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Chapter 1

Introduction

If we glance through the past decades, we can outright notice a remark-
able increase of interest in the area of mathematical modelling as applied to
science, engineering, business and management, generally expressed through
functional equations, which provide the best and most natural way to de-
scribe evolution in time and space, also in presence of memory. In fact, the
spread of diseases, the growth of biological populations, the brain dynamics,
elasticity and plasticity, heat conduction, fluid dynamics, scattering theory,
seismology, biomechanics, game theory, control, queuing theory, design of
electronic filters and many other problems from physics, chemistry, pharma-
cology, medicine, economics can be modelled through systems of functional
equations, such as Ordinary Differential Equations (ODEs) and Volterra In-
tegral Equations (VIEs).

For instance, ODEs based models can be found in the context of evolution
of biological populations [162, 207, 211], mathematical models in physiology
and medicine [22], such as oncogenesis [136, 194] and spread of infections
and diseases [143], economical sciences [104], analysis of signals [166]. Con-
cerning VIEs based models, the following books and review papers contain
sections devoted to this subject in the physical and biological sciences: Brun-
ner [24, 27], Agarwal and O’Regan [3], Corduneanu and Sandberg [78], Zhao
[211]. Most of these also include extensive lists of references. Regarding
some specific applications of VIEs, they are for example models of popu-
lation dynamics and spread of epidemics [124, 129], wave problems [109],
fluido-dynamics [130], contact problems [1], electromagnetic signals [160].

The theoretical investigation concerning systems of ODEs and VIEs has
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10 CHAPTER 1. INTRODUCTION

been very widely treated in the literature, especially in terms of existence,
uniqueness and asymptotic stability of the solutions but, in most of the cases,
it is not possible to analytically determine the solution of a functional equa-
tion: for this reason it gets more and more important to develop numerical
methods in order to solve these problems and, moreover, due to the increas-
ing complexity of such models, it is also necessary to require some special
features on these methods, especially in terms of stability properties.

1.1 Problems and motivations

The purpose of this work is the construction, the theoretical analysis and
the implementation of new efficient, accurate and highly stable numerical
integration methods for the approximate solution of functional equations.
We focus our interest on the following classes of problems:

1. Hadamard well-posed initial value problems based on systems of first
order ordinary differential equations

{

y′(t) = f(t, y(t)), t ∈ [t0, T ],
y(t0) = y0 ∈ Rd,

(1.1.1)

with f : [t0, T ] × R
d → R

d, even though we will often refer, without
loss of generality, to the autonomous problem y′(t) = g(y(t)), with
g : Rd → Rd, in order to provide more compact notations. This is not
a restriction, since whatever nonautonomous problem (1.1.1) can be
regarded in the autonomous form

{

u′ = h(u),
u(t0) = u0 ∈ Rd+1,

where u = [y, t]T , h(u) = [f(t, y), 1]T , u0 = [y0, t0]
T ;

2. Hadamard well-posed initial value problems based on systems of special
second order ordinary differential equations







y′′(t) = f(t, y(t)), t ∈ [t0, T ],
y′(t0) = y′0,
y(t0) = y0,

(1.1.2)

where f : [t0, T ] × Rd → Rd, with periodic or oscillating solutions;
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3. Volterra Integral Equations

y(t) = g(t) +

∫ x

0

k(t, τ, y(τ ))dτ t ∈ I := [0, T ], (1.1.3)

where k ∈ C(D×Rd), withD := {(t, τ ) : 0 ≤ τ ≤ t ≤ T} and g ∈ C(I).

There are several specific reasons justifying our interest in the above func-
tional equations.

Problem 1. The numerical approach to the problem (1.1.1) is a quite
classical subject, which has been widely discussed in the literature (compare,
for instance, the classical monographes [36, 123, 147, 186, 185]). However,
the interest in this area is still vivid (see, for instance, the recent mono-
graphes [42, 122, 118, 119, 138, 105]) and the need to improve the methods
already considered in the literature is remarkably felt by the recent liter-
ature, aiming for the development of building blocks for modern numerical
solvers able to efficiently and accurately approach systems of ODEs modeling
real phenomena. In fact, such equations generally exhibit typical problems
(e.g. stiffness [122], metastability [122], periodicity [135], high oscillations
[118, 105], discontinuities [2]) which must efficiently be overcome by using
suitable numerical integrators. Part 1 of this dissertation is devoted to the
development, the analysis and the implementation of new efficient numerical
methods for the integration of the problem (1.1.1): our strengths in this con-
text are devoted to the construction of highly stable continuous multistage
integration methods able to efficiently approach stiff problems. The derived
methods are compared with the ones classically considered in the literature,
in order to show the advantages we have obtained. The theoretical analysis
of the developed formulae is also supported by the experimental one, through
the implementation of these methods in fixed and variable stepsize environ-
ment, obtained by exploiting the special structure of the derived numerical
methods.

Problem 2. The approximate integration of the problem (1.1.2) has more
recently been investigated in the literature. Although the problem (1.1.2)
could be transformed into a doubled dimensional system of first order ODEs
and solved by standard formulae for first order differential systems, the de-
velopment of numerical methods for its direct integration seems more natural
and efficient. Second order ODEs, having periodic or oscillatory solutions,
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often appears in many applications: celestial mechanics, seismology, molec-
ular dynamics, and so on (see for instance [178, 203] and references therein
contained). Classical numerical methods for ODEs may not be well-suited to
follow a prominent periodic or oscillatory behaviour of the solutions because,
in order to catch the oscillations, a very small stepsize would be required
with corresponding deterioration of the numerical performances, especially
in terms of efficiency. For this reason, many classical numerical methods have
been adapted in order to efficiently approach the oscillatory behaviour. One
of the possible ways to proceed in this direction can be realized by impos-
ing that a numerical method exactly integrate (within the round-off error)
problems of type (1.1.2) whose solution can be expressed as linear combina-
tion of functions other than polynomials. In the context of linear multistep
methods for second order ODEs, Gautschi [110], Stiefel-Bettis [195] consid-
ered trigonometric functions depending on one or more frequencies, while
Lyche [157] derived methods exactly integrating initial value problems of
order r whose solution can be expressed as linear combination of powers
and exponentials; Raptis-Allison [181] and Ixaru-Rizea [133] derived special
purpose linear multistep methods for the numerical treatment of the radial
Schrödinger equation y′′ = (V (t) − E)y, by means of trigonometric and ex-
ponential basis of functions. More recently, in the context of Runge–Kutta–
Nyström methods, exponentially-fitted methods have been considered, for
instance, by Calvo [53], Franco [107], Simos [145, 190] and Vanden Berghe
[201], while their trigonometrically-fitted version has been developed by Pa-
ternoster in [170]; mixed-collocation based Runge–Kutta–Nyström methods
have been introduced by Coleman and Duxbury in [64]. Recent adapta-
tions of the Numerov method have been provided in [106, 128, 202]. For a
more extensive bibliography see [135] and references within. Part 2 of our
dissertation concerns with the construction, the theoretical analysis and the
numerical comparison with classical solvers of adapted numerical methods to
efficiently approach the problem (1.1.2) in presence of periodicity and high
oscillations in the solution. We also deal with the possibility to derive wider
and more general classes of numerical methods for (1.1.2), inheriting the sta-
bility properties of the most stable numerical methods already considered in
the literature.

Problem 3. The numerical treatment of Volterra integral equations (1.1.3)
has been introduced in the literature in very recent times: the first monogra-
phy [27] dealing with this subject has appeared in the literature only in 1986.
Therefore, many open problems could still be investigated in this area. Part
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3 of the thesis treats the construction and the theoretical analysis of highly
stable continuous multistage methods which depend on structured coefficient
matrices.

1.2 Some recent models

In this section we aim to present some of the most recent models of interest
in the applied sciences, which involve the functional equations (1.1.1), (1.1.2)
and (1.1.3). Of course, a widespread survey of interesting models involving
these problems can be found in [42, 119, 122, 138] or in the Test Set website
http://pitagora.dm.uniba.it/∼testset/.

We first consider some models involving systems of first order ODEs
(1.1.1), of interest in Biology, Medicine and Cluster Analysis.

1. Cell cycles. Cell cycles, fundamental events in the life of every or-
ganism, are established by successive coordinated and oscillating steps
which allow the cell to grow and duplicate correctly, strongly studied in
correlation to tumour diseases. In [11] (see also the references therein
contained), the description of such biological processes has been pro-
vided by a set of kinetic equations that define the biochemical reactions
together with dynamic equations, structured as systems of first order
ODEs (1.1.1) of the type

dXi

dt
= Fi(X1, X2, . . . , Xn; p1, p2, . . . , pm), i = 1, 2, . . . , n,

where Xi, i = 1, 2, . . . , n, is a state variable, generally describing the
concentration of a certain species in the studied organism, each function
Fi describes the rate of change of the corresponding Xi and pj , j =
1, 2, . . . , m are parameters appearing in each Fi.

2. Cancer growth. Oncogenesis generally intends a cancer as the result of
several mutations, giving some cells a selective growth advantage. In
[194] the tumour growth is reduced to a simple set of rules according to
which a normal cell becomes malignant. This point of view has spread
out in the field of cancer research, which is very often treated as a
logical science, trying to understand and describe the behaviour of the
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disease through some underlying principles. This is the reason why the
investigation can be done using mathematical tools: in this context, the
evolutionary model is expressed through systems of ordinary differential
equations that take into account the contribute of different elements to
the cancer progression. The evolutionary model considered in [194] is
the following

dy

dt
= diag(diag(yTk)T b)M + diag

(

(b− d)T y)
)

· S(1 − a(y)
PNM

106
)(1 − PNM

1013
) + mm,

where y ∈ R17 is a partitioned vector describing the whole cell popu-
lations: y1 is related to normal cells, y2, y3 ... y15 describes the pop-
ulations undergoing a mutation, y16 is the number of primary tumour
cells and y17 is the number of metastatic cells. The vector k describes
the mutation rates, i.e. ki is the mutation rate for the population yi.
The vectors b and d respectively describe the birth and death rates,
while mm is the metastasis rate vector. The upper triangular ma-
trix M ∈ R17×17 contains the number of genes going from state i to
state j, while the matrix S ∈ R17×17 is related to non-normal, non-
metastatic cells, i.e. cells undergoing mutations, which are denoted
by PNM , where PNM =

∑16
i=2 yi. The logistic term a(y), defined as

a(y) =

{

0, PA

PNM
> 10%,

1 otherwise,
expires when more than the 10% of the

non-normal, non-metastatic cells are in angiogenesis mutations (the
number PA denotes the amount of cells in this situation).

3. A model in epileptic seizures. Complex partial epileptic seizures are
thought to originate from an area of focal abnormality in the brain,
usually in the hippocampal portion of the temporal lobe. In [150] paper,
a system of ODEs (1.1.1) is introduced to model for a hippocampal
subnetwork believed to be of importance in the generation of focal,
or complex partial, seizures. The variables in this model correspond
to membrane potentials for prototypical pyramidal cells and inhibitory
interneurons in the CA3 region of the hippocampus, the most likely
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location of the focus. The model presented in [150] is the following:

dVi

dt
= −gCam∞(Vi − 1) − gKWi(Vi − V K

i ) − gL(Vi − V L
i )

+ I − αinhZi,
dZi

dt
= b(cI + αexcVi),

dWi

dt
=

φ(w∞ −Wi)

τw
, i = 1, 2, . . . ,

where Vi and Zi are the membrane potentials of the pyramidal and
inhibitory cells, respectively, while Wi is a relaxation factor which is
essentially the fraction of open potassium channels in the population of
pyramidal cells. The parameters gCa, gK and gL are the total conduc-
tances for the populations of Ca, K and leakage channels, respectively.
V K

i is the Nernst potential for potassium in node i; this parameter is
be used in coupling subnetwork populations together into a lattice. V L

i

is a leak potential, τw is a voltage dependent time constant for Wi, I is
the applied current, while φ and b are temperature scaling factors. The
parameter c differentially modifies the current input to the inhibitory
interneuron. The functions w∞ and m∞ are nondimensionalized ex-
pressions that describe the voltage-regulated Ca2+ channels in the cell
membrane, each of which is either open or closed at any given moment.
The parameters αexc and αinh model the populations of excitatory and
inhibitory synaptic connections between pyramidal cells and their in-
terneurons in the population of cells corresponding to the subnetwork
model.

4. “Stiff equations are multiscale problems”. This sentence, contained in
the first pages of the paper [58] by J. R. Cash provides an intuitive idea
of the nature of stiffness. There is an extensive bibliography regarding
stiff problems: the reader can refer, for instance, to the monographes
[36, 42, 122, 138, 147] and the references therein contained. Stiff equa-
tions often occur in the description of coupled physical systems having
components which vary on very different time-scales: several examples
which elaborate on this intuition can be found in [122]. When cou-
pling together deterministic models of processes that occur on different
scales or as part of different physical systems it is tempting simply to
couple existing codes for the separate models to one another. However,
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this does not take into account how the inaccuracies in the values of
the variables that are passed between the two models are inherited. In
order to prevent these inaccuracies from occurring we should consider
the whole system as a single model rather than the combination of two
simpler ones. When models are coupled together in this way, obviously
the number of variables becomes very large. In addition, the range of
length scales and time scales will also increase. The system of governing
equations is now a large system modelling multi-scale processes. Equa-
tions representing such multi-scale processes are therefore particularly
stiff (compare [193]). An important multi-scale problem in the life sci-
ences is the simulation of a beating heart. Within the heart, several
coupled physical processes occur at each level and there are complex
feedback mechanisms between the scales. Further, almost all of the
processes occur on multiple time scales. These properties make the
development of an accurate whole heart simulator very difficult, both
in terms of the formulation of appropriate models and the development
of appropriate numerical algorithms for their solution. State-of-the-
art cardiac cell models can include a large number of nonlinear ODEs:
we only cite here, for the sake of brevity, the paper [161], where the
reported model contains 23 coupled ODEs.

5. A metastable problem: the Becker-Döring equation. The Becker-Döring
model [57] (see also the monography [122]) describes the dynamics of a
large system of identical particles which can coagulate to form clusters.
We denote by yk the k-particle clusters per unit volume and assume
that clusters can gain or lose single particles only. The following system
of ODEs (1.1.1) arises:

dy1

dt
= −J1 −

N−1
∑

k=1

Jk,

dyk

dt
= Jk−1 − Jk, k = 2, 3, . . . , N − 1,

dyN

dt
= JN−1,

where Jk = y1yk−bk+1yk+1 and bk+1 = exp(k2/3−(k−1)2/3). This prob-
lem is particularly interesting because, especially for large values of N ,
the phenomenon of metastability occurs, i.e. extremely slow variations
in the solution appear over long time intervals (see [57, 122]).
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We next present some models involving systems of second order ODEs
(1.1.2), of interest in Celestial Mechanics, Climatology, Chaos Theory, Ecol-
ogy, Sensor Dynamics.

1. The Pleiades problem. The Pleiades problem (see, for instance, [119]) is
a celestial mechanics problem describing the motion and the collisions
of seven stars in the plane of coordinates (xi, yi) and masses mi = i, i =
1, 2, . . . , 7. By means of some mechanical considerations mainly based
on the Newton’s second law of motion, the mathematical description
for this dynamical system can be formulated according to the following
model:

z′′ = f(z), z ∈ R14,

z(0) = z0,

z′(0) = z′0,

where z = [x, y]T , x, y ∈ R7, f(z) = [f (1)(z), f (2)(z)]T , and the func-
tions f (1), f (2) : R14 → R7, assume the form

f
(1)
i (z) =

∑

j 6=i

mj
xj − xi

r
3/2
ij

, f
(2)
i (z) =

∑

j 6=i

mj
yj − yi

r
3/2
ij

.

2. The interaction between climate and vegetation: a minimal model. To-
day climatic change is a debated topic, especially in terms of the conse-
quences that they lead to the environment, for instance to vegetation.
A study aiming to describe the interaction of climate and vegetation
has been carried out in [196], where the authors introduced the follow-
ing model:

vT ′ = DTT
′′ + Ψ(N) − σT 4,

vN ′ = DNN
′′ + α(T )N − γN2,

where the unknown functions T (ξ) and N(ξ) are oscillatory functions
which exhibit a wave behaviour and, therefore, the variable ξ is of the
type x + vt, where v stands for the (constant) velocity of the wave,
x ∈ Ω is the point of the world area Ω we are observing and t is the
time of the observation. In particular, T (ξ) is the temperature function
and N(ξ) is the density of the vegetation in the area Ω. The function

Ψ(N) =
Ŝ

C
(1 −N)
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is an insolation term depending on the solar constant Ŝ, while the
term σ2T 4 is an irradiation term depending on the Stephan-Boltzmann
constant σ. The function α(T ) is the growth vegetation function, which
depends only on the temperature: this function describe the ecological
niche for vegetation, i.e. its behaviour in the space of the climatic
factors.

3. Oscillations and Chaos: the Duffing problem. The Duffing equation,
introduced for the first time by Duffing in [103], is an important model
which describes a nonlinear forced damped oscillator. The equation
takes the form

ẍ+ δẋ+ αx3 + βx = γ cos(ωt),

where δ ≥ 0 is the damping constant, αx3 is the nonlinearity term, γ is
the forcing amplitude and ω is the forcing frequency. For β > 0 and in
correspondence of small values of x (see the monography by Thompson
and Stewart, 2002), the Duffing oscillator can be interpreted as a forced
oscillator with a hardening spring if α > 0, or a softening spring if
α < 0. For β < 0, the Duffing oscillator describes the dynamics of
a point mass in a double well potential, and it can be regarded as a
model of a periodically forced steel beam which is deflected toward two
magnets (compare Moon and Holmes, 1979; Guckenheimer and Holmes,
1983; Ott, 2002). The study of the response of the system to the
periodic forcing is particularly interesting: we discover, in fact, that the
system is highly sensitive to initial conditions [199]. Small differences
in initial conditions yield widely diverging outcomes, rendering long-
term prediction impossible in general. This happens even though the
model is deterministic, i.e. its future dynamics is fully determined
by the initial conditions, with no random elements involved. In other
words, the deterministic nature of these systems does not make them
predictable. This behaviour is known as deterministic chaos, or simply
chaos (compare, for instance, [200]).

4. A model in Ecology: the height of forest trees. Height is an important
property of forest trees and reveals many important aspects, such as
species succession (taller trees may spread the most propagules and
have a reproductive advantage), forest mensuration (percent of height
is used as spacing indicator) and site assessment (height-age, height-
diameter relations can be used as indicators of site quality). An ex-
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ample of model describing the time growth of trees height is given in
[151], where the authors provided the analysis of the influence of the
first year’s height growth in predicting heights for later ages. The model
discussed in [151] assumes the following form:

ḧijk = ġijk − 2aḣijk − bhijk,

where the function hijk regards the total tree height total tree height
at age k, for the tree j on the site i of the forest, while the function
gijk is tree height growth at age k, for the tree j on site i. In [151] the
function gijk considered by the authors is such that

ġijk = c0 + c1V (t) + (a0 + a1V2(t))ḣijk + (b0 + b1V3(t))hijk,

where V1(t) is an environmental variable representing the annual heat
status of the site, V2(t) is an environmental variable representing the
annual moisture status of the site, V3(t) is a site variable representing
the nutrient status of the site, assumed to be constant over the life of
the tree, but different among the sites.

5. A taste of chocolate: modelling dynamic flavour properties with second
order ODEs. Sensory properties such as taste, aroma and flavour are
among the most important quality aspects of foods. Descriptive sensory
analysis is closely related to classical psychophysics which uses differ-
ent mathematical models to describe perceived intensities as functions
of physical stimulus concentrations (see, for instance, Chavez-Birch,
1997; Kemp-Birch, 1992; Overbosch, 1986; Portmann, Serghat and
Mathlouthi, 1992). Within the area of aroma and sensory perception,
mathematical models has led to the formulation of ODEs (Harrison,
Hills, Bakker and Clothier, 1997), which describe the flavour release
from liquid emulsions and other closely related areas. In [144], the au-
thors describe the time variation of a certain chocolate flavour by means
of second order ODEs, with piecewise constant coefficients. Suppose
that I(t) denotes the intensity of the flavour at time t, then model
suggested in [144] takes the form

I ′′(t) + bi(u)I
′(t) + ai(u)I(t) = 0,

where the functions ai(u) and bi(u) depend on the parameter u denoting
the chocolate content in percentage.
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We finally provide some models consisting in second-kind Volterra Inte-
gral Equations (1.1.3) regarding Biology, Immunology and Population Dy-
namics.

1. A model in the spread of infectious diseases. Endemic infectious dis-
eases for which infectious confers permanent immunity can be described
by a system of nonlinear VIEs of convolution type [124, 129]. These
models include vital dynamics (births and deaths), immunizations and
distributed infectious period. In the papers [124, 129] the models are
shown to be well posed, the threshold criteria are determined and the
asymptotic behaviour is analyzed. The population is divided into dis-
joint classes which change with time t: S(t), I(t) and R(t) repre-
sent the fractions of population that are susceptible, infectious and
removed, respectively. Let us denote with β the constant contact rate
(i.e. the average number of contacts, sufficient for transmission, of an
infective per unit time), P (t) the probability of remaining infectious t
units after becoming infectious, 1/µ the average lifetime, ϕ the frac-
tion of immunized newborns, θ the rate of immunization of susceptibles,
σ = β

∫∞
0
P (t)e−µtdt the average number of contacts of an infective dur-

ing the infectious period, (Se, Ie, Re) =
(

1
σ
, (σS∗−1)(µ+θ)

β
, 1 − Se − Re

)

the coordinates of the equilibrium point with S∗ = (1−ϕ)µ
µ+θ

, R0 the ini-

tial removed fractions and I0(t)e
−µt the fraction of the population that

was initially infectious and is still alive and infectious at time t. The
model assumes the following form

X(t) = F (t) +

∫ t

0

A(t− s)G(X(s))ds,

where X(t) = [X1(t), X2(t)]
T and

A(τ ) =

[

βP (τ )e−µτ 0
β(1 − P (τ ))e−µτ −θe−µτ

]

,

G(X) =

[

SeX1 − Ie(X1(t) +X2) −X1(X1 +X2)
X1 +X2

]

,

F (t) =









I0(t)e
−µt −

∫ −t

−∞
βSeIeP (−s)eµsds

e−µt

(

R0 + I0(0) − I0(t)−
θ

σµ
− ϕ

)

−
∫ −t

−∞
βSeIe [1 − P (−s)] eµsds









.
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2. Vaccine-induced immune responses on HIV infection. The need for
anti-HIV-1 vaccines is universally recognized. Although several poten-
tial vaccine formulations are being tested in clinical trials, the complex-
ity of the viral system and the length of the experimentation required
and its costs makes the goal of obtaining such a vaccine still elusive. In
[115], the authors have built a mathematical model for the simulation
of HIV-1 infection spreading into the body, which allows to study the
effect of hypothetical anti-HIV-1 vaccines having different properties.
The model allows to predict which characteristics of immunogenicity a
preventive or therapeutic vaccine should possess to be efficacious, and
which are the key factors that most likely will affect its ability to con-
trol the spread of the infection. The model developed in [115] assumes
the form

P (t) =
t
∫

0

F (t− x)e−δ(t−x)kiksV (x)S(x)dx,

V (t) = V0e
−ct +

t
∫

0

e−c(t−x)pP (x)dx,

S(t) = S0e
−βt +

t
∫

0

e−β(t−x)[α− ksV (x)S(x)]dx,

where the unknown functions P (t), V (t) and S(t) represent three pop-
ulations of cells present in a unit volume of plasma at time t: P (t) is
the population of infected cells producing the virus, V (t) is the virus
population, S(t) is the population of susceptibles cells.

3. Age-structured populations: the Lotka-McKendrick model. The theory
of population dynamics has been extensively treated by mathematical
demographers and population biologist. One of the most important
features to include in realistic models for the dynamics of populations
is certainly given by the effects of the age. The first continuous models
incorporating the age effects have been proposed by Sharpe-Lotka in
1911 and McKendrick in 1926. The Lotka-McKendrick model for an
age-structured population (compare [131]) assumes the form

B(t) = F (t) +

∫ t

0

β(x)B(t− x)π(x)dx,

where B(t) describes the density of births at time t, u(x, t) the age-
specific density at time t, i.e. u(x, t)dx is the total numbers of indi-
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viduals of age between x and x+ dx at time t, π(x) is the probability
to survive from birth to age x and β(x) is the rate of fertility for an
individual of age x per unit time and the forcing function F (t) takes
the form

F (t) =

∫ ω

0

β(x+ t)u(x, 0)
π(x+ t)

π(x)
dx,

where ω is the maximal possible age.



Chapter 2

An unifying framework for the
numerical integration of ODEs:
General Linear Methods

2.1 General Linear Methods (GLMs)

The construction of a general framework in which numerical methods
for ODEs can be placed is certainly an useful tool for their development
and analysis. Moreover, wider and more general classes of formulae with
respect to classical ones depend on more parameters, which can be exploited
to break the order barriers affecting classical methods and obtain higher
order methods, or to achieve higher stability properties (e.g. large stability
regions for explicit methods, A-stability, L-stability and algebraic stability
for implicit methods) in order to approach the solution of ODEs in an efficient
and accurate way.

The circumlocution “generalized multistep methods” has been used for
the first time by Gragg and Stetter [113] in 1964, where they introduced
predictor-corrector schemes depending also on the stage derivative in one
“nonstep point”, as they mention, i.e. in one internal point. This is one of
the first attempts to combine a multivalue strategy (i.e. formulae passing a
collection of vector as output and needing a similar collection as input in the
successive step point, see [42]) together with a multistage strategy (i.e. meth-
ods depending on the approximation to the solution in some internal points

23
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which do not belong to the grid), which is typical of Runge-Kutta methods.
Further important contributions in the development of a theory of multivalue-
multistage integration methods have been provided by J. Butcher from 1965
on (see [42] and references therein), Gear [111], Dahlquist [85], Donelson and
Hansen [102], Byrne and Lambert [52], Jackiewicz and Tracogna [140]. In
very recent times the first monography totally devoted to GLMs has also
been released [138].

The representation formula we present has been introduced by Burrage
and Butcher in [31] and then widely used in the context of GLMs (see [42, 119,
138] and references therein): it involves four coefficient matrices A ∈ Rs×s,
U ∈ Rs×r , B ∈ Rr×s, V ∈ Rr×r, which are put together in the following
partitioned (s+ r) × (s+ r) matrix

[

A U
B V

]

.

We consider the uniform grid {tn = t0+nh, n = 0, 1, ..., N, Nh = T−t0},
introduce the abscissa vector c = [c1, c2, . . . , cs] and define the following
supervectors

y[n] =











y
[n]
1

y
[n]
2
...

y
[n]
r











∈ R
rd, F [n] =











f(tn + c1h, Y
[n]
1 )

f(tn + c2h, Y
[n]
2 )

...

f(tn + csh, Y
[n]
s )











∈ R
sd.

Using these notations, a GLM (c,A,U,B,V) can then be expressed as fol-
lows:

{

Y [n] = h(A⊗ I)F + (U ⊗ I)y[n],
y[n+1] = h(B ⊗ I)F + (V ⊗ I)y[n],

(2.1.1)

where A⊗B denotes the usual Kronecker tensor product and I is the identity
matrix in Rd×d. Componentwise,















Y
[n]
i =

s
∑

j=1

aijhF
[n]
j +

r
∑

j=1

uijy
[n]
j , i = 1, 2, . . . , s,

y
[n+1]
i =

s
∑

j=1

bijhF
[n]
j +

r
∑

j=1

vijy
[n]
j , i = 1, 2, . . . , r.

(2.1.2)
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2.1.1 Preliminary properties: preconsistency, consis-
tency, zero-stability, convergence

General Linear Methods machinery is particularly useful in order to cre-
ate an unifying approach to analyse the properties of a numerical method for
ODEs, e.g. convergence, consistency and stability. We report in this subsec-
tion some definitions regarding the properties of GLMs, which are nothing
more than all the desirable properties which one would require to whatever
numerical method for ODEs: the novelty lays in their new general formula-
tion. Once a method is represented as GLM, it automatically inherits such
definitions and all the corresponding results characterizing GLMs and, for
this reason, we can decide to work with the GLM formulation of the method,
instead of using the original one. We skip many details which can be found,
for instance, in [42, 138], since we only aim to introduce the class of GLMs
to make the dissertation self-contained and use the related main results in
the following chapters for our specific purposes.

Definition 2.1.1 A GLM (c,A,U,B,V) is preconsistent if there exists a
vector q0 ∈ R

r (named preconsistency vector) such that

Uq0 = e, Vq0 = q0, (2.1.3)

where e = [1, . . . , 1] ∈ Rr.

Definition 2.1.2 A preconsistent GLM (c,A,U,B,V) is consistent if there
exists a vector q1 ∈ Rr (named consistency vector) such that

Be + Vq1 = q0 + q1, (2.1.4)

with e = [1, . . . , 1] ∈ Rr, while it is stage-consistent if

Ae + Uq1 = c, (2.1.5)

with e = [1, . . . , 1] ∈ Rs.

Butcher [42] observed that preconsistency is equivalent to the concept of
covariance of a GLM, which essentially ensures that numerical approxima-
tions are appropriately transformed by a shift of origin. This idea can be
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nicely explained by means of diagrams commutation. For this purpose, we
consider two initial value problems

y′(t) = f(y(t)), y(t0) = y0, (2.1.6)

z′(t) = f(z(t) − η), z(t0) = y0 + η, (2.1.7)

for x ∈ [x0, x̄], which differ each other for the presence of the perturbation
η ∈ Rn, representing a shift in the origin x0. Assuming that (2.1.6) is a
well-posed problem with solution y(t), it is possible to prove that also (2.1.7)
is well-posed and its solution is obtained translating each point by η on the
trajectory described by y(t). Of course, it is natural to require that a numer-
ical method could preserve this property of the exact solution. We denote by
ν the operation representing the computation of a numerical approximation
to y(t) in [x0, x̄] and σ a shift of coordinates by η. Such a method is covariant
if the diagram in Fig. 2.1 commutes, i.e. if σ ◦ ν = ν ◦ σ.

Figure 2.1: A commutative diagram for covariance (see [42])

Basic requirements in the context of the numerical integration of ODEs
are, together with consistency, also zero-stability and convergence, which are
defined for GLMs in the following way (see [42, 138]).

Definition 2.1.3 A GLM (c,A,U,B,V) is zero-stable if there exists a con-
stant C such that

‖Vn‖ ≤ C, (2.1.8)

for all n ≥ 0.
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A more practical way to analyze the zero-stability of a GLM arises from the
following result (compare [36, 42, 138]).

Theorem 2.1.1 A GLM (c,A,U,B,V) is zero-stable if the minimal poly-
nomial of the coefficient matrix V has no zeros with magnitude greater than
1 and all zeros with magnitude equal to 1 are simple.

Definition 2.1.4 A GLM (c,A,U,B,V) is convergent if for any initial
value problem subject to the Lipschitz condition ‖f(y) − f(z)‖ ≤ L‖y − z‖,
there exist a nonzero vector u ∈ Rr and a starting procedure φ : (0,∞) → Rr

such that, for all i = 1, 2, . . . , r, lim
h→0

φi(h) = uiy(t0), and such that for any

x̄ > x0, the sequence of vectors y[n], computed using n steps with stepsize
h = (x̄− x0)/n and using y[0] = φ(h) in each case, converges to uy(x̄).

Proving the convergence of a numerical method is generally a quite tedious
and nontrivial task. However, a very helpful result in the convergence analysis
of a finite difference approximation scheme is the Lax’s equivalence theorem,
also known as Lax-Richtmyer theorem [182]: this result creates a very close
connection among the concepts of convergence, consistency and zero-stability
and allows to prove the convergence of a numerical scheme by checking some
algebraic conditions involving the coefficients of the method. This powerful
result has already been proved in the context of linear multistep methods and
Runge–Kutta methods (see, for instance, [36, 42, 147]) and, more in general,
for a generic difference equation [182]. An analogous result has also been
proved in the context of GLMs [42, 138] and can be stated as follows.

Theorem 2.1.2 A GLM (c,A,U,B,V) is convergent if and only if it is
consistent and zero-stable.

2.1.2 Order and stage-order conditions

The derivation of practical conditions to derive nonlinear numerical meth-
ods of a certain order is a nontrivial problem which has been successfully
treated in the literature by Albrecht [5, 6, 7, 8], Butcher [32, 33, 36, 42, and
references therein contained], Hairer and Wanner [120, 119, and references
therein], using different approaches. We report in this section the main ideas
concerning the derivation of order conditions for high stage order GLMs,
which will next be useful in the remainder of this dissertation. The order



28
CHAPTER 2. AN UNIFYING FRAMEWORK FOR THE NUMERICAL

INTEGRATION OF ODES: GENERAL LINEAR METHODS

theory for GLMs has been developed by J. Butcher (see [36, 42] and references
therein), by considering rooted trees associated to the numerical methods.
However, in the case of high stage order methods, a different (but anyway
related at the same time) approach to derive order conditions can be used.
This approach has been discussed by Butcher himself in [39], in the context
of diagonally implicit multistage integration methods (see [138]).

To formulate the stage order and order conditions for GLMs (2.1.2) we

assume that the components of the input vector y
[n−1]
i for the next step satisfy

y
[n]
i =

p
∑

k=0

qikh
ky(k)(tn) +O(hp+1), i = 1, 2, . . . , r, (2.1.9)

for some real parameters qik, i = 1, 2, . . . , r, k = 0, 1, . . . , p. We then request
that the components of the internal stages Y

[n]
i are approximations of order

q ≥ p− 1 to the solution y(t) of (1.1.1) at the points tn−1 + cih, i.e.,

Y
[n]
i = y(tn + cih) +O(hq+1), i = 1, 2, . . . , r, (2.1.10)

and that the components of the output vector y
[n]
i satisfy

y
[n+1]
i =

p
∑

k=0

qikh
ky(k)(tn+1) +O(hp+1), i = 1, 2, . . . , r. (2.1.11)

The integers q and p are called the stage order and order, respectively, of
GLM (2.1.2). We collect the parameters qik appearing in (2.1.9) and (2.1.11)
in the vectors qk defined by

qk =
[

q1k q2k · · · qrk

]T ∈ R
r, k = 0, 1, . . . , p.

We also introduce the notation ecz =
[

ec1z ec2z · · · ccsz
]T
, and define

the vector w(z) by

w(z) =

p
∑

k=0

qkz
k, z ∈ C.

Here, C is the set of complex numbers. We have the following theorem.

Theorem 2.1.3 (Butcher [39]). Assume that y[n−1] satisfies (2.1.9). Then
the GLM (2.1.2) of order p and stage order q = p satisfies (2.1.10) and
(2.1.11) if and only if

ecz = zAecz + Uw(z) +O(zp+1), (2.1.12)
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and
ezw = zBecz + Vw(z) +O(zp+1). (2.1.13)

Expanding ecz and ez in (2.1.12) and (2.1.13) into power series around
z = 0 and comparing the constant terms in the resulting expressions we
obtain the preconsistency conditions

Uq0 = e, Vq0 = q0,

where e = [1, . . . , 1] ∈ Rs+2. Comparing the terms of order zk, k = 1, 2, . . . , p
in the resulting expressions the stage order and order conditions can be re-
formulated in the form

ck

k!
− Ack−1

(k − 1)!
−Uqk = 0, k = 1, 2, . . . , p, (2.1.14)

and
k
∑

l=0

qk−l

l!
− Bck−1

(k − 1)!
− Vqk = 0, k = 1, 2, . . . , p, (2.1.15)

compare also [138]. In correspondence of k = 1, the stage-consistency and
consistency conditions (2.1.5) and (2.1.4) result from (2.1.14) and (3.2.15)
respectively.

2.1.3 Linear stability analysis

We now focus our attention on the basic linear stability requirements
that any numerical method for ODEs has to accomplish. The definition of
such properties we present in this section are formulated according to the
formalism of GLMs. Linear stability properties are classically provided with
respect to the scalar linear test equation

y′ = ξy, t ≥ 0, (2.1.16)

where ξ ∈ C and Re(ξ) ≤ 0, considered for the first time by Dahlquist [82].
The solution of this simple problem remains bounded when t goes to infinity
and we need to require that the numerical solution possesses an analogous
stability property to that displayed by the exact solution (see [147]): let
us analyse the conditions to be imposed on the numerical method in order
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to reproduce the same behaviour of the exact solution. Applying the GLM
(2.1.1) to the linear test equation (2.1.16), we obtain the following recurrence
relation

y[n] = M(z)y[n−1],

n = 1, 2, . . ., z = hξ. Here, M(z) ∈ Cr×r is the so-called stability matrix,
which takes the form

M(z) = V + zB(I− zA)−1U. (2.1.17)

The characteristic polynomial of the stability matrix

p(η, z) = det
(

ηI − M(z)
)

(2.1.18)

is said stability polynomial. It is a polynomial of degree r with respect to
η. Denote by η1(z), η2(z), . . . , ηr(z) the roots of the stability function p(η, z).
The following definitions arise.

Definition 2.1.5 A GLM (2.1.2) is absolutely stable if, for a given z ∈ C,
all the roots η1(z), η2(z), . . . , ηr(z) of the stability polynomial (2.1.18) lie in
the unit circle.

Definition 2.1.6 The region A of absolute stability of (2.1.2) is the set

A =
{

z ∈ C :
∣

∣ηi(z)
∣

∣ < 1, i = 1, 2, . . . , r
}

.

Definition 2.1.7 The GLM (2.1.2) is said to be A-stable if its region of
absolute stability includes the negative complex plane, i.e.

{z ∈ C : Re(z) < 0} ⊂ A.

The derivation of A-stable methods is, in general, a nontrivial task. How-
ever, some helpful tools have been introduced in the literature in order to
provide some useful criteria to study A-stability. In order to achieve A-
stability, all the roots η1(z), η2(z), . . . , ηr(z) of the polynomial p(η, z) defined
by (2.1.18) has to lie in the unit circle for all z ∈ C with Re(z) ≤ 0. By the
maximum principle this will be the case if the denominator of p(η, z) does
not have poles in the negative half plane C− and if the roots of p(η, iy) are in
the unit circle for all y ∈ R. This last condition can be investigated using the
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Schur criterion [184] (see also [147]). This criterion, for a general kth degree
polynomial, can be formulated as follows. Consider the polynomial

φ(w) = dkw
k + dk−1w

k−1 + · · · + d1w + d0,

where di are complex coefficients, with dk 6= 0 and d0 6= 0. φ(w) is said to be
a Schur polynomial if all its roots wi, i = 1, 2, . . . , k, are inside of the unit
circle. Define

φ̂(w) = d̄0w
k + d̄1w

k−1 + · · · + d̄k−1w + d̄k,

where d̄i is the complex conjugate of di. Define also the polynomial

φ1(w) =
1

w

(

φ̂(0)φ(w) − φ(0)φ̂(w)
)

of degree at most k − 1. We have the following theorem.

Theorem 2.1.4 (Schur [184]). φ(w) is a Schur polynomial if and only if

|φ̂(0)| > |φ(0)|

and φ1(w) is a Schur polynomial.

Roughly speaking, the Schur criterion allows us to investigate the stability
properties of a kth degree polynomial, looking at the roots of a polynomial
of lower degree (i.e. k − 1). Iterating this process, the last step consists
in the investigation of the root of a linear polynomial, plus some additional
conditions.

Dahlquist introduced the concept of A-stability in his famous paper [82]
of 1963, which has also been recently celebrated by J. Butcher [41]. When
a numerical method is A-stable, there are no stability restriction on the
stepsize in the implementation, which is a desirable property especially for
the integration of stiff systems [36, 42, 81, 122, 147]. There is a stronger
definition, which is required in order to damp the very stiff components of
the numerical solution [36, 42, 122, 138, 147].

Definition 2.1.8 A GLM (2.1.2) is said to be L-stable if it is A-stable and,
in addition,

lim
z→∞

ρ(M(z)) = 0, (2.1.19)

where ρ(M(z)) denotes the spectral radius of the stability matrix M(z).
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Once A-stability is obtained, L-stability is achieved by imposing that all the
roots of the polynomial p(η, z)/pr(z), where p(η, z) is given by (2.1.18), tend
to zero as z → −∞. Therefore, such methods satisfy the nonlinear system
of equations























lim
z→−∞

p0(z)

pr(z)
= 0,

...

lim
z→−∞

pr−1(z)

pr(z)
= 0.

(2.1.20)

2.1.4 Nonlinear stability concepts

We have considered the concept of A-stability, which is based on the
linear test equation (2.1.16). A-stable methods can reliably approach many
stiff problems: however, additional difficulties can arise in the integration of
nonlinear stiff problems. It is therefore reasonable to analyze the stability
properties of numerical methods with respect to more difficult test equations:
this is the foundation of the theory of nonlinear stability, whose father is G.
Dahlquist, who introduced in 1976 the concept of G-stability [83], providing
the starting point for many successive papers (e.g. [30, 31, 37, 38, 80, 84,
86]; for a more extensive bibliography see [42, 138] and references therein
contained) concerning related nonlinear stability concepts. Also this work
has been celebrated by J. Butcher in the review paper [40] of 2006.

We now report the main concepts concerning nonlinear stability of GLMs.
Consider the initial-value problem

{

y′(t) = g
(

t, y(t)
)

, t ≥ 0,
y(0) = y0,

(2.1.21)

g : R × Rm → Rm, where the function g satisfies the one-sided Lipschitz
condition of the form

(

g(t, y1) − g(t, y2)
)T

(y1 − y2) ≤ 0 (2.1.22)

for all t ≥ 0 and y1, y2 ∈ Rm. Denote by y(t) and ỹ(t) two solutions to
(2.1.21) with initial conditions y0 and ỹ0, respectively. Then it is known that
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the condition (2.1.22) implies that
∥

∥y(t2) − ỹ(t2)
∥

∥ ≤
∥

∥y(t1) − ỹ(t1)
∥

∥ (2.1.23)

for 0 ≤ t1 ≤ t2 (compare [40], [99]). Here, ‖ · ‖ is any norm in Rm. The
differential systems (2.1.21) with this property are called dissipative.

Let G = [gij ]
r
i,j=1 be a real, symmetric and positive definite matrix, and

for a vector y ∈ Rmr

y =







y1
...
yr






, yi ∈ R

m, i = 1, 2, . . . , r,

define the inner product norm ‖ · ‖G by

‖y‖2
G =

r
∑

i=1

r
∑

j=1

gijy
T
i yj. (2.1.24)

Denote by {z[n]}N
n=0 the solution to (2.1.2) with initial value z[0], and by

{z̃[n]}N
n=0 the solution obtained by perturbing (2.1.2) or by using a different

initial value z̃[0]. The numerical method which inherits the dissipativity prop-
erty (2.1.23) of the solution y(t) to (2.1.21) in the norm (2.1.24) is said to
be G-stable. To be more precise, the GLM (2.1.2) is G-stable if there exists
a real, symmetric and positive definite matrix G ∈ Rr×r such that for two
numerical solutions {z[n]}N

n=0 and {z̃[n]}N
n=0 we have

∥

∥z[n+1] − z̃[n+1]
∥

∥

G
≤
∥

∥z[n] − z̃[n]
∥

∥

G
, (2.1.25)

for all stepsizes h > 0 and for all differential systems (2.1.21) with the func-
tion g satisfying (2.1.22). The definition of G-stability is not of practical
utility at all and, therefore, we look for more practical but equivalent con-
cepts consisting, for instance, in a set of algebraic conditions involving the
coefficient matrices of the methods we aim to analyze. Such conditions have
been derived in the literature and lead to the concept of algebraic stability.

Definition 2.1.9 The GLM (2.1.2) is said to be algebraically stable, if there
exist a real, symmetric and positive definite matrix G ∈ Rr×r and a real,
diagonal and positive definite matrix D ∈ Rs×s such that the matrix M ∈
R

(s+r)×(s+r) defined by

M =

[

DA + AT D − BTGB DU −BT GV
UT D − VTGB G − VTGV

]

(2.1.26)
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is nonnegative definite.

The significance of this definition follows from the result proved by Butcher
[36], [38] (see also [122]), that for a preconsistent and non-confluent GLMs
(2.1.2), i.e., methods with distinct abscissas ci, i = 1, 2, . . . , s, algebraic sta-
bility is equivalent to G-stability.

In general, it is quite difficult to verify if a given GLM is algebraically
stable, and even more difficult to construct new classes of GLMs which are
algebraically stable. In searching for such methods, it is worthwhile using the
fact, proved in [31], that for a preconsistent and algebraically stable GLM
(2.1.2) the matrices G and D are not independent but related by the equation

De = BTGq0, (2.1.27)

where q0 is the preconsistency vector and e = [1, . . . , 1]T ∈ R
s. Moreover,

Gq0 is a left eigenvector of the coefficient matrix V corresponding to the
eigenvalue equal to one, i.e.,

(I − VT )Gq0 = 0, (2.1.28)

compare part ii) of Lemma 9.5 in [122].
We will write M ≥ 0 if the matrix M is nonnegative definite. It was

observed by Hewitt and Hill [125], [126] that the verification if the matrix M
is nonnegative definite can be simplified by the use of the result proved by
Albert [4]. This result states that the matrix M given by

M =

[

M11 M12

MT
12 M22

]

satisfies M ≥ 0 if and only if

M11 ≥ 0, M22 − MT
12M

+
11M12 ≥ 0, M11M

+
11M12 = M12. (2.1.29)

Here, A+ stands for the Moore-Penrose pseudoinverse of the matrix A: we
refer to [101] or [112] for the definition of this notion. In practice it may be
more convenient to apply this result to the matrix M̃ defined by

M̃ =

[

M22 MT
12

M12 M11

]

,
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which is nonnegative definite if and only if M is nonnegative definite. Then
M ≥ 0 if and only if

M22 ≥ 0, M11 − M12M
+
22M

T
12 ≥ 0, M22M

+
22M

T
12 = MT

12. (2.1.30)

Although the criteria based on Albert theorem can be used to verify if
specific examples of GLMs are algebraically stable, these criteria are not
very practical to search for algebraically stable GLMs which depend on a
number of unknown parameters. In such searches it is necessary to examine
many inequalities which depend on the unknown coefficients of the matrix
G and the remaining free parameters of GLMs and this task often exceeds
the capabilities of symbolic manipulation packages such as Mathematica or
Maple. However, there is a more practical approach, where this search can
be done numerically, using the criterion for algebraic stability which is based
on the Nyquist stability function defined by

N(ξ) = A + U(ξI − V)−1B, ξ ∈ C − σ(V). (2.1.31)

Here, σ(V) stands for the spectrum of the matrix V. This terminology of the
Nyquist stability function was suggested by Hill [127], although this function
in the context of GLMs was first introduced by Butcher [38], who did not
assign to it any specific name.

Denote by w̃ a principal left eigenvector of V, i.e., the vector such that

w̃T V = w̃T , w̃Tq0 = 1, (2.1.32)

where q0 is the preconsistency vector of GLM (2.1.2). Following [127] define
the diagonal matrix D̃ by

D̃ = diag(BT w̃), (2.1.33)

and following [38], define by He(Q) the Hermitian part of a complex square
matrix Q, i.e.,

He(Q) =
1

2

(

Q + Q∗
)

,

where Q∗ stands for the conjugate transpose of Q. Then it was demonstrated
in [38] and [127] that a consistent GLM (2.1.2) is algebraically stable if the
following conditions are satisfied:

1. The coefficient matrix V is power-bounded.
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2. Ux 6= 0 for all right eigenvectors of V and BTx 6= 0 for all left eigen-
vectors of V.

3. D̃ > 0 and D̃A ≥ 0.

4. He
(

D̃N(ξ)
)

≥ 0 for all ξ such that |ξ| = 1 and ξ ∈ C − σ(V).

2.2 A special class of GLMs: Two-Step Runge-

Kutta Methods

In the context of GLMs we place special emphasis on the family of two-step
Runge-Kutta (TSRK) methods























yn+1 = θyn−1 + θ̃yn + h

s
∑

j=1

(

vjf(Y
[n−1]

j ) + wjf(Y
[n]

j )
)

,

Y
[n]
i = uiyn−1 + ũiyn + h

s
∑

j=1

(

aijf(Y
[n−1]
j ) + bijf(Y

[n]
j )
)

,

(2.2.1)

with i = 1, 2, . . . , s, introduced by Jackiewicz and Tracogna [140] and further
investigated by several authors (see, for instance, [14], [16], [17], [19], [48],
[60], [121], [138] and references therein contained, [141], [142], [197], [198]).

In (2.2.1), yn is an approximation of order p to y(tn), tn = t0 + nh, and Y
[n]
i

are approximations of stage order q to y(tn−1 + cih), i = 1, 2, . . . , s, where
y(t) is the solution to (1.1.1) and c = [c1, . . . , cs]

T is the abscissa vector.

The peculiarity of two-step Runge-Kutta methods (2.2.1) lies in their
dependency on the stage derivatives at two consecutive step points: as a
consequence, “we gain extra degrees of freedom associated with a two-step
scheme without the need for extra function evaluations” (see [140]), because

the function evaluations f(Y
[n−1]

j ) are completely inherited from the previous
step and, therefore, the computational cost of these formulae only depends on
the structure of the matrix B. The achieved degrees of freedom can be used
in order to improve the properties of existing one-step methods, especially in
terms of order of convergence and stability.

TSRK methods (2.2.1) can be represented by the abscissa vector c and
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the table of their coefficients

u A B

θ vT wT
=

u1 a11 a12 · · · a1s b11 b12 · · · b1s

u2 a21 a22 · · · a2s b21 b22 · · · b2s

...
...

...
. . .

...
...

...
. . .

...

us as1 as2 · · · ass bs1 bs2 · · · bss

θ v1 v2 · · · vs w1 · · · ws−1 ws

,

and, moreover, they can also be regarded as GLMs (2.1.1) with r = s+ 2 in
correspondence of the vector of external approximations

y[n] =





yn

yn−1

hf(Y [n])



 =





y(tn)
y(tn − h)

y′(tn + (c− e)h)



+O(hp+1), (2.2.2)

where e = [1, . . . , 1] ∈ R
s. Therefore, the Butcher tableau of TSRK methods

re-casted as GLMs takes the form

[

A U

B V

]

=











B e− u u A

wT 1 − θ θ vT

0 1 0 0
Is 0 0 0











∈ R
(2s+2)×(2s+2). (2.2.3)

We next report the main properties of TSRK methods in terms of order
of convergence and linear stability: this analysis is carried out taking into ac-
count the formulation of TSRK methods as GLMs and, therefore, exploiting
the results given in the general framework of GLMs.

We first aim to derive the set of order conditions for TSRK methods,
under the hypothesis that we assume these methods to have high stage order,
i.e. we consider methods of order p and stage order q = p. This choice
is coherent with the spirit of the following sections, where we will consider
continuous methods within the class of TSRK methods having uniform order
of convergence p = q over all the integration interval and, moreover, allows us
to obtain the set of order conditions in a simple way: the only needed tool is
the Taylor series expansion. The existing literature on TSRK methods does
not always point particular importance to the request of high stage order
and, as a consequence, order conditions are derived for any value of p and q,
by using the Albrecht approach [140], or trees and B-series [48, 121].
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In order to obtain the requested order conditions, we first need to de-
termine the vectors qk, k = 0, 1, . . . , p, appearing in (2.1.14) and (3.2.15).
Taking into account the expression of the vector of external approximations
y[n] given by (2.2.2), we expand y(tn − h) and y′(tn + (c − e)h) into Taylor
series around the point tn, obtaining

y[n] =













y(tn)

y(tn) − hy′(tn) +
h2

2!
y′′(tn) + · · · + (−1)ph

p

p!
y(p)(tn)

hy′(tn)e+ h2y′′(tn)
(c− e)

1!
+ · · · + hpy(p)(tn)

(c− e)p−1

(p− 1)!













+O(hp+1),

where the power (c − e)ν, ν = 0, 1, ..., p− 1 is intended componentwise.
Comparing this expression with (2.1.11) leads to the following formulas for
the vectors qk

q0 = [1 1 0T ]T , qk =

[

0
(−1)k

k!

(

(c− e)k−1

(k − 1)!

)T ]T

,

k = 1, 2, . . . , p, where 0 in q0 stands for the zero vector of dimension s. As a
consequence, the preconsistency conditions (2.1.3) are automatically satisfied
for TSRK methods. At this point, is much more convenient to express the
stage order and order conditions (2.1.14) and (3.2.15) directly in terms of
the coefficients c, θ, u, v, w, A, and B of the original TSRK methods.
Theorem 2.1.3 implies the following result.

Theorem 2.2.1 (compare [16], [140]) Assume that the TSRK method (2.2.1)
has order p and stage order q = p. Then the order and stage order conditions
take the form

Ck :=
ck

k!
− (−1)k

k!
u− A(c− e)k−1

(k − 1)!
− Bck−1

(k − 1)!
= 0, (2.2.4)

k = 1, , 2, . . . , p, and

Ĉk :=
1

k!
− (−1)k

k!
θ − vT (c− e)k−1

(k − 1)!
− wT ck−1

(k − 1)!
= 0, (2.2.5)

k = 1, 2, . . . , p, where cν := [cν1, . . . , c
ν
s ]

T .
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Proof: To reformulate (2.1.14) and (3.2.15) in terms of the coefficients of
TSRK method (2.2.1) we use the representation of the matrices A, U, B
and V given in (2.2.3). The stage order conditions (2.2.4) follow directly
from (2.1.14). To reformulate (3.2.15) observe that

k
∑

l=0

qk−l

l!
=

[

1

k!

k
∑

l=0

(−1)l

(k − l)!l!

(

k−1
∑

l=0

(c− e)l

(k − 1 − l)!l!

)T ]T

.

Since
k
∑

l=0

(−1)l

(k − l)!l!
=

1

k!

k
∑

l=0

(

k
l

)

(−1)l = 0,

and

k−1
∑

l=0

(c− e)l

(k − 1 − l)!l!
=

1

(k − 1)!

k−1
∑

l=0

(

k − 1
l

)

(c− e)l =
ck−1

(k − 1)!

it follows that the last s+ 1 components of the left hand side of (3.2.15) are
automatically equal to zero, and comparing the first components of (3.2.15)
we obtain order conditions (2.2.5). This completes the proof. 2

Setting k = 1 in (2.1.14) and (3.2.15), the stage consistency and con-
sistency conditions (2.1.5) and (2.1.4) take the form (A + B)e − u = c,
(vT + wT )e = 1 + θ, respectively.

We next derive the conditions for zero-stability of TSRK methods, us-
ing the result in Theorem 2.1.1. For this purpose, we derive the minimal
polynomial of the coefficient matrix V in (2.2.3), i.e.

p(ω) = ω(ω2 − (1 − θ)ω − θ),

whose roots are ω = 0, ω = 1 and ω = −θ. Therefore, a TSRK is zero-stable
if and only if −1 < θ ≤ 1.

We finally focus our attention on the linear stability properties of TSRK
methods. We have already provided the expression of the stability matrix
(2.1.17) of a GLM: in the case of TSRK methods, the matrix (2.1.17) takes
the form

M(z) =





1 − θ + wTQ(z)(e− u) θ + wTQ(z)u vT + wTQ(z)A
1 0 0

Q(z)(e− u) Q(z)u Q(z)A



 ∈ R
(s+2)×(s+2),

(2.2.6)
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where z ∈ C and Q(z) = (I − zB)−1. We also define the stability function
p̃(ω, z) as the characteristic polynomial of M(z), i.e.,

p̃(ω, z) = det
(

ωI − M(z)
)

. (2.2.7)

This is a polynomial of degree s+ 2 with respect to ω whose coefficients are
rational functions with respect to z.

Many examples of highly-stable TSRK methods (2.2.1) can be found in
[140, 138] and references therein contained.
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Chapter 3

Two-step collocation and
almost collocation methods

Collocation is a widely applied and powerful technique in the construc-
tion of numerical methods for functional equations. As it is well known, a
collocation method is based on the idea of approximating the exact solution
of a given functional equation with a suitable approximant, the collocation
function, belonging to a chosen finite dimensional space, usually a piecewise
algebraic polynomial, which exactly satisfies the equation on a certain subset
of the integration interval (i.e. the set of the so-called collocation points).

This technique, when applied to problems based on functional equations,
allows the derivation of methods having many desirable properties. In fact,
collocation methods provide an approximation over the entire integration
interval to the solution of the equation. Moreover, the collocation function
can be expressed as linear combination of functions ad hoc for the problem
we are integrating, in order to better reproduce the qualitative behaviour
of the solution. The usage of the collocation polynomial is also particularly
useful for the implementation of the related methods in a variable stepsize
environment, as it will be discussed in Chapter 6. It is also worthwhile to
mention that collocation has also an important theoretical relevance: in fact,
many numerical methods are difficult to be analyzed as discrete schemes
while, re-casted as collocation-based methods, their analysis is reasonably
simplified and can be carried out in a very elegant way.

The systematic study of collocation methods for ODEs (1.1.1)-(1.1.2),
VIEs (1.1.3), Volterra integro-differential equations (VIDEs) and related

43
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functional equations has its origin, respectively, in the late ’60s, the early
’70s and the early ’80s (an interesting historical review can be found, for
instance, in the Notes 1.11 of the monography [24] on collocation methods
by H. Brunner). The idea of multistep collocation was first introduced by
Lie and Norsett in [154], and further extended and investigated by several
authors [48, 70, 75, 76, 77, 88, 89, 90, 92, 116, 153, 158].

Multistep collocation methods depend on more parameters than classical
ones, without any significant increase in the computational cost: therefore,
there are much more degrees of freedom to be spent in order to obtain strong
stability properties and higher order and stage order of convergence. As
a direct consequence, the effective order of multistep collocation methods is
generally higher with respect to one stage collocation methods with the same
number of stages. Moreover, in force of their high stage order, they do not
suffer from the order reduction phenomenon (see [42, 122]), which occurs in
the integration of stiff systems.

This chapter consists of two sections: the first one reviews the classical
idea of collocation for first order ODEs (1.1.1) and its successive modifica-
tions introduced in the literature, providing the background in which our
new results are merged into and the framework which constituted the start-
ing point of our research; the second part presents the new ideas of two-
step collocation and almost collocation we have introduced and analyzed in
[70, 88, 89, 92, 94, 95, 98], with special emphasis on the results concerning
representation formulae for the coefficients of the corresponding methods, the
analysis of the local discretization error, the related set of continuous order
conditions, the attainable order of convergence, the linear stability proper-
ties.

3.1 Collocation based methods for first order

ODEs: state of the art

In this section we focus our attention on the historical background and
concerning the collocation technique: we will analyze the classical idea of
collocation for the numerical integration of ODEs, which is placed in the
context of Runge–Kutta methods, together with some famous extensions
and modifications which have been developed in the literature during the
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’80s and ’90s.

3.1.1 Classical one-step collocation methods

Let us suppose that the integration interval [t0, T ] is discretized in an
uniform grid {th : t0 < t1 < ... < tN = T}. Classical collocation methods
(see [24, 36, 42, 118, 119, 147, 208]) are determined by means of a contin-
uous approximant, generally an algebraic polynomial P (t), satisfying some
opportune conditions: in order to advance from tn to tn+1, the polynomial
P (t) interpolates the numerical solution in tn, and exactly satisfies the ODE
(1.1.1) - i.e. co-locates - in the set of points {tn + cih, i = 1, 2, . . . m}, where
c1, c2, . . . , cm are m real numbers (named collocation nodes), that is

{

P (tn) = yn,

P ′(tn + cih) = f(tn + cih, P (tn + cih)), i = 1, 2, ..., m.
(3.1.1)

The solution in tn+1 can then be computed from the function evaluation

yn+1 = P (tn+1). (3.1.2)

The classical framework in which collocation methods must be placed
is certainly constituted by implicit Runge-Kutta methods (IRK). In fact,
Guillou and Soule in [116] and Wright in [208] independently proved that one
step collocation methods form a subset of implicit Runge-Kutta methods

yn+1 = yn + h
m
∑

i=1

bif(tn + cih, Yi) (3.1.3)

Yi = yn + h
m
∑

j=1

aijf(tn + cjh, Yj), i = 1, 2, ..., m, (3.1.4)

where

aij =

∫ ci

0

Lj(s)ds, bj =

∫ 1

0

Lj(s)ds, i, j = 1, 2, ..., m (3.1.5)

and Lj(s), j = 1, ..., m, are fundamental Lagrange polynomials. The maxi-
mum attainable order of such methods is at most 2m, and it is obtained by us-
ing Gaussian collocation points [119, 147]. Anyway, unfortunately, the order
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2m is gained only at the mesh points: the uniform order of convergence over
the entire integration interval is only m. As a consequence, they suffer from
order reduction showing effective order equal to m (see [36, 42, 119, 122]).

Butcher (see [36] and references therein) gave an interesting characteriza-
tion of collocation methods in terms of easy algebraic conditions, and anal-
ogous results are also reported in [119, 147]. This characterization, together
with many other results regarding the main properties of collocation methods,
comes out as natural consequence of an interesting interpretation of colloca-
tion methods in terms of quadrature formulae. In fact, if f(t, y(t)) = f(t),
equations (3.1.3)-(3.1.4) can be respectively interpreted as quadrature for-

mulae for
∫ tn+h

tn
f(t)dt and

∫ tn+cih

tn
f(t)dt, for i=1,2,...,m. We next consider

the following linear systems

A(q) :
m
∑

j=1

aijc
k−1
j =

cki
k
, k = 1, 2, ..., q, i = 1, 2, ..., m, (3.1.6)

B(p) :
m
∑

i=1

bic
k−1
i =

1

k
, k = 1, 2, ..., p. (3.1.7)

Next, the following result holds (see [118, 147]):

Theorem 3.1.1 If the condition B(p) holds for some p ≥ m, then the col-
location method (3.1.1) has order p.

As a consequence, a collocation method has the same order of the under-
lying quadrature formula (see [118], p. 28). Finally, the following result
characterizing classical collocation methods arises (see [36, 118, 119, 147]).

Theorem 3.1.2 An implicit m-stage Runge-Kutta method, satisfying B(m)
and having distinct collocation abscissae, is a collocation method if and only
if conditions A(m) holds.

The most used collocation methods are those based on the zeros of some
orthogonal polynomials, that is Gauss, Radau, Lobatto [36, 42, 119, 122, 147],
having respectively order of convergence 2m, 2m−1, 2m−2, where m is the
number of collocation points (or the number of stages, regarding the colloca-
tion method as an implicit Runge-Kutta). Concerning their stability prop-
erties, it is known that Runge-Kutta methods based on Gaussian collocation
points are A-stable, while the ones based on Radau IIA points are L-stable
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and, moreover, they are also both algebraically stable (see [42, 122, 138] and
references therein contained); Runge-Kutta methods based on Lobatto IIIA
collocation points, instead, are A-stable but they are not algebraically stable
(see [36, 118, 119, 147]).

3.1.2 Perturbed collocation

As remarked by Hairer and Wanner in [122], only some IRK methods are
of collocation type, i.e. Gauss, Radau IIA, and Lobatto IIIA methods. An
extension of the collocation idea, the so-called perturbed collocation is due to
Norsett and Wanner (see [164, 165]), which applies to all IRK methods.

We denote by Πm the linear space of polynomials of degree at most m
and consider the polynomial Nj ∈ Πm defined by

Nj(t) =
1

j!

m
∑

i=0

(pij − δij)t
i, j = 1, 2, ..., m,

where dij is the usual Kronecker delta. We next define the perturbation
operator Pt0,h : Πm → Πm by

(Pt0,hu)(t) = u(t) +

n
∑

j=1

Nj

(

t− t0
h

)

u(j)(t0)h
j.

Next, the following definition is given (see [164, 165]).

Definition 3.1.1 Let c1, . . . , cm be given distinct collocation points. Then
the corresponding perturbed collocation method is defined by

u(t0) = y0, u ∈ Πm,

u′(t0 + cih) = f(t0 + cih, (Pu)(t0 + cih)), i = 1, 2, ..., m,

y1 = u(t0 + h).

As the authors remark in [165], if all Nj’s are identically zero, then P is the
identical map and the definition coincides with classical collocation. In the
same paper the authors provide the equivalence result between the family of
perturbed collocation methods and Runge-Kutta methods (see [165]). The
interest of this results, as again is stated in [165], is that the properties
of collocation methods, especially in terms of order, linear and nonlinear
stability, can be derived in a reasonable short, natural and very elegant way,
while it is known that, in general, these properties are very difficult to handle
and investigate outside collocation.
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3.1.3 Discontinuous collocation

In the literature, perturbed collocation has been considered as a modification
of the classical collocation technique, in such a way that much more Runge-
Kutta methods could be regarded as perturbed collocation based methods,
rather than classically collocation based. There are other possible extensions
of the collocation idea, which apply to wider classes of Runge-Kutta methods,
such as the so-called discontinuous collocation (see [118]).

Definition 3.1.2 Let c2, . . . , cm−1 be distinct real numbers (usually between
0 and 1), and let b1, bm be two arbitrary real numbers. The corresponding
discontinuous method is then defined via a polynomial of degree m− 2 satis-
fying

u(t0) = y0 − hb1(u̇(t0) − f(t0, u(t0)),

u̇(t0 + cih) = f(t0 + cih, u(t0 + cih)), i = 2, . . . , m− 1,

y1 = u(t1) − hbs(u̇(t1) − f(t1, u(t1)).

Discontinuous collocation methods fall inside a large class of implicit Runge-
Kutta methods, as stated by the following result (see [118]).

Theorem 3.1.3 The discontinuous collocation method given in Definition
3.1.2 is equivalent to an m-stage Runge-Kutta method with coefficients de-
termined by c1 = 0, cm = 1 and

ai1 = b1, aim = 0, i = 1, . . . , m,

while the other coefficients result as solutions of the linear systems A(m− 2)
and B(m− 2) defined in (3.1.6) and (3.1.7).

As a consequence of this result, if b1 = 0 and bm = 0, then the discontinuous
collocation method in Definition 3.1.2 is equivalent to the (m−2)-collocation
method based on c2, . . . , cm−1. An interesting example of implicit Runge-
Kutta method which is not collocation based but is of discontinuous colloca-
tion type is the Lobatto IIIB method (see [36, 118, 119, 147]), which plays
an important rule in the context of geometric numerical integration, together
with Lobatto IIIA method (see [118], p. 33). They are both nonsymplectic
methods (see Theorem 4.3 in [118]) but, considered as a pair, the resulting
method is symplectic. This is a nice example of methods which possess very
strong properties, but are difficult to investigate as discrete scheme (they
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cannot be studied as collocation methods, because they are not both colloca-
tion based); however, re-casted as discontinuous collocation based methods,
their analysis is reasonably simplified and very elegant [118].

3.1.4 Multistep collocation

The successive results which appeared in the literature (see [68, 116, 122,
153, 154]) have been devoted to the construction of multistep collocation
methods. Guillou and Soulé introduced multistep collocation methods [116],
by adding interpolation conditions in the previous k step points, so that the
collocation polynomial is defined by

{

P (tn−i) = yn−i i = 0, 1, ..., k − 1,

P ′(tn + cjh) = f(tn + cjh, P (tn + cjh)), j = 1, ..., m.
(3.1.8)

The numerical solution is given, as usual, by the evaluation

yn+1 = P (tn+1). (3.1.9)

Hairer-Wanner [122] and Lie-Norsett [154] derived different strategies to
obtain multistep collocation methods. In [122] the Hermite problem with
incomplete data (3.1.8) is solved by means of the introduction of a generalized
Lagrange basis

{ϕi(s), ψj(s), i = 1, 2, . . . , k, j = 1, 2, . . . , m}

and, correspondingly, the collocation polynomial is expressed as linear com-
bination of this set of functions, i.e.

P (tn + sh) =

k
∑

j=1

ϕj(s)yn−k+j + h

s
∑

i=1

ψj(s)P
′(tn + cjh),

where s = t−tn
h

is the scaled time variable. Therefore, the problem (3.1.8)
is transformed in the problem of deriving {ϕi(s), ψj(s), i = 1, 2, . . . , k, j =
1, 2, . . . , m} in such a way that the corresponding polynomial P (tn + sh)
satisfies the conditions (3.1.8).

Lie-Norsett in [154] completely characterized multistep collocation meth-
ods, giving the expressions of the coefficients of collocation based multistep
Runge-Kutta methods in closed form, as stated by the following
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Theorem 3.1.4 The multistep collocation method (3.1.8)-(3.1.9) is equiva-
lent to the multistep Runge-Kutta method

Yj =
k−1
∑

i=0

ϕ(tn+k−1 + cjh)yn+k−1−i

+ h
m
∑

i=1

ψ(tn+k−1 + cjh)f(tn+k−1 + cjh, Yi), j = 1, ..., m,

yn+k =
k−1
∑

i=0

ϕ(tn+k)yn+k−1−i + h
m
∑

i=1

ψ(tn+k−1)f(tn+k−1 + cjh, Yi),

where the expression of the polynomials ϕi(s), ψi(s) are provided in Lemma
1 of [154]. 2

Lie and Norsett in [154] also provided a complete study of the order
of the resulting methods, stating order conditions by means of the study
of variational matrices, and showing that the maximum attainable order
of a k-step m-stage collocation method is 2m + k − 1. They also proved
that there exist

(

m+k−1
k−1

)

nodes that allow superconvergence and, in analogy
with Runge-Kutta methods, they are named multistep Gaussian collocation
points. As Hairer-Wanner stated in [122], these methods are not stiffly stable
and, therefore, they are not suited for stiff problems: in order to obtain
better stability properties, they derived methods of highest order 2m+k−2,
imposing cm = 1 and deriving the other collocation abscissa in a suited
way to achieve this highest order and named the corresponding methods of
“Radau”-type, studied their stability properties, deriving also many A-stable
methods.

3.2 Two-step collocation and almost colloca-

tion methods

In the context of collocation-based methods for the numerical solution
of the problem (1.1.1), our strengths have been devoted to the extension of
the multistep collocation technique to the class of TSRK methods (2.2.1)
we have discussed in Section 2.2, pursuing the aim of deriving highly stable
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collocation-based methods belonging to the family of TSRK formulae. Dif-
ferent approaches to the construction of continuous TSRK methods outside
collocation have been presented in literature in the papers [17], [19] and [141].
We introduce the continuous approximant


















P (tn + sh) = ϕ0(s)yn−1 + ϕ1(s)yn

+ h
m
∑

j=1

(

χj(s)f(P (tn−1 + cjh)) + ψj(s)f(P (tn + cjh))
)

, s ∈ [0, 1],

yn+1 = P (tn+1),
(3.2.1)

which is modeled on the shape of the numerical method under consideration,
i.e. the TSRK method (2.2.1): in fact, in the advancing from the grid point
tn to the point tn+1, it depends on the approximations yn−1 and yn to the
solution y(t) of (1.1.1) in the two consecutive step points tn−1 and tn, but also
on the stage derivatives related to the last two subintervals of integration.
We assume that P (tn + sh) is an algebraic polynomial and we denote it
as collocation polynomial, while the corresponding method is called two-step
collocation method.

Similarly as in the case of multistep collocation methods, the collocation
polynomial (3.2.1) is expressed as linear combination of the basis functions

{ϕ0(s), ϕ1(s), χj(s), ψj(s), j = 1, 2, . . . , m}, (3.2.2)

which are unknown algebraic polynomials to be suitably determined. It is
required that the polynomial P (tn+sh) interpolates the solution in the points
tn−1 and tn, i.e.

P (tn−1) = yn−1, P (tn) = yn, (3.2.3)

and collocates it in the points tn−1 + cih, tn + cih, i = 1, 2, . . . , m, i.e.

P ′(tn−1 + cih) = f(tn−1 + cih, P (tn−1 + cih)), i = 1, 2, ..., m,

P ′(tn + cih) = f(tn + cih, P (tn + cih)), i = 1, 2, ..., m.
(3.2.4)

We observe that the first of the (3.2.4) is peculiar of TSRK-type methods,
because of the special dependency on the internal points tn−1 + cih: we
will next analyze how this dependency affects the stability properties of the
resulting methods in the context of collocation-based methods.

Since the collocation polynomial (3.2.1) is a linear combination of the
functions (3.2.2), the conditions (3.2.3) and (3.2.4) are then reflected on the
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basis polynomials in the following way: the counterpart of the interpolation
conditions (3.2.3) on (3.2.2) is

ϕ0(−1) = 1, ϕ1(−1) = 0, χj(−1) = 0, ψj(−1) = 0,

ϕ0(0) = 0, ϕ1(0) = 1, χj(0) = 0, ψj(0) = 0,
(3.2.5)

while the analog of the collocation conditions (3.2.4) on (3.2.2) is

ϕ′
0(ci−1) = 0, ϕ′

1(ci−1) = 0, χ′
j(ci−1) = δij, ψ′

j(ci−1) = 0,

ϕ′
0(ci) = 0, ϕ′

1(ci) = 0, χ′
j(ci) = 0, ψ′

j(ci) = δij,
(3.2.6)

where δij is the usual Kronecker delta, i, j = 1, 2, . . . , m.
The following subsections aim to analyze the properties of two-step collo-

cation methods (3.2.1), providing the main results concerning their possible
representations, the error and order analysis, the linear stability properties.
These original results have been included in the papers [69, 70, 88, 89, 92, 95].

3.2.1 Representation of two–step collocation methods

The first step of our analysis aims to create a link between two-step
collocation methods (3.2.1) and the family of TSRK formulae (2.2.1). The
technique we apply in order to succeed in this direction is a suitable modifi-
cation of the procedure introduced by Lie and Norsett [154] in the context of
collocation-based multistep Runge–Kutta methods. The result we are going
to prove characterizes the family of two-step collocation methods as a spe-
cial class of TSRK methods (2.2.1) and, moreover, provides a constructive
tool for the derivation of the basis functions (3.2.2): this theorem can be
therefore considered as the analog of the result introduced by Guillou-Soulé
and Wright in the context of collocation-based Runge–Kutta methods, and
reported in Section 3.1.1.

Theorem 3.2.1 The method defined by (3.2.1) is equivalent to the TSRK
method (2.2.1) with

θ = ϕ0(1), vj = χj(1), wj = ψj(1),
ui = ϕ0(ci), aij = χj(ci), bij = ψj(ci),

i, j = 1, . . . , m, where

ψj(s) =

∫ s

0

lj(τ )dτ −
∫ 0

−1
lj(τ )dτ

∫ 0

−1
M(τ )dτ

∫ s

0

M(τ )dτ, j = 1, . . . , m, (3.2.7)
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χj(s) =

∫ s

0

l̃j(τ )dτ −
∫ 0

−1
l̃j(τ )dτ

∫ 0

−1
M(τ )dτ

∫ s

0

M(τ )dτ, j = 1, . . . , m, (3.2.8)

ϕ0(s) = −
∫ s

0
M(τ )dτ

∫ 0

−1
M(τ )dτ

,

ϕ1(s) = 1 +

∫ s

0
M(τ )dτ

∫ 0

−1
M(τ )dτ

,

(3.2.9)

with

li(s) =
2m
∏

j=1
j 6=i

s− dj

di − dj

, M(s) =
2m
∏

j=1

(s− dj), l̃i(s) =
2m
∏

j=1
j 6=i

s− d̃j

d̃i − d̃j

, (3.2.10)

in correspondence of the abscissas

{

di = ci,
dm+i = ci − 1,

{

d̃i = ci − 1,

d̃m+i = ci,
(3.2.11)

i = 1, 2, . . . , m.

Proof: We first exhibit the form of the polynomials ψj(s), j = 1, 2, ...m,
assuming that the interpolation conditions (3.2.5) and the collocation ones
(3.2.6) hold. Following [154], the collocation conditions (3.2.6) are surely
satisfied by a polynomial of the form

ψ′
j(s) = lj(s) +

α0

aj

M(s) (3.2.12)

with

aj =

2m
∏

i=1
i6=j

(dj − di),

and α0 ∈ R. We set ᾱ0 = α0

aj
in (3.2.12) and integrate both of its sides,

obtaining

ψj(s) =

∫ s

0

lj(τ )dτ + ᾱ0

∫ s

0

M(τ )dτ. (3.2.13)
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Imposing the interpolation conditions (3.2.5) on this function, we derive ᾱ0

as solution of the linear equation

ᾱ0

∫ 0

−1

M(τ )dτ = −
∫ 0

−1

lj(τ )dτ.

The computed value of ᾱ0 replaced in Equation (3.2.13) leads to (3.2.7).
The form (3.2.8) of the polynomials χj(s), j = 1, 2, ...m, is obtained in a

similar way, by referring to the collocation abscissae d̃i in (3.2.11) instead of
di.

We finally investigate on the form of the basis polynomials ϕi(s), i = 0, 1.
In order to fulfill the collocation conditions (3.2.6), the functions ϕi(s), i =
0, 1, have to assume the form

ϕi(s) = γ
(i)
0 + γ

(i)
1

∫ s

0

M(τ )dτ,

with γ
(i)
j ∈ R. Let us treat ϕ0(s) and ϕ1(s) separately. Concerning ϕ0(s),

imposing the interpolation conditions (3.2.5), we have

0 = ϕ0(0) = γ
(0)
0 + γ

(0)
1

∫ 0

0

M(τ )dτ

and, as a consequence, we obtain γ
(0)
0 = 0. Moreover, since

1 = ϕ0(−1) = γ
(0)
1

∫ −1

0

M(τ )dτ = −γ(0)
1

∫ 0

−1

M(τ )dτ

we obtain

γ
(0)
1 = − 1

∫ 0

−1
M(τ )dτ

.

In analogous way, concerning the polynomial ϕ1(s), the interpolation condi-
tions (3.2.5) lead to

γ
(1)
0 = 1, γ

(1)
1 =

1
∫ 0

−1
M(τ )dτ

.

2
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3.2.2 Continuous order conditions

This section is devoted to the construction of continuous order conditions for
two-step collocation methods (3.2.1), under the assumption that the colloca-
tion polynomial P (tn + sh) provides an uniform approximation to y(tn + sh),
s ∈ [0, 1], of order p. As a consequence, the stage values P (tn + cjh) have
(stage) order q = p.

To this end, we investigate on the local discretization error ξ(tn + sh)
associated to (3.2.1), i.e. the residuum obtained by replacing P (tn + sh) by
y(tn + sh), P (tn + cjh) by y(tn + cjh), j = 1, 2, . . . , m, yn−1 by y(tn−1) and
yn by y(tn) in (3.2.1), where y(t) is the true solution to (1.1.1). This leads to

ξ(tn + sh) = y(tn + sh) − ϕ0(s)y(tn − h) − ϕ1(s)y(tn)

− h
m
∑

j=1

(

χj(s)y
′(tn + (cj − 1)h) + ψj(s)y

′(tn + cjh)
)

,

(3.2.14)
s ∈ (0, 1], n = 1, 2, . . . , N − 1. We have the following result.

Theorem 3.2.2 Assume that the function f(y) is sufficiently smooth. Then
the method (3.2.1) has uniform order p if the following conditions are satisfied











ϕ0(s) + ϕ1(s) = 1,

(−1)k

k!
ϕ0(s) +

m
∑

j=1

(

χj(s)
(cj − 1)k−1

(k − 1)!
+ ψj(s)

ck−1
j

(k − 1)!

)

=
sk

k!
,

(3.2.15)

s ∈ [0, 1], k = 1, 2, . . . , p. Moreover, the local discretization error (3.2.14)
takes the form

ξ(tn + sh) = hp+1Cp(s)y
(p+1)(tn) +O(hp+2), (3.2.16)

as h→ 0, where the error function Cp(s) is defined by

Cp(s) =
sp+1

(p+ 1)!
− (−1)p+1

(p+ 1)!
ϕ0(s)−

m
∑

j=1

(

χj(s)
(cj − 1)p

p!
+ψj(s)

cpj
p!

)

. (3.2.17)

Proof:. Expanding y(tn + sh), y(tn−h), y′(t+(cj − 1)h) and y(tn + cjh) into
Taylor series around the point tn and collecting terms with the same powers
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of h we obtain

ξ(tn + sh) =
(

1 − ϕ0(s) − ϕ1(s)
)

y(tn)

+

p+1
∑

k=1

(

sk

k!
− (−1)k

k!
ϕ0(s)

)

hky(k)(tn)

−
p+1
∑

k=1

m
∑

j=1

(

χj(s)
(cj − 1)k−1

(k − 1)!
+ ψj(s)

ck−1
j

(k − 1)!

)

hky(k)(tn)

+ O(hp+2).

Equating to zero the terms of order k, k = 0, 1, . . . , p, we obtain order con-
ditions (3.2.15). Comparing the terms of order p+ 1 we obtain (3.2.16) with
error function Cp(s) defined by (3.2.17). 2

The condition
ϕ0(s) + ϕ1(s) = 1, s ∈ [0, 1],

is the generalization of preconsistency conditions for TSRK methods (2.2.1),
compare [138]: this condition, in the context of TSRK methods, implies that
θ, θ̃, uj and ũj appearing in (2.2.1) satisfy the conditions

θ + θ̃ = 1, uj + ũj = 1, j = 1, 2, . . . , m.

The set of order conditions (3.2.15) constitute a linear system of p + 1
equations in 2m + 2 unknowns, i.e. the 2m + 2 basis functions (3.2.2). As
a consequence, in order to ensure the compatibility of the system (3.2.15), p
can be at most equal to 2m+ 1. This remark leads to the following result.

Corollary 3.2.1 The maximum attainable uniform order of convergence for
two-step collocation methods (3.2.1) is 2m+ 1.

Let us now discuss on the unicity to the solution of the system (3.2.15) when
p = 2m + 1, i.e. when we aim to achieve the maximum attainable uniform
order. For this purpose, we introduce the recurrence relation

r(0)(j) =
(−1)j

j
,

r(k)(j) = r(k−1)(j) − r(k−1)(j − 1)dk,

(3.2.18)

for k, j = 1, 2, . . . , 2m, where

dk =

{

ck − 1, k = 1, 2, . . . , m,
ck−m, k = m+ 1, . . . , 2m.

(3.2.19)
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Theorem 3.2.3 Assume that ci 6= cj, ci 6= cj − 1 for i 6= j and, moreover,
that r(k)(j) 6= 0, k, j = 1, 2, . . . , 2m. Then, the system (3.2.15) corresponding
to p = 2m + 1 has a unique solution ϕ0(s), ϕ1(s), χj(s), and ψj(s), j =
1, 2, . . . , m, which are polynomials of degree ≤ 2m + 1.

Proof: The coefficient matrix of the system (3.2.15) has the form

H =































1 1 0 . . . 0
−1 0 1 . . . 1
1
2!

0 d1 . . . d2m

− 1
3!

0
d2
1

2
. . .

d2
2m

2
...

...
...

...
...

(−1)j−1

(j−1)!
0

dj−2

1

(j−2)!
. . .

dj−2

2m

(j−2)!
...

...
...

...
...

(−1)2m+1

(2m+1)!
0

d2m
1

(2m)!
. . .

d2m
2m

(2m)!































,

where the abscissas di are given in (3.2.19). In order to achieve the thesis, we
need to prove that the matrixH is nonsingular by computing its determinant.
First of all, we consider the Laplace expansion of detH along the second
column, obtaining detH = − detH ′, where H ′ is the matrix we derive by
dropping the first row and the second column of H, i.e.

H ′ =



























−1 1 . . . 1
1
2!

d1 . . . d2m

− 1
3!

d2
1

2
. . .

d2
2m

2
...

...
...

...
(−1)j

j!

d
j−1

1

(j−1)!
. . .

d
j−1

2m

(j−1)!
...

...
...

...
(−1)2m

(2m)!

d2m
1

(2m)!
. . .

d2m
2m

(2m)!



























.

Using the elementary properties of determinants (compare [149]), obtain we
obtain

detH ′ =
1

2!
· 1

3!
· . . . · 1

(2m)!
· detH ′′
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where

H ′′ =

























−1 1 . . . 1
1
2

d1 . . . d2m

−1
3

d2
1 . . . d2

2m
...

...
...

...
(−1)j

j
dj−1

1 . . . dj−1
2m

...
...

...
...

(−1)2m

2m
d2m

1 . . . d2m
2m

























.

By setting r(0)(j) = (−1)j

j
, the matrix H ′′ takes the form

H ′′ =

























r(0)(1) 1 . . . 1
r(0)(2) d1 . . . d2m

r(0)(3) d2
1 . . . d2

2m
...

...
...

...

r(0)(j) dj−1
1 . . . dj−1

2m
...

...
...

...
r(0)(2m) d2m

1 . . . d2m
2m

























.

With this positions, the form of H ′′ is now clearly of Vandermonde type,
except the first column: in order to compute its determinant, we can apply
with suitable modifications the procedure introduced to compute the deter-
minant of the Vandermonde matrix [158]. By means of 2m switches, we can
put the first column of H ′′ in the last position, obtaining the matrix

H ′′′ =

























1 . . . 1 r(0)(1)
d1 . . . d2m r(0)(2)
d2

1 . . . d2
2m r(0)(3)

...
...

...
...

dj−1
1 . . . dj−1

2m r(0)(j)
...

...
...

...
d2m

1 . . . d2m
2m r(0)(2m)

























,

and, as a consequence, detH ′′′ = detH ′′ and

detH = − 1

2!
· 1

3!
· . . . · 1

(2m)!
· detH ′′′.
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We now aim to compute the determinant of H ′′′. We subtract d1 times the
first row from the other 2m rows, obtaining the matrix
























1 1 . . . 1 r(0)(1)
0 d2 − d1 . . . d2m − d1 r(0)(2) − r(0)(1)d1

0 d2
2 − d1d2 . . . d2

2m − d1d2m r(0)(3) − r(0)(2)d1
...

...
...

...

0 dj−1
2 − d1d

j−2
2 . . . dj−1

2m − d1d
j−2
2m r(0)(j − 1) − r(0)(j − 2)d1

...
...

...
...

0 d2m
2 − d1d

2m−1
2 . . . d2m

2m − d1d
2m−1
2m r(0)(2m) − r(0)(2m− 1)d1

























,

whose determinant is the equal to the determinant of the matrix















d2 − d1 . . . d2m − d1 r(1)(2)
d2(d2 − d1) . . . d2m(d2m − d1) r(1)(3)

...
...

...
...

...
...

d2m−1
2 (d2 − d1) . . . d2m−1

2m (d2 − d1) r(1)(2m)















,

where
r(1)(j) = r(0)(j) − r(0)(j − 1)d1, j = 2, ...2m.

As a consequence, we obtain

detH ′′′ = (d2−d1)(d3−d1) . . . (d2m−d1)·det















1 . . . 1 r(1)(2)
d2 . . . d2m r(1)(3)
...

...
...

...
...

...
d2m−1

2 . . . d2m−1
2m r(1)(2m)















,

and, iterating this process, we get

detH ′′′ =
∏

1≤i≤k≤2m

(dk − di)r
(2m−1)(2m)

where
r(2m−1)(2m) = r(2m−2)(2m) − r(2m−2)(2m− 1)d2m−1.

According to the hypothesis, it is r(2m−1)(2m) 6= 0 and, as a consequence, it
follows that H ′′′ is nonsingular and, finally, that H is nonsingular. 2
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The next result shows that the polynomials ϕ0(s), ϕ1(s), χj(s), and ψj(s),
j = 1, 2, . . . , m, corresponding to the methods of order p = 2m + 1 satisfy
the interpolation and collocation conditions (3.2.5)-(3.2.6).

Theorem 3.2.4 Assume that ϕ0(s), ϕ1(s), χj(s), and ψj(s), j = 1, 2, . . . , m,
satisfy the system of order conditions (3.2.15) for p = 2m + 1. Then these
polynomials fulfill the interpolation conditions (3.2.5) and the collocation con-
ditions (3.2.6).

Proof:. The conditions (3.2.5) follow immediately by substituting s = 0 and
s = −1 into the system (3.2.15) corresponding to p = 2m + 1. To show
(3.2.6) we differentiate (3.2.15), obtaining











ϕ′
0(s) + ϕ′

1(s) = 0,

(−1)k

k!
ϕ′

0(s) +
m
∑

j=1

(

χ′
j(s)

(cj − 1)k−1

(k − 1)!
+ ψ′

j(s)
ck−1
j

(k − 1)!

)

=
sk−1

(k − 1)!
,

(3.2.20)
k = 1, 2, . . . , 2m+ 1. Substituting s = ci and s = ci − 1, i = 1, 2, . . . , m, into
(3.2.20) we obtain (3.2.6). 2

As a consequence of this theorem, we can observe that the basis functions
computed by solving the linear system of the order conditions (3.2.15) for
p = 2m + 1 automatically satisfy all the interpolation conditions (3.2.5)
and all the collocation ones (3.2.6) and, as a consequence, the collocation
polynomial (3.2.1) satisfies all those conditions. This aspect can be used as a
constructive tool of two-step collocation methods, since they are univocally
determined by the system of the order conditions (3.2.15).

3.2.3 Superconvergence

The order conditions for two-step collocation methods (3.2.1) can be inferred
also in a different way, using some tools borrowed from the Calculus of Vari-
ations, such as the Alekseev–Gröbner theorem [9, 114].

Theorem 3.2.5 (Alekseev-Gröbner, see [119]). Denote by y and z the so-
lutions of

y′ = f(x, y), y(x0) = y0, (3.2.21)

z′ = f(x, z) + g(x, z), z(x0) = y0, (3.2.22)
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respectively and suppose that ∂f/∂y exists and is continuous. Then the solu-
tions of (3.2.21) and of its perturbed” version (3.2.22) are connected by the
relation

z(x) = y(x) +

∫ x

x0

∂y

∂y0
(x, s, z(s)) · g(s, z(s))ds. (3.2.23)

Then, following result holds.

Theorem 3.2.6 Let

Gi = det









∫ 0

−1

M(τ )τ idτ

∫ 0

−1

M(τ )τ i+1dτ
∫ 1

0

M(τ )τ idτ

∫ 1

0

M(τ )τ i+1dτ









, (3.2.24)

where the function M(τ ) is given by (3.2.10). Then the corresponding two-
step collocation method has order 2m + σ if and only if Gi = 0 for i =
0, 1, . . . , σ − 1.

Proof: We proceed along the lines drawn by Lie and Norsëtt in [154]. By
using the Alekseev-Gröbner formula, we define the error associated to the
method (3.2.1) by

P (t) − y(t) =

∫ t

tn

Φ(t, τ, P (τ )) · (P ′(τ ) − f(τ, P (τ )))dτ

where Φ is a suitable variational matrix. The interpolation conditions

P (tn−i) = y(tn.i) i = 0, 1,

lead to
∫ tn−1

tn

Φ(t, τ, P (τ )) · (P ′(τ )− f(τ, P (τ )))dτ = 0,

and moreover, assuming h = 1 and tn = 0 and using the scaled variable s,
we obtain

∫ 0

−1

g(τ ) = 0,

under the assumption that

g(τ ) = Φ(t, τ, P (τ )) · (P ′(τ ) − f(τ, P (τ ))).
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Let us consider the linear subspace

V = {g :

∫ 0

−1

g(τ )dτ = 0},

and let us derive a quadrature formula integrating functions belonging to V .
We approximate any function p ∈ V by an interpolation polynomial ρ ∈ V ,
such that p(di) = ρ(di), where the nodes di are defined in (3.2.11). As a
consequence,

p(s) − ρ(s) = (s− d1) · (s− d2) . . . (s− d2m) · r(s),

i.e. p(s)− ρ(s) = M(s) · r(s), where M(s) is defined in (3.2.10). Since V is a
linear subspace and p(s), ρ(s) ∈ V , also M(s) · r(s) ∈ V . Suppose that r(s)
is a polynomial of the type

r(s) =
1
∑

l=0

αls
i+l, i = 0, 1, ...

Then, the condition M(s) · r(s) ∈ V becomes
[
∫ 0

−1

M(s)sids

∫ 0

−1

M(s)si+1

] [

α0

α1

]

= 0,

while the error
∫ 1

0
M(s)r(s) associated to the quadrature formula is zero if

[
∫ 1

0

M(s)sids

∫ 1

0

M(s)si+1

][

α0

α1

]

= 0.

Then, the resulting system








∫ 0

−1

M(s)sids

∫ 0

−1

M(s)si+1

∫ 1

0

M(s)sids

∫ 1

0

M(s)si+1









[

α0

α1

]

=

[

0
0

]

has a nontrivial solution if and only if the coefficient matrix








∫ 0

−1

M(s)sids

∫ 0

−1

M(s)si+1

∫ 1

0

M(s)sids

∫ 1

0

M(s)si+1
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is singular. We denote by Gi its determinant. Let us suppose that Gi = 0 for
i = 0, 1, ..., σ− 1. This means that the quadrature formula is able to exactly
integrate polynomials of the type M(s)

∑1
l=0 αls

i+l. The maximum degree of
these polynomials is 2m+σ and, therefore, the quadrature formula and, as a
consequence, the corresponding method, have both the same order 2m + σ.
2

The following theorem explores the possibility to achieve superconver-
gence.

Theorem 3.2.7 The maximum attainable order of two-step collocation meth-
ods (3.2.1) is 3m.

Proof: The set of conditions Gi = 0 of Theorem 3.2.6 leads to nonlinear
system in the unknowns c1, c2, ..., cm. Let us consider a subset Γ(ζ) of `
equations of the system, where Γ(ζ) : Rm → R`, which has unique solution
if and only if ` = m. As a consequence, σ can be at most equal to m and,
for this reason, the maximum attainable order is 3m. 2

3.2.4 Two-step almost collocation methods

We have asserted in Section 3.2.2 that the set of order conditions (3.2.15)
for p = 2m + 1 provides as solution the 2m + 2 basis functions (3.2.2) cor-
responding to a two-step collocation method (3.2.1) totally fulfilling the sets
of interpolation/collocation conditions (3.2.5)-(3.2.6). p = 2m + 1 is the
maximum attainable uniform order but, however, we will also be interested
in methods having lower uniform order than 2m + 1, especially for stability
reasons, since we aim for strong stability properties (e.g. A-stability and L-
stability). In fact, we remind that two-step collocation methods are implicit
methods and, “nothing less than A-stability can be admitted for implicit
numerical methods1”.

In the remainder, we will mainly be interested in methods of order p =
m+ r, where r = 1, 2, . . . , m, and the next theorem examines the solvability
of the linear systems of equations (3.2.15) corresponding to these orders.

1I was very impressed by this sentence, here reported as well as I can remember, which

was pronounced by John C. Butcher during the conference SciCADE 2007 in Saint Malo,

which was the first conference on Numerical Analysis I attended in my life
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Theorem 3.2.8 Assume that ci 6= cj, and ci 6= cj − 1 for i 6= j. Then the
system of continuous order conditions (3.2.15) corresponding to p = m+ r,
where r = 1, 2, . . . , m, has a unique solution ϕ1(s), χj(s), j = m− r+1, m−
r+2, . . . , m, and ψj(s), j = 1, 2, . . . , m, for any given polynomials ϕ0(s) and
χj(s), j = 1, 2, . . . , m− r.

Proof:. Observe that the polynomial ϕ1(s) is uniquely determined from the
first equation of (3.2.15). The proof follows from the fact that the matrices of
these systems (3.2.15) corresponding to χj(s), j = m−r+1, m−r+2, . . . , m,
are Vandermonde matrices and, therefore, the solution exists and is unique.
2

For the methods of order p = m+ r, r = 1, 2, . . . , m, we will choose ϕ0(s)
and χj(s), j = 1, 2, . . . , m−r, as polynomials of degree ≤ m+r which satisfy
the interpolation conditions

ϕ0(0) = 0, χj(0) = 0, j = 1, 2, . . . , m− r, (3.2.25)

and the collocation conditions

ϕ′
0(ci) = 0, χ′

j(ci) = 0, j = 1, 2, . . . , m− r. (3.2.26)

This leads to the polynomials ϕ0(s) and χj(s), j = 1, 2, . . . , m − r, of the
form

ϕ0(s) = s
(

q0 + q1s+ · · · + qm+r−1s
m+r−1

)

,

χj(s) = s
(

rj,0 + rj,1s+ · · · + rj,m+r−1s
m+r−1

)

,

j = 1, 2, . . . , m− r, where

q0 + 2q1ci + · · · + (m+ r)qm+r−1c
m+r−1
i = 0,

rj,0 + 2rj,1ci + · · · + (m+ r)rj,m+r−1c
m+r−1
i = 0,

j = 1, 2, . . . , m − r, i = 1, 2, . . . , m. The methods we will obtain in this
way satisfy only some of the interpolation/collocation conditions (3.2.5) and
(3.2.6). In particular we aim to prove that the conditions (3.2.25) and (3.2.26)
imposed on the fixed basis functions among ϕ0(s) and χj(s) are inherited via
order conditions by all the other basis functions, as asserted by the following
theorem.
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Theorem 3.2.9 Assume that ϕ0(s) and χj(s), j = 1, 2, . . . , m − r, satisfy
(3.2.25) and (3.2.26). Then the solution ϕ1(s), χj(s), j = m − r + 1, m −
r + 2, . . . , m, and ψj(s), j = 1, 2, . . . , m of (3.2.15) satisfy the interpolation
conditions

ϕ1(0) = 1, χj(0) = 0, j = m− r + 1, m− r + 2, . . . , m,
ψj(0) = 0, j = 1, 2, . . . , m,

(3.2.27)

and the collocation conditions

ϕ′
1(ci) = 0, χ′

j(ci) = 0, j = m− r + 1, m− r + 2, . . . , m,
ψ′

j(ci) = δij, j = 1, 2, . . . , m,
(3.2.28)

i = 1, 2, . . . , m.

Proof:. Substituting s = 0 into (3.2.15) corresponding to p = m + r, r =
1, 2, . . . , m, and taking into account that the solution to (3.2.15) is unique,
the condition (3.2.27) follows. Differentiating (3.2.15) with respect to s and
substituting s = ci, i = 1, 2, . . . , m, into the resulting relations for k =
1, 2, . . . , m+ r, we obtain (3.2.28). This completes the proof. 2

The formulas obtained by imposing the conditions (3.2.25) and (3.2.26)
will be then called two-step almost collocation methods. Two-step collocation
methods and two-step almost collocation methods do not differ from the
general expression of the collocation polynomial (3.2.1), but only on the fact
that the former have the maximum attainable uniform order p = 2m+1 and,
in force of Theorem 3.2.4 satisfy all the interpolation/collocation conditions
(3.2.3)-(3.2.4), while the latter do not possess the highest attainable uniform
order and satisfy only some of the mentioned conditions. We will next observe
that two-step almost collocation methods will allow a proper balance between
high order of convergence and strong stability properties. It follows from
Theorem 3.2.9 that the polynomial P (t) defined by the method (3.2.1) of
order p = m+ r, r = 1, 2, . . . , m, satisfies the interpolation condition

P (tn) = yn

and the collocation conditions at the points ci, i.e.,

P ′(tn + cih) = f(P (tn + cih)), i = 1, 2, . . . , m.

However, in general, these methods do not satisfy the interpolation condition

P (tn−1) = yn−1
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and the collocation conditions

P ′(tn−1 + cih) = f(P (tn−1 + cih)), i = 1, 2, . . . , m.

In our search for highly stable methods (A-stability, L-stability) we will
mainly be concerned with methods of order p = 2m and p = 2m − 1. The
advantage of these methods as compared, for example, with methods of low
stage order, consists of the fact that they provide a uniform approximation
P (t) of order p = 2m to the solution y(t) of (1.1.1) over the entire interval
of integration [t0, T ]. As a result these methods do not suffer from the order
reduction phenomenon in the integration of stiff systems (see [36, 42, 122]).
This is in contrast to implicit Runge-Kutta methods with m stages of order
p = 2m, p = 2m− 1, or p = 2m− 2 for which the continuous approximation
to y(t) is only of (stage) order m. This leads to the reduction of order for
stiff systems of ODEs for which the effective order is equal only to the stage
order m.

3.2.5 Error propagation

It was demonstrated in Section 3.2.2 that the local discretization error at the
point tn+1 of the m-stage method (3.2.1) of order p is given by

ξ(tn+1) = Cp(1)h
p+1y(p+1)(tn) +O(hp+2), (3.2.29)

where the error constant Cp(1) is defined by (3.2.17) for s = 1. We will also
consider local error le(tn+1) defined by

le(tn+1) = Cp(1)h
p+1ỹ(p+1)(tn) +O(hp+2), (3.2.30)

where ỹ(t) is the so-called local solution, i.e., the solution to the initial-value
problem

{

ỹ′(t) = f(ỹ(t)), t ∈ [tn, tn+1],
ỹ(tn) = yn.

(3.2.31)

Assuming that the function f(y) appearing in (1.1.1) and (3.2.31) satisfies
the Lipschitz condition of the form

‖f(y) − f(z)‖ ≤ L‖y − z‖,
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with Lipschitz constant L ≥ 0, by subtracting the integral forms of (1.1.1)
and (3.2.31), we obtain

‖y(t)− ỹ(t)‖ ≤ ‖y(tn) − yn‖ + L

∫ t

tn

‖y(s) − ỹ(s)‖ds,

t ∈ [tn, tn+1]. Using the Gronwall’s lemma (compare, for example, [185])
yields

‖y(t)− ỹ(t)‖ ≤ ‖y(tn) − yn‖eL(t−tn).

Hence,
‖y(t)− ỹ(t)‖ = O(hp), t ∈ [tn, tn+1].

Assuming that the function f(y) is sufficiently smooth we have a similar
conclusion for the derivatives of y(t) and ỹ(t)

‖y(i)(t) − ỹ(i)(t)‖ = O(hp), t ∈ [tn, tn+1], i = 1, 2, . . . ,

compare [152], [186]. Therefore, we can conclude that the principal parts,
i.e. the terms of order p+1 , of the local discretization error (3.2.29) and the
local error (3.2.30) are the same. This remark can be suitably exploited in
the construction of an estimation to the local discretization error (3.2.29), by
estimating the term hp+1ỹ(p+1)(tn). The derivation of such estimate, which
is necessary in order to implement the corresponding methods in a variable
stepsize environment, will be discussed in Section 6.2.

We have previously observed that, if P (tn + sh) is an approximation of
uniform order p to y(tn + sh), s ∈ [0, 1), the stage order is also equal to p.
Hence, the stage values P (tn−1 + cjh) and P (tn + cjh) in (3.2.1) satisfy the
relations

P (tn−1 + cjh) = y(tn−1 + cjh) − ηjh
p+1y(p+1)(tn) +O(hp+2), (3.2.32)

P (tn + cjh) = y(tn + cjh) − ηjh
p+1y(p+1)(tn) +O(hp+2), (3.2.33)

where
ηj = Cp(cj), j = 1, 2, . . . , m,

are the stage error constants, which we put together in the vector

η =
[

η1 η2 . . . ηm

]T
.

Let us focus our attention on the analysis of the local discretization error
(3.2.29), considering the terms up to order p+2. The following result arises.
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Theorem 3.2.10 Assume that the function f appearing in (1.1.1) is suffi-
ciently smooth and suppose that P (tn + sh) is an approximation of uniform
order p to the solution y(tn + sh), s ∈ [0, 1], of the problem (1.1.1). Then
the local truncation error (3.2.29) of the method (3.2.1) takes the form

ξ(tn + sh) = hp+1Cp(s)y
(p+1)(tn) + hp+2Cp+1(s)y

(p+2)(tn)

+ hp+2Gp+1(s)
∂f

∂y

(

y(tn)
)

y(p+1)(tn) +O(hp+3), (3.2.34)

where

Cν(s) =
sν+1

(ν + 1)!
− (−1)ν+1

(ν + 1)!
ϕ0(s)−

m
∑

j=1

(

χj(s)
(cj − 1)ν

ν!
+ψj(s)

cνj
ν!

)

, (3.2.35)

with ν = p, p+ 1, and

Gp+1(s) =
m
∑

j=1

ηj

(

χj(s) + ψj(s)
)

. (3.2.36)

Proof: Substituting the relations (3.2.32) and (3.2.33) into (3.2.29), we obtain

ξ(tn + sh) = y(tn + sh) − ϕ0(s)y(tn − h) − ϕ1(s)y(tn)

− h

m
∑

j=1

(

χj(s)f

(

y(tn−1 + cjh) − ηjh
p+1y(p+1)(tn)

)

+ ψj(s)f

(

y(tn + cjh) − ηjh
p+1y(p+1)(tn)

)

)

+O(hp+3),

and since f is sufficiently smooth, this formula can be rewritten as

ξ(tn + sh) = y(tn + sh) − ϕ0(s)y(tn − h) − ϕ1(s)y(tn)

− h

m
∑

j=1

(

χj(s)y
′(tn−1 + cjh) + ψj(s)y

′(tn + cjh)

)

+ hp+2

m
∑

j=1

(

ηj

(

χj(s) + ψj(s)
)∂f

∂y

(

y(tn)
)

y(p+1)(tn)

)

+O(hp+3).

Expanding y(tn + sh), y(tn − h), y′(tn−1 + cjh) and y′(tn + cjh) into Taylor
series around tn and collecting the terms with the same powers of h, we
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obtain

ξ(tn + sh) = (1 − ϕ0(s) − ϕ1(s))y(tn)

+

p+2
∑

k=1

(

sk

k!
− (−1)k

k!
ϕ0(s)

)

hky(k)(tn)

−
p+2
∑

k=1

m
∑

j=1

(

χj(s)
(cj − 1)k−1

(k − 1)!
+ ψj(s)

ck−1
j

(k − 1)!

)

hky(k)(tn)

+

m
∑

j=1

(

ηj

(

χj(s) + ψj(s)
)

hp+2∂f

∂y

(

y(tn)
)

y(p+1)(tn)

)

+O(hp+3).

Equating to zero terms of order O(hk), k = 0, 1, . . . , p, we obtain the con-
tinuous order conditions (3.2.15), while the surviving terms provide the ex-
pression (3.2.34), with Cν(s), ν = p, p+1, and Gp+1(s) are given by (3.2.35)
and (3.2.36) respectively. 2

The analysis of the high order terms appearing in the local discretization
error (3.2.29) is necessary in view of a variable order implementation of two-
step collocation/almost collocation methods. In particular, it would be useful
to narrow the contribution of high order terms in (3.2.34), for instance by
deriving methods such that the stage error constant Gp+1(1) appearing in
(3.2.34) is equal to zero. If this condition holds, the terms of order p+2 will
only depend on the derivatives of the solution and not on the form of the
equation. Moreover, this feature is of practical utility in the implementation
of such methods in a variable order environment, since it simplifies the order
changing strategy. The construction of two-step almost collocation methods
(3.2.1) with Gp+1(1) = 0 is discussed in Section 4.3.

3.2.6 Linear Stability Analysis

We conclude this chapter by analyzing the linear stability properties of two-
step collocation/almost collocation methods (3.2.1). In order to achieve this
purpose, we use the standard test equation

y′ = λy, t ≥ 0, (3.2.37)

where λ is a complex parameter with negative real part. Applying the method
(3.2.1) to the problem (3.2.37) and computing the resulting expression at the
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points s = ci, i = 1, 2, . . . , m, and s = 1 we obtain







































P (tn + cih) = ϕ0(ci)yn−1 + ϕ1(ci)yn

+ hλ
m
∑

j=1

(

χj(ci)P (tn−1 + cjh) + ψj(ci)P (tn + cjh)
)

,

yn+1 = ϕ0(1)yn−1 + ϕ1(1)yn

+ hλ
m
∑

j=1

(

χj(1)P (tn−1 + cjh) + ψj(1)P (tn + cjh)
)

,

(3.2.38)

i = 1, 2, . . . , m, n = 1, 2, . . . , N − 1. Introducing the notation z = hλ,

P (tn+ch) =







P (tn + c1h)
...

P (tn + cmh)






, ϕ0(c) =







ϕ0(c1)
...

ϕ0(cm)






, ϕ1(c) =







ϕ1(c1)
...

ϕ1(cm)






,

vT =
[

χ1(1) · · · χm(1)
]T
, wT =

[

ψ1(1) · · · ψm(1)
]T
,

and

A = [χj(ci)]
m
i,j=1 , B = [ψj(ci)]

m
i,j=1 ,

(compare also Section 3.2.1 for the definition of v, w, A, and B) the relation
(3.2.38) can be written in the vector form







P (tn + ch) = ϕ0(c)yn−1 + ϕ1(c)yn + z
(

AP (tn−1 + ch) +BP (tn + ch)
)

,

yn+1 = ϕ0(1) + ϕ1(1)yn + z
(

vTP (tn−1 + ch) + wTP (tn + ch)
)

,

(3.2.39)
n = 1, 2, . . . , N − 1. Hence, the stage values satisfy the relation

P (tn + ch) =
(

I − zB
)−1
(

ϕ0(c)yn−1 +ϕ1(c)yn + zAP (tn−1 + ch)
)

, (3.2.40)

which, replaced in the expression for yn+1 appearing in (3.2.39), leads to

yn+1 =
(

ϕ0(1) + zwT (I − zB)−1ϕ0(c)
)

yn−1

+
(

ϕ1(1) + zwT (I − zB)−1ϕ1(c)
)

yn

+ z
(

vT + zwT (I − zB)−1A
)

P (tn−1 + ch).

(3.2.41)



3.2. TWO-STEP COLLOCATION AND ALMOST COLLOCATION
METHODS 71

The relations (3.2.40) and (3.2.41) are equivalent to the recurrence relation





yn+1

yn

P (tn + ch)



 = M(z)





yn

yn−1

P (tn−1 + ch)



 , (3.2.42)

where

M(z) =





M11(z) M12(z) M13(z)
1 0 0

Qϕ1(c) Qϕ0(c) zQA



 ∈ C
(m+2)×(m+2), (3.2.43)

with
M11(z) = ϕ1(1) + zwTQϕ1(c),
M12(z) = ϕ0(1) + zwTQϕ0(c),
M13(z) = z(vT + zwTQA),

and
Q = (I − zB)−1 ∈ C

m×m.

The matrix M(z) is the stability matrix of the method (3.2.1) and its char-
acteristic polynomial

p(ω, z) = det
(

ωI −M(z)
)

. (3.2.44)

is the stability function of the method (3.2.1).
We observe that the expression (3.2.43) for the stability matrix of a two-

step collocation/almost collocation method is coherent with the general form
of the stability matrix (2.2.6) of a TSRK method (2.2.1): this is not surpris-
ing, in force of the equivalence result reported in Theorem 3.2.1, where the
link between two-step collocation methods and TSRK methods has been
clarified, and according to Theorem 3.2.8 for the case of two-step almost
collocation methods.

The construction of A-stable and L-stable two-step almost collocation
methods (3.2.1) is object of the following chapter, where many examples of
such methods will also be provided.





Chapter 4

Families of two-step modified
collocation methods

We focus our attention on the construction of families of highly stable
two-step collocation/almost collocation methods (3.2.1) having some desired
properties. These classes of methods have been introduced and analyzed in
the papers [92, 94, 95, 98]. The chapter is organized as follows: Section 4.1 is
devoted to the construction of two-step collocation/almost collocation meth-
ods (3.2.1) of order from m + 1 up to 2m + 1, aiming for the derivation of
A-stable and L-stable formulae within the class (3.2.1); Section 4.2 contains
an extensive analysis of highly stable two-step continuous formulae of uniform
order of convergence p = m, having up m = 4 stages; in Section 4.3 we dis-
cuss the construction of two-step almost collocation methods with narrowed
contribution of the high order terms in the local discretization error, pro-
viding the analysis and practical construction of highly stable formulae with
up to m = 4 stages; Section 4.4 concerns with the construction and analysis
of two-step almost collocation methods equivalent to TSRK methods with
structured coefficient matrices.

4.1 Practical construction of two-step collo-

cation and almost collocation methods

This section is devoted to the construction of two-step collocation and almost
collocation methods (3.2.1), with special attention to the derivation of highly

73
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stable formulae. In particular, we present an extensive analysis of methods
with one and two stages of order m+1, ..., 2m+1. The tools we are going to
use in this section in order to carry out our investigation have been provided
in Chapter 3.

4.1.1 Analysis of methods with m = 1

We first concentrate on methods (3.2.1) having the maximum attainable uni-
form order, i.e. p = 2m + 1 = 3: as a consequence, according to Theorem
3.2.4, the resulting two-step collocation methods satisfy all the interpolation
conditions (3.2.3) and the collocation ones (3.2.4). Solving the order condi-
tions (3.2.15) corresponding to m = 1 and p = 3, we obtain a one-parameter
family of two-step collocation methods (3.2.1) methods depending on the
abscissa c. The coefficients of these methods are

ϕ0(s) =
s(6c(c− 1) + 3(1 − 2c)s+ 2s2)

1 − 6c2
,

ϕ1(s) = −(1 + s)(6c2 − 1 + (1 − 6c)s + 2s2)

1 − 6c2
,

χ(s) = −s(1 + s)(2c+ 3c2 − (1 + 2c)s)

1 − 6c2
,

ψ(s) =
s(1 + s)(1 − 4c+ 3c2 + (1 − 2c)s)

1 − 6c2
,

and the error constant C3(1) is given by

C3(1) =
1 − 3c− 3c2 + 12c3 − 6c4

6(1 − 6c2)
,

with c 6= ±
√

6/6. To investigate stability properties of the derived methods,
it is more convenient to work with the polynomial obtained by multiplying
the stability function (3.2.44) by its denominator. The resulting polynomial,
which will be denoted by the same symbol p(ω, z), for this family of methods
takes the form

p(ω, z) = p3(z)ω
3 + p2(z)ω

2 + p1(z)ω + p0(z), (4.1.1)
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where the polynomials pi(z), i = 0, 1, 2, 3, assume the form

p0(z) = −(c− 1)2c2z,

p1(z) = 5 − 12c + 6c2 + (2 − 5c + 6c2 − 6c3 + 3c4)z,

p2(z) = −4 + 12c − 12c2 + (4 − 8c − 3c2 + 6c3 − 3c4)z,

p3(z) = −1 + 6c2 + (1 − 2c − 2c2 + c3)cz.

We will next investigate if there exist A-stable methods in this class of two-
step collocation formulae of order p = 3. Let us restrict the stability function
(4.1.1) to the axes of the pure imaginary z, by considering the function

p̃(ω, y) := p(ω, iy),

and compute the constant polynomial p̃0(y) with respect to ω, using the
recursive procedure described in Section 2.1.3. This polynomial takes the
form

p̃0(y) = α(c)y4 + β(c)y6 + γ(c)y8,

where α(c), β(c) and γ(c) are polynomials with respect to the abscissa c. It
follows from the Schur criterion in Theorem 2.1.4 that the condition

p̃0(y) ≥ 0, for all y ≥ 0,

is the necessary condition for A-stability. However, it can be verified that the
polynomials α(c), β(c) and γ(c) are not simultaneously greater or equal to
zero for any c. This proves that A-stable methods do not exist in this class
of methods of order p = 3. In fact the regions of stability of such methods
are all bounded. This is illustrated in Fig.4.1 for m = 1 and p = 3, where
we have plotted, in the (c, z)-plane, the stability interval of the methods
corresponding to each value of c, considering c ≥ 1

2
in order to be −1 ≤ θ < 1

for zero-stability requirements.
Consider next the methods (3.2.1) of order p = 2m = 2, i.e. we relax one

order conditions, falling into the class of two-step almost collocation methods
(3.2.1) of order p = m+ r with r = m. We choose the polynomial ϕ0(s) of
degree less than or equal to two which satisfies the interpolation condition
ϕ0(0) = 0 and the collocation one ϕ′

0(c) = 0. This leads to the polynomial
ϕ0(s) of the form

ϕ0(s) = q0s

(

1 − 1

2c
s

)

, (4.1.2)
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Figure 4.1: Region of stability in the (c, z)-plane for the two-step methods
(3.2.1) with m = 1 and p = 3.

where q0 is a real parameter. The free parameter q0 can next be exploited
in order to enforce high stability. Solving the order conditions (3.2.15) cor-
responding to m = 1 and p = 2, where ϕ0(s) is given by (4.1.2), we obtain
a two-parameter family of methods depending on the parameter q0 and the
abscissa c. The coefficients of these formulae are given by

ϕ1(s) = 1 − q0s+
q0
2c
s2,

χ(s) =

(

c+
q0
2

+ cq0

)

s−
(

1

2
+
q0
2

+
q0
4c

)

s2,

ψ(s) =

(

1 − c+
q0
2
− q0c

)

s+

(

1

2
+
q0
2
− q0

4c

)

s2,

and the error constant C2(1) takes the form

C2(1) =
10c − 24c2 + 12c3 + q0 − 2q0c− 6q0c

2 + 12q0c
3

24c
.

The stability polynomial of this family of methods is

p(ω, z) = ω
(

p2(z)ω
2 + p1(z)ω + p0(z)

)

, (4.1.3)
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where the polynomials p0(z), p1(z) and p2(z) are now given by

p0(z) = 2q0 − 4q0c+ (2c− 4c2 + 2c3 + q0 − 2q0c− q0c
2 + 2q0c

3)z,

p1(z) = −4c− 2q0 + 4q0c− (6c− 8c2 + 4c3 − q0 + 2q0c− 2q0c
2 + 4q0c

3)z,

p2(z) = 4c − c2(4 − 2c + q0 − 2q0c)z.

-3 -2 -1 0 1

0.0

0.5

1.0

1.5

2.0

q0

c

Figure 4.2: Region of A-stability in the (q0, c)-plane for the two-step methods
(3.2.1) with m = 1 and p = 2.

We have performed a computer search based on the Schur criterion using
the polynomial p(ω, z) given by (4.1.3) with p0(z), p1(z) and p2(z) defined
above. This search was performed in the parameter space (q0, c) and the
results are presented in Fig. 4.2 for −3 ≤ q0 ≤ 1 and 0 ≤ c ≤ 2, where the
shaded region corresponds to the A-stable formulae. Choosing, for example,
q0 = −1 and c = 3

4
we obtain the order 2 A-stable two-step almost collocation

method (3.2.1) with coefficients given by

ϕ0(s) =
(2s − 3)s

3
, ϕ1(s) =

3 + 3s − 2s2

3
,

χ(s) =
(2s − 3)s

6
, ψ(s) =

(2s+ 3)s

6
.

For this method the stability polynomial p(w, z) is given by

p(w, z) = w

(

(

3 − 27

16
z
)

w2 −
(

4 +
5

8
z
)

w +
(

1 +
5

16
z
)

)

,
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and the error constant is C2(1) = − 17
144

.
We will look next for L-stable methods, i.e. methods for which all the

roots of the polynomial p(ω, z)/p2(z), where p(ω, z) is given by (4.1.3), are
equal to zero as z → −∞. Such methods correspond to the solutions of the
nonlinear system of equations

lim
z−>−∞

p0(z)

p2(z)
= 0, lim

z−>−∞

p1(z)

p2(z)
= 0.

It can be verified that this system takes the form

{

(c− 1)(2c − 2c2 + q0 − q0c− 2q0c
2) = 0,

6c− 8c2 + 4c3 − q0 + 2q0c− 2q0c
2 + 4q0c

3 = 0,

and has solutions

q0 = −2

3
, c = 1 and q0 = −4

9
, c = 2.

The coefficients of the method corresponding to the first set of the above
parameters are

ϕ0(s) =
(s− 2)s

3
, ϕ1(s) =

3 + 2s − s2

3
, χ(s) = 0, ψ(s) =

(s+ 1)s

3
,

while the coefficients of the method related to the second set of the parame-
ters q0 and c are

ϕ0(s) =
s(s− 4)

9
, ϕ1(s) =

9 + 4s− s2

9
, χ(s) =

2(s− 4)s

9
, ψ(s) =

(s− 1)s

9
.

It can be verified that for s = 1 both of the above methods reduce to backward
differentiation method of order p = 2, compare [42],[147].

4.1.2 Analysis of methods with m = 2

We now consider two-step collocation methods (3.2.1) of maximum uniform
order p = 2m + 1 = 5. Solving the system of order conditions (3.2.15)
corresponding to m = 2 and p = 5 we obtain a family of methods depending
on the abscissae c1 and c2. We have plotted in Fig. 4.3 the contour plots
of error constant C5(1) of these formulas for 0 ≤ c1 ≤ 1 and 0 ≤ c2 ≤ 1.
Choosing, for example, c1 = 1

2
and c2 = 1 we obtain the two-step formula of
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Figure 4.3: Contour plots of error constant C5(1) for 0 ≤ c1 ≤ 1 and 0 ≤
c2 ≤ 1.

uniform order p = 5 with coefficients given by

ϕ0(s) = −(15 − 10s− 30s2 + 24s3)s2

29
,

ϕ1(s) =
(1 + s)(29 − 29s + 44s2 − 54s3 + 24s4)

29
,

χ1(s) = −s
2(1 + s)(89 − 187s + 96s2)

87
,

χ2(s) =
s(1 + s)(29 − 31s − 16s2 + 20s3)

29
,

ψ1(s) =
s2(1 + s)(19 + 7s− 16s2)

29
,

ψ2(s) = −s
2(1 + s)(7 − 2s − 12s2)

87
.
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The error constant of this method is C5(1) = 113
83520

. The stability polynomial
of two parameter family of methods takes the form

p(ω, z) = p4(z)ω
4 + p3(z)ω

3 + p2(z)ω
2 + p1(z)ω + p0(z),

where pi(z), i = 0, 1, 2, 3, 4 are quadratic polynomials with respect to z.
These polynomials depend also on c1 and c2. We have performed an extensive
computer search based on Schur criterion in the two dimensional space (c1, c2)
looking for methods with good stability properties but so far we were not
able to find methods which are A-stable, because the regions of stability of
such methods are all bounded, as it is illustrated in Fig. 4.4 for m = 2 and
p = 5, where we have plotted, in the (c1, z)-plane, the stability interval of
the methods corresponding to each value of c1, considering c2 = 1 and taking
c1 >

−5+
√

65
10

, in order to satisfy the zero-stability requirement. We suspect
that A-stable methods do not exist in the class of formulas with m = 2 and
p = 5, also with respect to other values of c2.

-15 -10 -5 0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

z

c
1

Figure 4.4: Region of stability in the (c1, z)-plane for the two-step methods
(3.2.1) with m = 2, p = 5 and c2 = 1.

We consider next the methods of order p = 2m = 4. We choose the
polynomial ϕ0(s) which satisfies the interpolation condition ϕ0(0) = 0 and
collocation conditions ϕ′

0(ci) = 0, i = 1, 2. This leads to the polynomial of
the form

ϕ0(s) = s(q0 + q1s+ q2s
2 + q3s

3),
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where q2 and q3 are given by

q2 = −7q0 + 6q1
3

, q3 =
3q0 + 2q1

2
.

The stability polynomial of this parameter family of methods of order p = 4
takes the form

p(ω, z) = ω(p3(z)ω
3 + p2(z)ω

2 + p1(z)ω + p0(z)),

where pi(z), i = 0, 1, 2, 3 are quadratic polynomials with respect to z. These
polynomials depend also on the parameters q0, q1, c1, and c2. We have
performed an extensive computer search based on the Schur criterion in the
four dimensional space (q0, q1, c1, c2) but so far we were not able to find
methods which are A-stable. We suspect again that such methods do not
exist in this class of formulas with m = 2 and p = 4.

Finally, we consider the two-step almost collocation methods of order
p = m + 1 = 3. We choose the polynomials ϕ0(s) and χ1(s) of degree less
than or equal to three which satisfy conditions (3.2.25) and (3.2.26), i.e.,

ϕ0(0) = 0, χ1(0) = 0, ϕ′
0(ci) = 0, χ′

1(ci) = 0, i = 1, 2.

These polynomials take the form

ϕ0(s) = s(q0 + q1s+ q2s
2), χ1(s) = s(r0 + r1s+ r2s

2),

where

q1 = −(c1 + c2)q0
2c1c2

, q2 =
q0

3c1c2
,

and

r1 = −(c1 + c2)r0
2c1c2

, r2 =
r0

3c1c2
.

Solving the order conditions (3.2.15) corresponding to m = 2 and p = 3 we
obtain a four parameter family of methods (3.2.1) depending on q0, r0, c1
and c2. The stability polynomial of this family of methods is given by

p(ω, z) = ω2(p2(z)ω
2 + p1(z)ω + p0(z)),

where pi(z), i = 0, 1, 2, are polynomials of degree less than or equal to two
with respect to z. These polynomials depend also on q0, r0, c1 and c2.
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Figure 4.5: Region of A-stability in the (q0, r0)-plane for the two-step meth-
ods (3.2.1) with m = 2 and p = 3.

We have performed again an extensive computer search looking for methods
which are A-stable. We have found such methods only if both components
of the abscissa vector are outside of the interval [0, 1]. The results of this
search for c1 = 5

2
and c2 = 9

2
are presented in Fig. 4.5 for −0.4 ≤ q0 ≤ 0.1

and 0 ≤ r0 ≤ 1, where the shaded region corresponds to A-stable methods.

The coefficients of the resulting methods are given by

ϕ0(s) =
q0s(135 − 42s+ 4s2)

135
, ϕ1(s) =

135 − 135q0s+ 42q0s
2 − 4q0s

3

135
,

χ1(s) =
r0s(135 − 42s + 4s2)

135
, χ2(s) = −(135 + 181q0 − 36r0)(135 − 42s + 4s2)s

1620
,

ψ1(s) =

(

63

8
+

241

24
q0−3r0

)

s−
(

2+
1687

540
q0−

14

15
r0

)

s2+

(

1

6
+

241

810
q0−

4

45
r0

)

s3.

ψ2(s) =

(

35

8
+

145

24
q0−r0

)

s−
(

3

2
+

203

108
q0−

14

45
r0

)

s2+

(

1

6
+

29

162
q0−

4

135
r0

)

s3.
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The error constant C3(1) is

C3(1) =
4494825 + 6019723q0 − 1229184r0

77760
.

We have also found methods in this class which are L-stable. Such methods
correspond to solutions of the nonlinear system

lim
z→−∞

p0(z)

p2(z)
= 0, lim

z→−∞

p1(z)

p2(z)
= 0.

One such solution is

q0 ≈ −21225899

77647080
≈ −0.273364, r0 ≈

113887980

163068619
≈ 0.698405,

and the resulting method is A-stable and L-stable.

4.2 Continuous two-step Runge–Kutta meth-

ods

It is the purpose of this section to introduce new classes of continuous TSRK
methods based on two-step almost collocation technique, of order p = m.
The extensive analysis carried out in the following pages regards methods of
the type (3.2.1) with m = 1, 2, 3, 4.

4.2.1 Construction of methods

The methods we aim to derive can be recognized as a class of two-step
almost collocation methods, in the sense that, in order to advance from the
point tn to the point tn+1, the continuous approximant (3.2.1) is derived
by imposing some appropriate interpolation and collocation conditions, only
with respect to the points tn and tn + cjh, i.e.

P (tn) = yn, (4.2.1)

P ′(tn + cjh) = f(P (tn + cjh)), j = 1, 2, . . . , m. (4.2.2)

These conditions imply that

ϕ0(0) = 0, ϕ1(0) = 1, χj(0) = 0, ψj(0) = 0, (4.2.3)

ϕ′0(ci) = 0, ϕ′1(ci) = 0, χ′j(ci) = 0, ψ′j(ci) = δij, (4.2.4)
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for i, j= 1, 2, . . . , m, where δij is the usual Kronecker delta. We propose
two different classes of continuous methods of this form. First, we impose
the interpolation condition (4.2.1) only, obtaining a family of interpolation
based TSRK methods. Then we follow the more general approach and impose
the whole set of conditions (4.2.1), (4.2.2), achieving a class of interpolation-
collocation based TSRK methods. The strategy we follow in the construction
of these methods can be summarized as follows.

First of all, we fix the polynomials ϕ0(s), χj(s), j=1, 2, . . . , m. Inter-
polation based TSRK methods with m = 1 (which can be exploited in a
complete systematic way) are derived imposing

ϕ0(s) = p0s, χ(s) = q0s, (4.2.5)

with p0, q0 ∈ R, while for interpolation-collocation TSRK methods with
m = 1, we infer from (4.2.4) that

ϕ′
0(s) = χ′

j(s) = (s− c),

therefore, if π1(s) is the primitive function of ϕ′
0(s) and χ′(s) such that

ϕ0(0) = χ(0) = 0, we impose

ϕ0(s) = α0π1(s), χ(s) = β0π1(s), (4.2.6)

with α0, β0 ∈ R. In the case m ≥ 2, in order to carry out a more general
analysis, we also ask for methods such that θ = ϕ0(1) = 0 and uj = ϕ0(cj) =
0, j = 1, 2, . . . , m. This choice is desirable in order to simplify the systems of
order conditions, without loss in terms of stability and order, as Jackiewicz
and Tracogna themselves stated in [140], where they first introduced TSRK
methods. As a consequence of these choices, new conditions on ϕ0(s) arise,
i.e.

ϕ0(1) = 0, ϕ0(ci) = 0, i = 1, 2, . . . , m, (4.2.7)

which can be fulfilled in the following ways:

• for interpolation based methods, we choose c1 = 0, cm = 1, in order to
obtain a family of FSAL methods with

ϕ0(s) = s(s− c2) · · · (s− cm−1)(s− 1), χj(s) = qjs, j = 1, 2, . . . , m,
(4.2.8)

with qj ∈ R, j = 1, 2, . . . , m. The acronym FSAL stands for first same
as last and identifies multistage methods such that the first stage of
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the next step is the same as the last stage of the current step. It is well
known that FSAL methods are suitable for efficient implementation
(see [42, 147]);

• for interpolation-collocation based methods with m ≥ 2, we impose

ϕ0(s) = 0, χj(s) = βjπm(s), j = 1, 2, . . . , m, (4.2.9)

with βj ∈ R, j = 1, 2, . . . , m, where πm(s) is the primitive function of
χ′

j(s) such that χj(0) = 0.

As we aim for methods of order p = m, we impose the corresponding set
of order conditions (3.2.15), and the unknown basis functions ϕ1(s), ψj(s),
j=1, 2, . . . , m, can then be computed as solutions of the system (3.2.15).

We next compute the stability polynomial (3.2.44) of the obtained meth-
ods, in order to investigate the stability properties of the developed methods.
It is possible to prove that, in correspondence of the above stated choices of
the basis functions, the stability polynomial is of the type

p(ω, z) = ωm(p2(z)ω
2 + p1(z)ω + p0(z)), (4.2.10)

and, therefore, the stability properties of the corresponding methods depend
on the quadratic function (compare [72])

p̃(ω, z) = p2(z)ω
2 + p1(z)ω + p0(z). (4.2.11)

Such an expression of the stability polynomial is suitable and desirable for
many reasons, as it will be extensively described in Chapter 5. Intuitively, it
is reasonable to think that we can succeed in finding A-stable methods imple-
menting the Schür criterion in a symbolic environment to exactly determine
its coefficients, only if the stability polynomial has low degree (e.g. at most
4). For TSRK methods, as it will be discussed in Chapter 5, it is natural to
investigate the conditions to impose in order to force the stability properties
to depend on a polynomial of degree 2, as discussed in [72], or on a linear
polynomial. For this reason, we also discuss the conditions to accomplish
in order to achieve the so-called Runge–Kutta stability (i.e. the stability
matrix has one nonzero eigenvalues and, therefore, the stability properties of
the corresponding methods depend on a linear polynomial).

Once we have obtained A-stability, we look for L-stable methods, by
requiring that the parameters satisfy the nonlinear system of equations

lim
z→−∞

p0(z)

p2(z)
= 0, lim

z→−∞

p1(z)

p2(z)
= 0. (4.2.12)
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In the following sections, we discuss the details of the construction of highly
stable m-stage methods, with m = 1, 2, 3, 4.

4.2.2 Analysis of methods with m = 1

In this section we focus our attention on one-stage continuous methods of
the form (3.2.1), having order p = m = 1. We first assume that the poly-
nomial P (tn + sh) in (3.2.1) satisfies the interpolation condition (4.2.1) only.
Correspondingly, according to the assumption (4.2.5), we fix

ϕ0(s) = p0s, χ(s) = q0s, (4.2.13)

and derive ϕ1(s) and ψ(s) imposing the order conditions (3.2.15), obtaining

ϕ1(s) = 1 − p0s, ψ(s) = (1 + p0 − q0)s. (4.2.14)

Therefore, the basis functions depend on the values of the parameters p0 and
q0, which must be determined in order to achieve high stability properties.
We know from the general theory of TSRK (see [140]), that a TSRK method
is zero–stable if and only if −1 < θ ≤ 1: in our case, as θ = ϕ0(1) = p0, it
must be

−1 < p0 ≤ 1. (4.2.15)

We next compute the stability function (3.2.44) of the method: in this case
we have

p(ω, z) = p0(z) + p1(z)ω + p2(z)ω
2 (4.2.16)

with

p0(z) = −p0 − (1 − c)q0z, (4.2.17)

p1(z) = −1 + p0 + (−1 + c− p0 + cp0 + q0 − 2cq0)z, (4.2.18)

p2(z) = 1 − c(1 + p0 + q0)z. (4.2.19)

In order to determine the values of the parameters p0, q0 and c achieving
A-stability, we apply the Schur criterion to the stability function (4.2.16),
obtaining the following result.

Theorem 4.2.1 One-stage interpolation based continuous methods (3.2.1),
with p = m = 1 and coefficients (4.2.13), (4.2.14) are A-stable if and only if



4.2. CONTINUOUS TWO-STEP RUNGE–KUTTA METHODS 87

the parameters p0, q0 and c satisfy the following system of inequalities























−1 < p0 < 1,

p0 + 2c(1 + p0) > 1 + 2q0,

(−1 + 2c)(1 + p0 − 2q0) > 0,

(c+ cp0 − q0)
(

c(1 + p0 − 2q0) + q0
)

> 0.

(4.2.20)

Proof: In order to achieve A-stability, the roots of the polynomial (4.2.16)
must lie inside the unit circle for any z ∈ C such that Re(z) < 0. By the
maximum principle, this is the case if

1. the polynomial (4.2.16) has no poles in the negative half plane;

2. the roots of p(ω, iy) are inside the unit circle ∀y ∈ R.

Condition 1 is trivially satisfied. We analyse condition 2 by applying the
Schur criterion to the polynomial p(ω, iy) that we will next denote as p(ω, y),
therefore we first compute the polynomial

p̂(ω, y) = p̄2(z)ω
2 + p̄1(z)ω + p̄0(z)

where p̄2(z), p̄1(z) and p̄0(z) are the complex conjugate polynomials associ-
ated to p2(z), p1(z) and p0(z) respectively. We next compute the polynomial

α(ω, y) =
1

ω
(p̂(0, y)p̃(ω, y) − p̃(0, y)p̂(0, y))

of degree 1. According to the Schur criterion, p(ω, y) is a Schur polynomial
if and only if

|p̂(0, y)| > |p(0, y)| (4.2.21)

and α(ω, y) is a Schur polynomial. Condition (4.2.21) is satisfied if and only
if

1 − p2
0 > 0, (c+ cp0 − q0)

(

c(1 + p0 − 2q0) + q0
)

> 0. (4.2.22)

In order to investigate on the polynomial α(ω, y), we apply the same proce-
dure, i.e. we derive the corresponding polynomials α̂(ω, y) and

β(ω, y) =
1

ω
(α̂(0, y)α̃(ω, y)− α̃(0, y)α̂(0, y)),
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and the conditions imposed by the Schur criterion are satisfied for

−1 + p0 + 2c(1 + p0) − 2q0 > 0, (−1 + 2c)(1 + p0 − 2q0) > 0. (4.2.23)

Conditions (4.2.22) and (4.2.23) together give the system of inequalities
(4.2.20). 2

Fig. 4.1 shows some regions of A-stability in the parameter space (p0, q0),
in correspondence of some values of the collocation abscissa c.
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Figure 4.1: Regions of A-stability in the (p0, q0)-plane for two-step methods
(3.2.1) with p = m = 1, for some values of the abscissa c.

We next look for L-stable methods: in this case, conditions (4.2.12) take
the form

q0(1 − c) = 0, 1 − c+ p0(1 − c) − q0(1 − 2c) = 0,

whose solution is (p0, q0) = (−1, 1), which is not acceptable because it violates
the zero-stability requirement (4.2.15). However, if we set c = 1 and q0 = 0,
the above system is automatically satisfied, for any p0 ∈ (−1, 1], i.e. the
corresponding methods are L-stable. In other words, if c = 1 and the basis
polynomial χ(s) is identically zero, the resulting methods are all L-stable.

We now assume that the polynomial P (tn + sh) in (3.2.1) satisfies the
whole set of conditions (4.2.3), (4.2.4), i.e.

ϕ0(0) = 0, ϕ1(0) = 1, χ(0) = 0, ψ(0) = 0,
ϕ′

0(c) = 0, ϕ′
1(c) = 0, χ(c) = 0, ψ(c) = 1.
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Correspondingly, we assume

ϕ0(s) = απ1(s), χ(s) = βπ1(s), (4.2.24)

and compute ϕ1(s) and ψ(s) from the order conditions (3.2.15), obtaining

ϕ1(s) = 1 + αcs2 − 1

2
αs3, ψ(s) = s− (α− β)cs2 +

1

2
(α − β)s3. (4.2.25)

As θ = ϕ0(1) = α(1
2
− c), zero-stability is accomplished if and only if

−1 < α(
1

2
− c) ≤ 1. (4.2.26)

We now investigate on the stability properties of the methods in analysis:
following the lines drawn in Theorem 4.2.1, we obtain the following result.

Theorem 4.2.2 One-stage interpolation-collocation based continuous meth-
ods (3.2.1), with p = m = 1 and coefficients (4.2.24)-(4.2.25) are A-stable
if and only if the parameters α, β and c satisfy the following system of in-
equalities























α2(1 − 2c)2 < 4,

(−β + 2c+ αc + 2βc− 2αc2)(β + 2c− αc − 2βc+ 2αc2 − 2αc3 + 2βc3) > 0,

(−2 − α+ 2αc)(2 + α − 2β − 4c+ 4βc− 4αc2 + 4αc3 − 4βc3) > 0,

(−1 + 2c)(α − 2(1 + β) + 2αc)(2 + α(−1 + 2c)) < 0.

We have drawn some regions of A-stability in the parameter space (α, β),
which result from a computer search based on the Schur criterion: Fig. 4.2
shows the results we have obtained for particular values of c.

We finally compute the values of α and β achieving L-stability, solving
the system (4.2.12): it can be easily proved that those values are

α = 2
−1 + c+ c2

1 − 2c− c2 + 2c3
, β =

2c

−1 + c+ 2c2
.



90
CHAPTER 4. FAMILIES OF TWO-STEP MODIFIED COLLOCATION

METHODS

c = 3
4

c = 1

-4 -2 0 2 4

-4

-2

0

2

4

6

8

10

Α

Β

-2 -1 0 1 2

-2

0

2

4

6

Α

Β

Figure 4.2: Regions of A-stability in the (α, β)-plane for interpolation-
collocation based methods (3.2.1) with p = m = 1, for different values of
the abscissa c.

4.2.3 Analysis of methods with m = 2

We now consider two-step continuous methods (3.2.1) with p = m = 2 and
general abscissa vector, satisfying the interpolation condition (4.2.1). We
assume

ϕ0(s) = 0, χ1(s) = q1s, χ2(s) = q2s, (4.2.27)

solve the system of order conditions (3.2.15) with respect to ϕ1(s), ψ1(s),
ψ2(s), and compute the corresponding stability function (4.2.11), where p0(z),
p1(z), p2(z) are polynomials of degree 2 with respect to z. In this case, the
system (4.2.12) can be solved by setting c2 = 1 and q2 = −q1. We finally
apply the Schur criterion in order to localize the whole set of possible values
of c1 and q1 such that the corresponding methods are L-stable. The results
are shown in Fig. 4.3.

We next consider interpolation-collocation methods of type (3.2.1) with
p = m = 2. According to assumption (4.2.9), we set

ϕ0(s) = 0, χ1(s) = β1π2(s), χ2(s) = β2π2(s),

and derive ϕ1(s), ψ1(s) and ψ2(s) from the set of order conditions (3.2.15).
We compute the stability function (4.2.11) where p0(z), p1(z) and p2(z) are
polynomials of degree 2 with respect to z, and look for values of the parame-
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Figure 4.3: Region of L-stability in the (c1, q1)-plane for two-step methods
(3.2.1) with p = m = 2 and c2 = 1.

ters β1 and β2 achieving L-stability, by solving the system (4.2.12), obtaining

β1 =
3

γ
(−1 + c1)(−1 + c2)

2, β2 =
3

γ
(−1 + 2c1 − c21 + c2 − 2c1c2 + c21c2),

where

γ = 4− 8c1 +5c21 − c31 − 8c2 +14c1c2 − 7c21c2 +2c31c2 +5c22 − 7c1c
2
2 − c32 +2c1c

3
2.

Finally, we draw the L–stability region in the parameter space (c1, c2), per-
forming a computer search based on the Schur criterion. Fig. 4.4 shows the
result we obtained.

4.2.4 Construction of methods with m = 3

We now consider three stage continuous methods (3.2.1) with p = m = 3. Let
us first derive FSAL interpolation based methods of order 3, corresponding
to the abscissa vector (c1, c2, c3) = (0, c2, 1). Following the assumptions in
(4.2.8), we set

ϕ0(s) = s(s− c2)(s− 1), χ1(s) = q1s, χ2(s) = q2s, χ3(s) = q3s,
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Figure 4.4: Region of L-stability in the (c1, c2)-plane for two-step methods
(3.2.1) with p = m = 2.

and derive ϕ1(s), ψ1(s), ψ2(s), ψ3(s), imposing the set of conditions (3.2.15).
We omit for brevity the expression of the resulting basis polynomials, which
can be easily recognized. We then derive the stability function (4.2.11), where
p0(z), p1(z), p2(z) are polynomials of degree 3 with respect to z, and next
look for the values of the parameters achieving L–stability. In this case, the
solutions of the system (4.2.12) are

q1 = −1 − c22
18c2

, q2 =
1 − 2c2
18c2

.

By using the Schur criterion, it can be recognized that (4.2.11) is a Schur
polynomial if and only if c2 >

1
2
. We notice that q3 has no influence in the

construction, so we set it equal to 0.
We next develop interpolation-collocation based methods, assuming

ϕ0(s) = 0, χ1(s) = β1π3(s), χ2(s) = β2π3(s), χ3(s) = β3π3(s).

We impose the set of order conditions (3.2.15), derive ψ1(s), ψ2(s), ψ3(s),
and compute β1 and β2 as solutions of the system (4.2.12), in order to gain
L-stability. Finally, using the Schur criterion, we draw some regions of L–
stability in the parameters space (c1, c2), for different values of β3 and c3 = 1,
as shown in Fig. 4.5.
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Figure 4.5: Regions of L-stability in the (c1, c2)-plane for two-step methods
(3.2.1) with p = m = 3, c3 = 1 and different values of the parameter β3.

4.2.5 Construction of methods with m = 4

We now focus our attention on the development of two-step continuous meth-
ods (3.2.1) with p = m = 4, first considering interpolation based methods.
According to assumptions (4.2.8), we fix

ϕ0(s) = s(s− c2)(s− c3)(s− 1),
χ1(s) = sq1, χ2(s) = sq2, χ3(s) = sq3, χ4(s) = sq4,

and derive ϕ1(s), ψ1(s), ψ2(s), ψ3(s), ψ4(s), imposing the set of order con-
ditions (3.2.15) for p = 4. We omit for brevity the expression of the resulting
basis polynomials, which can be easily recognized also in this case. We next
derive the stability polynomial (4.2.11), where p0(z), p1(z), p2(z) are polyno-
mials of degree 4 with respect to z, and look for the values of the parameters
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achieving L–stability, solving the system (4.2.12), with respect to q1 and q2.
Fig. 4.6 shows some regions of L-stability in the parameter space (c3, q3), for
some values of c2, drawn using the Schur criterion. We notice that q4 does
not play any rule in the derivation of the methods, so it can be put equal to
zero.
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Figure 4.6: Regions of L-stability in the (c3, q3)-plane for two-step methods
(3.2.1), for specific values of the abscissa c2.

We now consider continuous four stage methods (3.2.1), obtained by im-
posing interpolation and collocation conditions (4.2.1), (4.2.2), and asking
for θ = 0, uj = 0, j = 1, 2, . . . , m. In line with assumptions (4.2.9), we
impose ϕ0(s) = 0 and

χ1(s) = β1π4(s), χ2(s) = β2π4(s),
χ3(s) = β3π4(s), χ4(s) = β3π4(s),
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and, from the set of order conditions (3.2.15), we derive ψ1(s), ψ2(s), ψ3(s)
and ψ4(s). We compute the stability function (4.2.11) and determine β2 and
β3 as solutions of (4.2.12), in order to gain L-stability. Finally, using the
Schur criterion, we draw some regions of L-stability in the parameters space
(c2, c3), for different values of β1, as shown in Fig. 4.7.
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Figure 4.7: Regions of L-stability in the (c2, c3)-plane for two-step methods
(3.2.1) with p = m = 4, for specific values of the parameter β1.

4.2.6 Runge–Kutta stability

In this section we investigate the existence of continuous TSRK methods hav-
ing the so-called Runge-Kutta stability, i.e. methods such that the stability
matrix has one nonzero eigenvalue only, which is in general a very compli-
cate requirement. We restrict our attention to one-stage continuous methods
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derived in Section 4.2.2. We infer the following result.

Theorem 4.2.3 For c ∈ [0, 1), the only interpolation based TSRK meth-
ods with m = 1 (compare Section 4.2.2) having Runge–Kutta stability are
Runge–Kutta methods themselves. In the special case c = 1, p0 = 0, all the
corresponding methods posses Runge–Kutta stability, for any q0 ∈ R.

Proof: It is sufficient to annihilate p0(z) in (4.2.17), in order to obtain a
stability polynomial of the form

p(w, z) = w2
(

p2(z)w + p1(z)
)

, (4.2.28)

having only one nonzero root. The conditions to impose in order to have
p0(z) identically equal to 0 are

p0 = 0, (1 − c)q0 = 0.

The solution of this system is p0 = q0 = 0 and, correspondingly, the basis
polynomials take the form

ϕ0(s) = 0, ϕ1(s) = 1, χ(s) = 0, ψ(s) = s,

and the continuous approximant (3.2.1) is

P (tn + sh) = yn + hsf
(

P (tn + ch)
)

. (4.2.29)

The last part of the thesis is achieved simply setting c = 1 and p0 = 0 in
(4.2.17). 2

With similar considerations, we can state an analogous result for interpolation-
collocation TSRK methods with m = 1.

Theorem 4.2.4 For c ∈ [0, 1] and c 6= 1
2
, the only interpolation-collocation

methods with m = 1 (compare Section 4.2.2) having Runge-Kutta stability are
Runge-Kutta methods themselves. For c = 1

2
and α = β, the corresponding

TSRK methods have Runge–Kutta stability.

4.2.7 Examples of methods

In this section we derive examples of A-stable and L-stable continuous TSRK
methods (3.2.1) of order p = m = 1, 2, 3, 4, using the results derived in
the previous sections. It is always assumed that θ = 0 and uj = 0, j =
1, 2, . . . , m.
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4.2.8 Examples of interpolation based methods

Example 1. Assuming p = m = 1, we set c = 3
4

and obtain an A-stable
method of type (3.2.1), with

ϕ0(s) = 0, ϕ1(s) = 1, χ(s) = −s, ψ(s) = 2s.

We notice that the L-stable method with c = 1, q0 = 0 and p0 = 0 is
equivalent to the backward Euler method.

Example 2. Referring to the results derived in Section 4.2.3, the basis
functions of the L-stable method of order p = m = 2 corresponding to the
abscissa vector c = [ 3

4
, 1]T are

ϕ0(s) = 0, ϕ1(s) = 1, χ1(s) = s, χ2(s) = −s,
ψ1(s) = s(9 − 2s), ψ2(s) = 2s(s− 1).

We also show an example of A-stable FSAL method, setting q0 = 1, q1 = 1
and q2 = 0, i.e.

ϕ0(s) = s(s− 1), ϕ1(s) = 1 + s− s2, χ1(s) = s, χ2(s) = 0,
ψ1(s) = 1

2
s(−5 + 2s), ψ2(s) = 9

2
s.

Example 3. Following the results contained in Section 4.2.4, we show the
basis functions of a FSAL L-stable method with p = q = m = 3, correspond-
ing to the abscissa vector c = [0, 3

4
, 1]T :

ϕ0(s) = s
4
(s− 1 + s)(4s − 3), ϕ1(s) = 1 − 3

4
s+ 7

4
s2 − s3

χ1(s) = − 7s
216
, χ2(s) = − s

27
, χ3(s) = 0

ψ1(s) = s
(

685
216

− 413
72
s+ 55

18
s2
)

, ψ2(s) = −s
(

101
27

− 94
9
s+ 56

9
s2
)

ψ3(s) = s
(

43
18

− 155
24
s+ 25

6
s2
)

.

Example 4. We next derive a FSAL L-stable method (3.2.1) with p = m =
4, corresponding to abscissa the vector c = [0, 1

2
, 3

4
, 1]T . The basis functions

of this method are

ϕ0(s) = s
8
(s− 1)(2s − 1)(4s− 3), ϕ1(s) = 1 + 3

8
s− 13

8
s2 + 9

4
s3 − s4,

χ1(s) = −149
264
s, χ2(s) = 233

132
s, χ3(s) = s, χ4(s) = 0,

ψ1(s) = −s
(

2435
528

− 117
16
s+ 89

8
s2 − 31

6
s3
)

ψ2(s) = s
(

235
33

− 305
12
s+ 205

6
s2 − 46

3
s3
)

ψ3(s) = −s
(

169
33

− 88
3
s+ 112

3
s2 − 16s3

)

ψ4(s) = s
(

547
528

− 461
48
s+ 289

24
s2 − 29

6
s3
)

.



98
CHAPTER 4. FAMILIES OF TWO-STEP MODIFIED COLLOCATION

METHODS

4.2.9 Examples of interpolation-collocation based meth-
ods.

Example 5. Referring to the results derived in Section 4.2.2, we set c = 3
4
,

obtaining a L-stable interpolation-collocation method with p = m = 1, whose
basis functions are

ϕ0(s) = s2
(

15
7
− 10

7
s
)

, ϕ1(s) = 1 − 15
7
s2 + 10

7
s3,

χ(s) = −s2
(

9
7
− 6

7
s
)

, ψ(s) = 1 + 24
7
s2 − 16

7
s3.

Example 6. Referring to the results derived in Section 4.2.3, we show the
basis functions of the L-stable interpolation-collocation method (3.2.1) with
p = m = 2, corresponding to the abscissa vector c = [ 1

2
, 9

10
]T , i.e.

ϕ0(s) = 0, ϕ1(s) = 1,

χ1(s) = −s
(

3
4
− 7

60
s+ 1

18
s2
)

, χ2(s) = −s
(

3
8
− 7

12
s+ 5

18
s2
)

,

ψ1(s) = s
(

69
20

− 187
60
s+ 8

9
s2
)

, ψ2(s) = −s
(

2 − 29
12
s+ 5

9
s2
)

.

Example 7. Following the results contained in Section 4.2.4 we show the
basis functions of a FSAL L-stable interpolation-collocation method (3.2.1)
with p = m = 3, corresponding to the abscissa vector c = [0, 3

5
, 1]T :

ϕ0(s) = 0, ϕ1(s) = 1, χ1(s) = −s3
(

240
337

− 1280
1011

s+ 200
337
s2
)

,

χ2(s) = s3
(

1125
337

− 2000
337

s + 1857
674

s2
)

, χ3(s) = s3
(

3
10

− 8
15
s+ 1

4
s2
)

,

ψ1(s) = s
(

1 − 4
3
s− 113299

30330
s2 + 115688

15165
s3 − 14461

4044
s4
)

,

ψ2(s) = 25s2
(

1
12

+ 113
6066

s− 400
3033

s2 + 125
2022

s3
)

ψ3(s) = −s2
(

3
4
− 695

2022
s− 880

1011
s2 + 275

674
s3
)

.

Example 8. We now consider the FSAL L-stable method (3.2.1) with p =
m = 4, θ = 0, uj = 0, j = 1, 2, . . . , m, corresponding to the abscissa vector
c = [0, 7

10
, 9

10
, 1]T , whose basis functions are
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ϕ0(s) = 0, ϕ1(s) = 1, χ1(s) = −s3
(

63
100

− 223
150
s+ 13

10
s2 − 2

5
s3
)

,

χ2(s) = 125840873
10156165010

s3
(

189 − 446s + 390s2 − 120s3
)

,

χ3(s) = 313000831
6093699006

s3(189 − 446s + 390s2 − 120s3), χ4(s) = 0,

ψ1(s) = s
(

1 − 223
126
s− 110596774973233

9597575934450
s2 + 48055456715852

1599595989075
s3

−2838443145187
106639732605

s4 + 873367121596
106639732605

s5
)

,

ψ2(s) = s2
(

75
7
− 13154611771291

639838395630
s+ 671254535668

35546577535
s2 − 80390326549

7109315507
s3 + 24735485092

7109315507
s4
)

,

ψ3(s) = −s2
(

175
9

− 2867265551881
54843291054

s+ 575594042414
9140548509

s2 − 130770083795
3046849503

s3 + 40236948860
3046849503

s4
)

,

ψ4(s) = s2
(

21
2
− 28900702732187

914054850900
s+ 2081690316751

50780825050
s2 − 290054503193

10156165010
s3 + 44623769722

5078082505
s4
)

.

4.3 Two-step modified collocation methods

with reduced contribution of high order

terms

This chapter concerns with the construction of two-step almost collocation
methods (3.2.1) with narrowed contribution of the high order terms appearing
in the local discretization error (3.2.34): more precisely, we aim to derive in
the following sections methods such that the stage error constant Gp+1(1) is
equal to zero. This condition implies that terms of order p+2 only depend on
the derivatives of the solution and not on the form of the equation. Moreover,
this feature is of practical utility in the implementation of such methods
in a variable stepsize-variable order, since it simplifies the order changing
strategy. We present the construction of methods (3.2.1) of uniform order
p = m depending on up to four stages.

4.3.1 Construction of methods with p = q = m = 1

We now analyze two-step collocation methods (3.2.1) with p = m = 1,
assuming that the collocation polynomial P (tn+sh) satisfies the interpolation
condition

P (tn) = yn, (4.3.1)
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which implies that

ϕ0(0) = 0, ϕ1(0) = 1, χ(0) = 0, ψ(0) = 0.

Let us assume the following expression for the basis functions

ϕ0(s) = p0 + p1s, χ(s) = r0 + r1s, ϕ1(s) = q0 + q1s, ψ(s) = s0 + s1s.

Therefore, we have p0 = r0 = s0 = 0 and q0 = 1. We next impose the set of
order conditions (3.2.15), obtaining

p1 = −q1, r1 = 1 − q1 − s1.

Hence, the resulting family of one-stage methods (3.2.1) depends on q1, s1,
and c, which must be determined in order to achieve high stability properties
(e.g. A-stability and L-stability). We next consider the local truncation error
(3.2.34) for one-stage methods of type (3.2.1) with p = m = 1, that is

ξ(tn+sh) = h2E(s)y(2)(tn)+h
3
(

F (s)y(3)(tn)+G(s)
∂f

∂y
(y(tn))y

(2)(tn)
)

+O(h4),

(4.3.2)
where E(s) = C1(s), F (s) = C2(s) and G(s) = G2(s) can be derived from
formulae (3.2.35) and (3.2.36). In particular, the constant G(s) takes the
following form

G(s) = −c
2

2
(−1 + q1)(2 − c− q1 + 2cq1 − 2s1)s.

Solving the equation G(1) = 0 with respect to s1 we obtain

s1 =
2 − c− q1 + 2cq1

2
.

As a consequence, the basis functions in (3.2.1) for m = 1, which now depend
only on the parameter q1 and the value of the abscissa c, take the following
form

ϕ0(s) = −q1s, χ(s) = −s
2
(q1 + 2cq1 − c),

ϕ1(s) = 1 + q1s, ψ(s) = −s
2
(q1 − 2cq1 + c− 2).

(4.3.3)

We next consider the linear stability analysis of this class of methods, first
deriving the expression of the stability function (3.2.44) of these methods,
which takes the form

p(ω, z) = ω
(

p2(z)ω
2 + p1(z)ω + p0(z)

)

, (4.3.4)
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where p0(z), p1(z) and p2(z) are polynomials of degree less than or equal 2
with respect to z. Applying the Schur criterion to the polynomial (4.3.4),
we obtain the following result, which characterizes A-stable methods with
p = m = 1.

Theorem 4.3.1 Each one stage continuous method of type (3.2.1) which
satisfies the restrictions discussed above is A-stable if and only if

c > 1,
c− 1

2c
≤ q1 ≤ 1. (4.3.5)

Fig. 4.8 shows the corresponding region of A-stability in the parameter space
(c, q1). Let us provide an example of A-stable method. Setting c = 5

4
and

1 1.2 1.4 1.6 1.8 2
0  

0.2

0.4

0.6

0.8

1  

c

q
1

Figure 4.8: Region of A-stability in the (c, q1)-plane for two-step methods
(3.2.1) with p = q = m = 1 and satisfying the restrictions discussed above.

q1 = 1
2
, the coefficients of the corresponding method (3.2.1) with p = q =

m = 1 take the form

ϕ0(s) = −s
2
, χ(s) = −s

4
, ϕ1(s) =

2 + s

2
, ψ(s) =

3s

4
. (4.3.6)
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The derived A-stable methods are also L-stable if

lim
z→−∞

p0(z)

p2(z)
= 0 and lim

z→−∞

p1(z)

p2(z)
= 0.

These conditions are equivalent to the system of equations
{

(−1 + c)(−c+ q1 + 2cq1) = 0,
2 − 3c+ 2c2 − (1 − 2c + 4c2)q1 = 0,

which has a unique solutions (c, q1) = (1, 1
3
). Correspondingly, we obtain an

L-stable method with

ϕ0(s) = −s
3
, χ(s) = 0, ϕ1(s) =

3 + s

3
, ψ(s) =

2s

3
.

We also observe that the derived L-stable method achieve one order more of
convergence since E(1) = 0 and, therefore, its order is 2.

4.3.2 Construction of methods with p = q = m = 2

We now consider two-stage continuous methods (3.2.1) with p = q = m = 2.
We always assume that [c1, c2] = [ 1

2
, 1]. We next impose the interpolation

condition (4.3.1), which leads to

ϕ0(0) = 0, χ1(0) = 0, χ2(0) = 0,
ϕ1(0) = 1, ψ1(0) = 0, ψ2(0) = 0.

Correspondingly, we set

ϕ0(s) = s(p1 + p2s), χ1(s) = s(q1 + q2s), χ2(s) = s(r1 + r2s),

and derive ϕ1(s), ψ1(s) and ψ2(s) imposing the order conditions (3.2.15),
obtaining

ϕ1(s) = 1 − p1s− p2s
2,

ψ1(s) = s(2 + 3p1 − 3q1 − 2r1 − s+ 3p2s − 3q2s− 2r2s),

ψ2(s) = −s(1 + 2p1 − 2q1 − r1 − s+ 2p2s− 2q2s− r2s).

This leads to a six-parameters family of methods depending on p1, p2, q1, q2,
r1 and r2. These parameters will be chosen to obtain methods which are A-
stable and L-stable. We next consider the linear stability analysis, deriving
the stability polynomial (3.2.44)

p(ω, z) = ω(p3(z)ω
3 + p2(z)ω

2 + p1(z)ω + p0(z)), (4.3.7)
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where
p0(z) = (p2q1 − p1q2)z, (4.3.8)

and p1(z), p2(z), p3(z) are polynomials of degree 2 with respect to z. How-
ever, imposing q1 = p1q2

p2
, the polynomial (4.3.8) annihilates and, correspond-

ingly, the stability function (4.3.7) takes the form

p(ω, z) = ω2(p̃2(z)ω
2 + p̃1(z)ω + p̃0(z)),

where p̃0(z), p̃1(z), p̃2(z) are polynomials of degree 2 with respect to z. There-
fore, the stability properties of the resulting methods depend on the quadratic
function (see [72])

p̃(ω, z) = p̃2(z)ω
2 + p̃1(z)ω + p̃0(z). (4.3.9)

We next impose the system of equations leading to L-stability, i.e.

lim
z→−∞

p̃0(z)

p̃2(z)
= 0, lim

z→−∞

p̃1(z)

p̃2(z)
= 0.

This system takes the form
{

p2r1 − p1r2 = 0,
p2(−q2 − r1 + 3p2r1 − 2q2r1 − 2r2) − p1(q2 + 3p2r2 − 2q2r2) = 0

and has a unique solution given by

p1 = −p2(q2 + 2r2)

q2 + r2
, r1 = −r2(q2 + 2r2)

q2 + r2
.

This leads to a three-parameter family of methods depending on p2, q2, r2.
We next apply the Schur criterion to determine the set of conditions involving
these parameters, in order to be the corresponding methods L-stable. Let us
fix, for example, q2=2: we carry out a computer search of L-stable methods
in the parameter space (p2, r2), using this criterion. The result is shown in
Fig. 4.9.

We now consider the expression of the corresponding local truncation
error (3.2.34)

ξ(tn+sh) = h3E(s)y(3)(tn)+h
4
(

F (s)y(4)(tn)+G(s)
∂f

∂y
(y(tn))y

(3)(tn)
)

+O(h5),

(4.3.10)
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Figure 4.9: Regions of L-stability in the (p2, r2)-plane for two-step methods
(3.2.1), with q2 = 2 and p = q = m = 2.

where E(s) = C2(s), F (s) = C3(s) and G(s) = G3(s) can be derived from
formulas (3.2.35) and (3.2.36). For r2 = 1, we obtain

G(1) = 945 − 714p2 + 133p2
2 ,

and its roots are p2=3, p2 = 45
19

, but only the point (45
19

,1) lies inside the
shaded region of Fig. 4.9. The basis functions of the corresponding L-stable
method take the form

ϕ0(s) = −60

19
s +

45

19
s2, ϕ1(s) = 1 +

60

19
s− 45

19
s2,

χ1(s) = −8

3
s+ 2s2, χ2(s) = −4

3
s+ s2,

ψ1(s) =
182

57
s− 36

19
s2, ψ2(s) = −77

57
s +

24

19
s2.

(4.3.11)

We observe that the error constant E(1) is equal to 0 and, therefore, the
above method has order 3 of convergence.

4.3.3 Construction of methods with p = q = m = 3

We now focus our attention on two-step continuous methods of order p =
q = m = 3, assuming that ϕ0(s) = 0 and imposing not only the interpolation
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condition (4.3.1), but also the collocation condition

P ′(tn + cih) = f(tn + cih, P (tn + cih)), (4.3.12)

for i = 1, 2, 3. We next assume (c1, c2, c3) = (1
2
, 3

4
, 1) and

χ1(s) = p0 + p1s + p2s
2 + p3s

3 + p4s
4,

χ2(s) = r0 + r1s + r2s
2 + r3s

3 + r4s
4,

χ3(s) = s0 + s1s + s2s
2 + s3s

3 + s4s
4.

Therefore, imposing the set of conditions (4.3.1) and (4.3.12), we obtain

χ1(s) =
s

4
(−6p4 + 13p4s− 12p4s

2 + 4p4s
3),

χ2(s) =
s

4
(−6r4 + 13r4s− 12r4s

2 + 4r4s
3),

χ3(s) =
s

4
(−6s4 + 13s4s− 12s4s

2 + 4s4s
3).

We next compute the remaining basis functions by solving the system of
order conditions (3.2.15) for p = m = 3, whose expressions are here omitted
for brevity. We have now 3 free parameters (p4, r4 and s4) to play with
in order to achieve high stability properties. We next analyze the stability
polynomial

p(ω, z) = ω3
(

p2(z)ω
2 + p1(z)ω + p0(z)

)

,

where p0(z), p1(z) and p2(z) are polynomials of degree 3 with respect to z.
The stability property of resulting methods now depend on the quadratic
function

p̃(ω, z) = p2(z)ω
2 + p1(z)ω + p0(z). (4.3.13)

We next solve the system of equations leading to L-stability

lim
z→−∞

p̃0(z)

p̃2(z)
= 0, lim

z→−∞

p̃1(z)

p̃2(z)
= 0,

with respect to s4, obtaining

s4 = −1

8
(4p4 − 3r4).

At this point, everything depends on the parameters p4, r4. We have next
applied the Schur criterion to determine the set of conditions involving p4, r4,
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Figure 4.10: Regions of L-stability in the (p4, r4)-plane for two-step methods
(3.2.1), with p = q = m = 3.

in order to be the corresponding methods L-stable and carried out a com-
puter search of L-stable methods in the parameter space (p4, r4), according
to these conditions. The results are given in fig. 4.10. We now consider the
corresponding expression of the local truncation error (3.2.34) which is, in
our case,

ξ(tn+sh) = h4E(s)y(4)(tn)+h
5
(

F (s)y(5)(tn)+G(s)
∂f

∂y
(y(tn))y

(4)(tn)
)

+O(h6),

(4.3.14)
where E(s) = C3(s), F (s) = C4(s) and G(s) = G4(s) are computed using
formulas (3.2.35) and (3.2.36). In particular, the expression of G4(1) is

G(1) = −(784 + 60p4 + 57r4)(16 + 108p4 + 69r4),

and it annihilates for

r4 = −−4(196 + 15p4)

57
, r4 = −4(4 + 27p4)

69
,
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but only the first one is acceptable for us, because the line r4 = −4(4+27p4)
69

does not lie inside the L-stability region of fig. 4.10. Correspondingly, in
order to achieve L-stability, we obtain from the Schur criterion that

µ < p4 <
554

21
,

where µ is the negative root of the polynomial

q(x) = −5045494028660092 − 341657542579860x − 5937877049931x2

+ 80771782176x3 + 136188864x4 .

Moreover, we have

E(1) =
554 − 21p4

912
, F (1) =

16841 − 315p4

54720
,

and E(1) annihilates in p4 = 554
21

, which is not acceptable because it does not
satisfy the L-stability constraint. However, we can choose a value of p4 in
order to have a small error constant. For example, taking p4 = 20, we obtain
the L-stable method with E(1) = 67

456
, F (1) = 10541

54720
, G(1) = 0, and

ϕ0(s) = 0, ϕ1(s) = 1, χ1(s) = 5s(−6 + 13s− 12s2 + 4s3),

χ2(s) =
992

19
s− 6448

57
s2 +

1984

19
s3 − 1984

57
s4,

χ3(s) =
657

19
s− 2847

38
s2 +

1314

19
s3 − 438

19
s4,

ψ1(s) = −15594

37
s+

34129

37
s2 − 31720

37
s3 +

10624

37
s4,

ψ2(s) =
6304

19
s− 13760

19
s2 +

38432

57
s3 − 4304

19
s4,

ψ3(s) = −114s +
497

2
s2 − 694

3
s3 + 78s4.

4.3.4 Construction of methods with p = q = m = 4

We now derive four-stage continuous methods (3.2.1) of order p = q =
m = 4, with ϕ0(s) = 0 and imposing the interpolation condition (4.3.1) and
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the collocation condition (4.3.12) for i = 1, 2, 3, 4. We next set in advance
the collocation abscissa (c1, c2, c3, c4) = (0, 1

2
, 3

4
, 1) and

χ1 = s(p1 + p2s+ p3s
2 + p4s

3 + p5s
4);

χ2 = s(q1 + q2s+ q3s
2 + q4s

3 + q5s
4);

χ3 = s(r1 + r2s+ r3s
2 + r4s

3 + r5s
4);

χ4 = s(s1 + s2s+ s3s
2 + s4s

3 + s5s
4);

where pi, qi, ri, si, for i = 1, 2, 3, 4, are derived in order to satisfy the collo-
cation conditions. We next derive ψi(s), for i = 1, 2, 3, 4 imposing the set
of order conditions (3.2.15), for p = m = 4. We omit their expressions for
brevity. We have now 4 free parameters (p4, q4, r4 and s4) to compute in
order to achieve high stability properties.

We next develop the linear stability analysis, studying the stability poly-
nomial

p(ω, z) = ω4
(

p2(z)ω
2 + p1(z)ω + p0(z)

)

,

where p0(z), p1(z), p2(z), p3(z) are polynomials of degree 4 with respect to
z. Hence, the stability properties of the stability polynomial depend on the
quadratic function

p̃(ω, z) = p2(z)ω
2 + p1(z)ω + p0(z).

We next solve the conditions for L-stability

lim
z→−∞

p̃0(z)

p̃2(z)
= 0, lim

z→−∞

p̃1(z)

p̃2(z)
= 0,

with respect to p5 and r5, obtaining

p5 =
3072 + 17792q5 − 21s5

99840
, r5 = −3072 + 9472q5 − 21s5

3120
.

At this point, everything depends on the parameters q5, s5. We now consider
the expression of the local truncation error (3.2.34)

ξ(tn+sh) = h5E(s)y(5)(tn)+h
6
(

F (s)y(6)(tn)+G(s)
∂f

∂y
(y(tn))y

(5)(tn)
)

+O(h7),

where E(s) = C4(s), F (s) = C5(s) and G(s) = G5(s) have been computed
using (3.2.35) and (3.2.36). In particular, G(1) takes the form

G(1) = −s5(5768192 − 258048q5 − 265631s5),
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and annihilates for q5 = 5768192−265631s5

258048
. With this position, it is possible

to prove using the Schur criterion that, for any s5 < 0, the corresponding
method is A-stable and L-stable. If we choose s5 = −1, we obtain

ϕ0(s) = 0, ϕ1(s) = 1,

χ1(s) = −64995145

16515072
s2 +

844936885

74317824
s3 − 64995145

5505024
s4 +

12999029

3096576
s5,

χ2(s) = −30169115

1376256
s2 +

392198495

6193152
s3 − 30169115

458752
s4 +

6033823

258048
s5,

χ3(s) =
17413015

258048
s2 − 226369195

1161216
s3 +

17413015

86016
s4 − 3482603

48384
s5,

χ4(s) =
15

16
s2 − 65

24
s3 +

45

16
s4 − s5,

ψ1(s) = s− 58553863

8257536
s2 +

602930779

37158912
s3 − 42497543

2752512
s4 +

8132507

1548288
s5,

ψ2(s) = −40474777

196608
s2 +

533249989

884736
s3 − 41392281

65536
s4 +

8330885

36864
s5,

ψ3(s) =
67081319

258048
s2 − 877562171

1161216
s3 +

67998823

86016
s4 − 13691515

48384
s5,

ψ4(s) = −164345193

1835008
s2 +

238305005

917504
s3 − 497623099

1835008
s4 +

11139847

114688
s5,

with E(1) = 1
36864

, F (1) = 69411889
1486356480

, G(1) = 0.

4.4 Two-step modified collocation methods

with structured coefficient matrices

It is well known (compare, for instance, [36, 42, 119, 122, 147]) that highly
stable multistage integration methods are necessarily implicit. Because of
the implicitness of such methods, the numerical solution of nonlinear sys-
tems of equations is strongly involved in the integration process and the
computational cost of an implicit numerical method then strictly depends
on the computational cost required to solve such nonlinear systems: for this
reason, we focus our attention on the development and the analysis of highly
stable continuous formulae within the class (3.2.1), depending on structured
coefficient matrices. In fact, the solution of linear and nonlinear systems
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of equations can be efficiently computed if their coefficient matrix shows a
structured shape. In this case, some function evaluations can be avoided or
the jacobian of the system can be stored and re-used for a certain number
of iterations or a fast computation (e.g. in a parallel environment) can be
provided.

In order to derive numerical methods having the mentioned features, we
consider a modification of the two-step algebraic collocation technique de-
scribed in the previous sections. Since two-step (almost) collocation methods
(3.2.1) are equivalent to a suitable class of TSRK methods (2.2.1), it is oppor-
tune to spend few words concerning TSRK methods depending on structured
coefficient matrices. We have already mentioned the TSRK methods can be
represented according to the following tensor notation
{

yn+1 = θyn−1 + θ̃yn + h
(

(vT ⊗ Id)F
[n−1] + (wT ⊗ Id)F

[n]
)

,

Y [n] = (u⊗ Id)yn−1 +
(

(e− u) ⊗ Id

)

yn + h
(

(A⊗ Id)F
[n−1] + (B ⊗ Id)F

[n]
)

,
(4.4.1)

where F [n] = [f1(Y
[n]
1 ), . . . , f1(Y

[n]
m ), . . . , fd(Y

[n]
1 ), . . . , fd(Y

[n]
m )]T , Id is the iden-

tity matrix of dimension d, e = [1, . . . , 1]T ∈ R
m and ⊗ is the usual Kro-

necker tensor product. The computational cost of a TSRK method (4.4.1)
is strongly related to the solution of the nonlinear system for the computa-
tion of Y [n], whose coefficient matrix depends on the matrix B. An efficient
solution of such system could be provided if B takes a special structure (e.g.
lower triangular or diagonal). Jackiewicz and Tracogna identified in [140]
four different types of TSRK methods according to the structure of B:

• methods of type 1 and 2, with

B =











λ
b21 λ
...

. . .

bm1 bm2 . . . λ











,

with λ = 0 and λ 6= 0 respectively, suitable to integrate nonstiff and
stiff systems respectively in a serial computing environment;

• methods of type 3 and 4, with

B =







λ
. . .

λ






,
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with λ = 0 and λ 6= 0 respectively, suitable to integrate nonstiff and
stiff systems respectively in a parallel computing environment.

In particular, if B is a full matrix, (4.4.1) requires the solution of a nonlinear
system of dimensionmd×md; if B is lower triangular, m successive nonlinear
systems of dimension d must be solved while, in case of B diagonal, the so-
lution of m independent nonlinear systems of dimension d must be provided.
Moreover,

• in the case of type 2 methods, i.e. B lower triangular and one-point
spectrum, if the nonlinear system in (4.4.1) is solved by means of
Newton-type iterations, the stored LU-factorization of the coefficient
matrix Id − hλJ

[n]
i can be repeatedly used for a certain number of iter-

ations, where J
[n]
i is the i-th column of the jacobian of F [n];

• if B is diagonal, a fast resolution of the nonlinear system in a parallel
environment can be provided.

The purpose of this section is the derivation of highly-stable two-step almost
collocation methods (3.2.1) equivalent to TSRK methods (4.4.1) of type 2 and
4 (see [140]), therefore developing families of diagonally implicit continuous
methods, following the lines drawn in the discrete case [10, 28, 29, 35, 34, 42,
43, 44, 45, 122, 138, 163] which led to the classes of DIRK, SDIRK, SIRK
and DIMSIMs methods.

We will next consider the analysis of methods with B triangular and
diagonal respectively, together with the requirements to fulfill in order to
gain the desired structure; we will then describe the procedure to follow in
order to derive highly stable structured formulae (i.e. A-stable and L-stable)
within the class (3.2.1) and provide some examples of such methods.

4.4.1 Two-step almost collocation methods with trian-

gular coefficient matrix

We analyze in this section the class of two-step almost collocation meth-
ods (3.2.1) such that the matrix B results to be lower triangular. Since
B =

(

ψj(ci)
)m

i,j=1
, the conditions to impose in order to enforce a special

structure on B strongly involve the basis polynomials ψj(s), j = 1, 2, . . . , m.
The following result holds.
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Proposition 4.4.1 The matrix B is lower triangular if and only if

ψj(s) = ωj(s)

j−1
∏

k=1

(s− ck), (4.4.2)

where ωj(s) is a polynomial of degree less or equal than p−j+1, j = 2, . . . , m
and p is the order of the method.

Proof: We suppose B lower triangular: as a consequence, bij = 0 for i < j
(j = 2, . . . , m) and, therefore, ψj(ci) = 0 for i < j (j = 2, . . . , m). This
implies that c1, c2, . . . , cj−1 are roots of ψj(s), j = 2, . . . , m. Hence, ψj(s)
can be factorized in the form (4.4.2), where ωj(s) is a polynomial of degree
deg(ψj(s))− j+1, j = 2, . . . , m. However, we infer from the system of order
conditions (3.2.15), that deg(ψj(s)) ≤ p, where p is the order of the method.
This completes the if part. The only if part is trivial. 2

We next analyze the order of convergence of the resulting methods. In
accordance with Proposition 4.4.1, the system of order conditions (3.2.15) can
be specialized to the case of methods with B lower triangular, as reported in
the following result.

Theorem 4.4.1 A two-step collocation method (3.2.1) equivalent to a TSRK
method (4.4.1) with B lower triangular has order p if and only if











ϕ0(s) + ϕ1(s) = 1,

(−1)k

k!
ϕ0(s) +

m
∑

j=1

(

χj(s)
(cj − 1)k−1

(k − 1)!
+

ck−1
j

(k − 1)!

p−j+1
∑

`=0

α
(j)
` s`

j−1
∏

r=1

(s− cr)

)

=
sk

k!
,

(4.4.3)

with s ∈ [0, 1], k = 1, 2, . . . , p and α
(j)
` ∈ R, ` = 0, . . . , p−j+1, j = 1, . . . , m.

Proof: Replace the expression (4.4.2) for ψj(s) in (3.2.15). 2

The real parameters α
(j)
` ∈ R, ` = 0, . . . , p− j + 1, j = 1, . . . , m, can be

regarded as free parameters which add degrees of freedom and can be used
in order to enforce the corresponding methods to be highly stable (i.e. A-
stable or L-stable), as it will be discussed in Section 4.4.3, where the practical
construction of highly stable formulae within the discussed classes of methods
is pointed out.

As a consequence of the above results, we can state the following corollary
regarding the order of convergence of the derived formulae.
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Corollary 4.4.1 A two-step collocation method (3.2.1) equivalent to a TSRK
method (4.4.1) with B lower triangular has uniform order of convergence at
most equal to m+ 2.

Proof: The order conditions (4.4.3) form a system of p+1 equations in m+3
unknowns which is compatible if p = m+ 2. 2

The result contained in Corollary 4.4.1 provides an improvement with
respect to diagonally-implicit Runge–Kutta methods, whose effective order
is m, where m is the number of stages: this is due to the fact that Runge–
Kutta methods usually do not have high stage order and, therefore, they
suffer from the order reduction phenomenon (see, for instance, [42]) in the
integration of stiff systems. Two-step almost collocation methods (3.2.1),
instead, have high stage order q = p overall the integration interval and,
for this reason, they do not suffer from order reduction in the integration
of stiff systems. Numerical evidences confirming this theoretical expectation
are provided in Chapter 7.

4.4.2 Two-step almost collocation methods with diag-
onal coefficient matrix

We now consider the properties of two-step almost collocation methods
(3.2.1) equivalent to TSRK methods (4.4.1) with B diagonal, presenting the
main results following the lines drawn in the previous section. We first pro-
vide the analytical expression of the polynomials ψj(s), j = 1, 2, . . . , m, which
enforces the diagonal structure of B.

Proposition 4.4.2 The matrix B is diagonal if and only if

ψj(s) = ωj(s)

m
∏

k=1
k 6=j

(s− ck), (4.4.4)

where ωj(s) is a polynomial of degree less or equal than p − m + 1, j =
1, 2, . . . , m and p is the order of the method.

When the matrix B is diagonal, i.e. when the functions ψj(s) assume
the expression (4.4.4), the set of order conditions (3.2.15) takes the following
form.
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Theorem 4.4.2 A two-step collocation method (3.2.1) equivalent to a TSRK
method (4.4.1) with B diagonal has order p if and only if











ϕ0(s) + ϕ1(s) = 1,

(−1)k

k!
ϕ0(s) +

m
∑

j=1

(

χj(s)
(cj − 1)k−1

(k − 1)!
+

ck−1
j

(k − 1)!

p−m+1
∑

`=0

µ
(j)
` s`

j−1
∏

r=1

(s− cr)

)

=
sk

k!
,

(4.4.5)

with s ∈ [0, 1], k = 1, 2, . . . , p and µ
(j)
` ∈ R, ` = 0, . . . , p−m+1, j = 1, . . . , m.

Also in this case, the real parameters µ
(j)
` ∈ R, ` = 0, . . . , p − m + 1,

j = 1, . . . , m, can be regarded as degrees of freedom to use in order to obtain
highly stable methods: this is the object of investigation in Section 4.4.3.
We conclude with the following result concerning the order of convergence of
the considered methods, which is a direct consequence of Theorem 4.4.2.

Corollary 4.4.2 A two-step collocation method (3.2.1) equivalent to a TSRK
method (4.4.1) with B diagonal has uniform order of convergence at most
equal to m+ 1.

4.4.3 Construction of highly stable formulae

We now focus our attention on the procedures to follow in order to con-
struct highly stable two-step almost collocation methods (3.2.1) of order p
corresponding to TSRK methods (4.4.1) with B lower triangular or diago-
nal, according to the considerations reported in the previous sections. The
derivation of highly stable methods is a nontrivial task, especially if we ask
to create a reasonable balance between high effective order and strong sta-
bility properties. For this reason, in order to obtain highly-stable methods,
we neglect some order conditions, obtaining some free parameters to be used
to gain A-stability and L-stability. The number r of refused order conditions
is what we call relaxation index. In the remainder of this section, we address
the aspects regarding the construction of A-stable and L-stable methods of
order p = m+ 2 − r, with r = 0, 1, 2 (i.e. methods of order m+ 2, m+ 1 or
m), within the class (3.2.1) corresponding to TSRK methods (4.4.1) with B
lower triangular, and of order p = m+ 1 − r, with r = 0, 1 (i.e. methods of
order m+ 1 or m) and B diagonal.
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• Construction of methods with B lower triangular

First of all, we distinguish the following cases:

i. if r = 0, we assume ψj(s), j = 2, . . . , m, of the form (4.4.2) with

ωj(s) = α
(j)
0 + α

(j)
1 s+ . . . + α

(j)
p−j+1s

p−j+1; (4.4.6)

ii. if r = 1, we consider ωj(s), j = 2, . . . , m, of the form (4.4.6) and set

ϕ0(s) = β0 + β1s+ . . . + βps
p; (4.4.7)

iii. if r = 2, we consider ωj(s) and ϕ0(s) of the form (4.4.6) and (4.4.7)
and set

ψ1(s) = γ0 + γ1s+ . . .+ γps
p. (4.4.8)

We impose some interpolation and/or collocation conditions, chosen from
the following sets:

ϕ0(−1) = 1, ϕ′
0(ci−1) = 0,

ϕ0(0) = 0, ϕ′
0(ci) = 0,

(4.4.9)

ϕ1(−1) = 0, ϕ′
1(ci−1) = 0,

ϕ1(0) = 1, ϕ′
1(ci) = 0,

(4.4.10)

χj(−1) = 0, χ′
j(ci−1) = δij,

χj(0) = 0, χ′
j(ci) = 0,

(4.4.11)

ψj(−1) = 0, ψ′
j(ci−1) = 0,

ψj(0) = 0, ψ′
j(ci) = δij,

(4.4.12)

where δij is the usual Kronecker delta, i, j = 1, 2, . . . , m. Then, we derive

the values of some α
(j)
` , βi, γi, for ` = 0, 1, . . . , p− j + 1 and i = 0, 1, . . . , p,

in such a way that the chosen conditions are satisfied on the fixed functions
ωj(s), ϕ0(s) and/or ϕ1(s), according to the value of the relaxation index r.
We next solve the system of order conditions (3.2.15) up to p, with respect
to the remaining basis functions: they automatically inherit the same inter-
polation/collocation conditions imposed, as proved in Theorem 3.2.9

If in addition to the triangular structure for B we also require it to be one
point spectrum, i.e. we ask for two-step almost collocation formulae (3.2.1)
equivalent to type 2 TSRK methods (4.4.1), we spend some of the remaining
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free parameters within the set of α
(j)
` and γi, for ` = 0, 1, . . . , p − j + 1 and

i = 0, . . . , p, in order to equal all the values on the diagonal of B, i.e. all the
ψj(cj), j = 1, . . . , m, equal to a correspond to a real common value λ.

We next compute the stability polynomial

p(η, z) =
m+2
∑

k=0

pk(z)η
k, (4.4.13)

of degree m+2 with respect to η, where each pk(z) is a rational function in z,
k = 0, 1, . . . , m+2. If possible, we spend some of the free parameters in order
to reduce the degree of p(η, z) with respect to η (e.g. to obtain a quadratic
stability polynomial, compare [72]). Let us suppose that the resulting degree
of p(η, z) with respect to η is ν. Using the Schür criterion, we determine
the values of the remaining parameters corresponding to A-stable methods.
If the corresponding set of A-stable methods is nonempty, we search for the
related subset of L-stable methods, solving the nonlinear system























lim
z→−∞

p0(z)

pν(z)
= 0,

...

lim
z→−∞

pν−1(z)

pν(z)
= 0.

(4.4.14)

• Construction of methods with B diagonal

In order to obtain a diagonal shape for the matrixB, together with strong
stability properties, we proceed as follows. We distinguish the following cases:

i. if r = 0, we assume ψj(s), j = 1, . . . , m, of the form (4.4.4) with

ωj(s) = µ
(j)
0 + µ

(j)
1 s + . . .+ µ

(j)
p−m+1s

p−m+1; (4.4.15)

ii. if r = 1, we consider ωj(s), j = 1, . . . , m, of the form (4.4.15) and set

ϕ0(s) = σ0 + σ1s+ . . . + σps
p. (4.4.16)

We next impose some interpolation and/or collocation conditions on the func-
tions fixed above, chosen from the sets (4.4.9) and (4.4.12), i.e. we derive

the values of some µ
(j)
` , σi, for ` = 0, 1, . . . , p − m + 1 and i = 0, 1, . . . , p,
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in such a way that these conditions are satisfied. Then, we solve the sys-
tem of order conditions (3.2.15) up to p, with respect to the remaining basis
functions: the computed polynomials automatically inherit the same inter-
polation/collocation conditions imposed.

If in addition to the diagonal structure for B we also require it to be one
point spectrum, i.e. we ask for two-step almost collocation formulae (3.2.1)
equivalent to type 4 TSRK methods (4.4.1), we spend some of the remaining

free parameters within the set of µ
(j)
` , for ` = 0, 1, . . . , p−m+ 1, in order to

equal all the values on the diagonal of B, i.e. all the ψj(cj), j = 1, . . . , m,
equal to a correspond to a real common value λ.

We next compute the stability polynomial (4.4.13) of degree m+ 2 with
respect to η, where pk(z) is a rational function in z, k = 0, 1, . . . , m + 2. If
possible, we spend some of the free parameters in order to reduce the degree
of p(η, z) with respect to η. Let us suppose that the resulting degree of
p(η, z) with respect to η is ρ. Using the Schür criterion, we determine the
values of the remaining parameters corresponding to A-stable methods. If
the corresponding set of A-stable methods is nonempty, we search for the
related subset of L-stable methods, solving the nonlinear system























lim
z→−∞

p0(z)

pρ(z)
= 0,

...

lim
z→−∞

pρ−1(z)

pρ(z)
= 0.

(4.4.17)

4.4.4 Analysis of methods with m = 2 and B lower

triangular

We first aim to derive two-stage highly stable methods (3.2.1) having the
maximum attainable continuous order p = m+ 2 = 4, with B lower triangu-
lar. Since r = 0, we assume ω2(s) of type (4.4.6), i.e.

ω2(s) = α0 + α1s+ α2s
2 + α3s

3 (4.4.18)

and, therefore, ψ2(s) assumes the form

ψ2(s) = (α0 + α1s+ α2s
2 + α3s

3)(s− c1). (4.4.19)
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We next impose the interpolation condition ψ2(0) = 0 and the collocation
conditions ψ′

2(c1) = 0 and ψ′
2(c2) = 1, obtaining

α0 = 0, α1 =
c1(−1 + 2c21c2α3 − 6c1c

2
2α3 + 4c32α3)

c21 − 4c1c2 + 3c22
,

α2 =
1 − c31α3 + 2c21c2α3 + 3c1c

2
2α3 − 4c32α3

c21 − 4c1c2 + 3c22
.

At this point, three free parameters are left, i.e. c1, c2 and α3. We next
compute the stability polynomial (4.4.13), which assumes the form

p(η, z) = η
(

p0(z) + p1(z)η + p2(z)η
2 + p3(z)η

3
)

.

Applying the Schür criterion, it is possible to prove that no A-stable methods
with m = 2 and p = 4 exist and, therefore, we relax one order condition,
in order to find highly stable methods within the class (3.2.1) with m = 2
and p = m + 1 = 3, corresponding to TSRK methods (4.4.1) with B lower
triangular. Since r = 1, we assume ω2(s) of the form

ω2(s) = α0 + α1s+ α2s
2, (4.4.20)

and ϕ0(s) of the type

ϕ0(s) = β0 + β1s+ β2s
2 + β3s

3. (4.4.21)

We next impose the interpolation and collocation conditions

ϕ0(0) = 0, ϕ′
0(c2) = 0, ψ2(0) = 0, ψ′

2(c2) = 1,

obtaining

α0 = 0, α2 =
1 + c1α1 − 2c2α1

c2(−2c1 + 3c2)
, β0 = 0, β3 = −β1 + 2c2β2

3c22
.

As a consequence, a five-parameter family of methods (3.2.1) arises: the
degrees of freedom are c1, c2, α1, β1, β2. We next compute the stability poly-
nomial (4.4.13), which assumes the form

p(η, z) = η
(

p0(z) + p1(z)η + p2(z)η
2 + p3(z)η

3
)

,

and compute the values of β2 and c2 annihilating p0(z), in such a way that the
stability properties of the related methods depend on the quadratic stability
function

p̃(η, z) = p1(z) + p2(z)η + p3(z)η
2. (4.4.22)
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These values are

β2 =
−β1(c1 + 6α1 − 6c1α1 − 2c21α1 + 2c31α1)

2c1α1(3 − 5c1 + 2c21)
, c2 = 1.

We next apply the Schür criterion on the polynomial (4.4.22) in correspon-
dence of

β1 =
6c1α1(−1 + c1)

2 + 3c1

achieving L-stability, i.e. solving the system (4.4.23) which, for the polyno-
mial (4.4.22), takes the form















lim
z→−∞

p1(z)

p3(z)
= 0,

lim
z→−∞

p1(z)

p3(z)
= 0.

(4.4.23)

Applying the Schür criterion we are able to find the values of the remaining
free parameters c1 and α1 corresponding to A-stable and, in particular, L-
stable methods. The results are given in Figure 4.1. The region provided in
Figure 4.1 arises from the union of the following sets:

Σ1 =

{

(c1, α1) ∈ R
2 :

1 +
√

17

4
< c1 <

3

2
,

1

5 − 9c1 + 4c21
< α1 <

1 + c1 − c21
(−1 + c1)3

}

,

Σ2 =

{

(c1, α1) ∈ R
2 :

3

2
< c1 ≤

1 +
√

5

2
,

1 + c1 − c21
(c1 − 1)3

< α1 <
1

4c21 − 9c1 + 5

}

,

Σ3 =

{

(c1, α1) ∈ R
2 : c1 >

1 +
√

5

2
,
−c21 + c1 + 1

(c1 − 1)3
< α1 < 0

}

,

Σ4 =

{

(c1, α1) ∈ R
2 : c1 >

1 +
√

5

2
, 0 < α1 <

1

4c21 − 9c1 + 5

}

.

If we aim for two-step almost collocation methods (3.2.1) equivalent to type
2 TSRK methods (4.4.1), we apply the same procedure above described but,
instead of spending some parameters to reduce the degree of the stability
polynomial, we use them to obtain equal values on the diagonal of the matrix
B. For this reason, after computing α0, α2, β0, β3 as above, we determine
the value of β2 such that b11 = b22, obtaining

β2 =
−3(2c31 − 6(1 + α1) − 3c21(3 + 2α1) + 3c1(5 + 4α1))

c1(−1 + 3c1)(3 − 2c1)2
,
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Figure 4.1: Region of L-stability in the (c1, α1)-plane for diagonally implicit
two-step almost collocation methods (3.2.1), with m = 2 and p = 3

in correspondence of the values c2 = 1 and β1 = 0. This values are chosen
in order to simplify the structure of the stability polynomial, whose stability
properties are analyzed using the Schür criterion. The results of this analysis
are reported in Figure 4.2.

4.4.5 Analysis of methods with m = 2 and B diagonal

We conclude this section deriving highly stable two-step almost collocation
methods (3.2.1) with m = 2, equivalent to type 4 TSRK methods (4.4.1). It
possible to prove, applying the Schür criterion, that noA-stable type 4 almost
collocation methods (3.2.1) of order m = 2 and p = 3 exist and, therefore,
we relax one order condition, searching for methods of order p = m = 2. We
assume that

ω1(s) = µ
(1)
0 + µ

(1)
1 s, ω2(s) = µ

(2)
0 + µ

(2)
1 s, ϕ0(s) = σ0 + σ1s+ σ2s

2,

and impose the collocation conditions

ϕ0(0) = 0, ψ1(0) = 0, ψ2(0) = 0,
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Figure 4.2: Region of A-stability in the (c1, α1)-plane for type 2 two-step
almost collocation methods (3.2.1), with m = 2 and p = 3, for c2 = 1 and
β1 = 0

obtaining µ
(1)
0 = µ

(2)
0 = σ0. Six free parameters are left, i.e. µ

(1)
1 , µ

(1)
2 , σ1, σ2, c1

and c2. We set µ
(1)
1 = µ

(1)
2 = 1 and derive the values of σ1, σ2 and c2 solving

the system (4.4.17) for L-stability, obtaining

σ1 = −2(7c31 − 8c21 − 9c1 + 2)

4c21 − 3c1 + 3
, σ2 =

4c31 + 4c21 − 23c1 + 3

4c21 − 3c1 + 3
, c2 = 1.

Applying the Schür criterion we obtain that the resulting methods are L-
stable if and only if c1 ∈ (−2

5
, 270

619
).





Chapter 5

Stability features for discrete
TSRK methods

This chapter concerns with some new contributions we have provided to
the analysis of the stability properties of TSRK methods (2.2.1). In partic-
ular, we have focused our attention on the following two issues:

• the recent literature concerning with the numerical solution of ODEs
(1.1.1) has given particular emphasis to the special requirement of
“practicality” of the numerical methods: in fact, together with the
classical properties of consistency, high order of convergence, strong
stability properties and so on, some authors are considering also the
necessity to develop practical methods. The adjective “practical” has
been used for the first time by J. Butcher and W. Wright in [50] and
underlines the importance to deal with methods having good properties
which also result, at the same time, realistic in terms of their derivation.
For this purpose, it is also important to provide, together with the the-
oretical analysis of the features we aim to satisfy, also an algorithmic
technique for the derivation of methods having those features. This
work has been carried out in the context of General Linear Methods in
the thesis of W. Wright [209], which has paved the way to a series of pa-
pers dealing with GLMs with inherent Runge–Kutta stability (IRKS),
which is an algebraic property on the coefficients guaranteeing that the
corresponding stability matrix has one nonzero eigenvalue only, which
is a property typical of Runge–Kutta methods. As a consequence, the

123
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stability function (2.1.18) of the resulting GLMs with IRKS take the
form

p(η, z) = ηr−1(η −R(z)),

where R(z) is the nonzero eigenvalue of the stability matrix. This prop-
erty provides a remarkable improvement in the derivation of highly
stable methods, because of the very easy expression of the stability
polynomial. The purpose we aim to carry out in Section 5.1 is the
derivation of an analogous property for TSRK methods, focusing our
attention on the derivation of highly stable TSRK methods whose co-
efficient matrix has a one-point spectrum. We will see that the natural
extension of Inherent Runge–Kutta Stability for TSRK methods will
be connected to the analysis of a quadratic stability function, instead
of a linear one;

• we have presented in Section 2.1.4 the importance of nonlinear stability,
collocating things in the perspective of General Linear Methods. How-
ever nothing in the literature has appeared up to now concerning the
analysis of the nonlinear stability properties of TSRK methods (2.2.1).
Therefore, it is interesting to analyze the behaviour of TSRK methods
with respect to more general test equations and consider the possibility
to derive algebraically stable TSRK methods. The analysis, reported
in Section 5.2 will be carried out by using the tools presented by A.
Hill in [127], which is based on the analysis of the Nyquist function
(2.1.31) associated to TSRK methods. This approach will also require
some optimization tools, since we aim for the minimization of a certain
objective function depending on the coefficient of the methods, as it is
described in Section 5.2.

The results concerning the above features have been presented for the first
time in our papers [72, 138, 93].

5.1 Two-Step Runge–Kutta Methods with In-

herent Quadratic Stability

In this section we will describe the construction of TSRK methods (2.2.1)
of order p and stage order q = p whose stability properties are determined
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by quadratic stability functions, also assuming that the coefficient matrix B
has a one point spectrum

σ(B) = {λ}, λ > 0. (5.1.1)

This feature would allow the efficient implementation of such methods sim-
ilarly as in the case of singly implicit Runge-Kutta (SIRK) methods con-
sidered by Burrage [28], Butcher [34], and Burrage, Butcher and Chipman
[29], see also [36], [42]. For TSRK methods whose coefficient matrix B has a
one point spectrum (5.1.1), it is more convenient to work with the function
p(ω, z) defined by

p(ω, z) = (1 − λz)sp̃(ω, z), (5.1.2)

since the coefficients of ωi, i = 0, 1, . . . , s + 2, are polynomials of degree s
with respect to z.

In this section we investigate TSRK methods (2.2.1) of order p = s and
stage order q = p for which the stability polynomial p(ω, z) takes the simple
form

p(ω, z) = ωs
(

(1 − λz)sω2 − p1(z)ω + p0(z)
)

, (5.1.3)

where p1(z) and p0(z) are polynomials of degree s with respect to z. Meth-
ods for which this is the case are said to possess quadratic stability (QS).
The interest in TSRK methods having QS property lies in many reasons.
The construction of high-order A-stable and L-stable TSRK methods is a
challenging problem, because we have to deal with stability polynomials of
degree s+ 2, where s is the number of stages. This is often not manageable
when s is high using the approach based on Schur criterion (see [147], [184]).
The machinery we intend to develop ensures that the stability polynomial is
a priori quadratic, which gives us the chance to succeed in finding highly sta-
ble methods also for a large number of stages. It is also important to observe
that quadratic stability is the most natural requirement for TSRK methods,
as it will be afterward explained. The characterization of such methods, in-
spired by the recent work on GLMs with IRKS [49], [50], [51], [209], [210],
will be given in the following sections, together with the construction of A-
stable and L-stable TSRK methods with p = q = s for the number of stages
s = 1, 2, 3, and 4.
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5.1.1 Characterization of TSRK methods with quadratic
stability

To investigate the form of the stability function of the method (2.2.1) it
is convenient to introduce some equivalence relation between matrices of the
same dimensions. We say that the two matrices D and E are equivalent,
which will be denoted by D ≡ E, if they are equal except for the first
two rows. This relation has several useful properties which will aid in the
derivation of TSRK methods with appropriate stability properties. It can be
verified that if F ∈ R(ν+2)×(ν+2) is a matrix partitioned as follows

F =

[

F11 F12

F21 F22

]

,

where F11 ∈ R2×2, F12 ∈ R2×ν , F21 ∈ Rν×2, F22 ∈ Rν×ν , and if F21 = 0, then
D ≡ E implies FD ≡ FE. Moreover, for any matrix F we have also D ≡ E
implies DF ≡ EF.

In general, it is a very complicated task to construct TSRK methods
(2.2.1) which possess QS, especially for methods with large number of stages
s, since this requires the solution of large systems of polynomial equations
of high degree, for the unknown coefficients of the methods. However, if we
are willing to restrict the class of methods, it is possible to find interrelations
between the coefficients matrices which ensure that this is the case, i.e. that
the TSRK method (2.2.1) possesses QS. Such conditions in the case of GLMs
with Runge-Kutta stability were discovered recently by Butcher and Wright
[50], [209]. They take a similar form for TSRK methods with QS. This is
formalized in the following definition.

Definition 5.1.1 The TSRK method (2.2.1), regarded as GLM with coeffi-
cients A, U, B, and V defined by (2.2.3) has inherent quadratic stability
(IQS) if there exists a matrix X ∈ R(s+2)×(s+2) such that

BA ≡ XB, (5.1.4)

and

BU ≡ XV − VX. (5.1.5)

The significance of this definition follows from the following theorem.
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Theorem 5.1.1 Assume that the TSRK method (2.2.1) has IQS. Then its
stability function p̃(ω, z) defined in (5.1.2) assumes the form

p̃(ω, z) = ωs
(

ω2 − p̃1(z)ω + p̃0(z)
)

, (5.1.6)

where p̃1(z) and p̃0(z) are rational functions with respect to z.

Proof: The proof of this theorem follows along the lines of the corresponding
result for GLMs with IRKS [50], [209]. Assuming Is − zA nonsingular, the
IQS relation (5.1.4) is equivalent to

B ≡ (Is+2 − zX)B(Is − zA)−1. (5.1.7)

To investigate the characteristic polynomial of the corresponding matrix
M(z), as defined in (2.2.6), it is more convenient to consider the matrix
related to M(z) by similarity transformation. Using (5.1.5) and (5.1.7) and
assuming that Is+2 − zX is nonsingular, we obtain

(Is+2 − zX)M(z)(Is+2 − zX)−1 ≡ V. (5.1.8)

It follows from the structure of the matrix V in (2.2.3) and the relation
(5.1.8) that the matrix (Is+2 − zX)M(z)(Is+2 − zX)−1 can be partitioned as
follows

(Is+2 − zX)M(z)(Is+2 − zX)−1 =

[

M̃11(z) M̃12(z)
0 0

]

, (5.1.9)

where M̃11(z) ∈ R2×2, M̃12(z) ∈ R2×s, and 0 stands for zero matrix of dimen-
sion s×2 and s×s, respectively. This relation implies that the characteristic
polynomial p̃(ω, z) of the matrix

(Is+2 − zX)M(z)(Is+2 − zX)−1

and M(z) assumes the form (5.1.6). 2

The proof of Theorem 5.1.1 also explains the reason why it is natural in
the context of TSRK methods to investigate quadratic stability. In fact, it
follows that the stability matrix M(z) and the coefficient matrix V are related
by the equation (5.1.8), where the matrix M(z) satisfies (5.1.9). Moreover,
in the case of TSRK methods, the matrix V has a very precise structure
given by the representation in (2.2.3), and its eigenvalues are 1, −θ and 0
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(with multiplicity s). Therefore, for θ 6= 0, looking for a stability function of
the type (5.1.3) is quite natural choice.

To express the IQS conditions (5.1.4) and (5.1.5) in terms of the coefficients
θ, u, v, w, A, and B of TSRK method (2.2.1) we partition the matrix X as
follows

X =

[

X11 X12

X21 X22

]

, (5.1.10)

where X11 ∈ R
2×2, X12 ∈ R

2×s, X21 ∈ R
s×2, X22 ∈ R

s×s. We also partition
accordingly the matrices B, U, and V (see (2.2.3))

B =

[

B11

Is

]

, U =
[

U11 A
]

, V =

[

V11 V12

0 0

]

,

where B11 ∈ R2×s, U11 ∈ Rs×2, V11 ∈ R2×2, V12 ∈ R2×s are given by

B11 =

[

wT

0

]

, U11 =
[

e− u u
]

, V11 =

[

1 − θ θ
1 0

]

, V12 =

[

vT

0

]

,

and 0 in V stands for zero matrices of dimension s×2 and s×s, respectively.

Theorem 5.1.2 A TSRK method (2.2.1) has IQS if there exist vectors α, β ∈
Rs and a matrix X ∈ Rs×s such that the following conditions are satisfied

B = αwT +X, e = α+ β, u = θα, A = αvT . (5.1.11)

Proof: According to the way we have partitioned the above matrices, IQS
conditions (5.1.4) and (5.1.5) are equivalent to

B = X21B11 +X22,

and

U11 = X21V11, A = X21V12,

respectively. By setting

[

α β
]

= X21 ∈ R
s×2, X = X22, (5.1.12)

with α, β ∈ Rs, the theorem follows. 2
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5.1.2 Construction of TSRK methods with IQS prop-
erties

We first compute the coefficient matrix A and the vector v from stage
order and order conditions (2.2.4) and (2.2.5). Introducing the notation

C =

[

c
c2

2!
· · · cs

s!

]

, C̃ =

[

e
c

1!
· · · cs−1

(s− 1)!

]

,

d =

[

−1
1

2!
· · · (−1)s

s!

]T

, g =

[

1
1

2!
· · · 1

s!

]T

,

E =

[

e
c− e

1!
· · · (c − e)s−1

(s− 1)!

]

,

the conditions (2.2.4) and (2.2.5) are equivalent to AE = C−udT −BC̃, and
vTE = gT − θdT − wT C̃ , respectively. We note that, by assuming distinct
abscissas, the matrices C, C̃ , and E are nonsingular because of Vandermonde
type. Hence we obtain

A = (C − udT − BC̃)E−1, (5.1.13)

and
vT = (gT − θdT − wT C̃)E−1. (5.1.14)

To obtain TSRK methods with IQS we compute the matrix X from the first
condition in (5.1.11), i.e. X = B − αwT , and the vectors β and u from the
second and third condition of (5.1.11), i.e.

β = e− α, u = θα. (5.1.15)

Then we enforce the last condition in (5.1.11) using the representations of A
and v given by (5.1.13) and (5.1.14). This leads to

C − udT − BC̃ = αgT − θαdT − αwT C̃

and, since C̃ is nonsingular, using the condition u = θα we obtain

B = (C − α(gT − wT C̃))C̃−1. (5.1.16)

Computing the matrix B from (5.1.16) and then the matrix A from (5.1.13),
where u = θα, and the vector v from (5.1.14) we obtain a family of TSRK
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methods (2.2.1) of order p = s and stage order q = p which depends on
the parameters θ, α, c and w. By construction these methods satisfy IQS
conditions (5.1.11). We impose next the condition (5.1.1) that the matrix
B has a one point spectrum σ(B) = {λ}, where λ will be chosen in such a
way that the resulting method has some desirable stability properties. This is
equivalent to the requirement that the characteristic polynomial ofB assumes
the simple form det(ωIs − B) = (ω − λ)s. Since

det(ωIs − B) =
s
∑

k=0

bkω
s−k ,

where b0 = 1, bk = bk(θ, α, c, w), k = 1, 2, . . . , s, and

(ω − λ)s =
s
∑

k=0

( s
k

)

(−1)kλkωs−k

this is equivalent to the system of equations

bk(θ, α, c, w) =
(

s
k

)

(−1)kλk, k = 1, 2, . . . , s. (5.1.17)

Since it follows from (5.1.16) that

B = (C − αgT )C̃−1 + αwT ,

the system (5.1.17) is linear with respect to w, and its solution leads, by
virtue of Theorem 5.1.1, to methods for which stability polynomial p(ω, z)
takes the form (5.1.3), i.e.

p(ω, z) = ωs
(

(1 − λz)sω2 − p1(z)ω + p0(z)
)

.

The polynomials p1(z) and p0(z) appearing in p(ω, z) take the form

p1(z) = p10 + p11z + · · · + p1,s−1z
s−1 + p1sz

s,

p0(z) = p00 + p01z + · · · + p0,s−1z
s−1 + p0sz

s.

Since, by (2.2.6)–(5.1.3),

p(ω, 0) = det(ωIs+2 − V) = ωs(ω − 1)(ω + θ) = ωs(ω2 − p1(0)ω + p0(0)),
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it follows that

p1(0) = p10 = 1 − θ, p0(0) = p00 = −θ. (5.1.18)

Moreover we observe that, assuming A-stability, the L-stability requirement
is equivalent to

lim
z→∞

p1(z)

(1 − λz)s
= 0, lim

z→∞

p0(z)

(1 − λz)s
= 0,

which leads to the conditions

p1s = 0, p0s = 0. (5.1.19)

Therefore, the polynomials p1(z) and p2(z) now take the form

p1(z) = 1 − θ + p11z + · · · + p1,s−1z
s−1,

p0(z) = −θ + p01z + · · · + p0,s−1z
s−1.

For the method of order p = s the stability polynomial p(ω, z) satisfies the
condition

p(ez, z) = O(zs+1), z → 0. (5.1.20)

Expanding (5.1.20) into power series around z = 0 it follows from (5.1.18)
that the constant term vanishes, and comparing to zero terms of order zk,
k = 1, 2, . . . , s, we obtain a system of s linear equations for the 2(s − 1)
coefficients p1j, p0j , j = 1, 2 . . . , s − 1, of the polynomials p1(z) and p0(z).
This system has a family of solutions depending on λ, θ, and s−2 additional
parameters which may be chosen from p1j and p0j .

The last point is now the computation of the vector α, which can be car-
ried out comparing the expression of the stability polynomial now computed
with the one coming from (5.1.9), i.e.

p̃(ω, z) = ωs det(ωI2 − M̃11(z)). (5.1.21)

Since the IQS conditions (5.1.11) do not depend on the blocks X11 and X12

of the matrix X in (5.1.10) we can assume without loss of generality that
X11 = 0 and X12 = 0. Therefore, it follows from (5.1.9) that

[

I2 0
−zX21 I2 − zX22

][

M11(z) M12(z)
M21(z) M22(z)

]

=

[

M̃11(z) M̃12(z)
0 0

][

I2 0
−zX21 I2 − zX22

]

.
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Hence,

M11(z) = M̃11(z) − zM̃12(z)X21, M12(z) = M̃12(z)(I2 − zX22),

which, taking into account (5.1.12), leads to the following formula for the
matrix M̃11(z)

M̃11(z) = M11(z) + zM12(z)(I2 − zX)−1[ α β ], (5.1.22)

where we recall X = X22.
The construction of highly stable TSRK methods (2.2.1) with IQS prop-

erties and coefficient matrix B with one point spectrum σ(B) = {λ} can be
summarized in the following algorithm.

1. Choose the abscissa vector c with distinct components, such that the
matrices C̃ and E defined at the beginning of this section are nonsin-
gular.

2. Choose the parameters θ and λ > 0 so that the stability polynomial
p(ω, z) is A-stable and also L-stable.

3. Compute the coefficient matrix B from the formula (5.1.16). This
matrix depends on the vectors α and w.

4. Compute the vectors β and u from the second and third condition of
(5.1.11), i.e. β = e− α and u = θα.

5. Compute the coefficient matrix A from (5.1.13) and the vector v from
(5.1.14). They depend on α and w.

6. Solve the system (5.1.17) with respect to w. This leads to a family of
methods with IQS for which the matrix B has a one point spectrum
σ(B) = {λ}.

7. Compute the matrix M̃11(z) from the relation (5.1.22) and the stability
polynomial p̃(ω, z) from (5.1.22). Everything now depends on p1j and
p0j , which must be computed from (5.1.20).

8. Compare the expression of p̃(ω, z) obtained in point 7 with (5.1.3),
and solve with respect to the parameter vector α. Then the stabil-
ity polynomial of resulting TSRK method (2.2.1) corresponds to the
polynomial p(ω, z) in point 2.
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5.1.3 Construction of highly stable quadratic stability
polynomials

In this section we derive methods of order p = q = s with quadratic
stability polynomials which are A-stable and L-stable for s = 1, 2, 3, and 4.

p = s = 1 p = s = 2

−1 −0.5 0 0.5 1
0

0.5
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2.5

A−stability

θ

λ

L−Stability

−1 −0.5 0 0.5 1
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4
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λ

A− and L−stability

Figure 5.1: Regions of A-stability and L-stability in the (θ, λ)-plane for
p(ω, z) with p = s = 1 and p = s = 2. The figure on the left corresponds to
p01 = 0.

For s = 1 the stability polynomial (5.1.3) takes the form

p(ω, z) = ω
(

(1 − λz)ω2 − p1(z)ω + p0(z)
)

,

with p1(z) = 1 − θ + p11z, p0(z) = −θ + p01z. The solution of the equation
corresponding to (5.1.20) with s = 1 is p11 = 1− λ− p01 + θ. Assuming that
p01 = 0 it can be verified using the Schur criterion that p(ω, z) is A-stable if
and only if 2λ + θ ≥ 1, 2λ − θ ≥ 1 and λ ≤ 2. Moreover, p11 = 0 leads to
θ = λ− 1 and the resulting polynomial is L-stable if and only if 2

3
≤ λ ≤ 2.

This is illustrated in Fig. 5.1, where the range of parameters (θ, λ) for which
p(ω, z) is A-stable corresponds to the shaded region and the range of (θ, λ)
for which p(ω, z) is L-stable is plotted by a thick line.

For s = 2, 3, 4, we are looking for A-stable methods which are also L-
stable. This is the case if the degrees of the polynomials p0(z) and p1(z)
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in (5.1.3) are equal to s − 1, according to (5.1.19). For s = 2 the stability
polynomial (5.1.3) takes the form

p(ω, z) = ω2
(

(1 − λz)2ω2 − p1(z)ω + p0(z)
)

,

with p1(z) = 1 − θ + p11z and p0(z) = −θ + p01z. The system of equations
corresponding to (5.1.20) with s = 2 takes the form

p11 − p01 = 1 − 2λ + θ, 2p11 = 3 − 8λ + 2λ2 + θ.

and the unique solution to this system is given by

p11 =
3 − 8λ + 2λ2 + θ

2
, p01 =

1 − 4λ + 2λ2 − θ

2
.

The range of parameters (θ, λ) for which the p(ω, z) is A-stable and also
L-stable is plotted in Fig. 5.1 by the shaded region.

For s = 3 the stability polynomial (5.1.3) takes the form

p(ω, z) = ω3
(

(1 − λz)3ω2 − p1(z)ω + p0(z)
)

,

with p1(z) = 1− θ+ p11z+ p12z
2 and p0(z) = −θ+ p01z+ p02z

2. The system
of equations corresponding to (5.1.20) with s = 3 takes the form

p11 − p01 = 1 − 3λ + θ, 2p11 − 2p02 + 2p12 = 3 − 12λ + 6λ2 + θ,

3p11 + 6p12 = 7 − 36λ + 36λ2 − 6λ3 + θ,

and assuming that p02 = 0, the unique solution to this system is given by

p11 =
2(1 − 9λ2 + 3λ3 + θ)

3
, p12 =

5 − 36λ + 54λ2 − 12λ3 − θ

6
,

p01 =
1 − 9λ + 18λ2 − 6λ3 + θ

3
.

The range of parameters (θ, λ) for which the p(ω, z) is A-stable and also
L-stable is plotted in Fig. 5.2 by the shaded region.

Finally, for s = 4 the stability polynomial (5.1.3) takes the form

p(ω, z) = ω4
(

(1 − λz)4ω2 − p1(z)ω + p0(z)
)

,
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p = s = 3 p = s = 4
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Figure 5.2: Regions of A-stability and L-stability in the (θ, λ)-plane for
p(ω, z) with p = s = 3 and p = s = 4. The figure on the left corresponds to
p02 = 0 and the figure on the right to p03 = p13 = 0.

with p1(z) = 1−θ+p11z+p12z
2 +p13z

3 and p0(z) = −θ+p01z+p02z
2 +p03z

3.
The system of equations corresponding to (5.1.20) with s = 4 takes the form

p11 − p01 = 1 − 4λ + θ, 2p11 + 2p12 − 2p02 = 3 − 16λ + 12λ2 + θ,

3p11 + 6p12 + 6p13 − 6p03 = 7 − 48λ + 72λ2 − 24λ3 + θ,

4p11 + 12p12 + 24p13 = 15 − 128λ + 288λ2 − 192λ3 + 24λ4 + θ,

and assuming that p13 = 0 and p03 = 0 the unique solution to this system is
given by

p11 =
1 − 32λ + 144λ2 − 144λ3 + 24λ4 − θ

2
,

p12 =
17 − 192λ + 576λ2 − 480λ3 + 72λ4 − θ

12
,

p01 =
3 − 40λ + 144λ2 − 144λ3 + 24λ4 + θ

2
,

p02 =
7 − 96λ + 360λ2 − 384λ3 + 72λ4 + θ

12
.

The range of parameters (θ, λ) for which the p(ω, z) is A-stable and also
L-stable is plotted in Fig. 5.2 by the shaded region. The regions for s = 2,
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3, and 4 were obtained by computer searches in the parameter space (θ, λ)
using the Schur criterion.

5.1.4 Examples of TSRK methods with IQS

In this section we will follow the issues described in the previous pages to
derive examples of A-stable and L-stable TSRK methods (2.2.1) with IQS
and for which the coefficient matrix B has a one point spectrum σ(B) = {λ}.
These examples correspond to p = q = s for s = 1, 2, 3, and 4. It is always
assumed that θ = 0 which implies that u = 0, see (5.1.15).

Example 1. TSRK methods with p = q = s = 1. The coefficients of the
method corresponding to λ = 1 and arbitrary abscissa c are given by

u A B
θ v w

=
0 c− 1 1
0 c− 1 2 − c

.

The stability polynomial p(ω, z) of this family of methods is

p(ω, z) = ω
(

(1 − z)ω − 1
)

for any c. In particular, for c = 1 this method is equivalent to the backward
Euler method.

Example 2. TSRK methods with p = q = s = 2. The coefficients of the
method corresponding to λ = 5

4
and abscissa vector c = [0, 1]T are given by

u A B

θ vT wT
=

0 −25
32

−25
32

75
32

−25
32

0 −11
32

−11
32

49
32

5
32

0 −11
32

−11
32

49
32

5
32

.

The stability polynomial p(ω, z) of this method is

p(ω, z) = ω2
((

1 − 5

4
z
)2

ω2 −
(

1 − 31

16
z
)

ω − 7

16
z
)

.

Example 3. TSRK methods with p = q = s = 3. The coefficients of the
method corresponding to λ = 3

4
and abscissa the vector c = [0, 1

2
, 1]T are
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given by u = 0, θ = 0,

A =







1371718
2008359

−1349029
610487

−598537
334774

1996151
1120476

−3899713
676582

−4599017
986185

2289675
1145977

−2640065
408409

−4106281
785118






,

B =







3955778
915873

−573724
492365

253229
1575340

4717083
411104

−3938351
1455396

307583
814540

6683188
522061

−3272705
1193527

472108
741259






,

v =
[

2289675
1145977

−2640065
408409

−4106281
785118

]T
,

w =
[

6683188
522061

−3272705
1193527

472108
741259

]T
.

The stability polynomial p(ω, z) of this method is

p(ω, z) = ω3
((

1 − 3

4
z
)3

ω2 −
(

1 − 179

96
z +

53

96
z2
)

ω − 59

96
z
)

.

Example 4. TSRK methods with p = q = s = 4. The coefficients of the
method corresponding to λ = 1

3
and the abscissa vector c = [0, 1

3
, 2

3
, 1]T are

given by

A =













− 73571
418565

316790
450193

−383309
370547

−1102057
1459404

−324116
495273

3108022
1186313

−2008351
521461

−1905671
677809

−813738
787901

4021146
972541

−6409321
1054477

−6349415
1430988

−426460
370257

4154204
900915

−12185608
1797671

−6621076
1338039













,

B =













1082275
789096

− 47158
1102905

− 20658
230377

16548
733283

2053468
392523

173881
1660851

−337517
836884

86197
880374

13765224
1684843

119918
620675

−387828
932779

214966
1621163

8694859
954168

68987
727614

−198815
935168

90358
331129













,

v =
[

−426460
370257

4154204
900915 −12185608

1797671 −6621076
1338039

]T
,
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w =
[

8694859
954168

68987
727614

−198815
935168

90358
331129

]T
.

The stability polynomial p(ω, z) of this method is

p(ω, z) = ω4
((

1 − 1

3
z
)4

ω2 − p1(z)ω + p0(z)
)

with

p1(z) = 1 − 744347

1148421
z +

2965

320219
z2, p0(z) = −241021

765596
z − 198226

1427227
z2.

5.2 Algebraically Stable TSRK methods

The numerical search for algebraically stable TSRK methods with ϑ = 0,
u = 0 and ϑ 6= 0, u 6= 0, which is based on the criterion consisting of the
conditions 1–4 presented in Section 2.1.4 is described in the next pages.

5.2.1 Analysis of TSRK methods with ϑ = 0 and u = 0.

In this section we consider TSRK methods with ϑ = 0 and u = 0. Then,
the corresponding TSRK method (2.2.1) can be represented as GLM with
coefficient matrices A, U, B and V defined by

[

A U
B V

]

=





B e A
wT 1 vT

I 0 0



 . (5.2.1)

It can be verified that the stability function p(η, z) of this method takes the
form

p(η, z) = ηs+1 −R1(z)η
s +R2(z)η

s−1 + · · ·
+ (−1)sRs(z)η + (−1)s+1Rs+1(z),

(5.2.2)

where Ri(z) are rational functions

Ri(z) =
pi(z)

p0(z)
, i = 1, 2, . . . , s+ 1,
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with
p0(z) = 1 + p01z + · · · + p0sz

s,
p1(z) = 1 + p11z + · · · + p1sz

s,
p2(z) = p21z + · · · + p2sz

s,
...

ps(z) = ps,s−1z
s−1 + pssz

s,
ps+1(z) = ps+1,sz

s.

To investigate stability properties of GLMs (5.2.1) it is more convenient to
work with the polynomial

p̃(η, z) = p0(z)p(η, z) (5.2.3)

instead of the rational function p(η, z) and we will always adopt this ap-
proach. It can be verified that for TSRK method (5.2.1) the preconsistency
vector q0 takes the form

q0 =

[

1
0

]

∈ R
s+1

and the vector w̃ satisfying (2.1.32) is

w̃ =

[

1
v

]

∈ R
s+1.

Hence, the matrix D̃ defined by (2.1.33) takes the form

D̃ = diag

(

[

w I
]

[

1
v

]

)

= diag(w + v).

We compute next the Nyquist stability function N(ξ) corresponding to TSRK
method (5.2.1) and the Hermitian part of D̃N(ξ). Using the formula

[

B A
0 D

]−1

=

[

B−1 −B−1AD−1

0 D−1

]

(5.2.4)

where B and D are square and nonsingular matrices, we have

N(ξ) = B +
[

e A
]

[

ξ − 1 −vT

0 ξI

]−1 [
wT

I

]

= B +
1

1 − ξ
ewT +

1

ξ(ξ − 1)
e vT +

1

ξ
A.

.
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We have also

He
(

D̃N(ξ)
)

=
1

2

(

D̃
(

B +
1

ξ
B
)

+
(

BT +
1

ξ̄
AT
)

D̃

+
1

ξ − 1
D̃ewT +

1

ξ̄ − 1
weT D̃ +

1

ξ(ξ − 1)
D̃evT +

1

ξ̄(ξ̄ − 1)
veT D̃

)

,

where ξ̄ stands for conjugate of ξ. Taking into account that

D̃e = diag(w + v)e = w + v, eT D̃ = eTdiag(w + v) = (w + v)T ,

it follows that

He
(

D̃N(ξ)
)

=
1

2

(

D̃
(

B +
1

ξ
A
)

+
(

BT +
1

ξ̄
AT
)

D̃

+
( 1

ξ − 1
+

1

ξ̄ − 1

)

wwT +
( 1

ξ̄ − 1
+

1

ξ(ξ − 1)

)

wvT

+
( 1

ξ − 1
+

1

ξ̄(ξ̄ − 1)

)

vwT +
( 1

ξ(ξ − 1)
+

1

ξ̄(ξ̄ − 1)

)

vvT

)

.

We compute next the limit

lim
t→0

He
(

D̃N(ξ)
)

∣

∣

∣

ξ=eit
.

Since

lim
t→0

( 1

ξ − 1
+

1

ξ̄ − 1

)∣

∣

∣

ξ=eit
= −1, lim

t→0

( 1

ξ̄ − 1
+

1

ξ(ξ − 1)

)∣

∣

∣

ξ=eit
= −2,

lim
t→0

( 1

ξ − 1
+

1

ξ̄(ξ̄ − 1)

)∣

∣

∣

ξ=eit
= −2, lim

t→0

( 1

ξ(ξ − 1)
+

1

ξ̄(ξ̄ − 1)

)∣

∣

∣

ξ=eit
= −3,

it follows that

lim
t→0

He
(

D̃N(ξ)
)

∣

∣

∣

ξ=eit
=

1

2

(

diag(w + v)(B + A)

+ (B + A)Tdiag(w + v)− wwT − 2(wvT + vwT ) − 3vvT
)

.

(5.2.5)

Observe also that He(D̃N(ξ)) does not have a limit as ξ → 1. For example,
as ξ = x→ 1 along the real axis we have

lim
x→1

He
(

D̃N(ξ)
)

∣

∣

∣

ξ=x
= ∞.
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5.2.2 Analysis of TSRK methods with ϑ 6= 0 and u 6= 0.

We now consider the general case where ϑ 6= 0 and u 6= 0: in this case, the
TSRK method (2.2.1) can be represented as GLM with coefficient matrices
A, U, B and V defined by

[

A U
B V

]

=









B e− u u A
wT 1 − ϑ ϑ vT

0 1 0 0
I 0 0 0









. (5.2.6)

Similarly as in Section 5.2.1 it can be verified that the stability function
p(η, z) of this method takes the form

p(η, z) = ηs+2 − R1(z)η
s+1 +R2(z)η

s + · · ·
+ (−1)s+1Rs+1(z)η + (−1)s+2Rs+2(z),

(5.2.7)

where Ri(z) are rational functions

Ri(z) =
pi(z)

p0(z)
, i = 1, 2, . . . , s+ 2,

with
p0(z) = 1 + p01z + · · · + p0sz

s,
p1(z) = 1 − ϑ+ p11z + · · · + p1sz

s,
p2(z) = −ϑ+ p21z + · · · + p2sz

s,
...

ps+1(z) = ps+1,s−1z
s−1 + ps+1,sz

s,
ps+2(z) = ps+2,sz

s.

As before, to investigate stability properties of GLMs (5.2.6) it is more con-
venient to work with the polynomial p̃(η, z) = p0(z)p(η, z) instead of the
rational function p(η, z) and we will again always adopt this approach.

Similarly as in Section 5.2.1 it can be verified that for TSRK method
(5.2.6) the preconsistency vector q0 takes the form

q0 =





1
1
0



 ∈ R
s+2,
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the vector w̃ satisfying (2.1.32) is

w̃ =
1

1 + ϑ





1
ϑ
w



 ∈ R
s+2,

and the matrix D̃ defined by (2.1.33) is

D̃ =
1

1 + ϑ
diag(w + v).

We compute next the Nyquist stability function N(ξ) corresponding to TSRK
method (5.2.1) and the Hermitian part of D̃N(ξ). Using the formula (5.2.4)
we obtain

(ξI −V)−1 =







ξ
∆

ϑ
∆

vT

∆
1
∆

ξ−1+ϑ
∆

vT

ξ∆

0 0 1
ξ
I






,

where
∆ = ξ(ξ − 1 + ϑ) − ϑ = (ξ − 1)(ξ + ϑ).

This leads to

N(ξ) = A + U(ξI − V)−1B

= B +
ξ

(ξ − 1)(ξ + ϑ)
ewT +

1

(ξ − 1)(ξ + ϑ)
evT

− 1

ξ + ϑ
uwT − 1

ξ(ξ + ϑ)
uvT +

1

ξ
A.

We have also

He
(

D̃N(ξ)
)

=
1

2

(

D̃
(

B +
1

ξ
A
)

+ (BT +
1

ξ̄
AT
)

D̃

+
ξ

(ξ − 1)(ξ + ϑ)
D̃ewT +

ξ̄

(ξ̄ − 1)(ξ̄ + ϑ)
weT D̃

+
1

(ξ − 1)(ξ + ϑ)
D̃evT +

1

(ξ̄ − 1)(ξ̄ + ϑ)
veT D̃

− 1

ξ + ϑ
D̃uwT − 1

ξ̄ + ϑ
wuT D̃

− 1

ξ(ξ + ϑ)
D̃uvT − 1

ξ̄(ξ̄ + ϑ)
vuT D̃

)

.
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Using the relations

D̃e =
1

1 + ϑ
(w + v), eT D̃ =

1

1 + ϑ
(w + v)T ,

D̃uwT =
1

1 + ϑ

(

(w + v) · u
)

wT , wuT D̃ =
1

1 + ϑ
w
(

(w + v) · u
)T
,

D̃uvT =
1

1 + ϑ

(

(w + v) · u
)

vT , vuTD̃ =
1

1 + ϑ
v
(

(w + v) · u
)T
.

where, u · w denotes componentwise multiplication of vectors, this can be
written as

He
(

D̃N(ξ)
)

=
1

2(1 + ϑ)

(

diag(w + v)
(

B +
1

ξ
A
)

+
(

BT +
1

ξ̄
AT
)

diag(w + v)

+
( ξ

(ξ − 1)(ξ + ϑ)
+

ξ̄

(ξ̄ − 1)(ξ̄ + ϑ)

)

wwT

+
( 1

(ξ − 1)(ξ + ϑ)
+

ξ̄

(ξ̄ − 1)(ξ̄ + ϑ)

)

wvT

+
( ξ

(ξ − 1)(ξ + ϑ)
+

1

(ξ̄ − 1)(ξ̄ + ϑ)

)

vwT

+
( 1

(ξ − 1)(ξ + ϑ)
+

1

(ξ̄ − 1)(ξ̄ + ϑ)

)

vvT

− 1

ξ + ϑ

(

(w + v) · u
)

wT − 1

ξ̄ + ϑ
w
(

(w + v) · u)T

− 1

ξ(ξ + ϑ)

(

(w + v) · u
)

vT − 1

ξ̄(ξ̄ + ϑ)
v
(

(w + v) · u)T

)

.

We compute next the limit

lim
t→0

He
(

D̃N(ξ)
)

∣

∣

∣

ξ=eit
.

Since

lim
t→0

( ξ

(ξ − 1)(ξ + ϑ)
+

ξ̄

(ξ̄ − 1)(ξ̄ + ϑ)

)∣

∣

∣

ξ=eit
= − 1 − ϑ

(1 + ϑ)2
,

lim
t→0

( 1

(ξ − 1)(ξ + ϑ)
+

ξ̄

(ξ̄ − 1)(ξ̄ + ϑ)

)∣

∣

∣

ξ=eit
= − 2

(1 + ϑ)2
,
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lim
t→0

( ξ

(ξ − 1)(ξ + ϑ)
+

1

(ξ̄ − 1)(ξ̄ + ϑ)

)∣

∣

∣

ξ=eit
= − 2

(1 + ϑ)2
,

lim
t→0

( 1

(ξ − 1)(ξ + ϑ)
+

1

(ξ̄ − 1)(ξ̄ + ϑ)

)∣

∣

∣

ξ=eit
= − 3 + ϑ

(1 + ϑ)2
,

it follows that

lim
t→0

He
(

D̃N(ξ)
)

∣

∣

∣

ξ=eit
=

1

2(1 + ϑ)

(

diag(w + v)
(

B + A
)

+ (B + A)Tdiag(w + v)

− 1 − ϑ

(1 + ϑ)2
wwT − 2

(1 + ϑ)2
(wvT + vwT ) − 3 + ϑ

(1 + ϑ)2
vvT

− 1

1 + ϑ

(

(

w + v) · u
)

(w + v)T + (w + v)
(

(w + v) · u
)T
)

)

.

Observe that for ϑ = 0 and u = 0 this formula for limt→0 He(D̃N(ξ)) reduces
to the formula obtained in Section 5.2.1.

5.2.3 Examples of TSRK methods with ϑ = 0 and u =

0.

We have implemented an algorithm for numerical search for algebraically
stable TSRK methods written as GLMs (5.2.1). This algorithm is based on
minimizing the objective function which computes the negative value of the
minimum of the eigenvalues of the matrix He(D̃N(ξ)) for ξ such that |ξ| = 1
and ξ ∈ C − σ(V). This objective function is a numerical realization of the
necessary condition 4 for algebraic stability, which is listed at the end of
Section 2.1.4. Once the methods for which He(D̃N(ξ)) ≥ 0 for ξ such that
|ξ| = 1 and ξ ∈ C − σ(V) are found, the remaining necessary conditions 1-3
for algebraic stability are verified on the case by case basis.

In what follows we will present the results of our search for A-stable and
algebraically stable methods (5.2.1) with the number of stages s = 1, s = 2,
and s = 3.

1. Methods with s = 1, p = 2, and q = 2. Solving stage order and order
conditions

Ck = 0, C̃k = 0, k = 1, 2,
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we obtain a one-parameter family of methods of order p = 2 and stage order
q = 2 with coefficients given by

u B A
ϑ w v

=
0 c(2−c)

2
c2

2

0 3−2c
2

2c−1
2

,

where c is the abscissa. These methods are not algebraically stable for any c
and are A-stable only if c = 1, for which the resulting method is equivalent
to the trapezoidal rule

yn = yn−1 +
h

2

(

f(yn−1) + f(yn)
)

.

2. Methods with s = 1, p = 2, and q = 1. Solving stage order and order
conditions

C1 = 0, C̃1 = 0, C̃2 = 0,

we obtain a two-parameter family of methods of order p = 2 and stage order
q = 1 depending on a and c. The coefficients of these methods are given by

u B A
ϑ w v

=
0 a c− a

0 3−2c
2

2c−1
2

.

It can be verified using the Schur criterion discussed in Section 5.2.1 that
these methods are A-stable if a ≥ 1/2. It can be also verified using the ap-
proach based on Albert theorem described in Section 2.1.4 that the conditions
(2.1.27), (2.1.28) and (2.1.30) are satisfied if

g22 > 0 and 0 <
g11

g22
<

4

1 − 4c + 4c2
and a =

1 + 4c− 4c2

4
+
g22

g11
.

This implies that these methods are algebraically stable if a > 1/2. Putting,
for example, c = 3/4 and a = 1 we obtain the method

u B A
ϑ w v

=
0 1 −1

4

0 3
4

1
4

for which the matrices M and M̃ defined in Section 2.1.4 are nonnegative
definite if we choose

G =

[

g11 g12

g21 g22

]

=

[

1 1
4

1
4

9
16

]

, D = 1.
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This confirm again that this particular TSRK method is algebraically stable.

3. Methods with s = 2, p = 4, and q = 4. Solving stage order and order
conditions

Ck = 0, C̃k = 0, k = 1, 2, 3, 4,

we obtain a two-parameter family of methods of order p = 4 and stage order
q = 4 depending on the components of the abscissa vector c1 and c2. The
coefficients of these methods are not listed here. However, we were not able to
find the methods which are algebraically stable or A-stable and we conjecture
that such methods do not exist in this class.

4. Methods with s = 2, p = 4, and q = 3. Solving stage order and order
conditions

Ck = 0, k = 1, 2, 3, C̃k = 0, k = 1, 2, 3, 4,

we obtain a four-parameter family of methods of order p = 4 and stage order
q = 3 depending on c1, c2, b12 and b22. The stability polynomial p̃(η, z)
defined by (5.2.3) takes the form

p̃(η, z) = p0(z)η
3 − p1(z)η

2 + p2(z)η − p3(z),

where

p0(z) = 1 + p01z + p02z
2, p1(z) = 1 + p11z + p12z

2,

p2(z) = p21z + p22z
2, p3(z) = p31z

2.

In our search for A-stable methods we compute first the parameter b22 from
the algebraic equation

p31 = 0

and then apply the Schur criterion discussed in Section 5.2.1 to the quadratic
polynomial

p0(z)η
2 − p1(z)η + p2(z).

The results of this search are presented in Fig. 5.1 in the parameter space
(c1, c2) for selected values of the parameter b12, and in Fig. 5.2 in the param-
eter space (c1, b12) for c2 = 1.

We will search next for algebraically stable methods using the conditions
1–4 listed at the end of Section 2.1.4. This search is based on minimizing the
negative value of the objective function which computes the minimum of the
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Figure 5.1: Regions of A-stability in the parameter space (c1, c2) for TSRK
methods with p = 4 and q = 3, for specific values of b12.

eigenvalues of the matrix He(D̃N(ξ))|ξ=eit for t ∈ [0, 2π]. It can be verified
using formula (5.2.5) that

lim
t→0

det
(

He
(

D̃N(ξ)
)

∣

∣

∣

ξ=eit

)

= − F (c1, c2, b12, b22)
2

(c1 − c2)2(c1 − c2 − 1)4(c1 − c2 + 1)4
,

where F (c1, c2, b12, b22) is a polynomial with respect to c1, c2, b12, b22. To
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Figure 5.2: Region of A-stability in the parameter space (c1, b12) for TSRK
methods methods with p = 4 and q = 3 for c2 = 1.

satisfy the condition 4 at the end of Section 2.1.4, i.e.,

He
(

D̃N(ξ)
)

≥ 0, |ξ| = 1, ξ ∈ C − σ(V),

for ξ = 1 or t = 0, t = 2π, we compute the parameter b12 from the equation

F (c1, c2, b12, b22) = 0. (5.2.8)

The search in the parameter space (c1, c2, b22) did not lead to any methods
which are algebraically stable. We were only able to find methods for which

He
(

D̃N(ξ)
)

∣

∣

∣

ξ=eit
≥ −2.68 · 10−3, (5.2.9)

t ∈ [0, 2π]. Not imposing the condition (5.2.8) and searching in the parameter
space (c1, c2, b12, b22) we were able to find some algebraically stable methods
but, unfortunately, with unrealistically large values of some parameters c1,
c2, b12, or b22. Restricting this search to 0 ≤ c1, c2 ≤ 1, −1 ≤ b12, b22 ≤ 1 we
found methods for which

He
(

D̃N(ξ)
)

∣

∣

∣

ξ=eit
≥ −5.28 · 10−4, (5.2.10)
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t ∈ [0, 2π].

5. Methods with s = 3, p = 4, and q = 4. Solving stage order and order
conditions

Ck = 0, C̃k = 0, k = 1, 2, 3, 4,

we obtain an eleven-parameter family of methods of order p = 4 and stage
order q = 4 depending on c1, c2, c3, bij, i = 1, 2, 3, j = 1, 2, w3, and
v3. Searching for A-stable methods we assume that the abscissa vector c =
[0, 1/2, 1]T . The stability polynomial (5.2.3) for this family of methods takes
the form

p̃(η, z) = η
(

p0(z)η
4 − p1(z)η

3 + p2(z)η
2 − p3(z)η + p4(z)

)

.

where pi(z) are polynomials of degree 3 with respect to z. We compute next
the parameters b11 b12, and b13 to annihilate polynomials p3(z) and p4(z).
This leads to a five-parameter family of methods depending on b22, b31, b32,
w3, and v3 whose stability properties are determined by quadratic polynomial

p0(z)η
2 − p1(z)η + p0(z).

The results of computer search based on the Schur criterion are presented in
Fig. 5.3 in the parameter space (w3, v3) for selected values of the parameters
b22, b31, b32. We also searched for methods which are algebraically stable
with general abscissa vector c. Although we did not find such methods, we
found formulas for which

He
(

D̃N(ξ)
)

∣

∣

∣

ξ=eit
≥ −3.50 · 10−11, (5.2.11)

t ∈ [0, 2π]. This bound was obtained by dividing the interval [0, 2π] into
n = 10000 subintervals. Dividing [0, 2π] into n = 1000 and n = 100 subin-
tervals, these bounds are equal to 0.

The coefficients of a method satisfying (5.2.11) are

c =
[

0.748023646320140 −0.088623514454709 1.356515696201252
]T
,

B =







0.421393024773032 0.363279074448260 −0.048601648229138

−0.136821530809582 0.352101387625363 0.033470857866822

0.730130053789655 0.254440972752177 0.213275751785994






,
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Figure 5.3: Regions of A-stability in the (w3, v3)-plane, for TSRK methods
with s = 3 and p = q = 4, for specific values of the parameters b22, b31, b32.

A =







−0.061994904923431 −0.014321664726926 0.088269764978343

−0.413117314149065 0.027004921378105 0.048738163633648

−0.090220513163391 0.002986566608366 0.245902864428450






,

w =
[

0.622394316996030 0.313242750536090 −0.011784503142076
]T
,

v =
[

−0.062831671181596 −0.008857653267082 0.147836760058631
]T
.
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6. Methods with s = 3, p = 4, and q = 3. Solving stage order and order
conditions

Ck = 0, k = 1, 2, 3, C̃k = 0, k = 1, 2, 3, 4,

we obtain an eleven-parameter family of methods of order p = 4 and stage
order q = 3 depending on bij, i, j = 1, 2, 3, w3, and v3. In our search for
A-stable methods we assume again that c = [0, 1/2, 1]T . We compute the
parameters b11, b12, and b13 to reduce the degree of stability polynomial to
3. As a result we obtain an eight-parameter family of methods depending on
b21, b22, b23, b31, b32, b33, w3, and v3. The result of this search are produced
on Fig. 5.4. The four cases in Fig. 5.4 correspond to:

• Case 1: b21 = 2/3, b22 = 1, b23 = 1, b31 = −1/3, b32 = −1, b33 = 1/2.

• Case 2: b21 = 2, b22 = 1/2, b23 = 1, b31 = 1, b32 = −1, b33 = 1.

• Case 3: b21 = 2, b22 = 1, b23 = 1, b31 = 0, b32 = 1, b33 = 1.

• Case 4: b21 = 2, b22 = 1/2, b23 = 1/2, b31 = 1, b32 = 1/4, b33 = 1.

In our search for algebraically stable methods, we found formulas for
which

He
(

D̃N(ξ)
)

∣

∣

∣

ξ=eit
≥ −3.77 · 10−11, (5.2.12)

t ∈ [0, 2π]. As before, this bound was obtained by dividing the interval [0, 2π]
into n = 10000 subintervals. Dividing [0, 2π] into n = 1000 and n = 100
subintervals, these bounds are equal to 0.

The coefficients of a method satisfying (5.2.12) are

c =
[

0 9
10

1
5

]T
,

B =







1.923612711387117 0.332510317035363 −2.361485324294705

−0.042296580010526 0.264934173014572 0.753491461692750

−0.754264567991751 −0.285410192009791 1.590352848308200






,

A =







−0.059505325459301 0.350609358761479 −0.185741737429953

0.035823298712475 −0.054110902952294 −0.057841450456976

0.583885022389948 −0.292809804314522 −0.641753306382084






,

w =
[

0.085993246200685 0.374327773490317 0.659375459065431
]T
,

v =
[

0.123800116578393 −0.056810353776912 −0.186686241557912
]T
.
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Figure 5.4: Regions of A-stability in the (w3, v3)-plane, for TSRK methods
with s = 3 and p = q = 4 for specific values of the parameters

5.2.4 Examples of TSRK methods with ϑ 6= 0 and u 6=
0.

As in Section 5.2.3, we will use Schur criterion to search for A-stable TSRK
methods, and the criterion based on conditions 1-4 listed at the end of Sec-
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tion 2.1.4 to search for TSRK methods which are algebraically stable. In the
remainder of this section we will present the results of our search for such
methods (5.2.6) with the number of stages s = 1, s = 2, and s = 3.

1. Methods with s = 1, p = 2, and q = 2. Assuming that c = c1 = 1 and
solving stage order and order conditions

Ck = 0, C̃k = 0, k = 1, 2,

we obtain a two-parameter family of methods of order p = 2 and stage order
q = 2 with coefficients given by

u B A
ϑ w v

=
u 1−u

2
1+3u

2

ϑ 1−ϑ
2

1+3ϑ
2

.

It can be verified using Schur criterion that these methods are A-stable if
and only if

−1 < ϑ < 0 and
ϑ(ϑ+ 3)

2(ϑ + 1)
≤ u ≤ ϑ

2

or u = ϑ = 0. The last case corresponds again to the trapezoidal rule
obtained in Section 5.2.3.

To search for methods which are algebraically stable we use the criteria
(2.1.29) or (2.1.30) based on Albert theorem discussed in Section 2.1.4. The
example of such a method is given by

u B A
ϑ w v

=
−3

4
7
8

−5
8

−1
2

3
4

−1
4

.

We can verify that choosing positive definite matrices G and D,

G =





g11 g12 g13

g21 g22 g23

g31 g32 g33



 =





14
13

− 9
13

−21
52

− 9
13

1
2

4
13

−21
52

4
13

27
104



 , D =
[

5
26

]

,

the matrices M and M̃ defined in Section 2.1.4 are nonnegative definite.

2. Methods with s = 2, p = 4, and q = 4. Solving stage order and order
conditions

Ck = 0, C̃k = 0, k = 1, 2, 3, 4,
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we obtain a five-parameter family of methods of order p = 4 and stage order
q = 4 depending on c1, c2, u1, u2, and ϑ. In our search for A-stable methods
we computed first ϑ, u1, and u2 to reduce the degree of stability polynomial
from 4 to 2. As a consequence we obtain a two-parameter family of methods
depending on c1 and c2. The results of computer search are presented on
Fig. 5.5.
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0.8

1

1.2

1.4

1.6

1.8

2

c
2

Figure 5.5: Regions of A-stability and in the (c1, c2)-plane, for TSRK meth-
ods with s = 2 and p = q = 4

We were not able to find algebraically stable methods in this class, and
the best bound we were able to satisfy is

He
(

D̃N(ξ)
)

∣

∣

∣

ξ=eit
≥ −2.89 · 10−3,

t ∈ [0, 2π].

3. Methods with s = 2, p = 4, and q = 3. Solving stage order and order
conditions

Ck = 0, k = 1, 2, 3, C̃k = 0, k = 1, 2, 3, 4,

we obtain a seven-parameter family of methods of order p = 4 and stage
order q = 3 depending on c1, c2, b12, b22, u1, u2, and ϑ. To search for A-
stable methods we assume that c = [1/2, 1]T . We next determine ϑ to reduce
the degree of p̃(η, z) from 4 to 3. This leads to a four-parameter family of
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methods depending on b12, b22, u1, and u2. The results of the search are
presented in Fig 5.6 for selected values of the parameters u1 and u2.
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Figure 5.6: Regions of A-stability in the (b12, b22)-plane, for TSRK methods
with s = 2, p = 4, and q = 3, for specific values of the parameters u1 and u2.

As in the previous case, we were not able to find algebraically stable
methods in this class, and the best bound we were able to satisfy is

He
(

D̃N(ξ)
)

∣

∣

∣

ξ=eit
≥ −7.70 · 10−8,
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t ∈ [0, 2π]. The coefficients of a method corresponding to this bound are
ϑ = 0.045477710128446,

c =
[

2.336580469857886 1.243897612851233
]T
,

u =
[

−0.009140162241697 −0.004971562691777
]T
,

B =

[

0.382519266813101 1.231791538880037
−0.067916000101827 0.439694807309414

]

,

A =

[

0.123031161533802 0.590098340389249
0.161425752706173 0.705721490245697

]

,

w =
[

−0.033116900308262 −0.046491551194616
]T
,

v =
[

0.309391097083087 0.815695064548217
]T
.

We have also tried to find methods with c1 and c2 in the interval [0, 1]. We
found methods for which

He
(

D̃N(ξ)
)

∣

∣

∣

ξ=eit
≥ −4.42 · 10−5,

t ∈ [0, 2π]. The coefficients of a method corresponding to this bound are
ϑ = 0.334852100666355,

c =
[

0.817535264370424 0.111499700613041
]T
,

u =
[

0.381412710198958 0.549351922349542
]T
,

B =

[

0.261809682531266 0.716578941913569
−0.055221137652820 0.331382626202203

]

,

A =

[

0.064452365556917 0.156106984567630
0.115480859585862 0.269209274827339

]

,

w =
[

0.484238639043203 0.651111475466369
]T
,

v =
[

0.058567341150044 0.140934645006739
]T
.

4. Methods with s = 3, p = 4, and q = 4. Solving stage order and order
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Figure 5.7: Regions of A- and L-stability in the (ϑ, v3)-plane, for TSRK
methods with s = 3, p = 4, and q = 4

conditions
Ck = 0, C̃k = 0, k = 1, 2, 3, 4,

we obtain a fifteen-parameter family of methods of order p = 4 and stage
order q = 4 depending on c1, c2, c3, bij, i = 1, 2, 3, j = 1, 2, w3, v3, u1, u2, u3,
and ϑ. We used most of these parameters to reduce the degree of stability
polynomial from 5 to 3 and to achieve L-stability. In Fig. 5.7 we present the
A- and L-stable methods in the parameter space (ϑ, v3).

We next investigate algebraic stability. In this family we have found
methods for which

He
(

D̃N(ξ)
)

∣

∣

∣

ξ=eit
≥ 0,

t ∈ [0, 2π], with small negative c1 and with c2 and c3 in the interval [0, 1].
The coefficients of such a method are ϑ = −0.848157324846955,

c =
[

−0.001034365439338 0.460202200222726 0.904412078001496
]T
,

u =
[

−4.095771377315513 −8.224398492425298 −1.491121282659948
]T
,

B =





0.313393425882524 −0.230606333014524 0.057318614979789
0.145030029219694 0.433646707347174 −0.082047057840003
0.298592649650861 0.485659580434091 0.175944782009046



 ,
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Figure 5.8: Eigenvalues λ1(t), λ2(t), and λ3(t) of the matrix He
(

D̃N(ξ)
)

for
ξ = eit, t ∈ [0, 2π]

A =





−0.589101054212143 −2.620606437887970 −1.027203958502527
−1.339460229044111 −4.705966457621601 −2.215399284263721
−0.206836462942642 −0.983942583478110 −0.356127170331698



 ,

w =
[

0.174157205530582 0.575265278532646 0.258760729183023
]T
,

v =
[

−0.135787037506238 −0.496815665848241 −0.223737834738728
]T
.

The eigenvalues λ1(t), λ2(t), and λ3(t) of the matrix He
(

D̃N(ξ)
)

for ξ = eit,
t ∈ [0, 2π], are plotted in Fig. 5.8.

5. Methods with s = 3, p = 4, and q = 3. Solving stage order and order
conditions

Ck = 0, k = 1, 2, 3, C̃k = 0, k = 1, 2, 3, 4,
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Figure 5.9: Regions of L-stability in the (ϑ, v3)-plane, for TSRK methods
with s = 3, p = 4, and q = 3, for selected values of w3

we obtain an eighteen-parameter family of methods of order p = 4 and stage
order q = 4 depending on c1, c2, c3, bij, i, j = 1, 2, 3, w3, v3, u1, u2, u3, and ϑ.
Similarly as before we use most of these parameters to reduce the degree of
stability polynomial from 5 to 3 and to obtain L-stability. The results of this
search are presented on Fig 5.9 in the parameter space (ϑ, v3) for selected
values of the parameter w3.

Concerning algebraic stability, we were looking for methods with the ab-
scissas c1, c2, and c3 in the interval [0, 1]. We have found such methods for



160
CHAPTER 5. STABILITY FEATURES FOR

DISCRETE TSRK METHODS

0 1 2 3 4 5 6
0

0.01

0.02

0.03
λ

1

0 1 2 3 4 5 6
0

0.01

0.02

0.03

0.04

λ
2

0 1 2 3 4 5 6
0.5

0.55

0.6

0.65

0.7

λ
3

t

Figure 5.10: Eigenvalues λ1(t), λ2(t), and λ3(t) of the matrix He
(

D̃N(ξ)
)

for
ξ = eit, t ∈ [0, 2π]

which

He
(

D̃N(ξ)
)

∣

∣

∣

ξ=eit
≥ 0,

t ∈ [0, 2π]. The coefficients of such a method are ϑ = −0.564128015497646,

c =
[

0.070458343197336 0.681445056919784 0.952288029979521
]T
,

u =
[

−1.270302241246827 −1.227105131502048 −1.431550985893559
]T
,

B =





0.421381377377544 −0.267169299260385 0.109795290241695
0.043388505707860 1.529849094557059 −0.802719654220106
1.009683545410309 −0.770029595044248 0.856095443003834



 ,
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A =





−0.319430622728631 −1.232896302162007 0.088475658482292
−0.184576227521167 −1.251755340576103 0.120153547470190
−0.633408516424409 −0.641844792716881 −0.299759040142642



 ,

w =
[

0.400771327681170 0.573865935770521 0.071538532173898
]T
,

v =
[

−0.165958972572252 −0.440020959651672 −0.004323878899313
]T
.

The eigenvalues λ1(t), λ2(t), and λ3(t) of the matrix He
(

D̃N(ξ)
)

for ξ = eit,
t ∈ [0, 2π], are plotted in Fig. 5.10.

5.2.5 An example of algebraically stable method by

Hewitt and Hill

To put things in some perspective we analyze also the example of algebraically
stable GLM of with s = 2, p = 4, and q = 3 constructed by Hewitt and Hill
[125]. For this method the abscissa vector c and the coefficient matrices A,
B, U, and V are given by

c =
[

0 193y2−129y4−297y6−243y8

8
− 1

6

]T

,

A=

[

265
864

+ 793y2

576
− 5y4

6
− 123y6

64
− 27y8

16
215
864

− 5299y2

576
+ 623y4

96
+ 915y6

64
+ 189y8

16

101
432

+ 3821y2

288
− 463y4

48
− 669y6

32
− 135y8

8
67
432

+ 793y2

288
− 5y4

3
− 123y6

32
− 27y8

8

]

,

B =

[

2
3

1
3

17y−1125y3+828y5+1783y7+1458y9

24
−11y+1125y3−828y5−1782y7−1458y9

24

]

,

U =

[

1 −7y+9y3

16

0 y+9y3

8

]

, V =

[

1 0

0 1
2

]

.

Here y = ±
√

z/3 and z is one of the two positive roots of the equation

9z5 + 33z4 + 46z3 − 186z2 + 9z + 1 = 0.

Choosing the root z = 0.1032814360 and y =
√

z/3, the decimal representa-
tion of the resulting method is

c = [0, 0.6432188884]T ,
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[

A U
B V

]

=











0.3530415762 −0.0595835887 1 −0.08476931053

0.6782443859 0.2477498188 1 0.03037947026
0.6666666667 0.3333333333 1 0

−0.1598351741 0.2062215576 0 0.5











.

It can be verified that for this method

He
(

D̃N(ξ)
)

∣

∣

∣

ξ=eit
≥ −5.21 · 10−11,

t ∈ [0, 2π]. This bound was obtained by dividing the interval [0, 2π] into
n = 10000 subintervals. Dividing [0, 2π] into n = 1000 and n = 100 subin-
tervals, the bounds are −1.84 · 10−13 and −1.32 · 10−15, respectively.



Chapter 6

Implementation of two-step
collocation methods

In this chapter we discuss some practical issues concerning the variable
stepsize implementation of two-step (almost) collocation methods (3.2.1) for
the numerical solution of stiff differential systems (1.1.1). Such issues include
the estimation of the principal part of the local discretization error and its
assessment for large values of the step size, the comparison of possible strate-
gies of step size control, the high order terms estimation in view of a variable
order implementation, the computation of the stage values via Newton it-
erations. It is important to underline that the implementation of two-step
collocation methods can benefit from their special structure, i.e. from the
continuous approximant P (tn + sh) in (3.2.1), especially in order to perform
a suitable step changing strategy. Many of these issues have been treated in
our paper [95] (where we have also reported some of the numerical evidences
included in Chapter 7) and are strongly linked to existing literature concern-
ing the variable stepsize implementation of numerical methods for stiff ODEs
(see, for instance, the monographes [42, 122, 138, 147, 185, 186, 188] and the
references therein contained).

6.1 Starting procedure

Two-step (almost) collocation methods (3.2.1) and, more in general, TSRK
methods (2.2.1) require a starting procedure for the computation of the miss-
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ing starting values y1 ≈ y(t0 + h0) and Y [0] ≈
(

y(t0 + cjh0)
)m

j=1
, where h0

is the initial stepsize. Hairer-Wanner [121] and Tracogna-Welfert [198] ob-
served that for TSRK methods of order p and stage order q = p or q = p−1,
it is possible to choose as a starting procedure any continuous Runge-Kutta
method (see, for instance, [167, 168, 169]) of uniform order p or to use a
discrete Runge-Kutta method of order p with suitable stepsize. Of course,
since the methods we aim to implement are A-stable and L-stable, the start-
ing procedure must respect the same requirement: therefore, we base our
starting procedure on the m-stage Runge–Kutta formulae

{

y1 = y0 + h0(b
T ⊗ I)F [0],

Y [0] = (e⊗ I)y0 + h0(A⊗ I)F [0],
(6.1.1)

based on the Gaussian nodes (see [36]), which are A-stable and of order
p = 2m and stage order q = m. In the integration of stiff systems, such
methods suffer from order reduction (for instance, see [42]) and, therefore,
their effective order is equal to m. These are implicit methods and, therefore,
the stage vector Y [0] has to be determined by solving the nonlinear system in
(6.1.1): its solution is computed by using Newton iterations, in the following
way. We set

Φ(Y [0]) = Y [0] − (e⊗ I)y0 − h0(A⊗ I)F [0]

and aim to solve the system Φ(Y [0]) = 0, of dimension md×md. We take as
initial guess the vector

Y [0],0 = [y0, . . . , y0]
T ∈ R

md,

and start the following Newton-type iterative procedure

Y [0],i+1 = Y [0],i −
(

∂Φ(Y [0],i)
)−1

Φ(Y [0],i), (6.1.2)

for i = 0, 1, . . . , ν − 1, where

∂Φ(Y [0]) = Imd − h(A⊗ Id)J ∈ R
md×md,

and J is the jacobian matrix of F [0], i.e. the block diagonal matrix

J =







∂f(Y
[0]
1 )

. . .

∂f(Y
[0]
m )






,
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where ∂f(Y
[0]
j ) is the jacobian matrix of f evaluated in Y

[0]
j , for j = 1, 2, . . . , m.

The expression (6.1.2) is equivalent to the linear system

−∂Φ(Y [0],i)δY [0] = Φ(Y [0],i), (6.1.3)

where δY [0] = Y [0],i+1 − Y [0],i. We next solve the system (6.1.3) with respect
to δY [0], for example by Gaussian elimination, and derive

Y [0],i+1 = Y [0],i + δY [0].

We stop the iterative scheme at the ν-th step, when ‖δY [0]‖∞ < tol and
‖ΦY [0],ν‖∞ < tol, and take Y [0] = Y [0],ν. We next compute the value ŷ1, ap-
plying the Runge–Kutta methods twice, i.e. with two steps of stepsize h0/2,
in order to estimate the local error by means of Richardson extrapolation
(see [119])

est(t1) =
22m(y1 − ŷ1)

1 − 22m
.

It is well known that Richardson extrapolation is accurate, but also expen-
sive. However, its usage in our implementation is only restrict to the very first
step of the integration, so its contribution to the overall cost of the algorithm
is not significant. Finally, the stepsize h0 is adjusted until ‖est(t1)‖ < tol.
The strategy followed in order to compute a new stepsize at each step is
described in details in Section 6.5.

6.2 Local error estimation

In this section we will look for estimates of the term hp+1ỹ(p+1)(tn), as dis-
cussed in Section 3.2.5, in order to reliably estimate the local discretization
error (3.2.29). Following the lines drawn in previous papers on discrete TSRK
methods (for instance [16]), we aim to provide an estimation to hp+1ỹ(p+1)(tn)
having a similar shape with respect to the form of the method itself, i.e.

hp+1ỹ(p+1)(tn) = α0yn−1 + α1yn+

+ h

m
∑

j=1

[

βjf(P (tn−1 + cjh)) + γjf(P (tn + cjh))
]

,

(6.2.1)
where α0, α1, βj and γj , j = 1, 2, . . . , m, are real parameters which can be
derived using the following result.
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Theorem 6.2.1 Assume that the solution ỹ(t) to (3.2.31) is sufficiently
smooth. Then the constants α0, α1, βj, and γj , j = 1, 2, . . . , m appearing
in (6.2.1) satisfy the system of equations















































α0 + α1 = 0,

(−1)k

k!
α0 +

m
∑

j=1

(

βj
(cj − 1)k−1

(k − 1)!
+ γj

ck−1
j

(k − 1)!

)

= 0,

k = 1, 2, . . . , p,
(

(−1)p+1

(p+ 1)!
− Cp(−1)

)

α0 +
m
∑

j=1

(

βj
(cj − 1)p

p!
+ γj

cpj
p!

)

= 1.

(6.2.2)

Proof:. Because of the localizing assumption, it is ỹ(t) = yn (compare
(4.3.10)) and since the method (3.2.1) is of order p it is locally of order
p + 1 and we have

yn−1 = ỹ(tn−1) − Cp(−1)hp+1ỹ(p+1)(tn) +O(hp+2).

We have also

P (tn + sh) = ỹ(tn + sh) +O(hp+1), s ∈ [−1, 1].

Substituting these relations and yn = ỹ(tn) into (6.2.1) we obtain

hp+1ỹ(tn) = α0

(

ỹ(tn − h) − Cp(−1)hp+1ỹ(p+1)(tn)
)

+ α1ỹ(tn)

+ h
m
∑

j=1

(

βjỹ
′(tn + (cj − 1)h) + γj ỹ

′(tn + cjh)
)

.

Expanding ỹ(tn−1), ỹ(tn+1), ỹ
′(tn + (cj − 1)h), and ỹ′(tn + cjh) into Tay-

lor series around the point tn and comparing the terms of order O(hk) for
k = 0, 1, . . . , p+ 1 leads to the system (6.2.2). 2

Observe that (6.2.2) constitutes a system of p+ 2 equations with respect
to 2m + 2 unknown coefficients α0, α1, βj, and γj , j = 1, 2, . . . , m. We have
the following theorem.

Theorem 6.2.2 Assume that ci 6= cj and ci 6= cj − 1 for i 6= j. Then the
system (6.2.2) corresponding to p = m + r, where r = 1, 2, . . . , m, has a
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family of solutions depending on m− r free parameters which may be chosen
as, for example, βr+1, βr+2, . . . , βm or γr+1, γr+2, . . . , γm. In particular, if
r = m then the solution to the system (6.2.2) is unique. This system does
not have solutions if r = m+ 1.

Proof: The proof is similar to that of Theorem 3.2.3 and is therefore omitted.
2

Other choices of free parameters than those indicated in Theorem 6.2.2
are also possible. For example, if r = m− 1 ≥ 1 there is one free parameter
which may be chosen as α1, if r = m− 2 ≥ 1 there are two free parameters
which may be chosen as α1 and α0, if r = m − 3 ≥ 1 there are three free
parameters which may be chosen as α1, α0, and β1 or γ1, and if r = m−k ≥ 1,
k > 3, there are k free parameters which may be chosen as α1, α0, and βj or
γj, j = 1, 2, . . . , k − 2.

We will next illustrate the quality of this estimator in Chapter 7, where
the results of variable stepsize experiments related to the solution of some
stiff systems have been reported. The quality of this estimate for stiff differ-
ential systems can be remarkably improved by suitably applying the filtering
technique, as discussed in the following section.

6.3 Assessment of the local error estimation

for large step sizes

We have provided in the previous section the estimation (6.2.1) to the local
truncation error, which is asymptotically correct for hn tending to 0: this
property can be tested by means of Taylor series expansion arguments, or
may be obvious from its construction. However, in order to approach stiff
systems, this property of correctness is not sufficient, since their solution
also requires the usage of large stepsizes with respect to certain features
of the problem. Shampine and Baca in [187] focused their attention on the
assessment of the quality of the error estimate for large values of the stepsize,
by using similar arguments as in the classical theory of absolute stability. We
now specialize the results proposed in [187] to our class of methods (3.2.1).

Following the lines drawn in [187], we consider a restricted class of prob-
lems of the form y′ = Jy, where J is a constant matrix that can be diagonal-
ized by a similarity transformation M−1JM = diag(ξi). Then, it is sufficient
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to consider the scalar problem
{

y′(t) = ξy, t ≥ 0,
y(0) = 1,

(6.3.1)

where ξ ∈ C is one the eigenvalues of J , which is supposed to have negative
real part. The solution of the problem (6.3.1) is y(t) = eξt and, therefore,

Y [n] = eξ(tn+chn) +O(hp+1
n )

and
Y [n−1] = eξ(tn+(c−e)hn−1) +O(hp+1

n ).

As a consequence, we obtain

le(tn) = eξtn

(

ezδn − ϕ0(1)e
−z − ϕ1(1) − zδn(v

T ⊗ I)ez(c−e)

− zδn(w
T ⊗ I)ezcδn

)

+O(zp+2),

where z = ξhn−1 and δn = hn

hn−1
. We next achieve an analogous expression

also for the error estimate est(tn), obtaining

est(tn) = Cp(1)e
ξtn

(

α0e
−z + α1 + zδn(β

T ⊗ I)ez(c−e)

+ zδn(γ
T ⊗ I)ezcδn

)

+O(zp+2).

To investigate the behaviour of error estimates for large values of z, we define
the functions Rle(z, δ) and Rest(z, δ), respectively defined by

Rle(z, δ) = ezδ − ϕ0(1)e
−z − ϕ1(1) − zδ(vT ⊗ I)ezcδ − zδ(wT ⊗ I)ez(c−e)δ,

Rest(z, δ) = α0e
−z + α1 + zδ(βT ⊗ I)ez(c−e)δ + zδ(γT ⊗ I)ezcδ,

corresponding to le(tn) and est(tn). To assess the quality of est(tn) for large
step sizes, we examine the ratio

r(z, δ) =
Rest(z, δ)

Rle(z, δ)
. (6.3.2)

If r(z, δ) ∼ constant · zµ, for Re(z) < 0 as |z| → ∞ with a positive in-
teger µ, the error is grossly overestimated for large z. To compensate for
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this, Shampine and Baca proposed in [187], in the context of RK methods,
premultiplying est(tn) by the so-called filter matrix,

(

I − hnJ(tn)
)−µ

where J(tn) is an approximation to th Jacobian matrix of the problem (1.1.1)
at the point tn. This choice is suitable to damp the large, stiff error compo-
nents.

Concerning two-step collocation methods (3.2.1), we observe that the
ratio (6.3.2) behaves in the following way:

r(z, δ) ∼ − α1

ϕ0(1)
, |z| → ∞, Re(z) < 0,

and this behaviour would suggest that the original estimate est(tn) can be
used for all the values of the stepsize. However, it is important to observe that
the denominator appearing in the above expression is equal to ϕ0(1) which,
for zero-stability requirements, is always between -1 and 1: this means that,
for small values of ϕ0(1) close to zero, the ratio r(z, δ) results to be very large
and, therefore, the error estimate est(tn) would not be reliable at all. On the
contrary, the filtered estimation

est′(tn) = (I − hnJ)−1est(tn), (6.3.3)

corresponding to the filter matrix (I−hnJ)−1 proposed in [187], results to be
much more reliable than the original estimation est(tn), as it has also been
verified experimentally. As observed in [187], the improved error estimator
does not alter the behaviour for small hn but, on the opposite, it corrects the
behaviour of the estimate for large values of hn.

6.4 High order terms estimation

The estimation of the principal term of the local error (3.2.29) is a neces-
sary tool in order to implement our methods in a variable stepsize environ-
ment. However, it is also important to estimate the quantities

hp+2y(p+2)(tn), hp+2∂f

∂y

(

y(tn)
)

y(p+1)(tn),
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i.e. the terms of order p+ 2 appearing in the expansion (3.2.34) of the local
discretization error, in view of a variable stepsize-variable order implementa-
tion of two-step collocation methods. Therefore, proceeding similarly as for
the estimation of the principal term of the local error, we look for estimates
of the type

hp+2y(p+2)(tn) = α̃0yn−1 + α̃1yn+

+h
m
∑

j=1

(

β̃jf
(

P (tn−1 + cjh)
)

+ γ̃jf
(

P (tn + cjh)
)

)

,
(6.4.1)

and

hp+2∂f

∂y

(

y(tn)
)

y(p+1)(tn) = ᾱ0yn−1 + ᾱ1yn+

+h

m
∑

j=1

(

β̄jf
(

P (tn−1 + cjh)
)

+ γ̄jf
(

P (tn + cjh)
)

)

,
(6.4.2)

where the real parameters α̃0, α̃1, β̃j, γ̃j, j = 1, 2, . . . , m, and ᾱ0, ᾱ1, β̄j, γ̄j ,
j = 1, 2, . . . , m, can be computed according to the following result.

Theorem 6.4.1 Setting

νi =
(−1)p+i

(p + i)!
− Cp(−1),

and

µ`(t) =
tp

p!
− Cp+`(t),

the parameters appearing in the estimates (6.4.1) and (6.4.2) satisfy the fol-
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lowing systems of equations:























































































α̃0 + α̃1 = 0,

(−1)k

k!
α̃0 +

m
∑

j=1

(

β̃j
(cj − 1)k−1

(k − 1)!
+ γ̃j

ck−1
j

(k − 1)!

)

= 0, k = 1, 2, . . . , p,

ν1α̃0 +
m
∑

j=1

(

β̃jµ0(cj − 1) + γ̃jµ0(cj)
)

= 0,

ν2α̃0 +
m
∑

j=1

(

β̃jµ1(cj − 1) + γ̃jµ1(cj)
)

= 1,

Gp+1(−1)α̃0 +

m
∑

j=1

(

β̃jGp+1(cj − 1) + γ̃jGp+1(cj)
)

= 0,

(6.4.3)
and



















































































ᾱ0 + ᾱ1 = 0,

(−1)k

k!
ᾱ0 +

m
∑

j=1

(

β̄j
(cj − 1)k−1

(k − 1)!
+ γ̄j

ck−1
j

(k − 1)!

)

= 0, k = 1, 2, . . . , p,

ν1ᾱ0 +
m
∑

j=1

(

β̄jµ0(cj − 1) + γ̄jµ0(cj)
)

= 0,

ν2ᾱ0 +
m
∑

j=1

(

β̄jµ1(cj − 1) + γ̄jµ1(cj)
)

= 0,

Gp+1(−1)ᾱ0 +
m
∑

j=1

(

β̄jGp+1(cj − 1) + γ̄jGp+1(cj)
)

= 1.

(6.4.4)
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Proof: The proof follows along the same lines provided in [47]. Since the
method (3.2.1) has order p, we have

yn−1 = y(tn − 1) − hp+1Cp(−1)y(p+1)(tn) − hp+2Cp+1(−1)y(p+2)(tn)

−hp+2Gp+1(−1)
∂f

∂y
(y(tn)y

(p+1)(tn) +O(hp+3),

Y
[n−1]
j = y(tn + (cj − 1)h) − hp+1Cp(cj − 1)y(p+1)(tn) − hp+2Cp+1(cj − 1)

y(p+2)(tn) − hp+2Gp+1(cj − 1)
∂f

∂y
(y(tn)y

(p+1)(tn) +O(hp+3),

Y
[n]
j = y(tn + cjh) − hp+1Cp(cj)y

(p+1)(tn) − hp+2Cp+1(cj)y
(p+2)(tn)

−hp+2Gp+1(cj)
∂f

∂y
(y(tn)y

(p+1)(tn) +O(hp+3),

and

P (tn + sh) = ỹ(tn + sh) +O(hp+1), s ∈ [−1, 1].

Substituting these relations and into (6.4.1) and taking into account the
localizing assumption y(tn) = yn, we obtain

hp+2y(p+2)(tn) = α̃0

(

y(tn − 1) − hp+1Cp(−1)y(p+1)(tn)

−hp+2Cp+1(−1)y(p+2)(tn) − hp+2Gp+1(−1)∂f
∂y

(y(tn))y
(p+1)(tn)

)

+ α̃1y(tn)

+h
m
∑

j=1

(

βj

(

y′(tn + (cj − 1)h) − hp+1Cp(cj − 1)y(p+1)(tn)

−hp+2Cp+1(cj − 1)y(p+2)(tn) − hp+2Gp+1(cj − 1)∂f
∂y

(y(tn))y
(p+1)(tn)

)

+γj

(

y′(tn + cjh) − hp+1Cp(cj)y
(p+1)(tn) − hp+2Cp+1(cj)y

(p+2)(tn)

−hp+2Gp+1(cj)
∂f
∂y

(y(tn))y
(p+1)(tn)

)

)

.

Expanding y(tn−1), y(tn+1), y
′(tn + (cj − 1)h), and y′(tn + cjh) into Tay-

lor series around the point tn and comparing the terms of order O(hk) for
k = 0, 1, . . . , p+ 2, leads to the system (6.4.3). Proceeding in analogous way
for the term hp+2 ∂f

∂y
(y(tn))y

(p+1)(tn) leads to the system (6.4.4) 2
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6.5 Stepsize control strategy

The strategy we apply in order to set an efficient control of the stepsize
is strictly close to the ones developed in the classical solvers for systems of
ODEs (1.1.1), and it is based on the following observations. Once we have
derived an estimation to the local error, we can decide whether to increase
or decrease the stepsize in the advancing from the point tn to the point tn+1

according to the following control (see [16])

‖est(n)‖ ≤ Rtol · max{‖yn−1‖, ‖yn‖} + Atol, (6.5.1)

where Atol and Rtol are given absolute and relative tolerances. In our numer-
ical experiments we have used Atol = Rtol = tol, where tol is the accuracy
we aim to achieve. If the control (6.5.1) is not satisfied, the stepsize hn is
halved. Otherwise, the stepsize is accepted and a new stepsize for the follow-
ing step is computed, according to a suitable control strategy. The standard
step control strategy (see [119])

hn+1 = hnmin

(

2,

(

fac · tol
‖est(tn)‖

) 1

p+1

)

, (6.5.2)

which only depends on the estimate computed in the previous step, can often
determine useless stepsize rejections, “with disruptive and wasteful increases
and decreases” of the stepsize (see [42]). Gustafsson, Lundh and Söderlind
[117, 191, 192] introduced a different stepsize control, the so-called PI step-
size control, based on control theory arguments. The PI control involve the
estimation of the local errors related to the two most recent step points, as
follows

hn+1 = hn ·min

(

2,

(

tol

‖est(tn)‖

)σ1
(

tol

‖est(tn−1)‖

)σ2

)

, (6.5.3)

where σ1 and σ2 must be suitably chosen. In [122], [191], [192] the derivation
of σ1 and σ2 is discussed, according to some control theory arguments. In
our case, we have experimentally found some values for σ1 and σ2 in order
to obtain a PI stepsize control which is competitive with the standard one
in the implementation of our methods: they are σ1 ≈ 0.3 and σ2 ≈ 0.04.
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When we advance from tn to tn+1 with stepsize hn, another problem oc-
curs, i.e. the computation of the missing approximations ỹn−1 to y(t̃n−1),

with t̃n−1 = tn − hn, and Ỹ
[n−1]
i to y(t̃n−1 + cihn), with i = 1, 2, . . . , m. The

computation of such approximations can be efficiently derived taking into
account the special structure of the methods we are implementing: colloca-
tion methods are particularly suitable for the design of a numerical solver in
a variable stepsize environment, since every time the stepsize changes, the
missing approximations to the solution in previous points can be suitably
computed by evaluating the collocation polynomial in these points. In fact,
let us suppose that k is the minimum integer such that t̃n−1 belongs to the
interval [tk, tk+1] of length hk. The point t̃n−1 is then uniquely determined
by the time scaled variable

s̃ =
t̃n−1 − tk

hk
.

The value of ỹn−1 can next be computed by evaluating the collocation poly-
nomial P (tk + shk) (3.2.1) in correspondence of s = s̃, obtaining

ỹn−1 = ϕ0(s̃)yk−1 + ϕ1(s̃)yk + hk

m
∑

i=1

(

χi(s̃)f(Y
[k−1]
i ) + ψi(s)f(Y

[k]
i )
)

.

In an analogous way, we can derive the values of Ỹ
[n−1]
i , i = 1, 2, . . . , m. Let

us assume that r is the minimum integer such that t̃n−1 + cih, for a fixed
value of the index i, belongs to the interval [tr, tr+1] of length hr. The point
t̃n−1 + cih corresponds to the value of the time scaled variable

s̃i =
t̃n−1 + cihr − tr

hr
.

The missing value of Ỹ
[n−1]

i can then be computed by evaluating the collo-
cation polynomial P (tr + shr) (3.2.1) in correspondence of s = s̃i, obtaining

Ỹ
[n−1]
i = ϕ0(s̃i)yr−1 + ϕ1(s̃i)yr + hr

m
∑

j=1

(

χj(s̃i)f(Y
[r−1]

j ) + ψj(si)f(Y
[r]

j )
)

.

6.6 Computation of the stage values

Two-step collocation methods are implicit formulae and, therefore, they
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require the solution of a system of nonlinear equations of dimension md×md
at each time step. We solve this system by means of Newton-type iterations,
in the following way. We define

Φ(Y [n]) = Y [n] − (u⊗ I)yn−1 − (ũ⊗ I)yn − h
(

(A⊗ I)F [n−1] − (B ⊗ I)F [n]
)

,

and aim to solve the system Φ(Y [n]) = 0. We take as initial guess the vector

Y [n],0 = [yn, . . . , yn]
T ∈ R

md,

and start the following Newton-type iterative procedure

Y [n],i+1 = Y [n],i −
(

∂Φ(Y [n],i)
)−1

Φ(Y [n],i), (6.6.1)

for i = 0, 1, . . . , µ − 1, where

∂Φ(Y [0]) = Imd − h(B ⊗ Id)J ∈ R
md×md,

and J is the jacobian matrix of F [n], i.e. the block diagonal matrix

J =







∂f(Y
[n]
1 )

. . .

∂f(Y
[n]
m )






,

where ∂f(Y
[n]
j ) is the jacobian matrix of f evaluated in Y

[n]
j , for j = 1, 2, . . . , m.

The expression (6.6.1) is equivalent to the linear system

−∂Φ(Y [n],i)δY [n] = Φ(Y [n],i), (6.6.2)

where δY [n] = Y [n],i+1 −Y [n],i. We next solve the system (6.6.2) with respect
to δY [n], for instance by Gaussian elimination, and derive

Y [n],i+1 = Y [n],i + δY [n].

We stop the iterative scheme at the µ-th step, when ‖δY [n]‖∞ < tol and
‖ΦY [n],µ‖∞ < tol, and take Y [n] = Y [n],µ.

The numerical solution of the nonlinear system Φ(Y [n]) = 0 can be effi-
ciently approached if the matrix B has a structured shape, e.g. lower tri-
angular or diagonal: in these cases, instead of solving a nonlinear system of
dimension md, we solve m successive or independent nonlinear systems of
dimension d and, in particular, when these systems are independent, their
solution can be fastly computed in a parallel environment. The construction
of such numerical methods is treated in [98] and in Section 4.4.





Chapter 7

Numerical results

This chapter is devoted to the solution of a selection of stiff ODEs (1.1.1)
by using the numerical methods developed in the previous chapters. In par-
ticular, we present two different groups of experiments: the first one contains
some fixed stepsize numerical evidences aiming to confirm that the methods
we have introduced do not suffer from order reduction and compare them with
Runge-Kutta methods which, on the contrary suffer from this phenomenon;
the second part, instead, regards some variable stepsize experiments obtained
by implementing highly stable two-step almost collocation methods (3.2.1)
and particularly aims to assert the reliability of the error estimate we have
derived in Chapter 6, together with the effectiveness of the developed meth-
ods.

The selection of problems we aim to treat is the following:

1. the Prothero-Robinson problem [180]

{

y′(t) = λ
(

y(t) − F (t)
)

+ F ′(t), t ∈ [t0, T ],
y(t0) = y0,

(7.0.1)

where Re(λ) < 0 and F (t) is a slowly varying function on the interval
[t0, T ]. In our experiments, we have considered F (t) = sin(t). As
observed by Hairer and Wanner [122] in the context of Runge-Kutta
methods this equation provides much new insight into the behaviour
of numerical methods for stiff problems. This equation with t0 = 0,
F (t) = exp(µt), and y0 = 1, was also used by Butcher [36] to investigate
order reduction for Runge-Kutta-Gauss methods of order p = 2s;

177
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2. the van der Pol oscillator (see VDPOL problem in [122])

{

y′1 = y2, y1(0) = 2,

y′2 =
(

(1 − y2
1)y2 − y1

)

/ε, y2(0) = −2/3,
(7.0.2)

t ∈ [0, T ], with stiffness parameter ε;

3. the Hires problem in [122]























































y′1 = −1.71y1 + 0.43y2 + 8.32y3 + 0.0007
y′2 = 1.71y1 − 8.75y2

y′3 = −10.03y3 + 0.43y4 + 0.035y5

y′4 = 8.32y2 + 1.71y3 − 1.12y4

y′5 = −1.745y5 + 0.43y6 + 0.43y7

y′6 = −280y6y8 + 0.69y4 + 1.71y5 − 0.43y6 + 0.69y7

y′7 = 280y6y8 − 1.81y7

y′8 = −280y6y8 + 1.81y7

y1(0) = 1, y2(0) = . . . = y7(0) = 1 y8(0) = 0.0057,

(7.0.3)

with t ∈ [0, 321.8122].

7.1 Fixed stepsize experiments

Similarly as in [122], in order to reduce the influence of round-off errors,
we rewrite TSRK methods (2.2.1) in the form























Z [n] = h(A⊗ Im)f(Z [n−1] + θ(e⊗ Im)yn−2 + (1 − θ)(e⊗ Im)yn−1)

+ h(B ⊗ Im)f(Z [n] + θ(e⊗ Im)yn−1 + (1 − θ)(e⊗ Im)yn),

yn = yn−1 + h(vT ⊗ Im)f(Z [n−1] + θ(e⊗ Im)yn−2 + (1 − θ)(e⊗ Im)yn−1)

+ h(wT ⊗ Im)f(Z [n] + θ(e⊗ Im)yn−1 + (1 − θ)(e⊗ Im)yn),
(7.1.1)

n = 2, 3, . . . , N , where

Z [n] := Y [n] − θ(e⊗ Im)yn−1 − (1 − θ)(e⊗ Im)yn
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is usually smaller than Y [n]. Define

G(Z [n]) := Z [n] − h(A⊗ Im)f(Z [n−1] + (e⊗ Im)yn−2)

− h(B ⊗ Im)f(Z [n] + (e⊗ Im)yn−1),

and denote by J = J(yn−1) the Jacobian of the right hand side of (7.1.1)
computed at yn−1. Then similarly as in [122] an approximation to Z [n] is
computed by simplified Newton iterations

{
(

I − h(B ⊗ J)
)

∆Z
[n]
k = −G(Z

[n]
k ), k = 0, 1, 2, . . . ,

Z
[n]
k+1 = Z

[n]
k + ∆Z

[n]
k ,

with Z
[n]
0 = 0 and a stopping criterion similar to that used in [122] in case of

Runge-Kutta methods.
For each problem, we have implemented both methods with a fixed step-

size
h = (T − t0)/2

k,

with several integer values of k, and listed norms of errors ‖eRK
h (T )‖ and

‖eTSRK
h (T )‖ at the endpoint of integration T and the observed order of con-

vergence p computed from the formula

p =
log
(

‖eh(T )‖/‖eh/2(T )‖
)

log(2)
,

where eh(T ) and eh/2(T ) are errors corresponding to stepsizes h and h/2 for
Runge-Kutta and TSRK methods.

7.1.1 Numerical results for continuous TSRK methods

In this section we will experimentally confirm that continuous TSRK methods
described in Section 4.2 of order p and stage order q = p do not suffer from
order reduction in the integration of stiff differential systems, which is the
case for classical Runge-Kutta formulae. This phenomenon, in fact, does
not occur for continuous TSRK methods because they possess high stage
order equal to their uniform order of convergence over the entire integration
interval. On the other hand, Runge-Kutta methods do not possess the same
feature, because their stage order is only equal tom, wherem is the number of
stages. To illustrate this we have applied the two-stage Runge-Kutta-Gauss
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method of order p = 4 and stage order q = 2 and the continuous TSRK
method of uniform order p = 4 given in the Example 8 of Section 4.2.9, i.e.

ϕ0(s) = 0, ϕ1(s) = 1, χ1(s) = −s3
(

63
100

− 223
150
s+ 13

10
s2 − 2

5
s3
)

,

χ2(s) = 125840873
10156165010

s3
(

189 − 446s + 390s2 − 120s3
)

,

χ3(s) = 313000831
6093699006

s3(189 − 446s + 390s2 − 120s3), χ4(s) = 0,

ψ1(s) = s
(

1 − 223
126
s− 110596774973233

9597575934450
s2 + 48055456715852

1599595989075
s3

−2838443145187
106639732605

s4 + 873367121596
106639732605

s5
)

,

ψ2(s) = s2
(

75
7
− 13154611771291

639838395630
s+ 671254535668

35546577535
s2 − 80390326549

7109315507
s3 + 24735485092

7109315507
s4
)

,

ψ3(s) = −s2
(

175
9

− 2867265551881
54843291054

s+ 575594042414
9140548509

s2 − 130770083795
3046849503

s3 + 40236948860
3046849503

s4
)

,

ψ4(s) = s2
(

21
2
− 28900702732187

914054850900
s+ 2081690316751

50780825050
s2 − 290054503193

10156165010
s3 + 44623769722

5078082505
s4
)

,

(7.1.2)
with c = [0, 7

10
, 9

10
, 1]T . Let us first consider the results obtained for the

Prothero-Robinson problem in the interval [0, 50], which are presented in
Table 7.1.1 and Table 7.1.1, for the Runge-Kutta-Gauss method and the
continuous TSRK one respectively, in correspondence of several values for
the stiffness parameter λ.

We can observe that in the case λ = −103, for which the Prothero-
Robinson problem is mildly stiff, both methods are convergent with expected
order p = 4. However, for λ = −105, the problem in stiff and the Runge-
Kutta-Gauss method exhibits the order reduction phenomenon and its order
of convergence drops to about p = 2 which corresponds to the stage order
q = 2. This is not the case for TSRK method which preserves order of
convergence p = q = 4, which leads to higher accuracy.

We next consider the Van der Pol oscillator, which is observed in the
interval [0, 3/4], i.e. for the slowly varying parts of the solution, where the
problem is stiff for small values of the parameter ε (the problem is not stiff on
the interval where the solution is changing rapidly). The results are presented
in Table 7.1.1 and Table 7.1.1, for several values of the parameter ε.

Also in this case we can observe that for the values of ε = 10−1 and
ε = 10−3 for which the problem (7.0.2) is not stiff and mildly stiff both
methods are convergent with expected order p = 4. However, for small
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λ = −103 λ = −105

k eRKG
h (T ) p k eRKG

h (T ) p

10 1.55 · 10−5

11 7.80 · 10−7 3.89 7 1.11 · 10−3

12 4.94 · 10−8 3.98 8 2.78 · 10−4 2.00

13 3.09 · 10−9 3.99 9 6.80 · 10−5 2.02

14 1.93 · 10−10 4.00 10 1.68 · 10−5 2.01

Table 7.1: Numerical results for Runge-Kutta-Gauss method of order p = 4
and stage order q = 2 for the Prothero-Robinson problem

λ = −103 λ = −105

k eTSRK
h (T ) p k eTSRK

h (T ) p

10 3.29 · 10−11

11 2.11 · 10−12 3.97 7 1.12 · 10−9

12 1.34 · 10−13 3.98 8 7.75 · 10−11 3.86

13 8.43 · 10−15 3.98 9 4.97 · 10−12 3.96

14 5.55 · 10−16 3.92 10 3.03 · 10−13 4.03

Table 7.2: Numerical results for continuous TSRK method (7.1.2) of uniform
order p = 4 for the Prothero-Robinson problem
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ε = 10−1 ε = 10−3 ε = 10−6

k ‖eRKG
h (T )‖ p ‖eRKG

h (T )‖ p ‖eRKG
h (T )‖ p

6 1.88 · 10−8 2.25 · 10−4 1.49 · 10−3

7 1.18 · 10−9 4.00 1.68 · 10−5 3.74 3.71 · 10−4 2.01

8 8.21 · 10−11 3.84 1.11 · 10−6 3.93 8.84 · 10−5 2.07

9 1.43 · 10−11 2.52 7.02 · 10−8 3.98 1.87 · 10−5 2.24

Table 7.3: Numerical results for Runge-Kutta-Gauss method of order p = 4
and stage order q = 2 for the Van der Pol problem

ε = 10−1 ε = 10−3 ε = 10−6

k ‖eTSRK
h (T )‖ p ‖eTSRK

h (T )‖ p ‖eTSRK
h (T )‖ p

6 5.82 · 10−8 1.58 · 10−5 1.54 · 10−5

7 3.66 · 10−9 3.99 1.17 · 10−6 3.75 1.09 · 10−6 3.81

8 2.32 · 10−10 3.98 7.85 · 10−8 3.90 7.34 · 10−8 3.90

9 1.46 · 10−11 3.99 4.80 · 10−9 4.03 4.75 · 10−9 3.94

Table 7.4: Numerical results for TSRK method (7.1.2) of order p = 4 and
stage order q = 4 for the Van der Pol problem
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k ‖eRKG
h (T )‖ p

8 3.05 · 10−6

9 6.42 · 10−7 2.25

10 1.47 · 10−7 2.12

11 3.52 · 10−8 2.06

12 8.62 · 10−9 2.03

Table 7.5: Numerical results for Runge-Kutta-Gauss method of order p = 4
and stage order q = 2 for the Hires problem

k ‖eTSRK
h (T )‖ p

6 4.85 · 10−5

7 3.31 · 10−6 3.87

8 2.16 · 10−7 3.93

Table 7.6: Numerical results for TSRK method (7.1.2) of order p = 4 and
stage order q = 4 for the Hires problem

values of ε (ε = 10−6) for which the van der Pol oscillator is stiff the Runge-
Kutta-Gauss method exhibits order reduction phenomenon and its order of
convergence drops to about p = 2 which corresponds to the stage order q = 2.
This is not the case for TSRK method which preserves order of convergence
p = q = 4, which leads to higher accuracy.

We conclude our analysis presenting the results obtained for the Hires
problem, included in Table (7.1.1) and Table (7.1.1). Also in this case, the
order reduction phenomenon is evident for the Runge-Kutta-Gauss method,
while it is not present on the continuous TSRK method considered.

7.1.2 Numerical experiments with diagonally implicit

two-step collocation methods

In this section we present some numerical evidences arising from the appli-
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cation of the two-step collocation methods derived in Section 4.4 equivalent
to TSRK methods (2.2.1) with B lower triangular, in order to confirm the
theoretical expectations on the order of accuracy. Also in this case we aim to
provide an experimental confirmation that, since the derived methods have
high stage order (equal to the order of convergence), they do not suffer from
order reduction in the integration of stiff differential systems, which is the
case for diagonally implicit Runge–Kutta formulae, whose effective order is
only equal to m, where m is the number of stages. To illustrate these features
we compare the following numerical methods:

• TS3: L-stable two-step almost collocation method (3.2.1), with m = 2
and

ϕ0(s) = s2

(

− 21

10
+

7

5
s

)

, ϕ1(s) = 1 +
21

10
s2 − 7

5
s3,

χ1(s) = −s
(

1 − 23

10
s+

6

5
s2

)

, χ2(s) = s

(

1 − 191

40
s+

57

20
s2

)

,

ψ1(s) = −s2

(

9

8
− 3

4
s

)

, ψ2(s) = s

(

1 +
3

2
s− s2

)

,

of order 3 and stage order 3, equivalent to the type 2 TSRK method

14/5 −12/5 −57/10 3/2 0
−7/10 1/10 −37/40 −3/8 3/2
−7/10 1/10 −37/40 −3/8 3/2

, c = [2, 1]T ;

the method has been obtained in correspondence of the point (c1, α1) =
(2,−1/2) of the shaded region reported in Figure 4.1.

• SDIRK3: two-stage singly diagonally implicit Runge–Kutta method
[36]

(3 +
√

3)/6 (3 +
√

3)/6 0

(3 −
√

3)/6 −
√

3/3 (3 +
√

3)/6
1/2 1/2

of order 3 and stage order 2.

We apply these methods to the van der Pol oscillator (7.0.2) in the interval
[0, 3/4], for different values of the stiffness parameter ε. We have implemented
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ε = 10−1 ε = 10−3 ε = 10−6

k ‖eSDIRK3
h ‖ p ‖eSDIRK3

h ‖ p ‖eSDIRK3
h ‖ p

7 2.45 · 10−7 4.94 · 10−4 8.78 · 10−4

8 3.41 · 10−8 2.84 1.06 · 10−4 2.21 2.29 · 10−4 1.93

9 4.49 · 10−9 2.92 2.00 · 10−5 2.40 5.85 · 10−5 1.97

10 5.78 · 10−10 2.95 3.31 · 10−6 2.59 1.47 · 10−5 1.98

11 7.52 · 10−11 2.94 4.92 · 10−7 2.74 3.69 · 10−6 1.99

12 9.81 · 10−12 2.93 6.80 · 10−8 2.85 9.27 · 10−7 2.00

Table 7.7: Numerical results for SDIRK3 method on the Van der Pol oscil-
lator

ε = 10−1 ε = 10−3 ε = 10−6

k ‖eTS3
h ‖ p ‖eTS3

h ‖ p ‖eTS3
h ‖ p

7 1.57 · 10−5 6.36 · 10−4 8.32 · 10−4

8 2.12 · 10−6 2.89 8.49 · 10−5 2.90 1.11 · 10−4 2.90

9 2.78 · 10−7 2.93 1.15 · 10−5 2.88 1.47 · 10−5 2.92

10 3.56 · 10−8 2.96 1.57 · 10−6 2.87 1.90 · 10−6 2.94

11 4.51 · 10−9 2.98 2.88 · 10−7 2.88 2.43 · 10−7 2.97

12 5.70 · 10−10 2.99 2.84 · 10−8 2.90 3.06 · 10−8 2.98

Table 7.8: Numerical results for TS3 on the Van der Pol problem
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both methods with a fixed stepsize h = (T − t0)/2k, for several integer values
of k, and listed norms of errors ‖eTS3

h (T )‖ and ‖eSDIRK3
h (T )‖ at the endpoint

of integration T and the observed order of convergence p.
We can observe that for the values of ε = 10−1 and ε = 10−3 for which

the problem (7.0.2) is not stiff and mildly stiff both methods are convergent
with expected order p = 3. However, for small values of ε (ε = 10−6) for
which the van der Pol oscillator is stiff, the SDIRK3 method exhibits order
reduction phenomenon and its order of convergence drops to about p = 2
which corresponds to the stage order q = 2. This is not the case for TS3
method which preserves order of convergence p = q = 3, which leads to
higher accuracy.

7.1.3 Numerical results for TSRK methods with In-

herent Quadratic Stability

In this section we aim to illustrate that the TSRK methods with IQS
discussed in Chapter 5 do not suffer from order reduction, which is the case
for classical Runge-Kutta formulae. To illustrate this we have applied the
Runge-Kutta-Gauss method of order p = 4 and stage order q = 2 and TSRK
method of order p = 4 and stage order q = 4 given in Example 4 in Chapter
5, i.e.

A =













− 73571
418565

316790
450193

−383309
370547

−1102057
1459404

−324116
495273

3108022
1186313

−2008351
521461

−1905671
677809

−813738
787901

4021146
972541

−6409321
1054477

−6349415
1430988

−426460
370257

4154204
900915

−12185608
1797671

−6621076
1338039













,

B =













1082275
789096

− 47158
1102905

− 20658
230377

16548
733283

2053468
392523

173881
1660851

−337517
836884

86197
880374

13765224
1684843

119918
620675

−387828
932779

214966
1621163

8694859
954168

68987
727614

−198815
935168

90358
331129













,

v =
[

−426460
370257

4154204
900915

−12185608
1797671

−6621076
1338039

]T
,

w =
[

8694859
954168

68987
727614 −198815

935168
90358
331129

]T
,
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ε = 10−1 ε = 10−3 ε = 10−6

N ‖eRKG
h (T )‖ p ‖eRKG

h (T )‖ p ‖eRKG
h (T )‖ p

32 3.02 · 10−7 2.19 · 10−3 5.83 · 10−3

64 1.88 · 10−8 4.00 2.25 · 10−4 3.28 1.49 · 10−3 1.97

128 1.18 · 10−9 4.00 1.68 · 10−5 3.74 3.71 · 10−4 2.01

256 8.21 · 10−11 3.84 1.11 · 10−6 3.93 8.84 · 10−5 2.07

512 1.43 · 10−11 2.52 7.02 · 10−8 3.98 1.87 · 10−5 2.24

Table 7.9: Numerical results for Runge-Kutta-Gauss method of order p = 4
and stage order q = 2

with c = [0, 1
3
, 2

3
, 1]T , to the Van der Pol problem (7.0.2). We have imple-

mented both methods with a fixed stepsize h = T/N , and observed the order
of convergence of numerical approximations to the slowly varying parts of
the solution, where the problem is stiff for small values of the parameter ε.

The results of numerical experiments for fixed stepsize implementations
of Runge-Kutta-Gauss method of order p = 4 and stage order q = 2 and
TSRK method with IQS of order p = 4 and stage order q = 4 correspond to
T = 2/3, h = T/N , and N = 32, 64, 128, 256 and 512. We have listed norms
of errors ‖eRKG

h (T )‖ and ‖eTSRK
h (T )‖ at the endpoint of integration T and

the observed order of convergence p.

We can observe that for the values of ε = 10−1 and ε = 10−3 for which
the problem (7.0.2) is not stiff and mildly stiff both methods are convergent
with expected order p = 4 (although there is an unexpected reduction to
order p = 2.52 only for Runge-Kutta method for N = 512). However, for
small values of ε (ε = 10−6) for which the van der Pol oscillator (7.0.2) is stiff
the Runge-Kutta Gauss method exhibits order reduction phenomenon and
its order of convergence drops to about p = 2 which corresponds to the stage
order q = 2. This is not the case for TSRK method which preserves order of
convergence p = q = 4, which leads to higher accuracy.

We also present in Fig. 7.1 the comparison of fixed stepsize implemen-
tations of SDIRK method of order p = 3 and stage order q = 2 (see [36],
p. 234) and TSRK method of order p = 3 and stage order q = 3 given in
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ε = 10−1 ε = 10−3 ε = 10−6

N ‖eTSRK
h (T )‖ p ‖eTSRK

h (T )‖ p ‖eTSRK
h (T )‖ p

32 7.83 · 10−7 1.85 · 10−4 2.44 · 10−4

64 1.03 · 10−7 2.93 1.94 · 10−5 3.25 2.65 · 10−5 3.21

128 7.67 · 10−9 3.75 1.57 · 10−6 3.62 2.20 · 10−6 3.59

256 5.17 · 10−10 3.89 1.09 · 10−7 3.85 1.59 · 10−7 3.79

512 4.21 · 10−11 3.62 6.52 · 10−9 4.06 1.08 · 10−8 3.89

Table 7.10: Numerical results for TSRK method of order p = 4 and stage
order q = 4
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TSRK with p=q=3

SDIRK with p=3, q=2

slope of order p=3

slope of order p=2

Figure 7.1: Numerical results for SDIRK formula with p = 3 and q = 2 and
TSRK method with p = q = 3 on the problem (7.0.2) with ε = 10−4

Example 3 in Section 4.4. These results correspond to T = 3/4 and ε = 10−4.
We can see again that in contrast to SDIRK formula TSRK method does not
suffer from order reduction phenomenon.
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7.2 Variable stepsize experiments based on

two-step collocation methods

In this section we present some variable stepsize numerical experiments
which aim to indicate the effectiveness of two-step collocation methods, es-
pecially in the implementation of stiff problems, and the reliability of the
local error estimation. The implementation issues we have used in order to
carry out the following experiments are the ones described in Chapter 6.

We apply the L-stable method (3.2.1), with c = [1/2, 1]T and

ϕ0(s) = −60

19
s+

45

19
s2, ϕ1(s) = 1 +

60

19
s− 45

19
s2,

χ1(s) = −8

3
s+ 2s2, χ2(s) = −4

3
s+ s2,

ψ1(s) =
182

57
s− 36

19
s2, ψ2(s) = −77

57
s+

24

19
s2,

(7.2.1)

described in Section 4.3.2, having narrowed contribution of the high order
terms in the local discretization error. The method (7.2.1) of uniform effective
order 2 has been applied to the Prothero-Robinson problem (7.0.1), and the
van der Pol oscillator (7.0.2) in the interval [0, 2]. This equation constitutes a
challenging problem for numerical methods: small oscillations are amplified,
while large oscillations are damped (compare [119]).

The results of the implementation are reported in the figures below. Con-
cerning the Prothero-Robinson problem (7.0.1), it is known that such prob-
lem is much more stiff when the stiffness parameter λ is negative and large
in modulus. The experimental results reported in Figures 7.2, 7.3, 7.4 and
7.5 are referred to the cases λ = −1e6 and λ = −1e10: in correspondence
of these values, the problem (7.0.1) is very stiff. In particular, Figures 7.3
and 7.5 show the reliability of the error estimate, also when the problem is
very stiff. Moreover, as suggested by Figures 7.2 and 7.4, the stepsize pat-
tern is very smooth, especially because of the high stability properties of the
implemented method and in force of the used stepsize control strategy: this
control also avoid useless stepsize refusions.

Figures 7.6 and 7.7 report the results concerning the numerical solution
of the Van der Pol problem for ε = 1e−6 and tol = 1e−4. In correspondence
of this value of the stiffness parameter ε, the problem is stiff. We observe
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that also in this case the error estimate is absolutely reliable and the stepsize
pattern is very smooth. Also the number of refused stepsize is very low: its
percentage with respect to the total number of steps is lower then 1%: most
of the refusions occur at the very first step point, because of the presence of
an initial transient. We also observe that no hump phenomena (see [122])
occur: this is due to the L-stability of the method we have implemented.

Figure 7.2: Stepsize pattern related to the solution of the Prothero-Robinson
problem (7.0.1) with tol = 1e − 6 and λ = −1e6, using the method (7.2.1).
The crosses represent the refused stepsizes
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Figure 7.3: Comparison between the local error and its estimate for the
solution of the Prothero-Robinson problem (7.0.1) with tol = 1e − 6 and
λ = −1e6, using the method (7.2.1). The circles represent the true local error
in each step point, while the dots represent the corresponding estimation

Figure 7.4: Stepsize pattern related to the solution of the Prothero-Robinson
problem (7.0.1) with tol = 1e− 6 and λ = −1e10, using the method (7.2.1)
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Figure 7.5: Comparison between the local error and its estimate for the
solution of the Prothero-Robinson problem (7.0.1) with tol = 1e − 6 and
λ = −1e10, using the method (7.2.1)
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Figure 7.6: Stepsize pattern related to the solution of the Van der Pol oscil-
lator (7.0.2) with tol = 1e− 4 and ε = 1e− 6, using the method (7.2.1)
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Figure 7.7: Comparison between the local error and its estimate for the
solution of the Van der Pol oscillator (7.0.2) with tol = 1e−4 and ε = 1e−6,
using the method (7.2.1)





Part II

Numerical solution of
differential systems of the

second order

195





Chapter 8

Collocation methods for second
order ODEs of special type:
state of the art

In this chapter we concentrate our attention on the historical evolution
of the collocation technique for the numerical solution of initial value prob-
lems based on second order ordinary differential equations with periodic and
oscillating solution







y′(t) = f(t, y(t)), t ∈ [t0, T ],
y′(t0) = y′0 ∈ Rd,
y(t0) = y0,

(8.0.1)

where f : [t0, T ]×Rd → Rd is assumed to be a is sufficiently smooth function,
in order to ensure the existence and the uniqueness of the solution. Although
the problem (8.0.1) could be transformed into a doubled dimensional system
of first order ODEs and solved by standard formulae for first order differential
systems, the development of numerical methods for its direct integration
seems more natural and efficient.

8.1 Direct and indirect collocation methods

In the context of collocation methods for second order equations, two

197
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possibilities have been taken into account in the literature, i.e. methods
based on indirect or direct collocation [204]. Indirect collocation methods
are generated by applying a collocation based Runge-Kutta method to the
first order representation of (8.0.1), which has doubled dimension. If

c A
bT

is the Butcher array of a collocation Runge-Kutta method, the tableau of
the corresponding indirect collocation method is

c A2

AT b
bT

which results in a Runge-Kutta-Nyström method [119]. The theory of in-
direct collocation methods completely parallels the well–known theory of
collocation methods for first order equations (see [204]) and, therefore, the
properties of a collocation method are totally inherited by the corresponding
indirect collocation method. Thus, the maximum attainable order is 2m,
where m is the number of stages, and it is achieved by Gauss-type meth-
ods, which are also A-stable, while L-stability is achieved by Radau IIA-type
methods, of order 2m− 1.

In the case of direct collocation methods, the collocation polynomial is
derived directly for the second order problem. Van der Houwen et al. in [204]
studied the order, stage order of direct collocation methods and also provided
their stability analysis, extending the results of Kramarz [146]. Concerning
order and stage order, the following result holds (see [204]):

Theorem 8.1.1 Direct and indirect collocation methods with the same col-
location nodes have the same order. The stage order of direct collocation
methods is one higher whenever

∫ 1

0

m
∏

i=1

(s− ci)ds = 0. 2

Therefore, while indirect and direct collocation methods have the same
order, their stage order is different and, in particular, direct methods have
higher stage order. However, they are not competitive in terms of stability.
Van der Houwen et al. in [204] clearly state that “From a practical point
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of view, direct collocation methods based on Gauss, Radau and Lobatto
collocation points are of limited value, because the rather small stability or
periodicity boundaries make them unsuitable for stiff problems. The A-stable
indirect analogues are clearly more suitable for integrating stiff problems”.

Moreover, Coleman [61] proved that no P -stable one step symmetric col-
location methods exist. P -stability (see Lambert-Watson paper [148]) is a
very relevant property for the numerical treatment of a second order system
whose theoretical solution is periodic with a moderate frequency and a high
frequency oscillation of small amplitude superimposed. This phenomenon is
known in literature as periodic stiffness [178], which can be reasonably faced
using P -stable methods, exactly as A-stable methods are suitable for stiff
problems. In other terms, P -stability ensures that the choice of the stepsize
is independent from the values of the frequencies, but it only depends on the
desired accuracy [65, 173].

In [148], the authors proved that P -stable linear multistep methods

k
∑

j=0

αjyn+j = h2
k
∑

j=0

βjf(tn+j , yn+j).

can achieve maximum order 2. In the context of Runge–Kutta–Nyström
methods

yn+1 = yn + hy′n + h2
m
∑

i=1

b̄if(tn + cih, Yi),

y′n+1 = y′n + h

m
∑

i=1

bif(tn + cih, Yi),

Yi = yn + cihy
′
n + h2

m
∑

j=1

aijf(tn + cjh, Yj), i = 1, 2, ..., m,

many A-stable and P -stable methods exist, but the ones falling in the sub-
class of collocation methods, whose coefficients (see [119]) are of the form

aij =

∫ ci

0

Lj(s)ds,

bi =

∫ 1

0

Li(s)ds,

b̄i =

∫ 1

0

(1 − s)Li(s)ds,
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have only bounded stability intervals and are not P -stable [173].

8.2 Two-step Runge-Kutta-Nyström methods

We have observed in the previous paragraph that P -stability is a desirable
property that only few methods in the context of linear multistep methods
and Runge-Kutta-Nyström methods possess. In order to create a good bal-
ance between high order and strong stability properties, further steps in the
literature have been devoted to the development of multistep Runge-Kutta-
Nystrom methods for second order problems. Much of this work has been
done by Paternoster (see [173, 174, 175, 176, 159, 177]). In particular, the
author proved that no P -stable methods can be found in the class of indirect
collocation TSRK methods, while it was possible to find P -stable methods
in the context of two-step Runge-Kutta-Nyström methods

Y
[n−1]

j = yn−1 + cjhy
′
n−1 + h2

m
∑

k=1

ajkf(tn−1 + ckh, Y
[n−1]
k ), j = 1, 2, ..., m,

Y
[n]

j = yn + cjhy
′
n + h2

m
∑

k=1

ajkf(tn + ckh, Y
[n]
k ), j = 1, 2, ..., m,

yn+1 = (1 − θ)yn + θyn−1 + h
m
∑

j=1

(vjy
′
n−1 + wjy

′
n)

+ h2

m
∑

j=1

v̄jf(tn−1 + cjh, Y
[n−1]
j ) + w̄jf(tn + cjh, Y

[n]
j ),

y′n+1 = (1 − θ)y′n + θy′n−1 + h
m
∑

j=1

(vjf(tn−1 + cjh, Y
[n−1]
j )

+ wjf(tn + cjh, Y
[n]
j )),

which represent the extension to second order problems of the two-step
Runge-Kutta methods introduced in [139] for first order problems.
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8.3 Mixed collocation methods

The development of classical collocation methods (i.e. methods based on
algebraic polynomials), even if it is not the most suitable choice for second
order problems that do not possess solutions with polynomial behaviour,
is the first necessary step in order to construct collocation methods whose
collocation function is expressed as linear combination of different functions,
e.g. trigonometric polynomials, mixed or exponential basis (see, for instance,
[64, 135]), which can better follow the qualitative behaviour of the solution. It
is indeed more realistic to choose basis functions which are not polynomials.

Many authors have considered in literature different functional basis, in-
stead of the polynomial one, e.g. [25, 62, 65, 91, 100, 110, 135, 145, 170,
172, 174, 176, 189]. In particular we mention here the work by Coleman and
Duxbury [64], where the authors introduced mixed collocation methods ap-
plied to the Runge-Kutta-Nyström scheme, where the collocation function is
expressed as linear combination of trigonometric functions and powers, in or-
der to provide better approximations for oscillatory solutions. The methods
are derived in order to exactly integrate the harmonic oscillator

y′′ = −k2y,

where k is a constant, a feature which is not achievable by algebraic polyno-
mial collocation. The term mixed interpolation appeared for the first time in
[100] to describe interpolation by a linear combination of a sine and cosine
of a given frequency, and powers of the relevant variable, and later used by
Brunner et al. in [25] in the context of Volterra integral equations. The
solution on the generic integration interval [tn, tn+1] is approximated by the
collocating function

u(tn + sh) = a cos θs+ b sin θs +
k
∑

i=0

Γis
i, (8.3.2)

which satisfies the following collocation and interpolation conditions

u(tn) = yn, u′(tn) = y′n,

u′′(tn + cjh) = f(tn + cjh, u(tn + cjh)), j = 1, . . . , m.
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Integrating (8.3.2) twice, we obtain the Runge-Kutta-Nystrom formulation
of the methods, i.e.

u′(tn + sh) = y′n + h
m
∑

i=1

αi(s)f(tn + cih, u(tn + cih)),

u(tn + sh) = yn + shy′n + h2
m
∑

i=1

βi(s)f(tn + cih, u(tn + cih)),

where

αi(s) =

∫ s

0

Li(τ )dτ, βi(s) =

∫ s

0

(s− τ )Li(τ )dτ.

Outside collocation, many authors derived methods having frequency depen-
dent parameters (see, for instance, [135, 145, 171, 189] and references therein
contained). The linear stability analysis of these methods is carried out in
[65]. In [91] also a method with parameters depending on two frequency is
presented, and the modification in the stability analysis is performed, leading
to a three dimensional region.



Chapter 9

Collocation based two-step
hybrid methods

9.1 Collocation based two-step hybrid meth-

ods

In the numerical integration of second order ODEs (8.0.1) through col-
location, many possibilities can be taken into account: for example, Runge–
Kutta–Nyström methods provide an approximation to the solution and its
first derivative at each step point. However, as Henrici observed in [123],
“If one is not particularly interested in the values of the first derivatives, it
seems unnatural to introduce them artificially”. For this reason, other types
of methods have been taken into account in the literature, i.e. methods which
provide an approximation to the solution without computing any approxima-
tion to the first derivative: these formulae are denoted in literature as hybrid
methods. Coleman introduced in [63] the following class of two-step hybrid
methods for second order ODEs:

Y
[n]
i = uiyn−1 + (1 − ui)yn + h2

m
∑

j=1

aijf(tn + cjh, Y
[n]
j ), (9.1.1)

i = 1, . . . , m,

yn+1 = θyn−1 + (1 − θ)yn + h2

m
∑

j=1

wjf(tn + cjh, Y
[n]
j ), (9.1.2)
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which can also be represented through the Butcher array

c A
bT

with c = (c1, c2, ..., cm)T , A = (aij)
m
i,j=1, b = (b1, b2, ..., bm)T , where m is the

number of stages. The interest in this class of methods, as also pointed
out by Coleman in [63], lies in their formulation: “many other methods,
though not normally written like this, can be expressed in the same way
by simple rearrangement”. For this reason, they represent one of the first
attempts to obtain wider and more general classes of numerical methods
for (8.0.1), towards a class of General Linear Methods [42, 97, 138] for this
problem. This class of methods has been further investigated in [59, 91,
108, 205, 206]. We report in this chapter the results contained in the paper
[90], concerning the construction and the analysis of collocation based two-
step hybrid methods of the type (9.1.1)-(9.1.2). In the next sections we
will define the collocation polynomial P (tn + sh) associated to the methods
(9.1.1)-(9.1.2), discuss its construction and handle the study of the order and
the stability properties of the resulting methods. It is important to observe
that algebraic collocation, even if not particularly suited to reproduce the
qualitative behaviour of problems whose solutions is particularly oscillating,
is the first necessary step in order to construct collocation methods whose
collocation function is expressed as linear combination of different functions,
e.g. trigonometric polynomials, mixed or exponential basis (see, for instance,
[64, 135]).

9.2 Derivation of methods

We now discuss the modification of the technique introduced by Hairer
and Wanner in [122] for first order ODEs, in order to derive two–step colloca-
tion methods of the form (9.1.1), (9.1.2). We require that the corresponding
collocation polynomial assumes the form

P (tn + sh) = ϕ1(s)yn−1 + ϕ2(s)yn + h2

m
∑

j=1

χj(s)P
′′(tn + cjh), (9.2.1)

where s ∈ [0, 1], which is a linear combination of the basis polynomials
{ϕ1(s), ϕ2(s), χj(s), j = 1, 2, . . . , m} of degree at most equal to m + 1. The
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collocation polynomial has to satisfy the following set of m+2 interpolation
and collocation conditions

P (tn−1) = yn−1, P (tn) = yn, (9.2.2)

P ′′(tn + cjh) = f(tn + cjh, P (tn + cjh)), j = 1, . . . , m. (9.2.3)

which allow us to derive a polynomial of degree at most m + 1. The coun-
terpart of these conditions for the basis functions {ϕ1(s), ϕ2(s), χj(s), j =
1, 2, . . . , m} can then be expressed as follows

ϕ1(−1) = 1, ϕ2(−1) = 0, χj(−1) = 0,
ϕ1(0) = 0, ϕ2(0) = 1, χj(0) = 0,
ϕ′′

1(ci) = 0, ϕ′′
2(ci) = 0, χ′′

j (ci) = δij,
(9.2.4)

for i, j = 1, . . . , m. Such conditions are useful to determine the coefficients of
the unknown basis functions, which are given by solving m+2 linear systems
having the following coefficient matrix

H =















1 −1 1 . . . (−1)i . . . (−1)m+1

1 0 0 . . . 0 . . . 0
0 0 2 . . . i(i− 1)ci−2

1 . . . (m+ 1)mcm−1
1

...
...

...
...

...
...

...
0 0 2 . . . i(i− 1)ci−2

m . . . (m+ 1)mcm−1
m















,

which is a nonsingular matrix (apart for some exceptional values of the collo-
cation abscissa) because of Vandermonde type (see [158]). After computing
the basis functions, the class of methods takes the following form

Y
[n]
i = ϕ1(ci)yn−1 + ϕ2(ci)yn + h2

m
∑

j=1

χj(ci)P
′′(tn + cjh), (9.2.5)

yn+1 = ϕ1(1)yn−1 + ϕ2(1)yn + h2

m
∑

j=1

χj(1)P
′′(tn + cjh). (9.2.6)

9.3 Order conditions

We now derive the set of continuous order conditions, by considering
P (tn+sh) as an uniform approximation of y(tn+sh) on the whole integration
interval.
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Theorem 9.3.1 Assume that the function f in (8.0.1) is sufficiently smooth.
Then the method (9.2.5), (9.2.6) has uniform order p if the following condi-
tions are satisfied:

1 − ϕ1(s) − ϕ2(s) = 0, (9.3.1)

s+ ϕ1(s) = 0, (9.3.2)

sk

k!
− ϕ1(s)

(−1)k

k!
−

m
∑

j=1

χj(s)
ck−2
j

(k − 2)!
= 0, (9.3.3)

with k = 2, . . . , p and t ∈ [0, 1].

Proof: We consider the local discretization error

ξ(tn+sh) = y(tn+sh)−ϕ1(s)y(tn−h)−ϕ2(s)y(tn)−h2

m
∑

j=1

χj(s)y
′′(tn+cjh),

(9.3.4)
and expand y(tn + sh), y(tn−h) and y′′(tn + cjh) in Taylor series around the
point tn, obtaining

ξ(tn + sh) = y(tn) + shy′(tn) + · · · + (sh)p

p!
y(p)(tn)+

− ϕ1(s)

(

y(tn) − hy′(tn) + · · · + (−1)php

p!
y(p)(tn)

)

− ϕ2(s)y(tn)

− h2
m
∑

j=1

χj(s)

(

y′′(tn) + cjhy
′′′(tn) + · · · + (cjh)

p−2

(p− 2)!
y(p)(tn)

)

+O(hp+1).

We then compare the coefficients of the same power of h, achieving the thesis.
2

Theorem 9.3.1 allows us to prove that every two–step collocation method
of the type (9.2.5), (9.2.6) has order p = m on the whole integration inter-
val, and this is result is in keeping with [63]. In the context of GLMs, the
condition (9.3.1) is the preconsistency condition, while the (9.3.2) is the con-
sistency condition. In order to be the method preconsistent and consistent,
it must be ϕ1(s) = −s and ϕ2(s) = 1+s, i.e. the methods (9.1.1), (9.1.2) ex-
actly fall in the class of Coleman hybrid methods, since θ = −1 and ui = ci,
i = 1, ..., m .
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9.4 Linear Stability Analysis

We now examine the linear stability properties of the resulting methods by
using the procedure indicated in [178, 203, 204]. We apply the class of meth-
ods (9.1.1), (9.1.2), to the test equation

y′′ = −ω2y, ω ∈ R,

obtaining

Y
[n]
i = uiyn−1 + (1 − ui)yn − z2

m
∑

j=1

aijY
[n]
j , (9.4.1)

yn+1 = θyn−1 + (1 − θ)yn − z2
m
∑

j=1

wjY
[n]
j , (9.4.2)

where z2 = ω2h2. In matrix notation,

Y [n] = uyn−1 + ũyn − z2AY [n], (9.4.3)

yn+1 = θyn−1 + (1 − θ)yn − z2wTY [n], (9.4.4)

where Y [n] = (Y
[n]
i )m

i=1, u = (ui)
m
i=1, ũ = (1 − ui)

m
i=1, w = (wi)

m
i=1, A =

(aij)
m
i,j=1. The following expression for the stage values holds:

Y [n] = Q[uyn−1 + ũyn], (9.4.5)

where Q = [I + z2A]−1 and I is the identity matrix of dimension m. If we
substitute this expression in (9.4.4), the following recurrence relation arises:

yn+1 = [θ− z2wTQu]yn−1 + [1 − θ − z2wTQũ]yn (9.4.6)

or, equivalently,

[

yn+1

yn

]

=

[

M11(z
2) M12(z

2)
1 0

] [

yn

yn−1

]

, (9.4.7)

where

M11(z
2) = 1 − θ − z2wTQũ, M12(z

2) = θ − z2wTQu.
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The characteristic polynomial, associated to the recursion (9.4.7), is the sta-
bility polynomial, while the stability or amplification matrix [203, 204] asso-
ciated to the methods takes the form

M(z2) =

[

M11(z
2) M12(z

2)
1 0

]

. (9.4.8)

Let us denote the spectral radius of (M(z2)) with ρ(M(z2)). From [203, 204],
we consider the following definitions.

Definition 9.4.1 (0, β2) is a stability interval for the method (9.1.1), (9.1.2)
if, for z2 ∈ (0, β2), it is

ρ(M(z2)) < 1. (9.4.9)

The above condition is equivalent to the fact that the roots of the sta-
bility polynomial are in modulus less than 1, ∀z2 ∈ (0, β2). Setting S(z2) =
tr(M2(z2)) and P (z2) = det(M2(z2)), the condition (9.4.9) is equivalent to

P (ν2) < 1, |S(ν2)| < P (ν2) + 1, ν ∈ (0, β2) (9.4.10)

Definition 9.4.2 The method (9.1.1), (9.1.2) is A-stable if (0, β2) = (0,+∞).

In order to reach A-stability, it must be ρ(M(ν2)) < 1, for any value of ν2,
where ρ(M(ν2)) is the spectral radius of the stability matrix, i.e. both the
eigenvalues λ1, λ2 of M(ν2) must satisfy the condition |λ1| < 1, |λ2| < 1.
For m = 1, through an analytical study of the stability matrix (9.4.8), it is
possible to prove the following result which characterizes A-stable methods.

Theorem 9.4.1 (One-stage A-stable methods) For m = 1, the method
(9.2.5), (9.2.6) is A-stable if and only if c ∈ ( 1√

2
, 1]

If the eigenvalues of the stability matrix (9.4.8) (or in equivalent way, the
roots of the stability polynomial) are on the unit circle, then the interval
of stability becomes an interval of periodicity, according to the following
definition.

Definition 9.4.3 (0, H2
0 ) is a periodicity interval if, for z2 ∈ (0, H2

0 ) the
roots r1(z

2), r2(z
2) of the stability polynomial π(λ) = det[M(z2) − λI ] are

complex conjugate and |r1(z2)| = |r2(z2)| = 1.

Definition 9.4.4 The method (9.1.1), (9.1.2) is P -stable if its periodicity
interval is (0,+∞).

Through a numerical search, it is possible to find nonempty periodicity in-
tervals. For instance, in the case m = 1, for any c ∈ [0, 1

50
), the periodicity

interval of the resulting methods is [0, 4].
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9.5 Numerical Experiments

We consider the following initial value problem



































y′′(t) =

(

µ− 2 2µ − 2
1 − µ 1 − 2µ

)

y(t),

y(0) =

(

2
−1

)

,

y′(0) =

(

0
0

)

,

(9.5.1)

with µ ∈ R and t ∈ [0, 20π], which provides an useful illustration of the need
to know the stability properties of the methods when we aim to integrate
stiff systems. The exact solution is y1(t) = 2 cos t, y2(t) = − cos t, i.e. it is
independent on µ. In particular, when µ = 2500, the problem (10.2.15) is
the Kramarz system [146], which is often used in numerical experiments on
stiffness in second order ODEs.

The eigenvalues of the coefficient matrix of the system (10.2.15) are −1
and −µ: as a consequence, the analytical solution of the system exhibits
the two frequencies 1 and

√
µ, but the initial conditions eliminate the high

frequency component, which corresponds to
√
µ when µ >> 1. Notwith-

standing this, its presence in the general solution of the system dictates
strong restrictions on the choice of the stepsize, so that the system exhibits
the phenomenon of periodic stiffness [178].

In the usage of a numerical method with constant parameters and having
a limited interval of stability (0, H), it is known that the method is stable
when 0 < h <

√
H/

√
µ. As µ increases, the value of h has to be chosen

smaller and smaller, to make the computation stable; in this sense the pa-
rameter µ is a measure of the stiffness of the system. It is obvious that, for
an A-stable method, the choice of the stepsize is governed only by accuracy
demands.
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Hybrid method, m=1, c=3/4, p=1
h fe cd ge

0.01 9215 0.6046 0.2485
0.005 18008 0.8930 0.1279
0.0025 33923 1.1877 0.0648
0.00125 61937 1.4856 0.0326
0.000625 109219 1.7850 0.0164
0.0003125 201060 2.0853 0.0082

Radau IIA method, m=1, p=1
h fe cd ge

0.01 12361 0.4881 0.3250
0.005 24294 0.7724 0.1688
0.0025 46940 1.0650 0.0861
0.00125 88872 1.3617 0.0435
0.000625 165310 1.6606 0.0218
0.0003125 302663 1.9606 0.0109

In the above tables, fe is the counter of function evaluations, cd is the
number of correct digits and ge is the norm of the global error in the last
step point. The numerical results reveal that two–step hybrid collocation
methods (9.2.5), (9.2.6) essentially show the same behaviour of the indirect
collocation Radau IIA method, but with a lower computational cost in the
fixed stepsize implementation.



Chapter 10

Efficient solution of oscillatory
problems: special purpose
two-step hybrid methods

Classical numerical methods for ODEs (8.0.1) may not be well-suited to
follow a prominent periodic or oscillatory behaviour of the solutions because,
in order to catch the oscillations, a very small stepsize would be required
with corresponding deterioration of the numerical performances, especially
in terms of efficiency. For this reason, many classical numerical methods
have been adapted in order to efficiently approach the oscillatory behaviour.
One of the possible ways to proceed in this direction can be realized by
imposing that a numerical method exactly integrate (within the round-off
error) problems of type (8.0.1) whose solution can be expressed as linear
combination of functions other than polynomials: this is the spirit of the
exponential fitting technique (compare the monography [135] and references
therein contained), where the adapted numerical method is developed in
order to be exact on problems whose solution is linear combination of the
following basis functions

{1, t, . . . , tK, exp (±µt), t exp (±µt), . . . , . . . , tP exp (±µt)},

with K and P integer numbers, and of trigonometrical fitting, where the
reference function basis is

{1, t, . . . , tM , tj cos (±ωt), . . . , t` sin (±ωt), j = 0, 1, . . . , Q, ` = 0, 1, . . . , R},

211
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where M , Q and R are integer numbers. The coefficients of the adapted
methods depend on the values of the parameters appearing in the solution,
e.g. the frequency of the oscillations, and are supposed to be estimated in
advance.

In the context of linear multistep methods for second order ODEs, Gautschi
[110], Stiefel-Bettis [195] considered trigonometric functions depending on
one or more frequencies, while Lyche [157] derived methods exactly integrat-
ing initial value problems of order r whose solution can be expressed as lin-
ear combination of powers and exponentials; Raptis-Allison [181] and Ixaru-
Rizea [133] derived special purpose linear multistep methods for the numeri-
cal treatment of the radial Schrödinger equation y′′ = (V (t)−E)y, by means
of trigonometric and exponential basis of functions. More recently, in the con-
text of Runge–Kutta–Nyström methods, exponentially-fitted methods have
been considered, for instance, by Calvo [53], Franco [107], Simos [145, 190]
and Vanden Berghe [201], while their trigonometrically-fitted version has
been developed by Paternoster in [170]; mixed-collocation based Runge–
Kutta–Nyström methods have been introduced by Coleman and Duxbury
in [64]. Recent adaptations of the Numerov method have been provided in
[106, 128, 202]. For a more extensive bibliography see [135] and references
within.

The purpose of this chapter is the derivation and the analysis of the
adapted version of two-step hybrid methods (9.1.1)-(9.1.2), suitable to in-
tegrate problems (8.0.1) whose solution shows an oscillatory or exponential
behaviour, in such a way that it exactly integrates linear combinations of
power, exponentials and/or trigonometric functions depending on the values
of one and two parameters, which we suppose can be estimated in advance.
Frequency-dependent methods within the class (9.1.1)-(9.1.2) have already
been considered in [205], where the methods are modified to produced phase-
fitted and amplification-fitted methods.

The results contained in this chapter deal with the papers [91, 87], where
we have respectively introduced the trigonometrically and exponentially fit-
ted versions of the methods (9.1.1)-(9.1.2), depending on one and two pa-
rameters related to the behaviour of the solution.
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10.1 The role of linear operators: two-step

hybrid methods as A-methods

An important role in the derivation of adapted formulae is played by some
linear operators associated to the linearized version of the methods we are
analyzing. In order to linearize the methods (9.1.1)-(9.1.2), we follow the
approach introduced by Albrecht (cfr. [5, 6, 7, 8, 147]), mainly consisting
in rewriting the class of methods in the form of the so-called A-methods.
We now describe how to apply this approach in the case of two-step hybrid
methods (9.1.1)-(9.1.2) to approximate the solution of the problem (8.0.1)
which is assumed, for simplicity, to be scalar.

We first define the following vectors in Rs+2

Yn+1 = [Y
[n]
1 , ..., Y [n]

s , yn, yn+1]
T ,

F (tn, Yn+1; h) = [f(tn + c1h, Y1), ..., f(tn + csh, Ys), f(tn, yn), f(tn, yn+1)]
T .

In this way, a two-step hybrid method (9.1.1)-(9.1.2) can be expressed in the
following form of A-method

Yn+1 = AYn + h2BF (tn, Yn+1; h), (10.1.1)

with

A =





0 −c e + c
0 −1 2
0 0 1



 , B =





A 0 0
bT 0 0
0 0 0



 ∈ R
(s+2)×(s+2), (10.1.2)

where e is the unit vector of Rs. This representation is very useful, because
it constitutes a s + 2 linear stages representation, in the sense that each of
the s internal stages and the external stages are linear, thus we can look at
them as a generalized linear multistep formula on a nonequidistant grid. For
this reason, we can consider the following s+ 1 linear operators

Li[z(t); h] = z(t+ cih) − (1 + ci)z(t) + ciz(t− h)

− h2

s
∑

j=1

aijz
′′(t+ cjh), i = 1, ..., s (10.1.3)

L̂[z(t); h] = z(t+ h) − 2z(t) + z(t− h) − h2
s
∑

i=1

biz
′′(t+ cih), (10.1.4)
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where z(t) is a smooth enough function. Expanding in power series of h
around t we obtain

Li[z(t); h] = Ci2h
2z(2)(t) + Ci3h

3z(3)(t) + ..., i = 1, ..., s,

L̂[z(t); h] = Ĉ2h
2z(2)(t) + Ĉ3h

3z(3)(t) + ...,

where

Ciq =
cqi
q!

+
(−1)q

q!
− 1

(q − 2)!

s
∑

j=1

aijc
q−2
j , i = 1, ..., s, q = 2, 3, ...,

Ĉq =
1

q!
+

(−1)q

q!
− 1

(q − 2)!

s
∑

j=1

bjc
q−2
j , q = 2, 3, ...

As a consequence, the following definition arises.

Definition 10.1.1 The ith internal stage (9.1.1) of a two-step hybrid method
(9.1.1)-(9.1.2) has order pi if

Ci2 = 0, Ci3 = 0, Cipi+1 = 0, Cipi+2 6= 0, (10.1.5)

while the external stage (9.1.2) has order p if

Ĉ2 = 0, Ĉ3 = 0, Ĉp+1 = 0, Ĉp+2 6= 0. (10.1.6)

We know that necessary condition for a two-step hybrid method (9.1.1)-
(9.1.2) to have order p is that the external stage must have order p, i.e.

bT cq−2 =
1 + (−1)q

q(q − 1)
, q = 2, 3, ..., p+ 1, (10.1.7)

where the vector power is componentwise. In order to look for conditions
that are also sufficient, in line to Albrecht’s approach, we need to look at the
global error. We omit the details achieving order conditions, because they
are outside the original aim of our analysis, and which can be found in [63].
Table 10.1 shows the set of order conditions up to 4.

In order to derive s-stage methods of type (9.1.1)-(9.1.2) with constant
coefficients and having order q, we annihilate the linear operators (10.1.3)-
(10.1.4) on the functional basis

{1, t, t2, ..., tq} (10.1.8)
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Order Order conditions
1

∑

i bi = 1
2

∑

i bici = 0
3

∑

i bic
2
i = 1

6
∑

i

∑

j biaij = 1
12

4
∑

i bic
3
i = 0

∑

i

∑

j biciaij = 1
12

∑

i

∑

j biaijcj = 0

Table 10.1: Order conditions for two-step hybrid methods (9.1.1)-(9.1.2) of
order up to 4.

with q = s+ 1. It trivially occurs that

Li[1;h] = L̂[1;h] = 0, i = 1, 2, ..., s,
Li[t; h] = L̂[t; h] = 0, i = 1, 2, ..., s,

while, for 2 ≤ k ≤ q, it is

Lj[t
k; h] = 0, i = 1, 2, ..., s ⇔ cki + (−1)kci

k(k − 1)
=

s
∑

j=1

aijc
k−2
j

L̂[tk; h] = 0 ⇔ 1 + (−1)k

k(k − 1)
=

s
∑

i=1

bic
k−2
i .

Therefore, we obtain the set of conditions






















cki + (−1)kci
k(k − 1)

=
s
∑

j=1

aijc
k−2
j

1 + (−1)k

k(k − 1)
=

s
∑

j=1

bjc
k−2
j ,

(10.1.9)

for i = 1, 2, ..., s and 2 ≤ k ≤ q, which is a system of s(s+ 1) equations in
the unknowns aij, bi, for i, j = 1, 2, ..., s.

It is easy to verify that the methods obtained by solving the order con-
ditions (10.1.9) are equal to the methods described in [90], which are based
on collocation through algebraic polynomials, and have been derived by ex-
tending the multistep collocation technique described in [122]. Therefore
conditions (10.1.9) are the order conditions for collocation methods within
class (9.1.1)-(9.1.2).
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10.2 Trigonometrically-fitted

two-step hybrid methods

This section is devoted to the derivation of trigonometrically-fitted two-
step hybrid methods (9.1.1)-(9.1.2), aiming for the efficient integration of
second order ODEs (8.0.1) whose solution exhibits a prominent oscillatory
behaviour, under the assumption that it depends on the values of one or two
frequencies, which we suppose can be estimated in advance.

In particular, we require that both the internal and external stages of
the resulting methods exactly integrate linear combinations of the following
basis functions:

{1, t, . . . , tq, cos(ωit), sin(ωit), . . .} (10.2.1)

depending on the frequencies ωi, for i = 1 or i = 2. The idea to use a mixed
basis containing both powers and trigonometric functions follows the idea of
using mixed interpolation of type

a cos(ωt) + b sin(ωt) +
s−1
∑

i=0

cit
i, (10.2.2)

introduced in [100]. The abscissa vector c is considered to be free: each value
of ci, i = 1, 2, ..., s, can be chosen in order to improve the stability properties
of the methods or, imposing a special set of constraints, in order to achieve
superconvergence.

10.2.1 Construction of methods with coefficients de-

pending on one frequency

In order to derive numerical methods for second order ODEs whose so-
lution depends on the frequency ω, a priori known, we consider the function
basis

{1, t, . . . , tq, cos(ωt), sin(ωt), q = 1, 2, . . .}.
We first consider the derivation of two-stage methods, corresponding to the
basis

{1, cos(ωt), sin(ωt)},
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and we impose that the numerical method exactly integrates second order
ODEs whose solution is a linear combination of the basis functions. In this
way we obtain the class of trigonometrically fitted two-step hybrid methods.
As it automatically happens that

Lj [1;h] = L̂[1;h] = 0, j = 1, 2,

we need to impose the following set of conditions

Lj [cosωt; h] = 0, j = 1, 2, L̂[cosωt; h] = 0,

Lj [sinωt; h] = 0, j = 1, 2, L̂[sinωt; h] = 0,
(10.2.3)

which constitutes a 6×6 linear system in the unknowns a11, a12, a21, a22, b1, b2.

In order to construct methods with 3 or more stages, we impose that the
numerical method exactly integrates second order ODEs whose solution is a
linear combination of the basis function

{1, t, t2, ...ts−1, cos(ωt), sin(ωt)}

depending on the frequency ω. In this case we obtain a class of mixed-
trigonometrically fitted two-step hybrid methods. As also Lj[t; h] = L̂[t; h] =
0, j = 1, ..., s, it is sufficient to impose that

Lj [t
q; h] = 0, L̂[tq; h] = 0, j = 1, 2, ..., s, q = 2, 3..., s− 1,

Lj [cosωt; h] = 0, L̂[cosωt; h] = 0, j = 1, 2, ..., s,

Lj [sinωt; h] = 0, L̂[sinωt; h] = 0, j = 1, 2, ..., s.

It arises a system of s(s+1) conditions in the unknowns aij, bi, i, j = 1, 2, ..., s.
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This system is equivalent to the following set of conditions:

s
∑

i=1

bic
q−2
i =

1 + (−1)q

q(q− 1)
, q = 2, ...s,

s
∑

j=1

aijc
q−2
j = cqi

1 + (−1)qci
q(q − 1)

, i = 1, 2, ...s, q = 2, ...s,

s
∑

i=1

bi cos(ciθ) = 2
(1 − cos θ)

θ2
,

s
∑

j=1

aij cos(cjθ) = −cos(ciθ) + 1 + ci + ci cos θ

θ2
i = 1, 2, ...s,

s
∑

i=1

bi sin(ciθ) = 0,

s
∑

j=1

aij sin(cjθ) =
ci sin(θ) − sin(ciθ)

θ2
i = 1, 2, ...s,

where θ = ωh. In both cases, the coefficients of the resulting methods are
subjected to heavy numerical cancellation, so it is necessary to represent them
through their expansion in power series of θ, as it is shown in the examples
of methods provided in Section 10.2.4. It is also possible to prove that, for
θ → 0, the coefficients of the resulting trigonometrically–fitted method tend
to the coefficient of the corresponding collocation two–step hybrid methods
[90], also reported in Section 10.2.2.

10.2.2 Construction of methods with coefficients de-

pending on two frequencies

We now deal with the case of second order ODEs whose solution de-
pends on two frequencies ω1 and ω2, both estimated in advance. We require
that the methods must exactly solve the problem when its solution is linear
combination of the basis functions

{1, t, . . . , ts−3, cos(ω1t), sin(ω1t), cos(ω2t), sin(ω2t)},
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with s ≥ 4. In order to derive such methods, we impose the following set of
conditions

Lj [cosω1t; h] = 0, L̂[cosω1t; h] = 0, j = 1, . . . , s,

Lj [sinω1t; h] = 0, L̂[sinω1t; h] = 0, j = 1, . . . , s, (10.2.4)

Lj [cosω2t; h] = 0, L̂[cosω2t; h] = 0, j = 1, . . . , s,

Lj [sinω2t; h] = 0, L̂[sinω2t; h] = 0, j = 1, . . . , s.

Then if we are interested in methods with 4 stages, we only have to solve the
system (10.2.4) in the unknowns aij, bi, i, j = 1, ..., 4. It has now become
clear that, if we annihilate also

Lj[t
q; h] = 0, L̂[tq; h] = 0 j = 1, 2, ..., s, q = 2, 3..., s− 3,(10.2.5)

more stages are necessary. The methods derived by solving (10.2.4), whose
coefficients are listed in Appendix, have parameters depending on θ1 = ω1h
and θ2 = ω2h.

Also in this case, for θ1 → 0 and θ2 → 0, the coefficients of the derived
methods tend to the coefficients of the two–step collocation hybrid methods
of Section 10.2.2 and Chapter 9.

10.2.3 Linear stability analysis

We next analyze the linear stability properties [65, 203, 204] of the result-
ing methods, taking into account the dependency on the parameters. The
following definitions are the natural adaptation of the ones formulated in
Section 9.4 for methods depending on constant coefficients.

We first analyze the stability properties of mixed trigonometrically fit-
ted methods depending on one frequency. In [66] the authors discussed the
modifications introduced in the linear stability analysis, when the parameters
depend on one fitted frequency ω. As a consequence of the presence of the
fitted frequency ω, the interval of stability now becomes a two-dimensional
region for the one parameter family of methods.
In this analysis, we denote the stability matrix as M(ν2, θ) and R(ν2, θ) =
1
2
tr(M(ν2, θ)), P (ν2, θ) = det(M(ν2, θ)), because it depends not only on
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ν2 = λ2h2 but also on θ = ωh.
The eigenvalues of the stability matrixM(ν2, θ) satisfy the following equation

ξ2 − 2R(ν2, θ)ξ + P (ν2, θ) = 0. (10.2.6)

It is known in literature (see [64, 66, 146]) that methods such that

|P (ν2, θ)| ≡ 1, (10.2.7)

i.e. the roots of (10.2.6) lie on the unit circle, are of particular interest. For
example, Runge–Kutta Nyström methods based on polynomial approxima-
tions with symmetric abscissas ci in [0, 1], have an interval of periodicity, but
they are not P–stable, if collocation based. If (10.2.7) holds, the study of
periodicity can be developed just looking at the so–called stability function
R(ν2, θ), in agreement with the following definition [66].

Definition 10.2.1 For a trigonometrically fitted method of the type (9.1.1)-
(9.1.2) satisfying |P (ν2, θ)| ≡ 1, we define the primary interval of periodicity
as the largest interval (0, h0) such that |R(ν2, θ)| < 1, for all steplengths
h ∈ (0, h0). If, when h0 is finite, |R(ν2, θ)| < 1 also for γ < hδ, where
γ > h0, then the interval (γ, δ) is a secondary interval of periodicity.

Exponentially fitted linear multistep methods in [66] verify (10.2.7), but only
for few methods in the literature condition (10.2.7) holds. In our analysis, we
found that for two-stage methods (9.1.1)-(9.1.2) depending on one frequency,
the values of the abscissas such that |P (ν2, θ)| ≡ 1 are only c1 = 0, c2 = 1.
We next relax the definition 2 of region of stability in [66], in order to consider
also methods for which P (ν2, θ) < 1, in the following way [106]:

Definition 10.2.2 A region of stability Ω is a region of the (ν, θ) plane, such
that ∀(ν2, θ) ∈ Ω

P (ν2, θ) < 1, |R(ν2, θ)| < 1

2
(P (ν2, θ) + 1). (10.2.8)

Any closed curve defined by P (ν2, θ) ≡ 1 and |R(ν2, θ)| = 1
2
(P (ν2, θ) + 1) is

a stability boundary.

Figure 10.1 and fig. 10.2 show some examples of stability regions for
one–frequency depending methods, in the cases s = 2 and s = 3.
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Figure 10.1: Regions of stability in the (ν, θ)–plane for the two-step methods
for s = 2 with nodes (0, 1), (1

7
, 6

7
), ( 1

10
, 9

10
), (3

4
, 1) respectively.

We next consider the linear stability analysis of methods depending on
two frequencies. As stated before, for methods with constant coefficient,
the stability region is an interval on the real axis, while methods depend-
ing on one frequency have bidimensional stability region. In the case of
methods depending on the values of two frequencies, ω1, ω2, opportunely
adapting the approach that Coleman and Ixaru in [66] introduced for one
frequency depending methods, the stability region becomes tridimensional.
We now denote the stability matrix of the methods as M(ν2, θ1, θ2), with
ν2 = λ2h2, θ1 = ω1h, θ2 = ω2h. Its eigenvalues satisfy the following equation

ξ2 − 2R(ν2, θ1, θ2)ξ + P (ν2, θ1, θ2) = 0, (10.2.9)



222
CHAPTER 10. EFFICIENT SOLUTION OF OSCILLATORY PROBLEMS:

SPECIAL PURPOSE TWO-STEP HYBRID METHODS

Figure 10.2: Regions of stability in the (ν, θ)–plane for the two-step methods
for s = 3 with nodes (0, 1

2
, 1), (1

4
, 1

2
, 3

4
), (1

9
, 1

2
, 8

9
), (1

2
, 3

4
, 1) respectively.

where R(ν2, θ1, θ2) = 1
2
tr(M(ν2, θ1, θ2)) and P (ν2, θ1, θ2) =det(M(ν2, θ1, θ2))

are rational functions of ν2. The definition of stability region for two fre-
quencies depending methods can now be adapted as follows [106]:

Definition 10.2.3 A three dimensional region Ω of the (ν2, θ1, θ2) space is
said to be the region of stability of the corresponding two-frequencies depend-
ing method if ∀(ν2, θ1, θ2) ∈ Ω

P (ν2, θ1, θ2) < 1, |R(ν2, θ1, θ2)| <
1

2
(P (ν2, θ1, θ2) + 1). (10.2.10)

Any closed curve defined by

P (ν2, θ1, θ2) ≡ 1, |R(ν2, θ1, θ2)| =
1

2
(P (ν2, θ1, θ2) + 1). (10.2.11)
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is a stability boundary for the method.

Figure 10.3 shows an example of three dimensional stability region, while
Figure 10.4 shows the projection of three dimensional regions on a particular
plane.

Figure 10.3: Region of stability in the (ν2, θ1, θ2)–plane for the two-step
methods for m = 4 with nodes (0, 1

3
, 2

3
, 1).
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Figure 10.4: Regions of stability in the (ν, θ1)–plane for the two-step methods
for m = 4 with nodes (0, 1

3
, 2

3
, 1), (0, 1

10
, 9

10
, 1), (0, 2

5
, 3

5
, 1), (0, 9

20
, 11

20
, 1), (1

4
, 3

4
),

(1
5
, 4

5
) respectively.

10.2.4 Examples of methods

We now provide some examples of trigonometrically-fitted methods (9.1.1)-
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(9.1.2), using the analysis provided in the previous sections.

1. Two-stage methods depending on one frequency.
The solution of the system (10.2.3) for s = 2 is

a11 = −csc((c1 − c2)θ)(sin((c1 − c2)θ) + (1 + c1) sin(c2θ) − c1 sin((1 + c2)θ))

θ2
,

a12 =
csc((c1 − c2)θ)((1 + c1) sin(c1θ) − c1 sin((1 + c1)θ)))

θ2

a21 =
(csc((c1 − c2)θ)(−((1 + c2) sin(c2θ)) + c2 sin((1 + c2)θ)))

θ2

a22 =
(csc((c1 − c2)θ)((1 + c2) sin(c1θ) − c2 sin((1 + c1)θ) − sin((c1 − c2)θ)))

θ2

b1 =
2(−1 + cos(θ))csc((c1 − c2)θ) sin(c2θ)

θ2

b2 =
−2(−1 + cos(θ))csc((c1 − c2)θ) sin(c1θ)

θ2

where θ = ωh. The coefficients expressed in this form are not of prac-
tical utility, because they are subject to heavy numerical cancellation:
this is the reason why we handle their Taylor series expansion. For
brevity, we give only the Taylor series expansion of the coefficients of
the two stage method having c = [3/4, 1]

a11 = 91
32

− 4375
6144

θ2 + 198451
2949120

θ4 − 263429
75497472

θ6 + 62606173
543581798400

θ8

− 4225415771
1607262661509120

θ10 +O(θ12)

a12 = −35
16

+ 287
768
θ2 − 475

18432
θ4 + 2921

2949120
θ6 − 5149

212336640
θ8 + 1606607

3923981107200
θ10

+ O(θ12)

a21 = 4 − 23
24
θ2 + 2071

23040
θ4 − 24019

5160960
θ6 + 4565341

29727129600
θ8 − 110038253

31391848857600
θ10

+ O(θ12)

a22 = −3 + 1
2
θ2 − 11

320
θ4 + 71

53760
θ6 − 2503

77414400
θ8 + 3719

6812467200
θ10 +O(θ12)

b1 = 4 − 23
24
θ2 + 2071

23040
θ4 − 24019

5160960
θ6 + 4565341

29727129600
θ8 − 110038253

31391848857600
θ10

+ O(θ12)

b2 = −3 + 1
2
θ2 − 11

320
θ4 + 71

53760
θ6 − 2503

77414400
θ8 + 3719

6812467200
θ10 +O(θ12).

This representation of the coefficients is very expressive, because it al-
lows us to easily consider what follows. First of all we can notice that,
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for θ → 0, these coefficients tend to the ones of the corresponding
polynomial collocation method. Moreover, we observe that the follow-
ing relations hold

b1 + b2 = 1 +O(θ2)

b1c1 + b2c2 = O(θ2)

b1c
2
1 + b2c

2
2 = −c1c2 +O(θ2)

and, therefore, the method has algebraic order 2. The stability region
in the (ν, θ)-plane of the methods corresponding to some values of c1
and c2 are drawn in Figure 10.1.

2. Three stage mixed trigonometrically fitted methods depend-
ing on one frequency.

Solving the system of equations for m = 3, we derive the coefficients
of three stage methods depending on one frequency. We omit their
expression because it is huge and it has no practical utility because of
the heavy numerical cancellation it is subject to; anyway the expression
of the coefficients can be required to the authors. In our numerical
experiment we have used the Taylor expansion of the coefficients which,
in correspondence to the abscissa vector (c1, c2, c3) = (1

2
, 3

4
, 1), take the

following form:

a11 =
7

2
− 1081θ2

2560
+

251761θ4

10321920
− 1384021θ6

1651507200
+O(θ8)

a12 = −21

4
+

2293θ2

3840
− 163169θ4

5160960
+

279607θ6

275251200
+O(θ8)

a13 =
17

8
− 1343θ2

7680
+

24859θ4

3440640
− 293621θ6

1651507200
+O(θ8)

a21 =
693

128
− 78169θ2

122880
+

431851θ4

11796480
− 3163721θ6

2516582400
+O(θ8)

a22 = −511

64
+

18403θ2

20480
− 279851θ4

5898240
+

5752283θ6

3774873600
+O(θ8)

a23 =
413

128
− 32249θ2

122880
+

42617θ4

3932160
− 2013403θ6

7549747200
+O(θ8)
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a31 =
22

3
− 17θ2

20
+

2953θ4

60480
− 129767θ6

77414400
+O(θ8)

a32 = −32

3
+

6θ2

5
− 3827θ4

60480
+

78647θ6

38707200
+O(θ8)

a33 =
13

3
− 7θ2

20
+

437θ4

30240
− 27527θ6

77414400
+O(θ8)

b1 =
22

3
− 17θ2

20
+

2953θ4

60480
− 129767θ6

77414400
+O(θ8)

b2 = −32

3
+

6θ2

5
− 3827θ4

60480
+

78647θ6

38707200
+O(θ8)

b3 =
13

3
− 7θ2

20
+

437θ4

30240
− 27527θ6

77414400
+O(θ8).

We next compute the order of this method, applying the set of order
conditions

3
∑

i=1

bi = 1 +O(θ2)

3
∑

i=1

bici = O(θ2)

3
∑

i=1

bic
2
i =

1

6
+O(θ2)

3
∑

i=1

3
∑

j=1

biaij =
1

12
+O(θ2)

3
∑

i=1

bic
3
i 6= O(θ2).

obtaining that the method has algebraic order 3. The stability region
is drawn in Figure 10.2.

3. Four stage methods depending on two frequencies.
We now consider four stage methods of order 4 depending on two fre-
quencies. The following method comes out setting (c1, c2, c3, c4) =
(0, 1

3
, 2

3
, 1). We report some terms of the Taylor series expansion of
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its coefficients.

a11 = 0, a12 = 0, a13 = 0, a14 = 0,

a21 =
13676040 − 658854θ2

2

16533720
− θ2

1(355781160 − 6480270θ2
2 )

8928208800
+O(θ4

1) +O(θ4
2)

a22 = −71

54
+

833θ2
2

9720
+
θ2
1(510095880 − 35167230θ2

2 )

5952139200
+O(θ4

1) +O(θ4
2)

a23 =
26

27
− 7θ2

2

135
− θ2

1(7 − 533θ2
2)

367416
+O(θ4

1) +O(θ4
2)

a24 =
−8368920 + 198450θ2

2

33067440
+
θ2
1(21432600 − 103626θ2

2)

3571283520
+O(θ4

1) +O(θ4
2)

a31 =
539

324
− 929θ2

2

11664
− θ2

1(929 − 27443θ2
2)

18895680
+O(θ4

1) +O(θ4
2)

a32 = −137

54
+

37θ2
2

216
+
θ2
1(203915880 − 14061762θ2

2 )

1190427840
+O(θ4

1) +O(θ4
2)

a33 = 42661080 − 2285010θ2
2 − θ2

1(246781080 − 6909354θ2
2)

2380855680
+O(θ4

1) +O(θ4
2)

a34 = −8368920 + 198450θ2
2 +

θ2
1(21432600 − 103626θ2

2)

1785641760
+O(θ4

1) +O(θ4
2)

a41 =
5

2
− 43θ2

2

360
+
θ2
1(−8777160 + 160110θ2

2)

73483200
+O(θ4

1) +O(θ4
2)

a42 = −15

4
+

37θ2
2

144
+
θ2
1(7552440 − 520722θ2

2)

29393280
+O(θ4

1) +O(θ4
2)

a43 = 3 − 7θ2
2

45
+
θ2
1(−5715360 + 160110θ2

2)

36741600
+O(θ4

1) +O(θ4
2)

a44 = −3

4
+

13θ2
2

720
+
θ2
1(2653560 − 12690θ2

2)

146966400
+O(θ4

1) +O(θ4
2)

b1 =
5

2
− 43θ2

2

360
+
θ2
1(−8777160 + 160110θ2

2)

73483200
+O(θ4

1) +O(θ4
2)

b2 = −15

4
+

37θ2
2

144
+
θ2
1(7552440 − 520722θ2

2)

29393280
+O(θ4

1) +O(θ4
2)

b3 =
3 − (7θ2

2)

45
+
θ2
1(−5715360 + 160110θ2

2)

36741600
+O(θ4

1) +O(θ4
2)

b4 = −3

4
+

13θ2
2

720
+
θ2
1(2653560 − 12690θ2

2)

146966400
+O(θ4

1) +O(θ4
2)

Figures 10.3 and 10.4 show the stability region of this method and other
methods, obtained in correspondence of different values of the abscissa.
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10.2.5 Numerical experiments

We now show some numerical results we have obtained applying our fam-
ilies of solvers to some linear and nonlinear problems depending on one or
two frequencies, in order to test the accuracy of the derived methods and
also to compare them with ones already considered in literature for second
order ODEs. We will consider the following solvers:

• COLEM: two–step hybrid method, [63],

1√
6

1+
√

6
12

0

− 1√
6

−
√

6
12

1
12

1
2

1
2

(10.2.12)

• TRIGFIT1: trigonometrically fitted two–step hybrid method, with 2
stages and order 2, c = [0, 1];

• TRIGFIT2: trigonometrically fitted two–step hybrid method, with 2
stages and order 2, c = [0, 3/4];

• TRIGFIT3: trigonometrically fitted two–step hybrid method, with 2
stages and order 2, c = [3/4, 1];

• POL: two–step hybrid method [90], with 2 stages and order 2;

• MTRIGFIT: mixed–trigonometrically fitted two–step hybrid method,
with 3 stages and order 3,c = [1/3, 1/2, 1];

• TRIGFIT4S: trigonometrically fitted two–step hybrid method, with 4
stages and order 4, c = [0, 1/3, 2/3, 1].

Test 1. We consider the following test equation











y′′(t) = −25y(t), t ∈ [0, 2π],

y′(0) = 0,

y(0) = 1

(10.2.13)

whose exact solution is y(t) = cos(5t), so it depends on the frequency ω = 5.
Table 10.2.5 compares the new methods with classical ones having constant
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Method h = π/64 cd h = π/128 cd
COLEM 7.31e-02 1.13 4.20e-03 2.37

POL 2.87e-03 2.54 6.94e-04 3.16
TRIGFIT1 4.22e-15 14.37 4.44e-16 15.35
TRIGFIT2 4.44e-15 14.35 4.44e-16 15.35
TRIGFIT3 2.89e-15 14.54 8.88e-16 15.05
MTRIGFIT 2.22e-15 14.65 1.11e-13 13.95

Table 10.1: Numerical results for the problem (10.2.13).

coefficients, reporting the global error in the final point of the integration
interval and the number cd of achieved correct digits. Trigonometrically fit-
ted methods would solve this kind of problem exactly, of course, in exact
arithmetic. The errors are the effect of the accumulation of round off errors
in finite precision calculation.

Test 2. The Prothero-Robinson problem

y′′ + v2[y − cos(10t)]3 = −100y, t ∈ [0, 20π], (10.2.14)

with v >> 0, y(0) = 1, y′(0) = 0, whose exact solution is y(t) = cos(10t), is
an example of nonlinear equation, depending on the frequency ω = 10.

Method h = π/8 cd h = π/16 cd h = π/32 cd
TRIGFIT1 4.44e-16 15.35 8.88e-15 14.05 6.22e-15 14.21
TRIGFIT2 1.77e-15 14.75 4.22e-15 14.37 6.88e-15 14.16
TRIGFIT3 2.00e-15 14.70 4.22e-15 14.37 6.88e-15 14.16
MTRIGFIT 9.40e-13 12.07 1.49e-13 12.83 2.19e-14 13.66

Table 10.2: Numerical results for the problem (10.2.14).

Numerical results show that trigonometrically fitted methods and mixed-
trigonometrically fitted ones are both exact also for this nonlinear problem.
Small differences in numerical errors are due to stability properties.

Test 3. We test our methods also on a well known example of stiff system,
from [146]
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y′′(t) =

(

µ − 2 2µ− 2
1 − µ 1 − 2µ

)

y(t), y(0) =

(

2
−1

)

, y′(0) =

(

0
0

)

,

(10.2.15)
we have already discussed in Section 9.5. The behaviour of our class of

solvers is still similar to the one shown in the previous cases. The choice
of the stepsize is such that the methods result stable, and it is possible to
integrate this problem with a large stepsize. On the contrary, methods with
constant coefficients are stable only for small values of the stepsize. Anyway
methods in Table 10.2.5 show an accumulation of the error, due to finite
precision calculation, that is bigger than in the other considered problems.

Method h = π/2 cd h = π/4 cd
TRIGFIT3 2.34e-10 9.63 1.95e-09 8.71
TRIGFIT4S 3.80e-10 9.42 9.65e-08 7.01
MTRIGFIT 1.50e-08 7.84 5.01e-08 7.30

Table 10.3: Numerical results for the problem 10.2.15.

10.3 Exponentially-fitted two-step hybrid meth-

ods

This section aims to develop the exponentially-fitted version of two-step
hybrid methods (9.1.1)-(9.1.2), aiming for the efficient integration of sec-
ond order ODEs (8.0.1) whose solution exhibits a prominent exponential
behaviour, also in this case under the assumption that it depends on the
values of one or two parameters, which can be estimated in advance.

In particular, we require that both the internal and external stages of
the resulting methods exactly integrate linear combinations of the following
basis functions:

{1, t, . . . , tK , exp (±µit), t exp (±µit), . . . , . . . , t
P exp (±µit)}, (10.3.1)

depending on the values of the parameters µi, for i = 1 or i = 2. Also in this
case the abscissa vector c is free from any assumption and, therefore, can be
suitably chosen according to the properties we aim to achieve.
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10.3.1 Construction of the methods

We now present the constructive technique we used to derive EF methods
within the class (9.1.1)-(9.1.2), based on the so-called six-step procedure, in-
troduced by Ixaru and Vanden Berghe in [135] as a constructive tool to derive
EF based formulae approaching many problems of Numerical Analysis (e.g.
interpolation, numerical quadrature and differentiation, numerical solution of
ODEs) especially when their solutions show a prominent periodic/oscillatory
behaviour. This procedure provides a general way to derive EF formulae
whose coefficients are expressed in a regularized way and, as a consequence,
they do not suffer from numerical cancellation. Indeed, coefficients expressed
as linear combinations of sin, cos and exponentials suffer from heavy numer-
ical cancellation and, in the implementation, they are generally replaced by
their power series expansion, suitably truncated. On the contrary, the coeffi-
cients of EF methods obtained by using the six-step flow chart are expressed
by means of the ηk(s) functions introduced by Ixaru (see [132, 135] and ref-
erences therein contained) and, as a consequence, the effects of numerical
cancellation are notably reduced. We next report the first five steps of the
procedure, while the remaining one, i.e. the local error analysis, is reported
in the following section.

• step (i) Computation of the classical moments. The reduced classical
moments (see [135], p. 42) are defined, in our case, as

L∗
im(a) = h−(m+1)Li[h; a]tm, i = 1, . . . , s, m = 0, 1, ... (10.3.2)

L∗
m(b) = h−(m+1)L[h;b]tm, m = 0, 1, 2, . . . (10.3.3)

• step (ii) Compatibility analysis. We examine the algebraic systems

L∗
im(a) = 0, i = 1, . . . , s, m = 0, 1, . . . ,M − 1 (10.3.4)

L∗
m(b) = 0, m = 0, 1, . . . ,M ′ − 1. (10.3.5)

to find out the maximal values ofM andM ′ for which the above systems
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are compatible. From the following relations

L∗
0 = 0, L∗

1 = 0, L∗
2 = 2(1 − b1 − b2),

L∗
3 = 6(−b1c1 − b2c2), L∗

4 = 12(1
6
− b1c

2
1 − b2c

2
2),

L∗
10 = 0, L∗

11 = 0, L∗
12 = c1 + c21 − 2(a11 + a12),

L∗
13 = −c1(1 + 6a11 − c21) − 6a12c2, L∗

14 = c1 + c41 − 12(a11c
2
1 + a12c

2
2),

L∗
20 = 0, L∗

21 = 0, L∗
22 = c2 + c22 − 2(a21 + a22),

L∗
23 = −c2(1 + 6a22 − c22) − 6a21c1, L∗

24 = c2 + c42 − 12(a21c
2
1 + a22c

2
2),

we obtain M = M ′ = 4.

• step (iii) Computation of the G functions. In order to derive EF meth-
ods, we need to compute the so-called reduced (or starred) exponential
moments (see [135], p. 42), i.e.

E∗
0i(±z, a) = exp±µtLi[h, a] exp(±µt), i = 1, . . . , s, (10.3.6)

E∗
0(±z,b) = exp±µtL[h,b] exp(±µt). (10.3.7)

Once computed the reduced exponential moments, we can derive the
G functions, defined in the following way:

G+
i (Z, a) =

1

2

(

E∗
0i(z, a) + E∗

0i(−z, a)

)

, i = 1, . . . , s,

G−
i (Z, a) =

1

2z

(

E∗
0i(z, a) −E∗

0i(−z, a)

)

, i = 1, . . . , s,

G+(Z,b) =
1

2

(

E∗
0(z,b) + E∗

0(−z,b)

)

,

G−(Z,b) =
1

2z

(

E∗
0(z,b)− E∗

0(−z,b)

)

,
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where Z = z2. In our case, the G functions take the following form

G+
i (Z, a) = η−1(c

2
iZ) + ciη−1(Z) − 2(1 + ci) − Z

s
∑

j=1

aijη−1(c
2
jZ),

G−
i (Z, a) = ciη0(c

2
iZ) − ciη0(Z) − 2(1 + ci) − Z

s
∑

j=1

cjaijη0(c
2
jZ),

G+(Z,b) = 2η−1(Z) − 2 − Z
s
∑

j=1

bjη−1(c
2
jZ),

G−(Z,b) = −Z
s
∑

j=1

bjcjη0(c
2
jZ).

We next compute the p-th derivatives G±(p)
and G±

i
(p)

, taking into
account the formula for the p-th derivative of ηk(Z) (see [135])

η
(p)
k (Z) =

1

2p
ηk+p(Z),

and obtaining

G+(p)
(Z,b) =

1

2p−1
ηp−1(Z) −

2
∑

j=1

bj
dp

dZp

(

Zη−1(c
2
jZ)

)

,

G−(p)
(Z,b) = −

2
∑

j=1

bjcj
dp

dZp

(

Zη−1(c
2
jZ)

)

,

G+
i

(p)
(Z,b) =

c2p
i

2p
ηp−1(c

2
iZ) +

ci
2p
ηp−1(Z) −

2
∑

j=1

aij
dp

dZp

(

Zη−1(c
2
jZ)

)

,

G−
i

(p)
(Z,b) =

c2p+1
i

2p
ηp(c

2
iZ) − ci

2p
ηp(Z) −

s
∑

j=1

aijcj
dp

dZp

(

Zη0(c
2
jZ)

)

.

• step (iv) Definition of the function basis. We next decide the shape of
the function basis to take into account: as a consequence, the corre-
sponding method will exactly integrated (i.e. the operator L[h,b]y(t)
annihilates in correspondence of the function basis) all those problems
whose solution is linear combination of the basis functions. In general,
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the set of M functions is a collection of both powers and exponentials,
i.e.

{1, t, . . . , tK , exp (±µt), t exp (±µt), . . . , . . . , tP exp (±µt)}

where K and P are integer numbers satisfying the relation

K + 2P = M − 3 = 1. (10.3.8)

Let us next consider the set of M ′ functions

{1, t, . . . , tK′

, exp (±µt), t exp (±µt), . . . , . . . , tP ′

exp (±µt)}

annihilating the operators Li[h, a]y(t), i = 1, 2, . . . , s and assume that
K ′ = K and P ′ = P , i.e. the external stage and the internal ones are
exact on the same function basis.

• step (v) Determination of the coefficients. After a suitable choice of K
and P , we next solve the following algebraic systems:

G±
i

(p)
(Z, a) = 0, i = 1, . . . , s, p = 0, ..., P,

G±(p)
(Z,b) = 0, p = 0, ..., P.

We focus our attention on the complete analysis of two-stage EF methods
with K = 1 and P = 0 within the class (9.1.1)-(9.1.2), whose coefficients
have been reported in Section 10.3.5. Therefore, in the case, we deal with
the functional basis

{1, t, exp(±µt)}. (10.3.9)

Moreover, it is possible to extend the above procedure in order to derive
EF methods belonging to the class (9.1.1)-(9.1.2), in the case of more than
one frequency. In particular, the appendix reports the coefficients of two-
parameters EF methods with 4 stages, with respect to the basis of functions

{1, t, exp(±µ1t), exp(±µ2t)}. (10.3.10)

The final step of this procedure, i.e. the error analysis of the derived
formulae, is reported in the following section.
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10.3.2 Error analysis and estimation of the parameters

According to the used procedure [135], the general expression of the local
truncation error for an EF method with respect to the basis of functions
(10.3.9) takes the form

lteEF(t) = (−1)P+1hM L∗
K+1(b(Z))

(K + 1)ZP+1
D2(D2 − µ2)y(t), (10.3.11)

with K, P and M satisfying the condition (10.3.8). Taking into account that,
in our case, K = 1, P = 0 and M = 4, we obtain

lteEF(t) = −h2L
∗
2(b(Z))

2µ2
D2(D2 − µ2)y(t). (10.3.12)

We next expand lteEF in Taylor series around t, evaluate it in the current
point tn and consider the leading term of the series expansion, obtaining

lteEF(tn) = −1

6

(

(1 + 6c1c2)(µ
2y(2)(tn) − y(4)(tn))

)

h4 + O(h5). (10.3.13)

The local error analysis also constitutes a starting point for the estima-
tion of the unknown parameter µ which is, in general, a nontrivial problem.
In fact, up to now, a rigorous theory for the exact computation of the pa-
rameter µ has not yet been developed, but several attempts have been done
in the literature in order to provide an accurate estimation (see [134, 135]
and references therein), generally based on the minimization of the leading
term of the local discretization error. For this reason we annihilate the term
µ2y(2)(tn) − y(4)(tn) and estimate the parameter in the following way:

µ =

√

y(4)(tn)

y(2)(tn)
, if y(2)(tn) 6= 0. (10.3.14)

The expressions for the occurring derivatives can be obtained analytically
from the given ODEs and, therefore, equation (10.3.14) can be re-written as

µ =

√

fyy(tn, y(tn))y′(tn) + fy(tn, y(tn))f(tn, y(tn))

f(tn, y(tn))
, if f(tn, y(tn)) 6= 0.

(10.3.15)
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The value of the first derivative y′(tn) can be approximated by means of
sufficiently accurate finite differences.

Similar considerations can be applied in the case of four-stage EF methods
depending on the values of two parameters µ1 and µ2, with respect to the
functional basis (10.3.10). We consider the local truncation error, which
depends on the reference differential equation

D2(D2 − µ2
1)(D

2 − µ2
2)y(t).

We next expand the in Taylor series around t, consider the leading term and
evaluate it in tn, obtaining the expression

3fyyf
2 +f(β−αfy +f2

y +6fyyyy′2)+y′2
(

(5fy −α)fyy +fyyyyy′2
)

, (10.3.16)

where α = µ2
1 + µ2

2, β = µ2
1µ

2
2. For the sake of brevity, we have omitted in

(10.3.16) the dependency of the function f and its derivatives on (tn, y(tn))
and the dependency of the solution y on tn. An estimate to the unknown
parameters µ1 and µ2 arises by annihilating the expression (10.3.16).

10.3.3 Examples of methods

We report the coefficients of EF methods (9.1.1)-(9.1.2) with m = 2 and
m = 4 with respect to the basis (10.3.9) and (10.3.10) respectively. Two-stage
EF methods within this class and exact on the functional basis (10.3.9)have
the following coefficients:

b1 = −2c2
δ

(

− 1 + η−1(Z)

)

η0(c
2
2Z),

b2 = 2c1
δ

(

− 1 + η−1(Z)

)

η0(c
2
1Z),

a11 = 1
δ

(

c1η−1(c
2
2, Z)(−η0(Z) + η0(c

2
1, Z)) + c2(1 + c1 − c1η−1(Z) − η−1(c

2
1Z))η0(c

2
2Z)

)

,

a12 = c1
δ

(

η−1(c1
2Z)η0(Z) + (−1 − c1 + c1η−1(Z))η0(c1

2Z)

)

,

a21 = c2
δ

(

− (η−1(c
2
2Z)η0(Z)) + (1 + c2 − c2η−1(Z))η0(c

2
2Z)

)

,

a22 = c1
δ

(

(−1 − c2 + c2η−1(Z) + η−1(c
2
2 Z))η0(c

2
1Z) + c2η−1(c

2
1Z)(η0(Z) − η0(c

2
2Z)

)

,
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where

δ = Z(c1η−1(c
2
2Z)η0(c

2
1Z) − c2η−1(c

2
1Z)η0(c

2
2Z)).

It is easy to prove that, for Z tending to 0, such coefficients tend to the ones
of based on algebraic collocation (see [90]): therefore, applying the order
conditions derived in [63] for Z tending to 0, we discover that these methods
have order 2. Fig. 10.1 shows an example of stability region for two-stage
one-parameter depending method with c1 = 2

3
, c1 = 4

5
.

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Ν2

z

Figure 10.1: Region of stability in the (ν2, Z)−plane for m = 2, with c1 = 2
3
,

c1 = 4
5
.

The coefficients of four-stage EF methods within the class (9.1.1)-(9.1.2)
and exact on the functional basis (10.3.10) are too long to be reported here
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and, for this reason, we present their truncated power series expansion.
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2
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+
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Also in this case, for Z1 and Z2 tending to 0, such coefficients tend to the
ones of based on algebraic collocation and the corresponding methods have
algebraic order 4. Figure 10.2 shows an example of tridimensional stability
region for four-stage two-parameter depending methods with c = [0, 1

3
, 2

3
, 1]T .
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Figure 10.2: Region of stability in the (ν2, Z1, Z2)-space for m = 4, with
c = [0, 1

3
, 2

3
, 1]T .
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10.3.4 Numerical results

We now perform some numerical experiments confirming the theoretical
expectations regarding the class of methods we have derived. The imple-
mented solvers are based on the following methods:

• COLEM2, two-step hybrid method (9.1.1)-(9.1.2) having constant co-
efficients (see [63])

1
2

−1
1 2 −1

2 −1
(10.3.17)

with m = 2 and p = 2;

• EXPCOLEM2, one-parameter depending exponentially-fitted method
(9.1.1)-(9.1.2), with m = 2 and p = 2, whose coefficients are reported
in the appendix.

We implement such methods in a fixed stepsize environment, with step
h = 1

2k , with k positive integer number. The problems we aim to consider in
this section are both linear and nonlinear, having solutions depending on one
and two parameters. The numerical evidence confirm that EF-based methods
within the class (9.1.1)-(9.1.2) are able to exactly integrate all those problems
whose solution is linear combination of the considered basis functions. This
result also holds for large values of the stepsize: on the contrary, for the same
values of the step of integration, classical methods (9.1.1)-(9.1.2) are quite
often unstable and this also confirms that, in order to accurately integrate
problems with oscillating solutions, classical methods require a very small
stepsize, deteriorating the numerical performances in terms of efficiency.

Problem 1. We consider the following simple test equation







y′′(t) = λ2y(t),
y(0) = 1,
y′(0) = −λ,

(10.3.18)

with λ > 0 and t ∈ [0, 1]. The exact solution of this equation is y(t) =
exp(−λt) and, therefore, our exponentially-fitted methods can exactly repro-
duce it, i.e. the numerical solution will be affected by the round-off error only.
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Table 10.1 shows the results we have obtained by using the above numerical
methods.

λ k COLEM2 EXPCOLEM2
2 4 8.32e-1 4.20e-14

5 2.29e-1 7.38e-15
6 5.96e-2 1.20e-13

3 4 Unstable 1.92e-13
5 Unstable 3.17e-13
6 Unstable 2.50e-14

4 4 Unstable 1.91e-12
5 Unstable 2.46e-12
6 Unstable 3.83e-13

Table 10.1: Relative errors corresponding to the solution of the problem
(10.3.18), for different values of λ and k.

Problem 2. We examine the following linear equation







y′′(t) − y(t) = t− 1,
y(0) = 2,
y′(0) = −2,

(10.3.19)

with λ > 0 and t ∈ [0, 5]. The exact solution is y(t) = 1 − t+ exp(−t) and,
therefore, it is linear combinations of all the basis functions in (10.3.9). The
obtained results are reported in Table 10.2.

k COLEM2 EXPCOLEM2
4 Unstable 3.57e-13
5 8.52e-1 1.67e-15
6 2.71e-1 5.07e-14

Table 10.2: Relative errors corresponding to the solution of the problem
(10.3.19).
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k COLEM2 EXPCOLEM2
3 Unstable 1.21e-15
4 Unstable 4.68e-15
5 Unstable 1.30e-14

Table 10.3: Relative errors corresponding to the solution of the problem
(10.3.20), with ν = 100.

Problem 3. We next focus on the Prothero-Robinson problem [180]







y′′(t) + ν2[y(t)− exp(−λt)]3 = λ2y,
y(0) = 1,
y′(0) = −λ,

(10.3.20)

in t ∈ [0, 5], which is a nonlinear problem whose exact solution is y(t) =
exp(−λt). The obtained results are reported in Table 10.3.





Chapter 11

Runge-Kutta-Nystrom stability
for a class of General Linear
Methods for y′′ = f (x, y)

We have already discussed in Chapter 2 the great potential of General
Linear Methods for first order Ordinary Differential Equations (ODEs) and
used here and there in the dissertation some of the results developed up to
now for GLMs. The interest in this theory (compare [42, 138]) is involving
also different functional equations, for instance Volterra Integral Equations
[137]. For special second order ODEs y” = f(t, y) no systematic investigation
on GLMs has begun till now, even if many linear and nonlinear methods
appeared in the literature (see, for instance, [135]). We would like to begin
our investigation on GLMs for second order ODEs, starting from the linear
stability analysis of a special class of methods which, up to now, constitute
one of the most general family of methods for (8.0.1), i.e. the class of two-step

245
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Runge-Kutta-Nyström (TSRKN) methods

Y
[i−1]
j = yi−1 + hcjy

′
i−1 + h2

m
∑

s=1

ājsf(ti−1 + csh, Y
[i−1]

s ), j = 1, . . . , m

Y
[i]
j = yi + hcjy

′
i + h2

m
∑

s=1

ājsf(ti + csh, Y
[i]
s ), j = 1, . . . , m,

yi+1 = (1 − θ)yi + θyi−1 + h
m
∑

j=1

vjy
′
i−1 + h

m
∑

j=1

wjy
′
i

+ h2

m
∑

j=1

(

v̄jf(ti−1 + cjh, Y
[i−1]

j ) + w̄jf(ti + cjh, Y
[i]
j )
)

,

y′i+1 = (1 − θ)y′i + θy′i−1 + h
m
∑

j=1

(

vjf(ti−1 + cjh, Y
[i−1]
j )

+ wjf(ti + cjh, Y
[i]

j )
)

,
(11.0.1)

represented by the Butcher array

c Ā
v̄T

θ w̄T

v
w

. (11.0.2)

Such methods have been introduced and analyzed in [173, 174, 175, 176, 177].
In particular, they were derived in [173] as a family of indirect methods
[204] through a transformation of two-step Runge-Kutta (TSRK) methods
[139]. The analysis of convergence and consistency for TSRKN methods
has already been provided in [173]. In this paper we derive new TSRKN
methods, possessing the same stability properties of the best Runge-Kutta-
Nyström (RKN) methods, that are the indirect Gauss-Legendre collocation-
based methods [204], introducing the concept of RKN-stability, following the
lines already drawn in the derivation of GLMs for first order ODEs [42, 138].
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11.1 Stability analysis

In this section we present the framework on which the analysis of the linear
stability properties of TSRKN methods is based. The stability matrix of
TSRKN methods is (see [173])

M(z2) =









0 1 0 0
θ + α(v̄, e) 1 − θ + α(w̄, e) vTe + α(v̄, c) wTe + α(w̄, c)

0 0 0 1
α(v, e) α(w, e) vTe + θ + α(v, c) 1 − θ + α(w, c)









,

(11.1.1)
where α(x,y) = −z2xT N−1y, N = I + z2A, I is the identity matrix of order
m and e = (1, . . . , 1) ∈ Rm. We next consider the following definitions (see
[203, 204]).

Definition 11.1.1 (0, β2) is a stability interval for the method (11.0.1) if,
∀z2 ∈ (0, β2), the spectral radius ρ(M(z2)) of the matrix M(z2) is such that

ρ(M(z2)) < 1. (11.1.2)

The condition (11.1.2) is equivalent to the fact that the roots of stability
polynomial are in modulus less than 1, ∀z2 ∈ (0, β2). In particular, setting
S(z2) = tr(M2(z2)) and P (z2) = det(M2(z2)), for a one-step RKN method
the condition (11.1.2) is equivalent to

P (z2) < 1, |S(z2)| < P (z2) + 1, ∀z ∈ (0, β2).

Definition 11.1.2 The method (11.0.1) is A-stable if (0, β2) = (0,+∞).

If the eigenvalues r1(z
2), r2(z

2), r3(z
2), and r4(z

2) of the stability matrix
(13.2.4) (or, equivalently, the roots of the stability polynomial) are on the
unit circle, then the interval of stability becomes an interval of periodicity,
according to the following definition.

Definition 11.1.3 (0, H2
0 ) is a periodicity interval for (11.0.1) if, ∀z2 ∈

(0, H2
0 ), r1(z

2) and r2(z
2) are complex conjugate and |r1,2(z

2)| = 1, while
|r3,4(z

2)| ≤ 1.

For a one-step RKN method, the interval of periodicity is then defined by

(0, H2
0 ) := {z2 : P (z2) ≡ 1, |S(z2)| < 2}.

Definition 11.1.4 The method (11.0.1) is P-stable if its periodicity interval
is (0,+∞).
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11.2 Runge-Kutta-Nyström stability

In the context of the numerical integration of first order ODEs, Runge-Kutta
methods possess strong stability properties which are, in particular, superior
to the ones of linear multistep methods. For this reason, in recent times, the
attention of many authors has been devoted to the construction of general
linear methods for first order ODEs having the same stability properties of
Runge-Kutta methods (see [42, 138] and references therein). If M(z) ∈ Rs×s

is the stability matrix of a certain GLM, this method is said to be Runge-
Kutta stable if its stability polynomial p(ω, z) takes the form

p(ω, z) = ωs−1(ω − R(z)),

where R(z) is a rational function. Butcher and Wright (2003; see also [42] and
references therein) characterized Runge-Kutta stability in terms of algebraic
conditions on the coefficient matrices of the method, introducing the concept
of inherent Runge-Kutta stability.

In the case of second order ODEs, indirect RKN methods generated by
highly stable Runge-Kutta methods inherit those stability properties: for ex-
ample, Gaussian Runge-Kutta methods are A-stable and generate A-stable
indirect RKN methods; Runge-Kutta methods based on Radau IIA colloca-
tion points are L-stable and generate L-stable indirect RKN methods (see
[?]). Therefore, following the lines drawn in the literature in the context of
GLMs for first order ODEs [42, 138], we aim for TSRKN methods having
the same stability properties of highly stable RKN methods, according to the
following definition.

Definition 11.2.1 A TSRKN method (11.0.1) is said to be Runge-Kutta-

Nyström stable if its stability polynomial exhibits the form

p(ω, z2) = ω2
(

q2(z)ω
2 + q1(z)ω + q0(z)

)

, (11.2.1)

where q2(z)ω
2 + q1(z)ω+ q0(z) is the stability polynomial of a certain Runge-

Kutta-Nyström method.

In other words, the stability properties of TSRKN methods having Runge-
Kutta-Nyström stability (RKN-stability) are determined by the polynomial

q2(z)ω
2 + q1(z)ω + q0(z),
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which is exactly the stability polynomial of a RKN method. Therefore
TSRKN methods with RKN-stability on Gaussian points are A-stable and, in
particular, P -stable, while TSRKN method with RKN-stability on Radau IIA
points are L-stable. In order to derive TSRKN methods with RKN-stability,
we use the following procedure:

• the stability polynomial of the TSRKN method has, in general, degree
4 and its coefficients are rational functions of z, depending on the pa-
rameters of the method. It is transformed into a polynomial p̃(ω, z) of
the type (11.2.1), i.e.

p̃(ω, z2) = ω2
(

α2(z)ω
2 + α1(z)ω + α0(z)

)

;

• if we want to reproduce the stability properties of a certain RKN
method whose stability function is q2(z)ω

2 + q1(z)ω+ q0(z), we have to
solve the system of equations

α2(z) = q2(z), α1(z) = q1(z), α0(z) = q0(z). (11.2.2)

Even if the system (11.2.2) is not solvable, the first step of this procedure
(i.e. the reduction of the degree of the stability polynomial) would produce
a polynomial having only two nonzero roots and this property is very similar
to that of RKN methods. This leads to the following definition.

Definition 11.2.2 A TSRKN method (11.0.1) is said to be almost Runge-

Kutta-Nyström stable if its stability polynomial exhibits the form

p(ω, z2) = ω2
(

p2(z)ω
2 + p1(z)ω + p0(z)

)

, (11.2.3)

where p0(z), p1(z), and p2(z) are rational functions in z.

Almost Runge-Kutta-Nyström stability (almost RKN-stability) consti-
tute a desirable tool for the practical derivation of highly stable TSRKN
methods, because it requires the investigation of a quadratic polynomial in-
stead of a polynomial of degree 4. This idea will be explored in a paper in
preparation.
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11.2.1 RKN stability on Gaussian points

We now consider the derivation of TSRKN methods having the same sta-
bility properties of indirect RKN methods based on Gauss-Legendre points,
which are P -stable. Paternoster in [173] already provided a complete charac-
terization of P -stable indirect methods of order 1 and 2 in the class (11.0.1):
we now analyze if some of those methods possess the RKN-stability property
inherited from the indirect RKN method based on the Gauss-Legendre point,
i.e.

1/2 1/4
1/2
1

(11.2.4)

The stability polynomial of one-stage TSRKN of order 1 with almost
RKN-stability is

p(ω, z2) = ω2

(

ω2 +
−2 + (−2a + c+ w̄)z2

1 + az2
ω +

1 + (1 + a− c− w̄)z2

1 + az2

)

,

and it is obtained imposing w = 1 and v = v̄ = θ = 0. This means that
TSRKN with almost RKN-stability or RKN-stability fall inside the class of
RKN methods. The stability polynomial of the indirect one-stage Gauss-
Legendre RKN method is

q(ω, z2) = ω2 +
−8 + 2z2

4 + z2
ω + 1,

and, therefore, RKN-stability is forced by solving the linear system






−4 + 4c + 4w̄ = 0
−4a + c+ w̄ = 0
1 − c− w̄ = 0

As a consequence, we obtain the following family of P -stable methods

c 1/4
0

0 1 − c
0
1

(11.2.5)

In particular, when c = 1
2
, order 2 is achieved and we obtain again the

RKN method on the Gaussian point. These considerations lead to the fol-
lowing result.
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Theorem 11.2.1 One-stage TSRKN methods with order 1 and having RKN-
stability are RKN methods themselves. The only one-stage TSRKN method of
order 2 and having RKN-stability is the Gauss-Legendre RKN method itself.

In the case of two-stage TSRKN methods, we have been able to derive a
family of P -stable methods of order 2 and with RKN-stability inherited from
Gauss-Legendre RKN methods. The derived family of methods is reported
in the following result.

Theorem 11.2.2 Two-stage TSRKN methods with order 2 and having RKN-
stability are

1/2 (1 − 4a12)/4 a12

1/2 (1 − 4a12)/4 a22

0 0
0 (1 − 2w̄2)/2 w̄2

−v2 v2

1 −w2 w2

(11.2.6)
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Chapter 12

Collocation methods for
Volterra Integral Equations: a
review

Piecewise polynomial collocation methods for Volterra Integral Equations
(VIEs) introduce a number of aspects not present when solving ODEs. In
this chapter we will present the main results in the context of collocation and
almost collocation methods for VIEs of the form

y(t) = g(t) +

∫ t

0

k(t, τ, y(τ ))dτ t ∈ I := [0, T ], (12.0.1)

where k ∈ C(D × Rd), with D := {(t, τ ) : 0 ≤ τ ≤ t ≤ T} ⊆ R2, and g ∈
C(I), also underlining connections and differences with the case of ODEs.
Let Ih = {tn := nh, n = 0, ..., N, h ≥ 0, Nh = T} be a uniform mesh, which
constitutes the discrete counterpart of the interval [0, T ]. Equation (12.0.1)
can be rewritten, by relating it to this mesh, in the form

y(t) = F [n](t, y(·)) + Φ[n+1](t, y(·)), t ∈ [tn, tn+1],

where

F [n](t, y(·)) := g(t) +

∫ tn

0

k(t, τ, y(τ ))dτ, Φ[n+1](t, y(·)) :=

∫ t

tn

k(t, τ, y(τ ))dτ

are the lag term and the increment term respectively.

255
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12.1 Classical one–step collocation methods

Let us fix m collocation parameters 0 ≤ c1 < ... < cm ≤ 1 which identify m
internal points tnj = tn + cjh. The collocation polynomial, restricted to the
interval [tn, tn+1], is of the form:

Pn(tn + sh) =
m
∑

j=1

Lj(s)Y
[n+1]
j , s ∈ [0, 1], n = 0, ..., N − 1, (12.1.1)

where Lj(s) is the jth Lagrange fundamental polynomial with respect to the

collocation parameters and Y
[n+1]
j := Pn(tnj). Exact collocation methods

are obtained by imposing that the collocation polynomial (12.1.1) exactly
satisfies the VIE (12.0.1) in the collocation points tni and by computing
yn+1 = Pn(tn+1):







Y
[n+1]
i = F

[n]
i + Φ

[n+1]
i

yn+1 =
m
∑

j=1

Lj(1)Y
[n+1]

j
, (12.1.2)

where

F
[n]
i = g(tni) + h

n−1
∑

ν=0

∫ 1

0

k(tni, tν + sh, Pν(tν + sh))ds i = 1, ..., m (12.1.3)

Φ
[n+1]
i = h

∫ ci

0

k(tni, tn + sh, Pn(tn + sh))ds i = 1, ..., m. (12.1.4)

Note that the first equation in (12.1.2) represents a system of m nonlinear

equations in the m unknowns Y
[n+1]
i . We obtain an approximation P (t) of

the solution y(t) of the integral equation (12.0.1) in [0, T ], by considering

P (t)|(tn,tn+1]
= Pn(t) (12.1.5)

where Pn(t) given by (12.1.1).
We recall that, in contrast with what happens in the case of ODEs, gen-

erally P (t) is not continuous in the mesh points, as

P (t) ∈ S
(−1)
m−1(Ih), (12.1.6)

where

S(d)
µ (Ih) =

{

v ∈ Cd(I) : v|(tn,tn+1]
∈ Πµ (0 ≤ n ≤ N − 1)

}

.



12.1. CLASSICAL ONE–STEP COLLOCATION METHODS 257

Here, Πµ denotes the space of (real) polynomials of degree not exceeding µ.
A complete analysis of collocation methods for linear and nonlinear Volterra
integral and integro–differential equations, with smooth and weakly singular
kernels is given in [24]. In particular, as shown in [24, 27], the classical one–
step collocation methods for a second-kind VIE do no longer exhibit O(h2m)
superconvergence at the mesh points if collocation is at the Gauss points, in
fact they have uniform order m for any choice of the collocation parameters
and local superconvergence order in the mesh points of 2m − 2 (m Lobatto
points or m− 1 Gauss points with cm = 1) or 2m − 1 (m Radau II points).
The optimal order is recovered only in the iterated collocation solution.

We observe that, differently from the case of ODEs, the collocation equa-
tions are in general not yet in a form amenable to numerical computation, due
to the presence of the memory term given by the Volterra integral operator.
Thus, another discretization step, based on quadrature formulas F̄

[n]
i ' F

[n]
i

and Φ̄
[n+1]
i ' Φ

[n+1]
i for approximating the lag term (12.1.3) and the incre-

ment function (12.1.4), is necessary to obtain the fully discretized collocation
scheme, thus leading to discretized collocation methods. Such methods pre-
serve, under suitable hypothesis on the quadrature formulas, the same order
of the exact collocation methods [27].

The connection between collocation and implicit Runge–Kutta methods
for VIEs (the so called VRK methods) is not immediate: a collocation method
for VIEs is equivalent to a VRK method if and only if cm = 1 (see Theorem
5.2.2 in [27]). Some other continuous extensions of Runge–Kutta methods
for VIEs, which do not necessarily lead to collocation methods, have been
introduced in [21].

Many efforts have been made in the literature with the aim of obtaining
fast collocation and more general Runge–Kutta methods for the numerical
solution of VIEs. It is known that the numerical treatment of VIEs is very
expensive from computational point of view because of presence of the “lag-
term”, which contains the entire history of the phenomenon. To this cost, it
has also to be added the one due to the “increment term” which leads, for
implicit methods (generally possessing the best stability properties), to the
resolution of a system of nonlinear equations at each step of integration. In
order to reduce the computational effort in the lag–term computation, fast
collocation and Runge–Kutta methods have been constructed for convolution
VIEs of Hammerstein type, see [54, 74, 155, 156].

The stability analysis of collocation and Runge–Kutta methods for VIEs
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can be found in [20, 27, 55, 79] and the related bibliography. In particular
a collocation method for VIEs is A–stable if the corresponding method for
ODEs is A–stable.

12.2 Multistep collocation

Multistep collocation and Runge–Kutta methods for VIEs, have been intro-
duced in order to bring down the computational cost related to the resolution
of non-linear systems for the computation of the increment term. As a matter
of fact such methods, showing a dependence on stages and steps in more con-
secutive grid points, permit to raise the order of convergence of the classical
methods, without inflating the computational cost or, equivalently, having
the same order at a lower computational cost.

A first analysis of multistep collocation methods for VIEs appeared in
[76, 77], where the methods are obtained by introducing in the collocation
polynomial the dependence from µ previous time steps; namely we seek for
a collocation polynomial, whose restriction to the interval [tn, tn+1] takes the
form

Pn(tn +sh) =

µ−1
∑

k=0

ϕk(s)yn−k +
m
∑

j=1

ψj(s)Y
[n+1]
j , s ∈ [0, 1], n = 0, ..., N−1,

(12.2.1)
where

Y
[n+1]
j := Pn(tnj) (12.2.2)

and ϕk(s), ψj(s) are polynomials of degree m + µ − 1 to be determined by
imposing the interpolation conditions at the points tn−k, that is Pn(tn−k) =
yn−k, and by satisfying (12.2.2). It is proved in [71, 75] that, assuming ci 6= cj
and c1 6= 0, the polynomials ϕk(s), ψj(s) have the form:

ϕk(s) =
m
∏

i=1

s− ci
−k − ci

·
µ−1
∏

i=0
i6=k

s+ i

−k + i
,

ψj(s) =

µ−1
∏

i=0

s+ i

cj + i
·

m
∏

i=1
i6=j

s− ci
cj − ci

.

(12.2.3)

The discretized multistep collocation method is then obtained by impos-
ing the collocation conditions, i.e. that the collocation polynomial (12.2.1)
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exactly satisfies the VIE (12.0.1) at the collocation points tni, and by com-
puting yn+1 = Pn(tn+1):







Y
[n+1]
i = F

[n]
i + Φ

[n+1]
i ,

yn+1 =
µ−1
∑

k=0

ϕk(1)yn−k +
m
∑

j=1

ψj(1)Y
[n+1]
j .

(12.2.4)

The lag–term and increment–term approximations F
[n]
i ≈ F [n](tni, P (·))

and Φ
[n+1]
i ≈ Φ[n+1](tni, P (·)) assume the form

F
[n]
i = g(tni)+h

n−1
∑

ν=0

µ1
∑

l=0

blk(tni, tν +ξlh, Pν(tν +ξlh)), i = 1, ..., m (12.2.5)

Φ
[n+1]
i = h

µ0
∑

l=0

wilk(tni, tn + dilh, Pn(tn + dilh)), i = 1, ..., m, (12.2.6)

and are obtained by using quadrature formulas of the form

(ξl, bl)
µ1

l=1, (dil, wil)
µ0

l=1, i = 1, ..., m, (12.2.7)

where the quadrature nodes ξl and dil satisfy 0 ≤ ξ1 < ... < ξµ1
≤ 1 and

0 ≤ di1 < ... < diµ0
≤ 1, µ0 and µ1 are positive integers and wil, bl are

suitable weights.
The discretized multistep collocation method (12.2.1)-(12.2.4) provides a

continuous approximation P (t) of the solution y(t) of the integral equation
(12.0.1) in [0, T ], by considering

P (t)|(tn,tn+1]
= Pn(t) (12.2.8)

where Pn(t) is given by (12.2.1). We note that usually the polynomial con-
structed in the collocation methods for VIEs doesn’t interpolate the nu-
merical solution in the previous step points, resulting a discontinuous ap-
proximation of the solution (12.1.6). In this multistep extension, the col-
location polynomial is instead a continuous approximation to the solution,
i.e. u(t) ∈ S

(0)
m−1(Ih). The discretized multistep collocation method (12.2.1)-

(12.2.4) can be regarded as a multistep Runge–Kutta method for VIEs:


















Y
[n+1]
i = F̄ [n](tni) + h

µ0
∑

l=1

wilk

(

tn + eilh, tn + dilh,
µ−1
∑

k=0

γilkyn−k +
m
∑

j=1

βiljY
[n+1]
j

)

,

yn+1 =
µ−1
∑

k=0

θkyn−k +
m
∑

j=1

λjY
[n+1]
i ,

(12.2.9)
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where

F̄ [n](t) = g(t) + h
n−1
∑

ν=0

µ1
∑

l=1

blk

(

t, tν + ξlh,

µ−1
∑

k=0

δlkyν−k +
m
∑

j=1

ηljY
[ν]
j

)

(12.2.10)
and

eil = ci, γilk = ϕk(dil), βilj = ψj(dil),
θk = ϕk(1), λj = ψj(1),
δlk = ϕk(ξl), ηlj = ψj(ξl).

The reason of interest of the multistep collocation methods lies in the fact
that they increase the order of convergence of collocation methods without
increasing the computational cost, except for the cost due to the starting
procedure. As a matter of fact, in advancing from tn to tn+1, we make use of
the approximations yn−k, k = 0, . . . , µ−1, which have already been evaluated
at the previous steps. This permits to increase the order, by maintaining in
(12.2.4) the same dimension m of the nonlinear system (12.1.2).

The µ–step m–stage collocation methods have uniform order m+ µ, and
order of local superconvergence 2m+µ−1. The knowledge of the collocation
polynomial, which provides a continuous approximation of uniform order of
the solution, will allow a cheap variable stepsize implementation. Indeed,
when the stepsize changes, the new approximation values can be computed by
simply evaluating the collocation polynomial, without running into problems
of order reduction, as a consequence of the uniform order.

12.3 Two-step collocation and almost collo-

cation methods

Two-step almost collocation methods for VIEs [75] provide a continuous ap-
proximation Pn(tn + sh), s ∈ [0, 1], to the solution y(tn + sh) in the interval
[tn, tn+1], which employs the information about the equation on two con-

secutive steps and suitable sufficiently high order quadrature formulae F
[n]
j

and Φ
[n+1]
j for the discretization of F [n](tnj, P (·)) and Φ[n+1](tnj, P (·)) respec-

tively. The approximation P (t) of the solution y(t) of (12.0.1) on [0, T ] is
then obtained by considering

P (t)|(tn,tn+1] = Pn(t).
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The method assumes the form






Pn(tn + sh) = ϕ0(s)yn−1 + ϕ1(s)yn +
m
∑

j=1

χj(s)Y
[n+1]
j +

m
∑

j=1

ψj(s)(F
[n]
j + Φ

[n+1]
j )

yn+1 = P (tn+1),
(12.3.1)

where the algebraic polynomial Pn(tn+sh) is expressed as linear combination
of the basis functions ϕ0(s), ϕ1(s), χj(s) and ψj(s), j = 1, 2, . . . , m, which
are determined from the continuous order conditions provided in [75]. These
conditions arise from the analysis of the local truncation error

η(tn + sh) = y(tn + sh) − ϕ0(s)y(tn − h) − ϕ1(s)y(tn)

−
m
∑

j=1

(

χj(s)y(tn + (cj − 1)h) + ψj(s)y(tn + cjh)
)

.

(12.3.2)
and are reported in the following result.

Theorem 12.3.1 Assume that the kernel k(t, η, y) and the function g(t) in
(12.0.1) are sufficiently smooth. Then the method (12.3.1) has uniform order
p, i.e.,

η(tn + sh) = O(hp+1), h→ 0,

for s ∈ [0, 1], if the polynomials ϕ0(s), ϕ1(s), χj(s) and ψj(s), j = 1, 2, ..., m
satisfy the system of equations























1 − ϕ0(s) − ϕ1(s) −
m
∑

j=1

χj(s) −
m
∑

j=1

ψj(s) = 0,

sk − (−1)kϕ0(s) −
m
∑

j=1

(cj − 1)kχj(s) −
m
∑

j=1

ckjψj(s) = 0,

(12.3.3)

s ∈ [0, 1], k = 1, 2, ..., p.

Two-step collocation methods are obtained by solving the system of order
conditions up to the maximum uniform attainable order p = 2m+1, and, in
this way, all the basis functions are determined as the unique solution of such
system: the resulting methods completely reproduce the class of multistep
collocation methods presented in the previous section with µ = 2. However,
as observed in [75], it is not convenient to impose all the order conditions be-
cause it is not possible to achieve high stability properties (e.g. A−stability)
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without getting rid of some of them. Therefore, almost collocation meth-
ods are introduced by relaxing a specified number r of order conditions, i.e.
by a priori opportunely fixing r basis functions, and determining the re-
maining ones as the unique solution of the system of order conditions up to
p = 2m+1−r. Within the class of TSAC methods many A−stable methods
have been constructed [75].

The quadrature formulae in (12.3.1) are of the form

F
[n]
j = g(tnj)+h

n
∑

ν=1

(

b0k(tnj , tν−1, yν−1)+
m
∑

l=1

blk(tnj, tν−1,l, Y
[ν]
l )+bm+1k(tnj , tν, yν)

)

,

(12.3.4)
and

Φ
[n+1]
j = h

(

wj0k(tnj, tn, yn)+
m
∑

l=1

wjlk(tnj , tnl, Y
[n+1]
l )+wj,m+1k(tnj, tn+1, yn+1)

)

,

(12.3.5)

where Y
[n]
i = Pn−1(tn−1,i) are the stage values and b0, bl, bm+1, wj0, wjl,

wj,m+1 are given weights.
The polynomial P (tn + sh) is explicitly defined after solving, at each

step, the following system of (m+1)d nonlinear equations in the stage values

Y
[n+1]

i and yn+1, obtained by computing (12.3.1) for s = ci, i = 1, 2, . . . , m,
and s = 1:






















Y
[n+1]

i = ϕ0(ci)yn−1 + ϕ1(ci)yn +
m
∑

j=1

χj(ci)Y
[n+1]
j +

m
∑

j=1

ψj(ci)
(

F
[n]
j + Φ

[n+1]
j

)

,

yn+1 = ϕ0(1)yn−1 + ϕ1(1)yn +
m
∑

j=1

χj(1)Y
[n+1]

j +
m
∑

j=1

ψj(1)
(

F
[n]
j + Φ

[n+1]
j

)

,

(12.3.6)
n = 1, 2, . . . , N − 1.

Remark 12.3.1 Let eh(t) := y(t) − P (t) be the global error of the TSAC
method (12.3.1), and suppose the hypothesis of Theorem 12.3.1 are satisfied
up to order p. Then, under suitable hypothesis of sufficient regularity on the
kernel k (see [75]),

‖eh‖∞,[t0,T ] = O(hp∗), h→ 0.

i.e. the method has uniform order of convergence p∗ = min{s + 1, q, p+ 1},
where s and q are such that:
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i. the starting error is ‖eh‖∞,[t0,t1]
= O(hs);

ii. the lag-term and increment-term quadrature formulas (12.3.4)-(12.3.5)
are of order O(hq).

12.4 Mixed collocation

In the case of VIEs with periodic highly oscillatory solutions, traditional
methods may be inefficient, as they may require the use of a small stepsize in
order to follow accurately the oscillations of high frequency. As in the case
of ODEs “ad hoc” numerical methods have been constructed, incorporating
the a priori knowledge of the behaviour of the solution, in order to use wider
stepsizes with respect to classical methods and simultaneously to simulate
with high accuracy the oscillations of the solution.

A first work on the numerical solution of VIEs with periodic solution is
[23], where numerical methods were constructed by means of mixed interpo-
lation. Recently, mixed collocation methods have been introduced in [25, 26]
for VIEs and VIDEs. In particular in [25], mixed collocation methods have
been introduced for linear convolution VIEs of the form

y(t) = g(t) +

∫ t

−∞
k(t− τ )y(τ )dτ, t ∈ [0, T ], (12.4.1)

with
y(t) = ψ(t), t ∈ [−∞, 0],

where k ∈ L1(0,∞), g is a continuous periodic function and ψ is a given
bounded and continuous function. The collocation polynomial is taken in
the form

Pn(tn + sh) =
m
∑

k=0

Bk(s)Y
[n+1]
k

where the Bk(s) are combinations of trigonometric functions and algebraic
polynomials given in [25]. The numerical method is of the form















Y
[n+1]
i = F

[n]
i + Φ

[n+1]
i ,

yn+1 =
m
∑

k=0

Bk(1)Y
[n+1]

k ,
(12.4.2)
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where the lag-term and increment term approximations are given by

F
[n]
i = g(tni) +

∫ 0

−∞
k(tni − τ )ψ(τ )dτ + h

n−1
∑

ν=0

m
∑

l=0

wl(1)k(tnj − tνl)Y
[ν+1]
l ,

Φ
[n+1]
i = hci

m
∑

l=0

wl(1)k(tni − tn − hcicl)

(

m
∑

k=0

Bk(cicl)Y
[n+1]
k

)

,

with

wl(s) =

∫ s

0

Bl(τ )dτ.

With some suitable choices for collocation parameters such methods accu-
rately integrates systems for which the period of oscillation of the solution
is known. In the paper [56] the authors introduce a family linear methods,
namely Direct Quadrature (DQ) methods, specially tuned on the specific
feature of the problem, based on the exponential fitting [132, 135], which is
extremely flexible when periodic functions are treated. Such formulae are
based on a three-term quadrature formula, that is of the same form as the
usual Simpson rule, but specially tuned on integrands of the form k(s)y(s)
where k and y are of type

k(t) = eαt, y(t) = a+ b cos(ωt) + c sin(ωt), (12.4.3)

where α, ω, a, b, c ∈ IR. The coefficients of the new quadrature rule depend
on the parameters of the integrand, i.e. α and ω. It has been shown as
the use of exponentially fitted based three-point quadrature rules produces a
definite improvement in the accuracy when compared with the results from
the classical Simpson rule, and that the magnitude of the gain depends on
how good is the knowledge of the true frequencies. The results also indicate
that, as a rule, if the input accuracy is up to 10 percent, then the accuracy
gain in the output is substantial.



Chapter 13

Diagonally implicit two-step
almost collocation methods for
Volterra Integral Equations

This chapter concerns with the construction of both efficient and highly
stable numerical methods for Volterra Integral Equations (VIEs) of the form
(12.0.1). It is well known that the best stability properties are reached by
implicit numerical methods, with the disadvantage that they lead to nonlin-
ear systems of equations to be solved at each time step. To this cost we have
to add the cost arising from the computation of the lag term (containing
the history of the phenomenon), which can be computed by means of fast
methods developed in the literature for convolution kernels [54, 74, 183]. As
regards the task of reducing the computational cost associated to the solu-
tion of the above nonlinear systems, a widespread strategy in the context of
Ordinary Differential Equations (ODEs), consists in making the coefficient
matrix have a structured shape. This strategy, in the field of Runge–Kutta
methods for ODEs, leads to the raise of the famous classes of Diagonally
Implicit and Singly Diagonally Implicit Runge-Kutta methods (DIRK and
SDIRK), see [42, 122] and bibliography therein contained. Moreover, in the
field of collocation-based methods for ODEs, an analogous strategy has been
applied, obtaining a subclass of two-step Runge–Kutta methods (see [140])
having structured coefficient matrix [98].

In this chapter we will adopt this strategy in the context of the numerical
solution of VIEs (12.0.1) and, in particular, we will derive numerical meth-
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ods involving nonlinear systems with lower triangular or diagonal coefficient
matrices. The derived formulae belong to the class of Two-Step Almost Col-
location (TSAC) methods, which have been introduced in [75] and described
in Section 12.3, in order to obtain high order and highly stable continuous
methods for the problem (12.0.1). In fact, to integrate a system of d inte-
gral equations of the form (12.0.1), a collocation method generally requires
the solution of md simultaneous nonlinear equations of the type (12.3.6) at
each time step. A lower triangular matrix allows to solve the equations in
m successive stages, with only a d-dimensional system to be solved at each
stage. Moreover, if all the elements on the diagonal are equal, in solving the
nonlinear systems by means of Newton-type iterations, one may hope to use
repeatedly the stored LU factorization of the Jacobian. If the structure is
diagonal, the problem reduces to the solution of m independent systems of
dimension d, and can therefore be solved in a parallel environment.

13.1 Two-step diagonally implicit almost col-

location methods

This section is devoted to the construction of high order methods belonging
to the class (12.3.1) such that the coefficient matrix of the nonlinear system
(12.3.6) has a structured shape, leading to the solution of nonlinear systems
of lower dimension d. First of all we consider wj,m+1 = 0, j = 1, . . . , m, in
such a way that (12.3.6) becomes a nonlinear system of dimension md only

depending on the stage values Y
[n+1]
i , i = 1, . . . , m, and assumes the following

form











Y
[n+1]
i − h

m
∑

j=1

m
∑

l=1

ψj(ci)wjlk(tnj, tnl, Y
[n+1]
l ) = B

[n]
i ,

yn+1 = Pn(tn+1),

(13.1.1)

where

B
[n]
i = ϕ0(ci)yn−1+ϕ1(ci)yn+

m
∑

j=1

χj(ci)Y
[n]
j +

m
∑

j=1

ψj(ci)F
[n]
j +h

m
∑

j=1

ψj(ci)wj0k(tnj, tn, yn).

(13.1.2)
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By defining

Y [n+1] =
[

Y
[n+1]
1 , Y

[n+1]
2 , . . . , Y

[n+1]
m

]T

, B [n] =
[

B
[n]
1 , B

[n]
2 , . . . , B

[n]
m

]T

,

Ψ =
(

ψj(ci)
)m

i,j=1
, W =

(

wjl

)m

j,l=1
, K(tnc, tnc, Y

[n+1]) =

(

K(tni, tnj , Y
[n+1]
j )

)m

i,j=1

,

the nonlinear system in (13.1.1) takes the form

Y [n+1] − hΨ
(

W ·K(tnc, tnc, Y
[n+1])

)

= B[n], (13.1.3)

where · denotes the usual Hadamard product. The tensor form (13.1.3)
clearly shows as the matrices which determine the structure of the nonlinear
system (13.1.1) are Ψ and W . Therefore, in the following subsection we
will describe how to choose the basis functions ψj(s) and how to modify the
quadrature formula (12.3.5) in order to obtain lower triangular or diagonal
structures.

13.1.1 Determination of the basis functions ψj(s)

In order to achieve a lower triangular or diagonal structure for the matrix Ψ,
the basis functions ψj(s) must satisfy

ψj(ci) = 0, for j > i or j 6= i respectively, (13.1.4)

i.e. ψj(s) assumes the form

ψj(s) =

j−1
∏

k=1

(s− ck)ω̄j(s), j = 2, . . . , m (13.1.5)

or

ψj(s) =
m
∏

k=1
k 6=j

(s− ck)ω̃j(s), j = 1, . . . , m (13.1.6)

respectively, where ω̄j(s) is a polynomial of degree p − j + 1 and ω̃j(s) is a
polynomial of degree p−m+ 1.

Imposing (13.1.5), the remaining m+ 3 basis functions can be computed
by solving the system of order conditions (12.3.3) and, as a consequence, the
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maximum attainable uniform order which can be achieved by the correspond-
ing TSAC methods is m+ 2. On the other hand, by imposing (13.1.6), the
corresponding TSAC methods would have uniform order at most equal to
m+ 1. However, we can follow a different strategy in order to obtain higher
order methods. The idea is to impose the conditions (13.1.4) on less than m
basis functions, e.g. one or two of them (generally ϕ0(s) and ϕ1(s)), in such
a way that the maximum attainable order is p = 2m+ r − 1, with r = 1, 2.

Let us define the following sets of interpolation and collocation conditions
(see [75]):

• interpolation conditions in 0

ϕ0(0) = 0, ϕ1(0) = 1, χj(0) = 0, ψj(0) = 0, ∀j, (13.1.7)

• interpolation conditions in -1

ϕ0(−1) = 1, ϕ1(−1) = 0, χj(−1) = 0, ψj(−1) = 0, ∀j, (13.1.8)

• interpolation conditions in ci − 1, i ∈ {1, . . . , m}

ϕ0(ci − 1) = 0, ϕ1(ci − 1) = 0, χj(ci − 1) = δij, ψj(ci − 1) = 0, ∀j.
(13.1.9)

• collocation conditions in ci, i ∈ {1, . . . , m}

ϕ0(ci) = 0, ϕ1(ci) = 0, χj(ci) = 0, ψj(ci) = δij, ∀j, (13.1.10)

Remark 13.1.1 The name of conditions (13.1.7)-(13.1.8)-(13.1.9)-(13.1.10)
arises from the fact that they respectively ensure Pn(tn) = yn, Pn(tn−1) =

yn−1, Pn(tn−1,i) = Y
[n]
i = Pn−1(tn−1,i), Pn(tni) = F

[n]
i + Φ

[n+1]
i . In particular,

the last one means that the collocation polynomial exactly satisfies the VIE
(12.0.1) in the collocation point tni, except from the error associated to the
quadrature formulas (12.3.4) and (12.3.5).

Whatever condition from the sets (13.1.7)-(13.1.8)-(13.1.9)-(13.1.10) is in-
herited via order conditions, i.e. if we impose that some basis functions
satisfy certain interpolation/collocation conditions from the sets (13.1.7)-
(13.1.8)-(13.1.9)-(13.1.10) and derive all the other basis functions by solving
the system of order conditions, the same interpolation/collocation conditions
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are also satisfied by the computed basis functions (and then the correspond-
ing relation in Remark 13.1.1 is satisfied by the collocation polynomial), as
proved in the following theorem.

Theorem 13.1.1 Let us define ξ1 = −1, ξ2 = 0, ξ2+j = cj − 1, ξm+2+j =
cj, j = 1, . . . , m and Γ1(s) = ϕ0(s), Γ1(s) = ϕ1(s), Γ2+j(s) = χj(s),
Γm+2+j(s) = ψj(s), j = 1, . . . , m and let i ∈ {1, 2, . . . , 2m + 2} be a fixed
integer. Then, supposing ξi 6= ξj , i 6= j,

i. If Γi(ξi) = 1, then Γj(ξi) = 0 for all j 6= i;

ii. If Γi(ξ`) = 0 with ` 6= i, then Γj(ξ`) = δj` for j 6= i.

Proof: The system of order conditions (12.3.3) can be rewritten in terms of
ξj and Γj(s) as

sk −
2m+2
∑

j=1

ξk
j Γj(s) = 0, k = 0, 1, . . . , p, (13.1.11)

where we assume ξ0
2 = 1. We first prove the part i. of the thesis: for this

purpose, we evaluate (13.1.11) in s = ξi and, as a consequence, using the
assumption i. leads to the following linear system

2m+2
∑

j=1
j 6=i

ξk
j Γj(ξi) = 0, k = 0, 1, . . . , p,

which is a Vandermonde type linear system whose unique solution is Γj(ξi) =
0 for all j 6= i. In analogous way, by evaluating (13.1.11) in s = ξ` and taking
into account the assumption ii., we obtain the Vandermonde type linear
system

ξk
` −

2m+2
∑

j=1
j 6=i

ξk
j Γj(ξ`) = 0, k = 0, 1, . . . , p,

whose unique solution is Γj(ξ`) = δj` for j 6= i. 2
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Remark 13.1.2 In some examples presented in Section 5, we will fix one
or both of the polynomials ϕ0(s) and ϕ1(s) in the following way

ϕ0(s) =
m
∏

k=1

(s− ck)(α0 + α1s+ . . .+ αp−ms
p−m),

ϕ1(s) =
m
∏

k=1

(s− ck)(β0 + β1s+ . . .+ βp−ms
p−m),

(13.1.12)

where αj and βj, j = 0, 1, . . . , p−m, are free parameters. Then, as a con-
sequence of Theorem 13.1.1, all the conditions (13.1.10) are satisfied and Ψ
reduces to the identity matrix of dimension m.

13.1.2 Approximation of the increment term: modi-

fied quadrature formula

We observe that the quadrature formulae (12.3.4) and (12.3.5) can be ob-
tained by applying the quadrature formulae

1
∫

0

f(s)ds ≈ b0f(0) +
m
∑

l=1

blf(cl) + bm+1f(1), (13.1.13)

cj
∫

0

f(s)ds ≈ wj0f(0) +
m
∑

l=1

wjlf(cl) + wj,m+1f(1), (13.1.14)

for the approximation of the integrals appearing in the right hand side of

F [n](tnj , P (·)) = g(tnj) + h
n
∑

ν=1

1
∫

0

k(tnj, tν−1 + sh, Pν−1(tν−1 + sh))ds,

Φ[n+1](tnj, P (·)) = h

cj
∫

0

k(tnj , tn + sh, Pn(tn + sh))ds.

(13.1.15)
We aim to derive a suitable modification of the quadrature formula (13.1.14)

in such a way that the matrix W is lower triangular or diagonal and, with the
purpose to preserve the order, we make use of some additional quadrature
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nodes, i.e. we consider quadrature formulae of the form

cj
∫

0

f(s)ds ≈ wj0f(0) +
m
∑

l=1

w̃jlf(cl − 1) +

j
∑

l=1

wjlf(cl), (13.1.16)

where, in case of triangular structure, w̃jl = 0, l = 1, . . . , j while, in case of
diagonal structure, w̃j1 = 0 and wjl = 0, l = 1, . . . , j − 1.

With the purpose of achieving the desired order (see Remark 12.3.1),
quadrature formulae of the form (13.1.13) and (13.1.16) can be constructed
by taking into account that the order of the corresponding lag term and in-
crement term quadrature formulae is at least O(hq), if they are interpolatory
quadrature formulae on q and q − 1 nodes respectively [27].

Remark 13.1.3 The quadrature formulae (13.1.13) and (13.1.16) can be
further generalized if we need higher order by considering

1
∫

0

f(s)ds ≈
µ1
∑

l=0

blf(dl),

cj
∫

0

f(s)ds ≈
µ0
∑

l=0

w̃jlf(djl − 1) +

j
∑

l=1

wjlf(cl),

where µ0 and µ1 depend on the desired order and (13.1.13) and (13.1.16) are
special cases, obtained by setting µ1 = m+ 1, d0 = 0, dl = cl, l = 1, 2, . . . , m,
dm+1 = 1, µ0 = m, dj0 = 0, w̃j0 = 0, djl = cl, j, l = 1, 2, . . . , m.

13.1.3 Form of the diagonally implicit TSAC methods

As a consequence of the choices reported in the previous subsections, we
obtain what follows. If Ψ and W are lower triangular,

Ψ =











ψ11

ψ21 ψ22
...

. . .

ψm1 ψm2 . . . ψmm











, W =











w11

w21 w22
...

. . .

wm1 wm2 . . . wmm











,

(13.1.17)
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the resulting method assumes the form


















Y
[n+1]

i − hψi(ci)wiik(tni, tni, Y
[n+1]
i ) = B

[n]
i + B̃

[n]
i + h

i−1
∑

l=1

i
∑

j=l

ψj(ci)wjlk(tnj , tnl, Y
[n+1]
l ),

yn+1 = ϕ0(1)yn−1 + ϕ1(1)yn +
m
∑

j=1

χj(1)Y
[n]

j +
m
∑

j=1

ψj(1)
(

F
[n]
j + Φ

[n+1]
j

)

,

(13.1.18)

where B
[n]
i is given by (13.1.2),

B̃
[n]
i = h

i
∑

j=1

m
∑

l=1

ψj(ci)w̃jlk(tnj, tn−1,lY
[n]
l ), (13.1.19)

and F
[n]
j , Φ

[n+1]
j are approximations of (13.1.15) by means of the quadrature

formulae (13.1.13) and (13.1.16). The solution of the system (13.1.18) of
dimension md can be obtained by solving m successive nonlinear systems of
dimension d. Coherently with the case of ODEs, we denote the corresponding
methods as diagonally implicit TSAC methods (DITSAC). If Ψ and W are
lower triangular and, in addition, their product ΨW is one-point spectrum,
i.e.

ΨW =











λ
µ21 λ
...

. . .

µm1 µm2 . . . λ











, (13.1.20)

where λ = ψi(ci)wii, i = 1, 2, . . . , m then, in order to solve the system
(13.1.18) by Newton-type iterations, we can repeatedly use the stored LU-
factorization of the coefficient matrix

I − hλ
∂k

∂y
.

The related TSAC methods are then called singly diagonally implicit TSAC
methods (SDITSAC).

If, in particular, Ψ and W are diagonal

Ψ =











ψ11

ψ22

. . .

ψmm











, W =











w11

w22

. . .

wmm











, (13.1.21)
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then the method (13.1.18) takes the form

Y
[n+1]
i − hψi(ci)wiik(tni, tni, Y

[n+1]
i ) = B

[n]
i + B̃

[n]
i , (13.1.22)

where B
[n]
i and B̃

[n]
i are given by (13.1.2) and (13.1.19), respectively. The

nonlinear system (13.1.22) is then equivalent to m nonlinear systems of di-
mension d, which can be efficiently solved in a parallel environment. The
corresponding methods are denominated diagonal TSAC methods (DTSAC).
If ΨW is also one point spectrum, i.e.

ΨW = λI, (13.1.23)

with λ = ψi(ci)wii, it can be efficiently treated by means of Newton-type
iterations, as in the case of SDITSAC methods: we denote these methods as
singly diagonal TSAC methods (SDTSAC).

13.2 Linear stability analysis

We now focus our attention on the linear stability properties of TSAC meth-
ods (13.1.18) with respect to the basic test equation

y(t) = 1 + λ

t
∫

0

y(τ )dτ, t ≥ 0, Re(λ) ≤ 0, (13.2.1)

usually employed in the literature for the stability analysis of numerical meth-
ods for VIEs (see [27, 75, 77]). The following result holds.

Theorem 13.2.1 The stability matrix associated to the two-step collocation
method (13.1.18) takes the form

R(z) = Q−1(z)M(z), (13.2.2)

where

Q(z) =









1 −zψT (1)W −ψT(1) 0
0 I − zΨW −Ψ 0
0 0 I 0
0 0 0 1









(13.2.3)
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is an invertible matrix for z <
1

‖ΨW‖ (for some matrix norm) and

M(z) =









ϕ1(1) + zψT (1)w0 χT (1) + zψT(1)W̃ 0 ϕ0(1)

ϕ1(c) + zΨw0 A+ zΨW̃ 0 ϕ0(c)
zbm+1u zubT I zb0u

1 0 0 0









.

(13.2.4)

Proof: The method (13.1.18) applied to the test problem (13.2.1) assumes
the form

yn+1 = ϕ0(1)yn−1 + (ϕ1(1) + zψT (1)w0)yn + (χT (1) + zψT (1)W̃ )Y [n]

+ψT (1)F [n] + zψT (1)WY [n+1],

Y [n+1] = ϕ0(c)yn−1 + (ϕ1(c) + zΨw0)yn + (A+ zΨW̃ )Y [n] + ΨF [n] + zΨWY [n+1],
(13.2.5)

where we define the column vectors ψ(1) = (ψj(1))
m
j=1, χ(1) = (χj(1))

m
j=1,

w0 = (w̃j0)
m
j=1, ϕ0(c) = (ϕ0(cj))

m
j=1 and ϕ1(c) = (ϕ1(cj))

m
j=1 and the matrix

W̃ = (w̃ij)
m
i,j=1. The lag term satisfies the following recurrence relation

F [n] = F [n−1] + zbm+1uyn + zubTY [n] + zb0uyn−1, (13.2.6)

with b = [b1, b2, . . . , bm]T and u = [1, . . . , 1]T ∈ Rm. By defining

vn =
[

yn, Y
[n], F [n−1], yn−1

]T
,

from (13.2.5) and (13.2.6), we obtain the following recurrence relation

Q(z)vn+1 = M(z)vn, (13.2.7)

where Q(z) and M(z) take the form (13.2.3) and (13.2.4), respectively. The
proof will be completed by showing the invertibility of the matrix Q(z), by
means of some algebraic tools, based on the Schür complement. It is well
known (see [13]) that, given a block matrix of the type

[

Q11 Q12

0 Q22

]

with invertible blocks Q11 and Q22, the inverse assumes the following form:

[

Q11 Q12

0 Q22

]−1

=

[

Q−1
11 −Q−1

11 Q12Q
−1
22

0 Q−1
22

]

.



13.3. DERIVATION OF A-STABLE (S)DITSAC AND (S)DTSAC
METHODS 275

According to this result, the invertibility of the matrix Q(z) follows from the
invertibility of the matrix I − zΨW thus, if z‖ΨW‖ < 1 for some matrix
norm (see [13], p. 492), the inverse of Q(z) can be computed as

Q−1(z) =









1 zψT (1)W (I − zΨW )−1 −ψT (1)(I + zW (I − zΨW )−1) 0
0 (I − zΨW )−1 −(I − zΨW )−1Ψ 0
0 0 I 0
0 0 0 1









.

(13.2.8)
2

The proof of Theorem 13.2.1 also provides the tools for an efficient in-
version of the matrix Q(z). In fact, using the Schür complement, we have
reduced the problem of the inversion of Q(z), i.e. a matrix of dimension
2m+ 2, to the inversion of the lower triangular matrix I − zΨW , of dimen-
sion m, as results from (13.2.8). This allows an efficient computation of the
inverse of Q(z).

13.3 Derivation of A-stable (S)DITSAC and

(S)DTSAC methods

The strategy we carry out in the construction of A-stable methods can be
summarized as follows.

First of all we set the quadrature formulae (13.1.13) and (13.1.16) in such
a way to enforce the desired structure on the matrixW and the order p of con-
vergence. Moreover, we fix the polynomial ϕ0(s) and, eventually, also ϕ1(s),
satisfying some of the interpolation/collocation conditions (13.1.7)-(13.1.8)-
(13.1.9)-(13.1.10), e.g. the ones in (13.1.12). As a consequence some free pa-
rameters are available to be spent in order to enforce the desired structure on
the matrix Ψ and to achieve A-stability. We next derive the remaining basis
functions by solving the system of order conditions (12.3.3) up to p: as stated
by Theorem 13.1.1, the same fixed interpolation/collocation conditions are
inherited by the other basis functions. We next compute the stability poly-
nomial p(ω, z) of the obtained methods, i.e. the characteristic polynomial of
the stability matrix (13.2.2), which depends on the matrices Q(z) in (13.2.3)
and M(z) in (13.2.4). In particular, in the construction process it is useful
to consider the expression (13.2.8) of the inverse of the matrix Q(z), which
provides considerable simplifications in the computations. We next analyze
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the stability properties of the polynomial p(ω, z): in particular, we aim to
derive methods which are A-stable, i.e. the roots ω1, ω2, . . . , ω2m+2 of the
polynomial p(ω, z) lie in the unit circle, for all z ∈ C such that Re(z) ≤ 0.
We investigate A-stability using the Schur criterion [184], similarly as it has
already been done in [75, 92, 94, 95, 93, 138].

13.3.1 Examples of methods with m = 2 with Ψ and W

lower triangular

We first show the construction of highly stable two-stage DITSAC methods
(13.1.18), i.e. we require that the matrices Ψ and W are lower triangular.
As a first attempt, we have derived and analyzed the stability properties of
(13.1.18) with m = 2 and order p = 2m + 1 = 5, and discovered that no
A-stable methods within this class exist. Therefore, we next relax one order
condition (r = 1), and consider DITSAC methods (13.1.18) with m = 2 and
order p = 2m = 4. We compute the weights of the quadrature formulae
(13.1.13) and (13.1.16) according to the desired order p = 4, obtaining

b0 = −−6c2c1 + 2c1 + 2c2 − 1

12c1c2
, b =

[

− 1−2c2
12(c1−1)c1(c1−c2)

2c1−1
12(c2−1)c2(c2−c1)

]T

,

b3 = −−6c2c1 + 4c1 + 4c2 − 3

12(c1 − 1)(c2 − 1)
, w0 =

[

−c1(c1 − 3c2 + 3)

6(c2 − 1)
− c22 − 3c1c2

6c1

]

,

W =

[

c1(2c1−3c2+3)
6(c1−c2+1)

0

− c3
2

6c1(c1−c2)
−2c2

2
−3c1c2

6(c1−c2)

]

, W̃ =

[

0
c31

6(c1−c2+1)(c2−1)

0 0

]

.

As in Remark 13.1.2, we assume

ϕ0(s) = s(s− c1)(s− c2)(α0 + α1s)

and, as a consequence, the matrix Ψ = I . Imposing such a factorization
on the polynomial ϕ0(s) implies that it satisfies the interpolation condition
ϕ0(0) = 0 and the collocation conditions ϕ0(c1) = ϕ0(c2) = 0. We impose
the condition α0 = −α1, in order to derive methods which do not depend
on yn−1: this choice, as also in the case of two-step Runge–Kutta methods
for ODEs, is particularly suitable in order to improve the stability properties
of the resulting methods (compare with [138, 140]). We next determine
the remaining basis functions ϕ1(s), χ1(s), χ2(s), ψ1(s), ψ2(s) by imposing the
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system of order conditions (12.3.3), which result to be

ϕ1(s) =
(c1−s)(s−c2)(c2(c2+1)α1(s−1)sc21+(s+c2((c2+1)α1(s−1)s−1)+1)c1+(c2−s−1)(s+1))

(c1−1)c1(c2−1)c2
,

χ1(s) = (c1−s)(c2−s)(c2((c1+1)(c2+1)α1(s−1)+1)−s−1)s
(c1−1)(c1−c2−1)(c1−c2)

,

χ2(s) = (c1−s)(c2−s)(c1((c1+1)(c2+1)α1(s−1)+1)−s−1)s
(c1−c2)(c1−c2+1)(c2−1)

,

ψ1(s) =
(c2−s)s(−c2(c2+1)α1(s−1)c21+(s+c2((c2+1)α1(s−1)s−1)+1)c1+(c2−s−1)(s+1))

c1(c1−c2)(c1−c2+1)
,

ψ2(s) =
(c1−s)s(−c2α1(c2−s)(s−1)c2

1
+(c2(−α1(c2−s)(s−1)−1)+s+1)c1+(c2−s−1)(s+1))
(c1−c2−1)(c1−c2)c2

.

The determined quadrature weights and basis functions now depend on the
parameters α1, c1 and c2, which can be regarded as degrees of freedom in or-
der to enforce strong stability properties for the corresponding methods, such
as A-stability. We also observe that, in force of Theorem 13.1.1, the interpo-
lation/collocation conditions imposed on ϕ0(s) are automatically inherited
by all the other basis functions and, a fortiori, on the whole collocation
polynomial (12.3.1).

We next derive the stability polynomial p(ω, z) of order 2m+ 2 = 6 with
respect to the variable ω. In force of the choices we have made, it takes the
form

p(ω, z) = ω(p0(z)+p1(z)ω+p2(z)ω
2+p3(z)ω

3+p4(z)ω
4+p5(z)ω

5), (13.3.1)

where pj(z), j = 0, 1, . . . , 5, are rational functions with respect to z, which
do not depend on the value of the parameter α1, but only the abscissae c1
and c2. In order to investigate on the stability properties of the polynomial
(13.3.1), it is sufficient to consider the polynomial

p̃(ω, z) = p0(z) + p1(z)ω + p2(z)ω
2 + p3(z)ω

3 + p4(z)ω
4 + p5(z)ω

5,

of degree 5 with respect to ω. We apply the Schür criterion on the polynomial
p̃(ω, z), in order to determine the values of the free parameters c1 and c2
corresponding to A-stable methods. The result of this analysis is reported in
Figure 13.1.

We next derive A-stable two-stage SDITSAC methods within the class
(13.1.18). In this case, by using the Schür criterion, we did not find A-stable
methods with m = 2 and p = 4 and, therefore, we focus our attention on
methods with m = 2 and p = 3, by relaxing two order conditions. We
determine the weights of the quadrature formulae (13.1.13) and (13.1.16)
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Figure 13.1: Region of A-stability in the parameter space (c1, c2) for DITSAC
methods (13.1.18), with m = 2 and p = 4, for any value of the parameter α1

corresponding to the lower triangular case, obtaining

b0 = −1 − 3c2
6c2

, b =

[

0 − 1

6(c2 − 1)c2

]T

, b3 = − 2 − 3c2
6(c2 − 1)

,

w0 =
[ c1

2

c2
2

]T

, W =





c1
2

0

0
c2
2



 , W̃ =

[

0 0
0 0

]

.

We next impose

ϕ0(s) = s(α0 + α1s)(s− α2),

ϕ1(s) = s(β0 + β1s)(s− β2)

and, as a consequence, the interpolation condition ϕ0(0) = ϕ1(0) = 0 holds.
In addition, we also set α2 = 1 in order to enforce the independency on yn−1.
We next determine the remaining basis functions χ1(s), χ2(s), ψ1(s), ψ2(s)
by imposing the system of order conditions (12.3.3) and which inherit the
interpolation condition in 0. The computed basis functions and quadrature
weights now depend on the free parameters α0, α1, β0, β1, β2, c1 and c2. First
of all, we spend α0 and β0 in order to enforce ΨW being lower triangular and
one point spectrum. We next enforce some further simplifying assumptions
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on the basis functions, using the values of α1, α2 and β1, obtaining a three-
parameter family of methods to be investigated. We next derive the stability
polynomial p(ω, z) of order 2m+2 = 6 with respect to the variable ω, which
assumes the same form (13.3.1), where now pj(z), j = 0, 1, . . . , 5, depend
on the free parameters c1, c2 and β2. As in the previous case, we focus our
attention on a polynomial p̃(ω, z) of degree 5 with respect to ω. We apply
the Schür criterion on p̃(ω, z), in order to determine the values of the free
parameters c1, c2 and β2 achieving A-stability. The results are shown in
Figure 13.2.

2.0 2.5 3.0 3.5 4.0

1.0

1.5

2.0

2.5

3.0
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c
2

Figure 13.2: Region of A-stability in the parameter space (c1, c2) for SDIT-
SAC methods (13.1.18), with m = 2, p = 3 and β2 = 1

4

13.3.2 Examples of methods with m = 2 with Ψ and W

diagonal

We now present the construction of highly stable two-stage DTSAC methods
(13.1.22), i.e. we require that the matrices Ψ and W are diagonal. We first
observe that, among the examples of A-stable methods provided in [75],
the one reported in Figure 5 belongs to the class of DTSAC methods with
m = 2 and p = 3. In this chapter, we present examples of two-stage A-
stable SDTSAC methods, requiring that the matrix ΨW is diagonal and
one-point spectrum. First of all, we did not find A-stable SDTSAC methods
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with m = 2 and p = 4, 5 exist and, therefore, we relax two order conditions
(r = 2), and consider SDTSAC methods (13.1.22) with m = 2 and order
p = 3. We compute the weights of the quadrature formulae (13.1.13) and
(13.1.16) corresponding to the diagonal case, obtaining

b0 = −1 − 3c2
6c2

, b =

[

0 − 1

6(c2 − 1)c2

]T

, b3 = − 2 − 3c2
6(c2 − 1)

,

w0 =
[

c1
2

c2
2

]T
, W =

[

c1
2

0
0 c2

2

]

, W̃ =

[

0 0
0 0

]

.

We next impose

ϕ0(s) = s(α0 + α1s)(s− α2),

ϕ1(s) = s(β0 + β1s)(s− β2)

and, as a consequence, the interpolation condition ϕ0(0) = ϕ1(0) = 0 holds.
In addition, we also set α2 = 1 in order to enforce the independency on yn−1.
We next determine the remaining basis functions χ1(s), χ2(s), ψ1(s), ψ2(s) by
imposing the system of order conditions (12.3.3) up to p = 3, transferring
to them the interpolation condition in 0. Then, At this point, everything
depends on the values of α0, α1, β0, β1, β2, c1 and c2. We spend α0, α1 and
β0 in order to obtain ΨW being diagonal and one point spectrum. We next
enforce some further simplifying assumptions on the basis functions, using
the values of α2 and β1, obtaining a three-parameter family of methods,
depending on c1, c2 and β2. We next derive the stability polynomial p(ω, z) of
order 6 with respect to the variable ω, which assumes the form (13.3.1), where
now pj(z), j = 0, 1, . . . , 5, are rational functions with respect to z depending
on c1, c2 and α2. We apply the Schür criterion, in order to determine the
values of the free parameters c1, c2 and β2 achieving A-stability. The results
are shown in Figure 13.3.
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Figure 13.3: Region of A-stability in the parameter space (c1, c2) for SDTSAC
methods (13.1.22), with m = 2, p = 3 and β2 = 1
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This dissertation has pointed out the attention on the derivation, the
analysis and the implementation of highly stable methods for the numeri-
cal integration of first and second order Ordinary Differential Equations and
Volterra Integral Equations. The main point we have addressed is the re-
quirement of strong stability, which is an essential property in order to carry
out an accurate and efficient integration of stiff system. We have derived A-
stable, L-stable and algebraically stable methods within the class of TSRK
methods (2.2.1), mostly obtained by suitable modifications of the collocation
technique we have named two-step (almost) collocation technique: the spirit
of these modifications is the combination of high stability with other desired
properties, e.g. structured coefficient matrices, one-point spectrum matrices,
quadratic stability, narrowed contribution of high order terms in the local
error. One of the peculiarity of the derived methods is that they are continu-
ous, i.e. the approximation is provided by means of a continuous function (in
our case an algebraic polynomial) which can suitably be exploited in the vari-
able stepsize implementation of the methods, without the need of deriving
continuous extensions for the analyzed methods, as it happens for discrete
numerical methods (for instance, see [138]).

The experiments we have carried out up to now show that two-step almost
collocation methods can provide building blocks for the design of a modern
solver for first order ODEs. In fact, they do not suffer from order reduction in
the integration of stiff systems as the case of Runge–Kutta methods. More-
over, the local error estimation we have derived in Chapter 6 is absolutely
reliable and particularly cheap if compared, for instance, with Richardson
extrapolation. Of course, in order to carry out serious comparisons between
our methods and the classical methods already considered and implemented
in the literature, it is necessary to derive high order formulae, for instance
up to order 8, and design a variable stepsize-variable order strategy: these
aspects will be addressed in future works. Further developments of this re-
search will address, together with the design of a variable step-variable order
solver for two-step almost collocation methods, the construction and the im-
plementation of algebraically stable two-step almost collocation methods and
the analysis of the G-simplecticity properties of TSRK methods, which have
not yet been considered in the literature up to now.

Concerning second order ODEs, we have mainly addressed our attention
on the analysis of the family of two-step hybrid methods (9.1.1)-(9.1.2), in or-
der to provide their adapted versions in order to efficiently approach problems
exhibiting an oscillatory behaviour, by means of trigonometrical/exponential
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fitting arguments. Concerning exponentially-fitted multistage methods, we
are investigating on the possibility to consider how the error in the internal
stages cumulates and is inherited by the external ones since, up to now, the
EF-based multistage methods presented in the literature have been derived
under the unrealistic hypothesis that the values provided by the internal
stages are exact.

Further developments of the research on second order ODEs mainly ad-
dress the importance to derive an unifying framework of the numerical meth-
ods for their integration, i.e. the construction of General Linear Methods for
second order ODEs. This analysis is certainly nontrivial, but can benefit
of the lines drawn in the construction of the theory of GLMs for first order
ODEs. Moreover, our first steps in this direction and related to possible
desirable stability features, such as the ones presented in Chapter 11, could
provide an useful tool to derive highly stable GLMs, e.g. P -stable formulae.

Concerning Volterra Integral Equations, our interest in this area is quite
recent. We aim to address in future works the variable step-variable order
implementation of high order two-step almost collocation methods for VIEs.
This is a nontrivial task and, moreover, quite an open problem in this area
since, up to now, only few attempts have been provided in the literature,
such as the solver COLVI2 (by Blom and Brunner, 1991). In order to suc-
ceed in the design of variable step-variable order solver for VIEs, we need
to address various implementation issues such as the choice of appropriate
starting procedures, stepsize and order changing strategy, the derivation of
a proper local error estimation.
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