fined by Yager [59] and provides a general class of mean like ag-
gregation operation. It has been extensively used and has the
possibility of implementing different types of aggregation by sim-
ply changing parameters associated to OWA. Another interesting
aspect of OWA is that in some situations the weights generation
function can be expressed in natural language with linguistic labels
(such as Relaxed, Moderated, and so on).

In this section we report only basic information on OWA and,
in particular on OWA with probability distribution over the ar-
guments, that is the method we are going to use for derivation of
attack scenarios in section 3.1.1. Interested readers can refer to
[60] for details.

An OWA operator is a mapping F : Rn → R. Given a set of
n weights wj ∈ [0, 1] s.t.

∑n

j=1 wj = 1 and a set of n values to
aggregate (a1, a2, ..., an), OWA is evaluated as:

F (a1, a2, ..., an) =
n

∑

j=1

wjaρ(j) (2.24)
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where ρ is an index function s.t. ρ(j) is the index of the j − th
largest ai. Special cases of OWA are max (when w1 = 1 and the
others weights are 0), min (when wn = 1 and the others weights
are 0), and mean (when wj = 1/n ∀j).

In [61], OWA aggregations are considered in the case we have
a probability distribution over the arguments. So, in addition to
the set of n values to aggregate, we have a set of n probabilities
pi s.t.

∑n

i=1 pi = 1 and:

F ((a1, p1), (a2, p2), ..., (an, pn)) =
n

∑

j=1

(f(Tj)−f(Tj−1))aρ(j) (2.25)

where Tj =
∑n

k=1 pρ(k). Readers can refer to [60] for details and a
discussion on properties of Tj and f(Tj). We conclude mentioning
that, for derivation of attack scenarios in section 3.1.1, as weights
generation function we use f(x) = xγ that is interesting because
the γ parameter allows to generate values ranging from the min
(when γ = ∞, since x < 1 −→ f(x) = 0 and f(1) = 1) to the max
(when γ = 0, since x > 0 −→ f(x) = 1 and f(0) = 0), and this
flexibility is useful for derivation of attack scenarios ranging from
low probability - high risk to high probability - low risk scenarios.
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Chapter 3

The approximate reasoning

methods to support

Intelligence Cycle Stages

This chapter presents the three methods defined in this research
study that, with the support of fig. 3.1, we are going to outline
here before describing them in detail. As we mentioned in the
Introduction chapter, the Intelligence Cycle [9] is the glue among
the presented results. In fig. 3.1, each method is enclosed in a
dashed square. Curved arrows represent the information that is
required. This information can be collected, analysed, processed
and disseminated within an intelligence cycle. Furthermore, to
reinforce the link with the different forms of guidance expected by
an intelligence cycle, left-hand side of fig. 3.1 reports questions at
strategic, tactical and operational levels that are answered by the
methods.

The first method is devoted to create, analyse and assess hy-
potheses of attacks from terrorist groups. It uses historical in-
formation on terrorism events to model the behaviour of terror-
ist groups, information on possible attacks and probabilities that
groups are active in the time period and geographical context un-
der analysis. The output of this method is twofold. First, it
produces a wide spectrum of hypotheses of attack aggregating, in
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Figure 3.1: Overview of the three methods
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different ways, information on possible attacks. The range of hy-
potheses spans from optimistic scenarios (i.e., Low Impact - High
Probability scenarios) to pessimistic (i.e., High Impact - Low Prob-
ability scenarios) and, as second output, these hypotheses can be
analysed and assessed with regards to possible perpetrators of at-
tacks, on the basis of available evidence.

The second method starts from this information, characterized
by uncertainty, about a possible threat, and has the objective of
creating a secure partition of the area or the infrastructure that
is under attack. This initial information is refined to derive and
analyse a set of threat scenarios. A threat scenario is defined as a
combination of an act, its outcomes and the probability distribution
of these outcomes. An act is an attack targeting some objects and
has outcomes in terms of losses/damages. The values of outcomes
depend on how the target areas are defended (e.g., a red zone
should be better defended than a green one), and the probability
distribution of the outcomes depends on how the zones are created
(e.g., if an act can impact on objects in one or more zones). The
modification of the partition, therefore, involves a change of the
outcomes and of how they are distributed. The method finds
the optimum partition by respecting a requirement of maximum
acceptable losses/damages.

The output of the second method can be formalised in a deci-
sion table that partitions the area or the infrastructure under anal-
ysis in three regions, namely red, yellow and green, with different
security requirements. Starting from these regions, and consid-
ering the dependencies among objects of these regions, the third
method performs a resilience analysis to evaluate how the attack
can evolve and its consequences.

3.1 An unifying scenario

The methods are described with the support of an unifying sce-
nario shown in fig. 3.2, which gives indication on the correspon-
dence between a phase of the scenario and the section of this thesis
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reporting the specific method to execute the phase.

3.1.1 Analysis and Assessment of attack hy-

potheses1

Let us suppose that from a set of intelligence sources (such as
informants, social media monitoring services, confidential reports)
information comes up about possible attacks. This information
can refer to attack strategies, types of weapons to be adopted,
types of targets. The decision maker, at this point, starts an
activity of analysis of the possible scenarios compatible with such
information. A number of them can be hypothesized to identify
situations of high probability - low impact, let us call optimistic,
and vice versa, let us call pessimist (see fig. 3.3)

One of the objectives of the analysis is to establish, with a cer-
tain degree of certainty, the possible perpetrator(s) of the attack.
This also serves to better understand the degree of danger of the
threat. To do this, the decision maker collects evidence and evalu-
ates the scenarios created based on the body of available evidence.
The evaluation is done following a three way approach and, there-
fore, the set of possible perpetrators is divided in three regions:
a positive (POS) region including the groups that can perpetrate
the attack, a negative (NEG) region including the groups that can
not perpetrate the attack, and a boundary (BND) region including
the groups for which the analyst can not take decisions (see fig.
3.4). This kind of analysis can be done for different scenarios, such
as optimistic and pessimistic (see the abscissa axis in fig. 3.4), and
the results can be more or less supported by the body of evidence
(see the ordinate axis in fig. 3.4). The analysis is interactive and
the decision maker can use two parameters, γ and ε.

From a formal point of view, the proposed method combines
fuzzy and rough sets with probability theory, and is shown in fig.
3.5.

1The method presented in this section has been proposed and accepted for
publication in [31]
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Figure 3.2: Unifying scenario
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Figure 3.3: Hypotheses and Scenarios

Figure 3.4: Tri-partition of the groups
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Figure 3.5: Overview of the method (elaborated from [31])

It consists of three parts devoted, respectively, to: i) create a
body of evidence from historical data on terrorism events, ii) de-
rive a set of scenarios from the information of Intelligence Sources
(IS), and iii) make an assessment of these scenarios to identify
possible perpetrators of the attack.

i): Evidence collection. The first part relates to the col-
lection of evidence. The starting point is a data set of terrorism
events, U , correctly classified with respect to perpetrators2. An
object of U has to be described with an attack strategy, a target
type, and a weapon type used to perpetrate the attack. A triple
< attack strategy, target type, weapon type > is what we refer to
as attack pattern. An example of U is reported in table 3.1, where
AT is attack type, TT target type, WT weapon type and D is the
group perpetrating the attack. AT , TT , and WT are categorical
attributes that describe an attack pattern. Let us suppose that

2Here and in the following, perpetrator refers to the group that has per-
petrated the terrorist attack
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AT can take 3 values, TT can take 4 values and WT can take 3
values.

Table 3.1: Attack Event Dataset (from [31])
AT TT WT D

e1 3 2 2 g1
e2 2 4 3 g1
e3 3 2 2 g1
e4 3 4 3 g2
e5 3 2 1 g2
e6 2 1 3 g2
e7 3 3 2 g3
e8 3 4 3 g3
e9 3 3 2 g3
e10 1 4 3 g3

From U , we derive a new data set, U∗, reporting information
on groups behaviour. For each group we create an object of U∗

and describe this object in terms of relative frequencies of attack
strategies, target types and weapon types. We can regard a rela-
tive frequency of specific attack strategy (e.g., bombing/explosion)
as a degree of membership of this strategy to a group. In a similar
way, we consider the relative frequencies of a target type and a
weapon type. Objects of U∗ can be considered as fuzzy models
of groups behaviour. U∗ can be easily created using elementary
granules of knowledge (i.e., equivalence classes) from U .

More formally: let be (U,A, V ) a decision table with U an
universe of objects, A = C ∪ D a set of attributes, and V a set
of attributes values. Let be C the set of conditional attributes, D
the set of decisional attributes, and C ∩D = φ.

Let be U∗ the partition of U induced by D, U∗ = {U/D} =
{[d1], ..., [dn]} with n = |D|, where | · | is a measure of cardinality.
Let be C∗

ip the partition of U induced by the i − th conditional
attribute and p − th decisional attribute Cip = {ci, dp}, C∗

ip =
{U/Cip} = {[cip]1, ..., [cip]m} with m = |VCi

| where VCi
⊆ V is the

subset of all the values admissible for ci.
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Let us define f : Ci × VCi
→ A∗

i . f generates a new attributes
set A∗

i derived from the conditional attribute ci. This set has the
same cardinality m of VCi

. Let us define an information function
s : U∗ × A∗

i → V (A∗
i ) s.t. for any u∗ ∈ U∗ and a∗ ∈ A∗

i we have:

s(u∗, a∗) = v(a∗l ) =
|[cip]l|
|[dp]|

for l = 1, ...,m.

Now let be A∗ = ∪i{A∗
i } and V ∗ = ∪i{V (A∗

i )}, and we can
define an information system (U∗, A∗, V ∗)

An example is reported in table 3.2. In this case, U∗ derives
from the table 3.1. We can observe that there are 3 conditional
attributes (i = 1, 2, 3 = AT, TT,WT ) and 3 classes (p = 1, 2, 3 =
g1, g2, g3). U∗ = {U/D} consists of the following equivalence
classes: {[g]1, [g]2, [g]3} = {{e1, e2, e3}, {e4, e5, e6}, {e7, e8, e9, e10}}.
For i = 1 and p = 1, we evaluate the partition of U induced by
the first conditional attribute AT and the first group g1: C∗

AT1 =
{[AT1]1, [AT1]2, [AT1]3} = {{φ}, {e2}, {e1, e3}}. From f we have
A∗

AT = {AT1, AT2, AT3} and from s, in the case of group 1 (i.e.,
u∗ = [g]1), we have V (A∗

AT ) = {0, 1/3, 2/3}.
We repeat these steps for the other conditional attributes:

C∗
TT1 = {[TT1]1, [TT1]2, [TT1]3, [TT1]4} = {{φ}, {e1, e3}, {φ}, {e2}};

C∗
WT1 = {[WT1]1, [WT1]2, [WT1]3} = {{φ}, {e1, e3}, {e2}}. From

f and s: A∗
TT = {TT1, TT2, TT3, TT4}, A∗

WT = {WT1,WT2,WT3},
and V (A∗

TT ) = {0, 2/3, 0, 1/3}, V (A∗
WT ) = {0, 2/3, 1/3}.

A similar procedure is applied for u∗ = [g]2 and u∗ = [g]3, and
we have the results reported in table 3.2.

A row of U∗ represents a fuzzy model of the behaviour of a
group with respect to its attacks strategies, targets and weapons
adoption.

Table 3.2: Fuzzy models of group behaviour (from [31])
AT1 AT2 AT3 TT1 TT2 TT3 TT4 WT1 WT2 WT3

g1 0 0,333333 0,666667 0 0,666667 0 0,333333 0 0,666667 0,333333
g2 0 0,333333 0,666667 0,333333 0,333333 0 0,333333 0,333333 0 0,666667
g3 0,25 0 0,75 0 0 0,5 0,5 0 0,5 0,5

From U∗ we use a fuzzy equivalence relation, R, to derive a
body of evidence in the form of fuzzy equivalence classes. When
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derived from U∗, in fact, a fuzzy equivalence class is a sort of
evidence that a group behaves more or less similarly to others.
With the addition of a probability distribution, P , we construct a
fuzzy probabilistic approximation space, < U∗, P, R >, as defined
in [53] (see section 2.1.1). A pi ∈ P is the probability that a group
gi is active in the time period and geographical context under
analysis. P is derived from U referring the number of events of gi
to the total number of events in U .

Specifically, as fuzzy relation, we adopt the Gaussian kernel:

k(a, b) = exp(−|a− b|
2σ2

) (3.1)

that, as described in [62], induces a fuzzy relation satisfying the
properties of reflexivity and symmetry, and as shown in [63] [64] is
Tcos − transitive, where Tcos(a, b) = max(ab−

√
1− a2

√
1− b2, 0)

is a t-norm. Thus any fuzzy relation computed with Gaussian
kernel is a Tcos equivalence relation [62]. An interesting property
of Gaussian kernel is that the kernel induced by the individual
fuzzy relations [62] comes in the form:

Rn
GK(xi, xj) =

n
∏

s=1

Rs
GK(xi, xj) (3.2)

Let us give an example of evidence collection. Let be {A∗
AT} ⊂

{A∗
AT ∪ A∗

TT} ⊂ A∗ a nested sequence of attributes. Using eq.
(3.1) we have the three similarity matrices reported in tables 3.3,
3.4 and 3.5. Since A∗ = AT ∗ ∪ TT ∗ ∪ WT ∗ we can derive from
tables 3.5 and 3.4 a similarity matrix for WT ∗ using eq. (3.2):

SIMWT ∗ =
SIMA∗

SIMA∗

AT
∪A∗

TT

shown in table 3.6.

These tables can be analysed to reason on similarity of be-
haviour of groups with respect to different attributes. For in-
stance, table 3.3 reflects the fact that g1 and g2 adopt the same
attack strategies, and table 3.6 informs that g1 and g3 are similar
with respect to the selection of weapon types. Besides this, they
describe the fuzzy partition of the universe in terms of fuzzy equiv-
alence classes of groups. These are basic elements of knowledge
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Table 3.3: SIMA∗

AT

g1 g2 g3
g1 1 1 0.6447183
g2 1 1 0.6447183
g3 0.6447183 0.6447183 1

Table 3.4: SIMA∗

AT
∪A∗

TT

g1 g2 g3
g1 1 0,582611 0,111391
g2 0,582611 1 0,191193
g3 0,111391 0,191193 1

Table 3.5: SIMA∗

g1 g2 g3
g1 1 0,115216 0,097318
g2 0,115216 1 0,074282
g3 0,097318 0,074282 1

Table 3.6: SIMWT ∗

g1 g2 g3
g1 1 0,197759 0,873664
g2 0,197759 1 0,388519
g3 0,873664 0,388519 1
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for 3 way reasoning and, thus, we may understand that the dis-
cernibility power of a relation can play a key role in classification.
Here the measures introduced by Hu et al. in [53] and reported in
section 2.1.1 are of interest for our cases since include probabilities
of objects.

Let us better explain the importance of probabilities in our
context with an example similar to the one reported in [53]. Let
us suppose two relations, R1 and R2, an look at tables 3.7 and
3.8. They seem to have a similar discernibility power, allowing to
differentiate one group in both the cases. This is confirmed if we
evaluate the information quantity using eq. (2.16) of section 2.1.1

in the case of objects uniformly distributed, i.e. p(gi) =
1

3
. In this

case: H(R1) = H(R2) = 0.041.

Table 3.7: SIMR1

g1 g2 g3
g1 1 1 0.8
g2 1 1 0.8
g3 0.8 0.8 1

Table 3.8: SIMR2

g1 g2 g3
g1 1 0.8 1
g2 0.8 1 0.8
g3 1 0.8 1

However the if we consider the probability distribution of our
example, Pr = (3/10, 3/10, 4/10), it results that: H(R1) = 0.044,
H(R2) = 0.038 with H(R1) > H(R2). This is the effect of prob-
abilities: since p(g3) is greater than p(g1) and p(g2), and g3 is
separable with R1, the discernibility power of R1 is higher than
the one of R2.

For terrorism groups analysis this has an important conse-
quence: relations with high discernibility power induce partitions
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that tend to better separate more active groups (e.g., with high
probability values) to less active ones.

ii): Scenarios derivation. The second part of the method
is focused on the derivation of scenarios, such as the pessimistic
and optimistic ones already mentioned, starting from the informa-
tion of the IS. These scenarios are based on hypotheses related to
terrorism attack events, which are modelled as fuzzy events such
as: a group with a certain degree of expertise (e.g., low, medium,
high) can perpetrate the attack. More formally, they are modelled
as:

Ω =
λ1

g1
+

λ2

g2
+ ...+

λn

gn
(3.3)

where n is the number of known groups, + is the union operator
and λi is a degree of similarity between the group gi and the Target
Group (TG). TG refers to the group that could perpetrate the
hypothetical event, and if we define a way to create a behavioural
profile of this TG we can use a similarity measure, such as the one
proposed in [65], to evaluate the extent to which the behaviour
of a known group is similar to the target one. Values of λi in eq.
(3.3) can be obtained with:

λi = Sim(Gi, TG) =
|Gi ∩ TG|

|Gi|
(3.4)

Eq. (3.4) gives information on how much the profile of a know
group, Gi, is similar to the profile of the target one, TG, by com-
paring the common elements between these two profiles and refer-
ring this number to the elements of Gi. Let us note that in general
Sim(Gi, TG) 6= Sim(TG,Gi).

The challenge is how to profile TG. The approach we follow
is to start from information of intelligence sources, IS1, ..., ISn,
about patterns of attacks, derive some values referring to these
patterns from the active groups, and aggregate these values. Here
OWA operators are interesting since allow different kinds of aggre-
gation, supporting derivation of different cases: from pessimistic
one referring, generally, to situations where also groups with a rel-
ative low experience on the patterns assumed by the IS can carry
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out the attack combining all the patterns, to optimistic one re-
ferring, generally, to situations where groups with a relative high
experience on the patterns assumed by the IS can carry out one
of the pattern. The two situations mentioned refer respectively
to low probability - high impact and high probability - low impact
scenario analysis.

To create a profile of TG, we use a concept similar to the user
signature defined in [65]. First, we create profiles of the known
groups with respect to the types of information of our interest.
For the triples < AT, TT,WT > we derive a fuzzy set starting
from the data set of events in table 3.1: Gi = ÂT × T̂ T × ŴT
where ÂT , T̂ T and ŴT are the fuzzy sets derived following the
approach of user signature in [65] [66] and we use min as a tNorm.
Gi is a fuzzy set of the co-occurrences of < AT, TT,WT > for the

group gi, and can be written as: Gi = { µATaTTbWTc

ATaTTbWTc

} where

µATaTTbWTc
=











min(µATa
, µTTb

, µWTc
), If a co-occurrence

exists.

0, Otherwise.

We assume: i) IS are trusted, ii) information on patterns of
attack refers to elements (e.g., attack strategies, weapon types)
available in the data set, and iii) we have not a probability dis-
tribution that can be associated to IS (e.g., if two out of three IS
report the same information, this does not represent information
with greater probability).

Let us suppose IS1 gives the following information: the hy-
pothesis of attack follows the pattern < AT2, TT1,WT3 >. We
can derive n values associated to this pattern, if n is the number
of active group. We use OWA with probability distribution over
the arguments to aggregate the n values and obtain one value for
this pattern that will be associated to TG. The probability dis-
tribution we use is the probability distribution of activity of the
groups. We repeat the procedure for all the IS and we create a
profile of TG. Then we can use a tNorm, such as min, to evaluate
the cardinality of Gi ∩ TG in eq. (3.4).

The parameter γ of OWA has influence on the aggregation
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procedure. Variations of γ from ∞ to 0 lead to results that can
vary between the minimum and maximum of the values to be
aggregated, and therefore the construction of TG profiles with
different behaviours (e.g., more or less similar to groups with low
or high degrees of experience in the execution of a pattern). This
allows the derivation of different scenarios to be investigated based
on different fuzzy events Ω that can move in the range Ωγ→∞ (e.g.,
a group with very low experience can carry out the attack) to Ωγ→0

(e.g., a group with very high experience can carry out the attack).
Let us give an example of derivation of Ω for 3 scenarios.
Let us suppose two IS agree on an attack towards military

units (TT4) with a weapon whose components are produced from
radioactive material (WT3). They diverge on the attack strategy
supposing, respectively,a bombing/explosion (AT3) and an armed
assault (AT2). From table 3.1 we construct the fuzzy profiles of
the groups (only the elements for which the membership is 6= 0
are reported):

G1 = { 0.667

AT3TT2WT2

,
0.333

AT2TT4WT3

};

G2 = { 0.333

AT3TT2WT1

,
0.333

AT2TT1WT3

,
0.333

AT3TT4WT3

};

G3 = { 0.5

AT3TT3WT2

,
0.25

AT1TT4WT3

,
0.5

AT3TT4WT3

}.
The values to aggregate for the first IS are IS1 = (0, 0.333, 0.5)

and the probability distribution is Pr = (3/10, 3/10, 4/10). Since
IS13 > IS12 > IS11 the order of indexes is ρ1 = 3, ρ2 = 2
and ρ3 = 1. The values of T are: T1 = 0.4, T2 = 0.7, and
T3 = 1 and we can use these values to generate the weights for the
OWA using the generation function parametrized on γ: f(T ) =
T γ. Let use consider three cases: γ = ∞ , γ = 0.5 and γ = 0
and associate to these cases three labels: pessimistic, moderated,
and optimistic. These labels refer to the creation of fuzzy events
modelling different hypotheses.

The OWA values are: IS1pessimistic = 0, IS1moderated = 0.384,
and IS1optimistic = 0.5. The first and the third correspond to
the minimum and maximum values of < AT3, TT4,WT3 > of the
three groups. We can repeat the same operations for IS2 =<
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AT2, TT4,WT3 > and obtain: IS2pessimistic = 0, IS2moderated =
0.183, and IS2optimistic = 0.333

The fuzzy profile of the TG group in the moderated case is:

TG = { 0.384

AT3TT4WT3

,
0.183

AT2TT4WT3

}. In the other two cases, pes-

simistic and optimistic, the membership values for the two ele-
ments are the respective OWA values. Using eq. (3.4) and (3.3) we

have: Ωpessimistic =
0

g1
+

0

g2
+

0

g3
, Ωmoderated =

0.183

g1
+
0.333

g2
+
0.307

g3
,

and Ωoptimistic =
0.333

g1
+

0.333

g2
+

0.400

g3
.

We note that γ = ∞ and γ = 0 are theoretical values and,
in the experimentation reported in section 4.1, we use different
values to model pessimistic and optimistic scenarios.

iii): Assessment of scenarios to identify perpetra-
tors. The derived hypotheses must be assessed with the support
of evidence, and the last phase evaluates Ω using probabilistic
three way reasoning methods such as the ones reported in the sec-
tion 2.1.1. The computation of conditional probabilities is done
with eq. (2.19) of section 2.1.1. Using the BRS model summarized
in section 2.1, the evaluation of α and β is parametrized on ε ac-
cording to eq. (2.11) and (2.12) of section 2.1. ε gives information
on the evidence supporting Ω. From [50] we know that:

Ω is ε − positively verified, if and only if Pr([g]|Ωc) 6

εPr([g]|Ω)
and that for lower values of ε ∈ [0, 1), the positive hypothesis

verification under the evidence [g] ∈ U

RB

requires more significant

advantage of Pr([g]|Ω) over Pr([g]|Ωc).

So, the second parameter of the method, ε, has an influence
on setting the three way decision thresholds in the BRS model. In
particular, variations of ε from 1 to 0 lead to enlargements of the
boundary region. This fact implies that more evidence is required
in support of the hypothesis Ω.

The decision procedure of the method is shown in fig. 3.6,
where the boxes related to collection of information and derivation
of hypotheses refer to part ii) of the method, the box related to
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Figure 3.6: Decision Making Process (from [31])

collection of evidence refers to part i).

As mentioned, different values of γ allow to derive hypotheses
that model different scenarios.

Let us discuss the analysis and assessment of Ωγ1 derived with
a specific value of γ. With 3WD, the decision maker can classify
the groups under analysis in three regions: a positive region (POS)
where s/he can accept the hypothesis that the groups falling in this
region may perpetrate the attack, a negative one (NEG) where
s/he can reject the hypothesis that the groups falling in this region
may perpetrate the attack, and a non commitment one (BND)
where s/he needs additional information to take decision. Let us
suppose Ωγ1 refers to a low value of ε. As already discussed, low
values of ε bring to large boundary regions, and to decision results
that are more supported by evidence. Let be α1 and β1 the two
thresholds obtained with this value of ε for Ωγ1. The decision
maker can accept the hypothesis that groups in the POS region
(shown with a dark green colour in fig. 3.6) can perpetrate the
attack, and can reject groups in the NEG region (with dark red
colour in fig. 3.6) as perpetrators. The decisions taken with low
values of ε are strongly supported by evidence. However, between
β1 and α1, the decision maker can not take decisions with the
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same level of support. S/he should defer the decision awaiting new
information on the target sub-type, a specific weapon, or other
details that can not be available in the early stages of analysis.
So, the decision maker can decide to reassess the hypothesis with a
reduced support of evidence, using a higher value of ε. This means
the creation of new regions (shown with light green and light red
colours in fig. 3.6), with a reduction of the non commitment one
and, thus, new information can emerge. The trade off is, however,
that this information is less supported by the evidence.

The decision maker can also start the assessment with a high
value of ε to obtain preliminary information (barely noteworthy,
the orange and yellow regions in fig. 3.6) and proceed with a re-
assessment reducing the values of ε to verify if these indications are
better supported by evidence. This way of working is illustrated
with the dashed line in fig. 3.6.

Using the two parameters, γ and ε, the decision maker can
therefore derive and assess several scenarios against the body of
evidence, obtaining results that can be more or less supported
by evidence. The scenarios, as stated previously, can consider
pessimistic and optimistic cases. The decision maker can also
understand how groups behave when moving among these types
of scenarios.

First, we clarify why the term experience used as a predicate
that can vary its degree (e.g., between very low and very high) is
realistic in the phenomenon of terrorism. Terrorism is a human
phenomenon, not deterministic, but the success of a terrorist at-
tack, as well as the mere possibility of executing it, are not the
result of chance. Behind the execution of a particular attack pat-
tern, there are several factors including training, skills, availability
of information and weapons, which make the difference in the pos-
sibility that a group has or does not have to carry out an attack.
We decided to group all these elements together into the term ex-
perience and measure it based on the historical information of a
group.

Now, we believe that a method of analysis that has the ability
to reveal the degree of a group’s experience with respect to a pat-
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Figure 3.7: Horizontal and Vertical movements

tern, or a combination of attack patterns, offers a higher and more
useful knowledge than a simple classification or prediction result.
To better clarify the usefulness of the method, we can make an
analogy with the difference between trajectory and position. The
first represents the movement an object makes to get to a posi-
tion. It is clear that his knowledge is superior, also due to the mere
fact of being able to identify intermediate points with respect to
the final position. In deriving and analysing different hypotheses,
from Ωγ→∞ to Ωγ→0, we reflect this analogy between trajectory
and position, and we provide the analyst with information on the
movement that detects the degree of groups’ experience. But, pre-
cisely, in this way we make movement in a single direction, that
of degree of experience, which we define as horizontal.

Still with reference to our analogy, and looking at fig. 3.7,
we know that a trajectory (e.g., from A to B) combines horizon-
tal movements with vertical ones. The vertical movement in our
method is equivalent to requiring more or less evidence to assess
the hypotheses we are investigating. With reference to fig. 3.7 a
vertical movement from A to B is executed with a variation from
ε → 1 to ε → 0.

An analyst can decide to follow the red dotted line of fig. 3.7
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and s/he looks at how groups reveal their degree of experience
and, at a certain point of this trajectory, looks for more evidence
supporting the hypotheses, or s/he can decide the opposite way
following the black dotted line, or also use other trajectories.

We have to answer now the question of why an analyst should
spent time and effort in analysing hypotheses that fall around
point A, i.e., low degree of experience and low support of evidence.
The answer, in our opinion, can be found in [67] and, specifically,
in reference to the danger of inherited assumptions. Even if stated
in a somewhat different context, this problem can be formulated
also in our case. The fact that a group has a high experience on a
pattern builds a sort of preference for this hypothesis and, on the
other hand, a low experience on a pattern becomes (or better, is
treated as) evidence against an hypothesis. Inherited assumptions
are like stones or fixed points in a plane and, to avoid the risk
of over-reliance on these assumptions, they have to be sufficiently
questioned in reference to concrete evidence and examined also in
reference to their possibility of gradually change. This motivates
the need for our vertical and horizontal movements.

The method has been evaluated and validated on real data
extracted from the GTD. Results are reported in section 4.1.

3.1.2 Secure partition for target protection3

Attributing scenarios to possible perpetrators improves the aware-
ness of the decision maker with regards to threats. S/he is now
aware of who can carry out the attack, of his experience and poten-
tial danger, and can make an assessment of the scenario regarding
expected losses. This is aimed at establishing strategies and ac-
tions, as well as planning resources, to defend a target of attack.
The decision maker can define strategies and actions to limit, in
most cases, the expected losses.

For instance, for a specific attack strategy a1, a decision maker
can decide to limit the losses or damages to a maximum of L1 with
a probability of at least 0.3, to L2 with a probability of at least

3The method presented in this section has been published in [32]
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Figure 3.8: Target of attack hypotheses

0.5, to L3 with a probability of at least 0.6. Similarly for other
hypothesized attack strategies.

The objective of the method presented in this section is to
support the decision maker in partitioning a target respecting the
requirements mentioned above. Let us suppose the target of the
attack is an urban area (see fig. 3.8). Let us suppose a1 and a2 are
two attacks that can impact specific points of the urban area. Let
be v(u) an evaluation function for these points. If the value of v for
a point of interest is greater than a threshold, v(u) > α, the point
is considered important and to protect with high priority. As such
it can be included in a red zone. Similarly, if the assessment is
below a threshold, v(u) < β, a point is considered less important,
and consequently inserted into a green zone. The challenge is how
to set α and β to maintain losses and damages within the limits set
by the decision maker, discussed at the beginning of this section.

The method uses DRSA under uncertainty (see section 2.1.2)
to perform analysis of threat scenarios. A threat scenario consists
of an attack aj, a set of expected losses on parts of the parti-
tion, l(pi, aj), and a set of probabilities associated to these losses,
z
′

(pn, [a]j). More formally: TSj = ([a]j, < l(p1, [a]j), ..., l(pn, [a]j) >
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Table 3.9: Information table of PoI
d1 d2 a1 a2

u1 3 4 1 0
u2 3 2 1 1
u3 1 2 1 1
u4 2 1 0 1

, < z
′

(p1, [a]j), ..., z
′

(pn, [a]j) >) where j = 1, ...,M (with M cardi-
nality of the set of attacks) and n = |P | is the number of parts of
a partition.

The method to create and compare threat scenarios is reported
in fig. 3.9. In the following we refer also to the definitions reported
in section 2.1.2.

An information table, such as table 3.9, reports information on
the objects of the universe described with a set of domain-specific
and attack attributes that inform about the vulnerabilities of the
objects of the universe.

The objects of the universe U can be, for instance, Points of
Interest (PoI) of a city. The subset D ⊆ Q characterizes the
objects, V ⊆ Q gives information on vulnerabilities of the objects.
Table 3.9 reports an example consisting of four points of interest,
two domain attributes, and two attack attributes.

The domain attributes, d1 and d2, characterize the objects in
terms of performance, behaviour and so on. For instance, if objects
are PoI of an urban area, these attributes can refer to information
such as average number of persons in a building. The attack at-
tributes, a1 and a2, describe the vulnerabilities of the objects. If
we assume binary values for these attributes we can codify 2n − 1
threat scenarios. In the example of table 3.9, for instance, we have
that u1 is vulnerable to the scenario whose attack is characterized
by a1 = 1 and a2 = 0.

From this table we can construct granules of knowledge, which
are parts pi and equivalence classes [a]j. The pi are created from
the domain attributes using an evaluation function v(u). We em-
ploy 3WD [28] to execute a tri-partition of U on the basis of two
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Figure 3.9: The secure partition method (elaborated from [32])
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thresholds, α and β with α > β. The equivalence classes [a]j
are built on the basis of an equivalence relation over the attack
attributes.

We use these granules of knowledge to derive probabilistic in-
formation to be used for analysis of dominance, as shown in the
inference and analysis box of fig. 3.9 and, lastly, we reason about
the results of the dominance analysis. These two phases are exe-
cuted with the DRSA under uncertainty [57]. Let us clarify, also
with reference to section 2.1.2, how we use DRSA analysis with pi
and [a]j.

The set P of states of the universe is, in our context, a set
of non overlapping parts covering all the objects of the universe
that can be subject to an attack. If we assume a single attack
model, just one object of the universe can be attacked. So the
states associated to P are mutually exclusive, since only one part
pn can be subject to an attack. An a priori probability of pn can

be evaluated as λn =
|pn|
|U | where |.| is a cardinality measure.

The acts of the set A are attacks of threat scenarios. As already
mentioned, in our model given n attributes of V we can have 2n−1
scenarios. A scenario is represented with an equivalence class, let
us call [a], that contains the objects of the universe that are subject
to the same threat. For instance, in the case of table 3.9, we have
[a]00 = {φ}, [a]01 = {u4}, [a]10 = {u1}, and [a]11 = {u2, u3} where
we included also the scenario of no attack ([a]00).

The outcomes evaluation function for the threat scenarios eval-
uates the loss for a couple (pn, [a]j). A loss L is evaluated as
follows:

l(pn, [a]j) = Lmax ∗ Pr([a]j)Pr(pn|[a]j) ∗ (1− Er) (3.5)

Eq. (3.5) is elaborated from [68]. In eq. (3.5) Lmax denotes
the maximum expected loss, Er ∈ [0, 1] measures the effective-
ness of response and recovery actions, and Pr([a]j)Pr(pn|[a]j) =
|[a]j|
|U |

|pn ∩ [a]j|
|[a]j|

is a vulnerability index. The vulnerability index

gives probability information on the objects in pn that are subject
to a specific threat.
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Eq. (3.5) is used to evaluate the probabilities of eq. (2.20)
and (2.21), and these last ones are used to evaluate eq. (2.22) and
(2.23) giving us information on the stochastic dominance.

For the thesis, the evaluation of the method in [32] has been
contextualised to a case study based on events extracted from the
GTD. Results are reported in the section 4.2.

3.1.3 Resilience analysis of the target4

Attacks can have different consequences on a target and, to gain
additional awareness, the decision maker should analyse the pos-
sible evolutions of threats. The objective of this phase is to un-
derstand the degree of resilience of the target, also considering
the actions performed in the previous phase of secure partition to
defend the target.

The starting point is a tri-partition of the target area or infras-
tructure performed with the secure partition method. The analysis
and evaluation of attacks follow the principles of resilience. Re-
silience comes from the Latin resilio whose etymology is re salire
that means going-up again. The term ontologically admits the
going-down and this constitutes the core of this paradigm. With
resilience we accept this risk of attacks and consider the ability to
prepare for and adapt to changing conditions. Resilience includes
the ability to withstand and recover from deliberate attacks, acci-
dents, or naturally occurring threats or incidents5. Resilience has
different facets depending on the specific application domain. We
briefly analyse in the following three domains: ecological, commu-
nity and system.

In ecological study, resilience has a long history [69]. In this
domain, resilience is the capability of an ecosystem to respond
to perturbations caused by natural events or man-made disasters,
and to respond and adapt. The ecological system may change
state and, in some conditions, minute changes trigger extreme
discontinuous responses that are not always reversible and the

4The method presented in this section has been published in [33]
5www.dhs.gov/what-security-and-resilience
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system can not return to its previous state. This is refereed to
as critical transition [70], and a challenge is the identification of
indicators that allow to infer the critical transition [71] [72]. For
the ecological domain, the works that are closer to the use of GrC
methods are based on the adoption of fuzzy inference systems
and fuzzy cognitive maps for prediction of changes and scenario
analysis of ecological systems, e.g., [73] [74] [75], and the use of
rough sets as data analysis tool for decision making for ecological
sustainability, e.g., [76] [77].

The community based resilience is devoted to analyse and mea-
sure the resilience of a community. The focus in this case is very
broad and includes crisis responses, sustainable developments in
underdeveloped areas, social aspects. Community resilience in-
cludes also training humans to be resilient with organizational
learning processes, and the definition of assessment methodologies
and indicators, such as the Community Based Resilience Analysis
(CoBRA) assessment methodology [78]. A paper that presents a
quite complete summary of methods and approaches for commu-
nity indicators is [79]. An interesting work that can show how
GrC could play a role in community resilience is [80]. This work
considers a correlation between holistic indigenous knowledge (a
body of knowledge built up by a group of people through genera-
tions of living in close contact with nature and their ecosystems)
and fuzzy logic as a way to explain how rules of thumb and other
simple prescriptions can be used to deal with complexity of their
community. With regards to indicators, there are results on fuzzy
reasoning and fuzzy indicators for sustainable development [81]
[82].

Lastly, there is the system resilience that is the perspective
we are interested in this method. As mentioned in [83], system
resilience can be determined by three capacities: resistant as the
ability to prevent hazard and reduce damage, absorptive as the
degree to which the system absorb the impact of a damage, and
restorative as the ability to repair quickly and adapt.

With respect to resistant capacity, there is a wide literature
presenting the adoption of rough sets and their extensions for re-
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liability management and fault diagnosis, e.g., [84] [85], and on
granules built with the tolerance relation, e.g., [86] [87]. Among
these types of works, [88] uses DRSA for fault diagnosis in a smart
grid. The adoption of DRSA is fostered also by us in the last
phase of our approach. However, the technique is the same but
the context of adoption is different. There is a substantial dif-
ference because we are not going to use DRSA as a stand-alone
tool but we put DRSA into a framework for situation analysis.
This is fundamental for our purposes because we must be able to
discriminate situations (e.g. attacks or malfunctioning). Other
works that can be related to the resistance capacity are based on
fuzzy inference systems, e.g., [89].

With respect to the absorptive and restorative capacities we
did not find several works. These capacities are very difficult to
de-contextualize from the resilience concept. However, with re-
spect to the restorative capacity, evolutionary algorithm can be
used to re-plan systems and restore functionalities. Examples in
power systems, including hybrid approaches that use computa-
tional intelligence, are reported in [90].

In this chapter, we consider the system perspective of resilience.
We need to use a model of resilience that has to be compu-

tationally tractable and, to this purpose, we consider the model
defined in [27] that is based on the definition of resilience of a sys-
tem provided by the National Academy of Science, i.e., the ability
to plan and prepare for, absorb, respond to, and recover from dis-
asters and adapt to new conditions [26]. The model correlates the
concept of resilience to that one of critical functionality of a sys-
tem. Given a system formalized as a graph G(N,L), where N is
a set of nodes and L is a set of links, the critical functionality, K,
is defined as:

K(t;N,L,C) =
Σi∈(N,L)wi(t;C)πi(t;C)

Σi∈(N,L)wi(t;C)
(3.6)

where wi(t;C) is a measure of the relative importance of node
or link i at time t, and πi(t;C) represents the degree to which a
node or a link is active in the presence of an adverse event. An
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alternative interpretation defines πi(t;C) as the probability that a
node or link i is fully functional. C is the set of temporal decision
rules and/or strategies to be developed in order to improve the
resilience of the system during its operation. An object c ∈ C
represents a configuration of the system.

Let E be a set of adverse events, the resilienceR = f(N,L,C,E)
is defined as:

R ≡ R(K,E, [0, Tc]) =

1
|E|

ΣE

∫ Tc

t=0
K(t;N,L,C)

∫ Tc

t=0
Knominal(t;N,L,C)

(3.7)

where Knominal is the value of the critical functionality when no
external event is occurring, and Tc is the so-called control time
that is the mean time occurring between two adverse events. Eq.
(3.7) can be normalized and discretized to be computationally
tractable. Let us suppose Knominal = 1:

R = (
1

Tc

)
1

|E|ΣEΣ
Tc

t=0K(t;N,L,C) (3.8)

The definition of K depends on the specific target to analyse
and on the objectives of the analysis.

Now that we have identified the computational model of re-
silience, let us describe what the proposed method does. The
method uses granular structures to model the dependencies be-
tween nodes of a target, granular hierarchical models to evaluate
the consequences of an attack considering these dependencies, and
estimates a measure of resilience using DRSA.

i): Granular representation of dependencies. The is-
sue of representation and modelling of dependencies, at least for
Critical Infrastructures (CIs), has been investigated by Rinaldi et
al. [91]. Their seminal work on interdependencies and cascading
effects uses four general categories: i) Physical, a physical reliance
on material flows from one infrastructure to another; ii) Cyber, a
reliance on information transfer between infrastructures; iii) Ge-
ographic, a local environmental event affects components across
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multiple infrastructures due to physical proximity; and iv) Log-
ical, a dependency that exists between infrastructures that does
not fall into one of the previous categories.

We use the categorization proposed by Rinaldi et al. [91], and
contextualize to the categories of Rinaldi et al. the formalization
proposed in [92]. On this basis, let us consider two components
(a, b) of a target and define:

• a physical dependency between a and b as a reliance of b on
a: a → b,

• a cyber dependency between a and b as a reliance of f(b),
where f(.) means a functionality, on a: a → f(b),

• a geographical dependency between a and b as a proximity
relation between a and b: (a, b)g = dist(a, b) < ε. This is
(the only one) reflexive relation, i.e. (a, b)g = (b, a)g,

• a logical dependency between a and b as the influence on an
event of b due to an event on a: E(a) → E(b).

To represent and reason on dependencies based on the above men-
tioned four categories, we adopt a set of (four) binary relations
[93]. Let R ⊆ V × U be a binary relation, a ∈ V is related to
b ∈ U if(a, b) ∈ R, denoted aRb. If V = U , R is a binary relation
over U . In our case R ∈ {P,C,G, L} meaning that is one among
physical, cyber, geographical or logical relations. As reported by
Lin et al. [93] a binary relation is different from an equivalence
one. The equivalence relation is reflexive, symmetric and transi-
tive while a binary relation does not satisfy these properties. We
have already emphasized that, in our case, only the geographical
dependency is reflexive. This difference between binary and equiv-
alence relations has the consequence that partitions and granules
formed with binary relations overlap.

To take into account all the four types of dependencies we use
a family of granular structures, which is a collection of granular
structures, and we include in this family a structure for each type
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of relation R. Thus, we define: f(GS(P ), GS(C), GS(G), GS(L))
where each GS is a collection of granules build as follow.

Given an universe U and a binary relation R ∈ {P,C,G, L}
over U , we use the formalism presented in [94] to define a granular
structure GS as follows:

GS(R) = (gR(x1), gR(x2), ..., gR(xn)) (3.9)

where
gR(xi) =

pi1
x1

+
pi2
x2

+ ...+
pin
xn

(3.10)

is the granule induced by xi and + refers to union. For a fixed R
we set pij = 1 if (xi, xj) ∈ R and pij = 0 otherwise. Of course,
pii = 1 and the fact that (xi, xj) ∈ R can be known by design or
discovered, in the case of CIs, with some of the techniques reported
in [83]. Eq. (3.10) indicates the granule of all the components that
depends from xi for the specific relation R.

ii): Granular modelling of attacks. To take into account
objects dependencies in the analysis of attacks evolutions, we pro-
pose an approach based on the fusion of different attack models,
and use the hierarchical system modelling with GrC developed by
Pedrycz et al. [95].

The idea is to model attacks that can follow a specific, and
limited, path between a root and a target object, and then fuse
two or more of these kinds of models when analysing attacks that
can exploit several paths between a root and a target. We refer
to these models as local and global models of attacks. The added
value is that with the fusion it is possible to give analysts a rapid,
even if abstract, information on the decrease of performance of a
target object.

A global attack model can be obtained with the fusion of dif-
ferent local models with a hierarchical approach. Pedrycz et al.
[95] have defined a method that can do this with GrC. The facets
of originality of their results relate to the possibility of quantifying
the diversity of local models via hierarchical granular architecture,
and forming information granules emerging at higher levels of hi-
erarchy.
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Figure 3.10: HSM from [95]

The approach can be easily understood by taking a look at fig.
3.10 from [95]. As we can see from fig. 3.10, there are some nu-
meric models M1, ...,Mn that can be developed in different ways.
These models are subject to a granular fusion to generate a Gran-
ular Model (GM), i.e., type 1 GM. Granular Models of type 1
can be further fused together to generate a higher level GM, i.e.,
type 2 GM. GMs are constructed with the principle of justified
granularity [36] [96] aiming at designing information granules that
are representative and meaningful, by finding a trade-off between
two measures: coverage and specificity. In [95] authors report ex-
amples of the approach for fuzzy rule based models and neural
networks.

Interested readers can refer to the cited works for more infor-
mation on the principle of justified granularity and its application
for hierarchical system modelling. Here we contextualize this ap-
proach to attack models and explain its added value, with a look
at fig. 3.11 a) showing a target (i.e., a part of CI) where nodes 1
and 2 have a physical dependency from I, and node 3 has a cyber
dependency from I. To improve the understanding, we label the
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dependencies between components, and introduce the following
notation: we refer as Vij to the j − th vulnerability of the i − th
component of the target, and gV i as the information granule that
granulates the vulnerabilities of a node.

Let us consider an attack exploiting some of vulnerabilities of
the input I, e.g. VI = {VI1, VI2}. The first of these vulnerabilities,
when exploited, causes physical consequences to target node T , the
second can cause cyber consequences to node T . With reference
to some Smart Grid attacks presented and discussed in [97], we
contextualize fig. 3.11 a) to a smart grid. Let us consider the node
I as the attack entry point. Node I is a power control network,
and I can be infiltrated inside a trusted perimeter by humans with
an USB stick (this is VI1) or can have a poorly configured firewall
allowing network based intrusion (this is VI2). Let suppose that I
controls the power load distribution to a transmission node (1) and
a service provider (2), and communicates with a metering device
(3). The target T is a customer of a smart grid. The first attack
path, I−1−T , may result in a power shortage to the customer, in
the second I − 2− T the power shortage to service provider node
may result in a failure to delivery apps and services for smart
home load balancing, with the third I − 3 − T path an attacker
may inject false information and meter data. All the attacks have
influence on the normal energy consumption of the customer.

Fig. 3.11 b) shows the numeric models we can develop in the
analysed case. A model offers information on the chain of vul-
nerabilities, from the input to target node, that can be exploited.
A model can be formalized in several way, such as by the if then
rules:

if VI1 and V1 then VT1

if VI2 and V3 then VT3

if VI1 and V2 then VT2

where the first relates to M1, the second to M2 and the third
to M1 2 of fig 3.11 b). We build granular models from these
numeric ones. In this case we have two models M1,M2 exploiting
a single dependency path, and a third M1 2 following a hybrid
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Figure 3.11: a) Part of a CI - b) Attack Trees - c) HSM (from [33])

path. From these models we can build the hierarchical granular
system shown in fig. 3.11 c). The numeric models are granulated
to form granular models of physical (GMP ) and cyber (GMC)
attacks. The outputs of these models are in the form of type 1
interval granules, i.e. gVTp

and gVTc
where p and c refer to physical

and cyber, and can be fused to form a global attack model in the
form of a type 2 interval granule.

The added value of using this approach to model attacks is
twofold. First, we can have a concise but meaningful description
of the impact on a target object if we build granular descriptors of
the impact. In this way, an analyst can rapidly understand what
s/he can expect in terms of minimum and maximum decreases
of performances (interval granules), and can have this informa-
tion also for separate types of attacks, e.g., by analysing specific
local models of attacks. Second, if we are able to identify in a
target, such as a large scale infrastructure, local models based on
single dependency paths, we can better analyse and protect these
paths because their complexity is reduced with respect to multi-
dependencies paths.

However, real infrastructures usually are complex and include
several paths among nodes that combines more dependencies. In
the smart grid example discussed, this is the case of M1 2. In
these paths there are components that can break a dependency
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Figure 3.12: GSA for resilience (elaborated from [33])

path and start one or more paths based on a different dependency.
Discovering these paths may be of interest because attackers, to
reach a target node, may need to change their attack strategies.
A formal procedure to discover these kinds of nodes/paths is left
for future works.

iii): Resilience estimation. To estimate the resilience of
the target, we use Granular Situation Awareness (GSA). The GSA
has been defined in [25] starting from [98] and [6], and consists of
the application of GrC in and across all the levels of a SA cognitive
model. GSA offers a structured cognitive approach allowing op-
erators to gain improved situation awareness, by combining GrC
and Endsley’s Situation Awareness (SA) [1] [99].

The GSA is shown in fig. 3.12 and interested readers can re-
fer to [25] for a more detailed description of how GrC enforces
each layer of the SA model. In the following, we just refer to
the constructs we use for the case of resilience analysis that are:
dominance classes (a.k.a. dominance cones, see section 2.1.2) as
granules of knowledge in the GSA Granular Perception, and up-
per and lower approximations of dominance classes in the GSA
Granular Comprehension phase.

The result of secure partition method of section 3.1.2 can be
formalised as a decision table that classifies the components of
the target in three ordered regions (RED, ORANGE and GREEN
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or also POS, BND, NEG). In each region resulting from the ap-
plication of partition method, we can have further details if we
build and analyse the dominance classes. This requires the ap-
plication of DRSA [100] starting from a decision table. As men-
tioned in section 2.1.2, DRSA is an extension of rough set theory
for multi-criteria decision analysis based on the definition of a
dominance relation, which allows to deal with preference-ordered
decision classes. DRSA has been adopted also for analysis of diag-
nosis in a smart grid [88], that is a case study similar to resilience,
using the concept of approximation to make inference. Let be �a

a preference relation s.t. xi �a xj means that xi is preferable to xj

with respect to the attribute a ∈ A. If xi �a xj for every a ∈ A,
we say that xi dominates xj, i.e. xiDAxj. For every object xi, we
can define a set of objects that dominates xi and a set of objects
that are dominate by xi. These are respectively formalized in eq.
(3.11).

D+
A(xi) = {xj ∈ U |xjDAxi}

D−
A(xi) = {xj ∈ U |xiDAxj}

(3.11)

Now let be D = {d} a set of decision attributes that, in our case,
consists of the three ordered regions and makes a partition of the
objects in three classes corresponding to the three regions defined
with 3WD. Let Cl = {Clp, p ∈ P} with P = {1, 2, 3} be the
set of decision classes / regions. According to DRSA, we can find
upward union classes Cl≥p = ∪t≥pClt that contain all the objects at
least of class Clp and downward union Cl≤p = ∪t≤pClt that contain
all the objects at most of class Clp.

To clarify how we execute concept approximation in the com-
prehension level of GSA, we need to introduce the DRSA con-
cepts of lower and upper approximations of these union classes.
The knowledge being approximated is a collection of upward and
downward unions of Cl and the granules of knowledge used for
approximations are the dominance classes of eq. (3.11). Thus,
given a set of attributes A, the lower and upper approximations
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of Cl≥p are defined as follows:

A(Cl≥p ) = {x|D+
A(x) ⊆ Cl≥p }

A(Cl≥p ) = {x|D−
A(x) ∩ Cl≥p 6= φ}

(3.12)

Similar formulas are used for the lower and upper approximations
of Cl≤p :

A(Cl≤p ) = {x|D−
A(x) ⊆ Cl≤p }

A(Cl≤p ) = {x|D+
A(x) ∩ Cl≤p 6= φ}

(3.13)

The quality of approximation can be measures with the following:

γA(Cl) =
|U − ((∪pBn(Cl≤p ) ∪ (∪pBn(Cl≥p )|

|U | (3.14)

where, in eq. (3.14), Bn(Cl≤p ) = A(Cl≤p )−A(Cl≤p ) is the boundary
class of Cl≤p and Bn(Cl≥p ) is the analogous for Cl≥p . Boundary
classes contain objects that are doubtful. In fact, the quality of
an approximation of eq. (3.14) is perfect, i.e. γA(Cl) = 1, only if
boundaries are voids.

The value of using dominance and union classes is in the possi-
bility of issuing early warning signals. According to the identified
resilience model, any change in the attributes values of components
affects the level of resilience. If we have classified in a proper way
the components of a target infrastructure, until the dominance
classes do not change we may consider these variations as nor-
mal system fluctuations. When dominance classes change, how-
ever, the classification is no more consistent, and upper and lower
approximations of some union classes are different. The objects
belonging to the boundary classes have to be carefully monitored
because they are malfunctioning. So these object may be under
attack and/or damaged.

To better understand the situation, the GSA comprehension
level reasons on the granular structures of dependencies, and takes
into consideration the granules of dependencies of the objects in
the boundary region. This level recognizes what are the objects
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that depend from the objects in the boundary regions and can
observe the attributes values of the dependent objects. If these
are changed (i.e., they are lower), then the fault or the attack is
evolving along a path of dependencies.

In a protection scenario, we can suppose the priority is to pro-
tect the most critical objects (i.e., the ones classified in a Red
region). The comprehension level evaluates the possible paths to
the objects of red region, and the evolution level projects the sit-
uation by evaluating the granular models of attack towards these
objects. Since the granular models are in the form of interval gran-
ules, the critical functionality K of eq. (3.6) has to be evaluated
using augmented operations for addition ⊕ and multiplication ⊗
with intervals:

K =

∑

⊕i∈(N,L)
[w−

i , w
+
i ]⊗ [π−

i , π
+
i ]

∑

⊕
i∈(N,L)

[w−
i , w

+
i ]

(3.15)

The same is true for eq. (3.8) for evaluation of R under the attack
analysed (that is an event e ∈ E).

The method has been evaluated on a case study based on a
Smart Grid, and readers interested to evaluation results can refer
to [33]. However, to be applicable in the domain investigated in
this thesis, the resilience analysis method requires further exten-
sions and contextualization, starting from an appropriate defini-
tion of the critical functionality K. These activities are left for
future works.

3.2 Comparison with other methods

We have mentioned the distinctive aspects of our methods in the
section 1.1.2 (i.e., ”What?”), in this section we compare our re-
search results with other methods supporting the intelligence anal-
ysis stages.

In [101], Yager discusses the adoption of soft-computing tech-
niques for intelligence analysis also considering the model of Situ-
ation awareness. He focused his work on the importance of multi-
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source data fusion with the support of fuzzy set and approximate
reasoning techniques. In [102] he extends his results by considering
data fusion based on several measures of ”possibility and certainty
as a tool to enable an intelligence analyst to provide an answer in
terms of an upper and lower bound on the truth of the hypothesis”.
The idea behind the mentioned works is, essentially, similar to the
one presented in this thesis which, as described, leverages the use
of aggregation measures based on OWA and fuzzy theories and
probability to build and reason on hypothesis.

With an emphasis more closely linked to the assessment of the
risk of terrorist attacks, approaches based on the creation and in-
terpolation of fuzzy rules were used and validated on the GTD [12]
[13]. These methods deviate from ours which are mainly aimed
at reasoning on scenarios for the purpose of attributing hypothe-
ses of attack on terrorist groups and identification of actions and
strategies for the safe partitioning of attack targets.

The approaches that come closest to the aims and objectives of
the methods proposed in this thesis concern the use of the Analysis
of Competing Hypotheses (ACH). ACH allows decision makers to
analyse and evaluate a set of competing hypotheses against a body
of evidence that can support or contradict each hypothesis. The
goal is to proceed step-by-step by rejecting hypotheses, accepting
only those hypotheses that cannot be eliminated.

The ACH method has been integrated with the adoption of
belief theory and subjective logic [103] to make recommendations
on likelihoods of hypotheses based on uncertain knowledge about
the evidence, with Bayesian theory [104] and Bayesian networks
[15] to abstract and generalize ACH tables. ACH is part of a
suite of methods, called Structured Analytic Techniques (SAT),
supporting analysts and decision makers in a step-by-step process
that mitigates the negative impact of cognitive biases.

Fig. 3.13 shows where we can position the research results also
considering the above mentioned SAT.

The figure shows that our results can be positioned in the mid-
dle between SAT [10] and methods based on artificial intelligence,
machine learning and big data analytic to support decision mak-
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Figure 3.13: Positioning of research results

ing.

For instance, the analysis phases described in the previous sec-
tions can be executed with several SAT techniques combining Di-
agnostic and Imaginative thinking techniques, such as Analysis
of Competing Hypotheses, Alternative Futures, Key Assumptions
Check. These techniques can provide results also with a relative
low amount of data and information (e.g., the suspect is a young
male) but require the involvements of analysts and decision makers
in several brainstorming activities. Furthermore, the knowledge is
part of the decision maker.

On the other side, we have several methods for prediction and
classification6 that, however, require a large amount and adequate
descriptions of data to produce results. In these cases, the de-
gree of autonomy is higher and the involvement of analysts is not

6Just to limit to few results that have used real data for terrorism activities
we mention: [105] using artificial neural networks and analytic hierarchy pro-
cess; [106] using several classification algorithms (such as: KNN and SVM) for
classification and prediction tasks; [107] using a modified version of k-means
clustering algorithm; [108] proposing a machine learning method to evaluate
the risk of terrorist attacks at a global scale on the basis of multiple resources,
long time series and globally distributed datasets.
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required in all stages.

The results achieved during this thesis period can be positioned
in the middle.

The methods we propose share the aims (mainly of the SAT)
of reducing cognitive biases during an analysis, and work on min-
imal set of data and information. As we will see in the chapter
4, for instance, the method to analyse and assess hypotheses pro-
vides results also when we reduce the original data set from 135 to
3 features. However, differently from SAT techniques, we do not
require the involvement of analysts in all the phases. For instance,
we do not need that the analyst makes explicit hypotheses, but
we use numeric approaches. We create a list of alternative scenar-
ios through OWA operators in phase 2 of the method to analyse
and assess hypotheses and, then, these hypotheses are evaluated
against the existing evidence using fuzzy probabilistic rough sets
based on a Bayesian rough set model.

On the other hand, our methods have an advantage on classi-
fication and prediction approaches if we want to support analysts
and decision makers in the early phases of a decision making pro-
cess. The advantage comes from the possibility of using data and
information also at a very coarse granularity, and from the fact
that we can reason also on increases of information on the possi-
bility that an event could occur rather than finding high probabil-
ity rules, that could be impossible to derive considering also the
minimal set of attributes used in our study.

Just to mention that we are not aware of the adoption of SAT
for counter-terrorism analysis, at least on the basis of the data set
used in this thesis (i.e., the Global Terrorism Database). Using
the data in our conditions7, we have done tests with rule induction
algorithms. Specifically, we have tested a rule induction method
from indiscernibility (i.e., rough set equivalence) classes and the
implementation of CN2 algorithm for induction of decision rules
implemented in the RoughSets R Package8. In our tests we split

7GTD in the 2012-2016 considering only groups perpetrating more than
1% of the total attacks. See chapter 4.

8https://cran.r-project.org/web/packages/RoughSets/RoughSets.pdf
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our data in 60% training and 40% testing. In our conditions, a set
of 94 rules was generated with CN2 algorithm with an accuracy of
prediction for the test set of 0.325, and a set of 314 rules was gen-
erated with indiscernibility classes with an accuracy of prediction
for the test set of 0.327. The most critical part of using decision
rules is, however, the difficulty of prediction for attack patterns
that are shared among different groups. As we are going to see in
chapter 4, this limitation can be overcame with the adoption of
the Bayesian rough set model.
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Chapter 4

Experimental Results and

Case Studies

This chapter reports the results of the experimentation and evalu-
ation of the methods. Specifically, the analysis and assessment of
hypotheses of section 3.1.1 has been experimented and evaluated
on real data from the GTD. The secure partition of section 3.1.2
has been evaluated on a case study based on real events of the
GTD.

GTD1 is becoming a reference database for research and study
activities related to the analysis of intentional terrorist attacks. It
is an open source database of events concerning terrorist activities
all around the world since 1970. This dataset contains informa-
tion on more than 180,000 terrorism events, and considers 9 main
attributes and several sub-attributes. The 9 main attributes are
such as to cover the description of an event fairly completely, while
the sub-attributes provide details. Sub-attributes values are not
always available in the database.

The main attributes are: i) ID and Date; ii) Incident Infor-
mation, iii) Incident Location, iv) Attack Information, v) Weapon
Information, vi) Target/Victim Information, vii) Perpetrator In-
formation, viii) Casualties and Consequences, and ix) Additional
Information and Sources.

1https://www.start.umd.edu/gtd/
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To evaluate our results with the GTD we have limited the
events to five years (2012-2016) of terrorism activities, considered
only groups perpetrating more than 1% of the total attacks in
these five years, and excluded from our analysis the events that
are not classified in the GTD (i.e., events for with the perpetrator
is unknown).

The conditional attributes set C used for the evaluation con-
sists of the following three categorical attributes:

• Attack Type (AT ): describes the general method of attack.
This attribute generally reflects a broad class of tactics used
(e.g., a strategy). It has 9 values corresponding to 8 known
types or tactics of attacks, and one level is reserved for un-
known tactics.

• Target Type (TT ): captures the general type of target/victim.
It has 22 values corresponding to 20 types of general tar-
gets/victims, one value is reserved for ”Other” types, and
another one for unknown type.

• Weapon Type (WT ): describes the general type of weapon
used in the incident. This attribute has 13 values corre-
sponding to 11 types of general weapons, one value is re-
served for ”Other” types, and another one for unknown type.

As we can see, we reduced the original feature set of GTD from
135 features to 3. Including only the three general attributes above
mentioned, we have considered the most limited set of information
related to attacks that we can suppose to have in the early stages of
an intelligence analysis. Readers can refer to the GTD Codebook2

for more information on the attributes.

In the time window 2012-2016, the total number of events cor-
rectly classified is 31819 and the number of perpetrators is 770. By
considering groups perpetrating more than 1% of the total attacks,
we have reduced the number of events to 23399 and perpetrators to

2https://www.start.umd.edu/gtd/downloads/Codebook.pdf
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21. These groups perpetrated more than 73% of the total attacks
in the 2012-2016. These groups are our decision classes:

D = {”g1 : Al −Qaida in Iraq (AQI)”
”g2 : Al −Qaida in the Arabian Peninsula (AQAP )”
”g3 : Al − Shabaab (ALS)”
”g4 : Bangsamoro Islamic Freedom Movement (BIFM)”
”g5 : Boko Haram (BH)”
”g6 : Communist Party of India − Maoist (CPI −Maoist)”
”g7 : Donetsk People′s Republic (DON)”
”g8 : Fulani extremists (FE)”
”g9 : Houthi extremists (HE)”
”g10 : Islamic State of Iraq and the Levant (ISIL)”
”g11 : Kurdistan Workers′ Party (PKK)”
”g12 : Maoists (MAO)”
”g13 : Muslim extremists (ME)”
”g14 : New People′s Army (NPA)”
”g15 : Palestinian Extremists (PE)”
”g16 : Revolutionary Armed Forces of Colombia (FARC)”
”g17 : Separatists (SEP )”
”g18 : Sinai Province of the Islamic State (SIS)”
”g19 : Taliban (TAL)”
”g20 : Tehrik − i− Taliban Pakistan (TTP )”
”g21 : Tripoli Province of the Islamic State (TIS)”}.

The probability distribution is Pr = {
0.01645, 0.03607, 0.10077, 0.01368, 0.08227, 0.01483, 0.02624,
0.01833, 0.03757, 0.18321, 0.03945, 0.04812, 0.01974, 0.04611,
0.01539, 0.01863, 0.01517, 0.01380, 0.21022, 0.02996, 0.01397}

Applying the procedure of evidence collection, described in sec-
tion 3.1.1, we obtain the fuzzy GTD and similarity matrix re-
ported in tables 1-2 and 3 of the Appendix A. The similarity ma-
trix has been derived using the Gaussian kernel implementation
of the package KRLS3 in R, and values are rounded to the second
decimal.

A detailed analysis of the terrorism phenomenon has not been
done during the Ph.D period, and is not part of this thesis. How-

3https://cran.r-project.org/web/packages/KRLS/index.html
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ever, we can highlight some points that are useful for the discussion
and, at the same time, show how it is easy to comprehend inter-
esting aspects of terrorist groups behaviours. Looking at table
1-2, we have an overview of the behaviour of the groups and can
easily understand their preferences. For instance, we can observe
that AQI has a strong preference for attack strategy 3 and, at
the same time, this attack type is quite used by all the groups.
We can observe an interesting exception, FE group that seems
to have a particular behaviour centred on AT2, TT14 and WT5.
Another distinctive trait is that one of PE being the only group
using consistently WT9 (melee).

With reference to table 3, we have an overview of the similar-
ity of groups. Considering only the information about attack pat-
terns, we observe that the behaviours of AQAP and ALS are very
difficult to discriminate, while clearly separable from the others
seem to be the ones of FE and PE. However, if we look at table 4,
which is the similarity matrix constructed using only attack types,
their behaviours are similar with respect to the attack strategies.
Other kinds of considerations can be done if we refer to similarity
matrices based on other combination of attributes (that we have
not reported in Appendix A but can be constructed following eq.
(3.2)).

4.1 Evaluation of the method to assess

hypotheses

The method described in section 3.1.1 has been evaluated on three
cases where the hypotheses under analysis refer to: 1) a rare, 2)
a distinctive, and 3) a combination of distinctive and common
behaviours. The results are shown in fig. 4.1 that is divided in
three parts, and allows to discuss results in the way illustrated
with fig. 3.6. In fig. 4.1, values of α and β for different values of
ε, as well as values of Pr(Ω|[g]) that position groups in different
regions, are not correctly scaled. The reader can refer to Appendix
B presenting the tables with numeric values.
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Figure 4.1: Results. Part a) refers to < AT1, TT1,WT6 >;
Part b) refers to < AT2, TT14,WT5 >; Part c) refers
to < AT3, TT4,WT6 >, < AT2, TT4,WT9 > and <
AT2, TT14,WT9 > (from [31])

4.1.1 Case 1: A rare attack pattern.

The case considers an attack pattern that is rare in the dataset:
< AT1, TT1,WT6 >. This represents the rarest event in our
dataset, 1 out of 23399 events, and has been perpetrated by ALS.
In this case, it makes no sense to derive different hypotheses Ω for
different values of γ. The reason can be easily understood from
the fact that this event is performed only by a group, and so the
numerator of eq. (3.4) is 0 except when assessing the similarity
between the TG and ALS. Different values of γ will only bring to
different degrees of similarity between the two.

In other words, here the difference between hypotheses of low
and high experience looses his meaning since only one group has
experience on this pattern. So, let use derive Ω only for γ = 0.1
(only the membership degree is reported):

Ωoptimistic = {0 0 0.00791 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0}.

As we can observe from Part a) of fig. 4.1, if the decision maker
has to decide in the ”realm” of strong (i.e., ε . 0.1) and positive
(i.e., ε ∈ [0.1, 0.3]) evidence, s/he can only refuse the hypothesis
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that FE, AQI, PE and ISIL are perpetrators of the attack. In
this realm, there is no evidence that a group can be positively
associated to the hypothesis Ω. However, a very slight reduction
in the support required for evidence (e.g., γ = 0.305) shows a
positive classification for the group we expect that is ALS.

4.1.2 Case 2: A distinctive pattern.

This case considers an attack pattern that clearly characterizes the
behaviour of a group. The pattern < AT2, TT14,WT5 > clearly
distinguishes FE from the others. This is a group active in Nigeria,
and its behaviour appears to be strongly characterized by armed
assaults to private citizens with firearms. More than the 72% of
terrorism events of this group reflect this pattern. BH follows at
a great distance with around 19% of events.

Let us derive Ω for γ = 2, γ = 0.5, and γ = 0.1:

Ωpessimistic = {0.067 0.016 0.020 0.046 0.019 0.018
0.034 0.075 0.022 0.016 0.021 0.018 0.023 0.022
0.037 0.015 0.032 0.033 0.019 0.023 0.015}

Ωmodearted = {0.070 0.016 0.028 0.046 0.048 0.028
0.045 0.194 0.022 0.016 0.021 0.033 0.052 0.022
0.040 0.015 0.034 0.033 0.030 0.027 0.015}

Ωoptimistic = {0.070 0.016 0.028 0.046 0.071 0.028
0.045 0.427 0.022 0.016 0.021 0.033 0.052 0.022
0.040 0.015 0.034 0.033 0.030 0.027 0.015}

Looking at the three hypotheses we can see that the degrees
of similarity of some groups increase considerably from Ωpessimistic

to Ωoptimistic. This is the case of BH (from 0.019 to 0.071) and FE
(from 0.075 to 0.427). PE instead has a high value of similarity
in the hypothesis Ωpessimistic (i.e., 0.037) but this value does not
increase significantly.

As we can observe from Part b) of fig. 4.1, for ε = 0.3, the
group FE can be positively associated to all the three hypotheses
and, as we move from γ = 2 to γ = 0.1, FE is confirmed also with
a higher support of evidence (i.e., ε = 0.1). At the same time,
we see a change in the regions of BH and PE. Fig. 4.1, in fact,
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shows also with arrows the movements of some groups. We can
also note that, as we move towards the assessment of hypotheses
that require more experience in perpetrating the attack, the deci-
sion maker succeeds in having indications (the orange area, barely
noteworthy) of the fact that several groups can not be associated
with the hypothesis of attack.

4.1.3 Case 3: A combination of distinctive and

common patterns.

This case combines a very common pattern, < AT3, TT4,WT6 >,
with two patterns, < AT2, TT4,WT9 > and< AT2, TT14,WT9 >,
that characterize with different degrees the group PE. The first
pattern is shared among all the groups but FE, and characterizes
mainly the groups BIFM and DON. Let use see how the 21 groups
of our universe are characterized with respect to these patterns
looking at table 4.1 that reports µAT2TT4WT9, µAT2TT14WT9 and
µAT3TT4WT6. The membership values are evaluated as described
in section 3.1.1.

We can see that PE has the highest value of µAT2TT4WT9, and
BIFM and DON have the highest values of µAT3TT4WT6

Let us derive Ω for γ = 2, γ = 0.5, and γ = 0.1, and see Part
c) of fig. 4.1.

Ωpessimistic = {0.068 0.035 0.034 0.079 0.023 0.007
0.056 0.005 0.046 0.041 0.041 0.017 0.040 0.039
0.038 0.048 0.053 0.063 0.032 0.039 0.034}

Ωmodearted = {0.068 0.059 0.060 0.135 0.026 0.015
0.096 0.022 0.058 0.053 0.070 0.024 0.063 0.042
0.073 0.056 0.063 0.108 0.040 0.060 0.034}

Ωoptimistic = {0.068 0.071 0.069 0.204 0.026 0.015
0.145 0.022 0.058 0.053 0.087 0.027 0.063 0.042
0.196 0.056 0.063 0.131 0.040 0.060 0.034}

In the cases γ = 2 and γ = 0.5 for values of ε ≤ 0.3 we can
not positively support our hypotheses, and can exclude only FE
in the scenario of pessimistic analysis for ε = 0.3. If we require a
lower support of evidence, however, we can obtain some informa-
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Table 4.1: Membership degrees of the patterns (from [31])

µAT2TT4WT9 µAT2TT14WT9 µAT3TT4WT6

AQI 0 0 0.1117
AQAP 0 0.0071 0.3744
ALS 0 0.0178 0.3668
BIFM 0 0 0.55
BH 0.0119 0.0119 0.1278
CPI 0 0.0576 0.0375
DON 0 0 0.4691
FE 0.0093 0.0233 0
HE 0 0 0.2332
ISIL 0 0.0124 0.2312
PKK 0.0033 0 0.3879
MAO 0 0.0684 0.0941
ME 0.0433 0.0433 0.2121
NPA 0 0 0.1974
PE 0.4306 0.2806 0.1056

FARC 0 0 0.2133
SEP 0 0 0.2169
SIS 0 0 0.3808
TAL 0.0096 0.0096 0.22
TTP 0 0 0.2839
TIS 0 0 0.1315

74



tion if we look at how the groups move when analysing the three
scenarios. Let us focus on the groups highlighted in the regions
corresponding to ε = 0.8 (the orange and yellow ones).

AQI in the analysis of the scenarios move from POS to BND.
If we look at table 4.1 we observe that the membership values of
the three patterns under analysis for AQI are respectively 0, 0,
and 0.1117 so it presents a low degree of experience in using these
patterns. What differs AQI from other groups that are in a similar
situation is the availability of evidence in its favour: specifically
the strong dominance of AT3 for AQI (see table 1 of Appendix
A) that, in case we require a low support of evidence (e.g., ε =
0.8), allows to classify AQI in a POS zone. However, as soon as
we move towards the analysis of scenarios denoted by moderated
and optimistic hypotheses, AQI loses this characteristic at the
expense of other groups, such as BIFM, DON and PE, which are
classified in the POS zone. These three appear to be the groups
with more experience on the adoption of at least one of patterns
under analysis, as we can see also from table 4.1, with PE that is
confirmed also for ε = 0.3.

Another interesting analysis is that one related to FE which
is ruled-out in the pessimistic hypothesis, because it has no expe-
rience in the most common pattern of this case. As soon as we
perform moderate or optimistic analysis (which weigh more on the
single pattern than on their combination), the decision to exclude
FE becomes less certain.

4.1.4 Errors and Accuracy

We evaluated results with respect to error and accuracy metrics,
in the positive region (labelled as POS) and in the negative one
(labelled as NEG). In the first case, we evaluate the ability of the
method to correctly accept groups as perpetrators in the various
hypotheses tested (pessimistic, moderate and optimistic). In the
second case, we evaluate the ability to reject groups that cannot
be considered perpetrators. We have used a confusion matrix, im-
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plemented in the R caret package4, to obtain measures of sensitiv-
ity (Sen), specificity (Spec), precision (Pre), recall (Rec). These
measures can be defined in terms of True Positive (tp), False Pos-
itive (fp), True Negative (tn) and False Negative (fn) classes as
follows: Sen = Rec = tp

tp+fn
, Spec = tn

tn+fp
and Prec = tp

tp+fp
. We

report also combinations of these measures in terms of f-measures
F1 = 2 Pec∗Rec

Prec+Rec
and balanced accuracy BA = Sen+Spec

2
. Table

4.2 reports the confusion matrices for hypotheses testing in the
positive and negative regions.

Table 4.2: Confusion matrices for the Hypotheses testing in POS
and NRG regions (from [31])

Truth

POS BND NEG

Prediction

POS tp fp fp
BND fn tn tn
NEG fn tn tn

Case POS

POS BND NEG
POS tn tn fn
BND tn tn fn
NEG fp fp tp

Case NEG

The Truth is derived from the GTD. For Case 1, it is easy
to derive: ALS is the positive class because it is the only group
that executed the attack behind this case. All the other groups
are negative classes. For Case 2 and Case 3, this last one com-
bines three patterns, it is not so trivial to define a ground truth
because all the 21 groups executed the attacks behind the cases,
and we need to identify positive and negative classes on the ba-
sis of the degree of experience in executing the patterns. The
degree of experience is assessed as the relative frequency (rf) of

4https://cran.r-project.org/web/packages/caret/caret.pdf
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adoption of the patterns by the groups. Specifically: we con-
sider high experience if a group has a rf ≥ 1.5 the mean of
all the relative frequencies (mean(rf)), moderated experience if
rf ≥ mean(rf), and low experience if rf ≥ 0.5mean(rf). In
order to include a BND region, even if narrow, we considered
boundary classes the groups that are in a narrow neighbourhood
of the three thresholds mentioned above. Thus, for example, in
the optimistic case, we consider boundary the groups that have a
rf ∈ [1.4 mean(rf), 1.6 mean(rf)]. Therefore, groups with rf >
1.6mean(rf) will be positive classes for the ground truth, and
groups with rf < 1.4mean(rf) will be negative classes. Similarly,
for the moderated and pessimistic cases. The relative frequencies
for case 2 and case 3 are shown in fig. 4.2 where a red dashed line
indicates the value of mean(rf), the blue refers to 1.5 mean(rf)
and the black to 0.5 mean(rf). The relative frequencies of Case
3 combine the three patterns, and Case 1 is not shown since only
ALS executed the attack behind this case. We report here the
boundary classes, so that a reader can easily identify the posi-
tive and negative classes from fig. 4.2: BNDcase2 Pess{ MAO, PE,
TAL, TTP }, BNDcase2 Mod = BNDcase2 Opt{φ}, BNDcase3 Pess{
AQI, BH, MAO, ME }, BNDcase3 Mod{ ISIL SEP }, BNDcase3 Opt{
BIFM }.

Fig.4.3 shows the performance measures when we move from
Pessimistic to Optimistic analysis, and from positive support of
evidence (i.e., ε = 0.3) to indications (i.e., ε = 0.8). Only results
for ε = 0.3 (0.305 for the case 1) and ε = 0.8 are reported in
fig.4.3. For the Case 2, however, the results for ε = 0.1 are the
same of ε = 0.3.

Case 1 is based on a rare pattern. The evaluation of results
for Case 1 POS is good for ε = 0.305, but worsens by ε = 0.8.
This can be observed also looking at fig. 4.1 where we note that
some groups belonging to negative classes appear in the POS re-
gion. This is motivated by the fact that the evidence, on which
we base the assessment of the hypotheses, takes into account the
overall similarity (not limited to the specific pattern analysed) of
the groups. Thus, when we lower the support level of evidence,

77



Figure 4.2: Relative Frequencies of adoption of the patterns be-
hind Case 2, left-hand side, and Case 3, right-hand side (from
[31])

our method reports information about the groups that have a be-
haviour most similar to ALS. For Case 1 NEG, on the other hand,
there is a slight improvement in moving from ε = 0.305 to ε = 0.8,
and this because further true negative classes are predicted. The
BA for this case is always > 0.5.

Case 2 considers only a distinctive pattern. In general, we
observe that the results are positive as regards the attribution of
the hypothesis in POS cases, worse in NEG cases (except for the
optimistic ε = 0.8, with good results for both). To this end, we
observe that the measure of specificity is generally low in the NEG
case, and also the sensitivity is very low in the NEG case for ε =
0.3. The low sensitivity indicates errors in the capacity of correctly
identifying the groups that cannot be associated to the event (that
are, in the NEG case, the true positive samples). This can be
observed also looking at fig. 4.1 where we note that the NEG
region for ε = 0.3 has no groups inside. The specificity measure
indicates an error in rejecting group that can be associated to the
pattern (that are the true negative samples in the NEG case). The
reason is that several groups fall in the BND region.
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Figure 4.3: Results evaluation (from [31])
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Case 3 combines three patterns. The results appear to be bet-
ter in the case of attribution of positive cases if we assume an
optimistic analysis (execution of one among the patterns) while
it is the opposite for pessimistic (an ”and” among the patterns)
where the results are better as regards the attribution of negative
cases.

4.2 Evaluation of the secure partition

method

A wide number of events of the GTD includes attacks perpetrated
in villages or urban areas targeting private citizens and properties
(i.e., TT14), military (i.e., TT4), business (such as restaurant, caf,
stores, i.e., TT1). An attack pattern of this type is, for example,
the one discussed in case 2 of section 4.1, < AT2, TT14,WT5 >
referring to an armed assault attack strategy (AT2), with firearms
(WT5) towards private citizens and property (TT14).

The secure partition method presented and described in section
3.1.2 has been evaluated on a case study built on top of these kinds
of events.

Let us suppose the hypothesis under analysis relates to an
armed assault in a city, with firearms towards citizens, police or
business. Suppose, moreover, that the attack strategy can be im-
plemented through the use of guns or rifles and/or arson. The
threat scenarios that can be generated refer to: i) armed assault
with guns and rifles; ii) armed assault based on arson; iii) combi-
nation of both cases.

The area under analysis consists of eight points of interest that
are modelled by two descriptive attributes: a Capacity (C) and a
degree of importance (I). C refers to the number of people usually
present in or near the building, I refers to a degree of importance
of the building (or point of interest) in relation also to its perceived
image.

The case study can be modelled with the information table of
table 4.3, where C and I are the domain attributes. Let us sup-
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pose ATM and Car rental service are protected by metal detectors
to detect firearms such as guns, the other points of interest are
not equipped with such devices. Instead, the last four points of
interest are equipped with Fire protection systems, so they are
less vulnerable to arson. Let be a1 a threat based on arson and a2
based on the adoption of guns or riffles. To model these situations,
we use the two attack attributes, a1 and a2, as follows: 00 means
no attack, 10 means that assault based on arson, 01 means assault
based on guns or riffles, and last, 11 means a combination of arson
and guns / riffles.

Table 4.3: Case study for urban area
C I a1 a2

Hospital 200 0,8 1 1
ATM 100 0,2 1 0

Car hire service 154 0,4 1 0
Church 300 0,9 1 1

Tea Garden 145 0,6 0 1
Police 164 0,9 0 1
Hotel 130 0,7 0 1
School 185 0,8 0 1

The decision maker wants to partition the city to limit the
losses to 5 casualties in most cases. S/he decides to divide the area
in three regions and applies three different levels of protection:
high for the red zone, medium for the orange and low for the
green. These levels correspond to three different values of Er, as
reported in Table 4.4. Of course, values of Er are implemented
with different resources employed to protect the area, and are
associated with different costs (usually higher for higher values of
Er).

In the following, we refer to the red, orange and green zones
also as POS, BND, and NEG, respectively. Let us last suppose
that the maximum damage in a region (in terms of causalities) is
30.

Let be v an evaluation function for the objects that evaluates
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Table 4.4: Areas and Er values (extracted from [32])
Zone Er

Red Area (POS) 0.8
Orange Area (BND) 0.5
Green Area (NEG) 0.2

Table 4.5: Probabilistic information (from [32])
[a]00 [a]10 [a]01 [a]11

Pr([a]) 0 0,25 0,5 0,25
Pr(POS | [a]) 0 0 0,5 1
Pr(BND | [a]) 0 0 0,5 0
Pr(NEG | [a]) 0 1 0 0

each object, ui, as a normalized capacity multiplied by the degree

of importance of the point: v(ui) =
C(ui)

max(C)
∗ I(ui)

In a first phase, the decision maker decides to accurately pro-
tect church, hospital, police building and school, and includes
these objects in a red area. S/He decides for a medium level of pro-
tection for hotel and tea garden, including them in an orange area.
For the other two objects, s/he decides for a lower level of protec-
tion by placing them in a green area. The three zones are shown in
fig. 4.4 where in theRED = POS = {Churc,Hospital, Police, School},
ORANGE = BND = {Hotel, T ea Garden} and GREEN =
NEG = {ATM,Car Hire} that correspond to β = 0.25 and
α = 0.45 (where POS is v(u) ≥ α and NEG is v(u) ≤ β).

The four attacks are represented by the equivalence classes:
[a]00 = {φ},
[a]10 = {ATM,Car Hire},
[a]01 = {Tea Garden, Police,Hotel, School}
[a]11 = {Hospital, Church}.
From these granules, we can derive the probabilistic informa-

tion, reported in table 4.5, to be used for analysis of threat sce-
narios.

Let us evaluate the expected losses with eq. (3.5) of section
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Figure 4.4: Area partition.
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Table 4.6: Expected losses (from [32])
[a]00 [a]10 [a]01 [a]11

POS 0 0 1.5 1.5
BND 0 0 3.75 0
NEG 0 6 0 0

Table 4.7: Probabilities z
′

(from [32])
[a]00 [a]10 [a]01 [a]11

POS 1 0.75 0.75 1
BND 1 0.75 1 0.5
NEG 1 1 0.25 0.5

3.1.2, where we use Lmax = 30 and Er values as in table 4.4, and
the vulnerability indexes can be evaluated with the values of table
4.5. The expected losses are reported in the table 4.6.

For our application, we can reason in pessimistic terms (i.e.,
losses); therefore, we can perform the analysis of stochastic domi-
nance using z

′

and ρ
′

. To evaluate the probabilities z
′

, we apply eq.
(2.21) where the a priori probability distribution values λy refer to
the three regions obtained with 3WD: λ = {λPOS, λBND, λNEG} =

{4
8
,
2

8
,
2

8
}. The values of z

′

are reported in table 4.7

Following eq. (2.23), the values of ρ
′

are in table 4.8, which
can also be represented with fig. 4.5. In fig. 4.5, the values of
ordinates are losses (ρ

′

) and the abscissas are probabilities.

Fig.4.5 can be analysed with the following interpretation:

Table 4.8: ρ
′

values (from [32])
[a]00 [a]10 [a]01 [a]11

0.25 0 0 0 0
0.5 0 0 1,5 0
0.75 0 0 1,5 1,5
1 0 6 3,75 1,5
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Figure 4.5: Case: β = 0.25 and α = 0.45 (elaborated from [32])

• the values of ρ
′

corresponding to abscissa 1 are certain and
read as follows: in the case of threat [a]01, the expected loss
is definitely 3.75; in the case of threat [a]10, the expected loss
is definitely 6; and in the case of threat [a]11, the expected
loss is definitely 1.5.

• the values of ρ
′

corresponding to abscissa 0.75 are highly
probable values and read as follows: in the case of threat
[a]01, the expected loss is at most 1.5 with a probability of
at least 0.75; in the case of threat [a]10, the expected loss
is at most 0 with a probability of at least 0.75; and in the
case of threat [a]11, the expected loss is at most 1.5 with a
probability of at least 0.75.

The threat scenarios of the case β = 0.25 - α = 0.50 are the
following: TS10 = ([a]10, < 0, 6 >,< 0.25, 1 >), TS01 = ([a]01, <
0, 1.5 >,< 0.25, 0.75 >), and TS11 = ([a]11, < 0, 1.5, 3.5 >,<
0.25, 0.5, 1 >). The last TS is interpreted as follows: in case of
attack [a]11, the expected loss is 0 with a probability greater than
0.25, the expected loss is at most 1.5 with a probability greater
than 0.5, and the expected loss is at most 3.5 in any case.
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Figure 4.6: Case: β = 0.20 and α = 0.50 (elaborated from [32])

4.2.1 Quality of partition.

The decision maker could make other choices. It could decide to
increase the resources available for protection of a point of interest
and move it, for example, from a BND region to a POS. This
involves a new partition of the objects with the creation of new
granules and, consequently, different values of ρ

′

. As regards the
case analysed in the previous section, s/he could decide to expand
the BND area to include the points: Car Hire Service, Police and
School. S/he could decide to leave only ATM in the NEG area,
and Church and Hospital in the POS one. With our evaluation
function, v, this corresponds to setting α = 0.20 and β = 0.50.
Under these conditions, the DRSA analysis leads to a different
result shown in the fig. 4.6.

Analysing fig. 4.6, one might be tempted to say that the new
situation is better than that one represented in fig. 4.5. It emerges,
in fact, that in fig. 4.6 the certainties report minor losses compared
to fig. 4.5. However, a deeper analysis denies this result. It is
observed, in fact, that the losses expected from a01 attack are
higher for higher probability values in the case shown in fig.4.6.
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To support the decision maker in the analysis phases, it would
be useful a measure able to provide indications on the quality of
a partition, as a whole and with respect to the single threats,
starting from basic granules (parts and equivalence classes). This
measure depends on the level of protection applied in the parts of
P and on the vulnerability index of the parts. Let us define the
quality of the partition P with respect to the attack [a]j as:

Q[a]j(P ) = Q[a]j(POS) +Q[a]j(BND) +Q[a]j(NEG) =

(1− Er)POSV i[a]j(POS) + (1− Er)BNDV i[a]j(BND)+

(1− Er)NEGV i[a]j(NEG)

(4.1)

where the subscript POS refers to the positive region, V i[a]j(POS) =
Pr([a]j)Pr(POS|[a]j) is the vulnerability index of the positive re-
gion with respect to the attack [a]j, and (1−Er)POS is its level of
protection. The same description applies to the subscripts NEG
and BND. We assume the level of protection is homogeneous in
a region, i.e., it is the same for all the objects in the region. An
overall measure of quality for the partition is:

Q(P ) =
∑

[a]

Q[a](P ). (4.2)

The measure of quality has to be minimized. In fact, under the
assumption of homogeneous levels of protection, it minimizes the
vulnerability indexes of the three regions. Eq. (4.1) and eq.
(4.2) can be considered as contextualizations of the usual forms
of the quality of a partition, such as the one reported in [109]:
Q(P ) = ωPOSQ(POS) + ωBNDQ(BND) + ωNEGQ(NEG), where
the weights ω refer to (1 − Er), and the quality of a region is
measured with the vulnerability index.

Eq. (4.1) depends on a specific attack [a], since it is clear that
the vulnerability indexes of the three regions are dependent on
how these regions are vulnerable to a specific attack. In eq. (4.2),
the vulnerability indexes of the three regions do not depend on the
attacks. This result is intuitively correct since, under uncertainty
conditions, an overall measure such as eq. (4.2) considers the
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fraction of all objects that are vulnerable to all attacks and how
they are protected and can be formally proved by expanding eq.
(4.2). Thus, eq. (4.2) can provide only relative information and
has to be used in combination with eq. (4.1) to allow reasoning
and decision making.

Tables 4.9 and 4.10 report the quality measure for the two
cases.

Table 4.9: Quality measures for β = 0.25 - α = 0.40

Overall a10 a01 a11
POS 0,1 0 0,05 0,05
BND 0,125 0 0,125 0
NEG 0,2 0,2 0 0

0,425 0,2 0,175 0,05

Table 4.10: Quality measures for β = 0.20 - α = 0.50

Overall a10 a01 a11
POS 0,05 0 0 0,05
BND 0,3125 0,0625 0,25 0
NEG 0,1 0,1 0 0

0,4625 0,1625 0,25 0,05

As we can observe, the overall quality is better in case β = 0.25
- α = 0.4. The movements of Car Hire Service (from the NEG to
BND), Police and School (from POS to BND), lead to a BND
region that is more vulnerable in the case β = 0.20 - α = 0.50.
The cost associated to the two cases is, however, different. In the
case β = 0.25 - α = 0.4, the cost is higher since we have four
objects in the POS area compared to the two of case β = 0.20 -
α = 0.50, and the values of Er in the POS area are higher than the
ones in the BND and NEG areas. This means that more resources
have to be deployed for the protection of the target area.
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The decision maker can avoid this additional cost if s/he has
more precise information about the threat. As can be observed
from the values of the quality measure for the individual threats,
in fact, if one were reasonably convinced of an arson attack, case
β = 0.20 - α = 0.50 offers a higher quality at a lower cost.

We have assumed homogeneous levels of protection for the
three areas that are related to the three values of Er of Table
4.4. This assumption is not mandatory and, indeed, is not al-
ways the best choice. Different values of Er can also be used
when the decision maker is satisfied by the probability distribu-
tion of the outcomes and wants only to reduce the expected losses.
Let us consider case β = 0.20 - α = 0.50. In this case, the
BND = {Tea Garden,Hotel, Police, School} with four objects
vulnerable to [a]01 and 1 object vulnerable to [a]10. The decision
maker can set Er in a non-homogeneous way as follows:

Er(POS) =

{

0.8 if [a]11
0.2 otherwise

Er(NEG) =

{

0.8 if [a]10
0.2 otherwise

Er(BND) =

{

0.8 if [a]01
0.4 otherwise

and the quality is:
Q(P0.20−0.50) = 0.2∗V i[a]10(NEG)+ [0.2∗V i[a]01(BND)+0.6∗

V i[a]10 ]+0.2∗V i[a]11(POS) = 0.2∗0.125+[0.2∗0.5+0.6∗0.125]+
0.2 ∗ 0.25 = 0.25

which is lower.
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Chapter 5

Conclusions and future

works

The work carried out in the Ph.D period has led to the definition
of three approximate reasoning methods that can support decision
makers in the initial phases of a counter-terrorism analysis process.
The GrC techniques used, which are mainly based on extensions
of the rough set model, have provided satisfactory results and the
3WD models have confirmed their ability to reduce the cognitive
effort related to the interpretation of results for decision-making
purposes.

One of the main problems encountered during the study is the
scarcity of real data in the application sector chosen for this thesis.
With the exception of the GTD and a few others (e.g., for crime
analysis) not many data sets are available. This problem has been
very serious with regard to experimentation and validation of the
method for resilience analysis.

Although the results presented have been validated in appli-
cation scenarios aimed at supporting the stages of an intelligence
analysis cycle, the proposed methods and tools can be applied in
other scenarios, such as crime investigations and evidence-based
medicine. In general, the methods presented in this thesis can be
applied in cases of analysis and assessment of hypotheses related
to events (e.g., counter-terrorism, organized crime, adverse events
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in medicine). In particular, they are such to support the phase
of analysis of the hypothesis. This phase is, in general, complex
and influenced by cognitive biases and wrong mental models of
the analyst. Our methods allow to refine hypotheses according to
different situations and assess the refined hypotheses with respect
to available evidence. This last one is also created starting from
available data.

The proposed methods present some limitations that will be
investigated in future works.

In particular, in the method of analysis and assessment of ter-
rorism hypotheses, we assume that information sources are trusted
and does not weigh their information differently. So, this method
is very vulnerable to the threat of deception, and need to integrate
a technique to evaluate ”completeness and soundness of available
information sources” such as the quality of information check of
[29]. A second limitation relates to the lack of diagnosticity of
evidence. In fact, we question ourselves about the hypotheses be-
cause we generate different situations but we trust the evidence
that should support or not support these hypotheses. Lastly, to
deal with big data, we aim to extend our method in order to
allow the derivation and refinement of hypotheses starting from
data streams and supporting the combination of structured (i.e.,
the GTD) and not structured data (e.g., social media content)
to improve the phase of evidence creation. Of course, this re-
quires also different technological choices such as the adoption of
the Lambda Architecture. For instance, an architecture based on
Apache Kafka (to collect data from different sources) and Apache
Spark (designed to handle massive data and to enable both batch
and stream-processing methods) could support all the phases of
the proposed approach, except for the final decision dashboard
that should be implemented by using Web technologies interact-
ing with the results provided by Apache Spark.

The method for secure partition is sensitive to the number of
scenarios that can be generated, as result of the previous method,
from a hypothesis under investigation. Also in this case, a bet-
ter integration of this method with some structured analytic tech-
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niques, such as analysis of competing hypotheses (ACH) and devil’s
advocacy, can help in preparing and filtering scenarios. The adop-
tion of granules of knowledge in the inference phase allows us
to have approximate solutions to our problem of zone partitions,
which are analysable at different levels of granularity. Accord-
ingly, the decision maker can decide whether to concentrate on
dominant scenarios or on the whole set of alternative possible at-
tacks. However, the decision maker has to be aware of the inherent
uncertainty regarding the use of GrC.

With regards to the resilience analysis method, its main limi-
tations for applications to real CI have been already discussed in
[33]. Similar considerations can be repeated for the applications
sector of this thesis. We mention, for instance, the issues of mod-
elling and representing dependencies among potential targets of
an urban area under attack. While it appears clear that there can
be a logical dependency between a military target (e.g., a police
station) and civil ones (e.g., private properties) since an attack to
the first may cause a reduction of the protection for the second,
it is quite challenging to properly quantify this phenomenon. To
a certain extent, a similar problem is related to the correct defini-
tion of critical functionality, K, to be used in the resilience model.
Also, the nature of the dependencies may be fuzzy rather than
crisp and, in this case, we have to refine the approach for granular
representation of dependencies by using fuzzy granular structures.

Lastly, the complexity of the phenomenon under investigation
will require an additional study devoted to analyse and evaluate
the integration of other datasets with the GTD.
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Table 1: FuzzyGTD 2012-2016 (from [31])
AT1 AT2 AT3 AT4 AT5 AT6 AT7 AT8 AT9 TT1 TT2 TT3 TT4 TT5 TT6 TT7 TT8 TT9 TT10 TT11

g1 0,02 0,11 0,86 0,00 0,00 0,00 0,00 0,00 0,01 0,06 0,07 0,23 0,11 0,00 0,00 0,00 0,01 0,00 0,00 0,00
g2 0,17 0,27 0,37 0,00 0,00 0,08 0,01 0,00 0,08 0,02 0,14 0,11 0,45 0,00 0,00 0,02 0,01 0,00 0,01 0,00
g3 0,09 0,32 0,37 0,01 0,01 0,07 0,02 0,00 0,13 0,06 0,13 0,08 0,47 0,00 0,01 0,01 0,01 0,00 0,01 0,00
g4 0,01 0,36 0,56 0,00 0,00 0,03 0,01 0,00 0,03 0,07 0,04 0,03 0,55 0,00 0,00 0,00 0,01 0,00 0,00 0,00
g5 0,03 0,45 0,32 0,00 0,01 0,07 0,07 0,00 0,06 0,05 0,06 0,11 0,13 0,00 0,00 0,00 0,04 0,00 0,00 0,00
g6 0,04 0,18 0,29 0,00 0,02 0,24 0,19 0,01 0,02 0,16 0,14 0,22 0,04 0,00 0,00 0,00 0,02 0,00 0,00 0,00
g7 0,00 0,30 0,47 0,00 0,00 0,11 0,05 0,00 0,06 0,03 0,05 0,04 0,64 0,00 0,00 0,01 0,01 0,00 0,03 0,00
g8 0,02 0,81 0,00 0,00 0,00 0,09 0,05 0,00 0,02 0,00 0,03 0,02 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,00
g9 0,02 0,09 0,54 0,00 0,00 0,14 0,02 0,00 0,18 0,04 0,05 0,03 0,23 0,00 0,01 0,01 0,03 0,00 0,05 0,00
g10 0,02 0,07 0,66 0,00 0,00 0,12 0,01 0,00 0,11 0,05 0,03 0,12 0,23 0,00 0,00 0,00 0,00 0,00 0,01 0,00
g11 0,02 0,33 0,43 0,00 0,00 0,07 0,08 0,00 0,06 0,04 0,04 0,25 0,39 0,00 0,00 0,00 0,06 0,00 0,00 0,00
g12 0,03 0,22 0,41 0,00 0,01 0,16 0,12 0,01 0,03 0,11 0,12 0,28 0,09 0,00 0,00 0,00 0,01 0,00 0,00 0,00
g13 0,06 0,27 0,46 0,00 0,00 0,07 0,05 0,01 0,07 0,07 0,06 0,13 0,21 0,00 0,02 0,03 0,04 0,00 0,01 0,00
g14 0,04 0,45 0,20 0,01 0,02 0,10 0,14 0,00 0,04 0,17 0,07 0,10 0,49 0,00 0,00 0,00 0,00 0,00 0,00 0,00
g15 0,01 0,74 0,11 0,00 0,00 0,00 0,03 0,12 0,00 0,02 0,00 0,18 0,43 0,00 0,00 0,00 0,00 0,00 0,00 0,00
g16 0,02 0,17 0,63 0,00 0,00 0,06 0,07 0,00 0,05 0,08 0,03 0,25 0,21 0,00 0,01 0,00 0,00 0,01 0,00 0,00
g17 0,05 0,36 0,48 0,00 0,00 0,03 0,06 0,00 0,01 0,19 0,12 0,20 0,22 0,00 0,00 0,01 0,04 0,00 0,00 0,01
g18 0,04 0,23 0,57 0,01 0,00 0,11 0,01 0,00 0,03 0,03 0,02 0,36 0,38 0,00 0,00 0,01 0,01 0,00 0,00 0,00
g19 0,06 0,29 0,39 0,00 0,00 0,09 0,03 0,00 0,13 0,02 0,10 0,38 0,22 0,00 0,00 0,00 0,01 0,00 0,00 0,00
g20 0,12 0,31 0,46 0,00 0,01 0,06 0,01 0,00 0,02 0,04 0,07 0,25 0,28 0,00 0,00 0,02 0,04 0,00 0,01 0,00
g21 0,03 0,06 0,32 0,02 0,01 0,36 0,06 0,00 0,13 0,09 0,04 0,09 0,13 0,00 0,00 0,03 0,01 0,00 0,01 0,00
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Table 2: FuzzyGTD 2012-2016 - Continued (from [31])
TT12 TT13 TT14 TT15 TT16 TT17 TT18 TT19 TT20 TT21 TT22 WT1 WT2 WT3 WT4 WT5 WT6 WT7 WT8 WT9 WT10 WT11 WT12 WT13
0,00 0,00 0,42 0,02 0,01 0,02 0,00 0,01 0,03 0,01 0,00 0,00 0,00 0,00 0,00 0,12 0,87 0,00 0,00 0,00 0,00 0,00 0,00 0,01
0,00 0,00 0,09 0,01 0,00 0,07 0,00 0,00 0,02 0,04 0,02 0,00 0,00 0,00 0,00 0,40 0,47 0,00 0,01 0,01 0,00 0,00 0,00 0,11
0,01 0,00 0,16 0,01 0,00 0,01 0,00 0,01 0,02 0,00 0,00 0,00 0,00 0,00 0,00 0,33 0,47 0,00 0,01 0,02 0,00 0,00 0,00 0,16
0,00 0,00 0,11 0,01 0,00 0,00 0,00 0,03 0,09 0,07 0,00 0,00 0,00 0,00 0,00 0,28 0,68 0,00 0,00 0,00 0,00 0,00 0,00 0,03
0,00 0,01 0,46 0,07 0,02 0,01 0,00 0,02 0,03 0,00 0,00 0,00 0,00 0,00 0,00 0,42 0,42 0,00 0,08 0,01 0,00 0,00 0,00 0,07
0,00 0,00 0,24 0,01 0,05 0,01 0,00 0,07 0,03 0,00 0,01 0,00 0,00 0,00 0,00 0,34 0,32 0,00 0,18 0,06 0,00 0,00 0,00 0,10
0,01 0,00 0,15 0,01 0,00 0,00 0,00 0,02 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,19 0,66 0,00 0,01 0,02 0,00 0,00 0,00 0,13
0,00 0,00 0,91 0,02 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,88 0,00 0,00 0,05 0,02 0,00 0,00 0,00 0,04
0,01 0,00 0,41 0,02 0,00 0,06 0,00 0,01 0,01 0,00 0,03 0,00 0,00 0,00 0,00 0,12 0,58 0,00 0,01 0,00 0,00 0,00 0,00 0,30
0,00 0,01 0,40 0,03 0,00 0,05 0,00 0,01 0,03 0,01 0,00 0,00 0,00 0,00 0,00 0,10 0,69 0,00 0,01 0,01 0,00 0,00 0,00 0,19
0,00 0,00 0,10 0,01 0,00 0,03 0,00 0,01 0,03 0,03 0,00 0,00 0,00 0,00 0,00 0,27 0,54 0,00 0,08 0,00 0,00 0,00 0,00 0,11
0,00 0,00 0,20 0,00 0,02 0,01 0,00 0,04 0,10 0,00 0,01 0,00 0,00 0,00 0,00 0,32 0,43 0,00 0,09 0,07 0,00 0,00 0,00 0,09
0,01 0,00 0,25 0,09 0,00 0,02 0,00 0,02 0,02 0,02 0,00 0,00 0,00 0,00 0,00 0,30 0,50 0,00 0,03 0,04 0,01 0,00 0,01 0,11
0,00 0,00 0,10 0,00 0,01 0,00 0,00 0,01 0,04 0,00 0,00 0,00 0,00 0,00 0,00 0,60 0,23 0,00 0,10 0,00 0,00 0,00 0,00 0,08
0,00 0,00 0,28 0,02 0,00 0,00 0,00 0,04 0,03 0,00 0,00 0,00 0,00 0,00 0,00 0,12 0,11 0,00 0,07 0,59 0,11 0,00 0,00 0,00
0,00 0,00 0,06 0,00 0,00 0,00 0,00 0,10 0,07 0,18 0,00 0,00 0,00 0,00 0,00 0,16 0,68 0,00 0,06 0,00 0,00 0,00 0,00 0,10
0,00 0,01 0,12 0,02 0,00 0,00 0,00 0,01 0,03 0,04 0,01 0,00 0,00 0,00 0,00 0,40 0,50 0,00 0,08 0,00 0,00 0,00 0,00 0,02
0,00 0,01 0,10 0,02 0,00 0,01 0,00 0,00 0,04 0,01 0,00 0,00 0,00 0,00 0,00 0,30 0,61 0,00 0,01 0,02 0,00 0,00 0,00 0,06
0,01 0,00 0,18 0,01 0,00 0,01 0,00 0,01 0,04 0,00 0,00 0,00 0,00 0,00 0,00 0,36 0,44 0,00 0,02 0,01 0,00 0,00 0,00 0,16
0,01 0,00 0,13 0,03 0,00 0,07 0,00 0,01 0,01 0,00 0,03 0,00 0,00 0,00 0,00 0,39 0,58 0,00 0,01 0,00 0,00 0,00 0,00 0,03
0,00 0,00 0,45 0,02 0,00 0,10 0,00 0,00 0,03 0,01 0,00 0,00 0,00 0,00 0,00 0,17 0,34 0,00 0,02 0,05 0,00 0,00 0,01 0,42
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Table 3: Similarity Matrix - AT, TT, WT (from [31])
g1 g2 g3 g4 g5 g6 g7 g8 g8 g10 g11 g10 g13 g14 g15 g16 g17 g18 g19 g20 g21

g1 1 0 0 0,02 0 0 0,01 0 0,06 0,32 0,02 0,02 0,04 0 0 0,12 0,02 0,05 0,01 0,03 0
g2 0 1 0,8 0,27 0,09 0,06 0,26 0 0,06 0,04 0,47 0,16 0,36 0,17 0 0,08 0,32 0,27 0,31 0,52 0,02
g3 0 0,8 1 0,34 0,14 0,06 0,41 0 0,11 0,06 0,53 0,16 0,45 0,18 0 0,08 0,31 0,24 0,31 0,39 0,03
g4 0,02 0,27 0,34 1 0,03 0,01 0,63 0 0,04 0,07 0,36 0,04 0,19 0,03 0 0,16 0,19 0,28 0,06 0,26 0
g5 0 0,09 0,14 0,03 1 0,17 0,02 0 0,05 0,03 0,12 0,22 0,37 0,07 0 0,02 0,21 0,04 0,2 0,16 0,04
g6 0 0,06 0,06 0,01 0,17 1 0,01 0 0,04 0,02 0,09 0,63 0,22 0,04 0 0,04 0,18 0,04 0,2 0,09 0,1
g7 0,01 0,26 0,41 0,63 0,02 0,01 1 0 0,08 0,08 0,35 0,03 0,16 0,02 0 0,09 0,09 0,21 0,06 0,16 0,01
g8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
g9 0,06 0,06 0,11 0,04 0,05 0,04 0,08 0 1 0,65 0,09 0,09 0,26 0 0 0,1 0,04 0,07 0,08 0,07 0,23
g10 0,32 0,04 0,06 0,07 0,03 0,02 0,08 0 0,65 1 0,09 0,08 0,23 0 0 0,22 0,05 0,13 0,06 0,09 0,06
g11 0,02 0,47 0,53 0,36 0,12 0,09 0,35 0 0,09 0,09 1 0,31 0,51 0,09 0 0,3 0,5 0,61 0,49 0,62 0,02
g12 0,02 0,16 0,16 0,04 0,22 0,63 0,03 0 0,09 0,08 0,31 1 0,51 0,04 0 0,17 0,46 0,22 0,54 0,34 0,07
g13 0,04 0,36 0,45 0,19 0,37 0,22 0,16 0 0,26 0,23 0,51 0,51 1 0,05 0 0,24 0,55 0,34 0,48 0,58 0,07
g14 0 0,17 0,18 0,03 0,07 0,04 0,02 0 0 0 0,09 0,04 0,05 1 0 0 0,11 0,02 0,07 0,06 0
g15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
g16 0,12 0,08 0,08 0,16 0,02 0,04 0,09 0 0,1 0,22 0,3 0,17 0,24 0 0 1 0,21 0,4 0,14 0,24 0,01
g17 0,02 0,32 0,31 0,19 0,21 0,18 0,09 0 0,04 0,05 0,5 0,46 0,55 0,11 0 0,21 1 0,34 0,41 0,64 0,01
g18 0,05 0,27 0,24 0,28 0,04 0,04 0,21 0 0,07 0,13 0,61 0,22 0,34 0,02 0 0,4 0,34 1 0,39 0,61 0,01
g19 0,01 0,31 0,31 0,06 0,2 0,2 0,06 0 0,08 0,06 0,49 0,54 0,48 0,07 0 0,14 0,41 0,39 1 0,51 0,04
g29 0,03 0,52 0,39 0,26 0,16 0,09 0,16 0 0,07 0,09 0,62 0,34 0,58 0,06 0 0,24 0,64 0,61 0,51 1 0,01
g21 0 0,02 0,03 0 0,04 0,1 0,01 0 0,23 0,06 0,02 0,07 0,07 0 0 0,01 0,01 0,01 0,04 0,01 1
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Table 4: Similarity Matrix - AT (from [31])
g1 g2 g3 g4 g5 g6 g7 g8 g8 g10 g11 g10 g13 g14 g15 g16 g17 g18 g19 g20 g21

g1 1 0,12 0,11 0,33 0,05 0,05 0,23 0 0,33 0,63 0,17 0,16 0,24 0,01 0 0,62 0,22 0,45 0,14 0,22 0,04
g2 0,12 1 0,93 0,59 0,65 0,5 0,74 0,04 0,5 0,34 0,77 0,72 0,85 0,49 0,08 0,47 0,73 0,65 0,89 0,89 0,32
g3 0,11 0,93 1 0,67 0,79 0,49 0,83 0,06 0,51 0,33 0,87 0,74 0,89 0,59 0,12 0,47 0,79 0,64 0,98 0,85 0,31
g4 0,33 0,59 0,67 1 0,59 0,26 0,86 0,02 0,46 0,46 0,83 0,59 0,84 0,31 0,07 0,71 0,93 0,83 0,71 0,83 0,14
g5 0,05 0,65 0,79 0,59 1 0,42 0,71 0,19 0,23 0,14 0,82 0,59 0,68 0,86 0,33 0,28 0,76 0,42 0,76 0,67 0,17
g6 0,05 0,5 0,49 0,26 0,42 1 0,53 0,02 0,38 0,23 0,54 0,82 0,52 0,46 0,04 0,31 0,39 0,39 0,54 0,43 0,65
g7 0,23 0,74 0,83 0,86 0,71 0,53 1 0,03 0,61 0,5 0,96 0,87 0,96 0,46 0,08 0,7 0,9 0,86 0,89 0,86 0,33
g8 0 0,04 0,06 0,02 0,19 0,02 0,03 1 0 0 0,05 0,02 0,03 0,28 0,76 0 0,04 0,01 0,04 0,03 0
g9 0,33 0,5 0,51 0,46 0,23 0,38 0,61 0 1 0,86 0,51 0,62 0,65 0,13 0,01 0,75 0,43 0,72 0,6 0,5 0,47
g10 0,63 0,34 0,33 0,46 0,14 0,23 0,5 0 0,86 1 0,39 0,47 0,53 0,06 0 0,87 0,37 0,75 0,41 0,43 0,27
g11 0,17 0,77 0,87 0,83 0,82 0,54 0,96 0,05 0,51 0,39 1 0,85 0,95 0,58 0,11 0,62 0,94 0,76 0,91 0,87 0,28
g12 0,16 0,72 0,74 0,59 0,59 0,82 0,87 0,02 0,62 0,47 0,85 1 0,86 0,47 0,05 0,63 0,72 0,74 0,8 0,75 0,52
g13 0,24 0,85 0,89 0,84 0,68 0,52 0,96 0,03 0,65 0,53 0,95 0,86 1 0,44 0,07 0,74 0,91 0,88 0,93 0,93 0,32
g14 0,01 0,49 0,59 0,31 0,86 0,46 0,46 0,28 0,13 0,06 0,58 0,47 0,44 1 0,38 0,14 0,49 0,22 0,54 0,43 0,16
g15 0 0,08 0,12 0,07 0,33 0,04 0,08 0,76 0,01 0 0,11 0,05 0,07 0,38 1 0,01 0,11 0,03 0,1 0,08 0,01
g16 0,62 0,47 0,47 0,71 0,28 0,31 0,7 0 0,75 0,87 0,62 0,63 0,74 0,14 0,01 1 0,63 0,89 0,55 0,63 0,23
g17 0,22 0,73 0,79 0,93 0,76 0,39 0,9 0,04 0,43 0,37 0,94 0,72 0,91 0,49 0,11 0,63 1 0,78 0,81 0,92 0,18
g18 0,45 0,65 0,64 0,83 0,42 0,39 0,86 0,01 0,72 0,75 0,76 0,74 0,88 0,22 0,03 0,89 0,78 1 0,71 0,82 0,29
g19 0,14 0,89 0,98 0,71 0,76 0,54 0,89 0,04 0,6 0,41 0,91 0,8 0,93 0,54 0,1 0,55 0,81 0,71 1 0,85 0,36
g29 0,22 0,89 0,85 0,83 0,67 0,43 0,86 0,03 0,5 0,43 0,87 0,75 0,93 0,43 0,08 0,63 0,92 0,82 0,85 1 0,24
g21 0,04 0,32 0,31 0,14 0,17 0,65 0,33 0 0,47 0,27 0,28 0,52 0,32 0,16 0,01 0,23 0,18 0,29 0,36 0,24 1
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Appendix B - Tables with numerical values of the experimentation
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Table 5: < AT1, TT1,WT6 > (from [31])
α =
0.00792

α =
0.00265

α =
0.00261

α = 0.001

Pr(Ω|[g]) β =
7.97982e−
05

β =
0.00024

β =
0.00024

β =
0.00064

ε = 0, 1 ε = 0, 3 ε = 0, 305 ε = 0, 8
g1 0.00004 NEG NEG NEG NEG
g2 0.00231 BND BND BND POS
g3 0.00261 BND BND POS POS
g4 0.00188 BND BND BND POS
g5 0.00058 BND BND BND NEG
g6 0.00038 BND BND BND NEG
g7 0.00222 BND BND BND POS
g8 0.00000 NEG NEG NEG NEG
g9 0.00041 BND BND BND NEG
g10 0.00018 BND NEG NEG NEG
g11 0.00129 BND BND BND POS
g12 0.00046 BND BND BND NEG
g13 0.00101 BND BND BND POS
g14 0.00138 BND BND BND POS
g15 0.00009 BND NEG NEG NEG
g16 0.00043 BND BND BND NEG
g17 0.00093 BND BND BND BND
g18 0.00079 BND BND BND BND
g19 0.00066 BND BND BND BND
g20 0.00100 BND BND BND POS
g21 0.00040 BND BND BND NEG
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Table 6: < AT2, TT14,WT5 > γ = 2 (from [31])
α = 0.1834 α = 0.0696 α = 0.0273

Pr(Ω|[g]) β = 0.0022 β = 0.0067 β = 0.0176
ε = 0, 1 ε = 0, 3 ε = 0, 8

g1 0.0263 BND BND BND
g2 0.0205 BND BND BND
g3 0.0207 BND BND BND
g4 0.0243 BND BND BND
g5 0.0195 BND BND BND
g6 0.0192 BND BND BND
g7 0.0239 BND BND BND
g8 0.0746 BND POS POS
g9 0.0185 BND BND BND
g10 0.0185 BND BND BND
g11 0.0209 BND BND BND
g12 0.0196 BND BND BND
g13 0.0201 BND BND BND
g14 0.0208 BND BND BND
g15 0.0359 BND BND POS
g16 0.0202 BND BND BND
g17 0.0208 BND BND BND
g18 0.0211 BND BND BND
g19 0.0196 BND BND BND
g20 0.0207 BND BND BND
g21 0.0181 BND BND BND
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Table 7: < AT2, TT14,WT5 > γ = 0.5 from [31]
α = 0.2471 α = 0.0986 α = 0.0394

Pr(Ω|[g]) β = 0.0033 β = 0.0098 β = 0.0256
ε = 0, 1 ε = 0, 3 ε = 0, 8

g1 0.0276 BND BND BND
g2 0.0281 BND BND BND
g3 0.0288 BND BND BND
g4 0.0304 BND BND BND
g5 0.0380 BND BND BND
g6 0.0319 BND BND BND
g7 0.0304 BND BND BND
g8 0.1921 BND POS POS
g9 0.0215 BND BND NEG
g10 0.0204 BND BND NEG
g11 0.0289 BND BND BND
g12 0.0308 BND BND BND
g13 0.0301 BND BND BND
g14 0.0263 BND BND BND
g15 0.0394 BND BND BND
g16 0.0253 BND BND NEG
g17 0.0305 BND BND BND
g18 0.0283 BND BND BND
g19 0.0301 BND BND BND
g20 0.0294 BND BND BND
g21 0.0237 BND BND NEG
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Table 8: < AT2, TT14,WT5 > γ = 0.1 (from [31])
α = 0.2829 α = 0.1162 α = 0.0470

Pr(Ω|[g]) β = 0.0039 β = 0.0117 β = 0.0306
ε = 0, 1 ε = 0, 3 ε = 0, 8

g1 0.0277 BND BND NEG
g2 0.0287 BND BND NEG
g3 0.0297 BND BND NEG
g4 0.0308 BND BND BND
g5 0.0482 BND BND POS
g6 0.0343 BND BND BND
g7 0.0307 BND BND BND
g8 0.4234 POS POS POS
g9 0.0220 BND BND NEG
g10 0.0207 BND BND NEG
g11 0.0296 BND BND NEG
g12 0.0323 BND BND BND
g13 0.0321 BND BND BND
g14 0.0276 BND BND NEG
g15 0.0397 BND BND BND
g16 0.0255 BND BND NEG
g17 0.0320 BND BND BND
g18 0.0286 BND BND NEG
g19 0.0311 BND BND BND
g20 0.0304 BND BND NEG
g21 0.0249 BND BND NEG
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Table 9: < AT2, TT4,WT9 >, < AT2, TT14,WT9 > and <
AT3, TT4,WT6 > for γ = 2 (from [31])

α = 0.2737 α = 0.1116 α = 0.045

Pr(Ω|[g]) β = 0.0038 β = 0.0112 β = 0.0293
ε = 0, 1 ε = 0, 3 ε = 0, 8

g1 0.0463 BND BND POS
g2 0.0362 BND BND BND
g3 0.0364 BND BND BND
g4 0.0438 BND BND BND
g5 0.0290 BND BND NEG
g6 0.0269 BND BND NEG
g7 0.0431 BND BND BND
g8 0.0054 BND NEG NEG
g9 0.0404 BND BND BND
g10 0.0415 BND BND BND
g11 0.0369 BND BND BND
g12 0.0310 BND BND BND
g13 0.0350 BND BND BND
g14 0.0361 BND BND BND
g15 0.0374 BND BND BND
g16 0.0402 BND BND BND
g17 0.0350 BND BND BND
g18 0.0384 BND BND BND
g19 0.0332 BND BND BND
g20 0.0361 BND BND BND
g21 0.0352 BND BND BND
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Table 10: < AT2, TT4,WT9 >, < AT2, TT14,WT9 > and <
AT3, TT4,WT6 > for γ = 0.5 (from [31])

α = 0.3487 α = 0.1514 α = 0.0627

Pr(Ω|[g]) β = 0.0053 β = 0.0158 β = 0.0411
ε = 0, 1 ε = 0, 3 ε = 0, 8

g1 0.0566 BND BND BND
g2 0.0558 BND BND BND
g3 0.0563 BND BND BND
g4 0.0699 BND BND POS
g5 0.0381 BND BND NEG
g6 0.0370 BND BND NEG
g7 0.0694 BND BND POS
g8 0.0222 BND BND NEG
g9 0.0536 BND BND BND
g10 0.0543 BND BND BND
g11 0.0550 BND BND BND
g12 0.0428 BND BND BND
g13 0.0499 BND BND BND
g14 0.0472 BND BND BND
g15 0.0716 BND BND POS
g16 0.0557 BND BND BND
g17 0.0502 BND BND BND
g18 0.0562 BND BND BND
g19 0.0459 BND BND BND
g20 0.0527 BND BND BND
g21 0.0443 BND BND BND
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Table 11: < AT2, TT4,WT9 >, < AT2, TT14,WT9 > and <
AT3, TT4,WT6 > for γ = 0.1 (from [31])

α = 0.3786 α = 0.1688 α = 0.0708

Pr(Ω|[g]) β = 0.0061 β = 0.0179 β = 0.0465
ε = 0, 1 ε = 0, 3 ε = 0, 8

g1 0.0573 BND BND BND
g2 0.0638 BND BND BND
g3 0.0648 BND BND BND
g4 0.0875 BND BND POS
g5 0.0399 BND BND NEG
g6 0.0389 BND BND NEG
g7 0.0876 BND BND POS
g8 0.0222 BND BND NEG
g9 0.0553 BND BND BND
g10 0.0556 BND BND BND
g11 0.0623 BND BND BND
g12 0.0453 BND BND NEG
g13 0.0540 BND BND BND
g14 0.0509 BND BND BND
g15 0.1881 BND POS POS
g16 0.0605 BND BND BND
g17 0.0548 BND BND BND
g18 0.0629 BND BND BND
g19 0.0488 BND BND BND
g20 0.0581 BND BND BND
g21 0.0455 BND BND NEG
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