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Abstract

In this thesis I will discuss the theory of two level systems and the theory
of the oscillating particles in quantum field theory.
In the first chapter I will consider the time evolution of a two level system,
a qubit, to show that it has inside a local in time gauge invariant evolution
equation. I construct the covariant derivative operator and show that it is
related to the free energy. The gauge invariance of the time evolution of the
two level system is analogous to the phenomenon of birefringence.I also show
that the two level systems present a Berry-like and an Anandan-Aharonov
phase. Finally, I discuss entropy environment effects and the distance in
projective Hilbert space between two level states to show that the last one
is properly related to the Aharonov - Anandan phase.
In the second chapter I review the result obtained in QFT for particle mix-
ing, analyzing the theoretical construction and the oscillation formula in the
fermion case.I will emphasize the differences between the quantum mechan-
ics formulas and the QFT formulas.The unitary inequivalence between the
flavor and the mass eigenstates is also shown and the structure of the current
for charged fields is finally discussed. I found a non - perturbative vacuum
structure for the mixing particles that, among the other things, will lead to
a non zero contribution to the value of the cosmological constant (chapter
3).
Several links between first and second chapter will arise from this thesis and
will shed the light on the fact that it is possible to construct a generic two
level quantum field theory, that is an extension of the quantum mechanics
bit theory in a quantum field theory framework.
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Introduction

A two level system, namely a qubit, is a system that oscillate between two
different configurations i.e an ammonia molecule1, an electron, a neutrino2.
In the first chapter the gauge theory paradigm is applied to the time evo-
lution of a qubit and after this we study the geometric phase properties of
these systems.
As a matter of fact, it is already known [1] that a Berry-like phase and the
related gauge field connection [2] play an important role in quantum com-
puting.Here it is recognized the role of a gauge field showing, by the explicit
construction of the covariant derivative, what are the physical links through
this gauge structure and thermodynamical operators such as the free energy
operator, and showing how it provides an analogy of the qubit system with
the birefringence phenomenon. It is found that the time evolution for the
qubit shows that such a system can be seen as embedded in a gauge field
background that preserve the invariance under local in time gauge trans-
formations.Such a gauge structure also simulates the propagation through a
birefringent medium.
I finally compute the static entropy, dynamic entropy and the distance be-
tween the qubit states in the Hilbert space using the the Fubini-Study metric.
In the second chapter, particle mixing and oscillation, that is an important
topic in modern Particle Physics, is discussed.
The experimental evidences that comes from neutrino experiments [3] demon-
strate that each neutrino can be seen effectively as a two or a three level
system and that flavor oscillation occurs.
Mixing and oscillation phenomenon happen even in the boson case but here
I focus my attention on the fermion case.This phenomenon seems to be the
most interesting one beyond the physics of standard model.Neutrino mixing
theory is crucial in explaining the puzzle of solar neutrinos [4].
I emphasize that neutrino oscillations ore possible only if neutrinos are mas-
sive particle [5].
I also observe, however, that many problems are still not solved, see for ex-
ample the nature of neutrinos masses, the value of these masses compared to
the masses of other leptons, the same origin and generation of the particle
mixing and oscillations.
Studying the puzzle of mixing and oscillation from a QFT point of view we
come to a unitarily inequivalent representation problem, where, as we will
see, the problem appears of the choice of a proper Hilbert space that is dif-

1The ammonia molecule is an intresting system that oscillate between a configuration
that have the nitrogen atom up and a configuration that have the nitrogen atom down.

2This is the system which has inspired the ideas on which this thesis is based.
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ferent for mixed and unmixed fields.
Clearly this picture is in contrast to the one proposed by the Quantum Me-
chanics where the Von Neumann theorem holds and by which only one Hilbert
space is admitted when the considered system has a finite number of degrees
of freedom. Thus in quantum field theory we define two different Hilbert
spaces, one for the flavor fields and one for the mass fields.
I emphasize that, as it will be shown in this thesis, the difference between the
mass and flavor fields consists in the fact that the mass part of the hamil-
tonian of the system is diagonal if written using the first ones and is not
diagonal if written using the second ones. It is properly the non diagonal
term that causes the mixing.
Many studies have been done for fermions and for bosons. Here we propose
the QFT analysis conducted for fermions [6] where one of the most interest-
ing results, that comes out from the unitarily in-equivalence of the Hilbert
spaces, is the orthogonality between the flavor and mass vacuum. We calcu-
late the exact oscillation formulae for fermion mixing [7] using the framework
of Quantum Field Theory. As we will see, a new additional term and energy
dependence of amplitude will come out naturally.
In the third chapter of this thesis the vacuum structure obtained considering
the mixing is shown to lead to a non zero contribution to the dark energy [8],
[9]. In particular I will show how was the situation in the early universe, and
in the universe at present epoch. In the second case I point out separately
the contribution due to neutrinos and due to quarks.



Chapter 1

Analysis of two level quantum
systems.

1.1 Gauge structure for time evolution of two

level systems.

1.1.1 Oscillation of a two level system.

I apply a gauge theory paradigm to the time evolution of a generic qubit,
computing the covariant derivative and the gauge potential.
I start the analysis considering the familiar example of a two level system
[11] i.e. any system which might be described by the orthonormal basis of
two unit (pure state) vectors |0〉 and |1〉, 〈i|j〉 = δij, i, j = 0, 1. These states
are obviously eigenstates of the hamiltonian:

H = ω1|0〉〈0|+ ω2|1〉〈1|; (1.1)

so that:

H|0〉 = ω1|0〉,
H|1〉 = ω2|1〉 .

(1.2)

ω1 and ω2 denote the two different values of the quantum number (energy,
or charge, or spin, etc.) that characterize respectively the states |0〉 and |1〉.
We might consider them to be the energie1 eigenvalues.
Rotating in the plane {|0〉, |1〉}, one may then prepare, at some initial time
t0 = 0, the superposition of states:

|φ〉 = α |0〉 + β |1〉 , (1.3)

|ψ〉 = −β |0〉 + α |1〉 , (1.4)

1i.e. the frequencies in natural units h = 1 = c

3
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α and β satisfying the relations

|α|2 + |β|2 = 1 (1.5)

and
α∗β − αβ∗ = 0 . (1.6)

Thus in full generality we can set:

α = eiγ1 cos θ

β = eiγ2 sin θ
(1.7)

with γ1 = γ2 + nπ, n = 0, 1, 2... 2.
In the preparation process we may have a limited control on the system and
sometimes no control [13, 14, 15].
Sometimes, however, is possible to have a good precision in the above men-
tioned initialization problem; this are the case of nuclear magnetic resonance
and electron spin resonant systems [16].
Without loss of generality we start considering

α = β = 1 , (1.8)

or equivalently
γ1 = γ2 = 0 , (1.9)

to have the two initial superpositions of states:

|φ〉 = cos θ|0〉+ sin θ|1〉 , (1.10)

|ψ〉 = − sin θ|0〉+ cos θ|1〉 . (1.11)

At time t we have:

|φ(t)〉 = e−iHt|φ(0)〉 = e−iω1t(cos θ|0〉+ e−i(ω2−ω1)t sin θ|1〉) , (1.12)

|ψ(t)〉 = e−iHt|ψ(0)〉 = e−iω1t(− sin θ|0〉 + e−i(ω2−ω1)t cos θ|1〉) ,(1.13)

Obviously, time evolution preserves the orthonormality of the states |φ〉 and
|ψ〉 at any time t.
Inverting the equations (1.12) and (1.13), and using equation (1.1) we obtain
the expression for H at any t in function of the state |φ(t)〉 and |ψ(t)〉.

H = ωφφ|φ(t)〉〈φ(t)|+ ωψψ|ψ(t)〉〈ψ(t)|+ ωφψ(|φ(t)〉〈ψ(t)|+ |ψ(t)〉〈φ(t)|) ,
(1.14)

2We note that |φ〉 and |ψ〉 are not eigenstates of H and that is because ω1 6= ω2.
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ωφφ, ωψψ and ωφψ are given by the following time-independent expectation
values 3.

ωφφ = ω1 cos2 θ + ω2 sin2 θ = 〈φ(t)| i∂t |φ(t)〉 , (1.15)

ωψψ = ω1 sin2 θ + ω2 cos2 θ = 〈ψ(t)| i∂t |ψ(t)〉 , (1.16)

ωφψ =
1

2
(ω2 − ω1) sin 2θ = 〈ψ(t)| i∂t |φ(t)〉 , (1.17)

ωφψ = ωψφ (1.18)

We stress that the ωφψ “mixed term”, that is responsible of the “oscillations”
between the states |φ(t)〉 and |ψ(t)〉, appears in H because ω2 − ω1 6= 0 and
the ”angle of mixing” θ is not equal to zero4.
In fact we have:

H|φ(t)〉 = ωφφ |φ(t)〉 + ωφψ |ψ(t)〉 ; (1.19)

H|ψ(t)〉 = ωψψ |ψ(t)〉 + ωφψ |φ(t)〉 . (1.20)

1.1.2 Gauge interpretation of the time evolution of a
two level system.

The time evolution of a two level system introduced above can be inter-
preted as due to a gauge background. I will explain how to achieve to this
interpretation by considering the evolution of the doublet:

|ζ(t)〉 =

(
|φ(t)〉
|ψ(t)〉

)
. (1.21)

Since

H|φ(t)〉 = i ∂t |φ(t)〉 , (1.22)

H|ψ(t)〉 = i ∂t |ψ(t)〉 , (1.23)

remembering equations (1.1), (1.12) and (1.13)), we get the evolution equa-
tions:

i ∂t |ζ(t)〉 = ωd |ζ(t)〉 + ωφψ σ1 |ζ(t)〉 ; (1.24)

3Remember that H|χ(t)〉 = i∂t|χ(t)〉 where |χ(t)〉 = |ψ(t)〉, |φ(t)〉
4This situation appear even in the mixing of fermions, of bosons and in general of

particles with different masses [17].
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where

ωd =

(
ωφφ 0
0 ωψψ

)
, (1.25)

σ1 =

(
0 1
1 0

)
. (1.26)

If now we consider that

δω = ωψψ − ωφφ =

= (ω1 − ω2)(sin2 θ − cos2 θ) =

= (ω2 − ω1) cos 2θ ,

(1.27)

we have:

tan 2θ =
2ωφψ
δω

. (1.28)

If we put
g = tan 2θ, (1.29)

we have:

ωφψ =
1

2
gδω. (1.30)

Substituting in (1.28) we obtain:

i ∂t |ζ(t)〉 = ωd |ζ(t)〉 +
1

2
gA1 |ζ(t)〉 ; (1.31)

where A1 = 1
2
δωσ1.

From this formula we can write the covariant derivative5:

Dt = ∂t + i ωφψ σ1 = ∂t + i g A
(1)
0 σ1 , (1.32)

where g plays the role of a coupling constant and

A
(1)
0 =

1

2
δω (1.33)

plays the role of a non abelian gauge field 6.
Now we can write the equation of motion (1.31) in the form:

iDt |ζ(t)〉 = ωd |ζ(t)〉 . (1.34)

5We will also use the notation : A0 = A
(1)
0 σ1 = 1

2 δω σ1
6a similar situation occurs in the different context of neutrino mixing, see ref. [18]
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If now we set:
|ζ ′(t)〉 = e−ig λ(t)σ1|ζ(t)〉 , (1.35)

and
D′t = ∂t + i g (A

(1)
0 σ1 + ∂t λ(t)σ1 , ) (1.36)

we can easily see that:

iD′t |ζ ′(t)〉 = ωd |ζ ′(t)〉 , (1.37)

By this we can define the operator:

U(t) ≡ e−ig λ(t)σ1 . (1.38)

So we can write:

U(t) (iDt |ζ(t)〉) = iD′t U(t) |ζ(t)〉 (1.39)

and also

g A
(1)
0

′
σ1 = U(t) g A

(1)
0 σ1 U

−1(t) + i (∂t U(t))U−1(t) . (1.40)

The same situation (see Eq. (1.36)) happens for a gauge field transformation.
The above result can be expressed by saying that the evolution in time of
the vector doublet |ζ(t)〉, that is our two level system, can be described using
a non abelian gauge field that couple the two single component of the qubit
among themselves.This situation occurs because we have to preserve the
invariance of the dynamics against local in time gauge transformations (phase
fluctuations). Finally we note that since the only non-vanishing component

of Aµ is A0 (which is a constant (A0 ≡ 1
2
δω σ1)), the field strength Fµν is

identically zero.
This is a feature which, for example, occurs in the case where the gauge
potential is a pure gauge and the gauge function is not singular.
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1.2 Gauge evolution in time of a two level

system as a birefringence phenomenon.

1.2.1 Time evolution of the qubit seen as a birefrin-
gence phenomenon

The purpose of this paragraph is to show that the time evolution above de-
scribed can be recognised as a birefringence phenomenon. To do this we
observe that the time evolution of the eigenstates |0〉 and |1〉 of the hamilto-
nian is described by:(

|0(t)〉
|1(t)〉

)
=

(
e−iωt 0

0 e−iωt

)(
|0(0)〉
|1(0)〉

)
, (1.41)

in”the vacuum”7 and:
ω = 2πν (1.42)

So the ”propagation speed” of the the wave packet that corresponds to each
eigenstate |0〉 or |1〉 is given by:

v0 = λ ν (1.43)

We will show now what happens if, instead of considering the vacuum medium
we consider a medium that has a different refringent behavior for each of the
states |0〉 and |1〉. Suppose now that instead of ”the vacuum” the propa-
gation happens in a medium that presents different refraction indexes, for
example n1 for |0〉 and n2 for |1〉. To be more precise, this means that given
a length ` it will be crossed in a time t1 for |0〉 and in a time t2 for |1〉 and
this times are given by:

t1 =
`

v1

=
` n1

v0

= t n1 ; (1.44)

and

t2 =
`

v2

=
` n2

v0

= t n2 . (1.45)

Here we have considered the same time t of propagation in the birefringence
medium but we have different speeds of propagation considering v1 for |0〉
and v2 for |1〉.
Now time evolution for |0〉 is described by the phase factor

e−iωt1 = e−iω1t (1.46)

7”The vacuum” means in absence of any ”external field.”, even in absence of the gauge
field.
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and by
e−iωt2 = e−iω2t (1.47)

for |1〉, where we have applied the sequent substitutions:

ω t1 = ω
`

v0

n1 =

= 2π ν t n1 = 2π ν1 t = ω1 t

(1.48)

for |0〉 and

ω t2 = ω
`

v0

n2 =

= 2π ν t n2 = 2π ν2 t = ω2 t

(1.49)

for |1(t)〉.

In the above written formulas we have considered:

λ1 ν = v1; (1.50)

n1 =
v0

v1

=
ν1

ν
(1.51)

for |0(t)〉 and

λ2 ν = v2; (1.52)

n2 =
v0

v2

=
ν2

ν
(1.53)

for |1(t)〉

We now can see that considering the dynamical evolution of the two states
in a birefringent medium is a manner to consider two
different phase instead of one.
So now we are again in the same puzzle exposed in the first chapter, because

the time evolution of the doublet

(
|0(t)〉
|1(t)〉

)
can be now written as:(

|0(t)〉
|1(t)〉

)
=

(
e−iω1t 0

0 e−iω2t

)(
|0(0)〉
|1(0)〉

)
(1.54)

If now we operate in the same way that we did in chapter 1 and construct
again at time t0 = 0 the pure states:

|φ〉 = |0〉+ |1〉 , (1.55)

|ψ〉 = −|0〉+ |1〉 . (1.56)
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and let them evolve in time we have:(
|φ(t)〉
|ψ(t)〉

)
= e−iω1t

(
cos θ e−i(ω2−ω1)t sin θ

− sin θ e−i(ω2−ω1)t cos θ

)(
|0〉
|1〉

)
, (1.57)

that is exactly the matrix form that unify the equations (1.12) and (1.13).
So starting from there we can evolve all the puzzle that we presented in
the above chapter in the same way or, in other words, we have shown that,
provided that ω1 6= ω2, for θ 6= π

4
+ nπ

2
, the effect of time evolution through

the refractive medium is equivalent to the effect of the background gauge
field

A
(1)
0 =

1

2
(ω2 − ω1) cos 2θ =

=
1

2
ω(n2 − n1) cos 2θ.

(1.58)

This situation obviously disappear if the propagation happens in the vacuum
where

n1 = n2 = n0 = 1⇒ (1.59)

⇒ ω1 = ω = ω2. (1.60)
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1.3 Free energy interpretation of the gauge

background.

In this section we will show how we can interpret the results of previous
sections in a ”thermodynamical” way. To be more precise we will relate
the free energy of our two level system to the hamiltonian and our gauge
potential.
Let us first re write the equation (1.24)

i ∂t |ζ(t)〉 = ωd |ζ(t)〉 + ωφψ σ1 |ζ(t)〉 ; (1.61)

⇒ i ∂t |ζ(t)〉 − ωφψ σ1 |ζ(t)〉 = ωd |ζ(t)〉 ; (1.62)

(H − ωφψ σ1) |ζ(t)〉 = ωd |ζ(t)〉 (1.63)

As we can see we have written the covariant derivative as H − ωφψ σ1 where
again σ1 is the first Pauli Matrix.

It is possible now to write the operator F :

F = (H − ωφψ σ1), (1.64)

Which can be identified with the free energy if we provided that we define:

ωφψ σ1 = gA0 = TS ; (1.65)

where S = A0 is the entropy of the system and T = g is its temperature.
Therefore we see that the free energy (1.64) controls the time evolution of
the two level system, namely a qubit, and the gauge field plays the role of
the entropy.
It is interesting to see that TS is written in terms of the states |φ〉 and |ψ〉
as.

TS = ωφψ(|φ(t)〉〈ψ(t)|+ |ψ(t)〉〈φ(t)|) . (1.66)
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1.4 Geometrical invariants.

I now write a geometrical phase that is effectively a Berry like phase and I
will compute it.
As done in Appendix A, I consider the time evolution of each one of the
states |φ〉 and |ψ〉8.

H|φ(t)〉 = i
∂

∂t
|φ(t)〉 (1.67)

H|ψ(t)〉 = i
∂

∂t
|ψ(t)〉 (1.68)

We recall that the dynamic part of the time evolution of is governed by
the ”energy” that pertains to each one, respectively ωφφ for |φ〉 and ωψψ for
|ψ〉; considering that the dynamical phase of the time evolution of |φ〉 is given

by e−i
∫ t

0
ωφφdt

′ and equally for |ψ〉 is given by e−i
∫ t
0 ωψψdt

′
.

If we now consider the amount of time that goes from t = 0 to t = T =
2π

ω2−ω1
referring to the equations (1.12), (1.13) we will have:

|φ(T )〉 = eiϕ|φ(0)〉 ; (1.69)

|ψ(T )〉 = eiϕ|ψ(0)〉, (1.70)

where

ϕ ≡ − 2πω1

ω2 − ω1

, (1.71)

is the total phase factor that we have in this amount of time.
As expected we have:

ϕ 6= −i
∫ T

0

ωφφdt
′ (1.72)

ϕ 6= −i
∫ T

0

ωψψdt
′ (1.73)

So we can write:

ϕ = βφφ − i

∫ T

0

ωφφdt
′ (1.74)

ϕ = βψψ − i

∫ T

0

ωψψdt
′ (1.75)

8remember that we are in natural unit, h̄ = c = 1
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Here βφφ and βψψ are pure geometrical phases, i.e. Berry like phases, and
are originated exquisitely by the mixing term ωφψ(|φ(t)〉〈ψ(t)| + |ψ(t)〉〈φ(t)|)
of the hamiltonian.
We can obtain the two geometrical phases inverting the equations (1.74) and
(1.75) obtaining:

βφφ = ϕ + i

∫ T

0

ωφφdt
′ ; (1.76)

βψψ = ϕ + i

∫ T

0

ωψψdt
′ . (1.77)

Recalling the equations (1.12) and (1.13) we have:

βφφ = ϕ + i

∫ T

0

〈φ|∂t|φ〉dt′ ; (1.78)

βψψ = ϕ + i

∫ T

0

〈ψ|∂t|ψ〉dt′ . (1.79)

The above formulas for βφφ and βψψ are formally identical to (A.11) for
the canonical Berry phase, as shown in Appendix A. Finally, by performing

integrals in equations (1.78) and (1.79), we have:

βφφ = 2π sin2 θ ; (1.80)

βψψ = 2π cos2 θ ; (1.81)

i.e.
βφφ + βψψ = 1. (1.82)

These geometrical phases play an important role in the oscillation phe-
nomenon of the two level systems that we analyzed. We can adopt each
one of them as a counter of the number of oscillation.
In fact if we evaluate them for a time t = nT instead of t = T we obtain:

βφφ = 2nπ sin2 θ ; (1.83)

βψψ = 2nπ cos2 θ . (1.84)

So, by measuring one of them, for example βφφ we can get the number n
of oscillation occurred.

Another important geometrical quantity is the Anandan - Aharonov in-
variant.
For a more detailed explanation of this invariant we refer to appendix A and
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to reference [12], here we limit our attention to the calculation of it for our
two level system, namely a qubit, case.
Referring to the equation (A.14) our ∆E(t)2 is given by:

∆E(t)2 = ∆ω2 = ∆ω2
φφ = ∆ω2

ψψ ;⇒ (1.85)

⇒ ∆E(t)2 = 〈ξ(t)|H2|ξ(t)〉 − 〈ξ(t)|H|ξ(t)〉2 = ω2
φψ . (1.86)

Where ξ = φ, ψ.
So our geometrical invariant is given by:

s = 2

∫
ωφψdt. (1.87)

Considering [39], for t = nT one obtains:

s = 2nπ sin(2θ) (1.88)

Immediately we can see that:∫
〈ζ(t)|TSσ1|ζ(t)〉 dt =

∫
〈ζ(t)|g A(1)

0 |ζ(t)〉 dt = 2

∫
ωφψ dt = s, (1.89)

That give us the correlation between s, TS, and g A
(1)
0 .

It is interesting to note that the relation between TS and the variance of the
energy ∆E = ωφψ is through the non-diagonal elements of H, namely it is
proportional to the energy gap, ω2−ω1, between the two levels (cf. Eq. (1.88)
and (1.17)).
Finally, it is instructive to analyze the invariant s in terms of the distance
between states in the Hilbert space.
We generically denote by |ξ(t)〉 either |φ(t)〉 or |ψ(t)〉.
Their evolution is governed by the Schrödinger equation

i ∂t|ξ(t)〉 = H|ξ(t)〉 , (1.90)

Referring to appendix A, equation (A.19)9, to references([11]) and ([12]) we
have:

ds2 = 2gµνdZ
µdZ

ν
=

= 4(1− |〈ξ(t)|ξ(t+ dt)〉|2),
(1.91)

where gµν is the Fubini - Study metric.
Doing the same calculation that we did to obtain (A.18) we have:

|〈ξ(t)|ξ(t+ dt)〉|2 = 1− dt2∆ω2
ξξ + O(dt3) , (1.92)

9Here we adopt |ξ(t)′〉 = |ξ(t + dt)〉 = e−iEξ(t+dt)|ξ(t)〉 or in other words we are con-
sidering Π = e−iH(t+dt) as our projection operator.
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so we finally:

ds2 = 2gµνdZ
µdZ

ν
=

= 4(dt2∆ω2
ξξ + O(dt3))

= 4(dt2ω2
φψ + O(dt3)),

(1.93)

Thus we showed the connection between ωφψ that is responsible of the oscil-
lation and of the mixing and the Fubini - Study metric using the Aharonov
- Anandan invariant.
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Chapter 2

Particle fermion mixing in
QFT.

In this second part of the thesis I summarize the results obtained by the
analysis of the puzzle of fermion mixing. Among the results that we will en-
counter, of particular importance is the formal difference between the mixing
formula in QFT and the ones obtained by the quantum mechanics theory.
Another important result is the orthogonality between the ”flavor” vacuum
and the ”mass” vacuum.
We will encounter other important features of the fermion mixing as a con-
tribution to the dark energy that can be obtained from QFT fermion mixing.
For simplicity we will refer to neutrinos for which we have a large amount of
experimental data, see for example ref. [3].

2.1 The vacuum structure

I focus the attention on the theoretical structure of fermion mixing treated
in quantum field theory; in particular I am going to treat neutrinos as fields
and we will surprisingly find that the oscillation formulas of neutrinos here
have in addition a Bogoliubov term.
I first start checking that the Fock space of the flavor fields is unitary in-
equivalent to the Fock space of the mass field in the infinite volume limit.
The flavor states exhibit the structure of SU(2) coherent states, as we will
see below.
We will get the new formulas for neutrino oscillation [25, 26] in QFT and
then we will study the current structure for mixed fields [27].

17
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The mixing relations written for the fields([28]):

νe(x) = ν1(x) cos θ + ν2(x) sin θ ; (2.1)

νµ(x) = −ν1(x) sin θ + ν2(x) cos θ . (2.2)

Where νe(x) , νµ(x) are the flavor neutrino fields and ν1(x) , ν2(x) are the
neutrino fields with definite masses m1 ,m2.
In terms of creator and of annihilator operators, as free Dirac fields, ν1(x) , ν2(x)
can be written as:

ν1(x) =
1√
V

∑
k,r

[
urk,1α

r
k,1(t) + vr-k,1β

r†
-k,1(t)

]
; (2.3)

ν2(x) =
1√
V

∑
k,r

[
urk,2α

r
k,2(t) + vr-k,2β

r†
-k,2(t)

]
; (2.4)

where we have:

u1
k,i =

(
ωk,i +mi

2ωk,i

) 1
2


1
0

k3

ωk,i+mi
k1+ik2

ωk,i+mi

 ; (2.5)

u2
k,i =

(
ωk,i +mi

2ωk,i

) 1
2


0
1
k1−ik2

ωk,i+mi
−k3

ωk,i+mi

 ; (2.6)

v1
−k,i =

(
ωk,i +mi

2ωk,i

) 1
2


−k3

ωk,i+mi
−k1−ik2

ωk,i+mi

1
0

 ; (2.7)

v2
−k,i =

(
ωk,i +mi

2ωk,i

) 1
2


−k1+ik2

ωk,i+mi
k3

ωk,i+mi

0
1

 . (2.8)

Moreover we have:

αrk,i(t) = αrk,i e
−iωk,it , (2.9)

βr†k,i(t) = βr†k,i e
iωk,it , (2.10)

ωk,i =

√
k2 +m2

i . (2.11)
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with i = 1, 2.

As usual, the operator αrk,i and βrk,i are the mass annihilation operators that
applied to the mass vacuum give:

αrk,i|0〉12 = βrk,i|0〉12 = 0 ; (2.12)

where
|0〉1,2 ≡ |0〉1 ⊗ |0〉2. (2.13)

We write now the mass fields anti-commutation relation:{
ναi (x), νβ†j (y)

}
t=t′

= δ3(x− y)δαβδij, α, β = 1, ...4, (2.14)

And also the annihilator/creator anti-commutation relation:{
αrk,i, α

s†
q,j

}
= δkqδrsδij ; (2.15){

βrk,i, β
s†
q,j

}
= δkqδrsδij, i, j = 1, 2. (2.16)

All other anti- commutation relation are equal to zero.
We also write the completeness and orthonormality relations:

ur†k,iu
s
k,i = vr†k,iv

s
k,i = δrs, (2.17)

ur†k,iv
s
−k,i = vr†−k,iu

s
k,i = 0, (2.18)∑

r

(urk,iu
r†
k,i + vr−k,iv

r†
−k,i) = 1. (2.19)

The mass fields ν1(x) and ν2(x) are related to the free hamiltonian whose
mass term [27] is:

H = m1 ν
†
1ν1 +m2 ν

†
2ν2 (2.20)

Instead, the flavor fields are related to the hamiltonian 1

H = mee ν
†
eνe +mµµ ν

†
µνµ +meµ

(
ν†eνµ + ν†µνe

)
(2.21)

where 2

mee = m1 cos2 θ +m2 sin2 θ, (2.22)

mµµ = m1 sin2 θ +m2 cos2 θ, (2.23)

meµ = (m2 −m1) sin θ cos θ. (2.24)

meµ = mµe (2.25)

1We refer only to the mass term here also.
2Note the analogy with the eqs. (1.15),(1.16),(1.17),(1.18)
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In QFT the basic dynamics, i.e. the Lagrangian and the resulting field equa-
tions, is given in terms of Heisenberg (or interacting) fields but the physical
observables are expressed in terms of asymptotic free (in or out) fields.
The free fields, say for definitiveness the infields, are obtained by the weak
limit of the Heisenberg fields for time t→ −∞.
In QFT, there exist infinitely unitary non-equivalent representations of the
anti-commutation relations of the fields3; considering that for any one of this
representation the asymptotic free fields are different, we have a different set
of observables for any representation.
Thus before has a physical important meaning: if to any unitary non equiv-
alent representation corresponds the same dynamics 4 but a different set of
observables, that means that to any representation corresponds a different
physical phase of the system.
We have written above we stress that is a very rude and naive approximation
to assume that interacting fields and free fields share the same vacuum state
and the same Fock space representation. Taking into account what we said

above, we will investigate the structure of the Fock spaces H1,2 and He,µ

relative to ν1(x), ν2(x) and νe(x), νµ(x), respectively.
We show that H1,2 and He,µ become orthogonal in the infinite volume limit,
in particular the free field vacuum and the interacting field vacuum will be-
came orthogonal.
We will achieve this result starting first by constructing the Fock spaces H1,2

and He,µ in the finite volume limit, then we will extend our volume V to the
infinite limit.
The relations (2.1) and (2.2) can be seen as originated by a generator Gθ(t)
as we can see below:

ναe (x) = G−1
θ (t)να1 (t)Gθ(t), (2.26)

ναµ (x) = G−1
θ (t)να2 (t)Gθ(t). (2.27)

Where α is the helicity of the field. To get the generator Gθ(t) we start

from (2.1) and (2.2) and consider that:

3That means that we can represent the same Lie group of fields by different non equiv-
alent representations.

4Remember that Lagrangian and field equation depends only to Heisenberg fields that
are not representation dependent.
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ναe (x)|θ=0 = να1 (x) (2.28)

G−1
θ (t)ν1(t)Gθ(t)|θ=0 = να1 (x) (2.29)

G−1
θ (t)|θ=0 = I; (2.30)

Gθ(t)|θ=0 = I (2.31)

From equations (2.30),(2.31) we can easily see that Gθ(t) must be such
that:

Gθ(t) = eθS
α(x) ⇒ G−1

θ (t) = e−θS
α(x); (2.32)

where δθ → 0 when θ → 0. Still following the equations (2.30),(2.31) we

have:
dναe (x)/dθ = να2 (x) , (2.33)

and (
dG−1

θ (t)

dθ
να1 (x)Gθ(t) +G−1

θ (t)να1 (x)
dGθ(t)

dθ

)
|θ=0 = να2 (x) (2.34)

−Sα(x)e−θS
α(x)να1 (x)eθS

α(x) + e−θS
α(x)να1 (x)Sα(x)eθS

α(x)|θ=0 = να2 (x) (2.35)

−Sα(x)να1 (x) + να1 (x)Sα(x) = να2 (x) (2.36)

[να1 (x) , Sα(x)] = να2 (x). (2.37)

By this we have found that

Sα(x) = âνα2 (x) + terms that commutewith να1 (x). (2.38)

To calculate the value of â we evaluate the commutator[ν1(x), Sα(x)].

[ν1(x), Sα(x)] = [ν1(x) , âνα2 (x)] (2.39)

[να1 (x) , âνα2 (x)] = να2 (x) (2.40)

να1 (x)âνα2 (x)− âνα1 (x)να2 (x)− â{να2 (x) , να1 (x)} = να2 (x) (2.41)

Remembering that {να2 (x) , να1 (x)} = 0 we obtain:

(να1 (x)â− âνα1 (x))να2 (x) = να2 (x)⇒ (2.42)

[να1 (x) , â] = I⇒ (2.43)

â = να†1 (x). (2.44)

We thus result we obtain:
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Sα(x) = να†1 να2 + terms that commutewith να1 (x). (2.45)

We now consider the relation

dναµ (x)

dθ
|θ=0 = να1 (x) · · · (2.46)

· · · − Sα(x)να2 (x) + να2 (x)Sα(x) = −να1 (x)⇒ (2.47)

[να2 (x) , Sα(x)] = −να1 (x) (2.48)

Equation (2.48) says to us that:

Sα(x) = να†1 (x)να2 (x)+b̂να1 (x)+pieces that commutewith να1 (x) andwith να2 (x).
(2.49)

Substituting now Sα(x) into (2.48) and doing the same calculations that
we did to obtain â we obtain:

b̂ = −να†2 (x) (2.50)

Sα(x) = να†1 (x)να2 (x)− να†2 (x)να1 (x)

+pieces that commutewith να1 (x) and να2 (x).
(2.51)

Naturally we can exclude the terms that commute with να1 and να2 to
attain finally5:

Sα(x) = να†1 (x)να2 (x)− να†2 (x)να1 (x) (2.52)

Summing on α and integrating into all the volume V we have:

S(t) =

∫
V

d3x ν†1(x)ν2(x)− ν†2(x)ν1(x). (2.53)

From (2.53) we have:

Gθ(t) = eθ
∫
V d

3x (ν†1(x)ν2(x)−ν†2(x)ν1(x)). (2.54)

Note that Gθ(t) is a unitary operator at finite volume V .

5We recall that for our interaction the pieces that commute with να1 and να2 do not
contribute to it.
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By introducing the operators:

S+(t) =

∫
V

d3x ν†1(x)ν2(x); (2.55)

S−(t) =

∫
V

d3x ν†2(x)ν1(x) = (S+(t))†. (2.56)

we can rewrite (2.54) as follows:

Gθ(t) = eθ(S+(t)−S−(t)), . (2.57)

The operator of Casimir 6, that here we call S0 is given by:

S0 =

∫
V

d3x (ν†1(x)ν1(x) + ν†2(x)ν2(x)), (2.58)

and together with:

S3 =

∫
V

d3x (ν†1(x)ν1(x)− ν†2(x)ν2(x)), (2.59)

close the su(2) algebra, in fact we have:

[S+(t) , S−(t)] = 2S3 ; (2.60)

[S3 , S±(t)] = ±S±(t) ; (2.61)

[S0 , S3] = [S0 , S±(t)] = 0 . (2.62)

Thus we can see that Sθ(t) ∈ SU(2) or equivalently Gθ(t) ∈ su(2).
Expanding the above mentioned operators respect to the momentum we

have:

S+(t) ≡
∑
k

Sk
+(t) =

∑
k

∑
r,s

(
ur†k,1 u

s
k,2 α

r†
k,1(t)αsk,2(t) + vr†−k,1 u

s
k,2 β

r
−k,1(t)αsk,2(t) +

+ur†k,1 v
s
−k,2 α

r†
k,1(t) βs†−k,2(t) + vr†−k,1 v

s
−k,2 β

r
−k,1(t) βs†−k,2(t)

)
, (2.63)

S−(t) ≡
∑
k

Sk
−(t) =

∑
k

∑
r,s

(
ur†k,2 u

s
k,1 α

r†
k,2(t)αsk,1(t) + vr†−k,2 u

s
k,1 β

r
−k,2(t)αsk,1(t) +

+ur†k,2 v
s
−k,1 α

r†
k,2(t) βs†−k,1(t) + vr†−k,2 v

s
−k,1 β

r
−k,2(t) βs†−k,1(t)

)
, (2.64)

6As we will see the Casimir is proportional to the total charge.
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S3 ≡
∑
k

Sk
3 =

1

2

∑
k,r

(
αr†k,1α

r
k,1 − β

r†
−k,1β

r
−k,1 − α

r†
k,2α

r
k,2 + βr†−k,2β

r
−k,2

)
, (2.65)

S0 ≡
∑
k

Sk
0 =

1

2

∑
k,r

(
αr†k,1α

r
k,1 − β

r†
−k,1β

r
−k,1 + αr†k,2α

r
k,2 − β

r†
−k,2β

r
−k,2

)
. (2.66)

We observe that the operatorial structure of Eqs.(2.63) and (2.64) is the one
of the rotation generator and of the Bogoliubov generator. We can easily see

that: [
Sk

+(t), Sk
−(t)

]
= 2Sk

3 , (2.67)[
Sk

3 , S
k
±(t)

]
= ±Sk

±(t), (2.68)[
Sk

0 , S
k
3

]
=

[
Sk

0 , S
k
±
]

= 0, (2.69)[
Sk
±(t), Sp

±(t)
]

=
[
Sk

3 , S
p
±(t)

]
=

[
Sk

3 , S
p
3

]
= 0, k 6= p. (2.70)

So the su(2) algebra structure holds for any k.

SU(2) =
⊗
k

SU(2)k . (2.71)

Now we will establish the relation between the flavor Hilbert space He,µ and

the mass Hilbert space H1,2 evaluating the generic element 1,2〈a|να1 (x)|b〉1,27.
Inverting the equation (2.26) we can write:

1,2〈a|να1 (x)|b〉1,2 =1,2 〈a|Gθ(t)ν
α
e (x)G−1

θ (t)|b〉1,2 (2.72)

Recalling that ναe (x) is an operator of the Hilbert space He,µ, the equation
(2.72) says to us that G−1

θ (t)|b〉1,2 ∈ He,µ, i.e. Gθ(t) maps H1,2 into He,µ. In
finite volume V we have:

|0(t)〉e,µ = G−1
θ (t) |0〉1,2 . (2.73)

We can write the state of one particle in the Hilbert space Heµ:

αrk,νe(t) |0(t)〉e,µ = G−1
θ (t) αrk,1(t) |0〉1,2 = 0,

αrk,νµ(t) |0(t)〉e,µ = G−1
θ (t) αrk,2(t) |0〉1,2 = 0,

βrk,νe(t) |0(t)〉e,µ = G−1
θ (t) βrk,1(t) |0〉1,2 = 0, (2.74)

βrk,νµ(t) |0(t)〉e,µ = G−1
θ (t) βrk,2(t) |0〉1,2 = 0,

7we can do the same thing if we calculate 1,2〈a|να2 (x)|b〉1,2
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then we have:

αrk,νe(t) ≡ G−1
θ (t) αrk,1(t) Gθ(t),

αrk,νµ(t) ≡ G−1
θ (t) αrk,2(t) Gθ(t), (2.75)

βrk,νe(t) ≡ G−1
θ (t) βrk,1(t) Gθ(t),

βrk,νµ(t) ≡ G−1
θ (t) βrk,2(t) Gθ(t).

Taylor expanding Gθ(t) and G−1
θ (t) and substituting into (2.75) we obtain

the flavour annihilation operators:

αrk,νe(t) = cos θ αrk,1(t) + sin θ
∑
s

[
ur†k,1 u

s
k,2 α

s
k,2(t) + ur†k,1 v

s
−k,2 β

s†
−k,2(t)

]
,

αrk,νµ(t) = cos θ αrk,2(t) − sin θ
∑
s

[
ur†k,2 u

s
k,1 α

s
k,1(t) + ur†k,2 v

s
−k,1 β

s†
−k,1(t)

]
,

βr−k,νe(t) = cos θ βr−k,1(t) + sin θ
∑
s

[
vs†−k,2 v

r
−k,1 β

s
−k,2(t) + us†k,2 v

r
−k,1 α

s†
k,2(t)

]
,

βr−k,νµ(t) = cos θ βr−k,2(t) − sin θ
∑
s

[
vs†−k,1 v

r
−k,2 β

s
−k,1(t) + us†k,1 v

r
−k,2 α

s†
k,1(t)

]
.

(2.76)

Without loosing generality, we can choose the rest frame where:

k = (0, 0, |k|); (2.77)

obtaining:

αrk,νe(t) = cos θ αrk,1(t) + sin θ
(
|Uk| αrk,2(t) + εr |Vk| βr†−k,2(t)

)
(2.78)

αrk,νµ(t) = cos θ αrk,2(t) − sin θ
(
|Uk| αrk,1(t) − εr |Vk| βr†−k,1(t)

)
βr−k,νe(t) = cos θ βr−k,1(t) + sin θ

(
|Uk| βr−k,2(t) − εr |Vk| αr†k,2(t)

)
(2.79)

βr−k,νµ(t) = cos θ βr−k,2(t) − sin θ
(
|Uk| βr−k,1(t) + εr |Vk| αr†k,1(t)

)
,

with εr = (−1)r and

|Uk| ≡ ur†k,iu
r
k,j = vr†−k,iv

r
−k,j , |Vk| ≡ εr ur†k,1v

r
−k,2 = −εr ur†k,2v

r
−k,1
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where i, j = 1, 2 and i 6= j and we have:

|Uk| =

(
ωk,1 +m1

2ωk,1

) 1
2
(
ωk,2 +m2

2ωk,2

) 1
2
(

1 +
k2

(ωk,1 +m1)(ωk,2 +m2)

)
(2.80)

|Vk| =

(
ωk,1 +m1

2ωk,1

) 1
2
(
ωk,2 +m2

2ωk,2

) 1
2
(

k

(ωk,2 +m2)
− k

(ωk,1 +m1)

)
(2.81)

|Uk|2 + |Vk|2 = 1. (2.82)

The flavor fields can be expanded in the same operational bases of the mass
fields, i.e.:

νe(x, t) =
1√
V

∑
k,r

eik.x
[
urk,1α

r
k,νe(t) + vr−k,1β

r†
−k,νe

(t)
]
, (2.83)

νµ(x, t) =
1√
V

∑
k,r

eik.x
[
urk,2α

r
k,νµ(t) + vr−k,2β

r†
−k,νµ

(t)
]
, (2.84)

At level of annihilator operator we can see that the structure of mixing is
made by a Bogoliubov transformation nested into a rotation.
We will see below that this mixing structure will be confirmed even at fields
level.
As we can see this two, transformation could be not disentangled, so (2.78,
2.79) are different from a simple rotation and from a simple Bogoliubov. We

will now obtain the explicit expression of |0〉e,µ at finite volume, then we will
do the infinite volume limit.
Using the gaussian decomposition [29] we have :

G−1
θ (t) = exp[θ(S− − S+)] = exp(−tanθ S+) exp(−2ln cosθ S3) exp(tanθ S−)

(2.85)

where 0 ≤ θ < π
2
.

Then Eq.(2.73) becomes:

|0〉e,µ =
∏
k

|0〉ke,µ =
∏
k

exp(−tanθ Sk
+)exp(−2ln cosθ Sk

3 ) exp(tanθ Sk
−)|0〉1,2 .

(2.86)
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-+- The right hand of the above equation can be calculate considering:

Sk
3 |0〉1,2 = 0 , (2.87)

Sk
±|0〉1,2 6= 0 , (2.88)

(Sk
±)2|0〉1,2 6= 0 , (2.89)

(Sk
±)3|0〉1,2 = 0 (2.90)

and other relations that are calculated in appendix C, so the expression for
|0〉e,µ becomes:

|0〉e,µ =
∏
k

|0〉ke,µ =
∏
k

[
1 + sin θ cos θ

(
Sk
− − Sk

+

)
+

1

2
sin2 θ cos2 θ

(
(Sk
−)2 + (Sk

+)2
)

+

− sin2 θSk
+S

k
− +

1

2
sin3 θ cos θ

(
Sk
−(Sk

+)2 − Sk
+(Sk

−)2
)

+
1

4
sin4 θ(Sk

+)2(Sk
−)2

]
|0〉1,2 .

(2.91)

Obviously, see eq. (2.73), |0〉e,µ is normalized to one.

Now we will show the orthogonality between |0〉e,µ and |0〉1,2 at infinite
volume. We have

1,2〈0|0〉e,µ =
∏
k

(
1− sin2 θ 1,2〈0|Sk

+S
k
−|0〉1,2 +

1

4
sin4 θ 1,2〈0|(Sk

+)2(Sk
−)2|0〉1,2

)
(2.92)

where (see Appendix C)

1,2〈0|Sk
+S

k
−|0〉1,2 =

= 1,2〈0|

(∑
σ,τ

∑
r,s

[
vσ†−k,1 u

τ
k,2

] [
us†k,2 v

r
−k,1

]
βσ−k,1(t)ατk,2(t)αs†k,2(t) βr†−k,1(t)

)
|0〉1,2 =

=
∑
r,s

| vr†−k,1 u
s
k,2 |2 ≡ 2|Vk|2 (2.93)

and proceeding in a similar way we find:

1,2〈0|(Sk
+)2(Sk

−)2|0〉1,2 = 2|Vk|4 . (2.94)

|Vk|2 depends on k only through its modulus and it has values always in
the interval [0, 1

2
[. This function has a maximum at |k| = √m1m2

8 and we

8√m1m2 is the scale of the condensation density
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have |Vk|2 = 0 when m1 = m2.Also, |Vk|2 → 0 when k →∞.
Finally we have

1,2〈0|0〉e,µ =
∏
k

(
1− sin2 θ |Vk|2

)2 ≡
∏
k

Γ(k) =
∏
k

eln Γ(k) = e
∑

k ln Γ(k).

(2.95)

Given the properties ok |Vk|2 we have that Γ(k) < 1 for any value of k
and for any value of the parameters m1 and m2.
Using the continuous limit relation

∑
k →

V
(2π)3

∫
d3k, for the infinite volume

limit we obtain:

lim
V→∞

1,2〈0|0〉e,µ = lim
V→∞

e
V

(2π)3

∫
d3k ln Γ(k)

= 0 (2.96)

The relation (2.96) goes to zero because the infinite volume limit takes
into account the contribution due to values k→∞ 9 that eliminate the UV
divergence of

∫
d3k ln Γ(k).

In conclusion we showed that the flavor states are generalised SU(2) coherent
stases, this leads us to two fundamental results: first we have that the flavor
vacuum state is different than the mass vacuum state 10 at finite volume,
second we have that at infinite volume limit the flavor vacuum is orthogonal
to the mass vacuum.
Thus we see that the usual identification of the flavor vacuum with the mass
vacuum is only an approximation and we showed the limit of applicability of
this approximation.
What we said above shows the absolutely non trivial nature of the mixing
transformations (2.1, 2.2).

If we exhibit the explicit expression of|0〉ke,µ, at time t = 0, in the reference
frame for which k = (0, 0, |k|) (see Appendix D) we obtain:

|0〉ke,µ =
∏
r

[
(1− sin2 θ |Vk|2)− εr sin θ cos θ |Vk|(αr†k,1β

r†
−k,2 + αr†k,2β

r†
−k,1) +

+ εr sin2 θ |Vk||Uk|(αr†k,1β
r†
−k,1 − α

r†
k,2β

r†
−k,2) + sin2 θ |Vk|2αr†k,1β

r†
−k,2α

r†
k,2β

r†
−k,1

]
|0〉1,2

(2.97)

As we can see from (2.97) the expression of the flavor vacuum |0〉ke,µ
involves four pairs of massive particles.
The number of condensed particles is given by:

9In other words it takes into account the infrared limit.
10To be more precise each flavor state is different to the respective mass state
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e,µ〈0|αr†k,iα
r
k,i|0〉e,µ = e,µ〈0|βr†k,iβ

r
k,i|0〉e,µ = sin2 θ |Vk|2 , i = 1, 2 . (2.98)

2.2 Generalized transformation of the mix-

ing.

Let us now start by introducing a new notation to describe the flavor fields:

νσ(x) = G−1
θ (t) νj(x)Gθ(t) =

1√
V

∑
k,r

[
urk,jα

r
k,νσ(t) + vr−k,jβ

r†
−k,νσ

(t)
]
eik·x,

(2.99)

Obviously we have also:(
αrk,νσ(t)

βr†−k,νσ
(t)

)
= G−1

θ (t)

(
αrk,j(t)

βr†−k,j(t)

)
Gθ(t) (2.100)

If we explicit the generator Gθ(t) in the frame where k = (0, 0, |k|) we
have:


αrk,νe(t)
αrk,νµ(t)

βr†−k,νe
(t)

βr†−k,νµ
(t)

 =


cθ sθ |Uk| 0 sθ ε

r |Vk|
−sθ |Uk| cθ sθ ε

r |Vk| 0
0 −sθ εr |Vk| cθ sθ |Uk|

−sθ εr |Vk| 0 −sθ |Uk| cθ




αrk,1(t)
αrk,2(t)

βr†−k,1(t)

βr†−k,2(t)


(2.101)

where cθ ≡ cos θ, sθ ≡ sin θ, εr ≡ (−1)r.
In Eq.(2.99) it can be used an eigenfunction with arbitrary masses µσ, so the
transformation (2.100),see [30, 31], becomes:

νσ(x) =
1√
V

∑
k,r

[
urk,σα̃

r
k,νσ(t) + vr−k,σβ̃

r†
−k,νσ

(t)
]
eik·x, (2.102)

uσ and vσ are the helicity eigenfunction with definite mass µσ.
Using this basis we simplify considerably the calculations with respect to the
above mentioned choice [31]. The generalized flavor operator will be denoted
by a tilde to distinguish the one above defined.
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Let us consider again the set of free fermion11 field operators composed, for
simplicity, by only two elements, i.e. assume our annihilators are:(

αrk,i(t)

βr†−k,i(t)

)
, with i = 1, 2. , (2.103)

the non zero masses are m1 and m2, with m1 6= m2.
The wave functions ui and vi

12 satisfy the free Dirac equations

(i 6k +mi)ui = 0 , (i 6k −mi)vi = 0 , (2.104)

respectively.
We denote the with |0〉1,2 = |0〉1 ⊗ |0〉2 the vacuum state that is annihilated

by

(
αrk,i(t)

βr†−k,i(t)

)
. As we know, in quantum field theory there exist many

unitarily inequivalent representations of the anti-commutation (commutation
for bosons) relations of the fields operators [33] [34] so we can consider another
set of annihilation operators:(

α̃rk,i(t)

β̃r†−k,i(t)

)
, i = 1, 2, (2.105)

Suppose now that the wave functions that corresponds to the operators
of Eqs. (2.105) satisfy the free fields Dirac equations:

(i 6k + µi)ũi = 0 , (i 6k − µi)ṽi = 0 , (2.106)

As we can see, the mass now is considered as a mass parameter13 i.e. mi
14

are mass parameters for the fields νi(x) and µi are mass parameters for the
fields ν̃i(x).
The two sets of operators are related in the following way:(

α̃rk,i(t)

β̃r†−k,i(t)

)
= I−1

µ (t)

(
αrk,i(t)

βr†−k,i(t)

)
Iµ(t) . (2.107)

The operator Iµ(t) is given by:

Iµ(t) =
∏
k,r

exp

{
i
∑
i

ξki

[
αr†k,i(t) β

r†
−k,i(t) + βr−k,i(t)α

r
k,i(t)

]}
(2.108)

11All the conclusions that we achieve here remain valid even in boson case.
12We omit the index k whenever no confusion arises
13A parameter with the dimension of a mass.
14In this particular case coincide with the masses
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Obviously if µi = mi the operator Iµ(t) transforms into the identity opera-
tor and this is simply due to the fact that ξki ≡ (χ̃i−χi)/2 and cot χ̃i = |k|/µi,
cotχi = |k|/mi.
Substituting (2.108) into (2.107) we obtain the matrix form of (2.107)15, i.e.
:


α̃rk,1(t)
α̃rk,2(t)

β̃r†−k,1(t)

β̃r†−k,2(t)

 =


ρk

1 0 i λk
1 0

0 ρk
2 0 i λk

2

i λk
1 0 ρk

1 0
0 iλk

2 0 ρk
2




αrk,1(t)
αrk,2(t)

βr†−k,1(t)

βr†−k,2(t)

 (2.109)

The matrix elements of the transformation matrix are given in the sequent
way:

ρk
i δrs = ũr†k,i u

s
k,i = ṽr†−k,i v

s
−k,i ≡ cos ξki δrs

i λk
i δrs = ũr†k,iv

s
−k,i = ṽr†−k,iu

s
k,i ≡ i sin ξki δrs

(2.110)

with i = 1, 2 and ω̃k,i =
√

k2 + µ2
i .

The vacuum that is annihilated by the (α̃rk,i, β̃
r
−k,i) operators is

|0̃(t)〉1,2 ≡ I−1
µ (t)|0〉1,2 . (2.111)

Relation (2.107) is nothing but a Bogoliubov transformation that relate fields
operators (αrk,i, β

r
−k,i) and (α̃rk,i,that have different mass parameters, i.e. µi

and mi.
In the infinite volume limit the Hilbert spaces where αrk,i and α̃rk,i are respec-
tively defined these operators turn out to be unitarily inequivalent.
As we can see, the ξki acts like a label that specify the unitarily inequivalent
Hilbert spaces that have different values of the µi mass parameter among
themselves.
Obviously |0̃(t)〉1,2 is not annihilated by αrk,i and βrk,i and it is not an eigen-
state of the number operators:

Nαi =
∑
r

∫
d3k αr†k,iα

r
k,i, Nβi =

∑
r

∫
d3k βr†k,iβ

r
k,i (2.112)

Also |0〉1,2 is not annihilated by α̃rk,i and β̃rk,i and it is not an eigenstate of
the number operators:

15Written for both the index i = 1 , 2
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Ñαi(t) =
∑
r

∫
d3k α̃r†k,i(t)α̃

r
k,i(t), Ñβi(t) =

∑
r

∫
d3k β̃r†k,i(t)β̃

r
k,i(t).

(2.113)
If we perform the expectation values of Nαi and Nβi on |0̃(t)〉1,2 we obtain:

1,2〈0̃(t)|Nαi |0̃(t)〉1,2 = 1,2〈0̃(t)|Nβi |0̃(t)〉1,2 = sin2ξki , (2.114)

If we also perform the expectation value of Ñαi(t) and Ñβi(t) on |0〉1,2 we
obtain:

1,2〈0|Ñαi(t)|0〉1,2 = 1,2〈0|Ñβi(t)|0〉1,2 = sin2ξki . (2.115)

So the number operator, say Nαi , is not an invariant under the Bogoliubov
transformation (2.107). This results is not really surprising us because Bo-
goliubov transformations introduce a new unitary inequivalent(i.e. physi-
cally inequivalent) Hilbert space in the infinite volume limit. In other words,
through the Bogoliubov transformation we introduce a new set of asymptotic
fields16, so there are infinitely many sets of asymptotic fields, each one asso-
ciated to its specific representation. The choice of the set of fields operators,
i.e. the choice of the Hilbert space of states that describe our system, is then
dictated by the physical conditions which are actually realized and where the
system is.
If we define the state |α̃rk,i〉 as |α̃rk,i(0)〉 = α̃r†k,i(0)|0̃〉, we have:

〈α̃rk,i(0)| Ñαi(t) |α̃rk,i(0)〉 = |{α̃rk,i(t), α̃
r†
k,i(0)}|2

= ||ρk
i |2ei(ω̃k,i−ωk,i)t + |λk

i |2ei(ω̃k,i+ωk,i)t|2, (2.116)

with i = 1, 2. Equation(2.116) shows that the expectation value of
the time dependent number operator is not preserved by the transforma-
tion (2.107) applied both to states and operators. Consider the total charge
operator

Qi = Nαi −Nβi (2.117)

with i = 1, 2, instead of considering the single number operators Nαi and Nβi

we have that:

Q̃i = Qi, (2.118)

16A new set of quasi-particles.
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i.e. Qi, for free fields, is conserved under the Bogoliubov transformation
(2.107).
The expectation value of Qi at time t on the state at t = 0 is given by:

〈α̃rk,i(0) | Q̃i(t) | α̃rk,i(0)〉 = 〈αrk,i(0) | Qi(t) | αrk,i(0)〉, (2.119)

since we have:

|{α̃rk,i(t), α̃
r†
k,i(0)}|2 + |{β̃r†k,i(t), α̃

r†
k,i(0)}|2 = |{αrki(t), α

r†
k,i(0)}|2 + |{βr†k,i(t), α

r†
k,i(0)}|2.

(2.120)

So we have shown that the above mentioned expectation value is independent
from mass parameters.
If we consider, instead of the Bogoliubov (2.107) a Bogoliubov nested into a
rotation 17 we obtain similar results.
We clarified that quantum fields can have different mass parameters because
of it is intrinsic into QFT, so this feature is independent from the occurrence
of the mixing. Also we have seen that the choose of the mass parameter must
be justified on the ground of physical reasons [35, 36, 37].
Obviously in the mixing problem the choice µe ≡ m1, µµ ≡ m2 is motivated
by the fact that m1, m2 are the mass-eighenfields, so it is the only one that
have a physic relevance.
Going forward, we will use the charge operator instead of the each number
operator; this operator describes the relative population densities in a beam.
In case of fermion oscillation it is relate to the lepton charge.

2.3 Current structure for field mixing.

Consider a doublet of free fields with masses m1 and m2 with m1 6= m2.
The lagrangian density that describe the behavior of the above mentioned
fields is:

L(x) = Ψ̄m(x) (i 6∂ −Md) Ψm(x) , (2.121)

where ΨT
m = (ν1, ν2) and Md = diag(m1,m2).

The label m indicates that we are dealing with mass eighenfields, in the
following the flavor eighenfields are labelled by f .
The above lagrangian is invariant under global U(1) phase transformations
like:

17In this way we reproduce the mixing fields situation that we have seen before.
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Ψ
′

m(x) = eiαΨm(x), (2.122)

so we have the conservation of the Noether charge:

Q=

∫
I0(x)d3x (2.123)

with
Iµ(x) = Ψ̄m(x)γµΨm(x) (2.124)

that is the current obtained applying Noether’s theorem. Q is the total
charge of the system, i.e. the total lepton number.
Let us now consider a global SU(2) transformation:

Ψ
′

m(x) = eiαj ·τjΨm(x) j = 1, 2, 3. (2.125)

with αj real constants, and τj being the Pauli matrices. The lagrangian

(2.121) is not invariant under the above mentioned transformation because
m1 6= m2 . Referring to (2.121) if we consider the gauge transformation:

ψm(x)→ ψ′m(x) = eiαjτjψm(x), (2.126)

with:
τj ≡

(
I,
σ1

2
,
σ2

2
,
σ3

2

)
, (2.127)

where I is the identity matrix, σj, with j = 1, 2, 3. are the Pauli matrices and
αj, with j = 1, 2, 3. that are constants. Obviously (2.126) is an SU(2)⊗U(1)
transformation.
We can power expand eiαjτj obtaining:

eiαjτj =

∑
n(iαjτj)

n

n!
. (2.128)

For not too big values αj we can approximate (2.128) in the following way:

eiαjτj = I + iαjτj. (2.129)

So we can re write the equation (2.126) as follows:

ψ′(x) =

∑∞
n (iαjτj)

n

n!
ψ(x). (2.130)

If we now calculate:
∆L(x) = L′(x)− L(x), (2.131)
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we have:

∆L(x) = ψ′m(x) (iγµ∂µ −Md)ψ
′
m(x)− ψm(x) (iγµ∂µ −Md)ψm(x) (2.132)

Remembering that ψ′m(x) = ψ′†m(x)γ0 we obtain:

ψ′m(x) =

(∑∞
n (iαjτj)

n

n!
ψ(x)

)†
γ0 = ψ(x)†(x)

(∑∞
n (iαjτj)

n

n!

)†
γ0 ⇒

(2.133)

L′(x) = ψ(x)†(x)

(∑∞
n (iαjτj)

n

n!

)†
γ0 (iγµ∂µ −Md)

(∑∞
n (iαjτj)

n

n!

)
ψm(x).

(2.134)

The first term of the equation (2.134) becomes18:

ψ(x)†
(∑∞

n (iαjτj)
n

n!

)†
γ0 (iγµ∂µ)

(∑∞
n (iαjτj)

n

n!

)
ψm(x) =

ψ(x)†
(∑∞

n (iαjτj)
n

n!

)†(∑∞
n (iαjτj)

n

n!

)
γ0 (iγµ∂µ)ψm(x) =

ψ(x)† (iγµ∂µ)ψm(x)⇒ (2.135)

L′(x) = ψ(x)† (iγµ∂µ)ψm(x)−

ψ(x)†(x)

(∑∞
n (iαjτj)

n

n!

)†
γ0Md

(∑∞
n (iαjτj)

n

n!

)
ψm(x)⇒

∆L(x) = ψm(x)

(
Md −

(∑∞
n (iαjτj)

n

n!

)†
Md

(∑∞
n (iαjτj)

n

n!

))
ψm(x).

(2.136)

Separating in the two sums the even and the odd terms we obtain:

∆L(x) = ψm(x) (Md − (−iτj sin(αj) + cos(αj))Md (iτj sin(αj) + cos(αj)))ψm(x) =

ψm(x)
(
Md + i sin2(αj)τjMdτj + i sin(αj) cos(αj)[τj,Md]− cos2(αj)Md

)
ψm(x).

(2.137)

18Note that: τ0 = I4×4 ; τ1 = 1
2

(
02×2 I2×2

I2×2 02×2

)
; τ2 = 1

2

(
02×2 −ıI2×2

ıI2×2 02×2

)
;

τ1 = 1
2

(
I2×2 02×2

02×2 I2×2

)
; where 2× 2 indicate 2× 2 matrices. So the τ matrices operate

on
(
ν1(x)
ν2(x)

)
. and note that

(∑∞
n (iαjτj)

n

n!

)† (∑∞
n (iαjτj)

n

n!

)
= I4×4
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In the limit of αj → 019we obtain:

δL(x) = lim
αj→0

∆L(x) = ψm(x)iαj[τj,Md]ψm(x). (2.138)

By Noether theorem the currents of a complex field are given by:

Jµ(x) = i

{
Ψ†α(x)

∂L
∂ (∂µΨ†α(x))

− ∂L
∂ (∂µΨα(x))

Ψα(x)

}
, (2.139)

so, in our case:

Jµm,j(x) = Ψ̄m(x) γµ τj Ψm(x), j = 1, 2, 3. (2.140)

Explicitly we have:

Jµm,1(x) =
1

2
[ν̄1(x) γµ ν2(x) + ν̄2(x) γµ ν1(x)] , (2.141)

Jµm,2(x) =
i

2
[ν̄1(x) γµ ν2(x)− ν̄2(x) γµ ν1(x)] , (2.142)

Jµm,3(x) =
1

2
[ν̄1(x) γµ ν1(x)− ν̄2(x) γµ ν2(x)] . (2.143)

and,

Jµm,0(x) =
1

2
[ν̄1(x) γµ ν1(x) + ν̄2(x) γµ ν2(x)] (2.144)

Obviously the related charges are given by:

Qm,j(t) =

∫
J0
m,j(x)d3x, j = 1, 2, 3, (2.145)

and satisfy su(2) algebra:

[Qm,i(t), Qm,j(t)] = iεijkQm,k(t). (2.146)

The Casimir operator is proportional to the total conserved charge, as we
can see:

Qm,0 =
1

2
Q. (2.147)

By the fact that Md is diagonal we have that even Qm,3 is conserved, this also
implies that Q1 and Q2, witch are the charges of the two separated neutrinos
(ν1(x) and ν2(x)), are conserved:

Q1 =
1

2
Q+Qm,3, (2.148)

Q2 =
1

2
Q−Qm,3 . (2.149)

19Up to first order in αj
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If we do the normal ordering, we obtain:

: Qi :≡
∫
d3x : ν†i (x) νi(x) :=

∑
r

∫
d3k

(
αr†k,iα

r
k,i − βr†−k,iβ

r
−k,i

)
, (2.150)

where i = 1, 2 and the : .. : denotes normal ordering with respect to the
vacuum |0〉1,2.
As we can easily verify, neutrino states with definite masses defined as

|νrk,i〉 = αr†k,i|0〉1,2, i = 1, 2, (2.151)

are then eigenstates of : Q1 : and : Q2 :, which can be identified with the
lepton charges in the absence of mixing. The above mentioned charges are
nothing but the Noether charges of the free fields ν1(x) and ν2(x).
The transformations induced by the generators τ1, τ2, τ3 are

Ψ
′

m =

(
cos θ1 i sin θ1

i sin θ1 cos θ1

)
Ψm, (2.152)

Ψ
′

m =

(
cos θ2 sin θ2

− sin θ2 cos θ2

)
Ψm, (2.153)

Ψ
′

m =

(
eiθ3 0
0 e−iθ3

)
Ψm (2.154)

and the transformation induced by Qm,2(t) :

Ψf (x) = e−2iθQm,2(t) Ψm(x) e2iθQm,2(t) (2.155)

corresponds exactly to the matrix form of the mixing transformations (2.1),
(2.2).

I will consider now the lagrangian written in the flavor basis:

L(x) = Ψ̄f (x) (i 6∂ −M) Ψf (x) , (2.156)

where ΨT
f = (νe, νµ), M =

(
me meµ

meµ mµ

)
and f indicate the flavor basis.

Considering the transformation:

Ψ
′

f (x) = eiαj ·τjΨf (x) j = 0, 1, 2, 3 (2.157)

and repeating the same steps that we have done to obtain the formula (2.138)
we have the analogous formula:

δL(x) = iαjΨ̄f (x) [τj,M] Ψf (x) = −αj∂µJµf,j(x), (2.158)
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Again by Noether theorem we obtain the currents:

Jµf,j(x) = Ψ̄f (x) γµ τj Ψf (x) , (2.159)

or explicitly:

Jµf,1(x) =
1

2
[ν̄e(x) γµ νµ(x) + ν̄µ(x) γµ νe(x)] , (2.160)

Jµf,2(x) =
i

2
[ν̄e(x) γµ νµ(x)− ν̄µ(x) γµ νe(x)] , (2.161)

Jµf,3(x) =
1

2
[ν̄e(x) γµ νe(x) − ν̄µ(x)γµ νµ(x)] , (2.162)

Jµf,0(x) =
1

2
[ν̄e(x) γµ νe(x) + ν̄µ(x) γµ νµ(x)] . (2.163)

From these formulas we obtain the flavor charges:

Qf,j(t) =

∫
J0
f,j(x)d3x j = 0, 1, 2, 3, (2.164)

that satisfy again the su(2)
⊗

u(1) algebra:

[Qf,i(t), Qf,j(t)] = iεi,jkQf,k(t) . (2.165)

Defining the electronic and the muonic charges as follows:

Qνe(t) ≡
1

2
Q+Qf,3(t), (2.166)

Qνµ(t) ≡ 1

2
Q−Qf,3(t), (2.167)

where Q = Qνµ(t) +Qνµ(t) is the total conserved charge, we have that those
charges are not conserved because Qf,3(t) is not conserved by the fact that
the off diagonal terms of M are not null. Any way the Casimir operator is
again proportional to the total conserved charge:

Qf,0 = Q0 =
Q

2
. (2.168)

If we do the normal ordering we obtain:

:: Qνσ(t) :: ≡
∫
d3x :: ν†σ(x) νσ(x) ::

=
∑
r

∫
d3k

(
αr†k,νσ(t)αrk,νσ(t) − βr†−k,νσ

(t)βr−k,νσ(t)
)
(2.169)
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where σ = e, µ, and :: ... :: denotes normal ordering with respect to |0〉e,µ.
Note that

:: Qνσ(t) :: = G−1
θ (t) : Qj : Gθ(t), (2.170)

with σ = e, µ, j = 1, 2.
The flavor states at any time t are defined as eigenstates of the charge

:: Qνe(t) :: |νrk,e(t)〉 = |νrk,e(t)〉 ; :: Qνµ(t) :: |νrk,µ(t)〉 = |νrk,µ(t)〉
(2.171)

:: Qνe(t) :: |νrk,µ(t)〉 = :: Qνµ(t) :: |νrk,e(t)〉 = 0, :: Qνσ(t) :: |0(t)〉e,µ = 0.

(2.172)

Where

|νrk,σ(t)〉 ≡ αr†k,νσ(t)|0(t)〉e,µ, σ = e, µ (2.173)

Same situation happens for antiparticles.
These results are not trivial since the usual Pontecorvo states [28]:

|νrk,e〉P = cos θ |νrk,1〉 + sin θ |νrk,2〉 (2.174)

|νrk,µ〉P = − sin θ |νrk,1〉 + cos θ |νrk,2〉 , (2.175)

are not eigenstates of the flavor charges operators [38]. To see better it,
consider that the expectation values of the flavor charges on the Pontecorvo
states are (we consider for simplicity t = 0).

P 〈νrk,e| :: Qνe(0) :: |νrk,e〉P = cos4 θ + sin4 θ

+ 2|Uk| sin2 θ cos2 θ +
∑
r

∫
d3k, (2.176)

and

1,2〈0| :: Qνe(0) :: |0〉1,2 =
∑
r

∫
d3k, (2.177)

which are both infinite.
The above mentioned infinity can be removed by normal ordering respect to
the mass vacuum but we also have the problem that the expectation values:

1,2〈0|(: Qνe(0) :)2|0〉1,2 = 4 sin2 θ cos2 θ

∫
d3k|Vk|2, (2.178)

P 〈νrk,e|(: Qνe(0) :)2|νrk,e〉P = cos6 θ + sin6 θ (2.179)

+ sin2 θ cos2 θ

[
2|Uk|+ |Uk|2 + 4

∫
d3k|Vk|2

]
,
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are both infinite and they make the corresponding quantum fluctuation di-
vergent.
So the correct flavor states are the ones in (2.173) and the correct normal
ordered charge operators are the ones in (2.170).

2.4 Oscillations in neutrino mixing.

Following what we have explained before, using the Pontecorvo’s states pro-
duces a violation of lepton charge conservation both in the production and
in the detection vertices. Of course in the presence of mixing the leptonic
charge is violated, but not in the production or in the detection vertex, this
violation occurs during time evolution (flavor oscillations), due to the form
of the weak interaction.
Let us show it in more specific details; I define the following quantities:

A0 ≡ P 〈νrk,e| : Qνe(0) : |νrk,e〉P = cos4 θ + sin4 θ + 2|Uk| sin2 θ cos2 θ < 1,

(2.180)

1− A0 ≡ P 〈νrk,e| : Qνµ(0) : |νrk,e〉P = 2 sin2 θ cos2 θ − 2|Uk| sin2 θ cos2 θ > 0,

(2.181)

for any θ 6= 0, k 6= 0 and for m1 6= m2.
Obviously we have:

P 〈νrk,e| : Qνe(0) : |νrk,e〉P + P 〈νrk,e| : Qνµ(0) : |νrk,e〉P = 1. (2.182)

Consider, for example, an ideal experiment in which neutrinos (or other
oscillating fermions) are produced and detected by means of some charged
weak interaction process. What will be measured in the experiment will be
obviously the number of accompanying leptons, say (anti-) electrons in the
source and in the detector. I will indicate with NS

e the number of electrons
revealed at the source and with ND

e (t) the number of electrons revealed at
the detector, usually one assumes that NS

νe = NS
e and ND

νe(t) = ND
e (t) , where

NS
νe and ND

νe(t) are the neutrinos produced in the source and those detected,
respectively. The usual Pontecorvo oscillating probability formulas are then
given by:

ND
e (t)

NS
e

=
ND
νe(t)

NS
νe

= 1− sin2 2θ sin2

(
∆ω

2
t

)
= 1− P (t) (2.183)

ND
µ (t)

NS
e

=
ND
νµ(t)

NS
νe

= sin2 2θ sin2

(
∆ω

2
t

)
= P (t). (2.184)
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I take now into account (2.178, 2.179) so we have that the vacuum uctuation
for neutrinos has got a divergence, and it means that in the generation vertex
there is an instantaneous leptonic charge violations for them. Considering
that the total leptonic charge in any vertex must be conserved, we have
that only a part of electron neutrinos produced is accompanied by an anti
electron23. I denote these quantities as:

ÑS
e = A0N

S
νe (2.185)

ÑD
e (t) = A0N

D
νe(t) + (1− A0)ND

νµ(t). (2.186)

(1 − A0)ND
νµ(t) is the part of the electronic neutrinos that arrives at the

detecting vertex initially as muon neutrinos and that becomes electron neu-
trinos by a vacuum oscillation in the same vertex.
So the oscillation formulas becomes:

ÑD
e (t)

ÑS
e

=
A0N

D
νe(t) + (1− A0)ND

νµ(t)

A0NS
νe

= 1− 2A0 − 1

A0

P (t). (2.187)

The above written formula is substantially different from the usual Pon-
tecorvo’s formula used to describe the oscillation (2.183) 20.

2.5 The exact formula for neutrino oscilla-

tions

The flavor vacuum state at time t = 0 is |0〉e,µ and the one electron neutrino
state is (for k = (0, 0, |k|)):

|νrk,e〉 ≡ αr†k,e|0〉e,µ =
[
cos θ αr†k,1 + |Uk| sin θ αr†k,2 + εr |Vk| sin θ αr†k,2α

r†
k,1β

r†
−k,1

]
|0〉1,2 .

(2.188)

Last term is a multi - particle component that disappear in relativistic limit
|k| � √m1m2 : in this limit the Pontecorvo state is recovered.
It is not possible to compare directly the neutrino state at time t with the
one at time t = 0 given in Eq.(2.188).
Recalling (2.72) indeed in the reference frame for which k = (0, 0, |k|) we
have:

20The Pontecorvo’s formula is however recovered in the relativistic limit.Indeed, for
|k| � √m1m2 we have |Uk| −→ 1 and A0 = 1.
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|νrk,e(t)〉 ≡ αr†k,e(t)|0(t)〉e,µ = e−i :H: t|νrk,e(0)〉

= e−iωk,1t
[
cos θ αr†k,1 + |Uk|e−iΩ

k
−t sin θ αr†k,2 − ε

r |Vk|e−iΩ
k
+t sin θ αr†k,1α

r†
k,2β

r†
−k,1

]
× G−1

k,s 6=r(θ, t)
∏
p 6=k

G−1
p (θ, t)|0〉1,2 , (2.189)

where Ωk
+ ≡ ωk,2 + ωk,1, Ωk

− ≡ ωk,2 − ωk,1, and

: H : = H −1,2 〈0|H|0〉1,2 = H + 2

∫
d3k Ωk

+ =
∑
i,r

∫
d3kωk,i[α

r†
k,iα

r
k,i + βr†k,iβ

r
k,i] ,

(2.190)

is the Hamiltonian normal ordered with respect to the vacuum |0〉1,2 21. From
the above written equations, considering Appendix E, we have

lim
V→∞

〈νe(t)|νe(0)〉 = 0. (2.191)

We found this because |0〉e,µ is not eigenstate of the free Hamiltonian H so
one find:

lim
V→∞

e,µ〈0 | 0(t)〉e,µ = 0 (2.192)

Thus, in the limitV →∞ , at different times we have unitarily inequivalent
flavor vacua. It is direct consequence of the fact that flavor states are not
mass eigenstates, moreover, the unitarily inequivalence implies that we can-
not directly compare flavor states at different times.
Let us now consider the flavor charge operators,in the Heisemberg represen-
tation we have:

e,µ〈0|Qνe(t)|0〉e,µ =e,µ 〈0|Qνµ(t)|0〉e,µ = 0, (2.193)

and the oscillation formula for the flavor charges are given by [7]:

Qk
νe→νe(t) = 〈νrk,e| :: Qνe(t) :: |νrk,e〉

=
∣∣∣{αrk,νe(t), αr†k,νe(0)

}∣∣∣2 +
∣∣∣{βr†−k,νe

(t), αr†k,νe(0)
}∣∣∣2 ,

(2.194)

21We have also used the notation G(θ, t) =
∏

p

∏
sGp, s(θ, t).
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Qk
νe→νµ(t) = 〈νrk,e| :: Qνµ(t) :: |νrk,e〉

=
∣∣∣{αrk,νµ(t), αr†k,νe(0)

}∣∣∣2 +
∣∣∣{βr†−k,νµ

(t), αr†k,νe(0)
}∣∣∣2 .

(2.195)

Total charge is obviously conserved:

Qk
νe→νe(t) + Qk

νe→νµ(t) = 1. (2.196)

Explicitly equations (2.193), (2.194) are:

Qk
νe→νe(t) = 1− sin2(2θ)

[
|Uk|2 sin2

(
ωk,2 − ωk,1

2
t

)
+ |Vk|2 sin2

(
ωk,2 + ωk,1

2
t

)]
,

(2.197)

Qk
νe→νµ(t) = sin2(2θ)

[
|Uk|2 sin2

(
ωk,2 − ωk,1

2
t

)
+ |Vk|2 sin2

(
ωk,2 + ωk,1

2
t

)]
.

(2.198)

2.6 Consideration on the oscillating formu-

las.

We conclude the chapter with some considerations about the oscillation for-
mulas Eqs.(2.197),( 2.198). These formulas are exact and have two differences
with respect to the Pontecorvo formulas: the amplitudes are energy depen-
dent, and there is an additional oscillating term. They have the sense of
statistical averages. This is because thy present the structure of a many-
body theory, where it has no sense to talk about single particle states. The
approximate Pontecorvo result is recovered in the relativistic limit. Indeed
for |k| � √m1m2 we have |Uk|2 −→ 1 and |Vk|2 −→ 0 and the results of [28]
about oscillation are recovered.

2.7 Non-cyclic phases for neutrino oscillations

in QFT

We now study the Aharonov-Anandan geometric invariant in the context of
QFT. In this manner we will show a connection between two level systems
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that we have studied before and the neutrino mixing. The structure of the
neutrino flavor vacuum has got multi particle components even in two flavor
case. This component makes non cyclic time evolution associated to them.
As we can see, the flavor state in the reference frame for which k = (0, 0, |k|)
are:

|νrk,e(t)〉 ≡ αr†k,e(t)|0(t)〉e,µ = e−i :H: t|νrk,e(0)〉, (2.199)

= e−iωk,1t
[

cos θ αr†k,1 + |Uk|e−iΩ
k
−t sin θ αr†k,2

− εr |Vk|e−iΩ
k
+t sin θ αr†k,1α

r†
k,2β

r†
−k,1

]
G−1

k,s 6=r(θ, t)
∏
p6=k

G−1
p (θ, t)|0〉1,2 ,

|νrk,µ(t)〉 ≡ αr†k,µ(t)|0(t)〉e,µ = e−i :H: t|νrk,µ(0)〉, (2.200)

= e−iωk,2t
[

cos θ αr†k,2 − |Uk|eiΩ
k
−t sin θ αr†k,1

+ εr |Vk|e−iΩ
k
+t sin θ αr†k,1α

r†
k,2β

r†
−k,2

]
G−1

k,s 6=r(θ, t)
∏
p6=k

G−1
p (θ, t)|0〉1,2 ,

where Ωk
+ ≡ ωk,2 + ωk,1, Ωk

− ≡ ωk,2 − ωk,1, and

: H : = H −1,2 〈0|H|0〉1,2 = H + 2

∫
d3k Ωk

+ (2.201)

=
∑
i

∑
r

∫
d3kωk,i[α

r†
k,iα

r
k,i + βr†k,iβ

r
k,i] ,

is the Hamiltonian normal ordered with respect to the vacuum |0〉1,2 . the
multi-particle components disappear in the relativistic limit |k| � √m1m2 ,

where |Uk|2 → 1 and |Vk|2 → 0 and the quantum mechanical Pontecorvo’s
states are recovered.
By formulas (2.199) and (2.200) we see that the non-cyclic time evolution of
mixed neutrino states is due to the presence of two oscillation frequencies,
namelyΩ+ and Ω+. The Berry like phase studied before is not applicable
in the QFT mixing formalism, since quantities like 〈νσ(t)|νσ(t′)〉 are zero
for t 6= t′ in the infinite volume limit [38]. On the contrary the Aharonov
Anandan invariant defined in [12] is suitable for the present case because it
is well defined in the case of non-cyclic transformation in time and do not
have products of states at different times.
Let us now consider the quantity:

sσ,τ (t) = 2

∫ t

0

∆Eσ,τ dt , (2.202)



45

where ∆E ≡ ∆Er
k and σ, τ are labels used to compute the uncertainties

∆Eσ,τ in the above mentioned integrals. Computing ∆Eσ,σ with σ = e, µ by
using : H : we have:

∆E2
σ,σ = 〈νrk,σ(t)| (: H :)2 |νrk,σ(t)〉 − 〈νrk,σ(t)| : H : |νrk,σ(t)〉2, σ = e, µ.

(2.203)

Using Eqs.(G.1), (G.3), and (G.2), (G.4), we obtain

∆E2
e,e = sin2 θ cos2 θ

[
(Ωk
−)2 + 4ωk,1ωk,2|Vk|2

]
+ 4ω2

k,1 sin4 θ |Uk|2|Vk|2,
(2.204)

∆E2
µ,µ = sin2 θ cos2 θ

[
(Ωk
−)2 + 4ωk,1ωk,2|Vk|2

]
+ 4ω2

k,2 sin4 θ |Uk|2|Vk|2.
(2.205)

∆Ee,µ in QFT is given by

∆Ee,µ = 〈νrk,e(t)| : H : |νrk,µ(t)〉 = 〈νrk,µ(t)| : H : |νrk,e(t)〉 = Ωk
− sin θ cos θ |Uk| .

(2.206)

Defining, at time t, the multi-particle flavor states (their explicit expres-
sions are given in Appendix F):

|νrk,eēµ(t)〉 ≡ αr†k,e(t) β
r†
−k,e(t)α

r†
k,µ(t) |0(t)〉e,µ , (2.207)

|νrk,µµ̄e(t)〉 ≡ αr†k,µ(t) βr†−k,µ(t)αr†k,e(t) |0(t)〉e,µ , (2.208)

we have also the following non-zero expectation values:

∆Eµēe,e = 〈νrk,µēe(t)| : H : |νrk,e(t)〉, ∆Eeµ̄µ,e = 〈νrk,eµ̄µ(t)| : H : |νrk,e(t)〉,

(2.209)

∆Eµēe,µ = 〈νrk,µēe(t)| : H : |νrk,µ(t)〉, ∆Eeµ̄µ,µ = 〈νrk,eµ̄µ(t)| : H : |νrk,µ(t)〉,
(2.210)

whose explicit expressions are given in Appendix G.
Now note that ∆E2

e,e and ∆E2
µ,µ can be also obtained as follows

∆E2
e,e = ∆E2

e,µ + ∆E2
µēe,e + ∆E2

eµ̄µ,e , (2.211)

∆E2
µ,µ = ∆E2

e,µ + ∆E2
µēe,µ + ∆E2

eµ̄µ,µ . (2.212)

Eqs.(2.211), (2.212) represent a generalization of the relations (1.85), (1.86)
to the case of QFT flavor states; they take into account the multiparticle
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components due to the condensate structure of the flavor vacuum.
Explicitly the expressions for the various Aharonov Anandan invariant sσ,τ ,
with σ, τ = e, µ, eµ̄µ, µēe are given by:

se,e(t) = 2 t sin θ
√

cos2 θ
[
(Ωk
−)2 + 4ωk,1ωk,2|Vk|2

]
+ 4ω2

k,1 sin2 θ |Uk|2|Vk|2 ,
(2.213)

sµ,µ(t) = 2 t sin θ
√

cos2 θ
[
(Ωk
−)2 + 4ωk,1ωk,2|Vk|2

]
+ 4ω2

k,2 sin2 θ |Uk|2|Vk|2 ,
(2.214)

se,µ(t) = Ωk
− t sin 2θ |Uk| , (2.215)

sµēe,e(t) = seµ̄µ,µ(t) = εr Ωk
+ t sin 2θ |Vk| , (2.216)

seµ̄µ,e(t) = 4 εr ωk,1 t sin2 θ |Uk| |Vk| , (2.217)

sµēe,µ(t) = −4 εr ωk,2 t sin2 θ |Uk| |Vk| . (2.218)

From Eqs.(2.214)-(2.218) we see that in the relativistic limit, k� √m1m2,
where |Vk| → 0, |Uk| → 1, we have

sµēe,e = seµ̄µ,e = sµēe,µ = seµ̄µ,µ = 0. (2.219)

When we are in that limit, from Appendix C and Eqs. (2.204), (2.205), we
have

∆Ee,e = ∆Eµ,µ = ∆Ee,µ = Ωk
− sin θ cos θ . (2.220)

In particular, if the time t is set t = 2nπ/Ωk
−, the quantum mechanical result

is consistently recovered and the geometric invariants

se,e = sµ,µ = se,µ = 2nπ sin 2θ (2.221)

coincide with the one given in Eq.(1.89). Since |0〉1,2 and |0〉e,µ are unitary
inequivalent states in the infinite volume limit, two different normal orderings
must be defined, one with respect to the vacuum |0〉1,2 for fields with definite
masses, as usual denoted by : ... :, and one with respect to the vacuum for
fields with definite flavor |0〉e,µ, denoted by :: ... :: . ∆Eσ,τ can be then
computed by using : H : as done above or with : : H : :. The Hamiltonian
normal ordered with respect to the vacuum |0〉e,µ is given by

:: H ::≡ H − e,µ〈0|H|0〉e,µ = H + 2

∫
d3k Ωk

+ (1− 2 |Vk|2 sin2 θ) .(2.222)

Taking into account the expectation values of : : H : : on the flavor states
given in Appendix G, we have:

∆Ee,µ = 〈νrk,e(t)| : H : |νrk,µ(t)〉 = 〈νrk,e(t)| :: H :: |νrk,µ(t)〉 . (2.223)
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On the other hand, defining the uncertainties ∆Ẽσ,σ as

∆Ẽ2
σ,σ = 〈νrk,σ(t)|(:: H ::)2|νrk,σ(t)〉 − 〈νrk,σ(t)| :: H :: |νrk,σ(t)〉2, σ = e, µ ,

(2.224)

and by using the relations in Appendix G, we have:

∆Ẽ2
e,e = ∆E2

e,e , (2.225)

∆Ẽ2
µ,µ = ∆E2

µ,µ , (2.226)

that means that, ∆E2
σ,σ are independent of the normal ordering used, : H :

or :: H ::.
We can also see that by comparing the expectation values of : H : and :: H ::
presented in Appendix G, we obtain that: ∆Ee,µ ,∆Eµēe,e ,∆Eeµ̄µ,e ,∆Eµēe,µ ,∆Eeµ̄µ,µ
are also independent of the particular normal ordering used. This implies
that Eqs.(2.213)-(2.214) are normal ordering independent.

2.7.1 Discussion and Conclusions

We now conclude the argument treated above resuming some links obtained
by discussing the above paragraph, and giving some further comments.
Eqs.(2.213) - (2.218) are the generalization of Eq.(2.221) that coincide with
Eq.(1.89). Indeed quantum mechanics neutrinos can be seen as a particular
two level system so what we have seen in general about them in quantum
mechanic can be extended to quantum field theory.

Let me now define the operator:

H ′(t) ≡
∑
r

∫
d3k

[
ωee

(
αr†k,e(t)α

r
k,e(t) + βr†−k,e(t)β

r
−k,e(t)

)
+ ωµµ

(
αr†k,µ(t)αrk,µ(t) + βr†−k,µ(t)βr−k,µ(t)

)
+ ωµe

(
αr†k,e(t)α

r
k,µ(t) + αr†k,µ(t)αrk,e(t)

+ βr†−k,e(t)β
r
−k,µ(t) + βr†−k,µ(t)βr−k,e(t)

)]
. (2.227)

ωee ≡ ωk,1 cos2 θ + ωk,2 sin2 θ, (2.228)

ωµµ ≡ ωk,1 sin2 θ + ωk,2 cos2 θ (2.229)

and
ωµe ≡ Ωk

− sin θ cos θ. (2.230)
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We also have:

〈νrk,e(t)|H ′(t) |νrk,e(t)〉 = ωk,1 cos2 θ + ωk,2 sin2 θ , (2.231)

〈νrk,µ(t)|H ′(t) |νrk,µ(t)〉 = ωk,1 sin2 θ + ωk,2 cos2 θ , (2.232)

〈νrk,e(t)|H ′(t) |νrk,µ(t)〉 = Ωk
− sin θ cos θ , (2.233)

〈νrk,µēe(t)|H ′(t) |νrk,e(t)〉 = 〈νrk,µēe(t)|H ′(t) |νrk,µ(t)〉 =

= 〈νrk,eµ̄µ(t)|H ′(t) |νrk,e(t)〉 = 〈νrk,eµ̄µ(t)|H ′(t) |νrk,µ(t)〉 = 0 .(2.234)

The above expectation values tell to us that contributions from the flavor
vacuum condensate have been eliminated.
Indeed, Eqs.(2.231) and (2.232) coincide with Eqs.(1.15), and (1.16) derived
in the two level system case. Moreover the uncertainties in the energy H ′(t)
of the multi-particle states (2.207), (2.208) are zero, like for QM two level
systems.
Finally we can define the invariant:

s′e = s′µ = 2

∫ nT

0

∆E ′ dt = 2nπ sin 2θ , (2.235)

where
T = 2nπ/Ωk

− (2.236)

and

∆E ′
2
e,e = ∆E ′

2
µ,µ = ∆E ′

2
e,µ = 〈νrk,σ(t)|H ′2(t) |νrk,σ(t)〉 − 〈νrk,σ(t)|H ′(t) |νrk,σ(t)〉2

= 〈νrk,e(t)|H ′(t) |νrk,µ(t)〉2 = (Ωk
−)2 sin2 θ cos2 θ , (2.237)

with σ = e, µ .



Chapter 3

Particle mixing and connection
with dark energy.

The aim of this chapter is to show that the non-perturbative vacuum struc-
ture associated with neutrino and quark mixing leads to a non–zero contri-
bution to the value of the dark energy. At the present epoch, contributions
compatible with the evaluated upper bound on the dark energy come from
vacuum condensates due to particle mixing with adiabatic index close to −1.
An increasing bulk of data [40]-[41] has been accumulated in the last few
years and indicates that the geometry of the universe is spatially flat and
that it is in a phase of accelerated expansion. This accelerated expansion is
thought to be induced by dark energy theorized as a non-clustered fluid with
negative pressure. This picture have acquired many strengths from more pre-
cise measurements of the CMBR spectrum, due to the WMAP experiment
[42] and by the extension of the SNeIa Hubble diagram to redshifts higher
than 1 [43].
In this chapter we show that particle mixing might contribute to the dark
energy budget of the universe [44, 45, 46, 47] and establish a link between
cosmology and particle physics. In particular we will analyze the possible
contribution to dark energy due to the vacuum condensation of neutrino and
quark mixing in two regimes of the currently adopted scheme in literature
[48]:
A) the regime of the matter dominated universe with adiabatic index w = p/ρ
ranging between 0 and 1/3; and
B) the present epoch regime, dark energy dominated universe, with w ' −1.
We find that, at the present epoch, w ' −1 imposes constraints on the vac-
uum condensate leading to dark energy values compatible with those inferred
from observations.
First we will discuss the particle mixing condensate in the early and in the
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present epoch, second we present explicit computations of the mixing contri-
butions to the dark energy at the present epoch.
We outline the QFT formalism for fermion mixing [49, 50, 51, 52, 53, 54, 55]
in Appendix F and in Appendix G a useful computation is reported . The

contribute of dark energy component to the total matter-energy density is
ΩΛ ' 0.7. So, physically motivated cosmological models should undergo, at
least, three phases: an early accelerated inflationary phase, an intermediate
standard matter dominated (decelerated) phase and a final, today observed,
dark energy dominated (accelerated) phase.
In other words we have to take into account some form of dark energy which
evolves from early epochs inducing the today observed acceleration.
We put now our attention to the the energy density due to the vacuum con-
densate arising from particle mixing because it gives a contribution to the
vacuum energy which evolves dynamically. We will also consider the con-
tribution due the quark mixing condensate to complete the analysis. The cal-
culation here presented is performed for Dirac fermion fields in a Minkowski
space-time. It can be extended to curved space-times, as it is showed in many
papers that will be resumed in a forthcoming review.
The energy-momentum tensor density Tµν(x) for the fermion fields ψi, i =
1, 2, 3 [33], is

: Tµν(x) : =
i

2
:
(

Ψ̄m(x)γµ
↔
∂ ν Ψm(x)

)
: (3.1)

which can be written as [56]

: Tµν(x) : = : Σµν(x) : + : Vµν(x) :

= :
{ i

2

(
Ψ̄m(x)γµ

↔
∂ ν Ψm(x)

)
− ηµν

[
i

2
Ψ̄m(x)γα

↔
∂α Ψm(x)

]
+ ηµν

[
Ψ̄m(x) Md Ψm(x)

] }
: , (3.2)

where

: Σµν(x) : = :

{
i

2

(
Ψ̄m(x)γµ

↔
∂ ν Ψm(x)

)
− ηµν

[
i

2
Ψ̄m(x)γα

↔
∂α Ψm(x)

]}
:,

(3.3)

: Vµν(x) : = ηµν :
[
Ψ̄m(x) Md Ψm(x)

]
: , (3.4)

Md = diag(m1,m2,m3) 1 and Ψm = (ψ1, ψ2, ψ3)T .
We recall that T00 and Tjj do not depend on time in the Minkowski metric.

1m1,m2,m3 are the quarks’s masses.
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The energy momentum tensor density of the vacuum condensate is given by

T condµν (x) = f〈0(t)| : Tµν(x) : |0(t)〉f , (3.5)

where |0(t)〉f is the vacuum for the flavor fields and the normal ordering is
with respect to the vacuum |0〉m for the massive fields (see Appendix F).

As said above, we consider two cases:

1st) The early universe epochs,where the vacuum is not required to be
space-time invariant since Lorentz invariance is broken [57]. Thus the vacuum
expectation values of the energy momentum tensor density in such epochs
may be space-time dependent, i.e.

T condµν (x) =
i

2
f〈0(t)| :

(
Ψ̄m(x)γµ

↔
∂ ν Ψm(x)

)
: |0(t)〉f . (3.6)

2nd) The present epoch where Tµν(x) is space - time independent because the
breaking of the Lorentz invariance is very small (negligible). Thus, in this
case (present epoch), terms in Tµν(x) carrying space-time derivatives ∂µ ∼
kµ = (ωk, kj), must give vanishing contributions to the vacuum expectation
values. Then, in the present epoch, for the kinematical part Σcond

µν of T condµν

we have

Σcond
µν = f〈0(t)| : Σµν(x) : |0(t)〉f ' 0 (3.7)

and the energy momentum tensor density of the vacuum condensate is given
by:

T condµν ' f〈0(t)| : Vµν(x) : |0(t)〉f = ηµν f〈0(t)| : Ψ̄m(x) Md Ψm(x) : |0(t)〉f .
(3.8)

In the following we compute the contributions ρmix and pmix to the vacuum
energy density and to the vacuum pressure in the 1st and 2nd case.

3.1 Early universe epochs

We now focus our attention on the Early universe epochs; the contribution
ρmix of the particle mixing to the vacuum energy density is given by the (0, 0)
component of the energy momentum tensor density of the vacuum condensate
given in Eq.(3.6):
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ρmix ≡
1

V
η00

∫
d3x T cond00 (x) . (3.9)

In terms of the annihilation and creation operators of ψ1, ψ2 and ψ3, we
have

ρmix =
∑
i,r

∫
d3k

(2π)3
ωk,i

(
f〈0|αr†k,iα

r
k,i|0〉f + f〈0|βr†k,iβ

r
k,i|0〉f

)
, i = 1, 2, 3 .

(3.10)

Introducing the cut-off K, Eq.(3.10) becomes

ρmix =
2

π

∑
i

∫ K

0

dk k2 ωk,i N k
i , i = 1, 2, 3 . (3.11)

Here ωk,i =
√
k2 +m2

i and N k
i are the numbers of particles condensed in the

vacuum given in Appendix H.
The contribution pmix of particle mixing to the vacuum pressure is given

by the (j, j) component of the energy momentum tensor density of the vac-
uum condensate given in Eq.(3.6):

pmix = − 1

V
ηjj

∫
d3x T condjj (x) . (3.12)

where no summation on the index j is intended. We have

pmix = −ηjj
∑
i,r

∫
d3k

(2π)3

kjkj
ωk,i

(
f〈0|αr†k,iα

r
k,i|0〉f + f〈0|βr†k,iβ

r
k,i|0〉f

)
, (3.13)

with i = 1, 2, 3. If we have the isotropy of the vacuum condensate momenta
we can write: T cond11 = T cond22 = T cond33 , then:

pmix =
2

3 π

∑
i

∫ K

0

dk k2 k2

ωk,i
N k
i . (3.14)

Considering Eqs.(3.11) and (3.14) one obtains the adiabatic index wmix of the
particle mixing condensate, wmix ≡ pmix/ρmix in function of the momentum
cut-off K.

This means that in the case considered now, the condensate ”have got the
behavior” of a perfect fluid of dust and radiation at the extreme values of the
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cut-off. To be more precise,it behaves as radiation in the relativistic regime
(wmix ' 1/3) and as dark matter in the non-relativistic regime (wmix '
0). So, in the early Universe and in the regions in which the breaking of
Lorentz invariance of the vacuum is not negligible, the condensate could
give rise to the dark matter component of the Universe and also the particle
mixing condensate does not give contributions to the ”standard” dark energy
(the adiabatic index wmix assumes in such epoch, as we said, values in the
range 0 ≤ wmix ≤ 1/3). This gives the possibility to achieve the large scale
structure formation as requested in a standard matter-radiation dominated
regime and is in complete agreement with the WMAP results [57].

3.2 Universe at present epoch

Estimates from WMAP data show that the current universe consists of 5%
of ordinary matter, 23% dark matter, 72% dark energy [57]. Lorentz in-
variance of the vacuum is now unbroken, then the energy momentum tensor
density of the vacuum condensate comes almost completely from space-time
independent condensate contributions and from Eq.(3.8), we have:

ηµν
∑
i

mi

∫
d3x

(2π)3 f〈0| : ψ̄i(x)ψi(x) : |0〉f = ηµν ρmix. (3.15)

Since the vacuum condensate is homogeneous and isotropic and its energy-
momentum tensor density is given by

T condµν = diag(ρmix , pmix , pmix , pmix ), (3.16)

by comparing this expression with Eq.(3.15) and using ηµν = diag(1,−1,−1,−1),
we obtain the state equation: ρmix ' −pmix, i.e. the adiabatic index at the
present epoch is

wmix = pmix/ρmix ' −1 . (3.17)

We can see that the vacuum condensate, coming from particle mixing, at
the present epoch behaves as a cosmological constant [58].

ρmix computed from Eq.(3.15) thus turns out to be

ρmix '
2

π

∑
i

∫ K

0

dk k2 m2
i

ωk,i
N k
i , (3.18)



54

which, by using Eqs.(H.5), (H.6), (H.7) in Appendix H, can be written as

ρmix '
2

π

∫ K

0

dk k2
{ m2

1

ωk,1

(
s2

12c
2
13 |V k

12|2 + s2
13 |V k

13|2
)

(3.19)

+
m2

2

ωk,2

[(
s2

12c
2
23 + c2

12s
2
23s

2
13

)
|V k

12|2 + s2
23c

2
13 |V k

23|2
]

+
m2

3

ωk,3

[(
c2

12s
2
23 + s2

12c
2
23s

2
13

)
|V k

23|2 +
(
s2

12s
2
23 + c2

12c
2
23s

2
13

)
|V k

13|2
] }

− 4

π
s12c23c12s23s13cδ

∫ KΛ

0

dk k2
{ m2

2

ωk,2
|V k

12|2 +
m2

3

ωk,3

[
|V k

23|2 − |V k
13|2
] }

,

where cδ = cos δ. Note that ρmix also depends on the CP violating phase
δ. Let us observe that the value of the integral is conditioned by the presence
in the integrand of the |V k

ij |2 factors.The integral, and thus ρmix, would be
zero for |V k

ij |2 = 0 for any |k|. The |V k
ij |2’s account for the vacuum condensate

(Eqs. (H.5) - (H.7)) and |V k
ij |2 goes to zero only for large momenta, getting

its maximum value for |k| ≈ √mimj for any i, j = 1, 2, 3 [53]. We note that
the integral (3.18) diverges in K as m4

i log (2K/mj), with i, j = 1, 2, 3 [47].

3.3 Contribute of the particle mixing to the

condensate at the present epoch.

Let us now show that the very small breaking of the Lorentz invariance of
the flavor vacuum at the present epoch constrains the value of the cut-off on
the momenta and consequently the value of the dark energy contributions
due to the particle mixing.

Eq.(3.10) and the identity ωk,i = k2

ωk,i
+

m2
i

ωk,i
show that the energy density

induced by the particle mixing condensate can be written as

ρmix = Σmix + Vmix (3.20)

where the kinematic term Σmix and the potential term Vmix are respectively
given by

Σmix =
2

π

∑
i

∫ K

0

dk k2 k2

ωk,i
N k
i , (3.21)

and

Vmix =
2

π

∑
i

∫ K

0

dk k2 m2
i

ωk,i
N k
i . (3.22)
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By comparing Eqs.(3.18), (3.20) and (3.22), we observe that, at the present
epoch, ρmix ' Vmix; in other words, Σmix � Vmix. The Lorentz invariance of
the flavor vacuum imposes a very small value of the cut-off on the momenta
as we can see:

K � 3
√
m1m2m3 . (3.23)

We consider the adiabatic expansion of a sphere of volume V. Let p denote
the pressure at which the sphere expands. The total energy, E = ρV, is not
conserved since the pressure does work.

We have: dE = −p dV. That is ρ dV + V dρ = −p dV, that can be written
as

d[(ρ+ p)V] = 0 , (3.24)

from which

ρ+ p =
const

V
. (3.25)

Then if the volume is very large (V → ∞), that is in the bulk of the
Universe, i.e. far from the Universe “boundaries”, we have ρ ' −p and the
adiabatic index is w = p/ρ ' −1.

From Eq.(3.25) we have

ρ =
const

V
− p. (3.26)

Moreover, taking into account that the energy density can be written as

ρ = Σ + V (3.27)

where Σ and V are the kinetic and the potential terms respectively, we have
ρ = Σ + V ' −p for a volume V → ∞. If we consider now the condition
Σ � V due to the very small breaking of the Lorentz invariance at the
present epoch, we obtain ρ ' V ' −p. Using such a relation and by equating
the two expressions of ρ: ρ = const

V
− p = Σ + V , we find that, for very large

volume V, the kinematic term is approximatively given by

Σ ' const

V
' 0 . (3.28)

From Eqs.(3.27) and (3.28), we have, at the present epoch,

ρ = Σ− p ' −p (3.29)
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. So in the case of the flavor vacuum condensate, the state equation we obtain
at the present epoch is

wmix =
pmix

Σmix − pmix
. (3.30)

Note that
Σmix − pmix 6= 0, (3.31)

since Σmix � pmix. Eq.(3.30) shows that, since at the present epoch Σmix →
0, then wmix → −1. Moreover, since Σmix and pmix are function of the cut-off
on the momenta K, then Eq.(3.30) gives an expression of wmix as function
of K:

wmix = wmix(K). (3.32)

We now estimate the contributions given to the dark energy by the particle
mixing condensates for different values of wmix close to −1, both for neutrino
and for quark mixing condensates.

3.3.1 Neutrino mixing condensate contribution

Let Ψf represents the flavor neutrino fields: ΨT
f = (νe, νµ, ντ ) and Ψm denotes

the neutrino fields with definite masses, m1, m2, m3:

ΨT
m = (ν1, ν2, ν3). (3.33)

The experimental values of squared mass differences and mixing angles are
respectively:

∆m2
12 = 7.9× 10−5eV 2, (3.34)

∆m2
23 = 2.3× 10−3eV 2, (3.35)

s2
12 = 0.31, (3.36)

s2
23 = 0.44 , (3.37)

s2
13 = 0.009 . (3.38)

If we consider the normal hierarchy case |m3| � |m1,2|, we consider values
of the neutrino masses such that the experimental values of squared mass
difference are satisfied, as for example:

m1 = 4.6× 10−3eV, (3.39)

m2 = 1× 10−2eV, (3.40)

m3 = 5× 10−2eV. (3.41)
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Then the condition Eq.(3.24) for neutrinos reads

K � 1.2× 10−2eV . (3.42)

We find that contributions to the dark energy compatible with its estimated
upper bound, ρν−mix ∼ 10−47GeV 4, are obtained for values of the adiabatic
index wν−mix of the neutrino mixing dark energy component:

−0.98 ≤ wν−mix ≤ −0.97 . (3.43)

Eq.(3.42) is in agreement with the constraint on the equation of state of
the dark energy given by the combination of WMAP and Supernova Legacy
Survey (SNLS) data: w = −0.967+0.073

−0.072 and with the constraint given by
combining WMAP, large-scale structure and supernova data: w = −1.08 ±
0.12 [60].
Values of wν−mix < −0.98 leads to negligible contributions of ρν−mix.

2

3.3.2 Quark mixing condensate contribution

The quark mixing is expressed as:d′s′
b′

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

ds
b

 , (3.44)

where V =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


is the CKM matrix [61]. For the values of the quark masses given in

Ref.[61], we have:

K � 120MeV . (3.45)

We find that the exact Lorentz invariance of the quark mixing condensate
wq−mix = −1 (Σq−mix is 16 orders less than Vq−mix), at the present epoch,
leads to a contribution to the dark energy that is compatible with its esti-
mated upper bound: ρq−mix = 1.5× 10−47GeV 4. We remark that very small
deviations from the value wq−mix = −1 give rise to contributions of ρq−mix
that are beyond the accepted upper bound of the dark energy.

The computation of ρmix turns out to be sensible to small variations in
the values of the particle masses and of ∆m2. 3

2The results we found are dependent on the neutrino mass values one uses.
3Our results are therefore dependent on the mass values one uses.
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Chapter 4

Conclusions

We summarize Briefly here the results obtained in the first chapter and then
proceed to link them to the second chapter of this thesis. Lastly we comment
the results obtained in chapter 3. As we have seen before a fundamental link
between two level quantum systems and QFT fermion systems consists into
the Aharonov Anandan invariant. As we have seen this geometrical invariant,
instead of the Berry phase, can be both defined for quantum two level systems
and for quantum fermion mixing particles; this result and the presence of
an underlying gauge structure for the first one lead us to suppose that is
possible to write a ”quantum field two level theory”1. We stress although
that is possible in QFT of neutrino mixing to define an hamiltonian H ′(t)
(2.227) that leads us to value of the Aharonov Anandan invariant formally
identical to the one obtained in for two level systems:

s′e = s′µ = 2

∫ nT

0

∆E ′ dt = 2nπ sin 2θ , (4.1)

Concerning the chapter 3 instead, we emphasize that the structure of mix-
ing implies a vacuum condensate that can give reason of the presence of
dark energy. We reviewed briefly some results obtained about ωmix both for
early and for present epoch, and these seems to be in agreement with the
evaluable experimental data that we have, especially those that comes from
WMAP experiments. For the present epoch we calculate separately the two
contributions due to neutrinos and to quark mixing.

1Here we mean a quantum field mathematical formalism that is independent from par-
ticular particle family (neutrinos, kaons....etc) as we do in a quantum mechanics frame-
work; we will treat it in a further work.
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Appendix A

Brief introduction to
geometrical invariants

Consider a quantum system described by an Hamiltonian Ĥ and being in a
stationary state. To be more precise we consider an eighenstate |En〉 of Ĥ
or an evolved state

e−
i
h̄
Ent|En〉. (A.1)

The measurement on this state will always give the same result excepted
for a variation of the dynamical phase, that is:

e−
i
h̄

∆Ent. (A.2)

where ∆En is the difference between two eigenvalues of the hamiltonian Ĥ.
Suppose that the hamiltonian has an external dependence by some parame-

ters
−→
R (t) ≡ (α1(t), .....) that depends from the time too.

Suppose also that this parameters remain constant for a while, or in other
words that the hamiltonian do not vary for a time interval.In this interval
the time evolution of an eigenstate of the hamiltonian due to the Shrödinger
equation is1:

Ĥ(
−→
R )|n(t)〉 = ih̄

∂

∂t
|n(t)〉 ⇒

⇒ En|n(t)〉 = ih̄
∂

∂t
|n(t)〉 ⇒

⇒ |n(t)〉 = e−
i
h̄

∫ t
0 (dt′En)|n(0)〉 .

(A.3)

1Remember that in this interval of time
−→
R do not vary so we write |(n)(t)〉 to put

in evidence that we are considering the time evolution of the eigenstate due only to the
Shrödinger equation
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To be more general we have to consider the relative initial phase eiγn where
the initial eigenstate |n(0)〉 could be to have finally

|n(t)〉 = e−
i
h̄

∫ t
0 (dt′En)eiγn|n(0)〉 . (A.4)

If we now vary the parameters
−−→
R(t) slowly in time, considering that even γn

depends on
−−→
R(t), by the adiabatic theorem we have that the system evolve

in time from an eigenstate to another eigenstate of the hamiltonian.

So we have that in an adiabatic transformations of Ĥ(
−→
R (t)) in the parameter

space the relative phases remain each other independent time after time.

Varying
−→
R (t) from 0 to time t we have 2:

|n(t)〉 = e
− i
h̄

∫ t
0

(
dt′E−→

Rn
(t)
)
eiγn(

−−→
R(t))|n(

−→
R (t))〉 , (A.5)

and we have the following Shrödinger equation:

Ĥ(
−−→
R(t))|n(t)〉 = ih̄

∂

∂t
|ψ(t)〉 ⇒

⇒ Ĥ(
−−→
R(t))e

− i
h̄

∫ t
0

(
dt′E−→

Rn
(t′)
)
eiγn(

−−→
R(t))|(n

−→
R )(t)〉 =

= ih̄
∂

∂t

(
e
− i
h̄

∫ t
0

(
dt′E−→

Rn
(t′)
)
eiγn(

−−→
R(t))|(n

−→
R )(t)〉.

)
⇒

⇒ Ĥ(
−−→
R(t))|(n

−→
R )(t)〉e−

i
h̄

∫ t
0

(
dt′E−→

Rn
(t′)
)
eiγn(

−−→
R(t)) =

= ih̄

(
− i
h̄
En(
−→
R (t)) + iγ̇n(

−→
R (t))

)
|n(t)〉+

ih̄

(
e
− i
h̄

∫ t
0

(
dt′E−→

Rn
(t′)
)
eiγn(

−−→
R(t))|∇R(n

−→
R )(t)〉.

)
·
−̇→
R n(t) .

(A.6)

Applying Ĥ(
−→
R (t)) on |(n

−→
R )(t)〉 we obtain:

Ĥ(
−−→
R(t))|(n

−→
R )(t)〉e−

i
h̄

∫ t
0

(
dt′E−→

Rn
(t′)
)
eiγn(

−−→
R(t)) =

En(
−−→
R(t))|(n

−→
R )(t)〉e−

i
h̄

∫ t
0

(
dt′E−→

Rn
(t′)
)
eiγn(

−−→
R(t)) = En(

−−→
R(t))|n(t)〉 ⇒

(A.7)

2Note that |n(0)〉 is an eigenstate of the hamiltonian at time 0, |n(t)〉 is only the
time Shrödinger evolution of |n(0)〉 (no variation of

−→
R happened in time) and |n(

−→
R (t))〉

is the eigenstate |n(t)〉 after the variation of
−→
R in time (no Shrödinger time evolution

happened in this time for the eigenstate). Cause of the variation in time of
−→
R we also

have γn → γn(
−−→
R(t)) and En → E−→

Rn
(t), note that γn and En do not depends strictly on

time or in other words do not vary for Srodinger time evolution.
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0 = −h̄γ̇n(
−→
R (t))|n(t)〉+ ih̄

(
e
− i
h̄

∫ t
0

(
dt′E−→

Rn
(t′)
)
eiγn(

−−→
R(t))|∇R(n

−→
R )(t)〉.

)
·
−̇→
R n(t)⇒

⇒ γ̇n(
−→
R (t))|ψ(t)〉 = i

(
e
− i
h̄

∫ t
0

(
dt′E−→

Rn
(t′)
)
eiγn(

−−→
R(t))|∇R(n

−→
R )(t)〉

)
·
−̇→
R n(t) .

(A.8)

Multiplying on the left by 〈ψ(t)|:

γ̇n(
−→
R (t)) = 〈n

−→
R )(t)|∇R(n

−→
R )(t)〉 ·

−̇→
R n(t) . (A.9)

Integrating (A.9) from t = 0 to t = T , where T is the time the needed to let

the parameters
−→
R (t) turn in their initial values, we have:

γn(T ) = i

∫ T

0

dt ·
−̇→
R n(t)〈n

−→
R )(t)|∇R(n

−→
R )(t)〉 ⇒

⇒ γn(C) = i

∮ −→
dR 〈n

−→
R )(t)|∇R(n

−→
R )(t)〉 ,

(A.10)

where C denote the cycle computed in the parameter space by
−→
R .

What we found is the so-called Berry phase, that as we can see is a pure
parametrical dependent phase and does not depend on the specific cyclic
path in the parameter space.
Sometimes is better to compute the Berry phase considering a total phase ϕ
and the Berry phase as the difference between ϕ and the dynamical phase:

γn(C) = ϕ+
1

h̄

∫ t

0

dt′E−→
Rn

(t) = ϕ+
1

h̄

∫ t

0

dt′〈n
−→
R )(t)| ∂

∂t
|(n
−→
R )(t)〉 . (A.11)

Let us now consider the Aharonov - Anandan geometrical invariant.
This invariant has the advantages that does not depend on the adiabatic
transformation and remains valid even for non cyclic transformation.
We start considering again a physical system that evolves according to the
Schrödinger equation:

Ĥ(t)|ψ(t)〉 = ih̄
∂

∂t
|ψ(t)〉 . (A.12)

Note that now we do not make any hypotheses on the time dependence
of Ĥ(t) Let H be the Hilbert space of the states |ψ(t)〉 and let Π be the
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projection map between H and another Hilbert space P , defined as :

Π(|ψ(t)〉) ≡ {|ψ(t)′〉 : |ψ(t)′〉 = c|ψ(t)〉} . (A.13)

Where c is a complex number. For an isolated system to move in P it is

necessary and sufficient that it is not a stationary state or in other words
that it has a non zero value of the energy uncertainty defined by:

∆E(t)2 = 〈ψ(t)|Ĥ(t)2|ψ(t)〉 − 〈ψ(t)|Ĥ(t)|ψ(t)〉2 . (A.14)

We will now show that the quantity

s = 2

∫
∆E(t)

h̄
dt . (A.15)

is independent on the particular Ĥ(t) used to transport the state along a
curve Γ in P hence it is a pure geometrical quantity as it is the Berry Phase.
To do this we Taylor expand to the second order the state:|ψ(t+dt)〉. Bearing
in mind the formula (A.12) we obtain:

|ψ(t+ dt)〉 = |ψ(t)〉 − idt
h̄
Ĥ(t)+

−dt
2

2h̄

(
i
dĤ(t)

dt
+

1

h̄
Ĥ(t)2|ψ(t)〉

)
+O(dt3) .

(A.16)

Remembering that Ĥ(t) is Hermitian we obtain:

|〈ψ(t)|ψ(t+ dt)〉|2 =

= (〈ψ(t)|ψ(t+ dt)〉)†(〈ψ(t)|ψ(t+ dt)〉) =

= 1− dt2∆E2

h̄2 +O(dt3) ,

(A.17)

therefore

ds = 2
∆E

h̄
(A.18)

is independent of the phases of |ψ(t)〉 and |ψ(t+ dt)〉 but it depends only on
the points in P to witch they project.
There are infinite Hamiltonians that would evolve the state of our system
along a given curve Γ in P , they generally produce different phase factors for
the state vector in every single instant of time, but they all give the samequantity for s.
In other words s is invariant and to be more precise it’s a geometrical invari-
ant that give to us the distance along Γ as measured by the Fubini-Study
metric as we can see by the relation:
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ds2 = 2gµνdZ
µdZ

ν
=

= 4(1− |〈ψ(t)|ψ′(t)〉|2) ,
(A.19)

where Zµ are coordinates in P and where gµν is the Fubini-Study metric in
the projective Hilbert space P , as asserted in reference [12].
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Appendix B

Mixed states, entropy and
environment effects.

Now I exploit the Schmit decomposition theorem (see e.g. [19, 20]). One can
always ”double” the system under study; denote it by A.
The ”doubled” system, denoted by Ã, is introduced in such a way to work
in the composite Hilbert space HA,Ã ≡ HA ⊗ HÃ with states |ΨA,Ã〉 =∑

n

√
wn |an ãn〉 ∈ HA,Ã,

∑
nwn = 1. The density matrix for mixed states

of the system A, ρA =
∑

nwn|an〉〈an|, is obtained by tracing out the system
Ã:

ρA =
∑
n

wn|an〉〈an| =
∑
nm

√
wnwm |an〉〈am|Tr (|ãn〉〈ãm|) = TrÃ (ρA⊕Ã) ,

(B.1)
where the relation 〈ãm|ãn〉 = δnm has been used.
One can show that the ”tilde” system Ã can be interpreted as the thermal
bath or reservoir for the original systemA [21, 22] and the free energy and the
entropy can be defined1. The state |ΨA,Ã〉 is recognized to be an entangled
state of the tilde and non-tilde modes and the entropy provides a measure of
the entanglement [18, 23].

Now I will show the computation of the static (linear) entropy for the
qubit states |φ(t)〉 and |ψ(t)〉 given by Eqs. (1.8) and (1.9), respectively.
One introduces the states |0̃〉 and |1̃〉 as

|0〉 → |0〉 ⊗ |0̃〉 , (B.2)

|1〉 → |1〉 ⊗ |1̃〉 , (B.3)

1Such a construction is equivalent to the GNS construction in the C∗-algebra formalism
and requires the quantum field theory framework [21, 22].
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and uses Eqs. (B.2) and (B.3) in Eqs. (1.8) and (1.9). The density matrices
for the states in HS,S̃ , where S = {0, 1} and S̃ = {0̃, 1̃}, are denoted by

ρξ = |ξ(t), ξ̃(t)〉〈ξ(t), ξ̃(t)| where ξ = φ , ψ and ξ̃ = φ̃ , ψ̃. The reduced
density matrix ρSφ (and similarly for ρSψ) is obtained by tracing out the tilde-

system S̃, and vice-versa. Thus one obtains:

ρSφ = TrS̃ ρφ = cos2 θ |0〉 〈0|+ sin2 θ |1〉 〈1| , (B.4)

ρS̃φ = TrS ρφ = cos2 θ |0̃〉 〈0̃| + sin2 θ |1̃〉 〈1̃| . (B.5)

The static linear entropies SL associated to the reduced matrices ρSφ and ρS̃φ
are then:

SL[ρSφ ] = 2 (1− TrS [(ρSφ)2]) = sin2(2θ), (B.6)

SL[ρS̃φ ] = 2 (1− TrS̃ [(ρS̃φ)2]) = sin2(2θ). (B.7)

Recall that

sin2 2θ =
4

ω2
−
ω2
φψ (B.8)

(cf. Eq. (1.17)), where
ω− ≡ ω2 − ω1 6= 0. (B.9)

. For the dynamic entropy we have to consider the state |φ(t)〉 in Eq.(1.8) 2

and express it in terms of the states |φ(0)〉 and |ψ(0)〉:

|φ(t)〉 = Aφφ(t)|φ(0)〉 + Aφψ(t)|ψ(0)〉, (B.10)

where Aφφ(t) and Aφψ(t) are the amplitudes:

Aφφ(t) = 〈φ(0)|φ(t)〉 = e−iω1t cos2 θ + e−iω2t sin2 θ, (B.11)

Aφψ(t) = 〈ψ(0)|φ(t)〉 = e−iω1t sin θ cos θ + e−iω2t sin θ cos θ , (B.12)

respectively. The tilde-states |φ̃〉 and |ψ̃〉 are introduced, for any t, as :

|φ〉 → |φ〉 ⊗ |φ̃〉 , (B.13)

|ψ〉 → |ψ〉 ⊗ |ψ̃〉 . (B.14)

2we can proceed in a similar way for |ψ(t)〉
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The reduced density matrices are now, for any t,

ρRφ = TrR̃ρφ = |Aφφ(t)|2 |φ〉 〈φ|+ |Aφψ(t)|2 |ψ〉 〈ψ|, (B.15)

ρR̃φ = TrRρφ = |Aφφ(t)|2 |φ̃〉 〈φ̃|+ |Aφψ(t)|2 |ψ̃〉 〈ψ̃|, (B.16)

where R = {φ, ψ} and R̃ = {φ̃, ψ̃}.
The dynamic entropies SL are

SL(ρRφ ) = 2 (1− TrR[(ρRφ )2]) = 4 |Aφφ(t)|2 |Aφψ(t)|2 = 4Pφ→φ(t)Pφ→ψ(t),

(B.17)

SL(ρR̃φ ) = 2 (1− TrR̃[(ρR̃φ )2]) = 4 |Aφφ(t)|2 |Aφψ(t)|2 = 4Pφ→φ(t)Pφ→ψ(t),

(B.18)

where Pφ→φ(t) and Pφ→ψ(t) are the probabilities of the transitions φ → φ
and φ→ ψ:

Pφ→ψ(t) = sin2(2θ) sin2

(
ω2 − ω1

2
t

)
, (B.19)

Pφ→φ(t) = 1− sin2(2θ) sin2

(
ω2 − ω1

2
t

)
, (B.20)

respectively.
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Appendix C

Formulas for the flavor vacuum

We use the formulas (2.67) - (2.69) and the equations (2.87 - 2.90) to obtain:

Sk
+S

k
−|0〉1,2 = Sk

−S
k
+|0〉1,2 (Sk

+)2(Sk
−)2|0〉1,2 = (Sk

−)2(Sk
+)2|0〉1,2

(Sk
+)2Sk

−|0〉1,2 = Sk
−(Sk

+)2|0〉1,2 + 2Sk
+|0〉1,2

(Sk
−)2Sk

+|0〉1,2 = Sk
+(Sk

−)2|0〉1,2 + 2Sk
−|0〉1,2

(Sk
+)3Sk

−|0〉1,2 = 6(Sk
+)2|0〉1,2 (Sk

+)4Sk
−|0〉1,2 = 0

(Sk
+)3(Sk

−)2|0〉1,2 = 6Sk
−(Sk

+)2|0〉1,2 (Sk
−)3(Sk

+)2|0〉1,2 = 6Sk
+(Sk

−)2|0〉1,2

(Sk
+)4(Sk

−)2|0〉1,2 = 24(Sk
+)2|0〉1,2 (Sk

+)5(Sk
−)2|0〉1,2 = 0

Sk
+S

k
−(Sk

+)2|0〉1,2 = 4(Sk
+)2|0〉1,2 Sk

−S
k
+(Sk

−)2|0〉1,2 = 4(Sk
−)2|0〉1,2

Sk
3S

k
−S

k
+|0〉1,2 = 0 Sk

3 (Sk
+)2(Sk

−)2|0〉1,2 = 0

(Sk
3 )nSk

−|0〉1,2 = (−1)nSk
−|0〉1,2 (Sk

3 )n(Sk
−)2|0〉1,2 = (−2)n(Sk

−)2|0〉1,2

(Sk
3 )nSk

+|0〉1,2 = Sk
+|0〉1,2 (Sk

3 )n(Sk
+)2|0〉1,2 = 2n(Sk

+)2|0〉1,2

Sk
3S

k
−(Sk

+)2|0〉1,2 = Sk
−(Sk

+)2|0〉1,2 Sk
3S

k
+(Sk

−)2|0〉1,2 = −Sk
+(Sk

−)2|0〉1,2
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Appendix D

The flavor vacuum

To calculate |0〉ke,µ it is useful to choose k = (0, 0, |k|).
In the above mentioned reference frame the operators Sk

+, Sk
−, Sk

3 are written
as follows:

Sk
+ ≡

∑
k,r

Sk,r
+ =

∑
r

(
U∗k α

r†
k,1α

r
k,2 − εr V ∗k βr−k,1α

r
k,2 + εr Vk α

r†
k,1β

r†
−k,2 + Uk β

r
−k,1β

r†
−k,2

)
(D.1)

Sk
− ≡

∑
k,r

Sk,r− =
∑
r

(
Uk α

r†
k,2α

r
k,1 + εr V ∗k βr−k,2α

r
k,1 − εr Vk α

r†
k,2β

r†
−k,1 + U∗k β

r
−k,2β

r†
−k,1

)
(D.2)

Sk
3 ≡

∑
k,r

Sk,r
3 =

1

2

∑
k,r

(
αr†k,1α

r
k,1 − β

r†
−k,1β

r
−k,1 − α

r†
k,2α

r
k,2 + βr†−k,2β

r
−k,2

)
,

(D.3)

where Uk, Vk are defined in Eqs.(2.80)-(2.81) and εr = (−1)r.
Using the Gaussian decomposition, |0〉ke,µ can be written as

|0〉ke,µ =
∏
r

exp(−tanθ Sk,r
+ )exp(−2ln cosθ Sk,r

3 ) exp(tanθ Sk,r
− )|0〉1,2

(D.4)

where 0 ≤ θ < π
2
.

The final expression for |0〉ke,µ in terms of Sk,r
± and Sk,r

3 is then
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|0〉ke,µ =
∏
r

[
1 + sin θ cos θ

(
Sk,r
− − S

k,r
+

)
− sin2 θ Sk,r

+ Sk,r
−

]
|0〉1,2 .

(D.5)



Appendix E

Orthogonality of flavor vacuum
states and flavor states at
different times

The product of two vacuum states at different times t 6= t′ (we put for
simplicity t′ = 0) is

e,µ〈0|0(t)〉e,µ =
∏
k

C2
k(t) = e2

∑
k lnCk(t) (E.1)

with

Ck(t) ≡ (1− sin2 θ |Vk|2)2 + 2 sin2 θ cos2 θ |Vk|2 e−i(ωk,2+ωk,1)t +

+ sin4 θ |Vk|2 |Uk|2
(
e−2iωk,1t + e−2iωk,2t

)
+ (E.2)

+ sin4 θ |Vk|4 e−2i(ωk,2+ωk,1)t .

In the infinite volume limit we obtain (note that |Ck(t)| ≤ 1 for any value of
k, t, and of the parameters θ, m1, m2 ):

lim
V→∞

e,µ〈0|0(t)〉e,µ = lim
V→∞

exp

[
2V

(2π)3

∫
d3k (ln |Ck(t)| + iαk(t))

]
= 0

(E.3)
with |Ck(t)|2 = Re[Ck(t)]

2+Im[Ck(t)]
2 and αk(t) = tan−1 (Im[Ck(t)]/Re[Ck(t)]).

Thus we have orthogonality of the vacua at different times.
Now we can show the orthogonality of flavor states at different times.
We define the electron neutrino state at time t with momentum k as

|νk,e(t)〉 = αr†k,e(t)|0(t)〉e,µ. (E.4)

75



76

The flavor vacuum is explicitly given by1

|0(t)〉e,µ =
∏
p

G−1
p,θ(t)|0〉1,2 , (E.5)

then, we have

〈νk,e(0)|νk,e(t)〉 = e,µ〈0|αrk,e(0)αr†k,e(t)|0(t)〉e,µ (E.6)

=
∏
p

∏
q

1,2〈0|Gp,θ(0)αrk,e(0)αr†k,e(t)G
−1
q,θ(t)|0〉1,2 .

With p 6= q the mixing generators commute, then we put p = q:

〈νk,e(0)|νk,e(t)〉 =
∏
p

1,2〈0|Gp,θ(0)αrk,e(0)αr†k,e(t)G
−1
p,θ(t)|0〉1,2 . (E.7)

αr†k,e acts only on vacuum with momentum k, then

〈νk,e(0)|νk,e(t)〉 ∝ e,µ〈0k|αrk,e(0)αr†k,e(t)|0
k(t)〉e,µ

∏
p6=k

1,2〈0|Gp,θ(0)G−1
p,θ(t)|0〉1,2

= e,µ〈0k|αrk,e(0)αr†k,e(t)|0
k(t)〉e,µ e,µ〈0|0(t)〉e,µ. (E.8)

By using the Eq.(E.3), in the infinite volume limit we obtain the orthogonality
of flavor states at different times.

1To be precise, the mass vacuum is to be understood as |0〉1,2 =
|0〉k1

1,2

⊗
|0〉k2

1,2

⊗
|0〉k3

1,2
.....



Appendix F

QFT flavor states

The explicit expression for |0〉e,µ at time t = 0 in the reference frame for
which k = (0, 0, |k|) is

|0〉e,µ =
∏
r,k

[
(1− sin2 θ |Vk|2)− εr sin θ cos θ |Vk|(αr†k,1β

r†
−k,2 + αr†k,2β

r†
−k,1) +

+ εr sin2 θ |Vk||Uk|(αr†k,1β
r†
−k,1 − α

r†
k,2β

r†
−k,2) + sin2 θ |Vk|2αr†k,1β

r†
−k,2α

r†
k,2β

r†
−k,1

]
|0〉1,2.

(F.1)

Eq.(F.1) exhibits the condensate structure of the flavor vacuum |0〉e,µ. The
important point is that 1,2〈0|0(t)〉e,µ → 0, for any t, in the infinite volume
limit [32]. Thus, in such a limit the Hilbert spaces H1,2 and He,µ turn out to
be unitarily inequivalent spaces.

The explicit form of the multi-particle states defined in equations:

|νrk,eēµ(t)〉 ≡ αr†k,e(t) β
r†
−k,e(t)α

r†
k,µ(t) |0(t)〉e,µ , (F.2)

|νrk,µµ̄e(t)〉 ≡ αr†k,µ(t) βr†−k,µ(t)αr†k,e(t) |0(t)〉e,µ , (F.3)

is
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|νrk,eēµ(t)〉 = −
[

cos θ αr†k,1α
r†
k,2β

r†
−k,1 e

−i(2ωk,1+ωk,2)t + εr |Vk| sin θ αr†k,1 e
−iωk,1t

+|Uk| sin θ αr†k,1α
r†
k,2β

r†
−k,2 e

−i(ωk,1+2ωk,2)t
]
G−1

k,s 6=r(θ, t)
∏
p6=k

G−1
p (θ, t)|0〉1,2 ,

(F.4)

|νrk,µµ̄e(t)〉 =
[

cos θ αr†k,1α
r†
k,2β

r†
−k,2 e

−i(ωk,1+2ωk,2)t − εr |Vk| sin θ αr†k,2 e
−iωk,2t

−|Uk| sin θ αr†k,1α
r†
k,2β

r†
−k,1 e

−i(2ωk,1+ωk,2)t
]
G−1

k,s 6=r(θ, t)
∏
p6=k

G−1
p (θ, t)|0〉1,2 .

(F.5)



Appendix G

Expectation values of : H : and
:: H ::

The flavor states introduced in the Appendix F are used in computing the
following expectation values for the Hamiltonian : H : , :: H ::. We have:

〈νrk,e(t)| : H : |νrk,e(t)〉 = ωk,1 (cos2 θ + 2 sin2 θ |Vk|2) + ωk,2 sin2 θ ,(G.1)

〈νrk,µ(t)| : H : |νrk,µ(t)〉 = ωk,2 (cos2 θ + 2 sin2 θ |Vk|2) + ωk,1 sin2 θ ,(G.2)

〈νrk,e(t)| (: H :)2 |νrk,e(t)〉 = ω2
k,1 (cos2 θ + 4 sin2 θ |Vk|2)

+ ω2
k,2 sin2 θ + 4ωk,1 ωk,2 sin2 θ |Vk|2 , (G.3)

〈νrk,µ(t)|(: H :)2|νrk,µ(t)〉 = ω2
k,2 (cos2 θ + 4 sin2 θ |Vk|2)

+ ω2
k,1 sin2 θ + 4ωk,1 ωk,2 sin2 θ |Vk|2 . (G.4)

〈νrk,eµ̄µ(t)| : H : |νrk,e(t)〉 = 2 εr ωk,1 sin2 θ |Uk| |Vk| , (G.5)

〈νrk,µēe(t)| : H : |νrk,µ(t)〉 = −2 εr ωk,2 sin2 θ |Uk| |Vk| , (G.6)

〈νrk,eµ̄µ(t)| : H : |νrk,µ(t)〉 = 〈νrk,µēe(t)| : H : |νrk,e(t)〉 = εr Ωk
+ sin θ cos θ |Vk|,

(G.7)

The Hamiltonian normal ordered with respect to the flavor vacuum :: H ::
satisfies the following relations:

〈νrk,e(t)| :: H :: |νrk,e(t)〉 = ωk,1 cos2 θ + ωk,2 sin2 θ (1− 2 |Vk|2) , (G.8)

〈νrk,µ(t)| :: H :: |νrk,µ(t)〉 = ωk,2 cos2 θ + ωk,1 sin2 θ (1− 2 |Vk|2) , (G.9)

〈νrk,e(t)| :: H :: |νrk,µ(t)〉 = 〈νrk,µ(t)| :: H :: |νrk,e(t)〉 = Ωk
− sin θ cos θ |Uk| ,

(G.10)
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〈νrk,e(t)| (:: H ::)2 |νrk,e(t)〉 = ω2
k,1 (cos2 θ + 4 sin4 θ |Uk|2 |Vk|2)

+ ω2
k,2 sin2 θ (1− 4 sin2 θ |Uk|2 |Vk|2) ,(G.11)

〈νrk,µ(t)| (:: H ::)2 |νrk,µ(t)〉 = ω2
k,2 (cos2 θ + 4 sin4 θ |Uk|2 |Vk|2)

+ ω2
k,1 sin2 θ (1− 4 sin2 θ |Uk|2 |Vk|2) .(G.12)

Finally we have:

〈νrk,eµ̄µ(t)| :: H :: |νrk,e(t)〉 = 〈νrk,eµ̄µ(t)| : H : |νrk,e(t)〉 (G.13)

〈νrk,µēe(t)| :: H :: |νrk,µ(t)〉 = 〈νrk,µēe(t)| : H : |νrk,µ(t)〉 (G.14)

〈νrk,µēe(t)| :: H :: |νrk,e(t)〉 = 〈νrk,eµ̄µ(t)| :: H :: |νrk,µ(t)〉 =

= 〈νrk,eµ̄µ(t)| : H : |νrk,µ(t)〉 = 〈νrk,eµ̄µ(t)| : H : |νrk,µ(t)〉 (G.15)

.



Appendix H

Particle mixing in Quantum
Field Theory

We use the CKM matrix as mixing matrix U for three fields: Ψf (x) =
U Ψm(x) where Ψf (x) are fields (neutrinos or quarks) with definite flavor
and Ψm(x) are fields with definite masses. The mixing transformation can
be written as ψασ (x) ≡ G−1

θ (t)ψαi (x)Gθ(t), where (σ, i) = (A, 1), (B, 2), (C, 3),
and the generator is

Gθ(t) = G23(t)G13(t)G12(t) , (H.1)

where

G12(t) ≡ exp
[
θ12

∫
d3x

(
ψ†1(x)ψ2(x)− ψ†2(x)ψ1(x)

) ]
, (H.2)

G23(t) ≡ exp
[
θ23

∫
d3x

(
ψ†2(x)ψ3(x)− ψ†3(x)ψ2(x)

) ]
, (H.3)

G13(t) ≡ exp
[
θ13

∫
d3x

(
ψ†1(x)ψ3(x)e−iδ − ψ†3(x)ψ1(x)eiδ

) ]
. (H.4)

The numbers of particles condensed in the vacuum for any r are:

N k
1 = f〈0(t)|Nk,r

α1
|0(t)〉f = f〈0(t)|Nk,r

β1
|0(t)〉f = s2

12c
2
13 |V k

12|2 + s2
13 |V k

13|2 ,
(H.5)

N k
2 = f〈0(t)|Nk,r

α2
|0(t)〉f = f〈0(t)|Nk,r

β2
|0(t)〉f =

∣∣−s12c23 + eiδ c12s23s13

∣∣2 |V k
12|2 + s2

23c
2
13 |V k

23|2 ,
(H.6)

N k
3 = f〈0(t)|Nk,r

α3
|0(t)〉f = f〈0(t)|Nk,r

β3
|0(t)〉f =∣∣−c12s23 + eiδ s12c23s13

∣∣2 |V k
23|2 +

∣∣s12s23 + eiδ c12c23s13

∣∣2 |V k
13|2 .

(H.7)

81



82

Since the vacuum |0〉m for the massive fields is unitarily inequivalent to
the vacuum |0(t)〉f for the mixed (flavored) fields at time t, for any t, two
different normal orderings must be defined, respectively with respect to |0〉m,
as usual denoted by : ... :, and with respect to |0(t)〉f , denoted by :: ... :: .
The Hamiltonian normal ordered with respect to the vacua |0〉m and |0(t)〉f
is given by

: H : = H −m 〈0|H|0〉m = H + 2
∑
i

∫
d3kωk,i =

∑
i

∑
r

∫
d3kωk,i[α

r†
k,iα

r
k,i + βr†k,iβ

r
k,i] ,

(H.8)

:: H :: ≡ H − f〈0(t)|H|0(t)〉f = H + 2
∑
i

∫
d3kωk,i − 4

∑
i

∫
d3kωk,i N k

i ,

(H.9)

respectively. Note that H =
∫
d3x T00. The state |0(t)〉f is a condensate of

massive particle-antiparticle pairs. We point out that the difference of energy
between |0(t)〉f and |0〉m represents the energy of the condensed neutrinos
given in Eqs.(H.5)-(H.7)

f〈0(t)| : H : |0(t)〉f = f〈0(t)|H|0(t)〉f − m〈0|H|0〉m = 4
∑
i

∫
d3kωk,i N k

i .

(H.10)

Now we give the proof of

f〈0(t)| : Tµν(x) : |0(t)〉f = f〈0| : Tµν(x) : |0〉f . (H.11)

From Eqs.

ρmix ≡
1

V
η00

∫
d3x T cond00 (x) . (H.12)

and

ρmix =
2

π

∑
i

∫ K

0

dk k2 ωk,i N k
i , i = 1, 2, 3 . (H.13)

we see that the (0,0) component of the energy momentum tensor of the
vacuum condensate is given by:∫
d3x T cond00 (x) =

∫
d3x f〈0(t)| : T00(x) : |0(t)〉f = 4

∑
i

∫
d3kωk,i N k

i ,

(H.14)
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which coincides with (H.10) and shows that f〈0(t)| : T00(x) : |0(t)〉f is time
independent since the numbers N k

i (cf. (H.5)-(H.7)) are time independent
in the Minkowski metric.

Considering now that the (j, j) components of the energy momentum
tensor of the vacuum condensate are given by the equations:

pmix = − 1

V
ηjj

∫
d3x T condjj (x) ; (H.15)

pmix =
2

3 π

∑
i

∫ K

0

dk k2 k2

ωk,i
N k
i ; (H.16)

we have ∫
d3x f〈0(t)| : Tjj(x) : |0(t)〉f = 4

∑
i

∫
d3k

kjkj
ωk,i
N k
i , (H.17)

(no summation on j), we again see that f〈0(t)| : Tjj(x) : |0(t)〉f is time
independent. This completes the diagonal part of Eq.(H.11).

For the component (0, j), j 6= 0 , of the energy momentum tensor of the
condensate we have ∫

d3x f〈0(t)|T0j(x)|0(t)〉f =∑
i

∑
r

∫
d3k

kj
2

f〈0(t)
(
αr†k,iα

r
k,i − α

r†
−k,iα

r
−k,i + βr†k,iβ

r
k,i − β

r†
−k,iβ

r
−k,i

)
|0(t)〉f ,

(H.18)

then∫
d3x f〈0(t)|T0j(x)|0(t)〉f = 4

∑
i

∫
d3k

kj
2

(
N k
i −N k

i

)
= 0 . (H.19)

In a similar way, the (j, l), j 6= l component can be written as∫
d3x f〈0(t)|Tj l(x)|0(t)〉f =∑

i

∑
r

∫
d3k

kjkl
2ωk,i

f〈0(t)
(
αr†k,iα

r
k,i − α

r†
−k,iα

r
−k,i + βr†k,iβ

r
k,i − β

r†
−k,iβ

r
−k,i

)
|0(t)〉f ,

(H.20)
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then∫
d3x f〈0(t)|Tj l(x)|0(t)〉f = 4

∑
i

∫
d3k

kjkl
2ωk,i

(
N k
i −N k

i

)
= 0 . (H.21)

Summing up, Eq.(H.11) holds for any µ and ν. Moreover, since from Eqs.(H.19)
and (H.21), we have f〈0(t)|T0j(x)|0(t)〉f = 0, j 6= 0, and f〈0(t)|Tj l(x)|0(t)〉f =
0, j 6= l respectively, then the energy-momentum tensor density of the vac-
uum condensate is given by

T condµν = diag(T cond00 , T cond11 , T cond22 , T cond33 ); (H.22)

i.e. the vacuum condensate is homogeneous and isotropic. By using Eqs.(H.12)
and (H.15), we have

T condµν = diag(ρmix , pmix , pmix , pmix ). (H.23)
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