

Università degli Studi di Salerno

Facoltà di Scienze Matematiche, Fisiche, e Naturali

ENZYMATIC SYNTHESIS OF MACROLACTONES

Dottorato di ricerca in chimica – IX Ciclo Nuova serie a.a 2007/2010

Tutor: Prof. Aldo SPINELLA Dottorando: Tancredi FORTUNATI

TABLE OF CONTENTS

ABSTRACT	I
CHAPTER 1: BIOCATALYSIS IN ORGANIC SYNTHESIS	1
1.1 – Biocatalysis : a green tool in organic chemistry	2
1.2 – Enzymes in organic chemistry	5
1.2.1 Introduction.	5
1.2.2 Kinetic reasons that govern the selectivity	7
1.2.3 Advantages and drawbacks of biocatalysts	8
1.2.4 Biotransformations in organic chemistry	11
1.2.5 Lipases	12
1.2.6 Candida antarctica lipase B	17
CHAPTER 2: MACROLACTONES : BIOACTIVITY AND SYNTHESIS	23
2.1 – Introduction to macrolactones	24
2.1.1 Macrolactones of pharmaceutical interest	25
2.1.2 Macrolactones as chemical signals	27
2.1.3 Macrolactones (and other macrocycles) in fragrance industry	31
2.2 – Chemical synthesis of macrolactons	34
2.2.1 Macrolides by ring closure trough acid activation	36
2.2.2 Ring closure trough the formation of anhydride intermediate	38
2.2.3 Macrolides by ring closure by alcohol activation.	39
2.2.4 Ring closure by C–C and C=C bond formation	40
2.2.5 Other methodologies	42
CHAPTER 3– ENZYME CATALYZED MACROLACTONIZATION	45
3.1 – Introduction	46
3.2 - Improvement of enzymatic lactonization	52

	3.2.1	Choice of substrate.	53
	3.2.2	Enzyme choice	53
	3.2.3	Solvent choice	55
	3.2.4	Water content of organic medium	56
	3.2.5	Concentration of substrate.	58
	3.2.6	Temperature	58
	3.2.7	Reaction time	59
	3.2.8	Cyclization of 16 hydroxy haxadecanoic acid	59
	3.2.9	Cyclization without biocatalyst	60
	3.2.10	Recovery of enzyme	60
	3.2.11	Summary of results	61
3.3	– Macro	olactones from ω-hydroxy esters. Synthesis of musky compounds	61
	3.3.1	Hexadecanolide	62
	3.3.2	Exaltolide	62
	3.3.3	Ambrettolide	63
3.4	– Macro	olactones from hydroxyesters owning secondary alcohol	67
	3.4.1 Cl	nemo-enzymatic synthesis 15-hexadecanolide	68
	3.4.2 S	ynthesis of 15-octadec-12-enolide	74
3.5	– Macr	olactones from dihydroxyesters	77
	3.5.1 La	actone from poly-hydroxylated substrates: synthesis of aleuritic lactone	78
	3.5.2 Sy	nthesis of aplyolides B and D	78
	-	onthesis of enantiomers of aplyolides B and D	
	- 3.5.3 5 y	indicision characters of apryonace B and B	
	-	rnthesis of aplyolides C and E	
	3.5.4 Sy		85
	3.5.4 Sy 3.5.5 Sy	enthesis of aplyolides C and E	85

CHAPTER 4 - EXPERIMENTAL
4.1 - Synthesis of 16-hexadecanolide
4.2 - Synthesis of exaltolide
4.3 - Synthesis of ambrettolide
4.4 - Synthesis of 15-hexadecanolide
4.5 - Synthesis of 15-octadec-12-enolide
4.6 - Synthesis of aplyiolides B and D
4.7 - Synthesis of enantiomers of aplyolides B and D
4.8 - Synthesis of aplyiolides B and D
4.9 - Synthesis of enantiomers of aplyolides C and E
4.10 - Lactonization of methyl 15 (R) ,16 (R) -dihydroxy-octadecanoate142
4.11 - Synthesis of aleuritic lactone
REFERENCES146

ABSTRACT

Macrolactones are a large and structurally diverse class of compounds. Natural products having a macrolactone structure have been isolated from many natural sources such as plants, insects, marine organism and bacteria. Because of their biological and medicinal activity, macrolactones are very important target molecules in organic synthesis. The difficulty in controlling the ring formation step has provided the basis for many synthetic methodology studies. This PhD work is devoted to the development and application of a protocol for the improvement of the enzymatic approach to synthetize macrolactones.

Chapter 1 outlines the state of art of biotransformations with special emphasis on the use of lipase in organic synthesis.

In Chapter 2 a literature review about macrolactones and the methods for their synthesis is reported.

Chapters 3 and 4 describe the experimental work of this thesis focused on the optimization of the enzymatic methodology for the synthesis of macrolactons and its application to the synthesis of some bioactive macrolactons. A discussion of enantioselectivity, regional regional region of these syntheses allowed some useful conclusion on the advantages and limitation of this methodology.