Mostra i principali dati dell'item

dc.contributor.authorMarino, Luigi
dc.date.accessioned2020-03-16T14:46:39Z
dc.date.available2020-03-16T14:46:39Z
dc.date.issued2019-03-13
dc.identifier.urihttp://elea.unisa.it:8080/xmlui/handle/10556/4243
dc.identifier.urihttp://dx.doi.org/10.14273/unisa-2449
dc.description2017 - 2018it_IT
dc.description.abstractIntroduction; Mesenchymal stem cells (Mesenchymal Stem Cells, MSC) are one of the most studied and well-characterized adult stem cell populations. They are excellent candidates in regenerative medicine, mainly because of their immunomodulatory properties and their emerging role in intercellular communication. MSCs as cellular components of bone marrow hematopoietic niche play a fundamental role in maintaining the physiological balance of the niche and in promoting and regulating hematopoietic stem cell (HSCs) functions, such as proliferation and "homing" to the bone marrow. - Methods: In this work, we focused on the possible internalization and release of Ruxolitinib (a JAK1/2 inhibitor by NOVARTIS Pharma) by MSC. In details, primary human MSC were isolated from bone marrow (BMMSC) of five patients diagnosed with Idiopathic Myelofibrosis or Polycythemia Vera. Diagnosis was confirmed by histopathology and molecular biology for the detection of mutations in Janus Kinase 2 receptor encoding gene, specifically for JAK2 V617F mutation. Subsequently, we evaluated the in vitro anti-proliferative effect of culture medium conditioned with Ruxolitinib on immortalized JAK2+ CD34+ SET-2 cells. Finally, a co-culture system of BMMSC and SET-2 cells treated or not with Ruxolitinib in different ratios (1:20, 1: 100 and 1: 1000) was used for estimating the relative anti-proliferative action on SET-2 cell line. - Results: Our preliminary results showed that MSCs could uptake and release Ruxolitinib in culture medium, and conditioned culture medium had more anti-proliferative effects on SET-2 cells compared to the drug alone added to the medium. In an in vitro co-culture system, the proliferation of SET-2 cells decreased by increasing MSC ratio treated with Ruxolitinib / SET-2, and BMMSC treated with Ruxolitinib had a greater anti-proliferative action on SET-2 cells compared to untreated BMMSCs. - Conclusions: Mesenchymal bone marrow stem cells could uptake and release Ruxolitinib that might increase the anti-proliferative effect of the drug on SET-2 cell line carrying the JAK2 V617F mutation. These mechanisms may contribute to amplify over time the pharmacological effects of Ruxolitinib in the bone marrow niche of Idiopathic Myelofibrosis and Polycythemia Vera patients. [edited by Author]it_IT
dc.language.isoitit_IT
dc.publisherUniversita degli studi di Salernoit_IT
dc.subjectCellule staminali mesenchimali del midollo osseo (BM-MSCs)it_IT
dc.subjectRuxolitinibit_IT
dc.subjectSET-2 cell linesit_IT
dc.titleRuolo del Ruxolitinib nel cross-talk tra cellule staminali mesenchimali e microambiente midollare nella mielofibrosiit_IT
dc.typeDoctoral Thesisit_IT
dc.subject.miurMED/15 MALATTIE DEL SANGUEit_IT
dc.contributor.coordinatoreRubino, Corradoit_IT
dc.description.cicloXXXI cicloit_IT
dc.contributor.tutorSelleri, Carmineit_IT
dc.identifier.DipartimentoMedicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana”it_IT
 Find Full text

Files in questo item

Thumbnail
Thumbnail
Thumbnail

Questo item appare nelle seguenti collezioni

Mostra i principali dati dell'item