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Abstract

In this work we investigate some aspects of the physics of strongly correlated systems
by taking into account both electron-electron and electron-phonon interactions as
basic mechanisms for reproducing electronic correlations in real materials.

The relevance of the electron-electron interactions is discussed in the first part
of this thesis in the framework of a self-consistent theoretical approach, named
Composite Operator Method (COM), which accounts for the relevant quasi-particle
excitations in terms of a set of composite operators that appear as a result of the
modification imposed by the interactions on the canonical electronic fields. We show
that the COM allows the calculation of all the relevant Green’s and correlation
functions in terms of a number of unknown internal parameters to be determined
self-consistently. Therefore, depending on the balance between unknown parameters
and self-consistent equations, exact and approximate solutions can be obtained.
By way of example, we discuss the application of the COM to the extended ¢-U-
J-h model in the atomic limit, and to the two-dimensional single-band Hubbard
model. In the former case, we show that the COM provides the exact solution
of the model in one dimension. We study the effects of electronic correlations as
responsible for the formation of a plethora of different charge and /or spin orderings.
We report the phase diagram of the model, as well as a detailed analysis of both
zero and finite temperature single-particle and thermodynamic properties. As far
as the single-band Hubbard model is concerned, we illustrate an approximated self-
consistent scheme based on the choice of a two-field basis. We report a detailed
analysis of many unconventional features that arise in single-particle properties,
thermodynamics and system’s response functions. We emphasize that the accuracy
of the COM in describing the effects of electronic correlations strongly relies on the
choice of the basis, paving the way for possible multi-pole extensions to the two-
field theory. To this purpose, we also study a three-field approach to the single-band
Hubbard model, showing a significant step forward in the agreements with numerical
data with respect to the two-pole results.

The role of the electron-phonon interaction in the physics of strongly correlated
systems is discussed in the second part of this thesis. We show that in highly polariz-
able lattices the competition between unscreened Coulomb and Frohlich interactions
results in a short-range polaronic exchange term J, that favours the formation of
local and light pairs of bosonic nature, named bipolarons, which condense with a
critical temperature well in excess of hundred kelvins. These findings, discussed in
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the framework of the so-called polaronic ¢-J, model, are further investigated in the
[ﬂ%mmedaﬁmmomﬁmpMBmmlﬁgmmmgﬁmn&wammﬂﬁbnb%w%nomﬁm
Coulomb and Frohlich interactions. We discuss the role of U as the driving parame-
ter for a small-to-large bipolaron transition, providing a possible explanation of the
BEC-BCS crossover in terms of the properties of the bipolaronic ground state. Fi-
nally, we show that a hard-core bipolarons gas, studied as a charged Bose-Fermi mix-
ture, allows for the description of many non Fermi liquid behaviours, allowing also
for a microscopic explanation of pseudogap features in terms of a thermal-induced
recombination of polarons and bipolarons, without any assumption on preexisting
order or broken symmetries.
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Chapter

Introduction to basic models for correlated
systems

In the last decades a large interest arose in the study of transition metal oxides and
rare-earths as promising testing grounds for the observation of unconventional prop-
erties and anomalous features, often referred to as “non-Fermi-liquid behaviours” in
contrast with simple metal behaviours well-described by the Fermi-liquid theory.
In these systems, there are several pieces of evidence of coexistence of different
competing orders characterized by strong spatial correlations as well as pronounced
on-site quantum fluctuations or magnetic behaviours, which led to the conviction
that unconventional phenomena, among which we recall the metal-insulator transi-
tion, high-temperature superconductivity, colossal magneto-resistance, Kondo effect,
quantum phase transitions, can only emerge as macroscopic manifestations of strong
microscopic correlations.

On this ground, due to the presence of a strong interplay among a variety of
different degrees of freedom (e.g. charge, spin, lattice vibrations) to be, in principle,
all accounted on equal footing, any theoretical effort with the aim of describing
unconventional features in terms of ab-initio models will be unfeasible. Hence, in the
last years a number of different “approximated” models have been proposed, whose
applicability can only be considered in particular limits or referred to particular
materials. With no claim of being exhaustive, hereafter we will shortly introduce
few of them, namely the Hubbard model [I] and its reduction the ¢-J model [2], the
Kondo lattice model [3] and the periodic Anderson model [4], as the basic models for
strongly correlated systems accounting for all relevant charge and spin correlations
in a large class of materials. We neglect any coupling with lattice degrees of freedoms
which will be discussed in the second part of this thesis. At this point it is worth
clarifying that it is beyond the scope of this Chapter to undertake a thorough analysis
of the aforementioned models. Interested readers can find comprehensive reviews in
Ref. [5], Ref.[6] and Ref.[7] for Hubbard, Kondo and Anderson models, respectively.

It is instructive to start from the pioneristic work by Hubbard [1I], in which an
approximate s-wave description of 3d-electrons was proposed to describe strong elec-
tronic correlations in transition metals. In the presence of an electrostatic Coulomb
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interaction among charged carriers one can write the following Hamiltonian as the
minimal model for the description of correlated electrons in a lattice:

1 N
H = Z tij (chcj,g + h.c.) +3 Z Z (2, 7] . Il,m) cI.’Uc;’Ucm,U,cl,(7

1,J;0 1,3,l,m o,0’

o1 .o 1
-3 3 (2t ) Gt b ) v @

t,jlom o

Here 4, j, I, m are lattice vectors, 0,0’ = (1,]) are spin variables, c;f,o /Cip is the
operator which creates/annihilates a carrier with spin o on site g,

by = %zk:gk exp(ik - (i — §)) , (1.2)

is the hopping integral formulated in terms of the non-interacting (Hartree-Fock)
band-energy dispersion e(k), N is the number of sites in the lattice,

Vij = %Zl/k exp(tk- (1 —3)), (1.3)

where 1 is the assumed occupation number of the band states in the Hartree-Fock
calculation, and:

<’L,j| % |l,m> _ ez/dw/d:v’(b*(w — 7,)<b(a: — l)¢*(wl —])(ﬁ(.’l)l B m) : (1.4)

|z — |

where ¢(z) = N2 >k k() is the Wannier representation of the Bloch functions
Y. Hence in the Hamiltonian the first term is responsible for the mobility of
the carriers, the second one parametrizes the electrostatic Coulomb interaction. The
last term subtracts the potential energy of the electrons which is already taken into
account in the Hartree-Fock dispersion ¢(k), avoiding double counting. Under the
assumption of almost localized states with orbital radius small compared with the
inter-atomic spacing, the leading contribution to the integrals ((1.4)) will be given by
the on-site terms U = (4, ¢ % |2,2). Therefore by neglecting all other contributions
in (1.1) we obtain:

H = Ztij (Cl,acj#f + hC) + UZTL.,;,UTLL& - UZ Viilli o (15)

1,950 1,0 1,0

where & is the spin variable opposite to o (¢ =1 if ¢ =] and vice versa), n; , = c;Ucw
and v; = N1 > & Vk = /2, where n is the electron density per site. Hence the last
term in the above equation can be dropped since it reduces to a constant contribution
and we obtain the so-called Hubbard model (HM):

Hin = ) iy (CI,aCj,a + h-a) +UD nignis . (1.6)

©,3;0 10
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The above Hamiltonian can be seen as a minimal model which aims to describe
strongly correlations in solids. In particular, Eq[I.6] describes the propagation of
strongly correlated electrons in the lattice, where both charge and spin correlations
arise from the competition between the two different energy scales ¢;; and U. Skip-
ping the trivial non-interacting (¢;;/U > 1) limit, in the regime in which ¢;; =~ U,
electrons tend to gain energy by hopping from a site to another, trying to avoid
the formation of local pairs which is unfavoured by the presence of U > 0. Hence
the hopping of one electron from a site to another will be not only related to the
properties of the electron itself, but also on the electronic density on the final site
of the hopping process. In particular, the occupation of a site will cost —t, —t + U
in energy, depending on whether the final site is occupied or not, or can be even
negated according to the Pauli exclusion principle. This behaviour is more clearly
visible in the strong coupling regime (¢;;/U < 1) where the hopping from a site to
another will only occur if there are no other electrons in the final site. In this case
the HM reduces to the well-known ¢-J Hamiltonian [2]:

HtJ = th [ TL,LU Iacjﬂ (1 - 7’Lj75) + hc} + J'ij Z ?z . ?j s (17)

7.70.

where, in order to maximize the hopping, an antiferromagnetic spin-order arises
favoured by the presence of an exchange coupling J;; which is related to hopping
amplitude and strength of the on-site Coulomb potential as:

Jij =4t /U > 0. (1.8)

In particular, at half-filling the itinerant nature of the model is completely suppressed
and one recovers the antiferromagnetic Heisenberg Hamiltonian:

Hpeis = Y 7S 85, (1.9)
,J

which describes magnetic properties of localized but correlated electrons in terms
of spin operators only, where in both Eqn and Eq. i is the electronic spin
operators defined as S; = 2 Zaﬂ ma'agcz;ﬂ, where o = (07,09, 03) is the vector
whose components are given by the three Pauli matrices:

le(gé),agz(?gi),03£<é_01>. (1.10)

On the basis of the above analysis, one can conclude that in the framework of
the HM spin degrees of freedom become relevant in the regime in which, due
to interactions, the mobility of all the carriers is strongly compromised in favour
of localized behaviours. However, many compounds (e.g. transition metal oxides
and rare earths) are characterized by the coexistence of both localized and itinerant
behaviours, whose competition can only be hardly estimated in the framework of
the Hubbard model. This observation led to the formulation of the so-called Kondo
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lattice model (KLM) [3]:

Hirv = th (cwcga + h. c) + 5 Z (? 7,15) i o Cig s (1.11)

1,3;0 (He NG}

which includes the presence of localized atomic moments ?, coupled with the spins
7 of the conduction electrons via an on-site exchange interaction parametrized by
Ji. It is worth noting that in the above Hamiltonian neither conduction nor local-
ized spins interact among themselves. All the interactions are only accounted via
an exchange coupling mechanism which, differently from the one that arises from
the HM in the strong coupling regime , refers to the interaction among con-
duction electrons and localized momenta (which belong to the inner atomic shells
or to magnetic impurities) rather than to interactions among conduction electrons
with themselves. Hence the Kondo exchange coupling constant Jx has a completely
different nature with respect to J. These subtle but crucial differences make the
Kondo lattice model able to reproduce the properties of many materials whose de-
scription in terms of Hubbard or ¢-J models is inapplicable. In the limit Jg /t > 1,
the exchange interaction localizes the conduction electrons resulting in the formation
of fully localized singlet (J > 0) or triplet (J < 0) states. On the contrary, in the
more interesting case in which Jx /¢t 5 1, both itinerant and localized behaviours
are present, whose competition has been considered at the basis of a number of
interesting phenomena among which Kondo effect, metal-insulator transition, giant
magneto-resistance, transport and magnetic properties of many materials such as
heavy-fermions, rare-earths, manganites.

Hence, starting from the Hamiltonian (1.11]), a further step forward for the de-
scription of strongly correlated systems can be done by including in the Kondo
physics the effects of the on-site (Coulomb) interaction, as well as the possibility
to have an hybridization between conduction and localized electrons in place of the
local Kondo exchange mechanism. By doing this, we obtain the so-called periodic
Anderson model (PAM) [4]:

Hpam th (cchUnLhc)nLelan%—Uan n; 5

?-70-

+> Vi (Cz-,alj,o + lj,gci,g> : (1.12)

1’7.7;0-

where ¢; ,/l; , and c U [l are the canonical fermionic operators which annihilate

and create an 1t1nerant / locahzed electron with spin o on site 4, n} = lT Jlio and
g; are density per spin and band-energy of localized electrons, respectlvely, Vij is
the hybridization parameter. The PAM represents a basic model for the description
of heavy fermions, whose properties are given by the interactions among itinerant
d-electrons and localized f-electrons. Despite its simple and intuitive form, it rep-
resents one of the most difficult model to deal with and, due to its complexity, few
exact results are known, mostly related to particular limits [§, 9] or special cases in
which symmetry properties are relevant [10]. Generally, starting from the Hamilto-
nian (1.12)), simplified models are considered in which, for example, only the on-site

6
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contribution to the hybridization is taken into account or only one localized electron,
looked as a magnetic impurity, is considered. In particular, it is worth noting that, in
the highly localized electron limit, the Hamiltonian recovers the physics of the
KLM which, similarly to as the ¢-J model comes from the Hubbard one, can
be derived from following a Schrieffer-Wolf transformation [11]. This prop-
erty immediately follows from the consideration that, when electrons are strongly
localized (e.g. U > 1), they can hop into the impurity band and then hop back
again in order to gain kinetic energy. This process leads to the antiferromagnetic
exchange interaction Jx between a local impurity spin and the conduction electron
spin at the impurity site which, similarly to , reads as:

%

Tk =4 (1.13)

and accounts for the same physics already described for the KLM.
It is worth noting that the apparent simplicity of the aforementioned Hubbard

(L.6), +-J (1.7), Kondo lattice and periodic Anderson models, hides a
very complex physics whose investigation, currently one of most challenging topics
in condensed matter physics, is continually pursued through an increasing number of
analytical and numerical approaches. Analytic treatments often require oversimpli-
fications or are based on uncontrolled assumptions which make extremely difficult
to understand if a given prediction represents a real feature of the model rather
than an artifact of the approximations used. Numerical techniques, in turn, are by
their nature restricted by the size of the system which defines the computational
efforts required. Hence it becomes evident that analytical and numerical approaches
can only be considered as complementary to each other and any new analytical or
numerical method could contribute to a better understanding of the model under
investigation, giving an invaluable insight of the physics described by it.

Within this context, we present in this part of the thesis an analytical theoret-
ical scheme, named Composite Operator Method (COM), which in the last years
has been successfully employed for the study of several models and materials among
which: p-d [12], t-J [13], t-¢'-U [14], t-U-V [15], Hubbard [16], Kondo [17], Anderson
[18], Cuprates [19]. The basic theoretical framework of the model is reported in
Chapter 2] It is shown that, differently from many analytical methods, the COM is
based on the choice of a proper set of so-called composite fields which are aimed to
describe all the relevant stable quasi-particle excitations generated by the interac-
tions rather then bare electrons. Well-consolidated techniques and results, such as
Wick theorem, standard Green’s function approach, diagrammatic expansion, do not
apply in the case of composite fields, therefore a proper Green’s function formalism,
illustrated in Sec[2.I] needs to be formulated. As shown in Sec[2.3] the aforemen-
tioned formalism allows to the calculation of all the relevant Green’s functions in
terms of a number of unknown internal parameters which can be determined self-
consistently by means of symmetry relations or algebraic constraints. Hence, when
the number of internal parameters equals the number of self-consistent constraints,
depending on the properties of the selected basis of composite fields, the COM can
provide both an exact or an approximated solution in the whole range of the model
parameters and without any assumption of their strength. Two applications of the

7
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COM are discussed.

In Chapter [3]we introduce the COM as a powerful method for the investigation of
a large class of exactly solvable systems and illustrate the exact solution of the one-
dimensional ¢-U-.J-h model in the narrow-band limit [20]. We report in Sec3.1.3]and
Sec[3.1.4] zero and finite temperature results, respectively, including a comprehensive
analysis of the phase diagram and a detailed study of single particle properties,
thermodynamics and system’s response functions.

In Chapter [4] we use the COM to obtain an approximated solution of the two-
dimensional single-band HM. In particular, two different approximations schemes,
namely the polar approximation and the self-consistent Born approximation, are
discussed in Sec[4.1}{4.2)and Sec[4.3] respectively. We show that the COM is perfectly
able to reproduce a variety of unconventional features induced by strong interactions.
We also report a detailed comparison of the results of our approximations against
different numerical methods, showing a good agreement in all the range of the model
parameters.

In Chapter 5] we discuss possible developments and improvements of the ap-
proximated theoretical framework illustrated in Chapter [l In particular we show
that it is possible to obtain a better agreement with numerical data by increasing
the number of composite fields of the basis. This procedure allows the COM to
describe virtual energy scales of the model, however it also introduces a number
of unknown parameters in the self-consistent scheme to be determined via further
approximations. Finally, we report in Chapter [ open issues and possible directions.



2

Chapter

The Composite Operator Method

In the last decades many efforts were made to understand strongly correlated elec-
tronic systems, largely considered as one of the most puzzling playgrounds for the
observation of unconventional features which break down the standard Fermi liquid
behaviors observed in normal metals. As it is well known, in these systems strong
interactions modify the properties of the particles at a macroscopic level, resulting in
the formation of new quasi-particles, different from bare electrons, whose properties
are entirely determined by dynamics, strength and nature of the interactions, geom-
etry of the lattice. As a simple example, let us consider the atomic Hamiltonian:

H=—p) olo.+Uplolppr, (2.1)

where ¢, /! denotes the Heisenberg representation of the annihilation/creation
operators of a bare electron with spin o € {1,|}, which satisfy the canonical anti-
commutation rules (below and after we consider i = 1):

=dot ptl =
[z

It is immediate to see that the model Hamiltonian ({2.1)) is exactly solvable in terms
of the operators:

£r = PolPsPh = 0o (1 - wés@&) : (2.3)
Te = Copbts (2.4)

where ¢ =] and ¢ =1 for ¢ =1 and ¢ =, respectively. In fact, by nothing that
0o = &, + 1, it is possible to rewrite Eqf2.1] as:

H=—p) & - (u - %U> > 0k (2.5)

9
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from which it follows that &, and 7, are eigenoperators of H with energy Ee = —p
and E, = — (u — U), respectively:
%até.ﬂ - [§U7H] - _/’l’é'O' (26)
Zatna = [7707%] = (M - U) Mo

Hence, it is immediate to realize that, because of the presence of a trivial interac-
tion term, the properties of bare electrons described by the field ¢, are no more
observed and new stable quasi-particles excitations appear, described by the fields
&, and 7,, which are responsible for the transitions |0) <> |o), and |o) < | 1)),
respectively. Consistently, F¢ — F, = U, therefore the two fields &, and 7, are com-
pletely degenerate in the absence of interaction, recovering the free-electron picture
with Ee = E,, = —p as one would expect for the non-interacting case.

On the basis of this evidence, it clearly follows that an analysis in terms of
elementary fields (e.g. bare electronic fields) might be inadequate for systems dom-
inated by strong interactions. Also a perturbative treatment will fail since there are
no obvious small parameters allowing for a perturbative expansion. Hence, as done
before for the trivial atomic model , a possible alternative procedure consists
in reformulating the model Hamiltonian in terms of new fields, called “composite
fields”, which describe the stable quasi-particle excitations that arise as a result of
the interaction. As noticed before, the convenience of this approach lies in the fact
that, once all the possible stable excitations have been found, one might in principle
exactly solve the problem since the starting Hamiltonian will have a diagonal rep-
resentation in terms of the new composite fields (see Eq.. However, one should
also emphasize that, because of the competition between different energy scales and
orders, even for very simple and widely studied models (e.g. the Hubbard model) the
identification of composite fields coming from all the possible stable quasi-particle
excitations is not an easy task to deal with. Their identification is complicated
by the fact that, as follows from the trivial atomic case , composite operators
(Eq and Eq can be expressed in terms of an arbitrary complicated product
of standard electronic fields. Therefore in general they are neither Fermi nor Bose
operators, since they do not satisfy canonical (anti)commutation rules and proper-
ties. They can only be recognized as fermionic or bosonic operators according to
the number, odd or even, of the constituting original electronic fields. For instance,
the fields &, and 7,, defined by Eq2.3] and Eq[2.4] respectively, can be recognized
as fermionic fields and their algebra is more conveniently described by considering
the following anticommutators:

{607 77;} = {770752} =0, (27)
{507 f;f)} = 5/)0 (1 - §0:£7906> ’ (28)
(o1} = Spebips . (2.9)

From the above relations it is worth noting that, different from the case of stan-
dard electronic fields, the anticommutators of the composite fields &, and 7, are
not c-number but operators themselves of bosonic nature satisfying the following

10
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commutation rules:

[90:[730075[)] = _5Up€(77 (210)
(b ] = —Bopllo - (2.11)

which are different from the canonical ones. Hence the algebra of these compos-
ite fields is not closed. As it will discussed in more detail in Sec[2.1] this has a
tremendous impact on many aspects and requires a completely revised theoretical
framework since most of well-consolidated techniques and results, such as Wick the-
orem, standard Green’s function approach, diagrammatic expansion, do not apply
in the case of composite fields.

2.1 Green’s functions formalism for composite op-
erators

Let us consider a quantum system of NN, interacting electrons in the Wannier rep-
resentation, residing on a N-site Bravais lattice of volume V' and described by the
following Hamiltonian:

H=H[p, ()] . (2.12)

Here the notation [, (7)] denotes a generic combination of electronic fields ¢4 (i) =
gpg)( ,t), related to the annihilation (creation) of a bare Wannier-electron with spin
o at time t on the site labeled by the lattice vector ¢. Hereafter the Heisenberg rep-
resentation will be used, so that the index ¢ will account for both spatial, ¢ and time,
t coordinates as i = (2,t). Any physical property of the system can be connected
to the expectation value of a specific operator A = A[p(i)] which, for fixed value of

volume and temperature, can be computed in the grand canonical ensemble as:

Ty [eP(H-1N) 4
L

(4) =

where the trace implies a sum over a complete set of states in the Hilbert space. Here
Z="Tr [ B(m- “N)] is the partition function, g = 1/kgT, N is the total number
operator:

N = Z@L(i)ﬁpa(i) ) (2'14>

while p is the chemical potential which is fixed according to the constraint N, =
N > For practical purposes it is convenient to define a new Hamiltonian which

includes the chemical potential as:

H =Hp,(i) MZ% )o (i) , (2.15)

11
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so that: S
(A) = % — %Tr [ePH A] . (2.16)

In order to calculate (A), one of the possibilities is to evaluate it by means of
the equation of motion formalism which accounts for the calculation of the time
derivative of the field (i) in terms of the commutator [p(i), H]|. However, with the
understanding that the original electronic fields (i) are not a good basis in the
presence of strong interactions, let us introduce the following set of n composite

fields:
1 (i)
(i) = : : (2.17)
Un (1)
Up to now, we do not specify the nature, fermionic or bosonic, of the set {t,,(¢)} since
both the possibilities are allowed and useful to analyze different properties of the
system. In particular, single particle properties are described in terms of fermionic
propagators whose calculation, as it will be clear later, requires a fermionic base.
On the contrary, response functions such as charge and spin susceptibilities, which
are expressed in terms of bosonic propagators, require a bosonic base. Hereafter

we will refer to fermionic and bosonic cases as fermionic sector and bosonic sector,
respectively. For the fermionic sector, the following spinorial notation will be used:

o) = (57 ) e = (ol vl ) (218)
The dynamic of these operators is given by the Heisenberg equation:

00(i) = [9(0), H] = J(0) (2.19)

where J(i), called “current” of the basis ¥(i), is a n-component column vector which
contains the commutator of each field of the basis with the model Hamiltonian. It
is worth noting that is always possible to write the current J(i) as the sum of a
contribution proportional to the basis, and a contribution orthogonal to the latter,
so that:

J(i,t) =Y e(i,m)y(m,t) +6J(3,1) . (2.20)
Recalling that the (anti)commutation relation [A, B], = AB + nBA (meaning that
n = 1 for fermions and n = —1 for bosons) is nothing but the projection of A over

B, the requirement of orthogonality implies that:

([, 1), 01(G.1)],) =0, (2.21)

therefore the linear coefficient ¢ can be derived from the equation:
([76.0.0G,0],) = S e@m) ([pim0,0'(G.0] ) . (222)
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which can be expressed in the following compact form in the Fourier space:
m(k) = e(k)I(k) (2.23)

once we define the normalization matriz:
1
I’,'E< i 1), > = G-I [ (k) | 2.24
(5.9) = ([0 1), /(4 e (224
and the m-matriz:

m(i,j) = <[J(i #), 01 (4, ¢ n> - NZ (=D (k) . (2.25)

Unless differently specified, here and after the sum over k will always account for
all the possible momenta in the first Brillouin zone. At this point it is important to
recall that, because of its definition in terms of composite fields, the normalization
matrix [(%,7) is far from being a trivial identity matrix. Its eigenvalues represent
the spectral weight of each field of the basis, allowing for the description of crossover
phenomena characterized by a gradual shift of the weight from a field to another
which occurs by tuning the intensity of the interaction.

We can now define the generic two-time Green’s function:

G2(i,j) = (Q W)Y (1)) (2.26)

with @ € {C, A, R} for causal, advanced and retarded Green’s functions:
Gi,j) = (C[p@U ()] = 0t — t) (@D ()) (2.27)
—nf (t; — ;) (W () ()) (2.28)

G0 g) = (RA[DEEG)]) =20 (£ — 1) {[06), 0 (7)],) - (229)

We recall that in the relations above the temperature dependency is fully contained
in the statistical averages (...) calculated in the grand canonical ensemble (see
Eq. By means of the Heisenberg equation of motion and using the decompo-
sition for the current J(i), it is immediate to see that the generic Green’s
function G9(i, j) satisfies the equation:

M@YG(i, )N (8;) = A@)GS (1, )N (50) +(Q [81()5 T (5)]) (2.30)
Here A(a ) is a differential operator, which acts to the matrix on its left, defined as:

A(O;) = Z@% — e (—iV) | (2.31)

where, for a generic function f(z), we have:
r) =Y e*e (k) f(k). (2.32)
k

13
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The propagator GOQ(i, j) is defined by the equation:
N@)GE (i, 5) = id (t; — ;) I (i.5) - (2.33)

Hence, by introducing the Fourier transform:

1 T e
Q; 7\ — v k- (i—7)—iw(ti—t;) Q 934
G*(i,7) N gk 27T/_00dwe G“(k,w) , (2.34)
Eqf2.30| reads as:
GOk, w) = G (k,w) + GE (k,w) X% (k,w)GE (k,w) (2.35)

where Y9 (k,w), called self-energy, has the following expression:
Y (k,w) = I (k)B?(k,w)I (k) , (2.36)

with:
B9k,w) = F.T.{Q [6J (i) J'(j)]) (2.37)

We can also introduce the irreducible self-energy %9 (k,w), defined as:
59k, w) G (k,w) = I(k) L% (k, w)GF (b, w) | (2.38)

and use the above relation to rewrite the complete Green’s function in terms of the
following Dyson-like equation:

GO (k,w) = G (k,w) + GF (k,w)I ' (k)Z(k, w)G?(k,w) , (2.39)
which can be formally solved obtaining:

I(k)
w—e(k) —X9k,w)

GOk,w) = (2.40)
At this point it is crucial to note that, although formally similar, there is a strict
difference between G9(k,w) and the solution of the standard Dyson equation that
can be formulated in terms of canonical operators ¢(i). Unlike in the standard
Green’s function formalism, e(k) in Eq[2.40] contains part of the interactions since
it describes the energy dispersion of composite fields ¢(7) rather than the bare non-
interacting dispersion of free-electrons. Furthermore, the normalization matrix I(k),
which accounts for the weight of the composite fields, is different from the standard
identity matrix which appears in the canonical Green’s function formalism. Finally,
the quantity ng (k,w) does not represents a trivial non-interacting propagator since
it still contains all the relevant interactions due to its formulation in terms of a basis
of composite fields. Because of this, as it will be clear later, unlike in the standard
Green’s function formalism its calculation represents a hard task to deal with.

14
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2.2 Bosonic and fermionic correlators in the pole-
approximation

As follows from Eq[2.39] in the framework of the Green’s function formalism for
composite operators any (causal, retarded, advanced) two-time Green’s function
G9(i,j) can be completely determined in terms of the “free” propagator GOQ(i, J)
and the self-energy $%(k,w), once that a proper basis of composite fields {1, (i)}
has been selected. We recall that for any choice of (i) we have: 0. (i) = J(i),
with J(i,t) = >, €(i,m)(m,t) + 0.J(4,t) according to Eql2.39] Hence, if the
fields {1, (i)} are eigenoperators of the total Hamiltonian, one immediately obtains
dJ(3,t) = 0, leading to a linear expression for J(i) in terms of the fields of the
basis. Consistently, ¥9(k,w) = 0 as follows from Eq and one can solve the
problem Hamiltonian by calculating all the relevant two-time correlators in terms
of the free propagator only. However, in almost all the relevant cases, an infinite
set of composite operators is required in order to take into account all the possible
low-energy and virtual processes. Therefore one might simply choose a reasonable
number of components for the basic set and then use another approximated method
to evaluate the residual dynamical corrections. For example, the fields {¢,(i)} can
be chosen in order to minimize 0.J(¢,t), so that 6J(¢,t) ~ 0 compared with the
linear contribution. This approximation allows for the calculation of the two-time
Green’s function G?Jzo(z’, j) in terms of the free-propagator GOQ(Z', j), however the
full propagator G(i, 5) still depends on §.J(3,t), therefore all the formalism is only
developed with the intention of using the propagators G?J%O(i, J) as a basis to set up
a perturbative scheme of calculations on the ground of the Dyson equation .

A slightly different approach consists in completely neglecting the residual opera-
tor §.J(¢,t) under the assumption that the choice of the extended operatorial basis is
such that all the relevant self-energy corrections are included in the free propagator
GOQ (4,7). Following this approach, called pole approximation, one can simply neglect
the residual dynamical part of the self-energy which, consistently with the choice of
the basis, is believed to have a small total weight. Therefore the full equation of
motion for a n-component basis of composite fields reads as:

O (3,) = > > &3, §)i(d, 1) , (241)

J
with the energy matrix €(%, j) defined by Eqf2.23] Hence one immediately obtains:
[w — (k)] GO (k,w) = I (k) , (2.42)

where the dependence on the parameter 1, which accounts for the fermionic (n = 1)
or bosonic (n = —1) nature of the composite fields of the basis, has been explicitly
introduced. To solve the above equation one can diagonalize the energy matrix:

n

> (k)P (k) = wi(k)ED (k) , L€ [1,n] (2.43)

q=1
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where ¢ (k) and w;(k) are eigenvectors and eigenvalues of ¢(k), and then construct
the n x n transformation matrix Q(k), whose columns are composed by the eigen-

vectors £0(k): Q(k) = & (k), so that:

i Ql_bl(k)ﬁbc(k)ﬁcd(k) = (5ldwl(kz) , l,d < [1,77,] . (244)

b,c=1

By means of this transformation it is possible to rewrite Eq[2.42] under the form:

S o )] QB ()G () = o) b L] (249

c=1

where the spectral density matriz (k) is defined as:
ol (k) =" Qu(k)Q; (k) Iw(k) , a,b € [1,n]. (2.46)
c=1

Finally, we can express a generic two-time Green’s function as:

n o)
c2(k.w) =S {P (T )~ ol —wl g m  (2an)

=1

where the principal value P includes all the contributions for w # w; while the
contribution for w = wj is accounted by the Dirac distribution function § [w — w;(k)].
We can note that while the spectral density matrix ¢ (k) is completely determined
as a function of energy €(k) and normalization I(k) matrices, the matrix g% (k)
depends on the specific: causal (C'), retarded (R), advanced (A) nature of the
Green’s function. In particular, for retarded and advanced Green’s functions we
have:

gEME () = —gtmA (k) = o (k) | (2.48)

and:

GRAM (k, w) = Z ot (k) {73 ( Fimd [w— wl(k:)]} : (2.49)

1
w— w(k)
For the causal (C') Green’s function instead, we recall that it can be written as:

G (i, j) = 5 (GRD (i, ) + GAD (i, ) + Coi (i) + Cyrgin1) » (2:50)

N | —

where the correlators Cy,1 (4, j) and Cyiy(i, j) are defined in terms of the unknown

momentum-dependent Fourier components c'” (k) and o (k) as follows:

Yyt K%

Cppi(k,w) = FT.(0@wH(5) =D dlw—w(k) ) (k),  (251)
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n

Cyrp(k,w) = FT(H0)0()) =D 6w —w(k) ), (k). (252

=1

From a trivial application of the Kubo-Martin-Schwinger (KMS) relation:
(A B(t) = (B(tYA(t +1if)) , (2.53)

where A(t) and B(t) are generic Heisenberg operators at time ¢, it immediately
follows that:
Cyip(k,w) = e 7 Cyi(k,w) | (2.54)

meaning that there is only one independent Fourier component: CSLT(’C), which can

be determined together with ¢"¢ (k) by solving the following system of two coupled
equations:

Siy (0 — ) [0 CK) — 5 (1= e ) e, (k)] =0

n 1 _g\ (D) (2.55)
2oy 0 (w =) o (k) — 5o (14 me™™) wa(k)} =0

The solution of the above set of coupled equations is remarkably different according
to the value of the parameter 1. Hence a separate analysis is required for the
fermionic (n = 1) and the bosonic (n = —1) case.

2.2.1 Fermionic sector

In the case of a fermionic basis of composite fields, although commutative and anti-
commutative algebra are both possible, it is convenient to choose n = 1. Then the

solution of Eq is:
D(k) = = [1 + tanh (ﬁsz(k:)ﬂ o (k) | (2.56)
k
gtV k) = tanh <_5W12( )) ot(k) (2.57)

which gives the following expression for Green’s and correlation functions:

n a(l’“)(k)
Gk w) = > T (2:58)
=1

GC(k,w) = ;o(l’“)(k) Li :ij(%lfz]é + » wa[:;c(f_] ié} ., (2.59)

Cupt(k,w) = WZ(S[W —wi(k)] {1 + tanh (ﬁw;(

)
ﬂw,(k))

Cyrp(k,w) = 7> 5w —w(k)] {1—tanh( >

=z

17
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where fr(w) is the Fermi-Dirac distribution function:

1
= . 2.62
o) = (262

In particular, recalling that:
R,A(+1) 1 *dd R,A(+1)
Re [G" Y (k,w)] = =P Im [GPAD (kL w)] (2.63)
T )W —W
dw’

Re [GYV(k,w)] = —%P/

w—w

coth (%u) Im [GYV (k,w)] (2.64)

we also immediately obtain the following spectral representations for the Green'’s
functions:

S (+1) k
GRAE (g w) = / o Pk 0) (2.65)

w—w +id’

GO (k,w) = / o (k) [1_fF(w/) ; Jrl) } . (2.66)

—00

w—w+tid w—w —1id

—00

where p(+V(k,w) is the fermionic spectral function defined as:
. 1
P (k,w) = Z 0 [w—w(k)] oD (k) = $;Im [GPATD (B, w)] (2.67)
=1

At this point it is crucial to underline that, in the framework of the Green’s func-
tion formalism for composite fields developed so far, the correct calculation of any
causal Green’s function in the fermionic sector can only be done in terms of the
retarded /advanced ones as:

Re [GC(H)(k,wﬂ = Re [GR’A(+1)(k,w)] : (2.68)

Im [G“CV(k,w)] = Ltanh (%‘") Im [GA (k,w)] (2.69)

Cypi(k,w) = ${1+tanh <%>}Im [GRAD (K, w)] ,  (2.70)

since the opposite procedure leads to inconsistencies and wrong results. For example,
it is immediate to see that the retarded Green’s function, calculated as the imaginary
part of the causal one , vanishes at w = 0. According to Eq., this would
imply that all the weights of the retarded Green’s function are zero on the Fermi
surface (we recall that the energies are shifted by the chemical potential therefore
the locus where w = 0 defines the Fermi surface), which is obviously not true.

2.2.2 Bosonic sector

For a bosonic set of composite operators, although commutative and anti-commutative
algebra are both possible, it is convenient to choose n = —1. Furthermore, for any

18
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given momentum k it is also convenient to consider two different subspaces A(k),
B(k) such as:

wi(k)=0 forle A(k)CN={1,...,n}
wi(k)#0 forle B(k)=N — A(k) '

For [ € B(k), then for non vanishing values of w;(k), the solution of Eq is:
T [1 + coth (5%7(’6))} o V(k) (2.72)
gtV k) = coth (5sz(k)) ot V(k) . (2.73)

For all [ € A(k) instead, the second of the two equations in (2.55) depends no
O]

(2.71)

c(l)(k:)

longer on ¢’ (k) and we come out with one equation and two parameters to be

Popt
fixed. However, by defining the I'(k) function as:

Mk = 5= 3 el =5 3 g0k, .74

leA(K) IEA(K)

it is immediate to see that in the limit for w — 0 the second equation in (2.55)) gives:

lim [(1 — &™) Cyyi (k,w)] = 216 (w Z otV (k (2.75)
leA(k

We can now distinguish two cases. If }7, 4, o= (k) = 0 we have:

25 w—w(k wlwl)(k:) = 2md(w )+ 27 Z dw—w(k)] (2.76)
leB(k
ePwi(k) B
Y 10”7 Y(k) , (2.77)
> b lw—wilk) iV (k) = 27d(w)l(k)+ 27 Z §w—w(k)] (2.78)
=1 leB(k
1 _
1 10“7 V(k), (2.79)
and:
Cyyi(k,0) = Cyiy(k,0) . (2.80)

On the contrary, if 3 4 o=V (k) # 0, Cyyt (k,w) must have a singularity of the
type 1/w in order to satisfy Eq in the limit for w — 0. Then:

Z §w—w(k)] cg;;l)(k) = 2mi(w )+ 27 Z dw—w(k (2.81)
=1
ePwi(k) L
o 10( (k) , (2.82)
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Z(S w—w(k) i,V (k) = 2mi(w +2n25 w—w(k) (2.83)
L e 2.84
ebwi(k) _ 10 (k) (2.84)
and:
Cyyi (k,0) = Cyiy(k,0) = Y~ o V(k). (2.85)
1€A(K)

From the above relations it is clear that in the case in which 7 4, o=D(k) £0

the Fourier coefficients Cq(p wl)(k:) and ¢! w ’ (k:) diverge as [Sw;(k)]”". However, since
correlation functions in direct space must be finite, at finite temperature this is
admissible only in the thermodynamic limit and if the dispersion relation w;(k) is
such that the divergence in momentum space is integrable and the corresponding
correlation function in real space remains finite. For finite systems and for infinite
systems where the divergence is not integrable we must have 3, ) o= (k) =
0 since finite values of the aforementioned quantity are generally related to the

presence of long-range orders.

On this basis, under the condition that -, 44 o=Y(k) = 0 as required for
finite systems at T' # 0, we obtain:

_ n O-(l,fl)(k)
A, (=1) o
G ) = lzlw—wl(k)iw’ (2.86)
(-1) _ 1
GOV (k,w) = T(k) [wﬂ.é w_z_a]
oD L+ fpla(k)]  fpla(k)]
+leBZ(k: | [W—wl(k)—i—ié w — w (k) —id (2.87)
Cyyt(k,w) = 270(k)6(w) + 7 Z 5w — wi(k
1B (k
{1 + coth (5 ;(k))} oD (k) (288)
Cyty(k,w) = 2n0(k)é(w) — 7 Z 5w — wi(k
I€B(k

[1 — coth (ﬁwlT())} o D(k) (2.89)

where fp(w) is the Bose distribution function:

1

fow) = —— - (2.90)

We note that:

Re [GR’A(’l)(k,w)} = F— 77/

Im [GPATD(k,w)] | (2.91)

w—w
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Re [GYUV(k,w)] = —173/00 AW anh (%") Im [GECY (k,w)] (2.92)

T o W — W

Also in the bosonic case, it is possible to introduce the following spectral function:
& 1
Pk, w) =Y w—w(k)] o (k) = F—Im [GRAY (K, w)] (2.93)
1=1

However, the I'(k) function does not appear in p(~Y(k,w), therefore a spectral
representation can only be established for the bosonic retarded/advanced Green’s
function:

< P (kW)

GRAGD (| ) — / dut ? (2.94)

w—w +1id

—00

The spectral representation for the bosonic causal Green’s function exists only when
I'(k) =0:

GOV (k,w) = / X dw’p“”(k,w){l_fB(w/) L) | (2.95)

w—wtid w—w —1id

—0o0

At this point it is worth emphasizing that, contrarily to the procedure described for
the fermionic case, in the bosonic sector the calculation of any retarded/advanced
Green’s function can only be accounted in terms of the causal ones by means of the
following relations:

Re [GR’A(’l)(kz,w)] = Re [GC(’l)(k,w)] : (2.96)
Im [GR’A(_I)(k,w)] = Ztanh (%d) Im [GC(_I)(k,w)} : (2.97)
Cyyt(k,w) = — [1 + tanh (%JJ)] Im [GC(_I)(kz,w)} . (2.98)

The opposite procedure, in fact, is responsible for the loss of information about the
['(k) function, whose contribution becomes proportional to tan(w)d(w).

2.3 Self-consistent scheme

As illustrated in the previous Section, for any given (bosonic or fermionic) set of
composite fields it is always possible to set up a proper Green’s function formalism
which importantly, different from the canonical one, contains part of the interactions
in the so-called “free” propagators. Hence, still preserving part of the interactions, in
the framework of the pole approximation discussed in Sec[2.2] one can estimate the
full Green’s function by simply neglecting any additional contribution coming from
interactions not accounted in the “free” propagators. Alternatively, unlike in the bare
perturbation theory which miserably fails in the strong coupling regime, one might
construct a proper composite basis in order to minimize the residual contribution
coming from the interactions, allowing for a reliable perturbative calculation of the
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full propagators in terms of the “free” ones.

Regardless the particular procedure, a number of problems arise. In particu-
lar one can immediately realise that the theoretical framework developed so far
only allows for the calculation of any Green’s or correlation function that can be
expressed in terms of the composite fields of the basis. Hence, if the algebra is not-
closed, higher order fields (meaning that they do not belong to the starting basis)
appear as unknown parameters in the normalization matrix , in the equations
of motion and then in the m-matrix (2.28)), requiring auxiliary constraints to be
fixed. To this purpose, in the last decades several approximations among which
arbitrary ansatzs, decoupling schemes, use of truncated equations of motion, have
been considered in the context of different approaches: Hubbard-I [1] and Hubbard-
IIT [2I] approximations, Roth’s method [22], Mori truncation [23], Fulde [24] and
Plakida [25] projection methods, spectral density approach [26]. However, as shown
in Chapter 4| in the context of the Hubbard model, some of these procedures, due
to uncontrolled approximations, led to a series of erroneous results characterized by
the violation of several sum rules and particle-hole symmetry, the absence of a Mott
transition, local quantities in strong disagreement with respect to numerical simu-
lations [27]. All these issues are mainly related to the fact that fixing the external
parameters corresponds in putting some constraints on the representation where the
Green’s functions are realized. As the determination of this representation is not
arbitrary, it is clear that there should be no freedom in fixing these quantities which,
in principle, must assume values compatible with the dynamics and the algebraic
properties of the fields of the basis.

On the basis of these considerations, different from all the other methods devel-
oped so far, in the framework of the COM we fix the unknown parameters in terms of
a number of self-consistent relations among correlation and Green’s functions, called
“Pauli constraints” (PC) and “Ward-Takahashi identities” (WTIs) , which originate
from operatorial properties dictated by the algebra of the chosen basis and the sym-
metries of the model, respectively. These relations, valid at microscopic level, are in
principle not satisfied at macroscopic level when expectations values are considered.
An example of PC is given by the operatorial relation £(i)n(i) = 0, which is satisfied
by the composite fields £(i) and (i) defined in Eq2.3 and Eq2.4] respectively, in
terms of the bare electronic fields. An example of WTT is given by the constraint
(A(2)) = (A(F # 1)), which holds in the case of translational invariant systems, or
by the relation (A+(i)B(j)) = (A (i)B;(j)) which holds for rotational invariant
system in the spin-space. Hence, recalling that:

400
(Y(i)'(i)) = %Z %/ dwCypyt (k,w) . (2.99)

one can easily implement both PCs and W'TTs as a set of self-consistent equations in
terms of the unknown parameters, allowing for a full consistent calculation of Green’s
and correlation functions without any ad-hoc or uncontrolled ansatz on the Green’s
function representation. Then, on the basis of the aforementioned considerations,
it is immediate to realise that the presence of unknown parameters, to be fixed
self-consistently, does not represent a proper limit for the theory. On the contrary,
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it signals the necessity to fix the Green’s function representation according to the
particular algebra and symmetries under consideration, allowing for the exploration
of a plethora of possible different solutions for the model Hamiltonian within an
unitary theoretical approach.
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Chapter

Composite Operator Method for a class of
exactly solvable models

As stressed in the previous Chapter, a promising way for the investigation of highly
interacting systems consists in reformulate the model Hamiltonian in terms of a
set of so-called “composite fields”, which appear as the final result of the modifi-
cations imposed by the interactions on the original particles. These fields contain
from the very beginning the effects of the correlations and, in principle, allow for
the exact solution of the model if one succeeds in finding a set of composite opera-
tors which completely describes all the possible quasi-particle excitations originated
by the interactions. Although the basic theoretical framework is well understood
(see Sec[2.1]), complications arise from the fact that, in many physical cases, a full
description of quasi-particle excitations requires a large or infinite number of com-
posite operators. This issue, which makes the problem analytically unsolvable even
for very simple and well-studied models, paves the way to a number of approximated
methods among which perturbative approaches or polar approximations.

However, there also exists a large class of fermionic systems, such as finite sys-
tems [28], 29], bulk systems with interacting localized electrons [30} 31l [32], Ising-like
systems [33, [34), 35], B6], for which a finite number of composite operators suffice to
completely describe the properties of the model Hamiltonian [37]. This means that
the equations of motion for the composite fields of the basis close, allowing for the
exact solution of the model for any dimension in terms of a finite number of pa-
rameters, to be self-consistently determined (see. Sec. As an illustration, we
present in this Chapter the exact solution of the t-U-J-h model in the atomic limit,
obtained by including an exchange interaction J and an external magnetic field h
to the standard ¢-U Hubbard Hamiltonian [I]. In Sec[3.1.1] we briefly introduce the
model and define the theoretical background in the framework of the Composite
Operator Method. We show that the COM allows for the exact solution of the
model in one dimension, providing a deep insight in the physics of a large class of
insulating compounds characterized by charge and spin orderings. The zero tem-
perature phase diagram of the model with a comprehensive characterization of each
phase is reported in Sec. [3.1.3] Finite temperature results, including a detailed
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study of entropy and system’s response functions such as specific heat, charge and
spin susceptibilities, is reported in Sec. [3.1.4L Most of the aforementioned results
are described in more detail in Ref.[20].

3.1 Hubbard model with magnetic interactions

In the last twenty years, several experimental evidence led to the conviction that
single-band Hubbard [1] and ¢-J models [2] are not sufficient to catch all the rele-
vant features due to strong electronic correlations in a large class of real materials.
In fact, although they have been successful in reproducing a plethora of different
anomalous phenomena among which magnetic orders [38, 39} [40], 4T], Metal Insula-
tor Transition (MIT) [42], Spin Density Waves (SDW) [43] and High-Temperature
Superconductivity (HTSC) [44], 145, [46], their application to a large class of com-
pounds is still controversial. The Mott-Hubbard theory, in its simplest formulation,
leads to a band gap of the order U (~ 7-10eV in oxides) which is difficult to justify
for charge-transfer insulators such as Co, Ni and Cu. Furthermore, it is also diffi-
cult to understand the metallicity of many sulfides among which NiS, CuS and CoS
which would require a strong reduction of the on-site interaction U to 1-2eV [47].

Hence, in order to recover the aforementioned physics and with the aim of de-
scribing strong interactions between electrons with each other and with other degrees
of freedoms (such as lattice vibrations, light), several extensions of the bare Hub-
bard Hamiltonian have been proposed resulting in the introduction of the so-called
Extended Hubbard Models (EHMs). Among these, in the recent years an increasing
interest arose in the study of the extended ¢-U-J model as the minimal model able
to reproduce the exchange correlations, widely believed to be the basis of the paring
mechanism in Cuprates [48, 49, 50| [51) 52]. Different from Hubbard and t-J models,
in the t-U-J Hamiltonian the exchange coupling J is not related to the Hubbard U
as J ~ 4t? /U, allowing finite exchange correlations even in the presence of strong
on-site couplings. Furthermore, contrarily to the ¢-J model, an independent treat-
ment of J does not necessarily require the U — oo limit in which charge fluctuations
are heavily suppressed.

The t-U-J model has been extensively analyzed in 1D and 2D respectively. In
the 2D case the t-U-J Hamiltonian has been used as the minimal model capable to
describe the charge-transfer nature of Cuprates. In particular, several studies have
been done to understand the influence of on-site Coulomb repulsion and spin-spin
exchange on superconductivity [53] [54].

Motivated by the discovery of close proximity of magnetic and superconduct-
ing ordering in (TMTSF),X family of quasi one-dimensional Bechgaard salts [55],
analytical and numerical studies on the extended ¢-U-J model have also been per-
formed in the one-dimensional case. At half-filling, the ground-state phase diagram
of the 1D t-U-J model has been intensively studied for both ferro and anti-ferro
magnetic couplings in the weak-coupling limit in which U, J < t. By means of the
bosonization procedure, it has been pointed out that, in the presence of ferromag-
netic interactions, the system is dominated by superconducting and spin-density-
wave instabilities even in the presence of moderate values of the on-site Hubbard
interaction [51]. On the contrary, in the presence of an anti-ferromagnetic exchange,
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bosonization and transfer-matrix renormalization group methods showed that at
half-filling the ground state of the system is a Mott insulator characterized by spon-
taneous dimerization for U < J. A transition to a gapless spin liquid phase occurs
at U, ~ J/2 [56]. The 1D t-U-J model at n = 1 has also been studied with the inclu-
sion of an easy-plane anisotropy in the exchange interaction in order to investigate
the coexistence of triplet superconductivity and ferromagnetism in a class of quasi-
one-dimensional materials. It has been shown that, in the large bandwidth limit,
magnetic correlations are enhanced by the presence of a repulsive Coulomb potential
U and a transverse spin-exchange interaction between electrons on nearest-neighbor
(NN) sites. Therefore the coexistence of antiferromagnetism and triplet supercon-
ductivity is no longer observed except for small values of the Coulomb interaction
[57]. Recently it has been also shown that in the weak-coupling limit and for n = 1,
in the presence of an isotropic anti-ferromagnetic exchange, CDW and bond SDW
phases are suppressed and the ground state exhibits an insulating behavior charac-

terized by SDW and bond CDW phases [5§].

Because of the complexity of the model, in spite of numerous attempts, there
are no exact solutions for the ¢-U-J Hamiltonian. Within this context we show that
the Composite Operators Method, different from other analytical approaches whose
applicability is restricted to half-filling or to the weak coupling regime, allows for
the exact solution of the one-dimensional ¢-U-J model in the atomic limit, obtained
from the well-known Hubbard model [I] by including an Ising-like spin-spin interac-
tion, parameterized by J, and an external magnetic field h. The resulting ¢t-U-J-h
Hamiltonian reads as follows:

H = 3 (15— i) 0)e) + U S m () + 3 3 Jma(ims() b nali).
2%} i i#] i

(3.1)

where c(i) and ' (i) are annihilation and creation operators of electrons in the spino-

rial notation:
N[ & ty = (o
C(Z)_<c¢> ,c(z)—(cT c¢> : (3.2)

satisfying canonical anti-commutation relations . Hereafter the spinorial notation
will be used for all fermionic operators. The Heisenberg picture is assumed [i =
(4,t)], ¢ is a vector of the lattice; t;; denotes the transfer integral and describes
hopping between different sites; p is the chemical potential. n,(i) = cl(i)c,(i)
is the number density operator of electrons at the site 4 with spin p € {1,]}. The
intensity of the local Coulomb interaction is parametrized by U; ns(i) = ny(i) —n (i)
is the third component of the spin density operator; J; ; is the exchange inter-site
interaction; h represents the strength of the external magnetic field. In this work we
restrict our analysis to the narrow-band limit (i.e. t;; = 0) and consider only first
neighbour interactions by taking J; ; = —2dJoy j, where d is the dimensionality of
the system and «;; is the projection operator on the nearest neighbour sites. For
a d-dimensional cubic Bravais lattice of lattice constant a, the Fourier transform of
a;j is F.T. [y 4] = 522:1 cos(kpa). Then, the Hamiltonian can be written
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under the form:

H= Z [—un(i) + UD(i) — hns(i) — dJns(i)ng(i)] | (3.3)

where n(i) = cf(i)c(4) is the total density operator and D(i) = nq(i)ny (i)=3n(i)[n(i)—
1] the double occupancy operator. Hereafter, for a generic operator ®(i) we use the
following notation: (i) = >, a;;®(j,t). We note that is invariant under the
transformation: (h — —h, ny = ny). Also under the partlcle hole transformation,
the chemical potential scales as (2 —n) = U — p(n).

3.1.1 Composite fields and Green’s function formalism

According to the standard procedure described in Chapter [3 the first step in the
framework of the COM consists in the choice of a proper basis of composite fields
which can be determined by taking into account the properties of the system which
are aimed to be described. To this end, it is instructive to introduce the following
classes of composite fields:

GO = @) ng@)F" (3.4)
G(@) = i) [ng (),

which are well-defined for all p > 1, where £(i) = [1 — n(i)]c(i) and n(i) = n(i)c(7)
are the Hubbard operators respon81ble for the transitions |0); <> |p); at the site ,
and |p); <> | Tl)s, respectively. By simple antlcommutatlons it is immediate to see

that the the equatlon of motion for a generic field wp ( ) only involves the higher
order field wp T ( ) according to the relations:

0 EO) = [P©, H] = — (u+ hos) 9O (i) — 200398, (i) | (3.6)
0 (0) = [P H] = — (= U+ hag) M (i) — 2Jozpl (i), (3.7)

where o3 is the third Pauli matrix. Hence one might simply think to build up a
closed basis (meaning that the equations of motion for the fields of the basis close)
by including all the possible fields wz(f’")( ), with p > 1. As follows from the equations
of motion of 1/},()5’") (i), this basis will only formally solve the problem Hamiltonian
since, in principle, an infinite number of fields are required. However, one might
note that, on the basis of the algebraic relations:

D7(5) = D) )% = () ~200)
¥ ) @D 0l =t 33)
nP(i)D(i) = 2PD(7) , D(i)ng(i) =
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the following recursion formulas can be established for the field [n§(i)]” for any
p=>1:

[ng (&)~ ZA”) Pt (3.9)
Z A®) [ng (i)™ (3.10)

where A®) are rational numbers, satisfying the sum rule Zile A = 1, with AP =

Opm for 1 < p < m. For p > m the expressions of the coefficients AD depend on
the coordination number z = 2d and are reported in Appendix [A.1] Hence, because
of algebraic relations and from Eqs 3.10} it is immediate to realize that a finite
number of composite fields suffice to determine a closed basis (i) allowing for the
exact solution of the model in any dimension. In particular, for a given dimension
d with coordination number z = 2d we have:

S

T ]

(0
EZ; , (3.11)
(4)

=

©;

(
?ﬁ(z) = ?g) i
ﬁn) i

< <

where wég’”) (¢) are multiplet operators of rank 2z + 1 defined as:

0, 1, (1)
€p( ) 75 (0] (1) [n5 ()]
vy = &) [ 5(i)]” @) = | me(?) [ 5(i)]” . (3.12)
10, [ng(i)]gz+1 np(i) [ (0))** "

These fields satisfy the equation of motion:
0 @) = [ H] =ePuf(i) (3.13)
o) = [vf, H] = M) (3.14)
where 5(5) and 55,77) are the energy matrices which can be calculated by means of the

equations of motion — and the recursion rules -, whose eigenval-
ues, Ef,g’n) and Ef,n’"), with 1 < n < 4d + 1, determine the quasi-particle excitation
spectrum. Explicit expressions of e%’”) and E,Sf’") for the one-dimensional case with
d =1 and z = 2 are given in Appendix [A.2]

Following the procedure described in Sec.(2.1]), the knowledge of a complete set of
eigenoperators and eigenvalues of the Hamiltonian allows for the exact expression of
retarded Green’s functions and correlation functions in terms of the spectral density
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matrices o(&m:

2z+1 s,m
JEED)

GPlw) = ’ (3.15)

w—ES" s

n=1
2z+1 E(s,n)
Clw) = =« o™ 11 + tanh | =2 §(w—EBEM) | 3.16
p ( ) ; p 2/-CBT ( P ) ( )

where in the above relations s € {£,1}, and the generic ab matrix element of o(&):

2z+1
(s,m) _ s s -1 (s)
Up;ab - QE),()ML Z [QEJJ)LC} ]p;cb ’ (317)
c=1
is defined in terms of the normalization matrix:
I¢) = ({9 (0,1), (5, 1)}) (3.18)

and the matrix QE,S), whose columns contain the eigenvectors of the energy ma-
trices 5. Expressions for 1§ and Q8 in the one-dimensional case are reported
in Appendix It can be noted that while the energy matrices are completely
determined in terms of the parameters of the model (see Eq and Eq.

in Appendix |A.2)), because of the algebraic relations (3.9)-(3.10) the matrix ele-

()
ments [ pfab

1 <p <22+ 1, reported below:

can be expressed in terms of the elements of the first row: /()fl)p, with

19, = k@ 2P (3.19)
9 = A\, (3.20)
where @) = <[n§(i)]p_1> and A\?®) = (n,(q) [ng(i)]p_1> are unknown correlators.

Hence, the exact solution of the model for a given dimension d depends, apart from
the external parameters U, J, h, n = (n(7)), also on the aforementioned 2(2z + 1)
correlators (the factor two accounts for spin degeneracy) which, together with the
chemical potential u, play the role of external parameters to be determined self-
consistently.

3.1.2 A self-consistent scheme for the one-dimensional case

Let us consider a one-dimensional chain (d = 1, z = 2d = 2). For such a system the
previous analysis shows that the exact solution of the model Hamiltonian (3.3)) re-

quires the calculation of six unknown parameters: @, )\E,p ) (we recall that although
1 < p < 5, the number of independent correlators is reduced six thanks to algebraic
relations, Eqs.. To this purpose, let us focus our analysis on an arbitrary
site of the chain, say ¢, and split the Hamiltonian as H = Héi) +H I(i), where
H}i) connects the site ¢ with its nearest neighbours:

HY = —2Jns(i)ns (i), (3.21)
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while Héi) accounts for all the remaining interactions including the central site <,
and therefore, because of the presence of NN interactions only, describes a system
where the orlglnal lattice has been split in two non—mteractmg sub-lattices. Hence,
by noting that H0 and H ;~ commute and by defining the H —representatlon as the
representation in which the statistical average of a generic operator O(7) is accounted
in terms of H(gi) only:

<O€—ﬂH0(i)>

(O(@), = RO (322)
we can easily express the full statistical average of any operator O(i) as
<O€—5H1(i)>
N\ 0
<O(Z>> - <6_5HI(Z')>O ) (323>

where, by construction, all the correlators in the Héi)—representation which relate two
sites, say ¢ and j, belonging to different sub-lattices can be factorized as follows:

{a()b(5))g = (ali))o (0(1))o - (3.24)

As shown in detail in Appendix [A.3] following this approach all the relevant statis-
tical averages can be expressed in terms of six unknown parameters:

G =(n(i), , X1=(n),
Gy = (n3(1)), , Xo=(ng()), (3.25)
Gy = (D(i)), , X3=(D(i)),

Thanks to algebraic relations, G, Gy, G5 can be calculated analytically in terms of
the external parameters and the chemical potential (see Eqs in Appendix
A.3) while the remaining three parameters can be fixed according to the following
three self-consistent equations:

(ns(i)) = (ng(@)) (3.26)
) .

which hold under the assumption of an homogeneous system and can be written
in terms of the internal parameters as reported in EA.46] Finally, the chemical
potential yu is fixed self-consistently by requiring (n(i)) = n, where n is the total
particle density, which gives:

n=2 (1 —c9, - ,()71)71) , (3.27)

P
and can be expressed in terms of the external parameters as reported in Eq[A.47]

Once that all the internal parameters are known, all single particle properties
and correlation functions, among which the chemical potential u, the internal energy
per site E:

B = U (D(i)) — J {ny(i)n (1)) — 2hm . (3.28)
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the magnetization m = (n3(i)), can be calculated in terms of G,, and X, with
1 < n < 3 (analytical expressions are reported in Appendix [A.3). This allows for
the calculations of all the relevant response functions, such as specific heat C, charge
X and spin Y, susceptibilities, defined as follows:

dFE 8_n om

C="" Xe=TH , Xs = = .

o (3.29)

Furthermore, by noting that the cross GFs (R [ (¢, )y™1(4,¢')] ) vanish, it is also
possible to calculate the electronic density of states (DOS) for spin p as:

N,(w) = (—1) Im [Gﬁfil(wwag?}l(w)} _

™
4d+1
= 3 o8 (w = BO) + 08 (w - BD)| (3.30)
n=1

3.1.3 Results in the zero-temperature limit

The zero temperature limit plays a crucial role in the characterization of low-
dimensional systems. It represents not only the region in which quantum phase
transitions take place, but also the regime in which strongly correlations are greatly
enhanced. For one-dimensional systems, according to Mermin and Wagner theo-
rem [59], the presence of long-range orders is merely confined to the T = 0 case.
Therefore, in the framework of the U-.J-h model, this limit is studied with the aim
of characterize all the possible phases that appear by varying the external model
parameters n, U, J, h. To this purpose, we choose |J| = 1 to fix the energy scale and
analyze both ferro (J = 1) and anti-ferro (J = —1) inter-site magnetic couplings
by solving numerically the self-consistent equations , . Furthermore,

because of particle-hole symmetry, we also restrict our analysis to 0 < n < 1.

3.1.3.1 Ferromagnetic inter-site coupling

In the case of ferromagnetic coupling (J = 1), the inter-site exchange and the mag-
netic field are not in a competition since both of them tend to polarize the spins.
The only competitive energy scale is U, which tends to create doubly occupied sites,
destroying the ferromagnetic ordering. Hence we notice the presence of only two
different phases, Fig., characterized by the presence or the absence of ferro-
magnetic long-range order:

NM-phase. This phase, called “non-magnetic” (NM) phase, is observed for U <
U. where U, = —2(J + h) and for 0 < n < 2. As one would expect, it originates
when the attractive local U potential prevails on both the magnetic field and the
ferromagnetic coupling, resulting in a configuration in which all the sites are doubly
occupied. As a result, because of the lack of a pair-pair interaction term in the
Hamiltonian (3.3)), the system is completely non-interacting at any filling. The on-
site potential U is the only energy scale in all the relevant single particle properties
and correlation functions which are the squares of the corresponding one-site ones:
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Figure 3.1: Phase diagrams in the U-h plane for J =1 and 0 <n < 1at T =0.

e o Y A

Figure 3.2: One of the possible spin and charge configurations for the NM-phase at T' = 0,
J = 1. tand | represent the two possible spin states.

p="U/2 (n(i)n®(i)) =
(D(i)) = n/2  (na(i)ng (1)) = , V0<n<2. (3.31)
(m(i)) =0 (D) D*(i)) = Wﬂf

Recalling , it is immediate to see that the internal energy per site has the

value FEyy = nU/2. A typical configuration occurring in this phase is a mixture of
doubly occupied and empty sites and is shown in Fig.

F-phase. This phase, called “ferromagnetic” (F) phase, is observed for U > U,
and for 0 < n < 2. It is characterized by a dominant ferromagnetic order and finite
values of magnetization and spin-spin correlation functions. In the region 0 <n <1
the double occupancy is zero and all the spins are polarized. In this regime of filling
the on-site potential U does not play any role and all the single particle properties
and correlation functions depend on J and h as:

MZ—J—h (n(
D(i)) = (n3

(D(i 0<n<1. (3.32)
<m0%—w2<D@D%0

I
o 3

At n = 1 the chemical potential exhibits a discontinuity and jumps at the value
p=U/2. For n > 1 instead we have u = J+ h+ U, in agreement with the particle-
hole scaling law p(2 —n) = U — u(n). The double occupancy increases linearly
with n; correspondingly, the magnetization and the spin-spin correlation function
(n3(i)ng(i)) decrease:

Z(i)n%('))zQ—n 1<n<2. (3.33)
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Figure 3.3: Some of the possible spin and charge configurations for the F-phase at T' = 0,

J=1.
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Figure 3.4: Signature of NM-F phase transition in magnetization (left) and spin-spin
correlation function (right) plotted as functions of the magnetic field h, for
different values of U at n =1 and J = 1.

The internal energy (3.28) has the value:

) —n(J +h) 0<n<l
F_{U(”—l)—(2—n)(J+h) l<n<?2’ (3.34)

A typical configuration occurring in this phase is shown in Fig. for the cases
n < 1and n > 1. We see that:

—n(J+h+5) ,0<n<1 (3:35)
—2-n)(J+h+5) ,1<n<2’ ‘

Er — Eny = {
therefore, regardless of the specific value of the filling n, there is a critical value of
the local potential U, = —2(.J + h) which separates the two phases.

In Fig. we report some signatures of the NM-F phase transition occurring in
magnetization and spin-spin correlation function.

It is immediate to see that for U < —2, there is a phase transition from the NM
state to the F phase at h = h, = —J —U/2. According to , both magnetization
and spin-spin correlation functions are zero for h < h. . Vice versa, when h > h,,
(m(i)) and (nz(i)ng(i)) assume finite values according to (3.32)-(3.33). For U > —2
instead, there is no phase transition: the system is always in the F phase. In
particular, even in the absence of magnetic field, there is a magnetic order induced
by .J signaled by finite spin-spin correlations.
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3.1.3.2 Antiferromagnetic inter-site coupling

Contrarily to the ferromagnetic case, for J = —1 all the energy scales are in compe-
tition since each of them favours a different magnetic order. The on-site potential
U, favouring double occupancy, suppresses any magnetic order; J and h favour anti-
ferromagnetic and ferromagnetic orders, respectively. Due to such a competition
among different energy scales, we notice a very reach phase diagram, reported in
Fig. In the regions 0 < n < 0.5 and 1.5 < n < 2 the phase diagram does not
depend on n; as shown in Figs. and [3.5p, we observe three different phases
which join at the 3-critical point Py={U = —2,h = 1}. In the region 0.5 <n < 1.5
the phase diagram depends on n and is characterized by four different phases and
two tricritical points: Py and P. In Figs. and we report the phase diagram
for n = 1. Contrarily to what happens for P; , the position of P, depends on the
filling, as shown in Fig. [3.7 We can also note that, changing the filling, P, and P,
never coincide and remain always well separated each other. A detailed description
of all the observed phases is reported below:

a b [Fzphase] [NM-phase] [F2-phase]
7‘ : ‘ ‘ ] — , //

h
o
E g 6

, ] \ LV,
P R R A A %

0 I
c u d [Fi-phase] [ AF-phase| [F1-phase]

J=-1.0; n=1.0

2 F2-phase

- NM-phase I ‘ AF-phase I
2 /\
F2-phase
4 l/_
4 2 0

u

N
o

o

nos

0.5
i 00 2
i

Figure 3.5: 2D and 3D phase diagrams for J = —1.0 at T' = 0.

0
h

N

NM-phase. Regardless on the particular sign (J = 1, J = —1) of the magnetic
inter-site interaction, a “non-magnetic” (NM) phase is observed when the local on-
site interaction U dominates with respect to all the other energy scales. As already
pointed out for the J = 1 case, this phase is characterized by all doubly occupied
sites, Fig. [3.2] and all the relevant single particle properties and correlation functions
are the squares of the corresponding one-site ones .

AF-phase. For U > —2J and for low values of the magnetic field h an anti-
ferromagnetic (AF) order is observed in the entire region of filling. This phase is
realized in the range in which J is dominant with respect to all the other energy
scales, meaning that U is positive or not negative enough to induce a significant
double occupancy and h is not sufficient to completely polarize the spins. Hence,
this phase is characterized by the absence of magnetization and double occupancy
and by negative spin-spin correlations:
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Figure 3.6: Some of the possible spin and charge configurations for the AF-phase at

T=0,J=—-1.
J 0<n<l1
=< U/2 n=1 (3.36)
U—-—J 1<n<2
(m(i))=0 V 0<n<2 (3.37)

0 0<n<l1

(3.38)
n—1 1<n<2

(n(i)n(i)) = { =ns (3.39)

n—2 1<n<2

-n 0<n<l1

(ns(1)ng (i) = { - (3.40)

n—2 1<n<2

(D@D (i)) = { sns (3.41)

n—1 1<n<?2

<n<1
=17 Osnsl (3.42)
Un—1)—Jn—-2) 1<n<2

A typical configuration occurring in this phase is shown in Fig. for the cases
n=0.5,n=1and n=1.5.

F1-phase. When the external magnetic field is strong enough to dominate with
respect to J, a ferromagnetic behavior (F1) is observed despite of the presence of an
anti-ferromagnetic coupling. In this phase, the effect of the magnetic field induces a
full spin polarization and the magnetization reaches its saturation value. Due to the
presence of an anti-ferromagnetic coupling, contrarily to what has been said for the
F-phase, nearest-neighbor spin-spin and charge-charge correlation functions remain
zero until we reach quarter filling. At n = 0.5 a charge order state is observed
characterized by a checkerboard structure.

h 0<n<0.5
h—2J 0<n<1.0
pw=<U/2 n=1 (3.43)
—h+2J+U 1<n<15
(—h+U 15 <n<?2
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. n/2 0<n<1
(m(1)) =
1-n/2 1<n<2
0 0<n<l1
n—1 1<n<2

(D) = {

0 0<n<0.5
(n(i)n“(@)) =9¢2n—1 05<n<15
4n—1) 1.5<n<2
0 0<n<05
2n—1 05<n<1
3—2n 1<n<15
0 1.5<n<2

(ns(1)ng (i) =

0 0<n<15
2n—3 1.5<n<2

(D(i)D° (1)) = {

—nh

IN 3

IN

—J2n—-1) —nh
By — ( )

Un—-1)—JB—=2n)—h(2—n)
Un—1)—h(2—n)

= = O O
IN S
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IN 3

S
AN = IA o
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(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

For 0.5 < n < 1.5 instead, as reported in Fig. [3.8] the spin-spin correlation func-
tion becomes finite; (n3(i)ng (7)) increases with n up to half-filling, then decreases
and vanishes for n > 1.5. For 0.5 < n < 1.0 , we have no double occupancy and the
sites are singly occupied by electrons with aligned spins. Exactly at half-filling, all
the sites are singly occupied, all the spins are aligned and the magnetization assumes
its maximum value. For 1.0 < n < 1.5, the double occupancy becomes finite but the
nearest-neighbor correlation function (D(i)D“()) is always zero; exactly at n = 1.5
we observe another checkerboard structure with a pattern composed of alternating
singly and doubly occupied sites. For n > 1.5, (D(i)) and (D(:)D“(i)) increase up
to the maximum value, while the magnetization goes to zero as we approach n = 2.

0 00

T ros0]
1.8 \\\
1.6
< 1.4
1.2 "
1.0 \.

Figure 3.7: Position of P, 3-critical point in the h-U plane (left) and in the 3D phase

diagram (right).
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Figure 3.8: Some of the possible spin and charge configurations for the F1-phase at T' = 0,
J=-1
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Figure 3.9: Some of the possible spin and charge configurations for the F2-phase at T' = 0,
J=-1

F2-phase. As shown in Fig. in the range in which A and J are comparable,
for U < 0 and for 0.5 < n < 1.5 we observe an anomalous ferromagnetic phase (F2)
induced by the competition between the magnetic field and the antiferromagnetic
inter-site coupling. This phase is characterized by no nearest neighbor spin-spin
correlations and a constant magnetization.

/<L:(§]>/2 /2=1/ 2”(2) (1))

D(i)=n/2—-1/4 ns(i)ng(i)) = ,

(m(i)) = 1/4 (D(i)D*(i)) = (3.50)
B = (3 -4

2 1

As shown in Fig. .9 in this phase both (D(i)) and (n(i)n®(i)) are finite while
(n3(i)ng (7)) remains zero. At n = 0.5 doubly occupied sites appear in between two
singly occupied ones; by increasing n, the number of doubly occupied sites increases,
while the number of singly occupied sites remains constant. This explains why the
magnetization does not change. Exactly at n = 1, we observe a particular pattern
in which one or more unity cells, composed by two sites singly occupied with aligned
spins and one site doubly occupied in between, appear all along the chain separated
by empty sites. In Fig. we report some signatures of NM-F1-F2 and AF-F1-F2
phase transitions occurring in magnetization and spin-spin correlation function.

As shown in Fig. 3.10] for U < —2, changing h we cross three different phases:
NM, F1 and F2. In that range (solid curves) the magnetization assumes three
different values: 0 in the NM-phase, 1/4 in the F2-phase and n/2 in the F1-phase.
The spin-spin correlation functions jumps from zero (in NM and F2 phases) to
one (in the Fl-phase). For —2 < U < 0 (dashed curves) instead, NM-phase is
replaced by AF-phase and spin-spin correlation function becomes negative when
|h| < 1.5. Finally, for positive values of U (solid curves) F2-phase is not observed:
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Figure 3.10: Signatures of phase transition in magnetization (left) and spin-spin correla-
tion function (right) plotted as functions of the magnetic field h, for different
values of U at n =1 and J = —1.

the magnetization jumps from zero (AF-phase) to n/2 (F1-phase) while the spin-spin
correlation function goes from negative (AF-phase) to positive (F1-phase) values.

3.1.3.3 Charge and spin excitations

The presence of different phases and long-range orders at 7" — 0 can also be pre-
dicted by looking at charge and spin excitations in the response functions such as
charge and spin susceptibilities. As shown in the previous Subsection, in each phase
at T' = 0 all single particle properties and correlation functions depend only on n
but not on the other model parameters U, J, h. Therefore in all the phases the
value of charge and spin susceptibilities is expected to depend only on n, with di-
vergences or discontinuities localized at the phase boundaries where small variations
of the model parameters can imply the transition from a charge/spin ordering to
another. In particular, one might immediately note that, as long as we remain in the
same phase, the magnetization does not depend on h (see Eqs. therefore
Xs(T = 0) = 0 for any value of U, J and h with the exception of the phase boundaries
where jumps in the magnetization might occur crossing two phases characterized by
different magnetic orders (see F ig and Figl3.10). For the charge susceptibility
we have instead:

Phase | lim7_g x.

NM n(2 —n) 0<n<l1
FAF | o 0<n<l
0 n=20,or,n=1 (3.51)

F1 nn—1)2n—-1) 0<n<05
F2 | 2n(2—n)—3/2 05<n<1

Hence, the zero temperature behaviours of charge/spin susceptibilities can be easily
advocated as a powerful tool for the investigation of different charge and/or spin
orderings since, as reported in Fig[3.T1] and Figl3.12], they clearly reproduce the
boundaries of the phase diagram for both J =1 and J = —1.

39



CHAPTER 3

-3 |
T y=38
=151 |
I =

Figure 3.11: Contour-plot of the charge susceptibility at T' = 0.001 as a function of the
external magnetic field h and the local Coulomb potential U for: (a) J =1,
n=050)J=1,n=1;(c)J=-1,n=0.75(d) J=-1,n=1.

Figure 3.12: Contour-plot of spin susceptibility in the limit of zero temperature (T' =
0.001) at n = 1 as a function of the external magnetic field h and local
Coulomb potential U for J =1 (left) and J = —1 (right).
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Figure 3.13: Density of states in the limit of zero temperature for the NM and F phases
(J =1) . We report the total density of states (c(i) = £(¢) +n(i)) contribu-
tions for both spin up (¢ = +1) and spin down (¢ = —1). The contributions
due only to £(7) and 7(i) fields are also reported in the insets.

3.1.3.4 Density of states

To complete the zero temperature analysis, we report in this Subsection the results
obtained for the density of states in the limit of zero temperature. As shown in
Eq3.30, the density of states is expressed as a superposition of several delta func-
tions, each of them centered at the energy levels E and weighted by the spectral
functions p(®™. In the limit of zero temperature, most of the weights vanish and
only few energies, corresponding to the ground state and first excited states, give a
contribution. We report in Fig[3.13] and Fig[3.14] the density of states calculated for
each phase that appears in the J = 1 and J = —1 phase diagrams at half-filling and
T = 0.001.

In the case of a ferromagnetic inter-site coupling, as shown in Figf3.2] the NM-
phase at n = 1 is characterized by the presence of either doubly occupied or empty
sites. Accordingly, low-lying excitations correspond to configurations with singly
occupied sites with spins aligned along h resulting in the presence of a single peak
in the DOS, Fig, induced by &;(i). On the contrary, the F-phase at n = 1
is characterized by all singly occupied sites with spins pointing towards h. Hence
low-lying excited states are characterized by a finite double occupancy, resulting in
a single peak above the Fermi level induced by 1, as shown in Fig{3.13

The same considerations can also be done in the case of an antiferromagnetic
inter-site coupling (see Figl3.14)) so that the nature of the peaks around the Fermi
level can be easily predicted by observing the zero-temperature configuration of each
phase. It is worth noting that, only in the F2-phase, both the contributions by &
and 7 are allowed thanks to the fact that any F2-configuration comprises either
polarized spins or double occupancies (Fig.
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Figure 3.14: Density of states in the limit of zero temperature for the AF, F1 and F2
phases (J = —1). We report the contributions for both spin up (¢ = +1)
and spin down (0 = —1). In the insets the contributions due to £(7) and
n(7) fields are reported.

Our analysis of the density of states also allows to get some insight about the
energy gap A that separates the ground state from the first excited one. It can
be seen that, as long as the system remains in the same phase, a finite gap exists
as signaled by the presence of several peaks in the DOS which are far from each
other. On the contrary, moving from a phase to another, the gap between the
peaks corresponding to ground and first excited states closes as one approaches the
phase boundaries. These results are also confirmed by the calculation of the specific
heat in the zero temperature limit, Fig[3.15, which shows low-temperature peaks
corresponding to quasi-particle excitations in the proximity of the phase boundaries.

J=1.0; n=1.0

Figure 3.15: Contour-plot of the specific heat at low temperature at half filling for J = 1
(left) and J = —1 (right) as a function of the external magnetic field h and
local Coulomb potential U.
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Figure 3.16: Chemical potential plotted as a function of the filling for different temper-
atures. Different values of h and U are related to NM (top, left), F (top,
right), F1 (bottom, right) and F2 (bottom, left) phases..

3.1.4 Response functions at finite temperature

In order to provide a comprehensive study of the model Hamiltonian , we report
in this Subsection some results obtained in the finite temperature regime. According
to Mermin and Wagner theorem [59], there is no long-range order at any finite
temperature in 1D and therefore the concept of “phase” is meaningless. However,
to better identify the parameter space under investigation, in this Subsection we
maintain the reference to the 7" = 0 phases described before, in the sense that
we label each set of parameter (n, U, h, J) according to the corresponding phase
observed at zero temperature. For the sake of brevity, we will restrict our discussion
to entropy, specific heat, charge and spin susceptibilities. A more detailed analysis
on finite temperature results, including the temperature dependencies of all single
particle properties, can be found in Ref.[20].

3.1.4.1 Chemical potential and charge susceptibility

As follows from Eq[3.29] the thermal behaviour of the charge susceptibility strongly
depends on the p(n) dependence. As shown in Fig., the chemical potential u
is a step function at T" = 0, characterized by sharp jumps at commensurate fillings
which correspond to the critical values of filling at which a particular order appears
or disappears.

In the F-phase, for example, the jump in the pu(n, T = 0) dependence is localized
at n = 1 when the add of a particle in the system induces a finite double occupancy,
breaking the ferromagnetic order. When this happens, the charge susceptibility can
be either constant or it can diverge depending on how the derivative dn/0u changes
with temperature.
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Figure 3.17: The charge susceptibility as a function of temperature at J =1, h = 0.5
for: n =1, =4 < U < =2 (left panel) and U = —2 and 0.4 < n < 1 (right

panel).
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Figure 3.18: The charge susceptibility as a function of the filling and different tempera-
tures for AF-phase (left panel) and F1 (central panel) and F2 phases (right
panel).

In particular, for J = 1 (Fig[3.17) we note that x.(T' = 0) diverges for any
n # 1, corresponding to plateau regions in the p(n) dependence, and then rapidly
decreases with increasing T'. Also, at n = 1 x.(7" = 0) has a discontinuity, going from
Xc(n = 1) = 0 in the NM-phase to x.(n = 1) = 1 the F-phase. The temperature
has the only effect to make this discontinuity less and less pronounced. Similar
considerations can also be done for the anti-ferromagnetic case (J = —1) in which, as
reported in Fig, it can be immediately seen that x.(7T ~ 0) = 0 in the presence
of charge and/or spin orderings also signaled by sharp jumps in the pu(n,7 ~ 0)

dependence (see Fig3.16)).

This trend disappears with increasing temperature. In particular, it is worth
noting that in the limit of high-temperatures, regardless of the particular phase or
sign of the inter-site magnetic coupling, the charge susceptibility tends to a constant
value which depends only on n:

lim xo(n, T) = 3(2 —n). (3.52)

T—o0
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Figure 3.19: Magnetization m versus field h at different temperatures for both ferromag-
netic (J = 1) and anti-ferromagnetic (J = —1) couplings.
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Figure 3.20: The spin susceptibility xs as a function of T for J = 1, h = 0.5; left panel:
n = 0.8 and various values of U; right panel U = —2.8 and various values
of n.

3.1.4.2 Magnetization and spin susceptibility

Different from charge susceptibility, as follows from Eq[3.29 y, only implicitly de-
pends on temperature via the magnetization m(h). As already pointed out before,
in the low-temperature limit y is expected to be always zero, except near the phase
boundaries where small variation of h induce jumps in the magnetization. Regard-
less the particular phase, as shown in Figl3.19] the magnetization is a continuous
function of h at any finite temperature with sharp jumps, localized at the bound-
aries of the phases with different magnetic orders, which become more and more
pronounced as the 7" — 0 limit is approached.

Consistently, as shown in Fig. [3.20] for J = 1 the spin susceptibility is charac-
terized by a low-temperature peak which moves to 7" = 0 as we approach the NM /F
phase boundaries. The jump in the magnetization, passing from the NM to the F
phase, is proportional to the filling since m(7T ~ 0) = 0 in the NM-phase while
m(T =~ 0) = n/2 in the F-phase. Therefore the intensity of the low-temperature
peak increases with increasing n. Exactly at T" = 0, the magnetization jumps from
m = 0 in the NM phase to m = n/2 in the F-phase, leading to a divergence in
xs(T') exactly a the phase boundaries which signals the presence of different spin
orderings.
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Figure 3.21: The spin susceptibility as a function of the filling and different temperatures
for AF-phase (panel a), Fl-phase (panel b) and F1 (0 < n < 1/2, 3/2 <
n < 2)-F2(1/2 <n < 3/2) phases (panel ¢).

Similar considerations can also be done in the case of an anti-ferromagnetic
coupling (J = —1). As shown in Fig. .21} although (7 =~ 0) = 0 in each phase,
we can distinguish different temperature dependencies according to the particular
choice of the external parameters.

Thermal fluctuations have the only effect to decrease the modulus of the mag-
netization leading to m(7T — oo) = 0 and xs(7T" — oo0) = 0 as one would expect.
However, one can note that, independently on the sign of the spin exchange J, in
the limit of high-temperatures the spin susceptibility follows the Curie law with a
coefficient which only depends on n:

lim xs =n(2—n)/4T . (3.53)
T—o0
Therefore, joining together Eq and Eq we immediately have:
lim &= = — (3.54)
in which the factor two is due to the spin multiplicity.

3.1.4.3 Entropy

The study of the entropy as a function of filling n and temperature 7', S = S(n,T),
plays a crucial role in the characterization and in the identification of possible or-
dered phases in which S(n,T') is expected to be zero in the thermodynamic limit.
We recall that the entropy can be calculated as a function of the chemical potential

as:
"ou(T ) .,
S(T,n) = —/0 G—Tdn : (3.55)
Following the above equation, we report in Fig. [3.22] and Fig3.23] filling and tem-
perature dependencies of the entropy for both J =1 and J = —1 cases.

Regardless the particular phase, for any 7" # 0 and due to the absence of any
long-range order, the system can be described as a highly degenerate superposition of
an increasing number of different configurations. Consistently, the entropy remains
finite for any value of the filling. In contrast, at low temperatures the entropy
decreases rapidly at those values of n associated with charge and/or spin orderings.
At these points, in fact, the state of the system can be uniquely described by a finite
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Figure 3.22: Temperature dependence of the entropy plotted for different values of the
external parameters corresponding to different phases at T' = 0.
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Figure 3.23:

n

Entropy as a function of the filling for different temperatures and four sets of
the external parameters U and h corresponding to NM (top-left), AF (top-
right), F1 (bottom-right) and F2 (bottom-left) phases observed at J = —1
and T = 0.
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Figure 3.24: Specific heat as a function of temperature for J = 1, h = 0.5, n = 0.8,
—4 < U < —3 (left panel) and —3 < U < —2 (right panel).

number of configurations (see Figs, , , , for NM, F, AF, F1 and

F2 phases, respectively) whose contribution to the entropy is expected to vanish in
the thermodynamic limit. At n = 1, this happens for the NM phase only. On the
contrary, away from half-filling, all the phases have a finite ground state degeneracy
with the exception of F and AF phases.

3.1.4.4 Specific heat

It is well-known that specific heat can exhibits a very rich structure in the proximity
of phase transitions. In particular, recalling that long-range orders can only appear
at zero temperature, in addition to the standard high-temperature peaks due to
Schottky anomaly, we expect to find low-temperature peaks in the correspondence
of the boundaries of the T = 0 phase diagrams shown in Fig[3.1] and Fig[3.5] We
report below a detailed analysis of specific heat features for each phase.

In the NM phase, thermal excitations are responsible for transitions to config-
urations where some sites are singly occupied. This process, which requires high
temperature in order to break doubly occupied sites, is signaled by the presence of
a high-temperature peak in the left panel of Fig[3.24] As shown in Fig[3.25] the po-
sition of this peak, T5, and its intensity, hs, decrease by increasing U. In particular,
we note that 75 decreases with almost a linear law.

For the F phase instead, as shown in the right panel of Fig[3.24] C' exhibits
low (71) and high (T3) temperature peaks, associated to transitions involving the
ground state and the low-lying excited states. Approaching the phase boundaries,
the ground and the first excited states become quasi degenerate. Hence a temper-
ature of the order of the gap between these two states will be sufficient to induce
thermal excitations, resulting in the presence of a low-temperature peak that moves
towards 7" = 0. On the contrary, position and intensities of high-temperature ex-
citations, responsible for a second lower and broadened peak, remain almost un-
changed. In fact, as shown in Fig. [3.25 the intensity hy of the higher temperature
peak remains almost constant when U varies. Contrarily, h; rapidly increases as U
approaches U, and diverges in the limit U — U,. This occurs since the degeneracy of
the first excited state (belonging to the NM-phase) is infinite in the thermodynamic
limit with respect to the degeneracy of the ground state (F-phase).
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and he in NM-phase) where the specific heat has maximas as functions of
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Figure 3.26: Specific heat as a function of temperature at J = —1 for AF (left panel),
F1 (central panel) and F2 (right panel) phases at n = 1.0.

Most of the features observed in the F-phase persist for J/ = —1 in the AF-phase.
As shown in Fig[3.26h, the specific heat exhibits a low-temperature peak whose
height (dispersion) increases (decreases) as one approaches the phase boundary. As
reported in Fig3.6] the AF-configuration at n = 1 is composed exclusively of singly-
occupied sites. Therefore, the low-lying features correspond to transitions from the
ground states to some excited states with finite D or m # 0. On the contrary, F1
and F2 phases are characterized by both low and high temperatures peaks whose
heights remain quite constant when the phase boundaries are approached. While
the position of the former remains roughly constant, the latter moves towards T = 0.

We report in Fig[3.27 a detailed analysis of position and height of the low tem-
perature peaks in the specific heat for all possible phase transition occurring at
J = —1. As already pointed out, the position T of low temperature peaks is a
linear function of the temperature while, contrarily to what has been observed for
the J =1 case, the height remains constant. Furthermore, it is worth noting that,
at the transition point, there is a jump in the height of the low temperature peak
which can be traced back to the degeneracy ratio between the ground and the first
excited states. As reported in Fig[3.28] this last finding, that represents a common
fingerprint for all the phase transitions analyzed so far, is not observed at the tri-
critical points where the first and the second excited states become degenerate with
respect to the ground one.
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J = —1. The maximum of the specific heat (right panel) and its position
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Figure 3.28: Low temperature specific heat features at P» tricritical point for n = 1 and
J = —1. Contour-plot and 3Dplot on the left report specific heat at as a
function of h and T for U = 0. The four plots on the right report position
and intensity of low temperature peaks moving to the phase transition point
fixing h and changing U (top) and vice versa (bottom).
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Chapter

A two-field approach to the single-band
Hubbard model

As illustrated in detail in Chapter [2 the Composite Operator Method (COM) pro-
vides an full-consistent analytical framework for the description of highly interact-
ing systems in the strong coupling regime where many other theoretical approaches,
among which perturbative expansions, arbitrary ansatzs, decoupling schemes, fail.
The power of this method lies in recognizing that the properties of strongly cor-
related systems can be more conveniently described in terms of a set of composite
fields which accounts for new quasi-particles whose properties, differently from bare
electron ones, are entirely determined by dynamics, strength and nature of the inter-
actions. The application of this method to a particular model Hamiltonian can lead
to an exact or an approximated solution, depending on the possibility to find a closed
set of composite fields which completely describes all quasi-particle excitations.

In general, as reported in Chapter [3| for the case of the t-U-J-h Hamiltonian in
the atomic limit, the COM allows for the exact solution of a large class of systems
whose properties can be entirely described by a finite number of composite fields.
However, in many other cases the choice of a finite set of composite fields is not
enough to describe all the possible quasi-particle excitations of the system. This
results in the presence of higher order fields in the equation of motion of the basis
whose contributions, in the Green’s function formalism, can be estimated in terms
of self-energy corrections (see Sec.. When this happens, one can simply choose
a reasonable number of components for the basic set and then use an approximated
method to evaluate the residual dynamical corrections. According to this procedure,
in this Chapter we consider a two-field basis and illustrate two approximated schemes
and their application to the single-band Hubbard model [I]. In particular, in Section
4.1 we consider a pure two-pole approach, according to which the dynamical part
of the self-energy is completely neglected under the assumption that the choice
of the extended two-field basis is such that all the relevant self-energy corrections
are already included in the free propagator. Finally, the calculation of self-energy
corrections is discussed in Section where a possible self-consistent scheme is
proposed in the framework of the so-called self-consistent Born approximation.
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4.1 Two-pole approximation: fermionic sector

As a starting point, let us introduce the following two-field basis:

P(i) = ( igg ) , (4.1)

given by the fermionic composite fields &, (i) = (1—n5(7))c, (i) and n(i) = ng(i)c, (7).
According to the notation adopted in the previous Chapters, hereafter for each
fermionic operator ®(i) the spinorial notation will be used (see Appendix |B.1]):

B(i) = < glgg ) i) = (@) @) ) (4.2)

where, consistently with the Heisenberg picture, we have ®(i) = ®(¢,t). 0 = (1,])
(6 = (J,1)) are spin variables, ¢,(7)/c! (i) are the canonical annihilation/creation
operators of an electron on site ¢ at time ¢ with spin o, n,(i) = ! (i)c, (i) is the
electronic particle density per spin. Furthermore, we also use the following notation:
(i) =), aZJCI)(],t) to express a non-local operator which acts on all the nearest
neighbours of site 2. For a d-dimensional cubic Bravais lattice with lattice constant
a and coordination number z we have:

t) = ézcb(in,t), (4.3)

where 4, = % + ae,, and &, is the n'" primitive unitary vector of the lattice with
1 < n < d. Hence the Fourier transform of o, ; is F.T. [a; ;] = éZi:l cos(kna).
According to this notation the Hubbard Hamiltonian [I] reads as:

H= Z (—2dtag; — pos5) ¢ )+ UZ”T i)yn (i (4.4)

where (1 is the chemical potential, U parametrized the strength of the on-site Coulomb
interaction and ¢;; is the hopping amplitude which has been supposed to be uniform
and restricted to nearest-neighbour sites only with ¢;; = —2dto;.

As reported in detail in Appendix the basis (i) satisfies the following
equation of motion:

o o —pE@) = 2dt [ (i) + 7 (i)]
iOpp(i) = [v(i), H] = < (U — 1) (i) + 2dtr(4) ) ) (4.5)
where 7(7) is a higher order field defined as:
(i) = %a“n“(i)ca(i) + e(i)e (i)e(i) = (4.6)
(=D 6) + Do) — (e )
- ( e @es (D)) + et () — eieriety | 0D
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n,(i) = cf(i)o,c(i) is the charge (u = 0) and spin (u = 1,2,3) density operator
with o, = (09, o), being oy the 2 x 2 identity matrix and o the Pauli matrices (see

Appendix |B.1.2)).

In the framework of the pole-approximation, we linearize the equation of motion

as:

i0pb(i,t) = Ze(i,jw(j,t) : (4.8)

where £(¢, ) is the energy matrix which, as follows from Eq{2.23| can be calculated
in terms of normalization 1(z,7) (2.24]) and m(s, 5) (2.25) matrices as:

e(i,3) = Zm(z',j)rl(z',j) . (4.9)

This procedure allows us to calculate the linearized equations of motion for the
fields of the basis in terms of simple anticommutators. On the basis of the results
reported in Appendix [B] in the case of an homogeneous and paramagnetic system
straightforward but lengthy calculations give:

I(k) = (]61 1?2> , (4.10)

_ mu(k) m(k)
m(k) = (mn(k) ng(k))’ (4.11)

with: n n
Iy =1- 5 I = 50 (4.12)
and:
n
mi (k) = —p <1 — 5) —2dt[A + a(k) (1 —n+p)] (4.13)
n
maz(k) = 2dt [A + a(k) (p — 5)} (4.14)
n
(k) = 2 (U = o) = 24 [A + a(k)p) (4.15)
where n, p and A are unknown correlators defined as:
n = (n(i)) (4.16)

po= )~ (e @) ) | (4.17)
A = (EMEW) — (Om () . (4.18)

The knowledge of I(z,5) and m(,7), then the knowledge of the energy matrix
£(t,7), also allows to obtain an analytical expression of the energy spectra E,(k):

Ee,(k) = R(k) £ Q(k) , (4.19)
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where:
o U mlg(k)
R(k) = —p—2dta(k)+ T (4.20)
1 4m3, (k)
k) = —(/¢2(k)+ -2 4.21
Q(k) 2\/g< ) e (421)
1—n
I115

© © () ()
o (k) o5 (k o1 (k) o5 (k
J(i)(k) _ ( %61)( ) g)( ) ) ’ 0(”)(k3) — ( g)( ) %72])( ) ) 7 (4'23)

with:
3 k k
"g““) =% [kl + 45 “?j(k) = [1; 45
U%(k) = S th)(k) =~ 550 (4.24)
k k
k) =12 [1- 28] o) =2 [1+ L8]

which allow us to write a generic correlator C% (i, j) = < " (i) ( ])> as:

d
ol /. - a
ab (17]) = (27T)d

S [ ket 0000 k) [ fi (B, (K)o k)
s=(em) 7 B

(4.25)
where 25 denotes the volume of the first d-dimensional Brillouin zone and o™ denotes
the convolution of n nearest-neighbor projectors:

(I)an (’l) = Z Qg Xgpig - - - Oéinigin72ain72inil(I)(’l:nfl, t) . (426)
21,1

,,,,,

Hence it is worth noting that A and n can be easily calculated self-consistently
since they can be expressed in terms the time-independent correlators C%" = C%" (i, 1).
In particular, since in any physical system one can vary the particle concentration
rather than the chemical potential, we consider the particle density n as an external

parameter and calculate u self-consistently according to the relation:
n = 2(1—-Cy—Cy) . (4.27)
For A instead, following its definition , we have:
A=Cy —Cs, . (4.28)

We are left with one unknown parameter, p, that different from n and A, deserves
a different treatment since it is defined in terms of fields which do not belong to the
chosen basis (4.1). However, from the basic algebra of the composite fields £(i) and
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n(i) one can immediately note that the Pauli exclusion principle requires that:
& ()0} (1) = ¢4 (1) [n(i) = nZ(9)] b (i) = 0. (4.29)

Therefore, the physical constraint given by the Pauli principle, which is self-included
in the algebra of the composite fields, requires the following relation to be satisfied:

Cr = <§(2)77T(Z)> =0, (4.30)

which can be read as an additional self-consistent equation for the last unknown
parameter p, providing a full-consistent calculation scheme which is valid for any
dimension d. At this point, it becomes evident that, as already discussed in Sec[2.3]
the presence of unknown parameters to be fixed self-consistently does not represent
a proper limit for the theory. On the contrary, it reflects the necessity to fix the
Green’s function representation according to the particular algebra and symmetries
under consideration. As it will be shown in the next Section, because of the self-
consistency, the violation of the Pauli constraint Cj5 = 0 does not affect only the
estimation of p but reflects in unphysical behaviors and severe limitations to the
applicability of the whole calculation scheme.

4.1.1 Single-particle properties and thermodynamics

Let us discuss some results obtained within the two-pole approximation scheme for
the two-dimensional Hubbard model in the paramagnetic phase. Due to the high
non-linearity of the self-consistent equations , , and , although
different solutions are expected, only two coexisting solutions, corresponding to
significantly different physical behaviours, are admitted. Hereafter we label these
solutions as COM1 and COM2. COMI1 represents a pure paramagnetic solution
while COM2 is more suitable to describe strong magnetic correlations. Due to this,
COM1 is in good agreement with numerical data for many physical quantities in the
whole range of filling except in the neighbourhood of half-filling at low-temperature
where strong antiferromagnetic correlations are established. In this regime, COM2
is better suited showing a remarked tendency of the system towards an antiferro-
magnetic phase transition. In a certain sense, COM1 and COM2 represent two
different physical behaviors whose nature can be conceived in terms of the compe-
tition between different orders observed in real materials. Hence a full-consistent
description of real materials can only be found in terms of a proper combination of
the two solutions, which has already been proved to be capable of giving a relevant
interpretation of many experimental evidence of non-conventional behaviours for a
large class of strongly correlated systems [16], [59].

With no claim of being exhaustive (interested readers can found detailed and
comprehensive reviews in Ref.[16] and Ref.[59]) we report in this Section some of the
results obtained in the framework of the COM, compared with numeric data from
finite-temperature Lanczos method (FTLM) and quantum Monte Carlo method
(qMC). In particular, we also report a comparison with the so-called Hubbard-I
[1] and Roth [22] approximations which correspond to different choices for the self-

consistent equations (4.27), (4.28) and (4.30). Without going into the details of
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these last two approaches (for a detailed description we refer to the original works
[1, 22]), we just recall that the Hubbard-I approximation [1] determines both A and
p by means of a simple decoupling procedure which leads to:

A=0,p=—. (4.31)

Following the Roth approximation, instead, A is fixed self-consistently as in Eq4.28
but p is calculated by projecting with respect to the two field basis (4.1)) (for details
see Appendix |B.4)) which gives:

2_¢ Ca oo o
:12——{3;3+03( C"—C;)}—#, 4.32
P=in Iy (1 —6?) ¢ ALY I115 (1 —6) (4.32)

where:
Iy — Cy — I3,
0 = , 4.33
VSLS ( )
w = <Ca (Z)¢T<Z>> =Cy, +C5, (4.34)
Co = Cy +Co . (4.35)

As shown in Fig[d.I] both these approximations violate the algebraic constraint
C12 = 0 given by the Pauli exclusion principle which is satisfied only at n = 0 and
n = 1 for any finite U, and for all values of the filling in the limit for U — oo.
Furthermore, as shown in Fig[f.2] both Hubbard-I and Roth solutions violate the
particle-hole relations:

p(2—n) = U—p(n), (4.36)
A(2—n) = —=A(n), (4.37)
p2—n) = pn)+1—n, (4.38)

which are automatically satisfied in the framework of the COM.

Hubb. T U=0 Roth U=0
----- Hubb. T U=4 — — -Roth U=4
04 e Hubb. T U=8 —-—--Roth U=8

Figure 4.1: Pauli amplitude A, = C12/Ca2 versus filling n at T' = 0, plotted for different
value of the on-site Coulomb interaction U and different approximations.
Figure reprinted from Ref.[16].
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1.5 COM 1 0.15
......... COM 2 ] E
-------Roth 1 0.10 F

1.0 — - —--Hubbard I 1 F

0.05 [
< 000
005

20.10 [

_0']5:||||

Figure 4.2: Evidence of particle-hole violation for A and p calculated in Hubbard-I and
Roth approximations for 7' = 0.01 and U = 4. In the panel above we
label with COM1 and COM2 the two possible solutions of the self-consistent

equations (4.27), (4.28)) and (4.30). Figure reprinted from Ref.[16].

As it will be better clarified in the rest of this Section, this last findings have
a non negligible effect on many properties. In particular in the framework of the
Roth approximation, as reported in Fig., we emphasize the unphysical behavior
of the chemical potential for small U and 0.8 < n < 1.0. In this regime, a strong
violation of the Pauli exclusion principle (see Fig.(4.1))) reflects in an anomalous
behavior of the chemical potential which decreases with increasing n, signaling a
thermodynamic instability (i.e. negative compressibility). As shown in the top
right panel of Figld.3] this feature disappears in the strong coupling regime when
the algebraic constraint Cj5 = 0 and the particle-hole symmetry are recovered. On
the contrary, the Hubbard-I approximation is not affected by any thermodynamic
instability, but it clearly shows a strong violation of the particle-hole symmetry at
n =1 (from Eq.(4.36) we should have yu(n =1) = U/2).

Another relevant drawback of Hubbard-I and Roth approximations with respect
to the COM is found in the squared local magnetic moment S?, defined as:

S*(n, T, t,U) = Z<nT ) —ny ()]7) . (4.39)

In the paramagnetic case, meaning that (n(:)) = (n,(7)), by expanding the product
in square brackets and thanks to the algebraic relation [n,(i)]* = n, (i), S? can be
straightforwardly expressed in terms of filling n and double occupancy D as:

S%(n, T,t,U) = 2 (n—2D) , (4.40)

where n is fixed as an external parameter (hence p is fixed self-consistently according
to Eq}4.27)), and D is calculated in terms of the correlators (4.25)) as:

DL T.LU) = 1 3 D) = 5 = (nlg' @0y = 5~ Co . (441

7

As reported in Fig{d.4] both Hubbard-I and Roth approximations show a relevant
discrepancy with respect to numerical data in the low-temperature regime where
the effect of quantum fluctuations and correlations is strongly enhanced. On the
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5
| COM1 O
[ [ ==sseeees Hubb. T >
[ | =—-=--Roth L]
(U Gt 2
2D L] 4
I Sl
W b U4 7 E
T=0 d
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4 | [ 1 I
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3 0.0 [ D —
h C ° 6:4 |
u 0.5 e T=0.2 7
E In=050 ] . 1
5 | | | | 10 C T I I I
0 1 2 3 4 5 0.5 0.6 0.7 0.8 0.9 1

Figure 4.3: Temperature and doping dependence of the chemical potential for different
values of temperature T" and strength of the on-site Coulomb interaction U.
Symbols correspond to numerical data from Refs.[60], 61, [62] [63] [64]. Figure
reprinted from Ref.[16].

contrary, the COM qualitatively reproduces the data in the whole range of temper-
ature and approaches Roth and Hubbard-I curves in the limit for T" — oo as one
would expect.

Finally, to complete our analysis we report below few results on the thermody-
namic properties, namely the internal energy E(n,T,t,U) and the entropy S(n,T,t,U).
We recall that the internal energy F, calculated as the average of the Hamiltonian
, can be expressed as:

En,Tt,U) = (H)=—pn+2dt(CY +2C7, +Cs5) +UD =
= —2u (1= Cu — Cp) + 2dt (CFy + 207, + C3)
n
+U <§ - 022) ) (4.42)

where in the last step we have used Eq[4.27] and Eq[4.41] to express the electronic
density n and the double occupancy D, respectively, in terms of correlation functions
C" (4.25)). The entropy can be expressed in terms of the chemical potential as:

" n,T
S(n,T,t,U) = — / wcm. (4.43)
0

As far as the internal energy is concerned, as reported in Figld.5] the compari-
son between COM and qMC data shows a good agreement in the whole range of
temperature, strength of the on-site Coulomb potential and filling with only small
discrepancies. In particular, as reported in the central panel of Fig[.5] these dis-

o8



A two-field approach to the single-band Hubbard model

0.7 al 0.8
. 2D COMI ; [ 2D COM1
n=1 | =semeeemn Hubbard I ] k.. n=1 | seeemeee- Hubbard [ 4
=3 U=2 | ==eee==Roth ] 0.7 oo U=4 | ------=Roth ]
0.6 kN u qMC (6x6) L "\‘ ] qMC (6x6)
Y ] L \

Figure 4.4: Squared local magnetic moment S? versus temperature 7 at n = 1 and for
different values of the on-site Coulomb interaction U. Symbols correspond
to qMC data from Ref.[65]. Figure reprinted from Ref.[16].

crepancies do not depend on U and therefore they seem likely to be due to finite
size effects in the numerical simulations. A good agreement is also achieved in the
calculation of the entropy whose doping and temperature dependencies are reported
in Figl.6] compared to FTLM data. In particular, in the case of the entropy we
note that a remarkable discrepancy only occurs near half-filling at low temperatures
when antiferromagnetic correlations become relevant and COM1, which we recall to
be a paramagnetic solution, is no more able to reproduce the physics of the system.
As one would expect, for temperature high enough to destroy antiferromagnetic
fluctuations, we recover a good agreement with numerical data in the whole range
of filling.

0.0 4

3L comi u=h | 2D
--------- comi (U=2) | T=1/6
--=---- COMI (U=4)

-0.50 -
® QMC(U=1) : .
E o qMC(U=2) R

I F s QMC (U=4) 4 4

2D
15 T=0

COM2 [n=1] 0
n=1

ool v v bty
5 10 15 20 0 05 I
U N

Figure 4.5: Internal energy F versus temperature T' (left panel), strength of the on-site
Coulomb potential U (central panel) and filling n (right panel). Symbols
correspond to FTLM [66}, [67] and ¢MC [68] data. Figure reprinted from
Ref.[16].

4.2 Two-pole approximation: bosonic sector

To complete our analysis on the two-pole solution of the single-band Hubbard model
we include in this Section a detailed calculation of some system’s response functions,
namely charge and spin susceptibilities and correlation functions. In the framework
of the linear response theory, both charge (1 = 0) and spin (p = {1, 2,3}) suscepti-
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Figure 4.6: Entropy S versus filling n for different temperatures (left panel) and versus
temperature T for different values of the filling at U = 4. Symbols correspond
to FTLM data from Ref.[66]. Figure reprinted from Ref.[16].

bilities can be calculated in terms of the following bosonic propagator:

Xu(k;w) = =FT (R [n,(i)n,(5)]) (4.44)

Hence, with the aim of calculating all the relevant response functions, two possible
approaches can be pursued. One can express the bosonic Green’s functions in terms
of fermionic propagators which can be calculated following the self-consistent
scheme developed in the previous Section. This approach is called “one loop” ap-
proximation. Alternatively, one can introduce a bosonic basis, complementary to
the fermionic one , and then calculate all the relevant bosonic correlators by
linearizing the corresponding equations of motion. It is worth noting that these
two approaches, in principle completely equivalent, lead to significantly different
outcomes if the selected bases are not closed due to different approximations in-
volved in the truncation of the hierarchy of the equations of motion. For the sake
of brevity, in this Section we will restrict our analysis to the second method only,
and report in Appendix a detailed calculation of charge-charge, spin-spin and
pair-pair correlators in the framework of the so-called one-loop approximation.

As already specified before, there is no general prescription on the choice of the
composite fields of the basis. One might simply think to start from the equation
of motion of the basic field n,(i¢) which contains both charge ¢ = 0 and spin p =
{1,2,3} densities. As follows from simple commutations, we obtain:

iOny(i) = [nu(2), H] = —=2dtp,(i) , (4.45)

where:

pu(i) = ' (i)o,c® (i) — 1 (i)o,c(i) . (4.46)

Then, based on the hierarchy of the equation of motions, we can define the following

bosonic basis: ‘
N(“)(Z') _ ( nu(z) ) .

Pu ()
This choice assures that the first four bosonic moments have the correct functional

form [69] and, more important, it guarantees the equation of motion of the field
n,(i) to be accounted exactly. Hence any approximation due to linearization will

(4.47)
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only affects the equation of motion of p,(4):
i0ipu (1) = —2dtl, (1) + Uk, (7) , (4.48)
in which «,(¢) and [,(i) appear as higher order fields defined as:

ru(t) = (@) (@) = ' (0o, (i) + 0N (D)onc(i) — N (i)oun(i) ,  (4.49)
L) = c()ouc (i) + 1 (@)oueli) — 27T (1)0,c (i) . (4.50)

In the framework of the two-pole approximation, by following the same procedure
used for the fermionic basis (4.1)), we linearize the equation of motion of N (i) as:

10, NW (i Zg(“ i, JINW(4,1), (4.51)
where the bosonic energy matrix €% (i, j) can be calculated in terms of normalization
I®W(i,j) and m®(i,j) matrices:

IW3EG) = ([NW(@E, ), NWiG,0]) (4.52)
m®W(i,j) = ([[o.NW(, 1), NWiG,0]) . (4.53)

In the case of a paramagnetic and homogeneous system the two matrices 1"(i, j)
and m (i, j) have the following form in momentum space [70]:

009 ) e [ 0
rwk):( T ”>,m<><k>=< . uf?(k)), (454

Ik 0 0 my
where:
1y (k) = 1L alk) (4.55)
m{ (k) = —2dtI% (k) (4.56)
m) (k) = —2dth,,, (k) + Ul,,,, (k) , (4.57)
and:
Ce = FT.{c(i)c'(i)) , (4.58)
L (k) = FT.([l(3,),p,(4.1)]) (4.59)
Lo, (k) = FT.([r.(i,1),0,(7,1)]) (4.60)

can be calculated self-consistently by means of algebraic relations and symmetry
requirements. Hence the energy matrix can be expressed as:

i B 0 e (k) e%)(k) = —2dt
g )<k>‘< 7 )’{a§3<k>: @ GO
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whose eigenvalues are given by:

Wi (k) = (—1)"\/ el (K)eS (k) - (4.62)

The knowledge of the bosonic energy spectra allows us to write the bosonic Green’s

functions (see Section as:

wH+id  w—1d

L+ fpw) /(W)
w—w,(f)(k:)+i5 w—wﬁﬂ)(k)—z’é

GW(kw) = F(”)(k){ 1, - } (4.63)

2

+> o) (k)

n=1

] (4.64)

where fz(w) = [¢#¥ — 1]7! is the Bose-Einstein distribution function, " (k) is the
zero frequency function (2.74)) and:

(M)
(k)
2 E(#)( ) ‘ °
1 21
(M) (k)

U(nvu)(k) —

By recalling the general relation between advanced and retarded Green’s func-
tions ([2.96) we finally obtain the following expression for charge (¢ = 0) and spin
(1 # 0) susceptibility:

xulk,w) = ~FTAR [m(i)nu())) = = > —; (4.66)

which gives:

m\* —a ()
N(k) = (%) n26(d)(kz)—4dt6’°‘ <§S) coth (ﬂT(k)> (4.67)
ol —a(k) Bw(?’)(k:)

for the charge N(k) and the spin S(k) correlation functions. From the results ob-
tained so far it is immediate to note that, differently from the canonical Green’s
function formalism, in the framework of the Composite Operator Method a care-
ful treatment of the zero-frequency function I'™ (k) is required. In fact, although
I'®)(k) does not appear in the retarded propagators which determine all the system’s
response functions, it is directly involved in the calculation of the causal propagators
(i.e. correlation functions) which take part in the self-consistent scheme via Pauli
constraints and Ward-Takahashi identities. In general, different procedures can be
applied for the calculation of '™ (k) but, due to the lack of any prescription, the
effect of a particular choice can only be tested by an a posteriori comparison with
numerical data. As a first attempt, as done for example for charge and spin
(4.68)) correlation functions , I'™ (k) can be fixed by assuming the ergodicity of the

62



A two-field approach to the single-band Hubbard model

system which gives:
271\ °
I (k) = 30 <—> n*6 (k) . (4.69)

a

This particular assumption, which is not true in general, is widely justified by a
good agreement with numerical data. However, one has to remember that many
physical quantities are not ergodic. In these cases different methods have to be used.
In particular, '™ (k) can be fixed in the framework of a self-consistent scheme by
means of Pauli constraints, or symmetry requirements. Alternatively, by introducing
a new bosonic sector: the pair sector (see Appendix , as reported in Ref.[71].

4.2.1 Charge and spin correlation functions

Results obtained for charge and spin correlation functions are reported in Figl4.7]
and in Figld.§ respectively. As already pointed out before, the ergodicity assump-
tion Fg’{)(kz) = d,0 (%”)an(S(d)(k:) results in an excellent agreement with numerical
data. In particular, it is worth noting that the COM is able to catch the double-
peak structure of N(k), with a great enhancement near (7, 7) which signals strong
charge correlations and the presence of a weak charge ordering. The consistency of
the COM is further confirmed by the results obtained for the spin correlation func-
tion which show an excellent agreement with numerical (left and central panels in
Figd.8) and experimental (right panel in Fig[4.8) data. As already discussed before,
small discrepancy with respect to numerical data can only be found in high-filling
and low-temperature regime where the paramagnetic solution is not able to repro-
duce strong antiferromagnetic fluctuations in numerical data. However, numerical
analysis suffers from finite size effects when the antiferromagnetic correlation length
becomes comparable with the size of the cluster [75]. Therefore this last issue does
not affect the validity of the approximation that, despite the paramagnetic assump-
tion, is still able to catch the effects of antiferromagnetic fluctuations as clearly
shown in the right panel of Fig[i.8 where both position and intensity of the main
antiferromagnetic peak at (m, ) are perfectly reproduced.
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Figure 4.7: Charge correlation function N (k) versus momentum k for U = 8 and different
values of temperature T" and filling n. Symbols correspond to qMC data from
Ref.[72]. Figure reprinted from Ref.[59)].
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Figure 4.8: Spin correlation function S(k) versus momentum k (I' = (0,0), M = (7, 7),
X = (m,0)) for different values of the strength of the on-site Coulomb poten-
tial U, temperature T and filling n. Symbols in the left and central panels
correspond to qMC data from Ref.[73]. Symbols in the right panel correspond
to high-resolution neutron scattering data from Ref.[74]. Figure reprinted
from Ref.[59].

4.3 Self-energy corrections to the two-pole approx-
imation

Consistently with the pole-approximation, in the calculation scheme developed so far
the residual part of the self-energy was completely neglected under the assumption
that all the relevant self-energy corrections were indirectly taken into account in the
“free” Green’s functions because of the composite nature of the operators of the basis
(see Sec.. This assumption, recalling the Green’s function formalism illustrated
in Section [2.1] allows us to skip the calculation of the high order retarded propagator
Bf(k,w) defined as:

Bf(k,w) = F.T.(R[§J(1)§J'(j)]) , (4.70)

where 6.J(i) represents the contribution to the current orthogonal with respect to

the two-pole basis (i) (see Eq2.20):
i (i) = [W(i), H] = J(i) = > e(d, m)p(m,t) + 6] (4,1) . (4.71)

m

In almost all the cases the calculation of Bf(k,w) can not be accounted in the
framework of the self-consistent polar scheme since it requires the knowledge of
propagators of the type:

CH(k,w) = F.T{(R[B(i)F(i)F'(j)B()]) , (4.72)

where F(i) and B(i) represent non-local fermionic and bosonic operators, respec-
tively. We note that the above propagator can not be calculated self-consistently
since it is defined as the average of non-local operators while the fields of the basis
are local. Its dependency on both momentum and frequency does not allow to fix
it in terms of PCs or WTIs, therefore further approximations necessarily need to
be considered. In particular, in the framework of the so-called “Non-Crossing Ap-
prozimation” (NCA) one can assume that fermionic and bosonic modes propagates
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independently, allowing for the following factorization of the causal propagator:
C(i,5) = (T [BOF @O F'()BG)]) = £ )0, 4) - (4.73)

where f¢(k,w) and b (k,w) are the following two-time fermionic and bosonic prop-
agators:

{fc(kw) = PT(T [F)F'(j)]) (4.74)

v (k,w) = F.T (T [B(i)B(5)]) ’

which can be calculated self-consistently in the polar approximation. Then one can
use the spectral representations (2.66)) and (2.95)) to recover the retarded propaga-

tors:

fc(k:,w) _ _l/_+oodw/|:1—fF(6W,)+ fr (Bw) ]Im [fR(k:,w’)} (4.75)

T w—w +i10 w—w —1

[e.9]

bo(k,CU) — _l/;—i_oo d |:1 — fB (BW/> + fB (ﬂw/) 1 Im [bR(k:,w’)} (476)

T w—w+id  w—w —1id

(e 9]

Therefore, recalling that:

CR(k,w) = — /M _ W oth (”8;") Im [CC (k,w)] (4.77)

T ) oo W—w +1€

one immediately obtains:

—+00 w/ —+00
Clik,w) = 1 /_ d T /Q dp /_ dQIm [ f(p, Q)]

TJ o w—w +10

Im [b*(k — p,w’ — Q)] {tanh (%) + coth <M)] (4.78)

Let us now apply the NCA to calculate self-energy corrections in the framework
of the two-pole approximation. Starting from the basis of composite fields defined
in Eq., by neglecting the pair term c¢(i)c®(i)c(i) in the equations of motion of
&(7) and (i) (see Eq[4.5), one obtains

J(i,1) =Y al(i,5)¢(,1) (4.79)

where:

CL(Z J) _ ( —,ué,-j — thOé,'j — dtozijal‘nu(i) —thOé,'j — dtaijal‘nu(i) )
’ dtagjotn, (1) (U — ) 035 + dtagjotn,(i) ) -
(4.80)
However, according to Eq[2.38] the calculation of the self-energy only requires the
irreducible part of the propagator Bf(k,w) which can be calculated in terms of the
fluctuation of a(%, j) with respect to its mean value as:

0J(4,t) ~ Y [a(i, 5) — (a(i, )] (5. 1) | (4.81)

J
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which gives:
B (k. w) = d? (R [0"6n, (1)c*(3) ™t (7)6n, ()] ) ( L ) L (48)
where n,,(i) = n,(i) — (n,(i)). Hence, according to Eq/2.36] we obtain:

1—2 —_[_1]_1
Sk w) = 2 F (k) ( L, T > | (4.83)

where F(k,w) = F.T.[F(i,j)] is the Fourier transform of the high-order retarded
propagator F'(i,j) defined as:

F(i,j) = <R [0“5n#(i)co‘(i)0aT(j)énl,(j)al’}> . (4.84)
In the framework of the NCA the above quantity can be factorized as:

F (i, j) & (6, (1) (7)) {*(0)e™ (5)) - (4.85)

By means of the spectral theorem, fermionic and bosonic contributions in the above
equation can be expressed as:

(*(@)c™1(j)) = 27r — /Qde /+Oodwe (i=d)=iw(ti—t) 42 ()
[1+tanh (5 )} m (G (e, )] | (4.86)
rs@m() = /QB dk /ﬂo e i)ttt
[1+coth (52 )1 T [x (K, )] | (4.87)

were, following the relation c(i) = £(7) + n(i), we have defined:

Gcc<k77 LLJ) = Gll(k, W) + 2G12(k, CU) + Ggg(k, w) . (488)
We recall that the retarded correlators of fermionic, G(k,w), and bosonic, x(k,w),
nature can be calculated by means of the two-pole self-consistent schemes developed

in Sec. and Sec. Then, by substituting the in the expression of F'(k,w) we
obtain:

Flk,w) = (2:% /QB dp /_:o dQ /_:O do'Im [x(k — p,o’ — Q)]
it v (2] 1 o (222

The correlator F'(k,w) can also be expressed in terms of spectral density matrices
o(k), fermionic F, (k) and bosonic w) energy spectra. In fact, from Eq. and
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Eq[4.60] we have:

3 2 2 2

E.(p) win (k= p)
tanh | —— th | —————
[ an (2k:BT> o ( kT
which, as follows from Eq[4.83] represents the dynamical part of the self-energy

calculated at the first order in the NCA. In fact, as better emphasized in Eq[4.89]
F(k,w) depends on the complete Green’s functions which in turn depend on ¥(k, w):

o\ (p)oi (k — p)
w— B, (p) — wit) (k — p) + i

, (4.90)

(k)
w—ek)—X(k,w)

G(k,w) = (4.91)

Therefore Eq[4.90] defines nothing but the first step of a self-consistent procedure
which is required for the calculation of self-energy corrections. The whole self-
consistent scheme, illustrated in Fig{4.9] can be described as follows.

BO(aCO’aSO)

Go(Ho'Ao,po)

B.(a..a5,)

cn’

(HoAgPo)

Self-consistency
(KA, pr)

Figure 4.9: Self Consistent Born Approximation scheme for the calculation of the
fermionic full propagator G in terms of charge-charge and spin-spin two-pole
propagators B and residual self-energy X.

At the first iteration we just neglect self-energy corrections and calculate all the
retarded Green’s functions and correlations functions following the two-pole self-
consistent scheme illustrated in Secd.I] with:

Gll.) = GO (k) = s Z "; —. (4.92)

This allows us to calculate the fermionic energy spectra E, (k) (4.19) and the spectral
(k) (.62

density matrices o™ (k) (4.23). Then bosonic energies wi 62) and bosonic
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correlators (4.66)) can be calculated in terms of the fermionic ones (see Secf4.2)). The
knowledge of fermionic and bosonic energy spectra and spectral density matrices
allows us to calculate first order self-energy corrections, X(V(k,w), according to

Eql4.83) with F(k,w) given by Eq4.90, Hence X(V)(k,w) can be used to estimate
the complete Green’s functions (4.91)):

I(k)
w—eD(k)—XO(k,w)’

GO (k,w) = (4.93)

which, in turn, can be inserted in the two-pole self-consistent scheme for the calcula-
tion of first order energy spectra and spectral functions. Then the whole procedure

can be repeated recursively, allowing to calculate self-energy corrections to Green’s
functions up to a generic n'*-order as:

1(k)

(n) =
G kW) = ) — ek w)

(4.94)

where €™ (k) is the fermionic energy matrix which includes self-energy correction up
to the (n —1)"-order. The self-consistent procedure stops when the variation of the
self-consistent parameters u, p, A within two consecutive steps satisfies the required
accuracy, meaning that no further steps in the self-consistent procedure need to be
evaluated.

The relevance of the calculation scheme described so far resides in providing a
full microscopic description of the self-energy, accounted in terms of the convolu-
tion of electronic propagators, charge, spin and pair susceptibilities (Eq and
Eq. Then, different from other numerical and analytical approaches in which
these quantities, as well as filling and correlation lengths, suffer from finite size ef-
fects or can only be accounted phenomenologically, within the COM all the relevant
fermionic and bosonic propagators are determined microscopically in the framework
of the two-pole approximation, providing a more reliable treatment of non-local
correlations and unconventional effects due to strong interactions.

4.3.1 Spectral functions and momentum distribution func-
tions in the NCA

Let us discuss some results obtained in the framework of the NCA for the two-
dimensional Hubbard model . For the sake of brevity, in this Subsection we
restrict our analysis to spectral functions A(k), momentum distribution functions
n(k) and density of states per spin N(w) (a more detailed analysis can be found in
Ref.[76]). We recall that A(k,w) is proportional to the imaginary part of the full
fermionic Green’s function :

Ak, ) = —2Tm [Gou (K, w)] | (4.95)

7
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Figure 4.10: Spectral function at the chemical potential A(k,w = 0) as a function of the
momentum k at U = 8 and for different values of filling n and temperature
T. Solid lines correspond to the Fermi surface observed for an ordinary
Fermi-liquid. Dashed lines are a guide to the eye. Figure reprinted from

Ref.[76].
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Figure 4.11: Momentum distribution function n(k) along the principal directions of the
first Brillouin zone (I = (0,0), S = (n/2,7/2), M = (m,7), X = (7,0),
Y = (0,7)) for U = 8 and different values of filling n and temperature 7.
Figure reprinted from Ref.[76].

with Ge.(k,w) defined in (4.88). Momentum distribution n(k) and density of
states per spin NV (w) can be defined in terms of the spectral functions as:

n(k) = /_ oodwfp(w)A(k:,w), N(w) = / d’kA(k,w) , (4.96)

oo Qp

where Qp is the volume of the first Brillouin zone and fr(w) is the Fermi-Dirac
distribution function. Let us first concentrate our analysis on the Fermi surface
which can be obtained by plotting the value of the spectral functions at the Fermi
level: A(k,w = 0). As shown in Figd.83] self-energy corrections enhance non-
Fermi-liquid behaviours at high doping (n ~ 1) as signaled by the presence of a
strong discrepancy between A(k,w = 0) in the NCA and the large Fermi surface of
a normal metal (solid lines in Fig[4.83)) obtained as the locus in which n(k) = 0.5.
In particular, by increasing the filling there is a change in the topology of the Fermi
surface which becomes small and closed at low doping. Finally, in the proximity of
half-filling (right panel of Fig the Fermi surface becomes ill-defined, meaning

that it does not enclose a well-defined region in the momentum space, leading to
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the formation of hole-pockets almost centered at (w/2,7/2) as observed in ARPES
experiments [77]. Unconventional (non-Fermi-liquid) behaviours are also observed
in momentum distribution function, n(k), and density of states N(w). As reported
in Fig[t.11] the sharp jump at n(k) = 0.5, which is a prerogative of the Fermi-liquid
theory, rapidly disappears with increasing filling and n(k) acquires a finite slope at
that level which signals the presence of non-Fermi-liquid excitations.

Summarizing, we have shown that the COM, in the framework of the NCA, is
perfectly able to reproduce non-Fermi liquid behaviours in the 2D Hubbard model.
Furthermore, different from other models proposed so far, it also provides a full
microscopic treatment of self-energy corrections which are responsible for unconven-
tional features in spectral function and momentum distribution function which are
in a qualitative agreement with ARPES experiments.
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Chapter

Beyond the two-field description: a

three-pole approach to the single-band
Hubbard model

As widely discussed in Chapter [2 the main advantage of the COM in describing
strongly correlated systems with respect to other analytical techniques (e.g. canon-
ical Green’s function formalism, standard perturbation theory) lays in the choice of
a proper basis of composite fields which, differently from the canonical electronic
operators, describe stable quasi-particle excitations in the systems rather than bare
electrons. Based on the choice of these fields, a proper Green’s function formalism
has been developed (see Sec. which allows to calculate all the relevant two-time
fermionic and bosonic correlators as functions of a number of internal parameters
which can be determined self-consistently by means of symmetry requirements and
algebraic constraints (see Sec. . As shown in Chapter , in the framework of the
single band Hubbard model , a simple two-field basis suffices to catch most of
the relevant unconventional features due to strong interactions. In particular, in the
case discussed in Chapter |4 we chose as fields of the basis the so-called Hubbard op-
erators (i) and n(i) (4.1) which describe quasi-particle excitations separated by the
characteristic the energy scale of U, where U parametrizes the the intensity of the
on-site Coulomb potential. However, U is not the only energy scale contained in the
model. As it is well-known, in the strong coupling regime (U > t) and in the prox-
imity of half-filling (n & 1) electrons start to singly occupy all the available sites
establishing strong antiferromagnetic correlations which favour nearest-neighbour
hopping processes. In this regime the energy scale of U becomes too high to be rel-
evant at low-temperatures and the physics of the Hubbard model is mainly dictated
by the exchange interaction J = 4t*/U > 0 which, at low-temperatures, appears as
the relevant energy scale driving antiferromagnetic correlations. This finding paves
the way for a possible extension of the two-field approach, voted to the inclusion
of additional fermionic fields to the well consolidated two-field basis with the
aim of describing quasi-particle excitations related to the energy scale of J, rather
than U. The importance of this point is further bolstered by the clear observation of
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Figure 5.1: Energy dispersion along the principal directions of the first Brillouin zone
(I' = (0,0), M = (m,7), X = (m,0)) for different values of filling n, at
T/t = 0.5 and U/t = 8. Dashed areas in the left panel correspond to the
spectral functions calculated with the non-crossing approximation (see Sec.
. Circles correspond to qMC data from Ref. [78]. Figure reprinted from
Ref.[16].

multiple low-energy bands in qMC simulations near half-filling and for high values
of U [78]. In this regime, as shown in Fig, the two-pole approach fails since, as
clearly follows from NCA data (see Sec. reported in the left panel of Fig)5.1],
an operatorial basis constituted by at least three or four composite fields needs to
be considered in order to get a significant agreement with numerics.

Based on the aforementioned motivations, we report in the following Sections a
detailed analysis of a three-pole approach to the single-band Hubbard model. The
self-consistent scheme, containing a detailed discussion on the choice of the fields of
the basis, is reported in Section [5.1] We show that the inclusion of a third field to
the two-pole basis results in additional Pauli constraints, but also in a remark-
able increase of the number of unknown parameters to be fixed. Hence, differently
from the two-pole approach, due to the unbalanced number of unknown parame-
ters with respect to the number of self-consistent equations, the use of proper and
well-consolidated approximated methods becomes of crucial importance not only
for the purpose of closing the self-consistent scheme, but especially for obtaining a
reliable picture of the physics which is aimed to be described. Based on this last
point and with the aim of testing the calculation scheme proposed in Section [5.1]
results obtained in the framework of the three-pole approximation are discussed in
Section in comparison with quantum Monte Carlo (¢QMC), Dynamical Cluster
Approximation (DCA) and Lanczos data. We report a detailed analysis on band
structure, filling and U dependencies of chemical potential and double occupancy,

showing a better agreement with numerical data with respect to the two-pole solu-
tion described in Chapter

5.1 Self-consistent scheme

In considering the possibility to formulate a three-pole or a four-pole approach to
the single-band Hubbard model, a first issue arises from the choice of the basis. As
discussed in the previous Chapters, the accuracy of the COM in describing correlated
systems strongly relies on this choice and therefore one needs to carefully assess a

72



A three-pole approach to the single-band Hubbard model

proper way to extend the operatorial basis in order to include the particular scales
of energy which are aimed to be described. To this purpose, one can in principle
consider the possibility to extend the two pole basis by adding one by one
all the higher order fields which appear in the equations of motion of the Hubbard
operators £(i) and n(7). This procedure is at the basis of the exact solutions found
for a large class of exactly solvable systems (see Chapter , furthermore it has also
the main advantage of preserving the spectral moments [69]. Then, on the basis of
the aforementioned considerations, recalling the equations of motion of the Hubbard

operators (see Appendix [B.3)):

i0,§(1) = —p&(d) —2dt [ (i) + 7 (i)] (5.1)
iOm(i) = (U —p)n(i)+ 2dtr(i) (5.2)

the most natural choice for the third field of the basis falls on 7(7), which is defined
in spinorial notation as:

m(i) = %0“%() (@) + e(@)e M (i)e(d) (5:3)

or, alternatively, as the sum of its charge 7.(¢), spin 7,(¢) and pairs 7,(¢) components
as:

(67

(i) = —3n(i)c(4)
(i) = (i) 4+ mo(@) + mp(@) , § (i) = opnp(i)c™(i) , 1< k<3, (5.4)
mp(1) = (i)™ (i)e(i)

Thus a possible three-pole basis coming from the hierarchy of the equations of motion
is the following:
§(4)
)= | n@) | - (5.5)
(i)
It is worth noting that the inclusion of 7 (i) does not close the equations of motion
of ¢(7). In fact, simple but lengthy calculations give:

0 (i) = —pm(i) + 2dt [p(i) — 0(0)] + Uns(i) , (5.6)
where p(i), 6(i) and 74(7) are higher order fields defined as:
S0, ()0 (0) + c()§™ (D)) | (5.7)
o [T (i)o,c(i) — I (i)o,c®(i)] (i) (5.8)

0(i) = (D)™ (i)e(i) + (i) (@) (i) — e(i)e T (D)e(i) + %U“W(i)cag(i) (5.9)

1
2
1
2

whose contribution, as reported in Chapter [2| has to be accounted in the calculation
of the m(k) matrix (2.25)). At this point, due to the complicated analytical expres-
sions of the fields (5.7)-(5.9), with the aim of reducing analytical efforts it is useful
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to consider as a first approximations the following restriction to three-pole basis:
(i) =1 @) |, (5.10)

in which, with respect to EqJ5.5] the field (i) has been substituted by c4(i), where:
cs(i) = opng(i)c® (1) . (5.11)

The physical meaning of this approximation immediately follows by a simple com-
parison with Eq/5.3] from which it is immediate to note that the field ¢,(¢) is nothing
but the spin component of the starting filed m(:) which is supposed to provide the
leading contribution in the description of the dynamical energy scales which arise in
the high-filling and low-temperature regime. The equation of motion for the third
field can be written as:

i0cs(i) = —pes(i) + 4t (rs(i) — ps(i)) + Uns(7) (5.12)

where now the higher order fields 7,(7), ks(7) and ps(7) read as:

778(2) = Uknk;(@)ﬁa(l) ) (513)
ke(i) = o™ (D)ope(i)c® (1) — opc! (i)ope® (i)™ (i) (5.14)
ps(i) = opnp(i)c® (i) . (5.15)

In the polar approximation (see Sec. we linearize the equations of motion as:

iat¢M(ivt) = Z Zeml(i7j)wl(jat) ) (516)

il=

where, according to Eqf2.23] the energy matrix €(¢, ) can be calculated in terms

of I(¢,7) and m(2,7) matrices (defined in Eq2.24| and Eq)2.25, respectively). In
particular, for the chosen three-field basis (5.10)) we obtain:

]ll(ki) 0 [13(’(7) mn(k) mlg(k) mlg(k)
I(k) = 0 Ina(k) Ips(k) | ,m(k)=| m(k) ma(k) mas(k)
Liz(k) Is(k) Is3(k) maz(k) maz(k) mas(k)

(5.17)

where, for a paramagnetic and homogeneous system, the elements of the first two
lines and columns can be written in terms of the three self-consistent parameters p,
p and A as:

n

h(k)= Iy =1=3 , In(k) = In = g , (5.18)
mis (k) = —ply — 4 [A + (p+1 = n)a(k)] (5.19)
maa(k) = (U — p) Iog — 4t [A + pa(k)] (5.21)
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where ¢ is the hopping integral, i is the chemical potential, n is the particle density
and «a(k) is the Fourier transform of the nearest-neighbour projector . Taking
all the terms up to the first order in a(k), the elements of the remaining rows and
columns can be expressed as:

o 3 &
Ly(k) = 3C¢ + gxsalk) (5.22)
3
() = 305 — Dxtalk) 52
I(O) - 40“ 305
(k) — I(O) n k I(a) ’ 33 cCs 2 m , 5.24
33( ) 33 CY( ) 33 [?Eg) = —3 (2fs }LC(C:XC) ( )

according with the notation ng)% = <<I>’f(z)<1>£(z)>, being k € {5, a, 8,1, A\, u} a

generic projector (see Appendix [B.1.1]), where x¢ is the nearest-neighbour spin-spin

correlation function: 1

Xo = 5 ()i (@) (5.25)

and f, is the following three-site correlator:

f. = é (o (8)e(i) 1 (1)) (5.26)

From the knowledge of the elements of the normalization matrix, a straightforward
calculation of the m(%, j)-matrix gives:

mis(4,5) = <{ &fcsz }>_<{Z8t }>:
- <{ (1 —2dt( “(3) + }>

- <{ i) - 2t ¢ <>+ﬁ<i>+§cs<i>),ci<j>}>=
= — (u+ 2dtoy;) Iis(3, §) — 2dtag; s (i, §) — dtIss (s, §)
—2dt1; .. (1,7) , (5.27)
mas(i,3) = ({idics(d),n'(4)}) = ({idm(@), cl(4)}) =
= <{(U—u)77( ) + 2dtm (i), cl(5)}) =

= <{(U—u)n(i)+2dt(W(i”%cs(i) ’Ci(j)}>:

— (U — p) Loy + dtIss(3, 5) + 2dt1- . (. 5) | (5.28)
mys(i,§) = —nl(s,§) +2diL,  1(i.5) + UL i(3.§) =

= —pulsg(6,G) + 2t 1 (35) + U (Ta(i,5) = I 1(6)) =

= (U — p) Iy (4, §) + <2dtlw 2(0.5) — Ul (i, j)) , (5.29)

where Iz, (¢,7), I¢ 1(¢,9) and I, :(4,7) are defined in terms of the higher order

fields - - that appear in the equation of motion of ¢,(7) which, consistently
with the choice of truncating all the terms up to the first order in «(k), can be

75



CHAPTER 5

written as the sum of their local (0) and nearest-neighbour (a)) components as:

.. A S . a
e(id) = ({rt0) = el | ) =0t + oyt . 6530

Ie a(6,3) = ({e(d) = n(0),d(G)}) = 0510, +au . (5.31)
Looi(63) = ({5() = p@),cl()}) = 6510 +agl® . (532)

With the exception of I}r?():s for which analytical calculations immediately give:

[(0)

T,Cs

=0, (5.33)

the calculation of the remaining quantities can be meaningless as well as cumbersome
since, due to the very complicated operatorial expressions of the fields involved, it
will introduce additional unknown parameters which, in turn, need to be fixed by
means of auxiliary approximated methods. At this point it is worth emphasizing
that, although it is always possible to use approximate methods to estimate unknown
correlators (we report in Appendix [C| approximated expressions for f; obtained
within two different techniques , namely the decoupling and the projection), a large
use of these approaches might induce uncontrolled approximations whose effects on
the self-consistent scheme, then on the final results, could be hard to estimate by a
posteriori analysis. In this context, Pauli constraints offer the only reliable way to
fix unknown correlators as they allow the system to adjust its internal parameters
in order to satisfy algebraic relations or symmetry requirements which are valid for
any coupling and any value of the external parameters.

It goes without saying that, on the basis of the aforementioned considerations,
any extension to the number of possible self-consistent equations will provide an
invaluable contribution to the build of a proper self-consistent scheme. To this
purpose, by exploiting all the possible algebraic constraints and contraction rules
among the fields of the basis, we note the following operatorial relations:

c(i)el(i) = 3¢(i)c' (i), (5.34)
(i)l = 0, (5.35)
whose averages give:
Ce., = (&i)cl(i))y =3(€*(i)cM(i)) = 3C¢. (5.36)
C’SCS = (n(i)cl(i))=0. (5.37)

Hence, including the above relation to the ones already discussed in the framework
of the two-pole approach (4.27)), (4.28)), (4.30), we come up with the following set of
five self-consistent equations:

n=2(1-Ce—Cp) (5.38)
A=Cg—-C2 (5.39)
ce, =0, (5.40)
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Ce., =3C¢. (5.41)
6 __
o =0, (5.42)
and ten (i, p, A, fs, X2, Lgrfvc)s, FSU S A s 1@ ;) unknown parameters to

ty f& 0 1o
&s5Cs &syCs KsPs,Cs KspPsyCs

be fixed. However we note that both 7 (2,7) and I, .(2,7) only appear in the
expression of ms3(2,5) and therefore, in order to minimize the number of unknown
correlators, it is convenient to parametrize mss3(, J) as:
o . . . _ (0 _

mas(i,3) = (U — 1) I (i, 5) + iy 015 + iy v | (5.43)
which allows us to reduce from four to two the number of unknowns correlators in
ma3(2, ), where now mg%) and mg‘;) accounts, respectively, for the complementary
local and «;; contributions of ms3(¢, j) with respect to I33(¢, 7). Furthermore, we
also recall that the p, the self-consistent parameter appearing in the two-pole self-
consistent scheme, can be written as the sum of nearest-neighbour charge-charge

X0 spin-spin x¢ and pair-pair x; correlation functions as:

p= ;1 (X6 +3X5) — Xp > (5.44)
where:
vi = ([ (e @] () @) - (5.45)

Then, unlikely in the two-pole approximation, because of the presence of x¢ in both
I(%,7) and m(%,J) matrices, it is convenient to use Eq in order to schematize

all the unknown quantities as a set of six fermionic parameters: u, A, fs, I (o) mé%),

T,Cs?
még), and three bosonic correlation functions: xg, x§, x,. At this point we recall
that, as already discussed in Chapter [] for the case of a two-pole approach to the
single band Hubbard model, a number of well-consolidated techniques are available
for the calculation of charge-charge, x§, spin-spin, x§, and pair-pair, x;, correla-
tion functions (for example they can be estimated by opening the bosonic sector,
see Section , or by means of the one-loop approximation, see Appendix .
Therefore, without opening the bosonic sector, we can safely fix x, x5 and x; with
the corresponding values obtained in the framework of the one-loop approximation
and then use the Pauli constraints to determine the remaining fermionic correla-
tors. In particular, we note that u, A, I;f‘c)s, mé%), mgg‘) must necessarily be fixed
self-consistently since, the first two, are intimately related to Eq[5.38 and Eq[5.39]
respectively, while the remaining ones are completely unknown in their analytical
form. Then, starting from the initial set of ten unknown parameters and given the
overall decision to fix xg, x§ and X, consistently with the one-loop approximation,
we are left with only f to be determined in order to close the self-consistent scheme.
In particular, hereafter we use the projection method described in Appendix [C] to
fix f; which gives :

1 ., 2d-1[1 , (Cs Cg
B gt e (5 5]
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Correlator | Approximated expression
e o

fs 2aCe + 457 EX?‘ (hcf - %)J

C (6% (6%

111 (Ccf CS&) 122 (CCU 2d03ﬂ>
Xg TL —2]11 (Ca)2/ 2]22( ) /
X? —2111 (C ) /(2[11[22 Cg ) 2[22 (C ) /(2[11]22 — C 7])
Xp CeeCre/C

Table 5.1: Approximated expressions for all the internal parameters of the three-pole
calculation scheme for the single-band Hubbard model. Here fs is calculated
by means of the projection method described in Appendix E], X6 Xs and xp
are fixed in the framework of the one-loop approximation.

Ca ce’ 05 C ce’ 05 5.46
]11 € 9t 122 o gqen) (5-46)

Then, summarizing, in the framework of the self-consistent scheme developed in
this Section, I(k) and m(k) read as:

Li(k) 0  Is(k) mu (k) mia(k) mais(k)
I(k) = 0 ]22(’43) Igg(k) ,m(kz) = mlg(kﬁ) ng(kﬁ) mgg(k)
Liz(k) Ixs(k) I33(k) miz(k) mas(k) ma(k)
(5.47)
with:
([ La(k)=1-12,
Inp(k) =2
Lis(k) = 3C¢ + 5xca(k) , (5.48)
Is(k) = 3C%. — 3x%a(k)
| Iss(k) = 4C%, + 3C,, — 3a(k) (2f, — 1C2)
and:

mi1 k) = _M]n(k) 4t [A + ( (Xo + 3Xs) Xff +1-— n) O‘(k)} )

) =4t [A+ (5 (G +3x3) — xp — Ina(k)) (k)} :

) = (U = ) Ino(k) — 4t [A + § (x§ +3x%) — xg(k)]

mas(k) = — (u + 2dta(k)) 15 (k) — 2dta(k) I (k) — dt133(k:) — 2t Iz e (K)
) = (U — ) Ins(k) + dtlss(k) 4 2dt Iz .0, (k)

) = (U = p) Lg(k) + miy) +mi5 (k) .

\

(5.49)
In the above relations Xm Xs and x; are calculated in the framework of the one-loop
approximation, g, A, I7r s mé%), m%) are fixed via Pauli constraints |)1D
while f; is fixed by means of the projection method (see Appendix [C). Analytical
expressions of all the parameters involved in the self-consistent scheme are reported

in Tab5.1l
With the aim of testing the accuracy of the three-pole solution proposed for
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the single-band Hubbard model, we report in the next Section our study on energy
dispersion, filling and U dependencies of chemical potential and double occupancy
obtained in the framework of the self-consistent scheme developed above. We com-
pare our results with qMC, DCA and Lanczos data, showing an excellent agreement
in a wide range of filling and strength of the on site potential, which definitely allows
to consider the three-pole solution as a step forward with respect to the the two-pole
approximation.

5.2 Results and comparisons: double occupancy, che-
mical potential and energy dispersion

Filling, temperature and U dependencies of chemical potential and double occu-
pancy represent a severe testing ground for many theories aiming the description of
strongly correlated systems. It is well known in fact that how the aforementioned
quantities depend on the internal parameters of a given model is intimately related
to the nature and the strength of the interactions taken into account, and therefore
to the competition between different orderings or instabilities in the system. In this
regards, one of the most relevant achievements of the two-pole theory consists in
a quantitative fit of quantum Monte Carlo (¢qMC) and Dynamical Cluster Approx-
imation (DCA) data for the D(n) and the pu(n) dependencies, in the whole range
of filling 0 < n < 1, at low values of the on-site Coulomb potential (e.g. U = 1
and U = 2)[16]. However with increasing ratio U/t (e.g. for U/t = 4), as clearly
follows from Figl5.2] although the two-pole solution maintains a good agreement
with numerics for p(n) and D(n) at low fillings, with increasing filling a quanti-
tative description of D(n) and p(n) dependencies can only be found in terms of a
crossover between the two possible two-pole solutions, p < 0 and p > 0, which has
been argued to take place in the range of n in which antiferromagnetic correlations
dominates with respect to the paramagnetic behaviour (see discussion in Section
7).

We immediately note that this issue is completely overcome in the three-pole
approximation which, as follows from Figl5.3] dynamically reproduces the crossover
from negative to positive values of p going from n = 0 to n = 1. In particular,
by comparing the values of charge, spin and pair fluctuations (Fig it is also
immediate to note that the crossover region is localized in the regime in which spin
fluctuations become dominant with respect to charge and pair ones for U/t > 1,
consistently with what has been argued in the two-pole approach. Last but not
least, unlike the two-pole solutions, the value of p calculated in the framework of
the three-pole approach remains confined to physical values in the whole range of
filling.

A further check of the three-pole solution has been done by comparing the D(U)
dependence with qMC and Lanczos data. As follows from the left panel of Fig5.5
results obtained in the three-pole approximation are qualitatively and quantitatively
in agreement with numerics, reproducing the correct trend of the double occupancy
in a large range of U/t . In particular, as follows from the right panel of Fig, by
increasing the ratio U/t we also notice a strong suppression of all charge and pair
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fluctuations. On the contrary, strong antiferromagnetic fluctuations persist in the
U/t > 1 limit and further bolster the choice of the ¢4(7) as the leading contribution
of the original third field 7(7) in the strong coupling regime.

Let us now analyze the band structure resulting from the energy distribution of
single-particle excitations in k-space. As one would expect from a polar approxima-
tion, in the framework of a three-pole approach we have three bands, each of them
related to one of the composite fields of the chosen basis . In particular, as
immediately follows from Fig and Fig, the contributions coming from &(7)
and n(7) are shifted by U with respect to each other, while the one related to the
third field c¢(7), not sensitive to U, remains centered at the value of the chemical
potential. By simple comparison with the two-pole results, Figl5.1] it is immediate
to note that the presence of the third band at w = p has a crucial effect on the
dispersions of £(i) and 7(i) which, unlike in the two-pole approximations (Figl5.1),
are both characterized by a maximum in the M = (7, 7) point and a minimum in
' = (0,0) point. This last feature, which indeed improves the agreement with qMC
data with respect to the two-pole approach, allows for a qualitatively description
of numerical results in terms of a superposition of three quasi-particle dispersions,
rather than in terms of a single band only, characterized by an evident transfer of
weight among the three bands as signaled by the strong k and w dependencies of the
intensity Z(k,w), calculated in terms of energy dispersions £, (k) and corresponding

spectral density matrices O’C(LZ)(I{Z) as:

T(k,w) = 3 Lw, By(R),T) (o1 (k) + 205 (k) + o3 (R)) . (5.50)

n=1

being L(w,wp, ') the Lorentzian distribution function with center at w = wy and
dispersion I':
L(w,wp, ') = 1 F2/2 5 - (5.51)
T (w —wp)” + (I'/2)
To better emphasize this point, we report separately in Fig. for the case T'/t = 0.5,
U/t = 8 and n = 0.94 illustrated in Fig the energy dispersions and the corre-
sponding spectral density matrices where, for the only sake of clarity, we have labeled
with E(cy), E(§), E(n) the central, the lower and the upper band, respectively, and
with o(cs), 0(§), o(n) the corresponding weights. By analyzing the momentum de-
pendence of all the quantities we note that while the weight of the central band,
given by o(c), remains always far from zero, the spectral density of the upper band,
o(n), is strongly suppressed near (7, 7), in advantage of the ones related to the lower,
o(§), and the central, o(cs), bands, whose intensities increase in the region of the
k-space where the corresponding energy dispersions approach the maxima of the
upper and the central gMC bands, respectively, at (m, 7).

Then, by looking at all the results described so far, we can conclude that the
three-pole solution undoubtedly represents a step forward with respect to the two-
pole approach, providing a noticeable agreement in filling and U dependencies of
chemical potential and double occupancy (Figl5.2|) with respect to different numeri-
cal methods. Some discrepancies still persist in the momentum-dependent quantities
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(e.g. energy dispersions) especially in the region near (m,7) where the role played
by antiferromagnetic correlations is expected to be relevant (Fig.. These corre-
lations, given the overall assumption of a uniform and paramagnetic phase, can be
only partially accounted in the framework of the three-pole approach described so
far (see Fig., leading to the possibility to qualitatively but not quantitatively re-
produce numerical data. In this regards, as already discussed at the beginning of this
Chapter, a four pole approach could be essential and worthwhile to be investigated
in order to significantly improve the agreement.
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Figure 5.2: Filling dependence of chemical potential y (left column), and double occu-
pancy D (right column) for T/t = 1/6 and U/t = 1.0 (top line), U/t = 2.0
(central line) and U/t = 4.0 (bottom line). Black and red dashed lines de-
notes the two possible solutions with p > 0 and p < 0, respectively (see
discussion in Section , the solid green line represents the solution in the
three-pole approximation. Symbols refer to gMC [68] (cyan circles) and DCA
[79] (blue circles) data.
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Figure 5.3: Filling dependence of p (Eq5.44)) for T/t = 1/6 and U/t = 1.0 (black lines),

U/t = 2.0 (red lines) and U/t = 4.0 (green lines). Left and right panels
report the data obtained in the framework of the three-pole and the two-pole
approximations, respectively.
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Figure 5.4

: Filling dependence of spin (black lines), charge (red lines) and pair (green
lines) fluctuations for T/t = 1/6 and U/t = 1.0 (left panel), U/t = 2.0
(central panel) and U/t = 4.0 (right panel).
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Figure 5.5: Left panel: comparison between three-pole results (solid lines), qMC [75] and

Lanczos [80] data (symbols) in the D(U/t) dependence for different values of
filling and temperature. Right panel: three-pole results for charge, spin and
pair fluctuations versus U/t plotted for n = 8/9, T'= 0.001 (solid lines) and
n=0.999, T = 1/16 (dashed lines).
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Figure 5.6: Energy dispersions along the principal directions of the first Brillouin zone.
Data obtained in the three-pole approach are compared with qMC data [78§]
(open circles) for T'/t = 0.5, U/t = 8.0 and different values of the filling.
Dashed lines correspond to the bare energy dispersions F(k) as reported in
the left panel of Fig[5.7]

20 7 T T T T ] w [

: ] o F

B ] S ggk
2 10 /_/\ g 0
i) i 1 IS r
2] h ] > 06|
@ i . E= —
g o //\ :
S . ] 3 o4l ]
> 10 ] — [
S — —E(n) ] s *
g —E(c) ] S 02 /_\ /\
W20 EE®) J & I U

L L | L L

Figure 5.7:

- ' - 0.0 ; - : - -
(0,0) (TL0) (m (0,0) (0,0) (T00) (Tt (0.0)

Energy dispersions (left panel) and corresponding spectral density matrices
(right panel) along the principal directions of the first Brillouin zone for
U/t = 8.0, T/t = 0.5 and n = 0.94. Different colors correspond to the
contributions related to fields £(i) (green), n(i) (black) and cs(7) (red).
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Open issues and possible directions

As shown in the previous Chapters, the Composite Operator Method represents a
powerful and full-consistent analytical tool for the investigation of strongly corre-
lated electronic systems. As already said before, beyond its application to extended
U-J-h and single band Hubbard models discussed in Chapter [3] and Chapter [4] re-
spectively, in the last fifteen years it has been also successfully employed for the
study of several other models and materials among which: p-d [12], ¢-J [13], t-t'-U
[14], t-U-V [15], Kondo [17]|, Anderson [I8|, Cuprates [I9]. The main advantage of
the COM resides in the use of the so-called composite fields as building blocks for
the construction of a proper Green’s function formalism as illustrated in Sec[2.1]
These fields, differently from the canonical electronic operators, are generated by
the interactions and describe stable quasi-particle excitations in the systems rather
than bare electrons. Hence, within the resulting Green’s function formalism the
effects of the interactions are contained not only in the self-energy corrections, but
also in the “free” propagators. The calculation of both these quantities represents
a hard task to deal with and, as shown in Chapter [ can only be done in terms
of a number of internal parameters to be determined self-consistently by means of
symmetry requirements and algebraic constraints (see Sec[2.3). In this context a
crucial role is played by the choice of the composite basis.

As pointed out in Chapter [4] in the case of the single-band Hubbard model a
simple two-field basis, of either bosonic or fermionic nature, suffice to describe most
of the relevant effects induced by strong correlations. However, due to the presence
of multiple energy scales in the model Hamiltonian, a full-consistent description of
all single-particle properties requires an extension to, at least, a three-field or a
four-field basis. As discussed in Chapter [5] this procedure, which from one side in-
troduces non-trivial complications due to the presence of a high number of internal
parameters to be determined, from the other side allows to get a noticeable agree-
ment with different numerical methods, providing a remarkable steps forward with
respect to the two-pole approach. Some discrepancies still persist in the momentum-
dependent quantities (e.g. energy dispersions, Fig especially in the region near
(7, ) where the role played by antiferromagnetic correlations is expected to be rele-
vant at large U. These correlations, given the overall assumption of an uniform and
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paramagnetic phase, can be only partially accounted in the framework of the three-
pole approach described (see Fig., leading to the possibility to qualitatively but
not quantitatively reproduce numerical data. In this regards, a four pole approach
could be essential and worthwhile to investigate in order to significantly improve the
agreement.

Then it is clear that, starting from the well-assessed and widely studied two-
pole solution, a lot can still be done concerning possible three-pole and four-pole
extensions of the theory, aiming to a better description of correlations and multiple
energy scales in the strong coupling regime. In particular, as far as the three-
pole approximation is concerned, it would be of great interest to estimate possible
corrections to the calculation scheme described in Chapter |4 by considering (7),
rather than its spin part c4(i), as a third field of the basis. Alternatively, on the
basis of the same motivations which led to the splitting of the canonical electronic
field ¢(4) in its two components £(i) and 7(i), it would be even more promising, yet
fascinating, to investigate a four-pole solution in which the third field 7 (i) appears
divided in two auxiliaries components whose contributions in the energy spectra,
similarly to the ones that arise from £(i) and 7(i), are expected to separate among
each other with increasing U. It is worth emphasizing that, beyond the relevance
of the agreement with numerical data, this last suggestion could pave the way for
a theory which, differently form many others, not only remains applicable in the
whole range of filling, temperature and strength of the on-site potential U, but also
dynamically takes into account both the energy scales of U and J in the crossover
from the weak to the strong coupling regime. These proposals, whose realization
would represent a significant step forward in the development of the method, are
currently under investigation. In addition, is still under investigation the possibility
to apply the COM to a large class of exactly solvable systems, among which spin
systems and extended Hubbard models, with the aim of providing the exact solutions
in two dimensions.
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Chapter

Introduction to polaron and bipolaron
theory

In the last years, after the discovery of high-temperature superconductivity, a new
interest arose in the study of polaron and bipolaron theory as a full-consistent al-
ternative to other possible scenarios proposed to explain not only superconducting
features, but also non-Fermi liquid behaviors observed in the normal state of a large
class of superconducting materials. Polaron and bipolaron theory, originated from
electron-phonon coupling, has its roots in 1933 when the concept of “polaron” was
first introduced by Landau [I] as the result of the interaction between a single carrier
(electron or hole) with the self-induced polarization field in a semiconductor or ionic
crystal. The standard Hamiltonian which describes this interaction was first derived
by Frohlich [2] :

# S (Vawla ko v)wguch , (K)o (k — q)dy(q) + He) , (7.1)

/
k,q n,n' v,o

1
el—ph — \/ﬁ

where g and k are phononic and electronic momenta, v and n are phonon mode
and electronic band indices, respectively, o is the spin of the carrier. The oper-
ators cf, ,(k)/cno(k) create/annihilate a carrier with momentum k and spin o on
the n'*-band; similarly the operators dJ(q)/d,(q) create/annihilate a phonon with
momentum q on the v** mode. Finally, V(q, k, ) is the dimensionless matrix which
parametrizes the Fourier transform of the electron-phonon interaction (EPI):

N
Vi o(q, k,v) = _W /ddr (equ - Vu(r)) i, (1 k)Y (7 k—q), (7.2)
qu

where eg, is the unit polarization vector of the phonon mode v while v(7) parametrizes
the interaction among two charged carriers at distance r. Although Eq[7.1] repre-
sents the most general expression for the EPI, for the sake of simplicity hereafter we
will restrict our analysis to a single-band picture in which the EPI matrix only de-
pends on the transferred momentum V,,,» ,(q, k, ) = V(q) allowing for the following
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simple form for the EPI:

Hel—ph = qu”i [um(q)dq + H.c.] , (7.3)
q,

where the Wannier representation has been used, with n, = Y__ ¢/ (m)c,(m) and:

1 ig-m
Um(q) = ﬁV(Q)e ' (7.4)

The Hamiltonian (7.1]) allows for different descriptions of the polaronic state
according to the values of the characteristic phonon frequencies. With no claim
of being exhaustive (for a comprehensive review see Refs.[3, [4, 5], [0]), we just recall
that if the phonon frequencies wq are sufficiently low, the deformation induced in the
crystal affects many lattice sites resulting in the presence of a “large” or “continuum”
polarons. Vice versa, when the polaron binding energy is larger than the electronic
half-bandwidth, the deformation of the lattice is confined to few lattice sites resulting
in the so-called “small” or “lattice” polaron regime.

The large polaron regime has been extensively studied in both strong and weak
coupling regimes showing that large polarons almost behave as free electrons moving
in the lattice with a moderate mass renormalization. In the strong coupling regime
a strong coupling expansion in terms of the Frohlich coupling constant o gives the
following value for polaron ground-state energy Fjy and polaron effective mass m*
[7]:

— = —0.108513c% — 2.836 7.5
haJo @ ’ ( )
m* 4

— = 1 +0.0227019a* | (7.6)

where m, is the bare band-mass of the carrier while « is defined in terms of static,
g9 and dynamic, €., dielectric constants as:

e Imec? [ 1 1
“ 7 he\l 2hw, (5 - 5_0> | (77)

In the weak coupling regime the same quantities calculated weak-coupling expansion
read as [, 9

Eo

L~ —a — 0.01591962200” — 0.0008060700480° + o(a’*) (7.8)
0
-1y % +0.0236276302 + 0(a?) . (7.9)
Me

The opposite behavior comes in the play under the assumption, supported by
experimental evidence in oxides, that the self-induced polarization field could be
mostly confined in a region with dimensions comparable to the lattice spacing . In
this regime, which is realized when the polaron binding energy is larger than the
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electronic half-bandwidth, strong and short range interactions localize carriers with
a strong mass renormalization, resulting in the formation of small polarons. The
time in which the carrier is localized on a single lattice site is larger compared with
the relaxation time of the lattice, allowing for a localized description of the polaron
dynamics in the real space, rather than in the momentum space. Hence, polaron
properties such as ground state energy and effective mass are strongly dependent
on the particular lattice geometry. However, a common fingerprint of the small
bipolaron regime can be found in the polaron mobility. As suggested by Lang and
Firsov [10], polaron hopping processes can only be induced by thermal excitations
since the jump of a carrier from a site to another induces a shift in the lattice
deformation. In particular, for kgT > hwy/4 the typical occupation time At related
to the presence of a carrier on a site, satisfies the relation: ¢, < At < ¢, where:

h
t _—, 7.10
’ VArkT (7.10)
h

being W the polaron bandwidth and Ar the thermal activation energy for hopping
given by 1/2 the polaron binding energy . Hence, in the small-polaron picture,
the polaron mobility u strongly depends on temperature according to the following
relation [10], 11]:

ea2w0 _ AT

= DT 7.12
H=Grt (7.12)
which holds for T > 0p/2, where 0p is the Debye temperature, e is the charge of
the carrier and a is the lattice constant.

Because of their nature, small and large polarons interact with each other via a
renormalized coupling which comes out from the competition between the Coulomb
repulsion and an effective attraction of phononic nature . Different from the standard
electrostatic repulsion, two carriers of same charge in a ionic lattice might attract
each other in order to minimize the self-induced deformation. The resulting long-
range interaction, which is attractive at short distance, at large distances is found to
be weak end repulsive [12] since, although ¢ > 1, Frohlich EPI can only reduce the
electrostatic repulsion without overscreen it. Importantly, this last findings holds
even in the case of multi-polaron systems where Frohlich EPI in remains unscreened,
independently on the polaron density, since polarons are too slow to screen high-
frequency optical phonons |13, [14]. Hence when the electron-phonon contribution is
dominant with respect to the Coulomb one, a bound state of two polarons, called
“bipolaron”, might arise. The properties of this bound state depend on the polaronic
regime, so that is is possible to have two large polarons bound in a “large bipolaron”
(also called “Frohlich bipolaron™) as well as two small polarons paired in a small and
tightly bound “small bipolaron” (also called “Holstein bipolaron”).

Large bipolarons have been intensively studied in the continuous limit [I5] [16]. Tt
has been shown that the bipolaron energy depends on the intensity of the Coulomb
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Figure 7.1: The stability region for bipolaron formation in 2D (left panel) and in 3D (right
panel). The dotted line U = /2 separates the physical region (U > v/2a)
from the non-physical (U < v/2a). The shaded area is the stability region in
physical space. The dashed (dotted) “characteristic line” U = 1.537a (U =
1.526a) is determined by U = v/2a/(1—¢e/€0) With the experimental values
(from Ref. [19]) e0c = 4 and g9 = 50 for LagCuOy (60 = 4.7 and g9 = 64.7
for YBagCugOr calculated using the experimental data in Refs.[20, 21]). The
critical points o, = 6.8 for 3D and «a, = 2.9 for 2D are represented as full
dots. Reproduced from Refs.[17, 1§].

repulsion, parametrized by the dimensionless parameter U:

V2a

- Y
1 —ex/e0

(7.13)

with U > /2 since g¢ > e, in ionic crystals, a is defined in Eq. The stability
of the bipolaronic state, as follows from the constraint E, < 2E, (Ej, and E, are
bipolaron and single polaron energies), has also been studied in two and three di-
mensions [17, 18], resulting in the phase diagrams reported in Fig[7.1] which show a
substantial increase in the bipolaron stability in 2D with respect to the 3D case.

Due to the very narrow-band, the small bipolaron regime has been mostly studied
in the framework of the so-called Holstein-Hubbard model (HHM):

1 1
Hyun = Z (—tijc;rcj + 5%?030}0]-@) + quy (d;l,dql, + 5) + Her—pn , (7.14)
q,l/

0]

where He_pp, is the electron-phonon interaction described in Eq., Vé(m —n) =
e? /ey |m — m| parametrizes the potential, wg, is the phonon frequency of a phonon in
the v mode with momentum g and ¢;; is the hopping term, which is a perturbation
under the assumption that the energy of two small polarons is much larger than the
polaron bandwidth [22, 23]. It has been shown that on-site bipolarons, which are
stable under the condition U < 2E,, are the ground state of the HHM in the non-
dispersive limit [23] 24], 25, 26, 27]. In this limit the bipolaron binding energy A =
2E,—U is much larger than the bandwidth, hence in the ground state all polarons are
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Figure 7.2: Polaron to bipolaron mass ratio (left panel) and bipolaron radius in units
of the lattice constant a (right panel) on a staggered ladder for a range of
w = wp/T(a) and X showing mobile small bipolarons in the adiabatic regime
w = 0.5 for coupling A up to 2.5. Reproduced from Ref.[29].

paired, with an effective bipolaron-bipolaron and bipolaron-polaron repulsion which
originates from the Pauli exclusion principle (two or more bipolarons, as well as
three or more polarons, can not occupy the same site). Bipolaronic configurations
have also been studied in the presence of a finite hopping by considering ¢;; as
a coherent bipolaron hopping integral and projecting the HHM Hamiltonian in a
subspace characterized by all bipolaronic states with no unpaired polarons [23].

Beyond the narrow-band limit, bipolaron formation and stability have also been
studied in the framework of the so-called Frohlich-Coulomb model [28] which, under
the assumption of dispersionless phonon modes of frequency wy, accounts for finite-
range Coulomb repulsion V(m —n) = €*/gy |m — n| and long-range Fréhlich EPI
as:

1
Mo = 3 Tln e s 83Vl miceacl
m#n/' m#n
+wp Z g(m —n) (em * Um—n) N (dl, + di,)
m#n

1
+wo Y <djndm + 5) : (7.15)

where e, is the polarization vector at site m, Uy,—pn = (Mm — n)/|m —n| is the
unit vector pointing from m to m, g(m — n) is a dimensionless parameter. The
FCM has been studied in the whole range of parameters and for different 2D and
3D geometries [29, 30, 31, B2, B3] by means of the Continuous-time quantum Monte
Carlo (CT-QMC) technique for bipolarons [29]. By considering Coulomb repulsion
up to nearest-neighbour, bipolaron formation has been found in a wide range of
electron-phonon couplings and phonon frequencies. As follows from Fig[7.2] bipo-
larons are small and perfectly mobile since the bipolaron to polaron mass ratio
2 < m*™/m* < 4 and the bipolaron radius Ry, ~ a (a is the lattice constant) going
from the weak A < 1 to the strong A < 2.5 coupling regime.

In all the aforementioned models, bipolaron formation has been widely advo-
cated as one of the possible mechanisms at the basis of high-T,. superconductivity
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and non-Fermi liquid behaviors observed in a large class of compounds. Local and
tightly bound pairs, such as small and perfectly mobile bipolarons, are good can-
didate for a Bose-Einstein condensation (BEC) which has already been argued to
provide a very high critical temperature (see Sec[10.2). However, a correct descrip-
tion of all bipolarons features requires unscreened Froéhlich and Coulomb to be taken
into account, which makes the problem more and more complicated to deal with.
Because of this, for many years the formation of small bipolarons has been mostly
considered in a class of non-retarded models, e.g. negative-U models, which can only
phenomenologically account of real unscreened Coulomb and electron-phonon inter-
actions. These models, although able to reproduce the formation of tightly bound
polarons pairs in real space, are not able to recover the crossover to the standard
BCS regime of large and weakly interacting Cooper pairs, which has been argued to
be one of the key-features for polaron and bipolaron theory of superconductivity.

Within this context, we derive in this part of the thesis the results obtained in
the framework of the polaronic t — J, [34, B35] and ¢ — .J, — U [36], 37] models which,
proposed as alternative models for high-temperature superconductors, for the first
time account for unscreened long-range electron-electron (Coulomb) and electron-
phonon (Frohlich) interactions on microscopic grounds. In Chapter 8| we introduce a
microscopic Hamiltonian for the description of high-polarizable ionic lattices, based
on unscreened electron-electron (Coulomb) and electron-phonon (Frohlich) interac-
tions. We show that, without any assumption on their range and relative magnitude,
long-range Coulomb and Frohlich interaction almost negate each other giving rise
to an effective model in which electronic and phononic degrees of freedom are both
contained in a rescaled hopping operator. The aforementioned model is studied
in Sec[8.1] and Sec[8.2] in the weak and strong coupling regimes, respectively. It is
shown that, by applying the BCS-Eliashberg formalism in the weak coupling regime,
the model allows a phase transition to a superconducting phase with a critical tem-
perature T, ~ 20K. This superconducting phase is characterized by Cooper pairs
which are preserved, even in the presence of a strong electron-electron coupling,
thanks to the “Tolmachev-Morel-Anderson” logarithm which rescales the Coulomb
potential. In the strong coupling regime, due to non-negligible of multi-phonon
vertex corrections and finite bandwidths effects, the model Hamiltonian is studied
within a perturbative approach, by averaging the rescaled hopping operator with re-
spect to the phonon vacuum and considering the remaining part as a perturbation.
Within this scheme, it is shown that the application of a Schrieffer-Wolf transfor-
mation leads to the so-called polaronic ¢ — J, model. Here ¢;; is the renormalized
polaron hopping integral, which describes the motion of strongly inter-correlated
fermions, also accounting for their interaction with the lattice. J, > ¢ is the the
residual polaron-multi-phonon exchange interaction which has a twofold effect: is
responsible for the formation of small and perfectly mobile pairs of polarons called
bipolarons and, unlike in the standard ¢ — J model, also protects the ground state
from clustering giving rise to an effective pair-pair repulsion.

Numerical and analytical results on the ground state of the polaronic t — J,
model are reported in Chapter [9] for different lattice geometries. The static limit
is analyzed in Sec[0.1] It is shown that, in the extreme strong coupling regime in
which ¢t < J,, the ground state is a spin singlet made up by pairs of nearest-neighbor
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bipolarons separated by at least one empty site, with an effective pair-pair repulsion
proportional to .J,. Further results beyond the static limit are reported in Sec[9.2
It is shown that, in the regime in which the bipolaron radius is small compared to
the system size, the hopping has the only effect to coherently propagate the pairs
in the lattice. Therefore, without the loss of generality, analytical and numerical
results have been obtained by solving the two-particle problem and then projecting
the Hamiltonian on the repulsive Bose gas of small inter-site bipolarons. A complete
characterization of the ground state configurations has been given in terms of energy
dispersion, effective mass, bipolaron radius in the framework of the so-called Singlet-
Subspace-Projection (SSP) method which has been applied to characterize singlet
and triplet states of one and two dimensional systems.

Finally, in Chapter we analyze the effect of an on-site coupling U on the
ground state configurations of the polaronic ¢ — J, model. It is shown that the
inclusion of U, which results in the formulation of the so-called polaronic t — Jp— U
model, has a twofold effect since, by limiting the double occupancy, it also reduces
the polaronic exchange J, = Jp(f] ). The role of U has been argued to be at the basis
of the small-to-large bipolaron transition, which is studied in Sec[T10.1] It is shown
that, for both one and two dimensional geometries and finite values of U, a critical
value of the ratio t/ JP(U ) exists above which pairs of polarons become unbound.
Signatures of the small-to-large bipolaron transition are reported in bipolaron radius
and effective mass. On the light of the small-to-large bipolaron transition, the
polaronic ¢t — Jp(U —U and its connections with high-temperature superconductivity
are studied in Sec. It is shown that the ¢t —.J,(U) — U Hamiltonian accounts for a
phase transition to a superconducting state characterized by a critical temperature
well in excess of 100K. The on-site interaction U , by suppressing the exchange
interaction .J,, reduces the critical temperature driving the system to a BEC/BCS
crossover in which the condensation energy of pairs of polarons, no more tightly
bound in the real space, appears in the form of Cooper pairs in the momentum space
with a lower critical temperature. Finally, in Sec[I0.3]is discussed the applicability
of the model to Cuprate superconductors. It is shown that, without any ad-hoc
assumption on preexisting orders or broken symmetries in the normal state of the
model, the polaronic t—Jp—U Hamiltonian is able to reproduce pseudogap features in
density of states, spin susceptibility and electric conductivity in terms of a thermal-
induced recombination of bipolarons and unpaired polarons, studied as a charged
and ideal Fermi-Bose mixture. Open issues and possible directions are reported in
Chapter |11}
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Chapter

Microscopic Hamiltonian for
high-polarizable lattices

Theoretical efforts in calculating the properties of strongly correlated real materials
are often related to the formulation of new microscopic models, which account for
strong electron-electron correlations as well as interactions of electrons with other
degrees of freedoms (such as lattice vibrations, light). In particular, it is widely
believed that the competition between electron-electron and electron-phonon inter-
actions could be at the basis of most of the relevant features of strongly correlated
systems. Therefore, as a first step in the derivation of a first-principle Hamiltonian,
one might simply consider that charged carriers interact among themselves but also
with ion vibrations via the so-called “electron-electron” (Coulomb) and “electron-
phonon” (Frohlich) interactions. These interactions couple together electronic and
ionic degrees of freedom resulting in the following microscopic Hamiltonian:

s 1 e
Hkin Helfel
5 1
+ Z hwot; [u(m, q)d, + H.c.] + Z Fiwg (djqu + §> :
qt B q
Hel—ph th

(8.1)
where Hy;, is the kinetic term, H,, contains the pure phononic contribution while
He—¢p and Hj_pp, represent unscreened Coulomb and Frohlich interactions, respec-
tively, which operate on the same scale without any ad hoc assumption on their
range and relative magnitude. Here T;; = T'(m — n) is the bare hopping integral
related to the overlap of two single-particle Wannier orbitals centered at sites m and
n, p is the chemical potential, i = (m,s) and j = (n,s’) include both site (m,n)
and spin (s, s') states. The operator ¢;/¢ annihilates/creates an electron on site
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m with spin s, the operator dq / dT annihilates/creates a phonon with momentum

q. The operator fi; = fiyy =Cl, <Cm,s Tepresents the electronic density, u(m, q) is
defined as:

Fy(q) ig-m
m = e ) 8.2
= N &2
where ~(q) is the following dimensionless parameter
4me?
= 8.3
1D =\ s (83)

in which €2 is the volume of the unit cell, N is the number of unit cells in the crystal,
wy is the optical phonon frequency and k is a universal parameter defined in terms
of the high-frequency, €., and the static, ¢ dielectric constants:

€x€0

R =

(8.4)

€0 — €x

A frequently employed transformation in polaron theory is the one that displays
ions to the new equilibrium positions depending on the electron coordinates. This
transformation, called Lang-Firsov (LF) transformation [10], is defined in terms of
the following unitary operator:

U=ée¥, (8.5)

with:
=— Zm [u(m, q)d, — H.c] . (8.6)

It is worth noting that ST = —S. As shown in detail in the Appendix , following
the unitary transformation (8.5)), the operators in the Hamiltonian ({8.1)) read as
(hereafter we denote with a tilde the transformed quantities with respect to U:

O =UtoU):

fis = i (8.7)

nld = fyd, — N Z nju*(n,q)

nydh = id) — iy Z iju(n, q)
J
dyd, = did, — Z [dzﬁiu*(m, q) + dyu(m, q)

7
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therefore, by substituting in Eq[8.1] we obtain:

] 1
H=— Z [0-7,]635 + ,LL(SU C CJ + = Z Z |m n| ( — ;) ﬁm,sﬁn,s’ -+ th

2 m;én s,s’
(8.8)
As follows from the above equation, the LF-transformation allows to write the atomic
Hamiltonian in a very simplified form in which the electron-phonon interaction
has been included in the renormalized hopping operator:

6 = Ty XX (8.9)
where:
X = oxp [Z (utm. q)d, —u'(m. q)d}) | (8.10)
q
and the chemical potential is shifted by the polaron energy E,:
p=p+ By
8.11
{Ep = 271'6 fBZ LQ ( )

At this point, recalling the definition (8.4]), it is immediate to note that in highly
polarizable lattices with €y — 00, kK — €. Hence Eq8.8 reads as:

Hypp = — Z (64055 + f1657) E1¢; + Hip, . (8.12)

1,J

Given the overall constraint Kk — €., the above Hamiltonian is exact and still
contains all the relevant information about electron-electron and electron-phonon
interactions since it follows from the application of the unitary LF-transformation
(8.5) on the microscopic Hamiltonian . In particular one might note that, al-
though the interaction term in disappears, phononic degrees of freedom are
still contained in the hopping operator ;; which is not just a mere renormaliza-
tion of the bare hopping integral T;; in . Its functional dependence on X,
given in Eq8.9] accounts for all the possible multi-phonon transitions, making the
Hamiltonian a difficult and challenging task to deal with.

In the following Sections, the Hamiltonian , and its connection with high-
temperature superconductivity, will be analyzed. Weak (A < 0.5) and strong (A £
0.5) coupling regimes are analyzed in Section and Section respectively. Here
A = 2E,N(0) is the electron-phonon coupling constant defined as a function of
polaron level shift E, and density of state at the Fermi level N'(0). We show
that in both the limits the model allows a phase transition to a superconducting
state characterized by bound states of two polarons with different values of the
critical temperature.
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8.1 Weak coupling regime

As it is well known, due to the presence of a quantum (exchange) interaction between
two polarons, a two-particle bound state exists even in the weak-coupling regime,
A £ 0.5, and it is characterized by weakly coupled polarons which pair together
at large distances forming the so-called large bipolaronic state [6]. These weakly
coupled large pairs overlap in dense systems, so that their many-particle ground
state is a BCS-like superconductor with Cooper pairs. In this case we have not
only A < 0.5 but also a small number of phonons dressmg the carrier resulting in

E,/ hwo < 1. In this limit we can expand X; from Eq in powers of y(q) keeping
just single-phonon transitions therefore, from Eq[8.3] and Eq[8.10 we have:

~

Xz- = exp [Zq: 3/% (eiq-mdq — e*iq.mCZD

— 1+Y }% (ewmdq - e—wm@ +o (Jv(q)) . (8.13)

According to this, the renormalized hopping parameter can be written as:

T;XIX; =T,

Uij

WD) (iang , _ -ian i ?
14+ 3 B8 (o, — e il ) | +o(Jv(@))) =
- \/2N< q>

= T, + Ty Z % [(eiq.n _ eiq~m) ch _ <e—iq~n _ e—iq-m) djl} o (|’7(q)|2) _
( )

+6y;) +0(|V( )

so, by substituting in (8.12)), we obtain:

Hupr, ==Y [(@g@ + &5?) Jos + ﬁ(sij} éle; + Hy | (8.14)
.3

in which (3 ) and 0'( ) represent the the zero and the first order in v(q) of the
renormalized hopplng integral 7;;:

7 =T 8.15
B =T, 24 [ cm)d - (eien ey ) O

It is useful to write this Hamiltonian in the momentum space. Taking into account
only the term proportional to 65;) we get:

ZO‘ O)éfc] sy = Z chzcj s = — Z T(m —n)él(m)éy(n) =

m,n,s
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- Z T(m—n Ze ik mézszeik,'n@y,y (8.16)

m,n,s

By introducing the vector a = m — n the previous relation reads as:

Leled 55 = — T(a e~ ime(k=k') | g—iklapl Crt s =
Z > <>(Z ) L

a,s kk’ m
Y T k- By
a,s kk’
_ Z( ZT —zka) ékscks_ZEkakas,(817)
k,s k,s

where we have defined:

Ep=-)Y T(a)e ™. (8.18)

For the term proportional to &S )

D (T
) q

— (e7"m —e7ta™) dL] ¢; 0355,3/ =

- X S e Y o),

m,n,s k,kl,q

we get instead:

—20- —10- 7 —1 . ', ~
—(6 ign _ , qu) L e tk-m ik CLka'

By putting ¢ — —q we havd'}

Zaw Cililsy = — Z Z T(m —n) &233[ (€iq'n — eiq'm) e~ tkm ik m

m,n,s k,kl,q

(g = dLy) &t =

- Z Z T(m — n)j/(;—]\)[ (6i(q+k')‘"e—“€'m _ 6i(q—k)-meik'.n>

m,n,s k k' .q

(g — dLy] s

1We recall that + is an even function of g so that v(q) = v(—q)
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Once again, by defining the vector a = m — n we get:

’_ . 3 AW - _ /. i’
_E Uz] CC] oy = — E E < i(g+k k)me z(q+k)a_ez(q k+k)me ik a>

m,a,s k,k’,q

|:CZ dT i|ék SCk' =

_ cilatk'—k)m
> 0y

k,k’.q,s

[Eq-i-k’ — Ey| [Czq - dtq} éL,sék',s =

V(q) ’
= E L5 (q+ K — k) [Equw — Ew| |dg —d' | &l w s =
kk,qsm (q )[ q+k k]|: :| k,s“K',

7(9) P I
kzqs \/ﬁ [Ex — Ex—q] [dq - dT—q] CL,ka—q,s .

Finally, by putting k — k + g we obtain:

A (1) At A 7(q) T Al
%] k,q,s " 2N

= 3 M(k.q)eh g ons (d}, —dt,) (8.19)
k,q,s
where we have defined:
M(k,q) = 79) (Ekrq — Ek) - (8.20)

V2N

Joining together the contributions (8.17)) and (8.19)), the transformed Hamiltonian
in highly polarizable lattices (8.12)) reads as:

H}/IVIQL = kack $Ch,s + Z M k,q) ck+q <Ch,s (CZ — CZT_q) + Hpy, (8.21)

k.q,s

Applying the BCS-Eliashberg formalism [40] yields the master equation for the
superconducting order parameter A(€,, k):

M(k,k — k')2D(Q — Q) A(Qy, k)

A, k) = l{:BTk; T RRYN RO : (8.22)
where D(£2,, — €,/) is the phonon propagator:
D(Q, — Q) = — s szu)‘; ot (8.23)
and €2,, are the Matsubara frequencies:
Q, =7mkgT(2n+1). (8.24)
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Depending on the particular shape of the band dispersion, equation allows
for different symmetries of the order parameter since the electron-phonon interac-
tion is not local [39]. Here we confine our analysis to a simple estimate of the
superconducting critical temperature 7, by assuming a k-independent gap function:
A(Qy, k') = A(Q,). Factorizing the kernel of on the “mass shell”, we have
E(K') — E(k) = Q. — Q,. Due to this no &’ dependence appears except into &7, so
we can transform the sum over k’ into an integral with respect to £ and obtain:

A(Q) = ksT Y K(Qy — Q) A(Qy) / m ad (8.25)

ot oo O+ €+ AP
in which, hereafter, we denote with K (€2, —2,/) the kernel of the equation. At T' =
T. we can neglect second and higher powers of the order parameter: |A(€2,) ’2T=Tc ~ 0
so, by integrating over &, we get:

A(Q,) = wkpT. Y K(Q, — Q)
Q.

(8.26)

Let us now adopt the BCS-like approximation for the kernel:

K (= Q) = A0 (hwo — [Q2n]) © (hwo — [ |) 1O (2hwe — [Q]) © (2hwe — |y ])

(8.27)
where hwe is the Coulomb frequency which defines the electronic cut-off frequency
given by the constraint mkpT, < hwy < hwe. Here A is the electron-phonon inter-
action constant of the BCS-Eliashberg theory while p. parametrizes the Coulomb
interaction and can be expressed in terms of the Fourier component of the Coulomb
potential V. and the electronic density of states N(g) as follows:

pe = VeN(EF) . (8.28)

Because of the constraint kg7, < hwy < hwe we can replace the summation over
all the Matsubara frequencies by the integral:

mhpT. Y =~ / duw' (8.29)
Qn/ WkBTC

and obtain:

o0 A UJI ,
Alw) = / (/ ) [)\@ (hwo — [W']) © (Awy — |w'])
chpT. W]
1.6 (2hwe — |w']) © (2hwe — |w'|)] d' . (8.30)
This equation allows solutions of the form:

A(w) = A0 (hwy — |w]) + A0 (2hwe — |w|) © (|w| — Awo) (8.31)

in which A; and A, are the two constant values that the order parameter assumes
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for |w| < hwg and fuwy < |w| < 2hwc, respectively. By substituting equation (8.31])
into (8.30) and integrating with respect to w’ we have:

fiwso A A
Ay = (/\—,uc)/ dw—l—,uc/ dw—?:
nkpTe W o w

fuwg huwg 2hwe
= A — | Aqpel — Aqpu.1
1()‘ :uc) n (WkBT) 1M 110 (WkBTC) 2 n( th ) )

hwo A 2hw A
Ay = —uc/ dw’—,l—uc/ d/ =2 =

hw(] 2th
= —Aip.l — Agptel .
1M M (ﬂ'kBTc> 2le n( th )

Collecting together these two results we get a set of two coupled linear equations
with respect to the two variables A; and A,:

Ay (1= (= o) In (525 )] + A [pueln (22 )]
Ar [petn ()] + 8 [1 4 i (%2)] = 0

that admits a non trivial solution only if:

hu)g th
1— (=)l 14 pL) — p2L1 =0,
{ (A = pe) n(kaTc)}[ + pel) — n(kaT)

in which, for the sake of simplicity, we have labeled L the “Tolmachev-Morel-

Anderson” logarithm:
2
L=In (ﬂ) . (8.33)
Wo

(8.32)

This equation can be used for a simple estimation of 7, in fact, by solving with
respect to T, we have:

th 1 + ,ucL
1 = 8.34
! (ﬂ'kBTC) A1+ pel) = pe ( )
that gives:
hwy 1
kT, = — — , .35
oT = ey (-2 ) (8.39

where i is the Coulomb pseudo-potential defined as:

* MC y’C
= = ) 8.36
He =17 +puL 14 peln (2we /wy) ( )

This remarkable result, which explains why, at least for conventional superconduc-
tors, a weak electron-phonon interaction can drive superconductivity rather than
the strong Coulomb repulsion, simply represents the macroscopic manifestation of
the retarded nature of the electron-phonon interaction. The electron-phonon inter-
action, in fact, acts well after two electrons meet each other and such a time delay
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Figure 8.1: Left panel: Coulomb pseudo-potential versus p. from from Eq. for differ-
ent values of the ratio 2w /hiwp. Right panel: weak coupling estimate of the
superconductive critical temperature (Eq versus A for different values
of the Coulomb pseudo-potential .

is sufficient for two electrons to be separated by a relative distance at which the
Coulomb repulsion is small [38]. Hence, Cooper pairs are preserved even for large
values of ji. since its contribution is strongly suppressed by In~" (2we/hw).

Importantly, one might immediately note that, as reported in Fig[8.1] with the
typical values A = 0.5, p> = 0.14 and with the Debye energy hwe = 400K, one
immediately obtains from Eq[8.35| T, &~ 20K which correctly describes simple metals
and alloys but is clearly too low to be consistent with experimental data for high-
temperature superconductors. A higher critical temperature requires larger values
of A which are in contrast with the standard formulation of the Migdal-Eliashberg
theory whose applicability is restricted in the region for A < 1|41, 40].

8.2 Strong coupling regime: the polaronic ¢ — J,
Hamiltonian

In the case of two-dimensional systems, by approximating the density of states per
spin at the Fermi level as A/(0) & ma?/27h?, one immediately obtains E, ~ eV [42]
which put A = 2E,NM(0) £ 0.5 for a large class of compounds. Actually E,/hwy > 1
in oxides and some other polar lattices, with the characteristic (oxygen) optical
phonon energy fiwy < 80meV . In this regime finite bandwidth [43, [44] and multi-
phonon vertex [45, [46] corrections are essential in the expansion of the hopping
operator 0;; therefore, in order to deal with this challenging problem, one might think
to single out the coherent hopping term in by averaging o0;; with respect to
the phonon vacuum and considering the remaining part as perturbation. Following
this procedure, Eq[8.12] reads:

Hypr, = Ho+ Hy_pp (8.37)

where:
Hy=— Z ((Gij) 05,5 + f16i;) CzTCj + Hpn (8.38)

i,J
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describes free phonons and polarons coherently propagating in a narrow band and:

Hypn =Y ((655) = 635) dawrcles (8.39)

/L‘?j

is the residual multipolaron interaction, which is a perturbation at large .

In order to calculate the average of the renormalized hopping operator let us
recall the result (D.15). In the limit in which 0 ~ kT < hwy, the Bose-Einstein
distribution function n, does not contribute (n,, =~ 0) and we obtain:

(X1%,) Hexp{——u—cos<q-<m—n>>—z'sm<q-<m—n>>1}.

If the lattice has an inversion symmetry, the above relation has to be invariant under
the transformation ¢ — —q. Hence, recalling that vy(q) = v(—q) from (8.3)), the
term proportional to the sine function cancels by parity and we get:

Hexp{——u—cos<q~<m—n>>]} .

Recalling the expression of the renormalized hopping parameter , we can now
define:
(6ij) =t;j =T (m —n)exp [—g2 (m — n)} , (8.40)

where:

N Z'y [1 —cos(g-m)] . (8.41)

The average of H,, with respect to the phonon vacuum gives no contribution, there-
fore the whole averaged unperturbed Hamiltonian reads as:

HO = <O| HO |O> = — Z (tij(ss’sl + /15,”) CIC]' . (842)

i?j

Let us now focus our analysis on the perturbation H,_,, making a perturbative
expansion and projecting each term with respect to to the phonon vacuum. It can be
seen that H,,_,, has no diagonal matrix elements with respect to phonon occupation
number. Hence the first order in the perturbation expansion can be removed by

means of a standard Schrieffer-Wolf canonical transformation [47] H = eS2Hypre 2
. According to the Baker-Hausdorff formula we have:
. . . 1 .
H = e®Hppre ™ = Hypr, + [SZ>HHPL] + 5 [527 [527HHPL”
1 .
+§ |:52, |:Sg, [SZ’HHPLiH} + ..., (843)
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so, recalling that Hypr = Hy + H,_p,, we get:

1 1
H = Ho+ Hppp, + [Sa, Ho| + [Sa, Hp—pn] + B [Sa, [Sa, Ho] + B [Sa, [S2, Hp—pn]] + .-+
(8.44)
From the previous relation it is immediate to note that, by choosing S, such that:
Hp—ph + [527 HO] =0 ) (845)

we succeed in eliminating the contribution at the first order in the perturbative
expansion. In this case S5 reads as :

n'| (6 — ti; cjc-n
(Sz),m,:z< |(EJ,_% i >, (8.46)

i?j

where E,,, E,, and |n), |n’) are the energy levels and the eigenstates of Hy, respec-
tively. Neglecting all the terms up to the second order we obtain:

H =~ HQ +H(H) s (847)

where H;p) contains the projection of the second order term in the perturbation
expansion with respect to the phonon vacuum:

_ 1 (0] (ti; — &3) clej Im) (m| (ti; — &35) cheyr [0)
Hun = 3 Z Z : ! ]E . 2 2L . (8.48)
i1 £ m#0 m "

in which the intermediate states |m) are referred to a generic configuration char-
acterized by any number of phonons. Recalling that ¢;; is a constant defined by
the average of the renormalized hopping parameter ;; with respect to the phonon
vacuum, due to the orthogonality of the basis we have:

(0[tijlm) = t;;{0lm) =0
{<m\tij|0> Ct(ml0) =0 (8.49)

therefore the previous expression reads as:

0| XI X |m) (m| X)X |0
H(II) = Z Z CIC]‘C;L/C]‘/T;jT;/j/< ‘ L ]’E' >£ E”O G’ ’ > . (850)
i#j, i #§ m mn

We can also note that, in the strong-coupling regime, the polaron Fermi energy is
small compared with the phonon energy:

~ =1 dte’o2qna 8.51
Em — EO hbuo Zq nq 0 ( )
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and H ;) can be written as:
—+00
Hun =i Y CICjCszCj'TijTi/j'/ (X)X, () X) X))t (8.52)
i i £ 0

where X[ (t) and X/(t) represent the standard multi-phonon operators (8.10) in the
Heisenberg representation: X;(t) = e’ X,e~#"*. Hereafter we put:

Xi(t) = exp Z <u(m, q)ciqeiwot . u*(m, q)dzeiwotﬁ _

L g

exp Z (uq(m,t)czq — ug(m, t)d;)] : (8.53)

L g

For kpT <« 1, analytical calculations reported in Appendix show that:

<<Xj (t)XJ (t)XZT,XJ/>> — eiQQ(mfn)efgz(mlfnl)ef(m,n;m',nl)efih“’ot 7 (854)
where:
7*(q)
fm,n;m/,n’) = S leos(g- (m - n')) +cos(q- (n —m’))+
q

—cos(q-(m—m')) —cos(q-(n—n"))] . (855)
Substituting in the previous equation and recalling that ¢;; = T;; e=9°(m=n) we obtain:
. Jr Jr oo f(m n:m’ n/)e—ihwot
H(H) =1 Z CiCjCi/Cj/t@'jti/j' e T dt . (856)
5,1 #5' 0

It can be seen that [48]:

/000 exp {—ae™} dx = —%Ei(—a) , (8.57)

where Ei(z) is the exponential integral function which, for finite and non-zero values
of x, is defined as:

T Ly oo k
Ez‘(x):/ Sy =cln(a)+ Y 4 (8.58)
k=1

—00

and c is the Euler constant:

n—00

1 1
c= lim (1 SRS e ln(n)> ~ 0.57721566490 . (8.59)
n
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In our case a = —f(m,n;m/,n’) and n = —ihwy so:
Liglirjr
Z cl cjcZ cjr J £ E (f(m,n;m’ n)). (8.60)
15,8 #5'

Collecting together the zero and the second order terms, projected onto the
phonon vacuum, we finally obtain:

Hifpr, = Z (2ij0s,s + A0s5) cf i€ — Z Z s S(n)ci’(m/)cd(n,) )

(2%] m#n s,s’
where:
tijtay

r!
ymn’ —
mn th

E(f(m,n;m’ n')). (8.62)

Starting from the above relation, one can immediately note that all matrix
elements of the polaron-polaron interaction are small compared with the
polaron kinetic energy except the contribution: J,(m — n) = V2™ such that
f(m,n;m’ n') = 2¢*(m —n). Hence, using E;(y) = ¥ /y (for large y) one obtains
the following substantial exchange interaction:

Syt P T )
P  hwy 2¢2(m—n)  2hwegi(m —n)’

(8.63)

that is much larger than the polaron hopping integral in the strong coupling limit:

tij 2hw0g2(m — n)

N 2hwog*(m — n)
Jp(m —n) T?(m —n)

—g*(m—n) < 1.
T(m —mn) ‘ <

(8.64)
It can be also seen that, in the case in which n’ = m and m’ = n, the operatorial
part of the interaction term can be written as:

T(m—n)e 9 ™™ =

cim)e(m)c, (n)cy(m) = 20mnct(m)e(m) — cl(m)cy (m)cl, (n)c,(n)8.65)

s

The first term further renormalizes the chemical potential. Making the sum over all
spin and lattice indices, we obtain:

p=j+2)  Jy(m). (8.66)

The remaining term, as shown in detail in Appendix can be written in the
following form:

Z Z J,(m—mn)cl(m)ecy ('m)cl, (n)cs(n) =2 Z Jp(m—mn) (?m . ?n + %ﬁmﬁn> ,

m#n s,s’ m#n
(8.67)
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where ?Z is the spin-1/2 operator defined in terms of the Pauli matrices 7 as:

=3 @) (P), 0 euli) (8.68)

while 7; is the standard density operator: f; = >, cl(2)cs(2). Joining together all

s S
the contributions we finally arrive with the polaronic “¢-.J,” Hamiltonian:

I~ 1. .
H=- Z (tij0s,5 + f10ij) clej + 2 Z Jp(m —n) <§m : ?n + annn> . (8.69)

2, m#n

It is worth noting that there is a striking difference between this polaronic t¢-
J, Hamiltonian and the familiar ¢-J model derived from the repulsive Hubbard-U
model in the limit U > ¢ omitting the so-called three-site hoppings and EPI [49]. In
the polaronic ¢-.J, Hamiltonian the bare hopping integral Tj;, as appears in Eq[8.1],
is renormalized by the strong EPI which results in the polaronic band narrowing
factor exp (—g?) reported in Eq. Hence, unlike in the ¢ — J model, the kinetic
term in Eq[8.69] describes the motion of strongly inter-correlated fermions in the
presence of unscreened long-range Coulomb and electron-phonon interactions. The
momentum-dependence of the phononic degrees of freedoms is intrinsically contained
in t;; via ¢ , leading to a substantial reduction of the polaronic band narrowing
factor exp (—g?) if the g-dependence of «y is neglected. This feature, that would
eliminate any possibility of high temperature superconductivity and even metallicity
for small Holstein polarons, leads to the formation of small and perfectly mobile
pairs of polarons in the case of the long-range (Frohlich) EPI, as confirmed by
recent Quantum Monte-Carlo studies [30} 31, 29] 32, [33]. Furthermore, the exchange
interaction J,,, of pure phononic origin, is not merely related to spin-flip hoppings
as in the standard ¢ — J model. As it will be shown later in Chapter [J, .J, describes
the spin exchange of carriers doped into polar insulators as, for instance, oxygen
holes in the Cuprates, rather than antiferromagnetic correlations of copper spins in
the parent insulator (which are well described by the conventional .J). Therefore
Jp is responsible for the formation of two-particle bound states and, importantly,
can be determined through the real material parameters (J, > 0) as a function of
the bare hopping integral 7T;j; which can be measured using first principle density
functional theory in a parent polar insulator [50]. It is also worth noting that, due
to a complete compensation between long-range Coulomb and Frohlich interactions,
there is no constraint on the double on-site occupancy even in the strong coupling
regime. Therefore, while the t — J model acts on a projected Hilbert space with
no on-site double occupancy, the polaronic ¢ — .J, model accounts for finite double
occupancy, acting on a non-projected Hilbert space with four single-particle states
per sites. Finally, the different sign (plus instead of minus) of the density-density
term in Eq. with respect to the standard t — J model results in an effective
repulsion between pairs which protects the ground state from clustering allowing for
the presence of small and perfectly mobile pairs even at large J,,.
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Chapter

Analytical and numerical results on the
polaronic ¢t — Jp model

Despite its very simple form, the polaronic ¢t — .J, Hamiltonian (8.69) represents a
difficult task to deal with. To better understand the physics underneath this model,
in this Chapter we report a detailed discussion of analytical and numerical results
obtained for fixed number of particles and different geometries. Most of the following
results are also discussed in Ref.[35].

The rest of this Chapter is organized as follows. A detailed analysis of the ground
state configurations in the static limit (i.e. ¢/.J, < 1) is reported in Section [9.1] for
different lattice geometries. We analyze the role of the polaronic exchange coupling
J, as responsible for the bipolaron formation but also for the bipolaron-bipolaron
repulsion which prevents the bipolaronic ground state from clustering. The role of
the hopping is discussed in Section We show that in the dilute regime, meaning
that the number of polarons is much less than the number of sites, the ground-state
properties of the ¢-J, model can be derived by looking to a two-particle problem and
then projecting the model Hamiltonian on a repulsive Bose gas of small inter-site
bipolarons. To this purpose, we introduce in Subsecs[9.2.1}{9.2.3| the so-called Singlet
Subspace Projection (SSP) method and report a detailed analysis on the bipolaronic
ground state configurations for both one and two dimensional lattice geometries.

Here and after, in order to account the short range nature of J,(m — n), only
nearest-neighbour interactions will be taken into account. Furthermore, we will
restrict our analysis to translational invariant systems characterized by a constant
lattice spacing a, neglecting any site dependence on the hopping parameter (¢;; = t)
and exchange interaction (J,(m —n) = J, > 0). The following relation will also be
used:

S S = 5257 4 % (S£Sm + SaS5) (9.1)

where S and SZ represent the raising/lowering operators and the third component

117



CHAPTER 9

Geometry Connectivity
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Figure 9.1: Connectivities for three possible geometries. Nearest neighbour interaction
channels have been represented by solid lines while dashed ones denote near-
est neighbour interaction channels provided by periodic boundary conditions.

of the spin angular momentum, respectively. Hence, Eq[8.69 reads as:

z

7‘[ - - Z tz CIn’SCeran,s + /:Jlnm,s

+25,3°% E (52,55 va, + 505t _a))

m,s n=1 m n=1
1
+Z (S:"L‘Sfr;+an + S:;L‘Sfr;,fan + S;wS’rtL+an + S%S:nfan)
1
+§ Z (nm,snm+an,s’ + nm,snman,s’>] ) (92)

where m is a generic site of the lattice and a,, is the lattice vector that connects the
site m with its n'" nearest neighbour. The sum over n takes into account all the
possible z nearest-neighbour sites, being z the coordination number related to the
particular lattice geometry. Hereafter we will focus our attention on three different
geometries: chain, ladder and zig-zag ladder for which we have:

{—(Z, (I} chain
{an}ne{l,z} = q {—2a, —a,a,2a} zig — zag ladder . (9.3)
{(-a,0),(0,-a),(a,0),(0,a)} ladder

Periodic boundary conditions will also be used. The connectivity of each geometry
is reported in Fig[9.1]

9.1 Static configurations in the low-density limit
In order to have a comprehensive overview of the physics described by the t — J,
model, it is instructive to start with a systematic study of the ¢t = 0 case in the low-

density limit in which the number of sites N, is larger than the number of particles

118



Analytical and numerical results on the polaronic ¢ — J, model

N,. In this limit, which corresponds to an extreme strong-coupling regime with
Jp(m — n) > t, the hopping is negated by a strong exchange interaction, then the

Hamiltonian (8.69)) reads as:

H==> pch cms+2> J(m-—mn) (?m St i annn> . (9.4)

m#*n

In the above equation the contribution coming from the chemical potential only
shifts the energy according to the total number of particles and the polaronic t — J,
Hamiltonian simply reduces to a combination of density-density and Heisenberg
spin-spin interactions. Hence, by considering the total spin angular momentum S
and one of its components as good quantum numbers, the dimension of the Hilbert
space for a generic N;-site lattice will be (2N;)!/[(2N; — N,)!N,!|. However, because
of the presence of a repulsive density-density interaction term, for N, < N, almost
all states comprise non-interacting configurations made up by all unbound polarons
with £ = 0. According to this, a simple analysis restricted to a small number of
particles N, = (1,2, 3,4) will suffice to estimate the ground state properties in the
dilute limit since there are enough symmetries in the model to reduce the problem
to the diagonalization of a finite-dimensional matrix for any value of Ny;. We briefly
sketch below the calculations for a two, three and four particle problem in a one-
dimensional geometry.

Two-particle problem Let us define a minimal set C of possible configurations.
Because of the presence of only the exchange interaction J, we have:

c=1{l0,...,0,1,1,0,...,0),/0,...,0,17,4,0,...,0),]0,...,0,1,0,4,0,...,0)} ,
(9.5)
where we have listed the two possible types of spin interactions and a non-interacting
configuration. By applying the Hamiltonian to this set of configurations we
can define the Fock space F as:

F = {lo,...,0,1,1,0,...,0),[0,...,0,17,1,0,...,0),]0,...,0,4,%,0,...,0),
0,...,0,1,0,4,0,...,0) }, (9.6)

and then construct the matrix representation of Hamiltonian:
F) _
H = (FIHIF) (9.7)

where F; is the i component of F. In this simple case we have a 4 x 4 matrix from
which we get the following representation for the ground state:

1
o) = 500, 0.1 1,0, 0 = [0, 0,110, 0)] (9.8)

The energy associated to this configuration is: Ey = —J,—2u. We conclude that, due
to Jp, the low energy state is a two-particle singlet state characterized by polarons
on nearest neighbour sites.
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Three-particle problem On the basis of the results obtained for the two-particle
problem, the C-space for three particles will be the following:

C:{|07"'a07Ta¢aT70a"'70>7’07'"707T7\L707T707"'a0>} ) (99)

where we have neglected the contributions coming from the non-interacting states
since we are only interested in the ground state configuration. By applying the
Hamiltonian (9.4)) to this set of configurations we obtain the following Fock space:

F - {|07“'707T7\l/7/l\707"‘70>7‘07"'707¢7T)T707"'70>7|07"‘707T7T7¢707"‘70>7

10,...,0,1,1,0,1,0,...,0),]0,...,0,1,1,0,1,0,...,0)} . (9.10)

then, by diagonalizing the matrix representation (9.7) in the F space we find the
following degenerate ground states:
‘wg”> - \/g[\o,...,o,¢,¢,o,...,o¢,o.‘.,o> —10,...,0,4,1,0,...,01,0...,0)]

&)= A0 0L 0, 0) 10,018, 4,0,.,0)
—/210,...,0,1,1,1,0,...,0) .

(9.11)
The corresponding energy is Ey = —J, — 3.

Four-particle problem From the studies done in the previous section we can
easily write down the C-space for a four-particle system as:

C = {’07"'707T7\L7T7\L7O7"'70>7|07"'JO7T7T7\1/7\1/707"'7O>7
|07-"7OaT70a'"70\L7T7¢a07"'70>7
10,...,0,7,4,0,...,0,1,1,0,...,0)} . (9.12)

The resulting Fock space F is the following:

F o= {|07""O7T’¢’7T7\L707‘“7O>7|07"’707\L7T’T7J/707"‘70>’|O7"'707T7\L7\L’T7O""

|07’”70>T7T7\L7¢7”'70>7|07-”707\L7T707"'707T7\L707”'70>7
’07"'707T7\L507"'707\L7T707"'70>7‘Oa'"07T7¢707'"707T7\L707"'70>7
|07~'-OavaTan"707¢7T707'--a0>a|Oa'~'707T7\LaTaOa-'~70>>
|07-*‘707T707¢7T7T707--*70>7|Ov'--707T707T7T7\L707”-70>} :

Hence, by diagonalizing the matrix representation of the static Hamiltonian with
respect to F space we find the following representation for the ground state:

|¢O> - an"wOaT?\LaO?"'707\L7T707"'70>_‘07"'07T7¢707'"7Oa/]\7\L707"'70>
+‘07-"707¢7T707'"707T7\L707"'70>

—10,...0,4,1,0,...,0,4,1,0,...,0)] . (9.14)

1 =

The corresponding energy is Ey = —2.J, — 4p.
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Summarizing, following the above procedure, which can be straightforwardly
generalized to all the geometries listed in Fig9.T| we immediately find that the static
ground state configuration for a two-particle problem is a bipolaronic spin-singlet,
made up by two polarons on nearest neighbour (NN) sites. The ground state energy
is E = —J, — 2p and its degeneracy v = Ny — 1. The first excited state includes
all the non-interacting configurations with £ = —2y and v = 2N? — 3N, + 4,
characterized by two polarons separated by at least one empty site. Finally, the
higher energy levels are given by the NN spin-triplet state, with £ = J, — 2u
and v = 2(N — 1). For N, = 3 the ground state is characterized by a complete
degeneracy between the anti-ferromagnetic cluster of three polarons on NN sites
and the three-particle configurations characterized by an isolated polaron separated
from a NN dimer by at least one empty site. For both the configurations we have
FE = —J,—3p since spin-spin and density-density interaction terms compensate each
others. Therefore, as long as ¢t = 0, there is no gain for the system in preserving the
bipolaron configuration. The opposite conclusion can be drawn for N, = 4. In this
case in fact the presence of a density-density interaction leads to the formation of
two isolated bipolarons. This configuration, with £ = —2J, — 4, is lower in energy
with respect to the NN four-particle singlet that represents the first excited state
with £ = —\/§Jp — 4p. A straightforward comparison between the ground and the
first excited state energies allows us to estimate the effective static repulsion among
pairs as:

B0 = (2-V3) J,. (9.15)

At this stage it is worth emphasizing that the static bipolaron repulsion energy
is nothing but the macroscopic manifestation of the pure quantum nature of the
spin-spin interaction. In fact, because of the presence of the Heisenberg exchange
coupling in , polarons on nearest neighbour sites have not only to align their
spins in opposite directions. They also have to arrange their spins in a global
antisymmetric wave function in order to minimize their energy. Hence it becomes
immediately clear that, because of the anti-symmetrization, a clustered state with
all polarons on NN sites will have a higher energy with respect to the dimerized
one since it will be composed by a linear combination of spin configurations among
which, at least one of them, will have aligned NN spins, as reported below for the
simple case of a four-particle system:

Wo) = Al |T7¢a07"'707¢71\>_‘T7¢a07"'707/]\7¢>

+’¢7T507“'707T7¢>_ |¢7T707"~707\L7T> ) (916>

|1/}0> = Bl’07-"70\1/7\1/7T7T707"-70>+B2|07--'707\L7T7¢7T707'-~7O>
+B3’07-"707\L7T7T7¢a07"'70>_B3|07¢7TaT7\L70>
_B2 |OaT7$7T7\L70>_B1|07TT77\L7\L70> . (917>

Because of this, E!=° does not simply rescale linearly with the number of particles

as shown in Fig.(9.2).

121



CHAPTER 9

P T T T 0.27 T
2+ =
3+ \_ - 0.26 .
> 0 2
% -4 - \I\I - .§
c L \ | £
L —m—E - < 0.25 -
5L paired - no \
T Bstered u "
L clustere: \ \- 1
6 . -
I SR NI RS o240 0 .
4 6 8 10 12 4 6 8 10 12
N N
p p

Figure 9.2: Left panel: ground state energy for a complete clustered (all polarons on NN
sites) and a complete dimerized (pairs of polarons separated by at least one
empty site) 1D static system versus number of particles. Right panel: the
resulting 1D static repulsion energy rescaled with respect to the number of
bounds: Ef=Y = (Eguster — Epaired)/(Np/2 — 1).

9.2 Beyond the static limit: the role of the hopping

In the previous Section we have pointed out that, in the static and dilute limits, the
ground state of the polaronic t—.J, model is a bipolaronic configuration characterized
by pairs of NN polarons, separated by at least one empty site. We have shown that
the exchange interaction J, is responsible for the pairing, but it also originates a
static repulsion among pairs which protect the ground state from clustering.
Hence, it is immediate to realize that in the dilute limit and for ¢t < .J,, as long as
the bipolaron size d remains small compared to the dimension N of the system, the
hopping will have the only effect to coherently propagate the static configurations.
It follows that, beyond any approximation, the ground state properties of the ¢t — .J,
model in the dilute limit can be straightforwardly derived from the analysis of a
two-particle system without the loss of generality. The critical value of the filling,
n. which breaks down the dilute limit regime, will depend on the bipolaron size
according to the relation n. ~ N/d. On the basis of these considerations, we report
in this Section a complete characterization of the ground state features of the t —
Jp Hamiltonian in the dilute limit by comparing analytical and numerical results
obtained by solving the two-particle problem and then projecting the Hamiltonian
on the repulsive Bose gas of small inter-site bipolarons.

9.2.1 Singlet-subspace projection (SSP) method

Let us consider the simple two-particle case. From the results showed in Sec[9.]]
we know that the ground state configuration of the polaronic ¢-J, Hamiltonian is a
spin singlet at t = 0. To take into account this symmetry, it is useful to define a
symmetry-adapted singlet basis, representing the internal structure of a singlet in
terms of the spacing d between the two particle and the position of the centre-of-mass
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in the k-space:

d, k) = fZA eI >1<m+d>\o>,,43_{((j§_>%—>%) Z:g
(9.18)

where |0) is the vacuum and N is the number of sites in an infinite system. It is
worth noting that for d = 0 the chosen basis includes all the possible configurations
with a doubly occupied site:

_ zmkaT 1
0.k) = fz m)10) = = (110, +
_ +elk'a|o,u,0,...>+622’“'a|0,0,u,0,...>+...>, (9.19)

while |d, k), with d > 0, describes all the possible configurations in which two
polarons are separated by d empty sites:

1 (mika 1
Lk) = ﬁ;e*m ) ﬂ(cM m)el(m + a) = cf (m)c}(m + a) ) |0) =
1 1 ka
= ﬁ<ﬂ = (11,0,4,0,...) = 14,0,1,0,...))
1 3ik-a
+Eez (|0,¢,0,¢,0,...>—|0,¢,0,¢,0,...>)+...> , (9.20)
2,k) = Z i(m+ Dk (cH el (m + 2a) — ¢l (m)e (m—|—2a)) 0) =

1 .
(\/§€Zk.a(m\,0,0,i,0,...> - ’J/70707T707"'>>

- %\H Sl

+

&

e2*a (10,1,0,0, 1, ,...>—\o,¢,o,o,¢,o,...>)+...> . (9.21)

At this point, we can easily calculate the the matrix representation of the t — J,
Hamiltonian with respect to the |d, k) basis. To this purpose, it is useful to rewrite

the Hamiltonian (8.69)) as:

Hy = _tZzga zchJO'
HJP = _Iu Z’L Nog C’L oCio + 2Jp Zm;ﬁn (?m ’ ﬁn + éllﬁmﬁn> 7
(9.22)

in which we have neglected any spatial dependence in hopping and exchange ampli-
tudes. It is immediate to note that the exchange term #;, has a diagonal represen-

Hiy, = HitHy, , {
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tation with respect to (9.18). In particular by means of the following relation:

(?tot)Z = s(s+1)=0= <§1 + ?3,)2 —
= <?z)2 + (?j>2 n 2?1‘ . ?j ’ (9.23)

2
where <?w> = % (% + 1) = %, we have ?z . ?1. = —3/4 and ?z . ﬁj = 1/4 for
singlet (s = 0) and triplet (s = 1) states, respectively. Therefore, by adding the
diagonal contribution coming from the density-density interaction term, we finally
obtain:

<d1, k’ HJP ’dz, k/> - —Jp(5dhd25d171 . (924)

Let us now focus our attention to the hopping term. It is immediate to see that
‘H: has a non-diagonal representation in the chosen basis since it couples states with
different values of d depending on the range of the allowed hopping processes. Then,
for a fixed geometry in the presence of any finite-range interaction, the ground state
properties of the polaronic ¢-J, model can be easily obtained by diagonalizing an
infinite-dimensional sparse matrix given by the Singlet-Subspace Projection (SSP)
of H;_;,. Hereafter we will restrict the hopping processes and the range of all the
interactions to NN sites and report below detailed calculations for chain, zig-zag
ladder geometries. In the following Subsections, we also report the generalization of
the SSP method to the spin-triplet case and 2D geometries.

Chain In the case of a one-dimensional chain the hopping operator will couple a
d > 1 dimer to a superposition of d + 1 while the doubly occupied states (d = 0)
will be connected with the nearest neighbour singlet (d = 1) only. For the d > 1
case we have:

Hold k) = ¢3S0 A2 (6l (i 4 1)ey (i) + b (i — e (0)) e (m)el(m + d) [0) =
= YN Agthatmrd/ (cw + 1), (i)l (m)cl(m + d)

e (i = Vg (i)el(m)el(m + d)) 0) =

_ Z Z A eikalmtd/ag. 5 (CL(Z' F1)el(m + d)

9,0 M,S

b (i = Vel(m +d)) 0) =

_ _tz Aseika(m—i—d/?)

m,s

cHm +1)ck(m + )

+cl(m — Del(m +d)| |0) =

124



Analytical and numerical results on the polaronic ¢ — J, model

S

= _tZAseika(m+%)CT(m)C£(m+ d+1) (6—ika/2 + eikza/?) 10)

S

—t Z Aseik“(er%)cT(m)cg(m +d — 1) (e7*al? 4 ¢*a/2) |0) =

= —2tcos <%> (ld+1,k) +|d—1,k)) . (9.25)

For the d = 1 and d = 0 cases instead we obtain:

Holl k) = =t ) A™ D (el i+ 1)eo (i) + ch (i — 1)eo(0)) ef(m)cl(m + 1) |0) =
= D0 A (G (i + e (i)el (m)el(m + 1)

b (i = ey (i)el(m)ck(m + 1)) |0) =
= —tz A etkam [eika/z (e*ika + 1)} ci(m)cg(m) 0)

m,s

—tz A, ethalm+2) [e‘ik“/Q (1 + e“m)] cl(m)cg(m +2)10) =

_ émz et |2cos (50 | [htmel ) = | miclom)] o)
ot eos (%) ; A, ) () e (m 4 2) 0) =

= —2tcos <%) [|2, k) + 210, k:>] : (9.26)

H, [0, k) = —tz > e (el (i 4 1)el (4) + ¢ (i = 1)cl (1)) el (m)ef (m) |0) =
_ _tz eikam <C;(m + 1)CI(m) — cj(m + 1)01(771)
el (m — 1)c](m) — | (m — 1)c;(m)> 0) =

= —\/5152 %eik“(mﬂ/m [e’ik“/z (1 + ei’m)] <c¥(m)cl(m +1)

m

—cl(m)cl(m + 1)) 0) =
— —2v2tcos (%) 11, k) . (9.27)
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This allows us to write the following tri-diagonal representation for ¢ — .J, Hamilto-
nian in the singlet subspace:

0 V2 0 ... 0
_\/iek —Jp —€L 0
. k
(di k| Hig, |dj, k) = 0 —€k 0 —e - , € = 2t cos <7a> .

(9.28)
It is well known that the wave function of a bound state must decay exponentially
at some rate in the region where the potential vanishes. On the basis of this con-
sideration we can look for a solution of the kind:

—\/§€k —Jp — €L 0 ce 1 1
0 —€g 0 —e e_; = E(k) e_;‘ . (9.29)

0 0 — 0 - € €

where F(k) is the ground-state dispersion and d is the amplitude of on-site pairs.
The above eigenequation reduces to three coupled equations:

—V2¢, = E(k)d
—VBed = Jy— e = B(k) (9.30)
—ep (e +e*) = E(k)

where it is immediate to note that there is no way of stopping singlets from having

weight on an on-site pair (except when k = 7/a). Elimination of d and E(k) and a
little manipulation gives the following cubic for e®:

exe’® — J,e* —epe® — J, = 0. (9.31)

According to the results showed by Valiente et al. [52], a potential of range p leads
toa (2p+ 1)“” order polynomial for the decay rate. In our case it is possible to see
that the above cubic has only one positive root, meaning there is only one bound
state that persists for all J, > 0.

In the ¢ < J, limit, by Taylor expansion, one finds :

Jp 2€k
a_ Yp e — 9.32
e o + 7 + ( )
2 12t2 k
E(k) —_Jp_ﬁ_{----:—Jp——CO@ (—a> +O(t4) . (9.33)
7, 2 2

2= 22 (k—a) , (9.34)
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T 4Jp=0.25 T ¥Jp=075

Figure 9.3: Energy dispersion for bipolaron (blue line), single polaron (dashed line) and
two unpaired polarons (red lines) in a chain for different values of t/.J,. Filled
areas correspond to all the possible scattering states.

In particular, from the ground state dispersion F(k) one can immediately obtain
the bipolaron effective mass m** according to the relation:

62E0(k)
H=p 9.35
m T o (9:85)
which gives:
o h?J
mC|t<<Jp = 6a—2tp2 . (936)

The basis (9.18) is complete, so we can also get the scattering states by taking
a = iqa. The resulting dispersion F(k,q) reads as:

E(k,q) = —2¢,cos(qa) = —4tcos <%) cos(qa) =

k k
—2t {cos <qa + g) + cos (qa — g)} , (9.37)

that is the sum of two free polaron bands once we transform back from relative
and centre-of-mass coordinates. The results obtained by solving the cubic equation
, reported in Fig show in fact that the bipolaron dispersion (blue line)
lies below the dispersion of two unpaired polarons (red line) and the single polaron
dispersion (dashed line). Importantly, as one would expect [53, 54], the unpaired
polarons dispersion lies at the bottom of a continuum which originates from all the
possible scattering states with ¢ € {—m, 7}.

Zig-zag ladder In the case of a zig-zag ladder, the application of the SSP method
requires the zig-zag ladder to be mapped into a chain. It is well known that the zig-
zag ladder configuration with lattice spacing a, in the presence of nearest neighbour
(NN) interactions, can be mapped into a chain with lattice spacing a/2 and next
NN interactions (see Fig[9.4).
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Figure 9.4: Mapping between zig-zag ladder and chain.

According with this mapping, the exchange part of the ¢t — J, Hamiltonian gives:
(di, k| Hy, |do, K'Y = —Jp04, a4, (Oar 1 + 0ay2) (9.38)

while the hopping part, related to the states with d > 2 gives:

—t e
Ho|d k) — \/_Nzeﬂ;w/z)az As(cj,(¢+2)cg<z')+cj,(z'+1)cg(¢)
J

1,0,8

b (i = 1)eoi) + cb (i = 2)60(0) )L ()l +m) 10) =

+el(j)el(G+m —1) (e—ika/2+ika/4 + eika/?) ikl+@-1)/Daf2 |
£<j Fm41) <6ika/2—ika/4 n e—ika/2) ik +(d+1)/2)a/2 |
+Ci(j Cg(j +m 4+ 2) (eika—ika/Z + e_um/z) eik(j+(d+2)/2)a/2] 10y =

k
cos( a (|d+2,k)+|d—2,k))

+cos <%> (Jd+1,k) + yd—1,k>)] , (9.39)

which accounts for two different k-dispersions related to the two different hopping
(NN and next NN) processes. For d < 2 instead, by taking into account the contri-
bution coming from doubly occupied sites, we have:

M [0 k) = \;—% > e Z(cj,(i +2)¢o (i) + ¢l (i + 1)eq (i)
b (i = 1)ea (i) + (0 = 2)es(i) ) (i)e] (7)10) =

_ _JLN LG +2)c](7) — | + el ()+
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V2t ik(j+1)a/2 ~ ' ; ‘
- T zj: [@ K+ 1)e/ (c;(g +2)c(j) — (G + 2)4(]))

(e—ika/2+eika—ika/2) |0>+

Z[ 2l (o4 1)6l6) 5+ D)

—ika/4 ika/2—ika/4 _
(e +e )| |0)

= —2V2 lcos(Q ) 12, k) + cos (k )|1 k)] , (9.40)

|1 k) = Zeza+m/2 ZA( (i + 2)cy (4) + ¢h (i + ey (4)

7,0'8

+c(,<z' = 1)eo(i) + b (i = 2)eo i) ) ()l (G + 1) 10) =

— _LN ZAS [6ik(j—1/2)a/2ci(j>cg(j B 1) (67ika+ika/2 + eika/Q) +

+€zk(]+1)a/2 T(]) 1S;<] +2) (eika/Z—ika/4+6—ika/4) +
1 ik(i+3/2)a/2 T(ﬂ) Jg( +3) (eikafika/Q +67ika/2):| I

\/§t ikja - . —ika ika ika
_\/_Nzek] /2 [C$(])CI(]) (6 k/2+k/4+€k/4)}:
J

o (82) 1y e (1) it
reos (B) 110+ vaeos () k)]
Cos(k )|3 k‘>~|—cos(k )|2 )

+(’f )|1 k:>+\/_cos<k )yo B

= —2t

= -2

(9.41)

where in the last step, because of translational invariance, we put |—1,k) = |1, k).
It is worth noting that, contrarily to what happens for a 1D-chain, for the zig-zag
ladder the hopping operator has a non zero element on the diagonal. We are left
with the last contribution which has d = 2. Following the same procedure we obtain:

H,|2,k) = \/_Zezﬁm/? ZA( (i 4 2)co (i) + cf (i + 1) e, (i)

1,0,S8
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+eb (i = 1)eo (i) + ch(i - 2)00(2')) cl(4)ekG +2)10) =

cos () a8 4 cos () 3.0

+ cos (k ) 1, k) + V2 cos (k > 0, k)] (9.42)

= 2

Finally, collecting together all the results we can write the following matrix repre-
sentation for the ¢t — J, Hamiltonian:

0 —\/561(61) —\/5622) 0 0
—\/56,(:) —Jp + 6,(62) —eg) e,(f) 0
LB @
(dis K| Ho—y, |dj, k) = ’ l(€2) (f) ‘ k(1) . :
0 0 —e? —q) 0
(9.43)
with
(1) k:a (2) ka
€, = 2tcos T = 2t cos > ) (9.44)

As one would expect the above results reduce to the ones obtained in the case
of a 1D-chain for e,f — 0 and k£ — k/2. The complete ground-state dispersion,
reported in Flgﬁ can be found by diagonalizing the matrix representation (9.43]).
Analytical results can only be obtained in the limit for ¢ < J, in which the bipolaron
dispersion can be written as:

Ey(k)=—J, -t [cos (%) + \/1 + 4 cos? (%)

It is worth noting that, as one would expect, F4(k) exhibits a linear-t dependence
with respect to the one-dimensional dispersion since, for this particular ge-
ometry, a single hopping is sufficient for the coherent propagation of the inter-site
bipolaron through the lattice.

+0 (%) . (9.45)

According to Eq[9.35] the above ground state dispersion leads to the following
bipolaron effective mass m**

2012

my; = 9.46
ZZL|t<<Jp (5+2\/5) 2t (9.46)

A straightforward comparison with the results obtained in the case of a one-dimensional
chain gives:

m**

m* ) /3t chain (9.47)
m* |, |50 —20v5 zig-zag ladder ’ '
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Figure 9.5: Energy dispersion for bipolaron (blue line), single polaron (dashed line) and
two unpaired polarons (red lines) in a zig-zag ladder for different values of
t/Jy,. Filled areas correspond to all the possible scattering states.

where m* is the single polaron mass:

. {h2/2a2t chain (9.48)

B 2h% /5a’t  zig-zag ladder

As reported in the right panel of Fig9.6] the linear-t dependence in the zig-zag ladder
dispersion leads to a constant ratio m**/m* for ¢t < J,, which is strongly
reduced if one takes into account the full bipolaron dispersion by diagonalizing
numerically H;_;, from Eq[0.43] Importantly, by comparing Fig[0.6] and Fig{9.7 it
is immediate to realize that, regardless of the particular geometry, there is a finite
probability to find NN bipolarons in the same range in which m** ~ 2m*, signaling
the presence of small and super-light pairs of polarons which propagate coherently
in the lattice. This evidence is further bolstered by the finding of a very small
bipolaron radius r, calculated as the inverse of the decay length «. In fact, as
reported in Fig we have d < 2a in the whole range 0 < t/.J, <1 with d < a in
the region for ¢ < J, where the double occupancy plays a non-negligible role.

9.2.2 Generalization to the triplet case

It is worth noting that, with very small changes, the basis reported in Eq can
be easily generalized to the case of a spin-triplet configuration by defining :

. k), DRt (m)el (m + d) |0) . (9.49)

1 -
- e e
m,p

Unlike in the singlet case, according to the notation reported in Eq[9.22]the exchange
Hamiltonian H ;, gives:

(dv, k| My, |do, K)oy = TpOdydp - (9.50)

On the contrary, regardless the particular geometry, the hopping part does not care
about the spin symmetry and therefore we have the same hopping contributions
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Figure 9.6: Left panel: bipolaron dispersion in the ground state of the polaronic ¢ — .J,
model as a function of the ratio ¢/J,. Right panel: ratio of bipolaron to
polaron effective mass.
(symbols) from (9.28) and (9.43) have been compared with analytical re-
sults (dashed lines) in the ¢ < J, limit (Eq[9.33] and Eq[9.43) and varia-
tional results (crosses, left panel only) obtained with the method developed
in Ref.[55].
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on more distant sites (triangles) and on the same site (squares) in the ground
state of the polaronic ¢t — .J, Hamiltonian for chain (left panel) and zigzag

ladder (right panel).
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Figure 9.8: Averaged distance r between two polarons (left panel) and the corresponding
rescaled value (right panel) plotted versus the ratio t/J, for a 100-site chain
and zig-zag ladder. Here a is the lattice constant and 7,4, is the maximum
distance that can be reached according to the dimension of the lattice with
periodic boundary conditions: 7y,,; = Na/2 for a N-site chain, and r =
ay/(N/2 —1)2 + 3/4 for a N-site zig-zag ladder.

for chain and zig-zag ladder already described in Sec[9.2] The only difference with
respect to the singlet case lays in the complete absence of any transition to doubly
occupied states which are negated by symmetrization and Pauli exclusion principle.
Hence the matrix representation of the polaronic ¢ — J, Hamiltonian in the projected
two-particle triplet subspace can be easily obtained by removing the first column
and the first row of the singlet-subspace projection. Therefore, from Eq[0.37 and

Eq we obtain:

Jp —€L 0
—€ 0 —e -
ik gy 1)y = | . ,ek=2tcos<k—;), (9.51)

for a 1D-chain, while for the zig-zag ladder we have:

Jp + 6,&2) —6,9) e,(f) 0
1 1 2
(1) J, - Eg(c ) 2

—€;, €r :
(dis k| Hi, |dj K)oy = S L | R L (9.52)
0 0 —” 0
with: "
€, = 2tcos (k2
h, ~ () (9.53)
€, = 2t cos (3)

Since the triplet state is unbound, we can not calculate analytically the energy
dispersion F(k) because we do not have any hint for the ground-state wave function.
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Figure 9.9: (Color online) Square lattice to chain mapping in the case of NN interactions.

However, a complete analysis of the ground state properties can be obtained by exact
diagonalization. In particular it can be seen that the ground state energy, calculated
as the minimum eigenvalue of the ¢ — .J, matrix representation, converges to a finite
value when d exceeds a threshold value d*, which can be seen as the minimum size of
the system above which finite-size effects become negligible. As one would expect,
d* is intrinsically related to the bipolaron size, therefore it increases with increasing
ratio t/.J,. However, as long as the ground state configuration is bound, its energy
can be always obtained by solving numerically the eigenvalue problem of a finite
d x d matrix, with (d > d*), without the loss of generality. For the triplet state
instead, which is unbound, we note that as long as the interaction range is finite,
two polarons with aligned spins prefer not to sit on nearest neighbour sites in order
to minimize their energy. Hence we have a complete degeneracy between the triplet
and the unbound ground state configurations, on which basis the triplet ground
state energy can be straightforwardly estimated.

9.2.3 Generalization to two-dimensional geometries

Let us consider a generic two-dimensional N x N lattice. In principle, according to
the notation introduced in the previous Sections, the ground state configuration for
a 2D geometry can still be described as a superposition of all the possible singlet
configurations with distance d between two particle. In this case d will be a vector of
components d,, and d, along the z and the y axes, respectively. At this point we can
note that it is always possible to map a two-dimensional N x N configuration into
a one-dimensional chain of N? sites by extending the range of all the interactions
according to the particular geometry. An example is reported in Figl9.9/for a square
lattice with NN interactions.

By means of this mapping we can use the following generalization of the symmetry-
adapted singlet basis introduced in Eq)9.18;

4.k) = —= 3" pEG. 4. kel + d)esls) [0) (9.54)
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where = and y components of the centre-of-mass position (j) and the distance (d)
between the two polarons can be easily derived from the one-dimensional parameters
j and d as follows:

{jw = Rem [j, N] {dm = Rem [d, N] (9.55)

jy = Mod[j, N d, = Mod|d,N]

where Mod|z,y] and Rem[z,y| give the quotient and the reminder of x/y, respec-
tively. Finally, E(j,d, k) is a scalar function that takes into account all the possible
translations of the centre-of-mass:

E(j,d, k) = ¢llirtds/Dhsas giliy+dy/Dhkyay (9.56)

In this case, the translation d — d 4 n, N in the 1D system will correspond, for
the 2D system, to the increase of the distance between the two electron of n, unit
cells along the y-direction. According to Eq., it we call dyo, dyo, Jz0 and j,o the
original coordinates of the system, we have:

d, = Rem[d + nyN, N| = Rem|d,o + dyo, N| + Rem[n,N, N] =
= Rem[dxo + dyo, d
dy, = Mod[d 4+ ny,N, N| = Mod[dy + dyo, N] + Mod[n,N, N] =

]] (9.57)
= MOd[dxo + dyo, N] + ny = dyo + o

Then Eq[0.56 gives the following contribution for the resulting translation of the
centre-of-mass: E(j,d + n,N,k) = E(j,d + n,N, k)e™* /2 Similarly, the trans-
lation d — d + n,, with n, < N, will correspond to the increase of the distance
between the two electron of n, unit cells along the x-direction:

dy, = Rem[d + n,N, N| = Rem[dy + dyo, N] + Rem[n,N, N| =
= Rem[dyo + dyo, N] + ny = dyo + g

dy, = Mod[d 4+ n,N, N] = Mod[d,o + dy, N| + Modn,N, N| =
= Mod[do + dyo, N] = dyo

o (9.58)

with the following translation for the centre-of-mass: E(j,d + n,N,k) = E(j,d +
neN, k)em=k=9:/2  We report in Figld.10| the matrix-plot of the singlet-subspace
projection with respect to the basis (9.54) obtained for the ¢t — J, Hamiltonian in
the case of square and a triangular lattices.

Regardless of the particular geometry, as already discussed for the 1D case, the
ground state energy, calculated as the minimum eigenvalue of the ¢ — J, matrix
representation, converges to a finite value after that a critical dimension d* has been
achieved. Then the ground state dispersion can be calculated by solving numerically
the eigenvalue problem of a d x d sparse matrix, with d > d*, without the loss of
generality. Moreover, following the prescription outlined in the previous Section, the
spin-triplet dispersion can be also obtained by taking J, — —.J, on the diagonal and
removing the first row and the first column. Singlet and triplet energy dispersions
are reported in Fig)9.11|in the case of a square lattice.
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Figure 9.10: (Color online) Matrix-plot for the N? x N? matrix representation of the
t — J, Hamiltonian in the singlet subspace for a square lattice (upper panel)
and a triangular lattice (lower panel).
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Figure 9.11: (Color online) Energy dispersion for bipolaron (blue line, blue surface in
the 3D plot), single polaron (dashed line) and two unpaired polarons (red
lines, red surface in the 3D plot) for a square lattice at t/J, = 0.2. All the
possible scattering states are represented by the filled area. Filling colors
from cyan to magenta correspond to different values of the scattering vector
q from (0,0) to (m,m).
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Figure 9.12: Left panel: probability of finding two polarons on the nearest-neighbour
sites (black curves), on more distant sites (red curves) and on the same site
(green curves) in the ground state of the polaronic ¢ — J, Hamiltonian for a
2D square lattice versus t/.J, for chain (symbols) and square lattice (solid
lines). Central panel: single polaron to bipolaron mass ratio for chain, zig-
zag ladder and square lattice (m* = for the 2D square lattice) versus t/.Jp.
Right panel: rescaled bipolaron radius versus t/.J, for different geometries
(dmaz = aN//2 for a N x N square lattice).

A straightforward comparison between 1D and 2D results on NN bipolaron den-
sity, bipolaron effective mass and bipolaron radius, reported in Fig[9.12] show that
the probability to find NN and on-site bipolarons is strongly suppressed in the case
of a square lattice, leading to a strong enhancement of the probability to find large
bipolarons. This feature is also reflected in the calculation of bipolaron effective
mass m** and bipolaron radius d. In fact, as shown in central and right panels of
Fig[0.12] m** ~ 2m* and, coherently, the rescaled bipolaron size increases in the
range in which t = J,.

Square lattice: detailed calculations

As reported in Figl9.9 the square lattice can be mapped into a 1D chain with
hopping and exchange interaction restricted to nearest neighbours and to /N-distant
sites, reproducing the interaction along x and y axis, respectively. By means of
, it is immediate to see that the exchange contribution reads as:

(di, k| Hy, |do, K'Y = —Tp0ay.ar Oars + Sy ) - (9.59)
For the hopping part instead, for any distance d # {0,1, N}, we have:
—t
Held k) = — E(j,d,k)|c (i + N)cy (i) + ¢l (i — N)ey (i
W K) = TS PB4+ M) el N)eol)
b (i + 1)eo(i) + ch (i = 1o (0)] € + D)) 0) =
—t . ) . . .
= e 2o PEGAR) [+ N)G) + e+ d = N)el()
p:J
el (j 4+ d+ 1)eh(j) + (5 +d — 1)eh(5) +
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(G + d)eb( + N) + el ( + d)eb(j — N)

(G + d)eh( +1) + e+ d)eb(i = 1] 0) =

= =[G A+ N)es(G) B, d+ N, ke kel [1 4 v 4
—i—cT(j +d— N)cy(j)E(j,d — N, k) eikvan/2 [1 n e‘““y%} N

+ch (G +d+1D)e,(§)E(j,d+1 JK)e et /2 ] 4 gihean] 4
+ch(+d = 1)ep () E(j,d — 1, k)e/? [1 4 e*+]] |0) =

kgpag
COS

+ cos (%) (ld+ N. k) + ||d—N|,k>)] | (9.60)

= =2t

)(|d+1,k>+|d—1,k))

while for the d = 0,1, N cases, in which configurations with doubly occupied sites

are involved, we have:

Hel0k) = oS0 et el (it N)eq i) + el = N)es (i) +

Z]O’

(i 4+ 1) (i) + b (i = Deo(0)] el (7)es () 10) =

_ 2:&”“““%)[(-+Nk(ﬁ—fuf+NkHﬁ

psJ

+cl (4 Dep()E(G, d — 1, k)e *=+/2 [1 4 eF=a=]] |0) =
= —2V2t [cos( ) |1, k) + cos (kQ ) N, k}] : (9.61)

H,|Lk) = ZZpEj,l,k[ (i + Neo (§) + ¢ (i — N)eo(4)

el (i + D)o (0) + ch(i = Dea0)] b + D) 0) =
= o O PEGLLE) [6f + 14 Nel) + e+ 1= N)el()

+cb(7 4 2)eh(5) + eh()ep (i) + (G + Deb(j + N)
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e+ Deb(j = N) + e+ Deb( + 1) + e = Db + 1) 10) =

= Z (G + N+ Dep())E(G, N + 1, k)eFvw/? [1 4 ehvev]

+cp(j + 1= N)ep())E(j, 1 — N, k)ervv/2 [1 + e~ hvev] 4
+cb (G +2)cs(1)E(5, 2, ke #=0/? [1 4 e™==]] |0) +

_Tﬁt D chiep(i)e™ =/ [+ e 0] J0) =

( k.a
cos

k k
+ cos (%ay) IN —1,k) + V2 cos < 20

= =2t

>12k>+wms(k2 )LN4—1k>

) 0, k>] , (9.62)

H,|N, k) = ZZpE j,Nk[ TG+ N)eo (i) + ch (i — N)e (i)

s

+cg<z' T+ 1)eo (i) + (i = Deali)| e + Nea(s) [0) =

= J—%;pEu,N,m el +2N) ) + b))+
A+ N+ 1)ch(j) + ch(j + N = 1)eb(5) + ¢l (j + N)eh(j + N)
oG+ N)eh(G = N) + € + N)eh (i + 1) + e + N)eh(i = 1) 10) =
= \;—% ; [ch(j + 2N)cp(§) E (4, 2N, k)e~Hvo/? [1 4 ekvov] 4
+cl(G+ N+ Dep()E(G, N + 1, k)eFa/2 [1 4 eh=te] +

el (5 4+ N = 1)ep())E(, N — 1, k)e==/2 [1 + =] ]0) +

YIS et [1 4 ] oy =

kpay
COS

+ cos <%) |d+ N, k) + v/2 cos (k

= -2

) IN + 1, k) + cos (’“‘) IN —1,k)

. y) 0, k)] . (9.63)

Then, the matrix representation of H;_;, for a N x N square lattice can be imme-
diately obtained by adding together all the contributions according to the relation
(dy, k| Hi—j, |da, k). A schematic representation is reported in Fig[d.10] Similarly to
the triplet case, we do not have an analytical relation for the ground state dispersion
in the N — oo limit. However, numerical calculations show that the ground state
energy, calculated as the minimum eigenvalue of the ¢t — .J, matrix representation,
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converges to a finite value after a critical dimension d* has been achieved. It follows
that the ground state energy can be obtained by solving numerically the eigenvalue
problem of a d x d matrix, with (d > d*), without the loss of generality.
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As shown in detail in Sec[8.2] in highly polarizable ionic lattices, bare long-range
Coulomb and Frohlich interactions almost negate each other giving rise to a new
physics described by the polaronic t-J, Hamiltonian [34]

~ 1. .
H=- Z (Lij05,5 + f10ij) clcj + 2 Z Jp(m —n) <?m - ?n + annn) , (10.1)

©,J m#n

where ;; is the renormalized hopping integral given in Eq., [ is the rescaled
chemical potential and J,(m—n) is the exchange interaction between polarons
on different sites, coming from a residual polaron-multiphonon interactions .
Here i = (m,s) and j = (n, s') include both site (m, n) and spin (s, s') states, while
the sum over m # m counts each pair once only. Sp, = (1/2) 32, ¢l 7 sorCmor i
the spin-(1/2) operator (7 are the Pauli matrices), Ny = Nt + Ny, and Ny =
¢l cmo are the site occupation operators.

It is worth noting that, given the overall constraint 9 > e, on static &g
and dynamic e, dielectric constants, which follows under the assumption of high-
polarizable lattices, the t-J, model is exact since the Schrieffer-Wolf transformation
adopted in the derivation of the model (see Secl8.2) is accurate for intermediate
and strong electron-phonon couplings with A > 1/ V/2z. Here \ parametrizes the
strength of the electron-phonon coupling and z is the lattice coordination number.
The residual inter-site interactions, not accounted in , are small compared to
the exchange interaction J, if g > . However the on-site contribution, which
has been initially neglected in the bare microscopic Hamiltonian from which
the model is derived, could be relevant if the size of the Wannier orbitals is small
compared to the lattice constant. This contribution reflects in the presence of an
additional on-site coupling U , with U > 0, given by the competition between on-site
Coulomb and electron-phonon interactions. Different from the bare Hubbard-U, U
can only be as large as few hundred meV since for almost all the relevant compounds
the bare U (e.g. the bare Hubbard-U on the oxygen orbitals in a rigid Cuprate lat-
tice) is of the same order of magnitude of the on-site Frohlich interaction (from 1eV
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to2eV approximately [42]). Regardless of its value, it can be seen that by including
an on-site Hubbard-U contribution in the microscopic Hamiltonian and per-
forming Lang-Firsov and Schrieffer-Wolf transformations (see Chapter , one also
obtains the following expression for the exchange interaction:

o~ (2¢°(m )’
Jym = m) = Jy(m —n.0) = 7257 (k+ 0 /hy

: (10.2)

where g? the dimensionless parameter defined in Eql8.41] and wy is the electron-
phonon frequency. Hence it is immediate to realize that the role of U in the physics
described by the polaronic ¢-J, model goes much more beyond the mere addition
of an on-site contribution in the model Hamiltonian U also rescales the
polaronic exchange coupling J,,, whose reduction with respect to J,(m —n, U= 0),
shown in Fig{10.1} can be substantial for U /hwy > 2g2. This follows from the fact
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Figure 10.1: Reduction of the inter-site exchange attraction J,(T)/J,(0) by the on-site
residual polaron-polaron repulsion U /hwy for different values of the polaron
exponent gQ.

that, as sketched in FigfI0.2] the exchange process is mediated by an intermediate
doubly occupied state with energy U with respect to the initial state. Therefore,
although there is no potential barrier between two polarons on nearest neighbor sites
induced by lattice deformation, the gap between the initial and the intermediate
state could be so high as to almost suppress the exchange mechanism, as one would
expect.

N
LT omyg
~ L N )

Figure 10.2: Exchange transfer of two polarons with opposite spins between nearest-
neighbor sites with no potential barrier induced by lattice deformation.
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Hence, by taking into account the twofold effect of the on-site interaction U, we
come up with the so-called extended polaronic ¢-J,-U Hamiltonian:

= - Z (tij(s&s/ + ﬁézj) Cl-LCj + 2 Z Jp(m — N, U) (?m . ?n
0,

m#n

.. ~ AN
+annn> + Uan7¢nn7¢ s (103)

m

which has been argued to describe most of the relevant feature of superconducting
and normal states of a large class of compounds among which Cuprates [36, 37]. In
particular, it has been shown that, like in the ¢-J, model, the ground state of the
polaronic t—Jp—U Hamiltonian accounts for the formation of small and super-light
pairs of polarons which condense with a critical temperature well in excess of 100K.
The effective on-site term U, limiting the double occupancy, reduces the inter-site
polaron exchange J, resulting in a transition from small-to-large bipolarons at some
critical value of U [36]. Furthermore, the study of thermal-induced recombination of
polarons and bipolarons as a charged Bose-Fermi mixture showed that the model is
also able to describe pseudogap features in the underdoped normal state of Cuprate
superconductors [37]. All the aforementioned topics will be discussed in detail in
the following Sections.

In Sec we analyze the effect of U on the ground state bipolaronic configura-
tion. We show that the on-site interaction U drives the system to a small-to-large
bipolaron transition and eventually destroys the bipolaronic ground state when the
ratio t/.J,(U) exceeds a critical value. We derive the phase diagram of the model
in the case of 1D and 2D geometries. In Secl10.2] we provide an explanation for
high temperature superconductivity in terms of Bose-Einstein condensation (BEC)
of small and light pairs of polarons with a critical temperature well in excess of
100K. We show that the small-to-large bipolaron transition induced by U accounts
for the BEC/BCS crossover which reconciles the polaron and bipolaron theory of
superconductivity with the observation of a large Fermi surface in the underdoped
regime of high-temperature superconductors. In Sec|10.3] we discuss the applica-
bility of the model to Cuprates. We show that, without any ad-hoc assumption
on preexisting orders or broken symmetries in the normal state of the model, the
polaronic t-Jp-ﬁ Hamiltonian is able to describe pseudogap features in density of
states, spin susceptibility and electric conductivity in terms of a thermal-induced
recombination of bipolarons and unpaired polarons.

10.1 Small to large bipolaron transition

It is immediate to see that, as long as JP(U ) is finite, which is always true for all the
physical values of U and ¢? (Fig , the presence of any finite on-site interaction
does not change the properties of the statlc ground state configurations obtained in
Sec m for the U = 0 case. In fact, by neglecting the polaronic hopping ¢, we imme-
diately find that in the NN approximation the ground and the higher energy states
are still bipolaronic spin-singlet and spin-triplet. Configurations with all polarons
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separated by at least one empty site constitute the zero-energy states while the ones
with doubly occupied sites appear with higher energies since U > 0. Hence, as one
would expect, the presence of a finite on-site interaction will only affect the ground
state configurations with ¢ # 0 in which double occupied states might arise from the
overlap of polarons induced by the hopping. To better characterize the ground state
configuration with finite ¢, hereafter we adopt the strong coupling approach already
described Sec for the U = 0 case solving first a two-particle problem and then
projecting the Hamiltonian on the repulsive Bose gas of small inter-site bipolarons.
Hence, for any lattice geometry, the ground state energy dispersion E(k) can be
determined by solving the Schrodinger equation Hg—ot) = E(k)i) where Hg—q is
the projection of the Hamiltonian (|10.3)) in the singlet subspace and ) is the system
wave function. Hereafter we will restrict our analysis to 1D chain and 2D square lat-
tice geometries only. For these two cases, we report in Figl[l0.3| the projection of the
t—Jp—U Hamiltonian obtained according to the procedure reported in Sec
for the one-dimensional chain, and to its generalization to the two-dimensional case
reported in Sec[9.2.3]

0o 1 N N
10 0 0 . T
I— EN
| H o
H o N O Nl -2V cos[2)
B 27 cos[k] . . B 27 cos[¥]
. -2 Cos[ ] . “2cos[=]
I R 2
. —2Cos[ﬂ]
2
y » H N N
0 1 N 0 1 N?

Figure 10.3: Matrix-plot of the ¢t —J,(U) Hamiltonian in the singlet subspace for a N-site
chain (left) and a N? x N2 square lattice (right).

In the presence of a bound state, the ground state dispersion E(k) can be found
by imposing a wave solution that is exponentially decaying at some rate in the region
where the potential vanishes. In particular for the one-dimensional chain we have:

U V2 0 ... 0
- d d
—\/§€k —Jp(U> —€L 0 e 1 1
0 —€k 0 —e e | =Ek)| ¢° , (10.4)
. 67204 67204
0 —€L 0 .

where ¢, = 2tcos(ka/2), d is the amplitude of on-site pairs and « is the decay
rate of the ground state wave function. The three unknowns d, E(k) and « can be
determined from the following system of three coupled equations:

dU — \2¢, = E(k)d
—V2e,d — J,(U) — ege = BE(k) (10.5)
—ep (e +e*) = E(k)
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resulting in a cubic for the decay rate e™:

263 1 ¢ (U - J,,((?)) o2 (ez n UJP(U)> ¢ — e, J,(U) =0, (10.6)

that reduces to the one reported in Secl9.2.1, Eq9.31] for U=0.In particular it is
worth noting that from the first equation in (10.5)) one can readily obtain:

V2,

d= "%
U — E(k)

(10.7)

hence, as one would expect, d — 0 for U > 1. Substituting into the last two
equations, we have:

{ea = J= [ = J /2t cos(ka/2) (10.8)

E(k) = —J®* — 4L cos?(ka/2)

where J)° = Jp(U — 00), and the bipolaron to polaron ratio for the effective mass

m** /m* = J3°/t. It is important to recall that Eq.([10.6) and Eq.(10.8)) hold only as
long as we have a bound state.

The same procedure can also be applied for a N x N square lattice. In this
case, according with the notation reported in Sec)9.2.3] the wave function ¢, can
be represented as the following N?-element matrix:

d a e e
a e~ e—Za €—3a
w _ e~ 6—2a 6—3a 6—4(1 (10 9>
Sk —2a —3a —4a —da '
e e e

in which the i row contains the wave function components from (N (i —1)+1)% to
(iN)™ with open boundary conditions. Here d and a are the amplitudes of on-site
and nearest-neighbor pairs, « is the uniform decay rate along both x and y direc-
tions. Contrarily to the one-dimensional case, in which the exponential decaying
wave function represents the solution of the Schrédinger equation ((10.4), Eq{10.9|is
not a solution of Schrédinger’s equation, except at a = 0, because of the presence of
a discontinuity in the gradient of the wave function at z = 0 and y = 0 . However,
it represents a good approximation in the strongly localized regime (« > 1) when
the bipolaron size is much smaller than the size of the system and the errors on the
coordinate axes will be exponentially small in «. Hence, by applying the Hamilto-
nian Hg—g (Fig. to 1, it is immediate to obtain the following set of coupled
equations:

B(ky, ky)d =Ud — V2a (e, +¢,) (10.10)
2E (ky, ky)a = 2J,(U)a — (ek, + €x,) <a + 27+ \/§d> , (10.11)
3E(ky, ky)e ™ = — (ex, + &) (2a+ e +3e7>) (10.12)
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AE (ky, ky)e ™™ = — (e, +€x,) (Be™* + e +4e73) | (10.13)

which, in the limit for o < 1, allows us to determine d, a and the energy dispersion
E(ky, ky) as a function of the decay rate a as follows:

\/§a (ekx + eky)

d=F— Bh k) (10.14)
a= é (9—e), (10.15)
E(ky, k) = —i (r, +er,) (3™ +e72* +4e77) . (10.16)

Finally, the decay rate can be determined self-consistently according to the following
equation:

2 (ky, ky)a + 2J,(U) + (e, +€x,) =0 (10.17)

For U = 0 rigorous results show that in one and two dimensions the presence of
any attractive interaction results in a bound ground state that persists for any values
of the hopping. However, in the presence of a sufficiently high on-site interaction,
the bound state can be destroyed when the ratio ¢/.J,(U) exceeds a critical value.
Such a critical value can be determined by solving the Schrodinger equation for
Hs—o with a = 0 in the system wave function. Then, for the ground state (k = 0)
of a 1D-chain, according to Eq[I0.5 we have:

Eod = dU — /2¢,
Ey = —\2ed - J,(U) — ¢ (10.18)
E() = —260

where ¢y = e¢(k = 0) = 2t and Ey = E(k = 0). From the system above one can

readily obtain Ey = —4t, d = 2v/2t/(U + 8t) and the following critical value for the
hopping integral: o

P = _Uat) (10.19)

2U — 4J,(U)

Because of the constraint t < .J,(U), one also gets U > 4.J,(U) that can be read as

a self-consistent equation that allow us to determine the critical value of the on-site
interaction required to have a phase transition to an unbound state.

Similar considerations can be done for the 2D square lattice. By solving the
Schrodinger equation Hg—ots, = E(k)s, with a = 0 in Eq we get the follow-
ing system of coupled equations:

E()d = dU - 2\/560
Ey=—(3+V2d) ey — J,(U) (10.20)
E(J == —460

The solution of the system gives Ey = —8t, d = 4v/2t/(U + 8t) and the following
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critical values for the hopping integral:

oo _ UL

20— ) (10.21)
20 — 8.J,(U)

allowing for a phase transition to an unbound state in the physical regime ¢ < .J,(U)
only for U > 8.J,(U). The resulting phase diagram for both chain and square lattice
geometries is reported in Fig

Bound?egimef |
02 T

5 10 15 20 25 30 Y0 5 10 15 20 25 30
0/3,0) 0/3,0)

Figure 10.4: Ground state phase diagram of the polaronic ¢t — .J, — U model for a chain
(left panel) and a square lattice (right panel).

Signatures of the crossover from a small to a large bipolaron configuration also
appear in the NN bipolaron density and in the bipolaron radius r whose calculation,
for the sake of brevity, is reported in Figs[T0.5H10.7] for the only case of a square
lattice geometry. As shown in Fig[I0.5] consistently to the analytical results obtained
so far, the bipolaron size increases approaching the critical line defined by Eq10.21]
Importantly, as shown in the right panel of Fig, in the region with ¢ > 2P
the bipolaron size increases linearly with the dimension of the system signaling the
presence of an unbound state.We can also note the presence of an almost linear
r(N) dependence for t < t2P. In this region, although we do not have an unbound
state, the bipolaron size is comparable to the dimension of the system signaling
the presence of a large, but still bound, bipolaronic ground state. This state is
also characterized by the vanishing of the probability P, to find nearest-neighbor
bipolaron in the ground state of the model. As reported in the left panel of Fig[10.6|
in fact, Py, becomes zero well before the critical value 2P signaling the crossover
from a small to a large bipolaronic ground state in the proximity of the unbound
region. According to the conditions: FP,, = 0 and r/a ~ N we obtain the phase
diagram reported in Fig[l10.7]

In conclusion we can infer that, although the small bipolaronic configuration
persists for any values of the hopping at U = 0, for finite values of the hopping up
to a critical value t., the inclusion of an on-site interaction leads to the crossover
from a small to a large bipolaronic configuration characterized by P, = 0 and a
bipolaron radius comparable with the dimension of the system. Finally, for further
increasing t (¢t > t.) the system undergoes a phase transition to an unbound state
characterized by a bipolaron radius that increases linearly with the dimension of the
system.
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Figure 10.5: Left panel: bipolaron radius, r versus t/.J,(u) for a 100 x 100 square lattice
and different values of the dimensionless parameter u = U/hwy. Right
panel: bipolaron radius, r to system size, Na ratio versus N for a N x N
square lattice and different values of the ratio ¢t/J,(u) at u = 10. Here a is
the lattice constant, ¢? = 1.24.

1.0 ; 1.0 0.010 ; .
0.8 |- u=0 1 o8t 4 ., 0008} u=0 \5
L o) L c H
SO06f 1 Sosf I % 0.006 -
ER u=10 g u=0 1739 u=10 1
.8—0'4 - 18 0.4 - 1 @ 0004} -
m B ‘T r G
02 4 802 u=10 1 <& 0002 | -
L c | e
)
0.0 0.0 ! 0.000 L
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
td, AR 3,
Figure 10.6: Probability to find NN bipolarons, unpaired polarons and on-site polarons in
the ground state of the t — J,(u) model as a function of the ratio ¢/J,(u) for
different values of the dimensionless parameter u = U /hwg with g% = 1.24.
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Figure 10.7: Left panel: ground state phase diagram of the polaronic t—J,(u) model for a
square lattice including the crossover regime (light blue area) corresponding
to a large but still bound bipolaronic state. Right panel: contour-plot of
the bipolaron radius r/a (a is the lattice constant) for a 100 x 100 square
lattice. Numbers represent the value of the ratio r/a along the lines. Here
g% =1.24 and u = U /hwo.
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10.2 Superconducting phase transition in the dilute
bipolaron limit

Growing evidence of non Fermi-liquid and non-BCS behaviors in normal and su-
perconducting states, respectively, lead to the conviction that most of the high-
temperature superconductors, among which Cuprates [12], are neither BCS nor
BEC superfluids but they are in a crossover region from one to another [56], [57].
The standard BEC theory, applied to a charged and uniform 3D gas of local pairs,
has already been shown to provide a very high-T, with a simple expression for the
critical temperature [58|:

ppc . 2mH n, —11Me 2/3 2
T77" ~29x107" —n,"em K (10.22)
kpm*= \ ((3/2) m**

Here m, is the bare electron mass, n, and m** are density and effective mass of
bosons, respectively and ((3/2) is the Riemann zeta function. It is immediate to see
that the above equation gives T2P¢ ~ 300K if one considers the typical bipolaron
effective mass m** ~ 10m, and n, ~ 10*’cm~3. However, despite the very high
critical temperature, the BEC theory itself it is not sufficient to explain some other
well-known experimental findings among which small/large Fermi surfaces and d-
wave pairing. In fact, the bosonic ground-state band, which describes quasi-particle
excitations, always lays below the chemical potential, resulting in the complete lack
of any Fermi surface. Furthermore, bosonic pairs, tightly bound in the real space,
have no internal structure in the momentum space which makes difficult to justify
a d-wave symmetry for the gap function. It is immediate to see that these and
many other issues, which do not occur in the standard theory of superconductivity
(BCS and its extensions), can be immediately fixed if one admits a crossover from
a BEC to a BCS-like regime of weakly interacting fermions. However, although
several theories have been proposed so far, there is no general consensus on the
main mechanism that should drive this phenomenon.

In the framework of the bipolaron theory developed here and in the previous
Chapter, we report in this Section the calculation of the superconducting critical
temperature in the BEC regime of the 2D polaronic t-Jp-U model, providing a
possible explanation of the BEC-BCS crossover in terms of the properties of the
bipolaronic ground state. As shown in Sec (Fig and Fig, the ground
state of the polaronic ¢- Jp—f] model describes very small and perfectly mobile carriers,
which coherently propagate in the lattice, in a wide range of model parameters (see
the phase diagram in Fig.. These pairs, which are tightly bound in the real
space rather than in the momentum space, represent good candidates for the BEC
regime. In particular, in the dilute limit with a small number of bipolarons compared
to the dimension of the system, pairs of polarons do not see each other allowing for
a description of the superconducting state as a weakly interacting, charged and
hard-core bipolaron gas. According to Mermin and Wagner theorem [59], there is
no superconducting phase transition, meaning that the critical temperature T, is
strictly zero, in any two-dimensional system since there is no continuous symmetry
breaking. However, the possibility of a non-zero T, phase transition can still exist
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via the Berezinsky-Kosterlitz-Thouless (BKT) mechanism [62]. For two-dimensional
Bose gases, even if Bose-Einstein condensation does not occur in the ideal case [60],
[61], a phase transition to a superfluid state is expected in the interacting case [62].
In particular, it has been shown [63] that in the very dilute limit in which:

1
In (ln (—)) > 1, vy=ma?, (10.23)
Y

where ny is the boson density per unit area and a is proportional to the range of the
hard-core boson interaction, the critical temperature at which this phase transition
occurs is: - S,

= kgm*1n (In (1/nyr2)) ’ (10-24)
which provides a good estimation for the superconducting critical temperature T,
since (T, — TBET) /T, ~ 1/In(In(1/n)) < 1 in the dilute limit. In our case r ~ a
and m** is the bipolaron mass. From , since the effective mass is inversely
proportional to ¢, one may conclude that the BK'T critical temperature will increase
as the hopping increases. On the other hand, our numerical results obtained by exact
diagonalization showed that, despite of the particular geometry, the probability to
have small (nearest-neighbor) bipolarons decreases as the hopping increases and goes
to zero after that a critical value has been reached (see Fig.(9.12)). It follows that,
in a more reliable picture, Eq10.24] has to be properly weighted by the probability
Py,(t/J,) to find NN bipolarons in the ground state configuration leading to the
following expression for the renormalized critical temperature:

T2t/ J(U),mp) = Pup(t/ Jy(U) T () - (10.25)

Here P,,(t/J,) should be read as a bipolaron density, meaning that for B,,(t/J,) — 0
there are no nearest-neighbors bipolarons and therefore the hard-core boson picture
can be no longer justified. Coherently, as emphasized in Figl[l0.8] results obtained
from the application of Eq[10.25 with the bipolaron effective mass calculated in the
case of a square lattice geometry (see bottom left panel in Fig, show that the
renormalized critical temperature 7. (n;) has a maximum in the correspondence of
the small-polaron regimes, then gradually decreases with increasing ratio t/.J,.

It is worth noting that in the small bipolaron regime, despite the very low density
limit, the polaronic ¢t — J, — U Hamiltonian is perfectly able to reproduce critical
temperatures well in excess of hundred kelvin. In particular, in the case of Cuprate
superconductors, with the polaron shift in the range 0.5eV < E, < 1.0eV and the
bipolaron binding energy 0.3¢V < J,(U = 0) < 1.06V [34] one gets the realistic value
of the bare hopping integral 0.2¢V < T'(a) < 0.4eV that gives 0.05 < t/J, < 0.27
and the critical temperature 40K < 7T, < 125K at n, = 0.05 in the physical range
6 <U /hwy < 10. Furthermore, at this point it is also important to recall that
Eq[10.25 intrinsically depends on the ion mass M via the polaronic hopping ¢ since
it is defined as t ~ exp(—E,/hwy) where E, is the polaron energy level shift and wy
is the well-known phonon frequency which depends on the ion-mass as wy o< v/ M.

At sufficiently low density, BEC should not depend on whether bipolarons are
nearest neighbor or next nearest neighbor, so long as they are bound and the bipo-
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Figure 10.8: Left panel: probability to find NN bipolarons (top) and bipolaron effective
mass to single polaron effective mass ratio versus ¢/.J,(U U) for different values
of u=0U /hwo. Right panel: renormalized superconducting critical temper-
ature T from Eq as a function of the ratio t/J,(U) for different values
ofu—U/ﬁwo Hereg = 1.24, hwy = 0.08¢V and ny = 0.05.

laron spacing is much greater than the typical polaron separation. However, as
shown in Flg the polaronic ¢ — J, — U model also admits the presence of a
large blpolaronlc ground state in a partlcular range of the model parameters. In
this region the ground state configuration is characterized by pairs of polarons sep-
arated by a distance which is proportional to the dimension of the system, leading
to a significant pair-pair overlap even in the low density limit. Hence, pair conden-
sation appears in the form of the Cooper pairs in the momentum space with a lower
critical temperature, rather than in real space, providing a reliable picture for the
BEC-BCS crossover [23], [70]. Consistently to this picture, the critical temperature
T (t,ny), plotted in Figl10.8| should read as representative of the BEC contribution
only, with a lower-temperature tail (see Sec|8.1] E Flg. ) that, in principle, could be
added if one considers the BCS contribution.

10.3 Pseudogap signatures in a boson-fermion mix-
ture of polarons and bipolarons

In the last few years the presence of unconventional non-Fermi liquid behaviors in
the normal state of high temperature superconductors has been widely advocated
as one of the key-features to be addressed in order to better understand the origin
of the high-T, superconducting mechanism. In particular, in underdoped Cuprates,
one of the main signature of a non-Fermi liquid behavior is given by the presence of
an energy gap, at temperatures well above T, apparently unrelated to the supercon-
ducting gap and so called “pseudogap” (PG). Although several theories have been
proposed so far and several experimental techniques, among which angle resolved
photoemission spectroscopy (ARPES), Raman and neutron scattering, nuclear mag-
netic relaxation (NMR), have been employed to better characterize the properties of
the PG regime (for a review see Refs.[T1] [72] [73] [74]), a comprehensive and widely
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accepted view is still missing. Historically, the main interpretation of PG features
has been given in terms of pre-formed Cooper pairs |75, [76] and strong suppression
of low-energy antiferromagnetic fluctuations [77, [78, [79]. These pictures, initially
supported by NMR observations of an anomalous depression in the temperature de-
pendence of the Knight shift for underdoped samples of YBCO [80)], were called into
question due to a later interpretation of NMR data as a consequence of a depression
in the electron density of states (DOS). The presence of this depression, which can
be in principle induced by any instability such as stripes, charge/spin density waves,
polaron formation, lead to the conclusion that PG features might not necessarily
imply spin-singlet formation. Moreover, strong evidence of particle-hole symmetry
breaking in the pseudogap state of Bi2201 shed doubts about the possibility to con-
sider the PG as a precursor of a Cooper pairing superconducting gap in the normal
state [81]. Hence, a plethora of other different theories were proposed in which PG
might emerge due to SU(2) rotation [82], coexistence of charge and spin density
waves [83], inhomogeneous charge distributions [84, 85]. So far, polaron and bipo-
laron theory, supported by earlier and more recent ARPES experiments [86], was
only able to give a phenomenological explanation of pseudogap features in terms of
the bipolaron binding energy [87].

Within this context, we report in this Section our study of the pseudogap regime
in the framework of the polaronic t—Jp—(j model, which has already been proved
to admit a phase transition to a superconducting state, characterized by weakly
interacting and charged hard-core bipolarons, with a critical temperature well in
excess of hundred kelvin (see Sec[10.2]and Ref.[36]). We will show that the hard-core
bipolarons gas, studied as a charged Bose-Fermi mixture, is responsible for a non-
Fermi liquid behavior of the normal state, characterized by pseudogap signatures in
spin susceptibility, specific heat and tunneling conductance. These signatures allow
for a microscopical explanation of the pseudogap regime in terms of a thermal-
induced recombination of polarons and bipolarons, without any assumption on pre-
existing order or broken symmetries in the normal state of the model [37].

10.3.1 Bose-Fermi description

Let us consider an ideal gas of N polarons in a N,-site high polarizable ionic lat-
tice in the presence of a static and uniform magnetic field h. It has been pointed
out that for such a system the competition between bare long-range Coulomb and
electron-phonon interactions results in the presence of a short range spin-exchange
coupling that is responsible for the formation of bound pairs of polarons, called
bipolarons, described by a bosonic band. Unpaired polarons left are described by a
polaronic (fermionic) band. In the dilute limit (N/N, < 1) analytical and numerical
results show that, in the absence of any magnetic field, the bipolaronic configura-
tion represents the ground state for 1D and 2D geometries while polaronic states are
accessible by thermal excitations. Then, for a fixed value of doping z = N/Nj, as
long as the interactions between bipolarons and polarons are negligible, the system
described above can be considered as an ideal (non-interacting) Bose-Fermi mixture
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of N, bipolarons (bosons) and NN, unpaired polarons (fermions) with:
T =2ny,+n,, (10.26)

where n;,, = Np,/N is the bipolaron/unpaired polarons density.

With the aim of describing the thermodynamic of the Fermi-Bose gas at equi-
librium, it is useful to introduce the thermodynamic potential {2(n;,n,, T, h) of the
mixture, defined as a function of temperature 7" and chemical potential p, for fixed
values of entropy S and total particle density n, as follows:

dQ = —=SdT — ndu . (10.27)

We recall that in the dilute limit all the thermodynamic quantities enjoy the ad-
ditivity property. Hence Q(ny,n,, T, h) can be expressed in terms of bipolarons
Qp(np, T', h) and unpaired polarons Q,(n,, T, h) potentials:

Q(np,np, T, h) = Qp(np, T, h) + Q,(ny, T, 1) (10.28)

where p,; is the unpaired polaron / bipolaron chemical potential and:
Qpo(nps, T, h) :FkBTZ/ deNS)(e)In (1 = exp [(ppp — €) /kpT]) , (10.29)

Here the sum over s takes into account all the possible spin states and M(,Z) (€, h) is the
density of spin-polarized states in the bipolaron /unpaired polaron band, respectively.
The chemical potential of unpaired polarons and bipolarons can be calculated as
a function of the chemical potential y of the mixture by means of the detailed
equilibrium principle associated to the phonon induced bipolaron - unpaired polarons
transition. In this transition a bipolaron with energy E decays into two unpaired
polarons with energy € and ¢’ via the absorption of a phonon with energy Aw. On
the other side, two unpaired polarons with energy € and € can emit a phonon with
energy hw and collapse in a bipolaronic state. At the equilibrium, the number of
possible bipolaron to polaron transitions is equal to the number of possible polaron
to bipolaron transitions and we have:

So(E)Nph(w) (1 = fp(€)) (1 = fp(€) = () fyp(€)) (Npn(w) + 1) (1 + fu( E))

(10.30)
where:
1 1
fo(bpp. T €) = — , Non(w) = , (10.31)
exp( “”b>j:1 exp(%)—l
Solving EqJ10.30| with respect to j, one readily obtains:
1
pp =5 (et e —hw—E+u) (10.32)
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then, by requiring the conservation of the total energy: € + ¢ = E + hw, we have:
o = 24y (10.33)
Therefore, recalling that:

Q T
npp(T) = - ol T) p’g(:”f’ ) - (10.34)
p7

+o00 ) a pp, b (T)—e
— ikBTZ/ deN; (5, n (1:i:e k5T ) = (10.35)
s —00 D,

+o0
= Z/OO ANy (€) fpa(tipp: €, T) (10.36)

for a fixed value of the doping z, the chemical potential can be calculated self-
consistently according to Eq[I0.26] that gives:

ZL‘—QZ/ de fy(2u, €, T) Ny (€) —1—2/ def,(p, €, T)Ny(€) (10.37)

It is important to note that, although the density of states ./\fp(fb) (€) is well-known
to be temperature independent for non-interacting systems, it implicitly depends on
the intensity h of the applied magnetic field and on all the model parameters (¢, .J,,
U) via the energy dispersion € = €(t/J,, U, h). Hereafter, for the sake of brevity, we
will omit ¢/.J,, U and 2 dependencies, therefore €, = prb(T, h). The knowledge of
the thermodynamic potential Q(7,h) allows to the calculation of some response
functions such as entropy S(T,h), specific heat Cy (T, h), total spin-momentum
(magnetization) m(7T, h), charge x.(T,h) and spin xs(7, h) susceptibilities, where:

o)
S(T,h) = — Z=(T.h) e (10.38)
oS
Cy(T,h) =T — 5T — (T, h) S (10.39)
0
m(T,h) = = =-Q(T, h) o (10.40)
(T h) = (T, ) (10.41)
oh V,n=const.
0
AT, h) =T —n(T, h 10.42
X ( ) a,u ( ) V,n=const. ( )

Analytical expressions of the above quantities are reported in Appendix [F]
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10.3.2 Pseudogap signatures in density of states, specific heat
and spin susceptibility

As explained at the beginning of this Chapter, pseudogap features can emerge in
several physical quantities such as density of states, specific heat and spin suscep-
tibility [71], [72, [73], [74]. Density of states, as well as specific heat, is expected to
decrease in a particular range of energy due to the lack of excited states within the
pseudogap. Similarly, spin susceptibility is also expected to decrease in the limit for
T — 0, providing a precursor signal of singlet pair formation. In order to charac-
terize all these features in the framework of the polaronic t—Jp—ﬁ model , it
is convenient to introduce the “occupation density of states” (ODOS), p(w,T), by
weighting the standard temperature-independent DOS N, ,(w) with the Fermi-Dirac
and the Bose-Einstein distribution functions:

p(w,T) = fo(w, T)Np(w) + 2fp(w, T)N,(€) , (10.43)
with f,,(w, T) = [exp ((w — ppp) /ksT) F 17" and:
a [T/
Noplts) = oo / AR = B (8] (10.44)

Here, according to the Bose-Fermi mixture description, we shall restrict our analysis
to an effective two-band model with the bipolaronic two-particle (bosonic) band,
labeled by the index b, which described the properties of the bipolaron gas, and the
single-particle (fermionic) polaron band, labeled by the index p, which describes the
gas of unpaired polarons. Hence, Ej (k) is the (bi)polaron dispersion with polaron
{t, and bipolaron g4, chemical potentials fixed in terms of the chemical potential p
of the whole mixture according to the detailed equilibrium principle which
gives: p, = pp/2 = p. At this point it is convenient to introduce the following
potential shift to the model Hamiltonian:

1
H =M= E ;nm , (10.45)

where Ej is the bipolaron ground state energy which depends on the model pa-
rameters (e.g. Fy = —J,(U) at t/J,(U) = 0). It goes without saying that the shift
has no effect on the physics described by the model. However, it has the good
property of shifting the zero of bipolaron and unpaired polaron energies providing
a more intuitive picture in which all energy eigenstates of the shifted Hamiltonian
are non-negative (see Fig.. To this purpose, we note that two different shifts,
namely E(()b) = Fy and E(()p ) = Ey/2, are applied for bipolaron and unpaired polaron
bands, respectively.

As already pointed out in Chapter [0} bipolarons repel each other and also repel
single polarons leading to dimerized low-energy configurations with no pair-pair
interactions in the dilute limit. Hence, it is immediate to see in the static limit (¢ = 0)
the total DOS will be given by the superposition of two contributions corresponding
to the singlet bipolaron ground state and the unpaired polaron states, with a single
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charge/spin gap A, = Ay = Jp(U)/Q. By increasing the ratio t/Jp(U), as shown
in Figl[l0.9] the two peaks become broadened and the gap closes. Importantly, it
is worth noting that while A, = 0 for any ¢ # 0 because of gapless intra-band
excitations in the bipolaronic (bosonic) band, the spin gap A, remains finite as long
as there is no overlap between bipolaron and unpaired polaron contributions and
the unpaired polaron band remains unoccupied.
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Figure 10.9: Density of states versus energy, for different values of the ratio ¢/ Jp(U )
for a one-dimensional chain. Left and right peaks represent bipolaron and
unpaired polaron contributions, respectively. Here E(()b’p ) are the energy
shifts applied to bipolarons and unpaired polaron bands, respectively, with
Eg = 2E} = Ej being Ey the bipolaron ground state energy.

As follows from EqJ10.43] the occupation depends on temperature via the Fermi-
Dirac and the Bose-Einstein distributions. Hence, as far as the temperature is low
enough with respect to Jp(U ), only the bottom of the bipolaron band will be occupied
leading to a pure bosonic singlet state. With increasing 7', when the temperature
becomes comparable with the bipolaron binding energy, thermal excitations break
bipolarons inducing a finite population of the the polaronic (fermionic) band. Hence,
pseudogap features appear as a result of the competition between bipolaron and
unpaired polaron contributions. In fact, as reported in Fig{10.10] in a narrow range
of the ratio t/.J,, the ODOS exhibits a strong depression for w — EP?) « J,(0).
In this regime the occupation of the upper edge of the bipolaron band is strongly
suppressed in order to favor the creation of unpaired polarons at the lower edge of the
polaronic band. As one would expect, this suppression in the ODOS, which persists
for T' > T, becomes less and less pronounced with increasing 7" when the population
of the states within the pseudogap becomes favored by thermal excitations. Hence,
a characteristic pseudogap temperature 7™ exists above which the pseudogap is
suppressed.

As follows from Eq, except for few simple cases, the ODOS p(w) can only
be calculated numerically since the energy dispersion in the DOS ./\/’p(;)(e) is, in prin-
ciple, not known in its analytical form. The same issue also affects the calculation
of the thermodynamic quantities ((10.38)-(10.42)) which depend on N;j,)(e) via the
thermodynamic potential 2. Although a plethora of different techniques accounts
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Figure 10.10: Signatures of pseudogap opening in the ODOS for different values of po-
laron hopping (left panel) and temperature (right panel) calculated for the
chain with a Gaussian broadening § = 0.01.J,, modeling a disorder effect
in the § function in Eq Here E(gb’p ) are the energy shifts applied to
bipolarons and unpaired polaron bands, respectively, with Eg =2FF = E
being Ej the bipolaron ground state energy..

for the calculation of bipolaron and unpaired polaron dispersions, among which the
SSP method described in Sec., in many cases non conventional behaviors in
DOS and thermodynamic quantities do not depend on the particular shape of the
ODOS but on main features such as intensity and bandwidths of polaron and bipo-
laron contributions. In this regard, with the only purpose of describing qualitatively
the thermodynamic properties of a Bose-Fermi mixture of bipolarons and unpaired
polarons, we can adopt the following approximation (see Fig.(F.1)):

No(e) = 4,0 (6) © (2w, — €) ) (10.46)

{Np(e> = A,0 (e = A)O (A + 2w, —¢)
which holds once that the potential shift has been applied in order to set
the bipolaronic ground state level as the zero of the energy scale. Here A,; and w,,
are intensity and half-bandwidth of polaron and bipolaron terms, while A it the gap
between the bottom of the bipolaron band and the bottom of the unpaired polaron
band. In a square lattice with nearest-neighbor couplings there are only two possible
bonds per site which are doubly degenerate because of spin symmetry. Thus the
rectangular DOS needs to satisfy the constraint [N, ,(e)de = 2, leading to
App = 1/wpy. At this point it is crucial to note that all the parameters in (10.46) are
strongly related to the model parameters ¢, J,(U) and U as shown in Fig{10.11] In
particular, the unpaired (non-interacting) polaron bandwidth immediately follows
from the kinetic term in with w, = 8¢ while the bipolaron dispersion can be
calculated numerically in the framework of the SSP method and gives wy, o< t2/.J,(U)
for t <« Jp(U ) (see Sec.(9.2)). Importantly, the gap A corresponding to the binding
energy per polaron is close to JP(U)/Q for t/Jp(U) < 1. Then, as shown in Fig.ﬁ
it rapidly decreases with increasing ratio t/.J,(U) until vanishing when the bottom
of the unpaired polaron band approaches the bipolaron ground state energy.

As shown in detail in Appendix , the approximation allows to obtain
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Figure 10.11: Left panel: bipolaron (bottom) and unpaired polaron (top) bands with
the corresponding DOS: N, ,(E) (filled area) for U = J,(U) = 2.0 and
t = J,(U) = 0.1. Here Ej = 2E! = E, are energy shifts coming from
(10.45), where Ejy is the two-particle ground state energy. Dashed lines on
the DOS represent the resulting Heaviside-theta approximation .

Right panels: DOS parameters versus ¢ = J,(U) for different values of the
ratio U = J,(U).

analytical expressions for all the relevant physical properties in terms of the model
parameters. In particular, for bipolaron and unpaired polaron densities we have:

kT sinh (—“;’;}“)

n(T) = —1+ In : (10.47)
We sinh <—kBLT)
kT sinh L
ny(T) = 1— 211y <’“BT> , (10.48)
wp | sinh (-zf;—T)

from which the chemical potential p(7") of the whole mixture can be calculated self-
consistently for any given particle number = according to the relation = 2n,(T) +
n,(T). As reported in Fig., consistently with analytical and numerical results
on the ground state configuration reported in this Chapter, the ground state (7" = 0)
configuration can be described as a pure bipolaron gas with n, = z/2 and n, = 0.
The unpaired polaron density remains zero as long as kgT < A then, as one would
expect, it increases with increasing 7" when thermal excitations start to destroy
pairs. Consistently, the bipolaron density decreases with the temperature keeping
fixed the total particle density x.

Importantly, we can define a crossover temperature 7™ at which half of the
bipolarons are dissociated and the charge is equally distributed between polarons
and bipolarons: ny(T*) = 2n,(T*). As reported in Fig.(10.13), we note that the
ratio A/kpT™ varies linearly with In(1/x) in a wide range of doping, with kpT™* =
2A/In((4/x — 1)?/(1 + 8/z)) in the limit for w,,/A — 0, in agreement with the
exact analytical calculations done in the narrow band limit reported in the Appendix

[F.3.2, Eq[F.59,
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Figure 10.12: Left panel: chemical potential p versus temperature for different values of
the doping =. The p(z) dependence is shown in the inset. Right panel:
relative bipolaron (solid)/unpaired polaron (dashed) density versus tem-
perature for different values of the gap . The dotted line represents the
total particle density x = 2ny + n,,.
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Figure 10.13: Linear dependence of the ratio A/T* with respect to In(1/z) for different
value of the gap A. In the inset the doping dependence of T%*/A (sym-
bols) is compared with the exact analytical dependence (line) obtained in
the zero-bandwidth limit. Here T™ is the crossover temperature at which

np(T%) = 2n, (T7).
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The thermal induced recombination of polarons and bipolarons also results in a
number of anomalous features in specific heat C'(7") and spin susceptibility xs(7’, h),
where h is the intensity of a static and uniform external magnetic field. As shown
in detail in Appendix [F.3], in the framework of the Bose-Fermi mixture description
and with the Heaviside-Theta approximation for the DOS given in Eq., C(T)
and (7, h) read as:

1 + cosh [ ] cosh [Z}’;’;i]
Xs(Ioh) = o T/ deN,y(e . (10.49)
B COSh [6 #p] + cosh |:HBh])
d zizn
C(T) = ksT Y Ay {kBI,?)(x) + % ,S)(a:)} , (10.50)
k=b,p "
where g is the Bohr magneton and:
i — __Mb i — A—pyp
{ tm a2 { tn Bow (10.51)
Ty = TEpT Tp = T ket
while I;;”)) () = [ dx% is expressed in terms of the poly-logarithm function
Lig(z) = > 02, 2 /k* as:
e Fln(l+e” =1
@) == T nite e . T (10.52)
’ v (£ F2In (1 +e%)) F Lip (Fe¥) , n=2

As shown in Figl[l10.14] the specific heat is characterized by a superposition of
two main low-temperature features corresponding to intra-band and bipolaron to
unpaired polarons excitations. For A = 0 bipolaron and unpaired polaron bands
are completely overlapped (see Fig with a single peak in the specific heat
coefficient v(T") = C(T')/T leading to y(7T') < 1/T. On the contrary, the presence
of a finite pseudogap A results in a non monotonic v(7") dependence, characterized
by a strong suppression for kgT =~ w;, when thermal excitations start to break
bipolarons making unfavorable the population of the upper part of the bipolaron
band with respect to the lower part of the polaronic band. As one would expect,
this feature also depends on doping x. With increasing x, in fact, the chemical
potential approaches to zero (see Fig.), therefore the thermal weight induced
by Fermi-Dirac and Bose-Einstein distribution functions to the states with energy
E =~ A also increases. Hence the population of the states in the pseudogap, negated
by the condition A — p < kgT which is true for z < 1, becomes as relevant as x
increases (@ — 0) resulting in the close of the pseudogap when a particular doping
is reached. Consistently, the depression in the specific heat at small dopings, which
signals the lack of occupied states with energy F ~ A, rapidly disappears with
increasing x as clearly follows from Fig[10.14]

Pseudogap features also emerge in the magnetic response of the system to a
perturbation induced by a static and uniform magnetic field of intensity h. In fact,
as shown in Fig., the spin susceptibility x,(7, h) immediately drops to zero in

160



t—Jyand t—J, — U models

2.0 r .
Alw,=4.0
1.5} x=0.25 W, /W,=5.0 |
-
~ 1.0t
-
©Oos
x=0.05

0. - - - 0. . . . . .
8.0 10 20 30 40 8.0 05 1.0 15 2.0 25 3.0
kBT/wb kBT/Wb

Figure 10.14: Specific heat coefficient v(T') = C(T")/T versus temperature plotted for
different values of gap A (left panel) and doping « (right panel). Here wy,
is the half-bandwidth of the bipolaron/unpaired polaron band.

the low temperature regime for any A # 0 and pgh 5 A when the population of
the bipolaron (spin-singlet) band becomes dominant. Consistently with the results
plotted in Fig[10.12] with increasing temperature ny(T') ~ n,(T') and x,(T') naturally
recovers the standard Curie behavior x(7T,h = 0) o< 1/T which is also present in
the absence of pseudogap. For ugh > A, instead, the magnetic field induces a
finite magnetization in the system resulting in a singlet to triplet phase transition
at ugh = A which is signaled by a discontinuity in the spin susceptibility at T = 0.
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Figure 10.15: Spin susceptibility xs(7', h) versus temperature plotted for different values
of the external magnetic field h. Here A is the gap between bipolaron and
unpaired polaron bands, w), is the half-bandwidth of the polaronic band

(see Fig.

10.4 Tunneling conductance

To complete our survey on pseudogap features in the the polaronic t-Jp(U )—U model,
let us discuss the tunneling conductance in a normal metal - bipolaronic supercon-
ductor (NS) junction. Measurements of the low temperature tunneling current have
been advocated as the most powerful tool to investigate the electronic DOS and
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reproduce gap and pseudogap features in high-T. superconductors. As shown in
Figl10.16] these features should result in a depression of the conductance for T' > T,
in the zero bias region.
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Figure 10.16: Temperature dependence of the tunneling spectra (a) on the UD Bi-2212
(T, = 83.0K) and (b) on the OD Bi-2212 (T, = 74.3K). A gap-like feature
at zero bias is seen to persist in the normal state which is direct evidence
of a pseudogap in the tunneling conductance. (from Ref.[8§]).

From a theoretical point of view, the bias conductivity o(V') depends on the
voltage V' and on the tunneling current Iyg(V') as:

_ dlys(V)

a(V) TG

(10.53)
In order to calculate Iyg(V), let us consider a NS junction in which undressed car-
riers in the normal metal (N) are faced with polarons and bipolarons in the super-
conducting (S) medium. All the relevant contributions to the tunneling amplitude
are given by single-particle tunneling processes between the normal and supercon-
ducting states, reported in Fig[l0.17] Therefore the N'S tunneling Hamiltonian can
be written as:

B
Hys =P ple, + o 3 (b;,pu,cy n H.c.) . (10.54)

vy
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Figure 10.17: Cartoon demonstrating the two possible single-particle tunneling scenar-
ios. Left panel: the annihilation of an electron in the normal-metal with
the creation of a polaron in the polaronic band. Right panel: the annihi-
lation of an electron in the metal and the annihilation of a polaron in the
superconductor with the creation of a composed boson (from Ref.[89]).

Here the ¢\’ describes the annihilation (creation) of a single carrier in the state

v of the metallic tip, pl(j,) / bq(;r) describe the annihilation (creation) of a single po-
laron /bipolaron in the state v//n in the superconducting side, N is the number of
lattice cells. P and B are tunneling matrix elements respectively with and without
the involvement of a bipolaron (generally B > P [89]). Hence, the tunneling current
Iyg circulating in the junction, induced by the application of an external potential
V', can be expressed as:

INS(V) =c (WN—>S — WS—>N) y (1055)

where Wx_,y represents the tunneling probability of transition, per unit time, from
the X to the Y side of the junction. According to Fermi’s golden rule, the transition
from a state v;,, with energy E;, to a state 1, with energy Ey;, is given by:

2
Win_ pin = T | (in| Hys |[¥fin)? 6 (Efin — Ein) (10.56)

then we have:

Wy — %;%Pf/%wd&wﬂﬁ/%mdfm@ﬂF@Hl—fﬂéﬂﬂ£—€+wV)

—00 —0o0

+oo +oo
1B / 0 (€) / 0€p, (€

o)

/+oo dnpy(n) (L+ f5(n) fr(€)F (€5 (n— &€& — eV)} =

—00

= %{!PF/ mdé’pM(é’—eV)pp(é’)F(g’—eV) [1— fr(€)]

—0o0

+oo +oo
HW/ m/ 4 pra (€ — V)pp(€)pa(n)
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(L+ f5(n) fF(ﬁ')F(f)} : (10.57)

—00 —0o0

Wsw = %{W [ et [ €)@ 1 - FOIS (6~ 4 ev)

+o0 +o0o
1B / 06 pa(€) / 00, (€)

/_+OO dnpo(n)f5(n) (1 = fr(§)) (1= F(§)d(n—§—¢& — GV)} =

“+00

= %{!Pf/ €' pr (&' = eV)pp(€) fr(€) [1 = F(E —eV))]

—00

+o0 400
1B / an / 0 prs(n — € — eV)pp(€)on(m) F ()
(L=fr()Q—-Fn—¢& - eV))} : (10.58)

Here par(€), pp(€), po(n) and F(€) = [exp (¢/kpT) + 1], fr(€') = [exp (€'/ksT) + 1],
fs(n) = [exp (n/ksT) — 1] " represent the DOS, and the corresponding distribution
function, associated to normal metal, bipolaronic band and polaronic band, respec-

tively. Hence, pr(§)F(§), pp(&') f,(&') and py(n) f5(n) represent the number of occu-
pied states at a given temperature T' with energy £ +d¢ in the normal metal, & + d¢’
and 7 + dn in the polaronic and bipolaronic bands, respectively. By substituting

into (10.55|) we have:

Ins(V) = 2—7;6{|P|2 | doule — i) F(E - V) - fr(©)

+oo +oo

HIBE [ dn [ gt - € - Vin©mtn
F(n— € — V) fr(€) +
+o0o +0o0

1B [ [ d€uln =€ = VinOmnat

(1= fr(£) —F(n—é’—ev))} : (10.59)

Therefore, neglecting the energy dependence of the metallic DOS: py/(§) = A, since
near the Fermi energy it is approximately a constant, from Eq[F.31] we can express
the tunneling current in terms of the DOS parameters as follows:

A42wy
Ins(V) = LfAmAp{W [ pe - ev) - fr(e))
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2wy, A+2wy
SIBPA [y [ ae P =g ) (e
2wy A+2wy
—1BPa [ [ g (1= 1)
—F(p—¢ - eV)> } . (10.60)

Then the bias conductance can be easily calculated by taking the derivative with
respect to the bias:

A42wp
ons(V) = 27re {|P|2/ d{’iF(ﬁ'—eV)

h av
A+2wp
18P Ab/ dn/ €| fe@) S — € — V)
) G0 = € — ) } (10.61)

and we can immediately identify the contributions coming from “electron-polaron”
tunneling o,(eV’) and “electron-polaron to bipolaron” tunneling oy,(eV'), respectively:

A+2w)
o (V) = @|P| A A / - i€ d F(e' —eV) (10.62)
A+2wp
(V) = Z|BE A AAb/ dn/ €| Fre) o — € — V)
d
) G0 = € = V) (10.63

As reported in Fig[I0.18 numerical results obtained from Eq[I10.60] in the case
of a Heaviside-theta DOS confirm a strong depression of o(V') in the zero
bias regime for kT < A, where pseudogap features also emerge in specific heat
(Fig and spin susceptibility (Fig. Importantly, our data perfectly re-
produce the asymmetry between negative and positive bias conductance provid-
ing a further confirmation that the van Hove singularity, ignored in our DOS (see
Fig and not observed in many experiments such as momentum integrated
photoemission [90], does not affect transport properties. Hence, pseudogap features
in the tunneling conductance, as well as in specific heat (Fig and spin suscep-
tibility (Fig., naturally appear as a consequence of a thermal induced mixture
of polarons and bipolarons, without any ad-hoc assumption on pre-existing orders
or broken symmetries in the model.

The plausibility of this explanation is also supported by a good agreement be-
tween our data and experimental measurements on the doping dependence of the
asymmetry coefficient R(z,T) F1gm defined as a function of doping x and
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Figure 10.18: Left panel: density plot of the normalized conductivity ona(V)/onar(A)
in the kgT/A-(eV — p)/A plane. Right panel: doping dependence of
the asymmetry coefficient R(z,T), Eq Numerical results obtained
by integrating the normalized conductivity o(eV)/o(A) from 0 to £A for
different values of the temperature are compared with experimental results

in Cuprates (from Ref.[89]).

temperature 7T as:

Jlao(@V)dV  Iyg(—A)

OA o(eV)dVv ~ Ins(A)

R(z,T) = (10.64)

In fact, as already pointed out before, as long as thermal excitations are not suffi-
cient to break bipolaron pairs (kT < A), the Bose-Fermi mixture can be safely
considered as a pure Bose gas with n,(T") ~ x/2 (see Fig[10.12). In this regime,
while the polaronic contribution to the tunneling conductance remains almost con-
stant, the bipolaron contribution scales linearly with doping since it is proportional
to the bipolaron density n,(7") as clearly follows from Fig. and from Eq
if one neglects the bipolaron energy dispersion in the narrow-band limit.

~
~

4 i

/|NEEEEEEEEEEERREEEEE) 4TIIIIIIIIIIIIIIIIIII— Fll-................
1
= 3T ka=01 "l =3[ kTin-0s 1 =3[ kn=10 I
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Figure 10.19: Contributions to the tunneling conductance at eV = A/2 versus doping
and for different values of the temperature. Here o,,,(A/2) represents the
two contributions described in Figll0.17) namely: 0,(A/2) (squares) is
induced by the annihilation of an electron in the normal-metal and the
creation of a polaron in the polaronic band; o4(A/2) (circles) is induced
by the annihilation of an electron in the metal and the annihilation of a
polaron in the superconductor with the creation of a composed boson.

This feature, which persists as long as ny(7") > n,(T), is strongly suppressed
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for kT Z A when both bipolaron and unpaired polaron bands are populated.
Importantly, it is worth noting that numerical data for R(x,T") have been calculated
by integrating the rescaled conductivity o(eV')/o(A), therefore do not depend on
the particular choice of the tunneling matrix elements B, and P in Eq[10.60] As one
would expect, the only relevant quantities are the DOS parameters which are related
to the model parameters ¢, J,(U) and U (see Fig.@ since they determine, for a
fixed value of the filling, how bipolaron and unpaired polaron densities change with

temperature according to Eq[10.47 and EqJ10.4§]
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Chapter

Open issues and possible directions

In the last few years, polaron and bipolaron theory of superconductivity has been
widely developed, bolstered by an increasing number of experimental evidence which
shed doubts about electron-phonon interaction as an unavoidable ingredient for the
explanation of non-conventional behaviors observed in a large class of compounds.
In particular, the confirmation that many high-temperature superconductors lie in
the very narrow regime in which bipolarons are stable (see Fig., contributes to
a growing understanding that the true origin of high-T. superconductivity can only
be found in a proper combination of unscreened Coulomb and Frohlich electron-
phonon interactions. In this regards, the polaronic t — J, [34, 5] and t — .J, — U
[36] models, which account for both Coulomb Froéhlich interactions without any ad
hoc assumption on their range or relative strength, lay a microscopic foundation
for polaron-bipolaron theory of superconductivity. They provide a full consistent
description of the dynamic of polarons and bipolarons into a doped polar insulators
as, for instance, oxygen holes in a cuprate lattice. In the low-density limit, the
thermal-induced recombination of polarons and bipolarons has been proposed as a
possible mechanism responsible for pseudogap features in the normal state of cuprate
superconductors. In the same limit, the Bose-Einstein condensation of small and
perfectly mobile pairs accounts for a phase transition to a superconducting state
with a critical temperature well in excess of hundred kelvin.

Although several analytical and numerical results have been obtained in the
dilute limit, only a few can be said in the high-doping regime where the overlap
between polarons and bipolarons is expected to play a crucial role in the physics
described by the models. With increasing doping, bipolaron configurations are
expected to be energetically unfavoured because of bipolaron-bipolaron repulsion.
Also, their mobility will be strongly compromised, resulting in the drop of the critical
temperature. All these features have been only partially described in the framework
of the polaronic t — J, — U. In fact, although a full consistent multi-polaron analysis
is still missing, clear signatures of the crossover from a small to a large bipolaronic
regime have been found only in the dilute limit. This crossover is characterized
by a strong decreasing of the superconducting critical temperature (see Fig. and
Fig which also corresponds to the suppression of the gap between the bottom
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of polaron and bipolaron bands (see Fig.. Hence, the overlap among pairs has
been argued to be responsible for a BEC-BCS crossover which would reconcile the
polaron-bipolaron theory with the observation of a d-wave symmetry for the gap
function and a small to large Fermi surface transition which occurs moving from
half-filling towards the very underdoped regime. These last points, which up to now
represent some of the most promising developments of the polaron-bipolaron theory,
are currently under investigation via analytic and numerical methods.
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Appendix

Detailed calculations for the 1D U-J-h
model

We report in this Appendix detailed calculations of single particle properties and
two-time correlators for the one-dimensional U-J-h model described in Chapter [3.1]

A.l Agﬁ) coefficients

Exploiting the algebra satisfied by n(i), n3(i) and D(7) operators it is easy to obtain
the following algebraic relations:

nP(i) = n(i) + a,D(i)

n(i)ns(i) = na(i) [n3(i)] = n(i) — 2D(i)

D(i)ns(i) =0 [ns ()] = ng(i) , (A1)
Dr(i) = D(i)

n(i)D(i) = 2D(i)

where a, = 2P — 2 and p > 1. Hence we get:

1 L
@ = 5(”(i—a)+n(2+a] :gz( )nm+ "(i — a)
m=0
1 1 1 2
= ﬁnp(i+a)+2—npz—a §Z<£)npmz+a (i —a)
m=1
1 1
= G O+ D]+ 5 Y ()i o)+ gD+ )
m=1

n(i—a)+anD(i—a)] =

= 2p—11 [0 (i) + a, D% (i) +2—1pn(z'+a)n(z'—a) ( P )+
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+1@+@m%wf4(i)%+%mpmpwqu(g)%%+

2p 2
m=1 m=1
p—1
+—D(i+a)D(i — a) ( TI; ) Ay,
m=1

m=1
p—1 p—1

=8 (1) E (2o mstzir
m=1 m=1

p—1
Cp = <£;>apm@n:4(—1—3p+4p1)+3~?+P

m=1

then [n*(4)]” can be rewritten as:

()] = n®(i) + —— 1 —a {Da( )+ 2—1pn(1 +a)n(i — a)]

+$%P@+@D@—®+"@—@D“+”}

+%%D@+@D@—@. (A.2)

From the above relation we observe that:
o 1. . arn2 1 o
D*(i) + 5%(@ +a)n(i —a) = [n%(i)]" - on (4)
4
3

D(i + a)n(i —a) + D(i — a)n(i + a) = = [n®(0)]° — 2[n*())* + g “(4)
D(i+a)D(i —a) = 2 ()]~ 20 + 5 [0 — 500

so, substituting in the expression of [n®(4)]”, we obtain the following recursion for-
mula:

- 1 1 11 o
[ (i)]” :2p412%+ Sbpn (i ] [p—%+ﬁ%[nwf+
1 |2 o/ 11 a/
21 [gbp - Cp] [n®(6)]° + 391 » ()]
that can be also written in the following form:
4
D= AR @ (A.3)
m=1
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Detailed calculations for the 1D U-J-h model

’ (z=2) (z=14)
A(lp) Aép) Agp) Agp) Aép) Aip)
1 1 0 1 0 0 0
2 0 1 0 1 0 0
3 —1/4 5/4 0 0 1 0
4| —5/16 21/16 0 0 0 1
5| —21/64 85/64 —9/1024 205/1024 —273/256 15/8
6 | —85/256 364/256 | —135/8192 3003/8192 —3685/2048 627/256
Table A.1: Values of the coefficients Aﬁﬁ) forp=1,...,6 and z = 2,4.
where:
AP = 1= Lo+ Yoney — Lol = 6 r o — ot e g
1 213—1 9 P 3 p 4 P
w_ 1 — 11 _ 1 +1
A2 _2p—1 ap—bp+ﬁcp —W _104_'_57211 _563p_'_114p
w_ 1 2 _ — 1 —3.9pt3 L3P _3.4P
Ay = T pr Cp| = 3 o1 [18 3-2P7+14-3 3-4
w_ 1 1 — 1 _ Loptl 43P 4 yp
A, —2p_130p—3'2p_1 443-2 4.3+ 4

It is worth noting that the following property is satisfied:

24:14%’):1

m=1

In TabJA.1] we report some values for z = 2 and z = 4.

A.2 Normalization and energy matrices

Recalling the definition of the normalization matrix:

10 = ({96,0),691@0}) (s =Em)

it is easy to see that:

(A4)

0@ = ({ur@e,0,05910 ) = ({60 @O s e} ) =
- ({&0.&0}mar" mor) -
boor (1= (D)) 5] S

1750 = ({0,059, 0 b)) = ({n @ RO g O 0l () ) =
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- <{%< )om0)} @' g ()" ) =

n—1 o/ \1m—1
S0t (N (1) [ng ()] [ng ()™ ) (A7)
hence, by means of the recursion formulas (3.9)-(3.10) we obtain:
(@) 0
(a) _
o= (10 ) (A5)
where:
gy (6
[1?2 [1,a3 [1,a4 11:15 [275 [6?7 16% 16(19 [6,a10 17,a10
o= B R | e B R
A s 3 93 e ol
Iig Iys I3s Iis Iss Isio Irio Isio Loio Lioi0

(A.9)

It is worth noting that the matrix elements [ (Ssc)w can be expressed in terms of the
(s)

elements of the first row: 1.7}, as:
R
I35 = _%1[13 + %1—1 5 Ig1o = _ilﬁ,g + 4%[6,10 (A.10)
[(a) — _i[(a) 21 [(a) [(a) — _i](a) + 21(“) '
4,5 16 1,2 9,10 16 67 16 69
Iéas) I(a) 2(13](?) 11(8)10 = 5 I +2% IG 10
while, as reported in detail in Section for the one-dimensional case, the remain-

ing unknown components: Il(al), 11(‘3, Iy, ]1((1)7 I(ag,) and ]éflﬁ), Ié‘?, Ié‘;), Iéag, Iéal)o can

be fixed in terms of the correlators k") = ([ng(i)]"~ 1> and \?) = = (ny(i) [ng (z)]p_l>
according to the following self-consistent equatlons:

[1(513 () )\ip) Iéf) — k(P=5) )\(p 5)
; 1<p<d B 6<p<10.
10 = )@ p 1Y = AP p
(A.11)
where £® and A\¥) can be easily calculated in terms of X; and G; as:
kY = 1, (A.12)
1

AL = —{(G1 +0Gy) + za[G2 +0(Gy — 2G3)]X2 [14b(X; —2X3)]

2 <e‘5H§i)>
4 (G — 2Gs + 0G) [a2X§ 42D (X — 2X3) + B (X, — 2X3)2} } (A.13)

P = L {X2+aG2{(1+b)X§+ [1+0(Xy —2X3)] (X1 — 2X3)}

2<e BH()>
(

(G = 2Gs) Xa[b+ (2 + b+ 57) (X, —2X)] | (A.14)
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Detailed calculations for the 1D U-J-h model

1
A2 = —_{(Gl +0Ga) Xy + alGy + 0 (Gy — 2G5)]{ (1 +b) X2

2 <e*5H§l)>

4B (X) — 2X5)] (X) — 2X3)} + (Gy — 2G5 + 0G) [bX2

-+ (a2+b+b2) X2 (X1 —2X3)i| , <A15)
o - e
+(G1 —2G3) (fo + f4)} ; (A.16)
3 _ 1 _ o (G — 2
O e 5H<l>>{ (G1+0Ga) (X1 — 2X5 + X3) [Go + 0 (G1 — 2Gy)]
+(fi +2f3) + (G1 — 2G5 + 0G2) (f2+f4)} : (A.17)

We report in Tab. the analytical expressions of ) and AP obtained for each
phase in the limit of zero temperature as a function of the filling.

For the calculation of the energy matrix, in the one-dimensional case with z = 2,
we have:

—u—0o —20J 0 0 0
0 —p—oh —20J 0 0
el®) = 0 0 —pu—och —20J 0 , (A.18)
0 0 0 —u—och —20J
0 olJ/2 0 —50J/2 —p—oh
8‘(777) _ 555) + U Isys, (A.19)

where ¢ = (1,]) or 0 = (+1,—1) and Is45 is the 5 x 5 identity matrix. The
eigenvalues of these matrices are:

—U—0 U—-—p—o
—p—oh—20J U—-p—oh—20J
E&) = | —py—oh—ol , B0 = | U—-p—ch—oJ (A.20)
—pu—oh+aol U—-—p—oh+ol
—p—oh+20J U—-—p—oh+20J

The eigenvectors define the columns of the Q) matrices, s = &,n, which read as:

1128 20 1
01 2% -2 —1
Q=101 22 22 1 |. (A.21)
01 2 -2 -1
01 1 1 1

It is worth noting that the above matrix does not depend on ¢ and on the particular
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J | Phase | k@ k@ = 5@ kB = 6 AL AP =\ AP = 2P
NM 1 0 0 z 0 0
J >0 h wc+qv h(l+o)n n(l+o)
F 1 aﬁ n 3 207 -
NM |1 0 0 n 0 - 0
J<0| F1 1 hn n n(1-o) 0 0<n<05 0 0O<n<05
k] 2 h(2n—1)(1—0)
:M_:_ 2. 05<n<l1 E 05<n<1
* _h_ 1 2n—a n n—
F2r | 1 = ! - Moy 172
| (1<n<?2)
J Phase | kM k@ =@ k6 = O AL PYRENC) 23— \B)
Soo| MM [ 10 0 n 0 0
h(2—n) n(l—o h(1+0)(2—n) 140)(2—n
o ! B 2-n U 4o Ml o (EES
NM | 1 0 0 n o 0
AR L 2o 2 ( Hm(a—m) 3 Proo(a-2
J<0| F1 ] A 2—p | M), S l<n<i oG 4 cp <15
M s<n<2 2-n 15<n<?2
* _h_ 1 2n—a h(n—1/2 n—
Foro| 1 . - L/ e

Table A.2: Values of < and v:m@ ) obtained in the limit of zero temperature. *We recall that F2-phase exists only in the range of fillings
0.5<n<15.
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Detailed calculations for the 1D U-J-h model

choice of s = &.n.

A.3 Two time correlators and self-consistent equa-
tions

As explained in detail in Section for the one-dimensional case, by considering
separately all the interactions which involve a single site, say ¢, of the system, one
can split a chain into two separate sub-lattices. Hence the correlators involving sites
on two different sub-lattices can be factorized and the statistic average of a generic
operator O(i) can be written as:

<Oe—ﬁH1(i)>
(O()) = W ; (A.22)

where the average (...), is considered in the so-called Hj-representation since it is

)

accounted in terms of Héi only:

<Oe—5Ho(i)>

(O(i))y = RO (A.23)

By means of these properties and the algebraic relations (3.9) and (3.10)) one can
easily obtain:

) = 1 S () g o) () =
= Lt any(@)ns(G) +b[n(i) — 2D()] [n(G) — 2D()] . (A24)

where:

a = sinh (5J)
{b =cosh(BJ) -1 (A.25)

e O = exp (28Tmy (i) (1)} = exp {BIng (D) (i + 1) + mali — 1)]} =

= JJexpBIns(iins(i+ (—1)")] =

= 1+an3(i)[ns(i +1) +n3(i — )]+ b[n(i) —2D(i)] -
‘n(i+1)=2D(+1)+n(i—1)-2D(E —1)] +
+a? [n(i) — 2D(i)] ns(i + Dng(i — 1) + b* [n(i) — 2D(3)] -
[n(@+1)=2D@GE + 1) [n(i — 1) —2D(i — 1)] + abns (i)
{ns(i — 1) [n(i +1) = 2D(i + 1)] + ng(i + 1) [n(i — 1) — 2D(i — 1)]} .

185



APPENDIX A

The average of the above quantity gives

<e—5H§”> = 1+42aGy X5 [1+b(X; — 2X3)] + (G — 2G3)

[a2X22 +2b (X — 2X3) + B2 (X) — 2X3)?| (A.26)
where:
Gi=(n@1), , Xi=(n%i))
Gy = (ns(i))y  Xa=(n5(i)), - (A.27)
Gs=(D(i))y  Xz= (D))

While X, X, and X3 can be determined self-consistently (3.26] , G1, Gy and G5 can
be calculated starting from the retarded Green’s functions in the Hy-representation:

{Gﬁf‘”@ = (R [& (i, €0, )] ), =

Gt 1) = (R [77 nb(i.t)]), =

O'

_ efiw(tft/)Gg&O)(w)dw
+O° 6—z’w(t—t’)G((TTi:0) (w)dw

. (A.28)

¥
wls 5 |N

It is worth noting that the Hubbard operators satisfy the equations of motion:

€0 = €00, Ho0)] = (0 + 1) €00) a29)
i) = (i), Ho(i)] = — (u+ has — U) (i)
therefore retarded Green’s functions in the Hy-representation read as:
(€,0) _ 1-{ns(4))
Go (W) = Srutonis (A.30)
G(n,O) (w) = (na(@))g : :
g wHpu+oh—U+id

The knowledge of the retarded Green’s functions allows for the calculation of the
correlation functions according to the relation:

B Bw B 2

Cw) =—- {1 + tanh (7 Im|Gw)] = —mfm G(w)] , (A.31)
which, at equal time, gives:

0 = (& EL0))y = Traston

7 0 1+eﬁ7(l“+"h) . (A.32)
{C = (i) z>>o = Tt

Therefore, from the following basic algebraic properties:
£ (D) + monk (i) = 1= o (i) As3)

N ()0} (i) = 1 (i) — np(i)ny (i)

we obtain:

. eBut2h) o oB(2u+h=U)
<n¢(z)>0 ~ oBh + eBr 4 eB(ut2h) 4 eB(2uth-U) ’

(A.34)
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Detailed calculations for the 1D U-J-h model

<n¢(i)>o = ’
eBh 1 eBu  eB(ut2h) 4 oB(2u+h—U)

(A.35)

and:

. ePH (1 4 e26h  oBluth=U)
Gy = (n(i)), = ( ) (A.36)

 eBh 4 eBu 4 eB(ut2h) o oBQuth=U)

eBlut2h) _ Bu

Go = <n3(i))0 - eBh 1 eBu 4 eB(ut2h) L oB(2u+h=U) ’ (A.37)
. eBQRu+h=U)
Gs = (D))o = gn i 1 opteran 4 gp@erh ) ° (A.38)

Starting from the operatorial expression of e ##1() and by means of the algebraic

relations (3.9) and (3.7) one can also easily obtain:

(e7PHI@) 14 2aGyXo [1 4 b (X) — 2X3)] 4 (G — 2G3)
(@ X3 + 20 (X1 — 2X3) + b (X1 — 2X3)°] (A.39)
(n(i)e ™MD = Gy +2aG2Xa[1 4+ b (X1 — 2X5)] + (G1 — 2G3)
[a® X3 +2b (X, — 2X3) + 0% (X1 — 2X3)7] (A.40)

(n(i+1)e @) = X1+ aGaXa [1 + X1 + 20 (X1 — 2X3)] + (G1 — 2G3)
[a® X3 + b (14 X1) (X1 — 2X3) + 0% (X1 — 2X3)°|(A.41)
(ns(i)e™ @) = Gy 4 2a(Gy — 2G3) Xo [1+ b (X — 2X;))
+Gy [a® X2 +2b (X1 — 2X3) + 02 (X1 — 2X3)°]  (A.42)
(ng(i+1)e @) = Xp 4 (G1 — 2G3) Xa [b+ (a® + b+ b7) (X1 — 2X3)]
+aGo [ X3 (1+b) + (X1 — 2X3) + b (X, — 2X3)°](A4
(D(i)e PMD) = Gy (A.44)
(D(i+1)e P - = X3[1+aG2Xs +b(G1 — 2Gs) (X1 —2X3)] . (A4

Hence, putting Eqs into the constraints (3.26)) we get :

Fi= Gi— X, +aGsXo(l — X1) 4+ b(Gy — 2Gs)(1 — X1)(X1 — 2X3) = 0
Fo= Go— Xot (Gy—203)Xs{2a —b—[b+ (a—b)2 (X — 2X,)}

+Gy{aX2(a—b—1)+ (X; —2X3)[2b —a + b(b — a)(X; — 2X3)]} =0
F3= G3—X3[14aG2X2+b(G1 —2G35)(X; —2X3)] =0

?

(A.46)
which represents as a set of three self-consistent equations in terms of the parameters
X1, Xy and X35. We have also to consider that, once the filling n is fixed, the
chemical potential i has to be fixed according to the relation n = (n(i)). This gives
a fourth self-consistent equation that, according to (A.39) and (A.40) can be written
as follows:

(G1 — 2G3) [a®X3 +2b (X1 — 2X3) + b (X — 2X3)°] = 0. (A.47)
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Appendix

Detailed calculations for the two-pole
approximation scheme

In this Appendix are reported some definitions and detailed calculations of useful
quantities in the framework of the two-field approach to the Hubbard model illus-
trated in Chapter []

B.1 Spinorial notation and useful quantities

According to the formalism of second quantization, in order to properly define a
generic fermionic operator of spin S, ®) one has to specify both spatial and spin
degrees of freedoms according with the notation ®) = CIDQ)(i), where i = (¢,1)
accounts for both position and time coordinates (the Heisenberg picture is assumed),
while —S < o < S represents the spin index. Hence, according with this notation,
the total particle density ne(i) can be written as:

S
na(i) = Y OL(0)P (i), (B.1)

o=—S

with a sum over all the possible spin states. However, it is immediate to realize that
one can get immediately read of any spin index by defining the fermionic operator
®M (i) as a vector of dimension 25 + 1, whose components are given by all the
possible spin states on which the fermionic operator can act:

gal(é)
d(i) = ‘”E(Z) , ()= (@f (1) ®F () ... . (1)) . (B.2)
CRENG)
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Hence, according to this notation the total particle density reads as:

na (i) = ®'(1)®(i) , (B.3)
where the matrix product of rows and columns is assumed among the two spinors.
In general, for two spinors A(i), B(i), the quantity Af(i)B(i) is assumed to be a
scalar, meaning that there is no dependency on any spin index. On the contrary,

the quantity A(i)BT(7) is a 2 x 2 matrix which includes all the possible combinations
of spins. For example, for the trivial case with S = 1/2 we have:

s = (Ao ) (5l ) =00+ aomo. G
N Ax(i . . A(DBl(D) A:()Bl(i
oy = (48Ut ) (4000 40 o

We report in the following Subsections the calculation of some useful spinors.

i

B.1.1 Non local spinors

Starting from a generic spinor ®(i), we define the non-local spinor of rank n as:

E Z a’bha’bl’m : ‘ain73in72a'in727:nfl®(in_17 t) ’ (B6>

-----

where «;; is the operator which projects the site j on the nearest neighbour sites of
i
. . . 2/2
1/z if [t —g|=la
Qi = { / | '7| | | E cos (knpa) (B.7)

0 otherwise

being a the lattice vector and z the coordination number. In particular, for a d-
dimensional cubic lattice z = 2d, therefore a generic non-local spinor of rank one
can be written as:

'zidz (i + &, t) + Bi — &n,1)) | (B.8)

where e, is the n'" primitive unitary vector of the lattice with 1 < n < d. Non-local
spinors of higher rank can be defined recursively:

 (7) %Z(@a + e, t) + (4 én,t)>:

1 . .
ol Z (@(z+em+en,t)+<I>(z+em—en,t)
n,m=1

FD(5 — ey + €, t) + D5 — €1y — 1, t)) (B.9)
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Detailed calculations for the two-pole approximation scheme

Hence it is immediate to realize that the rank n is merely connected to the maximum
distance within which an operator acts. For a one-dimensional cubic lattices we have:

(i) = - (P(i+a,t)+P(i—a,t)), (B.10)

2

(i) = = (B(i+2a,t) +20(i,t) + B(i — 2a,t)) | (B.11)

e S

similarly, for a two-dimensional cubic lattice we have instead:

1

(i) = <<P(z' e, t) FD(E+ ey, t) + D(E — eé,,t) + D3 — éy,t)) (B.12)
1

(i) = 7 <(I>(z' +2¢,,t) + D(i, 1) + B(i — 2&,, 1) (B.13)
+®(i 4 2e,,t) + B(i, 1) + P(i — 2&,,1) (B.14)
+P(i+ e, +e,,t) +P(i+e, —eyt) (B.15)
D5 — &y — &y, 1) + D(i — &, + éy,t)> : (B.16)

(B.17)

All the above relations can be more conveniently written in terms of higher order
projectors. For the one-dimensional case we can introduce the second and third
neighbour projectors, n(k), u(k), defined as:

n(k) = cos(2ka) , pu(k) = cos(3ka) , (B.18)

so that:
Q2(k) = S+, (B.19)
o) = i Ba(k) + (k)] . (B.20)

For the two-dimensional case instead, a generic non-local operator up to rank three
can be expressed in terms of the following higher-order projectors :

5k) = 5 {eoslalk, + k)] + cosla(k, — k)]} | (B.21)
(k) = %[008(2ak$)+cos(2aky)], (B.22)
AE) = i{cos[a(%x+ky)]+cos[a(kx—|—2ky)] (B.23)

1 cos [a (2ky — ky)] + cos [a (ke — 2k,)]} (B.24)
(k) = %[cos(?;akw)—l—cos(?;aky)], (B.25)
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so that:
o?(k) = ~[1+28(k)+nk), (B.26)

o*(k) = 1 [9a(k) + 6A(K) + (k)] . (B.27)

B.1.2 Spinor o#n,(7)

Let us calculate the spinor o#n, (7). We recall that the sum over all the possible
values of u is assumed, so that:

o'n(i) =Y otn, (i) (B.28)

where 0, is a 4-component vector composed by the 2 x 2 identity matrix oy and the
three Pauli matrices o = (01, 02, 03):

o, = (09,0) , o= (—0p,0) . (B.29)
The bosonic operator n,(i) is defined as follow:
n,(i) = c'(i)o,c(i) (B.30)

therefore, recalling the expressions of the three Pauli matrices:

01 0 —2 1 0
012(10),025(2. 0),0’3§<0_1>, (Bgl)

we immediately obtain:

noli) = iocli) = (i) €0 é?)(“@): (B.32)

¢y (1)
= (dar o) (08 ) =dian + doam . @3
iy = o= 0 20 (23)(5f0)-
:(ﬂchD(28>:4@g@+@@mn, (B.35)

i) = dme) = (dar @) () (08) = maw
:(*@cMD(gg):—@@q@+@@mw,(BW)
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ns(i) = @oseli) = () (i) ( - ) ( er(1) ) — B3

¢y (i)
= (dar d@) (1)) =doe -doan o
which give:
otn(i) = ( Y ) [ch@er(i) + el ey (i) (B.40)
4 ( - ) [cl(i)e. (i) + el (i)er (i) (B.A1)
4 ( - ) [—icl(i)ey (i) + ic](i)er (i) (B.42)
4 ((1) Y ) cl(i)en(i) — cli)e ()] - (B.43)

Hence, adding together all the contributions we obtain:

a“nu(z’):2< —uli) CI@CT@) | (B.44)

ch(@)ey (i) —np(i)

B.2 Basic anticommutation rules

Starting from the canonical anticommutation rules among fermionic operators:

{@Am%w»{d@mwﬁ}o

) B.45
{enli). ()} = {0, ()} = b (A

we derive in this Section the basic anticommutation rules for the composite fields
(i) and n(7). To this purpose, we recall the following anticommutation rules:

{b1f1,b2fo} = by fibafo + bafabi fi =
= b1 f1bafo — bibaf1fa + b1ba f1fo + b2 fabi f1 — babi fof1 + babi fo 1 =
= by [f1,b2] f2 + b1bof1fo 4 by [f2,01] f1 4 baby fof1 =
= b1 [f1, b2] fa + b2 [fo, 1] f1 + bibofifo — baby f1fa + Dby fifo + babifofi =

= b1 [f1, b2] fo + b2 [fo, b1] f1 + [b1, bo] fifo + b2by { fo, 1},
(B.46)

{b1f1, faba} = by f1faby + fabobif1 =
= bi(fifo + faf1)ba — bifafiby + foboby f1 =
=bi{f1, fa} b2 — (b1 fo — fab) fiba — fob1fiba + fobobi f1 =
=bi{f1, f2} b2 — [b1, fo] fiba — fabi(fib2 — baf1) — fabibafi + fabobi f1 =

= by {f1, fo} ba — [b1, fo] f1b2 — foby [f1,02] + fo[bo, Ui f1
(B.AT)
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{A(), B(j)} £(i) £1(3) 1(4) n' (i)
£(5) 0 5. (1 + %aunu(i)) c(d)e(i) 0
g0 | au(1+3 e ) 0 0 —cl(i)el (i)
n(j) —c(i)e(i) 0 0 — 26500, (1)
n'(j) 0 cf (i)ef (i) ~ 38 (0")" n, (i) 0

Table B.1: Anticommutation rules among composite fields in spinorial notation.

{f1b1,b2fo} = fibibafo + bafafiby =
= fi[b1,ba] fo + fibobi fo 4 by fofib1 =
= fi[b1,ba] fo + [f1,b2] b1 fa + bafibifo + bafafibr =
= f1[b1,b2] fa + [f1, b2] b1 fo + baf1 b1, fo] + bafifobr + bafafiby =
[b1,b2] f2

= fi[b1, b2] fo + [f1, 02 b1 fo + bofi [by, fo] +02{f1, fo} b1
(B.48)

{f1b1, faba} = fib1 faba + faba f1by =
= f1[b1, fo] b2 + f1fabiba + fobafiby =
= fi[b1, fa] b2 + {f1, fo} biby — fofibiby 4 faby f1b1 =
= fi[b1, f2] b2 + {f1, f2} biby — fofi [b1, bo] — fafibobi + fobo fiby =
= fi[b1, fo] ba + {f1, fo} biba — fofi [b1,ba] — fo[fr,b2] by — fabofTby + fobofiby =
= f1[b1, fo] b2 + {f1, fo} biba — fofi[b1,ba] — fa[f1,D2] by
(B.49)

which give:

{bifi,bafo} = bulfi,be] f2+ b2 [fo, ba] f1 + [b1, bo] f1fo + babi { f2, f1} (B.50)
{bufr, fabo} = bi{fi, fa} b2 — [b1, fo] fiba — fabi [f1,ba] + fo[b2, b1] f1 ,(B.51)
{fibi,bafo} = fi[b1,bo] fo+ [f1,02] bifo + bafi (b1, fo] +ba {f1, fo} b1 ,(B.52)

filb1, f2] ba + { f1, fo} biba — fofi [b1, bo] — fo[f1,b2] by (B.53)

{ f1b1, fabo}

All anticommutation rules are summarized in Tab[B.1l

Calculation of {,(i),&,/(j)}. The anticommutator {,(7), &,/ (j)} can be written
as follow:

{60(1), & (1)} = {(1 = nz(i))es (i), (1 = ngr(4))cr ()} - (B.54)
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Detailed calculations for the two-pole approximation scheme

This is of the type {b1 f1,b2f2} so, from (B.50]) we have:

{6(1), & ()} = (1 = n5(0) [eo(2), 1 = ng (§)] o (5) + (1 = ng (4)) [ (5), 1 = 15 (i)] € (7)

)
= =010 | (1= 15 (D)) (0)6s (3) + (1 = mo(i))ea (D)o ()] =
— 01300 [oli)eo i) — nalDentITTTT + 5 (1)6o (i) — nalidesties(7]| =
= =010 | () () + 5 i)co(i)] =
= =010 | ()ca () = eoli)es ()] =0,

{¢(). (=0, (B.56)

Calculation of {¢,(i),£,(j)}. The anticommutator {ﬁg(i), 3 (j)} can be written
as follow:

{0,600} = {0 =nseai). N1z} . (B5T)

This is of the type {bif1, foba} so, from (B.51)) we have:

{66,000} = (1= na(@) {ea i) b ()} (1 = (5))

= 61‘]'(500/ [1 -_ Nng (n]
Y -ch(@')co(i) —M} -

— (51-]-(50.0./ [1 — na.(l)] —+ 5ij(SUOT/Cj7(i)CU(i) .
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Hence we obtain:

{6000} = o [L =15 (0)] + bk @)es @) o (B.59)

which can be written in terms of the composite field n,(7) (see Appendix as:

60.60))  =1+50"nl,,

oo’

{660} =l nly

oo

(B.60)

The above relation allows us to write the anticommutator {f (i),ST(j)} in the fol-
lowing spinorial form:

(€00} =8y |1+ 30m,0)| (B.61)

Calculation of {7,(i),n,(j)}. The anticommutator {n, (i), 7, (j)} can be written

as follow:
{10(1), 10 (7))} = {na(1)ce (1), ng (j)ca ()} (B.62)
This is of the type {b1 f1,b2f2} so, from (B.50|) we obtain:

{06(0), 10 (3)} = 15(0) [¢5 (1), ngr (4)] ¢ (4) + 152 (3) [Cor (5), 115 (0)] € (1) +

+ [n5 (1) no oo (1) o (5) + g (nalbtea (7], ¢o (1)} =

. . . . B.63
= 80 110 0o () i) + o (0 i) (i)] = (563
01500 [ MalB)er i) + nalidestifes (7] =
therefore in spinorial notation we immediately obtain:
{n(i),n(j)} =0. (B.64)

Calculation of {n}(i),7,(j)}. The anticommutator {n} (i), 7, (j)} can be writ-
ten as follow:

{0k (0). 10 (5) } = {cb ()5 (i), ng (e (5)} - (B.65)
This is of the type {fib1,b2f2} so, from we have:
{n5(), 10 ()} = 1 (0) {} (D), €0 (4) } na(4) + [ch (D), ngr (4)] M (i) cor (4)+

+n‘(1) T(Z) [na(Z) o ()] + b (1) e (G)] ¢ (7) =
Zj 0’0’ [M—i_ng )C (7’ (Z)} +5ij500’n5(i> =

= 81j050M5 (1) — 04j0,5m4 (1)l (i) 5 (7).

7«] go

(B.66)

Hence we obtain:

{50), 10/ (7) } = 61000 (i) = 1j0,5ck(i)es (1) (B.67)
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which can be written in terms of the composite field n,(7) (see Appendix as:

Tz', o (7 , ==z lofn,
{ni@),m0 ()}, %[ ] | (B.68)
{010 ()} 50 = =5 [0

The above relation allows us to write the anticommutator {nl(i),nal (])} in the
following spinorial form:

1

{n'(i),n(j)} = —5050" (1) (B.69)

Calculation of {{,(i),n,/(j)}. The anticommutator {,(7),7n,/(j)} can be written

as follow:
{&o (1), mo ()} = A{no(i)eo (i), (1 — 1z (5)) cor (7)) (B.70)
This is of the type {by f1,b2f2} so, from (B.50]) we have:

{8 (1), no (3)} = 15 (i) [co(2), (1 = ng (4))] €0 (§) + (1 = ng(5)) [cor(5), i (D)] €6 (i) +

= —(51]6 N2 o (L Ca(i) -+ 52‘]‘(50’6 (1 — g
51]500[M+60 o _n eAt)C (1) | =
= 0;j0,5:C5(1)co (1)

(B.71)

The above relation allows us to write {£,(i),7,/(j)} in the following spinorial form:

{6(0),n()} = eli)e(i) - (B.72)

Calculation of {¢!(i),7,/(j)}. The anticommutator {£1(4),7,/(j)} can be written
as follow:
{él(z) } {C 1 — N1 )) 7”5’<j)ccr’(j)} . <B73>
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This is of the type {fib1,baf2} so, from (B.52) we have:

{@@mAﬁ}_JQKLﬁ%wﬁ§6m564
[ 6) oﬂaﬂmm/m+wwmwm—%@xwmw
15 () {h(): e ()} (1= mai)) =
= 00051 CZ(@)(J--zlaffj) (1) + (i)l (D)ea (i) +
+ Gigdaninte =Ti5 7)) =
= 0857 | ~ch (D)o (i) + () + LBy T)) ea (i) | =

= 08051 | b (0)6s(3) = el ()ea(i)] = 0.

y Mg

ch (i)

(B.74)

The above relation allows us to write {£/(¢),7,/(j)} in the following spinorial form:

{€@).n0)} =0. (B.75)

Calculation of {¢,(7), 772, (7)}. Inorder to calculate the anticommutator {fa(i), 77:[,, (])}

it is useful to note that:

(&m0 ()} = [0 G) +nr (DEED] = |1 ()6 6) + &Gl ()] =

= {& ). 0)}
(B.76)

Then from Eq[B.75 we immediately have:

{e@.n'()} =0. (B.77)

Calculation of {£/(i),7!,(j)}. Inorder to calculate the anticommutator {fj,(z), n!, (])}
it is useful to note that:

{6(0), o0 (DY = [ (010 (1) + 1 (D)) = [n (DELG) + LML ()| =

(B.78)
= {et@nl ()}
Then from Eq[B.72] we immediately have:
{€@).n' (1)} = 0" (Dl (@) (B.79)

B.3 Equations of motion for composite operators

In this Section we derive the equations of motion for the canonical fermionic c(i)/cf (i)
and bosonic n(i) operators and then for the composite fields £(¢), n(i) and n,(i).
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Detailed calculations for the two-pole approximation scheme

We recall that for a generic field ®(i) we have:

0B (i) = [®(i), H] . (B.80)

where H represents the model Hamiltonian under investigation. We restrict our
analysis to the Hubbard Hamiltonian:

H= Z i — 10i5) ¢ —l—UZTLT iy (i (B.81)

where, here and after, the spinorial notation is assumed for each fermionic operator.

B.3.1 Equation of motion for ¢(i)

To obtain the equation of motion for the annihilator operator let us calculate the
commutation relation between the ¢’ component of spinor ¢(i) and the Hubbard
operator:

z'@tcaf(i) = [CO'/(i)7 H] =
U
= Z tim — uézm CO’ ( ) (Z)CU(m)] + 5 Z

Im,o l,o

e (), 0 (Dna()] . (B32)

The first commutator can be evaluated by using the following relation:

1 fofs] = fufefs = fafsfo = fufafs + fafifs = fafifs — fafshi =

={fi, o} fs— fo {1, 5}, (B.83)

SO:

[cor (i), cL(D)ea(m)] = {cor(d), L (1) } co(m) — (1 ) C(m)} = (B.84)
— 5zl500’ca’ (2)

For the second commutator we have:

[¢or (i), 0 (D)na(l)] = ne(l) [cor (i), na(l)] + [cor (), no ()] ns(l) = (B.85)
= 5i150/5ng(l)65(l) + 51‘1(501000( ) 5(l) (B86)
3it (051516 (1) ez (1) + dproce (Dns (1)) . (B.87)

Using the relations obtained before, the equation of motion for the annihilator op-
erator can be written as follow:

D §) = 32 (b = ) o) + & (e ()] =
= Z tijCor (1) — pucor (1) + Uneg (i) (i) = (B.88)

= —Zdtcg/( ) = e (i) + Uno (i)
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so the spinor ¢(7) satisfies the equation:
i0pc(i) = —2dtc™ (i) — pe(i) + Un(i) . (B.89)
By taking the complex conjugate of the above equation, one immediately obtains:

iyt (i) = 2dtc2T (i) + pcl, (i) — Unl, () . (B.90)

B.3.2 Equation of motion for n(7)

Using the properties of derivation operator, the equation of motion for the spinor
n(i) can be written in terms of the equation of motion obtained for the spinors ¢(7)
and ¢f(i) ad follow:

0 (i) = i0y (c'(i)c(i)) = (10, (4)) c(i) + (i) (iD,c(d)) (B.91)
Using and relations we have:
i0hm(i) = 2dtc™"(3)e(i) +W—W+

— 2dtc! (i) c™ (i) — pctiire(@) + Uc , (8.92)
so the spinor n(i) satisfies the relation:
iOn (i) = 2dt (*T(i)e(i) — (i) (i) . (B.93)
B.3.3 Equation of motion for £(7)
The equation of motion for £(i) can be calculated as follow:
i0,£(i) = 10, [(1 = n(i)) c(@)] = (10,(1 — n(i))) c(i) + (1 = n(@)) (10ec(i)) = (B.94)

— (10 (7)) c(i) + (1 — n(7)) (i0xc(1))

Using all the equation of motion obtained before we have:

0 (1) = —2dt [*T(i)e(i) — (i)™ ()] (i) + n(i)) [—2dtc( +/rf(ﬂ:
= —2dt [* () —cf (1)c™(4)] c(i) — 2dt (1 — n(i)) O‘(2) ,u(l—n(z))c(z):

= i) — [c”‘( ) = n(0)e™ (@) + (™ ()e(d) — (D) (@) )],
(B.95)

in which the relation (1 — n(i))n(i) = 0 has been used. Hence, we can define the
composite field 7 (i) as:

m(i) = —n(i)c (i) + (*T(d)e(i) — '(4)e (i) e(d) (B.96)
and then obtain:

i0,8(i) = —p€(i) — 2dE[€%(0) + (1) + 7())] (B.97)
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B.3.4 Equation of motion for 7(i)

The equation of motion for the spinor 7(i) can be written as:

10 (i) = 10, (n(i)e(i)) = (i0in (i) ¢(i) + n(i) (i0,c(i)) =
= 2dt (™ (i)c(i) — ¢t (i)c™(4)) c(i) — 2dtn(i)c (i)+
— pn(i)e(i) + Un(i)n(i) =
— (U = 1 nli) + 20 [ (@)eli) — ¢ ()e*(0)) i) — ni)e*(i)]

The second part of the last two equation can be written in terms of the field m(7):

(i) = —n(i)e (i) + (¢ (@)c(i) — e ()c* (D)) (i) | (B.99)

therefore we obtain:

(B.98)

idm(i) = (U — p) i) + 2dtn(i) . (B.100)

B.3.5 Equation of motion for n,(7)
The field n,(7) is defined as:
n,(i) = c'(i)o,c(i) (B.101)

where 0, is a 4-component vector composed by the 2 x 2 identity matrix and the
Pauli matrices: 0, = (Iox2,0). Using the equation of motion obtained for the fields
c(i) and cf(i), the equation of motion for that spinor can be written as follow:

i0n, (i) = i0; (c'(i)o,c(i)) = (i0yc' (i) o,c(i) + ¢ ( )O‘M (z@tc( ) =

(
= 2dtc™(i)o,c(i) —|—W Un'(i (B.102)

U )on(i) - pel e z>—2dtc<> ouc <z>

Hence the equation of motion of n,(i) reads as:

i0m, (1) = 24t (™ (0)0,c(i) — ¢ (1), (D)) + U (¢! (Do,m(i) — 't (Do,e(i))
(B.103)
It can be easily shown that the term proportional to U is zero. In order to show
this let us write the canonical creation and the annihilation operators in terms of

§(i) and 7(i):
cM(@)aun(i) = n'(@)ouc(i) = (§1(0) + ' (D) oun(i) — ' (D)o, (€(0) + (i) =
= &M (D)aun(i) + ' (@) o (i) + (B.104)
— ' (0)0,£(6) — 0" ()o,n(7)

Hence recalling that, due to Pauli exclusion principle, £(i)n'(i) = n(i)£7(i) = 0, it is
immediate to note that the crossing terms £'(i)o,n(i) and n'(i)o,£(i) in the above
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relation are zero and we remain with:

M (D)oun(i) = n'(D)ouc(i) = n'(D)oun(i) — n'(D)oun(i) =0 . (B.105)

Considering this, the equation of motion of n,(¢) is only proportional to the hopping
amplitude ¢ and satisfies the following relation:

(0, (i) = 2dt (1 (i)o,c(i) — ¢ (i)oc™(i)) . (B.106)

B.4 One-loop approximation

In the following sections will be reported in detail the calculation of bosonic corre-
lators in the one-loop approximation.

B.4.1 Density-density and spin-spin correlation functions

By definition, in the framework of the linear response theory, the calculation of
system’s response functions such as charge and spin susceptibilities (4.44)) requires
the knowledge of the bosonic correlator (n,(i)n,(j)). To this purpose, let us define
the thermal Green’s function[t

L2(i,1,5) = (Q [ () (01) s ¥ (D 5)] ) - (B.107)

where @ = {A,R,T} for the advanced, the retarded or the causal component;
a,b = {1,2} specify the composite field of the basis according with the notation:

w(‘,”(z’) =&, (i), 9(@') = 1, (), while p = {0, k}, k € {1,3}, selects density-density
and spin-spin interaction term, respectively. It is worth noting that:

2

(nu(i)n,(7)) = — lim ; Lt (i1, ) (B.108)
from which we have:
2
. . . . R,aby - .

(n(i)n(y)) = —llgg agl Ly (4,1,5) , (B.109)

3 2 3
D ((me(f)) = —lim » Y LG L5) (B.110)

k=1 a,b=1 k=1

where the retarded correlator Lﬁ’ab(i, [,j) has to be calculated starting from the
causal Green’s function Lg’ab (,1,7), with:

LEGi,05) = (R[UP6) (00)0 08 Onu()] ) (B.111)

1L#(i, l,j) depends on the particular value of u € {0,3}, then there is no implicit sum over y
on the right side of the equation while the sum over all spin indices a and /3 is understood.
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LE™G0g) = (T [0400) (00)0 8 (O] ) - (B.112)

Following the one-loop approximation prescription, the equation of motion for
the causal propagator reads as:

RaeLG 1 g) = L1 g) + 8t = 1) (T (@) {00, 0 O} ma()])
st = 1) (T | [0, ()] (@), 6 0] ) . (B113)
where Ay = 8,400, — ea(i,7), €(i,7) is the fermionic energy matrix 1' and
L%/ (i,1,7) represents the contribution generated by non-linear terms §.J(4) in the
equations of motion of (). Consistently with the pole approximation, we can ne-
glect ng (1,1,7) since we take only the linear terms in the equation of motion of

(7). Hence, from the standard algebraic relations among the composite fields of
the basis, we get:

Aac L0, 1,5) = i6(t; — )03 (0) 15 (T [N (i)n,u()]) (B.114)
+ib(t; — ;)5 <T [(01)ary 01207) (90),5 09 0] ) (B115)

in which we have taken into account that [¢ (i), n,(j)] = d;j0, (i) with:

Nosli) = (‘5aﬁ+ (O)aﬁ””@ o > (B.116)

=5 (0")ag (i)

We can now consider that for the causal single-particle propagator we have:

~

ANaeGS, (i, 5) = i6(t; — t,)0i51u0 = i0(t; — t;)055 = NaeGS (i, §) 12" (B.117)

then the equation of motion of LY (i,1,7) can be written as:

Aac [LS’Cb(ialJ)} = Aac Gg’;(@ Z)Ide O <T [Noez% )nu(ﬂ)]>

A I ICH I CAN

(T |46 o] >] : (B.118)

from which we get:

L0 1.3) = Gali, DI (0,) 45 (T [Nap(Dnu(i)]) +
FGE( D (0) g () (T [P )] ) =

= G4,(i, Z)Ibb Ou a6<T|:N3bﬁ ”u(JD‘i‘

FCE I (0 (@) (T (690G 0] ), (B119)
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where, in the last step, we have contracted all the indices referred to N(i) and (i, )
because of their diagonal representation. We can now note that, according to the
relation (o), (0k)., = apdpy — 0apdy,, we have:

(1) @) (T [P0GOS O]) = (T WOGUT0]) = 265(1.1) . (B120)
then by substituting in the expression of Lff’ab(i, l,j) we obtain:

LS, 15) = GG, 01 (0) s (T [N (@)nu()]) + 2636, NGS5, |

where the sum over all repeated indices is understood. In the limit [ — ¢+ , taking
the sum over a and b we get:

thLC“b i,l,j) = ZGabZZ+ bb (o, a5<7-[ () (J)]>

l—it
a,b=1 a,b=1
+2 Z Gac i j cb(j7 Z) =
a,b=1
. C/. - Cr- -
= A, (i,7) + B (4, 7) (B.121)
with:
BO(i, j) = 2325 oy G0, 1)1 GG (5.4)

By means of Eqn and Eqm recalling that (o,,),,(0"),5 = 2 (1 — 2d,), it is

immediate to have:

T (T INBOMGN]) = (00605 (T ) + 5 (01 (0
(T [ ()Y = (B.123)
= 50 (00)an + 5 (9 (") (T I}y =
= B2t (1= 2,0 (T, G)) . (B124)
(O (T INBOmD]) = 5 0 () (T I (5)]) =
= (0 (") (T I ()]) =
= (=20 (Tl (l) . (B125)

then:

AL g) =[G + G5 (6] I [u02n + (1= 20u0) (T [ (i) (5)])]
= [GR6,17) + G5(0,7)] 1" (1= 20,0) (T [ ()n,(5)]) =
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Detailed calculations for the two-pole approximation scheme

C (i i+ C (5 i+
_ 2n5u0 (Gn(%z )+G21(z,z )) +(1—2(5,,,o)

]11
[Gﬁ(z‘,z’*) +G5(i,57)  GR(i,9) + G5 (i,47)
[11 [22
(T [nu(i)n(5)]) (B.126)
Cri GG, )G G54, 5)GS (1) G4, 5)GG(), )
Bog) = 2 In * Too N Tn
GG, )G%3G, 1) GS(i,5)GY(4,1)  G%(i, 5)GS (5, 1)
+ + +
122 Ill [22
L G5 00,5) G0 1) +G§2<i,j)G§2(j,z'>} | (B.127)
]11 ]22

Then, recalling that:

{GC(Z ,j) = 0(t; — t; )<w(%) (J)>—779(t — 1) (V15 ())

GRA( j) = +0]+ ) <[¢ } > , (B.128)

where n = 41 for fermions and bosons, respectively, the causal Green’s functions
G (i,4%) can be rewritten according to the following relations:

(&) (1)) = 00r (2= D) 5U(i)§§,(¢)> =0y (1 — 1+ D)
(1} ()101(3)) = Goor D (e )y = bo (3= D), (B129)
(nf (0)6w (i) = 0 (& mb(@) =0

in order to have:

ACG,G) = 3, 2n<n72D>+(1—25#0);‘;(g—:f;;<7[np(i)ny(j)]>'
BCOJJ) = 22@()0—1 aa ab<i7j)ch<j;i>

Finally, according to Eq{B.109, (B.110) and Eq)B.121} it’s immediate to see that:
(Tn@n() = - (AC(Z' 7) +BC(@' 7)) =

2—n .
= - Z L) GG, /)G i), (B.131)
a,b,c=1

(B.130)

(T e(@ni()]) = — (AL G, j)+BkC(i 7)) =

n(2—
m Z GC.(i, 1)1 G5 (5, 1) -

a,b,c=1

It is worth noting that both spin-spin and density-density correlation functions can
be expressed in terms of a fermionic loop, described by the convolution GS, (i, j)GS,(4,1).
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Then, it is useful to introduce the fermionic correlator:
Qabcd(ia j) = Gab(ia j)ch(j, Z) =

iQd d +oo ik-(Ri—R;)—iw(t;—t;)
= _(27T)d+1 0 d°k dwe i1 il Qabcd(k',W) (,B.132)
B 00

and express the correlation functions in the real space as follows:

— n(2=n) -0
T IO} = n6,0-g, 3 Loaclind) {g“_ o

abo=1 Ioa Iu = nieD—nz ,M:k€{1,2,3} .
(B.133)
or, alternatively, in the Fourier space as:
o) 2 Q% (k,w
k) = =T saitk) — g, 3 G gy
a a,b,c=1 Iaa(k)
with: -
n(2—n
pu— pu— 0
I =g 0 . (B.135)
Iu = ZioD—n2 y = ke {17273}

It is also immediate to note that, by taking the sum over all the possible values of
u we get:

D AT nu(inu(i))) = n* = (90 +39x) Z Qabac(i ) _

n=0 a,b,c=1 Iaa
s (2—n)(4n —4D —n?)
(n—2D)(n+ 2D —n?)

)
Z Qabac Z,j) (B.136)

a,b,c=1

3 Cien™ (2—n)(4n—4D — %) ~ QG.(kw)
uz; Xulk w) = === —n"0w)o(k) = 5 oD — n2) a%; ;aa(k) '
- (B.137)

B.4.2 Fermionic loop Qupca(i, )

In order to calculate the fermionic loop Qaupea(i,7) = Gap(i, 7)Gea(t, j), let us recall
that:

iQd +00
aC;)cd(k w) - (27T)d+1 /Q ddp/ dwOGg;)(k +p7w +WO)G$(p,WQ) : (B138)
B —0o0
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Detailed calculations for the two-pole approximation scheme

Here G (k,w) is the Fourier Transform of the causal Green’s function that in the
pole approximation reads as:

Xl e R R

Ey(k) is the I'" eigenvalue of the fermionic energy matrix (4.9) and ¢ (k) represents
the spectral density matrix that can be computed as:

ol (k) = Qulk) ! (k) T (k) | (B.140)

in which Q(k) is a n x n matrix whose columns are the eigenvectors of the energy
matrix. Because of the pole structure of the causal Green’s function, by substituting
the expression of GY(k,w) in Q%,.,(k,w) the integration over wy can be easily done
and we get:

B y frlEi(k + p))) frlE;(p)lol) (k + p)ol) (p)
aealb ) = zﬁdz/ﬂ d { ST Bkt p) - Eyp) -0 *

_frlEi(k+p)] (1= fr[E(p)]) ol (k + p)o (p)
w+ Ei(k+p)— Ej(p )+2(5

} = (B.141)
Recalling the relation between causal and retarded correlation functions:

R, w) = {1 + tanh (%’ﬂ Im [Q5y, (k)] | (B.142)

from the previous equation we have:
Qd
¢ akw) = ~ry {1—|—tanh( )} Z/ d’ps (w + Ei(k + p) — E;(p))
i,0=1 ]

ok + p)ol) (p){ fr[E; ()] + frlEi(k + p)]
—2f¢(E,(k + p)] fr[E;(p)]} (B.143)
By using the relation:
{[1 = fr(@)] fr(b) + fr(@) [L = f®)} [1 = 2fr(b = a)] = fr(a) = fr(b) , (B144)

we can finally express the retarded part that appears in the Fourier Transform of
(T [nu(i)n,(j)]) correlator reads as:

m d 2
falk,) = QQde '3 o Eilk )~ Ey(0) (L 9] — Fel il + p)
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Fr[E;(p))o (k + p)o) (p) . (B.145)

Next, by means of the relations:

S0 Tktp) [Tk p) = tanh |G

)

T;(p)] T;(p) = tanh [ﬁET@}

Y

(B.146)
we can rewrite the previous equation as follows:
T
fallo) = 0 3 |t ok B+ p) ~ Ep) of) -+ pofi )
{1-Ti(k+p)][1 -T(p)]} - (B.147)

We can also note that, by definition, in the real space we have:

d

rea(iy J) = W/ddk;eik'(Ri_Rj)_i”(ti DR (k,w), (B.148)

then, by means of Eq[B.147 we get:
Qe - dy. ik-(Ri—Rj)—iBn (tj—tm) (1)
woea(lm) = WZ/CZ etk (R ) =iEalti= m)Uab (k) [1 —T.(k)] =
n=1

< (B Bt} (1

— 2<2ﬂ_)d+1 Z\/\ddpelp (Rl Rm) En(tl tm)o-id)<p)
n=1

1+ Tu(p)] . (B.149)

We now recall that:

Cop(i,j) = <¢a( )1% > QWdZ/ dk /dwe (Ri—Rj)—iEn(ti—tm)

ol3 (k) [L+ Th(k)] (B.150)
Caplig) = (Uh()ald) = WZ / d'k / o (R B ) (1)
o) (k) [1 = To(k)] (B.151)

then the correlator QE (I, m) reads as:

Qealis ) = (UL )a®)) (wei)0l(D)) - (B.152)

that in the special case of equal time (i.e. t; = t;) takes the form:

{Qabcd(i,j) = [L(3,3) — Cap(3,3)] Cuai, 5) (B.153)

gbcd(i’ J) - _Cgb(i7j)cgl(i>j)
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Detailed calculations for the two-pole approximation scheme

B.4.3 Pair propagator

Let us now introduce the pair propagator P(i,j) = (T [p(i)p'(j)]), with p(i) =
cr(i)cy (7). With the aim of calculating P(i, j) let us define the basis:

&(1) 1-20 0 0
. (4) o 0 2 0 0
VO = | g | e =@V O =8| 5§ s g |
ny (%) o 0 0 o
(B.154)
and the correlator:
&(7)
X(0:0.0) = (T a0 0]} 0 = | 20 | (B.155)
m(2)
that allow us to write P(i,7) as
P(i,j) = zlgzrl [(X3(7,0,7) + X4(3,1,7)] . (B.156)
The equation of motion for X (7,1, ) gives:
AabXb(’i,l,j) = 25 t; — tl <T [{¢a Z),CT l)} T }>
+l5(t — tl <T [CT l) [¢a Z), ] H> (B157)
= i0(t; — t)da (T [NV (0)p'(7)]) (B.158)
+id(t; — )03 (T [CT(Z)N (j)]> (B.159)

where, recalling that:

557 (8ol () — 50@(@'))

[fa('i)’p (J)] = 655 (0ol (i) — 0o} (5)) (B.160)
) 0ij ( 6516L(1) — 651€0 ()

0 (i)
VOO = e = | i | 8O0 = poste] - | 3
p(i) &)

(B.161)

We can now consider that for the causal single-particle propagator we have:
AaeGS (1, 7) = i0(t; — t;)0551ap = i0(t; — t;)0i5 = NoeGS (i, 5) 0 (B.162)
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then the equation of motion of X,(i,[,7) can be written as:

A Xi(i:17) = AaGEL DI (T[NP0 ()]

RGN (T |aONPGY| ) = (B.163)
= AaGi (i, DI (T [ND@p'(5)]) (B.164)
+A G (6, DI (T [ (ONP(5)]) (B.165)

in which we have taken into account the diagonal form of the normalization matrix.
In the limit [ — ¢~ , taking the sum over a, we have:

4

a=3

G$,(i,i7) + G (3,17) G%(z‘,z‘—)+G§3(z‘,z‘—)> .

= — P(i,7)B.166

< ]44 133 (Z j)( )
4

+ 3 GG, <T [cT(z'*)Nf)(j)D = (B.167)
a=3

then the pair correlator can be written as follows:

N\ — I33144
A(Z) - 133144+144[G%(i:i_)JrGfg(ivi_) —Is3 [G&(ivi—HG&(M‘)]
B(i,§) = Xy G561 (T [ )N G)])
(B.168)
Recalling that GS,(i,i7) = <T [wa(i)wg(i_)]> = <¢£(i_)wa(z’)>, the calculation of

A(1), according to the following relations:

P(i,5) = AG)B(i, ) , {

(€& D) =0 (3= D), (&WDEL()) = b0 (1 =+ D)

(0} (810 (i)) = 8o D , ng(i)nl,(i)> — 6,y (2-D) . (B.169)
(D)6 (7)) = 0 (& @mb(i)) =0
gives:
: I33144
A - =
(Z) 133[44 + [44G%(i, Z_) — IggGgl(Z', Z_)

n(2—mn)/4 ~ n(2-n)

n(2—n) n(n—2D)  2(2—n)D 2(n _ 2D) ) (B.170)
7 1

For the B(7, j) contribution we have instead:

B — C5d) ggG%(i,j) (T [er )] )

+G45<Z ‘7)[:'1’4G44(Z J) <7~ [CT(Z_)Q(Z)}> — (B.171)
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Detailed calculations for the two-pole approximation scheme

B (G0, 5) + G50.0)) (6196.0) + G5.)) =
= o (060 + €56.9) (61960.5) + 6500.5)) (B.172

Finally, by substituting in the expression of P(i,j) we obtain:

P(ij) = 2’522_‘272) (24_n) (G530.) + C5.9)) (G00.) + 5. 9)) =
= n/2 D Z Qfaa (i, 4) (B.173)

where the correlator Qupea(i,j) = Gap(i,7)GealJ, 1) reproduces the fermionic loop

defined in Eq[B.132
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Appendix

Detailed calculations for the three-pole
approximation scheme

We report in this Appendix detailed calculations for the three-pole approximation
scheme to the single band Hubbard model described in Chapter 5} In particular, we
focus our attention on two approximated techniques, namely the decoupling and the
projection methods, as possible tools for the estimation of the internal parameter

st
1

o = 5 {ng (et (@) | (©1)

which contains in principle both two-site and three-site correlators. Before applying
any approximation, it is worth separating from the above expression all the possible

two-site contributions of the type <g0}01 ()¢5 ,, (z)>, being k a generic projector and

both @14, (i) and ps,, (i) fields of the basis, which, as reported in Chapter [2] can
be calculated self-consistently as two-site correlation functions C7 ,, and therefore
do not need to be approximated. To this purpose, recalling the properties of the
nearest neighbour projector a;;, we note that the two non-local operators n{ (i) and
c*(7) can act at distance §, 3 or  among each other, always remaining at distance
« from the site 4. Therefore, starting from Eq[C.1] we can rewrite f; as:

2(d — 1)

site 1
fs: fs|2 ! +T fsl(ﬁ)+ﬁfs|(n) ) (02)

where the f,|**" is the two-site contribution:

£ = o) (D) [0) (o exel9)] ) (C3)

and: L
119 = 2 (@m0 L x= (3.0) (C4)

Here the bar over the projectors reminds that the two operators act at distance
a from 4 but at distance k = (,1) among each other. A trivial application the
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canonical anticommutation rules gives:

FE = (o (i) [0 (00) pex ) )] ) =
_ 61d (1)1, () <cu(z‘) {(% — ex(i)eh (1)) 4(2')] a> _
_ 61d ()31 (00), <CT<¢)C¢T<¢)> - 6_1d (1), (0%) 11 <C¢(¢) [CT(¢)01(¢)0§<¢)}“>
_6_1d (Uk)ﬁ <‘7’f)u <CT(Z') [c (z)cj(z)c$(z)r> =

1
= Qe D) + o (e = 505 ©5)

therefore we can express f, as:

fs _ _Coz 2(d — 1)

1
2 fS’(B) _|_2_d fs‘(ﬁ) : (C.6)

where now fs|(ﬂ ) and fs|(") represent the three-site contributions of the starting cor-
relators f, which can only be calculated by means of approximated approaches. We
report in the following Sections detailed calculations of the aforementioned quanti-
ties obtained by using the decoupling and the projection methods.

C.1 Decoupling method

The approximation named “decoupling” (DC) consists in approximating an unknown
correlator as the product of all the possible couples of fermionic operators contained
in its expression. In doing this, it is convenient to rewrite f, as follows:

fs ~ fs|DC fs|2s7,te . fs 251te ’ (C?)

where fi|,o is the decoupling of the whole correlator f, (without preserving its
two-site component f,|***) and f, %Sge is the approximated expression of its 2-site
component only. Then, following the decoupling prescription, for a paramagnetic
and homogeneous system we obtain:

flbe = 5@ ([0 @0pa®] aid®) = ©9
= 2 (1), () (D) (D)) (9)
5 (o0 o (ST @) (SOST @) = (C0)
1n o 1 a Yot
= 6§CCC<O.’€)'W (Uk))\)\+6(0k),y ( ) OccCcc - (C11>
= Ccoc (C.12)
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Detailed calculations for the three-pole approximation scheme

and:
Rl = g @ (o [0 (00 050)] ), =
= 00, e (e ) (el
b (00011 00, (er T () (el e i) ) =
_ 2_1d<1_g> o (C.13)
which give:
fo m CRCE + |50 — 55 (1-5) Ca (C40

C.2 Projection method

With the aim of improving the decoupling approximation scheme, an alternative
method to approximate the three-site contributions (C.4)) consists in preserving one
of the fields of the starting correlators and then projecting the remaining part with
respect to the fields of the basis. We recall that the projection of a generic field (7)
with respect to a N-field basis {1;(j)} reads as:

{e-0ulo})
;; <{¢la() G )}>¢z,a (), (C.15)

where the sum over I € {1, N} runs over all the fields of the basis, ¢’ includes
spin degrees of freedom while j accounts for all the possible distances (e.g. on-
site, nearest-neighbour, next nearest neighbour contributions and so on) between
operators in the averages.

Following this prescription, with the aim of projecting the three-site correlator
fs it is convenient to introduce the following composite field:

V5 (1) = (04) 5y ()5 (0) (C.16)
with no sum over p in the right hand side, so that:

3

fo= 3 S (w0 (C.17)

k=1

Then, by projecting 1,,(7) with respect to the two-pole basis {¢}, = {£(7),n(7)},
recalling that:

{bufr, fo} = bu{f1, fo} —[b1, fo] i, (C.18)
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we obtain:

({36),0(9)

({w@), mi

({w50), )

N} =

— Z (e 77e (0k>7/\ <[

= o (i) (e ;wwmmmﬁ>

—aij (0k) 5 (0%, <§T (F)ex(2)
_ %[i,( >)+a Oa].

(08) 0 ({78 Dex (@), (7)) }) = (on),, (ni(i
=D i (1) {[re(m), ) ()] ex(@)) =

_ —(5:(014)7)\ <n2(i) G (@) ”u<i>>>

—0i; (0k) 1 (1) 5, (M (F)ea (i) =

= a8y (5 D)) + ]

ne(m), (7)) ex(i)) =

Hence the projection of #(7) reads as:

WD) =~

1

216

() ({77 (D)en(@), €4(5) }) = (on), (i (

)} = ({0 (0),66)}) =
= (n°() {&, (D), €)Y = i ([n(m), £1(7)] &, (1))
= g (0000 (8 5 09,0 ) ) = €110
s, {% (n—%(na(i)”(i») +aij0?g} ,

N = {n e @),n)6)}) =
= () {e (D)} (1) }) = D wim ([n(m), 0} (5)] e (D))
= =y (000 (501, ma0) ) = e Gt )

1 o

= 3, [52-3-5(71 (@)n(z)>—|—04¢jccn} ;

ORINORIE)

) {ex(®)

(C.21)

(N})

(C.22)

i (n- ) s+ cag@] + L pem + e e
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G~ |3 RO ) + O3 )

b |3 M@ m) + Ci )] (20

which immediately gives:

1O~ 1 e (a06io) + oz (g9 08 )]

i 1 o N ot @ a(k) -\ af _

o {2x8 (&)t @) + Cq (670 6))| =
1 ]1 1

— | Iyena Wl i o ack | 9
]11 |:2Xs Ccf + CC§CC£:| + 122 |: Xs Cc + Ccr]Ccn‘| (C 5)

Finally, according with EqJC.6 we obtain:

1 . 2d—1 ce  Cs
A A ¥ [zxs (E I>]

c C n) | en Oc(ﬁn)
2d [11 €« T, |

(C.26)

where we have used the assumption: C’f ~ O, = C B for any ¢ € {&,n}, where

Céin) can be easily calculated recalling that:

a? 1 4 2<d ) B n o _
Cop = Qde + ¥ C’ dC
~ L 2d—1 (Bn)
~ 5Ot 0 (C.27)

with C’f€ =1—-—n+ D, and an = n/2 — D. Summarizing, the projections of the
three-site correlator f reads as:

f o~ i « 2d—1
HERDY [H [22

Ca
S a® T Y6
G Qdc) Glor Lo} o
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Appendix

Operatorial relations among polaronic and
spin operators

In this Appendix are reported some useful operatorial relations among X; and spin
operators.

D.1 Relations involving X;

Let us introduce the quantity:

X; = exp Z (w(m, q)d, — u*(m,q)d}) | , (D.1)

q

where u(m, q) is defined by [8.2] By means of the following operatorial identity:

eAtB = gAeBea[AB] (D.2)
it is straightforward to see that (we recall that [di,d,] = —6,, and [d},dl] =

[dy, dp] = 0):

X/X; = exp Z(u*(m,q)dé—u(m,q)dq)

L g

= exp Z (u*(m, q)dj] —u(m, q)d, +u(n,q)d, — u*(n, q)dj})] :

L g

exp [Z (U(n, q')dy —u*(n, q’)d})

ql

1

- exp [5 > [u(m, q)u*(n,q) — u*(m, q)u(n, q)]] =

= exp [Z (.. (q)df — am,n(q)dq)]

q
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exp |5 3 lulm. @)’ (n. @)’ (m. qJutn, q>1] ,
where « is defined as:
mn(q) = u(m, q) —u(n,q) . (D.4)

On the same way, applying again we get:

XIX; = exp Z(a;,n(q)dl—am,n(mdq)]

L g9

exp —Z n,q) —u'(m,q)u(n,q)]| =

1
= exp Zamn dT] exp [_Zam,n<q)de] exXp ) Z |am,n(Q)|2
q

L q

- exp E > [ulm, q)u*(n,q) — u"(m, q)u(n, q)]] : (D.5)

D.1.1 (X/X;) average

It is instructive to calculate the quantum statistical average of X ZT X ; operator since it
represent the operatorial part of the renormalized hopping parameter and determines
the polaron bandwidth. In this case we will overlook constant terms in and
focus our analysis only on the operatorial part. Quantum statistical averages are
calculated by expanding the exponents in the trace as follows:

oo N
<6a;dfe—aq _ Z szv !%

0 n=

|2n

— NN =1)x---x (N=n+1), (D.6)

where p = e /T and we have dropped phonon and site quantum numbers for

transparency. Here the single-mode phonon partition function is:
1 1

Zop = = . D.
T T— et (D7)

It can be seen [10] that the quantum statistical average can be also written in the
form:

N 2n n X
ardt —a n|a | n d
(eritel) = (1—p) Yy (-1)"Hap—— > o', (D.8)
n=0 ( ) P M=0

so, recalling that:

T (D.9)

(D.3)
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and differentiating it n-times yields n! in the numerator after which we have:

e 2n
ardl —« n 107 n —lag|?ng
(e¥ad g7y — E (—1) %p — eIl ne (D.10)
n=0 ’

where n,, is the Bose-Einstein distribution function of phonons:

1

W—_l . (D.ll)

Ny =

Collecting together all the multipliers from equation (D.5) we get:

2

q

(XIX,) = exp{lz[—\am,nw (1+2n,) (D.12)

+u(m, q)u’ (. q) =’ (m. g)u(n. q)| } (D13)
Recalling the definition of a,, ,(q) we get:
(615 = o]y ot 2u0m 0 ) - o
—u(m, q)* - Ju(n, q)ﬂ — g, [\U(m, Q)I” + lu(n, @) — v’ (m, q)u(n, q)
—u(m, q)u*(n, q)} } = (D.14)

= Hexp{—g—?f[l —cos(g-(m—m))—isin(q-(m—mn))| —n,

lu(m, q)? + [u(n, ) = u*(m, @)u(n, q) ~ u(m, q)u" (n, q)] } (D.15)

D.1.2 (XWt)X,(t)XJXﬁ average

7

In order to calculate (X](¢)X;(t)X]X;) average it is worth noting that X;(t) and

(2

Xy (t) commute for any v(q) = v(—q) so, according to (D.2) we can write:

Xi(t)Xj(t) — He (uj(@t)~ui(g,t)dq—He] (D.16)
q

Xi’Xj’ _ H6[(uj/(q,t)fui/(q,t))dqu.c.] ] (D17>
q
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Applying (D.2) again, the product of the two terms can be written as:

A~

XOXOX%, = TLew () exp (g exp (3157 (D.15)

exp E [(uj(q. 1) — ui(q, 1)) (uy (g, 1) — uir(g, 1)) - H'C('q'w)

where:
B =ui(q,t) — ui(q,t) + ur(q) — uy(q) . (D.20)
Now the average can be done by using Eq.(D.15). Furthermore, recalling that

ui(q,t) = :}%ei(q'm*mj“) yields:

2
(Rl O%0X!%) = e—92<m-”>e—92<m'—"'>exp{ b
q

Fy(m,n;m’ ,n’)

cosh [wq (55 — it)]
sinh [wy /2T } » (D-21)

where:

Fyim,n;m’ . n’) = cos(q-(m—n'))+cos(qg- (n—m’)) (D.22)
—cos(q-(m—m'))—cos(q-(n—n')) . (D.23)

D.2 Spin-spin and density-density contributions

As explained in Chapter III, identity (8.67) plays a crucial role in the formulation
of the ¢ — J, Hamiltonian. Hereafter we report a detailed demonstration. Starting
from the definition of spin 1/2 operator:

Sz 2el(@) (7),  coli) | (D.24)

and recalling the definitions of the Pauli matrices:

0 1 0 —i 1 0
Tx—(l()),Ty—(Z. O),Tz—(o_l), (D.25)

the standard scalar product ?m . ?n can be written as:

. ichum)(? é)wgswm)wz(m)(? _oi)s,s,cs"m)

wem) (%) cs,<m>) - <c1<n> (1) et



Operatorial relations among polaronic and spin operators

wem (§00) emedm (Y ) cs/<n>>

where s, ' are spin indices that run over all the possible spin states: s,s" = {1,]}.
Making the sum over all the possible values of s and s’ yields:

(D.26)

S B = 5 [blmemcl (mier(n) + | (m)ey(m)ch (e, (m)] +

4 [dhmiesmcl ey (m) + el (m)ey (m)e] (m)e, (n) +
~cl(m)es(m)el(n)ey(n) — | (m)e,(m)cl(n)er(n)] (D.27)
We can write the previous equation as:

S B = 5 [edmic mcmyer(n) + el merm)ch(m)e, (m)+

+ef(m)ey(m)ci(n)er(n) + CI(m)@(m)CI(n)@(n)} +

2 [eltmes(m)cl m)es(m) + < (m)e (m)ef (m)e, (n)+
—i—ci(m)q(m)ci(n)ci(n) + ci(m)ci(m)cﬂn)q(n)} (D.28)

At this point, recalling the standard definition of the number operator: n(i) =
3. ch(3)es(), it is immediate to see that:

S-S = %ch(m)csr (m)c (n)es(n) — iﬁ(m)ﬁ(n) , (D.29)
from which we have:
S d(m)ey (m)el (n)e,(n) = 2 (?m St }lﬁ(mm(n)> . (D.30)

8,8
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Appendix

Lang-Firsov canonical transformation

This Appendix contains a detailed derivation of the following transformation rules:

= exp Zq (u(m, q)dq — HC) él = Xzél
d:q = Ciq - Zz ﬁZU*(ma q)
n; = 0y ’ (El)

nidq = fLZCZq — TAl, Zj ﬁju*(n, q>
did, = dgdq -3 [cﬁlﬁlu* (m, q) + dyi;u(m, q)]

\

as the result of the application of the Lang-Firsov (LF) transformation [10] defined
in Eq.(8.5). By means of these relations it will be shown that the microscopic
Hamiltonian (8.1)) can be written as:

2

- . 1 e 11\
H=— Z (61055 + 1045 C;fcj + 5 Z —_— <— — E) ning + Hpp . (E.2)

i.j i#j m —n| \ex

E.1 Transformation rules for electronic and phononic
operators

Let us consider generic electronic 0, and phononic Op operators. According to the
notation i = (m, s), ¢ include both site (m) and spin (s) degrees of freedom. By

applying ({8.5) we get:

é%}p = 6501‘7196_5 = exp [— Z n; [uj (q)ch — H.C}

q,j

O; p exp [Z n; [uj(q)dq — H.c.}] :

" (E.3)
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In order to simplify this relation it is useful to operate the following scaling: u(n, q) —
nu(n, q) and then differentiate the transformed operator with respect to the scaling
parameter 7. In this way we get:

a@% = ¢ Z [uj(Q)Czq (Olﬁj - ﬁgéz> + u’;(q)czil (ﬁjéz = Ozﬁ]>:| } e =
q.j
= ¢ [ﬁav Oz] e % (u5(q)d} — u]<q)c?q) , (E.4)
q,]

which represents two differential equations that allow us to calculate the transformed
operators O; and O, with the condition that O;,, = O;,, when 1 = 0.

E.1.1 Transformation rules for ¢; and ch operators

Let us now analyze the case in which O, and O are the electronic and the phononic
annihilation operators ¢; and dq, respectively. From and |) and by means
of the condition Ozp =0, ip at n =0 we ge -I

(E.6)

I'We recall that [

Qw
&o
<
P
I
<o
| —
S
p
S
i}
P
|
(=%}
a
o
=}
o
>
S
o
S
|
(=%}
<
iy
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Lang-Firsov canonical transformation

The solution of these differential equations with respect to the specified boundary
conditions at n = 0 are:

{c}- = exp [77 > (ulm, q)d, — H.c.)} Ci (E.7)
dy= dy—n);nu*(m,q)
in which, for the sake of simplicity, we can put 7 = 1 in order to obtain:
{é} = eAxp [quu(m, q)d, — H.c.)} ¢ = X,¢ | (E.8)
dg = dg— > ;7w (m, q)

E.1.2 Other important transformation rules

Starting from (E.8|), a number of transformation rules for different operators can be
obtained. E.g. it is immediate to see that:

n; = esézéie_s = (eséje_s> (eséie_s) = X;LXiéjéZ- ,
so, by means of 1} (we recall that o, ,(q) = 0 when m = n) we get XZ-TXi =1

SO:

Similarly, for n;n; operator we get:
nn; — (657%675) (esﬁjefs) = fllﬁj = ﬁzﬁj . (ElO)

Let us now analyze the transformation of the product of n; with a phononic
operator. In this case we get:

ﬁich - e“ide = (esﬁie’S) (esciqe’s) = fd, .
According to (E.8) and (E.9) we obtain:

iy = idy =i 35 7y (n, q) (E.11)

Finally it is immediate to see that dfldq operator transforms as:

df;dq = esczgche_s = (escﬁ]e—S) (esozqe_s> = d; q =

= <CZZ — Zﬁlu(m, q)> (ch — Zﬁzu*(m, q)) =

= did, ~ 3" [l (m, @) + dyiu(m, q) (B.12)

%
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E.2 Transformation rules for the atomic Hamilto-
nian

In order to obtain the transformation rule for the atomic Hamiltonian (8.1]) let us
now divide H as follows:

H = Hkm + Hel + Helfph + th 5 (E13)
where:

Hkin = — Z (Ej(sss/ + /’L(SZ]) é;réj ) (E14)

,J

1 e?

H, = - —_—n,; , E.15
! ZZem]m—n\nnJ ( )

i#]
Happ = Zhwon[ m. q)d +Hc} , (E.16)

H,y, (E.17)

Il
£
VR
S
_Q
[SH

Q
+
(N}
~_

and analyze each term individually. By means of the transformation rules obtained
in the previous section, for the kinetic term we have:

f{kin = — Z (T’ijgss’ —+ ,u5”) C;LCJ' = — Z (Ejdss’ + ,Mdu) XJXJéIé] =
Y oy
i,J
= - Z [Uijéss’ + /'1’51]] éjéj ) (E18)
i,J

where o;; is the renormalized hopping integral defined in terms of (8.10) as:
oi; =Ty X1 X; . (E.19)

According to (E.10) instead, for the electronic interaction term we get:

- 1 e 1 e?
=-S5 —" um = =S ha E.20
i Q;eoo|m—n|nn] Q;eoo|m—n|nn] (E-20)

while for the electron-phonon coupling term, according to ), we getﬂ

Heypn = Zhwo [ u(m, q) nld + u*(m, q)nqu

2In the sum over i and j an addition factor 1/2 has been included in order to avoid double
counting.
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= Z g [u(m, q) (ﬁi(jq — N Z njut(n, Q))
) ( man w(n.q )] (E.21)

= Zhwo [ u(m, q) nld + u*(m, q)nqu

—QZM " (m. q)u(n. q) + u(m. q)u’ (n. )] s, =

q,5,J

Hogn =5 3 B [u (m, @), @) + ulm, q)u*(n, @) s (£.22)

q,%,J

By means of (8.2]) we can note that:

2
u* (m. q)u(m. @) + ulm.qu*(n.q) = NDE [eiamean i o]
|’Y(q)|2 1 —iq-(m—mn 1q-(m—m
= N 5 ( a( ) 4 et )) —
2
_ |7(;1[)| cos(q - (m —mn)) | (E.23)
so we obtain:
Ao ph = Horpn — —Zm '7 0s(q - (m —mn)) i, . (E.24)

q,i,J

Finally, by means of (E.12)), it is straightforward to see that Hp, gives:
. ~ 1
Ao = Yoo (di + 5) =
q
a1 N .
= Z huw {d;dq + 5} - Z [df]niu (m,q) + d,nu(m, q)
q

i,q

= th - Z [u*(m, q)ﬁzdj; + u(m, q) d :| th Hel—ph .

4q
Adding together all the contribution, the transformed atomic Hamiltonian reads as:

_ 2

H = —Z 0”535 +,U5ZJ]CC]+ ;mflﬁ

Z hw cos(q- (m —mn))nn; + Hy, . (E.25)
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It is useful to analyze the third term individually:

H(iyj) = — Zm cos( - (m = n)) n; . (E.26)

q7,]

The contribution arising for ¢ = j can be written as:

- 1 q)* . .
q,t
1 hwy 4me* . 2me?
B _ég;Wthwoqu__ K Z(NQZ )
2 3
- _Z<7r€/ @q ) = — ZEnZ, (E.27)
(2m)% q

in which the integration goes over all the Brillouin zone. By including this contri-
bution in the chemical potential, the kinetic part of the transformed Hamiltonian
reads as:

) 630 + i3] ey (E.28)
1,
where:
ﬂ—M+E
 ore? & (E.29)

{Ep =2 Joz Gy

We are left with the i # j contribution that can be written as follows:
o 1 v(q)”
i #0) = —5 3 o " DWeos (g (m — m)) i, =
q,iF#]

1 h{,L)O 47T€2 A A
T I LN Qg (@ () s

i#j 4q

= ——ZNQZLMTG cos(q - (m —mn))nn; =

i#]

- Z /d3q4m (@ (m—n)) ini; =
= NG cos (q nin; =

1 4re? /‘“ /+°° /2 1
= —= —_ d d dOq*—= cos (q|m — n|cos 0) i, =
2%%%fno p | daf die’cos(dl | cos 0) i,
i#j
+oo

1 4rre? 1 .
- __ 7T—€3(27T)/ dq _/ deezq\mfmcos@
244~ (21)° K 0 2 )_

i#£]

DA )y

[ME]

deezqmn|0059] ﬁzﬁj —
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Lang-Firsov canonical transformation

+00
_ - —/ dqr Jo(glm — n|)nn,; =
K Jo
1 2 “+oo L 1 e A
= 5> VO Jo(‘1|m_n|)dQ1 Ny = _52—””” '

 Klm —mn
i#£]

Finally, the transformed atomic Hamiltonian reads as:

1,J

5 R | e? 1 1\ ..
H=— Z [O-ij(sssl + N5ij] C;'[Cj + 5 ; m (; — ;) nin; + th . (E?)O)
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Appendix

Thermodynamic quantities for a
Bose-Fermi mixture

Let us consider an ideal gas of n; fermions and 2n; bosons per volume in the presence
of a static and uniform magnetic field h. With the aim of describing the thermo-
dynamic of such a Fermi-Bose mixture at equilibrium , it is useful to introduce the
thermodynamic potential Q(ny,n,, T, h), defined as a function of temperature T,
chemical potential u and magnetic field h for fixed values of entropy .S, total parti-
cle density n = 2n;, + n,, and total spin-momentum (magnetization) m, as follows:

dQ) = —SdT — ndp — mdh . (F.1)

The above relation allows us to write the following expressions for total particle den-
sity n(T, h), entropy S(T, h), specific heat C(T, h), magnetization m(T, h), charge
Xe(T, h) and spin x4(T, h) susceptibilities:

(

n(T,h) = - %(T’ h n=const.
S(T,h) = — g_?“(i h p=const.
C(T,h)=T %(T, h)‘V,nzconst. (F.2)
m(Th) = = FOUTR) |
xs(T,h) = %m(T, h>‘V,n:const.

\XC(T, h)=T %H(T> h)

V.,n=const.

As shown in detail in Sec{10.3.1] we can use the additivity property of Q(ny, n,, T h)

to write:

Q(np, np, Ty h) = Qp(np, T, h) + Qp(ny, T, h) (F.3)
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where €, ,(n,p, T', h) is the thermodynamic potential which describes bipolaron/unpaired
polaron specie individually:

+oo
Qpolps T, 1) = FhisT Y / AN () In (1 £ exp [(pp — ) /ksT) (F4)

which is defined in terms of polaron/bipolaron chemical potential p,;, and density
of spin-polarized states in the bipolaron/unpaired polaron band ./\/p(fb) (€, h). Here the
label s accounts of all the possible spin states. Although bipolaron and unpaired
polaron densities, individually, might have two different chemical potentials, there
is only one value p for the chemical potential of the whole mixture which can be
unambiguously determined according to the detailed equilibrium principle
which gives:

o
K= Hp = 9 (F.5)

It is worth noting that the chemical potential p can be calculated self-consistently for
a given value of polaron and bipolaron density according to the relation n = 2n,+n,,
where:

+o0
Tlp7b(T) = Z/_ dEfpyb(/JJpjb, €, T)Np,b<€) y (F6)

hence, for any given energy dispersion in N, (€), 2, 5(npp, T, h) can be calculated as
a function of temperature, polaron/bipolaron density and intensity of the external
magnetic field. We report in the following Sections the expression of entropy, specific
heat, magnetization and spin susceptibility for a generic e(k) dispersion. Finally,
we report in Sec.(F.3)) analytical results obtained in the case of a Heaviside-theta
density of state.

F.1 Zero field entropy and specific heat

For the sake of simplicity, let us consider the case with h = 0. According to the
second law of thermodynamic the specific heat at constant volume can be defined
in terms of the entropy of the system as follows:

03
C(I)=T o : (F.7)

V,n=const.

where, from EqJ10.27], we have:

o2

5="or

(F.8)

p=const

The entropy enjoys the additivity, therefore:

29,
oT

o0,

S(T) = Sy(T) + S,(T) = — ( s

) . (F.9)

p=const
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Recalling that:

1 (1 £ exp [(1pn(T) — €) [pT)) = £fyule,T)

: d (Mp,b(T)

— €
e 2 A F.1
daT \_ kpT ) . (F10)

from Eq[I0.29 one can readily obtain:

o0, Q, > s € — hp,
a;b p=const N %b - kBTZS: /;oo dﬁAfp(,b) <€>fp,b(E’T) <?jéb) N
Q * s
— %’b + % ; /_Oo de/\f;b)(e)fp,b(e, T)
1 o
53 N etnle.T) -
1
= 7 (Qa(T) + (T p(T) = (Epp)(T)) (F.11)
where:
+oo
ol D)= 3 [ defyalin € TIN;s(e) (.12
+o0
)= [ dechyalinn e TING(O). (F.13)

Therefore bipolaron and unpaired polarons contributions to the entropy read as:

an b 1

- f (<Ep,b> (T) - Qp,b<T) - :up,b(T>anb(T)) -

p=const

= Z / deNs)
—Jfpo(e,T) <%)] : (F.14)

The knowledge of the entropy allows us to calculate the specific heat at constant
volume and particle density as:

Sp,b(T)

) |k In (1 exp [(ppo(T) — ) /kuT))

85

T (F.15)

V,n=const. V,n=const. V,n=const.

It is worth recalling that, although the total number of particle of the mixture
x is constant, bipolaron and unpaired polaron densities depend on temperature
(npp = nypp(T')) according to EqJ10.36) So that, from the previous equation we get:

<Ep b) Hp b(T)np b(T) Qo 1 d<Ep b)
T — T _ El ’ ) El _ El
CrolT)lvn ( ™ T T2 T Tar

+ =
Vin
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(T dnyyp npo(T) dppp| 1 dSdyy _
T dr T dr T dT |,
d<pr> dnpb
e L N P 2
dT Vin Np,b( ) dT
+oo d
= X[ Nl =D jpT% 7). (F.16)

Summarizing, in the absence of an external magnetic field, entropy and specific
heat enjoy the additivity property and can be calculated as the sum of bipolaron
and unpaired polarons contributions according to the following relations:

Sp0(T) = 7 (Bpad (1)~ 0p(T) — ppp(Thmy(T)) . (F17)
Coly = S| () 22 (F.15)

or, alternatively:

) | £k In (1 +exp (1 —€) /kpT])

S,,(T) = Z / deN©)

_pr)(E’T) (:up,bT‘_ 6)

C B +oo dfp,b
Dl = 2 [ AeNoal@) (= ps(T) |

: (F.19)

(e,T) . (F.20)

It is worth noting that in the case of an ideal Fermi gas and in the low tempera-
ture limit, by considering du/dT = 0, the derivative of the Fermi-Dirac distribution
function can be expressed as:

dfp d €~ Hpp -
T - L T lwb) ) =
a'eD = ar (eXp( T )
€ = [ipb - €= fipp\ (€ pp | 1 dppp
— p7 1 p7 p7 p7 —
(eXp( kT )+ ) eXp( kT ) ( kpT? | kpT dT )
2
€ — Upp €— Upp \ €~ Upp
~ 1 . F.21
(exp( T )+ ) exp( T ) i T? ( )

Then, recalling that N ) (€) ~ N, 4(Ep), the polaronic contribution to the specific
heat gives:

+00 - 2 . —2 o
c(T) =2 k:B/\/p(EF)/O de (—23;10) (exp (lf;f’) + 1> exp (EkB/Yfp) —
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+o00 2
—  2kpTN,(Ep) / dx&@% . (F.22)
0 (exp(z) + 1)
where:
E —
T = ﬁ , de = kgTdz . (F.23)
The resulting integrals can be computed exactly:
~+o00 2 2
/ dp T OP@) T (F.24)
0 (exp(z) +1)° 6

then, by substituting in the expression of C(T"), we obtain the following standard
textbook result for an ideal Fermi gas:

2
T

C(T) = K4 TN, (Er) (F.25)

with the well-known Sommerfeld specific heat coefficient v = @ = k3N, (Er)/3.

F.2 Magnetic moment and paramagnetic spin sus-
ceptibility

The magnetic response function in the presence of a weak magnetic field is given by
the sum of a diamagnetic and a paramagnetic contributions. While the former is due
to spin magnetic moments, the latter is induced by the coupling of the applied field
with the orbital degrees of freedom. In the following treatment we will neglect the
diamagnetic response and will restrict our analysis to the paramagnetic case in which
the presence of a static and uniform external magnetic field can be described by a
simple spin-field coupling — ) . upS(2)-h. Here the sum over ¢ is taken with respect
to all the sites of the lattice. Moreover, because of system isotropy, if we label as 2
the axis along which the magnetic field is aligned, the spin field coupling term reads
as —pupSth where S is the total spin angular momentum of the system along
the field direction (S = 0 and S + 1/2 for bipolarons and unpaired polarons,
respectively).

According to this, the statistical distribution of electrons in a magnetic field
can be obtained by considering the following shift in the chemical potential y —
p— S uph that reflects the shift in the energy dispersion: € — ¢ + S pugh in-
duced by the spin-field coupling. Hence, taking the sum over all the possible spin
states, bipolaron and unpaired polaron contributions in the thermodynamic poten-
tial Q(7T, h) can be written as follows:

Qb(T7 h) = Qb(T7 Mb) ) (F26)
O(T,) = 3 [OT iy + ) + Tty —pish)] . (F27)

where the dependence from h has been taken into account via the polaronic/bosonic
chemical potential of the mixture f,;. It is immediate to note that bipolarons do
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not contribute to the magnetic response functions since they are not affected by the
magnetic field h. Therefore, we can focus our analysis on the unpaired polarons
contributions only.

According to Eq]10.40] recalling that:

3111(1 +exp [(pp + pph —€) [kpT)) = + pp  exp[(up + pph —€) [kpT)

oh kgT 1+ exp [(pp £ puph —€) /kpgT]’
(F.28)
we can write the magnetization m(h,T') as
0 10
m(h,T) = —on T, h) = =50 (Q(T, tp + ph) + (T, 4y — pph)] =
kT oo 0 ,up(T) + ,LLBh — €
— Bt 1
>/ deNpy(e )812 ( —|—exp{ T
pp(T) — psh — €
1 1 pr—
+In ( + exp [ i
+00 -1
KB ¢ — (1) — pph
— B 1
2 deN(€) ( +exp[ T
-1
¢ — pp(T) + psh
(1 =
( + exp { kT
+o0 sinh | 42k
_ B / deN,(€) [‘“BT] . (F.29)
2 cosh [6 “p] + cosh [“Bh]
Then the spin-susceptibility reads as:
sh
om(h, T 0 sinh | £27
xs(h,T) = % = MTB/ de./\/p(e)% — [ b } ] =
—o00 cosh [ “”] + cosh [LT}
1 4 cosh cosh | L&t

_ “_B/%o deNy(€) .
2T | (cosh [ ] + cosh |:kBT:|>2

F.3 Theta Approximation for the DOS: analytical
results

Let us consider the following approximation for the density of states:

{N(S (€) = 4570 (e = A) © (A + 2w, — ¢ (F.31)

N (e) = AP0 ()0 (2w, — €) ’
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Figure F.1: Schematic representation for bipolaron (blue) and unpaired polarons (red)
density of states.

where A;(fg and w,; are intensity and half-bandwidths of polaron and bipolaron
contributions, respectively, while A is the gap between the bottoms of bipolaron
and unpaired polaron bands (see FiglF.1)).

According to this approximation, bipolaron and unpaired polarons densities can
be calculated as follows:

-1
)= 3 [T onien) < S [ e (oo () 1)

(F.32)
where ep s el Z;"” represent upper and lower bounds for bipolaron and unpaired po-
larons DOS:

€mn =0 €n = A
{el}in — 2w ’ { ?nz —A+2 ’ (F33)
[ b €& = + 2wy
The resulting integral can be easily calculated by means of the following change of
variable:
r = SHeb
kT , (F.34)
de = kpTdx
that gives:
A dx Jin
' — (s) xT xp,b
T o ZApbk T/xmb pra :I:zs:Apvbk:BT (v —log (1 e, (F.35)
where, according to (F.33) and (F.34)) we have:
in in A—p
xyt = — = 2
{l‘ﬂn — 22?5“1; ’ {x?'m — ]ZBIQWP_NP ’ (F36)
b kT P kT
The final expressions of bipolaron and unpaired polaron densities:
2wy —p M
n(T) = —2Aywy, + ApkpT log [(1 —e ’“%Tb> / <1 - e_’ﬂTbTﬂ : (F.37)
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A—pp A+2wp—pp
n,(T) = 4A,w, + 2A,kpT log {(1 +€’W3T> / <1 +e kBT >] , (F.38)

allow us to calculate the chemical potential © = i, = 11,/2 according to the conser-
vation of the total number of particles:

n=(2n,(T) + np(T))Mp:Mb/QZM , (F.39)
as well as the charge susceptibility:
2A,T sinh (w,/kgT
Iy p—— L L L S (F.40)
cosh (#) + cosh ( )
AT sinh kgT
) = —prmnlnbel) (F.41)
cosh( > T”> cosh (k T)

F.3.1 Zero field entropy and specific heat

The knowledge of bipolaron and unpaired polaron densities allows us to calculate
entropy and specific heat. Form Eq[F.17] we can write the entropy as:

Sl = 32 [ Taensia [t (1) - e (125°) <
- o 12%) s () -

S

fin

xp,b
= kgTZA;fg/ dz {iln(lie‘x)JremiJ . (F.42)
s 93;%

The resulting integral can be exactly computed in terms of the Poly-log function:

) = Z ﬁ . (F.43)

Recalling that:

+ /dx log (1+£¢7%) = + {x—z +zlog (1 = e:) _ P (;e’f)} . (F44)

2 1+e
A E (1£e%) — Py (Fe) (F.45)
xef‘szl = 5 x log e > (Fe , .
we have:
_r T 9 l1xe™ .

(F.46)
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therefore, by substituting in the expression of the entropy we finally obtain:

fin
— X
& p,b

Soo(T) ==+ ZA {;ﬁ +zlog <<11i—;)2> —op, (;e’”)] ,(F.47)

in
x
p,b

that can be calculated in terms of the DOS parameters wy;, A,; and A according

to Eq[F.36]

By following a similar procedure it is also possible to obtain an analytical ex-
pression for the specific heat. Starting from Eq[F.18 we have:

d
CoulDly = 3 [ a0 (= i) L) =

fzn
(€ = ppp) /kBT exp (6 — up,b>

= k TZApb/pb g(exp< upb>:|:1>2 kT

€ — Upp L dpyp
F.4
( kT2 | kpT dT ) ! (F.48)

that, according to the change of variable defined in EqJF.34] can be written as:

fin

b re® T L dypp
o T A(s)/ dp—FC _(Z 1 OHpb) _
po(D)ly (ksT) g b zin 55(63::&1)2 T+ kgT dT

fzn
_ ©) | 1@ dtpp (), |7
- kBTZA [ Bl (x) + =20, (@ )L : (F.49)
p,b
where:
(n) z"e” i Flog(l+e”) ,n=1
[pb< ) diﬂﬁ = " o .
(er +1) v (£ F2log(1+e%) FPa(Fe) ,n=2

(F.50)
Summarizing, entropy and specific heat of a Fermi-Bose mixture with a rectangular
DOS can be written as follows:

fin
s ld+e™ o]
s Tpb
xfin
dpipp (1) b
Cos(Mly,y = kBTZA kplyy (o) + =22 L)) (F.52)
Tprb

where a:ifl;f " are expressed in terms of the DOS parameters w,;, A,; and A ac-
cording to Eq[F.36] From EqlF.52] it is also possible to calculate the specific heat

for a system with constant volume and chemical potential. In this case the thermal
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derivative of p,; is zero and we have:

fin

s ze” x x e
s b

F.3.2 Crossover temperature in the narrow-band limit

Let us consider the narrow-band limit of the rectangular DOS which gives
Nyp(€) = 0(e — €pp). We recall that, by shifting the zero of the energy at the
bottom of the bipolaron band, we have ¢, = 0, ¢, = Jp((j) = A. Let us now
calculate the crossover temperature 1™ defined as the temperature at which half of
the bipolarons are dissociated and the charge is equally distributed between polarons
and bipolarons. In this case we have n,(T*) = 2n,(7*) or, recalling that n,(T" =
0) = x/2, ny(T = 0) =0, np(T*) = z/4, n,(T*) = x/2. Polaron and bipolaron
densities can be calculated as:

+oo 1

npp(T) = Apyp / deNpp(€)

— F.54
o0 ePrms) 41 o0

where, consistently with the narrow-band approximation, A,; only takes into ac-
count the degeneracy of polaron and bipolaron configuration and we consider p, =
/2 = u as follows from the detailed equilibrium. By means of the above relations,
at T'=T* we have:

sy L 2 —28%p _ 8
For the polaronic density we have instead:
x 2 . . 4
S P =B — A
n,(T*) = 3= W] =e e (a: 1) . (F.56)
Joining together the last two equations we obtain:
A (4 ? 8
awA(——Q =1+, (F.57)
x x

from which we have:

. 148 1 (4 -1)°
—28*A __ T * x
e = —(é - 1)2 = f SA In ( 53 , (F.58)

and the following expression for the crossover temperature:

2A
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