A polymorphism within the promoter of the dopamine receptor D1 (DRD1 -48A7G) associates with impaired kidney function in white hypertensive patients
View/ Open
Date
2012Author
Cipolletta, Ersilia
Ciccarelli, Michele
Izzo, Raffaele
Finelli, Rosa
Trimarco, Bruno
Iaccarino, Guido
Metadata
Show full item recordAbstract
Dopamine DRD1 receptor regulates renal function and vascular resistance. It plays a role in the pathogenesis of hypertension in animal models. In humans, the DRD1 gene presents a A-48G polymorphism associated to hypertension in a Japanese population. To explore the role of this polymorphism on blood pressure and renal function in Caucasian hypertensive patients (H), we evaluated the allele frequencies in a populations of 697 H and 100 blood volunteers, and found no difference in the distribution of the alleles between the two groups (AA;AG;GG: 13%;50%;37%; and 12%; 51%;36% respectively). In H, we found a significant difference between AA and GG in serum creatinine (AA: 1.06±.08 mg/dl; GG:0.97±0.02 mg/dl, p<0.03). Treatment restored serum creatinine at levels comparable between genotypes (AA: 0.99±0.03 mg/dl; GG: 0.94±0.02 mg/dl, n.s.). To replicate the finding, in a case control study of 8 AA and 7 GG hypertensive patients matched for age, sex and body mass index, in pharmacological wash out for 30 days, we evaluated serum (Creatinine, Na, Uric Acid, Urea) and urinary (volume/24h, protein/24h, creatinine clearance/24h) biochemistry and renal hemodynamic assessed by ultrasound. Once again, the AA group showed higher serum creatinine, Na, Uric acid and urea, reduced creatinine clearance and a higher level of urinary protein excretion. These changes occurred while no differences were observed in diuresis and renal vascular resistances. In conclusions, the DRD1 A-48G polymorphism identifies a class of H that is prone to hypertension related kidney alterations.