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3.3 Pléiades dataset: Quantitative results. . . . . . . . 45
3.4 Toulouse dataset: Quantitative results. . . . . . . . 49
3.5 Rio dataset: Quantitative results. . . . . . . . . . . 52

4.1 China dataset : Comparison between error-based
(ERR) and contrast-based (CON) injection models. 64

4.2 India dataset : Comparison between error-based
(ERR) and contrast-based (CON) injection models. 64

5.1 MTF gains at Nyquist cutoff frequency. . . . . . . . 80
5.2 Performance evaluation for theMTF and FE meth-

ods, when M̃ is obtained with the bicubic interpo-
lator. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Performance evaluation for the MTF, FE MS and
FE methods, when M̃ is obtained with the 23 co-
efficient interpolator. . . . . . . . . . . . . . . . . . 86

5.4 Performance evaluation for the EXP, SFIM, ATWT
and MTF methods, when M̃ is obtained with the
23 coefficient interpolator. . . . . . . . . . . . . . . 87

ix



5.5 Execution times for the compared methods on the
China dataset. . . . . . . . . . . . . . . . . . . . . . 87

5.6 Full scale performance evaluation using SAM and
SCC indexes for EXP, SFIM, MTF and FE methods. 90

6.1 Full scale analysis: Hyp+ALI dataset with per-
fectly coregistrated images. . . . . . . . . . . . . . . 99

6.2 Full scale analysis: Hyp+ALI dataset with 60 me-
ters misalignment (2 HS pixels). . . . . . . . . . . . 100

6.3 Full scale analysis: CHRIS+QB dataset with per-
fectly coregistred images. . . . . . . . . . . . . . . . 101

6.4 Correlation coefficients between PAN image and
each NLPC on the Pavia dataset. . . . . . . . . . . 110

6.5 SAM quality indexes (measured in degrees) ob-
tained with different fusion approaches applied to
the Pavia dataset. Pure MRA are indicated by
“All bands”. CS approaches are labeled as NLPCA
and PCA, while the others are hybrid approaches
based on NLPCA projection and the indicated
MRA methodology. The symbol “/” indicates an
unavailable value. . . . . . . . . . . . . . . . . . . . 112

6.6 ERGAS quality indexes obtained with the differ-
ent fusion approaches applied to the Pavia dataset.
Pure MRA are indicated by “All bands”. CS ap-
proaches are labeled as NLPCA and PCA, while the
others are hybrid approaches based on NLPCA pro-
jection and the indicated MRA methodology. The
symbol “/” indicates an unavailable value. . . . . . 113

6.7 SCC quality indexes obtained with the different fu-
sion approaches applied to the Pavia dataset. Pure
MRA are indicated by “All bands”. CS approaches
are labeled as NLPCA and PCA, while the others
are hybrid approaches based on NLPCA projection
and the indicated MRA methodology. The symbol
“/” indicates an unavailable value. . . . . . . . . . 113

x



6.8 Computational time (expressed in seconds) eval-
uated for the different methods applied to the
Pavia dataset. Pure MRA are indicated by “All
bands”. CS approaches are labeled as NLPCA and
PCA, while, the others are hybrid approaches based
on NLPCA projection and the indicated MRA
methodology. The symbol “/” indicates an unavail-
able value. . . . . . . . . . . . . . . . . . . . . . . . 116

6.9 Correlation coefficients between PAN image and
each NLPC obtained by the CHRIS+QB dataset. . 117

6.10 SAM (expressed in degrees) and SCC quality in-
dexes over the different fusion approaches applied
to the CHRIS+QB dataset. The symbol “/” indi-
cates an unavailable value. . . . . . . . . . . . . . . 118

6.11 Computational time (expressed in seconds) eval-
uated for the different methods applied to the
CHRIS+QB dataset. The symbol “/” indicates an
unavailable value. . . . . . . . . . . . . . . . . . . . 120



xii



Acknowledgments

This research activity would not have been possible without the
support of the University of Salerno and the Grenoble Institute
of Technology. I am heartily thankful to my Advisor, Rocco
Restaino, whose encouragement, guidance and support from the
initial to the final level enabled me to develop an understanding
of the subject. I would like to express my thankfulness to the
Prof. Maurizio Longo for his guide and availability. Furthermore,
special thanks go to the Prof. Jocelyn Chanussot, who hosted me
at the GIPSA-Lab at the Grenoble Institute of Technology, for his
guide, support and devotion to research. Few words are not surely
enough to demonstrate the gratitude to Mauro Dalla Mura for his
support and helpful discussions. Deepest gratitude is also due to
other people who with their knowledge and skills helped the suc-
cess of my research activities. I would like to mention them here
in a pure alphabetically order: Paolo Addesso, Prof. Luciano Al-
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the Prof. Antonio Plaza for their availability to provide me a
review of my dissertation in order to fulfill to the European Label’s
requirements.

The new experiences allow the growing of each one. For this
reason, I would like to thank all the guys at the GIPSA-Lab
and the NATO Undersea Research Centre (NURC), where I spent
about one year of my Ph.D. period. Special thanks go to Paolo

xiii



Braca for the supervision and assistance during the three months
at NURC and my lab mates Alessandro Chiancone at the GIPSA-
Lab to share his spare time with me in France.

I am glad to have met Mario Di Mauro, Prof. Maurizio Guida,
Prof. Stefano Marano, Vincenzo Matta, Rita Montone, Prof. Vin-
cenzo Pierro and Fabio Postiglione at the University of Salerno,
where I was hosted in the last three years.

Thanks to my girlfriend Ilaria for her understanding and end-
less love, my father Giuseppe, my mother Luciana and my sister
Antonia for their constant love and support through the duration
of my studies.

Lastly, I would like to thank all those who have been with me
over the last years and those who are no longer with us.

xiv



Chapter 1

Introduction

Remote sensing consists in measuring some characteristics of an
object from a distance. Many devices have been proposed in the
scientific literature to carry out this task, in the attempt of repro-
ducing the human ability in collecting information through the
remote sense organs (hearing, smell and eyes). A key example of
remote sensing is the Earth Observation from sensors mounted on
satellites that is a crucial aspect of space programs.

The first satellite used for Earth observation was Explorer VII,
which was launched in October 1959 with the purpose of measur-
ing the “Earth’s radiation budget”, namely the amount of heat
reflected by the Earth. It has been followed by thousands of satel-
lites, many of which are still working. They collect information
in a wide range of frequency, which is widely exploited in a large
number of military and civil applications.

Due to the availability of a large number of different sensors
and the subsequent huge amount data collected, the idea of obtain-
ing improved products by means of fusion algorithms is becoming
more intriguing. Data fusion is often exploited for indicating the
process of integrating multiple data and knowledge related to the
same real-world scene into a consistent, accurate, and useful repre-
sentation. This term is very generic and it includes different levels
of fusion. In this dissertation, we will focus on the low level data
fusion, which consists in combining several sources of raw data. In
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this field, one of the most relevant scientific application, which is
demonstrated by both the organization of a contest by the IEEE
Data Fusion Committee in 2006 and the huge number of papers
published in the recent years in this research area, is surely the
Pansharpening.

Pansharpening refers to the fusion of a panchromatic image (a
single band that covers the visible and near infrared spectrum)
and a multispectral/hyperspectral image (tens/hundreds bands)
acquired on the same area. This can be seen as a particular
problem of data fusion since one would aim at combining in a
single product the spatial details resolved by the panchromatic
image, but not present in the multispectral/hyperspectral image,
and the multiple spectral bands of the other image characterized
by a greater spectral content. The relevance of these techniques is
mainly due to the necessity of obtaining a data with high spatial
and spectral resolutions for visual inspections. Very popular soft-
ware, such as Google Earth, exploit these algorithms to provide
enhanced products to final users. In the latest years, the possi-
bility of applying them as preprocessing for algorithms of object
and change detection, linear unmixing and classification has been
discussed and tested. The fusion of these data compensates the
unavailability of images with high resolutions in both domains,
which are precluded by physical limits of remote sensor realiza-
tions and by the necessity of alleviating problems, such as, the
data storage on-board and the transmission to ground stations.

In this dissertation, we will report the details of the relevant
aspects related to this problem both from a methodological and
application oriented point of view. Firstly, an overview of the wide
existing literature will be presented, together with the classifica-
tion of the approaches into two main families. More in detail,
the pansharpening algorithms are usually divided into two cate-
gories: Component substitution and multiresolution analysis. The
former is based on the projection into a new space, the substitu-
tion of the most similar component with the panchromatic image
and the projection back into the original space. The main idea
in the second approach is the extraction of the spatial details of
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the panchromatic image and their injection into the multispec-
tral/hyperspectral data exploiting a proper injection model. Un-
der the hypothesis of linear transformation and the substitution
of only one component with the panchromatic image, even the
component substitution family can be represented as an extrac-
tion detail phase followed by a proper injection rule (see Chapter
2 for further details). Therefore, a generic classical pansharpening
algorithm can be divided into two phases: Detail extraction and
detail injection.

By focusing on the former, many powerful pansharpening ap-
proaches exploit the functional relation between the panchromatic
and multispectral images. To this purpose, the modulation trans-
fer function of the higher spectral resolution sensor is typically
used, being easily approximated as a Gaussian filter whose ana-
lytic expression is fully specified by the sensor gain at the Nyquist
frequency. However this characterization is often inadequate in
practice, or, in some cases, the gains at the Nyquist frequency
could be unavailable. In Chapter 5, we will present an algorithm
for estimating the relation between panchromatic and multispec-
tral images directly from the available data, through the solution
of an optimization problem. Moreover, a critical analysis and com-
parison among the state-of-art extraction detail approaches will be
provided to justify the advantages.

With reference to the other main step of a pansharpening algo-
rithm, i.e., the injection of the previously extracted details, we will
analyze two of the most popular models. The main contributions
are: 1) The analysis of the injection methods for pansharpening
in the light of physical considerations regarding the point spread
function and 2) the derivation of the constraint on the modulation
transfer functions in terms of image local contrast. The findings
presented in Chapter 4 can be related to rather more general im-
age fusion contributions, which already highlighted the superiority
of methods based on contrast pyramids. Focusing on the pan-
sharpening applications, the same considerations justify the very
appealing visual features of the high pass modulation method.

The pansharpening problem is usually related to the fusion of
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multispectral and panchromatic images. Few attempts for fusing
hyperspectral images are present in the literature. In this dis-
sertation, we firstly investigate the use of classical pansharpening
approaches in the hyperspectral case. We will also analyze the
specific features of hyperspectral data fusion with respect to the
multispectral image case. It is worth to note that the satellite
platforms, which are able to acquire both panchromatic and hy-
perspectral data, are rare. Therefore, procedures as co-registration
and intercalibration of the acquired data have to be performed as
preliminary step. The hyperspectral sharpening differs from the
classical multispectral one mainly because of the large number of
bands, implying a significantly increase of the computational bur-
den and their narrowness, which reduces the similarities among
the acquired data and results in the raise of the spectral distor-
tions of the final products. To overcome the computational issue,
the application of techniques, which are able to reduce the dimen-
sionality of the hyperspectral data, are surely advisable. In the
literature, one of the most used methodology to reach this goal is
the Principal Component Analysis (PCA). In this thesis, we pro-
pose to use the non-linear PCA, which exploits auto-associative
neural networks, and compare its performances with the classical
PCA. Moreover, in order to reduce the spectral distortions, hybrid
approaches are suitable. In fact, after the reduction step, we only
inject the spatial details of the panchromatic image into one or
more selected components instead of substituting it.

Finally, an experimental activity requires a proper implemen-
tation of the validation procedures, quality indexes, algorithms for
the comparison and preprocessing procedures. For these reasons,
after a collaboration among the GIPSA-Lab (Grenoble Institute
of Technology), the universities of Florence, Siena, Salerno and
the MINES ParisTech, a MATLAB Toolbox has been developed,
which allows, starting from multispectral and panchromatic im-
ages, the comparison of several algorithms belonging to the state-
of-art; it exploits the two main validation procedures (i.e., at re-
duced and full scale) and the commonly used quality indexes (see
Chapter 2 for details). This work represents a step towards the
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standardization of some processes and, after its distribution on
the net, it will help all the researches who want to propose a new
pansharpening algorithm, making easier the improvements in this
scientific area. Another goal of this work is the critical compar-
ison of the existing pansharpening methods, which has not yet
been sufficiently investigated. The contest launched by the IEEE
Data Fusion Committee in 2006 has made a first step tackling
this issue, since it performed an explicit comparison among the
principal existing methods assessed on the same datasets, with
the same metrics and in the same working conditions. The cur-
rent work moves in the same direction, allowing for a wide critical
analysis of several state-of-art pansharpening approaches and to
the comparison of the main validation protocols for the perfor-
mance assessment.

This dissertation is organized as follows. In Chapter 2, the
state-of-art approaches and their classification will be discussed.
In Chapter 3, the critical comparison of many pansharpening tech-
niques, exploiting the two principal validation procedures will be
shown. In Chapter 4, the two main injection models will be pre-
sented and the advantages of the high pass modulation injection
model will be pointed out both physically and numerically. In
Chapter 5, a technique to properly estimate the filter to spatially
degrade the panchromatic image to the same resolution of the mul-
tispectral data will be described and analyzed. In Chapter 6, the
hyperspectral pansharpening problem will be discussed and ana-
lyzed by means of classical approaches, and, moreover, a novel
hybrid approach based on non-linear PCA and multiresolution
methodologies will be exploited to overcome the issues related to
the application of pansharpening to hyperspectral data. Finally,
in Chapter 7, some final remarks and indications for further de-
velopments of this work will be presented.





Chapter 2

An Approach to Data
Fusion: Pansharpening

In this chapter, the fusion between a high spatial resolution and
reduced spectral content image with another one characterized by
complementary features is analyzed. This raw data fusion ap-
proach is usually called Pansharpening. An introduction to the
methodologies proposed in the literature is provided to the reader
and a more detailed overview of the main techniques exploited in
the recent years to face this problem is also carried out. More in de-
tail, many pansharpening techniques belonging to the Component
Substitution (CS) and to the MultiResolution Analysis (MRA)
families are described. Furthermore, the two main assessment pro-
cedures (i.e., at full and reduced scale) are shown and commented.

The remainder of the chapter is as follows. Sec. 2.1 shows an
introduction to the problem and a review of the methodologies
proposed in the literature. While, Sec. 2.2 presents a review of
the CS- and MRA-based approaches, providing a detailed descrip-
tion of the main algorithms belonging to these families. Finally,
Sec. 2.3 is devoted to the description of the two main assessment
procedures operating at reduced and full scale by introducing the
corresponding quality indexes.
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2.1 Introduction to Pansharpening

Pansharpening refers to the fusion of a PANchromatic (PAN) and
a MultiSpectral (MS) image acquired simultaneously on the same
area. This can be seen as a particular problem of data fusion since
one would aim at combining in a single product the spatial details
resolved by the PAN (but not present in the MS) and the spec-
tral bands of the MS image. With respect to the general problem
of multisensor fusion, the pansharpening could not require the
challenging phase of spatial coregistration since the images are
typically acquired simultaneously, being the PAN and MS sensors
both mounted on the same platform [1]. Nowadays, PAN and MS
images can be obtained in bundle by several commercial optical
satellites such as IKONOS, OrbView, Landsat, Spot, Quickbird
and WorldView. The spatial resolution is even below half me-
ter for the PAN (thus representing the commercial product with
highest spatial resolution) and the spectral resolution can be up
to eight bands, captured in the visible and near infrared domain,
for the MS. The fusion of the PAN and MS images constitutes
the sole possibility for having in the same product the highest res-
olution in both the spatial and spectral domains, since physical
constraints preclude to achieve this result by using a single de-
vice. The demand for pansharpened data is continuously growing
due to the increasing diffusion of commercial products based on
spatially enhanced images, as for example Google Earth and Mi-
crosoft Virtual Earth. Furthermore, pansharpening represents an
important preliminary step for many remote sensing applications,
such as change detection [2], object recognition [3] and visual im-
age interpretation [4].

The interest of the image processing community in pansharp-
ening is evident by reviewing the recent technical literature; de-
tailed surveys of pansharpening algorithms can be found in [1,5,6].
We have chosen to focus on some of the most popular algorithms
belonging to the two main classical approaches: The Component
Substitution and the MultiResolution Analysis. The former ap-
proach relies on the substitution of a component (e.g., obtained



2.1. Introduction to Pansharpening 9

with a transformation of the data) of the MS image representation
with the PAN image. This family comprises algorithms such as
Intensity-Hue-Saturation (IHS) [7,8], Principal Component Anal-
ysis (PCA) [9, 10] and Gram-Schmidt (GS) [11]. The MRA ap-
proach is based on the injection of spatial details, which are typ-
ically obtained by the details through a multiscale decomposition
of the PAN image, into the MS data. The spatial details can be ex-
tracted by several approaches, ranging from very simple methods
based on a single low pass filter [8, 12] to more complex decom-
positions based on Laplacian [13] pyramids, or wavelet/contourlet
operators [10,14].

These two classes of methods will be widely discussed in
Sec. 2.2. Some other methods have been proposed in the liter-
ature that cannot be classified within the two above-mentioned
families. Some algorithms use the Bayesian paradigm for carrying
out the data fusion task [15]. The difficulty in finding a suitable
statistical model to jointly characterize the available MS and PAN
images [16] has strongly limited its use for pansharpening. How-
ever many contributions based on Bayesian estimation theory have
been presented in the recent literature. They are based on regu-
larized solutions of the ill-posed problem consisting in the high
resolution image reconstruction from coarse measurements. Some
proposals are based on Total Variation penalization terms [17] and
many others rely upon recent developments in sparse signal rep-
resentation, or Compressive Sensing theory, which was proposed
in [18, 19]. Among the latter, it is possible to refer to the sem-
inal works [20, 21] that introduced this approach, whereas more
recent improvements have been achieved through the application
of super-resolution techniques, which are already largely diffused
in many image processing and computer vision applications [22].
In particular, methods belonging to this family are [23–25].

Pansharpening have been also proposed for fusing panchro-
matic and HyperSpectral (HS) data [26, 27]. Clearly, this task
cannot be addressed by employing conventional methods due to
the particular issues that have to be faced (e.g., non simultaneous
acquisition, co-registration of the data and different spatial cover-
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age and resolution [1, 28]). Furthermore, it should pay attention
to the computational problem when fusing the images. The use of
very simple fusion techniques could be advisable in order to allevi-
ate it. Accordingly, component substitution approaches are surely
preferable, but, they can generate spectral distortions, which are,
in general, more present in the hyperspectral case. Therefore, the
use of hybrid approaches (i.e., the application of MRA method-
ologies on some components obtained by component substitution
approaches) could lead to advantages in both directions. In [27],
the use of non linear Principal Component Analysis [29] and In-
dusion [30] is proposed to solve the above-mentioned problems.
In [26], state-of-art pansharpening approaches are tested on a sce-
nario acquired by the Hyperion and ALI sensors and the neces-
sity of very simple but suitable injection models to reduce both
the computational burden and distortions is pointed out. More-
over, in [31] the use of a model that properly minimizes the spa-
tial distortion index of the Quality with No Reference (QNR) is
exploited for hyperspectral pansharpening. Other methodologies
in this literature are based on variational approaches to enforce
spectral coherence in the fusion process [32], unmixing methods
combined with pansharpening [33] and Bayesian approaches based
on [34], whose effectiveness in this field has been already demon-
strated [35].

Due to the lack of objective reference images, universal mea-
sures for quantifying the enrichment introduced by pansharpen-
ing cannot be explicitly formulated, being strongly dependent on
the intended application. Accordingly, a common practice is the
reference to ideal criteria, among which the most credited dates
back to Wald et al. [36].The latter formalizes the required features
of the fused product by pointing out two specific requirements,
which are also known as the consistency and the synthesis prop-
erties. The first, which is more affordable in the practice, involves
the reversibility of the pansharpening process; it states that the
original MS image should be obtainable by simply degrading the
pansharpened image. On the other hand, the synthesis property
points out the effective purpose of the pansharpening procedure.
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It states that the final product has to reproduce the characteristics
of the original MS image at a higher resolution. Since the tackled
process deals with MS data, this condition entails that both the
features of each single channel and the mutual relationships among
bands have to be preserved, justifying the original articulation in
two distinguished statements.

The definition of a technique that fulfills the constraints defined
in the protocol is still an open problem [5, 37] and relates closely
to the general discussion regarding image quality assessment [38]
and image fusion [39, 40]. Moreover, there are additional issues
linked to the lack of an universally accepted index matching the
human capability in evaluating the difference of two images (for
example the Mean Square Error (MSE) has been proven to be
inadequate for this task [41], which has given rise to the definition
of many other indexes for assessing the image quality (some are
presented in Sect. 2.3.1)). In addition, the unavailability of a
reference high resolution MS image precludes the evaluation of
the results regardless the chosen quality index.

In order to face these aspects and perform a quantitative eval-
uation of the results, two main solutions have been proposed. The
first relies on the reduction of the spatial resolution of both the
original MS and PAN images and then the original MS image
is used as reference for the evaluation of the results [42]. In this
strategy the invariance among scales of the fusion procedures is as-
sumed [36]. However, this hypothesis is not always verified in the
practice, especially for very high resolution urban area data [39].
The second employs indexes that do not require the availability of
the reference image [39, 40]. Clearly in this case, the results are
heavily dependent on the definition of such indexes.

2.2 A Discussion of Assessed Pan-

sharpening Methods

The goal of this section is the presentation and analysis of some
widely used methods proposed in the technical literature, which
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can be considered as state-of-art algorithms for pansharpening.
They can be grouped into two main classes: Component Substitu-
tion methods and techniques based on MultiResolution Analysis.
Before describing these two approaches, the notation and conven-
tions used in this thesis are introduced.

2.2.1 Notation

Acronym Description

MS MultiSpectral image
PAN PANchromatic image
HS HyperSpectral image

HRMS High Resolution MS image
LRMS Low Resolution MS image
CS Component Substitution

MRA MultiResolution Analysis

Table 2.1 List of the main acronyms.

Symbol Description

HRMS Reference image
MS MS image

M̃S Upsampled MS image
P PAN image

M̂S Pansharpened image
R Spatial resolution ratio between MS and PAN
N Number of MS bands

Table 2.2 List of the main symbols.

In Tabs. 2.1 and 2.2, the lists of the main acronyms and
symbols are shown, together with their brief description. Other
acronyms and symbols will be defined in this thesis, as necessary.

The notation followed in this thesis (except for some cases
where it will be properly reported) will be as follows. We indi-
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cate the vectors with the bold lowercase (e.g., x) and the bidi-
mensional and three dimensional arrays with the bold uppercase
(e.g., X). Moreover, a generic MS image X = {Xk}k=1,...,N is a
three dimensional array, composed by N bands indexed by the
subscript k = 1, . . . , N ; accordingly, Xk indicates the k-th band
of X. A generic PAN image is a bidimensional matrix indicated
as Y. Furthermore, the i-th element of a generic vector x will be
indicated as xi.

2.2.2 Component Substitution

This family is based on the projection of the MS image into an-
other space, spanned by decorrelated components, which permits
to handle the redundancy of the data. The main assumption be-
hind this approach is that the transformation separates the spa-
tial structure from the spectral information in different compo-
nents [1]. Subsequently the transformed MS image can be en-
hanced by substituting part or the entire panchromatic image,
to one or more components representing the spatial details. Ac-
cordingly, the greater the correlation between the PAN image and
the replaced component(s), the less distortion will be introduced
by the approach [1]. To this purpose, histogram matching of the
selected component(s) and the panchromatic image is performed
before the substitution. Finally, the pansharpening process is com-
pleted through the inverse transformation that brings the data
back to the original space.

This approach is global (i.e., it operates in the same way on
the whole image) leading to advantages and drawbacks. In greater
details, techniques belonging to this family usually yield in a high
fidelity in rendering the spatial details in the final product [43]
and they are in general fast and easy to implement. On the other
side, they are not able to account for local dissimilarities between
panchromatic and multispectral image which can produce signifi-
cant spectral distortions [1, 5].

In some works, the denomination CS is often substituted by
Projection - Substitution in order to underline the main steps of
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the algorithms into this family. A new look at these methodolo-
gies was proposed by Tu et al. [44] and then analyzed in other
subsequent works [45]. In fact, under the hypothesis of a linear
transformation applied to the MS data and if the substitution in-
volves only a single component in the new transformed domain, it
is simple to see that the fusion process can be obtained without
any forward and backward transformation of the data but only by
applying a proper injection scheme [45]. This observation allows
a faster implementation of these methods. Starting from this con-
sideration, a general formulation of the CS fusion scheme is given
by

M̂Sk = M̃Sk + gk (P− IL) , (2.1)

in which the subscript k indicates the k-th band, g =
[g1, . . . , gk, . . . , gN ] is the vector of the injection gains, while, IL
is defined as follows:

IL =
N∑
i=1

wiM̃Si, (2.2)

where the weights w = [w1, . . . , wi, . . . , wN ] measure the spectral
overlap among the spectral bands and the panchromatic image
P [1].

Eq. (2.1) testifies that the fusion process can be carried out
without the explicit computation of the spectral transforma-
tion [43, 46]. It is worth to note that another family could be
found in the literature [1, 5]. In fact the name of Relative Spec-
tral Contribution (RSC ) approaches is used for methods in which
the substituted component IL is defined as in Eq. (2.2). However,
under the two previously stated hypotheses, this family collapses
into the CS one, as defined by Eq. (2.1). For this reason, in this
thesis, we use a classification of pansharpening methods based on
two main families, as already done in [6].

In Fig. 2.1 a flowchart which describes a generic fusion process
into the CS family is shown. Specifically, it is possible to notice the
presence of blocks aimed to: 1) Upsample the MS image to reach
the panchromatic resolution; 2) Estimate the weight vectorw from
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Figure 2.1 Flowchart presenting the steps of a generic pansharpening
process based on the CS approach.

the original MS image and a low pass version of the PAN image;
the latter is obtained through a proper Low Pass Filter (LPF) and
downsampled with a factor R; 3) Calculate the intensity compo-
nent by Eq. (2.2); 4) Compute the band dependent injection gains
{gk}k=1,...,N ; 5) Inject the extracted details according to Eq. (2.1).

The CS family includes many popular pansharpening ap-
proaches, such as the Intensity-Hue-Saturation (IHS) [46], Prin-
cipal Component Analysis (PCA) [8, 46] and Gram-Schmidt
(GS) [43] methods, each based on different projections of the MS
image. Since there is not an unique transform for extracting the
component most suited for substitution, and the choice of the ap-
propriate spectral transformation for each dataset ends up in a
challenging task, other methods are based on the estimation of
the optimal component and are known as Adaptive CS [43, 47].

In the following, a more detailed description of the main CS
methods is presented and summarized in Tab. 2.3, in which the
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Method wi,k gk

IHS 1/N 1

Brovey 1/N M̃Sk

IL

PCA x y

GS 1/N cov(IL,M̃Sk)
var(IL)

GSA ŵi
cov(IL,M̃Sk)

var(IL)

BDSD ŵi,k ĝk
PRACS ŵi,k Eqs. (2.12)-(2.13)

Table 2.3 Values of the weights in Eqs. (2.2) and (2.1) for different
CS-based pansharpening techniques.

specific coefficients needed for the implementation based on Eqs.
(2.2) and (2.1) are reported.

Intensity-Hue-Saturation

The Intensity-Hue-Saturation (IHS) pansharpening method [7, 8]
exploits the transformation into the IHS color space that mimics
the human visual system in processing the intensity (I), hue (H)
and saturation (S) information. The IHS transform can be only
applied to RGB true color images, leading to a major limitation
for processing MS images. In [46] the authors have generalized
the concept of IHS to images with more than three bands. Fur-
thermore, they have shown that the IHS fusion approach can be
reformulated, for k = 1, . . . , N , as follows:

M̂Sk = M̃Sk +P− IL, (2.3)

where IL follows from Eq. (2.2) with the coefficients {wi}k=1,...,N

all equal to 1/N . Eq. (2.3) fits the general paradigm described
by Eq. (2.1), with all the gains {gk}k=1,...,N equal to one (see
Tab. 2.3). This approach is also called Fast IHS because it avoids
the sequential computation of the direct transformation, substitu-
tion and the final backward step.

Moreover, by replacing the detail injection rule in Eq. (2.3)
with a multiplicative scheme, the Brovey pansharpening approach
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[48] is obtained. Indeed in this technique the fused image is de-
fined, for k = 1, . . . , N , as:

M̂Sk = M̃Sk ·
P

IL
. (2.4)

Since Eq. (2.4) can be recast as

M̂Sk = M̃Sk +
M̃Sk

IL
· (P− IL), (2.5)

it is easy to identify the model (2.1), achievable by setting, for
k = 1, . . . , N ,

gk =
M̃Sk

IL
. (2.6)

This specific parameter choice, together with the values of the
weight vector w, is reported in Tab. 2.3.

Principal Component Analysis

Principal Component Analysis (PCA) (also known as Karhunen-
Loéve transform or Hotelling transform) is another spectral trans-
formation widely employed for pansharpening applications [8,49].
It is achieved through a roto-translation of the original space (i.e.,
linear transformation) that yields decorrelated axes called Princi-
pal Components (PCs). PCs are in general ordered according to
the variance of the corresponding data projectons; the variance
can be thus used to quantify the informative content of each PC.

More specifically, the hypothesis underlying its application to
pansharpening is that the spatial information, that is shared by
all the channels, is concentrated in the first component, while the
spectral information, that is a peculiar characteristic of each single
band, is accounted for by the other components. Actually, the
spatial information is mapped to the first component, to an extent
proportional to the correlation among the MS channels [5].

Again, the whole fused process can be described by the gen-
eral formulation stated by Eq. (2.1), where the w and g coefficient
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vectors are derived by the PCA procedure on the MS image; con-
sequently, no specific expression is provided in Tab. 2.3 for w and
g, since they are dependent on the particular processed dataset.

Gram-Schmidt Orthogonalization

The Gram-Schmidt (GS) orthogonalization transformation is used
for a powerful pansharpening approach, which was firstly imple-
mented in a patent by Kodak [11]. The GS transformation is a
common technique used in linear algebra and multivariate statis-
tics to orthogonalize the spectral content of data.

In the fusion process, the mean of each band is subtracted from
each pixel, before the orthogonalization procedure. The latter
starts by using, as the first basis vector, a synthetic low resolution
panchromatic image IL at the same scale of the MS image, which
is successively replaced, in the fusion step, by the full resolution
PAN. Therefore, GS constitutes a more general method than PCA,
which can be obtained by using the first principal component as
the low resolution panchromatic image [50]. The representation
of the MS image is then carried out by constructing a complete
orthogonal basis. The pansharpening procedure is thus completed
by substituting the first component with the histogram-matched
PAN image and inverting the transformation.

Again, the latter process is achieved according to Eq.(2.1), by
using, for k = 1, . . . , N , the gains [43]:

gk =
cov(M̃Sk, IL)

var(IL)
, (2.7)

where cov (X,Y) indicates the covariance between two images X
and Y, and var (X) is the variance of X (see also Tab. 2.3).

Diverse algorithms, characterized by different definition of the
weights in Eq.(2.2), are achieved by changing the generation
method of IL. The simplest way to obtain this low-resolution
panchromatic image consists in simply averaging the MS bands
(i.e., in setting wi = 1/N , for all i = 1, . . . , N); this modality is
simply called GS [11]. In [43] the authors proposed an enhanced
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version, called GS Adaptive (GSA), in which IL is generated by
a weighted average of the MS bands. The required weights are
estimated by minimizing the Mean Square Error (MSE), with re-
spect to a filtered and downsampled version of the panchromatic
image. This implementation of the GS algorithm could be also
classified in the Adaptive CS category discussed in the next sec-
tion. A last widespread method for generating the low resolution
panchromatic image IL entails the application of a low pass filter
to the original PAN image and is named GS mode 2 [11], leading
to a hybrid approach which is sometimes included in the MRA
family.

Adaptive CS

This category incorporates data-dependent self-adaptive ap-
proaches that are briefly described in the following and whose
parameters are reported in Tab. 2.3.

In this category, we can find the Band-Dependent Spatial-Detail
(BDSD) algorithm [51], which uses the generic formulation re-
ported in Eq. (2.1) and points at estimating separately for each
band both w and g according to the Minimum MSE (MMSE)
criterion. By defining the coefficients

γk,i =

{
gk, if i = N + 1,

−gkwi, otherwise,
(2.8)

Eq. (2.1) can be rewritten in the compact matricial form

M̂Sk = M̃Sk +Hγk (2.9)

in which H =[M̃S1, . . . , M̃SN ,P], γk=[γk,1, . . . , γk,N+1]
T and all

the images are reorganized by columns. Optimal MSE estimation
of weights vector γk would encompass the use of the unavailable

target image M̃Sk and is thus performed at a reduced scale. Con-
sequently, the solution is found as

γb =
(
HT

dHd

)−1
HT

d

(
M̃Sk − M̃S

LP

k

)
, (2.10)
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where Hd is the reduced scale version of H and M̃S
LP

k is a version

of M̃Sk obtained by filtering via the Modulation Transfer Function
(MTF) of the MS sensor.

Another algorithm belonging to this category has been pro-
posed in [45]. In this case, only the weight vector w is adaptively
set by minimizing the MSE between IL and a filtered and down-
sampled version of the panchromatic image. Moreover, the authors
exploit in this paper the concept of partial replacement and, for
this reason, we will call this method Partial Replacement Adap-
tive CS (PRACS), from now on. Specifically, they construct each
component of the high spatial resolution image as a convex com-
bination of PAN and MS images with a proper weight, in order
to meet the spectral characteristics of the individual MS bands.
Therefore, for k = 1, . . . , N , the new, band-dependent, panchro-
matic image Pnew

k is achieved as:

Pnew
k = CC

(
IL, M̃Sk

)
·P+

[
1− CC

(
IL, M̃Sk

)]
· M̃Sk, (2.11)

where CC (X,Y) is the correlation coefficient between images X
and Y. Finally, the weights {gk}k=1,...,N are obtained according to

gk = β ·CC
(
InewL,k , M̃Sk

) std
(
M̃Sk

)
∑N

i=1 std
(
M̃Sk

)Lk, k = 1, . . . , N,

(2.12)
which is given by the product of: 1) a parameter β that normalizes
the high frequencies, so that they lie in the right dynamic range; 2)
a correlation coefficient that adjusts the relative magnitude of the
high-frequency information and has the purpose of minimizing the
global dissimilarity between the final low spatial resolution image
InewL,k achieved by spatially degrading Pnew

k and each MS band; 3)
a coefficient that takes into account the spectral distortion due to
the differences in standard deviation among the MS bands; 4) an
adaptive factor Lk defined according to

Lk = 1−

∣∣∣∣∣1− CC
(
IL, M̃Sk

) M̃Sk

InewL,k

∣∣∣∣∣ (2.13)
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and aimed to remove the local spectral instability error between
the synthetic component image and the MS band. Due to the
partial replacement, both the flowchart showing the CS fusion
procedure in Fig. 2.1 and Eq. (2.1) must be slightly modified to
incorporate it. In particular, in Eq. (2.1) the role of the original
panchromatic image P is played by Pnew

k .

2.2.3 Multiresolution Analysis

In the second class of pansharpening methods the contribution of
the PAN image to the fused product is achieved by calculating
the difference between P and its low pass version PL. Namely the
HRMS image is defined as

M̂Sk = M̃Sk + gk (P−PL) , k = 1, . . . , N. (2.14)

In [52] this paradigm has been denoted as Amélioration de la
Résolution Spatiale par Injection de Structures (ARSIS ) under-
lining that the purposes of these methods are the preservation of
the whole content of the LRMS image and the addition of fur-
ther information, obtained from the PAN image through spatial
filtering.

According to definition (2.14) the different approaches belong-
ing to this class are uniquely characterized by the algorithm em-
ployed for obtaining the image PL and by the combination coeffi-
cients {gk}k=1,...,N .

In a very general setting, PL is achieved through an iterative
decomposition scheme (called multiresolution analysis) aiming at
constructing a sequence of signals with successively reduced in-
formation (or pyramid), through the repeated application of the
analysis operators. The type of decomposition constitutes a first
distinguishing feature of the various approaches and can range
from very simple methods based on a single level decomposition
to more complex techniques relying upon a multilevel analysis.

In addition, the mathematical expression of g assumes different
forms in the literature, among which two options are the most
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commonly reported. By setting all the coefficients equal to 1 the
additive injection scheme is achieved:

M̂Sk = M̃Sk + (P−PL) , k = 1, . . . , N. (2.15)

The High Pass Modulation (HPM) method (also called multiplica-
tive injection scheme) is the other well-known paradigm, defined
through the expression

M̂Sk = M̃Sk +
M̃Sk

PL

(P−PL) , k = 1, . . . , N, (2.16)

in which the details are weighted by the ratio of the MS and the
PAN low pass version PL, with the aim of reproducing, in the
fused image, the local intensity contrast of the PAN [53]. Fur-
thermore, if a unique low pass image PL is used for all the MS
bands, this algorithm reduces the spectral distortion with respect
to M̃S, which can be quantified by the Spectral Angle Mapper
(SAM ) (see Sect. 2.3.1), and thus is an element of the Spectral
Distortion Minimization (SDM ) class [54].

The general scheme of MRA fusion methods is reported in
Fig. 2.2. The flowchart is slightly simpler than for CS (Fig. 2.1).
In fact, as one can notice, it lacks the block aimed at estimating
the weight vector w, needed for the construction of the equivalent
panchromatic image. Accordingly, the required blocks are devoted
to: 1) Upsample the MS image to reach the panchromatic scale; 2)
Perform the pyramidal decomposition yielding the low pass version
PL of the PAN image; 3) Compute the band dependent injection
gains {gk}k=1,...,N ; 4) Inject the extracted details according to Eq.
(2.14).

Tab. 2.4 reports a brief summary of the implemented MRA-
based approaches, evidencing the paradigm used for calculating
the injection coefficients required by Eq. (2.14) and the details
extraction scheme. More implementation details are provided in
the following pages.
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Figure 2.2 Flowchart of a generic pansharpening algorithm belonging to
the MRA family.

Low Pass Filtering

The most direct implementation of the ARSIS concept consists
in applying a single Linear Time-Invariant (LTI) Low Pass Filter
(LPF) hLP to the PAN image P for obtaining PL, thus resulting
in the following formula

M̂Sk = M̃Sk + gk (P−P ∗ hLP ) , k = 1, . . . , N, (2.17)

in which ∗ denotes the convolution operator.
This approach can be performed by employing several differ-

ent low pass filters hLP , among which the most diffused use Box,
Gaussian and Laplacian masks [5]. Furthermore, the simple addi-
tive injection scheme (Eq.(2.15)) or more elaborated alternatives
can be exploited for injecting the spatial details.

Among the possible couples of filters and coefficients, we chose
the simplest scheme achievable by using the Box mask (i.e., mask
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Method MRA gk

HPF Box Filter 1

SFIM Box Filter M̃Sk

PL

Indusion Decimated WT 1
ATWT ATWT 1

AWLP ATWT M̃Sk
1
N

∑N
i=1 M̃Si

ATWT M2 ATWT + Detail Equal. [52] 1
ATWT M3 ATWT + Detail Equal. [52] 1
GLP Gaussian Pyramid 1

MTF HPM Gaussian Pyramid M̃Sk

PL

MTF HPM PP Gaussian Pyramid M̃Sk

PL

GLP-CBD Gaussian Pyramid cov(PL,M̃Sk)
var(PL)

Table 2.4 Employed MRA scheme and weights in Eq. (2.14) for different
MRA-based pansharpening techniques.

with uniform weights, implementing an average filter) and additive
injection, which leads to the pansharpening algorithm known as
High Pass Filtering (HPF) method [8, 12].

The corresponding methodology employing the HPM injection
scheme has been proposed in [55] and is named Smoothing Filter-
based Intensity Modulation (SFIM).

Pyramidal Decompositions

The resolution reduction needed to obtain the low pass signal PL

at the original MS scale can be performed in one or more steps,
namely by employing a single low pass filter with cutoff frequency
equal to 1/R and decimating by R, or by multiple fractional steps.
This second method, that includes the first as a particular case,
is commonly referred to as pyramidal decomposition and dates
back to the seminal work of Burt and Adelson [13] which utilized
Gaussian LPFs to carry out the analysis steps. The corresponding
differential representation, achieved by calculating the differences
between the Gaussian pyramid levels, is named Laplacian pyramid
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and has later been proven to be very valuable for pansharpening
purposes [56]. Indeed the Gaussian filters can be tuned to closely
match the sensor MTF. This allows to extract from the PAN image
the details, which due to the coarser spatial resolution are not
seen by the MS sensor [57]. Since the Gaussian mask is defined
by a single parameter (i.e., its standard deviation), its frequency
response is fully specified by fixing it. To this aim, the value of
the amplitude response at the Nyquist frequency is used, being it
commonly provided by the manufacturer as a sensor specification,
or obtained through on-orbit measurements. However it is useful
to keep in mind that components aging can induce a significant
incertitude of this parameter, also in the more favorable case of
on-orbit estimation.

Both the additive (Eq. (2.15)) and the multiplicative injection
scheme (Eq. (2.16)) [58] have been used in the literature and im-
plemented in this work. They will be referred to as GLP [57] and
MTF HPM [58], respectively. Following the indications of the au-
thors of [58], we also tested the MTF HPM method followed by
a PostProcessing (PP) phase aimed at correcting the noise gener-
ated in the presence of discontinuities. For the latter approach,
whose details can be found in the cited reference, we use here the
acronym MTF HPM PP.

As a further example of Gaussian pyramids exploiting an anal-
ysis filter matched with the MS sensor MTF we considered an algo-
rithm that relies upon the optimization of the injection coefficients
by least square fitting. In particular, it is based on Eq.(2.14), in
which the coefficients are calculated as:

gk =
cov(M̃Sk,PL)

var(PL)
, (2.18)

where, in general, PL depends on the k-th band. This injection
rule, also used by GS approaches [43], leads to a powerful algo-
rithm. It is commonly known as GLP with Context Based Decision
(GLP-CBD) [42], since the injection coefficient can be locally op-
timized by patching the image in overlapping zones. Actually,
the consequent performance improvement is payed in terms of a
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significant increase in the execution time.
In the same field, very appreciable results have been achieved

by employing wavelet and contourlet decomposition pyramids [10,
14]. By focusing of the widely diffused wavelet decompositions,
the decimated Mallat’s method has been initially used for this
purpose [52, 59]. As an example of this class, we selected for the
comparison the more recent Indusion method [30], which profits
from multiple equalization steps to achieve remarkable results.

However, the undecimated “à trous” method [60] has soon
emerged as a very effective method [61]. Indeed, even if non-
orthogonality (which implies that a wavelet plane could retain in-
formation for a neighbouring plane) could compromise the spectral
quality of the fused product [61], its beneficial characteristics such
as the shift-invariance property [62] and the capability of being
easily matched to the sensor MTF [57] produce accurate pansharp-
ened image. We adopt here a widely used implementation of the
“à trous” filter based on the sequential application (thanks to the
separability property), in the vertical and horizontal directions, of
1-D filters [63]

h = [1 4 6 4 1], (2.19)

that derives from the choice of a B3 cubic spline as scaling func-
tion [64].

In this case, here denoted as ATWT, choosing the additive in-
jection formula (2.15) for achieving the final product leads to the
formulation as in [60]. Furthermore, alternative implementations
using the Model 2 and Model 3 [52] have been added to the com-
parison and named ATWT M2 and ATWT M3, respectively. They
consist in equalizing the first two moments of the details extracted
by the PAN images, before injection. In both cases the mean and
the standard deviation of the PAN and MS wavelet coefficients at
the original MS scale are used. Whilst Model 2 employs a deter-
ministic relation among the corresponding quantities, Model 3 is
optimized by least square fitting.

All the previous wavelet methods are based on the choice of
unitary injection coefficients {gk}k=1,...,N . However, some further
improvements can be achieved by injecting the details using the
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HPM paradigm (2.16) [53]. As an example of Wavelet-based
method employing a different choice we implemented the Additive
Wavelet Luminance Proportional (AWLP) [65] that uses the more
general fusion formula reported in Eq. (2.14), with the injection
coefficients defined as

gk =
M̃Sk

1
N

N∑
i=1

M̃Si

, k = 1, . . . , N. (2.20)

2.3 Quality Assessment of Fusion

Products

As in most data fusion problems, the absence of a reference image
is the main limitation for the evaluation of the results. In the
context of pansharpening this lack prevents the direct application
of the Wald criteria. Thus, two assessment procedures have been
proposed in order to circumvent this problem. The first one con-
siders the images at a spatial resolution lower than the original
(induced artificially) and uses the original MS image as a refer-
ence. Although this procedure allows for a precise evaluation of
the results with established indexes, there might be mismatches
between the performances obtained at reduced scale and the qual-
ity (interpreted by visual inspection) for the fusion product at the
original scale [4]. Indeed, the performances are intrinsically related
to the way the resolution degradation is performed, especially in
the case of pansharpening methods exploiting spatial filters [6].

The second approach for validation uses quality indexes that
do not require a reference image, but operate on the relationships
among the original images and the pansharpened product. This
approach is appealing since it operates directly on the data at the
native scale but is biased by the definition of the indexes.

Due to the sub-optimality of both the quantitative evaluation
procedures, a qualitative evaluation of the results through visual
inspection is still advisable. This is especially useful for appreciat-
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ing local spectral distortions and precision in rendering the spatial
details in the fused images [5].

2.3.1 Reduced Scale Assessment

The procedure operating at reduced scale is mainly based on the
Wald protocol [36] that is composed by the following three require-
ments:

1. Any fused synthetic image M̂Sk, where k ranges from 1 to
the number of available channels N , once degraded to its
original resolution, should be as identical as possible to the
original image MSk.

2. Any fused synthetic image M̂Sk should be as identical as
possible to the imageHRMSk that the corresponding sensor
would observe with the highest resolution.

3. The multispectral set of synthetic images M̂S ={
M̂Sk

}
k=1,...,N

should be as identical as possible to the mul-

tispectral set of images HRMS = {HRMSk}k=1,...,N that
the corresponding sensor would observe with the highest res-
olution.

Considering the images at reduced scale allows one to easily
check the synthesis property of the Wald protocol, expressed by
the second and third statements, since all the required quantities,
namely the fusing images, obtained by degrading the available MS
and PAN images, and the reference, represented by the original MS
image, are made accessible in this way.

More in detail, the degradation of the resolution is obtained by
applying to the available MS and PAN images a low pass filter and
a decimation operator characterized by a sampling factor equal to
the resolution ratio between the two images. Let us denote the
reduced scale multispectral and panchromatic images by MS∗ and
P∗, respectively.
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Clearly, in this validation protocol, the choice of the filter is
crucial. In general, the filter is defined for ensuring the consistency
(defined by the first Wald’s statement) of the pansharpening pro-
cess. Since the pansharpened image (that here should match as
close as possible the original image MS), once degraded to its
original resolution, should be identical to the original multispec-
tral image (whose part is acted by MS∗), it comes natural that the
resolution reduction has to be performed by employing a filter sim-
ulating the transfer function of the remote sensor. In other terms
the degradation filter has to match the MTF of the sensor [57].
In addition, the filter used for obtaining the panchromatic image
P∗ has to be designed in order to preserve the details that would
have been seen if the image were acquired at the reduced reso-
lution. Accordingly, it is commonly degraded through an ideal
filter [57].

Quality Indexes

Several indexes have been proposed for evaluating spatial and
spectral distortion of the fused product with respect to an available
reference image. According to the Wald’s procedure both scalar
(i.e., measurements on a single spectral band) and vector (which
take into account of all the spectral bands) similarity indexes are
required. The most widely used ones are briefly described in the
following.

The vector measures are useful to quantify the spectral distor-
tion. A simple index that has assumed a key role in the technical
literature is the Spectral Angle Mapper (SAM) [66], which con-
sists in calculating the angle between the corresponding pixels of
the fused and reference images in the space defined by consider-
ing each spectral band as axis. Let I{n} =

[
I1,{n}, . . . , IN,{n}

]
be a

pixel vector of the MS image I with N bands, the SAM between
I{i} and J{i} is defined as:

SAM(I{i},J{i}) = arccos

( ⟨
I{i},J{i}

⟩∥∥I{i}∥∥∥∥J{i}
∥∥
)

(2.21)
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in which ⟨·, ·⟩ denotes the scalar product (or inner product) and
∥·∥ the vector ℓ2 norm. The global value of SAM for the whole
image is obtained by averaging the single measures over all the
pixels. The optimal value of the SAM index is 0.

Other indexes account for radiometric distortions. One of the
most popular quantity is the Root Mean Square Error (RMSE ),
which is defined as:

RMSE (I,J) =
√
E
[
(I− J)2

]
. (2.22)

The ideal value of the RMSE is zero, and is achieved if and only
if I = J; however its use in visual applications has been strongly
criticized [41].

A more credited global index is the Erreur Relative Globale
Adimensionnelle de Synthese (ERGAS) that was properly pro-
posed for pansharpening in [52] and is defined as:

ERGAS =
100

R

√√√√ 1

N

N∑
k=1

(
RMSE(Ik,Jk)

µ (Ik)

)2

, (2.23)

where the RMSE is defined as in Eq.(2.22) and µ represents the
mean of the image. Since the ERGAS is composed by a sum of
RMSE values, its optimal value is 0.

Another index which was developed to overcome some limita-
tions of the RMSE is the Universal Image Quality Index (UIQI)
or Q-index, proposed by Wang and Bovik [67]. Its physical inter-
pretation becomes straightforward by writing its expression in the
form:

Q (I,J) =
σIJ

σIσJ

2IJ(
I
)2

+
(
J
)2 2σIσJ

(σ2
I + σ2

J)
, (2.24)

that comprises an evaluation of the correlation coefficient, the dif-
ference between the mean luminances and the similarity of the
contrasts. The Q-index varies in the range [−1, 1], with 1 denot-
ing the best quality.

In addition, an extension of the Q-index for accounting also
spectral distortions has been proposed in [68]. Specifically, the Q4
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vector index can be used with datasets composed by four spectral
bands and is based on modeling each pixel I{i} as a quaternion

I{i} = I{i},1 + iI{i},2 + jI{i},3 + kI{i},4. (2.25)

The index is calculated by Eq.(2.24), after replacing the vector
operations with the corresponding quaternion operations. A gen-
eralization of this index, allowing for the evaluation of images with
a number of spectral bands different from four, is presented in [69]
and is called Q2n-index.

2.3.2 Full Scale Validation

In order to perform the quality evaluation at the original resolution
of the data, the Quality w/No Reference (QNR) index [39] was
proposed. The QNR index is defined as:

QNR = (1−Dλ)
α (1−DS)

β . (2.26)

It is thus composed by the product, weighted through the coeffi-
cients α and β, of two separate values Dλ and DS, which quantify
the spectral and the spatial distortion, respectively. Higher is the
QNR index and better should be the quality of the fused product.
The maximum theoretical value of this index is 1 when both Dλ

and DS are equal to 0.
The spectral distortion is estimated by

Dλ = p

√√√√ 1

N (N − 1)

N∑
i=1

N∑
j=1,j ̸=i

∣∣∣Q (MSi,MSj)−Q
(
M̂Si, M̂Sj

)∣∣∣p.
(2.27)

This formulation aims at producing a synthetic image with the
same spectral features of the original MS image. Accordingly, the
relations among the MS bands have to be preserved during the
enhancement procedure. The Q-index is used to calculate the
dissimilarities between couples of bands and the parameter p is
typically set to one [39].
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The spatial distortion is calculated by

DS = q

√√√√ 1

N

N∑
i=1

∣∣∣Q(M̂Si,P
)
−Q (MSi,PLP )

∣∣∣q (2.28)

where PLP is a low resolution panchromatic image at the same
scale of the MS image and q is usually set to one [39]. From a
practical point of view, the perfect alignment between the upsam-
pled version of the MS and the PAN images should be assured to
avoid the loss of meaning for this quality index.



Chapter 3

Pansharpening Algorithms:
A Critical Comparison

In the last decades many pansharpening algorithms have been
presented in the literature. However, the lack of universally rec-
ognized evaluation criteria, image datasets for benchmarking and
public implementations of the algorithms make difficult to achieve
a thorough evaluation and comparison of the different pansharp-
ening techniques. We try to fill this gap with this work by pro-
viding a critical description and extended comparison of some
of the main state-of-art pansharpening methods. More in de-
tail, several pansharpening techniques belonging to the Compo-
nent Substitution or MultiResolution Analysis families are ana-
lyzed. These techniques are evaluated both at reduced and full
scale. Five datasets acquired by different satellites (i.e., IKONOS,
WorldView-2, Pléiades) allow a detailed comparison of the algo-
rithms, characterization of their performances and consistency be-
tween the two main validation procedures. In addition, the im-
plementation of all the pansharpening techniques considered in
this chapter and the framework used for running the experiments
are collected in a MATLAB Toolbox that will be provided to the
Community.

The remainder of the chapter is as follows. In Sec. 3.1 a brief
introduction to the pansharpening MATLAB Toolbox is done,
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while, Sec. 3.2 and Sec. 3.3 describe the exploited datasets and
the algorithms, respectively. Finally, in Sec. 3.4 an extended ex-
perimental phase is shown.

3.1 The Pansharpening Toolbox

The Pansharpening Toolbox has been developed thanks to inter-
national collaborations among different universities and research
centers between Italy and France. In greater details, the Univer-
sities of Florence and Siena have been involved by means of Lu-
ciano Alparone and Andrea Garzelli, respectively. Furthermore,
we want to thank Lucien Wald (MINES ParisTech, Paris), Joce-
lyn Chanussot, Mauro Dalla Mura and Giorgio Licciardi (GIPSA-
Lab, Grenoble) for the support in developing the above-mentioned
Toolbox.

The Toolbox has been developed in MATLAB with the aim
of aiding the new developments in this topic thanks to an easier
comparison with state-of-art pansharpening approaches by com-
paring them on the same datasets in the same conditions (for
instance, with same preprocessing, if required) in order to under-
stand the real powerful of each approach by analyzing the most
relevant characteristics of the different algorithms (e.g., the filters
exploited in the extraction detail phase, the injection model and so
forth). As far as we know, this is the first time that so many state-
of-art pansharpening approaches are compared on same datasets
under same conditions. Moreover, after its spread on the net, it
can be used to facilitate the standardization of the procedures for
evaluating the fused products, which represent critical points in
this research field.

The Toolbox allows two kinds of validations for the final prod-
ucts: At reduced and full scale. These procedures are well de-
scribed in the previous chapter together with the indexes exploited
for quantifying the goodness of the fused images. It is possible to
run default test cases, which exploit different datasets acquired by
different sensors. The sensors involved are: IKONOS, WorldView-
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2 and Pléiades. These sensors acquire both panchromatic and
multispectral data except for the Pléiades sensor in which case the
panchromatic has been simulated (further details on the scenes ac-
quired and the characteristics of the exploited sensors can be found
in the next section). Furthermore, it is very simple to incorporate
new test cases and run the proposed algorithms.

The Toolbox is very flexible and it is simple to add a new
pansharpening algorithm by exploiting pre-processing functions,
as the interpolation of the MS image to the dimension of the PAN
image and the validation procedures and indexes to properly quan-
tify the goodness of the new developed approach. The standard
outputs of a pansharpening algorithm into the software chain are:
The execution time of the method, the values of the quality in-
dexes (which depend on the validation procedure exploited) and
the fused image (in this case, even an eps printable image can be
directly provided to the user).

3.2 Datasets

Five datasets acquired by different sensors were considered. Their
characteristics are detailed in the following.

China dataset The employed dataset1 represents a mountain-
ous and vegetated area of the China-Sichuan region. The dataset
has a size equal to 300×300 pixels. It is acquired by the IKONOS
sensor which works in the visible and near infrared spectrum range;
the multispectral sensor is characterized by four bands (Blue,
Green, Red and NIR) and also a panchromatic channel is available.
The resolution cell is 4× 4 meters for the multispectral bands and
1 × 1 meters for the panchromatic channel. The resolution ratio
R is therefore equal to 4.

Toulouse dataset This dataset represents an urban area of the
city of Toulouse (France). The size is equal to 512×512 pixels. The

1The dataset is available at http://glcf.umiacs.umd.edu
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sensor used to acquire the images is IKONOS, and, therefore, it
has the same spectral and spatial characteristics as in the previous
case.

Rome dataset This represents an urban area of the city of
Rome (Italy). The dimension of the image is 300×300 pixels. The
dataset has been acquired by the WorldView-2 sensor which pro-
vides a high resolution panchromatic channel and eight MS bands.
Four standard colors (red, green, blue, and near-infrared 1) and
four new bands (coastal, yellow, red edge, and near-infrared 2) are
acquired. The Ground Sample Distance (GSD) for the panchro-
matic is 0.46 meters at Nadir and 0.52 meters at 20◦ off-nadir,
while the GSD for the Multispectral sensor is 1.8 meters at Nadir
and 2.4 meters GSD at 20◦ off-nadir. It is worth noting that images
are resampled to 0.5 meters due to the US Government policies.
The resolution ratio R is again equal to 4.

Rio dataset This represents an urban area of the city of Rio de
Janeiro (Brazil). The dimension of the image is 256× 256 pixels.
The dataset has been acquired by the WorldView-2 sensor, and,
therefore, it has the same instrumental characteristics as in the
previous case.

Pléiades dataset The Pléiades dataset, collected by an aerial
platform, was used for the 2006 contest [42] and was provided
by CNES, the French space agency. This represents an urban
area of Toulouse (France) and it has a size equal to 1024 × 1024
pixels. The resolution of the four MS bands is 60 cm, but the
dataset misses the availability of the panchromatic image, since
the corresponding sensor was under development. Accordingly, the
high-resolution panchromatic data was simulated by the following
procedure. The green and red channels were averaged and the
result was filtered with a system characterized by the nominal
Modulation Transfer Function (MTF) of the panchromatic sensor.
After the resampling to 80 cm, thermal noise was added and the
final simulated image was achieved by inverse filtering and wavelet
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denoising. As a consequence, also the low resolution MS image
were simulated according to the Wald protocol, namely by MTF-
filtering and decimation. A resolution ratio R of 4 was chosen.

3.3 Algorithms

The algorithms used for the comparison are listed below. It is
worth to underline that for MRA approaches a preprocessing step
is often required. Hence, the matching of the two first moments
between the panchromatic image and each MS band is performed
before applying the fusion algorithm [5]. Moreover, when no au-
thors’ specifications are provided, the interpolation of the original
multispectral image MS for generating the upsampled image M̃S
is carried out by using a polynomial kernel with 23 coefficients [70].
A more detailed description of the methods can be found in the
relative references or in Sec. 2.2:

• EXP : MS image interpolation, using a polynomial kernel
with 23 coefficients [70]

• PCA: Principal Component Analysis [8]

• IHS : Fast Intensity-Hue-Saturation image fusion [46]

• Brovey : Brovey Transform [48]

• BDSD : Band-Dependent Spatial-Detail [51]

• GS : Gram Schmidt [11]

• GSA: Gram Schmidt Adaptive [43]

• PRACS : Partial Replacement Adaptive Component Substi-
tution [45]

• HPF : Box filter and High Pass Filter [8]

• SFIM : Box filter and High Pass Modulation, also called
Smoothing Filter-based Intensity Modulation [12, 55]
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• Indusion: Decimated Wavelet Transform using additive in-
jection model [30]

• ATWT : Additive A Trous Wavelet Transform [60]

• AWLP : Additive Wavelet Luminance Proportional [65]

• ATWT M2 : A Trous Wavelet Transform using the Model 2
proposed in [52]

• ATWT M3 : A Trous Wavelet Transform using the Model 3
proposed in [52]

• GLP : Generalized Laplacian Pyramid (GLP) [70] with
MTF-matched filter [57]

• MTF HPM : Gaussian MTF-matched filter [57] with multi-
plicative injection model [58]

• MTF HPM PP : Gaussian MTF-matched filter [57] withmul-
tiplicative injection model and Post-Processing [58]

• GLP-CBD : Generalized Laplacian Pyramid (GLP) [70] with
MTF-matched filter [57] and Gram Schmidt based injection
model [42]

3.4 Experimental Results

This section is devoted to describe a set of experiments (by exploit-
ing several state-of-art pansharpening approaches), which have
been carried out on very high resolution optical data. The re-
sults have been validated at both full and reduced scale following
the procedures described in Chapter 2.

3.4.1 Wald Protocol

Three datasets are considered for evaluating the results at reduced
scale: The China, Rome and Pléiades datasets. In Figs. 3.1 - 3.6,



3.4. Experimental Results 39

the fusion results of a small area are shown by using an RGB
representation. The quality indexes used are the SAM (in degree)
to measure the spectral distortion, the ERGAS and the Q2n (i.e.,
Q4 for four band datasets and Q8 for the WorldView-2 dataset).
The quantitative results obtained are tabulated in Tabs. 3.1, 3.2
and 3.3.

A first analysis of the results can be done per family of pan-
sharpened algorithms. Among the CS approaches, the adaptive
methods, namely the BDSD and PRACS, achieve the best perfor-
mances with a good visual appearance of the final products and
a reduced spectral distortion with respect to the other members
of this family. They are followed by the GS, PCA and IHS ap-
proaches, ranked in this order for most of the datasets and the
quality indexes. However, for the China dataset the PCA gives
slightly better results than the GS approaches. More in general,
PCA and IHS -based approaches have higher spectral distortion,
as measured by the SAM value and confirmed by the visual in-
spection.

A more detailed analysis can be done within the algorithms
based on Gram-Schmidt Orthogonalization. In fact, GSA shows
its superiority with respect to the GS, thanks to its adaptive
weights for building the equivalent panchromatic starting from
the MS image.

Considering the techniques belonging to the MRA family, the
best accuracy is obtained by the Gaussian MTF matched filters,
followed by the “à trous” wavelet transform. Such good perfor-
mance can be attributed to the similarity of the frequency re-
sponse of the filters with that of the MS sensor MTF [57]. On the
contrary, the application of the simple Box filter leads to modest
performances. This is caused by the spatial artifacts due to the
presence of ripples in the obscure band in the representation of
this filter in the frequency domain and the blur caused by its dis-
similarity with respect to the transfer function of the acquisition
device. Even in the case of Indusion, severe artifacts due to the
aliasing introduced by decimation can be noticed (see Figs. 3.1,
3.3 and 3.5).
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Regarding to the injection methodologies, the HPM injection
model turns out to be better suited than the additive injection
model. This can be explained by the flexibility of the HPM in
setting the local weights that govern the detail injection and its
close relationship with the image local contrast (see Chapter 4 for
further details).

ATWT M2 and ATWT M3 [52] perform poorly both from a
numerical and visual (with a more blurred result) points of view
when compared to the other approaches that use the same detail
extraction filters but different injection methodologies. Finally,
it is worth to underline that the results of the MTF HPM PP
method are, in general, poorer than the ones obtained by MTF
HPM with no gain due to the PP phase and drawbacks provided
by the iterative application of MTF-based filters and non-idealities
in the upsampling step.

Finally, we compare the CS and MRA families. The former
shows a higher spectral distortion, but a better visual appearance
of the final product, whereas the latter has opposite characteris-
tics, namely higher spatial distortion and a superior spectral con-
sistency, as shown by the quality indexes and the visual inspec-
tion. Accordingly, the overall results are comparable, especially
when considering images of four bands. Approaches as BDSD
and PRACS often obtain comparable results with respect to the
best performing MRA algorithms and in some cases they represent
the best choice. On the contrary, in the case of the Rome dataset
acquired by WorldView-2 (i.e., an eight band dataset), in general,
the gap among algorithms within the two families slightly increases
with a greater appeal of MRA-based ones. In the CS family, only
the adaptable approaches (i.e., GSA, BDSD and PRACS ) attain
reasonable performances due to the capability of well-estimating
all the weights to generate the intensity component.
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Q4 SAM(◦) ERGAS

Reference 1 0 0

EXP 0.7398 4.4263 3.8471

PCA 0.8578 3.5433 2.6715
IHS 0.7308 4.9892 3.5766
Brovey 0.7314 4.4263 3.1722
BDSD 0.8869 2.9123 2.4124
GS 0.8500 3.5304 2.7982
GSA 0.8756 2.9889 2.5521
PRACS 0.8793 3.1514 2.5745

HPF 0.8555 3.4817 2.8243
SFIM 0.8582 3.4193 2.7941
Indusion 0.8043 3.9059 3.2846
ATWT 0.8791 3.0786 2.5178
AWLP 0.8830 2.9424 2.4073
ATWT M2 0.8021 4.0493 3.2930
ATWT M3 0.8198 4.3388 3.3357
GLP 0.8787 3.0387 2.5106
MTF HPM PP 0.8643 3.3030 2.7540
MTF HPM 0.8819 3.0041 2.4624
GLP-CBD 0.8780 2.9673 2.5067

Table 3.1 China dataset: Quantitative results.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)
Figure 3.1 China Dataset: (a) Reference Image; (b) PAN; (c) EXP; (d)
PCA; (e) IHS; (f) Brovey; (g) BDSD; (h) GS; (i) GSA; (j) PRACS; (k)
HPF; (l) SFIM; (m) Indusion; (n) ATWT; (o) AWLP; (p) ATWT M2.
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(a) (b) (c)

(d) (e) (f)
Figure 3.2 China Dataset: (a) Reference Image; (b) ATWT M3; (c) GLP;

(d) MTF HPM PP; (e) MTF HPM; (f) GLP-CBD.

Q8 SAM(◦) ERGAS

Reference 1 0 0

EXP 0.7248 4.9263 5.4171

PCA 0.8169 5.2153 4.4128
IHS 0.7439 5.1455 4.1691
Brovey 0.7487 4.9263 4.1407
BDSD 0.8762 4.8717 3.8619
GS 0.8335 4.8592 4.0144
GSA 0.8907 4.1415 3.4062
PRACS 0.8878 4.6678 3.6768

HPF 0.8715 4.4523 3.8594
SFIM 0.8758 4.2457 3.7591
Indusion 0.8030 5.1415 4.8864
ATWT 0.9013 4.1117 3.3237
AWLP 0.9011 4.5146 3.3572
ATWT M2 0.7969 5.0277 4.6487
ATWT M3 0.8379 5.1042 4.3684
GLP 0.9016 4.0957 3.2982
MTF HPM PP 0.8900 4.3736 3.4777
MTF HPM 0.9092 3.8871 3.1005
GLP-CBD 0.8940 4.1125 3.3479

Table 3.2 Rome dataset: Quantitative results.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)
Figure 3.3 Rome Dataset: (a) Reference Image; (b) PAN; (c) EXP; (d)
PCA; (e) IHS; (f) Brovey; (g) BDSD; (h) GS; (i) GSA; (j) PRACS; (k)
HPF; (l) SFIM; (m) Indusion; (n) ATWT; (o) AWLP; (p) ATWT M2.
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(a) (b) (c)

(d) (e) (f)
Figure 3.4 Rome Dataset: (a) Reference Image; (b) ATWT M3; (c) GLP;

(d) MTF HPM PP; (e) MTF HPM; (f) GLP-CBD.

Q4 SAM(◦) ERGAS

Reference 1 0 0

EXP 0.7782 4.6742 6.0826

PCA 0.8122 6.1435 6.0028
IHS 0.8381 5.1788 5.0549
Brovey 0.8411 4.6742 5.1506
BDSD 0.9650 4.0749 2.7811
GS 0.8448 5.3304 5.0468
GSA 0.9572 4.4449 3.0013
PRACS 0.9325 4.5157 3.6523

HPF 0.9041 4.4343 4.2562
SFIM 0.9007 4.3599 4.2923
Indusion 0.8251 5.8322 5.6366
ATWT 0.9479 4.1401 3.3157
AWLP 0.9426 4.3356 3.5219
ATWT M2 0.8300 5.1505 5.4053
ATWT M3 0.8612 5.2915 5.0569
GLP 0.9485 4.1529 3.3193
MTF HPM PP 0.8786 5.2343 5.1103
MTF HPM 0.9488 4.1541 3.2741
GLP-CBD 0.9549 4.4459 3.1521

Table 3.3 Pléiades dataset: Quantitative results.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)
Figure 3.5 Pléiades dataset: (a) Reference Image; (b) PAN; (c) EXP; (d)
PCA; (e) IHS; (f) Brovey; (g) BDSD; (h) GS; (i) GSA; (j) PRACS; (k)
HPF; (l) SFIM; (m) Indusion; (n) ATWT; (o) AWLP; (p) ATWT M2.



3.4. Experimental Results 47

(a) (b) (c)

(d) (e) (f)
Figure 3.6 Pléiades dataset: (a) Reference Image; (b) ATWT M3; (c)

GLP; (d) MTF HPM PP; (e) MTF HPM; (f) GLP-CBD.
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3.4.2 Full Scale Validation

The evaluation of the algorithms at their original scale was per-
formed by employing the Toulouse and the Rio datasets (since
Pléiades has a simulated PAN). In Figs. 3.7 - 3.10, the fusion re-
sults of a small area are shown by using an RGB representation.
Tabs. 3.4 and 3.5 report the values of theQNR, Dλ andDS. Many
results obtained in the analysis performed at reduced scale are in
line with those obtained at full scale. In particular, the algorithms
within the MRA category performing the best are those based on
Gaussian and “à trous”. The superiority of HPM -based injection
scheme evidenced at reduced scale is still confirmed here. Within
the CS family, the best techniques in terms of obtained accuracy
are the adaptive algorithms followed by the other CS approaches.
As for the reduced scale, the difference in accuracy between the
two main families is more evident in the case of the eight band
Rome dataset. Again, the algorithms based on IHS show a higher
spectral distortion confirmed by the values of Dλ.

It is worth to point out that the PCA and IHS -based ap-
proaches perform very well from a quantitative point of view, but
these results are not fully confirmed by the visual analysis since
the pansharpened images are more spectral distorted if compared
to the results of other approaches.

The obtained results give rise to some general considerations.
Indeed, the validation at full scale allows to avoid some problems
and hypotheses related to the reduce scale protocol, but the values
of the indexes are less reliable (since discrepancies between the
quantitative values and the visual appearance of the results can
be noticed). In more detail, the comparison of algorithms in terms
of QNR index is accurate within each category. However, it is
difficult to quantify the existing differences from a visual point of
view among algorithms belonging to different families.
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Dλ DS QNR

EXP 0 0.1975 0.8025

PCA 0.0114 0.0991 0.8906
IHS 0.0367 0.0591 0.9063
Brovey 0.0164 0.0579 0.9266
BDSD 0.0079 0.0404 0.9520
GS 0.0111 0.0912 0.8987
GSA 0.0364 0.0555 0.9101
PRACS 0.0137 0.0612 0.9259

HPF 0.0279 0.0616 0.9122
SFIM 0.0255 0.0606 0.9155
Indusion 0.0274 0.0795 0.8952
ATWT 0.0348 0.0428 0.9239
AWLP 0.0412 0.0392 0.9212
ATWT M2 0.0303 0.0975 0.8752
ATWT M3 0.0544 0.0725 0.8771
GLP 0.0384 0.0406 0.9225
MTF HPM PP 0.0440 0.0407 0.9171
MTF HPM 0.0338 0.0383 0.9292
GLP-CBD 0.0401 0.0484 0.9134

Table 3.4 Toulouse dataset: Quantitative results.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
Figure 3.7 Toulouse Dataset: (a) PAN; (b) EXP; (c) PCA; (d) IHS; (e)
Brovey; (f) BDSD; (g) GS; (h) GSA; (i) PRACS; (j) HPF; (k) SFIM; (l)

Indusion.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)
Figure 3.8 Toulouse Dataset: (a) PAN; (b) EXP; (c) ATWT; (d) AWLP;

(e) ATWT M2; (f) ATWT M3; (g) GLP; (h) MTF HPM PP; (i) MTF
HPM; (j) GLP-CBD.
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Dλ DS QNR

EXP 0 0.0940 0.9060

PCA 0.0265 0.0582 0.9168
IHS 0.0454 0.0560 0.9012
Brovey 0.0326 0.0615 0.9080
BDSD 0.0272 0.0347 0.9390
GS 0.0261 0.0579 0.9176
GSA 0.0369 0.0552 0.9100
PRACS 0.0158 0.0647 0.9205

HPF 0.0228 0.0619 0.9167
SFIM 0.0213 0.0631 0.9170
Indusion 0.0258 0.0600 0.9157
ATWT 0.0361 0.0474 0.9182
AWLP 0.0399 0.0568 0.9056
ATWT M2 0.0246 0.0906 0.8870
ATWT M3 0.0405 0.0713 0.8911
GLP 0.0359 0.0421 0.9235
MTF HPM PP 0.0525 0.0533 0.8970
MTF HPM 0.0348 0.0423 0.9244
GLP-CBD 0.0375 0.0416 0.9225

Table 3.5 Rio dataset: Quantitative results.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
Figure 3.9 Rio Dataset: (a) PAN; (b) EXP; (c) PCA; (d) IHS; (e) Brovey;
(f) BDSD; (g) GS; (h) GSA; (i) PRACS; (j) HPF; (k) SFIM; (l) Indusion.



54 3. Pansharpening Algorithms: A Critical Comparison

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)
Figure 3.10 Rio Dataset: (a) PAN; (b) EXP; (c) ATWT; (d) AWLP; (e)
ATWT M2; (f) ATWT M3; (g) GLP; (h) MTF HPM PP; (i) MTF HPM; (j)

GLP-CBD.
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3.4.3 Summary and Discussion

The obtained results give evidence that the good visual appearance
and the spectral content preservation represent the main salient
features of the CS and MRA methods, respectively. Accordingly,
approaches of the first class aimed at improving the spectral qual-
ity and those of the second class properly designed for enhancing
the spatial properties obtain the best results. Indeed, very inter-
esting performances are attained by adaptive CS approaches (in
particular on four band datasets), with the reduction of the spec-
tral distortion, and by some MRA algorithms, which benefit of
a proper extraction detail phase. In particular the match of the
low-pass filter with the sensor’s MTF allows to significantly reduce
the classical blur of the MRA final products.

Another interesting consideration arises from the performed
tests. Specifically, for the case of eight band datasets, the perfor-
mance degradations of some CS approaches are clear from both
numerical and visual points of view. This is mainly due to the
greater spectral distortion. For this reason, MRA approaches are,
in general, advisable to the growing of the band number.

Furthermore, it is worth underlining that CS approaches are
often preferable with respect to the MRA ones thanks to their ro-
bustness to aliasing and misregistration errors. In fact, by consid-
ering that they employ an aliasing-free version of the PAN image,
it is simple to derive that the fusion rule adopted by the CS algo-
rithms is able to compensate the aliasing present in the MS image.
On the contrary, the aliasing patterns are visible when the MRA
fusion rule is adopted [71]. However, such problem can be strongly
reduced by employing MRA decimated approaches whose analysis
filter is matched with the MTF of the MS sensor, as obtainable by
properly designing Laplacian pyramids [72]. On the other hand,
temporal misalignments suggest the use of MRA methodologies
with respect to CS ones [6]. This kind of robustness turns out
to be very helpful when the fusing images are acquired with a
time delay, as, for example, when they are provided from sensors
mounted on different remote sensing platforms.
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From a computational point of view, the CS approaches are
surely preferable to the MRA ones, since the filtering phase sig-
nificantly slows down the algorithms. According to our tests, the
former ones are about ten times faster than the latter ones.

The analysis carried out in this work allowed us to confirm
some features of the validation procedures: The reduced scale pro-
tocol leads to a very accurate evaluation of the quality indexes, but
the scale invariance hypothesis is hardly verified in practice. Fur-
thermore, the operation for generating a synthetic version of the
MS image at reduced scale introduces a strong bias in the ana-
lyzed algorithms, privileging those employing a similar procedure
for extracting the spatial details. On the contrary, the full scale
validation gets quite accurate results with respect to algorithms of
the same family, whereas being less reliable when the comparison
includes algorithms belonging to different classes. This valida-
tion approach, which exploits the QNR index, has the advantage
of validating the products at the original scale, thus avoiding any
hypothesis on the behavior at different scales. However, due to the
less precision of the quality indexes (since a reference is missing),
the results of this analysis can be affected by some mismatches
between the quantitative results and the visual appearance of the
fused image (e.g., as for the IHS method).



Chapter 4

The Contrast and
Error-based Injection
Models

In this chapter, we focus on two of the most popular injection
methodologies for panshapening applications. The appealing fea-
tures of the multiplicative scheme are shown and supported by
experimental results. In the following, an analysis in the light
of physical considerations with respect to the Point Spread Func-
tion (PSF) of the above-mentioned injection model is provided.
Furthermore, the derivation of the constraint on the Modulation
Transfer Functions (MTFs) in terms of local contrast is shown.
It is worth to be pointed out that the findings in this chapter
are mainly based on some considerations, which already under-
line the superiority of the contrast pyramids with respect to the
error ones [73]. Furthermore, by focusing on pansharpening ap-
plications, in [58], the authors already point out the goodness of
the High Pass Modulation (HPM) method from an experimental
point of view. The analysis and the relative results presented in
this chapter have been already published by the author in [53].

The rest of the chapter is organized as follows. Sec. 4.1 presents
the importance of the MTF in pansharpening and highlights its
link with the image contrast. In Sec. 4.2, the methods used for
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the extraction of details are described and the results of the com-
parison are reported in Sec. 4.3.

4.1 MTF-Preserving Injection Meth-

ods

Essentially, the sensors can be approximated as a non-ideal optical
systems whose effect can be modeled as the output of a linear
spatially invariant system. In these terms, the acquisition system
can be fully characterized by means of its spatial impulse response,
or PSF [12]. In this thesis we leverage on this aspect and we
explicitly express the pansharpening objective of having the same
spatial resolution for both the P and the enrichedMS by imposing
the following equality:

PSFM̂S = PSFP. (4.1)

We recall that F{PSF}, the frequency representation of the PSF,
is defined as the product of the MTF and the Phase Transfer
Function (PTF), which are respectively the modulus and the phase
of the PSF in the Fourier domain. The equality in Eq. (4.1) can
be approximated by matching the MTFs in the frequency domain,
since the modulus of the PSF constitutes the main contribution
to the overall response of the acquisition system [57].

The goal of this work is to explore the possibility of obtaining
the desired spatial properties in M̂S by mimicking the response of
the PAN sensor. More in detail we focus on the MTF and propose
its use for driving the design of the pansharpening algorithms.
Starting from Eq. (4.1) we impose for all bands k = 1, . . . , N of
the MS the equality

MTFM̂Sk
(ν) = MTFP (ν) , (4.2)

where ν refers to the spatial frequency.
The MTF is defined as

MTF (ν) =
Ci

Co

∣∣∣∣
o=s(ν)

, (4.3)
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(a) (b) (c)
Figure 4.1 Example of estimation of the MTF at a given frequency ν

according to Eq. (4.4). (a) Periodic pattern (specimen) at frequency ν; (b)
resulting image as acquired by the optical system; (c) estimation of the

MTF at frequency ν.

where Co is the contrast of the target object o and Ci the contrast
measured from the image of the object acquired by the optical
system, both typically normalized by the modulation at zero fre-
quency. Let us recall that according to Michelson [74], the contrast
C, denoted also as modulation, is

C =
Lmax − Lmin

Lmax + Lmin

, (4.4)

where Lmax and Lmin are the maximum and minimum luminance
(or equivalently radiance when considering radiometric measures)
in the pattern, respectively.

Figure 4.1 shows an example of the practical estimation of the
MTF (Fig. 4.1(c)) at a given frequency ν, performed by computing
the contrast according to Eq. (4.4) on the object (Fig. 4.1(a)) and
acquired image (Fig. 4.1(b)), by employing a binary square wave
with fundamental period d = ν−1.

By considering several specimens o(ν) with differing spatial
frequencies ν, it can be shown that the image modulation varies
as a function of the spatial frequency. Consequently Eq. (4.2) can
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be rewritten as
CM̂S

Co

=
CP

Co

, (4.5)

that implies the relation between the contrast of P and M̂S images
to be

CM̂S = CP. (4.6)

When dealing with real acquisitions, the imaged scenes are
typically composed by small objects on a background of uniform
luminance [12]. In that case the peak luminance is that of the
object to resolve, say L, and the mean luminance coincides with
that of the background, say Lb. In this scenario, the contrast can
be computed by Weber’s formula [75] as

C =
L− Lb

Lb

=
L

Lb

− 1. (4.7)

This transforms the contrast equality (4.6) into the relationship,
holding for all bands k = 1, . . . , N ,

M̂Sk

M̂S
L

k

− I =
P

PL

− I, (4.8)

with I the identity matrix, M̂S
L
and PL the background lumi-

nance of M̂S and P, respectively. The latter has been denoted by
PL since it can be computed by degrading the original image with
a low pass filter, which might be different for each band k.

According to the Wald protocol, the low pass version of M̂S
is constituted by the original MS image and thus Eq. (4.2) turns
into the well known HPM formulation [58]:

M̂Sk = M̃Sk ·
P

PL

, (4.9)

in which M̃S, an upsampled version of MS, is used for guarantee-
ing the compatibility of the image sizes. Eq. (4.9) characterizes
the fusion methods employing Ratio Of Low-Pass decompositions
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(ROLP), whose superiority with respect to Difference Of Low-Pass
(DOLP) approaches (even called additive; see Sec. 2.2.3) that are
based on the formula

M̂Sk = M̃Sk + (P−PL) (4.10)

has been proven in [73].

By defining the details D of the PAN image as

D = P−PL, (4.11)

Eq. (4.9) can be also rewritten as

M̂Sk = M̃Sk +
M̃Sk

PL

D. (4.12)

This highlights the inclusion of the HPM method into the general
injection model

M̂Sk=M̃Sk + αkD, (4.13)

where αk, for k = 1, . . . , N , are the modulation coefficients that
weigh the contribution of P.

Noticeably, the model (4.13) can be designed to satisfy a very
interesting property: if the low pass image PL used in the calcu-
lation of αk does not depend on k, this algorithm belongs to the
Spectral Distortion Minimization (SDM ) class, or in other words

the pansharpened image M̂S exhibits the same spectral distortion
of M̃S [54].

However, this property that turns out to be useful in show-
ing the preservation of a crucial spectral feature of M̃S, does not
necessarily imply an acceptable quality of the fusion product and
has thus to be considered as a secondary requirement for the al-
gorithm design. Indeed, increasing the quantity of the injected
details typically implies the increase of spectral distortion [46],
that on the contrary could be trivially eliminated by neglecting
any contribution of P.
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4.2 Details Extraction Methods

In the following the experimental results performed on different
data sets and with different types of detail extraction algorithms
will be presented to show the very appealing features of pansharp-
ening methods based on Eq. (4.9) with respect to approaches em-
ploying formula (4.10).

Two different methods for estimating the required lowpass ver-
sion PL of the PAN image will be considered. One is based on the
combination of the available MS images and the other on a proper
degradation of the original PAN data. The former is exploited
into the CS family and, in this case, PL is often indicated with
the symbol IL. The building of the PL via the degradation step
is instead a peculiarity of the MRA family. Further details can be
found in Chapter 2.

The two detail injection algorithms can be combined with
many different methods for achieving the low pass image PL.

The simplest algorithm into the CS family is the IHS (properly
equalized to improve the results) [46] in which the PAN image is
obtained by averaging all multispectral bands, or in other terms by
adopting the assumption (hardly verified in the practice) that the
MS bands equally contribute to the PAN image (see Sec. 2.2.2, for
more details). Furthermore the IHS method employs Eq. (4.10)
for the injection of details [44]. The corresponding contrast-based
method using Eq. (4.9) is named Brovey [44].

Good results, for the other family, can be achieved by con-
sidering a system with complementary frequency responses with
respect to the MTF of the sensor, whose shape can be safely ap-
proximated by a Gaussian function. This technique, referred as
MTF method, was firstly proposed in [57] and successively effi-
ciently implemented through the HPM details injection scheme
(4.9) in [58]. A more sophisticated way for building the PL im-
age consists in utilizing a MRA [52], which aim at separating the
informative content at the various spatial scales. In particular we
chose for the comparison of the two injection methods a Wavelet
implementation based on the à trous filters, that allows to design
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the analysis operator so that the equivalent low pass filter matches
the sensor MTF [76]. In the same reference an HPM implemen-
tation, satisfying the SDM requirement has been utilized, while
an A Trous Wavelet Trasform (ATWT) technique employing an
additive model for detail injection was previously proposed in [60].

4.3 Experimental Results

Two of the most popular sensors for pansharpening applications
are IKONOS and QuickBird. They work in the visible and near
infrared spectrum range with the MS sensor that is characterized
by four bands (Blue, Green, Red and Near InfraRed (NIR)) and
they also have a PAN channel. The spatial resolution of IKONOS
is 4 × 4 m for the MS bands and 1 × 1 m for the PAN. Quick-
Bird has an asymmetric pixel. Indeed, the resolution cell for the
multispectral bands is 2.44 × 2.88 m, while for the PAN channel
is 0.61 × 0.72 m. Thus, the spatial resolution ratio is 4. The ex-
perimental results have been conducted on two real datasets1. In
particular, we selected a scene of the China dataset (see Sec. 3.2
for details) in the case of IKONOS and a region of India (called
India dataset, Fig. 4.3) acquired by the Quickbird sensor.

A quantitative analysis is performed by considering a reference
image according to the Wald protocol [36] (see Sec. 2.3.1 for de-
tails), which results accurate in evaluating injection approaches.
The low resolution MS bands (four times lower than that of the
PAN image) are obtained by applying a low-pass filtering and
decimation [42]. The frequency response of the low-pass filter is
designed to match the MTF of each spectral channel of the sensor
and the panchromatic channel is degraded by means of an ideal
low-pass filtering [57,58].

The assessment of the fused products (with respect to the ref-
erence image) is carried out by calculating different indexes [42].
The ERGAS [52] and the Q4 [68] are exploited to evaluate the
global quality of images.

1Available at http://glcf.umiacs.umd.edu.
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Injection Q4 SAM(◦) ERGAS SCC

IHS
ERR 0.8512 3.5836 2.8178 0.9069
CON 0.8528 3.4985 2.7788 0.9102

MTF
ERR 0.8763 3.2425 2.6207 0.9022
CON 0.8792 3.1872 2.5801 0.9059

ATWT
ERR 0.8767 3.1973 2.6058 0.9042
CON 0.8800 3.1272 2.5600 0.9083

Table 4.1 China dataset : Comparison between error-based (ERR) and
contrast-based (CON) injection models.

Injection Q4 SAM(◦) ERGAS SCC

IHS
ERR 0.7450 3.2976 2.1561 0.9074
CON 0.7484 3.1214 2.1064 0.9162

MTF
ERR 0.8373 2.7817 1.7109 0.9097
CON 0.8451 2.7212 1.6581 0.9158

ATWT
ERR 0.8338 2.8112 1.7262 0.9091
CON 0.8421 2.7507 1.6705 0.9154

Table 4.2 India dataset : Comparison between error-based (ERR) and
contrast-based (CON) injection models.

The spectral and spatial distortions are assessed by the Spec-
tral Angle Mapper (SAM) and the Spatial Correlation Coefficient
(SCC) [65], respectively. We recall that the optimal values of the
indexes are one for Q4 and SCC and zero for ERGAS and SAM.

The numerical results achieved by contrast-based (CON) and
error-based (ERR) injection methods (Sec. 4.2) on the China and
India datasets are reported in Tabs. 4.1 and 4.2. The superiority of
the CON model is evident in all the considered scenarios and to a
different extent for all kinds of algorithms. All the quality indexes
are improved by this choice, but a finer analysis reveals that the
use of (4.9) allows to reduce some typical drawbacks of CS and
MRA details extraction methodologies. Indeed the CS methods
are known to be affected by a more significant spectral distortion
that is in part compensated by the CON method, as testified by
the enhancement achieved by the SAM index. On the other side
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 4.2 China dataset false color representation (NIR, Red and Green):

(a) Full resolution MS image (reference); (b) PAN image; (c) IHS-ERR
(IHS ); (d) IHS-CON (Brovey); (e) MTF-ERR (GLP); (f) MTF-CON (MTF

HPM ); (g) ATWT-ERR (ATWT ); (h) ATWT-CON.

the MRA methods benefit from the use of rule (4.9) especially in
terms of SCC index, indicating a substantial contribution in terms
of spatial details.

Visual analysis can be performed by Figs. 4.2 and 4.3 in which
two magnified parts of the considered dataset have been shown
in false colors (NIR, Red and Green). In both cases the inspec-
tion corroborates the considerations derived during the analysis
of quantitative parameters. In particular, the superior spectral
quality of images achieved by the CON paradigm in the IHS ap-
proach (Figs. 4.2(d), 4.3(d)) with respect to those attained by the
same CS method with ERR injection rule (Figs. 4.2(c), 4.3(c)) can
be observed by comparing the fused products with the reference
images reported in Figs. 4.2(a) and 4.3(a). The presence of addi-
tional details in images obtained by the CON rule can be noted in
the corresponding images of Fig. 4.3.

Finally, it is worth noticing that among the algorithms used
for the current analysis the ATWT and MTF methods compare
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 4.3 India dataset false color representation (NIR, Red and Green):

(a) Full resolution MS image (reference); (b) PAN image; (c) IHS-ERR
(IHS ); (d) IHS-CON (Brovey); (e) MTF-ERR (GLP); (f) MTF-CON (MTF

HPM ); (g) ATWT-ERR (ATWT ); (h) ATWT-CON.

favorably in all the test cases. Indeed, these approaches utilizing
a filter designed to match the sensor MTF take advantage with
respect to the other competitors from a more proper details ex-
traction phase.



Chapter 5

Pansharpening Based on
Semiblind Deconvolution

Classical approaches to pansharpening are based on two main
steps: Extraction of details from the PANchromatic (PAN) image
and their injection into the MultiSpectral (MS) data. The former
is often performed exploiting a prior knowledge about the MS
sensor instrumentation. Indeed, the Modulation Transfer Func-
tion (MTF) is typically used and defined starting from the Gaus-
sian hypothesis and by characterizing its analytic expression by
the means of the sensor gain at the Nyquist frequency. However
this characterization could be often inadequate. For this reason,
in this chapter we provide a formulation of a fast optimization
problem trying to identify the relationship between PAN and MS
images directly from the available data. The effectiveness of the
approach is validated both on a reduced scale dataset achieved
by degrading images acquired by the IKONOS sensor and on full
scale data consisting of images collected by the QuickBird sensor.
In the first case the proposed method achieves performances very
similar to the algorithm relying upon the full knowledge of the
degrading filter. In the second it is shown to compare favorably
to several very credited approaches used in the current literature.

The rest of the chapter is organized as follows. Sec. 5.1 under-
lines the motivations and the contributions related to this work.
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In Sec. 5.2, the formulation of the estimation problem and its
solution are provided; In Sec. 5.3, we detail the employed algo-
rithm for spatially enhancing the MS image, which is based on
a well-known injection model, while, in Sec. 5.4, the two vali-
dation procedures are fully described and exploited to assess the
performances of the proposed method with respect to state-of-art
methods.

5.1 Motivations and Contributions

This chapter is focused on a particular issue that is crucial in
many pansharpening approaches: The characterization of the re-
lationship between the MS and the PAN image through the MTF
of the MS sensor. We recall that the MTF is defined as the ab-
solute value of the Fourier transform of the sensor’s Point Spread
Function 1. In this regard, it is supposed that the less detailed MS
image is achievable as the convolution of the PAN image by a filter
matched to the MTF. This assumption relies upon the hypothesis
of ideality of the frequency response of the PAN sensor and of the
interpolation applied to the MS for upsampling. The well estab-
lished pansharpening technique in [57] leverages on this model. In
more details, this technique employs a classical scheme consist-
ing of two parts: Detail extraction, in which the missing spatial
content is extracted from the PAN image and Detail injection in
which such information is introduced into the MS image. Specif-
ically, in [57] the suitability of using a High Pass Filter matched
to the MS sensor’s MTF for the first step is justified by the pur-
pose of restoring all the spatial details not resolved by the MS.
The relationship under study is also required by the pansharpen-
ing algorithms that demand a version of the PAN image at the
resolution of the original MS image, as, for example, the Band-
Dependent Spatial-Detail [51], or the Gram-Schmidt mode 2 [11].

1The Point Spread Function is the inverse Fourier Transform of the Optical
Transfer Function, which is the product between the Phase Transfer Function
(PTF) and the MTF.
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As a further motivating example, we cite the approach recently
proposed in [23] and based on Compressive Sensing theory [19],
which exploits the PAN-MS relationship for ensuring the consis-
tency of the high resolution dictionary with the low resolution
available data.

The design of a filter matching the MTF is not straightforward.
Gaussian-shaped filters are usually employed for approximating
the shape of the real (and unknown) MTF of the MS [58,70]. The
effectiveness of this model relies upon the fact that typically the
MTF closely follows the shape of a Gaussian bell in many opti-
cal acquisition systems [70]. This family is defined by a single
parameter (i.e., the standard deviation) that fully specifies the
filter response. Usually the value of the standard deviation of
the filter is determined from the gain at the Nyquist frequency,
which is often provided by the sensor’s manufacturer (derived by
construction specifications or, more properly, by on-board mea-
surements) [57, 58]. “A trous” wavelet transforms have been also
used for modeling the MTF [60]. Indeed, it was noted that when
these filters are designed for matching the sensor specifications
they resemble a Gaussian shape filter [57].

Unfortunately, in many cases the information available does
not lead to a specification of the sensor MTF with the desirable
accuracy. A first issue concerns the modeling of the MTF by a
Gaussian-shaped filter, which is sometimes unconfirmed in prac-
tice. Even when it constitutes a reasonable approximation, its
specification through the MTF gain at Nyquist frequency is not
always possible, being it unavailable for many sensors. Even in the
most favorable case, the gain at the Nyquist frequency provided
by the sensor manufacturer is typically the one measured after
the launch of the sensor. However, due to the aging of the optical
and electronics payload of the sensor, it may have changed, thus
loosing the precision of this datum. A final concern regards the
symmetry hypothesis of the MTF; in fact for several sensors the
MTF shape varies between the along-track and the across-track
directions and thus it cannot be fully characterized through the
single value of the standard deviation.
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We propose to estimate the relationship between the PAN and
MS images directly from the data in order to overcome the above-
mentioned limitations. To the best of our knowledge, methods
that propose to estimate the filter for detail extraction from PAN
by employing the same images are absent in the pansharpening
literature. The comparison between the proposed approach and
those based on the determination of the MTF from the sensor
knowledge is thus a very intriguing topic to investigate.

In order to perform the filter estimation, we assume that each
MS band is a spatially degraded version of the PAN image, all
blurred by the same filter, and we model the estimation as a prob-
lem of blind image deblurring. We recall that blind image de-
blurring, a classical challenge in image processing, is the inverse
problem of recovering sharp images from degraded ones by both
estimating the blur affecting the image and the target high reso-
lution (deblurred) image. In general, this problem is hard to solve
since it is ill-posed (i.e., there are multiple pairs of estimated im-
age and blurring operator that can produce the degraded image)
and the blurring operators are usually very ill-conditioned in prac-
tice. For these reasons, in order to obtain a well-defined solution,
additional hypotheses (or a prior information) about the original
image and/or the blurring operator are needed. The problem can
thus be formulated into the Bayesian framework or as a regulariza-
tion problem, both leading to a similar optimization problem form
(please refer to [77,78] and to the more recent paper [79] for a re-
view of the topic). Actually, in this chapter only the estimation of
the blurring operator is required (i.e., the filter approximating the
MTF of the MS sensor), thus rendering the solution significantly
simpler.

Starting from the motivations presented earlier, the objectives
of this chapter can be pointed out as: 1) Provide an estimation pro-
cedure for the degradation filter based only on the acquired images,
with the objective of obtaining an optimal system for details ex-
traction from the PAN image; 2) Compare this approach with the
state-of-art pansharpening methods and in particular with those
exploiting the knowledge of the sensor MTF. Correspondingly, two
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different validation procedures are utilized. The first one aims at
evidencing the capabilities of the estimation procedure to properly
approximate the actual response of the imaging systems; the sec-
ond one points out the advantages of extracting details through
the filters derived according to the proposed procedure, instead of
those employed in classical approaches.

5.1.1 Notation

We use bold lowercase to denote vectors (e.g., x, y) and bold
uppercase to denote matrices (e.g., H, MS). XT indicates the
Hermitian transpose of X. A monochromatic image is represented
by lexicographic ordering its pixels, namely by stacking either their
rows or their columns into a vector. In particular, vector p ∈ Rr

indicates the observed panchromatic image, where r represents
the number of pixels. Accordingly, MS images are organized as
a matrix in which each row corresponds to a spectral band. The
observed MS image is thus denoted as MS ∈ RN×q, in which N
is the number of bands and q < r is the number of pixels in each
MS channel. Note that, with this notation, each column contains
the spectrum of a given pixel.

5.2 Semiblind Deconvolution

In this section, we detail the mathematical formulation of the gen-
eral problem of filter estimation. The objective is to infer the re-
lationship between the blurred and the sharp images, which, in
this context, are represented by the MS and the PAN data, re-
spectively.

We restrict the analysis of this work to the blurring process
through a linear shift-invariant system in the presence of additive
noise that is described, for a given monochromatic (sharp) image
x, by the model

y = x ∗ h+ n (5.1)

in which y, h and n are the observed degraded image, the blur-
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ring filter, and the observation noise, respectively and ∗ denotes
the convolution operator. This equation can be also expressed in
matrix-vector notation by

y = Xh+ n, (5.2)

where h, y, and n are the lexicographic ordering of h, y, and n,
all belonging to Rq and X ∈ Rq×q is a matrix operator which is
constructed by properly arranging the elements of x [80]. In the
case of the two-dimensional convolution with periodic boundary
conditions, X is a Block Circulant with Circulant Blocks (BCCB)
matrix. The latter can be spectrally decomposed as X = FTΛF,
where F and FT = F−1 are the DFT (Discrete Fourier Transform)
and the inverse DFT matrices, respectively, and Λ is a diagonal
matrix. This decomposition has two main advantages. First, by
using Fast Fourier Transforms (FFTs), computing matrix-vector
multiplications with FT and F can be done without explicitly
constructing them; this implies significant computational savings,
since the cost of the FFT algorithm is O(M log2M) for power-of-
two length vectors, where M is the length of the vector. Second,
the diagonal matrixΛ is easily invertible, which is very convenient,
as it will be seen later. Furthermore, we restrict the estimation of
the blur vector h to a given nonempty convex set H of Rq, that is
used to impose a finite support to h (namely to limit the number
of nonzero values of h).

The simplest and most intuitive approach to apply the de-
convolution problem to pansharpening consists in searching for a
relationship between each MS band and the PAN image. In other
words, the estimation problem is separated into N independent
parts, where N represents the number of the MS spectral bands.
The intrinsic suboptimal nature of this method, which will be
referred to as FE MS (Filter Estimation with Multi Spectral op-
timization), entails the lack of correlation among the MS bands,
leading to worse performances (as shown in Sec. 5.4). In par-
ticular this incoherence can cause the wrong estimation of some
filters, as it is the case, for example, of the blur filter relative to
the blue channel of the IKONOS sensor (see Fig. 5.6). For this
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reason, other more sophisticated approaches have to be devised to
solve the problem. In the following, we discuss in more detail our
proposed method in light of the previous considerations.

A different method, aimed at preserving the coherence among
details of the MS and PAN images, is the object of our current
proposal and hence will be simply denoted as FE (Filter Estima-
tion). Our approach consists in applying Eq. (5.1) to model the
relation between the original PAN image and its low resolution
version, which is constructed as a linear combination of the MS
bands, as it is common for Relative Spectral Contribution (RSC)
methods [1]. The equivalent panchromatic image pe can be writ-
ten as:

pe = M̃S
T
α, (5.3)

where M̃S is a version of the MS image upsampled to the PAN
resolution and the vectorα ≡ [α1, · · · , αL]

T contains the weighting
coefficients, accounting for the spectral overlap of MS channels and
PAN image [1].

More specifically, the filter estimation problem is formulated
as:

minimize
h,α

∥pe −PCh∥2 + λ ∥h∥2 + µ(∥Dvh∥2 + ∥Dhh∥2)

subject to hT1 = 1,h ∈ H.
(5.4)

The first term is known as the data-fitting term, which imposes
that the blurred version of the panchromatic image must be close
to the equivalent panchromatic. Note that PC is defined such that
PCh represents the linear convolution in matrix form between the
panchromatic image p and the blur h, as in (5.2). The second
and third addends act as regularization terms (in the sense of
Tikhonov) aimed at dealing with the ill-posedness of the inverse
problem [81]. These terms can be also seen as an a prior infor-
mation under a Bayesian framework [78]. Here Dh,Dv ∈ Rq×q,
which are BCCB matrices, stand for the first-order finite differ-
ences operator in the horizontal and vertical directions, respec-
tively, and can be also interpreted as the convolution between h
and the derivative filters dh ∈ Rq and dv ∈ Rq. The constraints
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induce the normalization of the blur (i.e., hT1 = 1) and its finite
support (i.e., h ∈ H), respectively. The selection of the squared
ℓ2 norm ∥ · ∥2 allows for a closed form solution, which can be com-
puted efficiently in the frequency domain. The same choice proves
favorable also in the regularization terms, matching some desir-
able physical conditions. Specifically, its use in the second addend
forces the obtained solution to have limited energy. This makes
sense since the blur degrading effect is usually confined to a small
region. Analogously, when acting on the filter finite differences,
it assures smooth transitions among the filter values. This is de-
sirable, since blurs experienced in the practice tend to be smooth
and have Gaussian-like shapes. The two regularization terms are
properly weighted by coefficients λ and µ, which can be used as
input parameters to the algorithm.

The solution of the optimization problem follows an alternated
minimization scheme, where each variable is minimized separately.
First the coefficients α are estimated, and, subsequently, the blur
is optimized; this sequence is repeated for every iteration. The
initialization of the algorithm is performed by starting from the
low pass filter commonly used for the “à trous” implementation of
the wavelet decomposition, matched with the typical MTF shape
in the Visible Near InfraRed (VNIR) spectrum [57,60]. Note that
we do not impose the optimization constraints directly. In fact,
the estimated filter is normalized after each iteration and values
outside a given window (typically being very close to zero) are
then discarded. This allows us to find an approximate solution
to the optimization problem in a simple way. For each iteration,
the first step consists in computing α, given the current value of
h. This corresponds to find the solution of a simple least squares
problem:

M̃M̃Tαsol = M̃PCh. (5.5)

In the second step, the computation of h given α involves the
solution of the optimization problem described by Eq. (5.4) with
respect to h. Being the cost function quadratic, it has a global
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minimum achieved when[
PT

CPC + λI+ µDT
vDv + µDT

hDh)
]
hsol = PH

Cpe. (5.6)

As seen before, the BCCB matrices PC , Dh and Dv are diagonal-
ized by the 2-D DFT matrix, F{·}. This accelerates the compu-
tation of the solution:

hsol = F−1
{
◦ F{p}∗◦F{pe}
F{p}∗◦F{p}+λ+µ(F{dh}∗◦F{dh}+F{dv}∗◦F{dv})◦

}
,

(5.7)
where F−1{·} denotes the inverse Fourier transform, F{·}∗ is the
complex conjugate of the Fourier transform, ◦ is the component-
wise multiplication, and ◦−◦ is the component-wise division. This
equation involves a diagonal inversion, which has cost O(m), but is
dominated by the FFTs — with cost O(m logm); note that F{p},
F{dh}, and F{dv} can be computed in advance. In order to take
advantage of the properties of the FFT, it is necessary to work
under periodic boundary conditions, as discussed earlier. However,
when dealing with real-world images, this assumption is usually
too strong, since it is highly improbable that an image’s external
borders (unobserved) are repeated periodically. Processing these
images as they are usually leads to development of undesirable
artifacts and, in order to reduce them, a pre-processing step is
usually taken, namely by blurring the borders of the images. This
allows the discontinuities to be smoothed out [82].

The followed procedure can be summarized as in Algorithm 1.
The required stopping criterion can be imposed by considering

the relative changes between the estimated variables or even by
imposing a fixed number of iterations.

5.3 Pansharpening Method Based on

Filter Estimation

One of the main issues for pansharpening algorithms is how to
properly inject into the MS the spatial details extracted from
the PAN in order to obtain the required spatial enhancement.
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Algorithm 1: Filter Estimation Algorithm

Data: The observed PAN and MS data, p, MS,
respectively; the regularizer weights λ and µ; an
initial filter estimate h0, dimension of the filter’s
support, threshold value.

Result: Degradation filter hj.
begin

Upsample the MS image MS
while some stopping criterion is satisfied do

Set αj as indicated in (5.5)
Set hj as indicated in (5.7)
hj: Normalize, threshold and use a mask to ignore
values outside the filter’s support

Many approaches have been proposed in the literature and a
widespread classification distinguishes between local and global
approaches [50]. An example of the former is the Context-Based
Decision (CBD) algorithm [70] which relies upon the partition-
ing of the fusing images in blocks. The details extracted by the
PAN image are injected, if needed, after an equalization phase
based on the relationship between the standard deviations calcu-
lated within the corresponding blocks of the two images. Further-
more, details injection is performed only if the correlation between
the lowpass version of the PAN image and each of the expanded
MS bands is greater than a given threshold [70]. The injection
schemes belonging to the second class are based on global rules,
as it is the case of the simple additive injection model [60]. In this
method, a histogram matching procedure between the PAN image
and each MS band is advisable before fusing data from different
sensors. We want to stress that the objective of this work is the
study of the extraction detail phase and the comparison of sev-
eral approaches under the same conditions. To reach this scope,
we selected a well know injection model based on the concept of
modulation (often called High Pass Modulation (HPM)). In Chap-
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ter 4, it has been shown that the HPM scheme is related to the
local contrast of an image and in general outperforms the additive
injection approaches. Moreover, some powerful fusing procedures
are also based on the HPM, as in [58].

More in detail, let us define Phm ∈ RN×r as the PAN image (p)
after histogram matching with the N MS spectral bands (MS).
For the k-th band, with k ∈ [1, . . . , N ], Phm

k is given by:

Phm
k = [p− µp] ·

σMSk

σp

+ µMSk
, (5.8)

with µ and σ denoting the mean and standard deviation, respec-
tively, estimated on the PAN and k-th MS band. The HPM injec-
tion model defines the fused product M̂S ∈ RN×r (in the lexico-
graphic ordering) according to the formula:

M̂S = M̃S ◦
(
◦P

hm

Phm
LP

◦
)
, (5.9)

with ◦ the component-wise multiplication, and ◦ − ◦ the
component-wise division. The Phm

LP ∈ RN×r is the low resolu-
tion version of Phm at the same scale of the MS image, obtained
by filtering Phm with the spatial Low Pass Filter (LPF) h.

Accordingly, the fusion procedure exploiting the HPM model
can be summarized as in Algorithm 2.

In the following section some different types of blur filters h
will be used to generate Phm

LP from Phm and they will be compared
along with the proposed method presented in Sec. 5.2.

5.4 Experimental Results

In order to validate the proposed method and point out its advan-
tages with respect to filters conventionally used in state of the art
techniques for detail extraction, an accurate experimental analysis
has been performed by considering two datasets. The first one is
the China dataset (see Sec. 3.2) acquired by IKONOS, while, the
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Algorithm 2: Pansharpening Algorithm

Data: The observed PAN and MS data, p, MS,
respectively; the degradation filter h.

Result: Pansharpened image M̂S.
begin

Upsample the MS image to get M̃S with the same
dimensions of p
Equalize p with each band of MS using Eq. (5.8) to get
Phm

Convolve Phm with the degradation filter h to get Phm
LP

Use Eq. (5.9) to obtain the final product M̂S

second dataset is acquired by QuickBird (see Sec. 4.3 for its spec-
tral and spatial characteristics) and it represents an urban area of
Indianapolis, and is named, for this reason, Indianapolis dataset.

All the algorithms considered for the comparison are based on
the HPM injection model presented in Sec. 5.3. Thus the pan-
sharpening algorithms differ only by the detail extraction phase,
which is defined by the filter used to generate the equivalent
panchromatic with same resolution of the MS image (i.e., PLP

in Eq.(5.9)). More in detail, SFIM [55] is based on the Box filter
for extracting details; ATWT is an “à trous” wavelet method [60]
matched with a typical MTF shape in the visible and NIR spec-
trum [57], while MTF employs a Gaussian filter [58,70], designed
to match the sensor MTF by exploiting the knowledge of the gain
at the Nyquist frequency [57]. For the sake of comparison, EXP
is also taken into account in the evaluation being the reference im-
age with no detail injection. In this case, only the interpolation of
the original MS image is performed to reach the same image size
of the PAN. The interpolation algorithm exploits the polynomial
kernel with 23 coefficients as in [70]. This interpolation method is

also used to generate the M̃S in Eq.(5.9) for all the algorithms.
Two validation strategies are considered:

• The first one is performed by following the Wald protocol.
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A reduced scale MS image is generated by applying a Gaus-
sian MTF matched filter to the original MS image that is
also used as a reference for validating the fused products.
The main objective of this test is to show that the proposed
method is able to properly approximate the LPF used for
degrading the images in the simulation phase.

• The other experiment is performed at full scale with no
degradation. In this case no reference image is available
and thus the spectral quality of the fused image has to be
evaluated against the original MS image, while the spatial
quality is assessed by comparing the details of the final prod-
uct with those of the original PAN image. Moreover, in this
case, a visual analysis is a mandatory step to appreciate the
quality of the pansharpened images.

5.4.1 Wald Protocol

In the literature, there are two well-known techniques to validate
pansharpening products. One of the most used (see the pansharp-
ening contest organized by the IEEE Data Fusion Committee in
2006 [42]) is derived from the Wald Protocol and aims at verifying
the synthesis property [36]. In this case, reduced scale MS and
PAN images are simulated; the two images are then fused and the
pansharpened image is compared with the original image, used
as a reference. A problem implied by this validation procedure
regards the quantification of the similarity between the two MS
images, or, in another words, the choice of the quality indexes
to use in order to verify the spectral and spatial consistency of
the fused product with the given reference image. We will exploit
in this chapter: The Spectral Angle Mapper (SAM) (in degree)
that evaluates the spectral distortion, the Erreur Relative Glob-
ale Adimensionnelle de Synthese (ERGAS) [52] that is able to
measure both the spectral and radiometric distortions and the Q4
index [68], which represents a vectorial extension of the Q [67],
relevant to four band datasets.
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Sensor Blue Green Red NIR

IKONOS 0.27 0.28 0.29 0.28
QuickBird 0.34 0.32 0.30 0.22

Table 5.1 MTF gains at Nyquist cutoff frequency.

The last question that arises in this protocol is related to the
procedure for simulating the low resolution MS and PAN images.
Proper low pass spatial filters have to be applied to the two im-
ages. Usually, in the case of the MS image, the filter is matched
with the MTF shape of the MS sensor, designed by exploiting the
hypothesis of Gaussian shape and the knowledge of the gains at
Nyquist frequency of the MS sensor (see Tab. 5.1 for values of
sensors involved in this analysis) [57]. On the other hand, an ideal
filter is applied in this phase to the PAN image [57].

Obviously, this procedure is very accurate, but the hypothesis
of invariance between scales, on which it is founded, is not always
fulfilled in practice. Moreover, a strong bias is introduced in the
comparison among the algorithms, since a specific known filter is
applied to degrade the initial images. In fact, in the detail extrac-
tion stage of a pansharpening algorithm, the best way to extract
details should be obtained matching the filter used to simulate the
products for the validation.

In this validation scenario preliminary experiments aim at eval-
uating the role of the parameters characterizing the proposed
method for the estimation of the filter. The first analysis is car-
ried out by varying the λ and µ coefficients, fixing the support
dimensions to a value equal to the double of the supposed real
support size (i.e., 12 pixels, which as detailed afterwards can be a
reasonable size for the filter support). A large range of values are
used for the coefficients of the regularization terms in a model of
the system (i.e., Eq. (5.1) without any noise). The performances
are measured by using the error in angle (in degrees) between the
filter used in the simulation phase and the one estimated through
the proposed optimization procedure illustrated by Algorithm 2.
The results are shown in Fig. 5.1. From the experiments it can be
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Figure 5.1 Error in angle over (a) λ and (b) µ variations for the proposed
approach with support size equal to 25, using the model in Eq.(5.1) without

additional noise.
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Figure 5.2 Error in angle Vs. the support size using the model in Eq.(5.1)
without additional noise.

stated that the proposed method shows no particular sensitivity
with respect to the values of the regularization coefficients.

Subsequently, an analysis for evaluating the robustness of the
technique to different filter support sizes is performed. A reason-
able choice for the support dimension is considered to be at least
3 · R assuming a blur with Gaussian shape (i.e., for a R = 4 the
support size is at least equal to 3 · R = 12). The performances
corresponding to different sizes of the filter support are computed
fixing λ = µ = 0 and λ = µ = 105 and are reported in Fig. 5.2
showing that this rule of thumb for setting the size of the support
is reasonable. By investigating more in details the obtained re-
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Figure 5.3 Error in angle over (a) λ and (b) µ variations for the proposed
approach with support size equal to 25, using the model in Eq.(5.1) with

Gaussian noise. The SNR is equal to 45 db.

sults, errors in angle are comparable, but the robustness over high
support dimensions values is better for higher values of the pa-
rameters. For this reason and for the greater robustness to noise
of this configuration, we choose the latter setting. Quantifying
the robustness to noise can be useful, especially in real scenarios
where the Signal to Noise Ratio (SNR) could be lower than in a
simulated case. In order to further corroborating this choice, we
show in Figs. 5.3 and 5.4 the angle error curves vs. λ and µ co-
efficients and support dimensions obtained by using i.i.d. white
Gaussian noise in the degradation model described by Eq. (5.1).
We set the SNR value to 45 db that is well-suited for simulating
real scene acquisitions by MS sensors. The effectiveness of em-
ploying higher values for the regularization coefficients to face the
additional noise contribution is evident from the results.

Regarding the stopping criterion, a fixed number of iterations
is chosen. The estimation in Eq. (5.5) is not very sensitive to
the variation of the degradation filter applied to the PAN image,
leading to a fast convergence of the proposed iterative approach
for the filter estimation. A couple of iterations are usually enough
to guarantee the convergence. The maximum number of iterations
is set to 10 in order to ensure the stop of the algorithm.

Another interesting analysis is carried out by varying the LPF
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Figure 5.4 Error in angle Vs. the support size using the model in Eq.(5.1)
with Gaussian noise. The SNR is equal to 45 db.

needed by the interpolation procedure that yields the upsampled
version M̃S of the MS image. In fact, the estimation problem
in Eq. (5.5) takes into account both the actual degradation and
the one introduced by the non-ideality of the LPF used in the
upsampling step. In Fig. 5.5, we can see the different blurs esti-
mated by the algorithm with different interpolation methods. It
is worth noticing that, when the bicubic interpolator (i.e., the far-
thest one from ideal) is used, the estimated blur is more significant
than the one achieved when a half band polynomial with 23 co-
efficients (i.e., closer to the ideal filter) is exploited. This is due
to the mentioned necessary compensation of the non-ideality (par-
ticularly the attenuation introduced by the non-ideal LPF) in the
estimation phase. The final results reported in Tab. 5.2 show that
the proposed approach overcomes the method based on the same
filter used for simulating the degraded images, which should ob-
tain the best performances. On the contrary, by using an almost
ideal LPF in the upsampling phase, the filter estimation procedure
tends to approximate the system applied during the simulation,
as confirmed by the very similar values achieved by MTF and FE
methods (see Tab. 5.3).

In Fig. 5.6 a visual comparison between the actual MTF-based
blurs and the estimated ones is shown. The first row reports the
ideal shapes of the degradation filters and the second contains the
results obtained by applying the estimation procedure performed
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Figure 5.5 Proposed method’s estimated blur function, when M̃ is
obtained with (a) the bicubic interpolator or (b) the half band polynomial

with 23 coefficient interpolator.

band by band (FE MS approach). Finally, the third row reports
the filter achieved by examining the relation between the PAN
image and its equivalent low pass version, which constitutes the
proposed method of this paper (FE method). In the first case a
different filter is obtained for each band. This is the simplest and
more intuitive choice, but it obtains poor results due to the inco-
herence between a MS band and the PAN image (in particular,
the Blue and Green bands) [1]. In fact, the coherence between a
MS channel and the PAN image increases with the contribution
that the band gives to the PAN image (see the relative spectral re-
sponses for the sensor in Fig. 5.7); accordingly a better estimation
of the degradation filter can be achieved. In Tabs. 5.2 and 5.3, the
results obtained by the FE MS, the FE and the MTF methods are
shown. The advantages of the FE method with respect to the FE
MS approach are evident in terms of all the performance indexes.
Furthermore it can be underlined that the proposed method con-
stitutes a good approximation of the optimal MTF approach.

In conclusion, the comparison with other very popular detail
extraction filters is reported in Tab. 5.4. Naturally, the best results
are obtained by the MTF approach (see a visual comparison be-
tween the MTF method and the proposal in Fig. 5.8). Indeed, the
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Figure 5.6 From the top to the bottom: (a)-(d) Expected blurs; (e)-(h)
Estimated blurs by the FE MS method; (i)-(l) Estimated blurs by the FE
approach. The columns are ordered by wavelengths (i.e., Blue, Green, Red

and NIR).
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Figure 5.7 IKONOS sensor: Relative spectral responses.
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Algorithm Q4 SAM(◦) ERGAS

MTF 0.8744 3.1595 2.5908
FE MS 0.8674 3.1990 2.6888
FE 0.8758 3.0990 2.5745

Table 5.2 Performance evaluation for the MTF and FE methods, when M̃
is obtained with the bicubic interpolator.

Algorithm Q4 SAM(◦) ERGAS

MTF 0.8826 2.9925 2.4573
FE MS 0.8774 3.0679 2.5828
FE 0.8825 2.9807 2.4623

Table 5.3 Performance evaluation for the MTF, FE MS and FE methods,

when M̃ is obtained with the 23 coefficient interpolator.

performances of the Gaussian approaches are slightly better than
wavelet-based ones and, in general, they are preferred in the detail
extraction phase [72]. Poorer performances are instead shown by
the SFIM method, which is based on the Box filter. They are
mainly due to the ripple in the obscure band and the shape in the
frequency domain that does not well approximate the MTF of the
MS sensor. Moreover, in Tab. 5.5, the execution times are shown
with reference to the China dataset, using an image with dimen-
sions equal to 300 × 300 and a processor AMD Athlon 1.6 GHz.
The interpolation phase with the half band polynomial with 23
coefficient interpolator requires 0.3 seconds. The fastest approach
is SFIM followed by MTF, FE, which takes more time due to the
filter estimation step, and ATWT. However, all the approaches ob-
tain good results in terms of this index, also thanks to the chosen
simple but efficient injection rule.
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Algorithm Q4 SAM(◦) ERGAS

EXP 0.7423 4.4100 3.8337
SFIM 0.8597 3.4037 2.7823
ATWT 0.8829 3.0308 2.4659
MTF 0.8826 2.9925 2.4573

Table 5.4 Performance evaluation for the EXP, SFIM, ATWT and MTF

methods, when M̃ is obtained with the 23 coefficient interpolator.

Algorithms EXP SFIM ATWT MTF FE

Execution Times [sec.] 0.30 0.53 2.05 1.04 1.74

Table 5.5 Execution times for the compared methods on the China
dataset.
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(a) (b)

(c) (d)
Figure 5.8 (a) MS full resolution (4 m) image (used as reference image);

(b) EXP, (c) MTF, (d) FE methods.



5.4. Experimental Results 89

0.8 0.82 0.84 0.86 0.88 0.9

0.925

0.93

0.935

0.94

0.945

5

7

9
13 23

SAM

S
C

C

support
size

Figure 5.9 The results in terms of SAM and SCC indexes of the proposed
method obtained by varying the support sizes.

5.4.2 Full Scale Validation

The second test case is performed at full scale. Because of the
unavailability of the reference image, the Spectral Angle Mapper
(SAM) [66] between the MS image and the fused product has
been calculated, together with the Spatial Correlation Coefficient
(SCC) [65] between the details of the PAN image and the ones of
the fused product, are used in order to evaluate the performance of
the algorithm. This test is performed on the Indianapolis dataset.

Fig. 5.9 shows the performances of the proposed method
achieved by varying the support dimension and fixing µ = λ = 105.
A good compromise between spectral consistency and spatial en-
hancement is provided by a support dimension equal to 13. In
Tab. 5.6 the results of the MTF and FE algorithms are shown
together with a comparison with state of the art pansharpening
algorithms based on different detail extraction phases. The pro-
posed approach obtains the best SCC, which indicates a good ex-
traction phase, and a reasonable SAM value that evidences a good
spectral consistency.

The most straightforward consequence of the reference image
unavailability concerns the numerical assessment of fused prod-
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Algorithm SAM(◦) SCC

EXP 0 0.4864
SFIM 0.6137 0.8664
ATWT 0.7904 0.9351
MTF 0.9772 0.9366
FE 0.8923 0.9438

Table 5.6 Full scale performance evaluation using SAM and SCC indexes
for EXP, SFIM, MTF and FE methods.

ucts quality. Thus, visual inspection constitutes the key step to
understand the effectiveness of a pansharpening algorithm. Nev-
ertheless, as further information, we quantify the performances of
the considered approaches through the SAM and the SCC indexes.
The former is a measure of the spectral distortion with respect to
the original MS product, but its value has to be considered cum
grano salis. Indeed, since the details are characterized by peculiar
spectral features, a small SAM could eventually indicate a limited
quantity of injected information [1]. Accordingly, the SAM has
to be analyzed in conjunction with the SCC index that, on the
other side, quantifies the amount of spatial details. It is worth to
underline that other approaches are often employed in the litera-
ture to evaluate the fused products at full scale (e.g., the Quality
with No Reference index [39]) but the applicability to MRA ap-
proaches could be compromised by the presence of severe aliasing
effects [71], as it is the case of QuickBird data.

Fig. 5.10 shows for every band the comparison between the
blurs derived by the MTF method and those estimated by the
proposed technique. It is worth to note the asymmetric estimated
shape (due to the blur introduced by the platform motion) which
represents the main difference between the two filters. Moreover,
in Fig. 5.11 the fused results achieved by the MTF and FE ap-
proaches are depicted by using a RGB representation, together
with the MS and PAN starting images. Fig. 5.12 points out the
differences in absolute value over the bands among the details
extracted by the above-mentioned two methods. They are partic-
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Figure 5.10 From the top to the bottom: (a)-(d) Expected blurs; (e)-(h)

Estimated blurs by the FE approach. The columns are ordered by
wavelengths (i.e., Blue, Green, Red and NIR).

ularly evident on the edges of small structures (such as paths and
cars) and on the larger ones (such as buildings). The main dif-
ferences can be highlighted in the comparison between the MTF
for the blue band and the proposed method, while the results are
closer for the NIR band. This similarity is mainly due to the fact
that the NIR band is the one that most significantly contributes to
the generation of the equivalent PAN image used for estimation.

To help a visual inspection, a small area of the Indianapolis
dataset is shown in Fig. 5.13. Since the injection model is the
same, only the details for both the algorithms are reported. An
unique image is presented for the proposed method, while four
images, one for each band, are shown for the MTF approach. The
greater evidence in the details of the proposed method compared
to the ones of the MTF approach is clear, in particular, for some
zones as the path and cars present in the area under study.
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(a) (b)

(c) (d)
Figure 5.11 Full scale fused results: (a) EXP, (b) PAN, (c) MTF and (d)

FE images.
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Figure 5.12 Differences in absolute value between the details achieved by
the FE and MTF methods over the bands, ordered by wavelengths (i.e.

Blue, Green, Red, NIR).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.13 A small area in the Indianapolis dataset : (a) MS image; (b)
PAN image; (c) RGB fusion result using the FE approach; Details extracted
as p

pLP
using (d) FE and (e)-(h) MTF (different details for each spectral

band) approaches.



Chapter 6

Hyperspectral
Pansharpening

HyperSpectral (HS) sensors have a higher spectral resolution but
a lower spatial resolution with respect to multispectral or panchro-
matic acquisitions. In order to increase their utilization and inter-
pretation, hyperspectral images with both high spectral and spa-
tial resolutions are desired. This goal can be achieved by means of
pansharpening algorithms. Unfortunately, many pansharpening
methods proposed in the literature have been properly developed
for multispectral images but they have been never tested on hy-
perspectral data. In fact, several problems can arise when they
are applied to the enhancement of hyperspectral images (e.g., the
introduction of significant spectral distortions and the increasing
of the computational effort due to the huge number of bands to
fuse). For these reasons, in this chapter we firstly perform a criti-
cal comparison among classical approaches on hyperspectral data.
Then, in order to alleviate the computational burden, we pro-
pose an approach based on: 1) Projection of the HS image into
a lower dimensional feature space by means of Non-Linear Prin-
cipal Component Analysis (NLPCA), 2) histogram matching and
substitution of the panchromatic image into one or more nonlin-
ear components and 3) projection back of the spatially enhanced
components into the original spectral space. The comparison with
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the Principal Component Analysis (PCA) is performed to demon-
strate the effectiveness of the proposal. Furthermore, in order to
reduce the spectral distortion, a hybrid approach is exploited by
fusing through a MRA algorithm the most correlated nonlinear
components with the panchromatic image instead of substituting
them.

The rest of the chapter is as follows. In Sec. 6.1 classical
approaches into the Component Substitution (CS) and MultiRes-
olution Analysis (MRA) families are applied to hyperspectral data
and their advantages and drawbacks are pointed out through an
accurate at full scale experimental phase, while, Sec. 6.2 describes
the use of the non-linear principal component analysis in hypespec-
tral sharpening and promotes the application of hybrid approaches
to reduce both the spectral distortion and the computational bur-
den.

6.1 Classical Approaches

Pansharpening methods are generally divided into Component
Substitution and MultiResolution Analysis techniques (see Chap-
ter 2). Principal Component Analysis (PCA) and Gram Schmidt
(GS) are surely very popular CS-based image fusion methods. All
these methods rely upon the assumption that a component of the
transformation tends to comprise the spatial information that is
common to all the bands and thus can be substituted with a his-
togram matched version of the PAN image to achieve the HS en-
hanced data. MRA methods are based on the decomposition of
each image by iterative applications of a given operator into a se-
quence of signals (or pyramid) with decreasingly informative con-
tent. Many approaches based on this concept have been proposed
in the literature, employing Wavelets or Gaussian pyramids. On
one hand, CS methods obtain fused images with high spatial qual-
ity but affected by spectral distortions. On the other hand, images
obtained through MRA techniques in general are not very sharp
but are more spectrally consistent.
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Here we compare several classical algorithms (see also Chap-
ter 2 for details) applied to hyperspectral data: Principal Com-
ponent Analysis [8], Gram Schmidt [11], Gram Schmidt Adap-
tive (GSA) [43], Smoothing Filter-based Intensity Modulation
(SFIM) [55], Generalized Laplacian Pyramid with MTF-matched
filter (GLP) [57], Gaussian MTF-matched filter with High Pass
Modulation (MTF HPM) injection model [58].

The experiments have been conducted on two different
datasets. The first one represents a small part of the center of
Paris and is collected by the Hyperion sensor, which is capable of
resolving 220 spectral bands (from 0.4 to 2.5 µm) with a 30-meter
resolution, and by the panchromatic ALI sensor, which has a spa-
tial resolution of 10 meters and a spectral coverage form 0.48 µm
to 0.69 µm. Both sensors are mounted on the same platform, thus
alleviating image co-registration problems. In the experiment, the
sole bands which overlap the spectral range of the panchromatic
channel are used (i.e., from band 14 to 33). The second scene
represents a part of the city of Rome observed by the CHRIS-
Proba sensor. In this case, no panchromatic channel is present
on-board and the fusion is performed with a PAN image acquired
by QuickBird (see Sec. 4.3 for its spectral and spatial character-
istics). CHRIS-Proba has a spatial resolution of 17 meters and
18 bands with a variable spectral resolution, increasing from 1.25
nm at 415 nm to 11.25 nm at 1050 nm. Since the panchromatic
channel of QuickBird has a spatial resolution of 0.6 m, it has been
properly reduced by using almost ideal low pass filters to obtain
a more suitable scale ratio of 4. We will name Hyp+ALI the first
dataset and CHRIS+QB the second one.

We perform the validation of the fused products at full scale
using the Quality with No Reference (QNR) index. The QNR con-
sists of two parts: The spectral (Dλ) and spatial (DS) distortions.
The former, which estimates the spectral fidelity of the data, is
time consuming when the number of bands to fuse increases. For
this reason, we substitute it with the very popular Spectral Angle
Mapper (SAM). We recall that the best values for DS and SAM
are zero.
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 6.1 Hyp+ALI dataset: (a) MS; (b) PAN; (c) PCA; (d) GS; (e)

GSA; (f) SFIM; (g) GLP; (h) MTF HPM.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 6.2 CHRIS+QB dataset: (a) MS; (b) PAN; (c) PCA; (d) GS; (e)

GSA; (f) SFIM; (g) GLP; (h) MTF HPM.
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The fusion results for the Hyp+ALI dataset are shown in
Fig. 6.1 and the corresponding values of the numerical indexes
are reported in Tab. 6.1. More in detail, in the MRA family
the advantages of Gaussian MTF-matched filters with respect to
the Box one (used by SFIM ) are evident. In fact, the former are
preferable mainly due to an increased amount of extracted details
(as the DS index values testify) and the reduction of artifacts (see
Fig. 6.1). By comparing the injection strategies, the HPM injec-
tion model shows its superiority with respect to detail addition,
as it is also the case for MS data fusion [53]. Into the CS family,
the results are very similar. The behavior of the GSA algorithm is
slightly penalized by the error committed in the estimation of the
channel weights to construct the equivalent PAN image. Indeed,
the performances should be very close to the ones obtained by
the GS method, because the spectral responses of the Hyperion
channels are very tight and all with the same bandwidth (as im-
plicitly assumed by GS ). The comparison between the two classes
of pansharpening methods shows the performance advantages of
the MRA approaches thanks to the reduction of the spectral dis-
tortion, which becomes increasingly relevant with the growth of
the band number. On the other hand, the reduced computational
burden and the robustness to misregistration errors (very common
for images acquired by sensors on different platforms) suggest the
use of CS algorithms. This last characteristic has been further
investigated in this work, by introducing a shift in the grid of

Algorithm SAM(◦) DS

PCA 0.7928 0.1054
GS 0.7913 0.1053
GSA 0.8008 0.1062
SFIM 0.4352 0.1666
GLP 0.6650 0.0619

MTF HPM 0.6554 0.0593

Table 6.1 Full scale analysis: Hyp+ALI dataset with perfectly
coregistrated images.
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the PAN image and the results are reported in Tab. 6.2. The CS
algorithms obtain lower DS values, indicating the ability to com-
pensate the misregistration errors. The slight increase of all the
SAM values is due to the differences of details among the bands,
as well analyzed and justified in [71].

The results concerning the CHRIS+ALI dataset are in line
with the previous test case (see Tab. 6.3 and Fig. 6.2). In general,
higher values of SAM and DS are reported, since the images were
acquired by different sensors, resulting in different fields of view,
temporal incoherence and so forth. Slight advantages in perfor-
mances of CS methods can be evidenced, thanks to the greater
robustness to misregistration errors. Since the CHRIS-Proba sen-
sor has a significant variation of the spectral resolution over the
bands, the GSA approach is advisable with respect to the GS. In-
deed, we report that, by limiting the analysis to a small number
of bands with higher bandwidths, the results of the GS and GSA
becomes more comparable, as expected.

Finally, it is worth to note that the Box filter used by SFIM
seems to work better than the MTF matched Gaussian one be-
cause of the preliminary spatial degradation of PAN image, carried
out to obtain a reasonable scale ratio. From a visual point of view,
the temporal coherency of the MRA approaches compared to the
CS ones is evident, in particular, at the burned area, which is only
present in the PAN image (see the right side of Fig. 6.2). Accord-
ingly, the correct behavior consists in discarding this feature as for

Algorithm SAM(◦) DS

PCA 1.3194 0.0597
GS 1.3159 0.0595
GSA 0.8088 0.2525
SFIM 0.4380 0.5462
GLP 0.6895 0.3561

MTF HPM 0.6590 0.3664

Table 6.2 Full scale analysis: Hyp+ALI dataset with 60 meters
misalignment (2 HS pixels).
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MRA approaches.

6.2 Pansharpening Based on Non-

Linear PCA

In this section we want to detail the use of NLPCA [29] for hy-
perspectral pansharpening. In particular, we briefly describe the
NLPCA approach by focusing on its implementation through Ar-
tificial Neural Networks. We subsequently describe the proposed
algorithm aimed at mitigating the main drawbacks in fusing HS
data, such as, the spectral distortion and the computational bur-
den. Finally, the experimental results are shown.

6.2.1 Non-Linear PCA

Let us consider a set of n observations of dimensionality m, which
are denoted as X = [x1, . . . ,xi, . . . ,xm], where xi is the column
vector composed by the i-th components of the n observations. In
the NLPCA approach, X is mapped into a lower dimensionality
feature space through a set of nonlinear functions

Y = z(X). (6.1)

In this equation the n×f resulting matrixY = [y1, . . . ,yj, . . . ,yf ]
contains the Non-Linear Principal Components (NLPCs) and z =
[z1, . . . , zf ] is the set of f < m nonlinear functions.

Algorithm SAM(◦) DS

PCA 10.6386 0.2904
GS 5.4846 0.4768
GSA 4.9747 0.3866
SFIM 3.0762 0.3097
GLP 4.2274 0.3904

MTF HPM 3.2355 0.3654

Table 6.3 Full scale analysis: CHRIS+QB dataset with perfectly
coregistred images.
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(a) (b)
Figure 6.3 Networks implementing (a) mapping z and (b) demapping ϕ

functions.

The inverse transformation, which aims at reconstructing the
m-dimensional data from its f -dimensional representation, can
be performed by a set of m nonlinear transformations ϕ =
[ϕ1, . . . , ϕm]:

X̂ = ϕ(Y) (6.2)

where the n×m matrix X̂ indicates the reconstruction of X (see
also Fig. 6.3).

Analogously to PCA, the loss of information between the
original and reconstructed data, measured by the error matrix
E = X− X̂, can be minimized by properly selecting the functions
z and ϕ.

A widely employed method for implementing the latter trans-
formations, relies upon the use of Artificial Neural Networks
(ANNs), whose power is the consequence of the result that any
nonlinear function can be approximated by a superposition of a
set of transformations σ(x) that are continuous and monotonically
increasing functions, with σ(x) → 1 as x → +∞ and σ(x) → 0 as
x → −∞ [83]. This property is often called universal fitting and
its hypotheses are fulfilled by sigmoidal functions [84]. Specifically,
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the approximation of any nonlinear function can be obtained by
an ANN using one single layer of nodes with sigmoidal activation
functions and two layers of weighted connections [84]. In practi-
cal implementations, sigmoidal nonlinearities are often included in
the nodes of the output layer so that the network produces out-
puts in a fixed and finite range. The ability of the ANN to fit
arbitrary nonlinear functions depends on the presence of a hidden
layer with nonlinear nodes. Without the hidden layer (or with
linear nodes in the hidden layer), the network is only capable of
producing linear combinations of the inputs, given linear nodes in
the output layer. A network lacking a hidden layer but includ-
ing sigmoidal nonlinearities in the output layer is only capable of
generating multivariable sigmoidal functions.

Starting from these considerations, the NLPCA can be imple-
mented by two ANNs playing the role of the nonlinear functions
z and ϕ [29]. The ANN approximating z, called coding subnet,
is composed by an input layer with m nodes followed by the hid-
den layer (often called mapping layer) with M1 > f nodes and
sigmoidal transfer functions (to verify the universal fitting prop-
erty). The output layer of this subnet contains f < m nodes
and for this reason it is often called bottleneck. The second ANN
(also called decoding subnet) approximates the ϕ function. Its in-
put layer has f nodes followed by the hidden layer (often called
demapping layer) with M2 > f nodes and sigmoidal transfer func-
tions (aimed again to verify the universal fitting property). The
output layer yields the reconstructed data and thus contains m
nodes. The nodes of the output layers can be linear or sigmoidal.
ANNs require supervised training that consists in tuning the net-
work in order to obtain a desired output. However, only the input
of the coding network and the output of the decoding network
are known, while the outputs of the coding subnet, and hence the
inputs of the decoding subnet, are unknown. Therefore, direct
supervised training of the two networks is unfeasible. To over-
come this problem, one can observe that by combining in series
the two ANNs, or, equivalently, by defining a composite function
ψ(·) = (z ◦ ϕ)(·) = ϕ(z(·)) which links the original data X with
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their reconstructed version X̂:

X̂ = ψ(X), (6.3)

the combined network can be trained to produce the identity map-
ping. In other terms, the parameters of the network implementing
ψ are optimized so that the reconstructed outputs match the in-
puts as closely as possible. The training aimed at learning the
identity mapping has been called self-supervised backpropagation
or autoassociation [85], thus suggesting the name of AutoAssocia-
tive NNs (AANNs). The training of AANNs is an iterative process
that is completed when the sum of squared errors is minimized:

E =
n∑

p=1

m∑
i=1

(x̂i − xi)
2
p (6.4)

or, equivalently, when the matrix error norm ∥E∥ is minimized (as
in the case of PCA).

Once the complete AANN ψ is trained, it is possible to use the
coding subnet to project the original data into a lower dimensional
space. Thus, the f NLPCs can be obtained from the output layer
of the bottleneck. The obtained NLPCs can be subsequently used
as input to the decoding subnet in order to obtain the reconstructed
data.

As it can be seen, the main difference between PCA and
NLPCA is that the latter employs nonlinear relations between
variables, while PCA is based on linear ones. As a consequence,
NLPCA has the relevant advantage to retain most information,
that is typically quantified by the variance of the data, in fewer
components with respect to PCA.

One of the main difficulties in designing the AANN relies in the
selection of the correct number of nodes that minimizes the loss
of information produced in the three hidden layers, and, in par-
ticular, in the bottleneck. Being the AANN designed to minimize
the reconstruction error, the best NN topology can be retrieved
by using a simple grid search algorithm that varies recursively
the number of nodes of the hidden layers and selects the topol-
ogy presenting the smallest error. However, without a well-chosen
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starting point, this approach can be extremely time consuming
and the probability of locally optimal solutions due to data over-
fitting turns out to be very high. To mitigate this problem a
further condition on the network complexity is forced; since the
outputs impose n ·m constraints, a more regular solution can be
achieved by imposing that the number of the adjustable param-
eters (weights and biases for all network connections and nodes,
respectively) must be much less than this number. Because the
number of network weights is (M1 +M2)(m+ f + 1) +m+ f the
following inequality has to be fulfilled:

M1 +M2 ≪
m(n− 1)− f

m+ f + 1
. (6.5)

Since the aim of a dimensionality reduction method is to obtain
a representation of the original signal into a lower dimensional
space, i.e., f ≪ m,n, Eq. (6.5) can be easily approximated as:

M1 +M2 ≪ n. (6.6)

Furthermore, by assuming a balanced structure of the AANN, i.e.,
M1 and M2 should have the same dimensions (M1 = M2 = M), a
widely used design condition is the following:

2M ≪ n. (6.7)

It is worth to note that Eq. (6.7) is effective only if the number of
mapping/demapping nodes M is greater then the number of nodes
in the bottleneck layer f . Otherwise, there will not be enough data
to effectively extract f NLPCs. Moreover, since the output has
simply the task of replicating the input, no a prior knowledge is
needed for the implementation of the learning phase. This implies
that the AANN training can be performed in a fully automatic
way and that all the image pixels can be used for this step, as it
has been done in this work.

6.2.2 Proposed Approach

To fully describe the proposed pansharpening algorithm, we firstly
recall the used notation. We indicate the HS low spatial resolution
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image as HS and define the vectorized form of the panchromatic
image P as p = vec(P), where vec is the operator that transforms
the original image in its vectorized form (i.e., arranges in a column
vector the pixels of the image, extracted by columns). Then the
interpolated version of HS to the resolution of p is denoted as
H̃S = [h̃s1, . . . , h̃sk, . . . , h̃sN ] where h̃sk is the vectorized form
of the k-th band of the interpolated HS image and N the band
number.

The first step of the approach is to train the AANN by using
the whole dataset H̃S in order to obtain the functions z and ϕ
for the coding and decoding phases, respectively. Subsequently
we exploit Eq. (6.1) to get the set of f NLPCs, called NLPC =
[nlpc1, . . . ,nlpcf ], from now on. In Eq. (6.1), the role of X is

played by H̃S.

Since the NLPCs tend to represent different characteristics of
the spectra, the injection of the same amount of PAN spatial de-
tails into each component would not lead to an acceptable result.
In order to overcome this problem, only the NLPCs for which
the correlation coefficients with the PAN image are higher than
a given threshold θ are selected for the sharpening. The thresh-
old θ is chosen equal to 0.9 · ρmax, where, ρmax represents the
maximum value of the correlations between each NLPC and the
panchromatic image. The selected NLPCs are then substituted
with a histogram-matched version of the PAN image. At the end,
both the histogram-matched PAN images and the NLPCs that do
not exceed the threshold are used in Eq. (6.2) to obtain the fi-

nal pansharpened product ĤS. This CS algorithm will be named
NLPCA, from now on.

Furthermore, in order to reduce the relevant spectral distor-
tion, a modification of the above-mentioned algorithm is proposed.
Indeed, a MRA fusion approach is exploited instead of the classical
substitution of the selected components with a histogram matched
version of the PAN image. Therefore, only the details of the latter
are injected into the NLPC to get the fused components. Sev-
eral MRA approaches have been tested and they will be described
in Sec. 6.2.3. The complete NLPCA-based hybrid processing pro-
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Figure 6.4 Complete scheme of the proposed hybrid approach.

posed in this chapter is resumed in Algorithm 3 and the schematic
representation of the fusion process is depicted in Fig. 6.4.

6.2.3 Experimental Results

The experimental results are conducted on two different HS
datasets. Firstly, we exploit the Pavia dataset, a 103 bands hy-
perspectral image acquired by the ROSIS airborne sensor. In this
case, no panchromatic image is available and it is simulated by
averaging the values of its bands. This choice has the relevant
advantage that the resulting pansharpened image does not suffer
from distortions caused by misregistration between the HS and
PAN. Moreover, both synthetic PAN and HS images have the same
spectral coverage and temporal coherence, thus avoiding the insur-
gence of further spectral distortions. Another important remark
concerning these kinds of data is the linear correlations among
the spectral bands [86]. This suggests that, since the NLPCA ap-
proach is able to deal with both linear and nonlinear correlations,



108 6. Hyperspectral Pansharpening

Algorithm 3: NLPCA Hybrid Pansharpening Algorithm

Data: The upsampled HS image H̃S, the PAN image p
and the threshold θ.

Result: Fused HS image ĤS.
begin

Train the AANN using H̃S to get the functions z and ϕ

Use Eq. (6.1) with X = H̃S to get
NLPC = [nlpc1, . . . ,nlpcf ]

H = ∅
for i ∈ {1, . . . , f} do

Compute the correlation ρ between p and nlpci to
get ρi = ρ(p,nlpci)
if ρi > θ then

Inject the spatial information of p into the nlpci
to get n̂lpci

H = H ∪ {n̂lpci}
else

H = H ∪ {nlpci}

Use Eq. (6.2) with Y = H to get ĤS
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the results obtained by NLPCA and PCA (which only takes into
account of linear correlations) should be very close.

The second test is based on the CHRIS+QB dataset (already
described in Sec. 6.1). In this case the correlations among bands
have been shown to be nonlinear [87], thus suggesting the exploita-
tion of nonlinear approaches to improve the results.

In both cases, the resolution ratio R is chosen to be 4 because
it is typical for pansharpening applications and offers the best
tradeoff between spatial enhancement and spectral distortion [30].

The algorithms for the comparison are listed below:

• PCA: Substitution of the first principal component with the
PAN image [8]

• HPF : Box filter and additive injection model [5]

• SFIM : Box filter and HPM injection model, even called
Smoothing Filter-based Intensity Modulation [55]

• GLP : Generalized Laplacian Pyramid with MTF adjustment
[57]

• MTF HPM : Gaussian pyramid with MTF adjustment [57]
and HPM injection model [58]

• ATWT : A Trous Wavelet with additive injection model [60]

• AWLP : Additive Wavelet Luminance Proportional [65]

The quantitative analysis is performed both at reduced and
full scale. In the former case, the Spectral Angle Mapper (SAM),
the Relative Global Error of Synthesis (ERGAS) and the Spatial
Correlation Coefficient (SCC) [5] are used to evaluate the perfor-
mances. At full scale, only SAM and SCC are used for quantifying
the spectral and spatial distortions, respectively. Best values for
SAM and ERGAS are 0, while, 1 for SCC.
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Figure 6.5 The 4 NLPCs and the PAN image for the Pavia dataset.

NLPC 1 NLPC 2 NLPC 3 NLPC 4

PAN -0.0536 0.9064 0.9477 0.2870

Table 6.4 Correlation coefficients between PAN image and each NLPC on
the Pavia dataset.

Pavia Dataset

To demonstrate the effectiveness of the NLPCA, we evaluate the
performances exploiting the validation procedure at reduced scale
on the Pavia dataset.

According to the proposed method, the first step consists in
projecting the HS image into a nonlinear feature space by means
of NLPCA. The Pavia dataset consists of 103 bands, hence a grid
search to optimize the number of nodes in the hidden layers of
the nonlinear AANN has been carried out. The best topology is
found to have 103 inputs/output nodes, 50 nodes in both the outer
hidden layers and 4 nodes in the bottleneck layer, corresponding
to 4 NLPCs. The PAN image is compared to each of the 4 NLPCs
in order to detect the most similar components. As it can be noted
by observing Fig. 6.5, from a qualitative point of view, component
3 presents characteristics very similar to the PAN image. Even
by analyzing the correlation values between each component and
PAN image, we can see that component 3 reaches the highest
correlation, as reported in Tab. 6.4.

These values suggest that components 3 and 2 present simi-
lar characteristics with the PAN image. For this reason, in these
experiments we perform different tests by fusing the information
of the PAN image not only with the component 3, but also with
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the other components. In greater details, four different config-
urations are tested. They consist in combining the PAN image
with component 3, components 2 and 3, components 2, 3 and 4
and all the components, respectively. In each test, the selected
components are then spatially enhanced and substituted in the
NLPCs dataset. This new feature dataset is then projected back
to the original spectral domain by using the decoding subnet. In
each test, the fusion process is carried out by employing different
well-known techniques and the final fused images are evaluated in
terms of the cited quality indexes.

Tabs. 6.5, 6.6 and 6.7 show the SAM, ERGAS and SCC quality
indexes associated to the different approaches and to the yardsticks
consisting in applying the different techniques directly to the HS
images (indicated by the label “All bands”, from now on). As
expected, among the results obtained with the proposed approach,
the best tradeoff between spectral and spatial quality is obtained
by fusing the PAN image with components 2 and 3, suggesting
that the use of the sole component 3 is not sufficient, even if the
latter is the most correlated with the PAN image. Furthermore,
the fusion of the components 4 and 1 do not improve the quality
of the enhanced images, but, in most cases, tends to increase the
distortions. This choice also supports the rule of thumb proposed
in the previous section to select the components to fuse. By a
comparison of these results with those obtained by utilizing the
same fusion techniques directly to the spectral bands, it can be
noted that the use of the NLPCA pre-processing improves the
spectral quality of the enhanced images, though preserving the
spatial coherency.

Other important remarks come from the comparison of the re-
sults obtained by using the linear (i.e., PCA) and the non-linear
PCA (i.e., NLPCA), respectively. The two methods produce en-
hanced images having almost the same overall quality, with a
slightly larger spectral distortion of the NLPCA compared to PCA,
but with a better radiometric distortion, as measured by the ER-
GAS index. Among the fusion techniques, GLP, applied to com-
ponents 2 and 3, achieves the best results in terms of spectral
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NLPCs 3 2, 3 2, 3, 4 1, 2, 3, 4 All bands

NLPCA 7.0120 6.5856 9.9686 9.5204 /
PCA / / / / 6.6061
HPF 6.8376 6.6364 6.9274 6.8534 6.8021
SFIM 6.8380 6.6978 7.0706 6.8425 11.1472
GLP 6.7972 6.4943 6.8159 6.6975 6.8451
MTF HPM 6.7369 6.5685 6.9588 6.7327 8.9873
ATWT 6.7157 6.5087 6.8447 6.6953 6.8832
AWLP 6.7157 6.5087 6.8447 6.6957 6.7253

Table 6.5 SAM quality indexes (measured in degrees) obtained with
different fusion approaches applied to the Pavia dataset. Pure MRA are

indicated by “All bands”. CS approaches are labeled as NLPCA and PCA,
while the others are hybrid approaches based on NLPCA projection and the

indicated MRA methodology. The symbol “/” indicates an unavailable
value.

quality, while AWLP applied to NLPCs 2 and 3 results in the
higher spatial consistency value. After a more general evaluation,
ATWT, AWLP, MTF HPM and GLP applied to NLPCs 2 and 3
present the best tradeoff between spatial enhancement and spec-
tral distortion.

From a qualitatively point of view, the enhanced images ob-
tained by combining the PAN image with NLPCs 2 and 3 accord-
ing to the different fusion paradigms appear to be very sharp and
spectrally consistent with the reference image, as illustrated by
Figs. 6.6 and 6.7.

A further analysis is carried out in order to evaluate the com-
putational burden of the different methods. Tab. 6.8 reports the
required times, expressed in seconds, for each technique to pro-
duce the enhanced image. As it can be clearly seen, the use of
NLPCA improves the computational efficiency of the fusion pro-
cess by reducing the band number to fuse. This is mainly evident
for MRA approaches that have higher order filters to apply to the
images to fuse (e.g., Gaussian-based ones).
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NLPCs 3 2, 3 2, 3, 4 1, 2, 3, 4 All bands

NLPCA 7.0540 6.9151 16.0414 15.6749 /
PCA / / / / 8.8601
HPF 7.1860 7.1711 8.0134 8.0237 6.8725
SFIM 7.1459 7.1140 8.3495 8.2264 7.3360
GLP 7.1406 6.0995 7.8815 7.8650 6.5513
MTF HPM 7.1325 6.0783 8.4154 8.2797 7.2173
ATWT 7.1346 6.1002 7.9359 7.8999 6.6527
AWLP 7.1346 6.1007 7.9359 7.8997 6.7529

Table 6.6 ERGAS quality indexes obtained with the different fusion
approaches applied to the Pavia dataset. Pure MRA are indicated by “All
bands”. CS approaches are labeled as NLPCA and PCA, while the others
are hybrid approaches based on NLPCA projection and the indicated MRA

methodology. The symbol “/” indicates an unavailable value.

NLPCs 3 2, 3 2, 3, 4 1, 2, 3, 4 All bands

NLPCA 0.8364 0.8669 0.7565 0.7288 /
PCA / / / / 0.7737
HPF 0.7911 0.8104 0.7876 0.7859 0.8467
SFIM 0.7910 0.8061 0.7898 0.7903 0.6928
GLP 0.7972 0.8178 0.7982 0.7978 0.8520
MTF HPM 0.7964 0.8140 0.8031 0.8056 0.7926
ATWT 0.7985 0.8199 0.7989 0.8013 0.8525
AWLP 0.7985 0.8565 0.8589 0.8012 0.8597

Table 6.7 SCC quality indexes obtained with the different fusion
approaches applied to the Pavia dataset. Pure MRA are indicated by “All
bands”. CS approaches are labeled as NLPCA and PCA, while the others
are hybrid approaches based on NLPCA projection and the indicated MRA

methodology. The symbol “/” indicates an unavailable value.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 6.6 RGB images obtained by combining bands 70, 50 and 20 for

the Pavia dataset : (a) Reference image; (b) H̃S; Fused products achieved by
means of (c) NLPCA; (d) PCA; Hybrid-NLPCA: (e) HPF; (f) SFIM; (g)

GLP; (h) MTF HPM; (i) ATWT; (j) AWLP; Directly (all bands) applied to
HS and PAN images: (k) HPF; (l) SFIM. The fused images are obtained

using the NLPCs 2 and 3.
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(a) (b) (c)

(d) (e)
Figure 6.7 RGB images obtained by combining bands 70, 50 and 20 for

the Pavia dataset : (a) Reference image; Fused products obtained by directly
applying to HS and PAN images the following methods: (b) GLP; (c) MTF

HPM; (d) ATWT; (e) AWLP.
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NLPCs 3 2, 3 2, 3, 4 1, 2, 3, 4 All bands

NLPCA 5.11 5.15 5.15 5.20 5.25
PCA / / / / 5.00
HPF 5.10 5.14 5.17 5.25 6.25
SFIM 5.11 5.13 5.18 5.21 6.25
GLP 6.33 7.37 8.86 11.59 104.99
MTF HPM 6.33 7.37 8.86 11.59 104.99
ATWT 5.29 5.55 5.80 6.28 32.81
AWLP 5.29 5.56 5.82 6.33 32.85

Table 6.8 Computational time (expressed in seconds) evaluated for the
different methods applied to the Pavia dataset. Pure MRA are indicated by
“All bands”. CS approaches are labeled as NLPCA and PCA, while, the

others are hybrid approaches based on NLPCA projection and the indicated
MRA methodology. The symbol “/” indicates an unavailable value.
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Figure 6.8 The 3 NLPCs and the PAN image for the CHRIS+QB dataset.

NLPC 1 NLPC 2 NLPC 3

PAN -0.0906 0.2340 0.3951

Table 6.9 Correlation coefficients between PAN image and each NLPC
obtained by the CHRIS+QB dataset.

CHRIS+QB Dataset

In this second experiment, we apply the NLPCA to the
CHRIS+QB dataset. The CHRIS-Proba image presents 18 bands
and a spatial resolution of 20 meters, while the PAN image has
a resolution of about 0.6 meters (degraded with an almost ideal
filter [57] to 5 meters to obtain a more suitable spatial resolution
ratio of 4). As in the previous experiment, in order to project
the HS image into the nonlinear feature space, all the pixels of
the upsampled CHRIS-Proba image are used to train the AANN.
The best AANN topology configuration is found to have 18 in-
puts/output nodes, 9 nodes in both the outer hidden layers and
3 nodes in the bottleneck layer, resulting in 3 NLPCs. Being the
two images acquired in different dates, with different atmospheric
conditions and with different angles of view, high correlation val-
ues between the NLPCs and the PAN image are not expected,
as confirmed by Fig. 6.8 and Tab. 6.9. Indeed, in this case, only
one component (the third one) presents an appreciable correla-
tion with the PAN image and it is the unique component that
overcomes the threshold θ for the fusion.

Even in this case, several other pansharpening approaches are
compared in order to assess the performances of the proposal.
After the fusion, all the components are projected back to the
original spectral domain by using the demapping subnet of the
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SAM SCC
Hybrid-NLPCA All bands Hybrid-NLPCA All bands

NLPCA / 3.6093 / 0.8893
PCA / 9.9237 / 0.6624
HPF 3.1074 3.8072 0.7241 0.7249
SFIM 3.2007 3.5930 0.7019 0.7067
GLP 3.1597 3.9273 0.7973 0.7949
MTF HPM 3.2477 3.8603 0.7817 0.7934
ATWT 3.1674 4.2287 0.8029 0.8001
AWLP 3.1674 4.1565 0.8029 0.7944

Table 6.10 SAM (expressed in degrees) and SCC quality indexes over the
different fusion approaches applied to the CHRIS+QB dataset. The symbol

“/” indicates an unavailable value.

AANN. For the sake of comparison, also the results obtained with
the same techniques, directly applied to the HS images (labeled
again as “All bands”) are considered.

In this case, a full scale validation is performed. For this rea-
son, we only consider SAM, as the spectral quality index, evalu-
ated between the fused product and the original HS image, and
SCC, evaluated between the details of the outcome of the fused
algorithm and the PAN image, for the spatial quality. Even if
the latter is not advisable as a general evaluation index [1], it is
possible to use it as a parameter quantifying the ability of the
different techniques to extract spatial details and, thus, assess the
sharpness of the final product.

Tab. 6.10 shows the SAM and SCC quality indexes associ-
ated to the different approaches. It can be shown that, in most
cases, independently from the chosen extraction detail technique,
the projection into the non-linear feature space permits to achieve
better results, in terms of spectral and spatial quality, if compared
with the same fusion method applied directly to the HS image.
In particular, the enhanced images obtained with a NLPCA pre-
processing present a lower spectral distortion with a comparable
spatial consistency. A direct comparison of the NLPCA method
with the PCA demonstrates that, in this test case, non-linear con-
tributions have to be taken into account. Indeed, the NLPCA
permits to enhance the spatial information of the hyperspectral
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)
Figure 6.9 RGB images obtained by combining bands 11, 9 and 7 for the

CHRIS+QB dataset : (a) PAN; (b) H̃S; Fused products by the means of (c)
NLPCA; (d) PCA; Hybrid-NLPCA: (e) HPF; (f) SFIM; (g) GLP; (h) MTF
HPM; (i) ATWT; (j) AWLP; Directly (all bands) applied to HS and PAN
images: (k) HPF; (l) SFIM; (m) GLP; (n) MTF HPM; (o) ATWT; (p)

AWLP. The NLPCA-based fused images are obtained using the third NLPC.
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Hybrid-NLPCA All bands

NLPCA 0.16 /
PCA / 0.13
HPF 0.22 2.69
SFIM 0.22 2.69
GLP 0.95 28.26
MTF HPM 0.95 28.25
ATWT 0.38 5.81
AWLP 0.38 5.83

Table 6.11 Computational time (expressed in seconds) evaluated for the
different methods applied to the CHRIS+QB dataset. The symbol “/”

indicates an unavailable value.

image without adding relevant distortions. This is also evident
by qualitatively analyzing the results in Fig. 6.9. In particular, it
can be noted that, while the image obtained following the PCA
approach presents evident spectral distortion, the one obtained
by substituting the third NLPC with the PAN image is spatially
well-defined and presents spectral characteristics very close to the
original image. In this case, the best spectral quality is achieved
by the HPF method applied to the third NLPC, while the best
spatial consistency is obtained by directly substituting the PAN
image to NLPC 3. However, on a more general analysis, the best
tradeoff between spectral and spatial qualities is again achieved
by ATWT, AWLP and GLP methods. At the end, it is worth
to underline that the hybrid approaches mitigate the problem of
the temporal coherence into the CS family. In fact, the cascade
of a CS and a MRA approach tends to have a behavior similar to
a traditional MRA algorithm with a greater temporal coherence
with respect to the product obtained by exploiting only the CS
algorithm (see Sec. 6.1). This is evident in Fig. 6.9, where the
burned area (depicted only in the PAN image) is still shown in
the NLPCA (or, equivalently, PCA) fused image but not in the
hybrid fusion products.

Tab. 6.11 shows the required time, expressed in seconds, for
each technique to produce the fused image. Again, the use of
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the NLPCA improves the computational efficiency of the image
enhancement process. The overall time to perform the NLPCA
transformation has been measured to be 0.16 seconds.





Chapter 7

Conclusions

In recent years, pansharpening has received a great attention into
the Data Fusion Community, as can be seen by the number of
different techniques proposed for accomplishing this task. In this
dissertation, a classification of the methods presented in the lit-
erature into two main families (i.e., Component Substitution and
MultiResolution Analysis) has been presented in Chapter 2 and
some widely used and popular algorithms belonging to these fam-
ilies have been described. Due to the differences in spectral and
spatial characteristics of the products to fuse, the validation of the
final outcome represents a difficult task. For this reason, Chapter
2 has also focused its attention on the validation methods for the
pansharpening products. The two approaches used in the litera-
ture for the validation, i.e., analysis at reduced and full scale, have
been considered. The former follows the Wald protocol to verify
the fulfillment of the synthesis property. To this aim, the original
high spectral resolution images are used as references, while the
pansharpening algorithms are applied to the images after reduc-
ing their spatial resolution. Due to the availability of an objective
final product, the indexes quantifying the similarity of the fused
and the reference products can be employed. Typically, indexes
taking into account both radiometric and spectral distortions are
preferable in this phase. On the contrary, the full scale validation
procedure avoids to reduce the resolution of input images. Ac-
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cordingly, since no reference image can be considered, appropriate
indexes (without reference) have to be designed and exploited to
verify the accuracy of the sharpened product.

In Chapter 3 a comparison among several pansharpening al-
gorithms presented in the literature has been performed. The
different behaviors of the algorithms varying the validation pro-
cedures, scenario and satellite for acquiring the scene have been
pointed out. The peculiarities of the two classes of pansharpen-
ing algorithms have been evidenced during the assessment phase.
Specifically, the appeal, from a visual point of view, of compo-
nent substitution methods has been shown by highlighting the
absence of aliasing artifacts. The latter property, together with
the robustness of these methods against the errors induced by
the misregistration of the available images, has supported their
large use also featured by a low computational burden. On the
other side, the best overall performances are often achieved by
multiresolution analysis approaches, which are characterized by
a more exact reproduction of the spectral characteristics. More-
over, they can be easily designed to match the multispectral sensor
properties in the phase of spatial detail extraction at the aim of
decreasing the spatial distortion. Furthermore, this class of al-
gorithms is currently drawing increasing attention due to their
temporal coherence, useful when dealing with multiplatform data.
The experiments presented in this chapter have been performed
by a MATLAB implementation of the algorithms, quality indexes
and validation procedures. We have chosen to made the devel-
oped MATLAB Toolbox available to the Community in order to
allow a fair and easy comparison of some of the most widely used
state-of-art algorithms. We also hope that this Toolbox can fos-
ter the development (and validation through a benchmark with
established algorithms) of novel techniques for pansharpening.

In Chapter 4 we have shown that, considering the physics of
acquisition systems, the injection of the high spatial resolution
details of the panchromatic image into low resolution multispec-
tral images can be accurately achieved by imposing the equality
between the modulation transfer functions of the panchromatic
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image and the estimated high spatial resolution multispectral im-
age. This approach constitutes a step towards the construction
of a synthetic multispectral image with the same spatial resolu-
tion of the panchromatic image fulfilling the Wald protocol. The
method has been applied to pansharpening methods both based on
component substitution and on multiresolution analysis. The ex-
perimental analysis confirmed the capability of the proposed high
pass modulation details injection paradigm to improve the qual-
ity of the fused product with respect to the error based injection
schemes.

A pansharpening algorithm can be often divided into two main
phases: The extraction details from the panchromatic image and
their injection into the image with higher spectral resolution. The
former is often carried out by filters matching the modulation
transfer function of the multispectral sensor in order to maximize
the amount of extracted details. Gaussian filters matched with
the sensor modulation transfer function represent the state-of-art
for this step. In this case, a prior knowledge on the sensor char-
acteristics are exploited to specify the filter. The unavailability
(or the inaccuracy) of this information results in a strong limita-
tion for the above-mentioned approach. In addition, being filters
matched with the modulation transfer function, they represent an
approximation of the real (and unknown) response of the acquisi-
tion devices, and, thus, the extracted details can be incorrect due
to this residual mismatch. To overcome this problem, in Chapter 5
we have proposed a procedure for estimating the filter that models
the blur between the multispectral and the panchromatic image
by only using the available images and no additional information.
The proposed technique has been compared to state-of-art pan-
sharpening techniques extracting the details through filters. The
experimental results are carried out by exploiting the two different
validation procedures: at reduced scale and at full image scale.
The former validation underlines the capability of the proposed
method of correctly approximating the unknown blur filter and
its robustness with respect to the tuning of its free parameters.
The second protocol points out the advantages of the proposed
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method with respect to the state-of-art pansharpening techniques
both from a numerical and visual analysis.

Finally, in Chapter 6 we have presented a study based on the
fusion of hyperspectral data and panchromatic images. Firstly, a
critical comparison of classical approaches belonging to the com-
ponent substitution and multiresolution analysis families has been
performed. In greater details, the fused approaches have been ap-
plied to two different datasets. The first experiment has been
carried out by exploiting images acquired by the same platform.
This has permitted to mitigate co-registration effects in order to
focus the analysis only on the distortions produced by the fusion
itself. On the other hand, the second experiment has been per-
formed by fusing products acquired by different platforms. The
spectral angle mapper and the spatial distortion index have been
considered to quantitatively evaluate the quality of the enhanced
images, while the qualitative analysis has been carried out by vi-
sual inspecting the final results.

Furthermore, in Chapter 6, a novel hybrid pansharpening ap-
proach based on dimensionality reduction and multiresolution
analysis methodologies has been proposed for hyperspectral pan-
sharpening. Specifically, we have proposed the use of the non-
linear principal component analysis (exploiting auto-associative
neural networks) for representing the hyperspectral data into a
lower non-linear feature space; several filters for extracting details
and injection strategies have been considered instead of directly
substituting the panchromatic image into the more correlated non-
linear components. The proposed approach has been applied to
both synthetic and real images. It has been demonstrated both
the superiority of the non-linear approach with respect to the lin-
ear principal component analysis and that the hybrid approaches,
based on non-linear principal component analysis for dimension-
ality reduction purposes, represent a good tradeoff between the
reduction of the spectral distortion and the computation burden
for hyperspectral sharpening.

The main research topics arising from this thesis will focus on:
1) The extension of the Toolbox with the introduction of different
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pansharpening methodologies, such as, the ones based on Bayesian
approaches, Compressive Sensing and Total Variation techniques;
2) The reformulation of the semiblind deconvolution problem to
take into account of the possible filter diversities among spectral
bands helpful, when we deal with old sensors as QuickBird or,
in future applications, for hyperspectral sensors since they could
be characterized by strongly band-dependent modulation transfer
functions because of a wider spectral range covered; 3) Character-
ization of the non-linear principal component analysis inside the
component substitution family in order to point out the advan-
tages and drawbacks even in typical cases of fusing panchromatic
and multispectral data.
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