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Abstract

Estimating and predicting joint second-order moments of asset portfolios is of huge impor-

tance in many practical applications and, hence, modeling volatility has become a crucial

issue in financial econometrics. In this context multivariate generalized autoregressive condi-

tional heteroscedasticity (M-GARCH) models are widely used, especially in their versions for

the modeling of conditional correlation matrices (DCC-GARCH). Nevertheless, these models

tipically suffer from the so-called curse of dimensionality: the number of needed parameters

rapidly increases when the portfolio dimension gets large, so making their use practically

infeasible. Due to these reasons, many simplified versions of the original specifications have

been developed, often based upon restrictive a priori assumptions, in order to achieve the

best tradeoff between flexibility and numerical feasibility. However, these strategies may im-

plicate in general a certain loss of information because of the imposed simplifications. After a

description of the general framework of M-GARCH models and a discussion on some specific

topics relative to second-order multivariate moments of large dimension, the main contribu-

tion of this thesis is to propose a new method for forecasting conditional correlation matrices

in high-dimensional problems which is able to exploit more information without imposing

any a priori structure and without incurring overwhelming calculations. Performances of the

proposed method are evaluated and compared to alternative predictors through applications

to real data.
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Chapter 1

Multivariate volatility models

1.1 Introduction

Since the seminal work of Engle (1982) modeling volatility has become one of the main issue

in financial econometrics. Starting from the mentioned paper a large field of literature has

developed that has faced dynamic modeling of univariate second-order moments of financial

returns. Almost simultaneously many authors have begun to realize that returns often show

comovements, therefore motivating the research on multivariate volatility models. Indeed,

understanding and predicting multivariate second-order moments of financial returns is par-

ticularly crucial in practical applications, for example in asset pricing, in portfolio allocation

or in risk management. In this context the so-called multivariate (M-)GARCH models were

born (Bollerslev, Engle and Wooldridge [1988], Ng [1991], Engle and Kroner [1995], Hansson

and Hordahl [1998], Kroner and Ng [1998])1. A few years later, a paper of Bollerslev (1990)

and especially a new article by Engle (2002) have given birth to models to be applied not

directly to the covariances but rather based on separate modeling of conditional variances

and correlations. Nowadays M-GARCH models are at the same time a cornerstone and an

object of further development in this field of econometrics. One of the crucial limitation of

1Every contribution in this field focuses on the analysis of the dynamics governing the time evolution of
conditional covariance matrices

1



Chapter 1. Multivariate volatility models 2

this kind of models which scholars have had and have yet to tackle is that they suffer from

the so-called curse of dimensionality: the number of parameters rapidly increases when the

dimension of the problem (that is the number of assets) gets larger; so the main effort of

researchers has been particularly aimed to find M-GARCH models that combine flexibility

and parsimony. Indeed, a good model should be flexible enough to accurately track the the

dynamics of covariances and correlations, but at the same time it is also supposed to be

sufficiently parsimonious: a model with too many parameters would turn out to be hard to

handle and practically useless.

The chapter is organized as follows: Section 1.2 defines the general framework of multivariate

GARCH models; in Section 1.3 some fundamental M-GARCH models (namely: exponen-

tially weighted moving average (EWMA); Vectorized (VEC-) GARCH; Baba-Engle-Kraft-

Kroner (BEKK-) GARCH) are discussed which can be derived as generalizations of standard

univariate GARCH specifications, along with some of related typical features (curse of di-

mensionality, positive definiteness, stationarity, covariance targeting); Section 1.4 describes

Factor Volatility (FV-) GARCH models; in Section 1.5 models for conditional correlations

are presented with a particular detail on Engle’s DCC and its noteworthy aspects; Section 1.6

illustrates some of more recent contributions in DCC literature (Diagonal DCC, Generalized

DCC, Rotated DCC).

1.2 The M-GARCH framework

Let us consider a stochastic vector rt ∈ RN representing N asset returns. We can describe

the vector process as follows (see for example Tsay [2010], Chapter 10):

rt = µt + εt (1.1)
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where, given the information set It−1, µt is the conditional expectation E(rt|It−1)2 and εt

is a vector of innovations. Denoting by θ a vector of parameters, a multivariate GARCH

model relies on the assumption that:

εt = H
1/2
t (θ)zt , zt ∼ i.i.d.(0, I) (1.2)

where H
1/2
t is a positive definite N ×N matrix and I is the N ×N identity matrix.

Consequently, the matrix H
1/2
t must be a convenient decomposition3 of the conditional vari-

ance of rt, so that:

var(rt|It−1) = var(εt|It−1) = H
1/2
t (H

1/2
t )

′
= Ht. (1.3)

More in detail, an M-GARCH model is aimed to describe Ht’s dynamics and to estimate its

parameters. Typical issues related to M-GARCH models are: the curse of dimensionality

(i.e. the over-parametrization); the flexibility (i.e. the ability to describe the real dynamics

of covariances); the positive definiteness of the estimated covariances (i.e. a natural property

of covariances matrices). These three problems will recur repeatedly in the remainder of this

chapter.

1.3 Generalizations of univariate standard GARCH models

This section presents a discussion of exponentially weighted moving average (Subsection

1.3.1), VEC (Subsection 1.3.2) and BEKK (Subsection 1.3.5) models along with a review

of a related specification called Cholesky-factor multivariate GARCH (Subsection 1.3.8).

These probably represent the most intuitive and straightforward generalizations of univariate

GARCH to the multivariate context, even though also the so-called Factor Volatility models

(which are examined in Section 1.4) are extensions of univariate conditional volatility models

2The conditional expectation E(rt|It−1) is tipically modeled with VARMA models (see again Tsay [2010],
Chapter 8)

3For instance, H
1/2
t may be an ordinary square root matrix or a Cholesky decomposition (about the

Cholesky decomposition see, among others, Lutkepohl [1996], Chapter 6)
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(see Bauwens, Laurent and Rombouts [2006]). In the section some of the typical related

issues are also discussed: positive definiteness and stationarity conditions of VEC and BEKK

(Subsections 1.3.3 and 1.3.6); quasi maximum likelihood estimation procedure for the VEC

model (Subsection 1.3.4); covariance targeting (Subsection 1.3.7).

1.3.1 Exponentially Weighted Moving Average

One of the simplest and classical method of estimation of conditional time-varying covariances

is the exponentially weighted moving average (EWMA) model (Riskmetrics [1996]):

Ht =
1− λ
1− λτ

τ∑
i=1

λi−1εt−iε
′
t−i 0 < λ < 1. (1.4)

Since 1−λ
1−λτ

∑τ
i=1 λ

i−1 = 1, it is easy to realize that the definition (1.4) is a moving average

of the previous τ sample covariances {εt−1ε
′
t−1, ..., εt−τε

′
t−τ}, where the covariances are less

relevant as i (namely the time distance from the present moment t) increases: indeed, the

weights involved by the moving average exponentially decline as the lag from current time t

grows. An important shortfall of EWMA is that it assumes the same parameter ruling the

dynamics of each entry of the conditional covariances Ht. In addition, if we set the maximum

time distance τ large enough (λτ−1 ≈ 0), we can rewrite (1.4) as an iterative equation which

allows us for recursively estimating the sequence of covariances, given a value of λ and a

starting point H0:

Ht = (1− λ)εt−1ε
′
t−1 + λHt−1. (1.5)

If we define as ϑ the vector of parameters ruling the mean equation (see Equation (1.1)) and

assume that the innovations εt = rt − µt(ϑ) have a multivariate Gaussian distribution, the

related log-likelihood function (up to an additive constant) is:
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lnL(ϑ, λ) = −1

2

T∑
t=1

|Ht| −
1

2

T∑
t=1

ε
′
tH
−1
t ε

′
t. (1.6)

Hence, once fixed the initial point H0
4, we can jointly estimate the parameter vector (ϑ, λ)

by maximizing the function in (1.6) while using the relationship in (1.5). As we will see,

expressions similar to (1.6) are employed to estimate the parameters also when using the more

complex models that we are going to discuss hereinafter. Obviously, in case the innovation

does not have a Gaussian distribution, the maximization process of (1.6) must be seen in the

context of quasi maximum likelihood (see Subsection 1.3.4 about using the quasi maximum

likelihood estimator in multivariate volatility models).

1.3.2 VEC model

The EWMA model seen in the previous subsection is a simple estimation method commonly

used by practictioners. However it can be derived as a special case from a wider class of

models which generalize the univariate GARCH to the multivariate case. The univariate

classical formulation is that introduced by Engle (1982) and can be summarized as follows:

E(εt|It−1) = 0

var(εt|It−1) = ht = ω +

p∑
i=1

αiε
2
t−i +

q∑
i=1

βiht−i.
(1.7)

A natural way to extend the model in (1.7) to multivariate series of dimension N is:

4A natural way to set an initial matrix in Equation (1.5) may be to estimate it as the unconditional sample
covariance matrix: H0 = var(εt)
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E(εt|It−1) = 0 , var(εt|It−1) = Ht

hklt = ωkl +

p∑
i=1

1,...N∑
a,b

αklab,iεa,t−iεb,t−1 +

+

q∑
i=1

1,...,N∑
a,b

βklab,ihab,t−i.

(1.8)

where hklt is the generic entry of Ht. For reasons of symmetry, it must obviously be ωkl = ωlk,

αklab,i = αlkab,i and βklab,i = βlkab,i while the terms αklab,i and αklba,i can be summed up like

also βklab,i and βklba,i. Taking into account these features, the general model in (1.8) can be

rearranged in its VEC (vectorized) formulation (Bollerslev et al. [1988]) which makes use of

the vech operator5:

vechHt = vech Ω +

p∑
i=1

Ai vech(εt−iε
′
t−i) +

q∑
i=1

Bi vechHt−i (1.9)

where coherently the Ai’s and Bi’s are (N(N + 1)/2)× (N(N + 1)/2) matrices and Ω is the

intercept matrix [ωkl]. The model (1.9) is practically employed only in the bivariate case

because of its very large parametrization size, considering that the number of parameters is

of order O(N4). To overcome this issue, in the same paper the authors propose a simplified

version called DVEC (diagonal VEC) where Ω, Ai and Bi have not null entries only on their

diagonal:

hklt = ωkl +

p∑
i=1

αkl,iεk,t−iεl,t−i +

q∑
i=1

βklhkl,t−i (1.10)

5 The vech operator is a map RN×N → RN(N+1)/2 that stacks all the unique entries of a symmetric matrix
into a vector (see Gentle [2007], Chapter 3)
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in which variances depend solely on past own values and squared residuals, while covariances

depend solely on past own values and cross products of residuals. The diagonal model can

be rearranged as follows6:

Ht = Ω +

p∑
i=1

Ãi � (εt−iε
′
t−i) +

q∑
i=1

B̃i �Ht−i (1.11)

where Ãi and B̃i are matrices built with the diagonal elements of Ai and Bi. Nevertheless the

DVEC keeps suffering from the curse of dimensionality: indeed it needs N(1+p+q)(N+1)/2

parameters which means a number of parameters of order O(N2) at least. This is the main

reason why this kind of parametrization is often used with only one lag, p = q = 1, and for

moderate numbers of assets. Finally, note that we will obtain again the EWMA described

by (1.5) if the DVEC equation in (1.11) is modified by setting [Ω]ij = 0, [Ã]ij = (1 − λ),

[B̃]ij = λ for each pair (i, j) and p = q = 1.

1.3.3 Positive definiteness and stationarity conditions in VEC models

From mathematical statistics it is known that the covariance matrix operator must be positive

semidefinite. In order to show that, let us consider that we have a random vector x with

expected value x̄. The covariance of the random vector is:

Σ = E[(x− x̄)(x− x̄)
′
]. (1.12)

For Σ to be positive semidefinite, it must be for every vector w:

w
′
Σw = E[w

′
(x− x̄)(x− x̄)

′
w] = E[(w

′
(x− x̄))2] ≥ 0 (1.13)

6The symbol � denotes the element-wise (or Hadamard) matrix product (see, among others, Lutkepohl
[1996], Chapter 10)
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where w
′
(x − x̄) is a scalar random variable, say X, and the linearity of the expectation

operator has been taken into account; the expected value of a squared scalar random variable

must not be negative: E(X2) ≥ 0; moreover, E(X2) = 0 if and only if X = w
′
(x − x̄) = 0

which means that one of the random variable xi is a linear combination of the others

x1, ..., xi−1, xi+1, ..., xN
7. As regards the VEC model (1.9), sufficient conditions for Ht to

be positive semidefinite for all t can be imposed on the parameter matrices (see Gourier-

oux [1997], Chapter 6). If we consider that by definition hklt = E(εktεlt|It−1), the general

formulation of multivariate conditional covariance models in (1.8) can be rewritten as follows:

hklt = ωkl +

p∑
i=1

ε
′
t−iAkliεt−i +

q∑
i=1

E[ε
′
t−iBkliεt−i|It−1] (1.14)

where Akli and Bkli are the N ×N coefficient matrices relative to hklt; therefore, Equation

(1.14) can be expressed in a compact matrix shape8:

Ht = Ω +

p∑
i=1

(I ⊗ ε′t−i)A∗i (I ⊗ εt−i) +

q∑
i=1

E[(I ⊗ ε′t−i)B∗i (I ⊗ εt−i)|It−1] (1.15)

where as usual I denotes an N ×N identity matrix and A∗i and B∗i are the global parameter

N2 ×N2 matrices built by the blocks Akli and Bkli. The recursive definition (1.15) can be

used to verify that the Ht’s are positive semidefinite if so are Ω and each A∗i and B∗i (as long

as the starting point of the recursive equation H0 is positive semidefinite itself); moreover,

the Ht’s are positive definite if at least one among Ω and each A∗i and B∗i is also positive

definite (Gourieroux [1997], Section 6.1.2).

On the other hand, it has been demonstrated (Attanasio [1991]) that necessary and sufficient

condition to guarantee the positive semidefiniteness of the conditional covariance matrices

in the DVEC specification (1.11), with p = q = 1, is the positive semidefiniteness of each

parameter matrix (Ω, Ã, B̃) and of the starting covariance matrix H0. Indeed, given that the

7In other terms, this would mean that a random variable can be exactly predicted as a linear combination
of two or more other random variable

8The symbol ⊗ denotes the Kronecker product, that is the product in which every entry of the left matrix
is multiplied for every entry of the right matrix (see for example Horn and Johnson [1999])
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outer product of innovations must be positive semidefinite, the proof descends from Schur’s

product theorem (namely: the Hadamard product of two positive semidefinite matrices is a

positive semidefinite matrix) and from the clear fact that the sum of positive semidefinite

matrices is positive semidefinite itself. In addition it is easy to show9 that the Ht’s are

positive definite if also H0 is. In order to ensure positive the semidefiniteness of the parameter

matrices in (1.11), Attanasio (1991) proposes to reparameterize Ω, Ã and B̃ via the Cholesky

decomposition.

Another crucial issue associated with the conditional covariance modeling is the covariance

stationarity, that is the independence on time and the finiteness of the unconditional covari-

ance of the vector stochastic process: this is an important feature for the stability of the

models. In Engle and Kroner (1995, Proposition 2.7) a sufficient condition for the stationar-

ity of VEC models is proved: the condition is that all the eigenvalues of
∑p

i=1Ai +
∑m

i=q Bi

must be less than 1 in modulus (see also Gourieroux [1997], Equation 6.5). As a consequence,

the unconditional covariance matrix of VEC is stated by the following relationship:

vechH = E[vechHt] =

(
I −

p∑
i=1

Ai −
q∑
i=1

Bi

)−1

vech Ω (1.16)

Obviously the same results and relationships also hold for the DVEC specification, bearing

in mind that in this case the matrices Ai and Bi are diagonal.

1.3.4 Quasi maximum likelihood estimation of M-GARCH models

The estimation of the parameters θ ruling an M-GARCH model is usually carried out by the

quasi maximum likelihood estimation procedure in which a Gaussian likelihood function is

maximized, even though the related random vector of returns’ residuals εt does not have a

Gaussian distribution:

9See for example Marcus and Minc (1964)
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εt = H
1/2
t zt , zt ∼ i. i.d.(0, I)

lnLT (ε1, ..., εT ;θ) =

T∑
t=1

lt = −1

2
[TN ln 2π +

T∑
t=1

ln |Ht(θ)|+
T∑
t=1

ε
′
tH
−1
t (θ)εt]

θ̂
QML

T = argmax
θ∈Θ

lnLT (ε1, ..., εT ;θ)

(1.17)

where Θ is the parametric space. The underlying assumption that εt|It ∼ N(0, Ht) is not

generally justified by empirical findings (for istance, fat tails are usually observed in the

empirical distributions). However, there exist some theoretical results that can ensure con-

sistency and asymptotic normality of θ̂
QML

T where the Gaussian assumption is relaxed. In

detail, Hafner and Preminger (2009b) prove consistency and asymptotic normality of θ̂
QML

T

for the VEC model: this is a very important result as many different M-GARCH specifi-

cations (BEKK, O-GARCH, GO-GARCH, FF-GARCH, etc.)10 can be reviewed as special

cases of the VEC formulation, which therefore turns out to be the most general framework

of multivariate models for conditional covariances. Let us assume a VEC-GARCH(1,1) spec-

ification11:

vech(Ht) = vech(Ω) +A vech(εtε
′
t) +B vech(Ht−1); (1.18)

hence it will be: θ
′

= [vech(Ω)
′
, vech(A)

′
, vech(B)

′
]. Let us define the true parametric vector

as θ0. The strong consistency12:

prob( lim
T→∞

θ̂
QML

T = θ0) = 1 (1.19)

10Many of these M-GARCH versions are discussed in the next sections
11In the cited paper and here a VEC-GARCH(1,1) specification is considered for the sake of simplicity: this

does not cause any loss of generality about the results
12 The strong consistency refers to almost sure convergence: a series of random variable Xn converges

almost surely to a random X if, for every ε > 0, the probability that limn→∞ |Xn − X| < ε is equal to 1;
an estimator φ̂n is defined strongly consistent if it converges almost surely to the real parameter, φ, as the
dimension of the sample, n, goes to infinity (see Casella and Berger [2002])
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is proved by Hafner and Preminger (2009b) under the following assumptions:

(A1) the parametric space Θ is compact

(A2) |λB,max| < 1 (λB,max: maximum eigenvalue of B)

(A3) the process εt is strictly stationary in distribution and ergodic13

(A4) E(‖εt‖s) <∞14 for some s > 0

(A5) E(‖zt‖2) <∞

(A6) ∀θ, θ0 ∈ Θ, if Ht(θ) = Ht(θ0) then θ = θ0 (model identifiability).

In order to prove the asymptotic normality of θ̂
QML

T the authors assume that H̃t is the

covariance process whose initial values are drawn from its stationary distribution15. Defined

l̃t as the t-th term of the related likelihood function (see Equations (1.17)), the two following

matrices are introduced:

V = E[
∂l̃t
∂θ

(θ0)
∂l̃t

∂θ
′ (θ0)] , J = E[

∂2 l̃t

∂θ∂θ
′ (θ0)] (1.20)

That being said, Hafner and Preminger (2009b) prove the following convergence in distribu-

tion (asymptotic normality):

√
T (θ̂

QML

T − θ0)
d−→ N(0, J−1V J−1) (1.21)

under the additional assumptions:

(A7) θ0 is an interior point of Θ

13In the article the authors give some conditions for the process εt to be strictly stationary and ergodic (see
Hafner and Preminger [2009b], Assumptions 2.1-2.3)

14The symbol ‖ ‖ here denotes the euclidean norm:
√∑N

i=1 ε
2
it

15The stationary distribution is a feature of Markov chains and, indeed, in Hafner and Preminger (2009b)

the vector [ε
′
t, vech(Ht)

′
] is considered as a homogeneous Markov chain (see Meyn and Tweedie [2006])
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(A8) E(‖εt‖8) <∞.

The proofs given in Hafner and Preminger (2009b) generalize many previous results reached

for special cases of the VEC model like, among others, Jeantheau (1998), Ling and McAleer

(2003), Comte and Lieberman (2003) and Hafner and Preminger (2009a).

1.3.5 BEKK model

A way to implicitly ensure the positive definiteness of the estimated conditional covariance

matrices is to use the BEKK (Baba-Engle-Kraft-Kroner) parametrization (Engle and Kroner

[1995]). The BEKK dynamic updating equation for Ht is given by:

Ht = C
′
C +

K∑
k=1

l∑
i=1

A
′
ikεt−iε

′
t−iAik +

K∑
k=1

m∑
i=1

B
′
ikHt−iBik (1.22)

with C upper triangular. The BEKK model involves problems about the parameter iden-

tification (uniqueness of representation) which need a bunch of restrictions (e.g. positivity

of the entries, determination of the right K, etc.). In the most simple case, namely for

K = l = m = 1, the conditions able to eliminate all other equivalent structures are for-

mulated in Engle and Kroner (1995, Proposition 2.1): all diagonal elements of C and the

upper-left entries of A and B, say a11 and b11, must be positive. Other restrictions ensure

the uniqueness of representation in more complex parametric specifications. The BEKK

model can be viewed as a restricted version of VEC. In order to show that, let us take the

vectorization of Equation (1.22) with K = l = m = 1 (for the sake of simplicity); bearing in

mind that vec(XY Z) = (Z
′ ⊗X) vecY (see for example Lutkepohl [1996]), Equation (1.22)

becomes16:

vecHt = vec(C
′
C) + (A

′
1 ⊗A

′
1) vec(εt−1ε

′
t−1) + (B

′
1 ⊗B

′
1) vecHt−1. (1.23)

16The vec operator stacks all the elements of a N ×N matrix into a vector of dimension N2
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As Ht, Ht−1, CC
′

and εt−1ε
′
t−1 are symmetric matrix, their vec transformation can be

reformulated in terms of the vech operator by means of a convenient N2 × N(N + 1)/2

duplication matrix D:

D vechHt = D vech(C
′
C) + (A

′
1 ⊗A

′
1)D vech(εt−1ε

′
t−1) + (B

′
1 ⊗B

′
1)D vechHt−1. (1.24)

The matrix D is a full rank matrix made up with 1 and 0 and admits a generalized inverse

D̃ such that D̃D = I (see for example Gentle [2007], Section 3.6):

vechHt = vech(C
′
C) + D̃(A

′
1 ⊗A

′
1)D vech(εt−1ε

′
t−1) + D̃(B

′
1 ⊗B

′
1)D vechHt−1. (1.25)

Equation (1.25) is clearly a VEC representation as long as D̃(A
′
1 ⊗ A

′
1)D = A and D̃(B

′
1 ⊗

B
′
1)D = B (cf. Equation (1.9)). This result means that, given a BEKK parametrization,

there always exists an equivalent VEC representation but this one is not unique and, hence,

the opposite proposition is not true; further, a tranformation which shifts a VEC specification

into a BEKK one does not exist necessarily: in this sense, VEC is more general than BEKK.

It is apparent that in the BEKK model the elements of the matrices Aik and Bik do not

have a direct ecomometric interpretation; in addition to this, the model needs N(N + 1)/2 +

K(l + m)N2 parameters as Aik and Bik are not symmetric. A common method to reduce

the number of parameters is to force Aik and Bik to be diagonal.

1.3.6 Positive definiteness and stationarity conditions in BEKK models

As mentioned in the previous subsection, the BEKK representation yields positive definite

covariance matrices. This is true if at least one matrix among C and Bik is full rank. Indeed,

all the terms A
′
ikεt−iε

′
t−iAik are surely positive semidefinite because so are εt−iε

′
t−i. Further,

as the product between a non singular matrix and its transpose is positive definite (see for

example Horn and Johnson [1999]), for every vector w different from the null vector, it must

be:
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w
′
(C
′
C+

K∑
k=1

m∑
i=1

B
′
ikHt−iBik)w =

w
′
(C
′
C +

K∑
k=1

m∑
i=1

B
′
ikH

1/2′

t−i H
1/2
t−iBik)w > 0

(1.26)

provided that C or one of the Bik’s is full rank. That being said, if the starting covariance

matrix H0 is supposed to be positive definite, so will be all the Ht’s for recursion.

As regards the covariance stationarity, the BEKK model is stationary if and only if all the

eigenvalues of
∑K

k=1

∑l
i=1(Aik ⊗Aik) +

∑K
k=1

∑m
i=1(Bik ⊗Bik) are less than one in modulus

(Engle and Kroner [1995], Proposition 2.7). The unconditional covariance of a BEKK model,

if it exists, is:

vechH = E[vechHt] =

(
I −

K∑
k=1

l∑
i=1

(Aik ⊗Aik)−
K∑
k=1

m∑
i=1

(Bik ⊗Bik

)−1

vech(C
′
C) (1.27)

1.3.7 Covariance targeting

In Pedersen and Rahbek (2013) the so-called variance targeting is discussed. Despite this

discussion is carried in the BEKK framework, the variance targeting is both a property and

an estimation technique which can apply also to other types of specifications provided that

certain assumptions hold. In Subsection 1.3.617 it has been seen that the BEKK model is

covariance stationary if all the eigenvalues of
∑K

k=1

∑l
i=1(Aik⊗Aik)+

∑K
k=1

∑m
i=1(Bik⊗Bik)

are less than one in modulus. The covariance stationarity of the demeaned returns εt is

equivalent to the existence of the unconditional second-order moment, say Γ:

Γ = var(εt) = E[E(εtε
′
t|It−1)] = E[Ht]. (1.28)

17Cf. also Subsection 1.3.3
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which is a positive definite solution of equation (1.22)18:

Γ = C
′
C +A

′
ΓA+B

′
ΓB. (1.29)

This result is ensured by Proposition 4.3 in Boussama, Fuchs and Stelzer (2011). That being

said, the formulation:

Ht = Γ−A′ΓA−B′ΓB +A
′
εt−1ε

′
t−1A+B

′
Ht−1B (1.30)

is called variance (or covariance) targeting BEKK representation. The variance targeting

estimation procedure considered in Pedersen and Rahbek (2013) is a two-step method where

Γ is estimated by the sample unconditional covariance matrix of εt and, next, the remaining

parameters are estimated with the quasi maximum likelihood estimation by optimizing the

resulting log-likelihood with respect to A and B. If εt is strictly stationary and ergodic, the

ergodic theorem guarantees that the moment-based estimator:

Γ̂ =
1

T

T∑
t=1

εtε
′
t (1.31)

is consistent for Γ. Then the authors show that under certain assumption (Pedersen and

Rahbek (2013), Assumptions 4.1, 4.2 and 4.3) the second-step quasi maximum estimates,

(Â, B̂|Γ̂), along with the first-step estimate Γ̂, converge almost surely to the true parameters:

(Γ̂, Â, B̂)
a.s.−→ (Γ, A,B) as T →∞. (1.32)

Furthermore in Pedersen and Rahbek (2013) also the asymptotic normality of (Γ̂, Â, B̂) is

shown provided that some additional conditions are satisfied (Assumptions 4.4 and 4.5 in

the paper).

18Equation (1.22) is here considered for K = l = m = 1 for simplicity
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1.3.8 Kawakatsu parametrization

Another useful solution to the issue of the positivity of the Ht’s is the one proposed by

Kawakatsu (2003) who suggests to directly reparameterize the conditional covariances in

the VEC model by means of lower triangular matrices Lt (Cholesky Factor [FC-] GARCH

model). As is known from matrix algebra, a necessary and sufficient condition for a matrix

H to be positive definite is that it can be expressed as the product of a lower triangular

matrix L and its tranpose: H = LL
′
; so the general econometric model becomes:

vech(Lt) = ht = c0 +

l∑
i=1

Aiht−i +

m∑
i=1

Biεt−i (1.33)

where Ai is of dimension N(N+1)/2×N(N+1)/2 while Bi is of dimension N(N+1)/2×N .

However, the Cholesky decomposition of a positive definite matrix is not uniquely defined

and for this reason the author introduces some identification restrictions. Bearing in mind

that the operator vech stacks in a column vector the column elements of Lt, say lijt, as

long as i ≥ j, then the elements of ht which correspond to the diagonal entries of Lt are in

place k(k + 1)/2 with k = 1, ..., N . A common way to uniquely identify the decomposition

factor Lt is to set all of its diagonal elements positive; this is equivalent to requiring that

simultaneously: the entries (k(k+1)/2, k(k+1)/2) of Ai are positive and those ((k(k+1)/2, j)

are zeros (with {j = 1, ..., N(N + 1)/2} ∩ {j 6= k(k + 1)/2}); all the entries (k(k + 1)/2, j)

(with j = 1, ...N) of Bi are zeros. This simple identification rule forces the diagonal elements

of the Cholesky factor Lt to depend only on its past diagonal elements and not on the lagged

innovations. The general specification in (1.33) can be modified as follows:

vech(Lt) = ht = c0 +

l∑
i=1

Aiht−i +

m∑
i=1

Bi|εt−i| (1.34)

where the symbol |εt−i| denotes the vector built with the absolute values of εt−i’s compo-

nents. This specification needs no restrictions on matrices Bi, but it clearly cannot take

into account the sign effect of innovations. Despite the identification restrictions partially
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limits the number of parameters, the model keeps being over-parameterized even in case of

small dimension. Therefore, other restrictions are introduced in order to further simplify the

specification19. The log-likelihood function for Kawakatsu’s model is:

lnL = −TN
2

ln 2π −
T∑
t=1

N∑
i=1

ln lii,t −
1

2

T∑
t=1

(L−1
t εt)

′
(L−1

t εt) (1.35)

where the starting value L0 can be assumed such that L0L
′
0 = 1/T

∑T
t=1 ε̂tε̂

′
t. Since the

modeling of the conditional variances (i.e. the diagonal entries of Ht = LtL
′
t) depends on

how the assets are ordered20, the log-likelihood in (1.35) is used in the empirical part of the

paper to find the ordering that best fits the data: practically, the author computes all the

N !21 possible orderings and selects the one with the highest log-likelihood value.

1.4 Factor volatility models

Factor volatility models rely on the intuition that comovements of stock returns may be

due to a restricted number of common underlying variables, the factors indeed. These can

be observable or latent. These models have been proposed mainly to overcome the two

typical problems of over-parametrization and positive definiteness, but they may also have

an economic motivation. Without pretension of completeness, this section includes a terse

review of some of the most important contributions relative to this class of models: the

general model introduced in Engle, Ng and Rothschild (1990) that has been the first example

of a Factor-ARCH covariance structure (Subsection 1.4.1); a model with uncorrelated factors

proposed by Vrontos, Dellaportas and Politis (2003) (Subsection 1.4.2); the Generalized

Orthogonal (GO-) GARCH model presented in van der Weide (2002) (Subsection 1.4.3); the

Orthogonal (O-) GARCH model by Alexander (2001) (Subsection 1.4.4).

19See namely Equations (4), (5) and (6) in Kawakatsu (2003)
20It is easy to check that the (i, i)-th entry of Ht is equal to

∑i
j=1 l

2
ijt

21Consider that in Kawakatsu (2003) the empirical application is carried out on a porfolio of three indices
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1.4.1 A model with Factor-GARCH covariance structure

The first example of factor volatility models is the one by Engle, Ng and Rothschild (1990).

In this paper the authors specify the following conditional covariance structure:

Ht =
K∑
k=1

βkβ
′
kλkt + Ω (1.36)

where βk are K linearly independent non-stochastic vectors, Ω is a positive semidefinite

constant matrix and λkt are positive random variables. The dimension of Ht, N , is of course

supposed to be greater than the number of factors, K. This volatility model can be regarded

as the covariance counterpart of a typical factor model for asset excess returns (of the same

kind employed by Ross [1976] to derive the arbitrage pricing theory). In detail, a model for

returns related to (1.36) is:

rt = µt +
K∑
k=1

βkfkt + ηt (1.37)

where:

E(f t|It−1) = 0 , E(f tf
′
t|It−1) = Λt

E(ηt) = 0 , E(ηtη
′
t) = Ω.

(1.38)

In (1.38) the covariance matrix E(f tf
′
t|It−1) is assumed to be diagonal: Λt = diag(λ1t, ..., λKt),

while the vectors f t and ηt are considered uncorrelated: E(f tη
′
t) = 0K×N . The authors show

how to express the covariance model in (1.36) in terms of (scalar) conditional variances of

the K so-called factor-representing portfolios: these are determined by weights αi such that

α
′
iβk = 0 if i 6= k and α

′
iβk = 1 if i = k. By doing so, they obtain the following expression:
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Ht =

K∑
k=1

βkβ
′
kθkt + Ω∗

θkt = α
′
kHtαk

Ω∗ = Ω−
K∑
k=1

βkα
′
kΩαkβ

′
k.

(1.39)

In the first line of (1.39) the covariance Ht is formulated in terms of the scalar random

factors θkt = λkt − α
′
kΩαk which can be described by univariate GARCH models. As

shown in the second line of (1.39), the θkt’s are nothing but the conditional variances

of the factor-representing portfolios. The Factor-GARCH model is a special case of the

BEKK parametrization. In order to check this equivalence, let us assume that θkt follows a

GARCH(1,1) model with a vector of parameters (ωk, γk, δk):

θkt =ωk + γk(α
′
kηt−1)2 + δkθk,t−1 =

=ωk + γk(α
′
kηt−1η

′
t−1αk) + δkα

′
kHk,t−1αk;

(1.40)

then the model in (1.39) can be rearranged as:

Ht = [Ω∗ +
K∑
k=1

βkωkβ
′
k] +

K∑
k=1

γkβkα
′
k(ηt−1η

′
t−1)αkβ

′
k +

K∑
k=1

δkβkα
′
kHk,t−1αkβ

′
k. (1.41)

So, if we set Γk = γ
1/2
k βkα

′
k and ∆k = δ

1/2
k βkα

′
k, the specification in (1.41) becomes:

Ht = Ω∗∗ +
K∑
k=1

Γkηt−1η
′
t−1Γ

′
k +

K∑
k=1

∆kHk,t−1∆
′
k (1.42)
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which is clearly a BEKK-type representation. Finally Engle et al. (1990) propose an applica-

tion of their model in which the number of factors (namely two) are preemptively determined

by the application of the classical principal component analysis (PCA)22 on the unconditional

covariance between U.S. T-bills of different maturity and a stock index. Despite it would

have been possible to estimate the weight vectors, in the paper two factor-representing port-

folios with prespecified weights are constructed: a portfolio with equal weights on each of

the bills and a zero weight on the stock index; a portfolio with zero weights on the bills and

all weight on the stock index.

1.4.2 A full-factor multivariate GARCH model

The factors chosen in Engle et al. (1990) are observed and obviously correlated, while in order

to efficiently capture different patterns hidden under the data it may be desirable that they

have no correlation. Due to this observation many alternative factor models with uncorrelated

factors have been proposed in the literature. They generally rely on the assumption that

unobserved underlying factors may be identified that drive movements of returns. Let us

suppose that (Vrontos, Dellaportas and Politis [2003]):

εt = Wxt

xt|It−1 ∼ N(0,Σt)
(1.43)

with W a parameter matrix and xt a vector of factors. Σt is supposed to be diagonal (that is,

the factors are orthogonal), so that the conditional volatilities (the terms on the diagonal of

Σt) may be estimated by means of univariate GARCH models: σ2
it = αi + βix

2
i,t−1 + γiσ

2
i,t−1.

We can write:

var(εt|It−1) = Ht = WΣtW
′

=

= WΣ
1/2
t Σ

1/2
t W

′
= Lt(σit, wij)L

′
t(σit, wij)

(1.44)

22For a clear and slightly unconventional discussion about principal component analysis see Shlens (2014)
published on arXiv.org
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where in parentheses we have stressed the dependence of Lt on the parameters. It is well

known that the decomposition of a positive definite matrix into the product of a triangular

matrix and its transpose always exists and this decomposition is unique if the diagonal

elements are restricted to be positive. So we can take W triangular, with elements wij = 0

when i > j and wij > 0 when i = j, and build a conditional covariance matrix Ht(σit, wij)

surely positive definite and driven by the volatilities of the orthogonal factors. Note that

the xt’s are not parameters since they are equal to W−1εt. Vrontos et al. (2003) show

an application of the model to eight stocks from the U.S. market by forcing the number of

parameters with the setting wii = 1 and by using a Bayesian approach; however, in theory

also a classical QML estimation can be carried out.

1.4.3 Generalized Orthogonal GARCH model

The previous model is a so-called Full-Factor (FF-) multivariate GARCH model because the

number of factors is equal to that of returns. Another version of the FF-GARCH model is the

one introduced by van der Weide (2002): the Generalized Orthogonal (GO-) GARCH model.

The fundamental assumptions are still the same as those summarized in (1.43). Also in this

case the factors xt are assumed to be incorrelated (Σt diagonal) with the σit’s governed by

univariate GARCHs; in addition to this, in van der Weide (2002) the unconditional variance

of the latent variables is set equal to the identity matrix I so that:

Σ = E(εtε
′
t) = WW

′
. (1.45)

By exploiting some algebraic properties, van der Weide (2002) stresses that there exists an

orthogonal matrix U such that:

PΛ1/2U = W (1.46)
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where P and Λ are respectively the matrix of eigenvectors and the matrix of eigenvalues

resulting from the singular value decomposition (see Horn and Johnson [1999]) of the uncon-

ditional variance Σ; consequently P and Λ can be estimated from unconditional information.

van der Weide (2002) shows a method to parameterize U by means of Euler angles, taking

advantage of the fact that, from an algebraic point of view, orthogonal matrices can be ex-

pressed by the product of rotational matrices23; the Euler angles can be estimated by ML.

Another example of GO-GARCH model can be found in Lanne and Saikkonen (2007).

1.4.4 Orthogonal GARCH model

The GO-GARCH models are by definition a generalization of another class of models, the

Orthogonal GARCH models (O-GARCH). The O-GARCH models (Alexander, 2001) allows

to generate N×N conditional covariances from m (with m ≤ N) univariate GARCH models.

Also the O-GARCH models take advantage of the principal component analysis (PCA) to

dermine the factors to be employed. The factors identified by PCA based on unconditional

information are assumed to be also conditionally uncorrelated and this produces a certain

loss of accuracy that needs a careful initial calibration of the model. In more detail the

mathematical structure is the following:

D−1/2εt = zt = Λf t

Λ = Qm diag(l
1/2
1 , ..., l1/2m )

(1.47)

where: D = diag(σ2
1, ..., σ

2
N ) is the diagonal matrix built with the unconditional variances of

εt; f t is a vector of heteroskedastic, uncorrelated and zero-mean random processes; l1, ..., lm

are the first larger m eigenvalues of corr(zt); Qm is the N ×m matrix of the related eigen-

vectors. Once indentified the first m factors able to explain the most part of the variability,

m univariate GARCH process can be applied: σ2
fit

= ωi + αif
2
i,t−1 + βiσ

2
fi,t−1

. Hence, the

conditional variance of εt will have the following shape:

23Rotational matrices govern rotational tranformations, that is tranformations which preserve angles, and
have the shape of orthogonal matrices
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var(εt|It−1) = Ht = D1/2Λ diag(σ2
f1t , ..., σ

2
fmt)Λ

′
D1/2 (1.48)

where Ht depends only on the 3×m parameters (ωi, αi, βi), given that Σ and Λ are estimated

on sample data. The O-GARCH models can allow for a strong parameter reduction but they

may show identification problems in some cases (see van der Weide [2002]).

1.5 Conditional Correlation models

The models for conditional correlations exploit the decomposition of the conditional co-

variance matrix into the related conditional standard deviations and correlations which are

separately estimated in a two-step procedure. From a theoretical point of view these mod-

els can be classified as nonlinear combinations of univariate GARCH’s (see Bauwens et al.

[2006]). Since they can be estimated in two stages, they generally exhibit a greater computa-

tional tractability compared to models like VEC or BEKK and they also turn out to be more

flexible. This section presents a review of: the Constant Conditional Correlation (CCC-)

GARCH by Bollerslev (1990) Subsection 1.5.1); the Varying Correlation (VC-) GARCH in-

troduced in Tse and Tsui (2002) (Subsection 1.5.2); the Dynamic Conditional Correlation

(DCC-) GARCH introduced in Engle (2002) (Subsection 1.5.3), with a particular attention to

the related likelihood decomposition (Subsection 1.5.4) and to Aielli’s critique (Aielli [2013])

(Subsection 1.5.5).

1.5.1 Constant Conditional Correlation model

The ancestor of models for conditional correlations is the CCC-GARCH by Bollerslev (1990).

In order to model short-run nominal exchange rates the author suggests to split the condi-

tional covariance into multiplicative components determined by conditional standard devia-

tions, σ1t, ..., σNt, and correlations, Γ:
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Ht = DtΓDt

Dt = diag(σ1t, ..., σNt).
(1.49)

As we can see from the definitions in (1.49), the correlation matrix Γ is assumed to be

constant over time. The matrices Ht are almost surely positive definite if and only if each of

the N conditional variances are well defined and Γ is in turn positive definite. To estimate

the standard deviations in Dt univariate GARCH(1, 1) models are used24:

σ2
it = ωi + αiε

2
i,t−1 + βiσ

2
i,t−1. (1.50)

A very important topic that Bollerslev addresses in his paper is the likelihood decomposi-

tion (see also the next Subsection (1.5.4)) which has become a cornerstone in the following

literature, especially for computational reasons:

L(θ) ∝ −1

2

T∑
t=1

(
ln|Ht|+ ε

′
tH
−1
t εt

)
=

= −
T∑
t=1

ln|Dt| −
1

2

T∑
t=1

(
ln|Γ|+ η′tΓ−1ηt

) (1.51)

where ηt = D−1
t εt are the standardized residuals. In Equation (1.51) there is a first part

depending on the conditional volatilities alone, while the correlation parameters are included

only under the second summation operator: this feature allows to maximize the likelihood in

two steps. Moreover, due to the assumed constancy of the correlation matrix, the likelihood

optimization needs the inversion of only one matrix, Γ, instead of T matrices, Ht, and this

is advantageous in case of very large sets of assets25. Hereinafter we are going to discuss this

issue again. He and Terasvirta (2004) propose a generalization (Extended CCC-GARCH) of

24In general any GARCH(p, q) can be used
25Actually Bollerslev further simplifies the likelihood by substituting Γ with its sample counterpart



Chapter 1. Multivariate volatility models 25

Bollerslev’s model in which interactions between the conditional variances are allowed. In

other terms the relationship (1.50) in this case becomes:

σ2
it = ωi +

N∑
j=1

αjε
2
j,t−1 +

N∑
j=1

βjσ
2
j,t−1 (1.52)

and, hence, the conditional variance of any asset depends on the first lag of squared innova-

tions and conditional variances of all the assets considered in the portfolio.

1.5.2 Tse and Tsui’s Varying Correlation GARCH

The hypothesis that the conditional correlations are constant over time may be unrealistic

in most empirical cases, therefore generalizations of the CCC model in which the correlation

matrix is considered time-dependent have been proposed in the early 2000’s: we refer in

particular to the works of Tse and Tsui (2002) and Engle (2002), in which the constant

correlation matrix, Γ, is replaced by a time-varying matrix, Γt. As is known from standard

matrix algebra, in order to guarantee the positive definiteness of decomposed conditional

covariance matrices, Ht = DtΓtDt, it is sufficient that the elements of Dt (that is h
1/2
ii,t = σit)

are well defined and the Γt’s are in turn positive definite. The latter property can be ensured

under simple conditions on the parameters. On the other hand, compared to CCC–GARCH,

it is apparent that, when considering time-varying conditional correlations Γt, the advantage

of numerically simple estimation is lost because the correlation matrix has to be inverted for

every t during each iteration (cf. the log-likelihood function in (1.51)).

In Tse and Tsui (2002) the demeaned returns εt ∈ RN are assumed to have conditional

covariances of the following shape:

Ht = DtΓtDt (1.53)

where Dt = diag(h
1/2
11t , ..., h

1/2
NNt) with conditional variances governed by GARCH specifica-

tions: hiit = ωi +
∑p

h=1 αihε
2
i,t−h +

∑q
h=1 αihhii,t−h

26 and Γt is a time-varying correlation

26As a matter of fact, also different more complex GARCH specifications may be used
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matrix. If we consider the standardized residuals ηt = D−1
t εt, the dynamics of the condi-

tional correlation matrices are described by the following iterative equation:

Γt = (1− θ1 − θ2)Γ + θ1Γt−1 + θ2Ψ(ηt−1, ...,ηt−m)

θ1, θ2 > 0 , θ1 + θ2 ≤ 1
(1.54)

where Ψ is a matrix function of the latest M standardized residuals and Γ is a suitable

constant matrix27. More precisely, the functional form adopted by Tse and Tsui (2002) for

Ψ is such that the generic entry of the matrix is:

ψijt =

∑M
l=1 ηi,t−lηj,t−l(∑M

l=1 η
2
i,t−l

∑M
l=1 η

2
j,t−l

)1/2
(1.55)

where it must be M ≥ N for Ψt to be positive definite. Hence, if M ≥ N and Γ, Γ0 and

Ψ0 are positive definite, from (1.54) it derives that the generic Γt is positive definite as well.

The model proposed by Tse and Tsui (2002) is named Varying Correlation (VC-) GARCH.

1.5.3 Engle’s Dynamic Conditional Correlation (DCC) model

Engle (2002) introduces the Dynamic Conditional Correlation (DCC-) GARCH model. The

nucleus of this model is expressed by the following dynamic matrix process:

Qt = (ii
′ −A−B)� S +A� ηtη

′
t +B �Qt−1 (1.56)

where i is an N -dimensional vector of ones, A and B are symmetric parameter matrices

and S, according to the correlation targeting (see Subsection 1.3.7), is the unconditional

covariance of ηt or, alternatively, the unconditional correlation of εt
28. In Ding and Engle

27Γ must be positive definite and have unit diagonal
28Like in Subsection 1.5.2, the vector ηt denotes the standardized returns: ηt = D−1

t εt; the same notation
is kept in the next sections
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(2001) it is shown that if A, B and (ii
′ −A−B) are positive semidefinite, then also Qt will

be; further, Qt is positive definite if any one of the matrices on the right of the equal sign

is positive definite. Although the process in (1.56) ensures positive definiteness, it does not

generally produce well defined correlation matrices. They can be obtained by rescaling Qt:

Rt = (I �Qt)−1/2Qt (I �Qt)−1/2 . (1.57)

The conditional variances are consequently obtained as in Equation (1.53): Ht = DtRtDt,

where Dt is as usual the diagonal matrix of the conditional standard deviations. However

the model in (1.56) needs a large number of parameters, also when the number of assets

is only moderately high. For this reason Engle (2002) proposes also a scalar version of the

specification in (1.56):

Qt = (1− α− β)S + αηtη
′
t + βQt−1. (1.58)

where α, β ∈ R. The scalar version of DCC clearly simplifies the estimation procedure in

case of large N but at the same time usually turns out to be empirically unfounded: indeed,

forcing the dynamics of the comovements of many heterogenous assets to be described by

only two scalar parameters, α and β, generally causes a great loss of information which

translates into inaccurate estimates and poor forecasting performances.

1.5.4 DCC and likelihood decomposition

Another essential issue Engle (2002) deals with is the likelihood decomposition (see also

Engle and Sheppard [2001]). Let the parameters in Dt = diag(σ1t, ..., σNt) be denoted

by the vector θ and the additional parameters in Rt be denoted by ϕ. We assume that

the conditional variances σ2
it are governed by univariate GARCH models. Then, assuming

multivariate normal innovations εt, the log-likelihood of a DCC model is obtained as follows:
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L(θ,ϕ) = −1

2

T∑
t=1

(
N ln 2π + ln |Ht|+ ε

′
tH
−1
t εt

)
. (1.59)

By using some algebra, the log-likelihood in (1.59) can be rearranged in the form:

L(θ,ϕ) =− 1

2

T∑
t=1

(
N ln 2π + 2 ln |Dt|+ ε

′
tD
−1
t D−1

t εt

)
+

− 1

2

T∑
t=1

(
−η′tηt + ln |Rt|+ η

′
tR
−1
t ηt

)
=

= L1(θ) + L2(θ,ϕ)

(1.60)

where the first part of the function (namely L1, in the first line of (1.60)) depends only on θ.

Engle and Sheppard (2001) show that under weak conditions the first-step estimation of θ,

obtained by maximizing L1, and the second-step estimation of ϕ, obtained by maximizing

L2 conditional on θ̂, give consistent and asymptotically normal results29. This feature of

DCC clearly makes it more computationally advantageous than other M-GARCHs for the

modeling of conditional covariance matrices (like VEC and BEKK, for istance).

1.5.5 Aielli’s critique and cDCC

Due to the possibility of two-step consistent estimation and to the presence of only two

scalar parameters α and β, the scalar DCC model is very attractive because of its feasibility

also when N is high. Nevertheless, the computational easiness of parameter estimation in

Equation (1.58) also presumes the correlation targeting, that is the estimation of S by means

of the sample covariance of the estimated standardized returns, η̂t:

S ≡ Ŝ =
1

T

T∑
i=1

η̂tη̂
′
t. (1.61)

29The authors claim that their proofs closely follow some related results presented in White (1996)
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However, as shown in Aielli (2013), taking the unconditional expected value of Equation

(1.58) does not return:

S = E(ηtη
′
t) (1.62)

unless E (Qt) = E(ηtη
′
t) = E (Rt), which is not true in general. Thus, the assumption (1.61)

yields unconsistent estimates of Qt and, hence, of Rt and Ht. To solve this problem Aielli

(2013) proposes a corrected version (cDCC) of the specification in (1.58):

Qt = (1− α− β)S + α (I �Qt−1)1/2 ηt−1η
′
t−1 (I �Qt−1)1/2 + βQt−1 (1.63)

where as usual I is the identity matrix. The specification in (1.63) along with the assumption

in (1.61) produces consistent estimates but needs an identifying restriction: [S]ii = 1 for every

i. Let us note that the correlation targeting may be avoided by using the alternative dynamic

equation (see for example Caporin and McAleer [2012]):

Qt = CC
′
+ αηtη

′
t + βQt−1 . (1.64)

where C is upper triangular. Obviously with this specification the number of parameters

increases up to 2 +N(N − 1)/2.

1.6 Some more recent contributions in DCC literature

More recently we have assisted to the development of a new trend in literature that aims to

overcome the strict assumptions of the scalar DCC model and to propose richer and more

flexible parametrizations. In this section we will examine some of these contributions: the Di-

agonal (D-) DCC (Cappiello, Engle and Sheppard [2006]) (Subsection 1.6.1); the Generalized

(G-) DCC (Hafner and Franses [2009]) (Subsection 1.6.2); the Rotated GARCH (RARCH)

and the Rotated DCC (RCC) (Noureldin, Shephard and Sheppard [2014]) (Subsection 1.6.3).
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1.6.1 Diagonal DCC

As is well known from empirical observations, volatility typically increases more after a

negative shock (for instance, news about a worsening of economic outlook) than after a

positive shock of the same strength (for example after a swift drop in oil price); further, the

effect of such shocks is different for different types of assets. Cappiello et al. (2006) remark

that these changes in volatilities cause subsequent changes in conditional covariances and

correlations. On this background they propose a diagonal version (previously introduced in

a manuscript of Sheppard [2002]) of the DCC model able to take into account the above-

mentioned asymmetric effects:

Qt = (Q−A′QA−B′QB−G′NG) +A
′
ηt−1η

′
t−1A+

+B′Qt−1B +G
′
nt−1n

′
t−1G

(1.65)

where A, B and G are diagonal parameter matrices. The i-th vector element ni,t−1 is set equal

to ηi,t−1 when ηi,t−1 < 0, while it is assumed null otherwise. The two expectation matrices Q

and N are replaced with their sample counterpart T−1
∑

t η̂tη̂
′
t and T−1

∑
t n̂tn̂

′
t. Note that

in Equation (1.65) Qt is almost surely positive definite if (Q − A′QA − B′QB − G′NG) is.

The empirical application is carried out on 21 national equity and 13 national bond indices.

Relative to worldwide bond and stock indices, the authors find evidence of the superiority

of specifications with diagonal matrices compared to the scalar ones. The other interesting

result of their empirical application is that both stock and bond indices exhibit asymmetry

in conditional correlations, while there is strong evidence of asymmetric effects only in the

volatility of stock index returns. It is worth noting that, provided that the correlation

targeting is used, the specification (1.65) involves the estimation of 3N parameters (2N if

asymmetric effects are not considered): so the specification is definitely more flexible than

the scalar DCC, but the number of parameters increases linearly with the number of assets.



Chapter 1. Multivariate volatility models 31

1.6.2 Generalized DCC

Another more flexible version of DCC can be found in Hafner and Franses (2009) where it is

applied on 18 German and 25 UK stock returns. The authors name their model Generalized

(G-) DCC and find convincing evidence that it improves on the DCC model. In Hafner and

Franses’ specification the matrices associated with both the lagged standardized innovations

and the autoregressive term are built by outer self-product of two N -dimensional vector

(where as usual N is the number of assets) so that they turn out to be rank one matrices.

More precisely, the proposed dynamic specification is:

Qt = (1− α2 − β2
)Q+αα

′ � ηt−1η
′
t−1 + ββ

′ �Qt−1 (1.66)

where α and β are N -dimensional vectors (so that the numbers of parameters raises up

to 2N) and α = 1
N

∑N
i=1 αi and β = 1

N

∑N
i=1 βi. Since in many empirical applications the

parameters related to the innovations’ matrix are more variable across the assets than the

ones associated with the autoregressive term, Hafner and Franses (2009) suggest that, when

2N is still too large, the matrix ββ′ can be replaced by a scalar. As an alternative, the

αi’s and the βi’s may be pooled into sufficiently homogeneous clusters (for example based

upon a priori economic considerations or previous empirical findings). In Equation (20) the

authors use the matrix (1−α2−β2
)Q because (ii

′−αα′−ββ′)�Q would not be in general

positive definite; on the contrary, provided that Q0 is positive definite, the specification in

(20) ensures the positive definiteness of Qt and, hence, of Ht. Besides, note that in this case,

even though we assume E(Qt) = E(ηtη
′
t) = R, we will obtain:

Q =
(ii
′ −αα′ − ββ′)
(1− α2 − β2

)
� E(ηtη

′
t) (1.67)

and, therefore, setting Q = T−1
∑T

t=1 η̂tη̂
′
t leads to a biased and inconsistent estimate of the

intercept matrix. Despite this circumstance the authors employ the correlation targeting.
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1.6.3 Rotated ARCH and Rotated DCC

The main idea in Noureldin, Shephard and Sheppard (2014) is related to the orthogonal mod-

els (see Section 1.4) and consists in transforming the raw returns by rotations in order to fit

flexible multivariate models using the covariance targeting. However, unlike the O-GARCH,

in this paper the transformed returns are not assumed to be conditionally uncorrelated. They

propose two different specifications: the RARCH (Rotated ARCH) which is based upon a

BEKK-type parametrization; the RCC (Rotated DCC) that entails the application of the

DCC framework. One of the crucial elements of the model is that the unconditional variance

of the rotated residuals is equal to the identity matrix; indeed, the rotated residuals et are

obtained as follows:

et = H
−1/2

εt = PΛ−1/2P
′
εt (1.68)

where H = var(εt) with spectral decomposition H = PΛP
′
, where P is the orthogonal

matrix of the eigenvectors and Λ is the diagonal one of the eigenvalues. That being said, a

BEKK-type specification is applied:

Gt = (I −AA′ −BB′) +Aet−1e
′
t−1A

′
+BGt−1B

′
(1.69)

where Gt = var(et|It−1) is the rotated residuals’ conditional variance, E (Gt) = I30 and

A and B are two conformable parameter matrices such that (I − AA′ − BB′) is positive

semidefinite. With these assumptions the positive definiteness of Gt is easy to be ensured.

The model in (1.69) is covariance stationary if all the eigenvalues of (A ⊗ A + B ⊗ B) are

less than 1 in modulus (see Engle and Kroner [1995] and Subsection 1.3.6). In the article

in discussion some special cases are taken into account. The first one is a straightforward

scalar specification with A = α1/2I and B = β1/2I. In the second A and B are assumed

30Cf. Equation 1.68
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to be diagonal with elements α
1/2
ij , β

1/2
ij 6= 0 only when i = j. In the context of this second

special case the so-called persistence parameters are introduced31:

λij = α
1/2
ii α

1/2
jj + β

1/2
ii β

1/2
jj . (1.70)

On the other hand, the authors define as smoothness parameters the β
1/2
ii β

1/2
jj ’s alone. Setting

all the persistence parameters equal (that is λij = λ for each couple i, j) we have a third

special case (the common persistence or CP specification):

Gt = (1− λ)I +A(et−1e
′
t−1 −Gt−1)A

′
+ λGt−1 (1.71)

with A diagonal and 0 < λ < 1. The specification (1.71) is motivated by the empirical

observation that the persistences λij are not so much heterogenous across assets while the

heterogeneity of the αii’s and that of the βii’s seems to be inversely correlated32. The CP

specification is rather parsimonious as it entails only N + 1 parameters: {λ, α11, ..., αNN}.
Once estimated the parameters of the RARCH specification, the conditional variance of the

unrotated returns εt is coherently obtained as Ht = H
1/2
GtH

1/2
.

In the case of the RCC model the same procedure applies to the standardized residuals

ηt = D−1
t εt, where as usual Dt = diag(h

1/2
11t , ..., h

1/2
NNt) and hiit ∼ GARCH(θi)

33. Also in

this case Noureldin et al. (2014) decompose the unconditional variance of ηt, Π, to obtain

the rotated devolatilized residuals:

Π = PΛP ′

ẽt = PΛ−1/2P ′ηt

var(ẽt) = I.

(1.72)

31In order to realize why these parameters are defined that way, one just needs to notice that giit =
(1− αii − βii) + αiie

2
i,t−1 + βiigii,t−1 and gijt = α

1/2
ii α

1/2
jj ei,t−1ej,t−1 + β

1/2
ii β

1/2
jj gij,t−1

32In other terms, it is observed empirically that, while the α
1/2
ii α

1/2
jj ’s and β

1/2
ii β

1/2
jj ’s tend to vary across

assets, at the same time their sum tends to be somewhat costant
33The structure and the dimension of the parameter vector θi will obviously depend on the type of thechosen

GARCH specification
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Hence, the dynamics of the conditional correlation matrices of the rotated standardized

residuals are modeled as follows:

Q∗t = (I −AA′ −BB′) +Aẽt−1ẽ
′
t−1A

′
+BQ∗t−1B

′
, Q∗0 = I (1.73)

where the Q∗t ’s are the quasi conditional correlation matrices, according to the classic Engle’s

DCC symbology (see Equation (1.56)). Then, the correlation matrices of the unrotated

standardized residuals is reconstructed via the following two steps:

Qt =PΛ1/2P ′Q∗tPΛ1/2P ′

Rt =(I �Qt)−1/2Qt(I �Qt)−1/2.
(1.74)

Applying the dynamic equation to the rotated residuals also avoids the inconsistence of

the correlation targeting because the intercept (I − AA
′ − BB

′
) needs not be estimated

by a sample estimator. The paper ends with empirical applications that show the superior

predictive capability of RARCH and RCC compared to O-GARCH and GO-GARCH. Note

that the empirical applications are carried out on 10 assets.



Chapter 2

Models and methods for the

estimation and regularization of

high dimensional volatility matrices

2.1 Introduction

In the previous Chapter 1 the problem of the curse of dimensionality has been reminded

several times and has been recognized as the main hurdle in conveniently adapting the M-

GARCH scheme to large portfolios. As seen, many simplified versions of the original model

by Bollerslev, Engle and Wooldridge (1988) have been introduced, but they have often turned

out to be not completely satisfying: in many cases the imposed restrictions are too tight with

respect to empirical observations and economic notions, while sometimes even these simplified

specifications keep not being applicable when the number of assets exceed a certain limit.

For these reasons in the last years a specific line of research has been expressly dedicated to

find new methods of estimation which are feasible in case of large portfolios without causing

too big losses of information. In this chapter, without any presumption of completeness, we

want to offer a synthetic overlook of this recent current of literature along with a review

35
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of some contributions on a closely related issue which is the regularization of ill-defined

covariance and correlation matrices. Our attention to the latter topic is due to the fact that,

in Chapter 3, some of the regularization techniques that are here covered will represent the

key ingredients for the derivation of new flexible prediction methods for DCC models, which

is the main methodological contribution of this thesis. Consequently, this chapter is split

in two parts: the first one concerns some models and methods for the estimation of high

dimensional volatility matrices in the DCC framework (Section 2.2), while the second one

is about a few methods of regularization of covariance and correlation matrices and their

application to financial econometrics (Section 2.3).

2.2 Models and methods for the estimation of high dimen-

sional volatility matrices

This section deals with models and methods for the estimation of high dimensional volatility

matrices in the DCC framework (Engle [2002]) (see Section 1.5) and, in more detail, it

contains: a brief discussion of the so-called MacGyver estimator introduced by Engle (2009)

(Subsection 2.2.1); an illustration of the composite likelihood (CL) method of estimation

used in Engle, Shephard and Sheppard (2008) (Subsection 2.2.2); a presentation of Engle

and Kelly (2012) who introduce the dynamic equi-correlation model or, more simply, DECO

(Subsection 2.2.3); an assessment of composite-likelihood (CL-) DCC and DECO carried

out by Clements, Scott and Silvennoinen (2012) in which the two models are compared to

some simpler method for estimation and forecasting of large covariance matrices (Subsection

2.2.4); a presentation of a recent contribution by Bauwens, Grigoryeva and Ortega (2014)

in which the empirical performances of some parsimonious parametrizations of the DCC

model are assessed and where the estimation of the proposed models is carried out relying on

efficient constrained optimization techniques borrowed from the machine learning literature

(Subsection 2.2.5).
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2.2.1 MacGyver estimator

In Chapter 1 it has been seen that in the DCC framework the likelihood function can be

maximized in two steps by decomposing it in a first part relative to the estimation of volatility

parameters and a second part relative to conditional correlation ones. The segment involved

in the estimation of the dynamic parameters of the DCC model (see Equation (1.60)) is:

L2 = −1

2

T∑
t=1

(
ln |Rt|+ η

′
tR
−1
t ηt

)
(2.1)

whose maximization in case of large sets needs the computation of the determinant and,

especially, the inversion of T big correlation matrices. We know that this may cause numerical

problems which are often insolvable. Besides, Engle and Sheppard (2001) point out that in

the DCC dynamic equation:

Qt = (1− α− β)S + αηtη
′
t + βQt−1 (2.2)

the parameters α and β regularly suffer from bias in finite sample when the problem size

N is large and the two-step likelihood maximization is used. In Engle (2009) the so-called

MacGyver estimation method is introduced in order to face this typical large-N issues. The

MacGyver is meant to be used in the scalar DCC framework and is built upon bivariate DCC

estimations of conditional correlations ρijt:

ρijt =
qijt

(qiitqjjt)1/2

qijt = (1− α− β)qij + αηitηjt + βqij,t−1.

(2.3)

Therefore, the explicit formulation of the pairwise likelihood is:
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L2ij = −1

2

T∑
t=1

(
ln(1− ρ2

ijt) +
η2
it + η2

jt − 2ρijtηitηjt

1− ρ2
ijt

)
(2.4)

which is clearly easy to be numerically maximized. The numerical optimization of the like-

lihood in (2.4) for each pair of assets yields N(N − 1)/2 couples of estimated parameters

(α̂ij , β̂ij); these couples are then blended together by means of a suitable function. More

precisely, in the cited paper the author uses and compares three blending functions: mean,

5%-trimmed mean and median, and two types of likelihood: the ordinary unrestricted like-

lihood and a constrained version in which the parameters are forced to be ∈ ]0, 1[ based on

the following modified specification:

qijt = qij +
eα̃

1 + eα̃
(ηitηjt − qij) +

eβ̃

1 + eβ̃
(qij,t−1 − qij). (2.5)

The finite sample properties of the MacGyver method are assessed by means of a Monte

Carlo experiment with different problem size whose net result is that the smallest root mean

square errors and biases are generally achieved by using the median. The consistency of the

MacGyver estimation is easily established when T → ∞, given that the bivariate estimates

are consistent themselves under standard regularity assumptions.

2.2.2 Composite likelihood estimation and DCC

The composite (quasi) likelihood estimator for the parameters of DCC models has been

introduced in Engle, Shephard and Sheppard (2008). The method has been proposed in order

to address the bias problem caused by the two-step quasi likelihood estimation (see Equation

(1.60)) and to make the likelihood decomposition plausible for large portfolios. Let us denote

the vectors of return residuals by ε1, ..., εT , with T the time length of the considered sample

and εt ∈ RN . The standard inference method is based on the maximization of a Gaussian

likelihood function:
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lnL(ϕ; ε1, ..., εT ) ∝
T∑
t=1

(
−1

2
|Ht| −

1

2
ε
′
tH
−1
t εt

)
(2.6)

where ϕ is the vector of parameters varying in the parameter space Φ. The authors point out

that every matrix inversion in (2.6) has a computation complexity of order O(N3) for each

likelihood evaluation. Furthermore, the parameter space Φ is typically large, so the numerical

difficulties get harder. As is known, the covariance (or correlation) targeting consists of a first

step in which a moment estimator is used for the nuisance parameters1, say λ, and of a sec-

ond one in which the dynamic parameters of interest, say θ, are estimated; the second-stage

maximization problem consequently becomes: max
θ

lnL(θ; λ̂, ε1, ..., εT ). However, when N

and the dimension of λ are large, the two-step procedure may yield an estimated θ far from

its true value: this is a general statistical problem, the so-called incidental parameter prob-

lem, that was discussed for the first time in Neyman and Scott (1948). Engle et al. (2008)

carry out an empirical application on a set of N ≤ 96 assets and T = 2516 observations by

fitting three different scalar models2 and they show that the innovations’ coefficient dramat-

ically decreases as N gets higher, disclosing an apparent bias in the estimation based on the

marginal likelihood. The composite likelihood method, instead, can overcome both the bias

and the numerical problem. It is based on summing up the quasi likelihood functions of the

data subsets built with every distinct pair of the considered assets:

Yt = {y1t, ...,yKt} , K =
N(N − 1)

2

y1t = (ε1t, ε2t)
′

y2t = (ε1t, ε3t)
′

.....

yKt = (εN−1,t, εN,t)
′

(2.7)

1In the paper in discussion the nuisance parameters refer to the entries of the long-run covariance (or
correlation) included in the intercept of the dynamic equation of the model

2The used specification are a scalar version of BEKK, the EWMA and the scalar DCC
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or, alternatively, with all the contiguous overlapping pairs3:

Yt = {y1t, ...,yKt} , K = N − 1

y1t = (ε1t, ε2t)
′

y2t = (ε2t, ε3t)
′

.....

yK−1,t = (εN−2,t, εN−1,t)
′

yKt = (εN−1,t, εNt)
′
.

(2.8)

The composite likelihood function is, for each period t:

Ct(ϕ) =
1

K

K∑
i=1

lit(ϕ)

lit(ϕ) ∝ −1

2
ln |Hit| −

1

2
y
′
itH
−1
it yit

Hit = var(yit|It−1).

(2.9)

The composite likelihood estimator has the advantage that there is no need to invert large

covariance matrices4 because it involves the inversion of a 2 × 2 matrix at a time; besides,

it does not yield the incidental parameter problem. The underlying assumption is obviously

that each pair’s composite likelihood is a function only of that pair’s nuisance parameters,

lit(ϕ) = lit(θ,λi): this allows to estimate λi basing upon yi1, ...,yiT which causes a loss

of efficiency but not bias. On the other hand, a related issue is the overlapping of some

components of vectors λ1, ...,λK : this pitfall can be eluded by choosing separated subsets,

{(ε1t, ε2t), (ε3t, ε4t), ..., (εN−1,1t, εNt)}, (with an additional computational simplification but

with a certain loss of information about the target parameters) or by imposing equality

3In theory the composite likelihood may be built with each kind of subsets, separated or not and of different
dimension, but we refer to the choice made in Engle et al. (2008) for their empirical exercise

4The computational complexity order of the estimator is O(N2) in the case of scheme (2.7) and O(N) in
the case of scheme (2.8)
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constraints across the λi. However, in the cited paper the pairwise nuisance parameters are

assumed to be variation free (i.e. no cross constraint in the case of overlapping subsets). In

a general formulation the problem looks as follows5:

θ̂ = argmax
θ

1

K

T∑
t=1

K∑
i=1

lit(θ, λ̂i)

s.t. λ̂i :
T∑
t=1

git(θ, λ̂i) = 0

(2.10)

where git is a suitable moment function. The statistical performances of the estimator are

evaluated with a Monte Carlo experiment on a DCC scalar model in which it is shown that,

as N increases, the composite likelihood method outperforms the classical quasi likelihood as

regards the bias of the innovations’ coefficient but not that of the autoregressive parameter;

the performance of the composite likelihood built with each distinct pair of assets and the

one built with the contiguous ones show analogous results, with a dramatic reduction of the

estimation time in the latter case. The paper ends with an application of the composite

likelihood estimator to a set of N ≤ 96 assets (95 stocks plus a market index) and T = 2516

observations by fitting three different scalar models (scalar BEKK, EWMA and scalar DCC);

the comparisons are made via an out-of-sample hedging exercise on the last one third of the

sample. The application shows that, compared to the classical quasi likelihood estimator, the

composite likelihood guarantees stability in the estimation of the parameters when N gets

higher, so overcoming the bias problem, while the results of the Giacomini-White test (see

Giacomini and White [2006]) ensure that the difference between the forecasts are significative

for more than a half of the stocks. Furthermore, it is worth noting that the conditional

correlations estimated with the composite likelihood are much more time-variable than the

ones estimated with the classical method, which are almost constant throughout the period.

5In the second line of (2.10) the symbol 0 may represent a scalar, a vector or a matrix according to the
structure of git
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2.2.3 Dynamic Equicorrelation model

Factor models (see Section 1.4) can be a good solution to overcome the curse of dimensional-

ity because they can model conditional correlations of large sets by using a very small number

of factors. Further, they are generally efficient under the hypothesis of correct specification.

Nevertheless, they impose stringent structures and this may cause misspecification; besides

it is not always clear which and how many factors have to be employed. On the other hand,

the composite likelihood (CL) method applied to the estimation of DCC specifications allows

for more generality because different parameters are estimated for each pair of assets (see

Section 2.2.2), but yields less efficient estimators given that little information is included in

each likelihood function. Engle and Kelly (2012) propose a new estimator which explicitly

bodes to be a solution to this tradeoff between the generality of CL-DCC and the efficiency of

factor models: the dynamic equicorrelation (DECO) model. The crucial hypothesis is that all

pairwise conditional correlations are equal in each period of time. This is an assumption that

is sometimes pragmatically made in many areas of finance and economics. Equicorrelated

matrices have an easy analytic formulation of their determinants and inverses, so likelihood

computation and maximization is extremely simplified. Also, a bit of structure may be intro-

duced into the system by blocking together (Block DECO) similar assets (for example those

belonging to the same industry) and then obtaining determinants and inverses of the blocked

correlations or, rather, applying to them the composite likelihood method. An interesting

feature of DECO is that it can provide consistent estimates even when the equicorrelation

assumption is irrealistic: more precisely the authors prove that, if DCC is consistent, DECO

and Block DECO are consistent as well. The equicorrelation matrix is defined as:

Rt = (1− ρt)I + ρtJ (2.11)

where I usually denotes the N ×N identity matrix, while J is an N ×N matrix of ones. It

can be shown that:
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R−1
t =

1

1− ρt
I − ρt

(1− ρt)(1− (N − 1)ρt)
J

|Rt| = (1− ρt)N−1(1− (N − 1)ρt)).

(2.12)

Rt is positive definite if and only if ρt ∈]− 1
N−1 , 1[, in which interval the inverse surely exists.

A random vector of return residuals εt follows a DECO model when var(εt|It−1) = DtRtDt,

where, as usual, Dt is the diagonal matrix of conditional standard deviations (modeled by

GARCH specifications) and Rt is defined by Equation (2.11). Under weak conditions of

regularity the usual two-step quasi maximum likelihood estimator is consistent. Also, Engle

and Kelly (2012) prove the asymptotic normality of the estimator as a conjecture deriving

from a White’s theorem (White [1996]), pointing out that a rigorous analysis of asymptotic

theory for M-GARCH is still a broadly unanswered question. The starting point in developing

the DECO model is the consistent DCC specification proposed by Aielli (2013)6:

Qt = (1− α− β)S + α (I �Qt−1)1/2 ηt−1η
′
t−1 (I �Qt−1)1/2 + βQt−1

RDCCt = (I �Qt−1)−1/2Qt (I �Qt−1)−1/2

ηt = D−1
t εt;

(2.13)

then the model is fulfilled by the following system of dynamic equations:

RDECOt = (1− ρt)I + ρtJ

ρt =
1

N(N − 1)

(
i
′
RDCCt i−N

) (2.14)

where i denotes a N -dimensional vector of ones7. Stationarity and positive definiteness are

ensured by the usual assumptions: S is positive definite; α+β < 1; α, β > 0. It can be easily

6See also Subsection 1.5.5
7Note that the last equation in (2.14) is nothing but the grand mean of all the scalar DCC conditional

correlations
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shown that the second-step likelihood segment takes the following shape:

LDECO2 =− 1

T

T∑
t=1

ln
(
[1− ρt]N−1[1− (N − 1)ρt]

)
+

− 1

T

T∑
t=1

1

1− ρt

 N∑
i=1

η̂2
it −

ρt
1 + (N − 1)ρt

(
N∑
i=1

η̂it

)2
 (2.15)

that does not need any numerical computation of determinants and inverses. One of the

differences between DCC and DECO that the authors stress is the ability of the DECO

model to exploit pooled information as the conditional equicorrelation absorbs all pairs of

assets’ history: ρt = 2
N(N−1)

∑
i>j

qijt
(qiitqjjt)1/2

8. According to the authors, this pooling abil-

ity is the reason behind the globally better estimation performance of DECO compared to

DCC, proved by their numerical experiments. Furthermore, in the paper in discussion it is

asserted that, under high-level regularity conditions, DECO provides consistent estimates of

the DCC parameters when DCC is the true model, even if the equicorrelation assumption is

violated: this is DECO’s winning card when the portfolio dimension exceeds certain orders

of magnitude, so making the DCC model infeasible. The flexibility of DECO is particularly

significant when the model takes a block structure, for example when assets belonging to the

same industry are gathered together. In this case the equicorrelation matrix becomes:

Rt =


(1− ρ11t)In1 · · · 0

· · · · · · · · ·
0 · · · (1− ρkkt)Ink

+


ρ11tJn1 · · · ρ1ktJn1×nk

· · · · · · · · ·
ρ1ktJn1×nk · · · ρkktJnk

 (2.16)

where k is the number of blocks and n1 + ... + nk = N . Nevertheless, when the number

of blocks is greater than two the analytic calculation of inverses and determinants becomes

untractable and so the structure needs to be forced to be diagonal: ρmlt = 0 , ∀l 6= m. On

8This expression of ρt is equivalent to the formulation in (2.14)
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the other hand, an interesting solution to the non-diagonal case is the composite likelihood9

applied to the subsets consisting of all the pairs of blocks. Indeed, in case of two-block

models analytic expressions of determinants and inverses remain quite simple10 and this

further simplifies the use of the CL procedure. As regards numerical experiments, Monte

Carlo simulations show that the DCC performance11 is poor when the data generating process

is of DECO-type (equicorrelation); when the data are instead generated by DCC the DECO

model seems to be consistent as T →∞, so confirming the theoretical claims of the authors.

2.2.4 An empirical evaluation of CL-DCC and DECO

In Clements, Scott and Silvennoinen (2012) an assessment of composite likelihood (CL-)

DCC (see Subsection (2.2.2)) and DECO (see Subsection 2.2.3) is carried out. The two

models are compared to some simpler methods for the estimation and forecasting of large

covariance matrices and the tool utilized for evaluation is the out-of-sample volatility of

minimum variance portfolios. The econometric exercise is applied to a selection of 200

stocks contained in the Standard&Poor1500 index, daily observed from 1994 to 2009 for

4029 global observations: the first 2000 days are used as estimation sample, whereas the

last 2029 constitute the out-of-sample interval. A minimum variance portfolio is built for

each out-of-sample period by solving the classic portfolio problem min
wt
w
′
tHl,twt under the

constraint w
′
ti = 1, where i is a vector of ones and Hl,t is the conditional covariance matrix

generated from a generic model l (see Engle and Colacito [2006]). As is known from basic

portfolio theory, the algebraic solution isw∗t =
H−1
l,t i

i
′
H−1
l,t i

. Before weight computation, univariate

volatilities are modeled with GJR-GARCH(1,1) specifications (see Glosten, Jagannathan and

Runkle [1993]):

hit = ωi + αiε
2
i,t−1 + δi Ii,t−1 ε

2
i,t−1 + βihi,t−1 (2.17)

9See again Subsection 2.2.2
10For the sake of conciseness these expressions are not reported; however, they can be obviously found in

the original article
11The estimation of the DCC specification is carried out with the composite likelihood
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where εi,t denotes the i-th series of demeaned returns, with ωi ≥ 0, αi + δi/2 ≥ 0, βi ≥ 0

and αi + δi/2 + βi < 1. The variable Ii,t−1 is an indicator function which is equal to 1

when εi,t−1 < 0 and 0 otherwise12. The signficance of δi is tested and the parameter is

omitted when its significance is rejected (at the 5% level). The volatility series obtained

from (2.17) are as usual employed to standardize the returns: ηit = εit/h
1/2
it . The second

step of the evaluation exercise in Clements et al. (2012) is the estimation of CL-DCC and

DECO in order to compute one-step-ahead forecasts of covariance matrices on the out-of-

sample period13. Two estimation strategies are employed: the first one involves a one-shot

parameter estimation only on the first 2000 data (fixed-window approach), while the second

is carried out by re-estimating the parameters at each period 2000 + t (t = 1, ..., 2029) on

all the previous observations (expanding-window approach). The predicted covariances are

then utilized to construct the series of minimum variance portfolios according to the above

reminded analytic solution. Moreover, alternative predicted covariance matrices are derived

from simpler methods, namely a simple moving average (SMA)14:

Qsmat =
1

τ

τ∑
j=1

ηt−jη
′
t−j ; (2.18)

an exponentially-weighted moving average (EWMA) from Fleming, Kirby and Ostdiek (2001)

(see also Subsection 1.3.1):

Qewmat = e−αQewmat−1 + α e−α ηt−1η
′
t−1; (2.19)

a mixed data sampling specification (MIDAS) introduced by Ghysels, Santa-Clara and Valka-

nov (2006)15:

12The model (2.17) has been proposed by Glosten et al. (1993) in order to model the empirical finding of
higher impacts of negativity shocks on volatility

13In both cases a cDCC model (see Equation (1.63)) with only two scalar parameters has been used; the
CL-DCC estimation has been carried out on all the unique pairs of stocks

14In Equation (2.18) the ηt’s are the vectors built with the components ηit, that is the standardized
demeaned returns as previously mentioned

15Q is the unconditional covariance matrix of vectors ηt
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Qmidast = Q+ ϕ
τ∑
j=1

θjηt−jη
′
t−j . (2.20)

In the previous model equations the authors set τ = 252 and α = 2/(τ + 1); the weights θj

are computed using the Beta function with parameters (1, 0.98)16 and then normalized, while

ϕ is estimated. After having estimated the series Qsmat , Qewmat and Qmidast the covariance

matrices are obtained in the usual way used for dynamic conditional correlation models17:

Rjt =
(
I �Qjt

)−1/2
Qjt

(
I �Qjt

)−1/2

Hj
t = DtR

j
tDt

Dt = diag(h
1/2
1t , ..., h

1/2
Nt ).

(2.21)

The different models are assessed in terms of minimum portfolio variances for various problem

size: N = 5, 10, 50, 100, 200. The evaluation is enriched by applying the model confidence

set (MCS) procedure by Hansen, Lunde and Nason (2011) with loss function L(Hj
t ) =

wj∗′
t Hj

tw
j∗
t . The MCS is an iterative procedure of elimination of the significantly worst

models from the set and is based upon the null H0 : E(L(Hj
t ) − L(Hk

t )) = E(djkt) = 0.

The procedure entails the comparison of all the pairs of models in the set and continues

until failure to reject H0. The test statistic is computed from the sample values and has a

standard normal distribution:

tjk =
djk

ŝe(djk)
(2.22)

where djk and ŝe(djk) are the sample mean and sample standard error of djkt. The empirical

results show a global superiority of the simpler method of estimation and forecasting, also

when the out-of-sample interval is split into high and low volatility subperiods and basically

for every size N , although the difference between performances tends to increase for high

16See, among others, Andrews, Askey and Roy (1999, chapter 1) about the features of the Beta function
17In equation (2.21), and on in the subsection, the superscripts j and k stand for two generic types of model
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N (100 and 200); further, DECO globally outperforms CL-DCC and there is no substan-

tial difference between the fixed-window and the expanding-window estimation strategies.

Nevertheless, it is worth noting that the weights computed based on the simpler models are

more variable than those based on DECO and, especially, on CL-DCC and this is an impor-

tant practical shortcoming of SMA, EWMA and MIDAS because of the economic costs that

portfolio reallocation has in practice.

2.2.5 Estimation of richly parameterized DCC models

In a recent paper Bauwens, Grigoryeva and Ortega (2014) have introduced a new method

to estimate richly parameterized DCC models. The method consists in an algorithm based

upon a procedure involving Bregman matrix divergences (see Bregman [1967]); it can solve

likelihood maximization problems handling a high number of parameters and, simultane-

ously, non-linear stationarity and positivity constraints. The Bregman matrix divergence is

a measure defined as follows18,19:

dϕ(X,Y ) = ϕ(X)− ϕ(Y ) + trace[(∇ϕ(Y ))
′
(X − Y )] (2.23)

where X and Y are two N × N symmetric matrices, ϕ : RN×N → R is a convex and

differentiable function and ∇ denotes the gradient operator. The Bregman measure includes

different type of metrics according to the choice of ϕ. In the cited paper the authors use a

special case called Stein’s loss (see James and Stein [1961]):

dstein(X,Y ) = trace(XY −1)− ln |XY −1| −N. (2.24)

As is shown in the article, Bregman divergences are particularly appropriate in optimization

when dealing with positive (semi)definiteness constraints. The econometric specification

18Cf. the equivalent formulation in Equation (3.5)
19The trace of a square matrix A is the sum of its diagonal elements:

∑N
i=1[A]ii (see Lutkpohl [1996], p.41)
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which the procedure is applied to is the most general version of Engle’s DCC (see Equation

(1.56)):

Qt = (ii
′ −A−B)�Q+A� ηt−1η

′
t−1 +B �Qt−1. (2.25)

The intercept Q is obtaneid via the correlation targeting, while the parameter matrices take

on different structure: A and B are alternatively assumed to be full rank, rank two and

rank one20. In case of full rank parameter matrices, the model corresponds with the more

general specification introduced in Ding and Engle (2001) and Engle (2002) in which the

overall number of parameters is N(N + 1). It has been already stressed in Chapter 1 that a

sufficient condition for such a model to yield positive definite covariance matrices is that A

and B are positive semidefinite and (ii
′−A−B)�Q is positive definite. Further, a sufficient

condition for stationarity, that is:

E(Qt) = Q where every entry of Q is constant and finite, (2.26)

is |aij + bij | < 1 , ∀i, j ∈ {1, ..., N}. The full rank version of the model is the more flexible

form but it is practically unfeasible when the dimension of portfolio N is large, as long as

ordinary numeric optimization method are used. On the other hand, the algorithm proposed

in Bauwens et al. (2014) can overcome this complication and reach convergence in the

constrainted maximization of the likelihood function. A computationally feasible alternative

is to work with reduced rank matrices. The rank one matrices are built as outer self-products

of two vectors, A = aa
′

and B = bb
′
: in one case a and b are two RN -vectors having

independent components, for a total number of 2N parameters; instead, in the other case,

they are defined by using an Almon function (see Almon [1965]), that is their generic i-th

element is of type v1 + exp(v2i̇ + v3i̇
2): in other words, the Almon operator (: R3 → RN )

shifts a 3-component vector into an N -component one. Therefore, when using the Almon

function there will be only 6 parameters to be estimated, say (α1, α2, α3) and (β1, β2, β3), and

20as regards the rank one specification cf. Equation describing the G-DCC by Hafner and Franses (2009)
(Subsection 1.6.2)
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for this reason the so-called Almon DCC turns out to be very parsimonious and a natural

competitor of the scalar specification. It is also noteworthy that the Almon specification is

a novel contribution introduced by Bauwens et al. (2014) in the DCC literature. In case of

rank one parameter matrices with A = aa
′

and B = bb
′

the positive definiteness constraints

reduce to the positive definiteness of (ii
′ − A − B) � Q, while the stationarity is ensured

by |aiaj + bibj | < 1 , ∀i, j ∈ {1, ..., N}. The authors also use two (necessary) identification

constraints: a1 > 0, b1 > 0. All these constraints remain virtually valid also in case of use

of the Almon function, with the only difference that in this case each one of the vectors a

and b is built with only 3 parameters. The rank two parameter matrices are obtained by the

self-product of two matrices, A = ÃÃ
′

and B = B̃B̃
′
, where the matrices denoted by the

tilde belong to the space RN×2 and are of the following type21:


v1 0

v2 vN+1

...
...

vN v2N−1

 . (2.27)

Therefore any parameter matrix of the rank two specification is defined by a vector with

2N−1 components, so the model needs a total amount of 4N−2 parameters. The conditions

for stationarity are
∑2

k=1 |ãikãjk + b̃ik b̃jk| < 1 , ∀i, j ∈ {1, ..., N}, while the condition for the

positive definiteness is guaranteed by the positive definiteness of (ii
′ − ÃÃ

′ − B̃B̃
′
) � Q

provided that the starting pseudo-correlation Q0 is positive semidefinite. Furthermore, the

identification constraints are in this case a1 > 0, aN+1 > 0, b1 > 0 and bN+1 > 0. The

different parametrizations are tested in an empirical study involving daily closing prices of

the thirty components included in the Dow Jones Industrial Average Index (DJIA) belonging

to two consecutive intervals, each of 3750 days (the first 3000 observations are used for

estimating the parameters, the residual 750 for an out-of-sample study). It is worth noting

that the residuals are obtained by preprocessing the raw data according to the capital asset

21In the discussed paper definitions and conditions for generic rank r parameter matrices are reported, but
here only the rank two case is presented as it is the only actually used in the empirical application along with
the rank one, the Almon specification and the full rank
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pricing model (CAPM) (i.e. a one-common-factor regression model with intercept). The

goodness of the various specifications is evaluated by using the model confidence set by

Hansen et al. (2011). In this extensive empirical study the authors find substantial evidence

that some of the proposed parametrizations are advantageous (more precisely the Almon and

the rank one models) compared to the classical scalar DCC.

2.3 Methods for the regularization of covariance and correla-

tion matrices

This section presents two techniques for regularizing sample covariance and correlation ma-

trices in case they are ill-conditioned or even singular. In more detail, the section contains: an

illustration of the shrinkage technique of estimation and regularization of sample covariance

matrices and of its applications in finance, based on the work of Ledoit and Wolf (2004a)

(Subsection 2.3.1); a presentation of two modified versions of the above mentioned shrinkage

technique introduced in Ledoit and Wolf (2003) and Ledoit and Wolf (2004b) in which the

choice of the so-called target matrix is different from that in Ledoit and Wolf (2004a) (Sub-

section 2.3.2); the discussion on an empirical application of shrinkage estimation techniques

to covariance targeting carried out by Hafner and Reznikova (2012) (Subsection 2.3.3); an

overview of an alternative technique of regularization, borrowed from the random matrix

theory (RMT), known as eigenvalue cleaning, introduced in econometrics by Laloux, Cizeau,

Bouchaud and Potters (1999) (Subsection 2.3.4); a summary of two applications in which

the eigenvalue cleaning is employed (Tola, Lillo, Gallegati and Mantegna [2008]; Hautsch,

Kyj and Oomen [2009]) (Subsection 2.3.5).

2.3.1 Shrinkage regularization of large covariance matrices

It is known from matrix algebra and mathematical statistics that, when the number of vari-

ables is not negligible compared to the number of observations, sample covariance matrices
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are typically not well-conditioned22. Further, when the sample length is not greater than the

number of variables the covariance matrix is not even invertible. Indeed, consider a random

vector xt ∈ RN and the matrix X made up of T observations of xt; its mean and covariance

matrix are:

µ =
1

T
Xi

S =
1

T
X(I − 1

T
ii
′
)X
′

(2.28)

with i an N -dimensional vector of ones and I an N×N identity matrix. From matrix algebra

it is known that rank(AB) ≤ min[rank(A), rank(B)] and that a square matrix is invertible

only if it is full rank (see for example Magnus and Neudecker [2007], p.8)). In the matrix

(I− 1
T ii

′
) each of the columns can be obtained as a sum of the remaining ones multiplied by

−1 and so, when N ≥ T , it is rank(S) ≤ rank(I − 1
T ii

′
) = T − 1 and the N ×N covariance

matrix S is singular. Ill-conditioned or even singular covariance matrices are often found

in practical applications. Ledoit and Wolf (2004a) introduce in econometrics the so-called

shrinkage, a method of regularization of ill-conditioned or singular sample covariances which

does not only yield well-conditioned but even more accurate estimated covariances than

the ordinary moment estimator does. The method is not new in mathematical statistics

and dates back to the classical work of James and Stein (1961). In its standard version,

the shrinkage estimator consists of a weighted average of the sample covariance and the

most simple structured covariance estimator23: a rescaled identity matrix. The difficulty

the authors have to face is that the true optimal weight depends on the unobservable true

covariance, but this issue is solved by finding a consistent estimator of the weight (the so-

called shrinkage intensity) which makes the estimated shrinkage asymptotically equivalent

to the true one. The asymptotical results on the shrinkage and weight estimator are derived

under what the authors define general asymptotics, that is with both the number of variables,

N , and the number of sample observations, T , going to infinity, plus the additional constraint

22A square matrix is ill-conditioned when its condition number (that is the ratio of the largest to smallest
singular value in the singular value decomposition) is too large: this means a determinant next to 0 and
numerical problems in inversion (see Gentle [2007], Chapter 6)

23The structured estimator used to shrink the matrix to be regularized is usually called target
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that the ratio N/T must remain bounded24. The true shrinkage estimator is given by the

minimization of the squared Frobenius norm25, ‖ ‖2, of the difference between the true

covariance, Σ , and the shrinkage itself, Σ∗:

min
µ,α

E(‖Σ∗ − Σ‖2)

s.t. Σ∗ = αµI + (1− α)S
(2.29)

whose optimal solutions are:

µ∗ = trace(Σ)/N

α∗ =
E(‖S − Σ‖2)

E(‖S − µ∗I‖2)
.

(2.30)

The shrinkage must be interpreted as the optimal tradeoff between bias and variance in the

mean square error (MSE):

E(‖Σ∗ − Σ‖2) = E(‖Σ∗ − E(Σ∗)‖2) + ‖E(Σ∗)− Σ‖2 (2.31)

where the MSE is all bias when Σ∗ = I, while it is all variance when Σ∗ = S (provided

that E(S) = Σ). As previously mentioned (see Equations (2.30)), the true optimal weight

depends on the true latent covariance Σ which is unknown and not observable. However,

Ledoit and Wolf (2004a) show under some general-asymptotics conditions that the solutions

can be consistently estimated as:

µ̂ = trace(S)/N

α̂ =
T−2

∑T
i=1 ‖x.ix

′
.i − S‖2

‖S − µ̂I‖2
(2.32)

24General is counterposed to standard asymptotics that is characterized by T → ∞ and N fixed: under
standard asymptotics the sample covariance is asymptotically well defined

25The Frobenius norm of a real-valued matrix A is equal to
√

trace(A′A) (see Lutkepohl [1996], p.103)



Chapter 2. High dimensional volatility matrices 54

where x.i denotes the i-th column of the data matrix X and, then, the estimated shrinkage

Σ̂(µ̂, α̂) is a consistent (in quadratic mean and norm) estimator of the true shrinkage Σ∗ and

has the same asymptotic expected loss, that is for T →∞26:

‖Σ̂−Σ∗‖ qm−→ 0

E‖Σ̂− Σ‖2−E‖Σ∗ − Σ‖2 → 0.
(2.33)

Through Monte Carlo simulations Ledoit and Wolf’s shrinkage is compared to other estima-

tors from finite sample decision theory (namely: the Haff estimator; the Stein-Haff estimator;

the Dey-Srinivasan-Stein estimator) and it turns out to be the one with the bigger percentage

gain in expected loss compared to that of the sample covariance under fixed values of N/T ,

NT and eigenvalue dispersion of the true covariance. Moreover, the shrinkage estimator

shows the best performances also when the mentioned parameters (N/T and NT ) are let

to vary27. The asymptotic theory developed by the authors approximates finite sample be-

haviour well as soon as N and T become of the order of 20. Surprisingly, the Ledoit-and-Wolf

shrinkage is not only more accurate (that is with a smaller expected loss) than the sample

covariance but is even better conditioned than the true covariance matrix: its condition

number has the smaller growth when either the the ratio N/T or the eigenvalue dispersion

increases and converges quickly (to a smaller constant) when the product NT grows. It is

worth noting that the estimated shrunk covariance remains well defined and invertible even

when N > T .

2.3.2 Shrinkage with alternative targets

The same idea discussed in Subsection 2.3.1 is applied in Ledoit and Wolf (2003), where this

time the target is not the identity matrix but the covariance deriving from a single-factor

model:

26A series of random variables Xn converges in quadratic mean to a random variable X (Xn −X
qm−→ 0) if

E(X2) < +∞ and limn→∞E(Xn −X) = 0 (see Rohatgi and Ehsanes Saleh [2001], p.263)
27In more detail, N/T is allowed to change from 4/200 up to 200/4 while NT from 3× 6 up to 40× 80
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xt = α+ βft + εt

var(xt) = Ψ = σ2
fββ

′
+ ∆

(2.34)

where ft is the factor (a broad-based market index) with variance σ2
f and ∆ = var(εt) =

diag(δ1, ..., δN ) (residuals assumed to be uncorrelated). The model defined by Equations

(2.34) can be estimated via a linear regression and σ2
f by its sample counterpart. Also in

this case the basic intuition is that the sample covariance matrix S has a lot of estimation

error though it is consistent, whereas the covariance Ψ (and hence its least squares estimator

Ψ̂) has a lower estimation error but it is biased due to a stringent structure assumption: in

the wake of Stein (1956) and following literature, Ledoit and Wolf (2003) assert that there

will be an optimal point between these two extremes and this validates the use of a suitable

linear combination of them. In this case the asymptotic framework is standard: T → ∞
and N fixed. The optimal shrinkage intensity is obtained by minimizing the expected loss

E[‖αΨ̂ + (1− α)S − Σ‖2], where Σ denotes the true latent covariance matrix. In the paper

in discussion it is shown that the true optimal shrinkage intensity asymptotically is :

α∗ =
1

T

π − ρ
γ

+O(1/T 2)

π =
∑
i

∑
j

avar(
√
Tsij)

ρ =
∑
i

∑
j

acov(
√
Tsij ,

√
T ψ̂ij)

γ =
∑
i

∑
j

(ψij − σij)

(2.35)

with O(1/T 2) negligible infinitesimal and where avar and acov denote the asymptotical vari-

ance and covariance. The shrinkage intensity α∗ in (2.35) asymptotically vanishes as 1/T

and depends on unobservables (namely on the couples (ψij , σij))
28, but Ledoit and Wolf

28According to the definition used by the authors, it is not a bona fide estimator
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(2003) obtain a consistent estimator of it29. The shrinkage-to-market estimator is tested on

a problem of portfolio selection (Markowitz [1952]):

min
w
w
′
Σw

s.t. (w
′
i = 1) ∩ (w

′
µ = q)

(2.36)

where as usual µ and Σ are the mean and the covariance of a random vector of returns, i is a

vector of ones and q is a scalar constant. The solution to the portfolio problem depends on the

inverse of the (estimated) covariance Σ, hence it needs to be invertible and well conditioned.

The application is carried out on monthly returns of a big basket of stocks (N ' 1000)30

assuming re-estimation intervals much smaller than N (T = 120) and portfolio updates on

every August. The shrunk-to-market covariance is checked on its out-of-sample performance

and is compared to some competing estimators: identity matrix, constant correlation, pseudo-

inverse, Sharpe’s model, k-factor model, principal component analysis, shrinkage to identity

(see Equation (2.29)). In the application the shrinkage-to-market estimator is the one that

performs better in terms of out-of-sample portfolio standard deviation in the case of both

unconstrained and constrained global return (q in the problem (2.36)).

Another application of the shrinkage approach to portfolio optimization is carrried out in

Ledoit and Wolf (2004b). In this case the shrinkage is obtained by linearly combining the

sample covariance matrix with a constant-correlation covariance. The analytic formulation

of the problem in this case is:

min
x
x
′
Σx

s.t. x
′
α ≥ g

x
′
i = 0

−wB ≤ x ≤ ci−wB

(2.37)

29See the article for the analytic expression
30The number of considered stocks changes throughout the period of observation 1972− 1994
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where wB are the weights of a chosen benchmark portfolio while x represents the deviations

of the weights of the chosen allocation relative to the benchmark; further, α is the vector

of the expected extra-returns (compared to those of the benchmark), g is the minimum

performance level and c is the biggest allowed position in each stock. The two quantities to

be estimated are α and Σ31 . This time the shrinkage is obtained as a linear combination of

the sample covariance matrix S = [sij ] and a constant-correlation covariance F = [fij ] which

is defined as follows:

fij =

sij if i = j

r̄(siisjj)
1/2 if i 6= j

(2.38)

where:

r̄ =
2

N(N − 1)

1,...,N∑
i<j

rij (2.39)

and where the rij ’s are the sample correlations. Hence, the shrinkage estimator is Σ̂ =

δF +(1− δ)S. The optimal shrinkage intensity δ is computed on the same theoretical results

obtained in Ledoit and Wolf (2003) and its analytic expression is provided in the appendix

of their paper32. Also in this case an application on monthly data (taking into account

different cross-section sizes) shows the superiority of portfolio management based on the

shrinkage rather than the widely used sample covariance.

2.3.3 Shrinkage regularization in covariance targeting

In Hafner and Reznikova (2012) the bias affecting the quasi maximum likelihood estimator

in case of application to DCC and large portfolios (see Subsection 2.2.2) is ascribed to the

ill-conditioning of the sample covariance matrix used in the covariance targeting. As is

known, there are two main problems related to the classic DCC estimation. The first is

31The estimation of the extra-returns is explicitly kept out from the purposes of the article
32We refer to the article for the technical details



Chapter 2. High dimensional volatility matrices 58

the inconsistency due to the original formulation of the dynamic equation based upon the

incorrect assumption: S = E(ηtη
′
t). As we have seen in Chapter 1, Aielli (2013) addresses

this problem by correcting Engle’s original dynamic specification as follows (cDCC):

Qt = (1− α− β)S + α (I �Qt−1)1/2 ηt−1η
′
t−1 (I �Qt−1)1/2 + βQt−1

S =
1

T

T∑
t=1

(I �Qt)1/2 ηtη
′
t (I �Qt)1/2 .

(2.40)

The second problem is the bias associated with the estimates of the dynamic parameters

α and β when the cross-section size is large and the likelihood decomposition is used in

the estimation (see Engle and Sheppard [2001]). This second issue is solved in Engle et

al. (2008) with the introduction of the composite likelihood (see Subsection 2.2.2). Hence,

combining the composite likelihood method and the corrected DCC of Aielli one can ob-

tain consistent estimates of both the intercept and the dynamic parameters. Nevertheless,

the composite likelihood is not efficient because of the partial use of information due to

subsampling. In the article in discussion Hafner and Reznikova (2012) claim that the bias

of the dynamic parameters is caused by ill-conditioned sample matrices employed in co-

variance targeting. Consequently they propose to use the shrinkage technique (Ledoit and

Wolf [2003], [2004a], [2004b]) in order to numerically regularize such sample covariances (see

Subections 2.3.1 and 2.3.2). The estimated shrinkage intensity associated to the target ma-

trix (Equations (2.32) and (2.35)) decreases as 1/T with each one of the three versions of

the shrinkage estimators, so it practically vanishes for large T and Ledoit and Wolf’s esti-

mators become asymptotically equivalent to the efficient ordinary MLE. The authors run a

numerical experiment with differently sized portfolios (N = 5, 10, 100, 200) and time spans

(T = 100, 250, 500, 1000, 2000). The data are simulated on the basis of N univariate GARCH

models (ωi = 0.01, αi = 0.05, βi = 0.9) plus, alternatively, a DCC and an Aielli’s cDCC with

α = 0.05, β = 0.93. Then, eight parametric models are used in the estimation: plain DCC

and cDCC; DCC and cDCC with shrinkage respectively to identity matrix, to single-factor

model and to equicorrelated covariance. Further, the no-shrinkage versions of DCC and

cDCC are estimated with both the complete and the composite likelihood. In summary,
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the Monte Carlo experiment results show that the parameter bias of ordinary DCC gener-

ally grows as N increases; on the other hand the shrinkage-adjusted DCCs reach apparent

improvement in terms of bias, particularly for the α coefficient. As regards the root mean

square errors the shrinkage DCCs are substantially equivalent to the classic ones, while gains

compared to the composite likelihood DCC are observed when N is small. There is no signif-

icant global difference between Engle’s and Aielli’s specification; however, it is worth noting

that the improvements shown by the shrinkage-adjusted DCCs are less relevant when the

ordinary DCC is estimated with the composite likelihood. Furthermore, the numerical sim-

ulations illustrate how shrinkage intensities decreases toward zero as the sample dimension

T grows. The article ends with an empirical example carried out on stocks belonging to the

S&P500 observed throughout a (short) sample (T = 521), with different size of cross-sections

(N = 5, 10, 25, 50, 75, 100). The returns are previously cleaned by employing AR specifica-

tions and then the various models seen above are applied to them. The ordinary DCC and

cDCC specifications show the typical bias problems33 which are instead overcome by the

composite likelihood estimator and, to a minor extent, by the various shrinkage-adjusted

DCCs. Like in the simulation, the shrinkage intensity decreases as the cross-sectional dimen-

sion grows. The conditional correlations are almost constant when estimated with the classic

DCC, while the more variable are the ones derived from the composite likelihood DCC; the

shrinkage DCCs show a halfway situation.

2.3.4 Eigenvalue cleaning

In Sections 2.3.1, 2.3.2 and 2.3.3 the shrinkage regularization technique and its use in fi-

nancial econometrics have been discussed. However, other regularization procedures exist in

mathematical statistics and algebra. One of these alternative techniques has been developed

starting from random matrix theory (RMT) and has been applied in financial econometrics

by Laloux, Cizeau, Bouchaud and Potters (1999): it is called eigenvalue cleaning. Empiri-

cal correlation matrices usually contain measurement noise which generally increases as the

ratio of observations to number of time series, T/N , gets smaller. On the other hand, in

33More precisily, in this context the bias is indirectly deduced from the strong decreasing tendency of α
and β when N gets higher
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econometric applications and asset management it is crucial to distinguish noise from signal

(i.e. true information). In order to do that, Laloux et al. (1999) suggest to compare the con-

sidered empirical correlation matrix to its pure-noise counterpart, that is the one obtained

from finite strictly independent time series: deviations from this random matrix case can

detect the presence of true information. In the article the empirical correlation matrix C is

assumed to be constructed from the demeaned time series of returns:

C =
1

T
MM

′
(2.41)

where M is the N×T data matrix. In case of independent and identically distributed matrix

entries, M becomes a so-called random Wishart matrix whose eigenvalue distribution, for

N →∞ and T →∞ with T/N = constant ≥ 1, is (see for example Mehta [1995])34:

ρ(λ) =
1

N

dn(λ)

dλ
=
T
√

(λ− λmax)(λ− λmin)

2πσ2Nλ

λmaxmin = σ2(1 +
N

T
± 2

√
N

T
)

(2.42)

where dn(λ) naturally denotes the number of eigenvalues less than λ, λmin and λmax are

respectively the minimum and maximum eigenvalue and σ2 is the global variance of the

N × T data matrix35. A sample correlation will show more or less wide deviations from

the distribution in (2.42) and, as mentioned, these deviations from the random matrix case

should suggest the presence of true information (signal hypothesis). Basing on this theoretical

background, the authors carry out an empirical application on 1309 daily observations of

406 price series of S&P500 stocks (T/N = 3.22). They find that the empirical maximum

eigenvalue, λ̂max, is 25 times bigger than the theoretical λmax, showing that the pure-noise

hypothesis is incongruous. The empirical maximum eigenvalue is interpreted as the market

34The distribution shown in (2.42) is known as Marchenko-Pastur distribution
35σ2 can be set equal to 1 when considering the theoretical correlation matrix (rescaled data with zero mean

and unit volatility)
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signal and it is related to the common behaviour of the considered assets. Then, in order to

obtain a more reliable theoretical distribution, the contribution of λ̂max to the overall variance

is subtracted: σ2 = 1 − λ̂max
N . As many eigenvalues keep being larger than the theoretical

λmax, this subtraction procedure is repeated until the best fitting is reached; in other terms,

σ2 is treated as a tuning parameter. Practically, the discussed procedure is used to split

the empirical correlation matrix in a signal component, described by the eigenvalues laying

outside the adjusted theoretical distribution, and a purely random component, relative to the

eigenvalues well described by the adjusted theoretical distribution. The adjusted correlation

matrix is obtained by replacing the noise component of the empirical correlation with a

rescaled identity matrix, such that the trace is conserved, and is utilized in the empirical

application consisting in a classic Markowitz portfolio problem. The results show that the

estimate of future risks on optimized portfolios is substantially improved with the cleaned

correlation matrix and, on the other hand, that the plain sample correlation underestimate

the real risk.

2.3.5 Other applications of eigenvalue cleaning

An application of the theory described in Laloux et al. (1999) (Subsection 2.3.4) can be found

in Tola, Lillo, Gallegati and Mantegna (2008). The authors point out that the eigenvalues of a

sample correlation matrix of stock time series almost always can be divided into three classes:

the biggest one that is totally incompatible with the theoretical distribution in (2.42) and

that describes the common behaviour of all stocks (the so-called market signal); a certain

number of eigenvalues between the largest one and the theoretical λmax, which probably

describe economic information different from the market signal; the remaining large part of

the eigenvalues between the theoretical λmin and λmax that are congruous with the theoretical

distribution in (2.42) and, therefore, come out from measurement noise. That being said,

the authors suggest to use the following algorithm in order to clean the correlation matrix

in the framework of global minimum variance portfolio: compute the sample correlation and

its eigenvalues λ1 < ... < λN ; set σ2 = 1 − λN
N in equation (2.42); find λmin and λmax by

using the (2.42); build the filtered eigenvalue matrix by setting to zero all the eigenvalues

smaller than λmax; reconstruct the related filtered correlation by pre- and post-multiplying
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the filtered eigenvalue matrix by the original eigenvector one, forcing the diagonal elements

to be 1. The adjusted correlation will preserve only the information recognized as signal.

In the paper an empirical application is shown which presents a superior predictive ability

compared to the Markowitz basic estimation.

Another application of the eigenvalue cleaning is carried out in Hautsch, Kyj and Oomen

(2009). Working on high frequency data, they use the kernel estimator proposed in Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2008) to estimate large block-wise realized covariance

matrices, where the assets are blocked together with respect to their trading frequencies.

These realized covariances are constructed upon a series of asset clusters whose prices are

observed with different sampling frequencies (the so-called refresh time samplings) so that

the global number of observations taken into account is larger for the more liquid set of

assets and gradually smaller for the more illiquid ones; by doing so, the authors claim gains

in efficiency (that is minimization of data loss) and, simultaneously, an adequate control of

the market microstructure noise (which tends to become larger as the sampling frequency

increases). Nevertheless, a built-by-blocks covariance may not be in general well defined, so

they exploit the random matrix theory findings presented in Laloux et al. (1999): hence, in

this case the regularization technique is not employed to filter out the noise but to obtain

instead positive definite and well conditioned matrices. The regularization is carried out on

the correlation matrices and the first algorithm step is the computation of the eigenvalue

decomposition of each realized correlation: R̂ = Q̂Λ̂Q̂
′
, where Λ̂ is the diagonal matrix of

eigenvalues and Q̂ the relative eigenvector matrix. The larger eigenvalue is then employed

to filter out the market signal and to adjust the distribution in Equations (2.42), in more

detail: λ̃max = (1− λ̂max
N )(1 + N

T + 2
√

N
T ). Afterwards, the original eigenvalue structure Λ̂ is

modified into Λ̃ as follows:

λ̃i =

λ̂i if λ̂i > λ̂max

δ if λ̂i ≤ λ̂max
(2.43)

where δ is the following quantity:
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δ =
trace R̂+ −

∑
λ̂i>λ̂max

λ̂i

N −#(λ̂i > λ̂max)
. (2.44)

The symbol R̂+ stands for the positive semidefinite projection of matrix R̂, that is the matrix

Q̂Λ̂0Q̂
′

where in Λ̂0 all the λ̂i < 0 are set equal to zero. The transformation in Equation

(2.44) ensures the positive definiteness of the recontructed Λ̃. The article in discussion is

integrated with an extensive numerical study devised to simulate the empirical features of

the S&P1500 universe, in which the block-wise realized kernel estimator shows significant

improvements compared to the plain realized kernel by Barndorff-Nielsen et al. (2008),

especially in case of high dimensions and heterogeneous observation frequencies of assets.

Furthermore, an empirical application is carrried out to yield out-of-sample forecasts of the

volatility of portfolios made up of S&P500 components and, also in this case, the proposed

estimator shows significant gains over the one-block realized kernel estimator.



Chapter 3

A new flexible estimation method

for DCC models

3.1 Introduction

In the previous chapters the issue of the tradeoff between flexibility and feasibility of M-

GARCH models has been repeatedly raised and discussed and a synthetic overview of liter-

ature devolopment in this field of econometrics has been presesented. As mentioned, after

the introduction of Engle’s DCC, many methods have been proposed in the area of models

for conditional correlations in order to allow more parametrized specifications to be esti-

mated without extremely overloading computations; in most of the cases, these approaches

are based upon some typical assumptions that we shortly recall for reader’s convenience (see

Chapter 1 for further details):

- the parameter matrices which define the most general DCC specification have some

simple a priori structure (e.g. diagonal, block-diagonal, rank deficient);

- the returns (hence their covariance structure, too) can be decomposed according to a

factor model.

64
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Obviously both of these strategies may implicate in general a certain loss of information

because of parameter pooling or other imposed simplifications. The goal of this chapter is

to propose in the DCC framework a new method able to exploit more information with-

out imposing any a priori structure and at the same time without incurring overwhelming

calculations. In more detail, this chapter contains: a recall of the general DCC framework

and of its limits and the outline of a possible solution (Section 3.2); the introduction of

a shrinkage-type predictor inspired by the shrinkage estimator of Ledoit and Wolf (2004a)

(Section 3.3); the development of a novel method for obtaining more accurate conditional

correlation forecasts (Section 3.4); an application to real data aimed to provide an empiri-

cal assessment of the performances of the proposed predictors (Section 3.5) and, finally, a

comparison between the proposed predictors and those implied by some richly parametrized

DCC models (Section 3.6).

3.2 Some limitations of the general DCC framework for high-

dimensional portfolios

As it has been seen in Chapter 1, given a vector time series of returns rt, with conditional

expectation E(rt|It−1) and cross-sectional dimension N , the most general version of the DCC

model (Engle [2002]) is completely described by the following equations:

rt − µt = εt = H
1/2
t zt , zt ∼ i.i.d.(0, I)

Dt = diag(h
1/2
11,t, ..., h

1/2
NN,t) , hii,t = var(εit|It−1)

ηt = D−1
t εt

Q =
1

T

T∑
t=1

ηtη
′
t

Qt =
(
ii
′ −A−B

)
�Q+A� ηt−1η

′
t−1 +B �Qt−1

Rt = (Qt � It)−1/2Qt (Qt � It)−1/2

Ht = DtRtDt

(3.1)
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where the parametric symmetric matrices A and B have dimension equal to N ×N and are

full rank, for a global amount of N(N + 1) parameters (because of the symmetry of the two

matrices). Due to the computational infeasibility of this model even when N is moderately

large, Engle (2002) proposes as an alternative a scalar version in which A and B collapse

into scalars:

Qt = (1− α− β)Q+ αηt−1η
′
t−1 + βQt−1. (3.2)

It is well known that the scalar DCC is particularly advantageous thanks to: the separate

estimation of each univariate conditional variance and, then, of the correlation matrices

(likelihood decomposition); the possibility of separately estimating the intercept term Q by

a sample estimator (correlation targeting); the computational feasibility (only two scalar

parameters to be estimated: α and β). However, in case of large portfolios, it relies on a

too restrictive homogeneity assumption given that the correlation dynamics is ruled by the

same two parameters for all the pairs of assets1. In addition to this, the two-step estimation

based upon the likelihood decomposition may yield massively biased estimates of the two

parameters α and β due to the so-called incidental parameter problem (see Engle, Shephard

and Sheppard [2008]) and this flaw generally gets more and more serious as the number of

assets increases. Given these DCC’s features, a natural solution can be conceived whose

essentials can be summarized in three steps:

- fit separately a scalar DCC to each pair of assets;

- estimate the pairwise correlation dynamics;

- reconstruct the multivariate high dimensional correlation matrices by using the pairwise

estimated correlations (obtaining something that may be called merged correlation

matrices).

1in Engle and Sheppard (2001) it is shown, for example, that this leads to sub-optimal portfolio selection
in case of many assets
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This solution would allow to keep exploiting the simplicity of the scalar DCC, without

removing crucial heterogeneity information and succumbing to overwhelming or infeasible

computations. On the other hand, it is known that well defined correlation (and, in general,

covariance) matrices must be positive (semi)definite2 (see Equation (1.13)); nevertheless, we

expect that reconstructing a correlation matrix by putting together unrelatedly estimated

entries may not yield well defined matrices, so some kind of regularization is needed. In the

next sections the features of the proposed method and the related issues of estimation and

regularization are discussed in detail.

3.3 A new forecasting approach based on shrinkage estima-

tion

As already said in Section 3.1, the goal of this chapter is to propose a more flexible and

possibly accurate approach to modeling and, especially, to forecasting conditional correlations

in case of large portfolios. In Section 3.2 the solution outline has been sketched in three steps

which should allow to exploit the easiness of estimation of scalar DCC while introducing more

information without incurring overwhelming or de facto impossible computations. The gain

in information is achieved by computing the merged conditional correlations matrices or, in

other words, the conditional correlations built by gathering the pairwise estimates relative to

each couple of assets belonging to a considered portfolio. Such matrices are expected to be

more informative about the real dynamics of conditional correlations because they take into

account the heterogeneity that the scalar DCC can hide, but it has been already stressed

that they will not be in general well defined (positive definite or semidefinite, in particular)

because obtained from unrelatedly estimated entries. In Ledoit and Wolf (2004a) a similar

problem is faced. Their work (see Section 2.3.1) is concerned with the regularization of

ill-conditioned or even singular sample covariance matrices through the shrinkage method

(James and Stein [1961]). Through numerical experiments the authors find that does not

only the shrinkage provide an estimator better conditioned than the sample covariance but

2Sample correlations are surely positive definite if the number of observations T is greater than the number
of assets N (see Equations 2.28 and the related proof)
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also generates more accurate estimates of the true covariance. We want to borrow from

Ledoit and Wolf (2004a) and transfer their intuition into our context. The idea consists

in linearly combining the correlation matrix forecasts derived from a full-sized scalar DCC

with those obtained from the estimation of all the pairwise scalar DCC models, applied to

each one of the N(N − 1)/2 pairs of assets. More precisely, in order to build what we have

defined merged correlation matrices, the generic pairwise DCC forecast, say r∗ij,t, is used as

the (i, j) entry of the merged matrix at time t; then, a suitable convex linear combination is

computed between the full-sized DCC predicted correlation, say rij,t, and the pairwise one:

αr∗ij,t + (1− α)rij,t, where α is the same for every couple (i, j). In an analogical comparison

with the shrinkage à la Ledoit and Wolf, in this context:

- the correlation matrices estimated by the full-sized scalar DCC play the role of the

shrinkage target

- the reconstructed merged correlations play the role of the matrices to shrink

and, like in the cited paper, we expect the resulting estimator/predictor to be well defined and

also more accurate according to some chosen loss function. Further, the proposed solution is

computationally feasible because it involves the estimation of only two parameters at a time.

A consequent issue is the estimation of the optimal weight in the linear combination. In

Ledoit and Wolf (2004a) the problem is solved by minimizing the squared Frobenius norm of

the difference between the combined estimator and the latent covariance, which is obviously

unknown: to overcome this problem they derive some asympotical results that allow them

to obtain consistent estimates without observing the true covariance. However, Ledoit and

Wolf’s general results cannot be useful in the DCC framework as they have been derived

for sample estimators. That being said, in the optimization problem we replace the true

correlations with consistent and unbiased proxies: adequately computed realized correlation

matrices3. This kind of regularization scheme can be defined a posteriori because it applies

after having built the linear combination and along with the weight estimation. In more

detail, the general analytic formulation of the a posteriori regularization problem is the

following:

3For definitions and properties of realized covariance matrices we refer to Andersen, Bollerslev and Diebold
(2009)
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αopt = argmin
0≤α≤1

T∑
t=1

∥∥∥αRmergedt + (1− α)RsDCCt −Rrealt

∥∥∥ 2

s.t. αRmergedt + (1− α)RsDCCt is p.d. , ∀t = τ1, ..., τs

(3.3)

where Rrealt is the realized correlation matrix and ‖ ‖ denotes the Frobenius norm. Hence,

the regularization is achieved by the introduction of a numerical constraint which forces the

shrinkage estimator/predictor to be positive definite, where it is assumed that τ1 < ... < τs

and that, in general, the intersection [τ1, ...τs] ∩ [1, ...T ] may be = ∅ or 6= ∅. The constraint

is obtained by using a Matlab function4 related to the Cholesky decomposition of the ma-

trices to be regularized. This function applies to each symmetric (in general Hermitian)

matrix, say A, and produces two main outputs: an upper triangular matrix, say U , such

that A = U
′
U and a real number, say p, such that p = 0 if and only if A is positive definite.

The latter output, p, can be therefore employed to write a suitable function to bind the

minimization problem in (3.3). More precisily, the constraining algorithm employed to bind

the minimization problem5 is the following function loss cons:

function[c, ceq] = loss cons(α,Rmerged, RsDCC , τ1, ..., τs)

psum = 0;

for t = τ1 : τs

[U, p] = chol(α,Rmergedt + (1− α)RsDCCt );

psum = psum+ p;

end

c = [ ];

ceq = psum;

end

(3.4)

4All of the computations relative to the empirical applications of this thesis have been carried out by using
the software Matlab

5The minimization has been carried out by using of the common Matlab function for the constrained
problem: fmincon
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where the operator chol denotes the Matlab function for the Cholesky decomposition6 and

Rmerged and RsDCC denote the 3-dimensional arrays built with conditional correlation ma-

trices Rmergedt and RsDCCt . That being said, there is no regularization of the reconstructed

merged correlations through this technique: what is regularized is the entire combined esti-

mator, according to the original Ledoit and Wolf’s intuition.

As it can be seen from (3.3), relying on the results in Laurent, Rombouts and Violante (2013)

here the (sum of) squared Frobenius norms,
∑
‖ ‖2, are minimized rather than the (sum

of) Frobenius norms,
∑√

‖ ‖2. Indeed, when different forecasting models or estimators are

used, their performance can be evaluated by using a loss function depending on the true

variable. However, as previously stressed, true covariances and correlations are not observ-

able, so they are generally substituted with a proxy (for example, the realized correlations

in our case). Nevertheless, when the model evaluation is based upon a target observed with

error (a proxy), the resulting model ranking may be different from that resulting from using

the latent variable (see Hansen and Lunde [2006]): for these reasons the choice of the loss

function is not irrelevant. In the cited article the authors introduce a generalized class of

functional forms which guarantee consistency of the ranking under certain conditions. This

class of forms correspond to a Bregman-type distance function (see Bregman [1967]; see also

Subection 2.2.5):

L(Σ∗t , Ht) = f(Ht)− f(Σ∗t ) +∇f(Ht)
′
vech(Σ∗t −Ht). (3.5)

In Equation (3.5) f : RN×N → R is a scalar-valued matrix function and it is assumed to

be three times continuously differentiable, while Σ∗t and Ht are respectively the covariance

proxy and its forecast at time t; the term ∇f(Ht) is the gradient of f with respect to the

N(N + 1)/2 unique elements of Ht. When one sets f(A) = − tr(A2) the definition in (3.5)

becomes the squared Frobenius distance: L(Σ∗t , Ht) = tr[(Σ∗t −Ht)(Σ
∗
t −Ht)

′
]7. Hence, the

squared Frobenius distance is a special case of the class of loss functions which preserve the

6For details about the Cholesky decomposition see Lutkepohl [1996], p.86
7The operator tr denotes the trace of a square K×K matrix: tr(M) =

∑K
i=1mii (see see Lutkepohl [1996],

p.41)
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ordering of different forecast models when the true covariance is substituted with a proxy:

this validates our choice.

3.4 Nearest correlation problem

In the previous section the shrinkage of the merged conditional correlations has been defined

as an a posteriori regularization because it applies after having built the linear combination

and along with the estimation of the optimal weight. However, in the statistical and mathe-

matical literature there exist methods for regularizing ill-defined covariance and correlation

matrices directly. In our context, in opposition to the a posteriori regularization, this type

of methods may be defined for simplicity a priori, as they can be used on the matrices to

be regularized alone and before a possible combination of estimates or forecasts. In Higham

(2002) a regularization algorithm has been introduced with the aim to solve the so-called

nearest correlation problem8. This problem consists in finding the nearest (according to

a certain norm function) symmetric positive (semi)definite unit-diagonal matrix to a given

symmetric matrix. From an analytic point of view the problem is the following:

Ropt = argmin
R
‖A−R‖

s.t. {R is positive semidefinite} ∩ {[R]ii = 1}
(3.6)

where A is the given generic symmetric matrix, ‖ ‖ denotes the Frobenius norm and R is the

matrix variable. If we define the two sets:

S = {X = X
′ ∈ RN×N : X is positive semidefinite}

U = {X = X
′ ∈ RN×N : [X]ii = 1, for i = 1, ...N}

(3.7)

8Another common method of direct regularization is the eigenvalue cleaning (see Subection 2.3.4). The
eigenvalue cleaning is a regularization technique based on the adjustment of the largest and/or smallest
eigenvalues. Nevertheless, this method is useless for our problem because it can apply to sample covariance
matrices only
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the nearest correlation problem is equivalent to finding the nearest matrix to the given A,

belonging to the intersection S ∩ U . This intersection is a convex set as S and U are both

convex as well, so the solution to the problem (3.6) exists and is unique. The problem can be

solved with the so-called alternating projections method (see Algorithm 3.3 in Higham[2002])

which consists in iteratively projecting the resulting matrix on the set U (i.e. forcing the

diagonal element to be equal to 1) and then on the set S (i.e. forcing the negative eigenvalues

to be equal to 0). The convergence is determined by comparing convenient relative norms

with a chosen tolerance9: more precisely, the default tolerance is set equal to N ·2.2204·10−16,

while the convergence is achieved as soon as one of the three following relative Frobenius

norms is lesser than the tolerance:

‖si − si−1‖
‖si−1‖

,
‖ui − ui−1‖
‖ui−1‖

,
‖si − ui‖
‖si‖

(3.8)

where si ∈ S, ui ∈ U and i denotes the algorithm iteration number. Although the al-

ternating projection method is reliable, in our empirical applications we have used a more

complex Newton method introduced in Qi and Sun (2006) which converges more quickly and

whose software implementation has been publicly shared by the authors10. However, the two

algorithms give practically the same results.

3.5 Empirical application

The main empirical application has been carried out on a data set of 50 liquid stocks included

in the index S&P500 with prices observed every minute from 9.30AM to 4.00PM in the

interval 07/27/1997 through 07/18/2008 (2549 daily observations). The data are part of the

One-Minute Equity Data (OMED) database provided by Tick Data11. In Table 3.1 names

and related abbreviations of the stocks included in the data set are reported. The data

9The Matlab code (nearcorr.m) is available at the internet page https://nickhigham.wordpress.com/

2013/02/13/the-nearest-correlation-matrix/
10The Matlab code (CorrelationMatrix.m) is available at the internet page http://www.math.nus.edu.sg/

~matsundf/CorrelationMatrixNewton.m
11www.tickdata.com

https://nickhigham.wordpress.com/2013/02/13/the-nearest-correlation-matrix/
https://nickhigham.wordpress.com/2013/02/13/the-nearest-correlation-matrix/
http://www.math.nus.edu.sg/~matsundf/CorrelationMatrixNewton.m
http://www.math.nus.edu.sg/~matsundf/CorrelationMatrixNewton.m
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have been converted in log-returns and demeaned: they are represented in Figure 3.1 along

with their squared values, from which it can be seen that the first part of the considered

sample is characterized by a higher overall volatility with a new increasing tendency in the

very last part of the interval (at the beginning of the latest world-wide recession). The

related five-minute computed realized covariances have been used as a proxy for the latent

covariances: consequently the proxy series for the realized correlations has been computed

by simply standardizing the realized covariance matrices (Figure 3.2).
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Figure 3.1: Returns relative to the fifty price time series used for the empirical application
(upper box) and related squared values (lower box)

After that, the standardized residuals (upper box of Figure 3.3) have been obtained by

applying a univariate GARCH(1,1) model to each of the 50 series of demeaned returns εit:
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Stock Issue Name Stock Issue Name

Dataset: October 1997 – July 2008

AA Alcoa COST Costco Wholesale Corporation

ABT Abbott Laboratories CPB Campbell Soup

ADI Analog Devices CSC Computer Sciences Corporation

AFL Aflac Incorporated CTAS Cintas Corporation

AIG American International Group CTL CenturyLink

ALL Allstate DOV Dover Corporation

APD Air Products & Chemicals DOW The Dow chemical Company

APOL Apollo Education Group DTE DTE Energy Company

AVY Avery Dennison Corporation EIX Edison International

AXP American Express Company EMN Eastman Chemical Co.

AZO AutoZone ETR Entergy Corporation

BAC Bank of America F Ford Motor Co.

BAX Baxter Corporation FDO Family Dollar Stores

BBBY Bed Bath & Beyond FISV Fiserv

BDX Becton, Dickinson and Company GCI Gannett Co.

BHI Braveheart Resources GE General Electric

BMY Bristol-Myers Squibb Company GIS General Mills

C Citigroup GPC Genuine Parts Company

CAG ConAgra Foods GPS The Gap

CAH Cardinal Health HD The Home Depot

CL Colgate-Palmolive Co. HNZ HNZ Grou

CLX Clorox HON Honeywell International

CMA Comerica Incorporated HPQ Hewlett-Packard Company

CMS CMS Energy Corp. KO Coca Cola

COF Capital One Financial Corporation T AT&T

Table 3.1: Stocks included in the data set used for the empirical application

hii,t = ωi+αiε
2
i,t−1+βhii,t−1, with i = 1, ..., 50. The related conditional variances are depicted

in the lower box of Figure 3.3.

The standardized residuals’ sample has been then split into nb blocks (nb = 26 , 109) by

employing a rolling window of 2000 + s observations (s = 21 , 5); for each of the nb data
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Figure 3.2: Realized covariances (upper box) and correlations (lower box) relative to the
first couple of assets (Alcoa and Abbott Laboratories) of the portfolio used for the empirical

application (the green line represents a 21-lag moving average)

blocks, a full-sized scalar DCC and N(N − 1)/2 bivariate scalar DCCs have been estimated

(according to the solution outlined in Sections 3.2 and 3.3) on the first 2000 data points; then

the estimates have been used to obtain two series (one from the full-size scalar DCC and

one from the N(N − 1)/2 bivariate scalar DCCs) of s · nb predicted conditional correlation

matrices. The choice of a rolling window scheme is based on a greater reliability of forecasts

resulting from limited memory estimators compared to those obtained from expanding win-

dow estimators. The issue is discussed in detail in Giacomini and White (2006) where the

authors claim the superiority of rolling window estimators and predictors, especially in case

of inadequately modeled heterogeneity or misspecification: a typical example could be the
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Figure 3.3: Upper box: Standardized GARCH(1,1) residuals. Lower box: Related condi-
tional variances

presence of different regimes, which is often the case in long samples. To be more precise, the

approach here adopted cannot strictly be defined as a pure rolling window scheme but it is

rather a mixed rolling window approach where the forecasting model is re-estimated each s

observations. The two selected re-estimation intervals (s = 21 , 5) coincide respectively with

the typical trading month and week. We focus on one-step ahead forecasts which in practical

terms means that in the dynamic equation:

Qt = (1− α− β)Q+ αη̂t−1η̂
′
t−1 + βQt−1 (3.9)
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the standardized residuals η̂t, with t = 2001, ..., 2000 + s, are computed assuming the knowl-

edge of the returns relative to the same time points. In Figure 3.4 we can see the series of

the predicted correlations (t = 2001, ..., 2546) for the first couple (namely Alcoa and Abbott

Laboratories) of the considered stocks in case of 26 blocks and consequent re-estimation in-

terval of 21 periods: the forecasts resulting from the pairwise DCC model are clearly more

variable than the ones obtained with the scalar DCC applied to the entire portfolio.
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Figure 3.4: Predicted full scalar DCC and pairwise scalar DCC correlations for the first
couple of stocks (Alcoa and Abbott Laboratories) of the considered sample with nb = 26

and s = 21 (number of predictions = nb · s = 546)

As it has been repeatedly stressed, we expect the merged correlation matrices not to be well-

conditioned. In Figure 3.5 the eigenvalue numerical distributions of the merged predicted

correlation matrices are represented in case of nb = 26, while the related time series of each

of the 50 eigenvalues can be seen in Figure 3.6; the two graphs regard the merged correlations

before any regularization. Figure 3.5 shows that many of the smallest eigenvalues are less than
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zero, whereas the biggest three have simple averages respectively equal to 1.978, 2.617 and

14.880 (see Figure 3.6). In order to obtain well conditioned predicted conditional correlations,

the two techniques described in Section 3.3 and Section 3.4 have been alternatively adopted in

order, so obtaining three different sets of forecasts that hereafter we will define: constrained

shrinkage (CS); simple regularization (SR); shrinkage after regularization (SAR).
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Figure 3.5: Eigenvalue distribution for the 546 predicted merged correlation matrices in
case of 26 data blocks (s=21)

3.5.1 First case: constrained shrinkage (CS)

In this case the regularization has been achieved by imposing the positive definiteness on the

predicted correlation matrices through a numerical constraint (see Section 3.3), that is:
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Figure 3.6: Time series of the eigenvalues of the 546 predicted merged correlation matrices
in case of 26 data blocks (s=21)

αj,opt = argmin
0≤αj≤1

2000∑
t=1

∥∥∥αjRmergedj,t + (1− αj)RsDCCj,t −Rrealj,t

∥∥∥ 2

s.t. αjR
merged
j,t + (1− αj)RsDCCj,t is p.d. , t = 2001, ..., 2000 + s

(3.10)

with j = 1, ..., nb. The weights are represented (in blue) in Figure 3.7, in the case of a

re-estimation interval equal to 21 (upper box) and 5 (lower box) respectively. In both cases

an increasing trend in the weights is apparent: higher weights correspond with a greater

importance of the pairwise estimates in the linear combination and, consequently, they mean

an increase of heterogeneity across the conditional correlations in the sample. In Figure 3.8
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the predicted conditional correlations obtained via the constrained shrinkage are represented

(in blue) for the first pair of stocks in the portfolio (namely Alcoa and Abbott Laboratories).

3.5.2 Second case: simple regularization (SR)

In this case the regularization has been applied through the Qi and Sun algorithm (see Section

3.4) to the entire series of estimated merged conditional correlation matrices in order to obtain

an entire set of regularized matrices: R̃mergedj,t with t = 1, ..., 2000 + s and j = 1, ..., nb. In

Figure 3.8 the predicted merged conditional correlations regularized with the Qi and Sun

algorithm are shown (in green) for the first pair of stocks in the portfolio (Alcoa and Abbott

Laboratories).

3.5.3 Third case: shrinkage after regularization (SAR)

The merged matrices regularized with the Qi and Sun procedure, R̃mergedj,t , have been used

to build a combined predictor by solving the problem:

αj,opt = argmin
0≤αj≤1

2000∑
t=1

∥∥∥αjR̃mergedj,t + (1− αj)RsDCCj,t −Rrealj,t

∥∥∥ 2

(3.11)

where j = 1, ..., nb. This combined estimator has been built to check whether a shrinkage-type

predictor with an a priori regularization may outperform the constrained shrinkage (CS).

While in the a posteriori (CS) case the combined forecasts, αjR
merged
j,2000+t + (1 − αj)RsDCCj,2000+t

with t = 1, ..., s, must be numerically regularized along with the computation of the optimal

weights αj , in the a priori one they are already well defined because of the prior application

of the Qi and Sun algorithm to the pairwise-predicted correlation matrices. Hence, in the

latter case the αj ’s can be calculated analytically. For a generic data block of length T , let

r∗lm,t = [R̃mergedt ]lm, rlm,t = [RsDCCt ]lm and ρlm,t = [Rrealt ]lm. If we denote δ∗lm,t = r∗lm,t−rlm,t
and δlm,t = ρlm,t − rlm,t, the optimization problem (3.3) can be written as:
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αopt = argmin
0≤α≤1

T∑
t=1

∥∥∥∥∥∥∥∥∥∥∥∥∥



0 αδ∗12,t − δ12,t · · · αδ∗1N,t − δ1N,t

αδ∗12,t − δ12,t 0 · · · αδ∗2N,t − δ2N,t

· · · · · · · · · · · ·
· · · · · · · · · · · ·

δ∗1N,t − δ1N,t αδ∗2N,t − δ2N,t · · · 0



∥∥∥∥∥∥∥∥∥∥∥∥∥

2

. (3.12)

where as usual the notation ‖ ‖ denotes the Frobenius norm. On the other hand, for the

symmetry of the matrices under the summation in (3.12), the problem can be reformulated

as follows:

αopt = argmin
0≤α≤1

T∑
t=1

N−1∑
l=1

N∑
m=l+1

(2α2δ∗2lm,t + 2δ2
lm,t − 4αδ∗lm,tδlm,t) (3.13)

and, taking into account that ∂
∂α

∑
t

∑
l

∑
m =

∑
t

∑
l

∑
m

∂
∂α , the analytical solution for the

optimal weight is obtained by deriving with respect to α the function in (3.13) and setting

the derivative equal to zero:

αopt =

∑T
t=1

∑N−1
l=1

∑N
m=l+1(r∗lm,t − rlm,t)(ρlm,t − rlm,t)∑T

t=1

∑N−1
l=1

∑N
m=i+1(r∗lm,t − rlm,t)2

. (3.14)

As the second-order derivative of the function in (3.13) is equal to
∑T

t=1

∑N−1
l=1

∑N
m=l+1(r∗lm,t−

rlm,t)
2, which is the sum of TN(N − 1)/2 squared terms, the second-order conditions for the

minimization problem in (3.13) are always satisfied: so one can be sure that the value de-

termined by the condition (3.14) uniquely minimizes the problem (3.12). Moreover, since we

are interested only in convex combinations, we set:
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αopt =


0 if

∑T
t=1

∑N−1
l=1

∑N
m=l+1(r∗lm,t−rlm,t)(ρlm,t−rlm,t)∑T

t=1

∑N−1
l=1

∑N
m=l+1(r∗lm,t−rlm,t)2

≤ 0

1 if
∑T
t=1

∑N−1
l=1

∑N
m=l+1(r∗lm,t−rlm,t)(ρlm,t−rlm,t)∑T

t=1

∑N−1
l=1

∑N
m=l+1(r∗lm,t−rlm,t)2

≥ 0.

(3.15)

The formula (3.14) has been used to compute the optimal weights which solve the problem

(3.11). The weights are shown (in red) in Figure 3.7, for s = 21 (upper box) and s = 5

(lower box) respectively: like for the solutions to the problem (3.10), also in this case the

estimated weights exhibit an increasing trend, probably because (as already considered) the

volatility heterogeneity of the data raises as the rolling window moves ahead. In Figure 3.8

the predicted correlations for the first couple of the considered assets (namely Alcoa and

Abbott Laboratories) are displayed (in red): it is apparent that the two combined estimators

yield very close forecasts and that they obviously constitute a middle way between the full

scalar DCC forecasts and the more variable pairwise ones.

3.5.4 Evaluation of forecasting performances

The performances of the three estimators discussed in the previous subsections and that of

the full scalar DCC have been evaluated and compared by computing the squared Frobenius

norms of the differences between the predicted and the corresponding realized correlations.

In order to stress the dependence of the performances of the proposed estimators on problem

dimension, the forecasting evaluation has been carried out for a variable number of stocks

equal to 10, 20, 30, 40 and 50 respectively. The values of the squared Frobenius norms along

with the percentage gains (in parentheses) relative to the full scalar DCC performances are

reported in Tables 3.2 to 3.6. Three main facts come to light:

- the combined predictors (CS, SAR) show similar results and outperform the full-size

scalar DCC as soon as N ≥ 20
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Figure 3.7: Optimal weights in case of 26 (upper box) and 109 data bolcks (lower box)

- the pairwise-estimated regularized forecasts (SR) perform worse than the full scalar

model up to N = 40

- the estimators CS, SR and SAR show increasing performances as N grows.

The latter observation suggest that the three proposed predictors would probably be good

candidates in the context of very large portfolios (N ≥ 100); we currently leave the empirical

investigation of this issue to future research.
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Figure 3.8: Predicted conditional correlations for the first couple (Alcoa and Abbott Lab-
oratories) of the considered fifty assets in case of 26 data blocks (s = 21)

Re-estimation Scalar Constrained Simple Shrinkage
interval DCC shrinkage regularization after regularization

s = 5 2.6085 · 103 2.6091 · 103 2.7314 · 103 2.6091 · 103

(−) (0.023%) (4.709%) (0.023%)

s = 21 2.6112 · 103 2.6112 · 103 2.7259 · 103 2.6112 · 103

(−) (0.002%) (4.395%) (0.001%)

Table 3.2: Frobenius norms of the differences between the employed predictors and the
realized correlation matrices in case of N = 10
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Re-estimation Scalar Constrained Simple Shrinkage
interval DCC shrinkage regularization after regularization

s = 5 1.1452 · 104 1.1326 · 104 1.1605 · 104 1.1325 · 104

(−) (-1.101%) (1.336%) (-1.116%)

s = 21 1.1460 · 104 1.1333 · 104 1.1598 · 104 1.1331 · 104

(−) (-1.115%) (1.200%) (-1.130%)

Table 3.3: Frobenius norms of the differences between the employed predictors and the
realized correlation matrices in case of N = 20

Re-estimation Scalar Constrained Simple Shrinkage
interval DCC shrinkage regularization after regularization

s = 5 2.5344 · 104 2.4939 · 104 2.5433 · 104 2.4925 · 104

(−) (-1.598%) (0.351%) (-1.652%)

s = 21 2.5356 · 104 2.4948 · 104 2.5413 · 104 2.4935 · 104

(−) (-1.609%) (0.227%) (-1.662%)

Table 3.4: Frobenius norms of the differences between the employed predictors and the
realized correlation matrices in case of N = 30

Re-estimation Scalar Constrained Simple Shrinkage
interval DCC shrinkage regularization after regularization

s = 5 4.5027 · 104 4.4125 · 104 4.5064 · 104 4.4074 · 104

(−) (-2.002%) (0.083%) (-2.116%)

s = 21 4.5057 · 104 4.4158 · 104 4.5058 · 104 4.4109 · 104

(−) (-1.995%) (0.002%) (-2.103%)

Table 3.5: Frobenius norms of the differences between the employed predictors and the
realized correlation matrices in case of N = 40
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Re-estimation Scalar Constrained Simple Shrinkage
interval DCC shrinkage regularization after regularization

s = 5 7.0797 · 104 6.9186 · 104 7.0465 · 104 6.9081 · 104

(−) (-2.276%) (-0.469%) (-2.425%)

s = 21 7.0857 · 104 6.9260 · 104 7.0475 · 104 6.9157 · 104

(−) (-2.254%) (-0.539%) (-2.399%)

Table 3.6: Frobenius norms of the differences between the employed predictors and the
realized correlation matrices in case of N = 50

3.5.5 Comparison between forecasting performances

In Subsection 3.5.4 the results in terms of squared Frobenius norms obtained by the proposed

estimators have been shown and these results might be used to compare and rank them.

Nevertheless, it is well known that every econometric model always shows some degree of

misspecification mainly due to unmodeled dynamics, incorrect functional forms or finite

sample distortions: in these cases estimators and predictors resulting from the model may

produce partially unreliable forecasts whose comparisons do not make sense. In Giacomini

and White (2006) two predictive ability tests are introduced that allow to compare different

forecasting models taking into account these features. The tests are in a way a generalization

of those proposed in the previous literature (in particular Diebold and Mariano [1995] and

West [1996]) and are especially (but not exclusively) conceived for forecasts based on limited

memory estimators (like rolling window predictors). In the cited paper the limited memory

estimators are particularly considered because they can overcome one the main shortfall of

the economic forecasting models which is the heterogeneity of the data generating process12.

The first test concerns the conditional predictive ability, while the second is introduced as a

special case of the first one and pertains the unconditional predictive ability. An important

feature of Giacomini-White tests is that their validity is independent on the chosen loss

12See also the introduction of Section 3.5
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function and, besides, they allow for a unified treatment of nested and non-nested models13.

While the tipical null hypothesis in classic tests is typically:

H0 : E[Lt+τ (Xt+τ , ft(φ))− Lt+τ (Xt+τ , gt(γ))] = 0 (3.16)

where L is a suitable loss function, τ is the forecast period, X is the considered variable,

f and g are two competing models and φ and γ are the probability limits of the related

parameters, the null in Giacomini-White tests takes into account the available information,

Gt, and the sample-dependent estimated parameters, φ̂t and γ̂t:

H0 : E[Lt+τ (Xt+τ , ft(φ̂t))− Lt+τ (Xt+τ , gt(γ̂t)) |Gt] =

=E[∆Lt+τ |Gt] = 0.
(3.17)

Basing on this background, these tests do not operate assuming that in-sample estimated

parameters converge to their population values, instead they consider the sample behaviour

(evaluated on the basis of the information Gt) of the competing estimators. The authors

derive the conditional and unconditional tests by assuming respectively Gt = It
14 and Gt =

{∅,Ω}15. The multi-step test statistic for the conditional predictive test is the following:

Tm,n,τ = n

(
n−1

T−τ∑
t=m

ht∆Lm,t+τ

)′
Σ̃−1
n

(
n−1

T−τ∑
t=m

ht∆Lm,t+τ

)
. (3.18)

In Equation (3.18) ht ∈ Rq is a suitable test function16, m is the length of the estimation

sample and n = T −m − τ ; the central term is the consistently q × q estimated covariance

of ht∆Lm,t+τ :

13In our case the simple scalar DCC predictor can be regarded as a forecasting model nested in the shrinkage-
type estimator when αj = 0

14It stands for the common time-t information set
15Gt = {∅,Ω} is the largest σ-field on Ω, where as usual Ω denotes the set of all possible outcomes (see

Casella and Berger [2002], p.6)
16See Giacomini and White (2006) for the technical details about the properties of ht and ht∆Lm,t+τ
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Σ̃n = n−1
T−τ∑
t=m

(ht∆Lm,t+τ )(ht∆Lm,t+τ )
′
. (3.19)

Giacomini and White (2006) show that Tm,n,τ ∼ χ2
q under the null. The test for the un-

conditional predictivity ability is similarly obtained as a test on the sample average of the

loss function difference n−1
∑T−τ

t=m ∆Lm,t+τ and its statistic has a standardized Gaussian

distribution.

The conditional Giacomini-White test has been used to verify the statistical significance of

the differences in norm between the proposed estimators’ performances. The test results are

displayed in Table 3.8 and Table 3.7 for N = 50: the differences are always significant except

for that between the full scalar DCC and the SR forecasts. The signs + and − in parentheses

state that the sample mean of the differences in the null hypothesis (3.17) are respectively

> 0 and < 0 , where the predictor f in the formula (3.17) is here the corresponding model

in the first column of the table, while g denotes the corresponding model in the first row.

Hence, these results can be used to rank the employed predictors and the resulting ordering

can be schematized as follows:

Shrinkage after regularization � Constrained shrinkage � ...

... � Simple regularization � Full scalar DCC
(3.20)

where, in this context, the symbol � means that the positive difference between the norms

associated to the full scalar DCC and the SR predictors is not statistical significant and so

the latter cannot be surely preferred over the former.

3.6 Comparison with richly parametrized DCC models

In this section the proposed predictors are compared to the approach by Bauwens, Grigoryeva

and Ortega (2014) (BGO hereafter) which has been previously discussed in Subsection 2.2.5.
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s = 21 Scalar Constrained Simple Shrinkage after
DCC shrinkage regularization regularization

Scalar - 29.54(+) 3.48(+) 29.86(+)
DCC - (0.000 ) (0.176 ) (0.000 )

Constrained - - 5.99(−) 22.64(+)
shrinkage - - (0.015 ) (0.000 )

Simple - - - 31.55(+)
regularization - - - (0.000 )

Shrinkage after - - - -
regularization - - - -

Table 3.7: Results of the conditional Giacomini-White test on the differences between the
loss functions relative to the considered predictors in the case of a re-estimation interval of

21 periods and N = 50 (χ2
2 test statistics, p-values in parantheses)

s = 5 Scalar Constrained Simple Shrinkage after
DCC shrinkage regularization regularization

Scalar - 43.14(+) 2.57(+) 42.81(+)
DCC - (0.000 ) (0.276 ) (0.000 )

Constrained - - 14.76(−) 26.42(+)
shrinkage - - (0.001 ) (0.000 )

Simple - - - 109.89(+)
regularization - - - (0.000 )

Shrinkage after - - - -
regularization - - - -

Table 3.8: Results of the conditional Giacomini-White test on the differences between the
loss functions relative to the considered predictors in the case of a re-estimation interval of

5 periods and N = 50 (χ2
2 test statistics, p-values in parantheses)
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The authors introduce a new (for econometric applications) method which can solve like-

lihood maximization problems handling a high number of parameters and, simultaneously,

non-linear stationarity and positivity constraints. The method consists in an algorithm based

upon a procedure involving Bregman matrix divergences (see Bregman [1967]). In Bauwens

et al. (2014) this algorithm is used to estimate on real data different parametric specifica-

tions of the general DCC model (see Equation (2.25)): a full rank DCC (called Hadamard

DCC); a rank two specification; a rank one version; an additional, more parsimonious rank

one specification obtained by using an Almon function (called Almon DCC). The number of

parameters needed by the listed specifications are respectively: N(N + 1), 4N − 2, 2N and

6.

In our first empirical comparison the rank two, the rank one and the Almon DCC have been

estimated by using the BGO method and are compared to the ones obtained by the methods

described in Sections 3.3, 3.4 and 3.5 (CS, SR and SAR) on the entire data set (N = 50)

already considered for the empirical application in Section 3.5; nevertheless, in this case

the rolling window scheme has been abandoned because of the computational cost needed

by the BGO method with N = 50. Also in this case the standardized residuals (Figure

3.3) have been obtained by applying a univariate GARCH(1,1) model to each one of the

50 series of the demeaned returns. Then the data set has been split in two parts: the first

2000 observations have been used for the parameter estimation, while the second subsequent

block of 545 data points has been utilized for forecast evaluations. In this first application

we have turned down estimating the Hadamard DCC because it would have involved the

estimation of 2450 parameters which exceed the number of observation, 2000, included in

the estimation data block. After having estimated the parameters on the first 2000 data17,

one step-ahead forecasts of the correlation matrices have been computed (see Equation (3.9)

and related considerations). Regularization and construction of the two combined estimator

have been carried out according to the outlines in Section 3.5: in this case the estimated

weights are equal to 0.3219 for the constrained shrinkage (CS) and 0.3640 for the shrinkage

after regularization (SAR). Finally, like in the empirical application in Subection 3.5.4, the

evaluation has been done by computing the squared Frobenius norms of the differences

17The estimation of the specifications proposed in Bauwens et al. (2014) has been carried out by applying
some software routines kindly shared by the authors: https://github.com/lgrigoryeva/DCC-nonScalar_

estimation

https://github.com/lgrigoryeva/DCC-nonScalar_estimation
https://github.com/lgrigoryeva/DCC-nonScalar_estimation


Chapter 3. A new flexible estimation method for DCC models 91

between the predicted and the corresponding realized correlations. The norms associated

with the different employed predictors are reported in Table 3.9: gains with respect to the

scalar DCC are relevant in the case of the two predictors CS and SAR; on the other hand,

among the specifications estimated with the BGO method, only the rank one DCC performs

better than the scalar version. These results basically match those shown in the discussion

of empirical application and in the conclusions of Bauwens et al. (2014), where it is asserted

that (only) some non-scalar DCC parameterizations (in particular the rank one and the

Almon shuffle, here not considered18), are worth being used in modeling the volatility of

portfolios of dimension up to thirty (see again Section 2.2.5).

In order to obtain a reliable ranking of the different predictors, the conditional Giacomini-

White test has been carried out, setting the forecast horizon equal to one. The results

are summarized in Table 3.11: according to the test, all the differences between the norms

are statistically significant and, taking into account the signs of sample means of the norm

differences, the predictors can be ordered as follows:

Shrinkage after regularization � Constrained shrinkage � ...

... � Simple regularization � Rank one DCC ...

... � Scalar DCC � Almon DCC � Rank two DCC.

(3.21)

In Figure 3.9, for the first couple of stocks in the sample (namely Alcoa and Abbott Labora-

tories), the predicted conditional correlations derived from some of the estimated models are

graphically compared to the realized correlations; in order to better highlight the evolutions

of the different forecast series, a 21-lag moving average of the realized correlations has been

included in the graph: it is apparent that the more variable series is the one coming out from

the SR predictor; however, the SAR forecasts appear to stay nearer the realized correlations’

trend on average, particularly after sudden changes; further, it can be seen that the forecasts

18The Almon shuffle DCC is a modified version of the Almon DCC in which the different asset time series
included in the portfolio are reordered so that the vector entries are as monotonous as possible in order to
enhance the performance of the Almon parameterization
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resulting from the rank one DCC do not drift much apart from those obtained by the scalar

model19.
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Figure 3.9: Conditional correlations between the first couple of stocks (Alcoa and Abbott
Laboratories) in the sample predicted by: scalar DCC; SAR; rank one DCC; SR

Finally, in order to compare the three proposed predictors CS, SR and SAR also with the

full rank (Hadamard) DCC, the estimation and forecasting experiment has been repeated

using the same data intervals employed in the previous comparison (that is, 2000 data points

for the estimation, 545 for the one-step ahead forecasting) but on a restricted number of

assets: N = 25. In this case the parameters to be estimated relative to the Hadamard

specification are 650 on a sample estimation interval of length 2000. The results in terms

of square Frobenius norms are presented in Table 3.10. Apart from the CS and SAR20

19These features can be observed generally with each pair of assets
20The estimated shrinkage weights are 0.3066, in the case of CS, and 0.3301, in the case of SAR
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predictors which even in this case achieve the best relative performances, this time the rank

one specification turns out be the best alternative predictor with respect to the full scalar

DCC; it is noteworthy that the full rank (Hadamard) parametrization performs poorly. Also

in this case the results in terms of norms have been tested with the Giacomini-White test,

whose outcomes are displayed in Table 3.12: the differences between the norms turn out to

be statistically significant in each comparison. The resulting ranking can be schematized as

follows:

Shrinkage after regularization � Constrained shrinkage � Rank one DCC � ...

... � Scalar DCC � Almon DCC � Rank two DCC � ...

... � Simple regularization � Hadamard DCC.

(3.22)
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Model Frobenius Percentage
norm gain

Scalar DCC 7.0807 · 104 -

Constrained shrinkage 6.9262 · 104 −2.181%

Simple regularization 6.9865 · 104 −1.330%

Shrinkage after regularization 6.9135 · 104 −2.362%

Rank two 7.0940 · 104 +0.188%

Rank one 7.0638 · 104 −0.238%

Almon DCC 7.0807 · 104 ≈ 0%

Table 3.9: Frobenius norm values and percentage gains (with respect to the scalar DCC)
of the differences between the employed predictors and the realized correlation matrices in

case of N = 50

Model Frobenius Percentage
norm gain

Scalar DCC 1.7966 · 104 -

Constrained shrinkage 1.7758 · 104 −1.161%

Simple regularization 1.8010 · 104 +0.240%

Shrinkage after regularization 1.7750 · 104 −1.206%

Hadamard DCC 1.8388 · 104 +2.345%

Rank two 1.7992 · 104 +0.145%

Rank one 1.7924 · 104 −0.237%

Almon DCC 1.7967 · 104 +0.002%

Table 3.10: Frobenius norm values and percentage gains (with respect to the scalar DCC)
of the differences between the employed predictors and the realized correlation matrices in

case of N = 25
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