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Preface 

My PhD three years course in Pharmaceutical Sciences at the Department of 

Pharmaceutical and Biomedical Sciences of Salerno University was started in 2010 

under the supervision of Prof. Giuseppe Bifulco. 

My research activity was mainly focused on studies of ligand-receptor 

interactions and structural characterization by computational techniques in order to 

identify new antitumor molecules potentially utilizable in therapy.  

In particular, I was mainly interested into the development of a new 

computational technique named Inverse Virtual Screening. The application of this 

approach led to the identification of the targets of interaction of several natural 

compounds. 

Furthermore, to improve my knowledge on computational chemistry, I moved to 

the The University Pompeu Fabra-PRBB (Parc de Recerca Biomèdica de 

Barcelona) in 2012 (mid-May until end of October 2012) under the supervision of 

Dr. Gianni De Fabritiis. 

During this period in his laboratory, my research work has included learning 

High-throughput Molecular Dynamics simulations, taking the advantage of his 

expertise in the field of molecular simulation applied to relevant systems in a drug 

design perspective, and his unique hardware and software infrastructure (GPU 

grid–ACEMD software).  

In addition to PhD course activities, I was involved in several other projects, 

mainly regarding the characterization of ligand-targets interactions of ligands on 

receptor targets (PXR, PPAR-γ, HSP70 1A), in order to elucidate the molecular 

basis of their activity. 
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Abstract 

Computational chemistry represents today a valid and fast tool for the research 

of new compounds with potential biological activity. The analysis of ligand-

macromolecule interactions and the evaluation of possible “binding modes” have a 

crucial role for the design and the development of new and more powerful drugs. In 

silico Virtual Screening campaigns of large libraries compounds (fragments or 

drug-like) on a specific target allow the selection of promising compounds, leading 

the identification of new scaffolds. The accurate analysis and the comparison of 

different bioactive compounds clarify the molecular basis of their interaction and 

the construction of pharmacoforic models. 

In parallel, another crucial aspect of pharmacological research is the 

identification of targets of interaction of bioactive molecules, and this is 

particularly true for compounds from natural sources. In fact, a wide range of drug 

tests on a large number of biological targets can represent a useful approach for the 

study of natural products, but often one of the main problems is their limited 

availability. 

Starting from these assumptions, a new computational method named Inverse 

Virtual Screening is described in details in this thesis. The different works based on 

this approach were performed considering panels of targets involved in the cancer 

events, determining the identification of the specific antitumor activity of the 

natural compounds investigated.  

Inverse Virtual Screening studies were performed by means of molecular 

docking experiments on different natural compounds, organized in small libraries 

or as single compounds. Firstly, a mathematical method for the exclusion of false 

positive and false negative results was proposed applying a normalization of the 

predicted binding energies (expressed in kcal/mol) obtained from the docking 

calculations (paragraph 2.2). Then this approach was applied on a library of 10 
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compounds extracted from natural sources (paragraph 2.3), obtaining a good 

validation through in vitro biological tests. Afterwards, another study was 

performed on the cyclopeptide namalide. Its biological inhibitory activity and 

selectivity on Carboxipeptidase A target was in accordance with Inverse Virtual 

Screening results (paragraph 2.4).  

Virtual Screening topic was also inspected analyzing the efficacy of Molecular 

Dynamics-based methods for the accurate calculations of the binding affinities. 

This work was conducted on a library of 1588 compounds (44 ligands + 1544 

decoys) extracted from the DUD database on trypsin target, using the Linear 

Interaction Energy (LIE) method by means of extensive Molecular Dynamics 

simulations. Four different LIE results obtained combining different scaling factors 

were compared with docking results, evaluating and comparing ROC and 

enrichment curves for each of the considered methods. Poor results were obtained 

with LIE, and further analysis with MM-GBSA and MM-PBSA approaches are 

under investigation. 

Moreover, in silico screenings were performed for the detailed study of natural 

compounds whose activities are known a priori. With this procedure, several 

binding modes were reported for a library of compounds on PXR target, whose 

activity or inactivity were rationalized comparing their binding poses with that of 

Solomonsterol A, used as a reference compound on this receptor. The 

presence/absence of biological activity of another library of compounds extracted 

from the marine sponge Plakinastrella Mamillaris on PPAR-γ and for the diterpene 

oridonin on HSP70 1A are described at a molecular level respectively in 

paragraphs 4.2 and 4.3 with molecular docking and Molecular Dynamics 

simulations. 

The putative binding modes for the reported molecules was described offering a 

complete rationalization of docking results, evaluating how ligand target specific 
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interactions (e.g. hydrophobic, hydrophilic, electrostatic contacts) can influence 

their biological activity. 
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Computational chemistry and drug discovery 

1 Introduction 
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1.1 Drug discovery process and computational chemistry 

Drug discovery is an expensive process including the identification and 

validation of a drug target (typically a protein), determination of 3-D structure of 

that target, discovery of a lead compound that binds to the target and development 

of the lead into a drug candidate.  

Computational chemistry represents today the preferential tool for predicting the 

putative binding modes and affinities of chemical compounds bound to a target. 

The difficulties and economic cost of the experimental methods explain the fast 

development of computational chemistry during the past years. The early 

development of computational chemistry was dependent on the developments in 

computational power and techniques. Computing power became widely available 

in the 1960s and a great number of new numerical models, or algorithms, were 

constantly produced worldwide. As computer power increased, the mathematical 

equations were refined in order to model real life more accurately. 

Effective use of computational chemistry shortens the development cycle for 

new drugs and provides pharmaceutical companies a competitive advantage with 

faster time-to-discovery and reduced costs. Numerous examples of drugs have been 

discovered and optimized with contributions from computational chemists.
1
 The 

primary goal of computational chemistry in drug discovery is to develop 

quantitative models that are able to predict activities of compounds quickly and 

accurately. Computer hardware and software is used to simulate a chemical process 

or to compute a chemical property. While it is now recognised that high-throughput 

methods are amply capable of producing greater volumes of data, they do not 

always increase the productivity and timeliness of a research effort. The problem in 

laboratories today is not one of acquiring data at each stage of drug discovery, but 

rather of extracting the useful information from the wealth that is available. 
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Fortunately, computational power and data-mining techniques are also advancing 

in step with demand. 

Computational methods provide guidance but are by no means able to make 

perfect predictions. Molecular libraries are screened, and the resulting leads are 

optimized in a cycle that features design, synthesis and assaying of numerous 

analogs, and animal studies. Crystal structure determination for complexes of some 

analogs with the biomolecular target is often possible, which enables “structure-

based drug design” (SBDD)
2
 and the efficient optimization of leads. SBDD is 

based on the knowledge of the 3-dimensional structure of the protein and, 

preferably co-complexed with a ligand as an identifier of the binding site are 

exploited for the design and the optimization of lead compounds.
3,4,5 

 

 

Figure 1.1 Number of yearly and total PDB structures available on PDB database from 1972 

until the end of 2012 
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As shown in Figure 1.1, a constantly growing number of protein structures have 

become available each year since 1976. As of February 2013, almost 85000 protein 

structures have been deposited at the Protein Data Bank (PDB),
6,7

 and this strongly 

demonstrates that structure-based drug design will continue to play a significant 

role in the field of drug design and discovery. 

Briefly, in the SBDD method, starting from the structure of a protein or a 

nucleic acid (X-ray crystallography, NMR or homology modelling), compounds or 

fragments of compounds from a database are positioned into a selected region of 

the structure. These compounds are scored and ranked, and the best compounds are 

tested with biochemical assays. In a next phase, from the results obtained it is 

possible to reveal parts of the compound that can be optimized to increase potency. 

This processes can be re-iterated, and then the optimazed compounds usually show 

marked improvement in binding and/or specificity for the target.  

The recognition of the binding site or the active site residues in the target 

structure is of high importance in SBDD. Basically, it is a small region, a pocket or 

bumps, where ligand molecules can best fit or bind to activate the receptor and/or 

target and produce the desirable effect. Since the proteins are capable of 

undergoing conformational changes, recognizing the accurate binding site residues 

is difficult;
8
 but still there are just a few computational programs, such as 

Ligsitecsc,
9
 Qsite finder

10
 and CASTp,

11
 that can capably spot out the binding site 

residues. For example, Qsite finder locates and clusters the favorable binding sites 

using the interaction energy and Van der Waal’s probes, whereas CASTp employs 

functionally annotated residues for mapping the surface pockets. 

In this context, starting from a defined target structure, one of the most popular 

approaches used is the Virtual Screening (VS) from millions of potential 

compounds. VS computationally screens large chemical libraries to search for 

compounds that possess complementarities toward the targets.
12,13

 The screening of 
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compounds in VS is carried out using docking calculations where the compounds 

are filtered mainly considering their binding energies against the target.
13,14

 

Because these types of screening techniques are mainly data driven, data 

accessibility remains highly significant. 

Another approach often used is the “ligand-based drug design”, very useful in 

the absence of an experimental 3D structure.
15,16

 Due to the lack of an experimental 

structure, the known ligand molecules that bind to the drug target are studied and 

compared to understand their structural and physico-chemical properties that 

correlate with the desired pharmacological activity.
17

 Ligand-based methods may 

also include natural products or substrate analogues that interact with the target 

molecule yielding the desired pharmacological effect.
18,19

 Here, if sufficient 

number of reported active compounds (10-40) with diverse activity values are 

there, one can build a 3D pharmacophore model of these set of compounds by 

overlapping all of them and finding the common feature among them.  

SBDD and LBDD approaches can be used for the de-novo design, a process of 

creating or building new lead compounds from scratch - the former method being 

more prevalent than the latter. This process complements VS in hit discovery. The 

main principle of de novo design is to construct the small-molecule chemical 

structures that best fit the target space.
20

 In receptor-based de novo design high-

quality protein structures and their respective binding sites are essential because the 

hits are designed based on the target structures by placing small fragments in the 

key interaction sites of the proteins. Receptor-based design can be carried out by 

two means: linking and growing techniques.  
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Figure 1.2 Process flow for the “hit identification” and “hit-to-lead” phases. 
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In the linking process different small fragments from the libraries are added 

simultaneously to different active site residues of the target.
21

 Thus, the small 

fragments positioned at the binding site link to each other and form a final single 

compound. This approach is widely preferred because the fragment design strategy 

is insightful in that most biological targets encompass discrete binding sites for 

each piece of a ligand.  

Whereas, in the growing technique a single small fragment is placed in the 

active site of the target and this fragment grows well complementarily against the 

receptor-binding site – thereby resulting in a library of chemical compounds that 

are more specific to the target. The process flow for the “hit identification” phase 

and “hit-to-lead” phase is represented in Figure 1.2. 
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1.2 Methodologies employed 

A summary of the main methodologies used to realize the project is briefly 

presented in the next paragraphs. 

 

1.2.1 Molecular Docking  

One of the more current and fast computational techniques used in the field of 

the medicinal chemistry is represented by the molecular docking. With this 

computational tool, based on the protein structures, thousands of possible poses of 

association are tried and evaluated. Many different docking software have been 

developed, i.e. GOLD,
22

 DOCK,
23

 FlexX,
24

 Autodock 3,
25

 Autodock 4,
26

 Autodock 

4.2,
27

 Autodock-Vina,
28

 Glide.
29

  

When only the structure of a target and its active or binding site is available, 

high-throughput docking is primarily used as a hit identification tool. The 

determination of the binding mode and affinity between the constituent molecules 

in molecular recognition is crucial to understanding the interaction mechanisms 

and to designing therapeutic interventions. However, similar calculations are often 

also used later on during lead optimization, when modifications to known active 

structures can quickly be tested in computer models before compound synthesis.  

Thus, if a particular target structure is known, one can dock a library of different 

chemical compounds into the same binding site, obtain a scoring value for each 

pose, and in this way virtually screen for affinity towards the target. High 

throughput virtual screening (HTVS), where the library may consist of up to 10
12 

(virtual) compounds, is a procedure commonly employed by pharmaceutical 

companies when starting a new lead discovery process. When desiring more 

detailed information about a potential ligand–protein complex than can be provided 

by HTVS, the assumption of the protein being a rigid structure becomes harder to 
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justify. It is well known that most, if not all, proteins continuously undergo 

conformational changes when exerting their functions in vivo.
30 

Specifically, when 

an agonist binds to a receptor, it is clear that significant conformational changes 

must take place. In light of this, some attempts have been made to take protein 

flexibility into account during docking. However, scoring all possible 

conformational changes is prohibitively expensive in computer time. Docking 

procedures which permit conformational change, or flexible docking procedures, 

must intelligently select small subset of possible conformational changes for 

consideration.  

In general, there are two aims of docking studies: accurate structural modelling 

and correct prediction of activity.  

Basically, a protein-ligand docking program consists of two essential 

components, sampling and scoring. 
 

 

1.2.1.1 Sampling 

Sampling refers to the generation of putative ligand binding 

orientations/conformations near a binding site of a protein and can be further 

divided into two aspects, ligand sampling and protein flexibility.  

Ligand sampling is the most basic element in protein-ligand docking. Given a 

protein target, the sampling algorithm generates putative ligand 

orientations/conformations (i.e., poses) around the chosen binding site of the 

protein.  

Treatment of ligand flexibility can be divided into three basic categories:
31

 

systematic methods (incremental construction, conformational search, databases); 

random or stochastic methods (Monte Carlo, genetic algorithms, tabu search); and 

simulation methods (Molecular Dynamics, energy minimization). 
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Systematic search algorithms generate all possible ligand binding conformations 

by exploring all degrees of freedom of the ligand.  

The most straightforward systematic algorithms are exhaustive search methods, 

in which flexible-ligand docking is performed by systematically rotating all 

possible rotatable bonds of the ligand at a given interval. Despite its sampling 

completeness for ligand conformations, the number of the combinations can be 

huge with the increase of the rotatable bonds.  

In stochastic algorithms, ligand binding orientations and conformations are 

sampled by making random changes to either a single ligand or a population of 

ligands at each step in both the conformational space and the 

translational/rotational space of the ligand, respectively. A newly obtained ligand is 

evaluated on the basis of a pre-defined probability function. Two popular random 

approaches are Monte Carlo and genetic algorithms.  

For what concerns simulation methods, Molecular Dynamics and energy 

minimization are the most popular simulation approaches. Molecular Dynamics 

simulations are often unable to cross high-energy barriers within feasible 

simulation time periods, and therefore might only accommodate ligands in local 

minima of the energy surface.  

Therefore, an attempt is often made to simulate different parts of a protein–

ligand system at different temperatures.
32

  

Another strategy for addressing the local minima problem is to perform 

Molecular Dynamics calculations from different ligand positions. In contrast to 

Molecular Dynamics, energy minimization methods are rarely used as stand-alone 

search techniques, as only local energy minima can be reached, but often 

complement other search methods, including Monte Carlo.  

For example, DOCK performs a minimization step after each fragment addition, 

followed by a final minimization before scoring. 
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Protein flexibility starts from the assumption that ligand binding commonly 

induces protein conformational changes, which range from local rearrangements of 

side-chains to large domain motions. Methods to account for protein flexibility can 

be grouped into three categories: soft docking, side-chain flexibility, and protein 

ensemble docking.  

Soft docking is the simplest method which considers protein flexibility 

implicitly. It works by allowing for a small degree of overlap between the ligand 

and the protein through softening the interatomic van der Waals interactions in 

docking calculations.  

In side-chain flexibility method backbones are kept fixed and side-chain 

conformations are sampled.  

The third type of methods account for protein flexibility by firstly using rigid-

body docking to place the ligand into the binding site and then relaxing the protein 

backbone and side-chain atoms nearby. 

Specifically, the initial rigid-body docking allows for atomic clashes between 

the protein and the placed ligand orientations/conformations in order to consider 

the protein conformational changes. Then, the formed complexes are relaxed or 

minimized by Monte Carlo (MC), Molecular Dynamic simulations, or other 

methods.  

In general, the most widely-used type of methods for incorporating protein 

flexibility utilizes an ensemble of protein structures to represent different possible 

conformational changes.  

The ensemble docking algorithm is not used for generating new protein 

structures, but instead for selecting the induced-fit structure from a given protein 

ensemble. Following a similar procedure, Abagyan and colleagues expanded 

Huang and Zou’s algorithm to create ICM’s ensemble docking algorithm, referred 

to as four-dimensional (4D) docking.
33
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1.2.1.2 Scoring 

Scoring is the prediction of the binding tightness for individual ligand 

orientations/conformations with a physical or empirical energy function. The top 

orientation/conformation, namely the one with the lowest energy score, is typically 

predicted as the binding mode. The scoring function is a key element of a protein-

ligand docking algorithm, because it directly determines the accuracy of the 

algorithm.
34,35,36,37

 Speed and accuracy are the two important aspects of a scoring 

function and an ideal scoring function would be both computationally efficient and 

reliable. Scoring functions have been developed can be grouped into three basic 

categories:  

 force field 

 empirical 

 knowledge-based scoring functions. 

Force field (FF) scoring functions
25,38,39

 are based on decomposition of the 

ligand binding energy into individual interaction terms such as van der Waals 

(VDW) energies, electrostatic energies, bond stretching/bending/torsional energies, 

etc., using a set of derived force-field parameters such as AMBER
40

 or 

CHARMM
41,42

 force fields. In general, the enthalpic contributions are essentially 

given by the electrostatic and van der Waals terms, and also considering taking into 

account the hydrogen bond formation between drug and biological target. 

The van der Waals potential energy is often modeled by the Lennard-Jones 12-6 

function (Equation 1.1) 

 

            

 

   

 

   

  
   

   
 

  

  
   

   
 

 

  

Equation 1.1 
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where ε is the well depth of the potential and σ is the collision diameter of the 

respective atoms i and j. The exp(12) is responsible for small-distance repulsion, 

whereas the exp(6) is related to an attractive term which approaches zero as the 

distance between two atoms increases (Figure 1.3).  

 

 
Figure 1.3 Graphical representation of the Lennard-Jones 12-6 function 

 

This Lennard-Jones 12-6 function is also used to describe the hydrogen bond in 

macromolecule-ligand complex, but is less smooth and angle dependent if 

compared to the van Der Waals function. 

The electrostatic potential energy is represented as the summation of Coulombic 

interactions, as described in Equation 1.2: 

 

           
    

       

  

   

  

   

 

Equation 1.2 

Where N is the number of atoms in molecules A and B, respectively, and q is the 

charge on each atom. The functional form of the internal ligand energy is typically 

very similar to the ligand-protein interaction energy, and also includes van der 

Waals contributions and/or electrostatic terms. 
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One of the major challenges in FF scoring functions is how to account for the 

solvent effect. The simplest method is to use a distance-dependent dielectric 

constant (rij) such as the force field scoring function in DOCK
39

 (Equation 1.3) 

 

     
   

   
    

   

   
   

    

         
 

  

 

Equation 1.3 

where rij stands for the distance between protein atom i and ligand atom j, Aij 

and Bij are the VDW parameters, and qi and qj are the atomic charges. ε(rij) is 

usually set to 4rij, reflecting the screening effect of water on electrostatic 

interactions. The most rigorous FF methods are to treat water molecules explicitly. 

However, these methods, together with their simplified approaches such as 

LIEPROFEC, and OWFEG are computationally expensive.
43

 To reduce the 

computational expense, accelerated methods have been developed while preserving 

the reasonable accuracy by treating water as a continuum dielectric medium. The 

Poisson-Boltzmann/surface area (PB/SA) models
44,45,46

 and the generalized-

Born/surface area (GB/SA) models
47,48,49

 are typical examples of such implicit 

solvent models. 

In addition to the challenge on solvent effect, how to accurately account for 

entropic effect is an even more severe challenge for FF scoring functions. 

Moreover, whether the free energy of ligand binding can be decomposed into a 

linear combination of individual interaction terms without calculating the partition 

function (“ensemble average”) also remains in question, referred to as the 

nonadditive problem. 

The second type of scoring function (empirical scoring functions) works on the 

sum of a set of weighted empirical energy terms such as VDW energy, electrostatic 
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energy, hydrogen bonding energy, desolvation term, entropy term, hydrophobicity 

term, etc.(Equation 1.4): 

 

          

 

 

Equation 1.4 

where {ΔGi} represent individual empirical energy terms, and the 

corresponding coefficients {Wi} are determined by reproducing the binding affinity 

data of a training set of protein-ligand complexes with known three-dimensional 

structures, using least squares fitting. GlideScore
50,51

, PLP
52

, SYBYL/F-Score,
24

 

LigScore,
53

 LUDI,
54

 SCORE,
55

 X-Score,
56

 ChemScore,
57

 MedusaScore,
58

 

AIScore,
59

 and SFCscore
60

 are examples of empirical scoring functions. 

In knowledge-based scoring functions protein-ligand complexes are modeled 

using relatively simple atomic interaction-pair potentials. In essence, it is designed 

to reproduce experimental structures rather than binding energies. A number of 

atom-type interactions are defined depending on their molecular environment. 

Compared to the force field and empirical scoring functions, the knowledge-based 

scoring functions offer a good balance between accuracy and speed. Namely, 

because the potentials are extracted from a large number of structures rather than 

attempting to reproduce the known affinities by fitting, the knowledge-based 

scoring functions are relatively robust and general. Their pairwise characteristic 

also enables the scoring process to be as fast as empirical scoring functions.  

A technique to improve the performances of scoring functions is clustering-

based scoring methods, which incorporate the entropic effects by dividing 

generated ligand binding modes into different clusters.
61,62,63

 The entropic 

contribution in each cluster is measured by the configurational space covered by 

the ligand poses or the number of the ligand poses in the cluster.  
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One restriction in clustering-based scoring methods is that its performance depends 

on the ligand sampling protocol that is used, i.e., it is docking program-dependent. 

These methods in combination with ligand conformational sampling using 

AutoDock have significantly improved binding mode prediction. 

 

1.2.1.3 Autodock: An Overview 

AutoDock currently represents one of the most cited docking softwares,
64

 

especially in a virtual screening of a compound libraries.
65

 For the purposes of this 

project the software AutoDock 3.0.5,
25

 4,
26

 4.2,
27

 and Autodock-Vina
28

 have been 

used.  

Basically, the differences between them are related to the speed, macromolecule 

sidechains flexibility, optimization of the free-energy scoring function based on a 

linear regression analysis, AMBER force field, larger set of diverse protein-ligand 

complexes with known inhibition constants; moreover the Lamarckian Genetic 

Algorithm (LGA) is a big improvement on the Genetic Algorithm, and both genetic 

methods are much more efficient and robust than SA in the new version of the 

software. 

In AutoDock there are different available search methods, but the Lamarckian 

Genetic Algorithm (LGA) has been selected for the aim of this study, because it 

has demonstrated to give the best results compared to the other algorithms.
25

  

The vast majority of genetic algorithms mimics the characteristics of Darwinian 

evolution and applies Mendelian genetics. This is briefly illustrated in Figure 1.4. 

This is called the Lamarckian genetic algorithm (LGA), and is an allusion to 

Jean Batiste de Lamarck’s (discredited) assertion that phenotypic characteristics 

acquired during an individual’s lifetime can become heritable traits.
66
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Figure 1.4 This figure illustrates genotypic and phenotypic search, and contrasts Darwinian and 

Lamarckian search.
67

 The space of the genotypes is represented by the lower horizontal line, and the 

space of the phenotypes is represented by the upper horizontal line. Genotypes are mapped to 

phenotypes by a developmental mapping function. The fitness function is f(x). The result of 

applying the genotypic mutation operator to the parent’s genotype is shown on the right-hand side 

of the diagram, and has the corresponding phenotype shown. Local search is shown on the left-hand 

side. It is normally performed in phenotypic space and employs information about the fitness 

landscape. Sufficient iterations of the local search arrive at a local minimum, and an inverse 

mapping function is used to convert from its phenotype to its corresponding genotype. In the case of 

molecular docking, however, local search is performed by continuously converting from the 

genotype to the phenotype, so inverse mapping is not required. The genotype of the parent is 

replaced by the resulting genotype, however, in accordance with Lamarckian principles. 

 

The most important issues arising in hybrids (LGA) of Genetic Algorithm (GA) 

and the Local Search (LS) revolve around the developmental mapping, which 

transforms genotypic representations into phenotypic ones.  

The genotypic space is defined in terms of the genetic operators mutation and 

crossover in our experiments by which parents of one generation are perturbed to 

form their children. The phenotypic space is defined directly by the problem, 
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namely, the energy function being optimized. The local search operator is a useful 

extension of GA global optimization when there are local ‘‘smooth-ness’’ 

characteristics (continuity, correlation, etc.) of the fitness function that local search 

can exploit. In hybrid GA + LS optimizations, the result of the LS is always used to 

update the fitness associated with an individual in the GA selection algorithm. If, 

and only if, the developmental mapping function is invertible, will the Lamarckian 

option converting the phenotypic result of LS back into its corresponding genotype 

become possible. The fitness or energy is usually calculated from the ligand’s 

coordinates, which together form its phenotype. The developmental mapping 

simply transforms a molecule’s genotypic state variables into the corresponding set 

of atomic coordinates. A novel feature of this application of hybrid global-local 

optimization is that the Solis and Wets LS operator searches through the genotypic 

space rather than the more typical phenotypic space. This means that the 

developmental mapping does not need to be inverted. Nonetheless, this molecular 

variation of the genetic algorithm still qualifies as Lamarckian, because any 

‘‘environmental adaptations’’ of the ligand acquired during the local search will be 

inherited by its offspring. At each generation, it is possible to let a user defined 

fraction of the population undergo such a local search. The local search frequencies 

of just 0.06 have found improved efficiency of docking, although a frequency of 

1.00 is not significantly more efficient.
67

 Both the canonical and a slightly modified 

version of the Solis and Wets method have been implemented. In canonical Solis 

and Wets, the same step size would be used for every gene, but we have improved 

the local search efficiency by allowing the step size to be different for each type of 

gene: a change of 1 Å in a translation gene could be much more significant than a 

change of 1° in a rotational or torsional gene. In the Lamarckian genetic algorithm, 

genotypic mutation plays a somewhat different role than it does in traditional 

genetic algorithms. Traditionally, mutation plays the role of a local search operator, 
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allowing small, refining moves that are not efficiently made by crossover and 

selection alone. With the explicit local search operator, however, this role becomes 

unnecessary, and is needed only for its role in replacing alleles that might have 

disappeared through selection. In LGA, mutation can take on a more exploratory 

role.  

The LGA yields a maximum number of 256 potential bioactive conformations: 

run, whose number can be increased performing more docking calculations. Each 

conformational solution is the result of a selection. The GA, starting from the input 

geometry, gives rise to a group of n conformations or individuals (whose number 

can be set up) defining for them translational, rotational and torsional variables. By 

the scoring function, each individual is labeled by the total interaction energy 

(fitness).  

Random pairs of individuals are mated using a process of crossover, in which 

new individuals inherit geometrical features from their parents leading to new 

generation of individuals. In addition, some offspring undergo random mutation, in 

which the translational, rotational and torsional variables are mutated randomly. 

Selection of the offspring of the current generation occurs based on the individual’s 

fitness: thus the better solutions go on into the next generations, whereas 

conformations with a low fitness are discarded. This cycle of crossover, mutation 

to lead new generation is repeated until the better bioactive conformation (run) is 

given.  

The LS performs an energy minimization of the current found conformation. In 

each generation a fraction of conformations population undergoes the geometry 

optimization, based on the local search frequency. Rapid energy evaluation is 

achieved by precalculating atomic affinity potentials (grid maps) for each atom 

type in the substrate molecule by grid method.
68
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These maps are calculated by AutoGrid. In this procedure the protein is 

embedded in a three dimensional grid and a probe atom is placed at each grid point 

(Figure 1.5). The energy of interaction of this single atom with the protein is 

assigned to the grid point.  

An affinity grid is calculated for each type of atom in the substrate, typically 

carbon, oxygen, nitrogen and hydrogen, as well as a grid of electrostatic potential, 

either using a point charge of +1 as the probe, or using a Poisson-Boltzmann finite 

difference method, such as DELPHI.
69

 The energetic of a particular substrate 

configuration is then found by tri-linear interpolation of affinity values of the eight 

grid points surrounding each of the atoms in the substrate.  

The electrostatic interaction is evaluated similarly, by interpolating the values of 

the electrostatic potential and multiplying by the charge on the atom (the 

electrostatic term is evaluated separately to allow finer control of the substrate 

atomic charges).  

The time to perform an energy calculation using the grids is proportional only to 

the number of atoms in the substrate, and is independent of the number of atoms in 

the protein. An estimated free energy of binding is used to evaluate the docked 

ligand conformations. This scoring function, based of force field AMBER,
70

 

comprises terms above described (directional hydrogen bonding, electrostatics, 

Van der Waals, internal energy) and entropic contribution: desolvation and 

torsional entropy. The latter describes the loss of entropy upon interaction with 

macromolecule followed by immobilization in the active site.  

The desolvation belongs the displacement of water molecules from the active 

site upon the binding of ligand to the macromolecular surface and the 

reorganization of solvent around the complex. 
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Figure 1.5 Schematic representation of the grid map. 

 

The scoring function was implemented using the thermodynamic cycle of 

Wesson and Eisenberg. The function is: 

 

          
   

   
    

   

   
  

   

                 
   

   
    

   

   
   

   

   

           
     

            

                                     

 
     

 

    
 

 

 
 

   

 

Equation 1.5 
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where the five ΔG terms on the right hand side are coefficient empirically 

determined using a linear regression analysis from a set of protein-ligand 

complexes.
25

 

For what concerns AutoDock Vina,
28

 this is a open-source program for drug 

discovery, molecular docking and virtual screening, offering multi-core capability, 

high performance and enhanced accuracy and ease of use. Vina uses a sophisticated 

gradient optimization method in its local optimization procedure.  

The calculation of the gradient effectively gives the optimization algorithm a 

“sense of direction” from a single evaluation. In the spectrum of computational 

approaches to modelling receptor ligand binding molecular dynamics with explicit 

solvent, Molecular Dynamics and Molecular Mechanics with implicit solvent, 

molecular docking can be seen as making an increasing trade-off of the 

representational detail for computational speed.
71

 Among the assumptions made by 

these approaches is the commitment to a particular protonation state of and charge 

distribution in the molecules that do not change between, for example, their bound 

and unbound states.  

Additionally, docking generally assumes much or all of the receptor rigid, the 

covalent lengths, and angles constant, while considering a chosen set of covalent 

bonds freely rotatable (referred to as active rotatable bonds here). Importantly, 

although Molecular Dynamics directly deals with energies (referred to as force 

fields in chemistry), docking is ultimately interested in reproducing chemical 

potentials, which determine the bound conformation preference and the free energy 

of binding. It is a qualitatively different concept governed not only by the minima 

in the energy profile but also by the shape of the profile and the temperature.
72

 

Docking programs generally use a scoring function, which can be seen as an 

attempt to approximate the standard chemical potentials of the system. When the 

superficially physics-based terms like the 6–12 van der Waals interactions and 
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Coulomb energies are used in the scoring function, they need to be significantly 

empirically weighted, in part, to account for this difference between energies and 

free energies.
72  

The afore mentioned considerations should make it rather unsurprising when 

such superficially physics-based scoring functions do not necessarily perform 

better than the alternatives.  

This approach was seen to the scoring function as more of “machine learning” 

than directly physics-based in its nature. It is ultimately justified by its performance 

on test problems rather than by theoretical considerations following some, possibly 

too strong, approximating assumptions 

The general functional form of the conformation-dependent part of the scoring 

function AutoDock Vina is designed to work with is: 

 

        
   

      

Equation 1.6 

where the summation is over all of the pairs of atoms that can move relative to 

each other, normally excluding 1–4 interactions, i.e., atoms separated by three 

consecutive covalent bonds.  

Here, each atom i is assigned a type ti, and a symmetric set of interaction 

functions fti-tj of the interatomic distance rij should be defined. 

This value can be seen as a sum of intermolecular and intramolecular 

contributions: 

 

                  

Equation 1.7 
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The optimization algorithm attempts to find the global minimum of c and other 

low-scoring conformations, which it then ranks. 

The predicted free energy of binding is calculated from the intermolecular part 

of the lowest-scoring conformation, designated as 1: 

 

                                 

Equation 1.8 

where the function g can be an arbitrary strictly increasing smooth possibly 

nonlinear function. 

In the output, other low-scoring conformations are also formally given s values, 

but, to preserve the ranking, using cintra of the best binding mode: 

 

                     

Equation 1.9 

For modularity reasons, much of the program does not rely on any particular 

functional form of fti-tj interactions or g. Essentially, these functions are passed as a 

parameter for the rest of the code.  

In summary the evaluation of the speed and accuracy of Vina during flexible 

redocking of the 190 receptor-ligand complexes making up the AutoDock 4 

training set showed approximately two orders of magnitude improvement in speed 

and a simultaneous significantly better accuracy of the binding mode prediction. In 

addition, Vina can achieve near-ideal speed-up by utilizing multiple CPU cores. 

However, AutodockVina does not provide very good weight of the energetic 

contribution derived from the hydrogen bond and electrostatic interactions, 

especially when the metal ions are presents.  
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1.2.2 Molecular Dynamics 

One of the principal tools in the theoretical study of biological molecules is 

represented by Molecular Dynamics simulations (MD). This computational method 

calculates the time dependent behavior of a molecular system. MD simulations 

have provided detailed information on the fluctuations and conformational changes 

of proteins and nucleic acids. These methods are now routinely used to investigate 

the structure, dynamics and thermodynamics of biological molecules and their 

complexes, representing an important tool in the drug discovery process.
73

  

Crystallographic studies demonstrate that protein flexibility plays a fundamental 

role in ligand binding, but they represents long and very expensive methods. As a 

consequence, computational techniques that can predict protein motions are 

needed. Unfortunately, the calculations required to describe the absurd quantum-

mechanical motions and chemical reactions of large molecular systems are often 

too complex and computationally intensive for even the best supercomputers. 

Molecular Dynamics (MD) simulations, first developed in the late 1970s,
74

 seek to 

overcome this limitation by using simple approximations based on Newtonian 

physics to simulate atomic motions, thus reducing the computational complexity. 

The forces acting on each of the system atoms are then estimated from an equation 

like that shown in Equation 1.10
75

 and represented in Figure 1.6: 

 

                 
 

     

           
 

      

  
  
 

              

         

   
   

   
      

   

   
     

    

    

 

   

 

Equation 1.10 
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Figure 1.6 Atomic forces that govern molecular movement can be divided into those caused by 

interactions between atoms that are chemically bonded to one another and those caused by 

interactions between atoms that are not bonded 

 

Briefly, these forces arise from interactions between bonded and non-bonded 

atoms contribute. Chemical bonds and atomic angles are modeled using simple 

virtual springs, and dihedral angles are modeled using a sinusoidal function that 

approximates the energy differences between eclipsed and staggered 

conformations. Non-bonded forces arise due to van der Waals interactions, 

modeled using the Lennard-Jones 6-12 potential, and charged (electrostatic) 

interactions, modeled using Coulomb’s law.  

The energy terms described above are parameterized in order to fit quantum-

mechanical calculations and experimental data. The main aim of this 

parameterization is the identification of the ideal stiffness and lengths of the 

springs that describe chemical bonding and atomic angles, determining the best 

partial atomic charges used for calculating electrostatic-interaction energies, 

identifying the proper van der Waals atomic radii, and so on. Collectively, these 

parameters are called a ‘force field’ because they describe the contributions of the 

various atomic forces that govern Molecular Dynamics. Several force fields are 

commonly used in molecular dynamics simulations, including AMBER,
75,76

 

CHARMM,
77

 and GROMOS.
78

 These differ principally in the way they are 

parameterized but generally give similar results. 

Different parameters determine the better or worse “quality” of a Molecular 

Dynamics simulation. For example, it is firstly important to include solvent effects. 
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This can be done at several levels. The simplest treatment is to simply include a 

dielectric screening constant in the electrostatic term of the potential energy 

function. In this implicit treatment of the solvent, water molecules are not included 

in the simulation but an effective dielectric constant is used. Often the effective 

dielectric constant is taken to be distance dependent. Although this is a crude 

approximation, it is still much better than using unscreened partial charges. Other 

implicit solvent models have been developed that range from the relatively simple 

distance-dependent dielectric constants to models that base the screening on the 

solvent exposed surface area of the protein. The distance-dependent dielectric 

coefficient is the simplest way to include solvent screening without including 

explicit water molecules and it is available in most simulation programs. Recently, 

several implicit solvent models based on continuum electrostatic theory have been 

developed. 

If water molecules are explicitly included in the simulation, they can provide the 

electrostatic shielding. In this more detailed treatment of the solvent boundary 

conditions must be imposed, first, to prevent the water molecules from diffusing 

away from the protein during the simulation, and second to allow simulation and 

calculation of macroscopic properties using a limited number of solvent molecules. 

Several different treatments of the boundary exist, the use of one over another 

depends strongly on the type of problem the simulation is to address. 

Periodic boundary conditions enable a simulation to be performed using a 

relatively small number of particles in such a way that the particles experience 

forces as though they were in a bulk solution. The coordinates of the image 

particles, those found in the surrounding box are related to those in the primary box 

by simple translations along the three axes (Figure 1.7). The simplest box is the 

cubic box. Forces on the primary particles are calculated from particles within the 
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same box as well as in the image box. The cutoff is chosen such that a particle in 

the primary box does not see its image in the surrounding boxes. 

 

 

Figure 1.7 Periodic boundary conditions (PBC). Primary box (red) translated along the three axes 

(white) 

 

Once the forces acting on each of the system atoms have been calculated, the 

positions of these atoms are moved according to Newton’s laws of motion. The 

simulation time is then advanced, often by only 1 or 2 quadrillionths of a second, 

and the process is repeated, typically millions of times. Because so many 

calculations are required, Molecular Dynamics simulations are typically performed 

on computer clusters or supercomputers using dozens if not hundreds of processors 

in parallel (CPUs) or, more recently, moving to the GPU architecture. Many of the 

most popular simulation software packages, which often bear the same names as 



Introduction 

 

30 

 

their default force fields (for example AMBER,
79

 CHARMM,
77

 and NAMD
80,81

), 

are compatible with multiple processors operating simultaneously. 

In the field of the drug discovery, Molecular Dynamics and the insights they 

offer into protein motion often play important roles. In fact, a single protein 

conformation tells little about protein dynamics. The static models produced by 

NMR, X-ray crystallography, and homology modelling provide valuable insights 

into macromolecular structure, but molecular recognition and drug binding are very 

dynamic processes. Moreover, it represents the best method for the identification of 

the sites not immediately obvious from available structures (cryptic sites), or for 

the allosteric ones.  

A link between molecular docking (fast, but with a poor accuracy) and 

Molecular Dynamics (computationally expensive, but accurate) is a new virtual-

screening protocol called the relaxed complex scheme (RCS),
82,83

 in which each 

potential ligand is docked into multiple protein conformations, typically extracted 

from a Molecular Dynamics simulation. Thus, each ligand is associated not with a 

single docking score but rather with a whole spectrum of scores. Ligands can be 

ranked by a number of spectrum characteristics, such as the average score over all 

receptors. Thus, the RCS effectively accounts for the many receptor conformations 

sampled by the simulations; it has been used successfully to identify a number of 

protein inhibitors, including inhibitors of FKBP,
84

 HIV integrase.
85

 

Moreover, another important application of Molecular Dynamics simulations in 

the drug discovery is the accurate calculation of the free energy (or binding 

affinities), widely described in the paragraph 1.2.3. 

With constant improvements in both computer power (from CPU to GPU 

architecture) and algorithm design, the future of computer-aided drug design is 

promising and Molecular Dynamics simulations are likely to play an increasingly 

important role in the development of novel pharmacological therapeutics. 
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1.2.3 Methods for the accurate calculation of the binding 

affinities 

Docking calculations are widely used in high-throughput virtual screening of 

structurally diverse molecules from available compound libraries/databases against 

specific targets, but often show many limits, especially in the lead identification 

stage.  

One of the ultimate goals in computer-aided drug design is the accurate 

prediction of ligand-binding affinities to a macromolecular target. As free energy 

methods have improved and computational power has continued to grow 

exponentially, this promise has begun in small part to be fulfilled. Low-throughput 

computational approaches for the calculation of ligand binding free energies can be 

divided into “pathway” and “endpoint” methods.
86

  

 

1.2.3.1 “Pathway” methods 

In pathway methods, the system is converted from one state (e.g., the complex) 

to the other (e.g., the unbound protein/ligand). This can be achieved by introducing 

a set of finite or infinitesimal “alchemical” changes to the energy function (the 

Hamiltonian) of the system through free-energy perturbation (FEP) or 

thermodynamic integration (TI), respectively. In an alchemical transformation, a 

chemical species is transformed into another via a pathway of nonphysical 

(alchemical) states. Many physical processes, such as ligand binding or transfer of 

a molecule from gas to solvent, can be equivalently expressed as a composition of 

such alchemical transformations. Combined with atomistic Molecular Dynamics 

(MD) or Monte Carlo (MC) simulations in explicit water solvent models, they 

represent the most accurate approaches for calculating absolute or relative ligand 

binding affinities. These methods are applicable with the notable increases of the 
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computational power, due to the emerging implementation of biomolecular codes 

on GPU architectures.  

 

1.2.3.1.1 Free energy perturbation 

Free energy perturbation (FEP) starts from the assumption that internal energy, 

enthalpy, entropy, and Gibb's free energy all include contributions from the motion 

of a molecule. Therefore, Molecular Dynamics provides a way to estimate these 

important thermodynamic parameters. The hypothesis that makes the most sense is 

that the internal energy, U, is the time average of the total energy of the molecule. 

The total energy of the molecule is the kinetic plus potential energy (Equation 

1.11): 

 

                                  

Equation 1.11 

The potential energy is just the molecular mechanics steric energy. Molecular 

Dynamics provides us with the time dependent energy of the molecule; all we need 

do to get U is average the total energy during the trajectory calculation.  

Now we turn to the relationship of the steric energy to the Gibb's free energy. In 

statistical mechanics, we find that the probability of a given state of a system 

occurring is proportional to the Boltzman weighting factor (Equation 1.12): 

 

                                  

Equation 1.12 

where E is the total energy of the system. In other words, states with low total 

energy are more likely to occur than states with high energy. A state of the system 

is determined by the conformation and motion of the molecule.  
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The conformation determines the steric energy and the motions determine the 

kinetic energy. In perturbation theory, we look at the effect of a small change in the 

structure of a molecule on its energy. To do the perturbation, the total energy is 

divided into two parts (Equation 1.13): 

 

           

Equation 1.13 

where E0 is a reference structure and E1 is a small perturbation from the 

reference structure.  

The perturbation is a small change that we place upon the system, say a small 

change in bond angle or a small change in the charge on an atom. The 

corresponding change in free energy of the system caused by the perturbation is 

given as shown in Equation 1.14:
87

 

 

                        

Equation 1.14 

where      denotes the time average over the motion of the reference structure 

from a Molecular Dynamics run. The e
-E

1
/RT

 term is the probability of occurrence 

for the small change in energy caused by the perturbation, from Equation 1.14. The 

free energy then depends on the time average of the probability of occurrence of 

the perturbed structure. In other words, if the perturbation produces a small change 

in energy, that change will contribute to the Gibb's free energy. In our case 

however, we wish to find the change in free energy for large changes in a molecule. 

These changes, can contribute to the mutation of a molecule from one state 

(molecule B) to another (molecule A). First we define a total energy for mutating 

molecule B to A (Equation 1.15) as 
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Equation 1.15 

where EA is the total energy for A and EB is that for B, and is the coupling 

parameter. When = 1 the energy corresponds to molecule A, and when = 0 the 

energy corresponds to molecule B.

When is at intermediate values, the system is a hypothetical superposition of 

A and B. It mightseem quite strange to have such a combination of two molecules, 

in fact it is very unphysical;however.  

For the complete mutation to take place we vary from 0 to 1 over the course of 

the dynamicsrun. We divide this full range into short time slices, which are short 

enough that we can treat thechange in each time slice as a perturbation.  

Then we apply Equation 1.15 to each time slice and then addup the result for all 

the time slices. Let the value at each time slice be numbered 1, 2, 3, etc.Then 

the difference in Equation 1.15 is G(i) for each time slice, i=1, 2 ,3,...n, for n 

total time slices. In words, this simple result means that the change in Gibb's free 

energy for a perturbation is justthe time average of the total perturbation energy. 

 

1.2.3.1.2 Thermodynamic integration 

Similarly, the thermodynamic integration method (TI) is often used for the 

“alchemical” computation of differences in binding affinities (known as relative 

affinities) among a set of related ligands for the same target protein. In this case, 

the free energy difference is calculated by defining a thermodynamic path between 

the states and integrating over enthalpy changes along the path.  
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These approaches can be used in a thermodynamic cycle, as illustrated in Figure 

1.8, often applied in studying the relative strength of ligand-receptor interactions 

and the relative stability of proteins differing in one or a few amino acids.  

 

 

Figure 1.8 Thermodynamic cycle linking the binding of two ligands L1 and L2 to a protein in 

solution. 

 

Thermodynamic cycle methods were developed because relatively large, 

complicated changes need to taken into account when considering the physical 

phenomena that occur in ligand-receptor binding or the effect of a mutation on 

protein stability. That is, binding of a drug to a receptor will produce relatively 

large conformational changes (i.e., the protein will favor a particular set of 

conformational substates). Binding of a very similar drug to the same site should 

produce most of the same changes. The thermodynamic cycle is designed to cancel 

out the large changes that are common to binding of either drug to the receptor. 

The horizontal legs describe the experimentally accessible actual binding 

processes, with free energies ∆Gbind(L1) and ∆Gbind(L2). Since the free energy is a 

state function, the relative binding free energy ∆∆Gbind is exactly equal to the 

difference of the free energies in the horizontal or vertical legs: 
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                         (L1)  Equation 1.16 

                                  

Equation 1.17 

The simulations follow the vertical steps (Equation 1.17) or unphysical 

processes, by simulations in water solution that gradually change the energy-

function of the system from one “endpoint” to the other through a series of 

intermediate hybrid states. From Figure 1.8, this involves the stepwise 

“alchemical” transformation of ligand L1 to L2 both in its ‘free’ state (unbound) 

and in the bound complex, through gradual changes in the forcefield parameters 

describing the ligand interactions. This leads to the free energy changes 

∆Gfree(L1→L2) and ∆Gcomplex(L1→L2), respectively. Averaging over both 

transformation directions is often used to improve the free-energy estimates, 

although this is not always the case. These calculations can be accurate, if 

conducted with the appropriate care. 

 

1.2.3.2 “Endpoint” methods 

Although we are assisting on a constant improvement in the computational 

power, much less computationally demanding “endpoint” methods are often 

successfully applied, such as the molecular mechanics – Poisson Boltzmann (MM-

PBSA) and the related molecular mechanics – generalised Born (MM-GBSA) 

approximation and the linear interaction energy (LIE). All these methods compute 

binding free energies along the horizontal legs of Figure 1.8, but use only models 

for the endpoints (bound and unbound states).  
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1.2.3.2.1 LIE (Linear Interaction Energy) 

The binding of a ligand to a biological macromolecule can be viewed as a 

process in which the ligand (l) is transferred from one medium, i.e., free in water 

(f) to another, i.e., the binding site of the water-solvated macromolecular target 

(b).
88

  

 

 

Figure 1.9 Reference state (left) and bound state (right) of a ligand solvated in water  

 

As a consequence, bound state of the ligand and reference state (water-solvated 

ligand) must be taken into account for a proper description of the total change in 

free energy associated to the formation of a ligand–receptor molecular complex. 

This is the correlation behind the LIE method, where the binding free energy is 

estimated as the free energy of transfer between water and protein environments as: 

 

               
          

 
    

Equation 1.18 

The main difference with respect to a regular transfer process between two 

solvents is that the standard state in water (1 M and free rotation) is replaced by 

restricted translation and rotation in a confined receptor-binding site. 
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In order to calculate the free energy of binding as a solely function of these two 

physical, relevant states of the ligand, we can draw a thermodynamic cycle (Figure 

1.10), where the upper corners represent these two states (left: free, solvated in 

water; right: bound to the protein). The two bottom corners will account for two 

unphysical, intermediate states: a pseudo-ligand without any (intermolecular) 

electrostatic interactions, in its free (left) or bound (right) state.  

 

 

Figure 1.10 The thermodynamic cycle on which is based the estimation of the binding free energies 

with the linear interaction energy (LIE)  

 

The resolution of such a thermodynamic cycle leads to the following equation: 

 

               
     

       
     

         
        

        
     

        
        

 

Equation 1.19 

where the entropic confinement contributions are hidden in the nonpolar term. 

Thus, the free energy of binding can be expressed as a sum of the corresponding 

polar and nonpolar components of the free energy. This is quite convenient, since 

molecular mechanics force fields analogously split the nonbonded potential 

energies into electrostatic and nonelectrostatic components. Potential energies (U) 

can be converted into free energies (∆G) considering that for the polar contribution, 
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a useful approximation comes from the linear response theory for electrostatic 

forces,
89,90

 which states that the electrostatic part of the solvation free energy is: 

 

     
   

 

 
      

           
        

Equation 1.20 

where the brackets     indicate thermodynamic averages of the ligand–

surrounding (l–s) interaction energies as calculated with standard force-field 

Molecular Dynamics (or, alternatively, MC or other relevant statistical sampling). 

The term with the electrostatic interactions turned off in the sampling,      
      , 

corresponds to the average electrostatic energy that would be obtained from the 

sampled configurations if the interactions instead were turned on (i.e., a 

“preorganization” term). This term is assumed to be constant or negligible 

compared to      
      (the corresponding energies sampled with the interactions 

turned on). Thus we will write Equation 1.20 as  

     
   

 

 
     

     , omitting a possible constant that will be considered below. In 

applying the linear response approximation to the problem of ligand binding we 

must also consider the reference state with a dissociated ligand in water. 

Furthermore, seemingly minor deviations from the exact linear response scaling 

factor of ½ have been demonstrated for hydration-free energies that, in fact, are 

important to take into account in order to improve the accuracy of the method.
91,92

 

Thus, we will write the expression for the polar component of the free energy in the 

general form of: 

 

      
     

        
          

            
    

Equation 1.21 
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The other main idea behind the LIE method is to estimate the nonpolar 

component of the free energy of binding analogously as: 

 

      
        

        
           

              
        

Equation 1.22 

where the α parameter is the empirically-derived nonpolar scaling factor and γ a 

constant. This was motivated by the observation of linear dependencies of both 

solvation free energies for nonpolar compounds and      
     on molecular size 

(which can also be compared to semi-macroscopic approximations such as 

     
        

           
    , representing the creation of a cavity and insertion of van 

der Waals centers into this cavity, where g is the surface tension, A the surface area, 

and c a scaling factor). However, due to the fact that      
     not only represents 

“steric” interactions but also is an efficient size measure, Equation 1.22 takes into 

account all size dependent and constant contributions to the binding free energy, 

approximating contributions from “cavity creation” confinement effects, and the 

second term of Equation 1.20.
93

 It follows that the full LIE equation, for the 

estimation of binding affinities based on force-field averaged energies, can be 

written as: 

 

              
            

      

Equation 1.23 

It is important to note that with this equation, one can calculate the free energy 

of binding by averaging the ligand-surrounding potential energies, which are 

collected only for the two physical states of the ligand involved in the binding 

process (represented in the upper corners of Figure 1.10): the free state (ligand 

solvated in water        ) and the bound state (ligand in the solvated protein-

binding site        ). This makes a substantial difference compared to other 
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methods for the estimation of free energies, e.g., in more complicated methods, 

such as FEP or thermodynamic integration (TI), intermediate unphysical states 

resulting from mixing of end-point potentials must be explicitly simulated. On the 

other side, statistical methods such as scoring functions generally only take into 

account descriptors collected for the bound state, and not the free state, which tends 

to yield artificial dependencies of binding free energies on ligand size (molecular 

weight). 

 

1.2.3.2.2  MM-GB(PB)SA 

In the MM-GB(PB)SA formulation,
94,95,96

 the binding free energy of a ligand 

(L) to a protein (P) to form the complex (PL) is obtained as the following 

difference (Equation 1.24): 

 

                        

Equation 1.24 

The free energy of each of the three molecular systems P, L, and PL is given by 

the Equation 1.25: 

 

                            

Equation 1.25 

In Equation 1.25, EMM is the total molecular mechanics energy of molecular 

system X in the gas phase, Gsolv is a correction term (solvation free energy) 

accounting for the fact that X is surrounded by solvent, and S is the entropy of X. 

To apply the MM-GB(PB)SA formulation, a representative set of equilibrium 

conformations for the complex, free protein and free ligand are first obtained by 

atomistic MD simulations in explicit solvent.  
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In this post-processing phase, the solvent is discarded and replaced by a 

dielectric continuum. Changes (Δ) in the individual terms (ΔEMM, ΔGsolv, -TΔS) of 

Equation 1.25 between the unbound states and the bound (complex) states are 

calculated, and contribute to the binding free energies according to Equation 1.26.  

EMM is the sum of the bonded (internal), and non-bonded electrostatic and van 

der Waals energies 

 

                         

Equation 1.26 

These energy contributions are computed from the atomic coordinates of the 

protein, ligand and complex using the (gas phase) molecular mechanics energy 

function (or forcefield). The solvation free energy term Gsolv contains both polar 

and non-polar contributions.  

The polar contributions are accounted for by the generalized Born, Poisson, or 

Poisson-Boltzmann model, and the non-polar are assumed proportional to the 

solvent-accessible surface area (SASA) (Equation 1.27): 

 

                      

Equation 1.27 

Finally, the entropy S is decomposed into translational, rotational and 

vibrational contributions. To improve the accuracy of the computed binding free 

energies, the various terms of Equation 1.27 are averaged over multiple 

conformations or MD snapshots (typically a few hundred for the EMM and Gsolv 

contributions). Depending on the extent of conformational fluctuations in the 

system under consideration, the convergence into stable values may require 

relatively long (multi-ns) simulations. The computation of the entropy term, 

however, requires the extensive minimization of the trajectory conformations for 
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the protein, ligand and complex to local minima on the potential energy surfaces, 

followed then by normal mode analysis. The internal energy terms (Ebonded) of the 

protein and complex can be on the order of a few thousand kcal/mol, and can 

introduce large uncertainties in the computed binding free energies. For what 

concerns the second contribution in the free energy (Gsolv(X)), it is important to 

note that the solvent modifies in a non-trivial manner the intramolecular and 

intermolecular interactions, an accurate inclusion of solvent effects in biomolecular 

modelling and simulation is a challenging task. The most rigorous treatment of the 

solvent in a molecular dynamics simulation is to include explicit molecules in the 

calculation, with a notable increase in the computational cost. A much less costly 

approach is to represent the solvent implicitly in the simulation, through the 

incorporation of additional “potential of mean force” terms in the gas-phase energy 

function (e.g., Equation 1.28 below). These terms depend only on the atomic 

coordinates of the solute, and express the solute free energy for a given 

configuration, after the solvent degrees of freedom have been “integrated out”. 

Thus, the simulation system has the same number of degrees of freedom as in the 

gas phase and there is no need for explicit sampling over solvent degrees of 

freedom. The MM-PB(GB)SA method combine atomistic simulations in explicit 

solvent for the generation of representative biomolecular conformations with an 

implicit-solvent estimation of the binding free energies, in a post-processing step.  

There are two approaches to generating the necessary ensembles for the bound 

and unbound state of binding energy calculations: all ensembles can be extracted 

from a single Molecular Dynamics (MD) or Monte Carlo (MC) trajectory of the 

bound complex, or trajectories can be generated for each state using separate 

simulations.  

These approaches are called the single trajectory protocol (STP) and multiple 

trajectory protocol (MTP), respectively, and each approach has distinct advantages 
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and disadvantages. STP is less computationally expensive than MTP, because only 

a single trajectory is required to generate all three ensembles. Furthermore, the 

internal potential terms (e.g., bonds, angles, and dihedrals) cancel exactly in the 

STP, because the conformations in the bound and unbound ensembles are the same, 

leading to lower fluctuations and easier convergence in the binding free energy. 

The STP is appropriate if the receptor and ligand ensembles are comparable in the 

bound and unbound states. However, the conformations populating the unbound 

ensembles typically adopt strained configurations when extracted from the bound 

state ensemble, thereby overstabilizing the binding, compared to the MTP. 

Conceptually, most implicit solvent models decompose the solvation process into 

three sequential steps: i) creation of a cavity in solution to accommodate the 

biomolecule; ii) switching-on dispersion interactions between the biomolecule and 

surrounding medium, while all atomic charges are set to zero; and iii) switching-on 

the biomolecular charges. The solvation free energies of steps i) and ii) are 

normally assumed to be proportional to the SASA of the biomolecule and represent 

the non-polar contributions (GSASA) to Gsolv in Equation 1.27, although the validity 

of this approximation has been questioned for step ii). With a positive coefficient 

of proportionality, an increase in the SASA is associated with an unfavorable 

increase in solvation free energy, which is partly accounted for by the tendency of 

non-polar residues to be solvent-excluded. The equation typically used is of the 

form (Equation 1.28): 

 

                   

Equation 1.28 

with the γ and β parameter values dependant on the method and solvation model 

(PBSA or GBSA) used. Meanwhile, step iii) calculates the contribution to solvation 

free energy due to the charge/electrostatic interactions of the solute with the 
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surrounding solvent, the polar contributions (GPB(GB)) to Gsolv in Equation 1.27. In 

continuum-electrostatics models such as PB and GB, the solute is treated as a low-

dielectric cavity embedded in a high dielectric medium. The solute charges are in 

the simplest and most common approximation centered on the individual atoms. 

The resulting solvation free energy of a molecule X is expressed as (Equation 

1.29): 

 

           
 

 
        

        

     
 

 

Equation 1.29 

where the summation is over all the atomic charges {qi}. The quantity gij
PB(GB)

 is 

determined using the PB model by numerical solution of the Poisson or Poisson-

Boltzmann equation (depending on the existence of salt), or using the GB model by 

an analytical expression with the functional form (Equation 1.30):  

 

   
       

 

 
        

          
   
 

    

  

    

 

Equation 1.30 

The parameters Bij depend on the position (distance from the solute-solvent 

dielectric boundary) of atoms i and j, and the shape of the entire biomolecule; ε is 

the solvent dielectric constant, and rij is the distance between i and j. The constants 

n and A were set to n=2 and A=4 in the original formulation of Still and 

coworkers.
95

 In the PB model, the solute dielectric constant (εin) affects the 

computed functions gij
PB

 and Equation 1.29. Meanwhile, in the GB model, the 

solute dielectric constant drops out from the final expression in Equation 1.30, due 

to the approximations used to arrive at an analytic formula. An εin value other than 

1 can still be used; in this case, the first parenthesis on the right-hand side of 
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Equation 1.30 becomes (1/ε –1/εin) and the GB expression yields the free energy of 

transfer ring the solute from an infinite reference medium with dielectric constant 

εin into solution. Application of Equation 1.29 to a protein:ligand complex (PL) 

and the dissociated protein (P) and ligand (L) yields the electrostatic (polar) 

solvation free energy contribution to Equation 1.24 (Equation 1.31): 

 

                                             

Equation 1.31 

An advantage of these methods is that they facilitate the decomposition of the 

total solvation free energy into insightful components. Hou and co-workers 

evaluated the performance of MM-GBSA and MM-PBSA for predicting binding 

free energies based on Molecular Dynamics simulations.
97

 Their results showed 

that MM-PBSA performed better in calculating absolute binding free energies 

compared to MM-GBSA but not necessarily for the relative binding free energies, 

sufficient for most applications in computational drug design. Interestingly, in a 

study of the accuracy of continuum solvation models for drug-like molecules, GB 

methods typically were more stable and gave more accurate results that the widely 

used PB methods.
98

 Recently, Miller et al.
99

 implemented the free Python program 

MMPBSA.py, speeding up the calculation by dividing frames evenly across 

available processors. The source code is released under the GNU General Public 

License. 
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Inverse Virtual Screening 

2 Inverse Virtual Screening 
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2.1 Inverse Virtual Screening: Introduction 

The identification of the biological targets of a natural and/or synthetic 

compound represents a fundamental aim in medicinal chemistry and in the field of 

natural products. The discovery of the activity of a molecule on a specific target 

and the careful analysis at a molecular level of the main interactions can be used to 

rationalize its binding mode. In this context, computational chemistry represents 

today a valid and fast tool for the scientific research of new compounds with 

potential pharmacological activity. It is possible to analyze a large number of 

molecules in very short times, evaluating their binding mode with receptors of 

pharmacological interest (Virtual Screening
100

). The availability of the 

crystallographic structures of specific targets permits the evaluation of the binding 

mode of specific compounds before the synthesis, with a reduction of costs and 

timing of a drug discovery project. Nevertheless, there are only few examples 

where the calculations are performed on different targets characterized by their 

involvement in specific disease processes. This new type of computational 

approach is known as Inverse Virtual Screening,
101,102,103,104

 in which libraries of 

compounds are tested on panel of targets with the aim of identifying a specific 

pharmacological activity (panel of antitumour, antiviral, antibacterial targets). This 

in silico tool could allow the identification of new specific biological actions for 

ligands with a well-known activity and explain in some cases the selectivity or the 

presence of side effects of a compound.
105,106

  

This could be particularly advantageous for the natural products, because the 

small amounts of compounds obtained from natural sources usually prohibit the 

performance of pharmacological tests against a large number of receptors. In fact, 

the chemistry of the natural products has been investigated thoroughly in recent 

decades, resulting in a better understanding of enzymatic processes and in the 

development of biosynthetic knowledge and biogenetic theories for a logical 
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classification connecting a large variety of compounds. Many interesting secondary 

metabolites are produced by organisms in small quantities. Thus, for the isolation 

of a few milligrams of pure active metabolites, just enough to conduct preliminary 

in vitro biological tests, it is often necessary to extract kilograms of an organism. A 

useful approach for the study of natural products would be to carry out drug tests 

on a large number of biological targets with a better chance of evaluating their 

potential activity. Computational methods have been recently shown to be an 

important complementary tool for the study of the pharmacological activity of 

natural compounds.
107,108,109,110,111,112

 

In this chapter, the molecular docking of several small molecules (organized in 

libraries or as single compound) against panels of receptor sites in an attempt to 

find ligands and binding conformations to direct experimental assays on specific 

biological targets. This approach has been initially applied to the discovery of 

potential antitumor compounds through the interaction with a number of protein 

targets involved in cancer, but there are on course other Inverse Virtual Screening 

studies for the evaluation of the antiviral and antibacterial activities. The panels of 

targets were built from the Protein Data Bank (PDB), by the selection of proteins 

involved in different pathologies and if commercially available for subsequent 

biological tests. The large number of available models for proteins is particularly 

useful for studying a wide range of molecules with variable biological activity. 

It is noteworthy that this approach is also potentially applicable to libraries of 

synthetic compounds, to accelerate the analysis and to evaluate structure-activity 

relationships through a virtual method before the experimental study. The Inverse 

Virtual Screening method is also useful to provide information regarding ligand-

protein interactions potentially affecting the physiology of the protein. 

Summarizing, this method was applied on: 

 a library of natural and marine compounds from LIBIOMOL library
113
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 a second library of natural products (10 compounds) with well-known 

antiproliferative and antioxidative biological activities
114

 

 namalide, a synthetic peptidic compound
115

  

In all these cases, using this approach, we were able to identify the targets of 

interaction of these compounds, confirming these results with biological tests. This 

highlights the promising usability of this new computational method for the 

accelerated discovery of the biological activity of natural and synthetic compounds. 

Finally, it is important to underline that in each one of the Inverse Virtual 

Screening studies performed, we used a different number of targets, because the 

panel was constantly updated. For example, in the first study a panel of 126 targets 

was used, while in the present state a panel of 210 targets involved in the cancer 

events is available (Table 2.1). In parallel, we are building other two panels of 

targets, respectively for the viral (so far, 85 targets) and mycotic infections (so far, 

130 targets). 

Even if the scope of this thesis is mainly focused on the development of new 

computational methods for the screening of targets involved in pathological events, 

it is proper to give an overview of the main events occurring in the cancer 

deasease, that represents the pathology mainly investigated in this type of study. 

This information are summarized in Appendix A. 
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protein PDB code protein PDB code protein PDB code 

14_3_3_epsilon 2BR9 egfr 2J6M mek4_anp 3ALN 
14_3_3_gamma 2B05 enolase1_site_1 2PSN mek4_no_anp 3ALN 

14_3_3_sigma 1YWT enolase1_site_2 2PSN mek5_pb1_domain 1WI0 

14_3_3_theta 2BTP enolase2_site_1 1TE6 metap2 1YW9 

14_3_3_zeta 1QJA enolase2_site_2 1TE6 mk2 3M42 

abl2 3HMI enolase3_site_1 2X6X mlk1 3DTC 

abl 2HYY enolase3_site_2 2X6X mmp13 830C 

aif 1M6I EPHa3 3DZQ mmp3 1HY7 

akt1 3MVH EPHb4 2X9F mmp8 2OY2 

akt2 3D0E erbB2 1S78 mrp1 2CBZ 

alk 2XP2 erbB4 2R4B msk1 3KN5 

alk5 2WOU erk1 2ZOQ mthfs 3HY3 

ape1 2ISI erk2 2OJG mtor 3FAP 

ask1 3VW6 fak 3BZ3 mtsp1 3NCL 

aurkinA 2W1D fgf1 1HKN nek2 2XKF 

aurkinB 2VG0 fgfr1 1AGW nek7 2WQN 

bap1 2W15 fgfr2 2PVF nnos 3JT4 

bcl2 2O21 flt3 3QS7 nqo1 2F1O 

bcl2a1 2VM6 fpps_allo 3N1V p300 3BIY 

bcl6 3LBZ fpps_ipp 1ZW5 p38 3HEG 

bclw 1ZY3 fpps_no_ipp 1ZW5 p53_mut 2X0V 

bclxl 1BXL ftase 1LD8 parp 2JVN 

braf 3C4C fxr 1OSV pcaf 2RNW 

brd2_bd1 2YDW galectin1 1W6M pcna 1VYJ 

brd2_bd2 3ONI galectin3 1KJL pd 3BIK 

brd3_bd1 3S91 galectin7 3GAL pdk1 3NAX 

brd3_bd2 3S92 gsk3 3F7Z peroxiredoxin_1 2RII 

brd4_bd1 3MXF gstm2_2 3GUR peroxiredoxin_hORF6 1PRX 

brd4_bd2 2YEM gstp1 2A2R pgm 1YFK 

btk 3PIX hdac1 homology_modelling pi3k 3ENE 

calmodulin 3EWT hdac2 homology_modelling pig3 2J8Z 

camKIIB 3BHH hdac3 homology_modelling pimkin 3JYA 

caspase1 2FQQ hdac4 homology_modelling pka 3L9L 

caspase2 1PYO hdac6 homology_modelling pkca 3IW4 

caspase3 3EDQ hdac7 homology_modelling pkcbII 2I0E 

caspase7 1SHL hdac8b homology_modelling pkc_eta 3TXO 

caspase8 1QTN hdac8 homology_modelling pkc_iota_2 1ZRZ 

cathepsinB 1GMY hgfr_cmet_alt 2WD1 pkc_iota 3A8W 

cathepsinG 1AU8 hmt 3HNA pkc_iota_apo 3A8X 

cathepsinK 2R6N hsc70 3FZH pkct 2JED 

cathepsinL 3HWN hsp90 2WI6 plk1 3FVH 

cbp 2RNY hspa1a 3JXU pnk 2W3O 

cdc42_no_alf3 2NGR hspa1l 3GDQ pop 3DDU 

cdk2 2VV9 hspa2 3I33 ppar_g 3AN3 

cdk2_alt 2WIH hspa5 3IUC pten 1D5R 

cdk2_altern 2WFY hspa6 3FE1 pxr 1M13 

cdk4 3G33 ido 2D0T pyk2 3FZS 

cdk5 1H4L igf 3F5P raf 3C4C 

cdk6 2F2C irak4 2NRU ras 3GFT 

cdk7 1UA2 jak1 3EYG ret 2X2K 

cdk8 3RGF jak2 3E64 srpk 1WBP 

cdk9 3BLQ jak3 1YVJ stat3 1BG1 

chk1 2QHN jmjd3 2XXZ survivin 1XOX 

chk2 2W7X jmjd3_akg 2XXZ syk 3FQH 

ciap1 3D9U jnk1 3KVX tank1 2RF5 

ck2 3FL5 jnk2 3NPC tank2 3KR8 

clk1 1Z57 jnk3 2ZDT tao2 2GCD 

clk3 2WU6 kit_kinase 3G0E tdp1 1RFF 

cmet 2WGJ kras 3GFT tie2 2OO8 

CPA 1CBX lck 3AD4 topI 1K4T 

CPU 3D67 lsd1 2EJR topII 1ZXM 

cSRC 3F3V lyn 2ZVA topII_atp 1QZR 

cxcr4 2K05 mcl1 3D7V tp 1UOU 

dapk 3EH9 mdm2 3EQS ts 3NCL 

dhfr 1PD8 mdmx 3EQY upa 2VIP 

diaminoox 3HIG mek1 3DV3 vegfr1 1FLT 

dnmt3a 3A1B mek1_adp 1S9J vegfr2 3EWH 

dnmt3l 2QRV mek1_no_adp_no_lig 1S9J wee1 1X8B 

dyrk_1a 3ANQ mek2_adp 1S9I xiap 1TFT 

e-cadherin 2O72 mek2_no_adp_no_lig 1S9I zap70 1U59 

Table 2.1 Panel of 210 targets involved in cancer processes built for Inverse Virtual Screening 

studies 
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2.2 Pilot Inverse Virtual Screening study: LIBIOMOL library 

A pilot Inverse Virtual Screening was initially conducted on a library of 

bioactive compounds (“Library on Bioactive Molecules” - www.libiomol.unina.it) 

classified as: (a) molecules with an action on the cytoskeleton; (b) cytotoxic 

compounds; (c) antitumor agents; (d) antiproliferative substances, and (e) 

antiangiogenic compounds. When this pilot study was performed 43 molecules 

were examined, comprising 27 natural compounds, three semisynthetic 

compounds, and 13 synthetic compounds designed for mimicking selected natural 

skeletons. This library was screened against a panel of targets selected for their 

correlations in cancer on the basis of the Inverse Virtual Screening method, 

allowing the obtainment of a restricted group of promising candidates for 

subsequent biological tests.  

In particular, Autodock-Vina
28

 calculations were performed. This software has 

been shown to produce an increased efficiency in predicting the experimental 

binding poses and energies, and a two orders of magnitude speed-up compared 

with Autodock 4.0.
25

 It has been designed for parallel computing, representing a 

particularly suitable tool for this study, for large virtual screening studies in 

general, and for the investigation of ligands presenting large numbers of active 

torsion angles, such as naturally occurring compounds.  

Docking calculations were perfomed between 43 molecules (Chart 2.1) 

previously tested for their potential activity (antitumor, cytotoxic, antiangiogenic, 

antiproliferative, activity on the cytoskeleton) against a panel of 126 protein targets 

(Table 2.2). The library used for the calculations included several types of 

molecules, characterized by similar or different chemical structures. 

 

 



Inverse Virtual Screening 

 

53 

 

1.15-keto-atractyligenin 

methyl ester 

HO

COOMe

O

 

12.6-methylheptyl sulfate 

 

OSO3
-
 

23.cnicin acetaldehyde 

O H
O

O

O

O O
O

 

34.iodocionin 

HO

I

N

 

2.2,15-diketo-atractyligenin 

methyl ester 

O

COOMe

O

 

13.aegelinol 

 

O O

HO

O 

24.conicaquinone A 

N
H

S

O

O

O O

 

35.maytenine 

N
H

N
H

O

H
N

O

 3.2-hydroxy-3,5,3',4'-

tetramethoxystilbene 

OH

MeO

OMe

OMe

OMe

 

14.aegelinol benzoate 

 

O O

O

O
O

 

25.conicaquinone B 

S

H
N

O

O O O 

36.(Z)-oct-5-enyl sulfate 

 

 

OSO3
-
 

4.2-hydroxy-3,5,3',5'-

tetramethoxystilbene 

OH

MeO

OMe

OMe

OMe

    

15.agasyllin 

 

O O

O

O
O

 

26.decaryiol 

   

O

OH

 

37.osthol 

OH3CO O

 

5.2-hydroxy-3,5,4'-

trimethoxystilbene 

OH

MeO

OMe

OMe

 

16.aplidiasterol A 

HO
H

O

OH

H

HO

 

27.decaryiol B 

O

HO
OH

 

38.pholiotic acid 

O

N
H H O O

O

OH

HO

H
N

O

 
6.2-hydroxyputrescine-1,4-

dicinnamamide 

N
H

H
N

O

H OH
O

 

17.aplidiasterol B 

HO
HO

O

OH

H

HO

 

28.decaryiol C 

O

HO
OAc

 

39.spirolaxine methyl ether 

O

OMe

MeO

O

O

O

 

7.15,3'-dibromorepin 

HO

Br
OH

H

O

H

O

O

O

Br

OH

 

18.callipeltin J  

H2N N
H

N
H

NH

NH

OH

OH

O

HN

O

O

OH

NH2
O

O

H
N

HO

OH

O

 

29.decaryiol D 

O

HOO
OH

 

40.sporotricale methyl ether 

 

O

OMe

MeO

O

O

HO

 

8.3,5,4'-trimethoxystilbene 

MeO

OMe

OMe

 

19.camptothecin-7-carbaldehyde-

O-(3-hydroxypropyl)-oxime 

N

N

O

OOH

N
O OH

O

 

30.epoxycembrene 

 

      

O H

 

41.thiaplidiaquinone A 

    

H
N

S O

O O

O

O

OH

 

9.3,5,3',5'-

tetramethoxystilbene 

MeO

OMe

OMe

OMe

 

20.camptothecin-7-methylene-O-

tolyl-amine 

N

N

O

O

OOH

CH N

H3C

 

31.felamidin 

 

O OOO

O

 

42.thiaplidiaquinone B 

         

H
N

S
O

O O

O

O

OH

 

10.3'-bromorepin 

HO

H

O

H

O

O

O

Br

OH

O

 

21.clavaminol A 

OH

NH2

 

32.grandivittin 

 

O O O

O

O
 

43.topopyrone C 

   

OOH

HO

O

O

O

OH

 
11.resveratrol 4-O-phosphate 

OH

HO

O P

O

OH

OH

 

22.clavaminol B 

OH

NH2

 

33.2-hydroxynephthenol 

       

OH

OH

 

 

Chart 2.1 Structures of compounds 1-43 
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protein PDB code protein PDB code protein PDB code 

abl 2HYY diaminoox 3HIG mek1 3DV3 

abl2 3HMI dnmt3a 3A1B metap2 1YW9 

aif 1M6I dnmt3l 2QRV mmp3 1HY7 

akt 3MVH e-cadherin 2O72 mmp8 2OY2 

apaf1 1Z6T egfr 2J6M mmp13 830C 

ape1 2ISI epsilon 2BR9 mrp1 2CBZ 

aurkin 2W1H erbB2 1S78 mTor 3FAP 

bap1 2W15 erk1 2ZOQ nnos 3JT4 

bcl2 2O21 erk2 2OJG nqo1 2F1O 

bcl2a1 2VM6 fak 3BZ3 p38 3HEG 

bclw 1ZY3 fgf1 1HKN parp 2JVN 

bclxl 1BXL fgfr1 1AGW pcaf 2RNW 

braf 3C4C fgfr2 1EV2 pcna 1VYJ 

calmodulin 3EWT fgfr3 3GRW pd 3BIK 

caspase1 2FQQ ftase 1LD8 pgm 1YFK 

caspase2 1PY0 galectin1 1W6M pi3k 3ENE 

caspase3 3EDQ galectin3 1KJL pik3 1E7U 

caspase7 1SHL galectin7 3GAL pimKin 3JYA 

caspase8 1QTN gamma 2B05 plk1 3FWH 

cathepsin B 1GMY gsk3 3F7Z pop 3DDU 

cathepsin G 1AU8 gstp1 2A2R pten 1D5R 

cathepsin K 2R6N hdac1 homology modelling pyk2 3FZS 

cathepsin L 3HWN hdac2 homology modelling raf 3IDP 

cbp-p300a 1JJS hdac3 homology modelling srpk 1WBP 

cd20 3BKY hdac4 homology modelling stat1-s1 1BF5 

cdk2 2VV9 hdac6 homology modelling stat1-s2 1BF5 

cdk6 2F2C hdac7 homology modelling stratifin 1YWT 

cdk7 1UA2 hdac8 homology modelling survivin 2RAW 

cdk9 3BLQ hdac8b homology modelling tdp1 1RFF 

chk1 2QHN hmt 3HNA teta 2BTP 

chk2 2W7X hsp90 2WI6 tie2 2OO8 

ciap1 3D9U ido 2D07 topI 1K4T 

ciap2 3EB5 igf 3F5P topII 1ZXM 

ck2 3FL5 jak1 3EYG topII_atp 1QZR 

clk1 1Z57 jak2 3E64 tp 1UOU 

clk3 2WU6 jak3 1YVJ upa 2VIP 

cmet 2WGJ kit-kinase 3G0E vegfr1 1FLT 

ctl4 1I8L kras 3GFT vegfr2 3EWH 

cxcr4 2K05 lsd1 2EJR wee1 1X8B 

cyclA-cdk2 2IW9 mcl1 3D7V xrcc1 2W3O 

cyclin A 2WFY mdm2 3EQS zeta 1QJA 

dhfr 1PD8 mdmx 3EQY   
 Table 2.2 The panel of targets used in the pilot Inverse Virtual Screening study 
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2.2.1 Analysis of Predicted Binding Energies 

The results of Inverse Virtual Screening were collected in different tables and 

initially sorted by single ligand vs. target, with the energies expressed in kcal/mol 

from the highest to the lowest values, in order to explore the possibility of identify 

ligands with good affinity and selectivity by evaluation of the predicted binding 

energies.
116

 The mere analysis of the binding energies highlighted a restricted 

group of targets selected with high values of predicted binding energies on a 

significant number of ligands tested, thus suggesting the use of a re-modulation of 

the results using a different criterion. 

 

2.2.2 Comparing Standard Ligands  

Accordingly, docking calculations of crystallized ligands, with a well-known 

binding mode, were performed in order to obtain a standard energy to be 

introduced as a filter in the evaluation of the binding energies of the matrix used. In 

general, in order to assess the efficiency of the docking experiments, the root-mean 

square deviations (RMSD, expressed in Å) of the docked conformations related to 

the crystallized ones were calculated. Choosing an exhaustiveness value of 16 for 

Autodock-Vina calculations and cutoff of 2 Å (an upper limit indicative of a good 

superimposition), 63% of the correlated structures within this range were identified 

(Table 2.3 and Figure 2.1).  

 

 

Figure 2.1 Distribution of RMSD for the 90 co-crystallized ligands in the PDB files docked with 

Autodock-Vina software. 

 

RMSD ≤ 2 Å

RMSD ≥ 2 Å

63 %

37 %
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abllig 0.917 cathepsinGlig 2.157 epsilonlig 1.402 kraslig 1.527 pimkinlig 1.285 

abl2lig 0.906 cathepsinKlig 1.501 erk1lig 1.408 lsd1lig 2.467 plk1lig 2.670 

aiflig 1.416 cathepsinLlig 1.674 erk2lig 0.458 mcl1lig 9.474 poplig 0.800 

AKTlig 0.730 cd20lig 3.280 faklig 0.956 mdm2lig 9.524 ptenlig 0.854 

aurkinlig 0.729 cdk6lig 1.735 fgfr1lig 8.920 mdmxlig 5.776 pyk2lig 0.770 

bap1lig 1.619 cdk7lig 1.803 ftaselig 0.467 mek1lig 1.715 raflig 0.170 

bcl2lig 0.945  cdk9lig 3.034 galectin3lig 1.299 metap2lig 1.401 srpklig 7.934 

bcl2a1lig 2.215 chk1lig 0.951 galectin7lig 1.143 mmp13lig 0.946 stratifinlig 2.200 

bclwlig 2.146 chk2lig 0.350 gammalig 3.655 mmp3lig 2.040 tetalig 4.531 

bclxllig 7.838 ciap1lig 1.609 gsk3lig 0.805 mmp8lig 0.154 tie2lig 1.341 

braflig 0.410 ck2lig 0.837 gstp1lig 1.398 mrp1lig 4.235 topIlig 1.250 

calmodulinlig 6.137 clk1lig 0.307 hgfrlig 0.453 mtorlig 0.219 topIIlig 0.837 

caspase1lig 1.688 clk3lig 1.108 hmtlig 2.073 nnoslig 1.035 topII_atplig 2.563 

caspase2lig 5.858 cmetlig 1.025 idolig 0.541 nqo1lig 4.185 tplig 0.693 

caspase3lig 4.380 diaminooxlig 2.257 igflig 2.478 p38lig 1.247 upalig 0.919 

caspase7lig 2.372 dnmt3alig 1.974 jak1lig 0.331 pcaflig 15.307 vegfr2lig 0.399 

caspase8lig 2.270 dnmt3llig 2.729 jak2lig 1.135 pcnalig 10.441 wee1lig 0.330 

cathepsinBlig 1.992 egfrlig 1.256 kit_kinaselig 1.202 pgmlig 2.042 zetalig 2.250 

Table 2.3 Root mean square deviations (RMSD, expressed in Å) calculated between crystallized 

and docked conformations for the 90 ligands in complex with related targets in the PDB files. 

 

This procedure was initially assessed to 44 targets of the panel for which docked 

ligands (standards) complied with this requirement. In particular, the efficiency in 

the binding was evaluated through the ratio between the binding energies of the 

ligands and the standards, as indicated in Equation 2.1: 

 

                          

Equation 2.1 

Compounds showing a δ ≥ 1 were selected from the library.  

From this analysis, 335 associations between the ligands and the targets on 1892 

(43 ligands of the library × 44 targets investigated) calculations performed showed 

a δ ≥ 1, suggesting a consistent number of false positives.
116

 Careful analysis of the 

chemical structures highlighted a connection between high values of δ and high 

molecular weights of Libiomol ligands, especially when these were correlated to 

low molecular weights of standard ligands.  

Examples are the crystallized ligands (standards) for the targets pten (PDB code 

= 1D5R; standard C4H6O6, mw = 150.09 g/mol), tp (PDB code = 1UOU; standard 

C9H11ClN4O2, mw = 242.66 g/mol), clk1 (PDB code = 1Z57; standard C11H11N5O2, 

mw = 245.24 g/mol). 
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This trend could be explained by considering the importance of molecular size 

in the predicted docking energy; in particular an increase of this parameter may 

influence the amount of van der Waals interactions representing an important factor 

for the calculations with docking software.
25

 

 

2.2.3 Introducing Ligand Efficiency (LE)  

For the above considerations, subsequent analysis were performed considering 

the “ligand efficiency” of all the molecular structures. Ligand efficiency, a term 

that has recently attracted the attention of researchers involved in the drug 

discovery field, is generally defined as the binding energy of a ligand normalized 

by its size.  

Successful drug discovery involves the optimization of many variables, such as 

compound potency, selectivity, cellular activity, solubility, metabolic stability, 

bioavailability, and acceptable toxicity.  

Recently, the concept of ligand efficiency as a measure for lead selection was 

suggested. Ligand efficiency reduces the number of variables by combining 

potency with molecular weight and polar surface area, and it represents a 

particularly suitable parameter in the field of the drug discovery.   

This parameter is useful for effective and efficient drug discovery, and might 

provide the basis for a mathematically robust optimization of the drug discovery 

process.
117

  

The ligand efficiency depends on the size of the ligand, as smaller ligands have 

a higher efficiency than the larger ligands.  

One of the reasons behind this principle is the reduction in the area accessible to 

the ligand increasing the size of the ligand. These findings have important 

implications in the screening of libraries of compounds.  
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Ligand efficiency is calculated using the Equation 2.2: 

 

            

Equation 2.2 

where N is the number of non-hydrogen atoms.
117

 

On this basis, we calculated the ligand efficiency of our database of compounds 

and for the standard ligands, and the results are reported as ratios between the 

values obtained for the ligands and the standards, as indicated in Equation 2.3: 

 

                                

Equation 2.3 

For each receptor considered, selected compounds were those complying with 

the following conditions (Equation 2.4): 

 

                  ≥ M + 3σ 

Equation 2.4 

where M is the average value of δLE for all the compounds and σ is the standard 

deviation (a value of 3σ was used in order to select the best results from this type of 

screening). 

Histograms associated to each target were drawn to assess the overall behavior 

of the compounds analyzed for ligand efficiency.
116

  

The trends observed for each target proved to be very similar, as shown in 

histograms related to a sample of 6 targets (Figure 2.2). In a matrix of 43 

compounds and 44 targets, the molecules with a low molecular weight showed the 

best values (δLE ≥ 1): 6-methylheptyl sulfate
118 

and aegelinol
119,120,121 

in docking 

with 18 targets, 2-hydroxynephthenol
122

 in docking with eight targets, iodocionin
123

 

in docking with 17 targets, and (Z)-oct-5-enyl sulfate
118

 and osthol
124,125

 in docking 



Inverse Virtual Screening 

 

59 

 

with 17 and 14 targets, respectively. The common targets for these compounds 

were abl2, akt, bap1, cathepsin B, cathepsin K, cdk6, egfr, mtor, and pyk2.  

The most important feature of this analysis is that small molecules with a better 

ligand efficiency than standard ligands were selected systematically by the 

screening procedure. 

 

 

Figure 2.2 Histograms of δLE values for six target samples. On the x axis the id of the compound 

and on the y axis the δLE are reported. Also considering different y axis scales, it is clear the same 

distribution of δLE for the compounds investigated. 

 

Ligand efficiency is very important to establish limits in the building of new 

structures adapted on an active protein site, but the evaluation of this parameter 

was not considered a useful method of screening in this study. 
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2.2.4 Normalization of the Matrix  

To overcome the lack of selectivity of the molecules chosen for the library to the 

panel of receptors, the binding energy (kcal/mol) data were organized in a matrix 

of 43 structures vs. the 126 targets of antitumor panel.  

The aim was to exclude the false positives through a mathematical filter aimed 

at eliminating systematic errors associated with molecules and targets in their 

interaction. 

To obtain the normalization of binding energy values in the matrix, Equation 2.5 

was applied: 

  

                         

Equation 2.5 

In this convention, V is the new value associated to each compound, V0 is the 

value of binding energy obtained from the docking calculation, ML is the average 

binding energy of each ligand (on different targets), and MR is the average binding 

energy associated to each target (on the various ligands). Every single value in the 

matrix representing a single ligand vs. a specific receptor was accordingly 

normalized taking simultaneously into account the influence of the two specific 

averages contained in Equation 2.5.
116 

 

In this case, the values obtained led to the creation of histograms showing a 

different trend on the individual compounds against every single target , as shown 

in Figure 2.3 for the same sample of targets shown previously in Figure 2.2.  

The molecules were selected through calculation of the standard deviation from 

the average of matrix (M); in particular the molecules were chosen up to the value 

of M + 3σ to classify compounds with the best interactions. Selected results are 

reported in Table 2.5.  
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targets↓ 

compounds→ 

1 2 3 MR
a 

abl -7.5 -7.0 -7.9 -8.2 

abl2 -6.2 -6.1 -8.2 -7.5 

aif -9.4 -9.3 -8.1 -8.6 

akt -8.6 -8.2 -7.1 -8.0 

ape1 -6.6 -6.7 -5.7 -6.6 

aurkin -7.4 -7.0 -8.2 -8.2 

bap1 -6.0 -6.0 -6.7 -7.0 

bcl2 -7.9 -7.9 -6.9 -7.5 

bclxl -8.2 -8.0 -6.6 -7.4 

braf -8.6 -8.8 -7.6 -8.5 

calmodulin -6.6 -6.6 -5.7 -6.8 

caspase1 -5.7 -5.5 -4.6 -5.3 

caspase2 -5.2 -5.2 -4.9 -5.0 

caspase3 -7.2 -7.4 -6.4 -7.1 

caspase7 -8.4 -8.4 -6.8 -7.7 

caspase8 -6.9 -6.9 -6.3 -6.6 

cathepsin B -8.0 -7.9 -6.4 -6.9 

cathepsin G -7.7 -7.7 -6.5 -6.8 

cathepsin K -6.3 -6.5 -5.8 -6.1 

cathepsin L -6.4 -6.1 -5.9 -6.3 

cdk2 -8.5 -8.6 -7.8 -8.1 

cdk6 -7.9 -8.6 -6.9 -7.8 

cdk7 -8.9 -9.0 -7.8 -8.3 

cdk9 -8.3 -8.4 -6.1 -7.6 

chk1 -7.3 -7.4 -7.2 -7.3 

chk2 -6.2 -6.3 -8.7 -8.0 

ciap1 -5.9 -5.7 -5.6 -5.9 

ck2 -7.8 -7.9 -7.7 -8.1 

clk1 -7.6 -8.0 -7.8 -8.1 

clk3 -8.7 -9.1 -7.4 -8.5 

cmet -6.4 -6.5 -7.4 -7.6 

cyclin A -7.5 -7.5 -5.5 -6.4 

dhfr -8.5 -8.5 -7.4 -7.9 

ML
b -7.2 -7.2 -6.6   

     

Table 2.4 Values of Binding Energies for Three Sample Ligands and 33 Sample Targets 

(
a
Average of values for targets. 

b
Average of the values for ligands). 
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Figure 2.3 Histograms related to the same six target samples reported in Figure 2.2 after 

normalization of predicted binding energies 

 
compounds targets V 

19 topI 1.418 

20 chk2 1.446 

lsd1 1.450 

mTor 1.690 

topI 1.483 

28 caspase2 1.409 

31 abl2 1.398 

41 mTor 1.438 

43 wee1 1.429 

Table 2.5 Selected compounds after normalization of the matrix 

Analysis of the tables confirmed the validity of the method. In particular, as 

reported in the literature, both camptothecin-7-carbaldehyde-O-3-hydroxypropyl-

oxime (19)
126

 (Figure 2.4 a) and camptothecin-7-methylene-O-tolyl-amine (20)
127

 

(Figure 2.4 b) are semisynthetic derivatives of the naturally occurring 
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camptothecin, which in biological assays show an action on topoisomerase I.
128

 

They stimulate topoisomerase I-mediated DNA cleavage and the persistence of the 

cleavable complex; these compounds were evaluated for their cytotoxicity against 

the H460 human non-small lung carcinoma cell line, using topotecan as a reference 

compound (IC50 = 0.40 μM; topotecan 1.38 μM).
129

  

Topotecan and these compounds are very well overlapped in the pocket-

receptor, establishing many common interactions. From Figure 2.4 the accuracy of 

Autodock-Vina calculations on these two compounds on the panel of receptors in 

identifying the target of choice was clear. 

The two derivatives of camptothecin establish van der Waals interactions with 

the same residues of the pocket occupied by topotecan (Asn722, Lys 532, Asp533, 

Arg364), with Kd = 2.65 x 10
-9

 M (19) and Kd = 2.96 x 10
-10 

M (20). As a 

reference, the same Vina calculation has been performed on topotecan used as 

model and the result was -10.2 kcal/mol (Kd = 3.34 x 10
-8

 M). 

 

 

Figure 2.4 (a) Superimposition of topotecan (colored by atom type: O red, N blue, C 

grey)/camptothecin-7-carbaldehyde-O-3-hydroxypropyl-oxime (19) (colored by atom type: O red, N 

blue, C green) in docking with topoisomerase I (PDB code = 1K4T). (b) Superimposition of 

topotecan (colored by atom type: O red, N blue, C grey)/camptothecin-7-methylene-O-tolyl-amine 

(20) (colored by atom type: O red, N blue, C yellow) in docking with topoisomerase I.
130
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Two other positive results were obtained in the calculated interactions, between 

the natural cytotoxic thiaplidiaquinone A
131

 (41)with the receptor mTor (PDB code 

= 3FAP) and the cytotoxic topopyrone C
132,133

 (43) with the receptor wee1 kinase 

(PDB code = 1X8B; Figure 2.5 a).
134

  

Topopyrone C is very well superimposed on a crystallized inhibitor reported in 

the literature on wee1 kinase (9-hydroxy-4-phenylpyrrolo[3,4-c]-carbazole-

1,3(2H,6H)-dione). It establishes van der Waals interactions with Ile305, Val313, 

Lys323, Ala326, Phe433, and Gly382, like the crystallized ligand, with a Kd = 1.35 

x 10
-9

 M, when compared with a Kd for the standard ligand of 5.81 x 10
-10

 M.  

Moreover, topopyrone C is a synthetic compound evaluated for its cytotoxicity 

against the H460 cell line, using topotecan as a reference compound (IC50 = 29.50 

μM; topotecan 1.38 μM). It induces the same sequence selectivity of topoisomerase 

I-mediated DNA cleavage shown by camptothecin derivatives.  

As reported in the literature on pharmacological assays, the interaction with 

topoisomerase I has been found.  

Topotecan and topopyrone C are very well overlapped in the pocket receptor 

(Figure 2.5 b); topopyrone C establishes van der Waals interactions with the same 

residues of the pocket occupied by topotecan (Asn722, Lys532, Asp533, and 

Arg364) with Kd = 2.65 x 10
-9

 M, while for topotecan the value is Kd = 3.34 x 10
-8

 

M. The high V value related to the interaction of 43 with TopI (V = 1.379) 

confirms these observations. 

To obtain confirmation of the proposed method, the table organized in a matrix 

has been integrated with the Autodock-Vina results on two standard known 

molecules as ligands of the targets abl2 (PDB code = 3HMI) and FTase (PDB code 

= 1LD8). Both ligands (5-amino-3-{[4-(aminosulfonyl)phenyl]amino}-N-(2,6-

difluorophenyl)-1H-1,2,4-triazole-1-carbothioamide for abl2 and (20S)-

19,20,21,22-tetrahydro-19-oxo-5H-18,20-ethano-12,14-etheno-6,10-metheno-18H-
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benz [d] imidazo [4,3-k] [1,6,9,12] oxatriaza-yclooctadecosine-9-carbonitrile for 

FTase) are as crystals in the corresponding PDB. Docking calculations of the two 

compounds were performed on all the target members of the panel. The aim was to 

verify that the two known ligands would show significant V values when 

interacting with their specific target.  

The candidate targets for these molecules were selected through calculation of 

the standard deviation from the average of matrix (M) choosing V values up to M + 

3σ to classify the targets with the best interactions.  

 

 

Figure 2.5 (a) Superimposition of 9-hydroxy-4-phenylpyrrolo[3,4-c]-carbazole-1,3(2H,6H)-

dione (colored by atom type: O red, N blue, H white, C yellow)/topopyrone C (colored by atom 

type: O red, N blue, H white, C cyan) in docking with wee1-kinase (PDB code = 1X8B). (b) 

Superimposition of topotecan (colored by atom type: O red, N blue, C violet)/topopyrone C (colored 

by atom type: O red, N blue, H white, C cyan) in docking with topoisomerase I (PDB code = 

1K4T). 
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Figure 2.6 Interactions of the crystallized ligand of abl2 (colored by atom type: F green, O red, 

N blue, H and C grey) with nNos. 

 

For the crystallized ligand of abl2, two receptors were selected, namely, its 

receptor abl2 and nNos (PDB code = 3JT4). The structures obtained from Vina 

calculations for the abl2 ligand were very well superimposed to the crystallized 

compound, finding the same interactions with the receptor reported in 

www.pdb.org (Ligand Explorer). 

On the other hand, the good interaction of the same ligand with the receptor 

nNos (Figure 2.6) is due to common interactions with its known ligand (N-5-[(3-

(ethylsulfanyl)propanimidoyl]-l-ornithine).
135

 The molecule establishes van der 

Waals interactions with Phe584, Glu592, and Tyr588, and one H-bond with 

Gln478, as reported in the literature for the crystallized ligand, and is very well 

accommodated in the pocket of the receptor. Also, the structure obtained from Vina 

calculations for FTase ligand
136

 is well superimposed to the crystallized compound 

for this receptor, displaying analogous interactions.  

The data discussed above are useful to confirm the validity of the proposed 

computational method, and, besides the interactions with experimentally known 

targets, apparently discordant results are justifiable through careful analysis of the 
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observed interactions and can open the way for the discovery or further inspections 

of the targets of interaction of bioactive compounds. 
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2.3 Re-evaluation of the biological activity of a small library of 

natural compounds 

Starting from the encouraging results on the first pilot Inverse Virtual Screening 

study, we proposed an application of the Inverse Virtual Screening on a small set of 

phenolic natural compounds tested on a panel enlarged to 163 targets involved in 

the cancer processes (Table 2.6).  

The small library of molecules used in this second study consisted of 10 

compounds with a certain variability of the scaffolds (Chart 2.2) and included 

compounds extracted from various plants and widely examined for their different 

pharmacological actions.  
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Chart 2.2 The library of 10 natural compounds used for the screening. 
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protein PDB code protein PDB code protein PDB code 
abl 2HYY epsilon (14-3-3) 2BR9 mmp13 830C  

abl2 3HMI erbB2 1S78 mrp1 2CBZ 

aif 1M6I erbB4 2R4B msk1 3KN5 

akt1 3MVH erk1 2ZOQ mthfs 3HY3 

akt2 3D0E erk2 2OJG mTor 3FAP 

alk 2XP2 fak 3BZ3 mtsp1 3NCL 

alk5 2WOU fgf1 1HKN nek2 2XKF 

ape1 2ISI fgfr1 1AGW nek7 2WQN 

aurkin 2W1H fgfr2 2PVF nnos 3JT4 

aurkin B 2VGO ftase 1LD8 nqo1 2F1O 

bap1 2W15 galectin1 1W6M p300 3BIY 

bcl2a 2O21 galectin3 1KJL p38 3HEG 

bcl2a1 2VM6 galectin7 3GAL p53_mut 2X0V 

bcl6 3LBZ gamma (14-3-3) 2B05 parpa 2JVN 

bclwa 1ZY3 gsk3 3F7Z pcafa 2RNW 

bclxla 1BXL gstm2_2 3GUR pcna 1VYJ 

braf 3C4C gstp1 2A2R pd 3BIK 

btk 3PIX hdac1 homology modelling pdk1 3NAX 

calmodulin 3EWT hdac2 homology modelling peroxiredoxin hORF6 1PRX 

camKIIB 3BHH hdac3 homology modelling pgm 1YFK 

caspase1 2FQQ hdac4 homology modelling pi3k 3ENE 

caspase2 1PYO hdac6 homology modelling pig3 2J8Z 

caspase3 3EDQ hdac7 homology modelling pimKin 3JYA 

caspase7 1SHL hdac8 homology modelling pka 3L9L 

caspase8 1QTN hdac8b homology modelling pkcα 3IW4 

cathepsin B 1GMY hgfr (c-MET alternat) 2WD1 pkcθ 2JED 

cathepsin G 1AU8 hmt 3HNA plk1 3FVH 

cathepsin K 2R6N hsc70 3FZH pnk 2W3O 

cathepsin L 3HWN hsp90 2WI6 pop 3DDU 

cbpa 2RNY  hspa1a1 3JXU pten 1D5R 

cdk2 2VV9 hspa1l 3GDQ pyk2 3FZS 

cdk6 2F2C hspa2 3I33 raf 3IDP 

cdk7 1UA2 hspa5 3IUC ret 2X2K 

cdk9 3BLQ hspa6 3FE1 srpk 1WBP 

chk1 2QHN ido 2D0T stratifin (14-3-3-sigma) 1YWT 

chk2 2W7X igf 3F5P survivin 1XOX 

ciap1 3D9U irak4 2NRU syk 3FQH 

ck2 3FL5 jak1 3EYG tank1 2RF5 

clk1 1Z57 jak2 3.00E+64 tdp1 1RFF 

clk3 2WU6 jak3 1YVJ theta (14-3-3) 2BTP 

cmet 2WGJ jmjd3 2XXZ tie2 2OO8 

CPA 1CBX jmjd3_akg 2XXZ topI 1K4T 

CPU 3D67 kit-kinase 3G0E topII 1ZXM 

cSRC 3F3V kras 3GFT topII_atp 1QZR 

cxcr4a 2K05 lck 3AD4 tp 1UOU 

cyclin A (cdk2_altern) 2WFY lsd1 2EJR ts 1HVY 

dapk 3EH9 lyn 2ZVA upa 2VIP 

dhfr 1PD8 mcl1 3D7V vegfr1 1FLT 

diamineox 3HIG mdm2 3EQS vegfr2 3EWH 

dnmt3a 3A1B mdmx 3EQY wee1 1X8B 

dnmt3l 2QRV mek1 3DV3 xiap 1TFT 

e-cadherin 2O72 metap2 1YW9 zap70 1U59 

egfr 2J6M mk2 3M42 zeta (14-3-3) 1QJA 

EPHa3 3DZQ mmp3 1HY7   
 EPHb4 2X9F mmp8 2OY2   
 Table 2.6 The panel of 163 targets used  

  



Inverse Virtual Screening 

 

70 

 

The biological properties of these compounds were recognized and their 

involvement in metabolic disorders,
137

 oxidative damage events,
138

 

atherosclerosis
139

 and also in cancer prevention
140,141,142 

was largely demonstrated. 

The bioactivity of several of these compounds was noteworthy and in some cases 

the specific targets of interactions were already known. Moreover, the complexity 

of the pharmacological activity of a given compound could be often explained 

considering its capacity of interacting with more than one target.  

The chemopreventive activity of most of the compounds featuring these 

scaffolds was largely investigated and often proven by testing them on several 

cancer cell lines.
143,144

 This capacity was mainly attributed to their well-known 

antioxidant properties.
145

 However, many different actions on several targets 

involved more directly in the progression of this pathology were also 

shown.
146,147,148

  

In particular, compounds 45, 46, 48 and 53 belong to the class of chalcones, for 

which antioxidant, chemopreventive, anticancer, anti-inflammatory, antifungal and 

antibacterial activities are reported.
149

 

A number of chalcone derivatives have also been found to inhibit several 

important enzymes in cellular systems, including xanthine oxidase, aldose 

reductase, heme oxygenase, protein tyrosine kinase, quinine reductase and 

tyrosinase.
141 

Among chalcone derivatives, the prenylated chalcone xanthohumol 

(53) and its derivative isoxanthohumol (52) occurring in the cones of Humulus 

lupulus, have attracted a lot of attention because of their biological activities, 

among which a broad-spectrum antiinfective activity against several 

microorganisms.
150

 Xanthohumol (53) has been shown to inhibit the initiation, 

promotion, and progression stages of carcinogenesis, hence behaving as a potential 

broad-spectrum chemopreventive agent.
151
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Recently, it was demonstrated that xanthohumol (53) decreases the viability of 

the T98G human malignant glioblastoma cell line. 

Apoptosis induced by xanthohumol is associated with activation of caspase-3, 

caspase-9, and PARP cleavage and is mediated by the mitochondrial pathway, as 

exemplified by mitochondrial depolarization, cytochrome c release, and 

downregulation of the antiapoptotic Bcl-2 protein. Moreover, xanthohumol induces 

intracellular reactive oxygen species (ROS), which provides a specific environment 

that results in MAPK-induced cell death.
152

  

The small library of selected antioxidative phenolic compounds comprises also 

sinapic acid (49), a cinnamic acid derivative, with anti-anxiety properties,
153

 

rosmarinic acid (50) exerting antiinflammatory, antimutagen, antibacterial and 

antiviral activities
154

 and resveratrol (51), the well known natural phytoalexin 

found in considerable amounts in the skin of grapes. In the last years resveratrol 

(51) has received a lot of attention because of its biological activities, as 

antimutagenic, antiviral, antiinflammatory, and cancer preventing. In particular it is 

believed that because of its antioxidant properties, resveratrol is responsible for the 

reduced risk of cardiovascular disease associated with a moderate consumption of 

red wine.
155,156 

Moreover the isoflavone genistein (47) showed a 

topoisomerase
149,157

 and tyrosine kinase
158

 activity.  

By considering the wide spectrum of activity of these compounds, a re-

evaluation of their biological properties may further clarify their modulatory 

activity in the cancer events. On the other hand, the phases of extraction and 

purification imply small quantities of compounds from natural sources and make 

complex the performance of biological tests on more than one target. In this 

context, Inverse Virtual Screening represents a useful tool for the re-evaluation 

and/or the identification of the specific interactions of the library of compounds 

here considered. 
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Using the Inverse Virtual Screening approach we screened the library of 10 

compounds on a panel of 163 targets involved in the cancer progression and 

collected the results in a matrix. Then we normalized the predicted binding 

energies, using the Equation 2.5, as previously described: 

 

                         

Equation 2.5 

where V is the normalized value associated to each compound, V0 is the value of 

predicted binding energy obtained from the docking calculation (kcal/mol), ML is 

the average binding energy of each ligand (on different targets, kcal/mol), and MR 

is the average binding energy associated to each target (on the various ligands, 

kcal/mol) (Table 2.7).
159

  

It is noteworthy that V is an absolute number. This mathematical manipulation 

causes the loss of the original significance of the binding energy as a value for the 

prediction of activity of a given compound. The normalized values can be used to 

generate a ranking in which the best values represent a promising interaction 

between a compound and a target from the panel. Moreover, taking into account 

the average trends in the Equation 2.5
 
the selection of false positive results can be 

avoided,
113

 reminding that the main aim of this study is the identification of the 

targets interacting with a compound. 

 It is important to underline that the correspondence between the predicted and 

the calculated binding energies is much more difficult with respect to a classical 

Virtual Screening, in which only one target is studied, and mainly for two reasons. 

First, the comparison of the results for several targets even if normalized reduces 

but does not completely eliminate the problem of the variability of the interacting 

binding sites. In the second place, Autodock-Vina is a very fast and accurate 

software for the docking calculations, but in some cases a sensible deviation from 

the experimental results could be observed in the prediction of the binding 
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energies. This could depend in a variable way also by the number of active 

rotatable bonds of the investigated compounds.
28 

 

The selection of the best results was so conducted sorting and analyzing the 

normalized results of the screening from the best to the worse value. We observed 

that the best two normalized results highlighted the correlation between 

isoxanthohumol (52) with PKC-α
160

 (Protein Kinase C α, V value=1.286, position 

nr.1 in the final ranking on 1630 total calculations) and xanthohumol (53) with 

PDK1
161

 (phosphoinositide-dependent kinase 1, V value=1.264, position nr.2 in the 

final ranking).  

Moreover, the presence in the panel of the PKC-θ
162

 isoform, characterized by a 

binding site related to PKC-α,
163

 prompted us to explore the behavior of 

isoxanthohumol (52) with this target. Interestingly, the normalized result 

(V=1.213) is at the significant position number 14. On the other hand the 

normalized results for 53 indicated a poor value of V for PDK1 (V=0.982, position 

number 921).  

 

  44 45 46 47 48 49 50 51 52 53 MR 

abl -8.4 -8.5 -9 -9.8 -9.1 -6.7 -8.9 -9.1 -7.6 -9 -8.6 

abl2 -8.3 -8.2 -7.7 -8.3 -8.8 -7 -9.8 -8.8 -6.9 -9.1 -8.3 

aif -8.7 -8.6 -8.5 -8.4 -8.7 -6.7 -8.7 -8.2 -9.1 -9.6 -8.5 

akt1 -8.5 -8 -7.8 -7.8 -8.2 -6.3 -8.3 -7.4 -8.7 -8.3 -7.9 

akt2 -8.1 -8.1 -7.6 -8.2 -8 -6.4 -8.7 -7.5 -8.6 -7.7 -7.9 

alk -7.4 -6.7 -6.2 -7.7 -7.1 -5.6 -7.2 -6.6 -7.7 -7.5 -7 

alk5 -8.1 -7.3 -7.7 -8.3 -8.2 -6.4 -8.8 -7.8 -8.5 -8 -7.9 

ape1 -6.9 -6.4 -6.1 -7.3 -6.9 -5.5 -6.8 -6.8 -7.1 -6.6 -6.6 

aurkin -9 -8 -8 -8.7 -8.4 -6.7 -8.7 -8.5 -9.7 -8.5 -8.4 

aurkinB -7.7 -7.2 -7.1 -7.8 -7.7 -5.7 -7.1 -7 -7.8 -7.3 -7.2 

Other targets                       

            
ML -7.7 -7.2 -7.1 -7.6 -7.5 -5.9 -7.8 -7.1 -7.8 -7.6 

  

Table 2.7 Predicted binding energies (V0, kcal/mol), MR and ML average values for a sample of 

10 ligands on 30 targets for the calculations of the V normalized values. 
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For what concerns 53, while the normalized value and the related position in the 

ranking showed a good predicted activity for PDK1, poor results are observable for 

PKC-α and PKC-θ (positions 892 and 563, respectively). In Table 2.8 the values of 

V and the positions in the final ranking for 52 and 53 with PDK1, PKC-α and 

PKC-θ are reported.  

These targets identified from the screening play a fundamental role in the 

progression of the tumour events,
164,165,166

 and new inhibitors are searched for the 

development of new anti-cancer agents. For these reasons, in the next phase we 

validated these preliminary observations with in vitro biological tests (Table 2.9). 

 
 PDK1 PKC-α PKC-θ 

52 0.982 (921) 1.286 (1) 1.213 (14) 

53 1.264 (2) 0.986 (892) 1.038 (563) 

 

Table 2.8 V normalized values for 52 and 53 on PDK1, PKC-α and PKC-θ targets. On 

parenthesis are shown the relative positions in the final ranking on the 1630 total calculations. 

 
  PDK1 PKC-α PKC-θ 

52 58.7  μM 45.3 μM 31.6 μM 

53 6.6  μM > 100μ M > 100 μM 

 

Table 2.9 IC50 values for 52 and 53 on PDK1, PKC-α and PKC-θ targets. 

 

In order to validate the efficacy of the screening also negative controls were 

considered in this phase (52 on PDK1, 53 on PKC-α and PKC-θ). Regarding the 

most promising results, we observed that these compounds confirmed our 

predictions, showing an inhibitory activity in the μM range. In more detail, 

xanthohumol (53) show a best activity and selectivity on PDK1 (6.6 μM). 

Moreover, IC50 value calculated for 53 on PKC-α and θ isoforms show no 

inhibitory activity at concentrations as high as 10
-4

 M and this is in perfect 
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agreement with the normalized results from the screening. Isoxanthohumol (52) is 

active (less than the previous result) and not selective on PKC-α and θ confirming 

the selection of the related good positioning from the final ranking. Surprisingly a 

moderate activity of 52 on PDK1 was highlighted, in spite of the low V value 

(0.982) and of the low position in the ranking (921). It is important to observe that 

the best V value found is 1.286, and this means that in this case 921 interactions 

out of 1630 total calculation are found within a restricted difference of V values of 

0.304.  

Firstly, we wondered whether this lack of sensibility of the approach to avoid a 

false negative result was caused by the normalization of the affinities. In this 

context, the range from the best to the worse value for the normalized binding 

energies and for the predicted binding energies before the normalization (RangeV 

and RangeBE, respectively, Equation 2.6) was considered: 

 

                                                        –                  

                

Equation 2.6 

For the interaction of 52 on PDK1, we calculated the deviations of the V value 

and of the predicted binding energy from the best ones (Equation 2.7). 

 

                                                         

Equation 2.7 

Where Vbest and BEbest are the best values of V and predicted binding energies 

for the 1630 total calculations, and V52-PDK1 and BE52-PDK1 are the V and the 

predicted binding energies values for the interaction of 52 with PDK1. 

Then we divided the these two deviations for the two ranges for the two types of 

calculation (Equation 2.8). 
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Equation 2.8 

These parameters indicated the nearness of the two values for the interaction of 

52 with PDK1 to the best ones in the two rankings. We found two very similar 

values (RatioV52-PDK1 = 0.41; RatioBE52-PDK1 = 0.40). We can conclude that this 

unexpected result strongly depends from the original value of predicted binding 

energy.  

Moreover, it is important to note that the evaluation of the binding energies 

before the normalization do not allow the selection of this false negative. 

Furthermore, we can observe a low value of DevBE52-PDK1 that corresponds in an 

overcrowding of many values better than BE52-PDK1 in a restricted range, as we 

have initially observed for the normalized values.  

This means that low variations of the values of predicted binding energies may 

cause large variations in the two final rankings. For these reasons, in an Inverse 

Virtual Screening study the choice of the parameters that can affect the estimation 

of the calculated affinities (i.e the protein preparation, the exhaustiveness values 

and the grid boxes for Autodock-Vina) is of primary importance.  

Accordingly, as we have previously demonstrated that in other case,
113,115

 the 

normalization could be a useful tool to avoid false positive and negative results.  

In order to give a further validation the method, we performed a similar study 

using another library of 10 compounds able to bind 10 targets in the panel of 163 

targets with high efficacy. We chose these compounds considering the availability 

of the crystallographic structures of the complexes with the partner receptors. 

Also in this case we obtained a matrix of 1630 calculations and then we 

normalized them. In Table 2.10 are listed the V values, the positions in the ranking, 

the experimental and predicted values of IC50 for the 10 compounds with their 

specific targets. 
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Reference ligands V (positions in the ranking) Exper IC50* Predicted affinities 

ABL_lig 1.421 (4) 170.0 nM 0.35 nM 

ALK5_lig 1.145 (168) 72.0 nM 65 nM 

CK2_lig 1.446 (3) 52.0 nM 5.2 nM 

CLK3_lig 1.062 (451) 29.2 nM 129 nM 

JAK1_lig 1.097 (304) 1.6 nM 497 nM 

PDK1_lig 1.585 (1) 1.0 nM 0.0085 nM 

PKC-α_lig 1.230 (38) 2.1 nM 6.2 nM 

PKC-θ_lig 1.341 (8) na 1.35 nM 

RAF_lig 1.495 (2) 1.6 nM 0.055 nM 

TP_lig 1.115 (242) 20.0 nM 1160 nM 

Table 2.10 V values, positions in the ranking, the experimental IC50 and predicted affinities for 

the 10 reference compounds with their specific targets; *Values extracted from the papers related to 

the PDB codes listed in Table 2.6 

 

For the listed compounds Autodock-Vina found the crystallographic poses with 

high accuracy (RMSD < 2 Å), and so the predicted binding energies could be 

related to the experimental ones. Also in this case, using the Inverse Virtual 

Screening approach we can highlight that four right correlations between ligands 

and targets are found in the first four positions, a fifth is identified in the first eight 

positions, and a sixth in the first thirthyeight.  

The remaing four correct correlations are found far from the high ranking 

positions, so resulting as false negative mainly for their lower values of predicted 

binding energies.  

The availability of the ligands crystallized in the binding sites of the targets 

PDK1, PKC-α, and PKC-θ and active in the nM range allowed a more precise 

comparison with the V values calculated for the compounds 52 and 53 emerging 

from the screening. We built a third matrix for the 163 targets interacting with 52, 

53, (μM range of activity on the targets identified) PDK1_lig, PKC-α_lig, and 

PKC-θ_lig (nM range of activity on their related targets).  

In Table 2.11 are reported the V values for 52 and 53 on the three targets 

compared with the V values of the reference compounds. 
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 52 53 Reference compounds 

PDK1 0.898 1.154 1.529 

PKC-α 1.147 0.878 1.235 

PKC-θ 1.050 0.897 1.291 

 

Table 2.11 V values for 52, 53, PDK1_lig, PKC-α_lig and PKC-θ_lig on PDK1, PKC-α and 

PKC-θ targets. 

 

In this way a more precise and accurate correspondence between the V values 

and the experimental IC50 was found. Above all, these new scale of values also 

justified the moderate activity of the compounds 52 and 53 on the three kinases. 

In summary, while the normalization method could reduce the possibility of 

selection of false positive and negative results, the comparison with the the V 

values of reference compounds could give qualitative indications for the prediction 

of the range of activity for a given set of compounds. In particular, for compounds 

44-53, five predictions of activity on six actually fitted with the biological tests. 

Finally, an accurate analysis of the main interactions of the compounds selected 

from the screening in the binding sites of the different targets allows an explanation 

of the different activity and selectivity of the different compounds on the panel of 

targets used. The best pose from the docking calculations for each compound on 

the three specific targets was considered in this phase.  

Regarding the xanthohumol (53) case we observed a very good occupancy of the 

binding site of PDK1. As illustrated in Figure 2.7 a, 53 is able to establish a set of 

hydrophobic and electrostatic interactions in the binding pocket composed by 

Val96, Tyr126, Met134, Phe142, Val143, Leu159, and Phe224. It also involved in 

two Hydrogen bonds with the nitrogen in the side chain of Lys111 (with the 

oxygen of the -OCH3 in 6’position) and with the nitrogen in the backbone of the 

Asp223 (with the –OH in 2’ position). Moreover, the isopentenyl portion of the 

compound is accommodated in an internal hydrophobic pocket of PDK1. A good 
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superposition between 53 and 1- (3,4- difluorobenzyl) -2-oxo-N- { (1R)-2- [(2-oxo-

2,3-dihydro-1H-benzimidazol-5-yl)oxy] -1-phenylethyl} -1,2-dihydropyridine-3-

carboxamide crystallized in the binding site of PDK1
161

 could be considered as a 

further confirm (Figure 2.7 b). The two phenil portions of 53 are overlapped to two 

aromatic portions of the crystallized ligand, respecting their distances and 

orientations. For what concerns the interactions between isoxanthohumol (52) and 

PDK1, we can primarily observe a most external occupancy of the binding site than 

the xanthohumol (53) and an inversion of the aromatic ring presenting the 

isopentenyl part, that in this case is oriented on the external face of the binding site. 

The different accommodation of the two compounds and of their pharmacophoric 

portions in a more deep position of the PDK1 binding site could explain the 

different activities on this target (Figure 2.8). The binding pocket of PDK1 

involved in the interactions with 52 is composed by Leu88, Gly89, Ala109, 

Val143, Leu159, Glu166, Leu212, Thr222 and Phe224. A Hydrogen bond is 

established between the oxygen of the carbonyl in position 4 of 52 and the nitrogen 

in the backbone of Ala162 (Figure 2.9a). The analysis of the docked structures of 

52 with the PKC (α and θ isoforms) revealed the accommodation of the compound 

in the binding sites mainly through hydrophobic interactions. In fact, in the case of 

the α isoform the compound interacts with the following residues: Leu345, Phe350, 

Val353, Ala366, Thr401, Met417, Tyr419, Val420, Ala480 and Asp481. A 

hydrogen bonds is also observable between the nitrogen in the backbone of Val420 

and the oxygen in position 4 of the carbonyl of 52 (Figure 2.9 b). On the other 

hand, the best binding pose in the binding site of PKC-θ isoform show the 

involvement of a pocket of residues composed by Leu386, Phe391, Val394, 

Ala407, Thr442, Met458, Ala521, Asp522 and Phe664. Also in this case, a 

hydrogen bond is established between the nitrogen in the backbone of the Leu461 

and the 4-carbonylic oxygen of 52 (Figure 2.9c).  
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We considered this theoretical ipothesis of binding modes reliable for two 

reasons. In the first place. the good result from the biological tests could be 

considered as an experimental proof of the binding of 52 and 53 in these specific 

sites of action. Moreover, these compounds shows a simple chemical structure 

mainly characterized by a small number of aromatic rings and of active rotatable 

bonds. 

In these conditions Autodock-Vina software shows an high accuracy of the 

prediction of the experimental crystallographic poses, with low RMSD values 

compared to the predicted ones. For these reasons these results could be considered 

as reasonable models of binding. 
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Figure 2.7 a) 53 (coloured by atom types: C green, H grey, O red) in docking with PDK1. 

Hydrogen bonds are displayed with green spheres; b) Superimposition between 53 (coloured by 

atom types: C green, H grey, O red) and 1-(3,4-difluorobenzyl)-2-oxo-N-{(1R)-2-[(2-oxo-2,3-

dihydro-1H-benzimidazol-5-yl)oxy]-1-phenylethyl}-1,2-dihydropyridine-3-carboxamide (coloured 

by atom types: C dark grey, H grey, O red, N blue) with PDK1. 

 

 

Figure 2.8 Superimposition between 52 (coloured by atom types: C yellow, H grey, O red) and 

53 (coloured by atom types: C green, H grey, O red) in the binding site of PDK1. 

 

Figure 2.9 52 (coloured by atom types: C green, H grey, O red) in docking with: a) PDK1; b) 

PKC-α; c) PKC-θ. Hydrogen bonds are displayed with green spheres. 
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2.4 Discovery of peptidase inhibitory activity of the new-

anabaenopeptin cyclopeptide namalide. 

The diversity of natural products coming from marine invertebrates and 

possessing interesting biological activities has been well-documented, yet 

discovery of new compounds and their associated modes of action continues 

apace.
167

 To mention only a few examples, marine natural products that can inhibit 

biological targets linked to cancer,
168,169,170,171

 inflammation,
172

 and bacterial cell 

division
173

 have been reported. Here the identification and Fmoc-based solid phase 

synthesis of a new ureido-containing cyclic peptide, namalide (54), and its potent 

inhibitory activity on carboxypeptidase A (CPA) is described. Namalide was 

isolated from the same collection of the marine sponge Siliquariaspongia mirabilis 

that provided the anti-HIV lipopeptides mirabamides A−D,
174

 the antitumor 

polyketide mirabalin,
175

 and the known antifungals aurantosides A and B.
176

 

Namalide represents a new anabaenopeptin-type scaffold possessing a 13-

membered macrolactam core.  

Previously, the discovery of three separate classes of natural products coming 

from the aqueous extract of a single collection of the marine sponge S. mirabilis 

was reported.
174,175,176

 Mirabamides, mirabalin, and aurantosides were isolated from 

the n-BuOH fraction of the aqueous extract after fractionation on a Sephadex LH-

20 column eluting with MeOH, followed by HPLC purification. During these 

studies, a separate group of Sephadex fractions containing what appeared to be a 

novel compound on the basis of its molecular weight (ESI-MS) was detected. In 

addition, these fractions showed strong inhibition of the enzyme CPA. Active 

fractions were combined and purified by C12 RP-HPLC to give just 0.4 mg of the 

active compound (∼90% pure), a new natural product named namalide (54, Figure 

2.10). Combining HR-ESI-MS and 2D NMR experiments (HSQC, HMBC, 

HOHAHA, ROESY and DQF-COSY) a structural characterization of 54 was 
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determined. In particular, the molecular formula requires 54 to be a cyclic peptide 

and ROESY experiments indicated that 54 comprised a three-residue macrocycle 

N-linked to an exocyclic Phe residue via a ureido bridge.  

 

 

Figure 2.10 Structure of namalide (54) (left) and key HMBC and ROE correlations (right). 

 

The absolute configurations of the alpha carbons for both Phe residues and Ile 

were readily established as L from LC-MS analyses of the L- and D-FDLA (1-

fluoro-2,4-dinitrophenyl-5-L/ D-leucinamide) derivatives
177

 of an acid hydrolysate 

of 54, in conjunction with comparison of retention times with authentic standards. 

However, because of our limited material or the limitations of the method, this 

analysis did not allow us to assign confidently the configuration of the Lys residue 

and C-3 of Ile. It is worth noting that although all anabaenopeptin-type compounds 

derived from cyanobacteria contain D-Lys exclusively,
178,179

 peptides reported to 

contain L-Lys rather than D have been isolated from marine sponges.
180,181,182,183

 

To address these unknowns and provide additional compound for biological 

screening, a synthetic route to provide namalide and its stereoisomers was 

developed. ticle 

To establish configurations at C-3 of Ile and C-2 of Lys, two additional 

namalide analogs containing L-Ile/L-Lys and L-allo-Ile/D-Lys (56, 57, Figure 

2.11) were synthesized. Comparisons of the NMR spectra and RP-HPLC retention 

times of the three synthetic peptides 54, 56, and 57 with that of the natural product 
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showed that the isomer containing D-Lys and L-Ile corresponded to the natural 

material. 

 

 

Figure 2.11 Synthetic namalide analogs.  

 

Members of the anabaenopeptin
184

 family of cyclic peptides are known to inhibit 

carboxypeptidases and other proteases.
185,186,187,188

 Although a high resolution 

structure of an anabaenopeptin-type peptide in complex with any carboxypeptidase 

has not been determined, selectivity profiles of natural products and synthetic 

analogs provide good evidence that the C-terminal ureido amino acid confers 

specificity toward different proteases.
188,189

 Peptides 54, 55, and 56−59 (Figure 

2.11) were evaluated as inhibitors of bovine pancreas CPA using N-(4-

methoxyphenylazoformyl)-phenylalanine as a colorimetric substrate in a 96-well 

plate format. The results are summarized in Table 2.12.  

The synthetic version of natural namalide (54) containing D-Lys and L-Ile was 

the most potent inhibitor of CPA with an IC50 value of 250 ± 30 nM. Peptide 56, 

the corresponding L-Lys analog, was inactive at concentrations as high as 30 μM, 
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and analog 57 bearing L-allo-Ile/D-Lys appeared to be inactive, although its 

insolubility yielded poor assay results. The linear version of namalide, 58, showed 

an 18-fold reduction in activity relative to 54 with an IC50 value of 4.5 μM. In 

contrast cyclic tripeptide 59, which lacks the C-terminal exocyclic ureido Phe, and 

the namalide dimer 55 were inactive.  

For comparison, compounds 54, 56, 58, and 59 were tested against 

carboxypeptidase U (CPU), also known as activated thrombin-activable fibrinolysis 

inhibitor (TAFIa), an enzyme known to recognize C-terminal basic amino acids in 

its S1 pocket, 25 and α-chymotrypsin, a serine protease that recognizes aliphatic 

and aromatic amino acids.
190

  

None of these peptides inhibited either enzyme at concentrations as high as 60 

μg/mL. Together, these results demonstrate the importance of the lysine 

configuration for CPA inhibition in this new tricyclic peptide scaffold. The lack of 

inhibitory activity of the des-ureido-Phe analog 59 further suggests that namalides 

may inhibit through a similar mode of binding as the larger anabaenopeptin-type 

compounds. 

 

Peptide IC50 (M) 

54 0.25 ± 0.03 

55 nab 

56 nab 

57 ntc 

58 4.5 ± 0.9 

59 nab 

 

aTested in duplicate; bnot active at 30 M; 

cinsoluble 

Table 2.12 Inhibition of carboxypeptidase A. 

 

Because namalide represents a new natural product scaffold, we were interested 

in applying our recently described Inverse Virtual Screening in silico approach
113

 

using Autodock Vina software
28

 to assist in identifying other possible new targets 
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of namalide. For docking calculations, a 3-D model of namalide was prepared by 

performing combined Monte Carlo conformational searches and Molecular 

Dynamics simulations, followed by energy and geometry minimization of the 

obtained structure. When this study was performed, the minimized model was used 

against a panel of 159 receptors involved in cancer processes and whose 

coordinates were extracted from the Protein Data Bank (Table 2.13).  

For normalization of the results, a prebuilt matrix containing the affinity values 

of a library of 22 natural compounds (used as “blanks”) with structural and 

molecular weight properties similar to those of 54 was employed.  

In particular, we calculated an average value of binding energy for each target 

receptor on all of the compounds in the matrix and then normalized the affinity 

values of 1 using the Equation 2.9: 

 

        

Equation 2.9 

where V is the normalized value of binding energy, V0 is the value of binding 

energy before the normalization, and VR is the average value of binding energy for 

each targets. We were gratified to find that of the 159 proteins screened, CPA was 

identified as the third best hit on the basis of normalized binding energy (Table 

2.14).  

The top two hits corresponded to galectin 7 and calmodulin (CaM). Inspection 

of the docked models showed 54 to be located in the galactose binding site of 

galectin 7, anchored through the exocyclic Phe residue (Figure 2.12), and in an 

extensive hydrophobic channel in CaM, making only partial contacts with this site 

(Figure 2.13). Because these interactions were not optimal relative to the known 

ligands, we did not pursue them further. 
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protein PDB code protein PDB code protein PDB code 

abl 2HYY egfr 2J6M mk2 3M42 

abl2 3HMI EPHa3 3DZQ mmp3 1HY7 

aif 1M6I EPHb4 2X9F mmp8 2OY2 

akt 3D0E epsilon 2BR9 mmp13 830C 

akt1 3MVH erbB2 1S78 mrp1 2CBZ 

alk 2XP2 erbB4 2R4B msk1 3KN5 

alk5 2WOU erk1 2ZOQ mthfs 3HY3 

ape1 2ISI erk2 2OJG mTor 3FAP 

aurkin 2W1H fak 3BZ3 mtsp1 3NCL 

aurkin B 2VGO fgf1 1HKN nek2 2XKF 

bap1 2W15 fgfr1 1AGW nek7 2WQN 

bcl2a 2O21 fgfr2 1EV2 nnos 3JT4 

bcl2a1 2VM6 ftase 1LD8 nqo1 2F1O 

bcl6 3LBZ galectin1 1W6M p38 3HEG 

bclwa 1ZY3 galectin3 1KJL p53_mut 2X0V 

bclxla 1BXL galectin7 3GAL parpa 2JVN 

braf 3C4C gamma 2B05 pcafa 2RNW 

btk 3PIX gsk3 3F7Z pcna 1VYJ 

calmodulin 3EWT gstm2_2 3GUR pd 3BIK 

camKIIB 3BHH gstp1 2A2R pdk1 3NAX 

caspase1 2FQQ hdac1 homology modelling peroxiredoxin 1PRX 

caspase2 1PY0 hdac2 homology modelling pgm 1YFK 

caspase3 3EDQ hdac3 homology modelling pi3k 3ENE 

caspase7 1SHL hdac4 homology modelling pimKin 3JYA 

caspase8 1QTN hdac6 homology modelling pka 3L9L 

cathepsin B 1GMY hdac7 homology modelling plk1 3FWH 

cathepsin G 1AU8 hdac8 homology modelling pop 3DDU 

cathepsin K 2R6N hdac8b homology modelling pten 1D5R 

cathepsin L 3HWN hgfr 2WD1 pyk2 3FZS 

cbpa 2RNY  hmt 3HNA raf 3IDP 

cd20 3BKY hsc70 3FZH ret 2X2K 

cdk2 2VV9 hsp90 2WI6 srpk 1WBP 

cdk6 2F2C hspa1a1 3JXU stratifin 1YWT 

cdk7 1UA2 hspa1l 3GDQ survivin 2RAW 

cdk9 3BLQ hspa2 3I33 syk 3FQH 

chk1 2QHN hspa5 3IUC tank1 2RF5 

chk2 2W7X hspa6 3FE1 tank2 3KR8 

ciap1 3D9U ido 2D07 tdp1 1RFF 

ck2 3FL5 igf 3F5P teta 2BTP 

clk1 1Z57 irak4 2NRU tie2 2OO8 

clk3 2WU6 jak1 3EYG topI 1K4T 

cmet 2WGJ jak2 3.00E+64 topII 1ZXM 

CPA 1CBX jak3 1YVJ topII_atp 1QZR 

CPU 3D67 kit-kinase 3G0E tp 1UOU 

cSRC 3F3V kras 3GFT ts 1HVY 

cxcr4a 2K05 lck 3AD4 upa 2VIP 

cyclin A 2WFY lsd1 2EJR vegfr1 1FLT 

dapk 3EH9 lyn 2ZVA vegfr2 3EWH 

dhfr 1PD8 mcl1 3D7V wee1 1X8B 

diamineox 3HIG mdm2 3EQS xiap 1TFT 

dnmt3a 3A1B mdmx 3EQY xrcc1 2W3O 

dnmt3l 2QRV mek1 3DV3 zap70 1U59 

e-cadherin 2O72 metap2 1YW9 zeta 1QJA 

Table 2.13 The panel of 159 targets used in the study on namalide  
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Position in the 

ranking 
Targets V values 

Position in the 

ranking 
Targets V values 

Position in the 

ranking 
Targets V values 

1 calmodulin 1.267 54 pd 1.047 107 peroxiredoxin 0.954 

2 galectin7 1.221 55 EPHa3 1.045 108 tie2 0.950 

3 CPA 1.218 56 galectin3 1.045 109 aurkin 0.948 

4 bclw 1.193 57 cathepsinK 1.044 110 ck2 0.948 

5 lsd1 1.190 58 hdac3 1.044 111 clk3 0.946 

6 bcl6 1.182 59 erk2 1.037 112 egfr 0.942 

7 bcl2a1 1.166 60 mrp1 1.037 113 topI 0.941 

8 stratifin 1.159 61 nqo1 1.035 114 xrcc1 0.932 

9 mcl1 1.153 62 plk1 1.032 115 mmp3 0.924 

10 caspase7 1.150 63 mthfs 1.032 116 cyclinA 0.923 

11 vegfr1 1.149 64 ape1 1.029 117 pi3k 0.921 

12 bclxl 1.149 65 caspase2 1.023 118 cathepsinB 0.921 

13 mtor 1.137 66 fgf1 1.021 119 tank1 0.920 

14 survivin 1.133 67 pcaf 1.018 120 cdk9 0.919 

15 tdp1 1.132 68 lck 1.016 121 ts 0.917 

16 caspase3 1.125 69 cSRC 1.011 122 hspa5 0.908 

17 mdmx 1.118 70 hdac6 1.011 123 alk 0.908 

18 hsc70 1.117 71 parp 1.009 124 cdk2 0.907 

19 e-cadherin 1.116 72 nek7 1.008 125 pten 0.907 

20 ido 1.113 73 tank2 1.008 126 galectin1 0.897 

21 srpk 1.110 74 hspa1a 1.007 127 vegfr2 0.895 

22 caspase1 1.110 75 hdac8b 1.005 128 clk1 0.894 

23 kras 1.107 76 AKT 1.005 129 topII_atp 0.892 

24 p38 1.095 77 dnmt3a 1.004 130 msk1 0.888 

25 nnos 1.092 78 caspase8 1.003 131 zap70 0.886 

26 xiap 1.090 79 topII 1.002 132 pgm 0.879 

27 ftase 1.088 80 bap1 1.002 133 jak3 0.878 

28 mtsp1 1.088 81 hdac2 0.999 134 gsk3 0.876 

29 erbB2 1.087 82 zeta 0.999 135 jak2 0.875 

30 cd20 1.081 83 bcl2 0.995 136 dhfr 0.874 

31 gstm2_2 1.080 84 hspa6 0.994 137 EPHb4 0.870 

32 tp 1.078 85 pyk2 0.993 138 ret 0.867 

33 cathepsinL 1.076 86 cathepsinG 0.989 139 erk1 0.867 

34 pop 1.076 87 p53_mut 0.988 140 fak 0.855 

35 mdm2 1.075 88 epsilon 0.984 141 pimkin 0.845 

36 aif 1.072 89 upa 0.983 142 camKIIB 0.844 

37 lyn 1.070 90 cmet 0.983 143 hspa2 0.844 

38 syk 1.069 91 raf 0.982 144 mmp8 0.842 

39 ciap1 1.067 92 dnmt3l 0.982 145 fgfr1 0.839 

40 hdac8 1.066 93 mk2 0.981 146 chk1 0.823 

41 hdac7 1.066 94 pcna 0.975 147 irak4 0.809 

42 hsp90 1.066 95 mmp13 0.973 148 cdk6 0.806 

43 aurkinB 1.065 96 btk 0.973 149 CPU 0.800 

44 teta 1.064 97 pdk1 0.970 150 wee1 0.794 

45 hspa1l 1.060 98 cxcr4 0.969 151 abl2 0.786 

46 igf 1.059 99 diaminoox 0.968 152 dapk 0.772 

47 akt1 1.056 100 cbp 0.968 153 jak1 0.767 

48 gamma 1.054 101 metap2 0.965 154 erbB4 0.766 

49 abl 1.053 102 nek2 0.964 155 braf 0.751 

50 hdac4 1.053 103 gstp1 0.964 156 alk5 0.732 

51 hdac1 1.051 104 hmt 0.963 157 chk2 0.695 

52 fgfr2 1.050 105 cdk7 0.962 158 pka 0.624 

53 kit_kinase 1.048 106 mek1 0.955 159 hgfr 0.582 

Table 2.14 Normalized V values related to compound 54 
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Figure 2.12 Superposition between 54 (yellow) and galactosamine (colored by atom type: C 

grey, O red, N blue and H light grey) in the Galectin7 binding site of sugars. 

 

 

Figure 2.13 Superposition between 54 (red) and a crystallized peptide (green) in the CaM 

binding domain. 
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As shown in Figure 2.14, a refined molecular docking model of 54 to CPA using 

Autodock 4.2
27

 software places the C-terminal carboxylate in close proximity to 

the Zn
2+

 atom and within hydrogen bonding distance with the guanidine groups of 

Arg 127 and Arg 145, key residues in the active site and specificity pocket of 

CPA
190,191

 as well as the side chain of Asn 144. Additional interactions are seen 

between the amide of Ile and the hydroxyl of Tyr 248. Similarly, the ureido group 

is involved in electrostatic interactions with Arg 127 and Tyr 248. Despite its 

reduced size relative to the pentapeptide core of anabaenopeptins, both electrostatic 

and aliphatic interactions are observed between CPA and residues in the cyclic 

portion of 54 in the docked model. In particular, the side chain of D-Lys is 

positioned close to Phe 279, and the amide of Ile is hydrogen-bonded to the -OH of 

Tyr 248.  

 

 

Figure 2.14 Docked model of 54 to CPA. Protein is shown as a gray surface, Zn
2+

 atom is 

shown as a magenta sphere, and residues in contact with 54 are shown as yellow (C atoms), blue (N 

atoms), red (O atoms),and gray (H atoms) sticks; namalide (54) is rendered as green (C atoms), blue 

(N atoms), red (O atoms), and gray (H atoms) sticks and balls. 

 



Inverse Virtual Screening 

 

91 

 

Consistent with other models and the biological activity, the C-terminal Phe is 

directed toward the hydrophobic specificity pocket formed in part by Ile247, Tyr 

248, and Ala 250, and is well superimposed with the similar moieties in the 

chemical structure of the crystallized inhibitor L-benzylsuccinate (Figure 2.15). 

 

 

Figure 2.15 Superposition between 54 (colored by atom type: C grey, O red, N blue and H light 

grey) and the crystallized inhibitor L-benzylsuccinate (green). Zn
2+

 is as a magenta sphere. 

 

To investigate the specificity of namalide for CPA, we performed molecular 

docking of 56, the L-Lys-containing analog, to CPA and of 54 to CPU using the 

same protocol as above. In the lowest energy model of 56 bound to CPA, 

interactions between the exocyclic Phe and its carboxylate group with CPA are 

preserved. However, the inverted configuration of Lys results in a flipping of the 

ring that moves the ureido group far from the Zn
2+

 atom and reduced interactions 

between the ring amino acids and CPA (Figure 2.16 and Figure 2.17). 
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Figure 2.16 Docked model of 56 to CPA. Protein is shown as a grey surface, Zn
2+

 atom as a 

magenta sphere, and residues in contact with 56 as grey (C atoms), blue (N atoms), red (O atoms), 

light grey (H atoms) sticks; 56 is rendered as yellow (C atoms), blue (N atoms), red (O atoms), light 

grey (H atoms) sticks and balls. Hydrogen bonds are displayed as green spheres. 

 

 

Figure 2.17 Superposition between 54 (colored by atom type: C green, O red, N blue and H 

light grey) and 56 (colored by atom type: C yellow, O red, N blue and H light grey). Zn
2+

 is as a 

magenta sphere. 
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Docking of 54 to CPU failed to give any reasonable models with 54 bound to or 

near the active site. For the above considerations, the possibility of Namalide to 

interact with Carboxypeptidase U is restricted on the external face of this binding 

cavity and then far from the Zinc ion.  

However, it is important to observe that in this case the Autodock-Vina value of 

binding energy is of -6.5 kcal/mol, with a corrispondent V value of 0.800 and a 

position nr.149 on the final classification of the 159 targets. The binding poses 

found in which the molecule is able to interact with the metal ion present positive 

values of energy, due to steric hindrance effects (Figure 2.18). 

 

 

Figure 2.18 54 (colored by atom types: C grey, N blue, H cyan, O red) in docking with the CPU. 

Zinc is coloured in violet. 

 

Both CPU and carboxypeptidase B are exopeptidases that preferentially cleave 

basic C-terminal residues, recognizing Arg and Lys as opposed to the aromatic 
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residues preferred by CPA. The lack of inhibitory activity toward CPU lends 

further support that this scaffold binds peptidases in a similar fashion to the larger 

anabaenopeptins.
178,186

  

In summary, structure elucidation and synthesis of the natural product establish 

the absolute configuration of all amino acids as L, with the exception of D-Lys. In 

contrast with other anabaenopeptins, the macrocycle comprises just three rather 

than the typical five amino acids, leading to a 13-membered macrolactam ring 

versus the usual 19-membered one. The presence of this strained ring likely 

accounts for the side product of a namalide dimer formed during the on-resin 

cyclization employed in the synthesis of 54. In keeping with specificity patterns 

described for a few peptides of this class, the carboxypeptidase inhibitory activity 

depends on the presence of D-Lys, and the exocyclic amino acid appears to dictate 

specificity. Because namalide inhibits CPA with potencies comparable to the more 

common hexapeptides, it will be interesting to evaluate other designed namalide 

analogs against CPA and related hydrolases. 
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3.1 Molecular Dynamics: from CPU to GPU architecture 

The constant and notable improvement of the computational power determined 

the advance of the computational chemistry as a basic tool in the drug discovery. 

Remarkable results in less and less times can be obtained, providing potential 

indications for the subsequent experimental phases and allowing a strong reduction 

of the costs of a synthetic chemistry project. As mentioned in paragraph 1.2.2, 

Molecular Dynamics (MD) simulations are often required in order to clarify 

molecular mechanism of interaction of a ligand to a biological target. 

Contemporary Molecular Dynamics simulations are able to access microseconds
192

 

for all-atom systems. This impressive increase in speed if compared with time-

scales of the previous years is accounted for in part by increasing algorithmic 

sophistication, but is mainly due to the parallelization of code to run on 

multiprocessor supercomputers.
81,193

 Although these parallel MD codes represent a 

new frontier in the field of the drug discovery, they must be run on expensive, and 

high performance computing (HPC) resources. As a consequence, MD studies have 

focused on obtaining and analyzing a small number of trajectories that are long 

enough to completely sample the process of interest. The future of this approach 

could be represented by the development of novel,
194,195

 specialized hardware and 

new MD protocols.
196,197,198

 In particular, modern graphics processing units (GPUs) 

have recently been shown to be highly capable at MD simulations. This is a 

profound qualitative change, mainly because the cost of performing long 

simulations is now low. This represents a shift from MD as an expensive activity to 

a low cost one that can be performed on cheap commodity hardware. 

In this context, another challenge was the development of the MD softwares 

able to exploit GPUs in parallel. Recently, ACEMD
194

 software was implemented, 

allowing microsecond long trajectories on workstation hardware. It reads 

CHARMM/NAMD and AMBER input files with a simple and powerful 
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configuration interface, and represents the computational engine behind one of the 

largest distributed computing project worldwide GPUGRID.net nowadays 

summing thousands of GPUs. The performance of ACEMD is summarized in 

Figure 3.1.
199

 

 

 

Figure 3.1. Comparative performance on DHFR (dihydrofolate reductase, solvated in water, 23558 

atoms) system for ACEMD, DESMOND, GROMACS4, NAMD2.7b1. Fermi is a GTX580 GPU. 

Kepler is a GTX680 GPU.T esla is a M2090. ECC off. CUDA4.2 and ACEMD ver 2400. Periodic 

boundary conditions, 9 Å cutoff, PME long range electrostatic 64×64×64, hydrogen mass 

repartitioning, rigid bonds, Langevin thermostat, time step 4 fs. Time step 2 fs NAMD and 

AMBER, 2.5 DESMOND and 4 fs GROMACS. AMBER 8 Å cutoff. 

 

3.2 Re-ranking of molecular docking calculations using the 

Linear Interaction Energy (LIE) method 

In the field of drug discovery, molecular docking methodology represents a 

particularly fast and suitable tool in the search of new potential active scaffolds 

related to a specific target. In particular, the main interest is to obtain in fast times 

ranking of compounds of potential pharmaceutical interest (Virtual Screening), 

whose biological activities would be in agreement with their calculated binding 

free energies toward a given protein. On the other hand, the affinity characterizes 
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the strength of the specific recognition of a ligand by a protein and plays a 

noteworthy role in correlating the structure and function of proteins.  

From a general point of view, molecular docking methods are in point of fact 

limited by a poor accuracy in the prediction of the binding free energies, and this is 

mainly due to the simplified energy models. Scoring functions are often built and 

parameterized in order to have the maximum correspondence with the experimental 

affinities values, but actually are not derived from a well-defined physical model. 

For example, most of the scoring functions usually have poor treatment of the 

electrostatic and solvation contributions that limit the achievement of truthful 

results. Numerous docking methods are capable of producing near native docking 

poses with a good accuracy, but the development of a consistent scoring function 

still remains a challenge.  

In particular, a low computational cost is evermore required, in order to obtain 

reliable results in short times for the applicability of the docking to large set of 

compounds. This aspect is of fundamental relevance in a Virtual Screening study, 

in which an inaccurate scoring function can produce a final ranking with a large 

number of false positives and more importantly false negatives, that will be 

excluded from the next phase of validation by experimental biological tests.  

An improvement is required to assign better energy scores to select high affinity 

ligands from a large set of decoy compounds (enrichment), trying to correlate at the 

same time scores with measured binding affinities of known ligands.  

Another important point is that the scoring functions, derived from empirical 

equations, are often system dependent, and different methods perform better on 

different systems. Results are sometimes improved when compared from multiple 

scoring functions, and this because a ligand that simultaneously ranks high using 

different scoring functions is more likely to bind strongly.
200,201,202

 Thus the 
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development of a reliable and accurate scoring function has been the focus of many 

ongoing studies.  

On the other hand, Molecular Dynamics simulations clarifies protein-ligand 

binding processes, but can be used also for the accurate estimations of the binding 

affinities (Paragraph 1.2.3). Obviously, the reliability of the results of these 

simulations is strictly related to their accuracy, and in particular the use of the 

explicit solvent models is often required.  

Considering the huge and constant progress of the computational power, even 

more time-dispending computational techniques are advancing.  

The development of ACEMD,
194

 a software able to exploit the accelerated 

graphical processing units (GPUs) on a distributed computing network 

(GPUGRID) notably contributed to the performance of high-throughput Molecular 

Dynamics, providing detailed descriptions of a single ligand-protein binding, 

simulating this process in the order of the microseconds.  

For the topic of interest of this study, these huge timescales can be exploited not 

only on one defined system, but it is possible to split the Molecular Dynamics 

simulations to a consistent number of different systems.  

During the period mid May-November 2012 I was involved, under the 

supervision of Dr. Gianni De Fabritiis (University Pompeu Fabra, Barcelona), in a 

project regarding a Virtual Screening study using Molecular Dynamics simulations 

on 1588 systems involving different ligands and decoys from the DUD database, 

previously docked to the trypsin receptor.  

The schedule was based on the investigation and the comparison of the efficacy 

of molecular docking, linear interaction energy (LIE),
88

 and molecular mechanics 

Poisson-Boltzmann (MM-PBSA)
94

 and Generalized-Born (MM-GBSA)
95

 solvent 

accessible surface area methods.  

All these studies are ongoing, and here only partial results are shown. 
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The main aim of this study was to give a more careful view of the applicability 

of these different accurate methods for a better estimation of the predicted binding 

affinities, comparing these results with those deriving from the docking 

calculations.  

In particular, we performed for each of these systems (complex and ligand 

alone) 3 × 10 ns simulations in explicit solvent, obtaining a total time of simulation 

of ~ 100 μs (~ 50 μs for the complexes, ~ 25000 atoms for each solvated system; ~ 

50 μs for the ligands alone systems, ~ 3500 atoms for each solvated system). 

As known in the Linear Interaction Energy theory, the binding energy is 

calculated taking into account the polar and nonpolar contributions of potential 

energy, and averaging the ligand-surrounding potential energies, collected only for 

the two physical states of the ligand involved in the binding process, that are the 

free state and the bound state (Equation 1.23). 

 Moreover, into this equation three scaling factors (α,β,γ) empirically derived are 

used to fit the experimental affinity values. In literature several combinations of 

these scaling factors have been reported, and each of these is related and optimazed 

to a specific system. In this study, four different combinations of different scaling 

factors were considered, in order to verify how much LIE is able to predict binding 

affinities in a dependent way from these scaling factors. Scaling factors considered 

were: 

 

a) α=0.476, β=0.165, γ=0.000
203

 

b) α=0.236, β=0.146, γ=0.010
203

 

c) α=0.418, β = 0.087, γ = 0.000
204

 

d) α=0.224, β = 0.085, γ = 0.000
205
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These initial parameters were chosen considering the different related influence 

of α and β (and then the weight of polar and non polar parts) on the final 

calculations of the binding energy. For example, the a) and c) cases differ for the 

different weight of β; b) and d) cases show lower α values with respect to a) and c), 

and moreover differ from each other for the different weight of β .  

The results were analyzed using enrichment and Receiver Operating 

Characteristic (ROC) curves.  

In the first case, the ratio between the true positive percentage rate (ligands) and 

the percentages of the ranked database is considered. It represents a useful tool in a 

Virtual Screening study, because it indicates on a certain percentage of the whole 

database how many true positive compounds are identified (enrichment factor). 

The most interesting enrichment factors considered are at 1, 2, 5 and 10% (EF1, 

EF2, EF5, EF10) of the ranked database. 

Figure 3.2, Figure 3.3, Figure 3.4 respectively show the enrichment curves 

considering the 100% (whole), 10% and 5% of the ranked database, while 

enrichment factors are summarized in Table 3.1.  

These data show from a general point of view slightly better results for the four 

LIE methods versus docking until the 2% of the ranked database, but over this 

point docking curve is significantly able to overtake LIE curves.  

 

% of ranked database 
EF LIE (α=0.476; 

β=0.165, γ=0.000) 

EF LIE  (α=0.236; 

β=0.146, γ=0.010) 

EF LIE (α=0.418; 

β=0.087, γ=0.000) 

EF LIE (α=0.224; 

β=0.085,  γ=0.000) 

EF docking 

(GOLD) 

1 11.364 13.636 11.364 11.364 9.091 

2 7.955 7.955 7.955 9.091 7.955 

5 6.364 5.909 5.455 6.364 9.091 

10 4.318 4.318 3.636 4.091 7.500 

Table 3.1 Enrichment factors (EF) calculated for the different methods analyzed at 1, 2, 5, and 10 % 

of the ranked database. 
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Figure 3.2 Enrichment curves for docking and LIE calculations related the whole ranked database 

 

 

Figure 3.3 Enrichment curves for docking and LIE calculations related the first 10% of the ranked 

database 

 

 

Figure 3.4 Enrichment curves for docking and LIE calculations related the first 5% of the ranked 

database 
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All these observation are confirmed by the ROC curve, where the ratio between 

the true positive (ligands) rate and the false positive (decoys) rate is taken into 

account (Figure 3.5).  

 

 

Figure 3.5 ROC curves related to molecular docking and LIE calculations 

 

In general, the data presented highlight the poor results obtained by the four LIE 

methods used, especially considering the fastness of the molecular docking 

calculations. These data seems to be interesting concerning the reliability of the 

LIE calculations. On the other hand, remaining in the field of the LIE, further 

investigations are in progress regarding the dependence of results from the scaling 

factors used. In parallel, we are considering other MD-based methods for the re-

ranking of the docking calculations. 

For these reasons, other studies are under evaluation, specifically concerning: 

- Use of ligand specific LIE scaling factors
206

 

- MM-PB(GB)SA methods. 
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4.1 Discovery of cholestan disulfate as a potent pregnane-X-

receptor agonist 

PXR (pregnane-X-receptor) is a master gene regulating the activity of a variety 

of genes involved in xeno- and endo-biotic metabolism in the liver and 

gastrointestinal tract.
207-210

 

Once activated, PXR heterodimerizes with the retinoid-X-receptor (RXR), binds 

to regulatory DNA sequences in the promoter of responsive genes and modulating 

their  transcription. PXR is a master gene orchestrating the expression/function of a 

number of genes involved in the detoxification/excretion of endo-and xeno-biotics 

thus preventing toxic accumulation of metabolites within cells. In addition, PXR is 

recognized as an important regulatory factor in modulation of important effector 

functions in the immune system through inhibition of proinflammatory 

transcription factor NF-κB in epithelial and immune cells.
211,212

  

A role for PXR in the pathogenesis of inflammatory bowel disease (IBD) is 

increasingly supported by genetic and pharmacological evidence. Thus, gene 

expression analysis of colon tissues from ulcerative colitis and patients with 

Crohn's disease have revealed a significant reduction in the expression/function of 

PXR and its target genes compared with normal intestinal samples.
213

 Moreover 

rifaximin, a human PXR activator, is in clinical trials for treatment of IBD and has 

demonstrated efficacy in Crohn's disease and active ulcerative colitis.
214,215

 It is 

speculated that by activating PXR, rifaximin could contribute to the maintenance of 

the intestinal barrier integrity by regulating the metabolism of xenobiotics and 

increasing the expression and activity of PXR and PXR-regulated genes.
216

  

Therefore PXR represents an important pharmacological target and the 

discovery of potent and selective PXR agonists holds potential in the discovery of 

new drugs for the treatment of human disorders characterized by dysregulation of 

innate immunity. 
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Recently research group of Professor Angela Zampella reported the biochemical 

decodification of several steroids of marine origin as ligands of two nuclear 

receptors, FXR and PXR.
217-223

 Among these, two sulfated steroids, solomonsterols 

A (1) and B (Chart 4.1) isolated from the sponge Theonella swinhoei,
224

 were 

proved to be potent inducers of PXR transactivation in human hepatocyte cell line 

(HepG2 cells) stimulating the expression of CYP3A4 and MDR1 (Cytochrome 

P450 3A4 and multidrug resistance 1), two well characterized PXR responsive 

genes in the same cell line (Chart 4.1).
225

  

In addition, through a deep pharmacological investigation on transgenic mice 

expressing the human PXR, we have demonstrated that solomonsterol A (60) 

effectively protects against development of clinical signs and symptoms of colitis, 

reduces the generation of TNF-α and enhances the expression of TGF- and IL-10, 

two potent counter-regulatory cytokines in IBD, via inhibition of NF-B activation 

in a PXR dependent mechanism.
226

  

All these data pointed towards the identification of solomonsterol A (60) as a 

new lead in the treatment of IBD. One of the possible limitation to its use in 

clinical settings is that, when administered per os, solomonsterol A (60) could 

undergo absorption from the GIT before reaching the colon causing severe 

systemic side effects resulting from the activation of PXR in the liver. 
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Chart 4.1 Chemical structures of solomonsterol A and B 
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One of the best approaches used for colon specific drug delivery is based on the 

formation of a prodrug through chemical modification of the drug structure, usually 

by the conjugation with a suitable carriers, such as amino acids, sugar, glucuronic 

acid, dextrans or polysaccharides. 

Since the luxuriant microflora presents in the colon, the prodrugs undergo 

enzymatic biotransformation in the colon thus releasing the active drug molecule.  

Another challenging task is the design of dual-drugs able to release in the colon 

two molecules acting in a synergic manner. For example the possible eventual 

chemical linkage of solomonsterol A (60) to 5-ASA, one of the oldest anti-

inflammatory agents in use for the treatment of IBD, could produce a dual-drug 

with enhanced potency. Upon enzymatic hydrolysis in the colon, this kind of 

molecule could release solomonsterol A and 5-ASA, potent agonists of PXR and 

PPAR-,
227

 respectively, two nuclear receptors playing key rules in colon 

inflammation diseases.  

When synthesizing prodrugs, the first step is the introduction of a functional 

group on the drug molecule suitable of conjugation with a selected carrier (e.g., an 

hydroxyl group that could enter into a glycosidic linkage with various sugars, or 

alternatively a carboxyl group to form ester e/o amide conjugates with 

cyclodextrin, amino acids etc).  

Inspection of chemical structure of solomonsterol A (60) revealed that the 

presence of three sulfate groups hampered any further derivatization e/o 

conjugation. In order to introduce a function group suitable for further 

derivatization, several solomonsterol A derivatives with a modified side chain but 

preserving the steroidal tetracyclic nucleus (compounds 61-67 in Chart 4.2) were 

prepared. Another opportunity was to speculate the pharmacoforic role played by 

ring A, preparing derivatives 68-69 with a sulfate group at C3 in  and  

orientation, respectively. 
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Chart 4.2 Modified solomonsterol A derivatives 

 

The small library of derivatives obtained (Chart 4.2) was subjected to 

pharmacological evaluation and docking analysis. This study allowed the discovery 

of a synthetic solomonsterol analogue, 2β,3α-cholestan disulfate (ColdiSolf, 67), as 

simplified new potent PXR agonist. 

 

4.1.1 Biological studies 

To investigate whether these compounds act on PXR and eventually PXR 

regulated genes, we have carried out a luciferase reporter assay on human 

hepatocyte cell line (HepG2 cells) transiently transfected with pSG5-PXR, pSG5-

RXR, pCMV-galactosidase, and p(CYP3A4)-TK-Luc vectors (Figure 4.1). Cells 

were then stimulated with rifaximin, a well known PXR agonist, and with 

compounds 62-65 at the concentration of 10 μM each. 
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Figure 4.1 Luciferase reporter assay. HepG2 cells were transiently transfected with pSG5-PXR, 

pSG5-RXR, pCMV-βgalactosidase and p(CYP3A4)-TK-Luc vectors and then stimulated with (A) 

10 μM rifaximin or compounds 60–69 for 18 h, or (B) 10 μM rifaximin alone or in combination 

with50 μM of compounds 61, 62, 67 and 68. N.T., not treated. Rif, rifaximin. *P < 0.05 versus cells 

left untreated. Data are mean ± SE of three determinations.  

 

As shown in Figure 4.1 A, beside the closely structural resemblance with 

solomonsterol A (60), only carboxylate (62) showed a slight activity in 

transactivating PXR. Besides at first sight this behaviour should be ascribable to a 

scarce bioavailability, the scarce activity also for the methyl ester 61 and the 

complete loss of activity for C-24 alcohol 66, obtained through LiBH4 reduction of 

61 (75% yield), pointed towards unfavourable pharmacodinamic features. Indeed, 

although compounds 62-65 (COOH, taurina, gly, asa) possess a negative charge on 

their side chains, most likely they are unable to form polar interactions with 

Lys210 or alternatively with other polar amino acids of PXR LBD. As previously 

reported, PXR presents a large ligand binding cavity
228,229,230

 allowing the 

accommodation of different kind of molecules and the possible binding modes are 

characterized an adequate balance between hydrogen bond and Van der Waals 

interactions established between a small molecule and the receptor.  
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Therefore the lack of a polar interaction should be get over by increasing the 

contribution of the hydrophobic interactions on the side chain and the derivative 

67, 2β,3α-cholestan disulfate (ColdiSolf), has been prepared.  

As shown in Figure 4.1 a, compound 67 with its hydrophobic side chain is able 

to transactivate PXR with a potency comparable with the parent solomonsterol A 

(60). Although compound 68 induces a slight PXR transactivation, the lack of 

sulfate group at C-2 as well as the inversion of configuration at C-3 are responsible 

for a general loss in the agonistic activity towards PXR (Figure 4.1 a). To 

investigate whether these compounds could act as potential antagonists of PXR we 

have carried out a transactivation experiment in HepG2 cells stimulated with 

rifaximin (10 μM) and compounds 61, 62, 67 and 68 at a concentration of 50 μM 

each. As shown in Figure 4.1 b, all compounds failed to reverse the induction of 

luciferase caused by rifaximin, indicating that none of these solomonsterol A (60) 

derivatives is a PXR antagonist.  

 

 

Figure 4.2 Real-time PCR of CYP3A4 carried out on cDNA isolated from HepG2 not stimulated or 

primed with 10 μM rifaximin, and compounds 60–69. N.T., not treated. Rif, rifaximin. *P < 0.05 

versus N.T. cells. 

 

To further examine the activity of compound 67 as a PXR activator and further 

clarify the behavior of compounds 61, 62 and 68, we have tested the effects of all 

members of our series on the expression of CYP3A4, a canonical PXR target gene 
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(Figure 4.2). Despite compounds 61, 62 and 68 causing a slight transactivation of 

PXR, they failed to modulate the expression of CYP3A4 at the concentration of 10 

μM. In contrast, confirming data shown in Figure 4.1, compound 67 effectively 

increased the expression of CYP3A4 (Figure 4.2) in HepG2 cells, with a magnitude 

similar to that of rifaximin and solomonsterol A (60). While these data do not 

exclude that compound 62 could also stimulate CYP3A4 expression in this system, 

the need for higher concentrations to display a full PXR agonistic activity 

precluded its further development. To further investigate whether compound 67 

displays a full PXR agonistic activity, we then evaluated the effect of 67 in 

regulating immune response using THP1 cells, a human macrophage/ monocytic 

cell line, challenged with lipopolysaccharide (LPS), a potent agonist of Toll like 

receptor (TLR)-4. Previous studies
231

 have shown that activation of PXR in this 

setting attenuates immune response triggered by LPS, a toll-like receptor 4 ligand, 

and key modulator of innate immunity. 

Results shown in Figure 4.3, demonstrate that compound 67 effectively 

attenuates induction of IL-1β, TNFα and MCP-1 induced by LPS. 

 

 

Figure 4.3 Effect of compound 67 on cytokine release induced by LPS in THP1 cells. 3x10
6
 

THP-were starved for 24 h and then pre-treated with 10 M of compound 67 for 3 h and then 

stimulated for 18 h with LPS 1
 
g/ml. Cytokine expression was assessed by RT-PCR. Data shown 

are m mean ± SE of 9 assays from three different sets of experiments. *P<0.05 versus control cells; 

** P<0.05 versus LPS alone. 
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Because the above mentioned data indicate that compound 67 effectively 

modulates immune response in human monocytes, additional experiments were 

carried out to investigate the effect of this compound in another model of 

inflammation-driven activation, using hepatic stellate cells (HSCs). HSCs are a 

liver-resident cell population that proliferate in response to liver injury. In response 

to immune activation, HSCs undergo a complex phenotype rearrangement 

characterized by resetting expression of nuclear receptors, including PXR, and 

acquisition of an activated, myofibroblast-like phenotype whose main characteristic 

is the ability to express α-smooth muscle actin (αSMA). HSCs are recognized as 

the main source of extracellular matrix production in the fibrotic liver. Previous 

studies have shown that, along with other nuclear receptors, PXR ligands reverse 

this phenotype and reduce α-SMA production.
232,233,234

  

 

 
Figure 4.4 Hepatic stellate cells (HSC) were starved for 24 h and then stimulated with thrombin, 

10 U/ml, in the presence of solomonsterol A or compound 67, 10 M each. α-SMA expression was 

assessed by RT-PCR. Data shown are mean ± of three experiments.* P<0.05 versus control cells; ** 

P<0.05 thrombin versus control cells; ***P<0.05 versus thrombin alone. 
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For this purpose HSCs were exposed to thrombin, a proteinase activated 

receptor (PAR)-1 agonist alone or in combination with compound 67. Previous 

studies have shown that thrombin drives HSCs trans-differentiation and its 

inhibition reverses HSCs from an activated to a quiescent phenotype.
235

 Results 

shown in Figure 4.4 demonstrate that, similarly to solomonsterol A (60), not only 

does compound 67 effectively reduce basal expression of αSMA, but it also 

attenuates HSCs trans-differentiation (i.e. induction of αSMA expression) triggered 

by thrombin.  

 

4.1.2 Molecular modelling studies 

In order to clarify the different activities of the here described compounds at a 

molecular level we performed docking calculations, using the Autodock 4.2 

software,
27

 we examined the positioning of all the compounds in the binding site of 

PXR,
236

 and in particular we analyzed the crucial interactions with the Ser247, 

His407 and finally with the Lys210.  

These residues, in particular the Ser247, are involved in hydrogen bonds with 

various PXR’s ligands.
229,236,237

  

The three sulfate groups of the agonist solomonsterol A (60) act as key points of 

interactions with these amino acids, and contribute to accommodate the steroid 

nucleus in a mostly hydrophobic part of the binding site of PXR. The compound 

establishes hydrogen bonds (Figure 4.5) with the Cys284 (2-O-sulfate) and with the 

Lys210 (24-O-sulfate) and electrostatic interactions with the Ser247 (2-O-sulfate) 

and His407 (3-O-sulfate).
226

 

ColdiSolf (67), presenting the C8 aliphatic side chain of cholesterol, is well 

superimposed with the binding pose of 60, and is able to interact with the  
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Figure 4.5 Solomonsterol A (60) (coloured by atom types: C grey, O red, S yellow) in docking 

with PXR-LBD (residues are coloured by atom type: C green, H light grey, O red, N blue). 

Hydrogen bonds are displayed with green spheres. 

 

 

Figure 4.6 ColdiSolf (67) (coloured by atom types: C light green, O red, S yellow) in docking 

with PXR-LBD (residues are coloured by atom type: C green, H light grey, O red, N blue). 

Hydrogen bonds are displayed with green spheres. 

 

Ser247, Cys284 and the His407 through its two sulfate groups in the ring A (Figure 

4.6). Moreover, 67 establishes hydrophobic interactions with almost all the residues 

observed for solomonsterol A (60) (Leu209, Val211, Pro228, Leu239, Met243, 

Phe281, Phe288, Leu411). The presence of a hydrophobic chain allows to gain two 

more Van der Waals interactions (with the Leu209 and Val211) that may counter 

the loss of electrostatic interaction observed for the sulfate group at C24 of parent 
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solomonsterol A. Nevertheless, the weaker nature of this Van der Waals interaction 

could explain the decrease of the activity of coldiSolf (67) on PXR (difference of 

predicted binding energies 60-67=1.05 kcal/mol). 

On the other hand, the absence of the sulfate group at C-2 in the steroid nucleus 

causes the observed lack of activity, due to an inability to interact simultaneously 

with the three key point of contact previously described. 

For example, compounds 68 and 69 are able to interact with the Lys210 but they 

fail to respect the key interactions involving the internal part of the binding site. 

Regarding compound 62, its tetracyclic nucleus is well superimposed with 60, but 

its shorter side chain causes a poor interaction with the nitrogen of Lys210. The 

two oxygens of its terminal carboxylic part are not well overlapped with the 

oxygens of the 24-O-sulfate of the 60, and the different arrangement of the side 

chain causes also a loss of two Van der Waals interactions with the Leu239 and 

Pro227. In other cases a displacement of the compound to the solvent part is 

observable. For example, the rings A of compounds 61 and 66 are in the place 

occupied by the ring B of 60 and, as a consequence, the 2-O-sulfate and/or 3-O-

sulfate are in a less deep position. Compounds 63, 64 and 65 present a longer and 

more functionalized side chain compared with the previous derivatives, but also in 

this case the steroid nucleus are placed toward the external part of the binding site 

of PXR (63, 65). Moreover, compound 64 is unable to bind in the above described 

fashion and accommodates in a reverse orientation (a flipping of ~ 180° along the 

major axis of the steroid nucleus) of their steroid nucleus. The overall result is an 

inverted disposition of all the chemical groups (sulfates/methyl groups, and side 

chain) in the binding pocket of PXR and then a different pattern of interactions. 

(Figure 4.7) 
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Figure 4.7 Superimposition between 60 (coloured by atom types: C grey, O red, S yellow) and: 

a) 68 (coloured by atom types: C sky-blue, O red, S yellow); b) 69 (coloured by atom types: C 

brown, O red, S yellow); c) 62 (coloured by atom types: C orange, O red, S yellow); d) 61 (coloured 

by atom types: C purple, O red, S yellow); e) 66 (coloured by atom types: C turquoise green, O red, 

S yellow); f) 63 (coloured by atom types: C dodger blue, O red, S yellow); g) 64 (coloured by atom 

types: C dark green, O red, S yellow); h) 65 (coloured by atom types: C pink, O red, S yellow) in 

PXR-LBD (residues are coloured by atom type: C green, H light grey, O red, N blue). 

 

4.1.3 Final remarks 

In summary, coldiSolf (67) has been identified as a new PXR agonist. The 

ability of this compound to a function as a PXR agonist was first demonstrated in 

transactivation assay using HepG2 cells transiently transfected with a PXR vector. 

The results of this experiments demonstrate that compound 67, and less effectively 

compounds 61, 62, 68, efficiently transactivates human PXR with a relative 
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potency that was very similar to that of rifaximin a well know PXR agonist. The 

functionality of the interaction of compound 67 with PXR was further investigated 

in two different cell models. Using THP1 cells, a mielo-monocytic cell line, we 

have provided evidence that compound 67 attenuates cytokine generation induced 

by LPS. Moreover, in agreement with transactivation experiments, the PCR data 

demonstrate that compound 67 increases the expression of CYP3A4, a well 

characterized PXR responsive gene, in liver cells. The functionality of the 

interaction of compound 67 with PXR was further investigated in two different cell 

models. Using THP1 cells, a monocytic cell line, we have provided evidence that 

compound 67 attenuates cytokine generation induced by LPS. Because previous 

studies have provided robust evidence that PXR activation by rifaximin and 

solomonsterol A
226 

exerts anti-inflammatory activity in rodent models of colitis by 

attenuating inflammation driven-immune dysfunction and cytokine accumulation in 

inflamed tissues, the present results extend on the role of PXR ligands in regulating 

immune function, and pave the way for the use of compound 67 in preclinical 

models of inflammation. Despite the fact that we have not investigated the 

mechanism mediating inhibition of cytokines by compound 67, we and others have 

provided evidence that PXR agonists inhibit NF-κB activation.
226,238

 Extending on 

the role of PXR as an endogenous braking signal for inflammation, we have then 

examined whether compound 67 would have been effective in reducing collagen 

production by HSCs, a myofibroblast-like cell line. HSCs acquire an activated 

phenotype in response to liver injury and release collagen and express αSMA in 

response to toxic and immunological stimuli in a variety of liver disorders. 

Previous studies have provided evidence that nuclear receptors, including FXR, 

SHP and PPARγ, modulate a collagen release by HSCs and might function as 

important therapeutic targets for treating liver fibrosis.
239

 PXR ligation attenuates 

liver fibrosis and HSCs activation.
240

 Here we have shown that solomonsterol A 
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(60) and compound 67 reduce αSMA accumulation triggered by thrombin. There is 

substantial evidence to support the notion that PXR activators are anti-fibrogenic in 

human liver myofibroblasts in vitro
241

 and in in vivo animal models of liver 

fibrosis. The role of the PXR in regulating HSCs activation has been unequivocally 

established using mice with a disrupted PXR gene. The mechanism throughout 

which PXR regulates production of extracellular matrix proteins is likely 

associated with a function for the PXR that is not related with its recognized 

function as a regulator of genes associated with endobiotic and xenobiotic 

clearance, and might be linked to inhibition of intracellular signaling including NF-

κB, or involved in the regulation of transdifferentiation of these fat-storing cells as 

demonstrated for other nuclear receptors including PPARγ and farnesoid-X-

receptor, FXR.
242

 

Because of its simplified structure and efficacy in attenuating immune activation 

in macrophages and HSCs, compound 67 is a suitable candidate for further 

development in preclinical models of inflammatory diseases. 
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4.2 Plakilactones from the marine sponge Plakinastrella 

mamillaris, a new class of marine ligands of peroxisome 

proliferator-activated receptor γ 

The peroxisome proliferator-activated receptors (PPARs) are ligand activated 

transcription factors belonging to the nuclear receptor superfamily. Three distinct 

receptor subtypes, PPARα, PPARγ and PPARβ(δ), have been identified. While the 

PPAR subtypes share a high level of sequence and structural homology, each 

subtype has distinct physiological functions and exhibits a unique tissue expression 

pattern. PPARγ, the most widely investigated PPAR subtype, is predominately 

expressed in the adipose tissue with lower levels in heart, colon, kidney, spleen, 

intestine, skeletal muscle, liver and macrophages. PPARγ is generally recognized 

as a pivotal transcription factor in the regulation of adipocyte gene expression and 

differentiation. In addition, PPARγ has been shown to be an important regulator of 

target genes involved in glucose and lipid metabolism and is the mainstay of 

therapy for type 2 diabetes.
243,244

 Furthermore, PPARγ transrepresses the 

expression of genes involved in inflammatory responses,
245

 and suppression of the 

inflammatory response by PPARγ agonists is closely linked to the anti-diabetic and 

anti-atherosclerotic effects of this receptor. Thus, PPARγ agonists have been found 

effective in the treatment of several inflammatory and degenerative disorders 

including cancer, atherosclerosis, rheumatoid arthritis and inflammatory bowel 

disease. 

The ligand binding domain (LBD) of PPARγ allows the accommodation of a 

large variety of structurally different chemicals, including many food-derived 

substances such as polyunsaturated fatty acids, flavonoids, terpenoids and 

polyphenols.
246

 Despite the extraordinary chemical diversity exhibited by marine 

natural products, only two reports have identified marine natural products as 

putative PPAR agonists. Thus, the screening of 2688 extracts from marine 
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organisms led to the identification of psammaplin A as the first PPARγ agonist 

from a marine sponge.
247

 Similarly, from the screening of a library of 90 bioactive 

marine extracts for their ability to stimulate PPAR and PPAR transcriptional 

activity, sargaquinoic acid and sargahydroquinoic acid were identified as novel 

PPAR/ dual agonists from Sargassum yezoense.
248

  

As part of our search for human nuclear receptor modulators from marine 

organisms,
217,218,219,220,221,222,223,224,226

 a library of oxygenated polyketides from the 

sponge Plakinastrella mamillaris, collected at Fiji Islands, was investigated as 

PPARγ modulators. Marine sponges of the genera Plakortis and Plakinastrella are 

known to produce a great variety of oxygenated polyketides, formed by the 

combination of acetyl-, propionyl-, and/or butiryl-CoA units. They include 

plakortolide, plakinic acid, plakortic acid, plakortone, or plakortide families.
249

 

Several activities have been ascribed to the members of this class, including anti-

proliferative,
250

 antifungal, anti-inflammatory or activation of cardiac SR-Ca
2+

-

pumping ATPase.  

Interestingly, compounds containing the 1,2 dioxolane system such as plakortin, 

plakortides and gracilioether A exhibit potent antiprotozoan activity against 

Plasmodium falciparum and Leishmania major.
251-259

 A specimen of P. mamillaris 

Kirkpatrick, 1900 (Homoscleromorpha) was collected at the Fiji Islands. The 

lyophilized sponge was extracted with MeOH, and the combined extracts were 

fractionated according to the Kupchan partitioning procedure.
260

 

The major components of the hexane extract were proved to be the previously 

reported methyl esters 72
261

 and 73,
262

 the -lactone 74
261

 (Figure 4.8) and the new 

-lactone 78 (Figure 4.9), which we named plakilactone A. A careful analysis of 

the chloroformic extract afforded several more polar derivatives such as 

gracilioethers A-C (75-77), previously reported from the marine sponge Agelas 

gracilis (Figure 4.8),
259

 five new non-peroxy plakortin derivatives, plakilactones B-
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F (79-83), featuring the ,-unsaturated  lactone moiety, and gracilioether D (84) 

showing the ,,γ,δ-unsaturated methyl ester moiety (Figure 4.9).  
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Figure 4.8. Known polyketides from Plakinastrella mamillaris. 
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Figure 4.9. New compounds from Plakinastrella mamillaris. 

 

The structural characterizations of these compounds were determined by 

detailed analysis of HRESIMS and NMR experiments (
13

C and 2D NMR data, 

namely COSY, HSQC, HMBC and ROESY ).  
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4.2.1 Biological studies 

PPARγ can be activated by a number of natural lipid metabolites, including 

oxidized fatty acids, several cyclooxygenase (COX) and lipoxygenase (LOX) 

metabolites and 15-deoxy-Δ12,14- prostaglandin J2 (15d-PGJ2), the first 

endogenous ligand identified. These molecules act as covalent ligands possessing a 

common core moiety, an α,β-unsaturated ketone, able to form a covalent bond with 

a cysteine residue in the PPARγ-LBD through a Michael addition.
263,264,265

 Thus, 

the presence of a Michael acceptor, an α,β-unsaturated ketone or alternatively an 

-unsaturated methyl ester moiety, in all polyketides isolated from 

Plakinastrella prompted us to investigate their capability to transactivate PPAR.  

 

 

Figure 4.10 PPAR transactivation assay. HepG2 cells were transiently transfected with a 

chimeric receptor expressing plasmid pSG5GAL4-PPARLBD and with the reporter vector 

p(UAS)5xTK-Luc. 24 h post transfection cells were stimulated for 18 h with (A) 100 nM 

rosiglitazone (R) and compounds 72-84, 10 µM. (B) 100 nM Rosiglitazone (R) alone or in 

combination with compounds 72-84, 50 µM. Data are the mean ± S.E. of three experiments. *P,0.05 

versus not treated cells (NT). #P<0.05 versus rosiglitazone stimulated cells. 

 

As shown in the Figure 4.10, several members of this series effectively 

transactivated PPAR with compounds 76, 77 and 80 being the most potent 

agonists. In addition, when incubated in presence of the synthetic ligand 
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rosiglitazone, methyl esters 72 and 73 attenuated the transactivation induced by this 

agent, thus acting as PPAR antagonists. Analysis of the concentration/response 

curves for transactivation of PPAR in response to rosiglitazione and to 

gracilioether B (76), gracilioether C (77) and plakilactone C (80) demonstrates that 

the marine compounds activate PPAR in a dose-dependent manner with a relative 

EC50 of ≈ 5, 10 and 2 µM for compounds 76, 77 and 80, respectively (Figure 4.11). 

We then moved to a detailed analysis of the interaction mechanism at a molecular 

level, in order to assess the binding mode of these agents within PPAR-LBD. 

First, a liquid chromatography-ESI MS (LC-ESI-MS)
266,267,268

 approach was 

applied to detect the potential formation of PPARγ-LBD covalent complexes with 

gracilioether B (76), gracilioether C (77), plakilactone C (80), the methyl ester 72, 

the γ-lactone 74 and plakilactone B (79), in physiologically relevant conditions. 

 

 

Figure 4.11 HepG2 cells were transiently transfected with pSG5GAL4-PPARLBD and 

p(UAS)5xTK-Luc. 24 h Post transfection cells were treated with increasing concentrations of (A) 

rosiglitazone, (B) gracilioether B (76), (C) gracilioether C (77), (D) plakilactone C (80) and cell 

extracts subsequently assayed for luciferase activity. Data are the mean ± S.E. of three experiments.  
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After incubation with PPARγ-LBD, a time-course analysis of the reaction 

mixtures was performed for each ligand, and the chromatograms revealed the 

presence of stable covalent complexes solely in presence of gracilioether B (76) 

and plakilactone C (80). Two species were detected in the LC-MS runs of 

gracilioether B (76) and plakilactone C (80), (Figure 4.12 panel A), that were 

identified, on the basis of their MW, as the unmodified PPARγ-LBD (MW of 

36172.7±0.3 Da) and as the 1:1 PPARγ-LBD/gracilioether B (76) or plakilactone C 

(80) covalent adducts, the last ones giving mass increments of 320 Da and 264 Da, 

respectively, compared to the free protein (Figure 4.12 panel A). These mass 

differences supported the hypothesis of a Michael addition between the natural 

compounds and PPARγ-LBD (Figure 4.12 panel C). 

 

 

Figure 4.12 Panel A: deconvoluted spectra of PPARγ-LBD alone (back), upon gracilioether B 

(76) (middle) and plakilactone C (80) incubation (front). Panel B: mechanism of the covalent 

modification of PPARγ-LBD by Michael addition on the α,β-unsaturated ketone moiety in the side 

chain of 76 (or 80). Panel C: MALDI-MS spectrum of PPARγ-LDB/gracilioether B (76) complex 

tryptic digestion and MALDI-MS/MS analysis of the ion at m/z 1318.66. 
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Then, we moved to the identification of the punctual site of the covalent 

modification on PPARγ-LBD by gracilioether B (76) through a combination of 

classical protein chemistry protocols, MALDI-MS and MS/MS techniques. The 

chromatographic fraction containing the covalent complex was subjected to an 

extensive proteolysis with trypsin and analyzed by MALDI-MS. As reported in 

Figure 4.12 panel C and, the MALDI spectrum led us to identify a peak at m/z 

1318.66, corresponding to the peptide 281-288 (NH2-IFQGCQFR-COOH) 

containing the Cys285 and increased of 320.2 Da in its MW. Finally, MALDI-

MS/MS analysis confirmed the correct peptide identification through the formation 

of the daughter ions at m/z 390.92, 446.55, and 1205.65, attributed to b3, b4 and y7 

fragmentations, respectively. Thus, Cys285 was unequivocally determined as the 

protein residue involved in the covalent binding with gracilioether B (76). 

On the basis of structural considerations, the α,β-unsaturated carbonyl moiety 

exclusively present in the side chain of gracilioether B (76) and plakilactone C (80) 

should act as specific Michael acceptor (Figure 4.12 panel B). To demonstrate this 

hypothesis, gracilioether B (76) and plakilactone C (80) were subjected to mild 

hydrogenation of the side chain double bond, giving the derivatives 85 and 86, 

respectively (Figure 4.13, panel A).  

Derivatives 85 and 86 were separately incubated with PPARγ-LBD, submitted 

to LC-ESI-MS analysis (see before) and, as expected, were unable to form covalent 

adducts with the PPARγ-LBD (covalent complex PPARγ-LBD/Agonists not found 

by LC-ESI-MS experiments) and, importantly, to transactivate PPARγ (Figure 

4.13, panel B). All these data unequivocally revealed that the Cys285 targets the 

α,β-unsaturated carbonyl moiety on the side chain of gracilioether B (76) and 

plakilactone C (80), moreover confirming graciliother C (77), methyl esters 72 and 

73 as non covalent PPARγ ligands. 
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Figure 4.13 A) Mild hydrogenation of gracilioether C and plakilactone C (H2/Pt/C, 5 min, r.t). 

B) Luciferase reporter assay performed in HepG2 cells transiently transfected with a chimeric 

receptor expression plasmid pSG5GAL4-PPARLBD and with the reporter vector p(UAS)5xTK-

Luc. 24 h post transfection cells were stimulated for 18 h with 10 µM compounds 76, 80, 85 and 86. 

Data are the mean ± S.E. of three experiments. *P,0.05 versus not treated cells (NT). 

 

We next examined whether gracilioethers B (76) and C (77) and plakilactone C 

(80) regulate the expression of genes that are known target of PPAR in HepG2, a 

human hepatocarcinoma cell line, and in THP-1, a human monocytic leukemia cell 

line. For this purpose, HepG2 cells were exposed to rosiglitazone or gracilioethers 

B (76) and C (77) and plakilactone C (80) and the relative mRNA expression of 

SCD-1 (stearoyl-CoA desaturase-1), CD36 (cluster of differentiation 36)
 

and 

PEPCK (phosphoenolpyruvate carboxykinase)
269,270

 were assessed by quantitative 

RT-PCR. As shown in Figure 4.14, gracilioether B (76), gracilioether C (77) and 

plakilactone C (80) exhibited a pattern of pharmacological activities full 

compatible with their ability to bind and transactivate PPAR. All these agents 

increased the expression of SCD-1. Furthermore, gracilioether C (77) and 

plakilactone C (80) increased the expression of CD36, and gracilioethers B (76) 

and C (77) the expression of PEPCK. 
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Figure 4.14. Serum starved HepG2 cells were stimulated for 18 h with 100 nM of rosiglitazone 

(R) or gracilioethers B (76), C (77) and plakilactone C (80), 10 μM. Total RNA was extracted to 

perform Real-Time PCR of (A) CD36, (B) SCD-1 and (C) PEPCK. Values were normalized 

relatively to GAPDH mRNA and are expressed relatively to content of these genes in untreated 

cells, which are arbitrarily set to 1. Analysis was carried out in triplicate and the experiment was 

repeated twice. *P<0.05 versus not treated cells. 

 

Finally, we measured whether glacilioether C (77), the non-covalent PPARγ 

agonist, effectively modulated PPAR-regulated genes in macrophages, a 

prototypical target of this nuclear receptor. As shown in Figure 4.15, pre-treating of 

THP-1 cells with rosiglitazone or gracilioether C (77) counter-regulated the 

induction of both the pro-inflammatory cytokine IL-6 (interleukine-6) and the 

MCP-1 (monocyte chemotactic protein-1) chemokine caused by LPS 

administration.  

 

 

Figure 4.15 Serum starved THP-1 cells were pre-treated for 3 h with 100 nM rosiglitazone (R) 

or gracilioether C (77), 10 μM, before the administration of LPS (1 µg/ml) for 18 h. Total RNA was 

extracted to analyze the relative mRNA expression of (A) IL-6 and (B) MCP-1 by Real-Time PCR. 

Values were normalized with respect to GAPDH mRNA and are expressed with respect to those of 

the untreated cells, which were arbitrarily set to 1. The analysis was carried out in triplicate and the 

experiment was repeated twice. *P<0.05 versus not treated cells. 
#
P<0.05 versus LPS treated cells. 
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4.2.2 Molecular modelling studies 

In order to rationalize the binding mode in PPAR of the afore mentioned 

compounds, docking calculations and Molecular Dynamics simulations were 

performed using Autodock-Vina
28

 and Macromodel 8.5 software packages, 

respectively, taking into account that gracilioether B (76) and plakilactone C (80) 

are covalent ligands.  

In this context, it should be mentioned that the activation of PPAR by a 

covalent ligand depends also by its ability to establish, apart the covalent bond, 

additional weak interactions in the LBD.
263,264,271  

Indeed, Waku et al.
265

 
 
proposed a model, defined “dock and lock”, in which the 

first step (docking step) involves several non-covalent interactions of the putative 

ligand in the LBD, whereas in the second step (locking step) the covalent binding 

to the Cys285 is observed. As the apo and the locked form of this protein showed 

remarkable structural differences, in our docking studies on the covalent ligands 76 

and 80, two crystallographic structures of PPAR were used: the apo-form (PDB 

code: 2ZK0) and a covalent complexed form with nitro-233 (PDB code: 2ZK5),
265

 

that was removed before the docking of our compounds.  

The docking poses of gracilioether B (76), gracilioether C (77), and plakilactone 

C (80), the most active components of the library, were compared with the 

antagonists, methyl esters 72 and 73, and with the inactive compounds plakilactone 

B (79) and gracilioether D (84).  

Within this approach, we confirmed that the active covalent ligands are docked 

in the apo form in poses compatible with the positioning of their reactive moieties 

around the Cys285, showing at the same time several interactions with key amino 

acid residues in the LBD. In the locked form of the receptor, we firstly tried to 

analyze the formation of the covalent bond using the recent introduced covalent 

docking methodologies.
27

 Unfortunately, using the flexible side chain method, a 
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restricted space in the binding site of PPAR was observed, thus determining steric 

clashes after the formation of the covalent bond.  

On the other hand, using the covalent grid based approach, poses compatible 

with the covalent bond were found but with unfavorable predicted binding 

energies.  

For these reasons, we concluded that putative models of the covalent ligands 

could be better detected by using Molecular Dynamics simulations, analyzing their 

motions in the LBD of PPAR  

Results from these experiments allowed us to identify some significant poses in 

which the distances between the reactive part of these molecules and the sulfur 

atom on the Cys285 were compatible with the formation of the C-S covalent bond. 

 

 

Figure 4.16 Gracilioether C (77), (coloured by atom types: C orange, O red, -OH hydrogen light 

grey) in docking with PPAR-LBD of the apo form. Residues are coloured by atom type: C green, 

H light grey, O red, N blu, S yellow. 

For what concerns non-covalent ligands, the docking model in the apo form 

shows that the agonist gracilioether C (77) entails a set of weak interactions, with 

the -OH group in the side chain determining a favorable accommodation in the 

LBD of PPARIn particular, in the apo form, 77 establishes Van der Waals 
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interactions with the Ile341 and the Met348, and polar interactions with the 

Arg288.  

Three hydrogen bonds stabilize the compound in the LBD, between the ether 

oxygen of the cycle and the -NH of the Ser342, between the terminal oxygen of the 

ester moiety and the -NH of the Glu343, and finally between the -OH at position-

11 and the CO group of the Ile267 (Figure 4.16).  

Methyl esters 72 and 73 differ from gracilioether C (77) for the presence of a 

fully hydrophobic side chain that causes a different orientation in the PPAR-LBD, 

with a flip of the ring of ~ 180° on the major axis of the compounds (Figure 4.17 a) 

and then with the loss of some essential interactions. 

Indeed, we found alternative poses in which the ,,γ,δ-unsaturated methyl ester 

moiety of 77, 72 and 73 are well superimposed (Figure 4.17 b), but also in this case 

the hydrophobic side chains of 72 and 73 do not allow any polar interaction as 

observed for 77, mainly the hydrogen bond with the Ile267.  

As demonstrated for 15d-PGJ2, this residue plays a fundamental role in the 

activity of a putative PPAR covalent agonist. Indeed, even if the covalent binding 

at the Cys285 is maintained, mutations at this residue abolish the transcriptional 

activation induced by this endogenous PPAR agonist.
265  

Similar considerations could be done for gracilioether D (84). Also in this case, 

the superposition with the gracilioether C (77) shows a similar orientation of the 

,γ,δ-unsaturated methyl ester core but a different accommodation of the side 

chain with the -OH group at C-10 far from the Ile267 (Figure 4.17c). 

 



Further applications of in silico screenings on natural compounds 

 

131 

 

 

 

Figure 4.17 Superimposition between 77 (coloured by atom types: C orange, O red, -OH 

hydrogen light grey), and: a) first docking model and b) alternative docking model of 72 (coloured 

by atom types: C grey, O red), and 73 (coloured by atom types: C purple, O red); c) gracilioether D 

(84) (coloured by atom types: C violet, O red, -OH hydrogen light grey); d) plakilactone B (79) 

(coloured by atom types: C green, O red, -OH hydrogen light grey) in docking with PPARγ-LBD of 

the apo form. Residues are coloured by atom type: C green, H light grey, O red, N blue, S yellow. 

Hydrogen bonds are displayed with green spheres. 

 

In summary, the inverted configuration at C-10 and the presence of a 
8
 double 

bond with respect to the side chain of gracilioether C (77) could explain the loss of 

the bioactivity for 84. 

Of interest is the case of the inactive plakilactone B (79) displaying the same 

lactone moiety of plakilactone C (80) and the side chain of gracilioether C (77). Its 

accommodation in the PPAR-LBD is inverted (Figure 4.17 d), probably due to the 

absence of the ,γ,δ-unsaturated methyl ester moiety. As a consequence, the 
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smaller cyclic α-β unsaturated lactone moiety is oriented to form a hydrogen bond 

with the Ile267, and the -OH in the side chain is able to establish only one 

hydrogen bond (Leu340) where 77 generated a wide set of polar interactions. In 

summary, 79 shows some potential interesting points in its chemical structure, but 

in perfect agreement with absence of activity towards PPARthe inability to create 

a covalent bond and the presence of a small cyclic part cause an unstable placement 

in the LBD. 

Regarding the covalent agonists, for gracilioether B (76) a docking pose in the 

apo form of PPAR in which the α-β unsaturated ketone in the side chain is 

oriented towards the Cys285 was found, and this conformation is stabilized by 

several hydrogen bonds between the ,,γ,δ-unsaturated methyl ester moiety and 

the Cys285, showing a strong point of attach of the compound in proximity of this 

residue. Moreover, 76 establishes further polar interactions with the Ile281and the 

Arg288, as well as hydrophobic interactions with the Met264, the Leu330, and the 

Ile341 (Figure 4.18 a). Therefore, as previously demonstrated,
265

 in the “docking 

step” a putative covalent ligand searches, through a wide range of weak 

interactions, the best conformation favorable to the covalent bond. 

In the locked form, a conformation in which the α-β unsaturated ketone of 76 is 

closed to the Cys285 (distance between the sulfur of Cys285 and the reactive β 

carbon of the α-β unsaturated ketone of 76 = 3.439 Å) was found. Starting from 

this conformation, several fast steps of Molecular Dynamics simulations were 

applied observing a gradual reduction of this distance. When a pose with a distance 

between these groups compatible with the C-S covalent bond was found (~1.8 Å), 

the covalent bond was manually generated and the complex was processed to a 

further fast step of Molecular Dynamics simulation (Figure 4.18b). 
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Figure 4.18 Docking and covalent models of gracilioether B (76) (coloured by atom types: C 

sky blue, O red) in docking with PPARγ-LBD of a) apo form; b) locked form after Molecular 

Dynamics simulations. Residues are coloured by atom type: C green, H light grey, O red, N blue, S 

yellow; c) superimposition between the apo form of PPARγ (secondary structure represented in red) 

and the locked form complexed with gracilioether B (76) (secondary structure represented in blue, 

76 is in CPK representation and coloured by atom types: C sky blue, O red). 

 

As previously reported, several alterations in the regions following the helix H2’ 

and a considerable rearrangement of the helices H3 and H12 could be observed 

comparing the apo form and the locked form of the receptor (Figure 4.18c).
265 

 

Similarly, the side chain α-β unsaturated ketone of plakilactone C (80) is prone 

to function as Michael acceptor and, in Figure 4.19 a, a pose in the apo form in 

which this moiety is near to the Cys285 is shown. A hydrogen bond was observed 

between the carbonyl oxygen of the ,-unsaturated lactone moiety and the -NH of 

the Ile267 (Figure 4.19 a)
265 

as well as further polar interactions are established 

between the cyclic core and the Arg288 and the His266. In the locked form of 

PPAR, the docking results confirmed the nearness of the α-β unsaturated ketone in 

the side chain of 80 to the Cys285 (distance between the sulfur of Cys285 and the 

reactive β carbon of the α-β unsaturated ketone of 80 = 3.918 Å). 
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Figure 4.19. Docking and covalent models of plakilactone C (80) (coloured by atom types: C 

light yellow, O red) in docking with PPARγ-LBD of a) apo form; b) locked form after Molecular 

Dynamics simulations. Residues are coloured by atom type: C green, H light grey, O red, N blue, S 

yellow. Hydrogen bonds are displayed with green spheres; c) superimposition between the apo form 

of PPARγ (secondary structure represented in red) and the locked form complexed with plakilactone 

C (80) (secondary structure represented in blue, 80 is in CPK representation and coloured by atom 

types: C light yellow, O red). 

 

As for 76, this complex (Figure 4.19 b) was processed through Molecular 

Dynamics simulations observing also in this case the rearrangement of the helices 

H3, H12 and H2’ (Figure 4.19 c). 
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4.2.3 Final remarks 

In summary, the isolation and pharmacological characterization of a family of 

oxygenated polyketides from the Plakinastrella mamillaris sponge was reported. 

The detailed analysis of pharmacological properties of these agents allowed us to 

demonstrate that members of this library are robust and selective ligands of the 

nuclear receptor PPAR. PPAR is a well validated pharmacological target. 

Thiazolidinedione, rosiglitazone and pioglitazone are potent PPARγ agonists and 

insulin-sensitizers and have been extensively used in the treatment of type 2 

diabetes.  

Thiazolidinediones induce the transcription of PPARγ responsive genes and 

control lipid synthesis and storage in the adipose tissue, liver and many other 

tissues, however their use is associated with side effects including weight gain, 

fluid retention, and increased risk of heart failure. Rosiglitazone has been 

withdrawn from the market in 2011, and pioglitazone is contraindicated in patients 

with New York Heart Association (NYHA) Class III or IV heart failure in USA, 

while in Europe is contraindicated in patients with any stage of heart failure.
270,272-

277
  

Despite pioglitazone does not increase the risk of myocardial infarction, and its 

use associates with a reduction in all-cause mortality, there is an urgent need for 

development of novel PPARγ agonists or modulators.  

Previous studies from our group have led to the demonstration that marine 

organisms are a rich source of ligands for nuclear receptors. Thus, we have 

identified ligands for two major targets, the farnesoid-X-receptor (FXR) and the 

pregnane-X-receptor (PXR).
246

 Furthermore marine environment, mainly sponge 

organisms, has been reported as the source of nuclear receptor antagonists,
278

 that 

are currently being developed for their biomedical potential.  
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Members of this oxygenated polyketides library showed the ability to activate 

PPARγ in a transactivation assay in HepG2 cells transfected with a viral vector 

containing the LBD of the receptor whereas others reverted the effect of the 

synthetic ligand rosiglitazone, thus acting as PPARγ antagonists. Results from 

these studies demonstrated that gracilioether B (76), gracilioether C (77) and 

plakilactone C (80) activate the receptor with EC50 ranging from 2-9 µM, and are 

therefore 20-90 fold less potent than rosiglitazone whose EC50 is ≈100 nM in this 

assay.  

Despite their reduced potency, the efficacy of gracilioethers B (76), gracilioether 

C (77) and plakilactone C (80) in term of receptor transactivation was very similar 

to that of rosiglitazone (≈80%), and in addition, all three compounds effectively 

triggered the transcription of PPARγ-regulated genes, although with a difference in 

the relative potency (Figure 4.14). Using HepG2 cells, we have shown that 

gracilioether C (77) and plakilactone (80) induce the expression of CD36, a 

scavenger receptor involved in the hepatic uptake of oxidized lipoprotein, a typical 

effect of PPARγ ligands in the liver. Interestingly, gracilioether B (76) fails to 

increase the expression of this gene in HepG2.  

This finding might be of relevance because increased expression of CD36 

caused by PPARγ ligands is thought to mediate lipid accumulation in macrophages 

and liver. Thus, the fact that gracilioether B (76) causes a different pattern of gene 

expression in comparison to rosiglitazone, might be associated with a specific 

pharmacological profile in vivo. In addition, we also demonstrated that 

gracilioether B (76), gracilioether C (77) and plakilactone C (80) increase the 

expression of SCD-1 in liver cells. SCD-1 catalyzes the rate-limiting reaction of 

monounsaturated fatty acid synthesis and plays an important role in the 

development of fatty liver. Finally, we demonstrated that gracilioether B (76) and 

gracilioether C (77) but not plakilactone C (80) up-regulate the expression of 
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PEPCK. PEPCK is a rate limiting enzyme involved in gluconeogenesis and 

glyceroneogenesis pathways and its expression is tightly regulated at the 

transcriptional level by hormones controlling glucose homeostasis with glucagon 

and glucocorticoids having a strong gluconeogenic action while insulin inhibiting 

hepatic gluconeogenesis by repressing the expression of this gene.
279

  

The expression of PEPCK is positively regulated by different transcription 

factors and co-activators including hepatic nuclear factor 4α (HNF4α), Forkhead 

box O1 (Foxo1) and PPARγ, while the PPARγ coactivator 1 alpha (PGC1-α) has 

been shown to cooperate in regulating the expression of this gene in the fasting 

state. Induction of PEPCK in HepG2 cells by rosiglitazone and gracilioethers B 

(76) and C (77) is therefore of interest. Indeed, since HepG2 cells are grown in a 

low glucose medium, induction of PEPCK expression drives cell metabolism to 

glycerogenesis rather that gluconeogenesis and might be involved in development 

of lipid accumulation in hepatocytes, a common side effect in the rosiglitazone 

therapy.
279

 All together these data suggest the possibility to develop novel PPARγ 

modulators. 

Because gracilioether C (77) activates PPARγ in a non covalent fashion, we 

have then investigated whether this agent still exerts the same range of effects of 

rosiglitazone. Using THP-1, a monocytic cell line, we demonstrated that 

gracilioether C (77) effectively modulates the expression of two inflammatory 

mediators, IL-6 and MCP-1.  

Thus, similarly to rosiglitazone, gracilioether C (77) causes a robust attenuation 

of the expression of IL-6 and MCP-1 triggered by LPS. Because the inhibition of 

pro-inflammatory mediators is a common theme in the pharmacology of PPARγ 

ligands, present data provide a robust evidence that gracilioether C (77) might be a 

potential agent in the treatment of inflammatory disorders.
280,281
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At molecular level we demonstrated that gracilioether B (76) and plakilactone C 

(80) covalently bind to a cysteine residue in the PPAR-LBD through a Michael 

addition reaction to the ,-unsaturated ketone in their side chains. Such findings 

were also supported by an integrated analysis of docking and Molecular Dynamics 

simulations.  

Besides the Cys285 is conserved in all three PPAR subtypes, gracilioether B 

(76) and plakilactone C (80) showed a significant specificity towards PPAR. This 

finding indicates, as previously reported for several selective covalent PPAR 

ligands,
282,283

 that other amino acid residues confer specificity in the recognition 

process to PPARLBD and moreover points towards the importance of the 

docking step in which the putative covalent ligand establishes several non-covalent 

interactions. 

Also for gracilioether C (77) a detailed docking analysis was performed in order 

to rationalize the structural requirements for its non covalent interaction in the 

receptor’s LBD and insights were gained to explain its peculiar mode of action. 

The analysis of the docking poses in comparison with the antagonists methyl esters 

72 and 73 and several non active members of this series clarified the chemical 

requirements for the PPARγ agonistic activity and could be useful for the future de-

novo design and for the prediction of the bioactivity of a set of new ligands. 

Also the discovery that methyl esters 72 and 73 are PPARγ antagonists
284

 that 

counteract the receptor transactivation caused by rosiglitazone is noteworthy. 

Because PPARγ antagonists are of pharmacological and therapeutic relevance, we 

are currently elaborating on these structures to gain further insights on their 

pharmacological profiles.  

In conclusion this study discloses a new class of marine PPARγ ligands 

structurally unrelated to all synthetic and natural ligands so far reported and 
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reaffirms the extraordinary chemodiversity and therapeutic potential of marine 

natural compounds.  
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4.3 HSP70 1A as a Target for the Anticancer Diterpene Oridonin 

Kaurane diterpenes are a very important class of natural compounds, identified 

from numerous medicinal plants, possessing several biological activity such as 

plant growth regulators, antimicrobial, antiviral, inflammation, and antitumoral 

activity.
285

 Kaurane diterpene oridonin is the principal active metabolite of 

Rabdosia rubescens (Hemsl.) Hara (Donglingcao), Hook. f. (Leigongteng) used in 

Chinese medicine to treat several diseases. Numerous biological activities such as 

cytotoxic effect, antiproliferative, anticancer, anti-inflammatory and antibacterial 

activities have been reported for this compound.
286

 Oridonin (87) (Figure 4.20) has 

aroused high interest especially in cancer researchers due to its potential to be 

developed into tumor chemotherapeutic drug.  

 

 

Figure 4.20 Chemical structure of oridonin 

 

The ability to inhibit tumor cell growth either by in vitro as well by in vivo 

experimental models has indeed been repeatedly confirmed by many research 

groups.
287,288

 Inhibition of tumor cell growth by oridonin was ascribed to the ability 

of the drug to affect cell cycle progression and/or to promote cell death by 

apoptosis and autophagy.
289

 Depending on cell type, oridonin has been shown to 

induce cell cycle arrest in G2/M or G1/S and to modulate the expression/activity of 

different cell cycle regulatory proteins. Again, depending on the cell type and the 

experimental conditions used, oridonin has been shown to modulate the expression 

of proteins implicated in either death receptor–mediated (i.e. FAS, FAS ligand) or 
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mitochondria-dependent apoptotic pathways (i.e. increased BAX/Bcl2 ratio, 

caspases). Moreover oridonin was reported to modulate several proteins, such as 

MAPKs, PI3K/Akt, and NFkB, responsible of death (apoptosis/autophagy) or 

survival cell fate have been observed in different cell lines.
290

 Modulation of some 

of the aforementioned proteins (i.e. p21 and NFkB)
291

 by oridonin was also related 

to the simultaneous induction of apoptosis and autophagy or changed balance 

between the two cell death mechanisms. 

 Despite the large number of proteins which activity and/or expression have 

been shown to be modulated by oridonin, it has not yet identified which is the 

primary target of this diterpene. Hence, we have tried to mine target proteins of 

oridonin by employing a chemical proteomic approach to gain more insight into the 

molecular mechanisms of oridonin.  

Chemical proteomics is a compound-centric approach aimed to describe the 

mechanism of action of bioactive small molecule at a molecular level; it is a 

powerful mass spectrometry (MS)-based affinity chromatography approach for 

identifying proteome-wide small molecule-protein interactions; mapping these 

interactions on signaling and metabolic pathways, could comprehensively 

characterize drug targets, profile toxicity of known drugs, and lead to the 

identification of possible off-target activities.
292

  

Recently, there is an increasing interest in application of chemical proteomics 

experiments to bioactive natural products. Indeed, even if natural products have 

been the single most productive source of leads for the development of drugs,
293

 

information concerning mechanism of action at a molecular level of many of them 

are very poor or completely missed.  

Chemical Proteomics revealed the binding and inhibition of oridonin to the 

multifunctional, stress-inducible molecular chaperone HSP70-1A. This specific 
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activity was rationalized combining docking experiments and Molecular Dynamics 

simulations. 

However, since it is clearly emerging that many secondary metabolites can act 

on various targets at the same time,
293

 further studies will be performed to validate 

the possible interaction of oridonin with other proteins identified in chemical 

proteomics studies (i.e. Peroxiredoxin-1, α-Enolase, and Cofillin-1). 

 

4.3.1  Chemical proteomics results 

Chemical proteomics experiments were performed to identify oridonin 

molecular target(s) responsible for its anticancer activity. In that aim, oridonin was 

biotinylated, taking care to prevent the reaction of the α,β-unsaturated carbonyl 

group, essential for the activity of ent-kaurane diterpenes
294,295

 and known to 

contribute to the biological activity of many other natural compounds such as 

sesquiterpenes
296

 and indolizidine alkaloids.
297

 Before using biotinylated oridonin 

in chemical proteomic analysis for target identification, it was mandatory to verify 

that the chemical modification did not cause a marked loss of oridonin biological 

activity. To that aim, we compared Jurkat cell proliferation inhibition potential of 

biotinylated oridonin to that of oridonin.  

Chemically modified oridonin and oridonin inhibited cell growth to a 

comparable extent, as inferred by the 7.5 ± 0.5 M and 5 ± 0.3 M IC50 values (at 

24 h of exposure) measured for biotinylated oridonin and oridonin, respectively. 

Even if biotin conjugation can produce an alteration of small molecules membrane 

permeability,
298

 this result demonstrated that biotinylated oridonin could be used 

for identifying oridonin cellular target(s). In characterizing binding partners for a 

small molecule by chemical proteomics, the major challenge is to identify bona 

fide interacting partners since very high sensitivity of MS analysis can permit the 
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identification of almost all proteins, even contaminants present at very low levels in 

the sample.  

Therefore, Jurkat cell lysates were incubated with biotinylated oridonin or with 

biotin, as a negative control, to discriminate between proteins specifically 

interacting with the diterpene and unspecific background.
292

 Samples were purified 

by affinity chromatography on a streptavidin resin and the resulting protein 

mixtures were resolved by SDS-PAGE; each gel line was then cut in 13 pieces, 

digested with trypsin, and analyzed by mass spectrometry through nanoflow 

reversed-phase HPLC MS/MS.  

Doubly and triply charged peptide species were fragmented, and all the MS/MS 

spectra were evaluated by a Mascot database search. Chemical proteomic 

experiments were performed in triplicate to ensure data reproducibility leading to 

the identification of about 85% of identical proteins in the three experiments.  

To establish the proteins specifically captured by biotinylated oridonin, we 

compared the list of the proteins detected with those in control experiment. This 

analysis led to the identification of four potential partners of oridonin (Table 4.1). 

These proteins were always detected in the samples incubated with biotynilated 

oridonin and never revealed in those from control gels.  

The same experiment was also performed using proteins extracted from PC3 cell 

line (human prostate cancer cell line) leading to the definition of the same putative 

targets. Among the four putative oridonin target the higher score was achieved for 

HSP70 1A.  

These findings together with the multiple role of HSP70 in the control of cell 

proliferation, apoptosis and autophagy,
299

 prompted us to further characterize the 

interaction of oridonin with this key target. 
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Swiss-Prot code Protein Identified Mr 
Sequence 

coverage 
Matches Sequences 

Mascot 

Score 

HSP71_HUMAN 
Heat shock 70 kDa 

protein 1A/1B 
70052 17% 7 7 265 

ENOA_HUMAN Alpha-enolase 47169 36% 6 6 181 

PRDX1_HUMAN Peroxiredoxin-1 22110 15% 5 5 158 

COF1_HUMAN Cofilin-1 18502 28% 4 4 156 

 

Table 4.1 Proteins identified by chemical proteomic approach as putative oridonin molecular targets 

 

Heat shock protein 70 (HSP70) is a member of a ubiquitously expressed family 

of molecular chaperones that are involved in protein homeostasis. In its role as a 

mediator of protein fate, this chaperone has been linked to multiple tasks, including 

roles in de novo protein folding, subcellular trafficking, protein disaggregation, 

proteasome-mediated degradation, and autophagy. To accomplish its various 

chaperone functions, HSP70 physically interacts with the exposed hydrophobic 

residues of polypeptides via its C-terminal substrate binding domain (SBD). 

Hydrolysis of ATP in the adjacent, N-terminal nucleotide-binding domain (NBD) 

propagates an allosteric change to the SBD, resulting in an approximately 10-fold 

enhancement in substrate affinity. These findings suggest an important role for the 

nucleotide state in controlling the interactions of HSP70 with misfolded substrates.  

HSP70 has a long-term connection with the cancer problematic: at the initial 

stages of tumorigenesis, HSP70 can protect cells undergoing transformation from 

oncogenic stress induced by over- expression of oncogenes, e.g. c-myc.
299

 In 

addition, HSP70 has been shown to suppress cellular senescence, an important anti-

tumor mechanism at the early stages of tumorigenesis and also important in the 

proper response to anti-cancer therapy.  

HSP70 over-expression has been routinely associated with poor prognosis in 

multiple form of cancer and is thought to provide a survival advantage to cancer 
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cells interacting with multiple component of both caspase-dependent and caspase–

independent apoptotic pathway. Moreover, many evidences demonstrated a critical 

role played by HSP70 in the control of so-called chaperone-mediated 

autophagy.
300,301

 

With the critical roles played by HSP70s in cancer, neurodegenerative disease, 

viral infection, and injury, one might anticipate that many small molecule 

modulators for this class of chaperones have been identified, at moment few 

molecules are known as HSP70 inhibitors.
302,303

 Indeed, several compounds were 

demonstrated to modulate the ATPase activity of HSP70 and/or to affect its affinity 

towards client proteins or co-chaperones,
306

 but in most cases the exact site and 

mode of binding of these molecules to the chaperone are currently unknown.
304,305

 

The complete elucidation of the binding site is however not secondary, since it 

could also determine the selectivity and the efficiency of an inhibitor.
306

 Using a 

mass based-chemical proteomics approach, HSP70 was revealed as a molecular 

target of the anticancer diterpene oridonin.  

This finding was validate by different western blot analyses, also confirming 

that the diterpene can interact with HSP70 under pseudo-physiological conditions 

inside Jurkat cells and demonstrating the selectivity of oridonin towards this 

chaperone. Biochemical and structural studies were performed allowing to 

elucidate the molecular basis of the inhibition of HSP70 by oridonin, 

demonstrating that the interaction of the diterpene with the NBD of the chaperone 

prevents HSP70 interaction with ATP.
313

  

Using a molecular docking approach, a model that rationalize the inhibitory 

activity of oridonin describing the dynamic modification of the orientation of the 

helixes surrounding the NBD of HSP70 is proposed. Besides, our data 

demonstrated that oridonin interaction with HSP70 NBD is also stabilized by the 

formation of a covalent bond involving the thiolic group of Cys267; however, this 
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covalent binding seems not to be critical for the biological activity of oridonin, as 

inferred by the observation that the diterpene also inhibits ATPase activity of a 

prokaryotic HSP70 (DnaK) lacking of this residue.  

The identification of NBD as the binding region of oridonin on HSP70 suggests 

that oridonin could affect both HSC70 and HSP70 activity because the N-terminal 

region of these two proteins shares about 99% of their structure.
307

  

This result is relevant since a study by Power et al. demonstrated that the 

simultaneous silencing of HSP70 and HSC70 is required to impair HSP90 function, 

thus enhancing the pro-apoptotic effects of HSP70 inhibition.
306 

 

Conformation changes occurring on the NBD could also account for the 

enhanced affinity between HSP70 and its co-chaperone BAG3, observed following 

oridonin interaction.  

 

4.3.2 Biological studies 

Oridonin/HSP70 interaction was investigated in Jurkat cells, taken as a more 

physiological model. Cells were exposed to doses (10 µM and 20 M) higher than 

IC50 of biotinylated oridonin for 5 h.  

We chose to use high doses to increase the possibility to detect the biotinylated 

oridonin-HSP70 complex.  

On the other hand, the time was shortened to 5 h to prevent extensive cell death. 

Binding of biotinylated oridonin with HSP70 or HSP90 was monitored in cell 

fishing procedure followed by Western blotting.  

Resulting blots (Figure 4.21) showed that also inside cells oridonin efficiently 

interacts with HSP70 1A, but not with HSP90 α.  

The affinity of oridonin towards HSP70 1A was evaluated by a surface plasmon 

resonance (SPR) based binding assay. 
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Figure 4.21 In cell fishing procedure. Western blotting analysis of the binding of biotinylated 

oridonin to HSP70 or HSP90. The same blot, representative of two replicate experiments, was 

sequentially probed with anti-HSP70 and anti HSP90 antibodies. 

 

The diterpene efficiently interacted with the immobilized protein, as 

demonstrated by the concentration dependent responses and by the clearly 

discernible exponential curves, during both the association and dissociation phases 

(Figure 4.22 a).  

Fitting the achieved sensorgram to a single-site bimolecular interaction model 

(A+B=AB), a thermodynamic dissociation constant (KD) of 26.0 ± 1.2 nM and a 

kinetic dissociation constants (koff) of 2.7 ± 0.4 ms
–1

 were calculated for the 

HSP70/oridonin complex.  

This result demonstrated high affinity of oridonin towards the chaperone, and 

the low koff measured suggested a very high stability of the resulting complex. 

Since HSP70s are ATP dependent chaperones, SPR analysis was then performed 

adding 5 M ATP into the running buffer. Remarkably, the presence of an ATP 

concentration 10-times higher than its reported KD (500 nM)
308

 almost completely 

inhibited oridonin binding to the chaperone (Figure 4.22 b).  
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Figure 4.22 SPR results. Sensorgrams obtained by injecting different concentrations (from 0.020 to 

1 µM) of oridonin on immobilized HSP70 using PBS (A) or 5 µM ATP in PBS as running buffer 

(B), or on immobilized HSP90 (C) 

 

This result could arise either from a competition of oridonin and ATP for the 

same binding site or from conformational changes occurring on the HSP70 

structure following ATP binding and preventing oridonin interaction. To verify the 

selectivity of oridonin towards HSP70, the diterpene was also injected on a HSP90 

α modified chip; the obtained sensorgrams (Figure 4.22 c) showed no interaction.  

To evaluate the effect of oridonin binding on HSP70, ATPase activity was 

measured in the presence of different amounts of oridonin using the approach 

described by Chang et al.
309

 oridonin was found to inhibit in a dose-dependent 

manner HSP70 ATPase activity (Figure 4.23 a). The ability of oridonin to affect 

the chaperone activity of HSP70 was tested monitoring the thermal-induced citrate 

synthase (CS) aggregation under different experimental conditions (Figure 4.23 b). 

Upon incubation at elevated temperatures, CS underwent quantitative protein 

aggregation, but the presence of stoichiometric amounts of HSP70 changed the 

aggregation kinetics. As expected, the addition of a 4-fold molar excess of ATP 

further decreased the curve slope, since ATP binding to the N-terminal domain of 

HSP70 enhances the kon of its interaction with substrate proteins.
310

 When also 
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oridonin was added, CS aggregation curve became almost comparable to that 

observed without ATP, thus indicating that oridonin can revert the effect of the 

triphosphate nucleotide on HSP70 chaperone activity.  

Finally, we investigated whether oridonin binding to HSP70 affected the ability 

of the chaperone to interact with other proteins. In particular, since oridonin 

inhibits ATPase activity, we focused our attention on those co-chaperones 

modulating ADP release from HSP70 (Nucleotide Exchanging Factors, NEF), such 

as the BAG proteins.
311

  

 

 

Figure 4.23 Oridonin effect on HSP70 activity. Inhibition of the ATPase activity of HSP70 (DnaK) 

by different concentration of oridonin (A). Data are the mean of two independent experiments 

performed in triplicate and were analyzed by t student test (Control vs testing compounds): *p < 

0.05, **p < 0.005. Aggregation kinetics of CS at 43 °C determined by light scattering (B). The 

spontaneous aggregation of CS at 43 °C (♦) and the aggregation of CS at 43 °C in the presence of 

0.075 µM Hsp70 (■), of 0.075 µM HSP70 and 0.3 µM ATP (▲),of 0.075 µM HSP70 and 0.3 µM 

oridonin (x), or of 0.075 µM HSP70, 0.3 µM ATP and 0.3 µM oridonin (●) are shown. Kinetics 

traces reported are the averages of two measurements. 

 

Moreover, the effect of oridonin on chaperone interaction with some client 

proteins (i.e. EGFR and ERK1/2) was evaluated. Therefore, we performed co-
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immunoprecipitation in Jurkat cells exposed to 5 M and 10 M oridonin for 5 h. 

The most interesting result was achieved on the interaction between HSP70 and its 

co-chaperone BAG3, since we found that oridonin, even though only at the highest 

concentration tested (10 M), promoted HSP70-BAG3 binding (Figure 4.24 a).  

To confirm the ability of oridonin to enhance the affinity of HSP70 towards 

BAG3, some SPR experiments were carried out injecting BAG3 on immobilized 

HSP70, in the presence of different concentrations of the diterpene. The interaction 

was firstly tested using PBS as running buffer, allowing measuring a KD for the 

HSP70/BAG3 complex of 49.8 ± 1.9 nM (Figure 4.24 b); when the same analyses 

were performed using 1 M or 10 M oridonin in PBS as running buffers (Figure 

4.24 c,d), the KD of the resulting complex lowered to 12.1 ± 0.7 nM and 8.5 ± 0.5 

nM, respectively, indicating that the interaction of oridonin with HSP70 increased 

the binding efficiency of the chaperone with its partner.  

The high stability of the HSP70/oridonin complex observed in SPR analyses and 

the presence of the -unsaturated carbonyl group in the structure of the diterpene, 

led us to investigate the possible formation of covalent bond(s) between oridonin 

and protein thiol group(s), via Michael reaction.  

Therefore, HSP70 was incubated with a 2-fold molar excess of oridonin under 

pseudo-physiological conditions and the resulting complex underwent a classical 

peptide mapping procedure aimed to identify possible covalently modified 

peptides. 
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Figure 4.24 Effect of oridonin binding on HSP70-BAG3 interaction. Jurkat cells were exposed to 5 

µM and 10 µM oridonin or vehicle only (control) for 5 h. Lysates were immunoprecipitated with 

anti-HSP70 antibody or IgGs and blots probed with anti-BAG3 antibody (A). The blot shown is 

representative of two replicate experiments. Sensorgrams obtained by injecting different 

concentrations (from 0.010 to 1 µM) of BAG3 on immobilized HSP70 using PBS (B), 1 µM 

oridonin in PBS (C), or 10 µM oridonin in PBS as running buffer (D). 

 

This analysis also revealed the presence of two species displaying a molecular 

mass of 1693.661 and 1566.835 respectively, assigned to peptides 259-269 and 

262-271, both carrying one oridonin linked on the same Cys residue (Cys267). This 

identification was confirmed by MS/MS spectra (Figure 4.25), and indicated 

Cys267 as the only covalent binding site of oridonin on HSP70.  
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Figure 4.25 MS/MS analysis of oridonin-modified peptide. CID fragmentation spectrum of the 

double charged ion [M+2H]
2+

 at m/z 784.43, assigned to HSP70 peptide 259-269 modified by one 

oridonin linked on the Cys267. The peptide sequence is also reported. 

 

It is noteworthy that the Cys267 is in the ATPase domain of HSP70; it has been 

experimentally demonstrated that molecules able to covalently bind this residue of 

the inducible members of the HSP70 family cause a deep reduction of the affinity 

for ATP, and this because of the proximity of Cys267 to the NBD with a 

consequent steric inhibition of nucleotide binding.
312

 

 

4.3.3  Molecular modelling studies 

The binding mode of oridonin in HSP70 was rationalized through docking 

calculations and Molecular Dynamics simulations, using respectively Autodock 

4.0
26

 and Macromodel 8.5 (Schrödinger, LLC, New York, 2003) software 

packages. The activity of oridonin is related to the presence in its chemical 

structure of theα,β-unsaturated ketone conjugate moiety, that represents a Michael 

acceptor function to the Cys267 in the binding site of HSP70.  

For these reasons, we firstly tried to analyze the formation of the covalent 

linkage using the recent introduced covalent docking methodologies,
27

 using the 
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crystallographic structure of the N-terminal domain of HSP70, in which the protein 

is complexed with the ADP, magnesium and inorganic phosphate (PDB code: 

3JXU).
313

 Unfortunately, using the flexible side chain method we firstly observed a 

restricted space in the binding site of HSP70. This feature determined steric clashes 

in the binding site after the formation of the covalent bond required for the next 

phase of flexible docking.  

Moreover, using the covalent grid based approach we did not find poses 

compatible with the covalent linkage, because also in this case the restricted space 

did not allow the contact between the reactive part of oridonin and the Cys267 

counterpart of HSP70. Moreover, the predicted binding energy values related to 

these conformations confirmed the poor results, with presence of steric clashes in 

this binding site.  

Therefore, a putative models of oridonin covalently bound to HSP70 was 

possible with better accuracy using Molecular Dynamics simulations, analyzing its 

motions in the binding site of this target In particular, using this method we found 

some poses of these compounds in which the distances between their reactive parts 

and the sulfur of the Cys267 were compatible with the C-S linkage experimentally 

determined. Combining docking calculations and Molecular Dynamics simulations, 

we were able to build the models of these compounds covalently bound to the 

target.  

It is noteworthy that the Cys267 is in the ATPase domain of HSP70. It has been 

experimentally demonstrated that molecules able to covalently bind this residue in 

the HSP72 inducible member of the HSP70 family cause a deep reduction of the 

affinity for ATP, and this because of the proximity of Cys267 to the NBD with a 

consequent steric inhibition of nucleotide binding.
312

  

It has also been suggested that nucleotide-dependent conformational changes 

due to subdomain reorientations represent an intrinsic property of all NBDs, crucial 
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for their functions.
314,315

 Nucleotides bind at the bottom of the deep central cleft at 

the interface between subdomains IB and IIB, close to the site in which oridonin is 

able to covalently bind HSP70.  

Starting from the docked conformation, we applied several fast steps of 

Molecular Dynamics simulations using Macromodel 8.5 (Schrödinger, LLC, New 

York, 2003), observing a gradual reduction of the distance between the α-β 

unsaturated ketone of oridonin to the sulfur of the Cys267. When we found a pose 

with a distance between these groups compatible with the covalent linkage C-S 

(~1.8 Å), we manually generated the covalent linkage. During the simulated 

approach of oridinin, we noticed a significant conformational change of the protein, 

and especially in the nucleotide binding site. In particular, as shown in Figure 4.26, 

a re-orientation of the α-helix presenting the Cys267 toward the binding site is 

observable, causing the exit of the nucleotide complex on the outer part of the 

protein.  

The RMSD plot, showing considerable variations during this step, confirmed 

these observations (Figure 4.27). Moreover, a Molecular Dynamics simulation of 

this generated complex was performed for 10 ns, and the results highlighted the 

stabilization of this inhibited conformation of HSP70 induced by the covalent 

linkage of oridonin, able in this bound state to establish interactions with several 

polar residues on different helixes in the nucleotide binding site (Figure 4.28).  

In agreement with this hypothesis, in this case the RMSD plot showed a more 

stable trend (Figure 4.29). 
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Figure 4.26 Superposition between the crystal structure of HSP70 (PDB code: 3JXU, secondary 

structure of the protein, ADP, magnesium and inorganic phosphate as stick and balls colored in red) 

and the covalent model of oridonin (represented as CPK and colored by atom types: C green, O red) 

with HSP70 after Molecular Dynamics simulations (secondary structure of the protein, ADP, 

magnesium and inorganic phosphate as stick and balls colored in yellow). 

 

 

Figure 4.27 RMSD plot related to the simulated approach of oridonin to the identified binding site 

of HSP70. 
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Figure 4.28 Covalent model of oridonin (colored by atom types: C green, O red) bound to the 

Cys267 of HSP70 (secondary structure colored in yellow, molecular surface colored in light grey, 

residues in contact with oridonin represented as stick and balls, colored by atom types: C gray, O 

red, N blue). 

 

 

Figure 4.29 RMSD plot related to the Molecular Dynamics simulation of HSP70-oridonin complex. 

 

In order to exclude the possibility of an artifact from the computational 

methodology used, a “blank” Molecular Dynamics simulation of 10 ns was 

performed starting from the crystal structure of HSP70 without oridonin. As 

expected, the protein preserved its conformation, without movements of the α-helix 

involved in the binding of oridonin, and also the nucleotide complex did not show 

significant movements in the binding site (Figure 4.30 and Figure 4.31). 
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Figure 4.30 Superposition between the crystal structure of HSP70 (secondary structure of the 

protein, molecular surface of ADP, magnesium and inorganic phosphate colored in red) and the 

final structure obtained after a “blank” Molecular Dynamics simulation of 10 ns (secondary 

structure of the protein, molecular surface of ADP, magnesium and inorganic phosphate colored in 

blue). 

 

 

 

Figure 4.31 RMSD plot related to the Molecular Dynamics simulation of HSP70 not complexed 

with oridonin. 
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4.3.4 Final remarks 

In summary, the model here proposed rationalizes the inhibitory activity of the 

covalent binder oridonin describing the dynamic modification of the orientation of 

the helixes surrounding the NBD of HSP70. 

Our observations revealed a mechanism of action of oridonin consistent with the 

multiple biological activities described for this diterpenes. Oridonin, inhibiting 

HSP70 activity can affect the activity of many client proteins of this chaperone, 

simultaneous affecting several molecular pathways. Moreover, our data could also 

account for the effects of oridonin treatment on intracellular level of HSP70 

reported elsewhere.
316

 Shedding light on the molecular basis of the biological 

activity of oridonin, our findings may be relevant for possible therapeutic 

applications of oridonin, such as its use in combination and the design of new 

therapeutic approaches. Even if efficacy of HSPs inhibitors as single-agent therapy 

is still limited for pharmacological and pharmaco-dynamic reasons, they have been 

reported to enhance cytotoxicity of various antitumor agents
317

 or the efficiency of 

HSP90 inhibitors.
318

 Indeed, recent preclinical and clinical studies exploring the 

effect of a combination of HSPs inhibitors with other anticancer agents in cancer 

therapy, demonstrated that in most cases they produce additives or synergic 

effects.
319,320,321

 On the other hand, discovering small molecules ATP competitive 

inhibitors of the NBD of HSP70 has proved extremely challenging providing an 

effective tool to study the biology of this protein;
304

 oridonin could therefore 

represent a promising new tool to advance basic investigations on the varied 

activities of HSP70.  
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5.1 Inverse Virtual Screening 

 

Pilot Inverse Virtual Screening study: LIBIOMOL library  

 

Chemical structure preparation. The library of compounds was downloaded 

from the website www.libiomol.unina.it. Chemical structures were built through 

MacroModel Maestro software Version 8.5. Optimization of the three-dimensional 

structures was applied with Monte Carlo Conformational Search and Molecular 

Dynamics simulations. Molecular mechanics/dynamics calculations were 

performed on a Pentium IV 2008 using the Macromodel 9.0 software package and 

the OPLS force field. The Monte-Carlo multiple minimum (MCMM) method 

(5000 steps) was used first in order to allow a full exploration of the 

conformational space. Molecular Dynamics simulations were performed at a 

temperature of 600K. A constant dielectric term mimicking the presence of water 

was used in the calculations to reduce artifacts derived from the absence of the 

solvent. 

Inverse Virtual Screening. Protein targets, known to be involved in tumor 

processes, were prepared by a search of crystallized structures on the Protein Data 

Bank database. Water molecules were removed and polar hydrogens were added 

with AutodockTools 1.4.5. 

Molecular docking calculations were performed using Autodock-Vina software. 

The grids focused on receptors were built using as reference the binding mode of 

crystallized ligands in PDB files. For the docking studies, we used an 

exhaustiveness of 16. For all the investigated compounds, all open-chain bonds 

were treated as active torsional bonds. Autodock-Vina results were analyzed with 

Autodock Tools 1.4.5.  
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Re-evaluation of the biological activity of a small library of natural 

compounds 

 

Chemical structure preparation. We built and processed the chemical 

structures of the library of compounds with Macromodel 8.5 (Schrödinger, LLC, 

New York, 2003). Molecular mechanics/dynamics calculations were performed on 

a 4 × AMD Opteron SixCore 2.4 GHz using Macromodel 8.5 and the OPLS force 

field. To allow a full exploration of the conformational space, we used the Monte 

Carlo multiple minimum (MCMM) method (5000 steps). Molecular Dynamics 

simulations were performed at a temperature of 600 K and with a simulation time 

of 10 ns. A constant dielectric term, mimicking the presence of the solvent, was 

used in the calculations to reduce artifacts. To identify a possible three-dimensional 

starting model of each compounds for the subsequent docking calculations, we 

applied an optimization (Conjugate Gradient, 0.05 Å convergence threshold) of the 

structures.  

Inverse Virtual Screening. We built the panel of protein targets by a search of 

crystallized structures in the Protein Data Bank database (www.rcsb.org). Water 

molecules were removed, and polar hydrogens were added with AutodockTools 

1.4.5. Molecular docking calculations were performed using Autodock-Vina
28

 

software and then normalized. In the configuration file we specified only the 

exhaustiveness value to 64 and the coordinate values for the targets, focusing the 

grids on the sites of presumable pharmacological interest. When it was possible, we 

used as reference the binding mode of crystallized ligands in PDB files. For all the 

investigated compounds, all open-chain bonds were treated as active torsional 

bonds. Autodock-Vina results were analyzed with Autodock Tools 1.4.5.  
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Discovery of peptidase inhibitory activity of the new-anabaenopeptin 

cyclopeptide namalide 

 

Chemical structure preparation. The chemical structures of 54 and 56 were 

built and processed with Macromodel 8.5 (Schroedinger, New York, 2003). 

Molecular mechanics/dynamics calculations were performed on a quad-core Intel 

Xeon 3.4 GHz using Macromodel 8.5 and the OPLS force field. The Monte Carlo 

multiple minimum (MCMM) method (5000 steps) was used first to allow a full 

exploration of the conformational space. Molecular dynamics simulations were 

performed at 600 K and with a simulation time of 10 ns. A constant dielectric term, 

mimicking the presence of the solvent, was used in the calculations to reduce 

artifacts. Finally, an optimization (Conjugate Gradient, 0.05 Å convergence 

threshold) of the structures was applied for the identification of a possible 3-D 

starting models of 54 and 56 for the subsequent steps of docking calculations.  

Inverse Virtual Screening. The panel of protein targets was prepared by a 

search of crystallized structures in the Protein Data Bank. Water molecules were 

removed, and polar hydrogens were added with AutodockTools 1.4.5. Molecular 

docking calculations were performed using Autodock-Vina software using an 

exhaustiveness of 64. The selected grids focused on presumed sites of 

pharmacological interest on the basis of the binding modes of crystallized ligands 

in the PDB files wherever possible. A more accurate analysis of the interaction 

between 54 and CPA was conducted with the Autodock 4.2 software package. To 

have an accurate weight of the electrostatics, we derived the partial charge of Zn = 

1.136 and of the amino acids involved in the catalytic center by DFT calculations at 

the B3LYP level by the 6-31G(d) basis set and ChelpG
322

 method for population 

analysis (Gaussian 03 Package software
323

). Ten calculations consisting of 256 runs 

were performed, obtaining 2560 structures (256 × 10). The Lamarckian genetic 
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algorithm was used for dockings. An initial population of 450 randomly placed 

individuals, a maximum number of 10.0 × 10
6
 energy evaluations, and a maximum 

number of 8.0 × 10
6
 generations was taken into account. A mutation rate of 0.02 

and a crossover rate of 0.8 were used. Results differing by <3.0 Å in positional 

root-mean-square deviation (rmsd) were clustered together. For all of the 

investigated compounds, all open-chain bonds were treated as active torsional 

bonds. Autodock Vina results were analyzed with Autodock Tools 1.4.5. 

 

5.2 High-Throughput Molecular Dynamics for the accurate 

calculations of the binding affinities 

 

Compounds data set. In order to investigate the performance of LIE, we used 

the trypsin receptor and data set from the directory of useful decoys (DUD, 

http://dud.docking.org/).  

The trypsin data set is composed of 49 ligands and 1664 decoys. Since the 

presence for the same ligand or decoys of more IDs, mainly characterized by 

different protonation states, we provided a final library of unique ligands (44 

ligands and 1544 decoys).  

Molecular Dynamics. Regarding the Molecular Dynamics simulations, all the 

ligands were parameterized using the Antechamber software (AmberTools 1.5), 

assuming the compounds already with charges (.mol2 files), adding GAFF atom 

types, and then all the ligand-specific parameters not included in the GAFF 

forcefield were guessed with the parmchk command.  

Compounds-protein systems and the compounds systems were solvated and 

neutralized with sleap software (AmberTools 1.5). In particular, all the systems 

were solvated (in a cube built considering the more external part of the system and 

http://dud.docking.org/
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distant from this point 10 Å) with TIP3P water molecules and neutralized, and then 

minimized and equilibrated before the MD runs.  

After the minimization step, the systems were equilibrated in two phases. The 

first phase was conducted under NVT conditions at 300 K atm for 0.1 ns, with a 

time step of 4 fs. Then a second equilibration phase was done under NPT 

conditions at 300 K and 1 atm for 2ns, and a time step of 4 fs. During this run, Cα 

atoms of the complex and of the ligand alone were restrained with a 1 kcal mol
-1

 Å
-

2
 harmonic potential to prevent the system reorienting.  

Then all the systems were submitted to the production runs: 3 × 10 ns MD 

simulation runs were performed for each complex and ligand alone related to the 

same system, under NVT conditions, at 300 K, using a time step of 4 fs. For all the 

simulations, a cutoff of 9 Å and particle-mesh Ewald long range electrostatic were 

set.  

The minimization phases were performed on standard GPU desktop server, 

while the production runs (~ 9500 simulations) were performed on the distributed 

computing project GPUGRID, using ACEMD software.  

Energy extraction was performed using NAMD energy plugin, version 1.4, and 

for each simulation an average of the energies related to each frame was 

considered. Finally, the average of the three simulations was calculated and used 

for the LIE calculations. 
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5.3 Further applications of in silico screenings on natural 

compounds 

 

Discovery of cholestan disulfate as a potent pregnane-X-receptor agonist  

 

Chemical structure preparation. Prior to docking calculations, we built and 

processed the chemical structures of the compounds with Macromodel 8.5 

(Schrödinger, LLC, New York, 2003). Molecular Mechanics/Dynamics 

calculations were performed on a 4 × AMD Opteron SixCore 2.4 GHz using 

Macromodel 8.5 and the OPLS force field. The Monte Carlo multiple minimum 

(MCMM) method (5000 steps) was used first in order to allow a full exploration of 

the conformational space. Molecular Dynamics simulations were performed at a 

temperature of 600 K and with a simulation time of 10 ns. A constant dielectric 

term, mimicking the presence of the solvent, was used in the calculations to reduce 

artifacts. Finally, we applied an optimization (Conjugate Gradient, 0.05 Å 

convergence threshold) of the structures for the identification of a possible three-

dimensional starting models for the subsequent steps of docking calculations. 

Docking calculations. Docking calculations were performed using Autodock 

4.2 software. A grid box size of 90×108×96 with spacing of 0.375 Å between the 

grid points and centered  at 14.282 (x), 74.983 (y), and 0.974 (z) was used for the 

PXR receptor. We performed 10 calculations consisting of 256 runs, obtaining 

2560 structures (256 × 10), using the Lamarckian genetic algorithm for dockings. 

An initial population of 450 randomly placed individuals, a maximum number of 

5.0 × 10
6
 energy evaluations, and a maximum number of 6.0 × 10

6
 generations 

were taken into account. A mutation rate of 0.02 and a crossover rate of 0.8 were 

used. We clustered together results differing by less than 3.0 Å in positional root-

mean-square deviation (rmsd). For all the investigated compounds, all open-chain 
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bonds were treated as active torsional bonds. Docking results were analyzed with 

Autodock Tools 1.4.5.  

 

Plakilactones from the marine sponge Plakinastrella mamillaris, a new class 

of marine ligands of peroxisome proliferator-activated receptor γ 

 

Chemical structure preparation. The chemical structures of the compounds 

were built and processed with Macromodel 8.5 (Schrödinger, LLC, New York, 

2003). Molecular mechanics/dynamics calculations were performed on a 4 × AMD 

Opteron SixCore 2.4 GHz using Macromodel 8.5 and the OPLS force field. The 

Monte Carlo multiple minimum (MCMM) method (5000 steps) was used to allow 

a full exploration of the conformational space. Molecular Dynamics simulations 

were performed at 600 K and with a simulation time of 10 ns. A constant dielectric 

term, mimicking the presence of the solvent, was used to reduce artifacts. Finally, 

the optimization (Conjugate Gradient, 0.05 Å convergence threshold) of the 

structures was applied to identify the three-dimensional starting models for the 

subsequent steps of docking calculations. 

Docking calculations. Docking calculations were performed using the 

Autodock-Vina software. In the configuration files of the two crystallographic 

structures of PPAR we specified only the exhaustiveness value to 64 and the 

coordinate values for the targets, focusing the grid on the site of presumable 

pharmacological interest. In particular a grid box size of 22 × 22 × 30 and centered 

at 17.464 (x), 64.919 (y), and 19.625 (z) was used for the PPAR receptor (apo 

form), and of 20 × 20 × 20 and centered at 17.654 (x), 64.696 (y), and 11.136 (z) 

(locked form), with spacing of 1.0 Å between the grid points.  

For all the investigated compounds, all open-chain bonds were treated as active 

torsional bonds. Docking results were analyzed with Autodock Tools 1.4.5.  
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Molecular Dynamics simulations. Molecular Dynamics simulations steps were 

performed for the compounds 76 and 80 in order to observe their contacts with the 

reactive counterpart of PPAR, using Macromodel 8.5. In each step the distances 

between the sulfur of the Cys285 and the reactive β carbon of the α-β unsaturated 

ketone parts of 76 and 80 were constrained in order to reduce the distance at 0.5 Å. 

The obtained structures were reprocessed until a distance and an orientation of the 

reactive moieties compatible with the C-S bond were found. In all these steps, for 

the equilibration phase, an equilibration time of 10 ps was considered. Molecular 

Dynamics simulations were performed at 300 K , with a time step of 4.0 fs and a 

simulation time of 0.1 ns. Then the covalent bond between the reactive points was 

manually built, and the two covalent complexes (76 or 80 with PPAR) were 

subjected to a further fast Molecular Dynamics simulation in order to eliminate 

eventual steric clashes. In all the simulations, a constant dielectric term, mimicking 

the presence of the solvent, was used in to reduce artifacts. 

 

HSP70 1A as a Target for the Anticancer Diterpene Oridonin  

 

Chemical structure preparation. We built and processed the chemical 

structure of oridonin (87) with Macromodel 8.5 (Schrödinger, LLC, New York, 

2003). Molecular mechanics/dynamics calculations were performed on a 4 × AMD 

Opteron 16 Core 2.3 GHz using Macromodel 8.5 and the OPLS force field. The 

Monte Carlo multiple minimum (MCMM) method (5000 steps) was used first in 

order to allow a full exploration of the conformational space. Molecular Dynamics 

simulations were performed at a temperature of 600 K and with a simulation time 

of 10 ns. A constant dielectric term, mimicking the presence of the solvent, was 

used in the calculations to reduce artifacts. Finally, we applied an optimization 

(Conjugate Gradient, 0.05 Å convergence threshold) of the structures for the 
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identification of a possible three-dimensional starting models for the subsequent 

steps of docking calculations. 

Docking calculations. We performed covalent docking calculations using the 

Autodock 4.0 software using the recently introduced grid based approach.
27

 In the 

configuration file of the crystallographic structure of HSP70 (PDB code: 3JXU) we 

specified a grid box size of 48 × 46 × 48 with spacing of 0.375 Å and centered at -

9.765(x), -29.49 (y), and 20.277 (z).  

We performed 3 calculations consisting of 256 runs, obtaining 768 structures 

(256 × 3), using the Lamarckian genetic algorithm for dockings. An initial 

population of 450 randomly placed individuals, a maximum number of 5.0 × 10
6
 

energy evaluations, and a maximum number of 6.0 × 10
6
 generations were taken 

into account. A mutation rate of 0.02 and a crossover rate of 0.8 were used. We 

clustered together results differing by less than 3.0 Å in positional root-mean-

square deviation (rmsd). 

For the investigated compound, all open-chain bonds were treated as active 

torsional bonds. Docking results were analyzed with Autodock Tools 1.4.5.  

Molecular Dynamics simulations. Molecular Dynamics simulations steps were 

performed for the oridonin in order to observe their contacts with the reactive 

counterpart of HSP70, using Macromodel 8.5. We constrained the distances 

between the sulfur of Cys267 and the reactive β carbon of the α-β unsaturated 

ketone parts of oridonin in order to reduce the distance of from the sulfur in the 

side chain of Cys267. The obtained structures were reprocessed until we found a 

distance and an orientation of the reactive moieties compatible with the C-S 

linkage. In all these steps, for the equilibration phase an equilibration time of 50 ps 

was considered. Molecular Dynamics simulations were performed at a temperature 

of 300 K , with a time step of 2.0 fs and a simulation time of 0.5 ns. Then we 

manually built the covalent linkage between the reactive points, and then the 
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covalent complex was submitted to a further Molecular Dynamics simulation of 10 

ns after an equilibration phase of 1 ns. Also in this case, a time step of 2.0 fs was 

considered. In parallel we performed also a Molecular Dynamics simulation of 10 

ns on the crystal structure of HSP70 complexed with ADP, magnesium and 

inorganic phosphate, using the same parameters previously described. In all the 

simulations, a constant dielectric term, mimicking the presence of the solvent, was 

used in the calculations to reduce artifacts. 
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Classical computational studies are oriented towards the evaluation of the 

predicted affinities on one defined target protein, in order to perform subsequent 

biological assays for the evaluation of the biological activity. This represents the 

main concept on which is based the Virtual Screening in silico protocol. Thus, the 

main risk is to confine these studies to a single target of a pathological process.  

In this thesis, the concept of Inverse Virtual Screening has been introduced and 

examined. The application of this method may facilitate the prediction of the 

activity of secondary metabolites from natural or synthetic sources on known 

different receptors involved in the development of a pathology (i.e. cancer; viral, 

bacterial, mycotic infections).  

However, the most important evidence arising from the analysis of the results 

was the impossibility of consider the mere predicted binding energies as parameter 

of selection of the best results, and this was mainly due to the variability of the 

binding sites of the different targets. To overcome this problem, a normalization of 

the matrix that collects all values of predicted binding energies from the 

calculations (Equation 2.5, Paragraph 2.2.4) was applied. The different results 

pointed out in this thesis demonstrate that through docking calculations on large 

panels of ligands and targets, a screening of energies after normalization is possible 

in order to select the best interactions. From these selections, experimental tests 

could be started on a restricted number of proteins. Thus, Inverse Virtual Screening 

may be considered as a new accurate tool to facilitate the drug discovery process. 

From a general point of view, Inverse Virtual Screening represents a new 

computational tool for the identification of targets of pharmacological interest 

rather than a method for the precise prediction of the range of activity for one or 

more compounds. Indeed, the normalization of the predicted binding energies 

considering the average trends of the ligands (on the targets) and of the targets (on 
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the ligands) is useful to identify significant results by a large set of data from 

heterogeneous sources. 

On the other hand, this approach makes possible the discovery of new molecular 

scaffolds on a specific receptor as lead compounds and suggested a possible 

improvement of their potency and selectivity focused on a precise and defined 

biological context. In particular, precise modifications in the pharmacophore 

models of the compounds identified could increase their inhibition on the targets 

selected from the screening.  

As shown in the first pilot attempt (Paragraph 2.2), applying this mathematical 

normalization, compounds 19 and 20 on Topoisomerase I target were selected. 

These data represented encouraging results regarding the reliability of this 

approach. In fact, in the library of 43 molecules used, compounds 19 and 20 

corresponded in point of fact to internal “standard” compounds, because their 

bioactivity on Topoisomerase I was yet known. 

Proceeding on this research line, the Inverse Virtual Screening method was 

implemented using another library of 10 compounds extracted from plants against a 

panel of 163 target involved in the cancer events (Paragraph 2.3). The 

normalization of the predicted affinities addressed the biological tests on 2 

compounds (52 and 53) against three targets (PDK1, PKC-α and PKC-θ). Also in 

this case, a good correlation between the Inverse Virtual Screening results and the 

biological data, corroborated by 5 prediction of activity/inactivity on 6, was 

observed. 

For compounds 52 and 53 identified in this study moderate biological activities 

were found (μM range). This is in line with the hypothesis of a modulatory role of 

these molecules in the cancer events. Moreover, the μM range of activity is fully 

compatible with the role of cancer prevention that is achievable by a consistent 

exposure to non-toxic agent (i.e. food product). 
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Moreover, in order to explain this moderate activities found for the best results, 

another Inverse Virtual Screening study was performed considering 52, 53, and the 

ligands crystallized in the binding sites of the targets PDK1, PKC-α, and PKC-θ 

(namely PDK1_lig, PKC-α_lig, and PKC-θ_lig). The biological activity of this 

“standard” compounds in the nM range on their respective targets allowed a more 

precise comparison with the V values calculated for the compounds 52 and 53 

emerging from this new screening (Paragraph 2.3, Table 2.11 ), because in this case 

their normalized results are related to a new scale of values. 

In parallel, the case of the Inverse Virtual Screening on a single compound was 

also considered, and specifically for the cyclopeptide namalide (54, Paragraph 2.4), 

featuring a new mini-anabaenopeptin scaffold.  

A modification of the way to normalize the docking results was proposed, 

introducing “blank” compounds for the calculations of the affinities indispensable 

for the normalization. 54 belongs to the family of anabaenopeptides, known to 

inhibit carboxipeptidases. Using a panel of 159 targets involved in the cancer, 

Carboxypeptidase A (CPA) protein was identified as the third best hit in the final 

ranking, while the isoform Carboxipeptidase U (CPU) was on position 149. These 

results were found to be in total accordance with the biological results (IC50 = 250 

nM), that highlighted the nM inhibitory activity and selectivity of 54 against CPA, 

with a total absence of activity on CPU. The fact that 54 inhibits CPA with 

potencies comparable to the more common hexapeptides, together with the docking 

analysis and rationalization of the inactivity of other cyclopeptides synthetized, can 

open the way to further QSAR investigations in order to design other namalide 

analogs against CPA and related hydrolases. 

Virtual Screening combined with accuracy of the calculated affinities was also 

examined using methods other than molecular docking. In particular, high-

throughput Molecular Dynamics simulations were applied on a library of ligands 
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and decoys specific for the trypsin receptor. In general, these libraries are open-

source available on Internet, and are very useful for comparing the efficiency of 

different computational methods in distinguishing true positive results from false 

positive ones. In the specific case, a comparison between the docking results, LIE 

(Linear Interaction Energy) and MM-GB(PB)SA was taken into account. So far, 

only preliminary results are available and are related to molecular docking and LIE 

method, considering for the latter method four results deriving from four different 

combinations of scaling factors. The efficacy of these two approaches was 

investigated and graphically summarized using ROC and enrichment curves. In 

general, LIE show better results than molecular docking only on the 2% of the 

ranked database, and after this point docking shows enrichment factors particularly 

better than those of LIE.  

MM-GBSA and MM-PBSA evaluation of the binding affinities are ongoing and 

will be compared with the results obtained until now, in order to offer a more 

comprehensive view in the field of the calculations of the binding affinities by 

Molecular Dynamics-based methods. 

In silico screenings for the detailed study of natural compounds whose activities 

are known a priori were performed on different targets. In these case studies, the 

main aim was to offer qualitative considerations regarding the absence/presence 

and orientations of the pharmacophoric points of these compounds in the binding 

sites of the targets investigated. The rationalization of the molecular basis of these 

interactions can be useful for the next design of new molecules for these specific 

systems. 

In more details, a small library of 9 compounds derivated by the modification of 

the side chain of the natural compound Solomonsterol A, a potent agonist of PXR 

target, was carefully analyzed by means of molecular docking experiments. 
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In particular, compound 67 showed a remarkable agonistic activity (μM range) 

that was clarified at molecular level, elucidating the fundamental presence of two 

sulfate group in precise positions on the ring A, and of an hydrophobic side chain 

derived from the cholesterol. For all the other inactive compounds in the library, 

the absence of this pharmacophoric points or their shift in different positions were 

identified as the cause of their total absence of activity on PXR. 

Moreover, a set of compounds extracted from the marine sponge Plakinastrella 

Mamillaris was analyzed on the target PPAR At molecular level it was 

demonstrated that gracilioether B (76) and plakilactone C (80) covalently bind to a 

cysteine residue in the PPAR-ligand binding site (LBD) through a Michael 

addition reaction to the ,-unsaturated ketone in their side chains.  

An integrated analysis of docking and Molecular Dynamics simulations showed, 

as previously reported for several selective covalent PPAR ligands, that steps 

based on non-covalent interactions confer specificity in the recognition process to 

PPARLBD and then, after the covalent binding, a conformational change in the 

protein is observable, accounting for the agonist activity observed in the biological 

tests. For gracilioether C (77) a detailed docking analysis laid the basis for the 

structural requirements for its non covalent interaction in the receptor’s LBD. 

Further insights were gained to explain the antagonist activities of methyl esters 72 

and 73 and several non active members of this series. 

In a similar way, computational studies based on molecular docking and 

Molecular Dynamics simulations assisted the experimental evidences from 

Chemical Proteomics and several biological studies about the inhibitory activity of 

compound oridonin (87) on the target HSP70 1A.  

The formation of the covalent bond between its ,-unsaturated ketone moiety 

and the reactive Cys267 and the conformational change of the protein induced by 
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this linkage was shown, demonstrating the re-orientation of the binding site of 

HSP70.
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A.1  Cancer: some data 

 

Cancer represents today a global public health burden, and the summary of 

cancer incidence and mortality patterns in the relative rankings by cancer site 

reveal differences between industrialized and developing nations. Reliable data on 

the magnitude of the cancer problem are essential for monitoring the health of the 

community, assessing the performance of the health care system and allowing 

authorities to make informed decisions. Several migrant studies have documented 

that cancer rates in successive generations of migrants shift in the direction of the 

prevailing rates in the host country, suggesting that the international variations in 

cancer rates for most cancers largely reflect differences in environmental risk 

factors (including lifestyle and culture) rather than genetic differences (Figure 

5.1).
324

  

 
Figure 5.1 Distribution of several specific tissue cancer types in: a)usa (2008) b)southafrica 

(2009) c)Italy (2009) d)japan (2010) 

 

Cancer research has generated a rich and complex body of knowledge, revealing 

this pathology to be a disease involving dynamic changes in the genome. In 

particular, mutations that produce oncogenes with dominant gain of function and 
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tumor suppressor genes with recessive loss of function have been identified 

through their alteration in human and animal cancer cells. To date, many pathways 

involving several protein with different locations (extracellular, intracellular and 

nuclear) and structural features are known.  

 

A.2  Cancer pathways 

In the next paragraphs an overview of the main pathways in the cancer process 

are reported. 

 

A.2.1 Apoptosis  

Apoptosis has been recognized and accepted as a distinctive and important mode 

of “programmed” cell death, which involves the genetically determined elimination 

of cells. Irradiation or drugs used for cancer chemotherapy results in DNA damage 

in some cells, which can lead to apoptotic death through a p53-dependent pathway. 

The mechanisms of apoptosis are complex and sophisticated, involving an energy-

dependent cascade of molecular events. More specifically, caspases are widely 

expressed in an inactive proenzyme form in most cells and once activated can often 

activate other pro-caspases, allowing initiation of a protease cascade. Caspases 

have proteolytic activity and are able to cleave proteins at aspartic acid residues, 

although different caspases have different specificities involving recognition of 

neighboring amino acids. Once caspases are initially activated, there seems to be an 

irreversible commitment towards cell death. To date, ten major caspases have been 

identified and broadly categorized into initiators (caspase-2,-8,-9,-10), effectors or 

executioners (caspase-3,-6,-7) and inflammatory caspases (caspase-1,-4,-5).
325

 The 

other caspases that have been identified include caspase-11, which is reported to 

regulate apoptosis and cytokine maturation during septic shock, caspase-12, which 

mediates endoplasmic-specific apoptosis and cytotoxicity by amyloid- β, caspase-
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13, which is suggested to be a bovine gene, and caspase-14, which is highly 

expressed in embryonic tissues but not in adult tissues.
326

  

It is possible to distinguish two main apoptotic pathways: the extrinsic or death 

receptor pathway and the intrinsic or mitochondrial pathway. However, there is 

now evidence that the two pathways are linked and that molecules in one pathway 

can influence the other (Figure 5.2).  

 

 

Figure 5.2 Intrinsic and extrinsic apoptotic pathways 

The extrinsic signaling pathways that initiate apoptosis involve transmembrane 

receptor-mediated interactions. These involve death receptors that are members of 

the tumor necrosis factor (TNF) receptor gene superfamily. The sequence of events 

that define the extrinsic phase of apoptosis are best characterized with the 

FasL/FasR and TNF-α/TNFR1 models. In these models, there is clustering of 

receptors and binding with the homologous trimeric ligand. Upon ligand binding, 

cytplasmic adapter proteins are recruited which exhibit corresponding death 
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domains that bind with the receptors. The binding of Fas ligand to Fas receptor 

results in the binding of the adapter protein FADD and the binding of TNF ligand 

to TNF receptor results in the binding of the adapter protein TRADD with 

recruitment of FADD and RIP. FADD then associates with procaspase-8 via 

dimerization of the death effector domain. At this point, a death-inducing signaling 

complex (DISC) is formed, resulting in the autocatalytic activation of procaspase-

8. Once caspase-8 is activated, the execution phase of apoptosis is triggered.  

Apoptosis can also occur via Intrinsic pathways. The Intrinsic Apoptosis 

pathway begins when an injury occurs within the cell. Intrinsic stresses such as 

Oncogenes, direct DNA damage, Hypoxia, and survival factor deprivation, can 

activate the Intrinsic Apoptotic pathway. p53 is a sensor of cellular stress and is a 

critical activator of the intrinsic pathway. The DNA checkpoints proteins, ATM 

(Ataxia Telangiectasia Mutated protein), and Chk2 (Checkpoints Factor-2) directly 

phosphorylate and stabilize p53 and inhibit MDM2 (Mouse Double Minute-2 

Homolog) mediated ubiquitination of p53. MDM2 binds p53 and mediates the 

nuclear export. When bound to MDM2, p53 can no longer function as an activator 

of transcription. p53 initiates Apoptosis by transcriptionally activating proapoptotic 

Bcl2 family members and repressing antiapoptotic Bcl2 proteins and CIAPs. Other 

p53 targets include BAX, Noxa, PUMA (p53-Upregulated Modulator of 

Apoptosis) and BID. p53 also transactivates other genes that may contribute to 

Apoptosis including PTEN (Phosphatase and Tensin Homolog Deleted On 

Chromosome-10), APAF1, Perp, p53AIP1 (p53-regulated Apoptosis-Inducing 

Protein-1), and genes that lead to increases in ROS (Reactive Oxygen Species). 

These ROS lead to generalized oxidative damage to all Mitochondrial components. 

Damage to Mitochondrial DNA disrupts Mitochondrial oxidative phosphorylation, 

contributing to a number of Human diseases.
327

 Other proteins released from 

Damaged Mitochondria, SMAC (Second Mitochondria-Derived Activator of 
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Caspase)/ Diablo, Arts and Omi/HTRA2 (High Temperature Requirement Protein-

A2), counteract the effect of IAPs (Inhibitor of Apoptosis Proteins), which 

normally bind and prevent activation of Caspase3. The interaction between Bcl 

family members, IAPs, SMAC and Omi/HTRA2 is central to the intrinsic 

Apoptosis pathway. Another nuclease, EndoG (Endonuclease-G), is specifically 

activated by Apoptotic stimuli and is able to induce nucleosomal fragmentation of 

DNA independently of Caspase and DFF (DNA-Fragmentation Factor)/ CAD 

(Caspase-Activated DNAse). EndoG is a mitochondrion-specific nuclease that 

translocates to the nucleus and cleaves chromatin DNA during Apoptosis. Another 

protein, AIF (Apoptosis Inducing Factor) has also been attributed a role in 

Apoptosis, becoming active upon translocation from mitochondria to nuclei, where 

it initiates chromatin condensation and large-scale DNA fragmentation.
328

 Gain and 

loss of function models of genes in the core Apoptotic pathway indicate that the 

violation of cellular homeostasis can be a primary pathogenic event that results in 

disease. Evidence indicates that insufficient Apoptosis can manifest as Cancer or 

Autoimmunity, while accelerated cell death is evident in Acute and Chronic 

Degenerative diseases, Immunodeficiency, and Infertility.
329

 One important way of 

blocking apoptosis in cancer cells is by inactivating the p53 tumour-suppressor 

pathway. Levels of this transcription factor increase in response to a wide range of 

genotoxic insults, and many of its target genes encode pro-apoptotic proteins (for 

simplicity, only BAX is shown).
330

 p53 is targeted for degradation in the 

proteasome by MDM2, an oncogenic ubiquitin ligase
331

. In turn, MDM2 is 

inhibited by ARF (also known as p14 in humans and p19 in mice).
332

  

As well as blocking pro-apoptotic pathways, cancer cells can upregulate anti-

apoptotic pathways. The growth-factor-mediated activation of phosphatidylinositol 

3-kinase (PI3K) is particularly important in this regard. 
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A.2.2 Replicative lifespan 

One of the hallmarks of cancer is unlimited replicative potential. In human cells, 

telomere maintenance serves as a generational clock that counts cell divisions and 

regulates cell lifespan.
333,334

 Cancer cells have at least two ways of maintaining 

their telomeres. The more common mechanism, which is active in 85-90% of 

human cancer cells, is to switch on TERT, the protein component of telomerase (a 

ribonucleoprotein enzyme that synthesizes telomeres and maintains telomeric 

ends). A small proportion of cancer cells use a yet undefined pathway that is 

known as alternative lengthening of telomeres (ALT) and allows telomere 

maintenance in the absence of active telomerase. As indicated, although telomeres 

have a crucial function in specifying cell lifespan, other pathways contribute to the 

replicative potential of a tumour cell. 

 

A.2.3 Proliferative signals 

Extracellular signals have important functions in the homeostatic regulation of 

cell growth and proliferation. Many of these signals impinge on a linear series of 

signalling molecules that link the cell surface to intracellular machinery that effects 

cell growth and division. Activating mutations in many of these genes are 

oncogenic and serve to liberate cancer cells from these normal homeostatic 

mechanisms, allowing self-sufficient proliferation. Proliferative signalling 

pathways often begin with the activation of a receptor tyrosine kinase (RTK) by a 

growth factor, although activation of some G-protein-coupled receptors (GPCRs) 

can also activate certain branches of this signalling pathway.  

Depending on the proteins that are subsequently recruited by the activated 

receptor, several downstream signalling pathways might be activated. It would be 

impossible to illustrate all of these permutations here, but two important pathways 

are shown.  
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The first of these is the RAS pathway. The binding of a growth factor to an RTK 

recruits and activates the adaptor proteins GRB2 and SHC which, in turn, enable 

SOS to activate the small GTP-binding protein RAS.  

This association activates a cascade of serine/threonine kinases (such as RAF 

and MEK), culminating in the activation of a mitogen-activated protein kinase 

(MAPK, usually an extracellular signal regulated kinase ERK).  

MAPKs are translocated to the nucleus where, by phosphorylating transcription 

factors such as FOS and JUN, they modulate the expression of a wide range of 

genes that are involved in cell growth and survival. RAS has a number of effectors 

other than MAPK (not all shown),
335

 and many of these might also impinge on the 

neoplastic phenotype.  

A second branch downstream of growth factors that is often deregulated in 

cancer is the phosphatidylinositol 3-kinase (PI3K) pathway, which activates the 

serine/threonine kinase AKT.
336

 Inactivation of PTEN, a lipid phosphatase, also 

results in activation of this pathway, and inherited loss of PTEN confers 

susceptibility to many types of cancer.
337

  

RAS activation can also lead to activation of PI3K, indicating that these 

pathways are interconnected at several levels. 

 

A.2.4 Cell cycle 

Several tumour-suppressor proteins monitor intrinsic and extrinsic signals and 

integrate these inputs to decide whether the cell should remain in a quiescent state 

or enter into the cycle of active growth and division. In addition to these decisions, 

which are made in the G1 phase of the cell cycle, checkpoints that operate in other 

phases of the cycle exert quality control by determining that certain steps have been 

properly completed before subsequent steps are undertaken.  
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Two tumour-suppressor pathways that block progression through the cell cycle - 

the retinoblastoma (RB) pathway and the p53 pathway - are inactivated in most, if 

not all, cancer cells.
331,338

 RB represses the transcriptional activation of genes 

controlled by E2Fs, a family of transcription factors that regulate the expression of 

several genes involved in cell-cycle progression.
339

 The cyclin-D-CDK4/6 (cyclin-

dependent kinase 4/6) complexes and cyclin-E-CDK2 complexes regulate RB 

activity by phosphorylation; hyperphosphorylation of RB renders it unable to 

suppress the activity of the E2Fs. These cyclin-D-CDK4/6 complexes are, in turn, 

antagonized by a series of CDK inhibitors, known as INKs. The two best studied of 

these, INK4A (also known as p16) and INK4B (also known as p15), have 

prominent functions in blocking RB phosphorylation in many cell types. 

As well as activating apoptosis (see apoptosis box, p53 blocks progression 

through the cell cycle by activating the transcription of another CDK inhibitor, 

WAF1 (also known as p21). WAF1 inhibits the activity of a number of cyclin-

CDK complexes, among them cyclin-E-CDK2. 

Normal cells seem to have a hard-wired safety mechanism that defends the cell 

against illegitimate activation of oncogenic stimuli. One of the best-characterized is 

the response of cells to persistent activation of the RAS pathway, which activates 

both the RB and the p53 pathways, thereby leading to cell-cycle arrest.
340,341

 

Oncogenic activation of RAS therefore does not lead to tumorigenicity unless this 

safety catch is removed by inactivation of the p53 and RB pathways.  

Another mechanism for putting the brakes on the cell cycle, at least in some cell 

types, is the transforming growth factor-b (TGF-b) pathway.
342

 Members of the 

TGF-b family activate the intrinsic serine/threonine kinase activity of their 

receptors (TGF-bRs), leading to the phosphorylation and nuclear translocation of a 

group of transcription factors called SMADs. Depending on the presence of other 

co-activator or corepressor molecules, SMADs can regulate the transcription of a 
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wide range of molecules that are involved in cell-cycle regulation. For example, 

they can upregulate the expression of the INK4B CDK inhibitor and can repress the 

expression of the MYC oncogene. However, there is a darker side to TGF-b 

activation as, under some circumstances, it can lead to invasion and metastasis. 

Progression through the cell cycle is activated by many oncogenic signalling 

pathways, including those that activate RAS, which indirectly induces cyclin D 

expression. The WNT-Frizzled signalling pathway also stimulates cell-cycle 

progression and is dysregulated in many colorectal cancers.
343

 Activation of the 

Frizzled receptor leads to the inhibition of glycogen synthase kinase-3β (GSK3β); 

this regulates the assembly of a ubiquitin ligase complex that normally keeps levels 

of free cytoplasmic b-catenin low. When GSK3β is inhibited, free b-catenin 

accumulates and gains access to the nucleus, where it acts as a co-activator for a 

transcription factor called TCF. The TCF-b-catenin complex induces the 

transcription of several important regulators of the cell cycle, such as cyclin D and 

MYC, but evidence is also accumulating that some of the targets of the TCF-b-

catenin complex are important for driving metastasis.  

 

A.2.5 Mobilization of resources 

Many of the intracellular and extracellular changes that are found in cancer cells 

lead to changes in gene expression and protein metabolism. Activation of these 

pathways is necessary to mobilize the cellular resources that are necessary for the 

cancer-cell phenotype. In particular, some of these changes lead to expression of 

inappropriate gene programs and activation of metabolic programs that confer 

specific advantages to a continuously dividing cancer cell. Among the alterations 

that are included in this category are those that affect ribosome biosynthesis, 

expression of differentiation-associated antigens, enzymes involved in nutrient 

metabolism and enzymes that regulate oxidative potential. 



Appendix A 

 

187 

 

For example, as well as blocking apoptotic pathways, the PI3K-AKT-PTEN 

pathway might be involved in regulating cell size by activating biosynthetic 

pathways.
344

 Protein phosphatase 2A (PP2A) and the serine/threonine kinase TOR 

are also thought to be involved in this biosynthetic route; both of these can activate 

ribosomal S6 kinase (RSK), an important regulator of ribosome assembly. PP2A 

also activates eukaryotic initiation factor 4E (eIF4E), a protein that is involved in 

ribosome biogenesis. The identification of gene mutation or loss of each of these 

molecules in human cancers indicates that these biosynthetic pathways have 

important functions in cancer pathogenesis. 
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