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Introduction

The aim of cryptography is to provide methods and techniques to prove security of a
protocol in a rigorous manner. Typically, security concerns the ability of preserving the
secrecy of the inputs of the parties running the protocol. The first, crucial, step towards
proving security of a protocol is to have a formal definition of security.

Although everyone has an intuitive notion of what security should mean, it turns
out to be very difficult to formally define it. For example, consider the basic task of
encryption. Our intuitive notion of security for an encryption scheme is that, a scheme
is good if any eavesdropper, when given a ciphertext, is not able to “understand” the
plaintext. The first difficulty here is to define what we mean by saying that an adversary
“cannot understand”. One way to define this, is to say that the adversary cannot recover
the plaintext. Namely, given a ciphertext, the adversary cannot compute the plaintext
that is hidden. However, this notion seems to be not very robust. Indeed, a protocol in
which the eavesdropper is able to extract few bits of the plaintext (but is not able to
recover the whole plaintext), would be still secure according to such definition. Instead,
what we really wanted is that an adversary can not extract any information from the
ciphertext. How to formally capture such intuitive notion?

The way we define security of an encryption scheme is through the concept of in-
distinguishability [50]. Very roughly, we say that an encryption scheme is secure if the
encryption of 0 is “indistinguishable” from the encryption of 1.

In general, the task of providing formal definitions that capture the security require-
ments that we desire to achieve in real-life protocol is an highly non-trivial task. Thus
when moving from the basic task of encryption to the general task of secure computation,
providing a robust security definition that accurately captures the real-world scenario,
is even more tricky.

The setting of secure computation is the following. There are many entities, that we
call parties. Parties want to jointly compute a function of their inputs, while keeping
their input secret. As an example of this setting, consider a voting system. Each party
has as secret input a preference, i.e., the name of the person that the party wants to vote.
The joint function run by the parties takes as input all the secret preferences (the votes)
and computes the majority. As it is already apparent from this example, besides the
correctness of the result, an important property that we require from a voting system is
that the preference of each player remains private. Therefore, the intuitive definition for
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secure computations would be the following. A protocol securely computes a function if
the output of the protocol is the correct evaluation of the function on the inputs of the
parties, and the privacy of the input of each party is preserved. This is still not quite
precise. Indeed, for some functionalities, the output of the function is such that it reveals
the inputs played by the party. (As an example, consider the function SUM computed
by two players only, clearly, from the knowledge of the output, and one private input,
each player can compute the secret input of the other party). Therefore, a more precise
definition of security requires that, a protocol is secure if each player does not learn
anything more than what is leaked from the knowledge of the output and the knowledge
of its own private input.

Note that this setting is quite different from the set of encryption seen before where
there are two parties, trusting each other, and they want to preserve the privacy of their
communication against a third party that does not participate1 to the protocol, but it
only observes the messages sent over the channel. In the setting of secure computation
all parties are mutually distrusting. Therefore, each party might try to actively deviate
from the protocol in order to learn more information.

How can we formally model the concept of not learning anything in this setting? A
brilliant idea introduced in [51] is the concept of the simulator. The idea is that anything
that an adversary can learn by interacting with the actual parties participating in the
protocol, it can be learned also by the simulator, that is not interacting with any real
party but it simulates the protocol executions in his head using fake inputs (for the
honest real parties). Informally, to prove that a protocol is secure, is sufficient to show
that, for any adversarial party (or set of parties) attacking the protocol in a real world
execution, interacting with the honest players, there exists a simulator that successfully
performs the very same attack, but executing the protocol in his head and without
knowing the input of the honest players.

The above definition of secure computation is a good starting point, but it is still
very far from capturing real-life setting. Indeed, in the setting above we have considered
a very restricted adversary, that participates to one protocol execution only, and that
can misbehave by corrupting a sub-set of parties. Thus, proving security in this setting,
implies that a protocol will be secure as long as it will be run in isolation, namely parties
cannot be involved in the execution of other protocols.

However, in real-life scenarios many functionalities are run over the internet, therefore
a party participating in one protocol execution is by default connected and involved in
many other protocol executions, simultaneously. Thus, in the real world an adversary
is not actually running one execution of the protocol in isolation, but it can activate
and interleave many executions of other (or the same) protocols. Hence, in the formal
security definition one should model the adversary as an entity that initiates and actively
participates in many protocol executions, that can be run concurrently.

Such general security definition was introduced in [16] and is called Universal Com-
posability. In the Universal Composability framework, besides the simulator and the

1In more demanding definitions of encryption a party might play as man in the middle to try to infer
some information.
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adversary seen before, a new entity called “environment” is introduced. While the sim-
ulator and the adversary still model one execution of the target protocol for which one
wants to prove security, the purpose of the environment is to model the concurrent
executions of other (possibly different) protocols, that are run together with the tar-
get protocol. The environment can of course communicate with the adversary. This
models the fact that while attacking the target protocol, the adversary can exploit the
information gained from the concurrent executions. The Universal Composability (UC)
framework is very general, and thus provides very strong security guarantees. Therefore,
is desirable to have protocols that can be proved secure in this model. Unfortunately,
it has been shown in [21] that it is impossible to design a protocol that achieves such
definition, without the help of some setup assumption. A setup can be seen as some
tool that parties can use to run the protocol. A setup is trusted if it is assumed that the
adversary cannot participate in the generation of such setup. For example, a trusted
setup can be that each party is given a smart card, and the adversary cannot participate
in the process of generating/delivering such smart cards. Therefore, the behavior of such
smart card is never adversarial.

Given that the UC definition cannot be achieved without assuming some setup, two
lines of research have been explored. One line of research investigated on the possibility
of relaxing the need of trust in the setup assumptions required to achieve UC-security.
For example, in the setup that we discussed above, the assumption was that each party
receives a trusted smart-card. However, assuming that all the smart cards, even the ones
used by the adversary are trusted seems unrealistic, and it seems indeed natural to ask
whether we can reduce the amount of trust needed to achieve UC-security. This line of
research, started with [62], explores the use of hardware boxes (formally, tamper-proof
hardware tokens) in the protocol. The idea is that, each party must trust only its own
hardware box, and not the boxes generated/delivered by the other players.

The second line of research instead investigates on relaxing the UC-definition so that
it is possible to design protocols without using any trusted setup. Such relaxed definitions
capture a restricted scenario in which an adversary activates many executions of the same
protocol simultaneously, playing always the same rule (in contrast in the UC-definition
the adversary can execute arbitrary protocols concurrently, and play different rules).
We refer to this more relaxed definition as security in the concurrent setting, and to the
adversary playing in this setting, as a concurrent adversary. Besides the mere feasibility
results, this line of research develops on understanding the minimal requirements, such
as round and communication complexity, computation complexity, black-box uses of
cryptographic primitive, for a protocol which is secure in the concurrent setting.

Our Contribution

In this thesis we provide contributions for both lines of research. In the first part of the
thesis we discuss how to achieve UC-security based on physical setup assumptions while
removing the trust in any trusted third party, and the trust on the physical devices used
by the adversary. We explore the use of Physically Uncloneable Functions (PUFs) as
setup assumption for achieving UC-secure computations. PUF are physical noisy source
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of randomness. The use of PUFs in the UC-framework has been proposed already in [14].
However, this work assumes that all PUFs in the system are trusted. This means that,
each party has to trust the PUFs generated by the other parties. In this thesis we focus
on reducing the trust involved in the use of such PUFs and we introduce the Malicious
PUFs model in which only PUFs generated by honest parties are assumed to be trusted.
Thus the security of each party relies on its own PUF only and holds regardless of the
goodness of the PUFs generated/used by the adversary. We are able to show that,
under this more realistic assumption, one can achieve UC-secure computation, under
computational assumptions. Moreover, we show how to achieve unconditional UC-secure
commitments with (malicious) PUFs and with stateless tamper-proof hardware tokens.
We discuss our contribution on this matter in Part I. These results are contained in
papers [80] and [28].

In the second part of the thesis we focus on the concurrent setting, and we inves-
tigate on protocols achieving round optimality and black-box access to a cryptographic
primitive. We study two fundamental functionalities: commitment scheme and zero
knowledge, and we study two concurrent attack models, as explained below.

Commitment scheme is a two-stages (commitment, decommitment stage) functional-
ity run between a committer and a receiver. The committer has a secret value in input,
and it commits to such value running the commitment stage. When the committer is
ready to reveal the value to the receiver, it runs the decommitment stage, also called
opening stage. The security properties of a commitment scheme are hiding and binding.
Hiding preserves the security of the committer, and is the property of the commitment
stage. A commitment stage is hiding if the secrecy of the input committed is preserved
against any adversarial receiver. Binding is a correctness property of the commitment
scheme, and it requires that for a given transcript of the commitment stage, there exists
only one value that can be revealed by any, possible adversarial, committer. In this the-
sis we will consider the following attack model for commitment schemes. An adversarial
receiver can interleave arbitrarily many commitment sessions, and once the commitment
stages are over, ask for the decommitment (the opening) of some of them, adaptively
on the transcript observed from the sessions played so far and in any order. Note that
this adversary is not purely concurrent, since it cannot ask to open a session if the
commitment stage of all the sessions is completed. Namely, there is a barrier between
the commitment phase and the openings. We refer to this type of concurrency as con-
currency with barrier. This attack model is referred in literature as Selective Opening
Attack (SOA, in short) and was introduced in [39]. A commitment scheme secure in this
model is said to be SOA-secure.

A Zero Knowledge protocol is run between two parties, a prover and a verifier. Both
parties have as common input an instance x of an NP language L. The prover has as
input a witness w for the statement x ∈ L, and he wants to use knowledge of the witness
to convince the verifier that the statement is true, however, he does not want to reveal any
information about the witness. Security here means that any (concurrent) adversarial
verifier running a protocol execution with the prover on input x should not gain any
information besides the fact that x ∈ L. The correctness requirement establishes that
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if the statement is false, i.e., x /∈ L, any adversarial (possibly concurrent) prover should
not be able to convince a honest verifier of the truthfulness of the statement. In this
thesis we consider the following attack model. An adversarial verifier can initiate any
polynomial number of protocol sessions in concurrency, but it is bounded on the number
of identities that it can play with. More precisely, we consider a setting in which any
verifier that wishes to run the zero knowledge protocol with the prover, has to register
its identity in a public file before any proof begins. Thus, there is a registration phase, in
which no interaction between prover and verifier takes place, but each verifier upload its
public identity in a common public file. After the registration has been completed, the
“proof phase” starts. In this phase prover and registered verifiers run concurrently many
proofs. The restriction is that the proof phase can be run only by registered verifiers.
This model is called Bare Public Key (BPK, for short) model, and was introduced in [19].

In this thesis we consider both models, and we focus on some of the round-optimal
constructions and lower bounds concerning both functionalities and both models pro-
posed in literature. Our findings is that such constructions present subtle issues. Hence,
we provide new protocols that actually achieve the security guarantees promised by
previous results.

More specifically, concerning SOA-secure commitment schemes, we provide a con-
struction that requires only 3 rounds for the commitment stage (the decommitment
state is non interactive) and that makes black-box use of any two-round trapdoor com-
mitment scheme. The round complexity of our construction, contradicts the previous
lower bound shown in [100], and is round optimal for SOA-secure commitment schemes.
Thus, we demonstrate that the lower bound for SOA-secure commitment scheme is 2
round instead of 3. We also show that fully concurrent 2 SOA-secure commitment scheme
do not exist, regardless of the black-box use of cryptographic primitives, but under the
assumption that security is proved via a black-box (thus rewinding) simulator. This
result contradicts the security of the fully concurrent SOA-secure scheme shown in [100].
This contribution is shown in the paper [79].

Concerning zero knowledge protocols in the BPK model, we show that all previous
round-optimal constructions for concurrent zero knowledge in the BPK model, suffer of
a subtle issue. Specifically, we show that there exists an adversarial verifier’s strategy,
that makes any (black-box) simulator fail. We show that in many cases this issue cannot
be fixed by trivial changes of the protocol, or by providing a new simulation strategy.
Therefore, we propose a new construction that is round optimal and for which we can
show a simulation strategy that is successful against any adversarial verifier. Such results
are discussed in Part II, and are the content of the paper [95].

Physical Attacks

So far we have discussed about network attacks. Namely, we have considered an ad-
versary which exploits the network to run concurrent executions of different protocols.

2Fully concurrent means that the adversarial receiver is allowed to interleave commitment and de-
commitment phase of different sessions.
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We now turn to physical attacks. Namely, we consider an adversary that can physically
tamper with the machine of the honest party while running the protocol. In particular,
in this thesis we consider a very specific attack in which the adversary is able to reset
the memory of the machine of an honest party, in fact forcing the machine to run many
executions of the same protocol reusing the same randomness. At first sight, this attack
might seem too unrealistic, as one can imagine that the honest party can physically
protect its own machine from the adversary. Therefore, considering such attack when
designing a protocol, might seem an overkill. However, as nowadays tiny and weak com-
putational devices are used in cryptographic protocols, such attack has become a real
threat. Smart cards are the canonical example of tiny devices computing (sensitive)
cryptographic protocol. Indeed, we use smart card everyday to perform bank transac-
tions or for identification purposes. The way computations with smart card work, is that
we put our smart card in some more powerful computing device, like a smart-card reader,
or a PC, and they run a protocol. In this scenario resetting attacks seem very plausible,
since a smart card is a very weak device compared to a reader or to a computer.

The formal security definition capturing such attack has been introduced in [19].
This definition focuses only on the zero knowledge functionality (and the weaker notion
of witness indistinguishability), and considers only the case in which only one party is
reset. More precisely, the party which is subject to reset is always the prover. Thus, the
constructions shown in [19] are secure if the prover is subject to reset attack, but is not
secure if the verifier is reset instead. Later in [7] resettable security base been formulated
for the opposite case. Namely, [7] provides constructions that are secure only if the party
that is subject to reset is the verifier. Clearly, an interesting question is whether one can
design a protocol in which the party that might be subject to reset attack is not known in
advance. Therefore, such protocol should be secure in both cases. Such notion is called
security under simultaneous resettability. The work of [29] provides a protocol that is
secure in such setting. Namely, it presents a construction for simultaneously resettable
zero knowledge system. However this result does not close the gap between what we are
able to achieve in presence of a fixed resetting party, and what we can achieve when both
parties can reset. Indeed, in case of one-side resetting (either only the prover can reset,
or only the verifier can reset), we know how to achieve protocols that are arguments of
knowledge. Roughly, a protocol is an argument of knowledge, if the prover can convince
the verifier of a truthfulness of a statement, if and only if it knows the witness.

In this thesis we provide the first construction of a witness indistinguishable argument
system that is simultaneous resettable and argument of knowledge. We discuss about this
contribution in Part III, which is the content of the paper [24].

Roadmap. Chapter 1 is devoted to the set up of the notation and the definitions of
the cryptographic primitives used in this thesis.

In Part I we present our results for achieving UC-security using (malicious) PUFs.
Specifically, in Chapter 2 we present our malicious PUF model, and our construction
for achieving general secure two-party computation using malicious PUFs and computa-
tional assumptions. Then, in Chapter 3 we show how to achieve unconditional security
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using malicious PUFs, and tamper-proof stateless tokens.
In Part II we discuss about round-optimal protocols achieving security in the concur-

rent setting. Specifically, in Chapter 4 we focus on round-optimal commitment schemes
secure in presence of selective opening attacks. We discuss the issues in previous con-
structions and lower bounds, and we propose new schemes that establish new lower
bounds. In Chapter 5 we instead consider round-optimal concurrently secure zero-
knowledge protocols in the BPK model that have been proposed in literature. We first
discuss the subtle issue in the security proof of all such protocols, and then we propose
a new scheme that is round-optimal, concurrent zero-knowledge and concurrent sound
and does not suffer of such issue.

Finally, in Part III we answer the challenging question of achieving argument of
knowledge in the simultaneous resettable setting by showing the first constant-round
witness indistinguishable argument of knowledge construction in this setting.
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- Chapter 1 -

Preliminaries

This chapter is devoted to the set up of the notation and the definitions of the crypto-
graphic primitives used in this thesis.

In the last section of the chapter we recall the Universally Composable Framework
introduced by [16].

Notation. We denote by n ∈ N the security parameter, and by ε a negligible function.
A function ε is negligible iff for all constants c there exists n0 such that for all n > n0 it
holds that 0 ≤ ε(n) < 1/nc. We denote by PPT the property of a probabilistic algorithm
whose number of steps is polynomial in its security parameter. We denote by x ← D
the sampling of an element x from the distribution D and by x ← D(z) the output of

the algorithm D on input z assigned to the variable x. We also use x
$← D to indicate

that the element x is uniformly sampled from set D.
We denote by viewA(A(a), B(b))(x) the view of A of the interaction with player

B, i.e., its values is the transcript (γ1, γ2, ..., γt; r), where the γi’s are all the messages
exchanged and r is A’s coin tosses. Let P1 and P2 be two parties running protocol (A,B)
as sub-routine. When we say that party “P1 runs 〈A(·), B(·)〉(·) with P2” we always
mean that P1 executes the procedure of party A and P2 executes the procedure of party
B. We use the notation {β1, . . . , βk : α} to specify the probability distribution of α
after the sequential executions of events β1, . . . , βk. We denote by a||b the concatenation
between strings a and b.

In this thesis we use the work committer and sender interchangeably. In all our
constructions we also allow adversaries to obtain auxiliary inputs although for simplicity
we will omit them from our notation.

1.1 Commitment Schemes

In this section we provide the formal security definitions for commitment scheme, trap-
door commitment scheme and weak-trapdoor commitment scheme. As we shall see, such
cryptographic primitives are used in almost all the constructions presented in this thesis.

9
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In the following definitions we assume that parties are stateful and that malicious
parties obtain auxiliary inputs, although for better readability we omit them.

Definition 1 (Bit Commitment Scheme). A commitment scheme is a tuple of PPT
algorithms Com = (Gen,C,R) implementing the following two-phase functionality. Gen
takes as input a random n-bit string r and outputs the public parameters pk. Given
to C an input b ∈ {0, 1}, in the first phase (commitment phase) C interacts with R to
commit to the bit b; we denote this interaction as 〈C(pk, com, b),R(recv)〉. In the second
phase (opening phase) C interacts with R to reveal the bit b, we denote this interaction
as 〈C(open),R(open)〉 and R finally outputs a bit b′ or ⊥. Consider the following two
experiments:

Experiment Expbinding

Com,C∗
(n): Experiment Exphiding-b

Com,R∗
(n):

R runs (pk)← Gen(r) and sends pk to C∗; pk ← R∗(1n);

〈C∗(pk, com, b),R(recv)〉; (·, b′) $← 〈C(pk, com, b),R∗(recv)〉;
(·, b0)

$← 〈C∗(open, 0),R(open)〉; output b′.
rewind C∗ and R back after the second step;

(·, b1)
$← 〈C∗(open, 1),R(open)〉;

output 1 iff ⊥ 6= b0 6= b1 6=⊥ .

Com = (Gen,C,R) is a commitment scheme if the following conditions hold:

Completeness. If C and R are honest, for any C’s input b ∈ {0, 1} the output of R in
the opening phase is b′ = b.

Hiding. For any PPT malicious receiver R∗, there exists a negligible function ε such
that the following holds:

Advhiding

Com,R∗
= |Pr

[
(Exphiding-0

Com,R∗
(n)→ 1)

]
− Pr

[
Exphiding-1

Com,R∗
(n)→ 1)

]
| ≤ ε(n)

Binding. For any PPT malicious sender C∗ there exists a negligible function ε such
that:

Pr
[

Expbinding

Com,C∗
→ 1

]
≤ ε(n)

The above probabilities are taken over the choice of the randomness r for the algorithm
Gen and the random coins of the parties. A commitment scheme is statistically hiding
(resp., binding) if hiding (resp., binding) condition holds even against an unbounded
malicious Receiver (resp., Sender).

The above definition is a slight modification of the one provided in [11, 59] and
is more general in the fact the it includes the algorithm Gen used by R to generate
the parameters for the commitment. Such a definition is convenient when one aims
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to use commitment schemes as sub-protocols in a black-box way. However, for better
readability, when we construct or use as sub-protocol a commitment scheme that does
not use public parameters we refer to it only as Com = (C,R) omitting the algorithm
Gen.

Remark 1 (Binding definition). The binding property states that there exists no efficient
C∗ that can produce two distinct accepting openings for the same commitment phase
with non-negligible probability. Since we consider also interactive decommitments, we
formalize this notion as a game following the definition given in [11, 59]. That is, C∗ is
run twice in the decommitment phase, but with an additional input necessary to obtain
two distinct openings (indeed C∗ is run twice with the same randomness), i.e., C∗ is
invoked as C∗(open, b).

1.1.1 Trapdoor Commitment Scheme

For the definitions of trapdoor commitments we borrow some notation from [69, 90].

Definition 2 (Trapdoor Commitment). A tuple of PPT algorithms TC = (TCGen,C,R,TCFakeDec)
is a trapdoor commitment scheme if TCGen, on input a random n-bit string r, outputs
a public key/secret key pair (pk,sk), TCGenpk is the related functionality that restricts
the output of TCGen to the public key, (TCGenpk,C,R) is a commitment scheme, and
(C,TCFakeDec) are such that:

Trapdoor Property. There exists b? ∈ {0, 1}, such that for any b ∈ {0, 1}, for all
(pk, sk)← TCGen(r), and for any PPT malicious receiver R∗ there exists a negli-
gible function ε such that the following holds:

Advtrapdoor

TC,R∗
= Pr

[
Exptrap

TC (n)→ 1
]
− Pr

[
ExpCom

TC (n)→ 1
]
≤ ε(n)

The probability is taken over the choice of r for the algorithm TCGen and the
random coins of the players.

Experiment ExpCom
TC (n) : ExperimentExptrap

TC (n):
R∗ chooses a bit b; R∗ chooses a bit b;
〈C(pk, com, b),R∗(pk, sk, b, recv)〉; (ξ, ·)← 〈C(pk, com, b?),R∗(pk, sk, b, recv)〉;
(·, b′) $← 〈C(open),R∗(open)〉; (·, b′) $← 〈TCFakeDec(sk, open, b, ξ),R∗(open)〉;
output b′; output b′;

In the experiment Exptrap
TC (n) C runs the procedure of the honest sender on input

b?. The variable ξ contains the randomness used by C to compute the commitment
phase and it is used by TCFakeDec to compute the decommitment. The knowledge of
the trapdoor is required only in decommitment phase. In the trapdoor commitment of
Pedersen [85], the trapdoor property holds for any b?, namely one can use the honest
sender procedure to commit an arbitrary bit b? and use the trapdoor to decommit to
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any b 6= b?. Instead, in the trapdoor commitment proposed by Fiat and Shamir [43],
as we show next, the trapdoor property holds only if the honest procedure was used to
commit to bit b? = 0. In both commitment schemes the trapdoor is used only in the
decommitment phase.

We stress that, according to the standard definition, while the hiding property must
hold for all pk possibly maliciously generated by R∗, the trapdoor property must hold
only for the pairs (pk, sk) honestly generated. In some definition [90] it is required that
hiding holds for all the malicious keys that pass the test of an additional verification al-
gorithm TCVer, however, w.l.o.g. one can assume that the commitment procedure runs
the verification algorithm as a first step. Note that implementations of a trapdoor com-
mitment enjoying all the properties above do exist, one example is Pedersen’s Trapdoor
Commitment [85], in which once the public parameter pk are given, the commitment
procedure is non-interactive. We mention below a construction based on any OWF.

Trapdoor Commitment Scheme based on Non-black-box use of OWF. In [43]
Feige and Shamir presented a construction of trapdoor commitments based on NBB
access to OWFs. The commitment procedure consists of running the simulator of Blum’s
protocol [12] for Graph Hamiltonicity (HC) where the challenge is the bit to commit to.
For completeness we recall the construction. Let f : {0, 1}n → {0, 1}∗ be a OWF.

• (G,C) ← TCGen(r): pick a random x and compute y ← f(x). From y obtain
a hard instance G ∈ HC and let C be one of the Hamiltonian cycles of G. This
transformation requires non-black-box access to f . Set the public key pk = G and
the trapdoor sk = C.

• C(G, com, b): if b = 0, pick a random permutation π and commit to π(G). If b = 1,
commit to a random n-vertex cycle H. Both commitments are performed using
Naor Commitment [77] that is based on BB access to OWFs.

• 〈C(open, b),R(open)〉: C sends b and the opening according to b, i.e., if b = 0
it sends π and opens all commitments, if b = 1 it opens the cycle H. R checks
whether the openings are correct according to challenge b and the procedure of the
verifier of Blum’s protocol.

• ξ ← C(G, com, b?): C runs as C(G, com, 0). The variable ξ contains the randomness
used to run C.

• 〈TCFakeDec(C, open, b, ξ),R(open)〉: to open to 0 send π and open all the commit-
ments, to open to 1 open the cycle C in π(G). The opening information is taken
from ξ.

Hiding comes from the hiding of Naor commitments, and binding from the hardness
of the OWF. A commitment can be equivocated only if it was computed following the
procedure to commit 0. Thus, the above protocol satisfies the trapdoor property for
b? = 0.
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Weak Trapdoor Commitment Schemes

It is possible to consider a weaker1 definition of trapdoor commitment in which, in order
to be able to later equivocate, the trapdoor is needed already in the commitment phase.
The trapdoor commitment proposed in [84] satisfies such a definition.

Definition 3 (Weak Trapdoor Commitment). A tuple of PPT algorithms wTCom=
(wTCGen, C, R, TCFakeCom, TCFakeDec) is a weak trapdoor commitment scheme if
TCGen on input a random n-bit string r, outputs a public key/secret key pair (pk,sk),
wTCGenpk is the related functionality that restricts the output of wTCGen to the public
key, (wTCGenpk,C,R) is a commitment scheme and TCFakeCom,TCFakeDec are such
that:

Weak Trapdoor Property. For any b ∈ {0, 1}, for all (pk, sk)← TCGen(r), for any
PPT malicious receiver R∗ there exists a negligible function ε such that the following
holds:

Advwtrap

wTCom,R∗
= Pr

[
ExpwTrap

wTCom(n)→ 1
]
− Pr

[
ExpCom

wTCom(n)→ 1
]
≤ ε(n)

The probability is taken over the choice of the randomness r for the algorithm
TCGen and the random coins of the parties.

Experiment ExpCom
wTCom(n): Experiment ExpwTrap

wTCom(n):

run 〈C(pk, com, b),R∗(pk, sk, b, recv)〉; run (ξ, ·) $← 〈TCFakeCom(pk, sk, com),
R∗(pk, sk, b, recv)〉;

b′
$← 〈C(open),R∗(open)〉; b′

$← 〈TCFakeDec(open, b, ξ),R∗(open)〉;
output b′; output b′;

As before, the variable ξ denotes the state shared by algorithms TCFakeCom and
TCFakeDec.

It is possible to show that there exists a non-interactive weak trapdoor commitment
schemes that is not a “regular” non-interactive trapdoor commitment scheme as fol-
lows. Take any “regular” trapdoor commitment scheme in which the decommitment
phase is non-interactive. A non-interactive weak trapdoor commitment scheme can be
constructed by using the regular trapdoor commitment scheme to commit to a bit,
and then by adding two (perfectly binding) commitments of the openings. The honest
sender will open one of the two perfectly binding commitment chosen at random. Instead
knowledge of the trapdoor from the commitment phase allows one to commit both to a
decommitment of 0 and to a decommitment of 1 (in random order), therefore allowing
equivocation in the opening. The interesting point is that this scheme is not a “regular”
trapdoor commitment scheme, which implies that a weak trapdoor commitment scheme

1The definition is weaker in the sense that it is implied by the previous definition, but could be a
strictly weaker primitive achievable under better assumptions and with better efficiency.
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could be in theory constructed under better assumptions, or with better efficiency. No-
tice that in [84] it is shown a construction of an interactive weak trapdoor commitment
scheme (they called it “look-ahead” trapdoor commitment) from any black-box use of a
one-way permutation.

1.2 Interactive Protocols

An interactive proof (resp., argument) system for a language L is a pair of probabilistic
polynomial-time interactive algorithms P and V, satisfying the requirements of com-
pleteness and soundness. Informally, completeness requires that for any x ∈ L, at the
end of the interaction between P and V, where P has as input a valid witness for x ∈ L,
V rejects with negligible probability. Soundness requires that for any x 6∈ L, for any
(resp., any polynomial-sized) circuit P∗, at the end of the interaction between P∗ and
V, V accepts with negligible probability.

Formally, we have the following definitions.

Definition 4 (Indistinguishability [50]). Let X and Y be countable sets. Two ensembles
{Ax}x∈X and {Bx}x∈X are computationally (statistically) indistinguishable over X if for
every probabilistic polynomial-time (resp. unbounded) “distinguishing” machine D there
exists a negligible function ε(·) so that for every x ∈ X, y ∈ Y :

|Pr [D(x,Ax) = 1]− Pr [ [ ]D(x,Bx) = 1 ] | < ε(|x|).
Definition 5 (Interactive Proof System [52]). A pair of interactive algorithms (P,V) is
an interactive proof system for a language L, if V is PPT and there exists a negligible
function ε such that the following conditions hold:

• Completeness. ∀x ∈ L, Pr [ [ ] (P,V)(x) = 1] > 1− ε(|x|).

• Soundness. ∀x /∈ L, ∀ interactive machine P∗, Pr [ [ ] (P∗,V)(x) = 1] < ε(|x|).
In case the soundness condition is required to hold only against computationally

bounded prover, the pair (P,V) is called an interactive argument system and P gets
the witness as auxiliary input.

Zero knowledge. The classical notion of zero knowledge has been introduced in [52].
In a zero-knowledge argument system a prover can prove the validity of a statement to
a verifier without releasing any additional information. This concept is formalized by
requiring the existence of an expected polynomial-time algorithm, called the simulator,
whose output is indistinguishable from the view of the verifier.

Definition 6. An interactive argument system 〈P(·, ·),V(·)〉 for a language L is compu-
tational (resp., statistical, perfect) zero-knowledge if for all polynomial-time verifiers V∗,
there exists an expected polynomial-time algorithm S such that the following ensembles
are computationally (resp., statistically, perfectly) indistinguishable:

viewV ∗((P(w),V∗(z))(x))x∈L,w∈W (x),z∈{0,1}∗ and {S(x, z)}x∈L,z∈{0,1}∗ .
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Definition 7. (adapted from [10] with negligible knowledge error) A proof (resp., argu-
ment) system 〈P (·), V 〉(x) for an NP-language L is a proof (resp., argument) system
of knowledge if there exists a probabilistic polynomial-time algorithm E such that for
every (resp., every polynomial-sized) circuit family {P ∗n}n∈N , there exists a negligible
function ν such that for any x of size n, if Pr [ out(〈P ∗n , V 〉(x)) = 1 ] = p(|x|), then
Pr
[
w←EP ∗n(x)(x) : RL(x,w) = 1

]
= |p(|x|) − ν(|x|)| and the expected running time of

E is polynomial in |x|.

Witness Indistinguishability. Witness indistinguishability is a weaker security no-
tion for interactive protocols. It requires that the view of any malicious verifier is inde-
pendent of the witness used by the honest prover. This notion makes sense only when
there exist more witnesses for the same theorem.

Definition 8 (Witness Indistinguishable Proof of Knowledge System WIPoK [44]). A
proof of knowledge system (P,V,E) for a NP language L and with witness relation
RL, is witness-indistinguishable if for every PPT malicious verifier V∗, there exists a
negligible function ε such that, ∀x,∀y0, y1 ∈ RL(x) and z ∈ {0, 1}∗:

Pr [ 〈P(x, y0),V∗(x, z)〉 = 1 ]− Pr [ 〈P(x, y1),V∗(x, z)〉 = 1 ] < ε(|x|)
The probability is taken over the coin tossed by V∗ and P (the auxiliary input z given to
V∗ could contain x, y0, y1).

1.2.1 Sigma-Protocols

A Σ-protocol [26] is a 3-move interactive proof system played by two PPT algorithms
P and V. The algorithms receive as common input a statement “x ∈ L”. P has as
auxiliary input a witness w such that (x,w) ∈ RL. A Σ-protocol follows the following
structure: P speaks first sending a message a, then V replays with a challenge c and
finally P sends the last message z. V accepts if the transcript (a, c, z) is accepting. The
Σ-protocols we consider in this paper have the following properties.

Public Coin: V sends random bits only; i.e. c
$← {0, 1}∗.

Special Soundness: let (a, c, z) and (a, c′, z′) be two accepting transcripts for a state-
ment “x ∈ L”. If c 6= c′ then x ∈ L (i.e., the statement is true) and there exists
a deterministic polynomial-time algorithm E, that on input (x, a, c, z, c′, z′) out-
puts w such that (x,w) ∈ RL. This property implies the more general proof of
knowledge property [10].

Special Honest-Verifier Zero Knowledge: there exists an efficient simulator hvSim,
that on input a true statement “x ∈ L”, for any c, produces conversations (a, c, z)
distributed as indistinguishable probability distribution as conversations between
the honest P and V with common input x and challenge c. Moreover, the triple
(a, c, z) generated so far is an accepting transcript independently of the truthfulness
of the statement (i.e., it holds also for any x /∈ L).
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Special Witness Use: knowledge of the witness is required only in the third step, i.e.,
in computing the message z.

Witness Indistinguishability: by Proposition 1 of [26] it holds that any three-round
public-coin proof of knowledge that is honest verifier zero-knowledge, is also witness
indistinguishable.

The literature provides many Σ-protocols enjoying the above properties, most no-
tably, the protocol of Blum [12] that is a Σ-protocol for the NP-complete language
Hamiltonicity and the protocol of Schnorr [96] for proving knowledge of a discrete loga-
rithm. Blum’s protocol is presented below in Fig. 1.1. Finally, we say that a Σ-protocol
is perfect if it is perfect honest-verifier zero knowledge (and therefore by Proposition 1
of [26], perfectly witness indistinguishable).

Blum’s protocol.

In Figure 1.1 we describe the 3-round WIPoK protocol for the NP-complete language
Graph Hamiltonicity (HC). We use this proof system as sub-protocol in our construction
and we refer to it as BL protocol. Notice that by getting the answer for both b = 0 and
b = 1 allows the extraction of the cycle. The reason is the following. For b = 0 one gets
the permutation of the original graph G. Then for b = 1 one gets the of the Hamiltonian
cycle of the permuted graph.

Efficient Σ-Protocols

Here we provide a list of very efficient Σ-protocol.

Σ-protocol to prove Knowledge of a Discrete Logarithm (DLog). Let G be a
group of prime order q generated by g and let w ∈ Zq. Let n be the security parameter,
and 2n < q. Let RDL be the relation for the Discrete Log (DLog) problem as follows:
RDL = {((G, q, g, h), w)|h = gw}. The Σ-protocol for RDL is depicted in Fig. 1.2.

Σ-protocol to prove Knowledge of an Opening of a Pedersen Commitment.
Let (G, p, q, g, h) be parameters for Pedersen commitment. Let c = gmhr ∈ G be the
Pedersen commitment of the message m ∈ G computed with randomness r ∈ G. Let
RPed = {((G, p, q, g, h, c), (m, r))|c = gmhr ∈ G} the relation for the knowledge of a
committed value. Fig. 1.3 depicts the Σ-protocol for such relation denoted by ΣPed.

Σ-protocol to prove Knowledge of the Same Opening for Two Pedersen Com-
mitments. Let (G, p, q, g1, h1) and (G, p, q, g2, h2) be parameters for Pedersen commit-
ment. Let c1 = gm1 h

r1
1 ∈ G and c2 = gm2 h

r2
2 ∈ G be two Pedersen commitments of the

message m ∈ Zq computed with randomness 0 < r1, r2 < q. Let REqual be the relation
for the knowledge of a committed valueREqual = {((G, q, p, g1, h1, g2, h2, c1, c2), (m, r1, r2))
| c1 = gm1 h

r1
1 ∈ G} AND c2 = gm2 h

r2
2 ∈ G}. Fig. 1.4 depicts the Σ-protocol for relation

REqual denoted by ΣEqual.
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The BL Protocol [12] for HC.

Inputs: V, P have as input a graph G. P has as auxiliary input a witness y ∈
RHC(G). Let n be the number of vertexes of G. G is represented by a n × n
adjacency matrix M where M[i][j] = 1 if there exists an edge between vertexes
i and j in G, and M[i][j] = 0 otherwise. Each of the following step is repeated
in parallel n times using independent randomness.

BL1 (P → V): P picks a random permutation π of the graph G and commits
bit-by-bit to the corresponding adjacency matrix using a statistically binding
commitment scheme.

BL2 (V → P): V responds with a randomly chosen bit b.

BL3 (P → V):

- if b = 0, P opens all the commitments, and sends the permutation π showing
that the matrix committed in step BL1 is actually the instance G.

- if b = 1, P opens only the commitments that form an Hamiltonian cycle in
the permuted matrix committed in step BL1.

V accepts if and only if all n executions are accepting.

Figure 1.1: Blum’s witness indistinguishable proof of knowledge for Hamiltonicity.

Common input: x = (G, q, g, h).
P’s secret input: w s.t. (x,w) ∈ RDL.
Σ-protocol:

P: choose r
$← Zq and send a = gr to V.

V: choose e
$← Zq and send it to P.

P: compute z ← r + ew (mod q) and send it to V.
V: accept if and only if gz = ahe.

Figure 1.2: Σ-protocol for Relation RDL.

Proof of Knowledge of a Compound Statement. Let (x0, x1) be a pair of state-
ments. P wants to prove that he knows a witness w such that either (x0, w) ∈ R0

or (x1, w) ∈ R1 without revealing which is the case. Let π0 be the Σ-protocol for the
relation R0 and π1 the one for R1. Fig. 1.5 shows a Σ-protocol for R0 OR R1.

1.3 Universal Composability Framework

The Universal Composability framework was introduced by Canetti in [16].
In such framework, the security definition follows the standard paradigm of compar-
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Common input: x = (G, p, q, g, h, c).
P’s secret input: w = (m, r) s.t. c = gmhr ∈ G.
Σ-protocol:

P: choose t, s
$← Zq and send a = gths (mod p) to V.

V: choose e
$← Zq and send it to P.

P: compute z1 ← t+ em and z2 ← s+ er and send them to V.
V: accept if and only if gz1h

z2 (mod p) = ace.

Figure 1.3: Protocol ΣPed for Relation RPed.

Common input: x = (G, p, q, g1, h1, g2, h2, c1, c2).
P’s secret input: w = (m, r1, r2) s.t. c1 = gm1 h

r1
1 ∈ G and c2 = gm2 h

r2
2

Σ-protocol:

P: choose t, s
$← Zq and send a1 = gt1h

s
1 (mod p), a2 = gt2h

s
2 (mod p) to V.

V: choose e
$← {0, 1}t s.t. 2t < q and send it to P.

P: compute z ← t+ em and z1 ← s+ er1 z2 ← s+ er2 and send them to V.
V: accept if and only if gz1h

z1
1 (mod p) = a1c

e
1 and gz2h

z2
2 = a2c

e
2 (mod p).

Figure 1.4: Protocol ΣEqual for Relation REqual.

Common input: (x0, x1).
P’s secret input: P has a pair (xb, w) ∈ Rb.
Σ-protocol:
P: compute ab according to π0 using (xb, w) as input: then choose e1−b and run

the simulator hvSim for π1−b on input (x1−b, e1−b) to obtain (a1−b, e1−b, z1−b);
send (a0, a1) to V.
V: choose s and send it to P.
P: set eb ← s⊕ e1−b, compute z according to πb and send (e0, z0, e1, z1) to V.
V: check that e0⊕e1 = s and that both transcript (x0, a0, e0, z0) and (x1, a1, e1, z1)

are accepting according to π0 and π1 respectively.

Figure 1.5: Witness-Indistinguishable PoK of a Compound Statement.

ing a real protocol execution with an ideal protocol execution where a trusted third party
(the ideal functionality) helps the participants to carry out the computation. A protocol
is secure if one can show that any attack that can be mounted in the real protocol can
be replicated in the ideal world experiment as well. This is formalized by requiring that
for any real world adversary A there exists an ideal world adversary sim that is able to
replicate the same attack of A only by interacting with the ideal functionality. In the UC
setting an additional adversary Z called environment is introduced. The environment
captures an adversary that controls A and concurrently interacts with other instances
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of the same protocol or of different protocols and can use such interaction adaptively
to help A. Furthermore, Z generates the inputs for all parties, reads all outputs and
interacts with the adversary A in arbitrary way throughout the computation.

For simplicity, we define the two-party protocol syntax, and then informally review
the two-party UC-framework, which can be extended to the multi-party case. For more
details, see [16].

Protocol syntax. Following [52] and [47], a protocol is represented as a system of
probabilistic interactive Turing machines (ITMs), where each ITM represents the pro-
gram to be run within a different party. Specifically, the input and output tapes model
inputs and outputs that are received from and given to other programs running on the
same machine, and the communication tapes model messages sent to and received from
the network. Adversarial entities are also modeled as ITMs.

The construction of a protocol in the UC-framework proceeds as follows: first, an
ideal functionality is defined, which is a “trusted party” that is guaranteed to accurately
capture the desired functionality. Then, the process of executing a protocol in the
presence of an adversary and in a given computational environment is formalized.

An ideal functionality F is specified as an interactive Turing machine that privately
communicates with the parties and the adversary and computes a task in a trusted
manner. The specification of the functionality also models the adversary’s ability to
obtain leaked information and/or to influence the computation, also in case the adversary
corrupts parties. The world in which parties privately interact with the trusted machine
F is called ideal world.

A real protocol Π is specified as an ITM executed by the parties. Parties communi-
cate over the channel in presence of an adversary A which controls the schedule of the
communication over the channel, and can corrupt parties. When a party is corrupted
the adversary receives its secret input and its internal state. In this work, we consider
only static adversaries, which means that A can corrupt a party only before the protocol
execution starts. This is called real world.

A protocol Π securely realizes F if for any real world adversary A, there exists an
ideal adversary Sim, such that the view generate by A running the actual protocol is
indistinguishable from the view generated by Sim who has only access to the trusted
party F .

We also consider a G-hybrid model, where the real-world parties are additionally given
access to an ideal functionality G. During the execution of the protocol, the parties can
send inputs to, and receive outputs from, the functionality G.

In the universally composable framework [16], the distinguisher of the views is the
environment z. z has the power of choosing the inputs of all the parties and guide the
actions of the adversary A (scheduling messages, corrupting parties), who will act just as
proxy overall the execution. Let IDEALF ,Sim,z be the distribution ensemble that describes

the environment’s output in the ideal world process, and REALGΠ,A,z the distribution of
the environment’s output in the real world process in the G-hybrid model.
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Definition 9 (UC-Realizing an Ideal Functionality). Let F be an ideal functionality, and
Π be a PPT protocol. We say Π realizes F in the G-hybrid model if for any hybrid-
model static PPT adversary A, there exists an ideal process expected PPT adversary Sim
such that for every PPT environment z, for all auxiliary information to z ∈ {0, 1}∗ to
z, it holds:

{IDEALF ,Sim,z(n, z)}n∈N,z∈{0,1}∗ ∼ {REALGΠ,A,z(n, z)}n∈N,z∈{0,1}∗ (1.1)

1.3.1 UC Composition Theorem

The crucial theorem on the UC-framework introduced by Canetti, is the Composition
Theorem. In nutshell, such theorem says that if we run a UC-secure protocol remains
UC-secure even if run with any other protocol.

A more formal discussion of the UC composition theorem follows. We say that
a protocol ρ “UC-emulates” a protocol φ if there exists an adversary S such that no
environment can tell whether it is interacting with ρ and the dummy adversary, or φ
and S. That is for every environment z,

REALρ,D,z ∼ REALφ,S,z,

where D is a dummy adversary. Let π, ρ, φ be protocols, where π may call φ as a sub-
routine. By πρ/φ we denote the protocol which is the same as π, except that each call
to φ is replaced by a call to ρ.

The UC composition theorem [16] states that if ρ UC emulates φ, then πρ/φ UC
emulates π. The proof of the composition theorem goes as follows: we need to show that
there exists an adversary Sπ such that for every environment z,

REAL
πρ/φ,D,z

∼ REALπ,Sπ ,z.

Let S be the adversary that follows from the fact the ρ UC emulates φ. We now
outline the construction of adversary Sπ that uses S. Adversary Sπ divides the messages
into two parts: those that belong to an execution of ρ, and those that belong to execution
of the rest of π. The adversary Sπ handles the messages pertaining to ρ by passing them
to an instance of the adversary S. For the messages of π that don’t belong to ρ, adversary
Sπ simply passes them to the parties they are intended for.

To see the correctness of the above construction, assume that there exists an environ-
ment z that distinguishes between πρ/φ with a dummy adversary, and π with Sπ as the
adversary. We will construct an environment zρ that distinguishes between ρ with the
dummy adversary and φ with the adversary S. This is a contradiction, as ρ UC-emulates
φ.

The environment zρ internally runs an execution of z, Sπ and all the parties of
π. It faithfully follows the actions of these parties except for messages concerning the
sub-protocol φ, for which it uses the actual external parties (which are either running
an instance of φ, or an instance of ρ). In particular, whenever an internal party of π
generates an input for an instance of ρ, the environment zρ passes that input to the
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external party. Similarly, any output sent by an external party to zρ is treated as an
output of φ. Further, any message sent by Sπ to a simulator S is forwarded by zρ to
the external adversary, and the response of the external adversary is conveyed to Sπ as
though it was sent by S. Finally, the environment zρ outputs whatever z outputs.

Now, note that if the external parties are running ρ with the dummy adversary,
then the view of the simulated environment z is identical to REAL

πρ/φ,D,z
. On the

other hand, if the external parties are running φ with S, then the view of the simulated
environment z is identical to REALπ,Sπ ,z. This implies that REALρ,D,zρ and REALφ,S,zρ
are distinguishable, which contradicts the hypothesis that ρ UC-emulates φ.

On Setup Assumptions and the Hybrid Model. As proved in [21], UC-security
is impossible to achieve in the plain model. Therefore, any UC-protocol must rely on
some setup assumption (or must achieve some more relaxed security definition, like
allowing the simulator to run in super-polynomial time). The canonical example of a
setup assumption is the Common Reference String (in short, CRS). A CRS is a string
that is honestly drawn from a specific distribution, and is available to the parties running
an instance of the real-world protocol. The assumption is in the fact that the CRS is
trusted, namely, it has been drawn honestly by a third trusted party.

In the UC-framework, a setup assumption is modeled as an ideal functionality, and
the real-world protocol is augmented with access to this functionality.

An important aspect of the standard UC-framework, is that, the same instance of the
setup assumption, cannot be used in more than one execution of the real-world protocol.
For example, for the case of the Common Reference String, the same CRS cannot be
shared by many protocol executions, but each new protocol execution requires a new,
independent string. This requirements is needed for the proof of the composition theorem
to go through.

The work of [17] instead consider a different formulation of the UC-framework, called
generalized UC, where the same set-up assumption can be shared by many protocols.
In this case we say that the setup assumption is global. When the set-up assumption is
global, the environment has direct access to the set-up functionality, and therefore also
the simulator cannot simulate the ideal functionality, but it needs to have access to it.

In [14] instead, as we shall see later, while they assume that Sim cannot simulate
(program) a PUF, and thus has always access to the ideal functionality FPUF, they require
that z has not permanent access to FPUF.

In case the simulator needs access to the ideal functionality, Equation 1.1, must be
rewritten as follows:

{IDEALGF ,Sim,z(n, z)}n∈N,z∈{0,1}∗ ∼ {REALGΠ,A,z(n, z)}n∈N,z∈{0,1}∗ (1.2)

Commitment Ideal Functionality Fcom. The ideal functionality for Commitment
Scheme as presented in [18], is depicted in Fig. 1.6.
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Functionality Fcom

Fcom running with parties P1, . . . , Pm and an adversary Sim proceeds as follows:
• Commitment Phase: Upon receiving a message (commit, sid, Pi, Pj , b) from Pi

where b ∈ {0, 1}, record the tuple (sid, Pi, Pj , b) and send the message (receipt,
sid, Pi, Pj) to Pj and Sim. Ignore any subsequent commit messages.

• Decommit Phase: Upon receiving (open,sid, Pi, Pj) from Pi, if the tuple
(sid, Pi, Pj , b) is recorded then send (open,sid, Pi, Pj , b) to Pj and to Sim and
halt. Otherwise ignore the message.

Figure 1.6: The Commitment Functionality Fcom.

1.4 Additional definitions

Unconditional One-Time Message Authentication Code. A message authen-
tication code (MAC) is defined as a triple of PPT algorithms (Gen, Mac, Vrfy). The
key-generation algorithm Gen takes as input the security parameter 1n and outputs a
key k with |k| ≥ n. The tag-generation algorithm Mac takes as input a key k and a
message m and outputs a tag t ← Mac(k,m). The verification algorithm Vrfy takes as
input a key k, a message m and a tag t and outputs 1 if t is a valid MAC of the message
m, it outputs 0 otherwise. A MAC is unconditionally one-time unforgeable if, for all keys
k ← Gen(1n), for any adversary A observing a pair (t,m)← Mac(k,m), probability that
A generates a new pair (t′,m′), such that Vrfy(k,m′, t′) = 1, is negligible. Unconditional
one-time MAC can be implemented using a pairwise independent function.

Definition 10 (Error correcting code). An (N,L, dis)-Error Correcting Code (ECC), is
a tuple of algorithms (Encode,Decode) where Encode : {0, 1}N → {0, 1}L and Decode :
{0, 1}L → {0, 1}N satisfy the following properties:

Efficiency: Encode,Decode are deterministic polynomial time algorithms;

Minimum Distance: ∀m1,m2 ∈ {0, 1}N , disham(Encode(m1),Encode(m2)) ≥ dis;

Correct Decoding: ∀m, cd = Encode(m), ∀cd′ ∈ {0, 1}L such that disham(cd, cd′) ≤
bdis

2 c it holds that Decode(c′) = m.

In our constructions we need (3n,L, L
logL)-Error Correcting Code.



Part

UC-security from Physical Assumptions

23





- Chapter 2 -

Universally Composable Security from PUFs

Introduction

The impossibility of secure computation in the universal composability framework was
proved first by Canetti and Fischlin [18], and then strengthened by Canetti et al. in [21].
As a consequence, several setup assumptions, and relaxations of the UC framework have
been proposed to achieve UC security [22, 6, 88, 61].

In recent years, researchers have started exploring the use of secure hardware in
protocol design. The idea is to achieve protocols with strong security guarantees (like
UC) by allowing parties to use hardware boxes that have certain security properties. An
example of the kind of security required from such a hardware box is that of tamper-
proofness; i.e., the receiver of the box can only observe the input/output behaviour of
the functionality that the box implements. This property was formalized by Katz in [62],
and it was shown that UC security is possible by relying on the existence of tamper-proof
programmable hardware tokens, and computational assumptions. Smart cards are well
understood examples of such tokens, since they have been used in practice in the last
decades. Several improvements and variations of Katz’s model have been then proposed
in follow up papers (e.g., [23, 75, 49, 54, 36, 25, 37]).

Spurred by technological advances in manufacturing, recently a new hardware com-
ponent has gained a lot of attention: Physically Uncloneable Functions (PUFs) [82, 81].
A PUF is a hardware device generated through a special physical process that imple-
ments a “random” function1 that depends upon the physical parameters of the process.
These parameters can not be “controlled”, and producing a clone of the device is con-
sidered infeasible. Once a PUF has been constructed, there is a physical procedure to
query it, and to measure its answers. The answer of a PUF depends on the physical
behavior of the PUF itself, and is assumed to be unpredictable, or to have high min-
entropy. Namely, even after obtaining many challenge-response pairs, it is infeasible to
predict the response to a new challenge.

1Technically, a PUF does not implement a function in the mathematical sense, as the same input
might produce different responses.
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Since their introduction by Pappu in 2001, PUFs have gained a lot of attention for
cryptographic applications like anti-counterfeiting mechanisms, secure storage, RFID
applications, identification and authentication protocols [97, 58, 58, 94, 41, 66]. More
recently PUFs have been used for designing more advanced cryptographic primitives.
In [92] Rührmair shows the first construction of Oblivious Transfer, the security proof of
which is later provided in [93]. In [4], Armknecht et al. deploy PUFs for the construction
of memory leakage-resilient encryption schemes. In [70] Maes et al. provide construction
and implementation of PUFKY, a design for PUF-based cryptographic key generators.
There exist several implementations of PUFs, often exhibiting different properties. The
work of Armknecht et al. [3] formalizes the security features of physical functions in
accordance to existing literature on PUFs and proposes a general security framework
for physical functions. A survey on PUF implementations is given in [71]. Very recently
in [63] Katzenbeisser et al. presented the first large scale evaluation of the security
properties of some popular PUFs implementations (i.e., intrinsic electronic PUFs).

Modeling PUFs in the UC framework. Only very recently, Brzuska et al. [14]
suggested a model for using PUFs in the UC setting that aims at abstracting real-
world implementations. The unpredictability and uncloneability properties are modeled
through an ideal functionality. Such functionality allows only the creation of trusted
PUFs. In [14] PUFs are thought as non-PPT setup assumptions. As such, a PPT
simulator cannot simulate a PUF, that is, PUFs are non-programmable. Although non-
programmable, PUFs are not modeled as global setup [17]. [14] shows how to achieve
unconditional UC secure Oblivious Transfer, Bit Commitment and Key Agreement with
trusted PUFs.

PUFs vs tamper-proof hardware tokens. The apparent similarity of PUFs with
programmable tamper-proof hardware tokens [62] vanishes immediately when one com-
pares in detail the two physical devices. Indeed, PUFs are non-programmable and thus
provide unpredictability only. Instead tokens are programmable and can run sophisti-
cated code. Moreover, PUFs are stateless, while tokens can be stateful. When a PUF
is not physically available, it is not possible to know the output of new queries it re-
ceived. Instead the answer of a stateless token to a query is always known to its creator2,
since it knows the program embedded in the token. Tamper-proof tokens are realized
through ad-hoc procedures that model them as black boxes, their internal content is
protected from physical attacks and thus the functionalities that they implement can
be accessed only through the prescribed input/output interface provided by the token
designer. Instead, PUFs do not necessarily require such a hardware protection (which
moreover could be in contrast with the need of running a physical procedure to query
the PUF), and their design is associated to recommended procedures to generate and
query a PUF, guaranteeing uncloneability and unpredictability. Finally, in contrast to

2This is true for stateful tokens too, provided that one knows the sequence of inputs received by the
token.
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tokens that correspond to PPT machines, PUFs are not simulatable since it is not clear
if one can produce an (even computationally) indistinguishable distribution.

In this work we continue the line of research started by Brzuska et al. investigating
more on the usability of PUFs to obtain UC-secure computation. We observe that the
UC formulation of PUFs proposed by Brzuska et al. considers only trusted PUFs. This
means that, it is assumed that an adversary is be unable to produce fake/malicious
PUFs. We believe that making such assumption might be unrealistic. Given that the
study of PUFs is still in its infancy, it is risky to rely on assumptions on the impossibility
of the adversaries in generating PUFs adversarially.

The main contribution of this work consists in studying the security of protocols in
presence of adversaries that can create malicious PUFs. We present a modification of the
model of Brzuska et al. that formalizes security with respect to such stronger adversary
and we give positive answers to the question of achieving universally composable secure
computation with PUFs. More in details, our contributions are listed below.

Modeling malicious PUFs. We augment the UC framework so to enable the ad-
versary to create untrusted (malicious) PUFs. But what exactly are malicious PUFs?
In real life, an adversary could tamper with a PUF in such a way that the PUF loses any
of its security properties. Or the adversary may introduce new behaviours; for example,
the PUF may start logging its queries. To keep the treatment of malicious behaviour
as general as possible, we allow the adversary to send as PUF any hardware token that
meets the syntactical requirements of a PUF. Thus, an adversary is assumed to be able
to even produce fake PUFs that might be stateful and programmed with malicious code.
We assume that a malicious PUF however cannot interact with its creator once is sent
away to another party. If this was not the case, then we are back in the standard model,
where UC security is impossible to achieve has argued below.

UC secure computation is impossible when malicious PUFs can interact with
their creator. The impossibility is straight forward. Consider any functionality that
protects the privacy of the input of a player P1. Comparing to the plain model (where
UC is impossible), the only advantage of the simulator to extract the input of the real-
world adversary P ∗1 , is to read the challenge/answer pairs generated by P ∗1 when using
the honest PUF created by the simulator that plays on behalf of P2. If such a simulator
exists, then an adversary P ∗2 can generate a malicious PUF that just plays as proxy and
forwards back and forth what P ∗2 wishes to play. P ∗2 can locally use one more honest
PUF in order to compute the answers that the (remote) malicious PUF is supposed
to give. Clearly P ∗2 will have a full view of all challenge/response pairs generated by
honest P1 and running the simulator’s code, P ∗2 will extract the input of P1, therefore
contradicting input privacy.

UC secure computation with malicious PUFs. The natural question is whether
UC security can be achieved in such a much more hostile setting. We give a positive
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answer to this question by constructing a computational UC commitment scheme in the
malicious PUFs model. Our commitment scheme needs two PUFs that are transferred
only once (PUFs do not go back-and-forth), at the beginning of the protocol and it re-
quires computational assumptions. We avoid that PUFs go back-and-forth by employing
a technique that requires OT. The results of Canetti, et al. [22] shows how to achieve
general UC computation from computational UC commitments. Whether unconditional
UC secure computation is possible in the malicious PUF model, is still an open problem.

Hardness assumptions with PUFs. Notice that as correctly observed in [14], since PUFs
are not PPT machines, it is not clear if standard complexity-theoretic assumptions still
hold in presence of PUFs. We agree with this observation. However the critical point
is that even though there can exist a PUF that helps to break in polynomial time a
standard complexity-theoretic assumptions, it is still unlikely that a PPT adversary can
find such a PUF. Indeed a PPT machine can only generate a polynomial number of
PUFs, therefore obtaining the one that allows to break complexity assumptions is an
event that happens with negligible probability and thus it does not effect the concrete
security of the protocols.

In light of the above discussion, only one of the following two cases is possible. 1)
Standard complexity-theoretic assumptions still hold in presence of PPT adversaries that
generate PUFs; in this case our construction is secure. 2) There exists a PPT adversary
that can generate a PUF that breaks standard assumptions; in this case our construction
is not secure, but the whole foundations of complexity-theoretic cryptography would fall
down (which is quite unlikely to happen) with respect to real-world adversaries. We
elaborate on this issue in Section 2.2.2.

Further details on our work. In our protocols after an execution the PUF can
not be reused in another protocol execution. We explain how reuse of PUFs makes our
commitment protocol insecure at the end of Section 2.3. However, this inability to reuse
PUFs is not an artefact of our protocols, but is inherent in the UC formulation. In par-
ticular, the proof of the UC Composition Theorem [16] requires that different executions
use independently created PUFs. Finding a formulation of security that allows reuse
of PUFs (for e.g., by moving to the Global UC framework [17]) is an interesting open
question. In the meantime, we feel using new PUFs for each execution is a cost we must
bear for achieving UC.

The chapter is organized as follows. In Section 2.1 we provide the formal definition
of Physically Uncloneable Functions. In Section 2.2 we first recall the UC-formulation
of trusted PUFs due to [14], then we introduce our new formulation that instead model
malicious PUFs.

In Section 2.3 we show how to achieve UC-secure computations in the malicious
PUFs model, by providing a UC-commitment scheme that plugged into the CLOS [22]
compiler 3, allows to UC-realize any functionality.

3More precisely, CLOS compiler requires the implementation of UC-secure multiple commitment
scheme functionalityFmcom. We show that our commitment scheme can be extended to implement such
functionality.



29

2.1 Definitions

We start by providing a mathematical definition of Physically Uncloneable Functions.
The following definitions are taken from [14].

2.1.1 Physically Uncloneable Functions

A PUF is a noisy physical source of randomness. The randomness property comes
from an uncontrollable manufacturing process. A PUF is evaluated with a physical
stimulus, called the challenge, and its physical output, called the response, is measured.
Because the processes involved are physical, the function implemented by a PUF can not
necessarily be modeled as a mathematical function, neither can be considered computable
in PPT. Moreover, the output of a PUF is noisy, namely, querying a PUF twice with
the same challenge, could yield to different outputs.

A PUF-family P is a pair of (not necessarily efficient) algorithms Sample and Eval.
Algorithm Sample abstracts the PUF fabrication process and works as follows. Given the
security parameter in input, it outputs a PUF-index id from the PUF-family satisfying
the security property (that we define soon) according to the security parameter. Algo-
rithm Eval abstracts the PUF-evaluation process. On input a challenge q, it evaluates
the PUF on q and outputs the response a. A PUF-family is parametrized by two pa-
rameters: the bound on the noisy of the answers dnoise, and the size of the output space
rg. A PUF is assumed to satisfy the bounded noise condition, that is, when running
Eval(1n, id, q) twice, the Hamming distance of any two responses a1, a2 is smaller than
dnoise(n). Without loss of generality, we assume that the challenge space of a PUF is a
full set of strings of a certain length.

Definition 11 (Physically Uncloneable Functions). Let rg denote the size of the range
of the PUF responses of a PUF-family and dnoise denote a bound of the PUF’s noise.
P = (Sample,Eval) is a family of (rg, dnoise)-PUF if it satisfies the following properties.

Index Sampling. Let In be an index set. On input the security parameter n, the
sampling algorithm Sample outputs an index id ∈ In following a not necessarily
efficient procedure. Each id ∈ In corresponds to a set of distributions Did. For
each challenge q ∈ {0, 1}n, Did contains a distribution Did(q) on {0, 1}rg(n). Did is
not necessarily an efficiently samplable distribution.

Evaluation. On input the tuple (1n, id, q), where q ∈ {0, 1}n, the evaluation algorithm
Eval outputs a response a ∈ {0, 1}rg(n) according to distribution Did(q). It is not
required that Eval is a PPT algorithm.

Bounded Noise. For all indexes id ∈ In, for all challenges q ∈ {0, 1}n, when running
Eval(1n, id, q) twice, the Hamming distance of any two responses a1, a2 is smaller
than dnoise(n).

In this thesis we use PUFid(q) to denote Did(q). When not misleading, we omit id
from PUFid, using only the notation PUF.
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Security Properties We assume that PUFs enjoy the properties of uncloneability
and unpredictability. Unpredictability is modeled via an entropy condition on the PUF
distribution. Namely, given that a PUF has been measured on a polynomial number of
challenges, the response of the PUF evaluated on a new challenge has still a significant
amount of entropy. In the following we recall the concept of average min-entropy, and
the formal definition of PUF-unpredictability.

Definition 12 (Average min-entropy). The average min-entropy of the measurement
PUF(q) conditioned on the measurements of challenges Q = (q1, . . . , q`) is defined by:

H̃∞(PUF(q)|PUF(Q)) = −log
(
Eai←PUF(qi)[max

a
Pr [ PUF(q) = a|a1 = PUF(q1), . . . , a` = PUF(q`) ]

)
= −log

(
Eai←PUF(qi)[2

H∞(PUF(q)=a|a1=PUF(q1),...,a`=PUF(q`)
)

where the probability is taken over the choice of id from the PUF-family and the choice
of possible PUF responses on challenge q. The term PUF(Q) denotes a sequence of
random variables PUF(q1), . . . ,PUF(q`) each corresponding to an evaluation of the PUF
on challenge qk.

Definition 13 (Unpredictability). A (rg, dnoise)-PUF family P = (Sample,Eval) for
security parameter n is (dmin(n), m̃(n))-unpredictable if for any q ∈ {0, 1}n and challenge
list Q = (q1, . . . , qn), one has that, if for all 1 ≤ k ≤ n the Hamming distance satisfies
disham(q, qk) ≥ dmin(n), then the average min-entropy satisfies H̃∞(PUF(q)|PUF(Q)) ≥
m(n). Such a PUF-family is called a (rg, dnoise, dmin,m)- PUF family.

The above unpredictability definition automatically implies uncloneability (see [15]
pag. 39 for details).

2.1.2 Fuzzy Extractors

The output of a PUF is noisy. That is, querying the PUF twice with the same chal-
lenge two times, one might obtain distinct responses a, a′, that are at most dnoise apart
in hamming distance. Fuzzy extractors of Dodis et al. [35] are applied to the outputs
of the PUF, to convert such noisy, high-entropy measurements into reproducible ran-
domness. Very roughly, a fuzzy extractor is a pair of efficient randomized algorithms
(FuzGen,FuzRep), and it is applied to PUFs ’responses as follows. FuzGen takes as input
an `-bit string, that is the PUF’s response a, and outputs a pair (p, st), where st is a
uniformly distributed string, and p is a public helper data string. FuzRep takes as input
the PUF’s noisy response σ′ and the helper data p and generates the very same string
st obtained with the original measurement a.

The security property of fuzzy extractors guarantees that, if the min-entropy of the
PUF’s responses are greater than a certain parameter m, knowledge of the public data
p only, without the measurement a, does not give any information on the secret value
st. The correctness property, guarantees that, all pairs of responses σ, σ′ that are close
enough, i.e., their hamming distance is less then a certain parameter t, will be recovered
by FuzRep to the same value st generated by FuzGen. Clearly, in order to apply fuzzy
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extractors to PUF’s answers, it is sufficient to pick an extractor whose parameters match
with the parameter of the PUF being used.

Let U` denote the uniform distribution on `-bit strings. Let M be a metric space
with the distance function dis: M×M→ R+.

Definition 14 (Fuzzy Extractors). Let dis be a distance function for metric spaceM. A
(m, `, t, ε)-fuzzy extractor is a pair of efficient randomized algorithms (FuzGen,FuzRep).
The algorithm FuzGen on input w ∈ M, outputs a pair (p, st), where st ∈ {0, 1}` is a
secret string and p ∈ {0, 1}∗ is a helper data string. The algorithm FuzRep, on input
an element w′ ∈ M and a helper data string p ∈ {0, 1}∗ outputs a string st. A fuzzy
extractor satisfies the following properties.

Correctness. For all w,w′ ∈ M, if dis(w,w′) ≤ t and (st, p)
$← FuzGen, then

FuzRep(w′, p) = st.

Security. For any distribution W on the metric space M, that has min-entropy m,
the first component of the random variable (st, p), defined by drawing w according
to W and then applying FuzGen, is distributed almost uniformly, even given p, i.e.,
SD((st, p), (U`, p)) ≤ ε.

Given a (rg(n), dnoise(n), dmin(n),m(n))-PUF family with dmin(n) = o(n/ log n), a
matching fuzzy extractor has as parameters `(n) = n and t(n) = dnoise(n). The metric
space M is the range {0, 1}rg with Hamming distance disham. We call such PUF family
and fuzzy extractor as having matching parameters, and the following properties are
guaranteed.

Well-Spread Domain. For all polynomial p(n) and all set of challenges q1, . . . , qp(n),
the probability that a randomly chosen challenge is within distance smaller than
dmin with any qk, for 1 ≤ k ≤ n is negligible.

Extraction Independence. For all challenges q1, . . . , qp(n), and for a challenge q such
that dis(q, qk) > dmin for 1 ≤ k ≤ p(n), it holds that the PUF evaluation on q and
subsequent application of FuzGen yields an almost uniform value st even if p is
observed.

Response consistency. Let a, a′ be the responses of PUF when queried twice with the

same challenge q, then for (st, p)
$← FuzGen(a) it holds that st← FuzRep(a′, p).

2.2 PUFs in the UC framework

In this section we first present the original UC-formulation of honest PUFs proposed by
Brzuska et. al [14]. Then we show how we extend it in order to allow the adversary to
create and use malicious PUFs.
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2.2.1 Modeling Trusted PUFs

As mentioned before, the model of Brzuska et. al. considers only trusted PUFs. This
manifests from the definition of the ideal functionality of PUFs, that we denote by FhPUF

and we formally describe in Fig. 2.1. Indeed, consider FhPUF. To create a PUF, a party
has to send the command initPUF to FhPUF. Then the functionality will run the honest
procedure to generate a PUF (namely, it runs the Sample algorithm). Therefore, even a
corrupted party clearly cannot interfere in the generation of the PUF.

2.2.2 Modeling Malicious PUFs

We allow our adversaries to send malicious PUFs to honest parties. As discussed before,
the motivation for malicious PUFs is that the adversary may have some control over the
manufacturing process and may be able to produce errors in the process that break the
PUF’s security properties. Thus, we would like parties to rely on only the PUFs that
they themselves manufacture (or obtain from a source that they trust), and not on the
ones they receive from other (possibly adversarial) parties.

Malicious PUF Families. In the real world, an adversary may create a malicious PUF
in a number of ways. For example, it can tamper with the manufacturing process for
an honestly-generated PUF to compromise its security properties (unpredictability, for
instance). It may also introduce additional behaviour into the PUF token, like logging
of queries. Taking inspiration from the literature on modeling tamper-proof hardware
tokens, one might be tempted to model malicious PUFs analogously in the following
way: to create a malicious PUF, the adversary simply specifies to the ideal functionality,
the (malicious) code it wants to be executed instead of an honest PUF. Allowing the
adversary to specify the malicious code enables the simulator to “rewind” the malicious
PUF, which is used crucially in security proofs in the hardware token model. However,
modeling malicious PUFs in this way would disallow the adversary from modifying
honest PUFs (or more precisely, the honest PUF manufacturing process). To keep our
treatment as general as possible, we do not place any restriction on a malicious PUF,
except that it should have the same syntax as that of an honest PUF family, as specified
in Denition 11. In particular, the adversary is not required to know the code of malicious
PUFs it creates, and thus our simulator can not rely on rewinding in the security proofs.
Formally, we allow the adversary to specify a “malicious PUF family”, that the ideal
functionality uses. Of course, in the protocol, we also want the honest parties to be able
to obtain and send honestly generated PUFs. Thus our ideal functionality for PUFs,
FPUF (Fig. 2.2) is parameterized by two PUF families: the normal (or honest) family
(Samplenormal,Evalnormal) and the possibly malicious family (Samplemal,Evalmal). When a
party Pi wants to initialize a PUF, it sends a initPUF message to FPUF in which it specifies
the mode ∈ { normal, mal }, and the ideal functionality uses the corresponding family for
initializing the PUF. For each initialized PUF, the ideal functionality FPUF also stores
a tag representing the family (i.e., mal or normal) from which it was initialized. Thus,
when the PUF needs to be evaluated, FPUF runs the evaluation algorithm corresponding
to the tag.
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FPUF(rg, dnoise, dmin,m) receives as initial input a security parameter 1n and runs with
parties P1, . . . , Pn and adversary S.

• When a party Pi writes (initPUF, sid, Pi) on the input tape of FPUF, then FPUF

checks whether L already contains a tuple (sid, ∗, ∗, ∗, ∗):

– If this is the case, then turn into the waiting state.

– Else, draw id← Sample(1n) from the PUF-family. Put (sid, id, Pi, ∗, notrans)
in L and write (initializedPUF, sid) on the communication tape of Pi.

• When party Pi writes (evalPUF, sid, Pi, q) on FPUF’s input tape, check if there
exists a tuple (sid, id, Pi, notrans) in L.

– If not, then turn into waiting state.

– Else, run a← Eval(1n, id, q). Write (responsePUF, sid, q, a) on Pi’s communi-
cation input tape.

• When a party Pi sends (handoverPUF, sid, Pi, Pj) to FPUF, check if there exists a
tuple (sid, ∗, Pi, notrans) in L.

– If not, then turn into waiting state.

– Else, modify the tuple (sid, id, Pi, notrans) to the updated tuple (sid, id,⊥
, trans(Pj)). Write (invokePUF, sid, Pi, Pj) on S’s communication input tape.

• When the adversary sends (evalPUF, sid,S, q) to FPUF, check if L contains a tuple
(sid, id,⊥, trans(∗)).

– If not, then turn into waiting state.

– Else, run a← Eval(1n, id, q) and return (responsePUF, sid, q, a) to S.

• When S sends (readyPUF, sid,S) to FPUF, check if L contains the tuple (sid, id,⊥
, trans(Pj)).

– If not found, turn into the waiting state.

– Else, change the tuple (sid, id,⊥, trans(Pj)) to (sid, id, Pj , notrans) and write
(handoverPUF, sid, Pi) on Pj ’s communication input tape and store the tuple
(receivedPUF, sid, Pi).

• When the adversary sends (receivedPUF, sid, Pi) to FPUF, check if the tuple
(receivedPUF, sid, Pi) exists in L. If not, return to the waiting state. Else, write
this tuple to the communication input tape of Pi.

Figure 2.1: The ideal functionality FhPUF from Brzuska et.al. [14] .



34

As in the original formulation of Brzuska et al., the ideal functionality FPUF keeps
a list L of tuples (sid, id, mode, P̂ , τ). Here, sid is the session identifier of the protocol
and id is the PUF identifier output by the Samplemode algorithm. As discussed above
mode ∈ { normal, mal } indicates the mode of the PUF, and P̂ identifies the party that
currently holds the PUF. The final argument τ specifies transition of PUFs: τ = notrans
indicates the PUF is not in transition, while τ = trans(Pj) indicates that the PUF is in
transition to party Pj . Only the adversary may query the PUF during the transition
period. Thus, when a party Pi hands over a PUF to party Pj , the corresponding τ value
for that PUF is changed from notrans to trans(Pj), and the adversary is allowed to send
evaluation queries to this PUF. When the adversary is done with querying the PUF, it
sends a readyPUF message to the ideal functionality, which hands over the PUF to Pj
and changes the PUFs transit flag back to notrans. The party Pj may now query the
PUF. The ideal functionality now waits for a receivedPUF message from the adversary,
at which point it sends a receivedPUF message to Pi informing it that the hand over is
complete. The ideal functionality is described formally in Fig. 2.2.

Allowing Adversary to Create PUFs. We deviate from the original formulation
of FPUF of Brzuska et al. [14] in one crucial way: we allow the ideal-world adversary S
to create new PUFs. That is, S can send a initPUF message to FPUF. In the original
formulation of Brzuska et al., S could not create its own PUFs, and this has serious
implications for the composition theorem, as it was discovered by Vald [98]. We elaborate
on this issue in a separate paragraph at the end of the section. Also, it should be noted
that the PUF set-up is non-programmable, but not global [17]. The environment must
go via the adversary to query PUFs, and may only query PUFs in transit or held by the
adversary at that time.

We remark that the OT protocol of [14] for honest PUFs, fails in the presence of
malicious PUFs. Consider the OT protocol in Fig. 3 in [14]. The security crucially
relies on the fact that the receiver Pj can not query the PUF after receiving sender’s
first message, i.e., the pair (x0, x1). If it could do so, then it would query the PUF on
both x0⊕v and x1⊕v and learn both s0 and s1. In the malicious PUF model however, as
there is no guarantee that the receiver can not learn query/answer pairs when a malicious
PUF that he created is not in its hands, the protocol no longer remains secure.

PUFs and computational assumptions. The protocol we present in the next section
will use computational hardness assumptions. These assumptions hold against proba-
bilistic polynomial-time adversaries. However, PUFs use physical components and are
not modeled as PPT machines, and thus, the computational assumptions must addi-
tionally be secure against PPT adversaries that have access to PUFs. We remark that
this is a reasonable assumption to make, as if this is not the case, then PUFs can be
used to invert one-way functions, to find collisions in CRHFs and so on, therefore not
only our protocol, but any computational-complexity based protocol would be insecure.
Note that PUFs are physical devices that actually exist in the real world, and thus all
real-world adversaries could use them.

To formalize this, we define the notion of “admissible” PUF families. Informally, a
PUF family (regardless of whether it is honest or malicious) is called admissible with
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FPUF uses PUF families P1 = (Samplenormal,Evalnormal) with parameters
(rg, dnoise, dmin,m), and P2 = (Samplemal,Evalmal). It runs on input the security pa-
rameter 1n, with parties P = {P1, . . . , Pn } and adversary S.

• When a party P̂ ∈ P∪{S } writes (initPUF, sid, mode, P̂ ) on the input tape of FPUF,
where mode ∈ { normal, mal }, then FPUF checks whether L already contains a
tuple (sid, ∗, ∗, ∗, ∗):
If this is the case, turn in waiting state. Else, draw id ← Samplemode(1

n) from
the PUF family. Put (sid, id, mode, P̂ , notrans) in L and write (initializedPUF, sid)
on the communication tape of P̂ .

• When party Pi ∈ P writes (evalPUF, sid, Pi, q) on FPUF’s input tape, check if there
exists a tuple (sid, id, mode, Pi, notrans) in L.

If not, turn in waiting state. Else, run a ← Evalmode(1
n, id, q). Write

(responsePUF, sid, q, a) on Pi’s input tape.

• When a party Pi sends (handoverPUF, sid, Pi, Pj) to FPUF, check if there exists a
tuple (sid, ∗, ∗, Pi, notrans) in L.

If not, turn in waiting state. Else, modify the tuple (sid, id, mode, Pi, notrans) to
the updated tuple (sid, id, mode, ⊥, trans(Pj)). Write (invokePUF, sid, Pi, Pj) on
S’s input tape.

• When the adversary sends (evalPUF, sid,S, q) to FPUF, check if L contains a tuple
(sid, id, mode, ⊥, trans(∗)) or (sid, id, mode,S, notrans).
If not, turn in waiting state. Else, run a ← Evalmode(1

n, id, q) and return
(responsePUF, sid, q, a) to S.

• When S sends (readyPUF, sid,S) to FPUF, check if L contains the tuple
(sid, id, mode, ⊥, trans(Pj)).

If not found, turn in waiting state. Else, change the tuple (sid, id, mode, ⊥,
trans(Pj)) to (sid, id, mode, Pj , notrans) and write (handoverPUF, sid, Pi) on Pj ’s in-
put tape and store the tuple (receivedPUF, sid, Pi).

• When the adversary sends (receivedPUF, sid, Pi) to FPUF, check if the tuple
(receivedPUF, sid, Pi) has been stored. If not, return to the waiting state. Else,
write this tuple to the input tape of Pi.

Figure 2.2: The ideal functionality FPUF for malicious PUFs.

respect to a hardness assumption if that assumption holds even when the adversary has
access to PUFs from this family. We will prove that our protocol is secure when the
FPUF ideal functionality is instantiated with admissible PUF families.
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For our purpose, all the cryptographic tools that we use to construct our protocols can
be based on the DDH assumption. Thus, we define PUF families that are admissible
only with respect to DDH, but note that the definition can be generalized to other
cryptographic primitives. This is a straightforward generalization of the standard DDH
definition. The following formulation is adapted from [86].

Let G be an algorithm that takes as input a security parameter n and outputs a
tuple G = (p, 〈G〉, g), where p is a prime, 〈G〉 is the description of a cyclic multiplicative
group G of order p, and g is a generator of G.

Definition 15. Let G be as defined above, and let (Sample,Eval) be a PUF family. The
tuple (G, (Sample,Eval)) is called DDH-admissible if for every oracle PPT distinguisher
D, for every polynomial p(·), and for sufficiently large n,

∣∣∣Pr [DSample(·),Eval(·)(1n, (G, ga, gb, gab)) = 1
]
− Pr

[
DSample(·),Eval(·)(1n, (G, ga, gb, gc)) = 1

]∣∣∣ ≤ 1

p(n)
,

where G← G(1n) and a, b, c← Zp are uniform and independent.

For succinctness, we will often keep G implicit in our discussion, and refer to a PUF
family for which (G, (Sample,Eval)) is DDH-admissible simply as “admissible”.

From this point on in this paper, we only talk of admissible families.

Allowing Adversary to Create PUFs. We now explain why it is crucial for the
UC-composition theorem to allow the adversary to create PUFs of its own. We begin
by sketching the proof of the UC composition theorem from Section 5.2, [16]. Those
familiar with the proof of the composition theorem can skip to the end of this section.

We say that a protocol ρ “UC-emulates” a protocol φ if there exists an adversary
S such that no environment can tell whether it is interacting with ρ and the dummy
adversary, or φ and S. That is for every environment z,

REALρ,D,z ∼ REALφ,S,z,

where D is a dummy adversary. Let π, ρ, φ be protocols, where π may call φ as a sub-
routine. By πρ/φ we denote the protocol which is the same as π, except that each call
to φ is replaced by a call to ρ.

The UC composition theorem [16] states that if ρ UC emulates φ, then πρ/φ UC
emulates π. The proof of the composition theorem goes as follows: we need to show that
there exists an adversary Sπ such that for every environment z,

REAL
πρ/φ,D,z

∼ REALπ,Sπ ,z.

Let S be the adversary that follows from the fact the ρ UC emulates φ. We now
outline the construction of adversary Sπ that uses S. Adversary Sπ divides the messages
into two parts: those that belong to an execution of ρ, and those that belong to execution
of the rest of π. The adversary Sπ handles the messages pertaining to ρ by passing them
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to an instance of the adversary S. For the messages of π that don’t belong to ρ, adversary
Sπ simply passes them to the parties they are intended for.

To see the correctness of the above construction, assume that there exists an environ-
ment z that distinguishes between πρ/φ with a dummy adversary, and π with Sπ as the
adversary. We will construct an environment zρ that distinguishes between ρ with the
dummy adversary and φ with the adversary S. This is a contradiction, as ρ UC-emulates
φ.

The environment zρ internally runs an execution of z, Sπ and all the parties of
π. It faithfully follows the actions of these parties except for messages concerning the
sub-protocol φ, for which it uses the actual external parties (which are either running
an instance of φ, or an instance of ρ). In particular, whenever an internal party of π
generates an input for an instance of ρ, the environment zρ passes that input to the
external party. Similarly, any output sent by an external party to zρ is treated as an
output of φ. Further, any message sent by Sπ to a simulator S is forwarded by zρ to
the external adversary, and the response of the external adversary is conveyed to Sπ as
though it was sent by S. Finally, the environment zρ outputs whatever z outputs.

Now, note that if the external parties are running ρ with the dummy adversary,
then the view of the simulated environment z is identical to REAL

πρ/φ,D,z
. On the

other hand, if the external parties are running φ with S, then the view of the simulated
environment z is identical to REALπ,Sπ ,z. This implies that REALρ,D,zρ and REALφ,S,zρ
are distinguishable, which contradicts the hypothesis that ρ UC-emulates φ.
Composition Theorem and PUFs. Now let us consider composition in the presence
of PUFs. Recall that in the FPUF-hybrid model, the environment does not have direct
access to the ideal FPUF functionality (see Section 4.3 and Appendix B of [14] for details
on the PUF access model). However, looking at the proof of the composition theorem,
we immediately notice that the environment zρ must have the ability to create PUFs.
This is because to carry out the internal simulation of z and π, environment zρ must be
able to handle PUF requests by the parties of π. Since PUFs are not programmable, zρ
can not simulate PUF responses on its own. It is to tackle this very issue that we allow
the adversary to create new PUF’s in our FPUF ideal functionality in Figure 2.2. This is
sufficient for the composition theorem: when a simulated party in π requests a PUF, the
environment zρ asks the adversary to create a new PUF, and uses that PUF to handle
the simulated party’s requests.

2.3 UC Secure Computation in the Malicious PUFs model

In this section we present a construction that UC-realizes the commitment functionality
Fcom in the malicious PUFs model, and thus UC security for any PPT functionality
using the compiler of [22].

Let us recall some of the peculiarities of the PUFs model. A major difficulty when
using PUFs, in contrast to tamper-proof tokens, is that PUFs are not programmable.
That is, the simulator can not simulate the answer of a PUF, and it must honestly
forward the queries to the FPUF functionality. The only power of the simulator is to
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intercept the queries made by the adversary to honest PUFs. Thus, in designing the
protocol, we shall force parties to query the PUFs with the critical private information
related to the protocol, so as to allow the simulator to extract such information in
straight-line. In the malicious PUFs model the behaviour of a PUF sent by an adversary
is entirely in the adversary’s control. A malicious PUF can answer (or even abort)
adaptively on the query according to some pre-shared strategy with the malicious creator.
Finally, a side effect of the unpredictability of PUFs, is that the creator of a honest PUF
is not able to check the authenticity of the answer generated by its own PUF, without
having the PUF in its hands (or having queried the PUF previously on the very same
value). This might generate the undesired effect of PUFs going back and forth during
the protocol.

Techniques and proof intuition. Showing UC security for commitments requires
obtaining straight-line extraction against a malicious sender and straight-line equivocal-
ity against a malicious receiver. Our starting point is the equivocal commitment scheme
of [27] which builds upon Naor’s scheme [76], that consists of two messages. The first
message is a randomly chosen string r that the receiver sends to the sender. The sec-
ond message is the commitment of the bit b, computed using r. More precisely, it is
G(s) ⊕ (r∧ b), where G() is a PRG, and s a randomly chosen seed and b is the string
b|r|. The scheme has the property that if the string r is crafted appropriately, then the
commitment is equivocal. [27] shows how this can be achieved by adding a coin-tossing
phase before the commitment. The coin tossing of [27] proceeds as follows: the receiver
commits to a random string α (using a statistically hiding commitment scheme), the
sender sends a string β, and then the receiver opens the commitment. Naor’s parameter
r is then set as α⊕ β.

Observe that if the simulator can choose β after knowing α, then it can control the
output of the coin-tossing phase, and therefore equivocate the commitment. Thus, to
achieve equivocality against a malicious receiver, the simulator must be able to extract
α from the commitment. Similarly, when playing against a malicious sender, the sim-
ulator should be able to extract the value committed in the second message of Naor’s
commitment.

Therefore, to construct a UC-secure commitment, we need to design an extractable
commitment scheme for both directions. The extractable commitment of α that we
construct for the receiver, must be statistically-hiding (this is necessary to prove binding).
We denote such commitment as Comshext = (Cshext,Rshext). Instead, the commitment
sent by the sender, must be extractable and allow for equivocation. We denote such
commitment as Comequiv = (Cequiv,Requiv). As we shall see soon, the two schemes require
different techniques as they aim to different properties. However, they both share the
following structure to achieve extractability.

The receiver creates a PUF and queries it with two randomly chosen challenges
(q0, q1), obtaining the respective answers (a0, a1). The PUF is then sent to the sender.
To commit to a bit b, the sender first needs to obtain the value qb. This is done by
running an OT protocol with the receiver. Then the sender queries the PUF with qb and
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commits to the response ab. Note that the sender does not commit to the bit directly,
but to the answer of the PUF. This ensure extractability. To decommit to b, the sender
simply opens the commitment of the PUF-answer sent before. Note that the receiver
can check the authenticity of the PUF-answer without having its own PUF back. The
simulator can extract the bit by intercepting the queries sent to the PUF and taking the
one that is close enough, in Hamming distance, to either q0 or q1. Due to the security of
OT, the sender can not get both queries (thus confusing the simulator), neither can the
receiver detect which query has been transferred. Due to the binding property of the
commitment scheme used to commit qb, a malicious sender cannot postpone querying
the PUF to the decommitment phase (thus preventing the simulator to extract already
in the commitment phase). Due to the unpredictability of PUFs, the sender cannot
avoid to query the PUF to obtain the correct response.

This protocol achieves extractability. To additionally achieve statistically hiding and
equivocality, protocol Comshext and Comequiv develop on this basic structure in different
ways accordingly to the different properties that they achieve. The main difference is in
the commitment of the answer ab.

In Protocol Comshext, Cshext commits to the PUF-response ab using a statistically
hiding commitment scheme. Additionally, Cshext provides a statistical zero-knowledge
argument of knowledge of the message committed. This turns out to be necessary to
argue about binding (that is only computational). Finally, the OT protocol executed
to exchange q0, q1 must be statistically secure for the OT receiver. A graphic high-level
description of Comshext is provided in Fig. 2.3.

In Protocol Comequiv the answer ab is committed following Naor’s commitment scheme.
The input of Cequiv is the Naor’s parameter decided in the coin-flipping phase, and is
the vector r̄ of strings r1, . . . , rl (ab is a l-bit string where l is the range of the PUF).
Earlier we said that the simulator can properly craft r̄, so that it will be able equivocate
the commitment of ab. However, due to the structure of the extractable commitment
shown above, being able to equivocate the commitment of ab is not enough anymore.
Indeed, in the protocol above, due to the OT protocol, the simulator will be able to
obtain only one of the PUF-queries among (q0, q1), and it must choose the query qb
already in the commitment phase (when the secret bit b is not known to the simulator).
Thus, even though the simulator has the power to equivocate the commitment to any
string, it might not know the correct PUF-answer to open to. We solve this problem by
asking the receiver to reveal both values (q0, q1) played in the OT protocol (along with
the randomness used in the OT protocol), obviously only after Cequiv has committed to
the PUF-answer. Now, the simulator can: play the OT protocol with a random bit,
commit to a random string (without querying the PUF), and then obtain both queries
(q0, q1). In the decommitment phase, the simulator gets the actual bit b. Hence, it can
query the PUF with input qb, obtain the PUF-answer, and equivocate the commitment
so to open to such PUF-answer. There is a subtle issue here and is the possibility of
selective abort of a malicious PUF. If the PUF aborts when queried with a particular
string, then we have that the sender would abort already in the commitment phase,
while the simulator aborts only in the decommitment phase. We avoid such problem by
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requiring that the sender continues the commitment phase by committing to a random
string in case the PUF aborts. The above protocol is statistically binding (we are using
Naor’s commitment), straight-line extractable, and assuming that Naor’s parameter was
previously ad-hoc crafted, it is also straight-line equivocal. To commit to a bit we are
committing to the l-bit PUF-answer, thus the size of Naor’s parameter is N = (3n)l.
Protocol Comequiv is formally described in Fig. 2.4.

The final UC-secure commitment scheme Comuc = (Cuc,Ruc) consists of the coin-
flipping phase, and the (equivocal) commitment phase. In the coin flipping, the receiver
commits to α using the statistically hiding straight-line extractable commitment scheme
Comshext. The output of the coin-flipping is the Naor’s parameter r̄=α ⊕ β used as
common input for the extractable/equivocal commitment scheme Comequiv. Protocol
Comuc = (Cuc,Ruc) is depicted in Fig. 2.6.

Both protocol Comshext,Comequiv require one PUF sent from the receiver to the
sender. We remark that PUFs are transferred only once at the beginning of the
protocol.

Sshext (b) Rshext

a0 ← PUFR(q0)

a1 ← PUFR(q1)
PUFR

q0

q1

b

qb

ab ← PUFR(qb)

c = ComSH(ab)

SZKAoK
I know the value
committed in c

OT

open c as ab, send b
check opening a′

b. If ∃ b

If PUFR aborts

ab = 0l

s.t. a′
b ∈ {a0, a1}, output b

stat.secure
for Sshext

Figure 2.3: Protocol Cshext

Theorem 1. If Comshext = (Cshext,Rshext) is a statistically hiding straight-line extractable
commitment scheme in the malicious PUFs model, and Comequiv = (Cequiv,Requiv) is a
statistically binding straight-line extractable and equivocal commitment scheme in the
malicious PUFs model, then Comuc = (Cuc,Ruc) in Fig. 2.6, UC-realizes the Fcom func-
tionality.

The above protocol can be used to implement the multiple commitment functionality
Fmcom by using independent PUFs for each commitment. Note that in our construction



41

Sequiv (b) Requiv

a0 ← PUFR(q0)

a1 ← PUFR(q1)
PUFR

q0

q1

b

qb

ab ← PUFR(qb)

Naor Com of ab

OT

open ab, send b
check opening a′b. If ∃ b

If PUFR aborts

ab = 0l

s.t. a′b ∈ {a0, a1}, output b

r̄ = (r1, . . . , rl)

run OT with

randomness rOT

Let τOT be the transcript of OT

rOT, q0, q1check τOT is
consistent with rOT, q0, q1

computed on parameter r̄

stat.secure
for Sequiv

Figure 2.4: Protocol Comequiv

we can not reuse the same PUF when multiple commitments are executed concurrently4.
The reason is that, in both sub-protocols Comshext,Comequiv, in the opening phase the
committer forwards the answer obtained by querying the receiver’s PUF. The answer of
a malicious PUF can then convey information about the value committed in concurrent
sessions that have not been opened yet.

When implementing Fmcom one should also deal with malleability issues. In par-
ticular, one should handle the case in which the man-in-the-middle adversary forwards
honest PUFs to another party. However such attack can be easily ruled out by exploiting
the unpredictability of honest PUFs as follows. Let Pi be the creator of PUFi, running
an execution of the protocol with Pj . Before delivering its own PUF, Pi queries it with
the identity of Pj concatenated with a random nonce. Then, at some point during the
protocol execution with Pj it will ask Pj to evaluate PUFi on such nonce (and the iden-
tity). Due to the unpredictability of PUFs, and the fact that nonce is a randomly chosen
value, Pj is able to answer to such a query only if it possesses the PUF. The final step
to obtain UC security for any functionality consists in using the compiler of [22], which
only needs a UC secure implementation of the Fmcom functionality.

2.3.1 Sub-Protocols

In this section we provide more details for Protocol Comshext and Protocol Comequiv,
which are the main ingredients of Protocol Comuc. For simplicity, in this section we use

4Note that however our protocol enjoys parallel composition and reuse of the same PUF, i.e., one can
commit to a string reusing the same PUF.
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α← {0, 1}N

β ← {0, 1}N

Comshext(α)

β

open α

Comequiv(r̄, b)

Cuc Ruc

r̄ = α⊕ β

run opening of Comequiv

Figure 2.5: Pictorial representation of Protocol Comuc.

Committer’s Input: Bit b ∈ {0, 1}.
Commitment Phase

Ruc ⇔ Cuc : (Coin Flipping)

1. Ruc picks α
$← {0, 1}N ; commit to α by running ((cα, dα), cα) ←

〈Cshext(com, α),Rshext(recv)〉 with Cuc.

2. Cuc sends β
$← {0, 1}N to Ruc.

3. Ruc sends decommitment (α, dα) to Cuc.
4. Cuc: if Rshext(dα, α) = 0, abort.

Cuc ⇔ Ruc : (Equivocal Commitment)
Cuc commit to b by running ((cbit, dbit), cbit)← 〈Cequiv(com, b),Requiv(recv)〉(α⊕β)
with Ruc.

Decommitment Phase

Cuc sends decommitment (b, dbit) to Ruc.

Ruc accepts iff Requiv(α⊕ β, cbit, b, dbit) is accepting. Else, reject.

Figure 2.6: Computational UC Commitment Scheme (Cuc,Ruc).

the following informal notation. We refer to a PUF created by party A as PUFA, and
we denote by v ← PUFA(q) the evaluation of the PUF PUFA on challenge q.

Statistically Hiding Straight-line Extractable Commitment Scheme. Let ComSH =
(CSH,RSH) be a Statistically Hiding string commitment scheme, (SOT, SOT) be a statisti-
cal receiver OT protocol (namely, an OT protocol where the receiver’s privacy is statis-
tically preserved). Let (P, V ) be a Statistical Zero Knowledge Argument of Knowledge
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(SZKAoK) for the following relation: Rcom = {(c, (s, d)) such that RSH(c, s, d) = 1}.
Protocol Comshext = (Cshext,Rshext) is depicted in Fig.2.7.

Committer’s Input: Bit b ∈ {0, 1}.
Commitment Phase

Rshext : Initialize PUFR.

1. obtain a0 ← PUFR(q0), a1 ← PUFR(q1), for (q0, q1)
$← {0, 1}n.

2. (st0, p0)← FuzGen(a0), (st1, p1)← FuzGen(a1).
3. handover PUFR to Cshext.

Rshext ⇔ Cshext : (Statistical OT phase)
〈SOT(q0, q1),SOT(b)〉 is run by Rshext as SOT with input (q0, q1), and Cshext as SOT

with input b. Let q′b be the local output of Cshext.

Cshext : a′b ← PUFR(q′b). If PUFR aborts, a′b
$← {0, 1}l.

Cshext ⇔ Rshext : (Statistically Hiding Commitment)
((c, d), c) ← 〈CSH(com, a′b),RSH(recv)〉 is run by Cshext as CSH to commit to a′b,
and by Rshext as RSH.

Cshext ⇔ Rshext : (SZKAoK)
〈P (d, a′b), V 〉(c) is run by Cshext playing as prover P for the theorem (c, (c, d)) ∈
Rcom and by Rshext playing as verifier V on input c. If the proof is not accepting,
Rshext aborts.

Decommitment Phase

Cshext : if PUFR did not abort, send opening (d, a′b, b) to Rshext.

Rshext : if RSH(c, a′b, d) = 1 and FuzRep(a′b, pb) = stb then accept. Else reject.

Figure 2.7: Statistically Hiding Straight-Line Extractable Bit Commitment Scheme
(Cshext,Rshext).

Theorem 2. If ComSH = (CSH,RSH) is a statistically-hiding commitment scheme, (SOT, SOT)
is a statistical receiver OT protocol and (P, V ) is a SZKAoK, then Comshext is a sta-
tistically hiding straight-line extractable bit commitment scheme in the malicious PUFs
model.

Proof. Completeness. Before delivering its own PUF PUFR, Rshext queries it with a
pair of random challenges (q0, q1) and gets answers (a0, a1). To commit to a bit b, Cshext

has to commit to the output ab of PUFR.
By the completeness of the OT protocol, Cshext obtains the query qb corresponding

to its secret bit. Then Cshext queries PUFR with qb and commits to the response a′b run-
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ning CSH. Furthermore, Cshext proves using SZKAoK the knowledge of the opening. By
the completeness of SZKAoK and ComSH the commitment phase is concluded without
aborts. In the opening phase, Cshext sends b and opens the commitment to a′b, and Rshext

checks whether the string a′b matches the answer ab obtained by its own PUF applying
the fuzzy extractor. By the response consistency property, Rshext gets the correct answer
and accept the decommitment for the bit b.

Statistically Hiding. We show that, for all R∗shext it holds that:

viewR∗shext
(Cshext(com, 0),Rshext)

S≡ viewR∗shext
(Cshext(com, 1),R∗shext).

This follows from the statistical security of the three sub-protocols run in the commit-
ment phase by Cshext. More specifically, recall that the view of R∗shext in the commitment
phase consists of the transcript of the execution of the OT protocol (SOT,SOT), the
transcript of the Statistically Hiding commitment scheme ComSH and the transcript of
the execution of the SZKAoK protocol. The proof goes by hybrids.

H0: In this hybrid the sender Cshext commits to bit 0. Namely, it plays the OT protocol
with the bit 0 to obtain q′0, then it queries the malicious PUF∗R to obtain a string
a′0, then it commits to a′0 executing CSH and finally it runs the honest prover P to
prove knowledge of the decommitment.

H1: In this hybrid, Cshext proceeds as in H0, except that it executes the zero knowledge
protocol by running the zero knowledge simulator S. By the statistical zero knowl-
edge property of (P, V ), hybrids H0 and H1 are statistically indistinguishable.

H2: In this hybrid, Cshext proceeds as in H1, excepts that it runs CSH to commit to
a random string s instead of a′0. By the statistically hiding property of protocol
ComSH, hybrids H1 and H2 are statistically indistinguishable.

H3: In this hybrid, Cshext proceeds as in H2, except that in OT protocol it plays with
bit 1, obtaining query q′1. By the receiver security of protocol (SOT,SOT), hybrids
H2 and H3 are statistically indistinguishable.

H4: In this hybrid, Cshext proceeds as in H3, except that here it queries the PUF with
string q′1 to obtain a′1 (however it still commits to the random string s). If the
PUF∗R aborts, then Cshext sets a′1 ← {0, 1}l. Note that any malicious behavior does
not effect the transcript generated in H4. Thus, hybrids H3 and H3 are identical.

H5: In this hybrid, Cshext proceeds as in H4 except that it commits to the string a′1.
By the statistically hiding property of protocol ComSH, hybrids H4 and H5 are
statistically indistinguishable.

H6: In this hybrid, Cshext proceeds as in H5, except that it executes the zero knowledge
protocol running as the honest prover P . By the statistical zero knowledge property
of (P, V ), hybrids H5 and H6 are statistically indistinguishable.
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By observing that hybrid H0 corresponds to the case in which Cshext commits to 0
and hybrid H6 corresponds to the case in which Cshext commits to 1, the hiding property
is proved.
Straight-line Extractability. To prove extractability we show a straight-line strict
polynomial-time extractor E that satisfies the properties required by Definition 18. Re-
call that, in the commitment scheme Comshext, the sender basically commits to the
answer ab received from PUFR. By the unpredictability of PUF, the sender needs to
get the right query qb from Rshext in order to obtain the value to commit to. Such qb is
obliviously retrieved by Cshext running OT with the bit b. The strategy of the extractor,
that we show below, is very simple. It consists of running the commitment phase as the
honest receiver, and then looking at the queries made by C∗shext to PUFR to detect which
among q0, q1 has been asked and thus extract the bit. The extraction of the bit fails
when one of the following two cases happens. Case Fail1: the set of queries contains
both (q0, q1) (or at least a pair that is within their hamming distance); in this case E
cannot tell which is the bit played by C∗shext and therefore outputs ⊥. By the sender’s
security of OT this case happens only with negligible probability. Case Fail2: the set of
queries does not contain any query close (within hamming distance) to neither q0 nor q1.
This is also a bad case since E cannot extract any information. However, if there exists
such a C∗shext that produces an accepting commitment without querying the PUF in the
commitment phase (but perhaps it makes queries in the decommitment phase only) then,
given that responses of honest PUFs are unpredictable, one can break either the binding
property of the underlying commitment scheme ComSH or the argument of knowledge
property of (P, V ). The formal description of E is given below. Formal arguments follow.

Extractor E

Commitment Phase. Run the commitment phase following the honest receiver pro-
cedure. We denote by (q0, q1) the queries made by the extractor E to the honest
PUF before delivering it to C∗shext. E uses such a pair when running as SOT in OT
protocol. If all sub-protocols (OT, ComSH,SZKAoK) are successfully completed
go the extraction phase. Else, abort.

Extraction phase. Let Q be the set of queries asked by C∗shext to PUFR during the
commitment phase.

Fail1. If there exists a pair q′0, q
′
1 ∈ Q such that disham(q0, q

′
0) ≤ dmin and disham(q1, q

′
1) ≤

dmin, output b? = ⊥.

Fail2. If for all q′ ∈ Q it holds that disham(q0, q
′) > dmin and disham(q1, q

′) > dmin,
output b? = ⊥.

Good. 1. If there exists q′ ∈ Q such that disham(q0, q
′) ≤ dmin then output b? = 0.

2. If there exists q′ ∈ Q such that disham(q1, q
′) ≤ dmin then output b? = 1.

The above extractor E satisfies the following three properties.
Simulation. E follows the procedure of the honest receiver Rshext. Thus the view of
C∗shext playing with E is identical to the view of C∗shext playing with Rshext.
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Extraction. Let τc the transcript of the commitment phase. For the extraction property
we have to show that if τc is accepting, then the probability that E outputs⊥ is negligible.
Note that E outputs ⊥ if and only if one of the event between Fail1 and Fail2 happens.
Thus,

Pr [ b? = ⊥ ] = Pr [ Fail1 ] + Pr [ Fail2 ]

In the following we show that, if τc is accepting, then Pr [ b? = ⊥ ] is negligible by
showing separately that Pr [ Fail1 ] and Pr [ Fail2 ] are negligible.

Lemma 1 (Pr [ Fail1 ] is negligible). If (SOT, SOT) is an Oblivious Transfer protocol,
then Pr [ Fail1 ] is negligible.

Proof. Assume that there exists a PPT C∗shext such that event Fail1 happens with non-
negligible probability δ. Then it is possible to construct R∗OT that uses C∗shext to break the
sender’s security of the OT protocol. R∗OT interacts with an external OT sender SOT, on
input auxiliary information z = (s0, s1), while it runs C∗shext internally. R∗OT initializes and
sends PUFR to C∗shext, then it runs the OT protocol forwarding the messages received from
the external sender SOT to C∗shext and vice versa. When the OT protocol is completed,
R∗OT continues the internal execution with C∗shext emulating the honest receiver. When
the commitment phase is successfully completed, R∗OT analyses the set Q of queries made
by C∗shext to PUFR. If there exists a pair (q′0, q

′
1) within hamming distance with strings

(s0, s1) then R∗OT outputs (s0, s1), therefore breaking the sender’s security of OT with
probability δ (indeed, there exists no simulator that can simulate such attack since in
the ideal world Sim gets only one input among (s0, s1)). Since by assumption (SOT, SOT)
is a stand-alone secure OT protocol, δ must be negligible.

Lemma 2 (Pr [ Fail2 ] is negligible). Assume that τc is an accepting transcript. If
ComSH = (CSH,RSH) is a commitment scheme and if (P, V ) is a SZKAoK then Pr [ Fail2 ]
is negligible.

Proof. If transcript τc is accepting then it holds that C∗shext in the decommitment phase
will send a tuple (b, d, a′b) for which, given τc, the receiver Rshext accepts, i.e., the opening
(d) of the statistically hiding commitment is valid and corresponds to an answer (a′b)
of PUFR upon one of the queries played by the Rshext in the OT protocol. Formally,
RSH(c, a′b, d) = 1 and FuzRep(a′b, pb) = stb.

Toward a contradiction, assume that Pr [ Fail2 ] = δ and is not-negligible. Recall
that the event Fail2 happens when C∗shext successfully completed the commitment phase,
without querying PUFR with any of (q0, q1). Given that τc is accepting, let (b, d, a′b) be
an accepting decommitment, we have the following cases:

1. C∗shext honestly committed to the correct a′b without having queried PUFR. By
the unpredictability of PUFR we have that this case has negligible probability to
happen.

2. C∗shext queries PUFR in the decommitment phase to obtain the value a′b to be opened.
Thus C∗shext opens commitment c (sent in the commitment phase) as string a′b.
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We argue that by the computational binding of ComSH and by the argument of
knowledge property of (P, V ) this case also happens with negligible probability.
First, we show and adversary C∗SH that uses C∗shext as a black-box to break the
binding of the commitment scheme ComSH with probability δ. C∗SH runs C∗shext

internally, simulating the honest receiver Rshext to it, and forwarding only the
messages belonging to ComSH to an external receiver RSH, and vice versa. Let
c denote the transcript of ComSH. When the commitment phase of Comshext is
successfully completed, and therefore C∗shext has provided an accepting proof for
the theorem (c, ·) ∈ Rcom, C∗SH runs the extractor EP associated to the protocol
(P, V ). By the argument of knowledge property, EP , having oracle access to C∗shext,
extracts the witness (ãb, d̃) used by C∗shext to prove theorem c ∈ Rcom w.h.p. If
the witness extracted is not a valid decommitment of c, then C∗shext can be used to
break the soundness of (P, V ).
Else, C∗SH proceeds to the decommitment phase, and as by hypothesis of Lemma 2,
since the commitment τc is accepting, C∗shext provides a valid opening (ab, d).
If (ãb, d̃) 6= (ab, d) are two valid openings for c then C∗SH outputs such tuple breaking
the binding property of ComSH with probability δ.
If (ãb, d̃) = (ab, d) with non-negligible probability, then consider the following anal-
ysis. By assumption, event Fail2 happens when C∗shext does not query PUFR with
none among (q0, q1). By the unpredictability property, it holds that without query-
ing the PUF, C∗shext cannot guess the values ab, thus w.h.p. the commitment c
played by C∗shext in the commitment phase, does not hide the value ab. However,
since the output of the extraction is a valid opening for ab, then it must have
been the case that in one of the rewinding attempts of the black-box extractor EP ,
C∗shext has obtained ab by asking PUFR. Indeed, upon each rewind EP very luckily
changes the messages played by the verifier of the ZK protocol, and C∗shext could
choose the queries for PUFR adaptively on such messages. However, recalling that
EP is run by C∗SH to extract from C∗shext, C

∗
SH can avoid such failure by following

this strategy: when a rewinding thread leads C∗shext to ask the PUF with query qb,
then abort such thread and start a new one. By noticing that in the commitment
phase, C∗shext did not query the PUF with qb, we have that, by the argument of
knowledge property of (P, V ) this event happens again in the rewinding threads
w.h.p. Thus, by discarding the rewinding thread in which C∗shext asks for query qb,
C∗SH is still be able to extract the witness in polynomial time (again, if this was not
the case then one can use C∗shext to break the argument of knowledge property).
With this strategy, the event (ãb, d̃) = (ab, d) is ruled out.

Binding. Let b? = b0 the bit extracted by E, given the transcript τc. Assume that in
the decommitment phase C∗shext provides a valid opening of τc as b1 and b0 6= b1. If such
an event happens, the the following three events happened: 1) in the commitment phase
C∗shext queried PUFR with query qb0 only; 2) in decommitment phase C∗shext queried PUFR

with qb1 , let ab1 be the answer; 3)C∗shext opens the commitment c (that is the commitment
of the answer of PUFR received in the commitment phase), as ab1 , but c was computed
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without knowledge of PUFR(qb1).
By the security of the OT protocol and by the computational binding of the com-

mitment scheme ComSH, the above cases happen with negligible probability. Formal
arguments follow previous discussions and are therefore omitted.

Lemma 3. Protocol Comshext is close under parallel repetition using the same PUF.

Sketch. The proof comes straightforwardly by the fact that all sub-protocols used in
protocol Comshext are close under parallel repetition. However, issues can arise when
the same, possibly malicious and stateful PUF, is reused. Note that, the output of
the (malicious) PUF is statistically hidden in the commitment phase and that it is
revealed only in the decommitment phase. Thus, any side information that is leaked by
a dishonest PUF, cannot be used by the malicious creator, before the decommitment
phase. At the decommitment stage however, the input of the committer is already
revealed, and no more information is therefore gained by the malicious party. We stress
out that re-usability is possible only when many instances of Comshext are run in parallel,
i.e., only when all decommitment happen simultaneously. If decommitment phases are
interleaved with commitment phase of other sessions, then reusing the same PUF, allow
the malicious creator to gain information about sessions that are not open yet. To see
why, let i and j be two concurrent executions. Assume that the commitment of i and j
is done in parallel but session j is decommitted before session i. Then, a malicious PUF
can send information on the bit committed in the session i through the string sent back
for the decommitment of j.

Statistically Hiding Straight-line Extractable String Commitment Scheme. We obtain
statistically hiding straight-line extractable string commitment scheme, for n-bit string,
by running n execution of Comshext in parallel and reusing the same PUF. In the main
protocol shown in Figure 5.3 we use the same notation Comshext to refer to a string
commitment scheme.

Statistically Binding Straight-line Extractable/Equivocal Commitment Scheme.
Let l = rg(n) be the range of the PUF, (SOT,SOT) be a statistical receiver OT protocol
and let G : {0, 1}n → {0, 1}3n be a PRG. The commitment scheme that we present, takes
as common input a string r̄ = r1, . . . , rl, that is uniformly chosen in the set ({0, 1}3n)l.
This string can be seen as l distinct parameters for Naor’s commitment, and indeed it
is used to commit bit-by-bit to an l-bit string (i.e., the answer received from the PUF).
Our statistically binding straight-line extractable and equivocal commitment scheme
Comequiv = (Cequiv,Requiv) is depicted in Fig. 2.8.

Theorem 3. If G is a PRG and (SOT, SOT) is statistical receiver OT protocol, then
Comequiv = (Cequiv,Requiv) is a statistically binding straight-line extractable and equivocal
commitment scheme in the malicious PUFs model.

Proof. Completeness. It follows from the completeness of the OT protocol, the cor-
rectness of Naor’s commitment and the response consistency property of PUFs with
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Committer’s Input: Bit b ∈ {0, 1}. Common Input: r̄ = (r1, . . . , rl)
Commitment Phase

Requiv : Initialize PUFR;

1. obtain a0 ← PUFR(q0), a1 ← PUFR(q1), for (q0, q1)
$← {0, 1}n.

2. (st0, p0)← FuzGen(a0), (st1, p1)← FuzGen(a1).
3. handover PUFR to Cequiv;

4. choose random tape ranOT
$← {0, 1}∗.

Requiv ⇔ Cequiv : (OT phase)
〈SOT(q0, q1),SOT(b)〉 is run by Requiv as SOT with input (q0, q1) and randomness
ranOT, while Cequiv runs as SOT with input b. Let q′b be the local output of Cequiv,
and τOT be the transcript of the execution of the OT protocol.

Cequiv:(Statistically Binding Commitment)

1. a′b ← PUFR(q′b). If PUFR aborts, a′b
$← {0, 1}l.

2. for 1 ≤ i ≤ l, pick si
$← {0, 1}n, ci = G(si)⊕ (ri ∧ a′b[i]). a

3. send c1, . . . , cl to Requiv.

Requiv: upon receiving c1, . . . , cl, send ranOT, q0, q1 to Cequiv.

Cequiv: check if transcript τOT is consistent with (ranOT, q0, q1, b). If the check fails
abort.

Decommitment Phase

Cequiv : if PUFR did not abort, send ((s1, . . . , sl), a
′
b), b to Rshext.

Requiv : if for all i, it holds that (ci = G(si) ⊕ (ri ∧ a′b[i]) and FuzRep(a′b, pb) = stb)
then accept. Else reject.

awhere (ri ∧ a′b[i])j = ri[j] ∧ a′b[i].

Figure 2.8: Statistically Binding Straight-line Extractable and Equivocal Commitment
(Cequiv,Requiv).

fuzzy extractors. To commit to the bit b, the sender Cequiv is required to commit to
the answer of PUFR on input qb. Therefore, Cequiv runs the OT protocol with input b
and obtains the query qb and thus the value to commit to using Naor’s commitments.
The correctness of OT guarantees that the consistency check performed by Cequiv goes
through. In the decommitment phase, the response consistency property along with
correctness of Naor, allow the receiver Requiv to obtain the string ab and in therefore the
bit decommitted to by Cequiv.
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Straight-line Extractability.
Extractor E

Commitment Phase. Run the commitment phase following the honest receiver pro-
cedure: E queries PUFR with (q0, q1) before delivering it to C∗equiv, and uses such
a pair when running as SOT in OT protocol. If OT protocol is not successfully
completed then abort. Else, let Qprecom be the set of queries asked by C∗equiv to
PUFR before sending the commitments c1, . . . , cl to E. Upon receiving such com-
mitments, do as follows:

Fail1. If there exists a pair q′0, q
′
1 ∈ Qprecom such that disham(q0, q

′
0) ≤ dmin and

disham(q1, q
′
1) ≤ dmin, output b? = ⊥.

Fail2. If for all q′ ∈ Qprecom it holds that disham(q0, q
′) > dmin and disham(q1, q

′) >
dmin, output b? = ⊥.

Good. 1. If there exists q′ ∈ Qprecom such that disham(q0, q
′) ≤ dmin then output

b? = 0;
2. If there exists q′ ∈ Qprecom such that disham(q1, q

′) ≤ dmin then output b? = 1;

Finally sends ranOT, q0, q1 to C∗equiv.
Simulation. E follows the procedure of the honest receiver Requiv. Thus the view of
C∗equiv playing with E is identical to the view of C∗equiv playing with Requiv.
Extraction. The proof of extraction follows from the same arguments shown in the
proof of Theorem 2, and it is simpler since in protocol Comequiv we use statistically
binding commitments (given that the common parameter r̄ is uniformly chosen).

Let τc the transcript of the commitment phase. For the extraction property we have
to show that if τc is accepting, then the probability that E outputs ⊥ is negligible. Note
that E outputs ⊥ if and only if one event between Fail1 and Fail2 happens. Thus,

Pr [ b? = ⊥ ] = Pr [ Fail1 ] + Pr [ Fail2 ]

By the sender’s security property of the OT protocol, event Fail1 happens with
negligible probability. The formal proof follows the same arguments given in Lemma
1. Given that the common parameter r̄ is uniformly chosen, we have that the Naor’s
commitments (i.e., c1, . . . , cl) sent by C∗equiv in the commitment phase, are statistically
binding. Thus, by the unpredictability property of PUFs and the by the statistically
binding property of Naor’s commitment scheme, event Fail2 also happens with negligible
probability only.
Binding. Given that the common input r̄ is uniformly chosen, binding of Comequiv

follows from the statistically binding property of Naor’s commitment scheme.
Straight-line Equivocality. In the following we show a straight-line simulator S =
(S1,S2,S3) and we prove that the view generated by the interaction between S and
R∗equiv is computationally indistinguishable from the view generated by the interaction
between Cequiv and R∗equiv.
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S1. (r̄ = r1, . . . , rl, ξ1)← S1(1ln):
For i = 1, . . . , l.

1. pick si0 ← {0, 1}n, αi0 ← G(si0);
2. pick si1 ← {0, 1}n, αi1 ← G(si1);
3. ri = αi0 ⊕ αi1.

Output r1, . . . , rl, ξ1 = {si0, si1}i∈l;

S2. (ξ2)← S2(ξ1):

- obtain PUF∗R from R∗equiv.

- run OT protocol with input a random bit b̃; if the OT protocol is not successfully
completed, abort.

- computes commitments as follows: for i = 1, . . . , l, c̃i ← G(si0). Send c̃1, . . . , c̃l
to R∗equiv.

- Obtain (ranOT, q
′
0, q
′
1) from R∗equiv and check if the transcript τOT is consistent

with it. If the check fails, abort. Else, output ξ2 = {ξ1, (q
′
0, q
′
1)}.

S3. S3(ξ2, b):

- query PUF∗R with input q′b. If PUF∗R aborts, abort. Otherwise, let a′b denote the
answer of PUF∗R.

- for i = 1, . . . , l: send (siab[i], ab[i]) to R∗equiv.

Lemma 4. If (SOT, SOT) is a statistical receiver OT protocol and G is a pseudo-random

generator, then for all PPT R∗equiv it holds that, {out(Exp
Cequiv

R∗equiv
(n))} C≡ out{(ExpSR∗equiv

(n)}.

Proof. The proof goes by hybrids arguments.

H0. This is the real world experiment Exp
Cequiv

R∗equiv
.

H1. In this hybrid the common parameter r̄ is chosen running algorithm S1. The only
difference between experiment H0 and H1 is in the fact that in H1 each string
ri ∈ r̄ is pseudo-random. By the pseudo-randomness of PRG H0 and H1 are
computationally indistinguishable.

H2. In this hybrid, the commitments c1, . . . , cl are computed as in S2, that is, for all i,
ci corresponds to an evaluation of the PRG i.e., ci = G(si0), regardless of the bit
that is committed. Then in the decommitment phase the sender uses knowledge of
si1, in case the i-th commitment of a′b is the bit 1. (Each pair (si0, s

i
1) is inherited

from the output of S1). The difference between experiment H1 and experiment H2

is in the fact that in H2 all commitments are pseudo-random, while in H1, pseudo-
random values are used only to commit to bit 0. By the pseudo-randomness of
PRG, experiments H1 and H2 are computationally indistinguishable. Note that in
this experiment, the sender is not actually committing to the output obtained by
querying PUF∗R.
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H3. In this experiment the sender queries PUF∗R on input qb only in the decommitment
phase. The only difference between this experiment and the previous one is that in
H3, the sender is able to detect if PUF∗R aborts, only in the decommitment phase.
However, in experiment H2, if the PUF aborts, the sender continues the execution
of the commitment phase, committing to a random string, ad aborts only in the
decommitment phase. Therefore, hybrids H2 and H3 are identical.

H4. In this experiment, the sender executes the OT protocol with a random bit b̃,
obtaining qb̃, but it does not use such a query to evaluate PUF∗R. Instead it uses
the string q′b received from R∗equiv in the last round of the commitment phase.

We stress out that, due to the correctness of the OT protocol and to the statistical
receiver’s security, the case in which R∗equiv plays the OT protocol with a pair (qb, qb̄)
and then is able to compute randomness ranOT and a different pair ((q′b, qb̄) that
are still consistent with the transcript obtained in the OT execution, is statistically
impossible . By the statistical receiver security of the OT protocol, H3 and H4 are
statistically indistinguishable.

H5. This is the ideal world experiment ExpSR∗equiv
.

2.3.2 UC-security Proof

In this section we show that protocol Comuc = (Cuc,Ruc) depicted in Figure 5.3 is UC-
secure, by showing a PPT ideal world adversary Sim such that for all PPT environment
z, the view of the environment in the ideal process is indistinguishable from the view
of the environment in the real process, in the FPUF hybrid model. Due to the straight-
line extractability of Comshext and to the straight-line extractability and equivocality of
Comequiv, showing such a simulator Sim is almost straightforward.

Receiver is corrupt. Let R∗uc a malicious receiver. We show a PPT simulator Sim
whose output is computational indistinguishable from the output obtained by R∗uc when
interacting with the honest committer Cuc. The goal of Sim is to use the straight-line
equivocator S = (S1,S2,S3) associated to protocol Comequiv. To accomplish that, Sim
has to force the output of the coin flipping, to the parameter generated by S1. Once this
is done, then Sim can use S2 to complete the commitment phase, and S3 to equivocate
the commitment. In order to force the output of the coin flipping, Sim extracts the
commitment of α sent by R∗uc so that it can compute β appropriately. The extraction is
done by running the extractor ECshext

associated to the protocol Comshext.

Simulator 1.

Commitment Phase
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- Run (r̄, ξ1)← S1(1ln).
- Execute protocol Comshext by running the associated extractor ECshext

. If the
output of the extractor is ⊥, then abort. Else, let α? be the string extracted
by ECshext

. Set β = r̄ ⊕ α?, and send β to R∗uc. If R∗uc aborts, then abort.
- When receiving the opening to α from R∗uc, if the opening is not accepting, or

if α 6= α? then abort.
- Execute the commitment phase of protocol Comequiv, on common input α⊕β =

r̄, by running S2(ξ1), and obtain ξ2 as local output.

Decommitment Phase

- On input the bit b. Execute the decommitment phase of protocol Comequiv by
running S3(ξ2, b).

- Output whatever Ruc outputs.

Lemma 5. For all PPT real-world malicious receiver R∗uc, for all PPT adversary z, it
holds that:

IDEALFcom
Sim,z ∼ REALFPUF

Comuc,R∗uc,z

Proof. It follows from the straight-line extractability of Comshext and from the straight-
line equivocality of Comequiv.

By the straight-line extractability of Comshext it holds that, with overwhelming prob-
ability, Sim obtains the value α? that will be later opened by R∗uc, before it has to send
the message β. Hence, Sim is able to force the output of the coin flipping to the value
determined by S1. Then Sim just runs the simulator S2 in the commitment phase, and
S3 in the decommitment phase. By the straight-line equivocality property of Comequiv

the view generated by the interaction between R∗uc and Sim is computationally indistin-
guishable from the view generated by the interaction between R∗uc and an honest sender
Cuc.

Receiver and Committer are honest. In this case, z feeds the parties with their
inputs, and activates the dummy adversary A. A does not corrupt any party, but just
observes the conversation between the committer and the receiver, forwarding every
message to z.

In this case the simulator is almost equal to the simulator shown in Simulator 1
(when the receiver is corrupt). The only difference in this case is that, the receiver is
also simulated by Sim. Therefore, Sim chooses both the strings used in the coin flipping
by himself (α, β). Thus, there is no need for extraction.

More specifically, upon receiving the message (receipt, sid, Pi,Cuc) from Fcom in the
ideal world, Sim draws a random tape to simulate the receiver, and runs the commitment
phase as in Simulator 1, except for the second step. Instead of using the extractor
associated to Comshext run by the receiver, Sim just picks values α and β so that r̄ = β⊕α
(where r̄ is the value given in output by S1), and continues the commitment phase using
such values. The decommitment phase is run identically to the decommitment phase of
Simulator 1.
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From the same argument of the previous case, the transcript provided by Sim is in-
distinguishable from the transcript provided by the dummy adversary A running with
honest sender and receiver.

Committer is corrupt. In this case, the task of Sim is to extract the bit of the malicious
committer C∗uc already in the commitment phase. This task is easily accomplished by
running the straight-line extractor Eequiv associated to protocol Comequiv. However,
note that the binding property and thus the extractability property hold only when
the common parameter r̄ is uniformly chosen, while in protocol Comuc the common
parameter is dictated by the coin flipping.

However, by the statistically hiding property of Comshext, any unbounded adversary
can not guess α better than guessing at random. Therefore for any C∗uc the distribution
of α ⊕ β is uniformly chosen over {0, 1}3nl, and thus the statistically binding property
of Comequiv still holds.

Commitment Phase

- Pick a random αln and executes Comshext as the honest receiver.
- Obtain β from C∗uc and let r = α⊕ β.
- Execute protocol Comequiv by running the associated extractor Eequiv. If the ex-

tractor aborts, abort. Else, let b? the output of Eequiv. Send (commit, sid,Cequiv,Requiv, b
?)

to Fcom

Lemma 6. For all PPT real-world malicious committer C∗uc, for all PPT adversary z,
it holds that:

IDEALFcom
Sim,z ∼ REALFPUF

Comuc,C∗uc,z

Proof. As mentioned before, the common input r̄ computed through the coin-flipping, is
uniformly distributed. Therefore the binding and the extractability property of Comequiv

hold. The simulator runs protocol Comshext following the honest receiver, and runs the
protocol Comequiv activating the straight-line extractor associated. By the simulation
property of the extractor, the transcript generated by Sim is indistinguishable from the
transcript generated by the honest receiver Ruc. From the extraction property satisfied
by Eequiv, we have that Sim extracts the input bit of the adversary C∗uc and plays it in
the ideal functionality, w.h.p.



- Chapter 3 -

Unconditional UC Commitments from (Physical) Setup
Assumptions

Introduction

In this chapter we describe a tool for constructing UC-secure commitments given any
straight-line extractable commitment. This essentially means that the task of construct-
ing UC-secure commitment is reduced to the simpler task of achieving extractable com-
mitments. This tool allows us to prove feasibility of unconditional UC-secure protocols
(for a non-trivial functionality) in the stateless token model and in the malicious PUF
model. More precisely, we provide a compiler that transforms any ideal extractable
commitment – a primitive that we define – into a UC-secure commitment. An ideal
extractable commitment is a statistically hiding, statistically binding and straight-line
extractable commitment. The transformation uses the ideal extractable commitment
as black-box and is unconditional, that is, it does not require any further assumption.
The key advantage of such compiler is that, one can implement the ideal extractable
commitment with the setup assumption that is more suitable with the application and
the technology available.

We then provide an implementation of the ideal extractable commitment scheme in
the malicious PUFs model introduced in Chapter 2 ( [80]). By plugging our extractable
commitment scheme in our compiler we obtain the first unconditional UC-secure com-
mitment with malicious PUFs.

We then construct ideal extractable commitments using stateless tokens. We use
some of the ideas employed for the PUF construction, but implement them with different
techniques. Indeed, PUFs are intrinsically unpredictable, and even having oracle access
to a PUF an unbounded adversary cannot predict the function run by it. With stateless
tokens we do not have such guarantee and free access to a token might completely reveal
the function embedded in it. Our protocol is secure in the standard stateless model,
where the adversary has no restriction and can send malicious stateful tokens.

By plugging such protocol in our compiler, we achieve the first unconditional UC-
secure commitment scheme with stateless tokens. Given that unconditional OT is im-
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possible with stateless tokens [53], this result completes the picture concerning feasibility
of unconditional UC-security with stateless tokens.

Remark 1. In the following (as it happens in all previous work on PUFs/tokens), it is
assumed that even an unbounded adversary can query the PUF/token only a polynomial
number of times. This assumption is necessary. Indeed, if we allowed the adversary to
query the PUF/token on all possible challenges, then she can derive the truth table
implemented by the physical device.

This chapter is organized as follows. Section 3.1 provides definition of extractable
commitment and recall the stateless token model. In Section 3.2 we present our compiler,
that we instantiate with PUFs and tokens using the ideal extractable commitments
presented respectively in Section 3.3 and Section 3.4. We conclude this chapter with
discussions about optimization and reusing of tokens/PUFs.

3.1 Definitions

This section presents the definition Ideal Extractable Commitment based on (physical)
assumptions. Moreover, the UC-formulation of stateless tokens due to [62] and [23] is
recalled in Section 3.1.2

3.1.1 Ideal Extractable Commitment Scheme

We denote by Faux the ideal set-up functionality used by a real world protocol.

Definition 16 (Ideal Commitment Scheme in the Faux model). A commitment scheme is
a tuple of PPT algorithms Com = (C,R) implementing the following two-phase function-
ality, having access to an ideal set-up functionality Faux. Given to C an input b ∈ {0, 1},
in the first phase called commitment phase, C interacts with R to commit to the bit b.
We denote this interaction by ((c, d), c)← 〈C(com, b), R(recv)〉 where c is the transcript
of the (possibly interactive) commitment phase and d is the decommitment data. In the
second phase, called decommitment phase, C sends (b, d) and R finally outputs “accept”
or “reject” according to (c, d, b). Com = (C,R) is an ideal commitment scheme if it
satisfies the following properties.

Completeness. For any b ∈ {0, 1}, if C and R follow their prescribed strategy then R
accepts the commitment c and the decommitment (b, d) with probability 1.

Statistically Hiding. For any malicious receiver R∗ the ensembles {viewR∗ (C(com, 0),
R∗) (1n)}n∈N and {viewR∗(C(com, 1), R∗) (1n)}n∈N are statistically indistinguish-
able, where viewR∗ (C(com, b), R∗) denotes the view of R∗ restricted to the commit-
ment phase.

Statistically Binding. For any malicious committer C∗, there exists a negligible func-
tion ε, such that C∗ succeeds in the following game with probability at most ε(n):
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On security parameter 1n, C∗ interacts with R in the commitment phase obtaining
the transcript c. Then C∗ outputs pairs (0, d0) and (1, d1), and succeeds if in the
decommitment phase, R(c, d0, 0) = R(c, d1, 1) = accept.

We call the commitment scheme ideal since both binding and hiding must hold
against unbounded adversaries.

Definition 17 (Interface Access to an Ideal Functionality Faux). Let Π = (P1, P2) be a
two-party protocol in the Faux-hybrid model. That is, parties P1 and P2 need to query the
ideal functionality Faux in order to carry out the protocol. An algorithm M has interface
access to the ideal functionality Faux w.r.t. protocol Π if all queries made by either party
P1 or P2 to Faux during the protocol execution are intercepted (but not answered) by
M , and M has oracle access to Faux. Such queries are then forwarded to Faux and the
answers are sent to the party. Namely, Faux can be a non programmable and non PPT
functionality.

Definition 18 (Ideal Extractable Commitment Scheme in the Faux model). IdealExtCom =
(Cext,Rext) is an ideal extractable commitment scheme in the Faux model if (Cext,Rext)
is an ideal commitment and there exists a straight-line strict polynomial-time extractor
E having interface access to Faux, that runs the commitment phase only and outputs a
value b? ∈ {0, 1,⊥} such that for all malicious committer C∗ the following properties are
satisfied.

Simulation: the view generated by the interaction between E and C∗ is identical to the
view generated when C∗ interacts with the honest receiver Rext: viewFaux

C∗ (C∗(com, ·),
Rext(recv)) ≡ viewFaux

C∗ (C∗(com, ·), E)

Extraction: let c be a valid transcript of the commitment phase run between C∗ and
E. If E outputs ⊥ then probability that C∗ will provide an accepting decommitment
is negligible.

Binding: if b? 6= ⊥, then probability that C∗ decommits to a bit b 6= b? is negligible.

3.1.2 Ideal Functionality for Stateless Tokens

The original work of Katz [62] introduces the ideal functionality Fwrap to model stateful
tokens in the UC-framework. A stateful token is modeled as a Turing machine. In the
ideal world, a party that wants to create a token, sends the Turing machine to Fwrap.
The adversary is, of course, allowed to send an arbitrarily malicious (still PPT) Turing
machine to Fwrap. This translates in the fact that the adversary can send a malicious
token to the honest party. Fwrap will then run the machine (keeping the state), when
the designed party will ask for it. The same functionality can be adapted to model
stateless tokens. It is sufficient that the functionality does not keep the state between
two executions.

One technicality of the model proposed by [62] is that it assumes that the adversary
knows the code of the tokens that she sends. In real life, this translates to the fact
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that an adversary cannot forward tokens received from other parties, or tamper its own
token, so that the actual behavior of the token is not known to anyone. The advantage
of this assumption, is that in the security proof the simulator can rewind the token.

In [23], Chandran, Goyal and Sahai, modify the original model of Katz, so to allow
the adversary to create tokens without knowing the code. Formally, this consists in
changing the ‘create’ command of the Fwrap functionality, which now takes as input an
Oracle machine instead of a Turing machine. The model of [23] is even stronger and
allows the adversary to encapsulate tokens.

Our security proofs are unconditional, and our simulator and extractor only exploit
the interface access to the ideal functionality Fwrap (i.e., they only observe the queries
made by the adversary), namely, they do not need adversary’s knowledge of the code.
Therefore, our proofs hold in both [23] and [62] models. In this work, similarly to
all previous work on stateless tokens [67, 54, 25], and also [53], we do not consider
adversaries that can perform token encapsulation.

A simplification of the Fwrap functionality as shown in [23] (that is very similar to
the Fwrap of [62]) is depicted in Fig. 3.1.

Functionality Fwrap

Fwrap is parameterized by a polynomial p(·) and an implicit security parameter n.

Create. Upon receiving (create, sid, Pi, Pj , T ) from Pi, where Pj is another party in
the system and T is an oracle machine do:

1. Send (create, sid, Pi, Pj , T ) to Pj .
2. Store (Pi, Pj , T ).

Execute. Upon receiving (run, sid, Pi, T ,msg) from Pj , find the unique stored tuple
(Pi, Pj , T ) (if no such tuple exists, then do nothing). Run T with input msg
for at most p(n) steps and let out be the response (set out =⊥ if T does not
respond in the allotted time). Send (sid, Pi, out) to Pj .

Figure 3.1: The Fwrap functionality.

3.2 UC-secure Commitments from Ideal Extractable Com-
mitments

In this section we show how to transform any ideal extractable commitment scheme into
a protocol that UC-realizes Fcom functionality, unconditionally. Such transformation is
based on the following building blocks.

Extractable Blobs. “Blob” was used in [13] to denote a commitment. In this paper
we use the term blob to denote a pair of bit commitments, that however still represent
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the commitment of one bit. The bit committed in a blob is the xor of the bits committed
in the pair. As we shall see soon, the representation of a bit as its exclusive-or, allows
to prove equality of the bits committed in two blobs without revealing the values and
more importantly using commitments as black boxes. Let IdealExtCom be any ideal
extractable commitment scheme satisfying Definition 18. If the commitment phase of
IdealExtCom is interactive then the blob is the pair of transcripts obtained from the
interaction. Procedures to create a blob of a bit b, and to reveal the bit committed in
the blob, are the following.

Blob(b): Committer picks bits b0, b1 uniformly at random such that b = b0 ⊕ b1. It
commits to b0, b1 (in parallel) running IdealExtCom as sub-routine and obtains
commitment transcripts c0, c1, and decommitments d0, d1. Let B = (c0, c1) the
blob of b.

OpenBlob(B): Committer sends (b0, d0), (b1, d1) to Receiver. Receiver accepts iff d0, d1

are valid decommitments of b0, b1 w.r.t. transcripts (c0, c1) and computes b =
b0 ⊕ b1.

Clearly, a blob inherits the properties of the commitment scheme used as sub-
protocol. In particular, in the above case, since IdealExtCom is used as sub-routine,
each blob is statistically hiding/binding, and straight-line extractable.

Equality of Blobs. Given the representation of a bit commitment as a blob, a protocol
due to Kilian [64] allows to prove that two committed bits (two blobs) are equal, without
revealing their values. We build upon this protocol to construct a “simulatable” version,
meaning that (given some trapdoor) a simulator can prove equality of two blobs that are
not equal. Let Bi,Bj be two blobs. Let bi = (b0i ⊕ b1i ) be the bit committed in Bi and
bj = (b0j ⊕ b1j )be the bit committed in Bj . Let P denote the prover and V the verifier. P
proves to V that Bi and Bj are the commitment of the same bit (i.e., bi = bj). In this
protocol we crucially use the extractability property of the underlying ideal extractable
commitment scheme.

ProveBlobsEquality(Bi,Bj)

1. V uniformly chooses e ∈ {0, 1} and commits to e using IdealExtCom.

2. P sends b = b0i ⊕ b0j to V .

3. V reveals e to P .

4. P reveals bei and bej (i.e., P sends decommitments dei , d
e
j to V ). V accepts

iff b = bei ⊕ bej .

The completeness of the protocol, follows from the completeness of the commitment
scheme IdealExtCom used to commit the challenge e and to compute blobs Bi,Bj .
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Properties of protocol ProveBlobsEquality. Protocol ProveBlobsEquality satisfies the
following properties. (In the following discussion we use bi (or bj) meaning the “bit
committed in Bi (or Bj)”.

Soundness: if bi 6= bj , any malicious prover P ∗ convinces V with probability 1/2, that
is the probability of guessing the challenge e. Here we are using the statistically
hiding property of the ideal commitment IdealExtCom used to commit e. The
formal proof is provided in Lemma 7.

Privacy: If bi = bj then after executing the protocol, the view of any verifier V ∗,
is independent of the actual value of bi, bj (given that Bi,Bj were secure at the
beginning of the protocol). This claim is proved in Lemma 7.

Simulation: there exists a straight-line strictly PPT simulator SimFalse such that, for
any (Bi,Bj) that are not equal, i.e., bi 6= bj , for any malicious verifier V ∗, produces
a view that is statistically close to the case in which (Bi,Bj) are equal, i.e., bi = bj
and V ∗ interacts with the honest P . The formal proof is provided in Lemma 9.
Note that the protocol uses blobs in a black-box way. Note also, that a blob can
be involved in a single proof only.

Lemma 7 (Soundness of ProveBlobsEquality). If IdealExtCom is an ideal commitment,
then for any malicious prover P ∗, there exists a negligible function ε, such that if bi 6= bj,
Pr [ V accepts ] = 1/2 + ε.

Proof. The prover can cheat in two ways: 1) by guessing the challenge. In this case
P ∗ can just compute b as bei ⊕ bej and convince the verifier; 2) by breaking the binding
of IdealExtCom used to compute the blobs. Due to the statistically hiding property of
IdealExtCom, probability that any P ∗ guesses the challenge committed by V , is only
negligibly better than 1/2. Due to the statistically binding property of IdealExtCom,
probability that P ∗ opens a commitment adaptively on the challenge is negligible.

Lemma 8 (Privacy of ProveBlobsEquality). Assume that Bi,Bj are statistically hiding
commitments. If bi = bj then for any malicious verifier V ∗ the view is independent on
the actual value of bi and bj.

Proof. We prove that given a view of V ∗, any value for bi, bj is equally likely. The view
of V ∗ after the execution of protocol ProveBlobsEquality consists of: Bi,Bj ,b, b

e
i , b

e
j . We

argue that any bit β ∈ {0, 1} is consistent with such view. Indeed, since bits b0i , b
1
i , b

0
j , b

1
j

are randomly chosen, for any bit β there exists a pair bēi , b
ē
j such that b = bēi ⊕ bēj and

β = bei ⊕ bēi and β = bej ⊕ bēj .

Lemma 9 (Simulation of ProveBlobsEquality in the Faux model). If IdealExtCom is
a straight-line extractable commitment in the Faux-hybrid model, then there exists a
straight-line PPT algorithm SimFalse, called simulator, such that for any V ∗, the view
of V ∗ interacting with SimFalse on input a pair (Bi,Bj) of possibly not equal blobs (i.e.,
bi 6= bj) is statistically close to the view of V ∗ when interacting with P and bi = bj.
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Proof. In the following we use the assumption that blobs are statistically hiding, there-
fore given Bi,Bj , any pair bi, bj is equally likely to be the committed values. Let E be
the straight-line extractor associated to IdealExtCom as required by Definition 18. On
common input (Bi,Bj), SimFalse has interface access to Faux and works as follows.

SimFalse (Bi,Bj)

1. (V ∗ has to commit to the challenge e.) For the commitment phase of IdealExtCom,
run extractor E as-subroutine forwarding all the messages computed by E to
V ∗ and viceversa, and having interface access to Faux (access to Faux is needed
to run procedure E). After the completion of the commitment phase, obtain
b? ∈ {0, 1,⊥} form E. If V ∗ or E aborts, then halt.

2. Send b = bb
?

i ⊕ bb
?

j to V ∗. If b? = ⊥ send a random bit.

3. Upon receiving the decommitment e of the challenge:

- If e 6= b? then abort. We call this event extraction abort.
- Else, if b? = ⊥ halt. Otherwise, reveal bb

?

i , bb
?

j .

Since E is straight-line (due to the straight-line extractability of IdealExtCom) and
generates a transcript that is identical to the one generated by an honest receiver (due
to the simulation property of IdealExtCom), the only deviation of SimFalse w.r.t. to an
honest prover is in the computation of bit b. In the honest execution b is always b0i ⊕ b0j ,
in the simulated execution b depends on the challenge extracted, i.e., b = bb

?

i ⊕ bb
?

j . For
simplicity, let us assume that the challenge extracted b? corresponds to the one that is
later revealed by V ∗, i.e.,b? = e (we handle the case in which is not later).

We argue that, for any V ∗ the view obtained interacting with an honest prover P
and bi = bj (honest execution), is statistically close to the view obtained interacting with
SimFalse and bi 6= bj (simulated execution).

The view of V ∗ at the end of the execution of ProveBlobsEquality consists of: ((Bi,Bj),
b, bei , b

e
j). In case e = 0, it is easy to see that, given that blobs are statistically hiding, the

view of the honest execution is statistically close to the view of the simulated execution.
Indeed, in this case b is computed as b0i ⊕ b0j , exactly as in the honest execution.

In case e = 1, in the simulated experiment b is computed as b1i ⊕ b1j , deviating from

the honest procedure where b = b0i ⊕ b0j . Here is sufficient to observe that, in the honest

execution, bi = bj therefore it holds that b = b1i ⊕ b1j = b0i ⊕ b0j . Thus, distribution of

(b, b1i , b
1
j ) obtained in the simulation is still statistically close (given the hiding of blobs)

to the distribution obtained from the honest execution.
When the challenge extracted (if any) is different from the one revealed by V ∗,

SimFalse aborts. Thus probability of observing abort in the simulated execution is
higher than in the honest execution. Nevertheless, due to the extractability property of
IdealExtCom, probability of aborting because of extraction failure is negligible.
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Here we prove another property of ProveBlobsEquality that will be useful when prov-
ing the straight-line equivocality of protocol UCComCompiler. The following lemma is
required only for the case in which the simulator was used to prove a false theorem (i.e.,
bi 6= bj). Indeed, when bi = bj the transcript of the simulation is always statistically
close to the transcript of the honest execution even after one of the blob is revealed.

Lemma 10 (Indistinguishability of the Simulation after one blob is revealed.). The view
of V ∗ in the simulated execution (where bi 6= bj) is statistically close to the view of V ∗

in the honest execution (where bi = bj) even if, at the end of the protocol, one blob is
revealed.

Proof. Assume wlog that after the execution of ProveBlobsEquality, the value bi of blob
Bi is reveal. This means that both bits b0i , b

1
i are revealed. The view of V ∗ at this

point consists of values (b, bej , b
0
i , b

1
i ). So only bit bēj is not revealed. Now consider again

the honest experiment, when bi = bj and b = b0i ⊕ b0j , and the simulated experiment
where bi 6= bj and b = bei ⊕ bej . We want to argue that, even after bi is known, still the
view generated by the simulator is statistically close to the view of the honest execution.
Consider the case in which e = 1 (the case in which e = 0 follows straight-forwardly).
At the beginning all four bits b0i , b

1
i , b

0
j , b

1
j are hidden to V ∗. After the protocol execution

V ∗ knows bit b1i , b
1
j and b that is supposed to be xor of b0i , b

0
j . We already proved that in

this case any value bi, bj of the blobs is equally likely. After blob Bi and therefore bit bi
is revealed, V ∗ knows 3 out of 4 bits, and the value of b0j is determined by the knowledge

of bi. Indeed, if bi = bj then b0j = bi ⊕ b1j . Furthermore, since b = b0i ⊕ b0j , the values

of b0j must satisfy also condition b0j = b ⊕ b0i . Hence, bi ⊕ b1j = b ⊕ b0i . In the honest
executions the equation is certainly satisfied since bi = bj and b is honestly computed.
We show that in the simulated experiment, the equation always holds (note that in this
argument we are using the fact that all shares b0i , b

1
i , b

0
j , b

1
j are randomly chosen). Given

the equation:
bi ⊕ b1j = b⊕ b0i

given that in the simulation b = b1i ⊕ b1j , and bi = b0i ⊕ b1i ; by replacing b and bi we have:

b0i ⊕ b1i ⊕ b1j = b1i ⊕ b1j ⊕ b0i

3.2.1 The construction

We construct unconditional Universally Composable secure commitments using extractable
blobs and protocol ProveBlobsEquality as building blocks.

We want to implement the following idea. The committer sends two blobs of the
same bit and proves that they are equal running protocol ProveBlobsEquality. In the
decommitment phase, it opens only one blob (a similar technique is used in [59], where
instead the commitment scheme is crucially used in a non black-box way). The simulator
would extract the bit of the committer by exploiting the extractability property of blobs.
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The simulator can instead equivocate, by committing to the pair 0 and 1, and cheating
in the protocol ProveBlobsEquality, by running the simulator associated to it. In the
opening phase, it then opens the blob corresponding to the right bit.

This idea does not work straight-forwardly since soundness of protocol ProveBlobsEquality
holds only with probability 1/2 and thus a malicious committer can break binding with
the same probability. We cannot amplify the soundness by running many proofs on the
same pair of blobs, since a blob can be involved in a proof only once. (This is due to the
fact that we threat blobs in a black-box manner). Running many proofs among many
independent pairs of blobs, and ask the committer to open half of them, is the way to
go.

Specifically, the committer will compute n pairs of (extractable) blobs. Then it proves
equality of each consecutive pair of blobs by running protocol ProveBlobsEquality with
the receiver. The commitment phase is successful if all equality proofs are accepting.
In the decommitment phase, the committer opens one blob for each pair. Namely, it
reveals n blobs. Notice that, the committer cannot open any arbitrary set of blobs. The
freedom of the committer is only in the choice of the index to open for each pair. The
receiver accepts if two conditions are satisfied: 1) the committer opens one blob for each
consecutive pair, 2) all revealed blobs open to the same bit. The construction is formally
described in Fig. 3.2.

Protocol UCComCompiler
Committer’s Input: b ∈ {0, 1}.
Commitmen Phase

1. Committer: run Blob(b) 2n times. Let B1, . . . ,B2n be the blobs obtained.

2. Committer ⇔ Receiver: for i = 1; i = i + 2; i ≤ 2n − 1; run
ProveBlobsEquality(Bi,Bi+1).

3. Receiver: if all equality proofs are accepting, accept the commitment phase.

Decommitment Phase

1. Committer: for i = 1; i = i + 2; i ≤ 2n − 1; randomly choose ` ∈ {i, i + 1} and
run OpenBlob(B`) with the Receiver.

2. Receiver: 1) check if Committer opened one blob for each consecutive pair; 2) if
all n blobs open to the same bit b, output b and accept. Else output reject.

Figure 3.2: UCComCompiler: Unconditional UC Commitments from any Ideal Ex-
tractable Commitments.

Theorem 4. If IdealExtCom is an ideal extractable commitment scheme in the Faux-
hybrid model, then protocol in Fig. 3.2 is an unconditionally UC-secure bit commitment
scheme in the Faux-hybrid model.
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Proof Intuition. To prove UC-security we have to show a straight-line simulator Sim
which correctly simulates the view of the real-world adversary A and extracts her input.
Namely, when simulating the malicious committer in the ideal world, Sim internally
runs the real-world adversarial committer A simulating the honest receiver to her, so
to extract the bit committed to by A, and play it in the ideal world. This property
is called extractability. When simulating the malicious receiver in the ideal world, Sim
internally runs the real-world adversarial receiver A simulating the honest committer to
her, without knowing the secret bit to commit to, but in such a way that it can be opened
as any bit. This property is called equivocality. In the following, we briefly explain why
both properties are achieved. In the proof we assume that parties communicate through
authenticated channels.

Straight-line Extractability. It follows from the straight-line extractability and bind-
ing of IdealExtCom and from the soundness of protocol ProveBlobsEquality. Roughly,
Sim works as follows. It plays the commitment phase as an honest receiver (and run-
ning the straight-line extractor of IdealExtCom having access to Faux). If all proofs of
ProveBlobsEquality are successful, Sim extracts the bits of each consecutive pair of blobs
and analyses them as follows. Let b ∈ {0, 1}. If all extracted pairs of bits are either
(b, b) or (b̄, b), ( i.e. there are no pairs like (b̄, b̄)), it follows that, the only bit that A can
successfully decommit to, is b. In this case, Sim plays the bit b in the ideal world.

If there is at least a pair (b, b) and a pair (b̄, b̄), then A cannot provide any accepting
decommitment (indeed, due to the binding of blobs, A can only open the bit b from one
pair, and the bit b̄ from another pair, thus leading the receiver to reject). In this case
Sim sends a random bit to the ideal functionality.

If all the pairs of blobs are not equal, i.e., all pairs are either (b̄, b) or (b, b̄), then A
can later decommit to any bit. In this case the simulator fails in the extraction of the
bit committed, and aborts. Note that, this case happens only when all the pairs are
not equal. Thus A was able to cheat in all executions of ProveBlobsEquality. Due to the
soundness of ProveBlobsEquality, this event happens with probability 2−n.

Straight-line Equivocality. It follows straight-forwardly from the simulation property
of ProveBlobsEquality. Sim in this case works as follows. It prepares n pairs of blobs such
that each pair contains blob of 0 and blob of 1, in randomly chosen positions. Sim is able
to cheat in all executions of ProveBlobsEquality, by running the straight-line simulator
associated to this protocol. In the decommitment phase, after having received the bit
to decommit to, for each pair, Sim reveals the blob corresponding to the right bit.

Note that, in both cases, Sim crucially uses the extractor associated to IdealExtCom,
that in turn uses the access to Faux. The formal proof of Theorem 4 is provided in
Section 3.2.2.

In Section 3.3 we show an implementation of IdealExtCom with malicious PUFs, while
in Section 3.4, we show how to implement IdealExtCom using stateless token. By plugging
such implementations in protocol UCComCompiler we obtain the first unconditional UC-
secure commitment scheme with malicious PUFs (namely, in the FPUF-hybrid model),
and stateless tokens (namely, in the Fwrap-hybrid model).
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3.2.2 UC-security Proof

In this section we provide formal proof of Theorem 4. We show a straight-line simu-
lator Sim having interface access to Faux and interacting with Fcom only, that for any
environment z, generates a transcript that is indistinguishable from the transcript that
z obtains from the real-world adversary A participating (or just observing) the real
protocol execution. We distinguish three cases, according to which party z corrupts, if
any.

Committer and Receiver are honest. In this case the real-world adversary A is
instructed by z to not corrupt any party. The goal of the simulator is to generate the
transcript of the interaction between honest parties Cuc,Ruc. The procedure of Sim is
described in Simulator 2.

Simulator 2. [Sim in the honest-honest case.]

Commitment Phase.
Whenever Fcom writes (receipt, sid,Cuc,Ruc) to the communication tape of Sim in the
ideal world, then this message indicates that z wrote the secret bit b to the input tape
of Cuc. Sim simulates the transcript of the commitment phase between Cuc and Ruc as
follows.

1. For (i = 1; i = i+ 2; i ≤ 2n− 1):

- pick randomly `0i ∈ {i, i+ 1}; let `1i ← {i, i+ 1}/{`0i }.
- let Cuc run B`0i

= Blob(0) and B`1i
= Blob(1) with Ruc.

When the simulated Cuc or Ruc queries functionality Faux, interact with Faux from
their behalf.

2. For (i = 1; i = i+2; i ≤ 2n−1), simulate execution of ProveBlobsEquality(B̄i, B̄i+1)
as follows (the following steps correspond to procedure SimFalse except for the first
step, in which the challenge is not extracted but randomly chosen by Sim):

- pick a random challenge e, and let Cuc,Ruc run commitment phase of IdealExtCom
where Ruc runs as a committer on input e, and Cuc runs as a receiver.

- write b = bei ⊕ bei+1 on Ruc’s communication tape.
- write the decommitment of e on Cuc’s communication tape.
- write decommitments of bei , b

e
i+1 on the communication tape of Ruc.

In any of the steps above, delay or to drop a message according to the strategy of
the real-world adversary A.

Decommitment phase.
When receiving (open, sid,Cuc,Ruc, b) simulate the transcript of the decommitment phase
as follows.

1. If b = 0 then for (i = 1; i = i+ 2; i ≤ 2n− 1) run OpenBlob(B`0i
).
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2. If b = 1 then for (i = 1; i = i+ 2; i ≤ 2n− 1) run OpenBlob(B`1i
).

Note that, in Step 2, Sim is basically running algorithm SimFalse. The only difference
with SimFalse is that the challenge e is not extracted using extractability of IdealExtCom,
but it is chosen by Sim itself. Therefore, in the following proof we will use the lemmata
proved in Section 3.2.

Claim 3.2.1 (Indistinguishability of the simulation when both parties are honest). If
blobs are ideal commitments, for any real-world adversary A and any environment z,
the transcript generated by Sim (Simulator 2) is statistically indistinguishable from the
interaction between honest real-world Cuc,Ruc.

Proof. In this proof we use only the statistically hiding property of IdealExtCom com-
mitment scheme used to implement the Blob procedure, and the interface access of Sim
to Faux which is necessary to honestly execute protocol IdealExtCom.

In the honest-honest case, the environment z sets the input of the honest sender Cuc,
observes the communication between Cuc and Ruc, and possibly delays/drops messages
(we assume authenticated channel) of the protocol through the dummy adversary A.
We show that the transcript simulated by Sim 2 is statistically close to the actual tran-
script obtained from the real interaction of honest Cuc,Ruc. The proof goes by hybrids
arguments. It starts from the real world, hybrid H0, in which (Cuc,Ruc) honestly run
the protocol using the input received from z, and it ends to the ideal world, hybrid H4,
where Sim simulates both parties without knowing the actual input.

Hybrid H0: This is the real world.

Hybrid H1: In this hybrid, consider simulator Sim1. Sim1 obtains the input b chosen
by z for Cuc, it honestly runs procedure of Cuc on input b and procedure Ruc,
using independently random tapes (and forwarding the queries of Cuc,Ruc to the
ideal functionality Faux when they run the extractable commitment scheme). In
addition, Sim1 internally simulates a copy of the dummy adversary A as well as
A’s communication with z, and let A control the scheduling of the communication.
H1 is just the real world protocol, executed through the simulator Sim1. Clearly,
hybrids H0 and H1 are identical.

Hybrid Hj
2 (for 1 ≤ j ≤ n): The difference between hybrid Hj

2 and hybrid Hj−1
2 is

that in Hybrid Hj
2 , the j-th instance of Protocol ProveBlobsEquality, is simulated.

Specifically, in hybrid Hj
2 , Simj

2 simulates the j-th instance of ProveBlobsEquality
by running Step 4 of Sim 2 instead of running the honest prover procedure (as the
honest Cuc would do).

We claim that the views obtained from hybrids Hj−1
2 and Hj

2 are statistically close.

In hybrid Hj−1
2 the j-th execution of ProveBlobsEquality is executed following the

procedure of the honest prover P . In hybrid Hj
2 , the procedure of a modified

(the challenge e do not need to be extracted) SimFalse is followed instead. By
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lemma 8, it holds that the transcript generated by SimFalse is statistically close to
the transcript generated by an honest prover. In our case is even identical since
we do not have to consider the negligible probability of failure of the extraction,
and since the pair of blob Bj ,Bj−1 are equal.

Hence, hybrids Hj−1
2 and Hj

2 are identical.

Note that, Hybrid H0
2 corresponds to the real experiment H1 where all proofs are

given by honestly running the prover of ProveBlobsEquality, and Hn
2 corresponds

to the case in which all proof are simulated, by running SimFalse.

Hybrid H3: In this hybrid, we consider simulator Sim3. In the commitment phase,
Sim3 chooses, for each i, the indexes `0i , `

1
i . Then in the decommitment phase

Sim3, pick a random bit d, and for each pair i, it opens always the blob in position
`di . This hybrid is identical to Hn

2 .

Hybrid H4: In this hybrid, we consider simulator Sim4. In the commitment phase Sim4

follows Step 2 of Simulator 2. Namely, for all indexes `0i it commits (it “blobs”)
to 0, and it commits to 1 for the remaining index `1i . Then in the decommitment
phase, for each i it opens blobs in position `bi . Note that here Sim4 is not using
the knowledge of the input b in the commitment phase.

The difference between hybrids H3 and H4 is that blobs do not commit to the same
bit, they are not all equal. Therefore, in H4 the simulated proofs are given on pairs
of blobs that are not equal, and then one of the blobs is revealed. By Lemma 10,
and the statistically hiding property of blobs (that are ideal commitment schemes)
it follows that hybrids H3 and H4 are statistically close.

Noticing that Sim4 corresponds to the procedure of Sim (Simulator 2), we have
that hybrid H4 is the ideal world. The claim is proved.

Receiver is corrupt. In this case the environment z instructs the real-world adversary
A to corrupt the receiver Ruc. The simulator in this case, is very close to Simulator 2
shown for the honest-honest case. Therefore we will just point out the differences with
the previous simulator, and how the same indistinguishability proof can be consequently
adapted.

Concerning the simulator, the main difference with Simulator 2 is in Step 4. While
in the honest-honest case the challenge is chosen by Sim 2 itself, in the malicious receiver
case, the challenge must be extracted from the adversary. This simply means that Step
4 must be replaced with procedure SimFalse shown in Lemma 8. Furthermore, the
simulator in this case is not simulating Ruc, but is internally running A that plays as a
receiver. Thus, it has to take care of A aborting the protocol at any point.

The proof that such simulation is indistinguishable from the real-world execution goes
along the same lines of the proof provided for the honest-honest case. The main difference
is in hybrid H2, that in case of malicious receiver, is only statistically close to hybrid
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H1. Indeed, when the receiver is malicious we have to consider the negligible probability
of the failure of the extractor associated to the commitment scheme IdealExtCom.

Committer is corrupt. In this case, the environment z instructs the adversary A to
corrupt the sender Cuc. The simulator Sim internally simulates a copy of the dummy
adversary A as well as A’s communication with z. In addition, Sim simulates the honest
receiver Ruc to A. The goal of Sim is to extract the bit that A is committing to in the
simulated execution, so that it can send it to the ideal functionality Fcom.

The procedure of Sim very roughly is the following. Sim extracts the bits com-
mitted in each blob by running the extractor of IdealExtCom and then executes pro-
tocols ProveBlobsEquality exactly as the honest receiver Ruc. If all the executions of
ProveBlobsEquality are accepting, then Sim looks at the extracted pair of bits, and pro-
ceeds as follow. If there exists at least one pair (b, b) and at least one pair (b̄, b̄), (for a
bit b), then the adversary, that has to open at least one bit per pair, will open to b and
b̄, thus leading the receiver to reject. Indeed, the receiver expects that all bits opened
are equal. Thus, in this case the adversary cannot successfully open to any bit. Hence,
the simulator will play the bit 0 in the ideal functionality. If there exist only pairs in
the form (b, b) or (b, b̄), then the adversary, can successfully open only to bit b. In this
case, Sim will play b in the ideal world. Finally, if all pairs are not equal, that is, each
pair is either (b, b̄) or (b̄, b), then the adversary can later successfully open to both b
and b̄. In this case, Sim has no clue on which bit to play in the ideal functionality and
fails. Since this case happens when the adversary was able to prove equality of n pairs
that are not equal, probability that the adversary passes all these false proofs is 2−n,
which is negligible. Thus, probability that Sim fails in the extraction of the secret bit,
is negligible as well. Sim is formally defined in Simulator 3.

Simulator 3 (Sim in case sender Cuc is corrupt.). Activate A on input the security
parameter n and the secret bit received by z. When A starts the commitment phase,
proceeds as follows.

Commitment Phase.

1. For j = 1, . . . , 2n: extract the bit committed in blob Bj. Namely, run the procedure
of the extractor E associated to IdealExtCom for the pair of commitments in Bj.
Obtain bits b0j ,b

1
j from the extraction. Set bj = b0j ⊕ b1j . In this phase Sim uses the

interface access to Faux as required by E. If E aborts in any of the executions,
then Sim also aborts. If A does not abort in any of the commitments, proceeds to
the next step.

2. If A proceeds to run ProveBlobsEquality(Bi, Bi+1), for all adjacent pairs, then
follow the procedure of the honest receiver.

3. If all proofs are successful, consider the bits extracted in Step 1, and check which
case applies:
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(a) There exists a bit b such all adjacent pairs of extracted bit are either (b, b) or
(b, b̄). In this case, since in the decommitment phase A is required to open
one bit for each pair, there is only one bit that A can possibly decommit to,
and is the bit b. Thus, send (commit, sid,Cuc,Ruc, b) to Fcom.

(b) There exists at least an adjacent pair of bits (b, b) and at least one pair of bits
(b̄, b̄). In this case, A that has to open at least one bit for each pair, cannot
successfully commit to any bit. Thus send (commit, sid,Cuc,Ruc, 0) to Fcom.

(c) (Failure) Each adjacent pair is either (0, 1) or (1, 0). In this case, A could
correctly decommit to both 0 and 1. Thus, abort. We call this event Input
Extraction Failure.

Decommitment phase.
If A correctly decommits to a bit b, (i.e., all blobs revealed agree on the same value b),
send (open, sid,Cuc,Ruc, b) to Fcom. Else, if A aborts, halt. If b is different from the one
sent in the commitment phase, then abort. We call this even Binding Failure.

Claim 3.2.2 (Indistinguishability of the simulation when the sender is corrupt). If
blobs are ideal extractable commitments, for any real-world adversary A corrupting the
sender Cuc, any environment z, it holds that view REALFaux

UCCom,A,z is statistically close to
IDEALF ,Sim 3,z.

Proof. Sim 3 behaves almost identically to honest receiver Ruc. Indeed, it runs E in the
first step, that due to the simulation property of IdealExtCom, generates a view that is
identical to the one generated by an honest receiver. Then it honestly follows protocol
ProveBlobsEquality. However, differently from the honest receiver, Sim 3 aborts more
often. Specifically, Sim 3 additionally aborts in the following two cases:

Case 1. In Step 1, when the extractor E fails in extracting the bit from any of the
blobs.

Case 2. In Step 3, Sim fails in determining the bit committed to by A. We call
this event Input extraction Failure, since Sim fails in extracting the input to send
to the ideal functionality Fcom.

Case 3. In the decommitment phase A opens to a bit b that is different from the
one extracted by Sim.

Due to the extractability property of the ideal extractable commitment IdealExtCom,
Case 1 happens only with negligible probability. Due to Lemma 11, probability of Case
2 is also negligible. Finally, due to the statistically binding property of Blobs, probability
that A can open to a bit that is different from the one extracted is negligible. Therefore,
the view of A simulated by Sim is statistically close to the view obtained from the
interaction with real world receiver. Which implies that the distribution of the input
extracted by Sim is statistically close to the distribution of the input played in the real
world, and the communication between A and z simulated by Sim is also statistically
close to the communication of z with A interacting in the real protocol. Which implies
that REALFaux

UCCom,A,z and IDEALF ,Sim 3,z are statistically close.
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Lemma 11. Probability of event Input extraction Failure is negligible.

Proof. Event Input extraction Failure happens when both the following events happen:

Event 1: all executions of protocol ProveBlobsEquality are successful. Namely, for
all i 1, ProveBlobsEquality(Bi , Bi+1) provided by A is accepting.

Event 2: Each consecutive pair of blobs is not equal. Namely, for all i, bi 6= bj ,
where bi and bj are the bits committed respectively in Bi , Bi+1.

Due to the soundness of protocol ProveBlobsEquality, an adversary committing to n
consecutive pairs that are all not equal, passes all the equality proof with probability
1

2n , which is negligible.

3.3 Ideal Extractable Commitments from (Malicious) PUFs

In this section we show a construction of ideal extractable commitment in the FPUF

model. We first construct and ideal commitment scheme in the FPUF model that we de-
note by IdealComPuf. Then we transform this protocol into an extractable commitment
scheme. For simplicity, in the informal description of the protocol, we omit mentioning
the use of fuzzy extractors and the formalism for invoking the FPUF functionality. Such
details are provided in the formal descriptions of Fig. 3.3 and Fig. 3.4.

Ideal Commitment Scheme in the FPUF Model. The idea behind the protocol
IdealComPuf = (CpufIdeal,RpufIdeal), is to turn Naor’s commitment scheme [76] 2 which
is statistically binding but only computationally hiding, into statistically hiding and
binding, by replacing the PRG with a (possibly malicious) PUF. Roughly, protocol
IdealComPuf goes as follows.

At the beginning of the protocol, the committer creates a PUF, that we denote by
PS . It preliminary queries PS with a random string q to obtain the response σS , and
finally delivers the PUF PS to the receiver. After receiving the PUF, the receiver sends
a random string r (i.e., the first round of Naor’s commitment) to the committer. To
commit to a bit b, the committer sends c =σS ⊕ (r ∧ b) to the receiver. In the decom-
mitment phase, the committer sends (b, s) to the receiver, who checks the commitment
by querying PS with s. Hiding intuitively follows from the fact that, a fuzzy extractor
applied to the PUF-response σS , yields to a uniformly distributed value (this property is
called Extraction Independence). Thus, commitment of 1, c =σS ⊕ r and commitment
of 0, c =σS , are statistically close. Binding follows the same argument of Naor’s scheme.
The formal description of IdealComPuf is provided in Fig. 3.3. Protocol IdealComPuf

1for (i = 1; i = i+ 2; i < n)
2Naor’s scheme is a two-round commitment scheme. In the first round the receiver sends a random

string r
$← {0, 1}3n to the committer. In the second round, the committer picks a random string

s
$← {0, 1}n, computes y ← G(s) and sends y ⊕ (r ∧ b) to the receiver, where G : {0, 1}n → {0, 1}3n is a

PRG and b is the bit to commit to.
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is a bit commitment scheme, but it can be straight-forwardly transformed into string
commitment by committing each bit of the string in parallel, reusing the same PUF.

Protocol IdealComPuf
FPUF is parameterized with a PUF-family P=(rg, dnoise, dmin, m̃). (FuzGen,FuzRep) is
a (m̃, `, t, ε)-fuzzy extractor of appropriate matching parameters such that ` = 3n. PS
denote the id for accessing to the PUF created by the committer. Committer’s Input:

b ∈ {0, 1}.
Commitment Phase

1. Committer CpufIdeal: send (initPUF, normal,PS ,CpufIdeal) to FPUF and ob-
tain response (initializedPUF,PS). Select a random string q ∈ {0, 1}n, send
(evalPUF,PS ,CpufIdeal, q) to FPUF and obtain response (responsePUF,PS , q, a).
Compute (stS , pS) ← FuzGen(a), and send pS to RpufIdeal and
(handoverPUF,PS ,CpufIdeal,RpufIdeal) to FPUF.

2. Receiver RpufIdeal: obtain p′S from the committer and (handoverPUF,PS ,CpufIdeal)
from FPUF. Pick random string r ∈ {0, 1}` and send it to the committer.

3. Committer CpufIdeal: send c = stS ⊕ (r ∧ b`) to RpufIdeal.

Decommitment Phase

1. Committer CpufIdeal: send (b, q) to RpufIdeal.

2. Receiver RpufIdeal: obtain (b′, q′) from the committer. Send
(evalPUF,PS ,RpufIdeal, q

′) to FPUF and obtain (responsePUF,PS , q′, a′). Com-
pute st′S ← FuzRep(a′, p′S). If b = 0, check if st′S = c. Else, check st′S = c⊕ r. If
the check passes, accept and output b, else output reject.

Figure 3.3: IdealComPuf: Ideal Commitments in the FPUF model.

Theorem 5. Protocol IdealComPuf is an ideal commitment scheme in the FPUF model.

Proof. Completeness of protocol (CpufIdeal,RpufIdeal) follows from response consistency.
We focus on hiding and binding properties.

Lemma 12 (Hiding). For any malicious receiver R∗pufIdeal, the statistical difference be-
tween the ensembles

{ viewR∗(c(com, 0),R∗(recv))(1n) }n∈N and { viewR∗(c(com, 1),R∗(recv))(1n)) }n∈N

is negligible in n.

Proof. Let Q be the set of queries that the receiver R∗ makes to the committer’s PUF
sid and let q be the query made by the committer before sending the PUF sid. First
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consider the case that there exists q′ ∈ Q such that dis(q′, q) < dmin. As the receiver is
polynomially bounded, the number of queries in Q is a polynomial, say p(n). The total
number of queries within a distance dmin of queries in Q can be bounded by p(n)ndmin(n),
which is a negligible fraction of 2n. Thus, this event happens with negligible probability.

Now consider the case that q /∈ Q. By the extraction independence property, st is
statistically close to the uniform distribution, U`. As, for any string r, the distributions
U` and r⊕U` are identical, thus it follows from transitivity that the distributions st and
st⊕ r are statistically close.

We now turn to the binding property. The proof follows a similar path as in the
proof of statistical binding in Naor’s commitment [76]. Informally3, Naor’s argument
counts the number of ‘bad’ strings in the range of the PRG. These are the strings r in the
range of a PRG G(·) for which there exist two seeds s0, s1 such that r = G(s0)⊕G(s1).
For these strings r, equivocation is possible. But because of the expansion property of
PRG, the number of bad strings is small. Similarly, in our proof of binding, we use the
fact that we have set the parameters of the PUF family and fuzzy extractor such that
` = 3n. We use the same arguments to define ‘bad’ strings and show that because of
expansion, their number is bounded. Care has to be taken to handle the fact that the
output of the PUF is noisy.

Lemma 13 (Binding). For any malicious committer C∗pufIdeal, the probability that it wins
in the binding game of Definition 1 is negligible in n.

Proof. Recall that we have chosen the parameters of the PUF family and fuzzy extractor
such that ` = 3n. We can think of the adversary choosing the malicious PUF as picking
a set of distributions Dq1 , . . . ,DqN , where N = 2n. For a fixed p, call a string st ∈ {0, 1}`
“heavy” if there exists query q such that Pr [ FuzRep(p,Dq) = st ] ≥ 2− log2(n ).

Now we will show that the probability of the adversary breaking the binding is
negligible. For a fixed first message of the malicious committer, call a string r ∈ {0, 1}`
‘bad’ if the probability that the adversary breaks binding on receiving r in the second
step of the protocol is at least 2−2 log2(n ). For this to happen, it must be the case that
there exist heavy strings st0 and st1 such that r = st0⊕st1. Thus, to bound the number
of bad strings in {0, 1}`, we simply need to bound the number of pairs of heavy strings.
By the definition of heavy string, each query can produce at most 2 log2(n ) heavy strings
for one PUF. As the total number of queries is 2n, the total number of pairs of heavy
strings is bounded by 22(n+ log2(n )), which is a negligible fraction of 23n.

3The following assumes familiarity with Naor’s commitment scheme [76].
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Ideal Extractable Commitment in the FPUF Model. We transform IdealComPuf
into a straight-line extractable commitment using the following technique. We introduce
a new PUF PUFR, sent by the receiver to the committer, at the beginning of the pro-
tocol. Then we force the committer to query the PUF PUFR with the opening of the
commitment computed running IdealComPuf. An opening of protocol IdealComPuf is the
value a 4 In this way, the extractor, having access to the interface of FPUF, intercepts the
queries made by the committer, and thus extracts the opening. Note that extractability
must hold against a malicious committer, in which case the token PUFR sent by the
receiver is honest, therefore the extractor is allowed to intercept such queries. The idea
is that, from the transcript of the commitment (i.e., the value c = a ⊕ (r ∧ b)) and the
queries made to PUFR, (the value σS) the bit committed if fully determined 5.

How can we force the committer to query PUFR with the correct opening? We require
that it commits to the answer σR obtained by PUFR, using again protocol IdealComPuf.
Why the committer cannot send directly the answer σR? Because σR could be the output
of a malicious PUF, and leak information about the query made by the committer.

Thus, in the commitment phase, committer runs two instances of IdealComPuf. One
instance, that we call ComBit, is run to commit to the secret bit b. The other instance,
that we call ComResp, is run to commit to the response of PUF PUFR, queried with
the opening of ComBit. In the decommitment phase, the receiver gets PUFR back, along
with the openings of the bit and the PUF-response. Then it queries PUFR with the
opening of ComBit, and checks if the response is consistent with the string committed
in ComResp.

Due to the unpredictability of PUFs, the committer cannot guess the output of PUFR

on the string σS without querying it. Due to the statistically binding of IdealComPuf,
the committer cannot postpone querying the PUF in the decommitment phase. Thus,
if the committer will provide a valid decommitment, the extractor would have observed
the opening already in the commitment phase with all but negligible probability.

However, there is one caveat. The unpredictability of PUFs is guaranteed only
for queries that are sufficiently apart from each other. Which means that, given a
challenge/response pair (c, r), the response on any strings c′ that is “close” in hamming
distance to c (“close” means that disham(c, c′) ≤ dmin), could be predictable.

Consequently, a malicious committer could query the PUF with a string that is only
“close” to the opening. Then, given the answer to such a query, she could predict the
answer to the actual opening, without querying the PUF. In this case, the extractor
cannot determine which is the opening, since it cannot try all possible strings that are
“close” to queries made by the malicious committer. Thus the extraction fails. At the

4In the actual implementation we require the committer to query PUFR with stS where (stS , pS) ←
FuzGen1(a).

5As we shall discuss in the security proof, a malicious sender can always compute c∗ so that it admits
two valid openings (i.e., compute y0, y1 such that r = y0 ⊕ y1 and set c∗ = y0) , and query PUFR with
both openings (thus confusing the extractor). However, due to the binding of IdealComPuf, A will not be
able to provide an accepting decommitment for such c∗. Thus extractability is not violated. (Straight-
line Extractability in Faux model, is violated when the extractor outputs ⊥, while the adversary provides
an accepting decommitment).



74

same time, the malicious committer did not violate the unpredictability property of
PUFs, since it predicted a value that is “too close” to the one already observed.

We overcome this problem by using Error Correcting Codes, in short ECC (see Def-
inition 10). The property of an ECC with distance parameter dis, is that any pair of
strings having hamming distance dis, decodes to a unique string. Therefore, we mod-
ify the previous approach asking the committer to query PUFR with the encoding of
the opening, i.e., Encode(σS). In this way, all queries that are “too close” in hamming
distance, decode to the same opening, and the previous attack is defeated.

Informally, hiding and biding follow from properties of IdealComPuf. Indeed, proto-
col ComExtPuf, basically consists in running two instances of IdealComPuf in parallel.
Extractability follows from the statistically biding of IdealComPuf, the unpredictability
of PUFR and the Minimum Distance Property of ECC.

The formal description of the above protocol, that we denote by ComExtPuf =
(CpufExt,RpufExt), is shown in Fig. 3.4.

Replacement of the honest PUF. In the decommitment phase, the committer sends
back PUFR to the receiver. The receiver checks the validity of the decommitment by
querying PUFR with the decommitment data. A malicious committer, could replace
PUFR with another PUF, in which case the extractability property is not achieved any-
more. This attack can be easily overcome by assuming that, before giving its own PUF
PUFR away, the receiver queries it with a secret random challenge, and stores the re-
sponse. Then, when PUFR is sent back, the receiver checks its authenticity by querying
PUFR on the same challenge and matching the response obtained with the one stored.

On round complexity of ComExtPuf. For simplicity in Fig. 3.4 we describe the
interaction between CpufExt and RpufExt using several rounds. However, we stress out
that, the exchange of the PUF can be done once at the beginning of the protocol, and
that except from the PUF transfer, the commitment phase requires only three rounds.
The decommitment is non-interactive, and require another PUF transfer.

Theorem 6. If IdealComPuf is an Ideal Commitment in the FPUF-model, then ComExtPuf
is an Ideal Extractable Commitment in the FPUF model.

Proof. Completeness. Completeness follows from completeness of IdealComPuf, from
the response consistency property of PUF and fuzzy extractors and the correct
decoding property of Error Correcting Codes.

Hiding. The commitment phase of protocol ComExtPuf basically consists in the parallel
execution of two instances of IdealComPuf. In the first instance, that we call
ComBit, CpufExt commits to its secret bit b, in the other instance, that we call
ComResp, it commits to some value received from the (possibly malicious) PUF
P∗R 6. Although P∗R could compute the response adaptively on the query observed,
thus revealing information about the opening (recall that the query corresponds
to the opening of ComBit), such information cannot reach A since the response is

6Recall that, to create a malicious PUF, the malicious receiver A sends (initPUF, mal,PUFR,RpufExt) to
FPUF
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committed using IdealComPuf. Furthermore in case P∗R aborts, CpufExt continues
the protocol, committing to the string 0, in fact, ruling out selective abort attacks.

Formally, the hiding proof goes by hybrids:

H0 : In this experiment the committer honestly commits to the bit 0. Namely, it
runs ComBit to commit to 0, then in queries the possibly malicious PUF P∗R
with the opening of ComBit. Finally it commits to the answer received from
P∗R running protocol ComResp (if P∗R aborts, the committer commits to the
zero string).

H1 : In this experiment the committer runs ComBit as commitment of 0 and
ComResp as commitment of the string 0`, instead of the actual opening of
ComBit. Due to the hiding of IdealComPuf, H0 and H1 are statistically close.

H2 : In this experiment the commitment runs ComBit as commitment of 1 and
ComResp still as commitment of 0`. Due to the hiding of IdealComPuf, H1

and H2 are statistically close.

H3 : In this experiment the committer queries the possibly malicious PUF P∗R with
the opening of ComBit and commits to the answer (if any) running ComResp.
If P∗R aborts, the committer commits to the zero string. Due to the hiding
of IdealComPuf, H2 and H3 are statistically close. In this experiment the
committer is honestly committing to the bit 1. This completes the proof.

Binding. Binding follows straight-forwardly from the binding property of IdealComPuf.

Extractability. We show a straight-line PPT extractor E that having interface access
to FPUF satisfies the properties of Definition 18. The extractor is formally described
in Fig. 3.5. A denotes the malicious sender.

Extractor E satisfies the following properties.

E runs in polynomial time. E follows the procedure of the honest receiver,
which is polynomial. In the extraction phase E runs algorithm dec for at
most polynomially many queries. Due to the efficiency property of ECC this
operation also requires polynomial time.

Simulation. The extractor E follows the procedure of the honest receiver RpufExt,
and additionally it collects the queries made by A to PUFR. Therefore the
view of A interacting with E is identical to the view of A interacting with
RpufExt.

Extraction. We have to prove that, when E outputs ⊥, probability that A pro-
vides an accepting decommitment is negligible. First, recall that E outputs
⊥ in two cases. Case 1) there exists a pair of queries x0, x1 that are both
valid openings of c. Case 2) there exists no query decoding to a valid opening
of c.

- Case 1. Note that, A can always compute x0, x1 such that r = dec(x0) ⊕
dec(x1) and compute c = dec(x0). We argue that, if A computes c in such
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a way, then probability that A can provide an accepting decommitment
for c is negligible. This follows directly from the binding of IdealComPuf.

- Case 2. Towards a contradiction, assume that A does not query the PUF
with any valid opening, but in the decommitment phase, A still provides
an accepting decommitment. An accepting decommitment in ComExtPuf
consists of the decommitments of ComBit and ComResp. Namely, the bit
b, along with the value stS such that c = stS ⊕ (r ∧ b), and the string
(stR||pR) (for simplicity we are omitting the remaining decommitment
data).
Since the decommitment is accepting it holds that stR is the answer of
the honest PUF PUFR on the query Encode(stS)(more precisely stR =
FuzRep(σR, pR) where σR is the actual answer of PUFR on input Encode(stS)).
By hypothesis no queries received by PUFR in the commitment phase
decoded to stS . Thus one of these two cases has happened:
1. A has correctly computed PUFR’s responds σR without querying

PUFR. In this case A breaks unpredictability of the honest PUF
PUFR.
Indeed, due to the Minimum Distance property of ECC, we have
that all the valid codewords are at dmin hamming distance from each
other. Thus, the only way for A to obtain a response for an encoding
of stS that was not inferred by E, is that such encoding is dmin apart
from any challenge observed by E. Predicting the PUF-response
of a challenge that is so far from the previously queried challenges,
corresponds to break the unpredictability of the PUF.

2. A queries PUFR only in the decommitment phase. Then she opens
the commitment of the response, ComResp, accordingly. Due to the
statistically binding property of IdealComPuf, this case happens with
negligible probability.

Binding. Here we have to prove that if E extracts bit b, probability that A
decommits to bit b̄ is negligible. This basically follows from the biding of the
sub-protocol IdealComPuf.



77

Protocol ComExtPuf
ECC = (Encode,Decode) is a (N,L, d1

min) error correcting code. FPUF is parameterized
with a PUF family P=(rg1, d1

noise, d
1
min, m̃

1), with challenge size L. (FuzGen1,FuzRep1)
is a (m̃1, `1, t1, ε1)-fuzzy extractor of appropriate matching parameters. Protocol
IdealComPuf = (CpufIdeal,RpufIdeal) (depicted in Fig. 3.3 ) is run as sub-routine.
PS ,PUFR denote (sid of) the PUF created by the committer and the receiver, re-
spectively.
Committer’s Input: b ∈ {0, 1}.
Commitmen Phase

1. Receiver RpufExt: create a PUF sending (initPUF,PUFR
a, normal,RpufExt) to FPUF

and then handover it to CpufExt, sending (handoverPUF,PUFR,RpufExt,CpufExt) to
FPUF.

2. Commitment of the Secret Bit: ComBit.

CpufExt ⇔ RpufExt: run 〈CpufIdeal(com, b),RpufIdeal(com)〉 so that CpufExt commits to
bit b.

Let (stS , pS)← FuzGen1(a) the value obtained by CpufExt, after applying the fuzzy
extractor to the answer obtained from PS in protocol ComBit.

3. Committer CpufExt: Send (evalPUF,PUFR,CpufExt,Encode(stS)) to FPUF and ob-
tain response (responsePUF,PUFR,Encode(stS), σR). If σR = ⊥ (i.e., PUF PUFR

aborts), set σR ← 0. Compute (stR, pR)← FuzGen1(σR).

4. Commitment of PUFR’s Response: ComResp.

CpufExt ⇔ RpufExt: run 〈CpufIdeal(com, stR||pR),RpufIdeal(com)〉 so that CpufExt com-
mits to the string stR||pR.

Decommitment Phase

1. CpufExt ⇔ RpufExt:
run 〈CpufIdeal(open, b),RpufIdeal(open)〉 and 〈CpufIdeal(open, stR||pR),RpufIdeal(open)〉.

2. Committer CpufExt: handover PUF to RpufExt by sending
(handoverPUF,PUFR,CpufIdealRpufExt) to FPUF.

3. Receiver RpufExt: If both decommitment are successfully completed, then RpufExt

gets the bit b′ along with the opening st′S for ComBit and string st′R||p′R for
ComResp.
Check validity of st′R: send (evalPUF,PUFR,RpufExt,Encode(st

′
S)) to FPUF and

obtain σ′R. Compute st′′R ← FuzRep1(σ′R, p
′
R). If st′′R = st′R, then accept and

output b. Else, reject.

aPUFR corresponds to the id of the PUF.

Figure 3.4: ComExtPuf: Ideal Extractable Commitment in the FPUF model.
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Extractor E
E creates PUF PUFR sending (initPUF, normal,PUFR,RpufExt) to FPUF. E handovers
the PUF to A, sending (handoverPUF,PUFR,RpufExt,A) to FPUF. Queries made by A
to PUFR are intercepted by E, stored in the variable Q, and then forwarded to FPUF.
The answers received by FPUF are then forwarded to A.
Commitment Phase:
E honestly follows the procedure of RpufExt. If the commitment phase is accepting, E
proceeds to extraction phase. Else, it halts. Let (r, c) be the transcript of ComBit.
Extraction Phase:

- If there exists a query x ∈ Q such that c = dec(x) then output 0.
- If there exists a query x ∈ Q such that c = dec(x)⊕ r then ouput 1.
- Case 1) If there exist queries x0, x1 ∈ Q s.t. c = dec(x0) AND c = dec(x1) ⊕ r

then output ⊥.
- Case 2) If there exist no query in Q that decodes to a valid opening of c, output
⊥.

Figure 3.5: E: Extractor associated to ComExtPuf.



79

3.4 Ideal Extractable Commitments from Stateless Tokens

In this section we show how to construct ideal extractable commitments from stateless
tokens. We first construct an ideal commitment scheme. Then, we use it as building
block for constructing an ideal extractable commitment.

Ideal Commitment Scheme in the Fwrap Model. Similarly to the construction
with PUFs, we implement Naor’s commitment scheme by replacing the PRG with a
stateless token. Note that Naor’s commitment is already statistically binding, therefore
the token is only used to obtain also statistically hiding. In the construction with PUFs,
the PRG is replaced with a PUF that is inherently unpredictable. Thus, even after
observing a polynomial number of challenge/response pairs, a malicious receiver cannot
predict the output of the PUF on any new (sufficiently far apart) challenge. In this case,
hiding breaks only if the receiver guesses the challenge used by the committer, which
happens only with negligible probability. Hence, hiding holds unconditionally.

Now, we want to achieve statistically hiding using stateless token. The problem here
is that we do not have unpredictability by default (as it happens with PUFs). Thus, we
have to program the stateless token with a function that is, somehow, unconditionally
unpredictable. Clearly, we cannot construct a token that implements a PRG. Indeed,
after observing a few pairs of input/output, an unbounded receiver can extract the seed,
compute all possible outputs, and break hiding. We follow that same idea as [53] and we
use a point function. A point function f is a function that outputs always zero, except
in a particular point x, in which it outputs a value y. Formally, f : {0, 1}n → {0, 1}m
such that f(x) = y and f(x′) = 0, for all x′ 6= x.

Thus, we adapt Naor’s commitment scheme as follows. The committer picks a n-bit
string x and a 3n-bit string y and creates a stateless token that on input x outputs y,
while it outputs 0 on any other input. The stateless token is sent to the receiver at
the beginning of the protocol. After having obtained the token, the receiver sends then
Naor’s first message, i.e., the random value r, to the committer. The committer commits
to the bit b by sending c = y⊕ (r∧ b). In the decommitment phase, the committer sends
x, y, b. The receiver queries the token with x and obtain a string y′. If y = y′ the receiver
accepts iff c = y′ ⊕ (r ∧ b).

Statistically binding follows from the same arguments of Naor’s scheme. The token
is sent away before committer can see r. Thus, since x is only n bits, information
theoretically the committer cannot instruct a malicious token to output y′ adaptively
on x. Thus, for any malicious possibly stateful token, binding is preserved.

Statistically hiding holds due to the fact that x is secret. A malicious receiver can
query the token with any polynomial number of values x′. But, whp she will miss x,
and thus she will obtain always 0. Such an answer does not help her to predict y. The
only way to obtain y is to predict x. This happens with probability 2−n.

The above protocol is denoted by IdealTok and is formally described in Fig. 3.6. We
stress that, this is the first construction of unconditional commitment scheme that is se-
cure even against malicious stateful tokens. The previous construction of unconditional
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commitment scheme of [53] is secure as long as the malicious token is stateless (i.e., it
assumes that the adversary cannot create stateful tokens). Furthermore, our construc-
tions requires only one stateless token, while construction of [53] requires a number of
tokens that depends on the security parameter.

String Commitment reusing the same token. To commit to a ` = poly(n) bit string
reusing the same stateless tokens is sufficient to embed ` pairs (x1, y1),. . ., (x`, y`) in Tc.
Then, execute protocol IdealTok for each bit of the string in parallel. The receiver accepts
the string iff all bit commitments are accepting. Hiding still holds since probability that
a malicious receiver guesses one of the challenges is `/2n.

Protocol IdealTok
Committer’s Input: b ∈ {0, 1}.
Commitmen Phase

1. Committer CIdealTok: pick x
$← {0, 1}n, y

$← {0, 1}3n. Create token Tc imple-
menting the point function f(x) = y; f(x′) = 0 for all x′ 6= x. Send (create, sid,
CIdealTok, RIdealTok, Tc) to Fwrap.

2. Receiver RIdealTok: pick r
$← {0, 1}3n. Send r to CIdealTok.

3. Committer CIdealTok: Send c = y ⊕ (r ∧ b3n) to RIdealTok.

Decommitment Phase

1. Committer CIdealTok: send (b, x) to RIdealTok.

2. Receiver RIdealTok: send (run, sid,RIdealTok, Tc, x) and obtain y. If b = 0, check that
c = y. Else, check that y = c⊕ r. If the check passes, accept and output b, else
reject.

Figure 3.6: IdealTok: Ideal Commitments in the Fwrap model.

String Commitment reusing the same token. To commit to a ` = poly(n) bit string
reusing the same stateless tokens is sufficient to embed ` pairs (x1, y1),. . ., (x`, y`) in Tc.
Then, execute protocol IdealTok for each bit of the string in parallel. The receiver accepts
the string iff all bit commitments are accepting. Hiding still holds since probability that
a malicious receiver guesses one of the challenges is `/2n.

Ideal Extractable Commitment in the Fwrap Model. To achieve extractability
we again augment the ideal commitment scheme IdealTok with three simple steps. First,
make the receiver send a token TR to the committer. Second, make the committer to first
commit to the secret bit (using IdealTok), then query token TR with the opening of such
commitment (namely, value y). Third, the committer commits to the answer received
from TR. In the decommitment phase, the receiver has to cross check the validity of
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two commitments (commitment of the bits and commitment of the answer) and the
consistency of the answer with its own token. Note that with tokens there is no need
for the committer to send the token back to the receiver, since the function embedded
in the token is well known to the creator.

However, with stateless tokens, achieving extractability is more complicated. Indeed,
which function should TR run, that will force the committer to query it with the correct
opening? Let us discuss some wrong solution, to then converge to the correct one.

Consider the function that takes as input a string y (the opening of ComBit) and
outputs Mac(k, y), for some secret key k. Such function does not guarantee extractability.
A malicious committer, can query the token on two random strings y1, y2 (the token
is stateless) and extract the MAC key. Later, the adversary can secretly compute the
MAC on the actual opening y, without using the token. Thus, she will be able to provide
a valid decommitment, while the extractor fails. Note that, this case is ruled out when
using PUFs. The reason is that, even after many queries, the adversary is not able to
compute the answer of the PUF on a new string y by herself.

Consider the function that takes as input a commitment’s transcript (r, c) (of protocol
IdealTok) and the opening y. It checks that y is a correct opening of c, and if so, it outputs
Mac(k, y). This function is still not sufficient for obtaining extraction. A malicious
committer can query the token with arbitrary pairs (commitment, decommitment) that
do not correspond to the actual commitment c sent to the receiver. Thus we are in the
previous case again.

The right function to embed in the stateless token, is the following. The function,
parameterized by two independent MAC keys krec, ktok, takes as input a commitment’s
transcript (r, c), a MAC σrec (value σrec is computed by the receiver, i.e., the creator of
the token) and an opening y. The function checks that y is a valid opening of (r, c), and
that σrec is a valid MAC computed on (r, c) (i.e., σrec =Mac(krec, r||c)). If both checks are
successful, the function outputs the MAC computed on the opening y. Namely, it outputs
σtok = Mac(ktok, y). Due to the unforgeability of the MAC, and the statistically binding
property of the commitment scheme IdealTok, a malicious committer can successfully
obtain the answer to exactly one query. Note that, a malicious committer, can perform
the following attack. Once it receives the string r from the receiver, it picks strings y0

and y1 such that r = y0⊕y1 and sends the commitment c = y0 to the receiver, obtaining
the MAC of c. With the commitment so computed, and the MAC, it can query token
TR twice with each valid opening. In this case, the committer can extract the MAC
key, and at the same time baffling the extractor that observes two valid openings. The
observation here is that, due to the binding of IdealTok, for a commitment c computed
in such a way, the malicious committer will not be able, in the decommitment phase,
to provide a valid opening. (The reason is that, whp, she cannot instruct its token to
output neither y0 or y1). Thus, the extractor fails and outputs ⊥, but at the same time
the decommitment will not be accepting. Thus extractability is not violated.

As final step, the committer commits to the answer σtok, using the scheme IdealTok.
(If the token of the receiver aborts, the committer sets σtok to the zero string). In
the decommitment phase, the receiver, first checks the validity of both commitments
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(commitment of the bit, commitment of the answer σtok). Then, given the opening of
the bit, it checks that σtok is a valid MAC computed under key ktok on such opening.

Binding follows from the binding of IdealTok and the unforgeability of MAC. Hiding
still follows from the hiding of IdealTok. Indeed, the answer of TR sent by the malicious
receiver, is not forwarded to the receiver, but is committed using the ideal commitment
IdealTok. Furthermore, if TR selective aborts, the committer does not halt, but it contin-
ues committing to the zero-string. The receiver will get the answer in clear, only in the
decommitment phase, when the bit has been already revealed. The formal description
of the above protocol, that we denote by ExtTok, is shown in Fig. 3.7.

Extractable String Commitment reusing the same token. To achieve extractability
for a `-bit string, reusing the same token TR is sufficient to load TR with ` pairs of
independently chosen MAC keys (k1

rec, k
1
tok), . . . , (k`rec, k

`
tok). Then run ` executions of

ExtTok in parallel. The receiver accepts the string, iff the opening of all ` bits are
accepting. Extractability holds due to the fact that for each execution of ExtTok, a new
MAC key is used.

Theorem 7. Protocol ExtTok is an ideal extractable commitment in the Fwrap model.

Proof. First, we prove that IdealTok is an ideal commitment scheme in the Fwrap model.

Theorem 8. Protocol IdealTok is an ideal commitment scheme in the Fwrap model.

Proof. Completeness. By inspection.

Hiding. Hiding breaks if a malicious receiver A is able to compute y, in the commitment
phase. Recall that values x, y embedded into the stateless token Tc are chosen
uniformly at random. Furthermore, Tc responds only on input x. Since A can
make only polynomial number of queries to Tc, it can get y only if she guesses x.
This happens with negligible probability only.

Binding. The proof of binding can be adapted from the proof of protocol IdealCom. It
is sufficient to observe that a malicious PUF can be a malicious token.

We are now ready to prove Theorem 7.

Proof. Completeness. Due to the completeness of the one-time unconditional MAC
and the completeness of the sub-protocol IdealTok.
Hiding. Follows directly from the hiding property of protocol IdealTok. The formal
argument is similar to the one provided in the hiding proof of Section 3.3, and is therefore
omitted.
Binding. Follows directly from the binding property of protocol IdealTok.
Extractability. Extractability roughly follows from the binding of IdealTok and the
unconditional one-time unforgeability of MAC. Details follow.

We show a straight-line PPT extractor E that having interface access to Fwrap sat-
isfies the properties of Definition 18. The extractor is formally described in Fig. 3.8. A
denotes the malicious sender.
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Protocol ExtTok
(Gen,Mac,Vrfy) is a one-time unconditional MAC. Protocol IdealTok =
(CIdealTok,RIdealTok) is run as sub-routine.
Committer’s Input: b ∈ {0, 1}.
Commitmen Phase

1. Receiver RExtTok: pick MAC-keys: krec, ktok. Create token TR implementing the
following functionality. On input a tuple (r||c, σrec, y): if Vrfy(krec, r||c, σrec) = 1
and (c = y OR c = y ⊕ r) then output σtok = Mac(ktok, y) else output ⊥.
(Formally, RExtTok sends (create, sid, RExtTok, CExtTok, TR) to Fwrap). Send TR to
the sender CExtTok.

Commitment of the Secret Bit: ComBit.

2. CExtTok ⇔ RExtTok: run 〈CIdealTok(com, b),RIdealTok(com)〉 so that CIdealTok commits
to bit b. Let (r, c) be the transcript of such commitment phase. Let y be the
opening of c.

3. Receiver RExtTok: compute σrec ← Mac(krec, r||c). Send σrec to Committer CExtTok.

4. Committer CExtTok: query TR with q= (r||c, σrec, y) (i.e., send
(run, sid,CExtTok, TR, q) to Fwrap) and obtain σtok. If token TR aborts, set σtok = 0n.

Commitment of TR’s Response: ComResp.
CExtTok ⇔ RExtTok: run 〈CIdealTok(com, σtok),RIdealTok(com)〉 so that CExtTok com-
mits to the response σtok received from TR.

Decommitment Phase

1. CExtTok ⇔ RExtTok: opening of both commitments.
Run 〈CIdealTok(open, b),RIdealTok(open)〉 and 〈CpufIdeal(open, σrec),RpufIdeal(open)〉.

2. Receiver RExtTok: If both decommitment are successfully completed, then RExtTok

gets the bit b′ along with the opening y′ for ComBit and string σ′tok for ComResp.
If Vrfy(ktok, r||y′, σ′tok) = 1 then RExtTok accept and output b′. Else, reject.

Figure 3.7: ExtTok: Ideal Extractable Commitment in the Fwrap model.

E runs in polynomial time. E follows the procedure of the honest receiver, which is
efficient.

Simulation. The extractor E follows the procedure of the honest receiver RExtTok, and
additionally it collects the queries made by A to TR. Therefore the view of A
interacting with E is identical to the view of A interacting with RExtTok.

Extraction. We show that, probability that the extractor E outputs ⊥ (i.e., it fails
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Extractor E
E simulates the creation of TR. Queries made by A to TR are intercepted by E, stored
in the variable Q, and then answered faithfully (i.e., by following the code of an honest
TR).
Commitment Phase:
E honestly follows the procedure of RExtTok. If the commitment phase is accepting, E
proceeds to the extraction phase. Else, it halts. Let (r, c) be the transcript of ComBit.
Extraction Phase:

- If there exists a query q= (r||c, σrec, y) ∈ Q such that Vrfy(krec, r||c, σrec) = 1 and
(c = y ) then output 0.

- If there exists a query q= (r||c, σrec, y) ∈ Q such that Vrfy(krec, r||c, σrec) = 1 and
(c = y ⊕ r ) then output 1.

- Case 1) If there exist queries q0, q1 ∈ Q s.t. q0 = (r||c, σrec, y0) and q1 = (r||c,
σrec, y1), and Vrfy(krec, r||c, σrec) = 1 and both y0, y1 are valid openings for (r||c)
then output ⊥.

- Case 2) If no queries are accepting, output ⊥.

Figure 3.8: E: Extractor associated to ExtTok.

in extracting the bit) but the adversary A is instead able to provide an accepting
decommitment is negligible. From Fig. 3.8 E fails in the extraction in two cases.

In case 1, the adversary queries the token with two valid openings for the same
commitment c. In this case, the commitment c is not binding. We argue that,
due to the binding property of protocol IdealTok, probability that A later provides
an accepting decommitment for c is negligible. The reason is that, an opening of
c is the pair x, y such that y = Tc(x). Note also that |x| = n while |y| = 3n.
The commitment c is equivocal only if c = y0 and r = y0 ⊕ y1 for some pair
y0, y1 ∈ {0, 1}3n. Since Tc is sent to the receiver before the string r has been
observed, probability that Tc has been programmed with a pair of strings which
exclusive-or is r is negligible. Since x is only n bits, the committer cannot later
instruct the token Tc to answer the value yb. Thus, probability that A computes
a commitment c which is equivocal and can be accepted in the decommitment, is
negligible as well. Hence, in case 1) extractability is not violated since the extractor
fails only when the decommitment will be accepted whp.

Now, consider case 2. Let r||c be the transcript of the commitment of ComBit.
In case 2, the adversary A did not query the token TR with the opening of the
commitment c (but she might have queried with other values). We argue that,
in this case, probability that A provides an accepting decommitment is negligible.
Assume, towards a contradiction, that A provides an accepting decommitment in
protocol ExtTok. This means that A committed to a valid MAC, computed with
the key ktok, of the opening y of commitment c, without querying TR with y. Now,
A can compute such a MAC in two ways. Either, A was able to extract the key
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ktok by exploiting its access to the stateless TR, or A was able to forge the MAC
under key ktok.

Due to the unconditional one-time unforgeability of MAC and the statistically
binding of IdealTok, A cannot query the token TR more then one time (thus ex-
tracting the key). Namely, it cannot query TR on values which prefix is different
from r||c, σrec where σrec is received from the receiver (extractor). This is due to
the one-time unforgeability of the MAC used to compute σrec, and from the fact
that A observes only one MAC computed with krec. Once the prefix r||c is fixed,
due to the binding of IdealTok, probability that A can query the token for more
then one opening is negligible (except the case in which c is properly crafted, that
we analyzed before). Thus, probability that A obtains two MACs and extracts the
key ktok, is negligible.

Since A cannot extract ktok, the only case in which it can generate a valid new
mac for an opening y, without querying the token, is by forging the MAC. Due to
the unforgeability of MAC, this happens with negligible probability.

3.5 Optimization and reusing of PUFs/Tokens

Recall that protocol UCComCompiler requires parties to run 2 · (2n) extractable commit-
ments. In the security proof of protocol UCComCompiler we treat an extractable commit-
ment as a black box. Hence, each extractable commitment runs using an independent
PUF/Token. However, if the security parameters of PUFs and the functions embed-
ded in the stateless tokens are properly set, then one can re-use the same PUF/Token
across all 4n executions. Thus, within a single execution of UCComCompiler one can
reuse the same PUF/Token for all the extractable commitments. The reason is that, all
extractable commitments are run in parallel. However, note that the same PUF/Token
cannot be used among concurrent executions of UCComCompiler. This is consistent with
the basic UC-framework, where the same instance of setup assumption cannot be shared
among several protocol executions.

Indeed, in the basic UC framework (in contrast with the generalized UC model
of [17] for example), a setup assumption cannot be reused among more than one protocol
execution. Namely, composability among protocols is guaranteed as long as each protocol
uses an independent instance of the setup assumption. For instance, in the standard CRS
model, the same CRS cannot be shared by more than one protocol. The reason is that
the simulator needs to program the CRS in order to be able to simulate/extract from
the protocol.

However, a closer look to the security proof of our compiler, suggests that we do not
need the ability of programming the setup assumption. Therefore, one can ask whether,
our compiler is still secure when the same setup assumption is reused. The answer
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is that it depends from the implementation of the underlying extractable commitment
scheme. The security of both our extractable commitments relies on the fact that, any
response computed by the PUF/Token, sent by the receiver, is revealed to the receiver
only in the decommitment phase. This crucially rules out the possibility or reusing
the same PUF/Token for concurrent executions. Indeed, consider a malicious receiver
sending a token (or PUF) to the committer and starting two protocol executions. Let
us denote them session i and session j. Now, consider the case in which in session i the
decommitment phase is executed, while session j is still in the commitment phase. Recall
that, in the decommitment phase, the committer reveals to the receiver the answer of
the receiver’s token (or send back the receiver’s PUF). It is immediate to see, that if the
committer uses the same token is both sessions, the answer of the malicious token can
reveal information on the unopened session j. Thus hiding is trivially violated.
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- Chapter 4 -

Round-Optimal (Black-Box) Constructions for SOA-secure
Commitment Schemes

Introduction

Commitment schemes are a fundamental building block in cryptographic protocols. By
their usual notion, they satisfy two security properties, namely, hiding and binding.
While the binding property guarantees that a committed message can not be opened to
two distinct messages, the hiding property ensures that before the decommitment phase
begins, no information about the committed message is revealed. Binding and hiding are
preserved under concurrent composition, in the sense that even a concurrent malicious
sender will not be able to open a committed message in two ways, and even a concurrent
malicious receiver will not be able to detect any relevant information about committed
messages as long as only commitment phases have been played so far.

In [39], Dwork et al. pointed out a more subtle definition of security for hiding where
the malicious receiver is allowed to ask for the opening of only some of the committed
messages, with the goal of breaking the hiding property of the remaining committed
messages. This notion was captured in [39] via a simulation-based security definition,
and is referred to as hiding in presence of selective opening attack (SOA, for short). [39]
shows that, in a trusted setup setting, it is possible to construct a non-interactive SOA-
secure commitment scheme from a trapdoor commitment scheme. Indeed, in the trusted
setup the simulator sets the parameters of the trapdoor commitment, thus obviously it
knows the trapdoor. However, the fundamental question of whether there exist SOA-
secure commitment schemes in the plain model, is left open in [39]. We stress that the
question is particularly important since commitments are often used in larger protocols,
where often only some commitments are opened but the security of the whole scheme still
relies on hiding the unopened commitments. For instance, the importance of SOA-secure
commitments for constructing zero-knowledge sets is discussed in [46]1.

1In [46] some forms of zero-knowledge sets were proposed, and their strongest definition required
SOA-secure commitments.

89



90

The SOA-security experiment put forth in [39] considers a one-shot commitment
phase, in which the receiver gets all commitments in one-shot, picks adaptively a subset
of them, and obtains the opening of such subset. Such definition implicitly considers non-
interactive commitments and only parallel composition. Subsequent works have explored
several extensions/variations of this definition showing possibility and impossibility re-
sults. Before proceeding to the discussion of the related work, it is useful to set up the
dimensions that will be considered. One dimension is composition. As commitment is a
two-phase functionality, other than parallel composition, one can consider two kinds of
concurrent composition. Concurrent-with-barrier composition (considered in [11, 59]),
refers to the setting in which the adversarial receiver can interleave the execution of
several commitments, and the execution of decommitments, with the restriction that all
commitment phases are played before any decommitment phase begins. Thus, there is
a barrier between commitment and decommitment stage. Fully-concurrent composition
(considered in [100]) refers to the setting in which the adversary can arbitrarily inter-
leave the execution of the commitment phase of one session with the decommitment of
another session (and vice-versa).

Next dimension is the access to primitive, namely, if the construction uses a cryp-
tographic primitive as a black-box (in short, BB), or in a non black-box way (in short,
NBB).

Another dimension is simulation. In this discussion we consider always black-box
simulators (if not otherwise specified).

The question of achieving SOA-secure commitments without any set-up was solved
affirmatively in [11] by Bellare, Hofheinz, and Yilek, and in Hofheinz [59], who presented
an interactive SOA-secure scheme based on non-black-box use of any one-way permuta-
tion and with a commitment phase requiring a super-constant number of rounds. The
security of such construction is proved in the concurrent-with-barrier setting. [11, 59]
also shows that non-interactive SOA-secure commitments which use cryptographic prim-
itives in a black-box way do not exist. The same work introduces the notion of indistin-
guishability under selective opening attacks, that we do not consider in this work. The
results of [11, 59] left open several other questions on round optimality and black-box
use of the underlying cryptographic primitives.

In TCC 2011 [100], Xiao addressed the above open questions and investigated on
how to achieve nearly optimal schemes where optimality concerns both the round com-
plexity and the black-box use of cryptographic primitives. In particular, Xiao ad-
dressed SOA-security of commitment schemes for both parallel composition and fully-
concurrent composition and provided both possibility and impossibility results, sticking
to the simulation-based definition. Concerning positive results, [100] shows a 4-round
(resp., (t + 3)-round for a t-round statistically-hiding commitment) computationally
binding (resp., statistically binding) SOA-secure scheme for parallel composition. More-
over, [100] provides a commitment scheme which is “strong” (the meaning of strong is
explained later) SOA-secure in the fully-concurrent setting and requires a logarithmic
number of rounds. All such constructions are fully black-box. Concerning impossibility
results, [100] shows that 3-round (resp., 4-round) computationally binding (resp., statis-
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tically binding) parallel SOA-secure commitment schemes are impossible to achieve. As
explained later, in this paper – among other things – we present issues in the proof of se-
curity of the constructions shown in [100]. We also show that, the strong security claimed
for the construction suggested for the fully-concurrent setting, is actually impossible to
achieve, regardless of the round complexity. We contradict the lower bounds claimed
in [100] by providing a 3-round fully black-box commitment scheme which is SOA-secure
under concurrent-with-barrier composition, which implies parallel composition.

In a subsequent work [102], after our results became publicly available, Xiao showed
a black-box construction of 4-round statistically-binding commitment scheme which is
SOA-secure under parallel composition. As we shall see later, our 3-round and 4-round
schemes are only computationally binding, but are secure in the stronger setting of
concurrent-with-barrier composition.

In [101], the same author provides an updated version of [100]. Concerning positive
results, [101] includes the (t + 3, 1)-round construction of [100] and shows a new simu-
lation strategy for it. Concerning impossibility results, [101] includes the lower bounds
of [100] that are still valid for 2-round (resp., 3 round) computationally hiding and
computationally (resp., statistically) binding, parallel SOA-secure commitment scheme
with black-box simulators. [101] contains also other contributions of [100] that are not
contradicted by this work.

In [8], Bellare et al. proves that existence of CRHFs implies impossibility of non-
interactive SOA-secure commitments (regardless of the black-box use of the crypto-
graphic primitives). In fact, they show something even stronger; they show that this
impossibility holds even if the simulator is non-black-box and knows the distribution of
the message space. An implication of such results is that, standard security does not
imply SOA-security. Previous results in [11, 59] only showed the impossibility for the
case of black-box reductions.

In [84], Pass and Wee provide several black-box constructions for two-party protocols.
Among them it provides constructions for look-ahead trapdoor commitments (in a look-
ahead commitment, knowledge of the trapdoor is necessary already in the commitment
phase in order for the commitment to be equivocal, in this paper we call such commit-
ments “weak trapdoor commitments”), and trapdoor commitments. Such constructions
have not been proved to be SOA-secure commitment schemes, as SOA-security is proven
in presence of (at least) parallel composition, while security of the trapdoor commit-
ment of [84] is proved only in the stand-alone setting. In the full version of this paper
we discuss how the look-ahead thread of [84] can be plugged in our construction based
on weak trapdoor commitments, to obtain a 6-round SOA-secure commitment scheme
in the concurrent-with-barrier setting.

Our Contribution

In this work we focus on simulation-based SOA-secure commitment schemes, and we
restrict our attention to black-box simulation, and (mainly) black-box access to cryp-
tographic primitives (like in [100]). Firstly, we point out various issues in the claims
of [100]. These issues essentially re-open some of the open questions that were claimed
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to be answered in [100]. We next show how to solve (in many cases in a nearly optimal
way) all of them. Interestingly, our final claims render quite a different state-of-the-art
from (and in some cases also in contrast to) the state-of-the-art set by the claims of [100].

In detail, by specifying as (x, y) the round complexity of a commitment scheme when
the commitment phase takes x rounds and the decommitment phase takes y rounds, we
revisit some claims of [100] and re-open some challenging open questions as follows.

1. The proof in [100] of the non-existence of (3, 1)-round schemes assumes implicitly
that the sender sends the last message during the commitment phase. We show
here that surprisingly this assumption is erroneous, and that one round might
be saved in the commitment phase if the receiver goes last. This re-opens the
question of the achievability of (3, 1)-round SOA-secure schemes, even for just
parallel composition.

2. There are issues in the proof of binding and SOA-security of the (4, 1)-round scheme
of [100] for parallel composition, and it is currently unknown whether the scheme
is secure. The same issue in the SOA-security proof exists for the (t+ 3, 1)-round
statistically binding scheme of [100] which is based on any t-round statistically-
hiding commitment. Indeed, for both constructions, SOA-security is claimed to
follow from the simulation technique of Goldreich-Kahan [48]. The problem is
that the simulator of [48] was built for a stand-alone zero-knowledge protocol
where an atomic sub-protocol is repeated several times in parallel, and the verifier
cannot selectively abort one of the sub-protocols. Instead in the SOA-setting the
adversarial receiver interacts with multiple senders and can decide to abort only
a subset of the sessions of its choice adaptively based on the commitment-phase
transcript.

We note that this implies that [100] contains no full proof of a constant round SOA-
secure scheme (but we remark that, subsequent to our results, the same author
presented a new proof of the (t+ 3, 1)-round scheme based on statistically-hiding
commitment in the work [102, 101]).

3. There is an issue in the proof of security of the fully-concurrent SOA-secure com-
mitment scheme proposed in [100]. The security of such construction is claimed
even for the case in which the simulator cannot efficiently sample from the dis-
tribution of messages committed to by the honest sender (but needs to query an
external party for it).2 This notion is referred in [100] as “strong” security. This
issue in [100] re-opens the possibility of achieving schemes that are strong SOA-
secure under fully concurrent composition (for any round complexity).

In this paper we solve the above open problems (still sticking to the notion of black-
box simulation as formalized in [100]) as follows.

1. We present a (3, 1)-round scheme based on BB use of any trapdoor commitment
(TCom, for short), which contradicts the lower bound claimed in [100].

2For simplicity, we shall hereafter refer to this case as the simulator not knowing the distribution.
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We also provide several constructions based on BB use of various weaker assump-
tions. We show: a (3, 3)-round scheme based on BB use of any OWP, a (4, 1)-round
scheme based on BB use of any weak trapdoor commitment (wTCom, for short)3.

2. We show that when the simulator does not know the distribution of the mes-
sages committed to by the honest sender, there exists no scheme that achieves
fully concurrent SOA-security, regardless of the round complexity and of the BB
use of cryptographic primitives. Thus contradicting the claimed security of the
construction given in [100].

3. As a corollary of our (3, 1)-round scheme based on BB use of any TCom, there exists
a (3, 1)-round scheme based on NBB use of any one-way function (OWF). This
improves the round complexity in [11] from logarithmic in the security parameter
to only 3 rounds and using minimal complexity-theoretic assumptions. Moreover,
we observe that (as a direct consequence from proof techniques in [100]) a (2, 1)-
round SOA-secure scheme is impossible regardless of the use of the underlying
cryptographic primitive (for black-box simulation only). Thus, our (3, 1)-round
scheme for black-box simulation is essentially round-optimal.

Notice that both our (3, 1)-round protocols – the one based on BB use of TCom and
the other based on NBB use of OWFs – contradict the impossibility given in [100], that
was claimed to hold regardless of the access to the cryptographic primitives.

All the constructions shown in this paper are secure under concurrent-with-barrier
composition, which obviously implies parallel composition. Our simulators work for
any message distributions, and do not need to know the distribution of the messages
committed to by the honest sender. In light of our impossibility for the fully concurrent
composition (see Item 2 of the above list), the concurrency achieved by our schemes
seems to be optimal for this setting.

As an additional application, we also show that our (3, 1)-round schemes can be
used to obtain non-interactive (concurrent) zero knowledge [40] with 3 rounds of pre-
processing. This improves upon [27] where (at least) 3 rounds of interactions are needed
both in the pre-processing phase and in the proof phase. Moreover, the simulator of [27]
works only with non-aborting verifiers, while our simulator does not have this limitation.
This application also establishes usefulness of concurrency-with-barrier setting.

On simulator not knowing message distribution. All our protocols and impos-
sibility results are in the setting where the simulator by itself cannot efficiently sample
from the message distribution but needs to query an external oracle for the same. Posi-
tive results can only be stronger with this requirement.

3This result indeed requires a relaxed definition of trapdoor commitment where the trapdoor is
required to be known already during the commitment phase in order to later equivocate. We call it
“weak” because any TCom is also a wTCom.
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Selective opening, adaptive security, trapdoor commitments and non-mal-
leable commitments. The concept of commitments secure in presence of selective
opening attacks is very related to adaptively secure commitments 4, and trapdoor com-
mitments, – in which there exists a trapdoor that allows to open a commitment in many
ways. However, they are three different settings.

First, trapdoor commitments are not necessarily SOA-secure (in the plain model).
The reason is that trapdoor commitments only guarantee that there exists a trapdoor
which would allow to equivocate a commitment, however, such trapdoor is clearly not
available to a simulator. To achieve SOA-security from a trapdoor commitment scheme
one should provide a mechanism for the simulator to get the trapdoor, still not violating
binding. The converse moreover is not true, namely, a SOA-secure commitment is not
necessarily also a trapdoor commitment. This comes from the fact that the simulator of
a SOA-secure commitment could use rewinding capabilities instead of a trapdoor that
might not exist at all.

Second, a commitment scheme that is adaptively secure in the parallel composition,
is also parallel SOA-secure commitment. The converse is not necessarily true. Namely,
a SOA-secure commitment scheme is not necessarily adaptively secure. The reason is
that in a selective opening attack, a malicious receiver can “corrupt” the sender in the
decommitment phase only, and by definition, it is allowed to see only the openings of
the commitments instead of the whole state of the sender.

Finally, we stress that our adversary can play as sender only or as receiver only.
An interesting question is which type of SOA security can be achieved also against
man-in-the-middle attacks. The recent work of [55] gives hope towards a construction
of a constant-round non-malleable SOA-secure protocol with black-box simulation and
black-box use of any one-way function.

This chapter is divided in three main sections. In the first section we recall the
definition of Selective Opening Attacks for Commitment Schemes, and we discuss the
“concurrent-with-barrier” variant. In the second section we provide a round-optimal (3
rounds) construction for concurrent SOA-secure Commitment Scheme, that uses only
black-box access to any (two-round) Trapdoor Commitment Scheme. We also show how
to instantiate such construction with a trapdoor commitment based on any one-way
function. In the same section we provide a construction based on black-box uses of
weak trapdoor commitments, and it requires 4 rounds (thus is not optimal), assuming
the existence of two-round weak trapdoor commitment scheme. All our constructions
are not secure in a “fully” concurrent setting, but only in the “concurrent with barrier”
setting, that we define.

In the last section of this chapter we prove that this is not a limitation of our con-
structions, but that achieving (black-box) “fully concurrent” SOA security is impossible.

4In such a notion, an adversary can corrupt a party anytime during the protocol execution, obtaining
the party’s internal state.
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4.1 Definitions

We start by providing the definition of Selective Opening Attack for commitment schemes.

Definition 19 (Hiding in presence of Selective Opening Attacks (slight variation of [11,

59])). Let k = poly(n), let B be a k-bit message distribution and b
$← B be a k-bit vector,

let I = {Ik}k∈N be a family of sets, where each Ik is a set of subsets of [k] denoting the
set of legal subsets of (indexes of) commitments that the receiver (honest or malicious)
is allowed to ask for the opening. A commitment scheme Com = (Gen,C,R) is secure
against selective opening attacks if for all k, all sets I ∈ I, all k-bit message distributions
B, all PPT relations R, there exists an expected PPT machine Sim such that for any
PPT malicious receiver R∗ there exists a negligible function ε such that:

Advsoa
Com =

∣∣Pr [Expreal
Com,C,R∗(n)→ 1

]
− Pr

[
Expideal

Com,Sim,R∗(n)→ 1
] ∣∣ ≤ ε(n)

The probability is taken over the choice of the random coins of the parties.

Experiment Expreal
Com,C,R∗(n): Experiment Expideal

Com,Sim,R∗(n):

pk
$← R∗(1n); pk

$← R∗(1n);

b
$← B; b

$← B;

I
$← 〈Ci(pk, com,b[i])i∈[k],R

∗(pk, recv)〉; I
$← SimR∗(pk);

(·, ext) $← 〈Ci(open)i∈I ,R
∗(open)〉; ext

$← SimR∗(b[i])i∈I ;
output R(I,b, ext). output R(I,b, ext).

We denote by (·, ext) $← 〈Ci(·),R∗(·)〉 the output of R∗ after having interacted concur-
rently with k instances of C each one denoted by Ci. In the paper we call an instance
as a session. A malicious receiver R∗ can run many sessions in concurrency with the
following limitation. R∗ runs commitment phases concurrently for polynomially many
sessions, but it can initiate the first decommitment phase only after the commitment
phases of all the sessions have been completed (and therefore after the set of indexes has
been requested). This means that the set of indexes I (i.e., the commitments asked to be
opened), depends only of the transcript of the commitment phase. We call this definition
concurrent-with-barrier (CwB, for short), meaning that many commitment phases
(decommitment phases) can be run concurrently but the commitment phase of any ses-
sion cannot be interleaved with the decommitment of any other session. Notice that as
in [100], our definition assumes that the honest receiver chooses to open only a subset

of the commitments, but this is done independently of the transcript (i.e., I
$← I). This

means that in the “SOA-commitment” functionality (differently from traditional com-
mitment functionality) the receiver also has an input that corresponds to opening/not
opening.

Remark 2. In this paper, unless otherwise mentioned, a SOA-secure commitment scheme
is a commitment scheme that is SOA-secure under CwB composition. In fact, all our
positive results are for the setting of CwB composition.
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On our choice of definitions

We now discuss the main motivations behind the choices that we made to obtain the
above definitions.

Concurrency-with-barrier vs. parallel and concurrent composition. In [100]
Xiao provides two main definitions: SOA-security under parallel (PAR) composition
and SOA-security under “fully” concurrent composition (CC). In the fully concurrent
definition there is no barrier between commitment and decommitment phase: R∗ is
allowed to interleave the commitment phase of one session with the decommitment phase
of another, basically having the power of deciding which decommitment/commitment
to execute, depending on the transcript of the commitment and decommitment of other
sessions. This definition is pretty general, but unfortunately, as we show in this paper,
achieving this result is impossible (under the assumption that the simulator does not
know the distribution of the messages committed to by the honest sender); this is in
contrast to [100] where it is claimed that this definition is achievable. The concurrent-
with-barrier composition that we adopted (following [59]) implies security under parallel
composition while due to the barrier between commitment and decommitment phase, it
is weaker than the fully concurrent definition of [100].

Decommitment phase can be interactive. Following [59] our definition is more
general than the one of [100] since it allows also the decommitment phase to be interac-
tive.

Honest party behaviour. We follow [100] in defining the behaviour of the honest
receiver i.e, R chooses the subset of commitments to be opened according to some distri-
bution I. To see why this definition makes sense, think about extractable commitments
where the sender and receiver engage in many commitments of pairs of shares of a mes-
sage but finally only one share per pair is required to be opened in the commitment
phase.

Concerning the honest sender, we assume that R∗ interacts with k independent
senders, that are oblivious to each other, and play with input b[j], while [100] considers
a single sender Ck who gets as input the complete k-bit string and plays k independent
sessions with R∗. This variation is cosmetic only.

Comparison with the definitions of [11, 59]. In [11, 59] the behaviour of the honest
receiver is not explicitly defined, implying that the honest receiver always obtains all the
openings. In order to be more general and to make SOA-secure commitments useful
in more general scenarios, we deviate from this definition allowing the honest receiver
to ask for the opening of a subset of the commitments. Moreover, the set of indexes I
chosen by the (possibly malicious) receiver is explicitly given as input to the relation R.

Summing up, the definition that we adopt mainly follows the one of [11, 59] and is
more general than the one of [100] in the fact that it allows interaction also during the
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decommitment phase, and provides concurrency-with-barrier that implies the definition
of security under parallel composition. Moreover, our definition is more general than
the one of [59] since it allows also the the honest receiver to choose the commitments
to be opened. However, our definition is weaker than the concurrent definition of [100]
that however we show to be impossible to achieve (when the distribution of the messages
committed by C is unknown to Sim).

4.2 Constructions

In this section we present constructions of a round-optimal SOA-secure commitment
scheme based on BB use of trapdoor commitments. In particular we show that if 2-round
(where the first round only serves for the receiver to send the public parameters) trapdoor
commitment schemes exist5 then a 3-round commitment scheme that is secure under
selective opening attack exists. Under the assumption that weak trapdoor commitment
schemes exist, in Section 4.2.2 we present a 4-round construction.

The main idea behind both protocols is to require the sender to commit to its private
input using a trapdoor commitment scheme and to make the trapdoor information ex-
tractable to the black-box simulator. This allows the simulator to cheat in the opening
phase without changing the transcript of the commitment phase. Obviously, the pa-
rameters of the trapdoor commitment are generated by the receiver (if this was not the
case then a malicious sender can cheat in decommitment phase using the trapdoor), and
are made extractable through cut-and-choose techniques. In more details, the protocol
goes as follows. R runs the generation algorithm of the trapdoor commitment scheme
(TCGen) to generate the public parameters used by C to commit to its private bit. To
allow extraction of the trapdoor, we require that R provides 2n public parameters and
C asks to “reveal” the trapdoor of a random n-size subset of them. C will use the re-
maining n parameters (for which the trapdoors are still hidden) to commit to n shares
of its secret input. In this way the equivocation requires the knowledge of one trapdoor
only among the set of the remaining n keys that were not revealed. Thus, the simulator
first commits to n random bits, then through rewinding threads it will extract from R
at least one trapdoor of the remaining unrevealed keys. One trapdoor is sufficient to
equivocate one of the shares already committed, and in turn, to decommit to any bit.

In Protocol 1, that uses trapdoor commitments, the simulator can commit without
knowing the trapdoor, thus the commitment of the shares can be merged with the cut-
and-choose phase, therefore yielding a 3-rounds commitment phase. In the protocol
that uses weak trapdoor commitments (see Protocol 2 in Section 4.2.2), the simulator
needs to extract the trapdoor before committing (since it will be able to equivocate only
commitments that are computed using the trapdoor), therefore the commitment must
be postponed after the completion of the cut-and-choose phase. This adds one more
round to the commitment phase.

5[85] is an example of a trapdoor commitment scheme where the public parameters pk are generated
by the receiver and sent to the sender in the first round. Given pk, the commitment procedure is
non-interactive.
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Finally, binding follows straight-forwardly from the binding of the trapdoor commit-
ment scheme used as sub-protocol.

4.2.1 SOA-secure Commitment based on Trapdoor Commitments

Let us denote as TC = (TCGen, CTC, RTC, TCFakeDec) a trapdoor commitment scheme.
In the following we show a protocol SOACom = (Ssoa,Rsoa) that uses TC as sub-protocol
in a black-box fashion. If the commitment phase of TC is non-interactive (given the
public parameters in input) then the following construction yields a (3,1)-round com-

mitment scheme. We denote by 〈CTC
c̄hi
i ,RTC

c̄hi
i 〉 the i-th invocation of sub-protocol TC

run with public key pkc̄hi . Here chi denotes the ith challenge for the cut-and-choose, i.e.,
Ssoa computes the trapdoor associated to the key pkchi , while it commits to the ith share
of the input using key pkc̄hi (for which the trapdoor will not be revealed).

Protocol 1. [(3,1)-Round SOA-Secure Commitment Scheme] [SOACom = (Ssoa,Rsoa)]

Commitment phase.

Rsoa: For i = 1, . . . , n:

1. r0
i , r

1
i

$← {0, 1}n; (pk0
i , sk

0
i ) ← TCGen(r0

i ); (pk1
i , sk

1
i )← TCGen(r1

i );

2. send (pk0
i , pk

1
i ) to Ssoa;

Ssoa: On input a bit b. Upon receiving {pk0
i , pk

1
i }i∈[n]:

1. secret share the bit b: for i = 1, . . . , n: bi
$← {0, 1}, such that b = (

⊕n
i=1 bi);

2. for i = 1, . . . , n do in parallel:

• send chi
$← {0, 1} to Rsoa;

• run 〈CTC
c̄hi
i (pkc̄hii , com, bi),RTC

c̄hi
i (pkc̄hii , recv)〉 with Rsoa;

Rsoa: Upon receiving ch1, . . . , chn: if all commitment phases of protocol TC were suc-
cessfully completed, send {rchii }i∈[n] to Ssoa;

Ssoa: Upon receiving {rchii }i∈[n] check consistency: for i = 1, . . . , n: (pk′chii , sk′chii ) ←
TCGen(rchii ); if pk′chii 6= pkchii then abort.

Decommitment phase.

Ssoa: for i = 1, . . . , n: run (·, b′i)← 〈CTC
c̄hi
i (open),RTC

c̄hi
i (open)〉 with Rsoa;

Rsoa: If all opening phases were successful completed output b′ ← ⊕n
i=1 b

′
i. Otherwise,

output ⊥.

Theorem 9 (Protocol 1 is secure under selective opening attacks). If TC = (TCGen,
CTC, RTC, TCFakeDec) is a trapdoor commitment scheme, then Protocol 1 is a commit-
ment scheme secure against selective opening attacks.
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Proof. In the following, we prove completeness, binding and hiding under selective-
opening-attacks of the (3, 1) round protocol presented in Protocol 1.

We refer to the execution of the commitment (resp., decommitment) procedure of the
sub-protocol TC as sub-commitment (resp., sub-decommitment). The malicious receiver
R∗soa plays k concurrent sessions of SOACom; more precisely, she will run k concurrent ex-
ecutions of the commitment phase, and up to m = |I| concurrent decommitment phases.

Completeness. It follows from the completeness of the sub-protocol TC.

Binding. For the binding property it is sufficient to consider the protocol in the stand-
alone setting. Therefore we focus on one single session of the protocol SOACom.

We have to show that any PPT malicious sender C∗soa is not able to provide two dis-
tinct valid openings for the same commitment transcript with non-negligible probability.
Note that the decommitment phase consists only of the opening of n sub-commitments
for which C∗soa has not seen the secret keys 6. Therefore, if C∗soa is able to provide two
distinct valid openings, it must be the case that C∗soa is able to open at least one of the
sub-commitments to both 0 and 1, therefore breaking the binding of TC. Due to the
binding of TC this event happens with negligible probability.

Formally the reductions goes as follows. Assume that there exists C∗soa who breaks
the binding of SOACom with non-negligible probability δ. Then there exists at least
one pair (i, σ) such that C∗soa opens the commitment computed using the public key
pkσi in two ways; more formally such that: (·, bi) ← 〈CTCi(open, 0),RTCi(open)〉 and
(·, b′i) ← 〈CTCi(open, 1),RTCi(open)〉 such that ⊥ 6= bi 6= b′i 6= ⊥. Thus we construct a
sender C∗TC breaking the binding of the protocol TC with probability δ/2n.

C∗TC plays in the experiment Expbinding
TC receiving as input the public key pk and in-

teracting with the honest receiver RTC. It runs C∗soa as subroutine simulating the receiver
Rsoa: it randomly picks i ∈ [n], σ ∈ {0, 1} and sets pkσi = pk, while it honestly generates
2n−1 pairs of public/secret parameters running TCGen. Finally it sends the 2n−1 public
keys along with pkσi to C∗soa. Note that this message is distributed identically as the one
generated by the honest receiver Rsoa. Next, C∗TC engages in n sub-commitments with
C∗soa, except that the messages for the sub-commitment in position (i, σ) are forwarded
to the honest receiver RTC. When C∗soa sends the challenge ch1, . . . , chn: if chi = σ, then
C∗TC aborts (indeed it is not able to provide the randomness used to generate pk = pkσi ).
Otherwise, C∗TC answers as the honest receiver Rsoa, concluding the commitment phase.

In the opening phase, C∗TC is invoked to execute the opening phase with bits 0 and 1,
thus it invokes C∗soa as well, first with bit 0 and then with bit 1. Each time, C∗TC forwards
to RTC the i-th sub-decommitment received from C∗soa. C∗TC wins the binding experiment
for protocol TC if C∗soa provides two distinct openings for the i-th sub-commitment.
Therefore C∗TC wins the binding game with probability at least δ/2n.

Hiding under selective opening attack. We show a PPT simulator Sim that having

6We assume that if C∗soa computes a commitment using a public key for which she later asks to see
the secret key, she will be caught by the honest receiver.
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black-box access to the adversary R∗soa generates an output that is distributed as the
output generated by the interaction between R∗soa and Csoa in the real game.

Let m = |I| be the number of sessions required by R∗soa to be opened. In order to
associate the indexes to the sessions opened we use the following notation: we refer to
jl the session corresponding to the l-th index, where l = 1, . . . ,m. The simulator works
as follows.
SOA-simulator Sim

Initialization phase. Choose random tapes ranR, ranSim respectively for R∗soa and for
the commitment phase. Activate R∗soa(ranR).

Commitment phase (S1). (main thread)

• Upon receiving public keys {pk0
i , pk

1
i }i∈[n] from R∗soa for some session j ∈ [k]

do:

1. randomly choose bits b1, . . . , bn; ch1, . . . , chn;

2. for i = 1, . . . , n: commit to bi with pkc̄hii by invoking CTC with R∗soa. Send
challenge ch1, . . . , chn to R∗soa. If R∗soa aborts, then abort session j.

• Upon receiving {rchii }i∈[n] for some session j, check their consistency running

(skchii , pkchii ) ← TCGen(rchii ). If the check fails, abort session j. Otherwise

store the secret keys {skchii }i∈[n] for session j.

Commitment phase completion. When the commitment phase of all k sessions is
completed, Sim obtains the set of indexes I from R∗soa. Sim then outputs I and
obtains {b[j]}j∈I from the experiment.

Extraction phase (rewinding thread).
For l = 1, . . . ,m; for session jl ∈ I that was not-aborted in the main thread do:

1. activate R∗soa with randomness ranR and use ranSim to execute all the sessions
except jl.

2. in session jl, uniformly choose bits ch′1, . . . , ch
′
n and compute the sub-commitments

as in Step S1 (note that the view of R∗soa generated in this step is distributed
identically as in the main thread). If R∗soa aborts then go to Step 1. If R∗soa

starts new sessions, follow instructions as in Step S1.

3. When R∗soa replies with {rch
′
i

i }i∈[n]: if strings ch′1 . . . ch
′
n, ch1 . . . chn (the chal-

lenge used for session jl in the main thread) are equal then abort the simu-

lation. Else, if there exists an r
ch′i
i generating a valid pair (sk

ch′i
i , pk

ch′i
i ) where

pk
ch′i
i appeared in the jl-th session of main thread, and ch′i 6= chi then return

sk
ch′i
i . Otherwise go to Step 1.

Extraction completion. If Sim reaches this point, then for every(not-aborted) session
jl ∈ I there is at least one i for which Sim obtained both trapdoors sk0

i and sk1
i .
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Decommitment phase (S2) (main thread). Run R∗soa(ranR) till the completion of
the commitment phase using ranSim. Then for non-aborted sessions jl ∈ I, with
l ∈ [m], let b[jl] be the bit to decommit to in the session jl, let i be the index such
that Sim obtained sk0

i , sk
1
i for the session jl.

When R∗soa asks for the decommitment of the jl-th session proceed as follows:

1. for all l 6= i honestly run the sub-decommitment algorithm, i.e., 〈CTC
c̄hl
l (open),

RTC
c̄hl
l (open)〉, where chl is the challenge sent in the commitment phase of

the main thread. Compute b′i ← (
⊕n−1

l=1 bl)⊕ b[j].

2. to open the i-th sub-commitment run the sub-fake-decommitment algorithm

using the trapdoor information skc̄hii , i.e., (·, b′i)← 〈TCFakeDec(skc̄hi , open, b′i),

RTC
c̄hi
i (open)〉; If R∗soa aborts, then aborts this session.

Finally, output whatever R∗soa outputs.

For simplicity we are assuming that the underlying trapdoor commitment TC satisfies
the trapdoorness property for any b? ∈ {0, 1} (Pedersen commitment [85] achieves this
property). In case the trapdoorness holds only for a specific bit b?, then the above
simulator should be tweaked only in the extraction phase adding a further condition.
That is, when extracting a new secret key skchii for a session j, the simulator considers
the extraction phase successfully completed for such session, only if the commitment in
position (i, chi) is a commitment of b?. If this is not the case, then Sim continues the
rewinding threads. It is easy to see that this further condition is satisfied w.h.p and
similar analysis that we show for the simpler simulator apply.

Proposition 1. The simulator Sim runs in expected polynomial time in n.

Proof. Sim consists of three phases: commitment phase, extraction phase, decommit-
ment phase. Let us denote as tc, td, tfd, tg the running times required to execute,
respectively, the sub-commitment, the sub-decommitment, the fake-decommitment and
the generator algorithm of the protocol TC. By definition of TC all these running times
are polynomial in n.

In the commitment phase, for each session, Sim executes 2n sub-commitments and
verifies the validity of the response of R∗soa running the generation algorithm TCGen n
times. Plus there is a linear time due to the choice of the random challenge. Thus, the
running time of the commitment phase for one session is: tSimCom = tc · 2n + tg · n +
Θ(n). Hence, the total running time for the commitment phase is k · tSimCom, that is
polynomial.

After the completion of the commitment phase, Sim launches the rewinding threads,
so that it extracts at least one trapdoor for each session jl that has been asked for the
decommitment. The number of decommitments asked by R∗soa is m = |I|.

Sim extracts the trapdoors one session at time, hence it runs the extraction procedure
at most m times. For each (non-aborting) session jl, Sim forces upon R∗soa the same
transcript generated in the main thread, and it changes only the random challenge and
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the public keys used in the commitment phase of session l. Thus, the view of R∗soa is
distributed identically as in the main thread. Then it repeats this procedure rewinding
R∗soa until either a secret has been extracted or the fresh challenge chosen in a rewinding
thread is identical to the challenge sent in the main thread. The probability of the latter
event in any of the sessions is at most poly(n)/2n and thus is negligible.

More formally, let us denote by ζjl = ζ(ranR, jl) the probability that R∗soa, activated
with randomness ranR, correctly responded to the challenge (i.e., ch1, . . . , chn) sent by
Sim in the commitment phase of the jl-th session in the main thread. In each rewinding
thread the probability to get another correct answer (for some ch′i, . . . , ch

′
n) is still ζjl .

Thus, for each session jl, the expected number of rewinds needed for the extraction
of the trapdoor is bounded by 1/ζjl . Moreover, upon receiving a new challenge, R∗soa

may initiate new sessions (i.e., sessions that did not appear in the main thread). In this
case Sim follows the same procedure of the commitment phase, therefore each possibly
new session initiated during the rewind takes time at most tSimCom. Upon each rewind
R∗soa may initiate at most a polynomial number of sessions, therefore the additional work
of the simulator for each rewind, that we denote by trew, is bounded by poly(n) · tSimCom.
Obviously, once the simulator extracts the trapdoor for the target session, the new
sessions are discarded.

In the decommitment phase Sim executes n− 1 sub-decommitments plus one execu-
tion of the fake-decommitment algorithm, for at most m sessions. Each decommitment
phase takes running time: tSimDec = (n− 1) · td + tfd, that is polynomial in n.

Hence, the total expected running time is:

tSim = k · tSimCom +
m∑
l=1

ζjl
[ 1

ζjl
· trew + tSimDec

]
= poly(n).

Proposition 2. The distribution of the output of the simulator Sim having black-box
access to R∗soa is computationally indistinguishable from the output of R∗soa interacting
with the real sender Csoa.

Proof. Consider the following hybrids:

H0: In this experiment Sim has as input the bit-vector b ← B and follows the code of
the honest sender Ssoa. This is the real game.

H1: This hybrid is the same as H0 except that here, after Sim receives the set I from R∗soa

(upon the completion of the commitment phase), it launches the extraction phase.
That is, for each non-aborted session jl ∈ I, Sim launches the extraction phase to

obtain the trapdoor skc̄hii for at least one i ∈ [n]. Possible new sessions initiated by
R∗soa in the rewinding attempts of the extraction phase are handled by running the
honest sender procedure using the knowledge of b. The extracted trapdoors are
never used by Sim. We now argue that H0 and H1 are indistinguishable. First note
that, the extraction phase is initiated only for non-aborting sessions, therefore, only
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for those in which R∗soa correctly completed the commitment phase with non-zero
probability. Then note that the view of R∗soa in the rewinding thread is distributed
identically to her view in the commitment phase of the main thread. Thus the
only differences between H0 and H1 are: 1) in H1 Sim runs in expected polynomial
time and 2) in H1 Sim aborts with higher probability due to the possible aborts
in the rewinding threads.

Concerning 1), the expected running time is not a problem since we are only inter-
ested in the output of the experiment, and it will not be an issue in the reductions
shown for the next hybrids since rewinding threads that take longer than a fixed
polynomial can be truncated without perturbing the non-negligible probability of
success. Concerning 2), observe that in the rewinding threads an abort happens
when Sim picks a random challenge that is equal to the challenge sent in the main
thread, and it happens with at most negligible probability poly(n)/2n. Therefore,
hybrids H0 and H1 are statistically indistinguishable.

In the following experiments we first deal with the (potential) new sessions initiated
by R∗soa in the rewinding threads. Recall that Sim tries to extract the secret for one
session at time. For each rewinding attempt for the extraction of a session jl, R

∗
soa

may initiate several new sessions. We indicate with maxjl the maximum number
of new sessions started during the rewinding threads for the session jl. Note that,
for new sessions started during rewinding threads, Sim is never required to provide
the decommitment (therefore those sessions do not need to be rewound).

Hjl,s+1
2 : for l = 1, . . . ,m; for s = 0, . . . ,maxjl − 1. In hybrid Hjl,s+1

2 Sim works as in

experiment Hjl,s
2 except that, in the (s + 1)th new session started by R∗soa during

the extraction phase launched for session jl, Sim commits to a random bit.

Toward showing the indistinguishability of Hjl,s
2 and Hjl,s+1

2 , we first show that

Hjl,s
2 is indistinguishable from a hybrid H̄jl,s+1

2 where the bit committed to in the

(s+ 1)-th new session is the negation of the bit used in Hjl,s
2 .

More precisely, hybrid H̄jl,s+1
2 is the same as hybrid Hjl,s

2 except that in the com-
mitment phase of the (s + 1)-th new session initiated by R∗soa in the extraction
phase of session jl, one of the sub-commitments hides the opposite bit such that
the sum of the shares of all sub-commitments gives 1− b[t]. We denote the index
of the (s+ 1)-th new session by t, where 1 ≤ t ≤ k. More specifically, let b1, . . . , bn
be the shares of bit b[t] in the experiment H̄jl,s+1

2 , Sim flips one of the shares, i.e.

there exists one i such that Sim, differently from the experiment Hjl,s
2 commits to

b̄i, thus in turn committing to b̄[t].

Assume that there exists a distinguisher Dsoa that is able to tell apart hybrid
H̄jl,s+1

2 from Hjl,s
2 then it is possible to construct a distinguisher who breaks the

hiding of the commitment scheme TC. The reduction works as follows. R∗TC runs
R∗soa as a subroutine and simulates Sim as in experiment Hjl,s

2 except that, in the

new session t, upon receiving the public keys from R∗soa it forwards pkc̄hii to the
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external sender CTC. We stress that pkc̄hii could be maliciously chosen. This is
not a problem since the hiding experiment is defined for any public parameter pk∗

maliciously chosen by R∗.

Upon receiving the sub-commitment from CTC for the public key pkc̄hii , R∗TC ran-
domly chooses n− 1 random shares b1, . . . , bn− 1 and honestly executes n− 1 sub-
commitments using the remaining public parameters received from R∗soa. Then it
forwards all the sub-commitments to R∗soa. Finally R∗TC forwards the output of the
experiment to Dsoa and outputs whatever Dsoa outputs xored with

⊕
l∈[n],l 6=i bl.

Now, let bi such that
⊕

l∈[n] bl = b[t], if CTC has committed to the share bi, then

the view generated by R∗TC is distributed identically to hybrid Hjl,s
2 . Otherwise, if

CTC has committed to bit 1− bi then the view generated is distributed identically
to hybrid H̄jl,s+1

2 . By the hiding of protocol TC, we have that Hjl,s
2 and H̄jl,s+1

2

are indistinguishable.

Now, in Hjl,s+1
2 the bit committed in session t (i.e., the (s + 1)-th new session)

is a random bit, and therefore the output of any distinguisher on Hjl,s+1
2 will be

indistinguishable from the one of Hjl,s
2 and H̄jl,s+1

2 .

Therefore, H1 = H1,0
2 and H

jm,maxjm
2 are indistinguishable.

H
jl+1

3 : for l = 0, . . . ,m− 1: In this sequence of hybrids Sim performs the decommit-
ment phase of the sessions that have been asked for by R∗soa, using the trapdoor
extracted in the extraction phase, therefore, technically Sim can open to any bit.

More precisely, hybrid H
jl+1

3 is the same as hybrid Hjl
3 except that in H

jl+1

3 in the

decommitment phase of the jl+1-th session Sim uses the trapdoor skc̄hii (for some
i ∈ [n]) extracted for this session. That is, in session jl+1 Sim honestly performs
n − 1 sub-decommitments while the i-th sub-decommitment is executed running

TCFakeDec on input the bit bi that is computed as follows: bi ←
⊕

l∈[n],l 6=i b
c̄hl
l ⊕

b[jl+1]. Note that now in the opening, bi depends of the actual input of the sender.
However, in this experiment the share bi computed in the commitment phase is
identical to the share bi given in input to the algorithm TCFakeDec. More precisely,
TCFakeDec is not used to open to a different bit, but to the very same bit.

Assume that there exists a distinguisher Dsoa able to tell apart H
jl+1

3 from Hjl
3

with non-negligible probability δ, then it is possible to construct an adversary R∗TC

against the trapdoor property of TC. R∗TC runs in the experiment Exp
trap/Com
TC

against a sender CTC and works as follows.

It runs R∗soa as subroutine, it randomly chooses a session s, and then proceeds as
follows: for the commitment phase it simulates all sessions as in experiment Hjl

3

except the session s. In such session, R∗TC after having received the public keys from
R∗soa, performs the secret sharing of the bit b[jl+1] = b1 ⊕ · · · ⊕ bn, picks challenge

ch1, . . . , chn, an index i ∈ [n] , and forwards pkc̄hii ,bi to CTC. Then it engages in
n− 1 sub-commitments of TC with R∗soa for the commitment of bl, with l 6= i while
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for the i-th sub-commitment it forwards the messages received by CTC. Once the
commitment phase is over, R∗TC runs the extraction phase. If it does not get the

secret key skc̄hii it aborts. Otherwise, it continues executing the decommitment
phase.

In the decommitment phase R∗soa asks the opening of m sessions: {j1, . . . , jm}; if
s 6= jl+1 then R∗TC aborts. Otherwise it computes the decommitment phase of the
first l sessions (i.e., j1, . . . , jl) as in hybrid Hjl

3 , while for the decommitment of

session s (that is the jl+1-th session asked for opening) R∗TC sends skc̄hii to CTC

and forwards the decommitment received by CTC to R∗soa along with the remaining
n− 1 sub-decommitments honestly computed. Finally R∗TC forwards the output of
R∗soa to Dsoa and outputs what Dsoa outputs. Now, if in the jl+1-th session, the
i-th sub-decommitment was computed by algorithm TCFakeDec, then the view of
R∗soa is distributed identically as hybrid H

jl+1

3 , otherwise, if it was computed using

the honest sender procedure, then the view is distributed according to hybrid Hjl
3 .

Therefore, if Dsoa distinguishes the two experiments with non-negligible advantage

δ then R∗TC wins the game Exp
trap/Com
TC with advantage at least δ · mk · 1

2n that is

still non-negligible therefore breaking the trapdoor property of TC. Hence, H
jl+1

3

and Hjl
3 are computationally indistinguishable.

Therefore H
jm,maxjm
2 = Hj0

3 and Hjm
3 are computationally indistinguishable.

Hj+1
4 : for j = 0, . . . , k − 1. In this sequence of hybrids Sim performs the commitment

phase committing to random bits instead of using the vector b.

More precisely, hybrid Hj+1
4 is the same as Hj

4 except that in Hj+1
4 Sim performs

the commitment phase of the session j committing to a random bit instead of
b[j]. Due to hiding of the commitment scheme TC, and following the same argu-
ments for distinguishability of hybrids Hjl,s

2 and Hjl,s+1
2 , hybrids Hj+1

4 and Hj
4 are

indistinguishable.

By noticing H0
4 = Hjm

3 and that Hk
4 corresponds to the game played by the simu-

lator, we have that the claim holds.

SOA-secure Scheme based on NBB use of OWFs. We observe that, by instan-
tiating Protocol 1 with the Feige-Shamir trapdoor commitment scheme described in
Section 1.1.1, one can obtain a (3,1) SOA-secure scheme with non-black-box access to
OWFs.

4.2.2 SOA-secure Commitment based on Weak Trapdoor Commit-
ments

Let us denote as wTCom = (wTCGen, CTC, RTC, TCFakeCom, TCFakeDec) a weak-
trapdoor commitment scheme. In the following we show a construction SOACom =
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(Ssoa,Rsoa) that uses wTCom as a black-box. If wTCom is (2,1)-round weak trapdoor
commitment scheme the following construction is a (4,1)-round commitment scheme. As
in the previous construction, we indicate with 〈CTC

σ
i ,RTC

σ
i 〉 the i-th invocation of the

algorithms of protocol wTCom using the public key pkσi . The sender Ssoa has as input a
bit b.

Protocol 2. [(4,1)-round SOA-secure commitment scheme based on BB use of weak
trapdoor commitment] [SOACom = (Ssoa,Rsoa)]

Commitment phase.

Rsoa: For i = 1, . . . , n:

1. r0
i , r1

i
$← {0, 1}n; (pk0

i , sk
0
i ) ← wTCGen(r0

i );(pk
1
i , sk

1
i )← wTCGen(r1

i );

2. send {pk0
i , pk

1
i } to Ssoa;

Ssoa: Upon receiving {pk0
i , pk

1
i }i∈[n]: send ch1, . . . , chn to Rsoa where chi

$← {0, 1};

Rsoa: Upon receiving ch1, . . . , chn send {rchii }i∈[n] to Ssoa;

Ssoa: Upon receiving {rchii }i∈[n]:

1. check consistency: for i = 1, . . . , n: (pk′chii , sk′chii ) ← wTCGen(rchii ); if

pk′chii 6= pkchii then ABORT.

2. secret share the bit b: for i = 1, . . . , n: bi
$← {0, 1}, such that b = (

⊕n
i=1 bi);

3. run 〈CTC
c̄hi
i (pkc̄hii , com, bi),RTC

c̄hi
i (pkc̄hii , recv)〉 with Rsoa;

Decommitment phase.

Ssoa: For i = 1, . . . , n: run (·, b′i)← 〈CTC
c̄hi
i (open),RTC

c̄hi
i (open)〉 with Rsoa;

Rsoa: If all opening phases were successfully completed output b′ ←⊕n
i=1 b

′
i. Else output

⊥.

The above protocol can be instantiated with the weak trapdoor commitment scheme
based on BB access to OWPs shown in [84]. In such a protocol the commitment is
interactive, and follows the commit-challenge-response structure. The commitment is
such that if the sender knows the challenge in advance, it can commit in a way that allows
equivocation. In such a scheme the trapdoor is the challenge sent by the receiver, and in
turn, the public parameter is the (statistically hiding) commitment of the challenge. One
can plug such protocol in our (4,1)-round SOA-secure protocol and obtain a (6,1)-round
protocol (the commitment phase in [84] is interactive).

Theorem 10 (Protocol 2 is secure under selective opening attacks). If wTCom =
(wTCGen, CTC, RTC, TCFakeCom, TCFakeDec) is a weak-trapdoor commitment scheme,
then protocol 2 is a commitment scheme secure under selective opening attacks.
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Completeness. It follows from the completeness of the sub-protocol wTCom.
Binding. The binding proof follows the same logic of the one provided for Protocol 1,
and is therefore omitted.

Hiding under selective opening attack. We show a PPT simulator Sim that having
black-box access to the adversary R∗soa generates an output that is distributed as the
output generated from the interaction between R∗soa and the real world sender Csoa. The
simulator works as follows.
SOA-simulator Sim

Initialization phase. Choose random tape ranR and activate R∗soa(ranR).

Commitment phase. Main thread.

1. Upon receiving public keys {pk0
i , pk

1
i }i∈[n] for some session j ∈ [k]: pick a

random n-bit string ch1, . . . , chn and send it to R∗soa. Label this point as 1-j.

2. Upon receiving {rchii }i∈[n] for some session j, check their consistency by run-

ning (skchii , pkchii ) ← TCGen(rchii ). If the check fails, abort session j. In case

there exists a secret key (skc̄hii ) (for some i ∈ [n]) already stored for session
j, then the trapdoor for session j has been extracted, thus go to step 4. Else
go to step 3.

3. Extraction of secret keys for session j: start rewinding threads to extract

skc̄hii for some i ∈ [n]:

(a) rewind R∗soa up to point 1-j.

(b) send a randomly chosen challenge string ch′1, . . . , ch
′
n to R∗soa. If R∗soa

aborts, go to Step 3a.

(c) if R∗soa starts new commitment sessions, follow the commitment procedure
of the honest sender Ssoa committing to a random bit.

(d) when R∗soa replies with secrets {rch
′
i

i }i∈[n] for the session j: if the random
strings ch′1, . . . , ch

′
n and ch1, . . . , chn are equal, abort. Else, if there exists

at least one r
ch′i
i generating a valid pair (sk

ch′i
i , pk

ch′i
i ) where pk

ch′i
i was

received in Step 1-j and ch′i 6= chi store the secret key (sk
ch′i
i ) for session

j, rewind R∗soa up to Step 2 and return. Otherwise go to Step 3a.

4. Commitment of session j: On input the pair (sk0
i , sk

1
i ) proceeds with the

commitments for the session j;

(a) randomly choose bits b1, . . . , bn;

(b) for all bits bl s.t. l 6= i honestly run the sub-commitment algorithm: (·, bl)
$← 〈CTC

c̄hl
l (open), RTC

c̄hl
l (open)〉 with R∗soa where chl is the challenge sent

in Step 1-j.

(c) for the i-th sub-commitment, run the fake commitment procedure using

the secret key skc̄hii : 〈TCFakeCom (pkc̄hii , skc̄hii , com), RTC
c̄hi
i (pkc̄hii , recv)〉.

If R∗soa aborts, then aborts this session.
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Commitment phase completion. When the commitment phase is completed, Sim
obtains the set of indexes I from R∗soa and obtains {b[j]}j∈I from the experiment.

Decommitment phase. When R∗soa asks for the opening of session j ∈ I, run n sub-
decommitments as follows:

1. for all sub-commitments l 6= i honestly run the sub-decommitment algorithm:

(·, bl) $← 〈CTC
c̄hl
l (open), RTC

c̄hl
l (open)〉, where chl is the challenge sent in the

commitment phase. Compute b′i ← (
⊕

l∈[n−1] bl)⊕ b[j].

2. for the i-th sub-commitment run the fake-sub-decommitment algorithm using

the trapdoor information skc̄hii : (·, b′i)← 〈TCFakeDec(skc̄hi , open, b′i),RTC
c̄hi
i (open)〉.

If R∗soa aborts, then abort this session.

Finally, output whatever R∗soa outputs.

Proposition 3. The simulator Sim runs in expected polynomial time in n.

Proof. As the simulator strategy mainly follows the strategy of the simulator before the
analysis of the running time follows the same arguments shown in Proposition 1.

Proposition 4. The distribution of the output of simulator Sim having black-box access
to R∗soa is computationally close to the output of R∗soa interacting with real sender Ssoa.

Proof. Consider the following hybrids:

H0: In this experiment Sim has in input the bit-vector b ← B and follows the code of
the honest sender Ssoa. This is the real game.

In the following hybrids, we denote by κ the number of sessions opened by R∗soa

in the main-thread only. We denote by jl with l = 0, . . . , κ − 1 the l-th session
opened in the main thread for which Sim obtains a valid second message (i.e., the
values {rchii }i∈[n]) from R∗soa, and thus it has to extract the secret key in order to
be able to compute the sub-commitments in such session.

H
jl+1

1 (for l = 0, . . . , κ− 1): Experiment H
jl+1

1 is the same as experiment Hjl
1 except

that in the (l+ 1)-th session for which Sim obtains the values {rchii }i∈[n] from R∗soa,

it launches the extraction phase to extract the trapdoor skc̄hii for some i ∈ [n] for
the session jl+1. In the new sessions initiated by R∗soa during the rewinds, Sim runs
as the honest sender using the knowledge of b. However, the extracted trapdoor
is never used by Sim. We now argue that Hjl

1 and H
jl+1

1 are indistinguishable.
First note that, the extraction phase is initiated only if R∗soa correctly completed
the second step of the protocol with non-zero probability. Then note that the
view of R∗soa in the rewinding thread is distributed identically to her view in the
commitment phase. Thus the only differences between the two experiments is that
1) in Hjl+1

1 Sim runs in expected polynomial time, this is not an issue since we are
only interested in the output of the experiment (and it will not be a problem in the
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reductions shown for the next hybrids since rewinding threads that take more time
than a fixed polynomial, can be truncated, without perturbing the non-negligible
probability of success); 2) in Hjl+1

1 Sim aborts with higher probability due to the
possible aborts in the rewinding threads. These aborts happen when Sim picks
a random challenge that is equal to the challenge sent in the commitment phase.
This event happens with negligible probability (poly(n)/2n). Thus Hjl

1 and H
jl+1

1

are statistically indistinguishable. Note that Hj0
1 = H0 and Hjκ

1 = Hj0
2

Hjl,s+1
2 : for l = 1, . . . , κ; for s = 0, . . . ,maxjl − 1. In hybrid Hjl,s+1

2 Sim works as in

experiment Hjl,s
2 except that, in the (s + 1)th new session started by R∗soa in the

rewinding threads (recall that in each rewinding thread the view of R∗soa changes) for
session jl, Sim commits to a random bit. Toward showing the indistinguishability
of Hjl,s

2 and Hjl,s+1
2 , we first show that Hjl,s

2 is indistinguishable from an hybrid

H̄jl,s+1
2 where the bit committed in the (s + 1)-th new session is the opposite bit

used in Hjl,s
2 .

More precisely hybrid H̄jl,s+1
2 is the same as hybrid Hjl,s

2 except that in the com-
mitment phase of the (s+ 1)-th new session, which index (in the range between 1
and k of all sessions played in the current view) we denote by t, initiated by R∗soa

in the extraction phase of session jl, the last sub-commitment hides the opposite
bit such that the sum of the shares of all sub-commitments gives 1 − b[t]. More
specifically, let b1, . . . , bn the shares of bit b[t], in experiment H̄jl,s+1

2 , Sim flips one
of the shares, i.e. there exist one i such that Sim, differently from the experiment
Hjl,s

2 commits to b̄i, thus in turn committing to b̄[t].

Assume that there exists a distinguisher Dsoa that is able to tell apart hybrid
H̄jl,s+1

2 from Hjl,s
2 then it is possible to construct a distinguisher who breaks

the hiding of the commitment scheme wTCom. The reduction works as follows.
R∗wTCom simulates Sim as in experiment Hjl,s

2 except that in the new session t, it
proceeds as follows: after having received the public keys from R∗soa, it picks a ran-

dom n-bit string chi, . . . , chn and an index i and it forwards pkc̄hii to the external
sender CwTCom.

Upon receiving the sub-commitment from CwTCom for the public key pkc̄hii , R∗TC

randomly chooses n−1 random bits b1, . . . , bn−1 and honestly executes n−1 sub-
commitments using the remaining public parameters received from R∗soa. Then it
forwards all the sub-commitments to R∗soa. Finally R∗TC forwards the output of the
experiment to Dsoa and outputs whatever Dsoa outputs xored with

⊕
l∈[n],l 6=i bl.

Now, let bi such that
⊕

l∈[n] bl = b[t], if CwTCom has committed to the share bi, then

the view generated by R∗TC is distributed identically to hybrid Hjl,s
2 . Otherwise, if

CwTCom has committed to bit 1−bi then the view generated is distributed identically
to hybrid H̄jl,s+1

2 . By the hiding of protocol wTCom, it holds hat Hjl,s
2 and H̄jl,s+1

2

are indistinguishable.

Now, in Hjl,s+1
2 the bit committed in session t (i.e., the (s + 1)-th new session)
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is a random bit, and therefore the output of any distinguisher on Hjl,s+1
2 will be

indistinguishable from the one of Hjl,s
2 and H̄jl,s+1

2 .

Therefore, H1 = Hj1,0
2 and H

jm,maxjm
2 are indistinguishable.

H
jl+1

3 : for l = 0, . . . , κ− 1: In this sequence of hybrids Sim uses the trapdoor extracted
in the extraction phase. In each session, it performs the commitment/decommitment
phase by using the algorithms TCFakeCom/TCFakeDec for one of the n the sub-
commitments. Therefore, in this hybrid Sim does not use the knowledge of b
anymore.

More precisely, hybrid H
jl+1

3 is the same as hybrid Hjl
3 except that in H

jl+1

3 in the

decommitment phase of the jl+1-th session Sim uses the trapdoor skc̄hii (for some
i ∈ [n]) extracted for this session. That is, in session jl+1 Sim honestly performs
n−1 sub-decommitments while the i-th sub-commitment is computed invoking the
fake-sub-commitment algorithm TCFakeCom and the sub-decommitment (if session
jl+1 will be asked to be opened) is computed invoking the trapdoor algorithm

TCFakeDec on input the bit bi computed as follows: b′i ←
⊕

l∈[n],l 6=i b
c̄hl
l ⊕ b[jl+1].

Note that now in the opening, bi depends of the actual input of the sender.

Assume there exists a distinguisher Dsoa who is able to tell apart experiment H
jl+1

3

from Hjl
3 then it is possible to construct a distinguisher R∗wTCom for the weak trap-

door property of wTCom. R∗wTCom is running in the experiment Exp
wTrap/Com
wTCom

trying to distinguish whether the messages received from sender CwTCom are com-
puted using the honest or the fake algorithm. R∗wTCom works as follows: it runs R∗soa

as subroutine simulating Sim as in experiment Hjl
3 except that in session jl+1, after

having obtained (from the extraction phase) the trapdoor skc̄hi for some i ∈ [n]
proceeds as follows. It performs the secret sharing of the bit b[jl+1] = b1, . . . , bn

and forwards pkc̄hii ,skc̄hii , bi to CwTCom (note that if the sender CwTCom is running
TCFakeCom the bit bi is ignored and is given only in the decommitment phase to the
algorithm TCFakeDec.). Then R∗wTCom honestly computes the sub-commitments for
bits bl, for l 6= i, while for the i-th sub-commitment it forwards the commitment
received from CwTCom. When the commitment phase is completed R∗wTCom ob-
tains the set I from R∗soa, if the set does not contain the session jl+1, it aborts.
Otherwise, R∗wTCom performs the decommitment phase of the session jl+1 as fol-
lows: it honestly opens the sub-commitments in position i 6= l, while it forwards
the decommitment received from CwTCom in position i. Finally R∗wTCom forwards
the output of R∗soa to Dsoa and outputs whatever Dsoa outputs. Now, if the i-th

sub-commitment/sub-decommitment was computed by using the trapdoor skc̄hii ,

then the view of R∗soa is distributed identically as hybrid H
jl+1

3 , otherwise, if the
sub-commitment/sub-decommitment was honestly computed then the view is dis-
tributed according to hybrid Hjl

3 . Therefore, if Dsoa distinguishes the two exper-

iments with non-negligible advantage δ then R∗wTCom wins the game Exp
trap/Com
wTCom

with advantage δm
k that is still non-negligible, therefore breaking the trapdoor
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property of wTCom.

Hence, H
jl+1

3 and Hjl
3 are computationally indistinguishable.

Therefore H
jm,maxjm
2 = Hj0

3 and Hjk
3 are computationally indistinguishable.

By noticing that Hjk
3 corresponds to the game played by the simulator, we have

that the claim holds.

This concludes the proof of the Theorem 10.

4.3 Impossibility of Fully Concurrent Black-Box SOA-Secure
Commitments

The protocols presented so far achieve security under concurrent-with-barrier compo-
sition in the “strong” sense, that is, assuming that the simulator does not know the
distribution of the messages committed to by the sender. The last question to answer
is whether there exist protocols that actually achieve the definition of security under
strong fully (i.e., without barrier) concurrent composition (as defined in [100]), or if the
concurrent-with-barrier security definition is the best one can hope to achieve (when
black-box simulation is taken into account). In this section we show that in contrast to
the claim of Theorem 3.5 of [100], the strong fully concurrent security definition of [100]
is impossible to achieve. This holds regardless of the round complexity of the protocol 7

and of the black-box use of cryptographic primitives. Under the assumption that OWFs
exist, the only requirements that we use for the impossibility is that the simulator is
black-box and does not know the distribution of the messages committed by the sender.
Both requirements are already specified in the strong fully concurrent security definition
of [100]. In the following, we first recall the definition provided in [100] for completeness,
then we give the intuitions behind the proof.

4.3.1 Definition

Let B, I, k be as defined in Definition 19 and b
$← B be the input given to the honest

sender C.
Security is defined as comparison of two experiments. In the real world experiment

R∗ interacts with C in k concurrent sessions and is allowed to pick the set I incrementally.
For example, the receiver can generate one commit-phase transcript, ask the sender to
decommit that instance, then use this information in its interaction to generate the
second commit-phase transcript, and so forth. The output of this experiment is defined
as 〈Ck(b),R∗〉 = (τk, I, {bi, wi}i∈I), where τk is the transcript of the commitment phases
of the k concurrent sessions, I is the final subset of positions asked incrementally by
R∗ during the execution, {bi, wi}i∈I are pairs such that bi is the bit committed to and

7This is therefore different from the case of concurrent zero knowledge [20, 87].
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wi is the opening data (recall that this definition assumes that the decommitment is
non-interactive, however our impossibility result holds even for protocol with interactive
decommitment phase). In the ideal game, an expected PPT simulator Sim without the
knowledge of the vector b interacts with R∗ while incrementally giving as output a set I
for which it receives the bits {bi}i∈I . Finally, Sim outputs τk and {bi, wi}i∈I . This can be
seen as if Sim has access to an oracle O that knows the vector b and answers to a query

j with the value b[j]. The output (SimR∗
k |b) of this experiment is (τk,I, {bi, wi}i∈I)

where τk,{bi, wi}i∈I are outputs of Sim while I is the set containing the indexes queried
by Sim to the oracle O.

A bit commitment scheme Π is SOA-secure under concurrent composition if, for
every I,B and k, there exists Sim such that for all R∗ it holds that 〈Ck(b),R∗〉 and

(SimR∗
k |b) are computationally indistinguishable. As stated in [100], the above definition

is the weakest one since the order of the quantifier is such that the simulator knows the
message distribution B. Such a definition is motivated by the fact the it makes the lower
bounds proved in [100] stronger. If instead there exists Sim that works for all B, I and
R∗ then the protocol is said SOA-secure under fully concurrent composition. All the
constructions shown in [100] are claimed to achieve this strong(er) definition in which
the message distribution B is not known by Sim. The same definition can be extended
to concurrent SOA-secure string commitment scheme.

From the definition shown above note the following. The set I given as output in the
ideal game is not controlled by Sim but corresponds to the set of queries made by Sim
to the oracle. If this was not the case then a simulator can just ask for all the openings
at the very beginning, perfectly simulate the sender and give as output the set asked by
R∗ instead of the queries actually made to the oracle. This restriction essentially means
that Sim should be very careful in querying the oracle since each query will appear in
the final output and there is no possibility to abort or rewind the simulation, as instead
it is possible with the transcript of the conversation with R∗.

Theorem 11. If OWF exists, then no string commitment scheme can be SOA-secure
under fully concurrent composition.

4.3.2 Impossibility Proof

Our proof consists in adapting a proof provided by Lindell in [68].[68] shows that there
exist functionalities for which proving that a protocol is secure under m-concurrent
composition using a black-box simulator requires that the protocol has at least m rounds.
As corollary it holds that for such functionalities unbounded concurrency proved using a
black-box simulator is impossible to achieve. Such a theorem cannot be directly applied
to the case of SOA-secure commitments since it is provided only for two functionalities in
which both parties have private inputs, such as, blind signatures and OT functionalities.
In the setting of SOA-secure commitments the receiver has no private input and there
is no ideal functionality involved. In our proof, we convert the role of the oracle O into
the role of the functionality, and when deriving the contradiction we do not break the
privacy of the receiver but the correctness of the protocol (i.e. the binding).
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The proof is based on the following two observations. First of all, since the simulator
is black-box the only advantage that it can exploit to carry out a successful simulation
is to rewind the adversary. Moreover, rewinds must be effective, in the sense that upon
each rewind the simulator should change the transcript in order to “extract” information
from the adversary (obviously if the transcript is not changed then the rewind is useless).
The second crucial observation is that in SOA the adversary R∗ chooses the sessions to
decommitment adaptively on the transcript, and in order to obtain the string to provide
the decommitment, Sim must query an external oracle (recall that we are considering the
strong definition in which the simulator does not know the message distribution). Thus,
changing the transcript in the rewinding yields to different sessions asked by R∗, and in
turns more queries made by Sim to the oracle. Such additional queries are caused only
by the rewinding attempts and they do not appear in the real world execution. However,
the distribution of I due to Sim in the ideal game should not be distinguishable from
the one due to R∗ interacting with the sender in the real world. Thus the idea of
the proof is to show that there exists an adversarial strategy that makes the rewinding
attempts of any black-box Sim ineffective, unless Sim queries the oracle a number of time
that is distinguishable from the number of openings asked by the adversary in the real
experiment. Then the next step is to show that if nevertheless there exists a simulator
that is able to deal with such an adversary (without rewinding), then such a simulator
can be used by a malicious sender to break the binding of the protocol.

We are now ready to provide a formal argument.

Proof. In our proof we assume the existence of OWFs, which is implied by the existence
of any commitment scheme. Let Π = (C,R) be a r-round string-commitment protocol
that is SOA-secure (with a black-box simulation strategy) under concurrent composition.
By definition there exists a black-box simulator Sim that for all R∗ is able to produce a
view (τk, I, {bi, wi}i∈I) that is indistinguishable from the view of the interaction between
R∗ and C. In the next part of the proof we will use Sim as a sub-routine to contradict
in strict polynomial time some hardness assumptions. Since Sim is only expected poly-
nomial time, we are implicitly assuming that we run it up to some strict polynomial
number of steps (obviously greater than the expected polynomial time), and our results
will still work since Sim is often successful in that polynomial number of steps.

The formal proof consists of the following steps. First, we define the family of
message distributions B. Then we define a pair of adversaries R∗0,R

∗
1 and we show that

such adversaries make the rewinding strategy of any black-box Sim ineffective for one
protocol execution. Still, by the concurrent SOA-security of Π it must be the case
that Sim is able to successfully carry out the simulation of such execution even without
rewinding R∗p, for p = 0, 1. Finally we construct a malicious sender that runs such a
simulator as sub-routine to break the binding of Π, thus contradicting the hypothesis
that Π is a commitment scheme.

Distribution B. Recall that B is the set of distribution over ({0, 1}n)k, where k is the
number of sessions. In order to define our particular set B we use a signature scheme.
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A signature scheme is a tuple of algorithms (GenSign,Sign,Vrfy) where GenSign is the
generation algorithm that on input the security parameter outputs a pair vk, sk where
sk is the secret key and vk is the verification key. Sign is a randomized signing algorithm
and Vrfy is the verification algorithm. The correctness requirement states that for all

(vk, sk)
$← GenSign(1n), all messages x, all randomness r, Vrfy(vk, x, Sign(sk, x, r)) = 1.

The security requirement (called unforgeability) states that no efficient algorithm M ,
even after having seen polynomially many signatures of messages of her choice is able
to produce a new pair (x∗, σ∗) such that Vrfy(vk, x∗, σ∗) = 1 without knowing sk. We
define our set B = {Bsk}

sk
$←GenSign(1n)

where:

Bsk = {σ1, . . . , σk : σi = Sign(sk, i, r), for r ∈ {0, 1}n}
Thus we define the message space as a set of signatures under a secret key sk, in particular
the message committed to in session j is the signature of j under sk. Then we assume
that the adversarial receiver is given in auxiliary input the verification key vk, such
that, it is allowed to check whether messages obtained in the opening phase belong to
the distribution Bsk. Notice that, having defined B in this way, we have that a query
made by Sim to oracle O to receive the opening of an index j, correspond to a query
to a signing oracle Osk for the signature Sign(sk, j, r). Such definition of B allows us to
formally claim that in order to simulate the honest sender Sim is forced to ask O, unless
it is able to forge the signatures. Having fixed Bsk we are ready to define the adversaries
{R∗p}p∈{0,1}.
Adversary’s strategy. R∗p, for p = 0, 1 runs k = r(2n) + 1 protocol executions, where
r is the number of rounds of protocol Π. Let us denote by Π1, . . . ,Πk the k protocol
executions, by Πj(i) the i-th round of the protocol Πj , and by Πj(i)C and Πj(i)R the
messages sent by C and R in that round of the protocol. Let Fk : {0, 1}∗ → {0, 1}n be a

PRF for k
$← {0, 1}n.

The adversary’s strategy is the following. R∗p plays the first round of Π1 (i.e Π1(1))
following the procedure of the honest receiver and then it starts a block of 2n executions
in parallel (Π2, . . . ,Π2n+1). In this block of executions R∗p honestly completes the 2n
commitment phases while the selection for the sessions to open (denoted as I1) is com-
puted as follows: consider the 2n executions as a sequence of n pairs (each pair consists
of left and right execution) then: 1. R∗p computes an n-bit string s1 ← Fk(Π1(1)C); 2.
consider the `-th pair with ` ∈ [n], among the n pairs of executions, R∗p asks to open the
left execution of the `-th pair if the `-th bit of s1 is 0 and the right execution otherwise.
We denote this process of selecting the set of positions I according to the output of
Fk by I1 
 Fk(Π1(1)C). Then R∗p sends I1 to C and obtains the openings σj1 , . . . , σjn
with ji ∈ I1 and checks if Vrfy(vk, ji, σji) = 1 for all ji ∈ I1. If any check fails, then it
aborts. Otherwise, R∗ runs Π1(2) (the second round of Π1) and starts another block of
2n executions till completion as described before. In general, after the ith round of Π1,
R∗p initiates a block of 2n parallel executions of Π (Π2(i−1)n+i+1, . . . ,Π2in+i) and selects
the subset of positions Ii according to F (Π1(i)C).

Finally, when the commitment phase of the execution Π1 is completed, R∗p asks for
the opening with probability p. In Fig. 4.1 we show the diagram of the schedule.
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Π1(1)

. . .

I1
⇀↽ F (Π1(1))

` ∈ I1

{σ1/ε}

S R∗

Π2 Π3 Π2n + 1. . .

σj1
, . . . , σjn

Π1(i)

. . .

Ii
⇀↽ F (Π1(i − 1))

` ∈ Ii

Π2(i−1)n+i+1 Π2in+i. . .

σj1
, . . . , σjn

Π1(r − 1)

. . .

Ir ⇀↽ F (Π1(r − 1))

` ∈ Ir

Π2(r−1)n+r+1 Π2rn+r. . .

σj1
, . . . , σjn

Π1(r)
{ open/not open }

Figure 4.1: Adversarial strategy of R∗0/R
∗
1.

Ideal-World Simulator. By the assumption that Π is black-box secure we have
that there exists a black-box simulator Sim such that the output of the ideal execution
with Sim is indistinguishable from the result of a real execution of {R∗p}p∈{0,1} running
Π1, . . . ,Πk with C. As black-box simulator Sim must work for all malicious R∗ and
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therefore also for R∗0 and R∗1 defined above. Recall that Sim is given oracle access to R∗p,
namely Sim is given a next message function that receives a sequence of messages and
computes R∗p’s response. If any prefix of the query is such that R∗p would abort upon that
message, then the output for the entire query is ⊥. We now prove a special property of
all oracle calls in which R∗p does not abort.

Claim 4.3.1. For every i let Qi be the set of all queries sent by Sim to R∗p during the
ideal world execution which includes all messages from the block of executions activated
after the message Π1(i)C (i.e., from Π2(i−1)n+i+1 to Π2(i)n+i) and where R∗p does not
abort8. Then, the same message Π1(i)C appears in every q ∈ Qi, except with negligible
probability.

Proof. The proof of this claim follows almost identically the claim proved in [68] except
that here we use signature scheme instead of one-time signature scheme and between
each round of the protocol Π1 here the adversary opens a bunch of 2n new executions
instead of only one. As discussed in the paragraph of the proof intuition, the main
reason we have these differences is that in the SOA-secure setting we cannot exploit the
fact that both parties have private inputs. The proof is based on the unforgeability of
the signature scheme and the collision resistance property of the PRF.

First, we claim that Sim does not produce two oracle queries q and q′ containing
Π1(i)C 6= Π1(i)′C such that Fk(Π1(i)C) = Fk(Π1(i)′C) with non negligible probability.
Otherwise we can construct a machine M that has oracle access to a random function and
distinguishes if the oracle is Fk (for a random k) or a truly random function. Machine
M works by emulating the entire experiment between R∗ and Sim except that instead
of R∗ computing si = Fk(Π1(i)C), machine M queries the oracle with Π1(i)C. Now, if
the oracle is Fk then the emulation is perfect. Therefore with non-negligible probability
M obtains from Sim two messages Π1(i)C 6= Π1(i)′C such that the oracle responses
is the same. On the other hand, if the oracle is a truly random function then the
collision happens with negligible probability. Thus M distinguishes with non-negligible
probability.

Now we prove that Sim cannot produce two non-aborting queries q, q′ such that q
contains message Π1(i)C and q′ contains message Π1(i)′C. This claim follows from the
unforgeability of the signature scheme, and by the fact that Sim cannot ask to the oracle
more openings that R∗p would ask in the real world attack. The intuition is the following.
By the proof given above, if there exist q, q′ such that Π1(i)C 6= Π1(i)′C then it must be

that si ← Fk(Π1(i)C) 6= s′i ← Fk(Π1(i)′C). Hence, since si, s
′
i differ in at least one bit,

due to the way R∗p chooses Ii, we have that Ii chosen after query q is distinct from I ′i for
the query q′ in at least one index. Note also that, by construction |Ii| = |I ′i| = n, thus
there exist at least one index j` that is in I ′i but is not in Ii. If both queries q, q′ were
not aborting, then Sim was able to provide signatures for both sets of indexes, thus Sim

8That is, we consider all of the oracle queries made by Sim to R∗p throughout the simulation and take
the subset of those queries which include all the messages belonging to the executions of Π2(i−1)n+i+1

to Π2in+i. By the scheduling described in Fig. 4.1, such a query defines the ith message of Π1 that is
sent by R∗, (i.e., Π1(i)R.)
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provided signature for at least n+1 indexes. Recall that, Sim cannot ask the oracle with
more indexes that R∗p would ask in the real world experiment. In particular, for each
block of parallel executions, Sim must ask exactly n signatures, according to R∗p strategy
(indeed the strategy of R∗p is such that R∗0 always asks exactly n openings at each block
and rn openings in total, while R∗1 asks for a total of rn + 1 openings). Thus if R∗p did
not abort in both q, q′ this means that Sim was able to provide a total of at least n+ 1
valid signatures to R∗p, still by asking only n signatures to O, thus Sim has generated a
forgery.

Formally the reduction works as follows. We construct a signature-forgery algorithm
M that given vk simulates R∗p and the oracle O to Sim. M perfectly emulates R∗p and
answers the queries that Sim makes to the oracle by forwarding them to its signing oracle.
Note that the emulation is perfect. Now assume that with non-negligible probability
there exist q, q′ ∈ Qi with different messages Π1(i)C, Π1(i)′C yielding to different set of

indexes Ii, I
′
i. Since R∗ does not abort it must have seen (σj1 , . . . , σjn) with j` ∈ Ii and

(σj′1 , . . . , σj′n) with j′` ∈ I ′i. Since there exists at least one index j∗ that is not in both
sets, R∗ gets at least n + 1 signatures. Recall that for each block Sim is allowed to ask
only for n signatures. Thus there exists at least a signature σ∗j∗ that was not provided
by the oracle, hence M outputs (j∗, σ∗j∗) thus contradicting the security of the signature
scheme.

In Claim 4.3.1 we proved that against adversaries {R∗p}p∈{0,1} any Sim cannot make
effective rewinds for the execution Π1, and thus if Sim exists then it is able to equivocate
the first execution without rewinding R∗p. Since R∗p in first execution basically follows
the procedure of the honest receiver we want to argue that the same strategy used by
Sim to equivocate can be adopted by a malicious sender that wants to equivocate but
cannot rewind the honest party.

The idea is to construct a malicious sender C∗ that runs Sim as subroutine and
simulates the same attack of R∗1 except that for the execution Π1 it forwards the messages
to the honest R such that, when Sim asks the oracle for the opening of session 1, C∗ replies
with the string that it wants to open to R. In particular, it sends the first string and
obtains the opening by Sim, then it rewinds Sim and it sends a distinct string, for which
it will obtain another valid opening (this is true due to the existence of Sim). Note
however that in this reduction we are assuming that Sim asks for the queries only after
the execution of Π1 is completed. Indeed, if Sim queries the oracle for the opening of
Π1 any time before the commitment phase of Π1 is completed we cannot use Sim as a
sub-routine to break binding since Sim could change the transcript of the commitment
phase according to the response received from O, and thus in turn if C∗ rewinds Sim and
changes the string to open, it could obtain a distinct commitment transcript, therefore
not violating the binding property. Therefore, before proceeding with the construction
of the malicious adversary we need to prove another claim on Sim.

Claim 4.3.2. In the execution Π1, except with negligible probability, Sim queries the
oracle O only after receiving the query by {R∗p}p∈{0,1}.
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Proof. Since Sim is black-box, it must work for all R∗. In particular Sim must successfully
simulate adversaries R∗0 and R∗1. Adversary R∗0 does not query for the opening the first
execution Π1 (i.e., the probability of opening is p = 0), therefore Sim is not required
to provide an opening and can simulate Π1 without interacting with O. Adversary R∗1
always asks to see the opening of Π1. In this case, Sim could ask for the opening of
session 1 to O at the very beginning of the simulation and thus run the first execution
as an honest sender (i.e., with no need of equivocation). The output of Sim would be
indistinguishable from the output of C. However, the definition of black-box simulation
requires that the same simulation strategy should work for all adversarial strategies.
Thus the decision on whether to ask for the opening to O can be made only after the
R∗p has sent the request of opening. Indeed, if Sim asks the oracle any time before it has
received the query from R∗0, then the set of indexes I asked by Sim in the ideal execution
is clearly distinguishable since in the real world execution the set I requested by R∗0 does
not contain index of Π1.

The last case to consider is the case that, Sim does not query the oracle for session
1. (Recall that if Sim does not ask the oracle then the malicious sender in the reduction
would not be able to exploit Sim to open two distinct strings). Due to the unforgeability
of the signature scheme, this case happens with negligible probability. The reduction
works as in Claim 4.3.1.

Claim 4.3.3. In the execution Π1, when dealing with adversary R∗1, Sim provides a valid
opening with all but negligible probability.

Proof. In Π1 the adversary R∗1 is playing as the honest receiver, thus always gets a
valid opening when interacting with C. By the assumption that Π is SOA-secure under
concurrent composition it must holds that also Sim provides a valid opening with all but
negligible probability.

Now we are ready to show the formal construction of the adversary for binding C∗

that uses Sim as a sub-routine.
Malicious Sender. C∗ playing the binding game, externally interacts with an honest re-

ceiver R while internally interacts with Sim. C∗ generates a pair (vk, sk)
$← GenSign(1n),

thus defining the set Bsk and gives vk to Sim and R. C∗ emulates R∗1 and the oracle O to
Sim for all executions Π2, . . . ,Πk. This emulation can be perfectly carried out since it
has all the secrets. C∗ plays the execution Π1 by forwarding the messages to the external
receiver R. That is, let q be an oracle query from Sim to R∗1 such that R∗1’s response
is the i-th message of execution Π1. Then, if R∗1 would abort receiving q or any prefix
of q, C∗ emulates it by aborting. Otherwise, if q is such that R∗1 does not abort but
rather replies with the i-th message of Π1 then C∗ extracts the message (Π1(i)C) of the
simulator from q, and then, if R has already sent the response Π1(i)R according to the
extracted message, then R∗p replies this same message to Sim. If R has already sent the
answer Π1(i)R according to another message Π′1(i−1)C then C∗ halts. We call this event
as failure. Finally, if R did not reply to Π1(i)C yet, then C∗ forwards it to R and stores
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the pair Π1(i)C, Π1(i)R. Finally, when Sim makes queries to the oracle O for a set of
indexes Ii, the sender responds via the signatures σj = Sign(j, sk) for all j ∈ I.

When Sim queries the oracle for the opening of the execution Π1, if the commitment
phase of the execution with the honest receiver is not completed yet, then C∗ aborts and
halts. We call this event too as failure. Else, C∗ provides a string α0 ← Sign(1, sk, r0)
and obtains the opening α0, w0 from Sim. Then C∗ rewinds Sim up to the point in which
it asks the opening for session Π1 and provides a distinct string α1 ← Sign(1, sk, r1) to
obtain the opening α1, w1 from Sim. If Sim never asks the oracle for session Π1 then C∗

aborts and halts. Again we call this event as failure.
Finally C∗ obtains two openings for the protocol executions Π1 played with the honest

R.
First note that if C∗ does not abort then C∗ perfectly emulates the attack of R∗1.

Indeed it plays all but the first execution following R∗1 procedure, while for the message
of the first execution it forwards the messages receiver by the honest receiver. Again,
this is consistent with the strategy of R∗1 since she plays the first execution of Π as an
honest receiver.

By Claim 4.3.1 we have that the event failure happens only with negligible proba-
bility. By Claim 4.3.2 we have that, except with negligible probability, Sim makes the
oracle query for the opening of execution Π1 only after the commitment phase has been
completed. By Claim 4.3.3 we have that with all but negligible probability C∗ gets two
valid openings when interacting with Sim. Thus with high probability C∗ provides two
valid openings for the commitment phase transcript obtained by playing with R.

Corollary 1. There exists no bit commitment protocol that is SOA-secure under strong
concurrent composition.

Proof. Toward a contradiction assume that there exists a bit commitment scheme Γ =
(CΓ,RΓ) that is SOA-secure under concurrent composition. Then it is possible to con-
struct a string commitment scheme Π = (C,R) as follows. Let m = m0| . . . |mn be
the n-bit message that C wants to commit to. The commitment phase consists of n-
parallel executions of the commitments phase of Γ, (i.e., 〈CiΓ(com,mi),R

i
Γ(recv)〉 for

i = 1, . . . , n). The commitment phase of Π is over when all commitments phases of Γ
are successfully completed. The opening phase consists of the parallel execution of the
n decommitment phases of Γ (i.e., 〈CiΓ(open),RiΓ(open)〉 for i = 1, . . . , n). Basically, Π
consists only of executions of Γ, and since Γ is SOA-secure under concurrent composition,
so is Π.
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- Chapter 5 -

Round-Optimal Concurrent ZK in the Bare Public Key
model

Introduction

The notion of concurrent zero knowledge (cZK, for short) introduced in [40] deals with
proofs given in asynchronous networks controlled by the adversary.

In [19] Canetti et al. studied the case of an adversary that can reset the prover, forcing
it to re-use the same randomness in different executions. They defined as resettable zero
knowledge (rZK, for short) the security of a proof system against such attacks. Very
interestingly, rZK is proved to be stronger than cZK.

Motivated by the need of achieving round-efficient rZK, in [19] the Bare Public-
Key (BPK, for short) model has been introduced, with the goal of relying on a setup
assumption that is as close as possible to the standard model. Indeed, round-efficient
cZK and rZK are often easy to achieve in other models (e.g., with trusted parameters)
that unfortunately are hard to justify in practice.

The BPK model. The sole assumption of the BPK model is that when proofs are
played, identities of (polynomially many) verifiers interacting with honest provers are
fixed. For instance, identities could be posted to a public directory so that players
can download the content of the directory before proofs start. This registration phase
is non-interactive, does not involve trusted parties or other assumptions, and can be
fully controlled by any adversary. When proofs start, it is assumed that honest provers
interact with registered verifiers only.

The BPK model is very close to the standard model, indeed the proof phase does
not have any requirement beyond the availability of the directory to all provers, and for
each verifier, of a secret key associated to his identity. Moreover, in both phases the
adversary has full control of the communication network, and of corrupted players.
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Round-optimal cZK in the BPK model from rZK. The first constant-round rZK
(and thus cZK) argument for NP in the BPK model has been given in [19]. Then
in [73] it is pointed out the subtle separations among soundness notions in the BPK
model. Indeed, in contrast to the standard model, the notions of one-time, sequential
and concurrent soundness, are distinct in the BPK model. In [73] it is then showed that
the proof of [19] is actually sufficient for sequential soundness only. Moreover in [73] it
is proved that 4 rounds are necessary for concurrent soundness and finally, they showed
a 4-round rZK (and thus cZK) argument with sequential soundness. The protocol
is “conversation based”, i.e., by simply observing the transcript one can compute the
output of the verifier. In light of the impossibility proved by [1] (i.e., there exists no 3
round sequentially sound cZK conversation-based argument in the BPK model for non-
trivial languages) the above 4-round rZK (and thus cZK) argument is round optimal.

Concurrent soundness along with rZK (and thus cZK) was achieved in [31], requiring
4 rounds. Further improvements on the required complexity assumptions have been
showed in [106] where a 4-round protocol under generic assumptions and an efficient
5-round protocol under number-theoretic assumptions are shown.

We stress that all previously discussed results on constant-round rZK/cZK in the
BPK model relied on the assumptions that some cryptographic primitives are secure
against sub-exponential time adversaries (i.e., complexity leveraging) and obtained black-
box simulation.

Round-optimal cZK in the BPK model under standard assumptions. The
question of achieving a constant-round black-box cZK in the BPK model without relying
on complexity leveraging has been first addressed in [107] and then in [33]. The protocol
of [107] needs 4 rounds and achieves sequential soundness only. The protocol given
in [33] also needs 4 rounds and achieves concurrent soundness. A follow up result of [99]
showed an efficient transformation that starting from a language admitting a Σ-protocol
produces a cZK argument with concurrent soundness needing only 4 rounds and adding
only a constant number of modular exponentiations. A more recent result [30] obtains
both round optimality and optimal complexity assumptions (i.e., the need of One-way
Functions only) for concurrently sound cZK. The notion of “knowledge extraction” has
been studied in [34] and in [104, 103] where in particular concurrent knowledge extraction
(under different formulations) is considered.

All above results achieve cZK and are based on hardness assumptions with respect
to polynomial-time adversaries.

Our Contribution

In this work we show subtle problems concerning security proofs of various cZK and
rZK arguments in the BPK model [73, 107, 31, 33, 99, 106, 30, 104], including all round-
optimal constructions published so far.



123

The source of the problem: parallel execution of different sub-protocols. In
order to achieve round efficiency, various known protocols, including all round-optimal
protocols, consist in parallel executions of sub-protocols that are useful in different ways
in the proofs of soundness and cZK/rZK. Roughly speaking, there is always a sub-
protocol π0 where in 3 rounds the verifier is required to use a secret related to its
identity. Then there is a 3-round sub-protocol π1 in which the prover convinces the
verifier about the validity of the statement and the simulator can do the same by using
knowledge of a secret information obtained by rewinding π0 (in the current session or in
other sessions corresponding to the same identity). To obtain a 4-round protocol1, π1

starts during the second round of π0. Such round combination yields one of the following
two cases.

The first case is when the simulator needs the secret information already to compute
the first message of π1 so that such a message can appear in the final transcript of the
simulation. In this case when the simulator runs protocol π1 for the first time with a
given identity, it first needs to extract the secret related to such identity, used in π0 by the
verifier. The use of look-ahead threads (i.e., trying to go ahead with a virtual simulation
with the purpose of obtaining the required information needed in the main thread of
the simulation) would not help here since only a limited polynomial amount of work can
be invested for them, and there is always a non-negligible probability that look-ahead
threads fail, while still in the main thread the verifier plays the next message. Given the
above difficulty, the simulator needs to play a bad first round in π1 so that later, when the
needed secret information is extracted from π0, the simulator can play again such first
round of π1, this time with a good message. However, this approach suffers of a problem
too. Indeed, aborting the main thread and starting a new thread leads to a detectable
deviation in the final transcript that the simulator will output. Indeed, the fact that the
simulator gives up with a thread each time it is stuck, and then starts a new one, as we
shall see later, skews the distribution of the output of the simulator, since the output will
then include with higher probability threads that are “easier” to complete (e.g., where
the simulator does not get stuck because new sessions for new identities do not appear).
Notice that this issue motivates the simulation strategies adopted in previous work on
cZK (e.g., [91, 87]) where the main thread corresponds to the construction of the view
that will be given in output, while other threads are started with the sole purpose of
extracting secrets useful to complete the main thread. Similar issues concerning the use
of a main thread during the whole simulation have been recently considered in [79] when
analyzing previous work on selective decommitments.

We now consider the second case where the simulator does not need any secret to
compute the first round of π1. We observe that this approach could hurt the proof of
concurrent soundness, when the latter is proved by means of witness extraction2 from
π1. Indeed, a malicious concurrent prover can exploit the execution of π0 in a session
j, for completing the execution of π1 in another concurrent session j′ 6= j by playing a

1Similar discussions hold for some 5-round protocols when π0 requires 4 rounds.
2We note that all constructions of cZK in the BPK model under standard assumptions prove soundness

by means of witness extraction.
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man-in-the-middle attack such that, when (in the proof of concurrent soundness) one
tries to reach a contradiction by extracting the witness from the proof π1 given in session
j′, it instead obtains the secret used to run π0 in session j. Instead, if the secret to be
extracted from π1 is fixed from the very first round of π1, then one can show that it is
either independent from the one used in session j (this happens when the secret is used
in π0 of session j after the first round of π1 in session j′ is played, and the secret used
by the verifier can not be predicted with non-negligible probability), or is dependent but
not affected by the rewind of session j′ (this happens when the secret is used in π0 of
session j before the first round of π1 in session j′ is played).

The use of the secret in the last round of π1 only, could instead be helpful in the
following three cases: I) when one is interested in rZK since in this case soundness is
proved through a reduction based on complexity leveraging (no need for rewinding); II)
when cZK with sequential soundness only is desired; III) when the secret needed by
the simulator when running π1 in a session j′ is different from the witness used by the
verifier in the execution of π0 in other sessions. In these three cases the above discussion
does not necessarily apply. Indeed some proposed round-optimal protocols that fall in
one of such cases, might still be secure (see discussion in Section ??), even though their
security proofs seem to ignore at least in part the problems that we are pointing out.

Because of the above case I), we believe that achieving 4-round cZK with concurrent
soundness in the BPK model under standard assumptions is definitively harder than
obtaining 4-round rZK with concurrent soundness in the BPK model through complexity
leveraging. Therefore, in this thesis we focus on achieving ΠcZK and this will require a
new technique.

We stress that in all previous constructions, one could obtain a different protocol
that satisfies the desired soundness and zero-knowledge properties by simply running
π0 and π1 sequentially. Indeed, in this case the simulator can complete π0 in the main
thread, then run the extractor in another thread, and finally continue the main thread
running π1 having the secret information. We also stress that all papers that we revisit
in this work, achieved also other results that are not affected by our analysis when round
optimality is not desired.

We finally note that we did not investigate other round-efficient results in variations
of the BPK model [72, 108, 32], and other results in the BPK model that do not focus
on optimal round complexity [78, 105, 24].

New techniques for round-optimal cZK in the BPK model. In this thesis we
show a protocol and a security proof that close the gap in between lower and upper
bounds for the round complexity of concurrently sound cZK in the BPK model under
standard assumptions. The result is achieved by using a new technique where in ad-
dition to the (permanent) secret associated to the identity of the verifier, there is a
temporary secret per session, that enables the simulator to proceed in two modes as
follows. Knowledge of the permanent secret of the verifier allows the simulator to pro-
ceed in straight-line in the main thread in sessions started after the extraction of the
permanent secret. Knowledge of the temporary secret allows the simulator to solve the
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sessions started before the extraction of the permanent secret, by launching rewinding
threads but without changing the main thread. The temporary key is extracted through
rewinding threads, and it is used only when computing the last prover message of a ses-
sion of the main thread, i.e., only after the extraction has been completed. This allows
to keep the main thread unchanged. In the rewinding threads the simulator is always
straight-line. We implement both the permanent and the temporary keys by means of
trapdoor commitments. The proof of cZK will be tricky since it requires the synergy
of the two above simulation modes. In our case the number of extraction procedures
required to carry on the simulation is not bounded by the number of identities regis-
tered in the directory (in contrast with the main technique used in the past in the BPK
model), but by the number of sessions. The proof of concurrent soundness also requires
special attention. Indeed while the interplay of temporary and permanent secrets helps
the simulator, it could also be exploited by the malicious prover.

Finally, we show that ΠcZK admits a transformation that starting from any language
admitting a perfect Σ-protocol, produces round-optimal concurrently-sound cZK proto-
col Π̄cZK. Such transformation requires a constant number of modular exponentiations
only, and Π̄cZK is secure under standard number-theoretic assumptions.

It is plausible that motivated by different purposes one can get a more general con-
struction or a construction with better efficiency, assumptions and additional security,
but this is out of the scope of this work.

The chapter is organized as follows. In Section 5.1 we provide the formal definition of
argument system in the BPK model. In Section 5.2 we show an attack that jeopardizes
the security of all previous constructions of cZK in the BPK model. In Section 5.3 we
provide our round-optimal construction which does not suffer of such attack. Finally,
in Section ?? we show that our construction can be efficiently instantiated using the Σ-
protocols shown in Section 1.2.1.

5.1 The Bare Public-Key Model

In this paragraph we follow the definitions provided by [73, 1]. The BPK model assumes
that: 1) there exists a polynomial-sized collection of records associating identities of
the verifiers with public keys in a public file F ; 2) an (honest) prover is an interactive
deterministic polynomial-time algorithm that takes as input a security parameter 1n,
the public file F , an n-bit string x, such that x ∈ L where L is an NP-language, an
auxiliary input w, a reference to an entry of F and a random tape ω; 3) an (honest)
verifier V is an interactive deterministic polynomial-time algorithm that works in the
following two stages: key-generation phase, on input a security parameter 1n and a
random tape ρ, V generates a pair (PK,SK) and stores its identity associated with PK
in an entry of the file F ; proof phase, V takes as input the secret SK associated to its
identity, a statement x ∈ L and a random string, and interacts with a prover and when
reaching the end of the interaction without aborting, it outputs “accept” or “reject”;
4) the first interaction of a prover and a verifier starts after all verifiers have completed



126

their key-generation phase.

Procedure Normal-Interaction
1. Run the key-generation phase of V on input 1n and a random string r to obtain

PK,SK;
2. Pick any id, and let F be a public file that contains the record (id, PK);
3. Pick strings ω and ρ at random and run P on inputs (1n, x, w, id, ω), and the proof

phase of V on inputs SK, x, ρ letting them interact.

Definition 20. A pair (P,V) is complete in the BPK model for an NP-language L if for
all n-bit strings x ∈ L and their NP-witnesses w, in an execution of Normal-Interaction
V outputs “accept” with probability 1.

Malicious provers in the BPK model. Let s be a positive polynomial and P∗ be a
probabilistic polynomial-time algorithm that takes as first input 1n.

An s-sequential malicious prover P∗ runs in at most s(n) stages, so that:
1. In stage 1, P∗ receives a public key PK and outputs a string x1 of length n.
2. In every even stage, P∗ starts in the final configuration of the previous stage and

performs a single interactive protocol: it outputs outgoing messages and receives
incoming messages (the machine with which it performs the interactive protocol
will be specified below, in the definition of sequential soundness). It can choose to
abort an even stage at any point and move on to the next stage by outputting a
special message.

3. In every odd stage i > 1, P∗ starts in the final configuration of the previous stage
and outputs a string xi of length n.

Procedure Sequential-Attack
1. Run the key-generation stage of V on input 1n and a random string r to obtain

PK,SK.
2. Run first stage of P∗ on inputs 1n, random string ω and PK to obtain an n-bit

string x1.
3. For i ranging from 1 to s(n)/2:

1. Select a random string ρi.
2. Run the 2i-th stage of P∗ letting it interact with the verification stage of V

with input SK, xi, ρi.
3. Run the (2i+ 1)-th stage of P∗ to obtain an n-bit string xi+1.

Definition 21. A complete pair (P,V) satisfies sequential soundness for a language L
if for all positive polynomials s, for all s-sequential malicious provers P∗, the probability
that in an execution of Sequential-Attack, there exists i such that 1 ≤ i ≤ s(n), xi /∈ L,
and V outputs “accept xi” is negligible in n.

An s-concurrent malicious prover P∗, on inputs 1n and PK, performs at most s(n)
interactive protocols as follows:
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1. If P∗ is already running i− 1 interactive protocols 1 ≤ i− 1 < s(n), it can output
a special message “Start xi” where xi is a string of length n.

2. At any point it can output a message for any of its (at most s(n)) interactive
protocols (the protocol is unambiguously identified in the outgoing message). It
then immediately receives the party’s response and continues.

Procedure Concurrent-Attack
1. Run the key-generation stage of V on input 1n and a random string r to obtain

PK,SK.
2. Run P∗ on inputs 1n, random string ω and PK.
3. Whenever P∗ outputs “Start xi” select a fresh random string ρi and let the i-th

machine with which P∗ interacts be the verification stage of V on inputs SK, xi, ρi.

Definition 22. A complete pair (P,V) satisfies concurrent soundness for a language L if
for all positive polynomials s, for all s-concurrent malicious provers P∗, the probability
that in an execution of Concurrent-Attack, V ever outputs “accept x” for x /∈ L is
negligible in n.

Definition 23. Let (P,V) be an interactive argument system in the BPK model for
a language L. We say that a probabilistic polynomial-time adversarial verifier V∗ is
a concurrent adversary in the BPK model if on input polynomially many values
x̄ = x1, . . . , xpoly(n), it first generates the public file F with poly(n) public keys and
then concurrently interacts with poly(n) number of independent copies of P (each with
a valid witness for the statement), with common input x̄ and without any restrictions
over the scheduling of the messages in the different interactions with P. Moreover we
say that the transcript of such a concurrent interaction consists of a vector of instances
x̄ and the sequence of prover and verifier messages exchanged during the interaction.
We refer to viewPV∗(x̄) as the random variable describing the content of the random tape
of V∗ and the transcript of the concurrent interactions between P and V∗.

Definition 24. Let (P,V) be an interactive argument system for a language L in the
BPK model. We say that (P,V) is black-box computational (resp., statistical, perfect)
concurrent zero knowledge (cZK for short) if there exists a probabilistic polynomial-
time algorithm Sim such that for each polynomial-time concurrent adversary V∗, let
SimV

∗
(x̄) be the output of Sim on input x̄ and black-box access to V∗, then if x1, . . . , xpoly(n) ∈

L, the ensembles {viewPV∗(x̄)} and {SimV∗(x̄)} are computationally (resp., statistically,
perfectly) indistinguishable.

5.2 Issues in Security Proofs of Previous Results

In this section we show an issue that applies to the security proofs of all previous work.
Towards this goal, we organize this section in two parts.

In the first part, we consider a generic protocol Πweak. We describe the simulation
strategy that is typically used in the security proof of all previous work (or at least the
most plausible interpretation of it), and we show that, using such simulator, one can
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(wrongly) prove that Πweak is cZK in the BPK model. Then we show an attack to this
simulation strategy. Namely, we show that there exists a malicious verifier V∗, for which
the output of such simulator is clearly distinguishable from the output of a real-world
execution. This directly implies that, when security is proven using such simulation
strategy, the protocol is not actually secure. We then investigate whether there exists
a different simulation strategy, and show that, due to the protocol’s structure of Πweak,
designing any simulator seems to be problematic.

In the second part we briefly go over some of the previous work. We consider each
protocol and simulation strategy, and observe that under minor variations, protocols
and simulators follow the same protocol’s structure and the same strategy discussed for
protocol Πweak. Therefore, any alternative proof of security for such protocols seems
problematic to design as well.

In the next section instead we will cover previous work [107, 106, 104, 103, 30] that,
although using the same simulation strategy described for Πweak, do not actually follow
the same protocol structure (or they can be easily modified to not follow it). Therefore,
for such protocols an alternative simulation strategy may exist.

5.2.1 A Generic Protocol Πweak

Consider the following protocol. The public identity of the verifier is a pair (y0, y1) of
evaluations of a OWF for which the verifier V knows only one of the pre-images, denoted
by sk. The verifier V starts by proving knowledge of sk using a 3-round WI proof of
knowledge protocol π0 where the witness sk is used in the third round. The prover P
first commits to a string, and then proves that the commitment hides either the witness
for the theorem x ∈ L or one of the pre-images of (y0, y1), using a Σ-protocol. We
denote by π1 the whole protocol run by P (i.e., the commitment of the witness and the
Σ-protocol). To achieve round optimality, protocol π1 starts on the second round of π0.
Hence, the commitment of the witness is sent already in the second round. The protocol
is depicted in Figure 5.1.

We now (wrongly) argue that this protocol is concurrent ZK in the BPK model
borrowing the simulation strategy used in literature.

A typical simulator Sim discussed in literature would work as follows. It runs the
extractor of protocol π0 to obtain the secret sk. Once this secret is obtained, the identity
associated to such secret is solved. Then it commits to sk and runs in straight-line
protocol π1 using sk as witness. However, there is an ambiguity here. The simulator
should commit to sk already in the second round. But, sk must be extracted first. In
order to extract sk from π0, Sim should run the first three rounds, in particular it has
to compute the commitment of sk in the second round (otherwise it will not have the
witness to complete π1), without knowing sk yet. We can give two interpretations to
this ambiguity.

Case 1. The first interpretation is to assume that the extraction of sk is performed
in a look-ahead thread that is played before the main thread (where the simulator
computes the actual messages to be given in output). In this case, notice that the
proof of knowledge of sk could be completed by V∗ with some probability p unknown to
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Figure 5.1: Protocol Πweak.

Sim (Sim is black-box, and there can be different adversarial verifiers using different
values for p, and some of them can be negligible). Therefore, since the attempt of Sim
to extract sk can not be (in order to have an expected polynomial time simulation)
unlimited in time, Sim must give up if after some polynomial effort sk has not been
extracted. When such a look-ahead thread is aborted, Sim continues the main thread.
At this point, it can happen with non-negligible probability p (since Sim stopped after a
polynomial number of attempts) that V∗ completes the proof of knowledge of sk. Since
in this case Sim has already played the second round, the string committed is very
likely not a pre-image for y0 or y1, therefore Sim can not conclude protocol π1. If one
gives in output such a failure, then the transcript of the simulation would be easily
distinguishable since in the view of the V∗ when playing with P there is no failure from
P. Therefore, in this case Sim needs to abort this main thread and start a new one,
having now sk as input. This strategy corresponds to Case 2.

Case 2. The second interpretation consists in assuming that Sim runs the proof
of knowledge π0, playing a bad commitment in the second round (a bad commitment
is one that does not allow the simulator to complete π1 in straight-line). Once the
verifier completes π0, Sim runs the extractor of the proof of knowledge π0 and in
time roughly poly(n)/p, where p is the probability that V∗ completes π0, it obtains
the secret associated to the identity of V∗, the pre-image sk. Then Sim rewinds the
verifier and starts the proof phase of the simulation from scratch, without changing the
key generation phase. Using knowledge of the secret sk, Sim can complete all sessions
that correspond to that solved identity in straight-line. Indeed, for such identities Sim
computes a good commitment that allows to complete protocol π1 using sk as witness.

This approach is often used in literature in the BPK model and consists in dividing
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the simulation in phases. In each phase the simulator runs in straight-line using the
secrets extracted so far. When Sim is stuck with an identity for which it does not know
the secret, it extracts the secret from π0, solves the identity, and starts a new phases
with the knowledge of one more secret. Since the number of identities is polynomial,
at some point there will be a phase in which the simulator resolves all the sessions in
straight-line. The simulator gives in output the transcript obtained from the last phase.

Using the simulation strategy shown in Case 2 one can (wrongly) prove that Πweak

is cZK in the BPK model. Let us denote such simulator as Simweak.

An Attack to Simweak

Consider the following simple attack. The adversary V∗ runs two nested sessions, cor-
responding to two different identities and such that in each session the third round is
played with probability 1/2, adaptively to the transcript obtained so far (e.g., this can
be easily done by assuming that the coins used for such a probability are taken from
the output of a Pseudo-Random Function (PRF) on input the transcript so far and a
seed hardwired in V∗). The nesting is performed by including the whole execution of
the second session in between the second and third round of the first session. A pictorial
representation of the nested sessions is provided in Figure 5.2. The transcript of the real
game with probability 1/4 includes the two sessions both aborted.

Instead, the output of Simweak will be computed as follows. With probability 1/4,
V∗ aborts in both sessions. In this case the simulation is straight-line, and outputs two
aborts. With probability 1/4, V∗ does not abort the first session (probability 1/2) and it
aborts the second session (probability 1/2). In this case, Simweak runs the extractor for
π0 played in the first session and obtains the secret pre-image of the first identity. Once
such identity is solved, Simweak starts a new phase, this time having the secret key of
the first identity as input. We stress that Simweak is forced to start a new phase since it
can not continue the previous execution. The reason is that the commitment sent in the
second round of the first session, was not the commitment of the secret sk, that instead
was extracted only after the third round of the protocol has already been played. Now
notice that in this new phase (that was started with probability 1/4), Simweak will play
a new good second round in the first session, thus changing the transcript seen by V∗,
and therefore the coins used to decide whether to abort or not, will be computationally
independent. Hence, V∗ can abort both sessions again with probability 1/4. In this case
Simweak outputs two aborts again. Thus, since the new phase started with probability
1/4, and in this new phase V∗ aborts two sessions with probability 1/4, we have that
Simweak outputs two abort sessions with probability 1

16 = 1
4 · 1

4 .
Therefore we have that the output of the simulator contains both session aborted

with probability at least 5
16 = 1

4 + 1
16 . Given that in the real game this probability is only

1/4, we have that the output of the simulator is trivially distinguishable. For simplicity
in the above analysis we have ignored the fact that V∗ uses a PRF instead of independent
coins, since this produces only a negligible deviation to our analysis, and moreover the
PRF could be replaced by a t-wise independent hash functions, for a sufficiently large t.
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Figure 5.2: The nested attack of V∗.
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Alternative Simulation? Given the above explicit attack, one might wonder if a
different simulator or a different interpretation of Sim can be used to prove the cZK
property of Πweak. Indeed, the above attack is certainly addressable with a slightly more
sophisticated ad-hoc simulator. However other more sophisticated attacks can easily
hurt the new simulation strategy, as in a cat and mouse game where given an adversary
one can find a valid simulator for it; but given the valid simulator for that adversary one
can find another adversary that requires another simulator. It is not clear at all whether
one can finally design a simulator that works against any adversary, as required by the
definition of black-box zero knowledge.

The main difficulty in designing a successful simulation strategy seems due to the
protocol’s structure. The reason is that the secret to be extracted is needed already by
the simulator in the second round. However, to extract the secret, Sim needs to play at
least the first three rounds, so to complete π0. Thus, there seems to be no choice for the
simulator but playing a bad second round. Then, once the secret is extracted, in order
to complete π1, Sim has to rewind V∗ and play a good second round, therefore changing
the transcript and skewing the distribution given in output. As we shall see later, many
protocols in literature follow such structure, and require that the secret of the verifier is
used already in the second round.

We stress that, such problem arises only when round optimality is aimed. Indeed, if
protocol π0 and π1 are played sequentially, then the simulator can first extract the secret
and then compute the commitment, without having to change the transcript played so
far. In general, all the round optimal protocols that suffer of the issue that we point
out, are instead secure when the sub-protocols of V and P are run sequentially (instead
of concurrently).

The above difficulties are not an issue when considering the simulators for concurrent
zero knowledge [91, 65, 87] that indeed use the following strategy: the simulator starts
a main thread that is updated with new messages exchanged with V∗; other threads
are started only to allow the main thread to proceed successfully, but no thread ever
replaces the main thread. This is a well understood strategy that we will also use in our
constructions. It however will require a new technique to design a protocol where new
threads can help the execution of the main thread (this is precisely the problem of some
of previous constructions). The strategy of [91] is actually based on starting look-ahead
threads, and the large round complexity tolerates failures of several look-ahead threads
as long as there is at least one successful look-ahead thread per session.

5.2.2 Same Attack Applied Everywhere

Here we briefly go (in chronological order) over round-optimal protocols shown in lit-
erature [73, 107, 31, 33, 99, 106, 30, 104]. We show that, under minor variations, all
proposed simulators follow the strategy of Simweak, therefore, they all suffer of the same
attack discussed above. We also point out that they follow the protocol’s structure of
Πweak and therefore, also for them, it seems problematic to come up with any alternative
simulation strategy.
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The Case of ΠMR [73] Micali and Reyzin showed in [73] a 4-round rZK (and thus
cZK) argument with sequential soundness in the BPK model. The identity of the verifier
V is a public-key pk for a semantically secure encryption scheme, and the secret key sk
is the corresponding private key. In the first round, V sends an encryption c under pk of
a random string σV . The prover P sends in the second round a random string σP . In the
third round V sends σV and the randomness used to compute c. Moreover in these first 3
rounds, V proves to P knowledge of sk using Blum’s protocol for Hamiltonicity [12]. In
the fourth round P sends a non-interactive zero knowledge (NIZK, for short) proof [42]
on string σ = σV ⊕ σP proving that x ∈ L.

The simulator of ΠMR does not achieve cZK. The simulator Sim discussed in [73]
(see also [90]) for ΠMR goes as follows. It runs the extractor associated to the proof of
knowledge, therefore obtaining sk. Then, it can run in straight-line since the encryption
c of σV can be decrypted using sk, and thus Sim can choose σP so that the resulting
σ corresponds to the fake random string generated by the NIZK simulator. Then Sim
can complete the protocol running in the 4th round the NIZK simulator. Such simulator
can have two interpretations as we have seen in Section 5.2.1. Thus, the same analysis
shown in Section 5.2.1 holds. Furthermore, here Sim needs to decrypt the message c
before sending σP . Thus, knowledge of the secret is required already in the second
round. Hence, ΠMR follows the same protocol structure of Πweak. Consequently, there
is no evidence that ΠMR be cZK.

The Case of ΠDPV [31] In [31], Di Crescenzo, Persiano and Visconti presented the
first constant-round concurrently sound rZK (and thus cZK) argument system ΠDPV

for NP in the BPK model. The protocol only requires 4 rounds, and thus is round
optimal.

The main technique used in [31] to upgrade the sequential soundness achieved in [73]
consists in the use of a puzzle sent from the prover to the verifier in the second round
of the protocol. The puzzle is implemented through a one-way-permutation and can be
inverted running in super-polynomial time, but still below the assumed hardness of all
other involved primitives. The proof of knowledge given by the verifier actually proves
either knowledge of the private-key of the encryption scheme, or of the solution of the
puzzle. The remaining part of the protocol is similar to the one of ΠMR.

The simulator of ΠDPV does not achieve cZK. As discussed in [31] (see page 248),
the simulation goes through phases where each phase is straight-line until the simulator
is stuck. Then one more secret key is extracted and the simulation starts a new thread
trying to complete it, this time using one more secret key. As discussed in Section 5.2.1
since the simulator does not keep the main thread, more easily completes threads when
the verifier decides to abort many sessions (there are less chances that the simulator
would be stuck in those threads). The attack shown for Simweak breaks analogously also
the simulation given in ΠDPV . Consequently there is no evidence that ΠDPV be cZK.
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The Case of ΠDV [33] In [33], Di Crescenzo and Visconti presented a 4 round cZK
argument for NP in the BPK model under standard assumptions. In their protocol ΠDV ,
π0 is a WI proof of knowledge of one over two trapdoors for a trapdoor commitment
scheme. In the second round P commits to a random string, using the trapdoor com-
mitment scheme, and concurrently P proves theorem x ∈ L using a Σ-protocol (played
in rounds 2,3,4) where the challenge is computed as the xor of the challenge picked by
the verifier, and a challenge that was committed by the prover through the trapdoor
commitment played in round 2. The simulator extracts the trapdoor from π0 and equiv-
ocates the commitment sent in the second round, adaptively on the challenge played
by V. However, the key point is that, the trapdoor commitment scheme used in their
construction, is such that a commitment can be equivocated only if the trapdoor was
used already in the commitment phase. This property is fundamental in their proof of
soundness. Therefore, again, in order to equivocate, Sim needs to know the trapdoor
already in the second round.

The simulator of ΠDV does not achieve cZK. The proof of cZK of ΠDV (see page
824 of [33]) requires that the simulator computes the commitment sent in the second
round, without having extracted the trapdoor yet. Therefore the simulator is stuck
when it needs to play the fourth round (after getting the third round from the verifier)
since it can not equivocate anymore (in order to equivocate, knowledge of the trapdoor
is needed already when the commitment is computed). The suggestion given in [33]
to carry on the simulation consists in extracting the secret key so that later on, in a
next thread, all commitments computed by the simulator will be equivocal. Again, as
discussed before, the fact that the simulator does not keep the main thread and keeps
starting new threads until the execution with the verifier is completed without being
stuck is clearly distinguishable. Consequently, there is no evidence that ΠDV be cZK.

The Case of ΠV [99]

In [99], Visconti showed an efficient transformation for obtaining a 4 round cZK argu-
ment in the BPK model starting from any language admitting a Σ-protocol and only
adding a constant number of modular exponentiations.

The protocol is based on a proof of knowledge of one over two discrete logarithms
(the two possible secret keys) given by V in the first 3 rounds. Then in the second
round the prover commits through a variation of the perfectly binding commitment due
to Micciancio and Petrank [74] to one of two secret keys (this is possible also without
knowing the secret keys, just relying on multiplications and exponentiations in the con-
sidered groups). In rounds 2, 3 and 4, the prover proves that the above commitment
corresponds to one of the two secrets. Then it essentially gives a Σ-protocol for x ∈ L
where knowledge of the decommitment of the above commitment allows one to complete
the Σ-protocol without knowing the witness.
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The simulator for cZK of ΠV does not achieve cZK. The simulator for cZK of
ΠV discussed in [99], is based on the capability of equivocating concurrently the com-
mitments played in round 2. In order to be able to equivocate the simulator is required
to extract the trapdoor (i.e., a discrete logarithm) from the proof given by the verifier
in the first 3 rounds (see pages 29-30 of [99]). This means that in order to reach the
third round the simulator is required to commit in the second round without having the
trapdoor. Although, the scheme allows to commit to one of the two possible trapdoors
without having them, the simulator will select the wrong trapdoor with probability 1/2,
i.e., it selects the trapdoor that is not extracted from the proof of knowledge given by V.
Therefore, Sim can not equivocate the commitment sent in the 2nd round. Sim is there-
fore stuck, and it needs to start a new thread where it commits to the extracted trapdoor.
However, as discussed previously, the fact that the simulator starts new threads when
it is stuck is clearly attackable by malicious concurrent verifiers as the one shown for
Simweak. Consequently, there is no proof that ΠV be cZK.

The Case of ΠDV 2 [34] In [34] Di Crescenzo and Visconti focus on the notion of
knowledge extraction in the BPK model, which we do not consider in this work. However,
they also claim the existence of a round-optimal concurrently sound cZK argument
system ΠDV 2 in the BPK model under more general assumptions than the ones used
in [33] for ΠDV . The protocol actually corresponds to the one of [33] but the underlying
primitives are implemented under general complexity-theoretic assumptions instead of
number-theoretic assumptions. Since both protocols have the same structure, the same
issues discussed for ΠDV apply to ΠDV 2 too.

To conclude, in this section we have proved via a counterexample that the simulation
strategy proposed in literature leads to a distinguishable output. We also argued that
for some of the protocols, finding alternative simulation strategy seems hard, due to the
protocol structure.

5.2.3 Replacing Simulation in Phases by Threads

We now discuss four previous protocols that besides the issues in the proposed simulation
strategies discussed above, seem (in some cases with some fixes) still to be able to admit
a simulation strategy based on maintaining a main thread. We stress that later we
will show a new technique based on the use of temporary keys along with permanent
keys so that the simulator works in two modes that allow it to stick with the main
thread. As far as we know, our technique was never used in previous papers. Protocols
below when using a different simulation strategy (in some cases, our new simulation
strategy) can potentially achieve some of the results that we will achieve in the next
section. We did not go through details of the proofs of such (in some cases, fixed) 4
protocols. We do not claim their security and here we only explain how such protocols
and their (distinguishable) simulations in phases could potentially be adjusted in light
of our results and techniques.
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The Case of ΠZ [107]. A 4-round conversation-based cZK argument enjoying se-
quential soundness only is shown in [107]. While the security proof still relies on the
use of a simulator that works in phases, we notice that a different simulator based on
keeping a main thread could be used instead. The reason is that the secret information
is needed by the simulator only in the third round of π1 (see our discussion in Section ??)
and, since the achieved result is only sequentially sound, there is no concurrent attack
to soundness to take care of.

The Case of ΠY Z [106]. In [106], Yung and Zhao showed protocols ΠY Z and Π̄Y Z that
are respectively a 4-round concurrently sound rZK argument in the BPK model under
general complexity-theoretic assumptions and an efficient 5-round concurrently sound
rZK argument under number theoretic assumptions. Both protocols use complexity
leveraging and we will now concentrate on ΠY Z since the analysis extends also to Π̄Y Z

with one more round.
ΠY Z consists of 3 sub-protocols played in parallel. In the first three rounds the

verifier, using a special Σ-protocol Σfls, gives a proof of knowledge of its secret key sk or
of a solution of a puzzle. The puzzle was sent by the prover during the second round,
and Σfls is such that knowledge of the theorem (and therefore of the witness) is not
required in the first round. The prover gives a resettable WI proof (i.e., the verifier
commits to the challenge in the first round) in rounds 2, 3 and 4 where it proves that
x ∈ L or it knows sk. Since black-box extraction of the witness (necessary for the proof
of concurrent soundness) is not allowed in the resetting verifier setting, they enforce the
extraction using complexity leveraging as follows. The challenge is committed through a
trapdoor commitment scheme with a 2-round decommitment phase, where the trapdoor,
that is needed only in the opening, corresponds to the solution of the puzzle sent by the
prover. Therefore there exists a sub-exponential time extractor that can find the solution
of the puzzle, open the commitment in multiple ways and thus extract the actual witness
of the prover. This proof of concurrent soundness falls down when one would like to use
standard hardness assumptions only (e.g., to prove cZK under standard assumptions).
The technical difficulty of implementing efficiently Σfls is solved by requiring the prover
to send the puzzle in a first round, so that an OR composition of Σ-protocols can be
used, therefore obtaining a 5-round protocol Π̄Y Z .

As discussed in [106] (see page 136), the simulator runs in different phases, trying in
each phase to complete the simulation, but in case it can not, it obtains a new secret key
and starts a new phase, with new randomness. This approach, as previously discussed,
makes the output of the simulator distinguishable when playing with some specific adver-
sarial concurrent verifiers. However, we notice that in this case an alternative simulation
strategy could be possible. Indeed, when the simulator starts the main thread and gets
stuck, it does not actually need to abort it, but instead can start a new thread just to
get the secret information to complete the main thread. The reason why this can be
possible here (in contrast to previous protocols), is that the simulator needs the secret
of the verifier only when it plays the last message of the protocol, therefore it can always
perform the extraction (in a new thread) before being stuck. However, as discussed in
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the introduction, playing the extracted secret only in the last round exposes the protocol
to concurrent soundness attacks. In the very specific case of rZK, since soundness is
proved through complexity leveraging, the proof of soundness could go through.

We stress that it is not clear at all how to prove concurrent soundness by only relying
on standard assumptions (i.e., without complexity leveraging). We will later show our
construction that is based on standard assumptions.

The Case of ΠY Y Z [104, 103]. In the concurrently sound cZK protocol presented
in [104, 103], the simulator is required to commit in the second round to one of the two
secret keys of the verifier. This must be done before the verifier completes its proof of
knowledge of one of her secret keys. It is immediate to see that precisely as we discussed
above, this requires the simulator to try to complete the simulation using new phases
(see page 24 of [103]). Therefore the same attacks showed before can be mounted against
this simulator too.

In Section 6.2 of [103] an update of the protocol yielding round optimality is sug-
gested. The update consists in replacing a strong WI proof with a 4-round zero-
knowledge argument of knowledge argument due to Feige and Shamir [43] (FSZK, for
short), which would also subsume the proof of knowledge given by the verifier. However,
in the same section it is then observed that such update hurts the concurrent soundness
of their scheme.

Here we observe that since their first subprotocol is a statistical WI argument of
knowledge given by the verifier, it can be instantiated under general complexity-theoretic
assumptions only requiring a first round from prover to verifier. Indeed this message is
needed to establish the parameters for a statistically hiding commitment scheme to be
used in the statistical WI argument. Therefore, the resulting construction can be round
optimal only when using number-theoretic assumptions, that can be used to implement
the statistical WI proof in 3 rounds [96, 26].

Our technique based on temporary keys and simulation in two modes can potentially
be applied when using FSZK differently, so that concurrent soundness could be preserved.
This could be possible when FSZK is played independently of the public keys of the
verifier, therefore including some session keys (which would have a role similar to the
temporary keys of our technique). Then our new simulation technique could be used
to maintain a main thread working in two modes (in one mode using the extracted
permanent keys, in the other mode using the simulator of FSZK that use the extracted
session keys).

The Case of ΠD [30]. A 4-round concurrently sound cZK argument ΠD in the BPK
model under the existence of one-way functions only is showed in [30]. In the first round,
the verifier sends a message mv. Then in the second round the prover sends a statistically
binding commitments of potential signatures of a pair of messages (under the public-key
of the verifier) and a message mp. In the third round the verifier sends a signature of
(mv|mp) (instead of the usual proof of knowledge of a secret). In the last 3 rounds P
proves that x ∈ L or the commitment sent in the second round corresponds to messages
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(m′|m′0) and (m′|m′1) and their signatures, where m′0 6= m′1.
Because the concurrent adversarial prover can not rewind the verifier, the above

technique with signature, is sufficient to prove concurrent soundness. Indeed, signatures
received in concurrent proofs always correspond to messages with a different prefix se-
lected by the verifier. The cZK property of the protocol however is problematic again
for the very same reasons discussed above. Indeed, the simulator does not have any
signature at all when it plays the second round, and thus later on, in order to be able
to complete proofs it will have to start new phases where knowledge of the signatures
accumulated during previous executions is sufficient to run in straight-line. Indeed, the
simulator presented in [30] rewinds the verifier when it is stuck, and produces a new
transcript committing to the extracted signatures. As already explained, this makes its
output distinguishable w.r.t. real executions.

We finally argue that the protocol could be adjusted to then admit a simulator that
keeps a main thread. In contrast to previously discussed protocols, the main advantage
of ΠD is that the verifier uses its secret keys to generate signatures of messages with
different formats in different sessions. This makes problematic the attack of concurrent
soundness, since the execution of concurrent sessions does not provide useful messages to
cheat in a specific session. Therefore one could tweak the protocol so that the simulator
needs to use the obtained signatures only at the last round. In this way, the simulator
could obtain through rewinds two signatures for messages with the same structure, and
could use them in the main thread and in all future sessions that correspond to that
verifier.

5.3 Round-Optimal cZK in the BPK Model

In this section we show our round-optimal concurrently sound cZK argument under
standard complexity-theoretic assumptions.

Overview, Techniques and Proof Intuition In light of the attacks shown in the
previous section, we construct a protocol that allows a simulation strategy in which
the transcript generated in main thread is kept unchanged. In order to highlight the
issues that rise up when dealing with concurrent adversaries and how we solve them, we
describe the protocol incrementally.

The public identity of the verifier V corresponds to a trapdoor commitment. Specif-
ically, an identity pkj is a pair (pkj , tcomj), where pkj is the public key of a two-round
trapdoor commitment scheme (the first round consists of the generation of the parame-
ters and is run by V itself) and tcomj is the (trapdoor) commitment of a message. The
secret key skj is the trapdoor associated to pkj .

The protocol starts with V proving the knowledge of a valid opening of its identity:
an opening of tcomj under public key pkj . Such proof of knowledge is implemented with

a Σ-protocol that we denote by Σidj . An honest verifier runs Σidj using as witness a
freshly generated opening of tcomj (V can open tcomj as any value since it knows the
trapdoor trapdoor associated to pkj). We use a trapdoor commitment scheme that has a
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super-polynomial sized message space, hence, the number of possible witnesses is super
polynomial as well. As we shall see later, this technique allows to rule out malleability
attacks, and thus to obtain concurrent soundness.

Simultaneously, in the second round, the prover P first sends the commitment comop

of a random string. Then it runs a Σ-protocol to prove that, either x ∈ L or the
string committed in comop is a valid opening of tcomj . We denote such protocol as ΣLj .
Requiring that P commits to the opening already in the second round is crucial to derive
a contradiction in the proof of concurrent soundness.

The simulator can provide and accepting proof without knowing the witness for
theorem “x ∈ L” as follows. It extracts the opening of tcomj , exploiting the proof
of knowledge property of the Σ-protocol Σidj , and commits to such opening in comop.
The opening of tcomj is the permanent secret associated to the verifier V playing with
identity pkj . Thus, once extracted, it allows the simulator to complete in straight-line
all the proofs that are played with verifier pkj .

However, this protocol clearly suffers of the same attack of previous works. Indeed,
when the simulator plays with verifier pkj for the first time, it does not know any
opening. It can extract the opening only after having sent the commitment comop.
Such commitment will be bad since it will not be a commitment of a valid opening of
tcomj . Therefore, the simulator has to rewind the verifier and change the commitment
comop, hence changing the main thread. We overcome this problem with the following
technique.

First, we require that upon each new session, V freshly generates an additional pair
of parameters (k0, k1) for a two-round trapdoor commitment scheme, and it keeps the
trapdoors (t0, t1) secret. Such parameters can be seen as temporary keys. V sends the
pair (k0, k1) to P and proves knowledge of one of the trapdoors running an additional
Σ-protocol that we denote by Σtrap.

Second, the temporary keys (k0, k1) are used by P to commit to the first message

of protocol ΣLj , that we denote by pok
Lj

1 . Specifically, P computes two shares of pok
Lj

1

and commits to each share using one of the temporary keys. Both commitments will be
opened only in the third round of ΣLj , precisely only after P observes the challenge sent
by V.

Allowing the prover to open the commitment after having seen the challenge does
not harm soundness, while will give the simulator an additional way of cheating.

Concerning soundness, due to the binding of the commitment scheme, P is not able to
take advantage of the knowledge of the challenge. Furthermore, since the parameters of
the trapdoor commitment (i.e., the temporary keys) are freshly generated by V upon each
execution, we are able to prove that P can not take advantage of concurrent executions
with many verifiers3. We will prove concurrent soundness through witness extraction.
We first show that there exists an extractor that obtains the witness from any accepting
proof. Then we prove that the witness extracted is indeed a witness for theorem “x ∈ L”,

3If instead parameters of the trapdoor commitments were fixed for all executions, then in the proof
of soundness one can not derive a contradiction in case P equivocates the commitment associated to the
same trapdoor used as witness in Σtrap in concurrent executions.
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and is not a valid opening of tcomj .
Concerning the benefit for the simulation, Sim can cheat in the following additional

way. It can play the second round (that is, the commitment comop and the trapdoor

commitment of the message pok
Lj

1 ) without knowledge of neither a trapdoor nor a valid
opening. Then, it extracts the trapdoor of one of the temporary keys and equivocates
the commitment of ΣLj adaptively on the challenge received from the verifier. Here
Sim is using the special honest-verifier zero knowledge property of protocol ΣLj . The
key point is that Sim can compute the second round without knowledge of any witness
or trapdoor and still be able to cheat in the last round after one of the trapdoors is
extracted. One subtlety is that the simulator does not know which trapdoor will be
extracted. Therefore, here we have to use a trapdoor commitment scheme in which any
message computed with the honest procedure can be equivocated.

Clearly, we do not want that the simulator cheats always in this way. The temporary
keys are freshly generated upon each session, thus rewinding V∗ upon each session to
extract such keys, causes the blow up of Sim’s running time.

Therefore Sim operates in two modes. When simulating a session with a verifier
whose permanent secret (the opening of tcomj) is known, Sim runs in straight-line, using
such secret as witness. When simulating a session with a new verifier, Sim launches a
rewinding thread to extract both the permanent secret and the temporary trapdoor.
The permanent secret is stored and it will be used to solve future sessions with the same
identity. The temporary trapdoor is used to solve the current session, by equivocating

the commitment of pok
Lj

1 . We stress that with this technique, the simulator never changes
messages previously played in the main thread.

Furthermore, to argue that the expected running time of Sim is polynomial, it is
important that the view of the verifier in the two modes is identical. Therefore, the
commitments sent by P are perfectly-hiding and the perfectly-trapdoor, and ΣLj is a
perfect Σ-protocol.

The Protocol. Here we formally describe our round-optimal concurrently sound cZK
protocol that we denote by ΠcZK.

The public file. Let TCom = (TGen,TSen,TVer,TFakeDec) be a two-round trap-
door commitment scheme. V first runs (pkj , sk)← TGen(1n). Then it runs (tcomj , z)←
TSen(pkj , m̃), for a random message m̃. Finally V publishes j = (pkj , tcomj) as public
identity and stores (sk, z) as secret key.

Sub-Protocols. Let PHTCom = (PHTGen,PHTSen,PHTRec,PHTFakeDec) be a
two-round perfectly-hiding trapdoor commitment scheme and PHCom = (PHGen,PHSen,PHRec)
a two-round perfectly-hiding commitment scheme. For simplicity we assume that the
public parameter pk for the scheme PHCom (the first round of the commitment scheme)
is included in the identity of V.
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x ∈ L

P(w) V(sk, z)

k0, k1, pok
idj
1 , poktrap

1

pok
idj
2 , poktrap

2 , comop, tcom0, tcom1

pok
idj
3 , poktrap

3 , pok
Lj

2

pok
Lj

3 , tdec0, tdec1, s0, s1

Figure 5.3: Protocol ΠcZK.

Auxiliary languages. We use the following NP relations and in turn the respec-
tive NP-languages Lidj , Ltrap, Lopj , Lj :

− knowledge of an opening of tcomj under parameter pkj :
RLidj

= {((pkj , tcomj), (open,m)) : TVer(pkj , tcomj , open,m) = 1};

− knowledge of the trapdoor t associated to one of the temporary parameters (k0, k1):
RLtrap = {((k0, k1), t) : (k0, t)← PHTGen(1n) ∨ (k1, t)← PHTGen(1n)};

− knowledge of the string v committed in comop which is a valid opening of tcomj

(v can be seen as the concatenation dec′||m′ where dec′ is the opening information
for tcomj and m′ is the message):
RLopj

= {((comop, pkj , tcomj), (v, d)) : PHRec(pk, comop, d, v = (dec′||m′)) = 1 ∧
TVer(pkj , tcomj , dec

′,m′) = 1};

− knowledge of the witness for x ∈ L, or knowledge of the witness for (comop, pkj , tcomj) ∈
Lopj :
RLj := RL ∨ RLopj

= {X = (x, comop, pkj , tcomj), W = (y, v, d)) : (x,w) ∈
RL ∨ ((comop, pkj , tcomj), (v, d)) ∈ RLopj

}.

Σ-Protocols. We will use Σ-protocols for all languages showed above. We denote

by Σidj = (pok
idj
1 ,pok

idj
2 ,pok

idj
3 ) the Σ-protocol run by V to prove knowledge of an opening

of its identity pkj = (pkj , tcomj) (relation RLidj
) and by Σtrap = (poktrap

1 ,poktrap
2 ,poktrap

3 )

the Σ-protocol run by V to prove knowledge of a temporary trapdoor (relation RLtrap).
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We denote by ΣLj = (pok
Lj

1 , pok
Lj

2 , pok
Lj

3 ) the perfect Σ-protocol run by P for instances
of RLj when interacting with the verifier with identity pkj .

The protocol is depicted in Figure 5.4. A graphic representation is given in Figure 5.3.
By noticing that Blum’s protocol [12] is a perfect Σ-protocol (when the first message is
computed with a perfectly-hiding commitment scheme) for NP languages, we conclude
that Protocol ΠcZK is a black-box perfect cZK for all NP.

Theorem 12. If ΣLj is a perfect Σ-protocol, if Σidj ,Σtrap are Σ-protocols, if PHCom is a
two-round perfectly-hiding commitment scheme, PHTCom is a two-round perfectly-hiding
trapdoor commitment scheme and TCom is a two-round trapdoor commitment scheme,
then protocol ΠcZK is a 4-round concurrently sound black-box perfect cZK argument in
the BPK model for all NP.

5.3.1 Security Proof

Concurrent Zero Knowledge of ΠcZK

We show an expected PPT simulator Sim that with oracle access to V∗ outputs a tran-
script that is indistinguishable from the output of the execution between P and V∗. In
the following we first describe the simulator Sim and we prove that its expected running
time is polynomial. Then we prove the indistinguishability of the view generated by Sim

The Simulator. The simulator Sim is depicted in Figure 5.5. Sim gets as input
the vector of theorems (x1, . . . , xpoly(n)) and the vector of identities ((pk1, tcom1) ,. . .,
(pkpoly(n), tcompoly(n))).

Sim maintains three global variables h, T , RV∗ . Variable h maintains the transcript of
the Main Thread, variable T maintains the permanent secrets extracted so far: the j-th
entry of T is the permanent secret – denoted by openj – of the j-th identity (pkj , tcomj).
RV∗ is the randomness with which V∗ is activated.

Sim has oracle access to V∗ and receives queries in the form (i, j,mV). Here i is the
index of the theorem to be proved, j is the index of the identity of V∗ which corresponds
to the pair (pkj , tcomj), mV is V∗’s message. Value mV is either the first round, which

we denote by V 1 = (k0, k1, pok
idj
1 , poktrap

1 ), or the third round, which we denote by

V 3 = (pok
idj
3 , poktrap

3 , pok
Lj

2 ). V∗ can open concurrently many sessions with the same
identity. For convenience, we identify each session with a session id sid.

When V∗ initiates a new session, it sends a query (sid, i, j, V 1) to Sim. Sim checks if
identity j has been already solved, namely, if there exists openj ∈ T . If this is the case,
then Sim computes comop = PHSen(pk, openj), and later honestly completes the sigma

protocol ΣLj using openj as witness. In this case, we say that session sid is solved.
If identity j is unsolved, Sim computes comop = PHSen(pk, r) for a random string r,

and commit to random shares in tcom0, tcom1. In this case we say that session sid is not
solved.

When V∗ sends a third round (sid, i, j, V 3) and session sid is not solved Sim must
extract the temporary trapdoor for session sid, in order to equivocate one of the commit-
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Common input: the public file F , an n-bit string x ∈ L and index j specifying
the j-th entry of F , i.e. pkj = (pkj , tcomj)forthetrapdoorcommitmentandpk per the
perfectly hiding commitment.
P’s private input: a witness w for x ∈ L.
V’s private input: the trapdoor key sk and z which is the auxiliary information
needed for equivocation.
V-round-1:
− (k0, t0)

$← PHTRec(1n); (k1, t1)
$← PHTRec(1n);

− compute pok
idj
1 and poktrap

1 ;

− send k0, k1, pok
idj
1 , poktrap

1 to P.
P-round-2:
− (comop, d) ← PHSen(pk, v) for a randomly chosen string v; compute pok

idj
2 ,

poktrap
2 ;

− compute pok
Lj

1 and shares s0, s1 such that s0 ⊕ s1 = pok
Lj

1 ;
− (tcom0, tdec0) ← PHTSen(k0, s0), (tcom1, tdec1)← PHTSen(k1, s1);

− send pok
idj
2 , poktrap

2 , comop, tcom0, tcom1 to V.
V-round-3:
− pick a random n-bit string m′;
− compute (m′||wdec)← TFakeDec(sk, z,m′);

− compute pok
idj
3 using as witness (m′, wdec);

− compute poktrap
3 using as witness te for a randomly selected bit e;

− compute pok
Lj

2 ;

− send pok
idj
3 , poktrap

3 , pok
Lj

2 to P.
P-round-4:
− verify that (pok

idj
1 , pok

idj
2 , pok

idj
3 ) is an accepting transcript of Σidj for the state-

ment (pkj , tcomj) ∈ Lidj , if not abort;

− verify that (poktrap
1 , poktrap

2 , poktrap
3 ) is an accepting transcript of Σtrap for the

statement (k0, k1) ∈ Ltrap, if not abort;

− compute pok
Lj

3 using the witness w;

− send pok
Lj

3 , tdec0, tdec1, s0, s1 to V.
V-decision: if PHTRec(k0, tcom0, tdec0, s0) = 1 ∧ PHTRec(k1, tcom1, tdec1, s1) = 1

then pok
Lj

1 ← s0 ⊕ s1 and accept iff (pok
Lj

1 , pok
Lj

2 , pok
Lj

3 ) is an accepting transcript of
ΣLj for the statement (x, comop, pkj , tcomj) ∈ Lj ; else, abort.

Figure 5.4: ΠcZK: 4-round concurrently-sound cZK in the BPK model for all NP.

ments tcom0, tcom1. Sim pauses the Main Thread and starts the extraction thread – it
launches procedure Extract – which serves to extract both the temporary trapdoor (t0 or
t1), and the opening of tcomj (openj). This is done by rewinding V∗ in the execution of

Σ-protocols Σidj , Σtrap respectively (details on procedure Extract will be provided soon).
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Once the extraction of the temporary trapdoor is successfully completed, Sim com-

putes an accepting last round of ΠcZK (i.e., pok
Lj

3 , tdec0, tdec1, s0, s1) as follows. It com-

putes pok
Lj

1 , pok
Lj

3 by running the special honest-verifier zero knowledge simulator hvSim
of ΣLj . Then it uses the extracted trapdoor to equivocate one of the commitments so

that the xor of the openings s0 ⊕ s1 gives the message pok
Lj

1 calculated as above.

Procedure Extract focuses on extracting one of the temporary trapdoors and the
opening of tcomj for session sid only. It rewinds V∗ up to the second round of the session

sid, and sends fresh values p̃ok
idj
2 , p̃ok

trap

2 (the challenges of protocols Σidj , Σtrap) to V∗.
The goal is to simulate the view of V∗ till when she answers with a third round for
session sid, so that the witnesses of both Σ-protocols are extracted.

To simulate such view, procedure Extract has to simulate the execution of all sessions
played by V∗ between the second and the third round of session sid. Such sessions are
simulated in straight-line using the permanent keys extracted so far. Note that, there is
a difference between the way such sessions are handled in the Main Thread, versus the
rewinding thread. In the Main Thread, the sessions appearing between the second and
the third round of session sid, might have been solved using temporary keys. Whereas,
in the rewinding threads all such sessions are solved using the permanent key. As we
shall see later, in order to argue about the running time of Sim we need that the view
of V∗ in the above two modes is identically distributed. This allows us to argue that if
in the Main Thread a session is completed with non-negligible probability, so it will be
in each rewinding thread. Here we are crucially helped by the fact that the protocols
played by P are perfectly-hiding, perfectly-trapdoor and perfectly-WI.

Observe that, in the Main Thread, V∗ did not complete any unsolved session, say sid′,
before sending the third message of session sid (this is obviously true, since otherwise Sim
would have called Extract on session sid′ instead). However, in each rewinding attempt

performed by Extract, V∗ receives new values p̃ok
idj
2 , p̃ok

trap

2 , thus V∗ could complete
unsolved sessions that were not completed in the Main Thread, before sending the third
round of sid.

In such case, the procedure Extract tries to solve the unsolved session in order to
obtain the third round of the target unsolved session. The [19] guarantees that the
running time required for such session is still polynomial.

Procedure Extract is shown in Figure 5.6.

Claim 5.3.1. Sim runs in expected polynomial time.

Proof. Due to the temporary trapdoors, the number of extractions (invocations of pro-
cedure Extract) is not upper-bounded by the number of identities, but it can match the
number of sessions that V∗ opens in the Main Thread. In the following we formally show
that the expected running time of Sim is polynomial.

When V∗ opens a new session by querying Sim with (sid, i, j, V 1), there are two
possible cases:
Case 1. Identity j is solved. If the identity has been solved, Sim computes the second
round as the honest prover, except that it computes comop as the commitment of openj .
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Then, when V∗ sends the third round V 3, Sim proceeds in straight-line using the
witness openj . Therefore, for solved identities the running time of Sim is the same
as the running time of P. We denote the running time needed for solved sessions by
tsolved = poly(n).
Case 2. Identity j that is not solved yet. If the identity has not been solved, Sim
computes the second round committing to random strings. We denote the running time
necessary to compute this first round by tPrszk

= poly(n).
Then, when V∗ correctly sends the message V 3, Sim activates procedure Extract to

extract the temporary trapdoor and the permanent secret. Procedure Extract takes as
input the transcript of the main thread obtained till the second round of session sid.

Procedure Extract focuses on session sid only. Its goal is to extract the witness used
in protocols Σidj ,Σtrap run in session sid. Towards this goal, it changes the challenges
for protocols Σidj ,Σtrap sent in the second round of session sid, hoping to reach another
accepting third round, thus extracting both witnesses. However, in between the second
and the third round of session sid, the malicious verifier V∗ might have opened other
sessions that must be simulated as well. Such sessions are simulated as in procedure
Main Thread with the following exception. While in the main thread they were solved
using the temporary trapdoor, in the rewinding thread are solved in straight-line using
the permanent secret. When V∗ sends the third round of a session that is unsolved, the
procedure Extract tries to solve such session with the goal of reaching the third round of
session sid (and on the way it collects new permanent trapdoors which allows straight-
line simulation). When V∗ sends a valid third round for session sid, procedure Extract
extracts the witnesses used in Σidj (an opening of tcomj) and Σtrap (the temporary
trapdoor). It stores the opening in the table T and returns the trapdoor to the Main
Thread. Procedure Extract does not call itself recursively, thus we only have to bound
the number of rewinding attempts needed to extract the witnesses.

We now argue that the expected number of rewinding attempts needed to extract the
trapdoor (and thus the opening) is polynomial. The crucial point that helps our analysis
is that the view of V∗ in the main thread is identical to its view in each rewinding attempt.
This is due to the fact that commitment functions PHCom,PHTCom are perfectly-hiding,
PHTCom is perfectly-trapdoor, and the Σ-protocol ΣLj is perfect.

Therefore, if V∗ has reached the third round of session sid in the main thread, without
terminating any other unsolved session, with non-negligible probability, then in each
rewinding thread, V∗ will do the same, with the same probability. Hence, the expected
number of rewinding attempts required to reach a valid third step for sid, is polynomial.

More formally, let s be an upper-bound the number of sessions opened by V∗. Let
ζsid = ζ(RV∗ , sid) be the probability over the coin tosses by Sim that V∗, activated with

randomness RV∗ , correctly plays messages pok
idj
3 and poktrap

3 for the third round of the
unsolved session sid.

When Sim reaches the third round of such session, it activates procedure Extract.
All the work up to this point concerns either sessions activated with identities already
solved (dealing with these sessions takes time tsolved) or sessions for which only the first
prover’s message has been played (dealing with these sessions takes time tPrszk

). This
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amount of work is upper bounded by (s · tPrszk
+ s · tsolved) and is repeated by procedure

Extract upon each rewinding attempt. Procedure Extract generates a transcript that is
identical to the one generated by Sim in the main thread.

Hence the expected running time of one invocation of the procedure Extract to solve
a session sid is bounded by:

tsolvesid ≤ ζsid
[ s

ζsid
· (tPrszk

+ tsolved)
]

= poly(n)

Thus, the total expected running time of Sim is upper bounded by:

tSim ≤
s∑

sid=1

(tPrszk
+ tsolvesid) + poly(n) · tsolved = poly(n)

Claim 5.3.2. The simulator Sim outputs ABORT with negligible probability.

Proof. Sim aborts only when procedure Extract fails in returning the trapdoor key to
solve a session sid. Procedure Extract fails in outputting the witnesses in two cases:

• None of the 2n attempts is successful. This case happens with negligible probabil-
ity.

• V∗ violates the special soundness of protocols Σidj ,Σtrap. Since the latter are Σ-
protocols, this event happens with negligible probability only.

Claim 5.3.3. The view generated by Sim having oracle access to V∗ and input the set
x̄ = {x1, . . . , xn} is perfectly-indistinguishable from the view generated by the interaction
between V∗ and P.

Proof. The proof goes by hybrid arguments.

H0: In this hybrid Sim has in input the vector of witnesses w̄ = w1, . . . , wn and fol-
lows the procedure of the honest P. The output of this experiment is distributed
identically to the output of the real game played between P and V∗.

H1: This hybrid is the same as H0 except that here Sim runs the procedure Extract.
That is, when V∗ reaches the third round in a session sid that is not solved yet, Sim
activates the procedure Extract. However, all the prover’s messages are computed
according to the honest prover procedure and the openings extracted are never
used. The only difference between hybrid H0 and H1 is that H1 runs in expected
polynomial time and that Sim in H1 can abort with negligible probability (due to
the possible failure of procedure Extract). The two experiments are statistically
close. Note that, although the output of the experiments is statistically close, the
view generated by Sim (when it does not abort) in H1, is identical to the view
generated by Sim in H0.
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H2: This hybrid is the same as H1 except that in H2, when V∗ starts a new session sid
with identity j (i.e. V∗ sends the message of the first round V 1) that is already
solved (i.e., there exists openj ∈ T ) Sim computes comop as the commitment of the
opening openj instead of a random string. However, as for the other sessions, Sim

still computes the last message (the third message of protocol ΣLj) of session sid
using the witness for language L, as the honest prover. The only difference between
experiment H2 and H1 is in the string committed in comop. By the perfectly-hiding
property of commitment scheme PHCom hybrids H1 and H2 are identical.

H3: This hybrid is the same as H2 except that here for a new session sid in which V∗
plays with an identity j that is already solved, Sim computes the third round of
the protocol ΣLj by using as witness the decommitment of comop (which consists
of the opening openj of tcomj). The only difference between hybrids H2 and H3

is in the witness used to compute the last message of ΣLj . Since ΣLj is a perfect
Σ-protocol, and thus perfect WI, hybrids H2 and H3 are identical.

H4: This hybrid is the same as H3 except that here when V∗ plays the third round
of a session sid that is unsolved, Sim uses the temporary trapdoor extracted by
Extract to compute the last message. More specifically, Sim computes all the mes-
sages accordingly to H3 but it opens commitment tcome as tdece using algorithm
PHTFakeDec and the trapdoor key te instead of algorithm PHTSen. Note that Sim

here still computes the message pok
Lj

3 using the witness w. The only difference
between hybrid H3 and H4 is that in hybrid H4 one decommitment is computed
using the trapdoor, instead of the honest decommitment procedure. Due to the
perfect trapdoorness of PHTCom, hybrids H3 and H4 are identical.

H5: This hybrid is the same as H4 except that here when V∗ plays the third round of a
session sid that is unsolved, Sim computes the last prover message using the special
honest-verifier zero-knowledge simulator of ΣLj . Specifically, Sim computes the

message (pok
Lj

1 , pok
Lj

3 )← hvSim(pok
Lj

2 ). Here Sim is not using any witness to prove
the theorem. Since ΣLj is a perfect Σ-protocol, the honest-verifier zero-knowledge
simulator hvSim generates a transcript that is identical to the one generated by
the honest prover. Therefore hybrids H4 and H5 are identical.

By noticing that this is the description of the simulator Sim, the proof of the claim
is completed.

Concurrent Soundness of ΠcZK

In order to prove concurrent soundness we show that if a malicious prover P∗ provides an
accepting transcript then we can efficiently extract the witness for the theorem “x ∈ L”,
therefore contradicting the fact that “x /∈ L”.

The proof is divided in two parts.
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First, we prove that if a malicious prover P∗ provides an accepting transcript, the
extractor E obtains the witness with high probability in expected polynomial time. This
proof does not follow straightforwardly from the proof of knowledge property of the Σ-
protocol ΣLj . The reason is our novel use of temporary trapdoors. Recall that according

to ΠcZK, P∗ actually delivers the first message of ΣLj (pok
Lj

1 ) only in the last round

(by opening commitments tcom0, tcom1). Namely, only after it sees the message pok
Lj

2

sent by V. This is the crucial idea that allows the simulator to cheat in the last round
without changing the transcript played so far. However, when proving soundness we
have to consider a malicious prover that changes the transcript of ΣLj adaptively on the

challenge pok
Lj

2 as well. In this case the extraction of the witness fails (recall, to extract

a witness two distinct transcripts that have the same first message pok
Lj

1 are required).
We will prove that, due to the binding of the trapdoor commitment PHTCom used by
P∗ to compute tcom0, tcom1, and to the witness indistinguishability of protocol Σtrap

(where V proves knowledge of one of the temporary trapdoors), this event happens with
negligible probability only. In the reduction to the witness indistinguishability property
of Σtrap, we do not have to deal with malleability attacks. In a malleability attack P∗
exploits the concurrent executions with the same verifier V (by same verifier we mean a
verifier with the same identity) to compute the messages of the accepting session. The
key point here is that the temporary keys used to run protocol Σtrap are independently
and randomly chosen upon each new session. Thus, for the proof of soundness it is cru-
cial that the keys for the trapdoor commitment are temporary, instead of being part of
the public file. The first part of the security proof is given in Claim 5.3.4 and Claim 5.3.5.

Second, we prove that the witness extracted by E is indeed a witness for the theorem
x ∈ L. Recall that in protocol ΠcZK, the prover P∗ provides a proof of knowledge for the
language Lj . The first part of the security proof guarantees that E obtains the witness
W for the language Lj with overwhelming probability. However, since Lj = L ∨ Lopj ,
the extracted witness W can correspond either to the witness w such that (x,w) ∈ RL
or to the openings (v, d) such that ((comop, pkj , tcomj), (v, d)) ∈ RLopj

.
We prove that, due to trapdoorness and the binding property of TCom, and due to

the witness indistinguishability property of the Σ-protocol Σidj run by V, the probability
that the extracted witness is a valid opening of tcomj is negligible. The most delicate
point of this second part is taking care of the malleability attack that P∗ can mount
exploiting concurrent executions of Σidj with V. Indeed, since the identity is fixed in
the public file, in the concurrent executions V proves always the same theorem, that
is, knowledge of the opening of the same commitment tcomj . We are able to rule out
malleability attacks using the following facts:

1. P∗ sends comop that is the commitment to the (possible) opening of tcomj , already
in the first message of ΣLj . Therefore, P∗ can not maul executions of Σidj played
concurrently with ΣLj , unless: 1) the binding of comop is broken (this happens with
negligible probability due to the binding of PHCom); 2) P∗ guesses the witness
used by V in a concurrent session and commits to it in comop (this happens with
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negligible probability due to the next fact).

2. there exists a super-polynomial number of witnesses for Lidj (the space of possible

openings of tcomj), that can be used by V to run Σidj . Thus, P∗ cannot predict
which witness will be used in the concurrent execution.

The second part is formally proved in Claim 5.3.6. In the following, we first show the
extractor E and then we prove that E satisfies Claims 5.3.4, 5.3.5 and 5.3.6.

The Extractor The extractor is depicted in Fig. 5.7. It runs in two phases. In the
first phase, it runs identically as the honest verifier V. For each accepting transcript
observed in the first phase, it starts the extraction phase. It rewinds P∗ and changes the
challenge of ΣLj in order to get another accepting transcript, so that, due to the special
soundness of ΣLj , it extracts the witness.

In the following, P∗ is an s-concurrent malicious prover, that opens s concurrent ses-
sions with an honest verifier V which plays all sessions using the identity j = (pkj , tcomj)
and independent random tapes.

Claim 5.3.4. E runs in expected polynomial time in n.

Proof. In the first phase E runs the honest verifier procedure for up to s = poly(n)
sessions. Let us denote the running time of V in one session by tV = poly(n). The
extraction phase is executed only for sessions in which P∗ has provided an accepting
proof in the first phase, and it is done sequentially for one session at time. Let denote
by ζi = ζ(RP∗ , i) the probability over the coins tossed by E, that P∗, activated with

randomness RP∗ , provides an accepting transcript (pok
Lj

1 , pok
Lj

2 , pok
Lj

3 ) in session i in the
first phase. At each rewind, E uses the same randomness of the first phase and only

changes the message pok
Lj

2 with a new message p̃ok
Lj

2 . The view of P∗ in each rewind is
distributed identically as the view provided in the first phase. Hence, upon each rewind,
the probability of getting another accepting transcript is still ζi. Thus, obtaining another
transcript takes 1/ζi expected number of attempts. Each attempt takes time at most
trew = s · tV = poly(n).

The total expected running time, consists in the running time of the first phase, that
is s · tV , plus the time to run the extraction phase for each accepting session i:

tE = tfirstphase +
s∑
i=1

textractioni = s · tV +
s∑
i=1

ζi
[ 1

ζi
· trew

]
' poly(n).

Claim 5.3.5. If a session i is accepting in the first phase, then in the extraction phase,
E outputs the witness W of relation RLLj = RL∨RLopj

for session i with overwhelming

probability.
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Proof. We prove this claim by showing that, given that P∗ provided an accepting tran-
script in the first phase, the probability that E aborts is negligible. Indeed procedure E
either extracts the witness or it aborts.

By assumption, in the first phase P∗ provided an accepting transcript {pokLj

1 = (s0⊕
s1), pok

Lj

2 , pok
Lj

3 } for session i. Here, s0, s1 are the strings committed to in tcom0, tcom1,
obtained from decommitments tdec0, tdec1 respectively.

The extractor aborts when it obtains two valid transcripts of protocol ΣLj for session
i, but they do not share the same first message. This happens when P∗ provides two
distinct openings for the same trapdoor commitment. Specifically, from the first phase,

E obtains the transcript tcom0, tcom1,tdec0, tdec1, s0, s1, {(pokLj

1 = s0⊕s1), pok
Lj

2 , pok
Lj

3 }
where s0, s1 are the strings decommitted from tcom0, tcom1 (verified with tdec0, tdec1)

and s0 ⊕ s1 = pok
Lj

1 such that pok
Lj

1 , pok
Lj

2 , pok
Lj

3 is an accepting transcript for ΣLj .

From the extraction phase, E obtains tcom0, tcom1,t̃dec0, t̃dec1, s̃0, s̃1, {p̃okLj

1 = (s̃0 ⊕
s̃1), p̃ok

Lj

2 p̃ok
Lj

3 } where s̃0, s̃1 are the strings decommitted from tcom0, tcom1 (verified

with t̃dec0, t̃dec1) and s̃0 ⊕ s̃1 = p̃ok
Lj

1 is such that p̃ok
Lj

1 , p̃ok
Lj

2 , p̃ok
Lj

3 corresponds to an

accepting transcript and pok
Lj

1 6= p̃ok
Lj

1 .
Assume, toward a contradiction, that this event happens with non-negligible prob-

ability p. Then we construct an adversary S∗ who breaks the binding of the trapdoor
commitment scheme PHTCom with probability p/s. S∗ receives the parameter pk from
PHTRec and works as follows. It uniformly chooses one of the sessions, let us denote it
by i. It runs the first phase of the extractor, i.e., it prepares the identity and honestly
simulates the honest verifier in all sessions, except for session i. In session i, S∗ honestly
computes one of the temporary parameters (ke, te) ← PHTRec(1n, r) for a random bit
e and sets the other parameter as kē ← pk. Then it forwards the pair k0, k1 to P∗ and
runs Σtrap using (te, r) as witness. Note that messages provided by S∗ are distributed
identically to an honest verifier (and thus the extractor) therefore the behavior of P∗
is not perturbed. Finally, as by assumption, it collects the first accepting transcript

containing messages tcom0, tcom1, tdec0, tdec1, s0, s1 such that s0 ⊕ s1 = pok
Lj

1 . Then,
S∗ proceeds with the extraction phase exactly as the extractor 4. Namely, it replicates

the same transcript of the first phase but it replaces the message pok
Lj

2 with a fresh

p̃ok
Lj

2 at each attempt. At the end of the extraction phase, as by assumption, S∗ ob-

tains tcom0, tcom1, t̃dec0, t̃dec1, s̃0, s̃1 such that s̃0 ⊕ s̃1 = p̃ok
Lj

1 and pok
Lj

1 6= p̃ok
Lj

1 with

non-negligible probability p/s. Since messages pok
Lj

1 , p̃ok
Lj

1 are obtained from the xor of
shares s0, s1 and s̃0, s̃1 respectively, one of the following two cases holds:

• Case 1. sē 6= s̃ē: let kē = pk be the parameter sent from the external receiver
PHTRec. In this case, for the same commitment tcomē computed on kē = pk,

4Note that the extraction phase takes running time that is expected polynomial, while adversary S∗

is strict polynomial. Therefore S∗ will truncate the number of attempts if it exceeds a fixed polynomial.
The fixed polynomial is set to 2 · tE where tE is the expected running time of E. Since the case in
which extraction requires super-polynomial number of attempts happens with negligible probability, the
probability of success of S∗ even truncating long executions is still non-negligible.
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S∗ has extracted from P∗ two valid decommitments tdecē, t̃decē that open to two
distinct strings: i.e., tdecē opens to sē and t̃decē opens to share s̃ē and sē 6= s̃ē.

Hence, S∗ can break the binding property of PHTCom with probability p/s as
follows. In the commitment phase S∗ sends tcomē to PHTRec; in the decommitment
phase it sends two valid decommitments tdecē, t̃decē to PHTRec. By the binding
property of PHTCom Case 1 happens with negligible probability.

• Case 2. se 6= s̃e (and sē = s̃ē): in this case S∗ obtains two valid openings for
the commitment tcome that is computed with key ke for which S∗ knows the
trapdoor te. In this case S∗ does not break the binding. Note that trapdoor
te has been used as witness to run protocol Σtrap. Thus, if this case happens
with non-negligible probability p′ = p

s − ν(n) (p′ corresponds to the probability p
s

minus the probability of Case 1, that we proved to be negligible), we have that P∗
equivocates the commitment computed on the key for which V proves knowledge of
the trapdoor using Σtrap. Thus, we can construct an adversary Awi of the witness
indistinguishability property of Σtrap.

Awi interacts with an external prover of Σtrap that we denote by Ptrap. Awi follows
the procedure of S∗ except that in session i it proceeds as follows. It computes
parameters (k0, t0) and (k1, t1) of the trapdoor commitment scheme PHTCom by
running the procedure PHTRec(1n). It sends the statement (k0, k1) ∈ Ltrap to the
external prover Ptrap along with the pair of witnesses (t0, t1) and it forwards the
messages received from Ptrap to P∗. The other messages belonging to the protocol
ΠcZK or to concurrent sessions, are computed identically as S∗. Note that so
far the simulation of S∗ is perfect since the messages sent by Awi are distributed
identically to the messages computed by S∗. In the extraction phase for session
i, Awi follows the procedure S∗ that in turns follows the extraction phase trying
polynomially many rewinds (here, as above, we are assuming that the number
of rewinding attempts is truncated to a fixed polynomial since Awi runs in strict
polynomial time). Upon each extraction attempt, when simulating session i, Awi

just copies the messages received by Ptrap. Note that this is not a problem since in

each rewind only the challenge pok
Lj

2 of session i is changed, while all messages sent
before, are just copied. Since the last message of Σtrap is sent along with challenge

pok
Lj

2 , the rewinding does not effect the external prover Ptrap. Furthermore note
that, since the temporary keys are independent in each sessions, Awi can simulate
possibly concurrent sessions using new pairs of temporary keys (it does not need
to query an external prover).

When the extraction phase is completed, since Awi has played as S∗, it obtains
two transcripts: {tcom0, tcom1, tdec0, tdec1, s0, s1} and {tcom0, tcom1, t̃dec0, t̃dec1,
s̃0, s̃1} with probability p′. By assumption, we have that P∗ provides two valid de-
commitments for the commitment computed with the key for which S∗ has proved
knowledge of the trapdoor. Namely, P∗ opens the commitment tcome as two dis-
tinct shares se 6= s̃e if trapdoor te has been used to prove theorem (k0, k1) ∈ Ltrap,
and it opens the commitment tcomē as two distinct shares sē 6= s̃ē when trapdoor
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tē has been used instead. Therefore, Awi outputs e if se 6= s̃e and ē otherwise and
its advantage of guessing the witness used by Ptrap is p′. By the witness indistin-
guishability property of Σtrap we have that p′ is negligible. Hence Case 2 happens
with negligible probability.

Finally, recall that the extractor may abort also if 2n attempts are made without
obtaining another accepting transcript. We argue that such case happens with negligible
probability as well.

Hence, E extracts the witness W with all but negligible probability, and the claim
is proved.

Claim 5.3.6. The witness W extracted by E corresponds to w such that (x,w) ∈ RL,
with overwhelming probability.

Proof. Assume, towards a contradiction, that there exists a session i such that the
witness W extracted at the end of the extraction phase is not a witness for x ∈ L, but
is a tuple (v, d) for theorem (comop, pkj , tcomj) ∈ Lopj . This means that P∗ knows an
opening (v, d) of comop such that v is a valid decommitment of tcomj under the public
key pkj . Let p be the probability of such event.

We prove that p is negligible by hybrid arguments. In the following i is the session
from which we extract the witness W .

H0: This is the real game. P∗ plays with an honest verifier (first phase of the extractor
E). When extracting the witness for session i, E outputs the witness W = (v, d)
with probability p. (Recall that an honest verifier, with identity j = (pkj , tcomj)

runs the protocol Σidj as following. It picks a random message m′ and computes
the opening of tcomj to m′ using the secret trapdoor sk and auxiliary information
z. Such opening, that we denoted by wdec, is the witness used to complete the
last round of protocol Σidj .)

Given the extracted witness W = (v, d), we have two cases:

Case 1: the opening v is a new opening of tcomj . That is, V never used such opening
as witness for Σidj in any session.

Case 2: the opening v is equal to an opening used by V as witness for Σidj in some
other session. Namely, v = (wdec`,m`), for some ` ∈ [s]. In this case we can
use P∗ to distinguish the witness used in session `. This reduction is very
similar to the one shown in Hybrid H`

1 below and therefore is omitted.

In the following sequence of hybrids we assume that we are in Case 1. Hence, we
assume that the witness W extracted from P∗ in H0 is a new opening of tcomj .

H`
1 (for 1 < ` < s): In hybrid H`

1, in the first ` sessions V runs protocol Σidj using
the same witness, that is, the same opening of tcomj . The remaining sessions
are played according to the honest procedure, namely by using as witness freshly
generated openings of tcomj . Assume that the witness extracted in session H`

1



153

is not a new opening, but corresponds to one of the witnesses used by V. Then
we construct an adversary Awi for the witness indistinguishability of Σidj . Awi

works as follows. It computes the identity (pkj , tcomj) and computes two openings

(m,wdec) and (m′, wdec′). Then in the first ` − 1 sessions, it runs Σidj using
as witness (m,wdec), from session ` + 1 on, it runs Σidj using as witness freshly
generated openings. To simulate the `-th session, Awi uses the external prover of
Σidj fed with input (pkj , tcomj), (m,wdec), (m′, wdec′).

Once the first phase is completed Awi runs the extraction phase for session i. This
basically means that Awi rewinds P∗ up to the third round of session i, that is the

point in which a new challenge p̃ok
Lj

2 is sent to P∗. Note that, the new message
can affect the messages played by P∗ in concurrent sessions. In particular, care
must be taken for session ` that was played by the external prover. This session
can not be rewound. We have the two following cases.

1. The last message pok
idj
3 of session ` is played before the message pok

Lj

2 of
session i. In this case, the rewind does not affect session `, since the transcript
obtained up to this point is just copied from the previous phase. In this case,
Awi extracts the witness W that by assumption is an opening for tcomj . If
such opening is still a new opening then we are in hybrid H`−1

1 , otherwise, if
it is not a new opening, then we are in hybrid H`

1.

To see why, recall that we are assuming that in H0 = H1
1 , P∗ provides an

accepting transcript for session i and that the witness extracted is a new
opening. Starting from H1

1 , the only difference between H1
1 and H2

1 is that,
in H2

1 the witness used in session 2 is the same as the one used in session 1.
Now, if the witness extracted in H2

1 is not a new opening, then one can use this
fact to distinguish that session 1 and 2 use the same witness. The same holds
for hybrids H2

1 and H3
1 and so on. Hence, by the witness indistinguishability

property of Σidj , hybrids H`
1 and H`−1

1 are indistinguishable.

2. The messages pok
idj
2 , pok

idj
3 of session ` are played between the second message

pok
Lj

2 and the third message pok
Lj

3 of the proof provided by P∗ in session i

. This means that, when Awi rewinds P∗ and changes the message pok
Lj

2 of

session i, this message could effect the message pok
idj
2 that P∗ sends in session

`. Since session ` was played by an external prover, Awi is stuck and fails in
the extraction (Awi can not rewind the external prover).

However, we argue that the witness used in session i can not depend on any

concurrent session in which the message pok
idj
3 (that is the only message of

protocol Σidj where the witness is used) is played after P∗ sent comop in
session i. The reason is the following. In the second round of session i, P∗
is committing to the witness that it will be used to conclude ΣLj , without

having seen the message pok
idj
3 yet (recall that we are assuming that the

witness extracted from P∗ in session i is not for theorem x ∈ L). The witness

used in pok
idj
3 is a randomly chosen among a super-polynomial number of
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possible witnesses. . Thus, the witness committed in comop corresponds to

the one played in pok
idj
3 with negligible probability. Which means that P∗

can maul the concurrent session ` only with a negligible probability. Thus
the witness extracted will be independent of the one used in session ` with
high probability.

However, the commitment comop is only computationally binding. Thus, P∗
could commit to some opening but still complete its proof using a witness
that depends on the witness used in session `. In this case, we have that P∗
distinguishes and the way to detect it is to extract the witness, but Awi can
not extract it. However, if this case happens with non-negligible probability it
means the P∗ is able to open the commitment comop according to the witness
played in the session `. Such P∗ can be used to break the binding of protocol
PHCom.

Summing up, when the session ` (in which the witness used for Σidj is
changed), is interleaved with the session i (in which P∗ convinces the ver-
ifier), the witness extracted in session i is independent of the one used in
session ` except with negligible probability. Therefore, when changing the
witness used in the session `, the adversary P∗ still proves session i by using
a new opening.

In hybrid Hs
1 , V runs protocol Σidj using the same witness, i.e., the same opening

of message tcomj , in all sessions. Still, in Hs
1 , P∗ provides an accepting transcript

for session i and the extracted witness is a new opening of tcomj .

H2: In this hybrid the commitment tcomj is computed using the honest commitment
procedure. That is, (tcomj , wdec)← TSen(pk,m) instead of (tcom, z)← TSen(pk, m̃).
In each session, protocol Σidj is run using (wdec,m) as witness.

Assume towards a contradiction that in this hybrid the witness extracted in ses-
sion i is not a new opening with non-negligible probability p. Then, we construct
an adversary Atrap for the trapdoorness of TCom that distinguishes whether a
pair (commitment, decommitment) received from an oracle, is computed using
the trapdoor or honestly. Atrap computes parameters (pk, sk) and a message m
and forwards them to the oracle. The oracle sends the challenge pair (com, dec)
where com is the commitment of m under public key pk and dec is a valid open-
ing. Atrap uses P∗ to distinguish this pair as follows. It publishes the identity
(pkj = pk, tcomj = com) and interacts with P∗ as in hybrid Hs

1 using the same

witness (m, dec) to run protocol Σidj . By contradicting assumption, in this hybrid,
the witness extracted from P∗ in session i is not a new opening of tcomj with
probability p. Thus, Atrap extracts the witness of session i and if it does not corre-
sponds to a new openings (or if P∗ aborts) it outputs 1. Else it outputs a random
bit. . By the trapdoorness property of TCom, the probability p is negligible.

Therefore in hybrid H2 it holds that, P∗ convinces V in session i with non-negligible
probability p and the witness extracted in such session is still a new opening of
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tcomj . Given that, we construct another adversary S∗ that breaks the binding
of the scheme TCom as follows. S∗, running the binding experiment, obtains the
public parameter pk. Then it picks a message m and computes (tcomj , wdec) ←
TSen(pk,m) and publishes the identity (pkj = pk, tcomj). It interacts with P∗ as
in hybrid H2 and when the proof is completed it extracts the witness used by P∗
in session i. By assumptions, with probability p this witness is a new opening of
tcomj , let us denote it by v. Thus, S∗ outputs (tcomj , wdec,m, v) and halts. By
the binding property of the scheme TCom, the probability p is negligible.

Therefore we conclude that the probability that witness extracted by E is a valid
opening of tcomj instead of the witness w for x ∈ L is negligible.

5.3.2 Efficient Instantiation of ΠcZK

In this section we describe how, by properly instantiating the sub-protocols of ΠcZK, one
can obtain a 4-round concurrently sound cZK in the BPK model based on the Discrete
Logarithm (DL) assumption. We denote the efficient version of ΠcZK as Π̄cZK. Let L
be a language that admits a Σ-protocol ΣL.

All commitment schemes used in the construction are instantiated with the two-
round perfectly-hiding Pedersen commitment scheme [85]. In the first round the receiver
computes the parameters as follows. It randomly chooses (G, p, q, g, h) such that p =
2q + 1, p and q are primes, G is a subgroup of order q of Z∗p and g and h are generators
of G. Finally she sends parameters p, q, g, h to the committer, who checks that they are
well formed. To commit to a message m ∈ Zq, the committer randomly picks r ∈ Zq
and sends c = gmhr (mod p) to the receiver. The decommitment consists in revealing
m, r.

To compute her identity, an honest verifier chooses (G, p, q, g, h) but h is chosen such
that h = gα (mod p) and she knows α. Then she randomly picks in Zq two values r,m
and computes tcomj = gmhr (mod p). Finally she sets the public identity pkj = (pkj =
(G, p, q, g, h), tcomj), while α, r,m are her secret input. V also generates and publishes
parameters (G, p, q, gL, hL, gR, hR) where gL, hL, gR, hR are random generators of G as
in the first round of Pedersen’s scheme, to let then P compute comop.

Protocol Σidj run by V to prove knowledge of an opening of tcomj is instantiated
with the Σ-protocol ΣPed shown in Section 1.2.1.

The generation of the temporary keys for scheme PHTCom, corresponds to the
execution of the first round of Pedersen’s scheme. Hence, k0 = (G0, p0, q0, g0, h0),
k1 = (G1, p1, q1, g1, h1), where h0 = gt00 (mod p0) and h1 = gt11 (mod p1). The cor-
responding trapdoors are t0, t1.

Protocol Σtrap is used to prove knowledge of one of the trapdoors and can be in-
stantiated using Schnorr [96] Σ-protocol under OR composition as discussed in [26] (for
completeness such protocols are described in Section 1.2.1). Indeed, proving knowledge
of one trapdoor corresponds to proving knowledge of the discrete logarithm of h0 with
base g0 modulo p0, or of the discrete logarithm of h1 with base g1 modulo p1. Note that,
in Pedersen’s scheme knowledge of the trapdoor and the original opening, allows one to
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equivocate any previously computed commitment (even without knowing the trapdoor
during the commitment phase).
P computes commitment comop using parameter (G, p, q, gL, hR, gR, hR) stored in

the public identity. Recall that comop should be such that it is possible to prove that
the message committed in comop is an opening of tcomj using efficient composition of
Σ-protocols. Towards this end, comop is computed as follows.

Recall that tcomj = gmhr (mod p). An opening of tcom is a pair (m, r). Thus,
comop consists of a pair of commitments com0

op, com
1
op such that com0

op = gmL h
s0
L for a

random s0 ∈ Zq and com1
op = hrRg

s1
R for a random s1 ∈ Zq.

Now, in order to prove that comop = (com0
op, com

1
op) is a commitment of the opening

of tcomj , we exploit the fact that comop, tcomj are all Pedersen’s commitments, and
use Σ-protocol to prove equality of a pair of Pedersen’s commitments as follows (such
protocol is shown in Section 1.2.1 and is denoted by ΣEqual). Informally, P proves
that com0

op is the commitment of the message committed in tcomj AND com1
op is the

commitment of the randomness used in tcomj .
Formally, RL0

Equal
= {(G, q, p, gL, hL, com0

op, g, h, tcomj), (m, r, s0) : tcomj = gmhr

(mod p) and com0
op = gmL h

s0
R (mod p)}. RL1

Equal
= {(G, q, p, hR, gR, com1

op, g, h, tcomj), (r,m, s1) :

tcomj = hrgm (mod p) and com1
op = hrRg

s1
R (mod p)}. Note that for this relation we

swapped the generators, as in this case, the message we want to prove knowledge of, is
the exponent of h instead of g. Hence, RLopj

= RL0
Equal
∧RL1

Equal
.

Finally, ΣLj can be instantiated as the OR composition of Σ-protocols ΣL and
ΣEqual [26].

All above computations require a constant number of modular exponentiations. Π̄cZK
is secure under the discrete logarithm assumption. All the Σ-protocols shown for the
transformation are perfect.



157

Simulator Sim
Global variables. h← ∅, T ← ∅, RV∗ $← {0, 1}poly(n).

Main Thread.
Run V∗(RV∗ , h) and answer to oracle queries in the form (sid, i, j,msg), depending
on whether msg = V 1 is the first round, or msg = V 3 is the third round, as follows:

First Round: V 1 = (k0, k1, pok
idj
1 , poktrap

1 )

- case identity j is already solved: there exists openj ∈ T for tcomj (in
this case we say that session sid is solved).
1. run step P-round-2 and commit to openj instead of a ran-

dom string. Namely, (comop, d) ← PHSen(pk, openj) Let P2 =

(pok
idj
2 , poktrap

2 , comop, tcom0, tcom1) the second round message.
2. h← h ∪ V 1 ∪ P2;
3. Run V∗(RV∗ , h).

- case identity j is not solved. (in this case we say that session sid is not
solved).
1. pick random strings s̃0, s̃1 and compute: (tcom0, z̃0) ←

PHTSen(k0, s̃0), (tcom1, z̃1)← PHTSen(k1, s̃1);
2. compute comop as a commitment of a random string.
3. let msid = comop, tcom0, tcom1;
4. let hsid = h ∪ V 1;

5. let P2 = (pok
idj
2 , poktrap

2 , comop, tcom0, tcom1);
6. h← h ∪ V 1 ∪ P2;
7. Run V∗(RV∗ , h).

Third Round: V 3 = (pok
idj
3 , poktrap

3 , pok
Lj

2 ):

− case sid is solved:
1. run step P-round-4 but computes pok

Lj

3 using witness (v, d) and ob-

tain: P4 = (pok
Lj

3 , tdec0, tdec1, s0, s1);
2. h← h ∪ V 3 ∪ P4;
3. Run V∗(RV∗ , h);

− case sid is not solved: Sim needs to extract the temporary trapdoor:
1. te ← Extract(sid, hsid,msid), if the procedure Extract fails then ABORT;
2. let X = (x, comop, pkj , tcomj) the theorem to be proved with protocol

ΣLj ; compute (pok
Lj

1 , pok
Lj

3 )← hvSim(X, pok
Lj

2 );

3. se ← s̃ē ⊕ pok
Lj

1 ; sē ← s̃ē;
4. tdece ← PHTFakeDec(te, z̃e, se);

5. P4← (tdece, tdecē, pok
Lj

3 , s0, s1);
6. h← h ∪ V 3 ∪ P4;
7. Run V∗(RV∗ , h).

Exit. If V∗ has completed its attack, or if it aborts then output h. In case V∗ sends
invalid messages, add those messages to h and output it.

Figure 5.5: Simulator associated to protocol ΠcZK.
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Procedure Extract(sid, hsid,msid)
(sid, i, j) is the target session for which Sim aims to extract the trapdoor te.
sid′ 6= sid denotes any other session different from the target session sid.

Repeat at most 2n times.
Start.

- Pick p̃ok
idj
2 , p̃ok

trap

2 using fresh randomness.

- Set h̃sid ← hsid ∪ (msid, p̃ok
idj
2 , p̃ok

trap

2 ).
- Run V∗(RV∗ , h̃sid). If V∗ aborts, go to Start. Else, answer to the message M

received from V∗ as follows:
Case 1. If M = (sid′, i′, j′, V 1): follow step First Round of Sim without updat-

ing h.
Case 2. If M = (sid′, i′, j′, V 3): if sid′ is unsolved, solve this session. Else,

follows instructions of Sim.
Case 3. If M = (sid, i, j, Ṽ 3 = (p̃ok

idj
3 , p̃ok

trap

3 , pok
Lj

2 )):

1. if (p̃ok
trap

3 6= poktrap
3 ) extract witness te;

2. if (p̃ok
idj
3 6= pok

idj
3 ) extract witness openj ; add T ← T ∪ openj ; return te;

3. else abort.
If V∗ sends invalid messages or aborts the session, go to Start.
Case exit. If number of attempts is 2n, output ⊥ and halt.

Figure 5.6: The procedure Extract.
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Extractor E.

Setup Identity. Run (pkj , skj)← TGen(1n) and (tcomj , z)← TSen(pkj , m̃). Pub-
lish j = (pkj , tcomj).

First Phase (honest verifier phase). Choose random tapes RP∗ , RV . Activate
P∗ with RP∗ and run the honest verifier procedure using RV and skj , z. After
P∗ halts, if there exists an accepting session i for some statement “x ∈ L”
chosen by P∗, then go to the extraction phase. Else, output ⊥ and halt.

Extraction Phase. Let i be a randomly picked session among sessions that were

accepting, and let {pokLj

1 = (s0 ⊕ s1), pok
Lj

2 , pok
Lj

3 } be the transcript of such
session. Here s0 and s1 are the valid openings of trapdoor commitments
tcom0, tcom1 sent by P∗ in the second round of session i.
Repeat until the extraction is successful or until 2n attempts fail.
Next Attempt. Activate P∗ with RP∗ .
For all sessions except session i run as in first phase (i.e., as honest verifier)
with randomness RV . In session i, compute messages as in first phase but pick

a new challenge p̃ok
Lj

2 . If P∗ does not reply with a valid third message, go to
Next Attempt. Else: If P∗ successfully terminates session i again, with tran-

script {p̃okLj

1 = (s̃0 ⊕ s̃1), p̃ok
Lj

2 , p̃ok
Lj

3 } and p̃ok
Lj

1 6= pok
Lj

1 then ABORT. (In this
case P∗ was able to open at least one between tcom0 and tcom1 as a distinct
string with respect to the one obtained in the first phase). Otherwise, use the
new transcript to extract the witness W for the relation RLLj . Output W and

halt.
If 2n attempts failed, then ABORT.

Figure 5.7: The extractor E for protocol ΠcZK.
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- Chapter 6 -

Simultaneously Resettable Arguments of Knowledge

Introduction

Interaction and private randomness are the two fundamental ingredients in Cryptogra-
phy. They are especially important for achieving zero-knowledge proofs [51]. In [19]
Canetti, Goldreich, Goldwasser and Micali showed that when private randomness is lim-
ited and re-used in multiple instances of a proof system, it is still possible to preserve the
zero-knowledge requirement. The setting proposed by [19] is of a malicious verifier that
resets the prover, therefore forcing the prover to run several protocol executions using
the same randomness. This setting applies to protocols where the prover is implemented
by a stateless device. Therefore, a prover can only count on the limited (hardwired)
randomness while it can be adaptively reset any polynomial number of times. The
resulting security notion against such powerful verifiers is referred to as resettable zero
knowledge (rZK) and is provably harder to achieve than concurrent zero knowledge. Fea-
sibility results have been achieved in [19, 65] in the standard model with the following
round-complexity: polylogarithmic for rZK and constant for resettable witness indistin-
guishability (rWI, in short). Since then, it was also shown how to achieve resettable
zero knowledge in the Bare Public-Key (BPK) model, introduced by Canetti et al. [19],
where one can obtain better round complexity and assumptions [73, 31, 1, 106, 95]. Very
recently, it has been shown [45] that resettable statistical zero knowledge for non-trivial
languages is possible.

The “reverse” of the above question has been considered by Barak, Goldreich, Gold-
wasser and Lindell [7] where a malicious prover resets a verifier, called resettable sound-
ness. In [7], it has been shown how to obtain resettable soundness along with ZK in a
constant number of rounds.

Barak et al. [7] proposed the challenging simultaneous resettability conjecture, where
one would like to prove that a protocol is secure against both a resetting malicious prover
and a resetting malicious verifier. The existing machinery turned out to be insufficient,
and a definitive answer required almost a decade. In the work of Deng, Goyal and
Sahai [29] they showed a resettably sound rZK argument for NP with polynomial round
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complexity. Very recently, results in the BPK model for simultaneous resettability have
been obtained in [105, 2] with a constant number of rounds.

Arguments of knowledge under simultaneous resettability. Argument systems
are often used with a different goal than proving membership of an instance in a lan-
guage. Indeed, it is commonly required to prove knowledge (possession) of a witness
instead of the truthfulness of a statement. Since arguments of knowledge serve as ma-
jor building blocks in Cryptography (e.g., in identification schemes1), it is an interesting
question whether the previous results for arguments of membership extend to arguments
of knowledge. Unfortunately, arguments of knowledge have been achieved so far only
when one party can reset. That is, we have rZK arguments of knowledge [19] and, sep-
arately, resettably sound ZK arguments of knowledge [7]. Instead, when reset attacks
are possible in both directions, no result is known even when only rWI with resettable
argument of knowledge is desired.

It is important to note that resettable security for ZAPs comes almost for free be-
cause of the minimal round complexity (1 or 2 rounds). However, it is not known
how to accommodate for knowledge extraction, unless one relies on non-standard (e.g.,
non-falsifiable) assumptions. For the case of resettably sound rZK, all the above re-
sults [29, 105, 2] critically use an instance-dependent technique along with ZAPs: when
the statement is true (i.e., when proving rZK), the prover/simulator can run ZAPs which
allow the use of multiple witnesses. Such use of multiple witnesses gives some flexibility
that turns out to be very useful to prove resettable zero knowledge. Instead, when the
statement is false, the protocols are designed so that adversarial malicious prover must
stick with some fixed messages during the execution of protocol. Therefore, rewinding
capabilities do not help the resetting malicious prover since he can not change those
fixed messages. This is critically used in the proofs of resettable soundness in order to
reach a contradiction when a prover proves a false statement. It is easy to see that the
above approach fails when arguments of knowledge are considered. Indeed, when the
malicious resetting prover proves a true statement, the same freedom that allows one
to prove rZK/rWI, also gives extra power to the malicious prover. Consequently, de-
signing an extractor appears problematic and new techniques seem to be needed so that
the simultaneous resettability conjecture is resolved even when we consider knowledge
extraction.

Our main result is the first construction of a constant-round simultaneously resettable
witness-indistinguishable argument of knowledge2 (in short, simresWIAoK) for any NP

1Bellare et al. in [9] gave various definitions for identification schemes when the adversary can also
reset the proving device.

2In this work, we will never consider the case of resettable soundness along with non-resettable
argument of knowledge. Therefore, each time we mention together resettable soundness and argument
of knowledge, we mean that both soundness and witness extraction hold against a malicious resetting
prover.
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language. Our protocol is based on the novel use of ZAPs and resettably sound zero-
knowledge arguments, which improves over the techniques previously used in [29, 105]
as well as concurrent and independent work3 of [56].

As application of our main protocol, we also consider the question of secure identifi-
cation under simultaneous resettability and show how to use the above simresWIAoK to
obtain the first simultaneously resettable identification scheme which follows the knowl-
edge extraction paradigm. We describe it by extending the work of Bellare, et al. [9].

This chapter is organized as follows. In Section 6.1 the definition of simultaneously
resettable argument of knowledge is formally stated. In Section 6.2 the construction for
simultaneous resettable WI argument of knowledge (simresWIAoK, in short), along with
formal proofs is presented. Finally, Section 6.3 shows the application of our construction
to identification schemes.

6.1 Defintions

This section provides formal definitions of resettable WI and resettable soundness. In
particular, we formally define the notions of resettable argument of knowledge.

6.1.1 Resettable Zero Knowledge and Witness Indistinguishability.

We recall the definition of resettable zero knowledge and witness indistinguishability
introduced in [19]. Very roughly, a resetting verifier is a PPT adversary that is able
to interact with the prover polynomially many times upon (possibly) distinct theorems
forcing the prover to execute the protocol using the same randomness several times.
Namely, the malicious verifier invokes the prover by two indexes (i, j): the theorem to
be proved xi and the randomness to be used ωj . The formal definition is provided below
and is taken almost verbatim from [19].

Definition 25 (rZK and rWI [19]). An interactive proof system (P,V) for a language
L is said to be resettable zero knowledge (rZK) if for every PPT adversary V∗ there
exists a probabilistic polynomial time simulator M so that distribution ensembles D1

and D2 described below are computationally indistinguishable. Let each distribution be
indexed by a sequence of distinct common inputs x̄ = x1, . . . , xpoly(n) ∈ L ∩ {0, 1}n and
the corresponding prover’s auxiliary-inputs ȳ = y1, . . . , ypoly(n).

Distribution D1 is defined by the following random process which depends on P and
V∗.

Randomly select and fix t = poly(n) random tapes ω1, . . . , ωt for P, re-
sulting in deterministic strategies P(i,j) = Pxi,yi,ωj defined by Pxi,yi,ωj (α) =

3In a very recent and independent work [56], Goyal and Maji achieved simultaneously resettable
secure computation. Their work achieves (with simulation-based security) simultaneous resettability
with polynomial round complexity assuming also the existence of lossy trapdoor encryption.
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P(xi, yi, ωj , α) for j ∈ 1, . . . , t, i ∈ 1, . . . , poly(n). Each of the execution P(i,j)

it is called incarnation of P.
1. Machine V∗ is allowed to run polynomially-many sessions with P(i,j). Through-

out these sessions, V∗ is required to complete its current interaction (an
interaction is complete if is either terminated or aborted) with the current
copy of P(i,j) before starting a new interaction with any P(i′,j′), regardless if
(i, j) = (i′, j′) or not. Thus, the activity of V∗ proceeds in rounds. In each
round it selects a P(i,j) and conducts a complete executions with it.

2. Once V∗ decides it is done interacting with all P(i,j), it produces an output based
on its view of these interactions. This output is denoted by 〈P(ȳ),V∗〉(x̄) and
is the output of the process.

Distribution D2: The output of M(x̄).

An interactive proof system (P,V) for a language L is said to be resettable witness

indistinguishable (rWI) if every two distribution ensembles of type D1 that are in-
dexed by the same sequence of distinct inputs x̄ = x1, . . . , xpoly(n) ∈ L ∩ {0, 1}n but

possibly different sequences of prover’s auxiliary inputs: ȳ(0)(x̄) = y0
1, . . . , y

0
poly(n) and

ȳ(1)(x̄) = y1
1, . . . , y

1
poly(n) are computationally indistinguishable. That is, we require that

ensembles {〈P(ȳ(0)),V∗〉(x̄)}x̄ and {〈P(ȳ(1)),V∗〉(x̄)}x̄ are computationally indistinguish-
able.

Resettable Soundness. In the following definition we consider only computationally
bounded malicious provers.

Definition 26 (resettable soundness rs [7]). A resetting attack of a cheating prover P∗
on a resettable verifier V is defined by the following two-step random process, indexed by
a security parameter n.

1. Uniformly select and fix t = poly(n) random tapes, denoted r1, . . . , rt, for V re-
sulting in deterministic strategies V(j)(x) = Vx,rj defined by Vx,rj (α) = V(x, rj , α),

where x ∈ {0, 1}n and j ∈ 1, . . . , t. Each V(j)(x) is called an incarnation of V.
2. On input 1n, machine P∗ is allowed to initiate poly(n)-many interactions with
V. The activity of P∗ proceeds in rounds. In each round P∗ chooses x ∈ {0, 1}n
and j ∈ 1, . . . , t, thus defining V(j)(x), and conducts a complete session (again, a
session is complete if is either terminated or aborted) with it.

Let P and V be some pair of interactive machines, where V is implementable in
probabilistic polynomial-time. We say that (P,V) is a resettably-sound argument system
(rs) for L if the following two conditions hold:

• Resettable-completeness: Consider a polynomial-size resetting attack and suppose
that in some session after selecting an incarnation V(j)(x), the attacker follows the
strategy P (for those sessions will also be given the witness). Then, if x ∈ L then
V(j)(x) rejects with negligible probability.
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• Resettable-soundness: For every polynomial-size resetting attack, the probability
that in some session the corresponding V(j)(x) has accepted and x /∈ L is negligible.

Arguments of knowledge in the simultaneous resettability setting.

Proving the argument of knowledge property of an argument system usually requires to
show an expected polynomial-time Turing Machine called Extractor, that having oracle
access to the prover, is able to extract the witness of any accepting proof. Such extractor
is called black-box extractor. In presence of a resetting verifier, where V∗ is allowed to
rewind the honest prover, the verifier has the same power of the extractor, therefore
a protocol cannot be resettable WI (or rZK) and proof (or argument) of knowledge
at the same time, unless we provide the extractor with some additional power respect
to the malicious verifier. Thus as a natural relaxation of the standard notion of proof
of knowledge [10] to the simultaneously resettable setting, we consider non-black box
extraction, that is, the extractor gets the code of the (possible malicious) prover.

Definition 27 (resettably-sound argument of knowledge (adapted from [7])). Let RL :
⊆ {0, 1}∗ × {0, 1}∗ be an NP-relation for a language L = {x : ∃y (x, y) ∈ RL}. We say
that (P,V) is a resettably-sound argument of knowledge for RL if:

• (P,V) is a resettably-sound argument for L;

• there exists an expected polynomial time extractor E such that for every PPT re-
setting machine P∗, there exists a negligible function ε for which the following
condition holds:

|Pr [ (P∗,V)(x) = 1 ]− Pr [ E(desc(P∗), x) ∈ RL(x) ] | < ε(|x|)

where desc(P∗) denotes the description of P∗’s strategy and RL(x) denotes the set
of witnesses for x for the NP language L.

Remark 3 (Our Extractor). The extractor that we provide in our main construction
(the simultaneous resettable WI argument of knowledge) follows the typical two-phase
extraction paradigm: in the first phase the extractor runs the honest verifier procedure,
and if it obtains an accepting transcript, proceeds to the second phase. In the second
phase, it resets P∗ several times and simulates the verifier using fresh randomness trying
to reconstruct a new accepting transcript that allows for extraction.

In order to use the extractor in the security proof of a larger protocol, we define our
extractor with three random tapes in input. The randomness used to activate P∗, the
randomness used to perform the first phase (the length of these tapes is polynomially
bounded by the size of the prover), and the one used for the second phase (the length of
this last tape can not be established in advance since the number of attempts required to
obtain a distinct accepting transcript is not dependent of the size of P∗).
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6.1.2 Resettably Sound Statistical Zero Knowledge.

In our construction we will use the constant-round public-coin zero-knowledge argument
of Barak [5, 7] as modified in [83]. In [83] the original Barak’s protocol is tweaked in order
to obtain statistical zero knowledge (instead of computational ZK) for NP languages
along with argument of knowledge (instead of weak proof of knowledge). Finally by
applying the transformation of [7] to the construction of [83] one can obtain a resettably-
sound statistical zero knowledge argument of knowledge.

ZAPs [38, 57]. ZAPs are two-round resettably-sound witness indistinguishable proof
systems [38]. As noted in [38] by requiring that the randomness of the prover is generated
by applying a pseudo-random function to the first message sent by the verifier, ZAPs are
also resettable witness indistinguishable. We refer to such a simultaneously resettable
ZAP as rZAP.

6.2 Simultaneously Resettable Arguments of Knowledge

Our goal is to obtain a construction that is resettably-sound resettable WI and a re-
settable argument of knowledge in a constant number of rounds. The only known
constant-round simultaneously-resettable WI protocol is rZAP which is not an argu-
ment of knowledge and as discussed previously there is not much hope to transform it
in an argument of knowledge (even without considering resettability).

A typical paradigm: determining message and consistency proof. Typically,
protocols dealing with a resetting adversary ([19, 7, 29]) rely on the following paradigm:
the resetting party is required to provide a special message (called determining message)
that determines her own action for the rest of the protocol. Namely, for each protocol
message the resetting party is required to prove that such message is consistent with
the determining message (we call this proof a consistency proof). Moreover, the actual
randomness used by the honest party in the protocol depends on the determining mes-
sage (typically the honest party applies a pseudorandom function (PRF) on it). The
combination of the randomness depending on the determining message and the consis-
tency proof given by the resetting party, suppresses the resetting power of the adversary.
Indeed, due to the consistency proof, the resetting party can not change a message pre-
viously played without first having changed the determining message (unless she is able
to fake the consistency proof). However, if she changes the determining message, then
the honest party plays the protocol with (computationally) fresh randomness (unless the
pseudo-randomness of the PRF is violated). We will follow this paradigm to construct
our simultaneously resettable witness indistinguishable argument of knowledge as well.
Recall that as specified above, we do not know how to from rZAPs that are already
simultaneously resettable and try to transform them in arguments of knowledge. Our
starting point is Blum’s proof of knowledge [12]. In the following discussion we show
incrementally how to transform such protocol to enjoy resettable witness indistinguisha-
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bility and resettable soundness (this transformation is already known in literature) to
finally present our novel technique to obtain also resettable argument of knowledge.

Resettable WI and stand-alone argument of knowledge [7]. When the verifier
can reset the prover, following the above paradigm, it is easy to construct a resettable
WI system starting from Blum’s protocol. In Blum’s protocol the only message from V
to P is the challenge. The modified resettable version requires that V sends a statistically
binding commitment of the challenge as determining message. The only other protocol
message of V is the opening of the commitment which, due to the binding property,
is itself a proof that the message is consistent with the determining message. Note
that such modified protocol is no longer an argument of knowledge since the extractor
has the same power of the malicious verifier. In order to allow only the extractor to
cheat, the next step is to avoid the opening as a proof of consistency. Instead of the
actual opening of the commitment, V is required to send the challenge along with a
res-sound (non-black-box) ZK argument ([5]). The (non-black box) extractor can send
an arbitrary challenge and prove consistency with the determining message by using
the (stand-alone) non-black-box simulator (recall that only V might reset here). The
resulting protocol is resettable WI and (stand-alone) argument of knowledge (rWIAoK
for short) and it is known from [7].

We use a modified version of such protocol. We require that the commitment sent
by the verifier is statistically hiding (instead of statistically binding), and we use the
statistical zero-knowledge argument of knowledge of [83].

Achieving Resettable Soundness and Resettable Argument of Knowledge:
existent solutions do not work. We now deal with the case in which also the prover
can reset. By the BGGL compiler [7], we know that any constant-round public-coinWI
argument system can be upgraded to resettable soundness by simply requiring the honest
verifier to apply a PRF on the first message received from the prover. However, since our
aim is to obtain simultaneous resettability, we need to start from the rWIAoK protocol
shown before, which is not public coin. Thus, following the paradigm and the technique
of [29], we require that as first message, P sends the commitment of the randomness
that will be used in the protocol: this is the determining message. Then upon each
protocol message P proves that the message is honestly computed using the randomness
committed in the determining message: this is the consistency proof. Since we are now
in the setting in which both parties can reset each other the consistency proof must
be provided with a simultaneous resettable tool. For this purpose we use rZAPs that
are constant-round simultaneously resettable WI proofs. We denote the theorem to be
proved with rZAP as “consistency theorem”, since P proves that a message is honestly
computed and consistent with the randomness committed in the determining message.

The technical problem using rZAPs is that since guarantee WI, the theorem be-
ing proved is required to have more than one witness (note that the simultaneously
resettable protocol of [29] can not be used here since we aim to a constant-round con-
struction). Recall that we want to use rZAP to provide the proof of consistency with the
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determining message. If the determining message is a statistically binding commitment
of the randomness, then there exists a unique opening, which implies the existence of
only one witness. On the other hand, if we use a statistically hiding commitment, then
any opening is a legitimate witness, the theorem is always true and the benefit of the
determining message vanishes. The solution to overcome this problem is to change the
theorem to be proved with rZAP so that it admits more than one witness.

In [29] the consistency theorem is augmented with the theorem “x ∈ L” that we call
“trapdoor theorem” recalling FLS paradigm [42] but with a different purpose. We call it
trapdoor to stress out that it is an escape for the prover that can pass the consistency
proof essentially having freedom to change messages among resets. Hence in [29, 105],
along with each protocol message, P is required to prove that either the protocol message
is computed honestly with the randomness committed in the determining message, (i.e.,
the “consistency theorem”) or x ∈ L (i.e., the “trapdoor theorem”).

This solution can be seen as an instance-dependent technique. Indeed, it is easy
to see that a malicious prover can play messages inconsistently with the determining
message and still pass the consistency check, therefore exploiting its resetting power,
only when x ∈ L. Instead, when proving soundness, since x /∈ L, the trapdoor theorem
is false, hence due to soundness of rZAPs, the malicious prover is forced to play according
to the determining message therefore honestly following the protocol specifications.

Unfortunately, such an instance-dependent solution suffices to prove resettable sound-
ness but fails completely when one would like to prove witness extraction (i.e., the argu-
ment of knowledge property). The reason is that, when proving witness extraction, we
have to construct an extractor that works against any malicious prover, even one who
uses the witness of the trapdoor theorem when proving consistency of the protocol mes-
sages. This possible behavior harms the extractor in two ways (recall that the witness
can be computed from two distinct transcripts of Blum’s protocol that have the same
first message): 1) upon seeing the challenge of the verifier/extractor, P resets it and
changes the first message of Blum’s protocol according to the challenge; 2) P acts as a
resetting verifier in the non-black-box ZK protocol, therefore preventing the extractor
to use the stand-alone non-black-box simulator. Even though this is not harmful for the
soundness property (a malicious prover can perform this attack only when x ∈ L), this
attack kills the existence of the extractor. Therefore the above construction is only re-
settableWI and resettable sound. Concluding, the instance-dependent technique of [29]
inherently prevents the existence of any extractor. New ideas are required to solve the
problem.

Achieving Resettable Argument of Knowledge: the new technique. We pro-
pose a new “trapdoor” theorem that forces the resetting prover to honestly follow the
protocol regardless of whether x ∈ L or not.

The idea is the following. We require P to run two parallel executions of the rWIAoK
shown above, that we denote as subprotocols Π0,Π1. In the determining message, in ad-
dition to the commitment of the random tape that will be used to run each sub-protocol,
we require that P commits to a single bit. Then, the trapdoor theorem in sub-protocol
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Πd will be the following: “d is the bit committed in the determining message”. Since
in the determining message there is only one bit committed (the other two are commit-
ments of random tapes), due to the statistical binding property of the commitment, the
trapdoor theorem is true in only one sub-protocol. Hence, in at least one of the sub-
protocols the trapdoor theorem is false regardless of whether x ∈ L or not, and in such
sub-protocol P is forced to honestly follow the rWIAoK protocol, playing consistently
with the determining message.

More specifically, the final protocol goes as follows. P first sends the determining
message which consists of the statistically binding commitment of the random tapes that
will be used in each sub-protocol and of a single bit. Each sub-protocol is augmented
with rZAPs sent by P to V in which P proves consistency with the determining message.
Therefore, in each sub-protocol Πd, along with each message of the rWIAoK protocol,
P provides a rZAP for the following compound theorem: either the message is honestly
computed and consistent with the determining message, or d is the bit committed in
the determining message. Finally, the verifier will accept the proof if and only if both
sub-protocol executions are accepting.

It is easy to see that any malicious prover can not escape from following the deter-
mining message in at least one of the subprotocols. Indeed, let b be the bit committed in
the determining message. If on one hand, in sub-protocol Πb, a malicious P is not forced
to be honest and can then use the resetting power to prove any false theorem (indeed
among resets P can change the protocol messages without changing the determining
message), on the other hand, in sub-protocol Πb̄, the trapdoor theorem is false, thus the
only way to provide an accepting rZAP is to follow the honest behavior playing messages
derived from the determining message. Therefore, in sub-protocol Πb̄, the extractor is
guaranteed that 1) for sessions starting with the same determining message, the first
round of Blum’s protocol does not change, so that playing with two distinct challenges
yields the extraction of the witness; 2) the extractor can run the stand-alone non-black-
box ZK simulator without being detected. Hence we have the following: sub-protocol Πb̄

is resettably-sound and resettable argument of knowledge, while sub-protocol Πb is not
sound. Note that in both sub-protocols, the resettable WI property is still preserved.

6.2.1 Construction of simresWIAoK
We formally describe how to build a constant-round simresWIAoK starting from Blum’s
protocol (BL protocol). We denote by SHCom, a two-round statistically hiding commit-
ment scheme. We denote by SBCom the commitment procedure of a non-interactive sta-
tistically binding commitment scheme. We denote by c ← SBCom(v, s) (resp. SHCom)
the output of the commitment of the value v computed with randomness s. We use the
resettably-sound statistical (non-black-box) ZK AoK of [83] that we denote by resSZK.
In our construction, we require that P, at each round of the protocol (except the last
that is the opening of commitments as required by BL protocol), provides a proof that
either the messages are honestly computed according to the randomness committed in
the first round, or the “trapdoor” condition is satisfied. Formally, P provides rZAPs for
the following NP languages (except the language ΛSHCom that is proved only by V using
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resSZK protocol).

ΛBL1: correctness and consistency of the first round of Blum’s protocol (BL1). A tuple
(x,m, crb , cb) ∈ ΛBL1 if: there exist (rb, sb) such that crb = SBCom(rb, sb) and m is
honestly computed according to BL1 for the graph x using randomness frb(cb).

ΛV: correctness and consistency of verifier’s messages of the protocol resSZK. A tuple
(mP , mV , crb , cb) ∈ ΛV if: there exist (rb, sb) such that crb = SBCom(rb, sb) and mV

is honestly computed according to the verifier’s procedure of the protocol resSZK
having in input prover’s message mP (mP corresponds to the concatenation of all
messages played by the prover so far) using randomness frb(cb).

Λtrap: trapdoor theorem (true only for sub-protocol b). The pair (cs, b) ∈ Λtrap if
there exists s such that cs = SBCom(b, s).

ΛSHCom: validity of the opening (proved by V). The pair (cs,m) ∈ ΛSHCom if there exists
s such that cs = SHCom(m, s). Note that for a statistically hiding commitment
scheme, any pair (cs,m) is actually in ΛSHCom. Nevertheless, V proves this theorem
using the argument of knowledge resSZK.

Protocol simresWIAoK consists of two phases (see Fig. 6.2). In the first phase, P and
V generate the random tapes that they will use to run the sub-protocols. P sends V the
commitments cr0 , cr1 of two random strings r0, r1 and the commitment cs of a random
bit b. This message is the determining message on which V applies a PRF to generate
a pseudo-random tape (to be used to execute the sub-protocols). The second phase
consists of a parallel execution of π0 and π1 (see Fig. 6.3). P runs each sub-protocol
on theorem x, randomness r0, r1, and the witnesses for computing the rZAPs as inputs
(i.e., the opening of the commitments of the determining message). V runs each sub-
protocol using the pseudo-random tapes determined by the determining message received
from P. Each sub-protocol is resettable WI, while only one of the two sub-protocols is
resettably-sound and a resettable AoK. Since V accepts the proof only if both executions
are accepting, the final protocol is also a resettably-sound resettable AoK.

The sub-protocol Πd is described in Fig. 6.3. We omit the first round of the rZAP
and the first round of the statistically hiding commitment scheme SHCom. rZAPs are
computed with independent randomness. We stress out that the determining message
for V is the first prover’s message: dm = (cr0 , cr1 , cs). The determining message for P is
the first verifier’s message: (c0, c1).

6.2.2 Security Proof

In this section we provide the high-level proof of the simultaneous resettable witness
indistinguishability property and the resettable argument of knowledge property of the
protocol depicted in Fig. 6.2.
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P V

π1−b

cs = SBCom(b)

cr0 = SBCom(r0)

rWI
ressound
resAoK

πb
rWI

RV1 ← fr(x||cr1 ||cs)
RV0 ← fr(x||cr0 ||cs)

crb cr(1−b)cs

x ∈ L

cr1 = SBCom(r1)

Figure 6.1: Graphic Representation of simresWIAoK.

Protocol simresWIAoK

Inputs: common input x ∈ HC.
P’s input: witness y, randomness ω. V’s input: randomness r.

P: b
$← {0, 1}; r0, r1, s0, s1

$← {0, 1}n.
Send cr0 ← SBCom(r0, s0), cr1 ← SBCom(r1, s1), cs ← SBCom(b, s).
Run in parallel ΠP0 (x, y, r0, s0); ΠP1 (x, y, r1, s1).

V : upon receiving dm = (cr0 , cr1 , cs) from P.
RV0 ← fr(x||cr0 ||cs); RV1 ← fr(x||cr1 ||cs);
Run in parallel ΠV0 (x,RV0); ΠV1 (x,RV1).

Figure 6.2: Simultaneously Resettable Argument of Knowledge.

Resettable-soundness. Towards showing resettable soundness we start with the fol-
lowing observations. Recall that by dm we denote the determining message sent by P∗ in
the first round consisting of the commitment of two random seeds and the commitment
of a bit (let us call the bit committed b).

1. The randomness used by V depends on dm. In a resetting attack, malicious prover
P∗ activates V by selecting theorem and randomness, denoted by (x, j) which forces
V to run with the same randomness rj among several executions. However, the
randomness actually used by V at each session is determined by the output of the
PRF on seed rj and input (x, dm). Thus, even if activated with the same random
tape rj , when receiving a new determining message, V executes the protocol with
a fresh pseudo-random tape. Note that, due to the computational indistinguisha-
bility of the PRF, soundness holds against a computationally bounded adversary.
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Sub-protocol: Πd = 〈ΠPd (x, y, rd, sd),ΠVd (x,RVd)〉.
Inputs: common input: x (∈ HC). P’s input: witness y for RHC; witness (rd, sd) to prove

rZAP’s consistency theorem. V’s input: randomness RVd. Protocols BL [12] and resSZK [83]
are used as sub-protocols.

• V: Pick challenge for BL protocol: chd
$← {0, 1}n. Send cd ← SHCom(chd) to P.

• P: upon receiving cd (this is the determining message for P):

1. Generate randomness RPd ← frd(x||cd).

2. Compute the step BL1 for the instance x using randomness RPd. Let us denote the
output as mBL1d.

3. Send mBL1d to V along with the rZAP for theorem: ((x,mBL1d, crd , cd) ∈ ΛBL1 ∨
(cs, d) ∈ Λtrap).

• V: if rZAP is accepting send chd to P.
Prove theorem (cd, chd) ∈ ΛSHCom using resSZK protocol. Let md

Prszk
be the prover’s

message of sub-protocol resSZK (sent by V to P) and md
Vrszk

be the verifier’s message of
resSZK (sent by P to V):

1. (P → V) at each round of the protocol resSZK, upon receiving md
Prszk

from V, P
computes md

Vrszk
using randomness RPd and sends md

Vrszk
to V along with an rZAP

for the theorem ((md
Prszk

,md
Vrszk

, crd , cd) ∈ ΛV ∨ (cs, d) ∈ Λtrap).

2. (V → P) at each round of the protocol resSZK upon receiving md
Vrszk

from P, if
rZAP is accepting V computes the next resSZK’s prover message and sends it to P.
Otherwise it aborts.

• P: upon successfully completing the resSZK protocol compute step BL3 and send the
message mBL3d to V.

• If mBL3d is the correct third message of BL protocol V outputs accept, else outputs
abort.

Figure 6.3: Sub-protocol Πd = (ΠPd (·),ΠVd (·)).

2. In sub-protocol Πb, the resetting power of P∗ is effective since P∗ can honestly
prove the trapdoor theorem of the rZAP. Therefore, P∗ is not forced to use the
randomness committed in the determining message among multiple resetting at-
tacks. Specifically, P∗ can mount the following attack. P∗ initiates a session
labelled by (x, j, dm). In the sub-protocol Πb, upon the reception of challenge
chb from V, P∗ resets V (while keeping the same determining message) back to
the second round (the point after V has sent the commitment of the challenge).
Then, P∗ changes the message mBL1b according to the challenge chb previously
seen. This is possible using the trapdoor theorem, therefore P∗ does not need
to stick with the randomness committed in the determining message. Since the
determining message is the same as before the reset, V will use the same challenge
in the sub-protocol Πb. Thus, in this sub-protocol, P∗ can prove any theorem by
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obtaining the challenge in advance and thus Πb is not resettable sound.

3. In sub-protocol Πb̄, the trapdoor theorem is always false, thus resetting V is in-
effective. Indeed, in order to provide an accepting transcript, P∗ must provide
an rZAP that only exists when the “consistency” theorem is true, that is, each
of P∗’s message is honestly computed according to the randomness committed in
the determining message. By the statistically binding property of SBCom (there
exists only one opening for the commitments cs and crb̄) and the soundness of rZAP
(any unbounded P∗ cannot prove a false theorem), P∗ must be consistent with the
randomness committed in the determining message. Therefore, Πb̄ is resettably
sound.

Assume that there exists a PPT malicious prover P∗ and a pair (x, j) such that V accepts
x with non-negligible probability for some x /∈ HC. By observation 1, such a transcript
is indexed by determining message dm. Thus, the accepting transcript can be labelled
by triple (x, j, dm). By observation 2, for the same determining message dm, there are
polynomially many distinct transcripts for sub-protocol Πb (P∗ can reset V polynomially
many times and change the protocol messages). All these (partial) transcripts of Πb can
be accepting for x /∈ HC since soundness does not hold for Πb. However, by observation
3, for a fixed triple (x, rj , dm), there exists only one possible accepting transcript for
sub-protocol Πb̄ since P∗ is forced to honestly follow the BL protocol according to the
randomness committed in the determining message. Therefore the soundness of BL is
preserved when P∗ resets V in Πb̄. Since V accepts if and only if the executions of both
sub-protocols are accepting, protocol simresWIAoK is resettably sound.

Resettable argument of knowledge. To prove resettable argument of knowledge we
show an expected PPT extractor that extracts the witness from any malicious prover P∗
with probability that is negligibly close to the probability that P∗ convinces an honest
verifier. Let (x, j, dm) be the label of the session in which P∗ provides an accepting
proof. The goal of the extractor is to obtain two accepting transcripts with the same
BL1 message and two distinct challenges (for at least one sub-protocol) for the same
label.

Our extractor consists of two phases. In the first phase it follows the honest verifier
procedure. When P∗ has completed its execution, if there exists an accepting session
labeled by (x, j, dm) that we call “target session”, the extractor proceeds to the second
phase. In the second phase, the extractor obtains a distinct accepting transcript for the
target session by cheating in the “opening” of the commitment by sending a challenge
that is distinct from the one sent in the first phase and simulating the zero knowledge
proof given by the verifier.

The crucial step of this phase is to detect the sub-protocol in which P∗ is stuck with
the randomness committed in dm and must follow the protocol honestly. Indeed, in such
sub-protocol, the extractor can use the stand-alone simulator and open the statistically
hiding commitment to any challenge. Note that the non-black-box simulator of the
protocol resSZK takes as input the code of the malicious verifier. Thus, in order to use
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the simulator, the extractor must carefully prepare a machine which internally handles
the interaction with P∗ and forwards to the simulator only the messages belonging to
the resSZK protocol played in one of the sub-protocol. One of the tasks of such machine
is detecting the sub-protocol in which P is forced to be honest. Once the right sub-
protocol has been detected, by the statistically-hiding property of SHCom, and by the
statistical zero-knowledge property of protocol resSZK run by V instead of the opening,
we are guaranteed that upon each rewind, P∗ provides another accepting transcript
for the target session with the same probability of the first phase. Finally, by the
proof of knowledge property of Blum’s protocol, collecting two distinct transcripts allows
the extractor to compute the witness. The actual extractor requires an intermediate
estimation step (as shown in [48]) in which the probability of having another accepting
transcript for the label (x, j, dm) is estimated. More details on the formal description
of the extractor, the augmented machine and the formal proof can be found in the full
version of this work.

The actual extractor requires an intermediate estimation step (as shown in [48]) in
which the extractor estimates the probability of having another accepting transcript for
the label (x, j, dm).

Therefore, the random tape used by E can be seen as partitioned in three blocks. The
first block is used to activate the malicious prover, the second block is used to executed
the first phase as the honest verifier, the size of this block is a fixed polynomial s(n) and
depends of the malicious P∗. We denote the first block by R∗ and the second block as
~R. The last block that we denote as R′ is used to perform the estimation phase and the
second phase. The size of the second block is an arbitrary polynomial.

The formal description of the extractor is shown in Figure 6.4. The augmented
machine is described in Fig.6.5.

Remark 4. The above extractor follows the behaviour of any standard extractor, there-
fore when it halts, it either outputs the witness or the special symbol ⊥. However, if
the simresWIAoK protocol is used as sub-routine in a larger protocol, when proving the
security of the larger protocol, it could be useful to have an extractor that in case of fail-
ure provides more information, that can be used by a possible outer simulator/extractor.
Therefore it is straightforward to modify the above extractor such that in case of abort it
outputs the last message received from P∗.

Claim 6.2.1. The extractor E runs in expected polynomial time in the security parameter
n.

Proof. The extractor consists of three phases: the honest verifier phase, the estimation
phase and the extraction phase. The honest verifier phase consists in executing the
(PPT) procedure of the honest verifier, thus this step requires polynomial time tver(n).
Now, assume that in this phase P∗ has provided an accepting transcript for a session
(x, j, dm) (as explained above, a session is determined also by the determining message
dm), with probability ζ(x,j) = ζ(R∗, rj , x). Then, with probability ζ(x,j) E initiates to
the estimation phase.
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Resettable Extractor E(desc(P∗), R∗, ~R,R′)
Input: Random tape for honest phase ~R = r1, . . . , rs(n), R

∗ for P∗’s activation, for all other
computations R′.

• Honest Verifier Phase. Run 〈P∗(R∗), V(~R)〉. Upon completion of P∗’s execution: let
(x, j, dm) the label of the last accepting session, and let τx,j be the accepting transcript
(for better readability we omit the subscript dm). If there are no accepting transcripts
output ⊥. From now on, the extractor will focus on obtaining another accepting tran-
script τ ′x,j for the same session that we call target session. For all the other sessions, the
extractor proceeds as the honest verifier. Fixed the label (x, j, dm) the accepting tran-
script can be seen as the concatenation of the accepting transcript of each sub-protocol
τx,j = τ0

x,j , τ
1
x,j and dm.

• Estimation Phase. Run P∗(R∗) and execute the honest verifier procedure using ran-

domness ~R for all sessions except that in the target session execute the protocol resSZK
with independent fresh randomness taken from R′. Repeat this step until either n2

accepting transcripts for the target session have been obtained, or the loop has been re-
peated 2n times. Let q(n) be the number of iteration needed to obtain the n2 accepting
transcripts.

• Extraction Phase. Pick b
$← {0, 1}.

Repeat q(n) times:

1. pick ch′ ← {0, 1}n using random tape R′. Run τts ← Sim(M(P∗,V, R∗,~R, b,
(x, j, dm), τ bx,j , ch

′) on the theorem (cb, ch
′) ∈ ΛSHCom; If Sim does not abort,

reconstruct the new accepting transcript: run P∗(R∗) and plays as the honest

verifier with randomness ~R except that in all sessions labelled with (x, j, dm) run the
sub-protocol ΠVb opening the commitment cb as ch′ and using the transcript τts for

the rsSZK proof. At the end of the execution obtain the transcript τx,j = τ ′bx,j , τ
(b̄)
x,j

and use τ bx,j and τ ′bx,j to extract the cycle y. Output y and halt.

2. b← (b+ 1)mod 2.

Output ⊥.

Figure 6.4: The resettable extractor E.

The estimation phase, follows the Goldreich Kahan [48] technique, and consists of
repeating the execution with P∗ until n2 accepting transcript for the session (x, j, dm) are
obtained. Upon each repetition, the view of P∗ is identical for all the other sessions, and
for session (x, j, dm) the only change is the randomness used by the verifier in running
the protocol resSZK. Therefore, we have that at each repetition, in session (x, j, dm), P∗
produces an accepting transcript with probability ζ(x,j). Therefore in order to obtain n2

accepting transcript E runs the second step: q(n) = n2

ζ(x,j) times.

In the extraction phase E runs the simulator Sim on input the augmented machine M.
The augmented machine takes in input (among the other inputs) the bit of the target
sub-protocol in which the extractor wants to cheat and does the following: 1) it executes
the honest verifier procedure as long as it does not detect that the prover is successfully
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resetting the verifier in the target sub-protocol 2) forwards the messages belonging to
the resSZK protocol of the target sub-protocol to Sim. Hence, M runs in polynomial
time. The non-black box simulator of the protocol resSZK runs also in polynomial time
tsim. Recall that the extractor has to figure out in which sub-protocol it can safely use
the stand-alone simulator. In order to do this, at each attempt E invokes Sim first with
input M that cheats in sub-protocol b and the then again M cheating in sub-protocol
(1− b).

Thus, the extraction phase consists of the repetition of at most 2q(n) times of the
simulator Sim plus a polynomial time due to the reconstruction of the new transcript
that we denote as trec.

Summing up the total running time of the three phases is the following:

tver + ζ(x,j) ·
[
q(n) · poly + tsim · q(n) + trec

]
= poly(n)

Claim 6.2.2. Let P∗ be a PPT prover and let p the probability that P∗ provides an
accepting transcript for a theorem x ∈ HC. If trapdoor permutations and collision-
resistant hash functions exist, then E outputs the witness y ∈ RHC(x) with probability
only negligibly far from p.

Proof. Recall that due to the statistical biding of SBCom and to the soundness of rZAPs,
for each accepting session (x, j, dm) the sub-protocol Πb̄ is resettably sound and that
in such sub-protocol P∗ is stuck with the randomness committed in the determining
message dm. Note that the strategy of the extractor is basically to play honestly in
all sessions, while in session (x, j, dm) it tries to rewind by keeping the same verifier’s
determining message, i.e. the commitments of the challenges of BL’s protocol c0, c1 and
cheating in the opening by providing a false proof. Such a cheating is allowed only in
the sub-protocol Πb̄ where P∗ is forced to be consistent and in turn for E is sufficient
to cheat invoking the only stand-alone non-black box simulator Sim. Assume that there
exists a session (x, j, dm) (that we will denote as target session) in which P∗ generates
an accepting transcript with probability p. An accepting transcript consists of a pair
of sub-transcripts τx,j = (τ0

x,j , τ
1
x,j). We want to argue that E is able to obtain from

P∗ a new accepting sub-transcript τ
′(b̄)
x,j , for the target session with almost the same

probability. We show this through hybrids arguments.

H0 : In this hybrid consider a modified version of the extractor E that runs always as
the honest verifier. Namely, in the third phase (the extraction phase), instead of
playing with challenge ch′, E activated the augmented machine M on input the
honest openings of the challenge ch (as the honest receiver) and the messages of the
augmented machine are held by the real prover instead of the simulator. Obviously
in this modified extraction phase, once E gets another accepting transcript for the
target session it does not extract the witness. In this experiment the view of the
prover P∗ interacting with an honest V is indistinguishable from the view of P∗
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interacting with the modified E. The only difference is that here the extractor
could abort more often than honest V.

Now we want to argue that in this experiment the extractor outputs ⊥ with neg-
ligible probability. Note that the extractor outputs ⊥ in the third phase if, after
repeating the execution with P∗ 2q(n) times (where 1

q(n) is an estimation of p),

P∗ does not provide another accepting transcript for the target session (x, j, dm).
Note that by the Goldreich-Kahan analysis we have that after q(n) number of rep-
etitions, P∗ provides another accepting transcript with overwhelming probability.
Note also that, in the extraction phase, the extractor runs the augmented machine
M. More specifically each repetition M is run with a target sub-protocol in in-
put, and it aborts when detects that the prover’s messages are not consistent with
previous transcript. However, at each repetition M is run twice, once per each sub-
protocol. Now, by the soundness of rZAP and by the statistically-binding property
of the commitment sent by P∗, we have that at least in one sub-protocol P∗ must
be consistent with previous transcript. Then, since in the extraction phase, each
attempt is repeated once for each sub-protocol, there exists a sub-protocol in which
M does not abort. Therefore, at each repetition, E aborts only if also P∗ aborts.
Due to the indistinguishability of the view generated by E, P∗ aborts with the
same probability of the first and second phase. Thus the probability of obtaining
a new transcript in the third phase is overwhelming, and in turn the probability
that E outputs ⊥ is negligible.

H1: In this hybrids the extractor works as in experiment H1 except that in the third
phase instead of handling the message of the augmented machine M running the
honest prover strategy on the theorem (cb, ch ∈ ΛV) it invokes the zero knowledge
simulator Sim. By the statistically zero knowledge property of the protocol resSZK
H0 and H1 are statistically close.

H2: In this hybrid the extractor works as in the previous hybrid except that in the third
phase it invokes the simulator on theorem (cb, ch

′ ∈ ΛV). Due to the statistically
hiding property of the commitment SHCom hybrids H2 and H1 are statistically
close. This is the extractor described in Figure 6.4.

Remark 5 (Simulation Soundness in not needed.). Note that in this experiment
P∗ is receiving simulated proofs by Sim of a false theorem and could maul this proof
in other concurrent executions. Since resSZK is not simulation sound (very roughly
a protocol is simulation sound when even in case the adversary receives simulated
proofs of false theorems it is still not able to prove a false theorem to an honest
verifier) we cannot rule out this possibility. Note however that by the unconditional
soundness of rZAP, P∗ cannot use the simulated proof within the same execution in
which the simulator is used. Still P∗ could open new concurrent executions and use
the simulated messages to lead V to accept a false theorem. This is not a problem
since the extractor, once is in the third phase, has already a target theorem/session
on which is trying to extract, therefore, other new (possibly false) theorems proved



180

in other sessions are nor relevant to E.

Augmented machine. In this paragraph we formally define the augmented machine
M (depicted in Figure 6.5). Very roughly, M internally runs the system 〈P∗(R∗),V(~R)〉
honestly using the same randomness used in the first phase of E for all sessions different
from the target session. The target session (x, j, dm), and the sub-protocol Πb in which
M has to cheat are provided in input. The cheating consists in opening the commitment
of the challenge cb sent in the first phase as a fresh challenge ch′ that is also provided
as input (note that M is a deterministic machine).

For the target session, M cheats by simulating the ZK protocol proving that ch′ is
the correct opening of cb, i.e., the verifier’s message of resSZK sent by P∗ are written
to the output tape, and M waits that the simulator writes the prover’s answer to the
input tape. One of the most important tasks of M is to detect if the sub-protocol Πb

in which it is trying to cheat is the wrong one, i.e. is the one in which P∗ is free to
reset the verifier without getting caught. In order to do this, M will receive in input the
transcript of the target sub-protocol τ bx,j generated in the first phase, such that it can
check if the messages sent by P∗ are consistent with such transcript and thus detect if
P∗ is changing her messages among the resets.

Summing up, M receives the following inputs:
- the code of P∗ and V, the randomness R∗, ~R, and the target session (x, j, dm) to

reproduce the same execution generated in the first phase by E for all sessions
except the target session (x, j, dm);

- the bit b indicates the sub-protocol Πb of the target session in which the messages
belonging to the resSZK protocol must be forwarded in output to the simulator;

- the fresh challenge ch′ to be open to, that replaces the honest challenge committed
in cd;

- the transcript τ bx,j of the sub-protocol Πb obtained in the first step of E and that M
uses to detect if the sub-protocol Πb is the one in which P∗ is free to cheat.

In the following, we denote by (a1, . . . , an) 6= (a′1, . . . , a
′
n) the fact that there exists

i ∈ [n] such that ai 6= a′i. We denote as ∅ the empty string. When writing the Aug-
mented Machine M we can not consider sub-protocols Π0,Π1 as black boxes, but we
have to deal with each sub-protocol round. Following there is some notation for that.
We indicate with ZAP0

BL, ZAP1
BL the rZAPs sent along with messages mBL10,mBL11,

and with ZAP0
rszk,ZAP

1
rszk the rZAPs sent along with each message m0

Vrszk
,m1

Vrszk
of the

resSZK protocol. We denote as τ bx,j the transcript of the sub-protocol b (the sub-session
from which we are trying to extract the witness) for the accepting session labelled with
(x, j, dm). Recall that τ bx,j was generated by the extractor in the first phase (honest
verifier phase)(see Figure 6.4). A sub-protocol Πd consists of three stages, the BL1 step
(along with ZAPs), the resSZK protocol and the BL3 phase. In particular BL1,BL3 con-
sist of a single message from P to V. The resSZK steps consists of ` messages. Thus
we denote with τ bx,j [BL1], τ bx,j [BL3] the single messages for BL1,BL3 steps along with re-
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spective rZAP, and with τ bx,j [resSZK
i] the i-th verifier’s message of protocol resSZK. All

messages are considered along with the respective rZAPs. M stores in the local variable
τSim the transcript of the messages received by the simulator of resSZK protocol.

M(P∗,V, R∗, b, (x, j, dm, τ bx,j), ~R, ch′)

τSim ← ∅;
Run P∗(R∗). When receiving a command (x′, j′, dm′,mP∗):
− if (x′, j′, dm′) 6= (x, j, dm): return V(x′, rj , dm

′,mP∗);
− else:

• if mP∗ = ∅:
− (RV0|RV1)← frj (x||dm);

− cb ← ΠVb (x,RVb,mBL1b,ZAPbBL); cb̄ ← ΠV
b̄

(x,RV b̄,mBL1b̄,ZAPb̄BL). Re-
turn c0, c1 to P∗;

• if mP∗ = (mBL10,ZAP0
BL,mBL11,ZAP1

BL):

− if (mBL1b,ZAPbBL) 6= τ bx,j [BL] ABORT;

− else compute chb̄ ← ΠV
b̄

(x,RV b̄,mBL1b̄,ZAPb̄BL). Return ch′, chb̄ to P∗.
• if mP∗ = (mBL10,ZAP0

BL,mBL11,ZAP1
BL,m

0,i
Vrszk

,ZAP0
rszk,m

1,i
Vrszk

,ZAP1
rszk) for

i ∈ [`]:

− if (mBL1b,ZAPbBL) 6= τ bx,j [BL] or (mb,i
Vrszk

,ZAPbrszk) 6= τ bx,j [resSZK
i] ABORT;

− else mb̄
Prszk
← ΠV

b̄
(x,RV b̄,mBL1b̄,ZAPb̄BL,m

b̄,i
Vrszk

,ZAPb̄rszk; if there exists a

pair (mb̄,i
Vrszk

,mi
Sim) ∈ τSim, return mb̄

Prszk
,mi

Sim to P; else write on the

output tape mb̄,i
Vrszk

and wait for the message of Sim.

Figure 6.5: Augmented Machine

Resettable witness indistinguishability. Recall that the protocol mainly consists
of a single message from P to V, the determining message (cr0 , cr1 , cs), and the parallel
execution of Π0 and Π1. Such protocol can be seen as a parallel repetition of (Π0,Π1)
where Πb is the protocol Πb augmented with the message (cs, crb) sent from P to V and
b = 0, 1.

Assume that there exists a resetting PPT distinguisher V∗ for (Π0,Π1). That is, V∗
distinguishes whether P runs both protocols using witnesses sampled from distribution
Y0 = {ȳ0(x̄)}x̄ or from distribution Y1 = {ȳ1(x̄)}x̄. Let us denote by H0,0 the experiment
in which P uses witnesses sampled from Y0 when running both protocols (Πb,Πb̄), where
b is the bit committed in cs, and by H1,1 the experiment in which P uses witnesses
sampled from Y1 in both (Πb,Πb̄). We prove by hybrid arguments that experiments H0,0

and H1,1 are computationally indistinguishable. Let n denote the number of theorems
and t the bound on the prover’s random tapes. Consider the following hybrids.
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H1,0: In this hybrid, in each session, P uses witnesses sampled from Y1 to run protocol
Πb and the bit b is committed in the determining message in such session. The
only difference between experiment H1,0 and H0,0 is in the witness used in Πb.
Assume that there exists a distinguisher between hybrids H0,0 and H1,0 then it is
possible to construct an adversary V∗BL for the WI property of sub-protocol BL
of Πb. Note that, when b is the bit committed in the determining message, the
trapdoor theorem is true in Πb. V∗BL, on input (x̄, Y0, Y1), runs V∗ as sub-routine
and honestly executes the protocol Πb̄ using the witness belonging to Y0. Instead
for the execution of Πb it forwards the messages received from V∗ and belonging
to BL protocol to the external prover, while it simulates the remaining messages
belonging to Πb. The first difficulty in such reduction seems to be the fact that V∗
can mount a reset attack asking the prover of Πb to run with the same randomness
while changing the challenge of BL protocol. Instead, V∗BL can only mount a con-
current attack against the external BL’s prover. Nevertheless, V∗BL can replicate the
same attack of V∗ for the following reasons. The randomness of the honest prover
executing protocol Πb is computed on the determining message (the commitment
of BL’s challenge) received from V∗. Due to the pseudo-randomness of PRF, when
V∗ changes the determining message the prover of Πb plays with fresh randomness.
By the resettably-sound argument of knowledge property of the resSZK protocol
and by the computational binding property of SHCom we have that V∗ can not
maintain the same determining message and query the prover with two distinct
BL’s challenges. Thus the resetting power is suppressed and V∗BL can replicate
the same attack as V∗. The second difficulty is that for each protocol message
the honest prover of Πb is required to send a rZAP proving that the messages are
consistent with the randomness committed in the determining message. However,
in the reduction V∗BL forwards the messages received by an external prover of BL’s
protocol, therefore it can not prove the consistency with the determine message.
Nevertheless, since we are in the case in which the trapdoor theorem is true, V∗BL

can forward the external messages and computes the rZAPs using the witness of
the trapdoor theorem. Due to the resettable WI property of rZAP such deviation
from the honest prover is not detected by any PPT V∗. Then, by the WI of BL
protocol hybrids H0,0 and H1,0 are computationally indistinguishable.

H i,j
0,1 (with 1 ≤ i ≤ n, 1 ≤ j ≤ t): In hybrid H i,j

0,1, in session (i, j), P runs protocol Πb̄

using the witness sampled from Y1, while protocol Πb is run by using a witness
sampled from Y0, and b is the bit committed in the determining message of such
session. The only difference between experiment H i,j

0,1 and H i−1,j−1
0,1 is that in ex-

periment H i,j
0,1, in session (i, j), the witness is sampled from Y1 in the sub-protocol

where the trapdoor theorem is false. Note that H0,0
0,1 = H1,0. Assume that there

exists a distinguisher between H i,j
0,1 and H i−1,j−1

0,1 then it is possible to construct
an adversary for the hiding of the commitment scheme SBCom. The reduction
works as follows. A playing in the hiding experiment obtains the challenge com-
mitment C. Then it runs V∗ as sub-routine and simulates the honest prover P
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as in experiment H i−1,j−1
0,1 , except that in session (i, j) it proceeds as follows. It

computes cr0 , cr1 as the honest prover, while it sets cs = C, and sends the first
round to V∗. Then A uniformly chooses a bit b and executes the protocol Πb

using a witness sampled from distribution Y1 and protocol Πb̄ using the witness
sampled from distribution Y0. Note that A can run both sub-protocols without
knowing the opening of C since also the honest P never uses such witness in the
protocol execution. When V∗ terminates its execution, A hands the output of
V∗ to the distinguisher and outputs whatever the distinguisher outputs. If C is
a commitment of b then the experiment simulated by A is distributed identically
to experiment H i−1,j−1

0,1 . Else if C is a commitment of b̄ then the experiment is

distributed as experiment H i,j
0,1. By the computational hiding of SBCom we have

that experiments H i,j
0,1 and H i−1,j−1

0,1 are computational indistinguishable.

H1,1: In this hybrid, P uses a witness sampled from Y1 to run protocol Πb and the bit b
is committed in the determining message. The only difference between experiment
Hn,t

0,1 and experiment H1,1 is in the witness used to run sub-protocol Πb. By
the same arguments put forth in proving the indistinguishability of hybrid H1,0

and H0,0, experiments Hn,t
0,1 and H1,1 are computational indistinguishable. This

completes the proof.

Theorem 13. If trapdoor permutations and collision-resistant hash functions exist, then
the protocol shown in Fig. 6.2 is a Simultaneously Resettable Witness Indistinguishable
Argument of Knowledge.

6.3 Simultaneously Resettable Identification Schemes

In this section, we present the second application of our main protocol, the first con-
struction of a simultaneously resettable identification scheme. Identification schemes
represent one of the most successful practical applications of cryptographic protocols.
The basic goal of an identification scheme is to prevent an adversary A from imper-
sonating a honest user P to another honest user V. However, this is not sufficient for
some applications. Indeed, consider the case in which V provides a service to P, and the
service is restricted only to a small community controlled by V. Then, P could give to
another party T that is not in the small community, some partial information about his
secret that is sufficient for T to obtain the service from V, while still T does not know
P’s secret. The proof of knowledge property allows us to do secure identification as well
as preventing the attack described above. When the identification protocol is a proof of
knowledge, the sole fact that T convinces V is sufficient to claim that one can extract
the whole secret from T . This implies that T obtained P’s secret key corresponding
to his identity, and this is unlikely to happen in scenarios where the same secret key is
used for other critical tasks such as digital signatures. As discussed in the introduction,
our simultaneously resettable identification scheme follows the above proof of knowledge
paradigm. This extends the previous work of Bellare et al. [9] to a setting in which ev-
ery party can be reset. We emphasize that our simultaneously resettable identification
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scheme is easily obtained from our main protocol simresWIAoK, so achieving a constant
round complexity.

Identification protocols secure against reset attacks. We introduce the notion
of Reset-Reset-1 security as a generalization of the Concurrent-Reset-1 CR1 notion in-
troduced in [9]. CR1 considers an adversary I, called impersonator, that plays in two
phases. In the first phase, it interacts with a prover as a resetting verifier (Reset phase).
In the second phase, it has no access to the prover anymore, but it tries to impersonate
such a prover to an honest verifier (Concurrent phase). In the second phase, I is not
allowed to reset the verifier. In our new definition Reset-Reset-1 (RR1) the impersonator
is allowed to reset in both phases. The formal definition is a straightforward extension
of the one given in [9] and can be found in the full version of this work.

The protocol ID. The protocol is depicted in Fig. 6.6. Let f : {0, 1}n → {0, 1}∗ be
a one-way function, let n be the security parameter. The public key of P is the pair
(pk0, pk1), the secret key is xd for a randomly chosen bit d, such that pk0 = f(xd) ∨
pk1 = f(xd). The protocol simply consists in P running the simresWIAoK protocol with
V to prove that it knows the preimage of either pk0 or pk1. Formally, let ΛID be the
following language ΛID = {(y0, y1): there exists x ∈ {0, 1}n s.t. y0 = f(x) ∨ y1 = f(x)},
then the identification scheme consists of P proving the statement (pk0, pk1) ∈ ΛID
using simresWIAoK.

simresWIAoK
(pk0, pk1) ∈ ΛID

P V
pk = pk0, pk1
sk = xd

pk = pk0, pk1

Figure 6.6: Simultaneously Resettable ID scheme.

Theorem 14. If a constant-round simultaneously resettable WIAoK protocol exists and
one-way functions exist, then the above protocol is constant-round and secure in the RR1
setting.

Proof. Let pk = (pk0, pk1) be the public key of a player P. Assume that there exists a
PPT adversary I playing the RR1 experiment, that succeeds in impersonating an honest
P with non-negligible probability. This means that I is able to prove to an honest V
that her identity is pk = (pk0, pk1). Then we show that I can be used to construct
an adversary against the one-wayness of f , or a distinguisher for the resettable WI
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property of the simresWIAoK protocol. The resettable argument of knowledge property
of simresWIAoK protocol is crucial to put forth both reductions.

Recall that, in the RR1 game, I plays the first phase interacting as a resetting verifier
V∗ with P and in the second phase interacts as resetting prover P∗ with V trying to
impersonate P.

First we show an adversaryA that breaks the one-wayness of f . A has in input a chal-
lenge y that is the output of f(x) for some unknown x. The reduction works as follows.
A picks d ∈ {0, 1}, xd ∈ {0, 1}n and computes pkd = f(xd) and pkd̄ = y. Then it runs I
as subroutine, in the first phase A simulates the honest prover playing the simresWIAoK
protocol with witness xd. In the second phase, A simulates the honest verifier to I. If
I provides an accepting proof, then A runs the extractor of the simresWIAoK protocol
and, by the resettable argument of knowledge property, except with negligible proba-
bility, it obtains the witness used by I in the proof. In order to run the extractor, A
prepares an augmented machine that internally contains all messages belonging to the
first phase so that they can be internally played with I, while the messages sent by I in
the second phase are forwarded to the extractor. Now note that during the extraction
process the extractor rewinds the machine several times changing the protocol messages
(of the second phase), therefore I could change her messages accordingly. Note that
however, since there is a separation between the first phase and the second phase, this
does not require to re-play messages of the first phase. Since, by assumption f is a
one-way function, the probability that the witness extracted corresponds to a pre-image
of y is negligible.

Now, assume that the witness extracted from I is xd. Then we can construct a dis-
tinguisher AWI for the resettable witness indistinguishability property of simresWIAoK.
AWI works as follows. It computes pk0 = f(x0), pk1 = f(x1) and activates an exter-
nal prover for the simresWIAoK protocol with inputs ((pk0, pk1), (x0, x1)). In the first
phase, when I runs as a verifier, AWI forwards all messages to the external prover of the
simresWIAoK. In the second phase, when I runs as a prover, AWI follows the procedure
of the honest verifier. Then, if I provides an accepting proof, then AWI runs the ex-
tractor of the simresWIAoK protocol. Finally by the resettable argument of knowledge
property, except with negligible probability, it obtains the witness used by I in the proof,
i.e. it obtains x0 or x1. Now notice that in the previous experiment, when we tried to
invert the one-way function, the witness extracted corresponded to the one used in the
first phase, while I was verifying the proof. Since this second experiment is identical to
the previous one, it is again true that the extracted witness corresponds to the one used
by the prover. Since the prover now is the external prover of simresWIAoK, we have
that the above adversary AWI breaks the rWI property of simresWIAoK. By the rWI
property of simresWIAoK, this event happens with negligible probability only and thus
I wins the RR1 game with negligible probability.
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[37] Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. David & goliath
oblivious affine function evaluation - asymptotically optimal building blocks for
universally composable two-party computation from a single untrusted stateful
tamper-proof hardware token. Cryptology ePrint Archive, Report 2012/135, 2012.
http://eprint.iacr.org/. 25

[38] Cynthia Dwork and Moni Naor. Zaps and their applications. In In 41st FOCS,
pages 283–293. IEEE, 2000. 168

[39] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry Stockmeyer. Magic func-
tions. In Foundations of Computer Science (FOCS’99), pages 523–534, 1999. 4,
89, 90

[40] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In
Proceedings of the 20th annual ACM symposium on Theory of computing, STOC
’98, pages 409–418. ACM, 1998. 93, 121

[41] Ilze Eichhorn, Patrick Koeberl, and Vincent van der Leest. Logically reconfigurable
pufs: memory-based secure key storage. In Proceedings of the sixth ACM workshop
on Scalable trusted computing, STC ’11, pages 59–64, New York, NY, USA, 2011.
ACM. 26

http://eprint.iacr.org/


191

[42] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM J. Comput., 29(1):1–28, 1999. 133, 170

[43] Uriel Feige and Adi Shamir. Zero knowledge proofs of knowledge in two rounds.
In Gilles Brassard, editor, CRYPTO, volume 435 of Lecture Notes in Computer
Science, pages 526–544. Springer, 1989. 12, 137

[44] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding proto-
cols. In in 22nd STOC, pages 416–426. ACM Press, 1990. 15

[45] Sanjam Garg, Rafail Ostrovsky, Ivan Visconti, and Akshay Wadia. Resettable
statistical zero knowledge. In TCC, Lecture Notes in Computer Science. Springer-
Verlag, 2012. 163

[46] Rosario Gennaro and Silvio Micali. Independent zero-knowledge sets. In ICALP,
volume 4052 of Lecture Notes in Computer Science, pages 181–234. Springer, 2006.
89

[47] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, Cambridge, UK, 2001. 19

[48] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge
proof systems for np. J. Cryptology, 9(3):167–190, 1996. 92, 176, 177

[49] Shafi Goldwasser, Yael T. Kalai, and Guy. N. Rothblum. One-time programs. In
Advances in Cryptology – CRYPTO’08, volume 5157 of Lecture Notes in Computer
Science, pages 39–56. Springer, Berlin, Germany, 2008. 25

[50] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst.
Sci., 28(2):270–299, 1984. 1, 14

[51] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof-systems (extended abstract). In Robert Sedgewick, editor,
STOC, pages 291–304. ACM, 1985. 2, 163

[52] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989. 14, 19

[53] Vipul Goyal, Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. Interactive
locking, zero-knowledge pcps, and unconditional cryptography. In Tal Rabin, edi-
tor, CRYPTO, volume 6223 of Lecture Notes in Computer Science, pages 173–190.
Springer, 2010. 56, 58, 79, 80

[54] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay
Wadia. Founding cryptography on tamper-proof hardware tokens. In Daniele
Micciancio, editor, TCC, volume 5978 of Lecture Notes in Computer Science, pages
308–326. Springer, 2010. 25, 58



192

[55] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Construct-
ing non-malleable commitments: A black-box approach. In 53rd Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2012, pages 51–60. IEEE
Computer Society, 2012. 94

[56] Vipul Goyal and Hemanta K. Maji. Stateless cryptographic protocols. In FOCS,
2011. 165

[57] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new
techniques for nizk. In Advances in Cryptology – CRYPTO 06, volume 4117 of
Lecture Notes in Computer Science, pages 97–111. Springer, 2006. 168

[58] Jorge Guajardo, Sandeep S. Kumar, Geert Jan Schrijen, and Pim Tuyls. Fpga
intrinsic pufs and their use for ip protection. In Pascal Paillier and Ingrid Ver-
bauwhede, editors, CHES, volume 4727 of Lecture Notes in Computer Science,
pages 63–80. Springer, 2007. 26

[59] Dennis Hofheinz. Possibility and impossibility results for selective decommitments.
J. Cryptology, 24(3):470–516, 2011. 10, 11, 62, 90, 91, 95, 96, 97

[60] Yuval Ishai, editor. Theory of Cryptography - 8th Theory of Cryptography Confer-
ence, TCC 2011, Providence, RI, USA, March 28-30, 2011. Proceedings, volume
6597 of Lecture Notes in Computer Science. Springer, 2011. 190, 195

[61] Yael Tauman Kalai, Yehuda Lindell, and Manoj Prabhakaran. Concurrent gen-
eral composition of secure protocols in the timing model. In 37th Annual ACM
Symposium on Theory of Computing, pages 644–653, 2005. 25

[62] Jonathan Katz. Universally composable multi-party computation using tamper-
proof hardware. In Moni Naor, editor, Advances in Cryptology – EURO-
CRYPT 2007, volume 4515 of Lecture Notes in Computer Science, pages 115–128,
Barcelona, Spain, May 20–24, 2007. 3, 25, 26, 56, 57, 58
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