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Sunto

Oggetto della seguente ricerca è l’analisi di problemi differenziali e integrali, utiliz-

zando wavelet armoniche e wavelet armoniche periodiche. Si dimostra che le wavelet

periodiche costituiscono una base completa per le funzioni L2[0; 1] e formano un’analisi

multiscala. L’analisi multirisoluzione può essere brevemente considerata come la de-

composizione di L2[0; 1] in un insieme completo di sottospazi di wavelet dipendenti

da un fattore di scala. Pertanto gli operatori integrali e differenziali e le funzioni

L2(R) vengono studiati come funzioni di scala mediante le corrispondenti proiezioni

in questi sottospazi di wavelet. In particolare, vengono sviluppati quattro principali

argomenti:

- sono state individuate le condizioni per applicare una data famiglia di wavelets

alla soluzione di un data problema differenziale o integrale;

- si è dimostrato che la precisione di questo approccio cresce esponenzialmente

quando decresce il numero dei momenti nulli e del parametro di scala;

- soluzioni wavelet di equazioni differenziali a derivate parziali nonlineari di di-

mensione bassa sono state confrontate con altri metodi di soluzioni;

- l’approccio basato sull’uso delle wavelet è stato applicato anche per ricerca

di soluzioni di alcune equazioni integrali di Fredholm e insieme al metodo di

Galerkin per risolvere equazioni integrali Fredholm di dimensioni due.
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Abstract

The object of the present research is wavelet analysis of integral and differential prob-

lems by means of harmonic and circular wavelets. It is shown that circular wavelets

constitute a complete basis for L2[0; 1] functions, and form multiresolution analy-

sis. Multiresolution analysis can be briefly considered as a decomposition of L2[0; 1]

into a complete set of scale depending subspaces of wavelets. Thus, integral opera-

tors, differential operators, and L2(R) functions were investigated as scale depending

functions through their projection onto these subspaces of wavelets. In particular:

- conditions when a certain wavelet can be applied for solution of integral or

differential problem are given;

- it is shown that the accuracy of this approach exponentially grows when in-

creasing the number of vanishing moments and scaling parameter;

- wavelet solutions of low-dimensional nonlinear partial differential equations are

compared with other methods;

- wavelet-based approach is applied to low-dimensional Fredholm integral equa-

tions and the Galerkin method for two-dimensional Fredholm integral equations.
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Preface

One of the main directions of the development of mathematical knowledge during the

past 25 years is the application of wavelets for solution of mathematical problems.

This topic has been popular since the middle of the 1980s, which is explained by a

large number of publications.

Wavelets were introduced relatively recently, i.e. in the beginning of the 1980s.

They attracted a considerable interest from the mathematical community and scien-

tists of many different disciplines, where wavelets had promising applications. As a

consequence of this interest, there have appeared many books on this subject and a

large volume of research articles.

Wavelets are functions which satisfy certain mathematical requirements and used

in representation of data or other functions. The idea of representing a function as

a superposition of basis functions is not new. Approximation using superposition

of functions has existed since the early 1800’s, when Joseph Fourier discovered that

it is possible to superpose sines and cosines to represent other functions. However,

in the wavelet analysis, the scale that we use to look at data plays a special role.

Wavelet algorithms process data at different scales or resolutions. If we look at a

signal through a large “window”, we would notice great features. Similarly, if we

look at a signal through a small “window”, we would notice small features. Generally

1
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speaking, the result of the wavelet analysis is to see forest, trees and leafes. This

makes wavelets interesting and useful in the data analysis.

Wavelet analysis attracted a great attention of researchers from many subjects,

which include acoustics [19], nuclear engineering [26], subband coding [73], signal and

image processing, neurophysiology [34], music [46, 59], magnetic resonance imaging

[9], speech discrimination, optics, analysis of fractals [14], turbulence, earthquake

engineering [33], radar technology [39], and pure mathematical applications such as

solution of partial differential equations (PDEs) [10, 11, 43, 53]. It is worth to em-

phasize that the purpose of the wavelet analysis is rather modest. It helps to describe

hidden characterictics of signals. However, it does not claim to explain the nature of

phenomena, although it can give valuable suggestions.

The purpose of the present work is the research of application of PHWs for solution

of nonlinear PDEs. During the selection of practical materials author gave preference

to two types of equations:

- Fluid dynamics equations;

- General integral equations, which depend on arbitrary functions. Exact solu-

tions of such equations represent a special interest for testing of new approaches.

The main results of this research consist in the following:

1. It was shown that periodic harmonic wavelets satisfy the axioms of the mul-

tiresolution analysis (MRA). This property is necessary for solution of PDEs as

well as integral equations (IEs) at different levels of multiscale approximation.

2. The obtained numerical results of solution of nonlinear PDEs and IEs were com-

pared with the analytical ones and other numerical methods. This comparison
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has shown that the wavelet basis is a good alternative to traditional methods.

3. The error of the projection of solution of PDEs and integral equations on the

space of periodic wavelets was analytically estimated.

4. It was shown that the wavelet-Galerkin method for solution of integral equations

in two dimensions yields sparse matrices, which reduce the computational costs.

Therefore, our research is motivated by the need of creation of highly effective

analytical and numerical schemes for solution of PDEs and integral equations.

Scientific and practical significance of the work. Mathematical models describe a

variety of physical and engineering problems and processes, which can be represented

by PDEs and IEs. Therefore, it is getting necessary to have advanced mathematical

tools to deal with such kind of equations. The application of wavelets for solution

of PDEs and IEs significally extends our opportunities in dealing with some types of

integral or/and differential problems.

The advantages of application of wavelets for solution of PDEs consist in the

following:

- A variety of wavelet bases enables us to choose such ψ(x) that it produces a

maximum number of wavelet coefficients aj,k, which are close to zero.

- Approximation by means of analytically defined basis functions is always better

than pure numerical computations.

- Quick decay of basis functions makes wavelets useful in approximation of rapidly

oscillating functions. Therefore, this approach is more stuitable for problems

with localized phenomena.
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The advantage of the choice of circular (or periodized) wavelets is that they are

defined analytically, and a superposition of these functions is also an analytically

defined function. The obtained results can be useful in creation of efficient computer

codes for solution of PDEs (as well as IEs) and the further development of the theory

of PDEs and IEs.

Original materials for the defense of the thesis.

1. Proof of the theorem, which states that PHW form multiscale analysis.

2. Multiscale solution of PDEs on the basis of connection coefficients and the

discrete harmonic wavelet transform.

3. Solution of integral equations by means of the collocation method with PHW

as basis functions.

4. Error estimation of the projection of a function on the space of periodic wavelets.

5. Wavelet-Galerkin approach for solution of the Fredholm type integral equations

in two dimensions.

Publications and practice of the work. The main results of the thesis were pub-

lished in the following articles: [82] – [94], and presented on the International Confer-

ence on Computer Science and its Applications (Perugia, 30 June – 2 July, 2008 and

Fukuoka, 23 – 26 March, 2010); All-Russian school-conference for students, PhD stu-

dents and young researchers (Bashkir State University, Ufa 2008, 2009); International

Conference “Days on Diffraction” (Saint-Petersburg, 26 – 30 June, 2009); Doctoral

Seminar (25 December, 2009) at the Bashkir State Pedagogical University (Ufa) on

the Department of Theoretical Physics; Doctoral Seminar (13 October, 2010) at the

Katholieke Universiteit Leuven on the Department of Computer Science.
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Structure of the thesis. PhD thesis consists of the Introduction, four chapters,

Conclusion and Appendix. It contains 127 pages, 11 figures and 94 references.

The motivation, scientific novelty of the results, and the defense materials are

given in the Introduction.

Chapter 1 is devoted to the overview of wavelets for expansion of functions. The

novelty of the wavelet theory consists in the discovery of a new class of special func-

tions, which possess several specific properties.

Chapter 2 shows general theory of harmonic wavelets in the L2(R) space, and

presents periodic wavelets in L2[0; 1]. This Chapter also shows that periodic wavelets

constitute orthogonal basis in L2[0; 1]. The proof of this fact allows us to proceed to

solution of several problems.

Chapters 3 and 4 constitute the original part of the dissertation. The literature

survey showed that the efforts of previous researchers were not focused on periodic

wavelets and its application for integral and differential problems. Chapter 3 discusses

the application of PHW for solution of the Burgers equation. The corresponding

connection coefficients were derived and discussed. A special attention was given to

approximation properties of periodic wavelets. For this reason, different values of the

viscosity coefficient were used. The numerical results show that PHW are able to

approximate rapidly changing functions.

The solution of the KdV equation shows that there appears a problem of bound-

ary effects because periodic wavelets do not form a complete basis on a finite interval

for non-periodic functions. The obtained wavelet solution is compared with the an-

alytical one. The error estimation, which unavoidably appears due to the projection

of solution on the space of periodic wavelets is given in Chapter 3.
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The main result of Chapter 4 consists in the wavelet-Galerkin approach for solution

of two-dimensional integral equations. In particular, it was shown that computational

difficulties in solution of such IEs can be overpassed by involving wavelets as basis

functions in the Galerkin method. This gives us an opportunity to operate with

pseudo-sparse matrices, and thus obtaining additional speedup for no cost.



Chapter 1

Introduction to wavelet analysis

Overview. The preliminaries on wavelets are provided in this chapter. First, we

briefly introduce wavelets in general, then we consider orthogonal in L2(R) wavelet

basis and the related definitions.

1.1 Introduction to wavelets

In many cases we deal with functions f(x), which are square integrable, and defined

on the R. It is known that such functions form finite-dimensional Hilbert space L2(R):

L2(R) =



f(x) : R → C;

∞∫

−∞

|f(x)|2dx <∞



 ,

which always has orthonormal bases. Square integrable functions form an inner prod-

uct space whose scalar product is given by

〈f, g〉L2(R) =

∞∫

−∞

f(x)g∗(x)dx ,

where g∗(x) is the complex conjugate of g(x) ∈ L2(R) and f(x) ∈ L2(R).

Let us introduce the definition of a wavelet function – the main concept discussed

in the thesis.

7
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Definition 1.1.1. Wavelet is a function ψ(x) ∈ L2(R), which depends on two pa-

rameters j, k ∈ Z, such that the set of functions

ψj,k(x) = 2j/2ψ(2jx− k)

forms an orthogonal basis in the Hilbert space L2(R), and fulfill some additional

properties.

Note that, the term wavelet does not have a unique definition. For practical use

of wavelets, it is important to know criteria (properties) when we can say that this

function is a wavelet [1].

1. Localization. This property of wavelets follows from the belonging of ψj,k(x) to

L2(R).

2. Zero mean ∞∫

−∞

ψ(x) dx = 0 .

3. Boundedness ∞∫

−∞

|ψ(x)|2 dx <∞ .

4. Self-similarity of basis. It means that all wavelets of family {ψj,k(x); j, k ∈ Z}

have the same number of oscillations as ψ(x).

In view of Definition 1.1.1, each wavelet has the associated orthogonal system

{ψj,k(x) = 2j/2ψ(2jx − k) | j, k ∈ Z}, which will be called a wavelet basis in L2(R).

The proceeding section is devoted to orthogonal wavelet bases.
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1.2 Orthogonal wavelet bases

Two functions f and g are called orthogonal if their inner product 〈f, g〉L2(R) is zero

for f 6= g. Our search for orthogonal wavelets begins with multiresolution approxima-

tions. For f(x) ∈ L2(R), the partial sum of wavelet coefficients
∞∑

k=−∞
〈f(x), ψj,k(x)〉ψj,k(x)

can be interpretated as the difference between two approximations of f(x) on the

resolutions 2−j+1 and 2−j . Multiresolution approach computes the approximation

of functions at various resolutions with orthogonal projections on different spaces

{Vj}j∈Z. Subsection 1.2.1 shows that multiresolution approximations entirely char-

acterized by a particular discrete filter, which governs the loss of information across

the resolutions. These discrete filters provide a simple procedure for designing and

synthesizing orthogonal wavelet bases.

1.2.1 Multiresolution approximations

Multiresolution approximations are based on two fundamental concepts: nested sub-

spaces and orthonormal bases. The first permits decomposition of information into

different scales, the second concept allows the construction of fast and stable algo-

rithms. On the top of these concepts, there is a third ingredient: the invariance of

basis functions with respect to certain translations. Thus, all the basis functions are

nothing else than scaled and translated versions of a mother function. This section

formalizes multiresolution approximations, and sets the ground for the construction

of orthogonal wavelets.

Approximation of a function f(x) at resolution 2−j is specified by a discrete grid of

samples which provides local averages of f(x) over neighborhoods of size proportional
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to 2j . Multiresolution approximation is composed of embedded grids of approxima-

tion. More formally, the approximation of a function at resolution 2−j is defined as

orthogonal projection on the space Vj ⊂ L2(R). The space Vj regroups all possible

approximations at resolution 2−j . Orthogonal projection of f is the function fj ∈ Vj

which minimizes the norm: ||f − fj||L2(R). To avoid the confusion, let us note that

the scaling parameter 2j is the inverse of the resolution 2−j . The following definition

of MRA was introduced by S. Mallat [49].

Definition 1.2.1. A sequence {Vj}j∈Z of closed subspaces of L2(R) is a multiresolu-

tion approximation if the following 6 properties are satisfied:

i. ∀(j, k) ∈ Z2, f(x) ∈ Vj ⇔ f(x− 2jk) ∈ Vj ,

ii. ∀j ∈ Z, Vj ⊂ Vj+1 ,

iii. ∀j ∈ Z, f(x) ∈ Vj ⇔ f
(x

2

)
∈ Vj+1 ,

iv. lim
j→+∞

Vj =
∞⋂

j=−∞
Vj = {0} ,

v. lim
j→+∞

Vj = Closure

(
∞⋃

j=−∞
Vj

)
= L2(R) .

vi. There exists a function ϕ such that {ϕ(x− k)}k∈Z is a Riesz basis1 of V0.

Let us give a set of statements constructed to describe these mathematical prop-

erties. Property (i) means that Vj is invariant with respect to any translation pro-

portional to the scale 2j. As we will see later, this space can be assimilated to a

uniform grid with intervals 2j , which characterizes approximation at resolution level

2−j . The inclusion (ii) is a causal property which demonstrates that approximation

1In a Hilbert space, an unconditional basis is also called a Riesz basis.
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at resolution 2−j contains all the necessary information to compute approximation at

a coarser resolution 2−j−1. Dilating functions in space Vj by 2 enlargers all details by

factor 2, and (iii) guarantees that it defines an approximation at a coarser resolution

2−j−1. When the resolution 2−j converges to 0, property (iv) implies that we lose all

the details of function f , and

lim
j→−∞

||PVjf(x)||L2(R) = 0 ,

where PVj is the operator of orthogonal projection of f(x) on the space of wavelets.

The complete definition of PVj will be given later. On the other hand, when the

resolution 2−j tends to +∞, property (v) imposes that the approximation of a function

converges to the original function:

lim
j→+∞

||f(x) −PVjf(x)||L2(R) = 0 .

When resolution 2−j increases, the decay rate of the approximation error

||f(x)−PVjf(x)||L2(R)

depends on the regularity of f(x).

1.2.2 Detailed spaces Wj

The given nested subspaces in Definition 1.2.1, we define as Wj , which are orthogonal

complements of Vj in Vj+1, i.e. Vj⊥Wj, and

Vj+1 = Vj ⊕Wj , (1.2.1)
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where ⊕ denotes the direct sum of orthogonal subspaces. Consider two spaces: V0

and VN . The recursive application of formula (1.2.1) gives:

VN = V0 ⊕
(
N−1⊕

j=0

Wj

)
.

Thus, any function in VN can be expressed as a linear combination of functions in V0

and Wj , j = 0, 1, . . . , N − 1; hence it can be analyzed separately at different scales.

Multiresolution analysis has received its name from this separation of scales.

1.2.3 Basic scaling function and mother wavelet

In view of Definition 1.2.1, the set {ϕ(x− k)}k∈Z is an orthogonal basis in V0, and it

follows that

{ϕ(2jx− k)}j,k∈Z (1.2.2)

is an orthogonal basis in space Vj . Note that (1.2.2) is the function ϕ(2jx), which

is translated by k/2j , i.e. it becomes narrower, and translations get smaller when j

grows. Since the squared norm of one of these functions is

∞∫

−∞

|ϕ(2jx− k)|2dx = 2−j
∞∫

−∞

|ϕ(y)|2dy = 2−j ,

it follows that {2j/2ϕ(2jx− k)}j,k∈Z is an orthonormal basis for Vj .

In a similar way, as shown in reference [23], there exists a function ψ(x) such

that {2j/2ψ(2jx− k)}j,k∈Z is an orthonormal basis in Wj . We call ϕ(x) basic scaling

function, and ψ(x) the mother wavelet. It is convenient to introduce the following

notations:

ϕj,k(x) = 2j/2ϕ(2jx− k) ;

ψj,k(x) = 2j/2ψ(2jx− k) ,
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and

ϕk(x) = ϕ0,k(x) ;

ψk(x) = ψ0,k(x) .

At this point it is useful to present the definition of a scaling function [23].

Definition 1.2.2. If ϕ ∈ L2(R) satisfies the following conditions:

i. ϕ̂ is continuous at the origin, and ϕ̂(0) = 1, where ϕ̂ is the Fourier transform

(A.1.9) of ϕ;

ii. ∃M > 0 such that
∑

k∈Z |ϕ̂(ω + 2πk)|2 ≤M, ω ∈ R;

iii. ϕ̂(2ω) = H0(ω)ϕ̂(ω), where H0 is a 2πn-periodic bounded function, n ∈ Z.

Then ϕ is called a scaling function.

Since ψj,k(x) ∈ Wj, it immediately follows that ψj,k is orthogonal to ϕj,k because

ϕj,k ∈ Vj and Vj⊥Wj. Also, because all {Wj} are mutually orthogonal, it follows

that the wavelets are orthogonal across their scales [23]. Therefore, we have the

orthogonality relations

∞∫

−∞

ϕj,k(x)ϕj,l(x)dx = δk,l ;

∞∫

−∞

ψi,k(x)ψj,l(x)dx = δi,jδk,l ;

∞∫

−∞

ϕi,k(x)ψj,l(x)dx = 0 , j ≥ i

where i, j, k, l ∈ Z, and δk,l is the Kronecher delta.
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1.2.4 Expansion of a function in VN

A function f(x) ∈ VN can be expanded in various ways. For example, there is a pure

scaling function expansion

f(x) =
∞∑

l=−∞

cN,lϕN,l(x) , x ∈ R

where

cN,l =

∞∫

−∞

f(x)ϕN,l(x)dx .

There is also the wavelet expansion

f(x) =
∞∑

k=−∞

ckϕk(x) +
∞∑

j=−∞

∞∑

k=−∞

dj,kψj,k(x) , x ∈ R (1.2.3)

where

ck =

∞∫

−∞

f(x)ϕk(x)dx ,

dj,k =

∞∫

−∞

f(x)ψj,k(x)dx ,

(1.2.4)

and ck, dj,k ∈ C. The first sum in (1.2.3) with scaling functions contains local averages

of f(x) at a certain scale. The second term includes all details of a certain scale. The

most visible difference with respect to the Fourier series (A.1.1) is the fact that now

we have two types of basis functions, which are indexed by scaling and translation

parameters. From the orthonormality of scaling functions and wavelets we find that

||f ||2L2(R) =

∞∑

k=−∞

|cN,k|2 =

∞∑

k=−∞

|ck|2 +

N−1∑

j=0

∞∑

k=−∞

|dj,k|2 ,

which represents Parseval’s equation for wavelets. Another distinct difference between

wavelet and Fourier series is that ϕj,k can be represented by many functions unified

by Definition 1.1.1.



15

Definition 1.2.3. Let PVj and PWj denote the operators, which project any function

f(x) ∈ L2(R) orthogonally onto Vj and Wj respectively. Then,

PVjf(x) =

∞∑

k=−∞

cj,kϕj,k(x) ;

PWjf(x) =
∞∑

k=−∞

dj,kψj,k(x) ,

where

cj,k =

∞∫

−∞

f(x)ϕj,k(x)dx ;

dj,k =

∞∫

−∞

f(x)ψj,k(x)dx ;

and

PVN
f(x) = PV0f(x) +

N−1∑

j=0

PWjf(x) .

The most important property of such decomposition is that PVN
f(x) has various

discrete scales. Let us note once again that the family of functions ϕj,k(x) forms

orthogonal basis in Vj . The orthogonal supplement Vj to Vj+1 is called Wj. The

subspaces Wj form a mutually orthogonal set.

Remark. Space Wj can be chosen such that it is not orthogonal to Vj . In this

case MRA will lead to the so-called bi-orthogonal wavelets. We will not discuss this

point, but only mention that bi-orthogonal wavelets are more flexible [23].

1.2.5 Dilation equation and wavelet equation

Since V0 ⊂ V1, then any function f(x) ∈ V0 can be expanded in terms of basis

functions of space V1. In particular, ϕ(x) ≡ ϕ0,0(x) ∈ V0. Therefore,

ϕ(x) =
∞∑

k=−∞

akϕ1,k(x) =
√

2
∞∑

k=−∞

akϕ(2x − k) ,
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where

ak =

∞∫

−∞

ϕ(x)ϕ1,k(x)dx .

For a compactly supported scaling function, only a finite number of coefficients {ak}
will be nonzeros, then we can write:

ϕ(x) =
√

2

D−1∑

k=0

akϕ(2x− k) . (1.2.5)

Equation (1.2.5) is the fundamental in the wavelet theory, and it is known as the

dialation equation. A constant D is an even positive integer called the wavelet genus,

and numbers a0, a1, . . . , aD−1 are called the filter coefficients. The scaling function

is uniquely characterized (up to a constant) by these coefficients. One may think

that the chosen norm for coefficients {ak} with the factor
√

2 is free. However, it is

determined a posteriori in fast algorithms [23].

According to equation (1.2.5), we can write a relation for the mother wavelet ψ(x).

Since ψ(x) ∈ W0 and W0 ⊂ V1, we can expand ψ(x) as follows:

ψ(x) =
√

2
D−1∑

k=0

bkϕ(2x− k) , (1.2.6)

where the filter coefficients are

bk =

∞∫

−∞

ψ(x)ϕ1,k(x)dx ,

and
∑

k

|bk|2 <∞. Equation (1.2.6) is the wavelet equation.

Conclusion of Chapter 1

The first fundamental contributions toward the decomposition of a function with

respect to basis functions emerged in works by Brook Taylor in 1715 and Joseph

Fourier in 1807. The novelty of the wavelet decomposition consists in the discovery
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of a special class of functions, which satify a series of special conditions, and are

capable to represent any function or a signal providing highly effective algorithms for

data processing.

The concept of the MRA was introduced by Stephane Mallat in 1988, and the

paradigm for constructing wavelets was established. Many books exist and a huge

number of papers, where many of these formulae are written. Expansion (1.2.3) and

formulae (1.2.4) are the most important in the problem of projecting function on the

space of wavelets, but there is still no answer to the question: which wavelet is better

for a particular problem. The answer exists only on the level of reccomendations.



Chapter 2

Harmonic wavelets

Overview. Using the definitions presented in Chapter 1, we proceed our discussion

to harmonic wavelets defined on the real line R. Then we introduce periodic harmonic

wavelets defined on the circle T (or [0; 1)). The discrete harmonic wavelet transform

is considered in detail.

2.1 Choosing a wavelet basis

Mathematical approximation theory suggests to choose a basis that can construct pre-

cise approximations with a linear combination of a small number of vectors selected

inside the basis. Wavelet bases possess the ability of efficient approximation of par-

ticular classes of functions with few nonzero wavelet coefficients. This is true not only

for fast calculations but also for data compression and noise reduction. The design

of ψ must be optimized to produce a maximum number of wavelet coefficients (1.2.4)

which are close to zero, and take less computational costs. A function f has a few

non-negligible wavelet coefficients if most of the fine-scale (high-resolution) wavelet

coefficients are small. This mostly depends on the regularity of function f , the num-

ber of vanishing moments in wavelet ψ, and the size of its support. Unsuccessful

choice of a wavelet can cause a deadlock in the solution of a particular problem.

18
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2.2 Introduction into harmonic wavelet analysis

In order to analyze problems of vibration (e.g. [33]), D.E. Newland proposed [57, 58]

wavelets whose spectrum is confined exactly to an octave band. It was suggested that

the “level” of a signal’s multiresolution would be interchangeable with its frequency

band and the interpretation of the frequency content, which is inimitable to engineers

would be easier. In addition, for the convenience of the further analysis, it would be

better to operate with such functions, whose FT was compact and which could, if

possible, be constructed from simple functions.

The wavelets considered in this chapter are called harmonic wavelets and periodic

harmonic wavelets; they possess all the mentioned properties and constitute a specific,

but a representative example of wavelets in general.

2.3 Harmonic wavelets

Let us consider a function ψ̂ (ω), whose FT is defined as follows:

ψ̂ (ω) =

{
1/2π for 2π ≤ ω < 4π ,

0 elsewhere .
(2.3.1)

Then, by calculating the inverse FT (A.1.12) of ψ̂ (ω), we see that the corresponding

function is:

ψ (x) =
e4πix − e2πix

2πix
, (2.3.2)

and it is called a mother function of a harmonic wavelet [58].

Thus, the mother function of Newland’s harmonic wavelet represents a complex-

valued function, which means that it can return the information about both amplitude

and phase; and it is better adapted for capturing oscillatory behavior [72]. The plot

of function ψ(x) with real and imaginary parts is shown in Fig. 2.1.

By changing the argument in (2.3.2) from x to (2jx− k), where j, k ∈ Z the shape

of the wavelet does not change, but its horizontal scale is compressed by factor 2j,

and its position is translated by k units at the new scale (which is k/2j units at the
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Figure 2.1: Real (solid) and imaginary (dashed) parts of the mother func-
tion of the harmonic wavelet.

original scale). We call j the scaling parameter because it scales the width of the

support, and k is the dilation parameter because it translates the support interval.

The value of j determines the “level” of the wavelet. At level j = 0 wavelet’s FT

occupies the bandwidth from 2π to 4π, and at level j it occupies the bandwidth from

2π 2j to 4π 2j which is j octaves higher up the frequency scale. In other words, the

compression of ψ (x) in the x-domain by factor 2j , spreads out (or dilates) ψ̂ (ω) in

the ω (or frequency) – domain by replacing ψ̂ (ω) into ψ̂ (ω/2j). The translation of

ψ (x) by k units involves rotation of its FT in the complex plane of ψ̂ (ω). Harmonic

wavelets possess several specific properties, which are described in the proceeding

sections.

2.3.1 Orthogonality

Because of the simplicity of the FT of harmonic wavelets, orthogonality can be easily

demonstrated in the frequency domain, but first let us consider the FT of ψ(2jx−k).
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Theorem 2.3.1. [57] If ψ̂ (ω) and ψ̂j,k (ω) are Fourier transforms of ψ (x) and

ψ̂j,k (x) = ψ(2jx− k), then the Fourier transform of ψj,k (x) is

ψ̂j,k (ω) = 2−j e−iωk/2
j

ψ̂
( ω

2j

)
. (2.3.3)

Proof. Indeed, if ψ̂ (ω) and ψ̂j,k (ω) are FTs of ψ (x) and ψ (2jx− k). Then,

ψ̂j,k (ω) =
1

2π

∞∫

−∞

ψ
(
2jx− k

)
e−iωxdx .

Assuming that z = 2jx− k, we obtain:

ψ̂j,k (ω) =
1

2π

∞∫

−∞

ψ (z) e−iω(z+k)2−j

2−jdz =2−j e−iωk/2
j

ψ̂
( ω

2j

)
,

which completes the proof. �

It follows that the Fourier transforms of the successive levels of harmonic wavelets

decrease during the propagation of their bandwidth, as shown in Fig. 2.2. For ω < 0,

they are always zero. Then the orthogonality we can write as follows:

∞∫

−∞

ψ (x)ψ
(
2jx− k

)
dx = 0 , ∀j, k ∈ Z . (2.3.4)

The proof derives from Theorem 2.3.1.

Theorem 2.3.2. [57] If ψj,k (x) , ψl,h (x) ∈ C, where x ∈ R and their Fourier trans-

forms are ψ̂j,k (ω) and ψ̂l,h (ω), then there exists the following property

∞∫

−∞

ψj,k (x)ψl,h (x) dx = 2π

∞∫

−∞

ψ̂j,k (ω) ψ̂l,h (−ω) dω. (2.3.5)

Proof. If 〈ψj,k (x) , ψl,h (x)〉L2(R) = 0 with the Fourier transforms ψ̂j,k (ω) and ψ̂l,h (ω)

so that

ψj,k (x) =

∞∫

−∞

ψ̂j,k (ω) eiωxdω ; ψl,h (x) =

∞∫

−∞

ψ̂l,h (ω) eiωxdω ,
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Figure 2.2: Fourier transforms of complex harmonic wavelets of
different levels.

then its substitution into equality (2.3.5) yields

∞∫

−∞

ψj,k (x)ψl,h (x) dx =

∞∫

−∞

dx

∞∫

−∞

dωj,k

∞∫

−∞

ψ̂j,k (ωj,k) ψ̂l,h (ωl,h) e
i(ωj,k+ωl,h)xdωl,h .

(2.3.6)

From the theory of δ-functions we know that its FT is given by

1

2π

∞∫

−∞

δ (x− c) e−iωxdx =
1

2π
e−iωc,

therefore, the inverse FT is

∞∫

−∞

eiω(x−c)dω = 2πδ (x− c) .
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Using the result (2.3.6), we obtain

∞∫

−∞

ei(ωj,k+ωl,h)xdx = 2πδ (ωj,k + ωl,h) . (2.3.7)

The substitution of (2.3.7) into (2.3.6), and the integration over ωl,h yields us the

equality:
∞∫

−∞

ψj,k (x)ψl,h (x) dx = 2π

∞∫

−∞

ψ̂j,k (ω) ψ̂l,h (−ω) dω ,

after replacing ωj,k by ω. Also, by replacing ψl,h (x) in (2.3.6) by ψ∗
l,h (x), the corre-

sponding result is

∞∫

−∞

ψj,k (x)ψ∗
l,h (x) dx = 2π

∞∫

−∞

ψ̂j,k (ω) ψ̂∗
l,h (ω) dω . (2.3.8)

Thus, the theorem is proved. �

When ψj,k (x) and ψl,h (x) are two harmonic wavelets, then they have one-sided

FT, as shown in Fig. 2.2, so that the product 〈ψ̂j,k (ω) ψ̂l,h (−ω)〉 must always be zero.

Therefore, the right-hand side of identity (2.3.5) is always zero, and (2.3.4) must be

always true. In addition, we need to know the conditions for which

∞∫

−∞

ψ (x)ψ∗ (2jx− k
)
dx = 0 , (2.3.9)

where the asterisk over ψ means the complex conjugate of ψ (2jx− k). In this case,

since (the proof see above)

∞∫

−∞

ψj,k (x)ψ∗
l,h (x) dx = 2π

∞∫

−∞

ψ̂j,k (ω) ψ̂∗
l,h (ω) dω, (2.3.10)

it is obvious that wavelets of different levels are always orthogonal to each other. This

is because their Fourier transforms occupy different frequency bands, therefore their

scalar product < ψ̂j,k (ω) , ψ̂l,h (ω) > always equals to zero for j 6= 0.



24

Wavelet translation within a level is the result of progressive rotation of the

wavelet’s FT in the frequency domain. This may be seen from formula (2.3.3). As-

suming ψ̂l,h (ω) = e−iωkψ̂j,k (ω), then its substitution into (2.3.10) yields us equality

4π∫

2π

eiωkdω = 0 , (2.3.11)

where we have taken into account the support interval of ψ̂j,k(ω). The integral will

be equal to zero if

e4πik = e2πik. (2.3.12)

Therefore, all wavelets translated by any number of unit intervals are orthogonal to

each other.

The result was found for the wavelet of the zeroth level defined by the FT (2.3.1).

For the other levels, the same result applies, except that the unit interval is now that

for the wavelet level concerned. For example, for level j, the unit interval is 1/2j, and

the translation must be through any multiple of distance 1/2j.

The conclusion is: the family of wavelets defined by function

ψj,k (x) =
e4πi(2jx−k) − e2πi(2jx−k)

2πi (2jx− k)
(2.3.13)

forms an orthogonal basis in L2(R). Wavelets of different levels (different j) are

always orthogonal; wavelets of the same level are orthogonal if one is translated with

respect to the other by a unit interval (different k). In orthogonal wavelet analysis,

the number of convolutions at each scale is proportional to the width of the wavelet

basis at that scale. This produces a wavelet spectrum that contains discrete “blocks”

of wavelet power and is useful for signal processing because it gives the most compact

representation of the signal.

2.3.2 Scaling function of harmonic wavelet

Fig. 2.2 shows the Fourier transforms of levels for j ≥ 0. For the octave bands defined

by j < 0, the same sequence as shown in Fig. 2.2 may be maintained, in this case the
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resolution of f (x) embraces wavelets of all orders including vanishing small octave

bands when j → −∞. The theory of MRA shows [16, 23, 58] that all negative orders

can be rolled together into a small order (which is referred to −1), which covers the

whole of the residual frequency band from 0 to 2π as shown in Fig. 2.2.

Functions generated by calculating the inverses of the Fourier transforms in Fig. 2.3

represent scaling functions.

Definition 2.3.1. Function ϕ(x), which is generated from a unit box (unit length

and height) is called the scaling function [58].

The even Fourier transform

ϕ̂e (ω) =

{
1/4π for − 2π ≤ ω < 2π,

0 elsewhere,
(2.3.14)

gives an even scaling function

ϕe (x) =
sin 2πx

2πx
,

and the odd Fourier transform

ϕ̂o (ω) =





i/4π for − 2π ≤ ω < 0,

−i/4π for 0 ≤ ω < 2π,

0 elsewhere,

(2.3.15)

gives an odd scaling function

ϕo (x) = −cos 2πx− 1

2πx

so that, defining the complex scaling function ϕ (x) by

ϕ (x) = ϕe (x) + iϕo (x) ,

we find that

ϕ (x) =
sin 2πx

2πx
− i(cos 2πx− 1)

2πx
=
e2πix − 1

2πix
. (2.3.16)
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Its Fourier transform is

ϕ̂ (ω) = ϕ̂e (ω) + iϕ̂o (ω)

so that, from (2.3.14) and (2.3.15),

ϕ̂ (ω) =

{
1/2π for 0 ≤ ω < 2π,

0, elsewhere,
(2.3.17)

as shown in Fig. 2.3 c.

Figure 2.3: Fourier transforms of the (a) even, (b) odd and (c) complex
scaling function.

Graphs of the real and imaginary parts of function (2.3.16) are illustrated in Fig.

2.4. It is easy to see that ϕ (x) is orthogonal to its own unit translations. In addition,

the scaling function is orthogonal to ψ (x) because its Fourier transforms are confined

to separate the frequency bands.
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Figure 2.4: Real part (solid) and imaginary parts (dashed) of the har-
monic scaling function.

Remark. In view of the wavelet equation (1.2.6), function ψ(x) comprises a finite

linear combination of ϕ(2x), then the algorithms, which include scaling functions can

be replaced by wavelets.

2.3.3 Normalization

Using the definitions of ψ (x) by (2.3.2) and ϕ (x) by (2.3.16), we can be present the

following theorems.

Theorem 2.3.3. [58] Harmonic wavelets are normalized functions, i.e.

∞∫

−∞

∣∣ψ
(
2jx− k

)∣∣2dx =
1

2j
. (2.3.18)

Proof. Recalling identity (2.3.8) we have,

∞∫

−∞

ψ (x)ψ∗ (x) dx = 2π

∞∫

−∞

ψ̂ (ω) ψ̂∗ (ω) dω ;
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therefore,

∞∫

−∞

ψ
(
2jx− k

)
ψ∗ (2jx− k

)
dx = 2π 2−2j

∞∫

−∞

ψ̂
( ω

2j

)
ψ̂∗
( ω

2j

)
dω.

As we know from (2.3.1), ψ̂ (ω/2j) = 1/2π, where 2π 2j ≤ ω < 4π 2j; finally, we have

∞∫

−∞

∣∣ψ
(
2jx− k

)∣∣2 dx =2π 2−2j

∞∫

−∞

ψ̂
(ω

2

)
ψ̂∗
(ω

2

)
dω

=2π 2−2j

4π2j∫

2π2j

(
1

2π

)2

dω =
1

2j
.

Thus, the identity given in (2.3.18) holds. �

Analogously we can show the normalization of scaling functions.

Theorem 2.3.4. Scaling functions of harmonic wavelets are normalized, i.e.

∞∫

−∞

|ϕ (x− k)|2dx = 1 . (2.3.19)

Proof. Recalling equation (2.3.16), and making the corresponding substitution into

(2.3.19), we obtain:

∞∫

−∞

e2πi(x−k) − 1

2πi (x− k)
× e−2πi(x−k) − 1

2π (−i) (x− k)
dx =

∞∫

−∞

2 − e2πi(x−k) − e−2πi(x−k)

4π2 (x− k)2 dx

=
1

π2

∞∫

−∞

sin2 π (x− k)

(x− k)
2 dx = 1.

�

Proof. (more general [57]).

∞∫

−∞

ϕ (x− k)ϕ∗ (x− k) dx = 2π

∞∫

−∞

ϕ̂ (ω) ϕ̂∗ (ω) dω.



29

Recalling (2.3.17), we come to the following result

∞∫

−∞

|ϕ (x− k)|2dx = 2π

2π∫

0

(
1

2π

)2

dω = 1 ,

which completes the proof of the normalization of harmonic wavelets. �

By (2.3.4), we can write

∞∫

−∞

ψ2
(
2jx− k

)
dx = 0 .

And in the same way we can establish that

∞∫

−∞

ϕ2 (x− k) dx = 0 . (2.3.20)

It is important to have these relations for expansion of an arbitrary function f (x)

(real or complex) in terms of complex harmonic wavelets. Examples of some applied

problems of function expansion in terms of harmonic and Shannon wavelets can be

found in references [11, 13, 15].

2.3.4 Property of vanishing moments

Another important property of scaling functions is their ability to represent polyno-

mials up to a certain order P − 1 [49]. More precisely, it is required that

xp =
∞∑

k=−∞

Mp
kϕ(x− k), x ∈ R, p = 0, 1, . . . , P − 1 (2.3.21)

where

Mp
k =

∞∫

−∞

xpϕ (x− k) dx, k ∈ Z, p = 0, 1, . . . , P − 1 (2.3.22)

and Mp
k denotes the p-th moment of ϕ(x − k). Equation (2.3.21) can be translated

into the orthogonality condition involving wavelets by taking the inner product with
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ψ(x). In particular, we obtain:

∞∫

−∞

xpψ(x)dx =

∞∑

k=−∞

Mp
k

∞∫

−∞

ϕ(x− k)ψ(x)dx = 0 .

Using the orthogonality of ψ(x) and ϕ(x), we can get the property of P vanishing

moments [49, 78]:

∞∫

−∞

xpψ(x)dx = 0, x ∈ R, p = 0, 1, . . . , P − 1. (2.3.23)

Thus, a wavelet has P vanishing moments if it is orthogonal to all polynomials of

degree P − 1 or smaller.

2.3.5 Multiresolution of complex f (x)

The goal of the WT is to decompose any arbitrary function f(x) ∈ L2(R) into an

infinite summation of wavelets at different scales according to the expansion [58]

f (x) =
∞∑

j=−∞

∞∑

k=−∞

aj,kψ
(
2jx− k

)
(2.3.24)

or

f (x) =
∞∑

k=−∞

aϕ,kϕ (x− k) +
∞∑

j=0

∞∑

k=−∞

aj,kψ
(
2jx− k

)
. (2.3.25)

Wavelets of all levels are included in the first formula; in the second expansion,

all negative levels are replaced by scaling functions and its translations. The scaling

function coefficients {aϕ,k}∞k=−∞ can be interpreted as a local weighted average of

f(x) in the region where ϕk is nonzero. On the other hand, wavelet coefficients {aj,k}
represent the opposite property, i.e. the details of f(x) which are lost in the weighted

average.

Equations (2.3.24) and (2.3.25) assume that f (x) ∈ R, and the wavelets are

derived from the solution of two scale dilation equations with real coefficients, and

there is only one wavelet for each pair of j and k. For harmonic wavelets there are, as
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we have seen, two wavelets for each j, k pair, namely an even real wavelet ψe (2jx− k)

and an odd complex wavelet ψo (2jx− k) (See Fig. 2.1). Since these functions are

combined together by (2.3.13) into a single complex wavelet ψ (2jx− k), the wavelet

coefficients {aj,k} will be also complex, i.e. aj,k ∈ C. The expansion coefficients

can be computed using the orthogonality relations (1.2.4). We shall define a pair of

complex wavelet coefficients by the following integrals:

aj,k = 2j
∞∫

−∞

f (x)ψ∗ (2jx− k
)
dx; ãj,k = 2j

∞∫

−∞

f (x)ψ
(
2jx− k

)
dx , (2.3.26)

and the corresponding pair of complex coefficients in the terms of scaling functions,

aϕ,k =

∞∫

−∞

f (x)ϕ∗ (x− k) dx, ãϕ,k =

∞∫

−∞

f (x)ϕ (x− k) dx . (2.3.27)

For a real-valued function f (x) ∈ R, the following relations exist: ãj,k = a∗j,k and

ãϕ,k = a∗ϕ,k. So, one can cut the number of independent wavelet coefficients in half.

But to allow f (x) to be a complex function, we will distinguish between ãj,k and a∗j,k.

Theorem 2.3.5. [57, 58] In terms of these coefficients, the contribution of a single

complex wavelet to the function f (x) is

aj,kψ
(
2jx− k

)
+ ãj,kψ

∗ (2jx− k
)
,

and expansion formulae (2.3.24) and (2.3.25) become

f (x) =
∞∑

j=−∞

∞∑

k=−∞

{
aj,kψ

(
2jx− k

)
+ ãj,kψ

∗ (2jx− k
)}
, (2.3.28)

or alternatively in the basis of wavelets for j ≥ 0 supplemented by the scaling function

ϕ:

f (x) =
∞∑

k=−∞

{aϕ,kϕ (x− k) + ãϕ,kϕ
∗ (x− k)}+

∞∑

j=0

∞∑

k=−∞

{
aj,kψ

(
2jx− k

)
+ ãj,kψ

∗ (2jx− k
)}
.

(2.3.29)
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The conjugate counterpart in expansions (2.3.28) and (2.3.29) is explained by the

mutual cancellation of the complex terms. Let us proof the identity of (2.3.28) and

(2.3.29).

Proof. It is obvious from (2.3.28) and (2.3.29) that the following identity of the resid-

ual terms
∞∑

k=−∞

aϕ,kϕ (x− k) =
−1∑

j=−∞

∞∑

k=−∞

aj,kψ
(
2jx− k

)
, (2.3.30)

exists, and analogously for ãϕ,k, ϕ
∗ (x− k) , ãj,k and ψ∗ (2jx− k), where coefficients

aϕ,k are defined by (2.3.27). And substituting

f (x) =

∞∫

−∞

f̂ (ω) eiωxdω ;

ϕ (x− k) =

∞∫

−∞

ψ̂ (ω) e−iωkeiωkdω ,

we find

aϕ,k =

∞∫

−∞

dx

∞∫

−∞

dω1

∞∫

−∞

f̂ (ω1) ψ̂
∗ (ω2) e

iω2kei(ω1−ω2)xdω2 .

If we recall the identity

∞∫

−∞

ei(ω1−ω2)xdx = 2πδ (ω1 − ω2) , (2.3.31)

we obtain

aϕ,k = 2π

∞∫

−∞

f̂ (ω) ψ̂∗ (ω) eiωkdω.

And the left-hand side of (2.3.30) becomes

∞∑

k=−∞

aϕ,kϕ (x− k) =
∞∑

k=−∞

2π

∞∫

−∞

dω1

∞∫

−∞

f̂ (ω1) ψ̂
∗ (ω1) e

i(ω1−ω2)keiω2xdω2 .
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The summation in the right-hand side involves only the term ei(ω1−ω2)k. This can be

evaluated using the Poisson summation formula2

1

2l

∞∑

k=−∞

e−
ixkπ

l = 2π
∞∑

m=−∞

δ (ω2 − ω1 − 2πm).

Assuming that x = ω2 − ω1, π/l = 1, we get

∞∑

k=−∞

ei(ω1−ω2)k = 2π
∞∑

m=−∞

δ (ω2 − ω1 − 2πm).

Then,

∞∑

k=−∞

aϕ,kϕ (x− k) =

∞∑

k=−∞

(2π)2

∞∫

−∞

dω1

∞∫

−∞

f̂ (ω1) ψ̂
∗ (ω1) ψ̂ (ω2) e

iω2xδ (ω2 − ω1 − 2πm) dω2 .

(2.3.32)

It turns out that only one term in the new summation needs to be included,

since the product ψ̂∗ (ω1) ψ̂ (ω2) equals zero unless its arguments belong to the same

frequency band 0 ≤ ω < 2π, which corresponds to m = 0. If ω1 = ω2, then

ψ̂∗ (ω1) ψ̂ (ω2) = 1
/
(2π)

2
. Hence,

∞∑

k=−∞

aϕ,kϕ (x− k) =

2π∫

0

f̂ (ω) eiωxdω.

The same analysis can be applied to the right-hand side of equality (2.3.30).

Beginning from (2.3.27),

aj,k = 2j
∞∫

−∞

f (x)ψ∗ (2jx− k
)
dx

2For appropriate function f , the Poisson summation formula may be stated as:
∞∑

k=−∞

f(x + kT ) =
1
T

∞∑

m=−∞
f̂

(m
T

)
exp

(
2πi

mx

T

)
, where f̂ is the FT of f , and f is a continious

and integrable function. For full details see e.g. [64], p.222.
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and transferring this to the frequency domain by implementing the Fourier transform,

we obtain

ψ∗ (2jx− k
)

= 2−j
∞∫

−∞

ψ̂∗
( ω

2j

)
eiωk/2j

e−iωxdω .

Then we have

aj,k =

∞∫

−∞

dω1

∞∫

−∞

f̂ (ω1) ψ̂
(ω2

2j

)
eiω2kei(ω1−ω2)xdω2 .

Taking into account equality (2.3.31), we get

aj,k = 2π

∞∫

−∞

f̂ (ω) ψ̂∗
( ω

2j

)
eiωk/2j

dω.

Then, substituting aj,k and ψ (2jx− k) into the right-hand side of (2.3.30), we get

−1∑

j=−∞

∞∑

k=−∞

aj,kψ
(
2jx− k

)
=

−1∑

j=−∞

∞∑

k=−∞

2π 2−j

∞∫

−∞

dω1

∞∫

−∞

f̂ (ω1) ψ̂
∗
(ω1

2j

)
ψ̂
(ω2

2j

)
eiω2xei(ω1−ω2)k/2j

dω2 .

(2.3.33)

Taking the summation over k first and the Poisson summation, we have

∞∑

k=−∞

ei(ω1−ω2)k/2j

= 2π 2j
∞∑

m=−∞

δ
(
ω2 − ω1 − 2π 2jm

)
.

From (2.3.1), the product ψ̂∗ (ω1/2
j) ψ̂ (ω2/2

j) is zero unless m = 0 in the latter

equality when it is 1
/
(2π)

2
. The conclusion is that (2.3.33) gives

−1∑

j=−∞

∞∑

k=−∞

aj,kψ
(
2jx− k

)
=

∞∑

j=−∞

2π 2j+1∫

2π 2j

f̂ (ω) eiωx dω

=

2π∫

0

f̂ (ω) eiωx dω ,

which is the same as
∞∑

k=−∞

aϕ,kϕ (x− k) =

2π∫

0

f̂ (ω) eiωxdω. �
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The band-limited character of the FTs of ϕ (x) and ψ (x) provides the basis of

a formal proof of the equivalence of expressions (2.3.28) and (2.3.29). Because of

the orthogonality of ψ (2jx− k) and ϕ (x− k) together with their additional prop-

erties (2.3.18) – (2.3.20), it is straightforward to check that the coefficients in the

expansions (2.3.28) and (2.3.29) can be found by making the convolutions (2.3.26)

and (2.3.27). If f (x) ∈ R, the real part of aj,k is a half of the amplitude of the even

wavelet ψe (2
jx− k) in the expansion; minus the imaginary part of aj,k is a half of

the amplitude of the corresponding odd wavelet ψo (2jx− k) in the expansion.

Using the band-limited structure of the FT of ψ (2jx− k), it can be demonstrated

that
∞∑

j=−∞

∞∑

k=−∞

2−j
{
|aj,k|2 + |ãj,k|2

}
=

∞∫

−∞

|f (x)|2dx .

Thus, the set of functions {ψ (2jx− k) | j, k ∈ Z} is a tight “frame” in the terminology

of the wavelet theory [23]. In other words, the band-limited harmonic wavelet defined

by (2.3.13) provides a complete set of basis functions in the L2(R)-space for expanding

an arbitrary function f (x), i.e.:

∞∫

−∞

|f (x)|2dx <∞ .

2.3.6 Decay of wavelet coefficients

In order to get the convergence of series (2.3.29), it is natural to present a question

of the decay of wavelet coefficients.

The P vanishing moments (2.3.23) have an important consequence for the wavelet

coefficients {aj,k} and {ãj,k} (2.3.26): they decrease rapidly for a smooth function.

Furthermore, if a function has a discontinuity in one of its derivatives, then the

wavelet coefficients will decrease slowly only close to that discontinuity and maintain

fast decay where the function is smooth. This property makes wavelets particularly

suitable for representing piecewise smooth functions. The decay of wavelet coefficients

can be expressed in the following theorem.
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Theorem 2.3.6. [49] Let P = D/2 be the number of vanishing moments for a wavelet

ψj,k(x), and let f(x) ∈ CP (R). Then the wavelet coefficients defined by (2.3.26) decay

as follows:

|aj,k| ≤ CP2−j(P+ 1
2) max

ξ∈Ij,k

|f (P )(ξ)| ,

where CP is a constant independent of j, k, f(x), and Ij,k = supp{ψj,k} =

[
k

2
;
k +D − 1

2j

]
.

Proof. Let us write the Taylor series expansion for f(x), x ∈ Ij,k in the neighborhood

of x = k/2j

f(x) =

(
P−1∑

p=0

f (p)(k/2j)

(
x− k

2j

)p

p!

)
+ f (P )(ξ)

(
x− k

2j

)P

P !
, (2.3.34)

where ξ ∈ [k/2j ;x] and under the assumption that ∃ f (P )(x) in the support interval

Ij,k. The substitution of (2.3.34) into (2.3.26), and restricting the integration to the

support integral, we get

aj,k =

∫

Ij,k

f(x)ψj,k(x)dx

=



P−1∑

p=0

f (p)(k/2j)
1

p!

∫

Ij,k

(
x− 1

2j

)p
ψj,k(x)dx




+
1

P !

∫

Ij,k

f (P )(ξ)

(
x− k

2j

)P
ψj,k(x)dx .

Recall that ξ depends on x, therefore f (P )(ξ) is not a constant, and must remain

under the integral.

Let us now consider integrals, where p = 0, 1, 2, . . . , P − 1. Taking into account
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the support interval Ij,k and the substitution y = 2jx− k, we obtain:

(k+D−1)/2j∫

k/2j

(
x− k

2j

)p
2j/2ψ(2jx− k)dx

= 2j/2
D−1∫

0

( y
2j

)p
ψ(y)2−jdy

= 2−j(p+1/2)

D−1∫

0

ypψ(y)dy

= 0, p = 0, 1, . . . , P − 1

because of the P vanishing moments. Therefore, the wavelet coefficient is determined

from the reminder term alone. Hence,

|aj,k| =
1

P !

∣∣∣∣
∫

Ij,k

f (P )(ξ)

(
x− k

2j

)P
2j/2ψ(2jx− k)dx

∣∣∣∣

≤ 1

P !
max
ξ∈Ij,k

|f (P )(ξ)|
∫

Ij,k

∣∣∣∣
(
x− k

2j

)P
2j/2ψ(2jx− k)

∣∣∣∣dx

= 2−j(P+1/2) 1

P !
max
ξ∈Ij,k

|f (P )(ξ)|
D−1∫

0

|ypψ(y)|dy .

Defining

CP =
1

P !

D−1∫

0

|ypψ(y)|dy ,

we obtain the desired inequality.

Theorem 2.3.6 shows that if f(x) behaves like a polynomial of a degree less than

P within the interval Ij,k, then f (P ) ≡ 0; and the corresponding wavelet coefficients

{aj,k} are equal to zero. If f (P )(x) is different from zero, then the coefficients will decay

exponentially with respect to the scaling parameter j. If f(x) has a discontinuity in

its derivative of the order less or equal to P , then Theorem 2.3.6 does not hold
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for wavelet coefficients located at the discontinuity. However, wavelet coefficients

away from the discontinuity are not affected. Thus, the coefficients in the wavelet

expansion reflect only local properties of f(x), and isolated discontinuities do not

affect on the convergence away from discontinuities. This means that functions, which

are piecewise and smooth, have many small wavelet coefficients in their expansions.

Therefore, they can be well represented by a few wavelet coefficients.

2.3.7 Periodic harmonic wavelets

In recent years, so-called periodic wavelets became one of the basic tools for inves-

tigation of periodic processes in numerical methods. One way to construct periodic

wavelets is the periodization of L2(R) wavelets.

The aim of this subsection is to introduce a unified approach to periodic wavelets,

and construct periodic harmonic wavelets with the related decomposition and recon-

struction algorithms of function f(x) on the circle T = R/Z. The main point in this

paragraph is that a wavelet basis in L2(R) yields complete orthonormal system in

L2(T) (identified quite often as L2[0; 1]), and

L2[0; 1]
def
=



f(x) : f(x) = f(x+ 1), R → C;

1∫

0

|f(x)|2dx <∞



 .

There exist two approaches to restrict wavelets to bounded sets. One involves its mod-

ification by requiring those which overlap on the bound to satisfy certain boundary

conditions [2]. Another approach on R1 involves periodization of a scaling function

and the corresponding wavelets.

Definition 2.3.2. Let ϕ ∈ L2(R) and ψ ∈ L2(R) be the basic scaling function and

the basic wavelet from MRA. For ∀j, k ∈ Z we define the 1 - periodic scaling function

ϕperj,k (x) =
∞∑

r=−∞

ϕj,k(x+ r) = 2j/2
∞∑

r=−∞

ϕ(2j(x+ r) − k), x ∈ R (2.3.35)
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and the 1 - periodic wavelet

ψperj,k (x) =
∞∑

r=−∞

ψj,k(x+ r) = 2j/2
∞∑

r=−∞

ψ(2j(x+ r) − k), x ∈ R. (2.3.36)

The 1-periodicity can be verified as follows:

ϕperj,k (x+ 1) =
∞∑

r=−∞

ϕj,k(x+ r + 1) =
∞∑

m=−∞

ϕj,k(x+m) = ϕperj,k ,

and in precisely the same way we can show that ψperj,k (x+1) = ψperj,k (x). If the support

of a wavelet ψj,k is out of [0; 1] on the left side, the missing part is matched by ψj,2j+k

on the right side.

The following theorem demonstrates that periodic wavelets ψperj,k together with

periodized scaling functions ϕperj,k generate orthogonal basis in L2[0; 1].

Theorem 2.3.7. [49] For ∀N ≤ 0

{
ψperj,k | −∞ < j ≤ N, 0 ≤ k < 2−j , ϕperN,k| 0 ≤ n < 2−N

}
(2.3.37)

is an orthogonal basis of L2[0; 1].

Proof. Let α(x), β(x) ∈ L2(R). If 〈α(x), β(x+ r)〉 = 0 for ∀ r ∈ Z, then

1∫

0

αper(x)βper(x)dx = 0 . (2.3.38)

To verify (2.3.38), we recall Definition 2.3.2, and get

1∫

0

αper(x)βperdx =

∞∫

−∞

α(x)βper(x)dx

=
∞∑

−∞

∞∫

r=−∞

α(x)β(x+ r)dx = 0 .

Since {ψj,k | − ∞ < j ≤ N, k ∈ Z, ϕN,k | k ∈ Z} is orthogonal in L2(R), we can

verify that any two different wavelets or scaling functions αper and βper in (2.3.37) have
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necessarily a non-periodized version which satisfies the orthogonality 〈α(x), β(x +

r)〉 = 0 for ∀ r ∈ Z in L2[0; 1].

To prove that this family generates basis in L2[0; 1], we extend f ∈ L2[0; 1] with

zeros outside [0; 1], and decompose it in terms of wavelets for L2(R):

f =
∞∑

j=−∞

∞∑

k=−∞

〈f, ψj,k〉ψj,k +
∞∑

k=−∞

〈f, ϕN,k〉ϕN,k . (2.3.39)

This zero extension is periodized by Definition 2.3.2. Periodization of (2.3.39) proves

that f can be decomposed over the periodized wavelet family (2.3.37) in L2[0; 1].

Periodic wavelets are constructed for decomposing periodic square integrable func-

tions into different frequency bands for yielding local information within each fre-

quency band [65]. Periodization is a standard technique in the Fourier analysis. Our

construction is based on periodization of orthogonal harmonic wavelets. Periodic

scaling functions can be constructed by a standard procedure [23], which is defined

as follows:

ϕper (x) =

∞∑

k=−∞

ϕ (x− k) (2.3.40)

on a unit interval. By substituting ϕ (x− k) with its Fourier transform, we have:

ϕper (x) =
∞∑

k=−∞

∞∫

−∞

ϕ̂ (ω) e−iωke−iωxdω ,

and from the equality

∞∑

k=−∞

ei(ω1−ω2)k = 2π
∞∑

m=−∞

δ (ω2 − ω1 − 2πm)

it immediately follows that

∞∑

k=−∞

e−iωk = 2π
∞∑

m=−∞

δ (ω − 2πm). (2.3.41)
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Since, from (2.3.17), function ϕ̂ (ω) equals zero except the band 0 ≤ ω < 2π, only

the term with m = 0 needs to be retained in (2.3.41), therefore,

ϕper (x) = 2π

∞∫

−∞

ϕ̂ (ω) eiωxδ (ω) dω ,

which with (2.3.17) gives

ϕper (x) = 1. (2.3.42)

The same argument applies when ϕ (x− k) in (2.3.40) is replaced by its com-

plex conjugate. For harmonic wavelet function ψ (2jx− k), its periodic (circular)

equivalent is

ψper
(
2jx− k

)
=

∞∑

m=−∞

ψ
(
2j (x−m) − k

)
=

∞∑

m=−∞

2−j
∞∫

−∞

e−iωk/2j

e−iωmψ̂
( ω

2j

)
eiωxdω ,

(2.3.43)

where k = 0, . . . , 2j−1. In order to compute the summation overm, recall the identity

(2.3.32). Since ψ̂ (ω/2j) = 1/2π for 2π 2j ≤ ω < 2π 2j+1 and zero elsewhere. The

only values of m, which need to be considered in (2.3.41), are m = 2j, . . . , 2j+1 − 1.

Substituting equation (2.3.41) into (2.3.43) and completing the integration, we get:

ψper
(
2jx− k

)
= 2−j

2j+1−1∑

m=2j

e2πim(x− k

2j ) , (2.3.44)

where k = 0, . . . , 2j − 1. In particular, for the zero-level, the circular wavelet is

ψ0,0 (x) = e2πix.

Fig. 2.5 shows real and imaginary parts of periodic harmonic wavelets for some of

the first three scales at the selected positions.

It is clear from (2.3.44) that a circular (periodic) wavelet of level j has 2j discrete

harmonic frequencies, which are 2π 2j , 2π (2j + 1) , 2π (2j + 2) , . . . , 2π (2j+1 − 1). It



42

0.2 0.4 0.6 0.8 1.0
x

-1.0

-0.5

0.5

1.0

Ψ0,0HxL

0.2 0.4 0.6 0.8 1.0
x

-0.5

0.5

1.0

Ψ1,0HxL

0.2 0.4 0.6 0.8 1.0
x

-0.5

0.5

1.0

Ψ2,2HxL

0.2 0.4 0.6 0.8 1.0
x

-1.0

-0.5

0.0

0.5

1.0

Ψ3,3HxL

Figure 2.5: Real (solid) and imaginary (dashed line) parts of the pe-
riodic harmonic wavelets ψ0,0 (x), ψ1,0 (x), ψ2,2 (x), ψ3,3 (x).

follows that a train of constant amplitude circular wavelets harmonic wavelets can

model a pure tone provided that it had one of these frequencies.

The limits of integration in the orthogonality condition (2.3.9) are given from

−∞ to ∞, but the integrand in each case is only nonzero for the finite length of the

shortest wavelet involved. In the case of PHW, the limits of integration must be from

x = 0 to x = 1. Therefore, formulae (2.3.26) and (2.3.27) can be written as follows:

aj,k = 2j
1∫

0

f (x)ψ∗ (2jx− k
)
dx ; ãj,k = 2j

1∫

0

f (x)ψ
(
2jx− k

)
dx , (2.3.45)

and the corresponding coefficient for the terms of scaling function is

aϕ,k =

1∫

0

f (x) dx . (2.3.46)

Corollary. From the existance of FTs for harmonic wavelets for j ≥ 0 (see

(2.3.13) and Fig.2.2), we can conclude that ψperj,k (x) = 0 for j ≤ −1, j, k ∈ Z, x ∈ R.
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2.3.8 Discrete harmonic wavelet transform

The discrete wavelet transform (DWT) is an algorithm for computing (2.3.45) and

(2.3.46) when f(x) is sampled at equally spaced points over 0 ≤ x < 1 [58]. In the

following, we will assume that f(x) represents one period of a periodic function and

that the scaling and wavelet functions wrap around the interval as described above.

The algothithm of the DWT was introduced by S. Mallat [23], and it is called Mallat’s

pyramid algorithm.

An algorithm to compute ϕ (x− k) and ψ (2jx− k) from their defining Fourier

transforms and then to make the convolutions of (2.3.26) and (2.3.27) can be set up in

a straightforward way, but it is not efficient numerically and the following alternative

approach is better.

Let us consider a function f (x) ∈ L2[0; 1], which is sampled at equally spaced

points, and represented by the following sequence:

fr, r = 0, 1, . . . , N − 1

where N = 2n. Using the discrete Fourier transform, the corresponding Fourier

coefficients are

f̂m =
1

N

N−1∑

r=0

fre
−2πimr/N , m = 0, 1, . . . , N − 1 .

Let us note, that

f̂N−m =
1

N

N−1∑

r=0

fre
−2πi(N−m)r/N =

1

N

N−1∑

r=0

fre
−2πire

2πimr
N = f̂∗

m ,

where f̂m ∈ C except f̂0, f̂N/2 ∈ R.

Furthermore, we will consider a coefficient aj,k, defined by the first formula in

(2.3.26). Firstly, we will substitute ψ∗
j,k(x) in terms of its Fourier transform of function

(2.3.13)

ψ∗
j,k(x) =

1

2j

4π2j∫

2π2j

1

2π
eiωk/2

j

e−iωxdω
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into the first formula of (2.3.26), and we obtain the following integral

aj,k =
1

2π

4π2j∫

2π2j

eiωk/2
j

dω

∞∫

−∞

f(x)e−iωxdx, (2.3.47)

where we have changed the order of integration, assuming that f(x) <∞ everywhere.

The second integral over x represents the FT of f(x) multiplied by 2π, and then

equation (2.3.47) becomes

aj,k =

4π2j∫

2π2j

f̂(ω)e−iωk/2
j

dω. (2.3.48)

Next, we replace the integral by a summation. In this case we step through the

frequency band increments of 2π (in such a way that there are 2j steps in level j).

Then f̂ (ω) is replaced by the discrete coefficients f̂2j+s, where f̂2j+s = 2πf̂(ω =

2π(2j + s)), and integral (2.3.48) becomes a summation

a2j+k =

2j−1∑

s=0

f̂2j+se
2πisk/2j

, k = 0, . . . , 2j − 1. (2.3.49)

This identity represents the inverse discrete Fourier transform for the sequence of

frequency coefficients f̂2j+s. We arranged these coefficients in wavelet levels (which

are synonymous with the octave bands) in the table below (Table 2.1).

Consider a level j with 2j coefficients {a2j+k}, where k = 0, . . . , 2j − 1. Each of

these coefficients defines a complex amplitude of a wavelet whose Fourier transform

is described by the Fourier coefficients in the frequency band f̂2j+k, k = 0, . . . , 2j −1.

The first wavelet in this sequence with the amplitude a2j has a constant spectral

density of relative level 1/2j (see Fig. 2.2). Therefore, it contributes a2j/2j to the

general coefficient f̂m, 2j ≤ m < 2j+1. The second wavelet on level j has amplitude

a2j+1. It is translated 1/2j with respect to its neighbour, and therefore its Fourier

transform is rotated by e−iωk/2
j

with k = 1. Since f̂m is the Fourier coefficient for

frequency ω = 2πm, the contribution of a2j+1 to f̂m is a2j+1e
(−2πmi/2j)/2j

. Combining
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Wavelet level Coefficient in wavelet transform
-1 a0

0 a1

1 a2, a3

2 a4, a5, a6, a7

3 a8 to a15

– –
j a2j to a2j+1−1

– –
n − 2 aN/4 to aN/2−1

n − 1 aN/2

Table 2.1: Wavelet levels and its corresponding coeffi-
cients in the wavelet transform.

all the contributions from k = 0, . . . , 2j − 1, we obtain:

f̂m = 2−j
2j−1∑

k=0

a2j+ke
−2πimk/2j

. (2.3.50)

We are left with a remarkable conclusion that the wavelet coefficients can be

obtained by computing the inverse discrete FT of the successive blocks of the Fourier

coefficients of the function f .

Conclusion of Chapter 2

In this chapter we introduced harmonic wavelets, and derived the corresponding

PHWs. Periodic harmonic wavelets represent orthogonal functions with a unit pe-

riod, and form a basis for the L2[0; 1] functions. Another important feature of PHWs

is its ability to represent high-frequency oscillations, which enables to approximate

any smooth function with strong gradients. The theory of PHWs concerns not only

one wavelet, but all periodic wavelets!

Regarding the harmonic wavelets, then there appears the only disadvantage: their

decay rate is relatively low (proportional to x−1), and therefore it can not be a pow-

erful tool in applications when a function or a signal is strictly localized in time or
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space. However, this is a penalty for the wavelet, whose the Fourier transform is

restricted in frequency domain.

The mentioned Mallat’s algorithm for computing the DWT involves a sequential

filtering operation. At each level of the transform, a high-pass filter separates fine

structure to give the wavelet-coefficients at this level. The algorithm described in this

Chapter represents a parallel algorithm in the sense that all the wavelet-coefficients

{as | s = 0, . . . , N − 1} can be computed simultaneously (at the same time). Mallat’s

algorithm is replaced by a flat sandwich with Fast Fourier Transform operations at

only two levels of the sandwich.



Chapter 3

Multiscale solution of
low-dimensional nonlinear PDEs

Overview. This Chapter shows that PHWs build periodic MRA. Strategies for

handling nonlinear PDEs are shortly discussed. We consider the problem of solution

of nonlinear PDEs in the 1D space by using PHWs as basis functions in L2[0; 1]. We

assume that boundary conditions are periodic and make use of periodized harmonic

wavelets described in the previous chapter. The absolute error of the projection of

solution on the space of periodic wavelets is analitically estimated.

3.1 Introduction

Even though the field of the wavelet theory has had a great influence on the other

fields, such as signal processing and image analysis, it is not yet clear whether it will

have such influence on numerical methods for solution of PDEs and IEs.

In the early 1990s researchers were very optimistic because it seemed that special

properties of wavelets would automatically lead to efficient methods of solution of

PDEs and IEs. The reason for this optimism was because many nonlinear PDEs and

IEs have solutions, which contain local phenomena and interaction between several

scales (e.g. turbulence, multi-frequency oscillations). Such solutions can often be

represented in wavelet basis. Therefore, it was believed that the efficient wavelet

47
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based numerical schemes for solving such problems would follow from the compression

properties of wavelets.

However, this early optimism remains to be honored. Wavelets have not had the

expected impact on differential equations, partly because the computational work is

not necessarily reduced by applying wavelet compression – even though the solution

is sparsely represented in a wavelet basis. In the following paragraphs we will discuss

the most promising approach and compare our results with other numerical methods.

Schematically, wavelet based methods for solution of PDEs can be separated in

the following classes:

Class 1. Methods based on scaling function expansions. The unknown

solution is expanded in scaling functions at some chosen level N and is solved by

the Galerkin or collocation approach. Because of their compact support, the scaling

functions can be regarded as alternatives to splines or the piecewise polynomials used

in finite element schemes. While this approach is important in its own right, it cannot

exploit wavelet compression. However, this approach has many points of interest.

Lenard Jameson [38] has shown that one obtains a method, which exhibits super

convergence at the grid points, the order of approximation is twice as large as that of

the projection of the solution onto the space spanned by scaling functions. J. Waldén

has shown [76] that the size of the differentiation filters grows faster than optimal

centered finite difference method of the same order. Finally, we mention that Teresa

Regińska [68] used scaling functions to regularize the solution of the sideways heat

equation. By expanding the solution in scaling functions, high frequency components

can be filtered away and continuous dependence of the initial condition is restored.

Class 2. Methods based on wavelet expansions. A PDE is solved by

taking the Galerkin approach as in the first class. However, in this case the unknown

solution is expressed in terms of wavelets instead of scaling functions. So, wavelet

expression can be applied either to the solution or to the differential operator. Several

different approaches have been considered for exploiting the sparsity of a wavelet

representation. Those, who peformed this method are S. Mallat [3] and S. Bertoluzza
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[5].

Y. Liu et al. [47] employed the wavelet-collocation method for solution of transient

problems with steep gradients. They have shown that the Daubechies orthonormal

basis in the collocation method performs an accurate, stable and convergent algorithm

to describe evolution processes.

In another approach, linear operators such as differentiation are computed in the

wavelet domain and nonlinear operators such as squaring, in physical domain. This

is one of the most common approaches and was used by [17], [28] and [40]. This

approach involves a number of transformations between the physical domain and

the wavelet domain in each time step, and this can involve considerable difficulties.

Hence, the wavelet compression potential of the solution must be very large for this

approach to be feasible.

An interesting aspect of the wavelet approach is that certain operators represented

with respect to a wavelet basis become sparser, when we go to the higher powers

[25]. From this property, one can obtain an efficient time-stepping scheme for certain

evolution equations. This method was employed in [17] to solve the heat equation.

We will call methods which belong to Class 1 and 2 as projection methods.

Class 3. Wavelets and finite differences. In the third approach, wavelets

are used to derive adaptive finite-difference methods. Instead of expanding solution

in terms of wavelets, the wavelet transform is used to determine where the finite

difference grid must be refined or coarsened in order to represent the optimal solution.

In this case, the computational costs are low because one works with point values

in the physical representation. One approach was developed by Lenard Jameson

[38] under the name Wavelet Optimized Finite Difference Method (WOFD). This

method finds an approximation to the solution found on the finest scale across the

whole domain. The efficiency depends on the rate of data compression, i.e. how fast

derivative change along the space domain.

Class 4. Other methods. There are a few approaches that can implement

wavelets, but do not fit into the previous classes. The examples are operator wavelets
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[80], the method of travelling waves [63], and wavelet preconditioning [7].

Operator wavelets are wavelets, which are (bi-)orthogonal with respect to the

inner product designed for the particular differential operator. This is not a general

method, since it works only for certain operators.

In the method of travelling waves, initial condition is expanded, involving only a

few terms of wavelets, which propagate in time. A disadvantage of this method is that

these few wavelets can be unable to express the solution after it has been propagated

in a long time domain.

It was shown by G. Beylkin in [7] that any finite difference matrix of representa-

tion of periodized differential operators can be preconditioned so that the condition

number is O(1). Furthermore, if the finite difference matrix is represented in a wavelet

basis, then the preconditioner is a diagonal matrix. Thus, wavelets play an auxiliary

role that they provide ways to reduce the condition number of the operator.

This Chapter of the thesis, refers to Class 2 and the Galerkin approach. Also, it

is shown that PWH form MRA.

3.2 Periodic multiresolution analysis

The idea of the decomposition of a function into a sum of approximate ϕ(x) and

detailed ψ(x) terms by using orthogonal and biorthogonal wavelets was realized in

the MRA (e.g. see [23]).

In view of Definition 2.3.2 and the assumption that (2.3.35) and (2.3.36)

ψperj,k (x) =
∑

r∈Z

ψj,k(x+ r) , ϕperj,k (x) =
∑

r∈Z

ϕj,k(x+ r) , (3.2.1)

are bounded functions, many of the properties of non-periodic scaling functions and

wavelets carry over to their periodized versions restricted to the interval [0; 1]. As we

already know, one of such properties is the MRA. The definition of MRA in L2(R)

can be adapted to the L2[0; 1]-space as follows:
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Definition 3.2.1. A sequence of subspaces {Vj} in the L2[0; 1]-space is called a

periodic MRA of L2[0; 1] if the subsequent conditions hold true:

i. Nested. Vj ⊂ Vj+1 . . . ⊂ L2[0; 1] ;

ii. for j = 0, 1, 2, . . . the system ϕperj,k with k = 0, 1, . . . , 2j − 1 is an orthonormal

basis in Vj ;

iii. for j = 0, 1, 2, . . . the system {1, ψpers,k } for s = 0, 1, . . . , j−1 and k = 0, 1, . . . , 2s−1

is an orthonormal basis in Vj ;

iv.
⋃∞
j=0 Vj is the dense in L2[0; 1], so the system {ψperj,k } is a complete orthonormal

system in L2[0; 1].

By Theorem 2.3.7, PHWs form basis in L2[0; 1]. To get the full benefit from the

PHW, we need to show that these functions satisfy the conditions of periodic MRA.

A periodic scaling function of level j generates subspaces {V per
j }. The nested

property follows, since the set of multiples of {2−j | j ≥ 0} is contained in the set of

multiples of {2−j−1}. Intuitively, approximation of the function in V per
j is capable of

capturing details of a signal down to resolution of 2−j .

The density condition (iv) means that approximation of a function by harmonic

scaling function captures all details of the function as j gets larger.

To discuss the separation condition, we should note that j can be negative as well

as positive in the definition of V per
j . If f(x) ∈ V−j for j > 0, then f(x) must be a

linear combination of {ψ(2−jx − k) | j, k ∈ Z}, whose elements are constant within

[0; 2j]. When j is increasing, these intervals get larger [8]. Then we can formulate the

following theorem.

Theorem 3.2.1. (C.Cattani and A.Kudreyko [92]) Periodic harmonic wavelets (2.3.44)

fulfill axioms (i) – (iv) of the MRA.

Proof. Recall Definitions 1.1.1, 1.2.1 and formulae (2.3.18), (2.3.19), from which fol-

low that scaling function and harmonic wavelet ϕ,ψ ∈ L2(R). Assume that for s < j,
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we have ϕs,k =
∑
r∈Z

αrϕj,r and ψs,k =
∑
r∈Z

βrϕj,r. From formulae (3.2.1) and the or-

thogonality of ϕ and ψ in L2(R), we infer that

∑

r∈Z

|αr| =
∑

r∈Z

| < ϕs,k, ϕj,r > |

≤ 2s/2+j/2
∑

r∈Z

∞∫

−∞

|ϕ(2sx− k)| ∗ |ϕ(2jx− r)|dx

= 2s/2+j/2

∞∫

−∞

|ϕ(2sx− k)| ∗ ϕper(2jx)dx

≤ C 2s/2+j/2

∞∫

−∞

|ϕ(2sx− k)|dx <∞ ,

and in the same way we can get
∑
r∈Z

|βr| <∞. It implies that ϕpers,k ∈ V per
j and ψpers,k ∈

W per
j . This gives the proof of issue (i). Thus, we have to check the orthogonality in

(ii) – (iv). For j, j′ ≥ 0 we have

1∫

0

ψperj,k (x)ψper∗j′,k′ (x)dx =

1∫

0

∞∑

r=−∞

ψj,k(x+ r)ψper∗j′ ,k′ (x)dx

=
∞∑

r=−∞

r+1∫

r

ψj,k(y)ψ
per∗
j′,k′ (y − r)dy

=
∞∑

r=−∞

r+1∫

r

ψj,k(y)ψ
per∗
j′,k′ (y)dy

=

∞∫

−∞

ψj,k(y)ψ
per∗
j′,k′ (y)dy .

(3.2.2)

Using Definition 2.3.2, we can write

ψperj,k (x) = 2j/2
∞∑

r=−∞

ψ(2jx+ 2jr − k) =
∞∑

r=−∞

ψj,k−2r(x) (3.2.3)

Because ψ(x) is a compactly supported mother wavelet, the supports of the terms do

not overlap if 2j is sufficiently large. Using formula (3.2.3) for the second function in
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(3.2.2), and involving the orthogonality relation for harmonic wavelets (2.3.13), we

obtain

1∫

0

ψperj,k (x)ψper∗j′,k′ (x)dx =
∞∑

r=−∞

∞∫

−∞

ψj,k(x)ψj,k−2jr(x)dx

= δj,j′
∞∑

r=−∞

δk,k′−2jr .

If j = j′, then δj,j′ = 1, and δk,k′−2jr contribute only when r = 0 and k = k′ because

k, k′ ∈ [0; 2j − 1]. Hence,

1∫

0

ψperj,k (x)ψper∗j′,k′ (x)dx = δj,j′δk,k′ .

The use of a similar analysis can establish the relation:

1∫

0

ϕperj,k (x)ψper∗j′,k′ (x)dx = 0 .

Therefore, the system, which appears in item (iv) of the properties of the MRA is

orthonormal. If we repeat calculations (3.2.2) for j = j′ and ϕ instead of ψ, we can

obtain that item (ii) holds true. Thus, dimVj = 2j .

In order to show the proof of (iv), let us consider the orthogonal projection PV per
j

from L2[0; 1] onto V per
j . From (ii) we infer that

PVjf =
2j−1∑

k=0

< f,ϕperj,k > ϕperj,k . (3.2.4)

Suppose we fixed an exponential e2πirt, and let us calculate the r−th Fourier coefficient

of PVj(e
2πirt). From expansion (3.2.4) and the consequences of Parseval’s identity (see
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e.g. [58] or [64]) it follows that

PVj(e
2πirt) =

2j−1∑

k=0

< e2πirt, ϕperj,k >< ϕperj,k , e
2πirt >

=
2j−1∑

k=0

| < ϕperj,k , e
2πirt > |2

=

2j−1∑

k=0

|ϕ̂perj,k (r)|2 = 2π|ϕ̂perj,k (r)|2 .

(3.2.5)

We can conclude that PVj(e
2πirt) → 1 as j → ∞. Since ||PVj || = 1 (because PVj

is an orthogonal projection) and {e2πis}s∈Z is an orthonormal system in L2([0; 1]),

we infer that PVj(e
2πis) tends in L2[0; 1] to e2πirt as j → ∞. This implies that for

every trigonometric polynomial f : PVN
(f) → f in L2[0; 1]. Since (the Weierstrass

approximation theorem, 1885) trigonometric polynomials are the dense in L2[0; 1], we

conclude that
⋃∞
j=0 V

per
j is the dense in space L2[0; 1].

Periodized wavelets and scaling functions generate MRA in space L2[0; 1] on a

unit interval.

Definition 3.2.2.

V per
j = span

{
ϕperj,k (x), x ∈ [0; 1]

}2j−1

k=0
,

W per
j = span

{
ψperj,k (x), x ∈ [0; 1]

}2j−1

k=0
.

It turns out that spaces {V per
j } are nested [23] as in the non-periodic MRA, i.e.

V per
0 ⊂ V per

1 ⊂ . . . ⊂ L2[0; 1] .

In addition, the orthogonality relations between scaling functions and wavelets imply

that

V per
j

⊕
W per
j = V per

j+1 .

Using these argumented spaces, we obtain the following result:

L2[0; 1] = V per
0

⊕(
∞⊕

j=0

W per
j

)
.
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Combining (2.3.42) and (2.3.44), we get
{

1,
{{
ψperj,k

}2j−1

k=0

}∞

j=0

}
,

which represents an orthonormal basis for L2[0; 1] functions. We note that according

to (2.3.42), the scaling function no longer appears explicitly, since we replaced it by

the constant 1.

Remark. One usually thinks, and it is very natural that V per
j =

⊕
j Vj . One has

to be aware that there are functions f ∈ Vj for which periodization is not properly

defined.

At this point it is important to present the problem between the relation of approx-

imate and analytical solutions. The proceeding paragraph is devoted to the answer

to this question.

3.3 Approximation properties of multiresolution

spaces

Consider the approximation error for a family of generalized periodic wavelets. Let

f(x) ∈ L2[0; 1], and assume that its periodic expansion (2.3.29) is P times differen-

tiable everywhere. Then let us define the approximation error as follows:

eperN (x) = f(x) −PV per
N
f(x), x ∈ [0; 1]

where PV
per
N
f(x) is the orthogonal projection of f(x) onto the approximation space

as stated in Definition 3.2.2 (see also Chapter 1.2.2). Using the wavelet periodic

expansion (2.3.29), we find that

PV
per
N
f(x) =

∞∑

k=0

aϕ,kϕ
per(x− k) +

N−1∑

j=0

2j−1∑

k=0

aj,kψ
per
j,k (x) . (3.3.1)

On passing to the limit as N → ∞, we get f(x):

f(x) =

∞∑

k=0

aϕ,kϕ
per(x− k) +

∞∑

j=0

2j−1∑

k=0

aj,kψ
per
j,k (x) . (3.3.2)
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Then, by subtracting (3.3.2) from (3.3.1), we obtain the expression for the error eperN

in terms of wavelets at scales j ≥ N :

eperN (x) =
∞∑

j=N

2j−1∑

k=0

aj,kψ
per
j,k (x) . (3.3.3)

Define

Cψper = max
x∈Ij,k

|ψper(2jx− k)| = max
y∈[0,D−1]

|ψper(y)| .

Since max
x∈Ij,k

|ψperj,k (x)| = 2j/2Cψ, and in view of Theorem 2.3.6 (Theorem of decay of

wavelet coefficients), we find that

|aj,kψperj,k (x)| ≤ CP2−jP max
ξ∈Ij,k

|f (P )(ξ)|Cψper ,

where

supp(ψperj,k ) = Ij,k =

[
k

2j
,
k +D − 1

2j

]
.

We conclude that there are at most D− 1 intervals Ij,k containing a given value of x.

Thus, for any x only D− 1 terms in the inner summation in (3.3.3) are nonzero. Let

Ij be a union of all these intervals, i.e.

Ij(x) =
⋃

{l:x∈Ij,l}

Ij,l ,

and assume

µPj (x) = max
ξ∈Ij(x)

|f (P )(ξ)| .

Then we can establish a common bound for all terms in the inner sum:

2j−1∑

k=0

|aj,kψperj,k | ≤ CψperCP2−jP (D − 1)µPj (x) .

The outer sum over j can be evaluated using the fact that

µPN (x) ≥ µPN+1(x) ≥ µPN+2(x) ≥ . . .
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and we can establish the bound

|eperN (x)| ≤ CψperCP (D − 1)µPN (x)
∞∑

j=N

2−jP

= CψperCP (D − 1)µPN (x)
2−NP

1 − 2−P
.

Thus, we see that for an arbitrary, but fixed x, the approximation error will be

bounded as follows:

|eperN (x)| = O(2−NP ) . (3.3.4)

This is an exponential decay with respect to the resolution N . Furthermore, the

greater number of vanishing moments P of a periodic wavelet increases the rate of

decay. Formula (3.3.4) involves big O notation, and allows us to concentrate on the

decay rate. It is worth to remind that the description of a function in terms of big O
notation usually only provides upper bound of the decay rate of a function. (See A.

Kudreyko and C. Cattani [91, 93]).

To get the full benefit of (3.3.4), we must compare it with the reminder term in

the Fourier series. Let ηx(x) = f(x) − fn(x), where fn(x) is the Fourier expansion

(A.1.1) of f(x). Let us suppose that f (m)(x) exists, although its continuity is required

only up to f (m)(x). As described in reference [4], the reminder term can be estimated

as follows:

|ηn(x)| <
2

(n+ 1/2)m−1

lnπ(n+ 1/2)

π(n+ 1/2)
|f (m)(x)|max .

As we see from the previous formula, the decay rate of the reminder term is pro-

portional to a polynomial. We know that exponential decay tends to 0 faster than

polynomial one.

3.4 Harmonic wavelet solution of the Burgers

equation

The approach we take uses the combination of the standard Galerkin techniques and

multiscale periodic basis. Numerical solutions of the Burgers equations have been a



58

subject of discussions in many papers (e.g. [32, 43, 53, 55]). From the conventional

methods of solution we would like to mention the following ones:

- Fourier spectral method (Appendix B);

- Finite element and finite difference method (Appendix B);

- Galerkin and collocation methods (Appendix B).

As one can see, the solution of the Burgers equation is well-studied. However, the

application of wavelets for solution of PDEs is not yet well-studied. Therefore, this

approach for the Burgers equation represents a nontrivial problem.

3.4.1 Statement of the problem

Let us consider the Burgers equation of the following view:

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= 0, (3.4.1)

where u (x, t) is the velocity and ν is the kinematic viscosity3, with the initial condition

u (x, 0) = sin 2πx (3.4.2)

and the periodic boundary conditions

u(x, t) = u(x+ 1, t), t ≥ 0.

Burgers’ equation is the simplest example of a nonlinear partial differential equation.

Solutions of Burgers’ equation consist of stationary or moving shocks, and capturing

such behavior is an important test of our approach.

It is generally acknowledged that the Burgers equation can be solved analitically

by the Cole-Hopf transformation [62], where it is observed that the solution of (3.4.1)

3The ratio of the viscosity of a fluid to its density.
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can be expressed as u(x, t) = −2ν
ϕ′
x

ϕ
, where ϕ = ϕ(x, t) is the solution of the heat

equation with the initial condition

ϕ(x, 0) = e−
1

4πν

∫
u(x,t)dx .

Our approach assumes the implementation of the Galerkin method for solution of

(3.4.1) with PHWs (3.4.3) as basis functions

ψj,k (x) = 2−j
2j+1−1∑

m=2j

e2πim(x− k
2j ) . (3.4.3)

There always presents a frequent question in the application of wavelets for solu-

tion of PDEs: how do we choose the best wavelet? Even for the restricted class of

harmonic wavelets described here, the same question needs to be answered. Unfortu-

nately there is still no any clear answer to this question [60]. Any signal (function)

can be decomposed into many different families of orthogonal wavelets, and for signal

processing in real time, computational efficiency maybe the essential feature. How-

ever, for the analysis of vibration records, that is usually not important compared

with the need to achieve a time-frequency map with high resolution. The effective

deconstruction of such a record requires a narrow bandwidth to achieve the frequency

resolution, and a wide bandwidth to achieve the time resolution.

3.4.2 Connection coefficients

A natural starting point for the projection methods is the problem of computation of

connection coefficients. If we restrict ourselves to quadratic terms, then the general-

ized definitions of connection coefficients can be written out as follows [11]:

L
(l)jr

ks

def
=

〈
dlψj,k
dxl

, ψr,s

〉
; (3.4.4)

N
(n)jpr

kqs

def
=

〈
ψj,k

dnψp,q
dxn

, ψr,s

〉
; (3.4.5)

Θ
(n,m) jpr

kqs

def
=

〈
dnψj,k
dxn

dmψp,q
dxm

, ψr,s

〉
, (3.4.6)
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where l, m and n are the orders of the derivatives. We will assume that these deriva-

tives are well-defined. Since in our case, we deal with nonlinear u
∂u

∂x
and linear

term
∂2u

∂x2
, and therefore we will consider connection coefficients defined by (3.4.4)

and (3.4.5). For the simplicity of further notation we will skip parameters l and n,

assuming that l = 2, and n = 1.

PHWs (3.4.3) are orthogonal functions on [0; 1]; therefore they fulfill orthogonal

constraint, i.e. 〈ψj,k, ψm,h〉L2[0;1] = δj,mδk,h. The recursive formulae for the connection

coefficients [10] can be easily derived from their definitions (3.4.4) and (3.4.5).

Ljrks =

〈
d2ψj,k
dx2

, ψr,s

〉
=

1∫

0

d2ψj,k
dx2

ψ∗
r,sdx =

− 2−j−r+2π2
2j+1−1∑

mj=2j

2r+1−1∑

mr=2r

m2
j

1∫

0

e
2πi

[
(mr−mj)x−

(
mrs
2r −

mjk

2j

)]
dx =

− 2−j−r+2

2j+1−1∑

mj=2j

2r+1−1∑

mr=2r

(πmj)
2
e
2πi

(
mrs
2r −

mjk

2j

)
δmj,mr ;

(3.4.7)

N jpr
kqs =

〈
ψj,k

d

dx
ψp,q, ψr,s

〉
=

1∫

0

ψj,k
dψp,q
dx

ψ∗
r,sdx = − 2iπ

2j+p+r
∗

2j+1−1∑

mj=2j

2p+1−1∑

mp=2p

2r+1−1∑

mr=2r

mp · e2πi
(

mjk

2j +
mpq

2p −mrs
2r

)
δmj+mp ,mr ,

(3.4.8)

where matrix (3.4.8) describes nonlinear interactions caused by the convective deriva-

tive.

As can be seen from (3.4.7) and (3.4.8), there is a certain freedom in the choice of

the range of variation of index j. It is obvious that the maximum value of j determines

the spatial resolution of the method. The maximum scale jmax = n can be chosen

from the statement of the problem (e.g., initial condition). The range of variation of

index k is closely related with the boundary conditions of the problem. In the case of

periodic problem, the number of functions at level j is determined from the condition
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of the complete basis, i.e. the dilation of functions must cover the whole circle. It is

evident that every proceeding scale doubles the number of basis functions (3.4.3).

3.4.3 The Galerkin approach for harmonic wavelet

solution of the Burgers equation

The Galerkin methods are known as a class of methods for converting a continuous

operator problem (such as a differential equation) into a discrete problem. The idea

of the Galerkin method lies in the choice of such basis functions, which satisfy the

boundary conditions. It is obvious that PHW satisfy the boundary value problem of

the Burgers equation with initial condition (3.4.2).

The main advantage of the Galerkin method follows from its idea: once, when we

have chosen the suitable scaling functions, we should not mind any more about the

boundary conditions. However, there is a disadvantage in this method, it works only

for simple boundary conditions as for this problem.

According to the idea of the Galerkin approach, we express u (x, t) in terms of

the time-dependent amplitudes with the space-dependent bases, i.e. we look for a

projection of the solution of the Burgers equation (3.4.1) in the form [53]

PVnu (x, t) =
n−1∑

j=0

2j−1∑

k=0

aj,k (t)ψj,k (x). (3.4.9)

This wavelet-based expansion is similar to the Fourier expansion. Due to the vanishing

moments of wavelet functions, we know that the wavelet transform of a function

automatically places significant coefficients in a neighborhood of large gradients. This

is a great difference with the traditional methods (Appendix B). Also, let us introduce

the inner product in L2 [0, 1]

〈f, g〉 =

1∫

0

f (x) g∗ (x) dx, (3.4.10)

where the “asterisk” over g (x) ∈ L2[0; 1] denotes its complex conjunction. Substitut-

ing series (3.4.9) into (3.4.1) and applying (3.4.10), one obtains the following system
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of complex amplitude evolution equations which play the role of a finite-dimensional

projection of the Burgers equation onto the wavelet space PVn,

dar,s
dt

− ν
n−1∑

j=0

2j−1∑

k=0

Ljrksaj,k +
n−1∑

j=0

n−1∑

p=0

2j−1∑

k=0

2p−1∑

q=0

N jpr
kqsaj,kap,q = 0 . (3.4.11)

The initial values for ar,s can be obtained by using the discrete Newland transform

(see Section 2.3.8). The solution of system (3.4.11) was obtained by using the Adams

method for ODEs.

The presence of the Kronecker delta factor in connection coefficients (3.4.7), (3.4.8)

provides a formal constraint on the mode selection based on scale criteria. We deduce

the selection rule for triadic scale interaction {j, p, r} to be mj +mp −mr = 0. This

relation also suggests that only forward cascading processes are allowed, i.e. for a

set of scale triads {j, p, r} only j and p that are smaller or equal to the observational

scale r give nonzero contributions to the nonlinear terms. Smaller values of j, p, r

imply larger scales.

In order to reduce the computational costs in the wavelet Galerkin scheme, es-

pecially for high Reynolds number problems (Re = u0L/ν, where u0 and L is the

amplitude of the velocity and the length of the calculation area), one has to reduce

the number of space-scaling degrees of freedom further by exploiting the localization

properties of wavelets. This approximation utilizes the finite spectral support of har-

monic wavelets to the optimum. The second reduction is for the spatial modes (i.e.

{k, q, s}) carried out based on the localization of the wavelet in physical space. In

general, wavelet ψj,k (x) can be considered as approximately localized function [24]

within an interval given by

Ijk =

[
k − 1

2j
,
k + 1

2j

]
.

Thus, for a triad interaction coefficientN jpr
kqs with the reference scale r and position

s, we retain position indices, satisfying the support overlapping criteria,

Ijk ∩ Irs 6= 0, Ipq ∩ Irs 6= 0.
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In order to illustrate the applicability of our scheme, we may vary kinematic

viscosity ν, and plot the solution on the map: x× t→ [0; 1] × [0; 1] for n = 10. The

results for partial solutions of (3.4.11) for different values of the kinematic viscosity

are displayed in Figs. 3.1 – 3.2.
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Figure 3.1: Wavelet solution of the Burgers equation for ν = 0.01, from
t = 0 to t = 1 with the backup time ∆t = 0.25.
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Figure 3.2: Wavelet solution of the Burgers equation for ν = 0.001, from
t = 0 to t = 1 with the backup time ∆t = 0.25.

It is observed that when time evolves, the solution develops into a shock wave

due to the formation of higher frequency harmonics, and eventually decays. This
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is consistent with the qualitative property of the analytical solution of the Burgers

equation. The criterion for the relaxation of wave propagation was chosen in the form

εmax = |PVj+1u(x, t)−PVju(x, t)| ≤ 5 · 10−5 .

Also, there are other wavelet based studies on solution of nonlinear PDEs. One of

such methods was presented by Beylkin and Keiser [40], who employed the method of

semigroups to transform the given PDE into an integral equation before its discretiza-

tion. The connection coefficients in their work are determined using the two-scale

difference equation and the moments condition.

The Burgers equation is the simplest model, which describes the competition

between nonlinear advection and linear dissipation, and widely studied as the one-

dimensional model of three-dimensional Navier-Stokes equations. Our calculation of

the nonlinear term highlights the complexity of spatial-scale modes interactions with

the scale selection rule explaining generation of smaller scale structures.

3.5 Harmonic wavelet solution of the

Korteweg-de Vries equation

The Korteweg-de Vries equation is a mathematical model of waves on shallow water

surfaces (See e.g. [41, 66]). It is particularly notable as the prototypical example of

exactly solvable model (which explains our choice of the problem), that is, a nonlinear

PDE whose solutions can be exactly and precisely specified. The solutions include

prototypical examples of solitons. The KdV can be solved by means of the inverse

scattering transform. The mathematical theory behind the KdV equation is rich and

interesting, and in a broad sense, it has always been a topic of active mathematical

research.
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3.5.1 Statement of the problem

It is well-known that a wide class of one-dimensional nonlinear waves in a weakly

dispersive medium is governed by the Korteweg-de Vries equation (KdV)

∂u

∂t
− 6u

∂u

∂x∗
+
∂3u

∂x3
∗

= 0 , (3.5.1)

where t is time 0 ≤ t < ∞, x∗ ∈ R, u(x∗, t) ∈ R. This equation describes evolution

of a nonlinear wave in the moving coordinate system at the speed of long-wave per-

turbation. The physical value of function u(x∗, t) can be referred to the perturbation

of velocity or pressure on shallow water.

Equation (3.5.1) describes media with negative dispersion, when the phase velocity

of linear waves decays as the wave-number grows, and media with positive dispersion,

when the phase velocity grows with the wave-number. The difference between these

two cases consists in the following: in the first case, the coordinate x∗ is measured in

the direction of propagation of waves; in the second case, it is measured in the reverse

direction.

Not to mention that the KdV equation is well-studied, and different methods of

its solution exist, the approach we propose also deserves attention because it involves

wavelet method, which is getting more involved in the modern mathematical physics

and applied mathematics [10, 30, 53, 56]. In this case, the KdV equation is the model

of a nonlinear process, which we use in order to approve a new mathematical approach

and tricks for solution of nonlinear PDEs.

3.5.2 Connection coefficients

Consider again the computation of connection coefficients. The scalar product of

two functions on the unit interval [0; 1] is: 〈f, g〉L2[0;1] ≡
1∫

0

f(x)g∗(x)dx, where g∗(x)

means the complex conjugate. As we already know from Theorem 3.2.1, PHW are

complex and orthonormal functions, i.e. 〈ψj,k,ψm,h〉L2 [0;1] = δj,kδm,h. Therefore, taking
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into account formulae (3.4.4) and (3.4.5), we can define the connection coefficients as

follows:

Ljrks
def
=

〈
d3ψj,k
dx3

, ψr,s

〉
,

N jpr
kqs

def
=

〈
ψj,k

dψp,q
dx

, ψr,s

〉
.

Let us find the recursive formulae for linear and nonlinear connection coefficients. It

follows from the first and third derivatives of (3.4.3) and the definition of connection

coefficients L
(3)jr

ks, N
jpr
kqs that

Ljrks =

〈
d3ψj,k
dx3

, ψr,s

〉
=

1∫

0

d3ψj,k
dx3

ψ∗
r,sdx =

= 2−(j+r)+3
2j+1−1∑

mj=2j

2r+1−1∑

mr=2r

(πmj)
3 ie

2πi
(

mrs
2r −

mjk

2j

)
δmjmr .

(3.5.2)

As suggested in (3.5.2), we can derive the recursive expression for the nonlinear

connection coefficient

N jpr
kqs =

〈
ψj,k

dψp,q
dx

, ψr,s

〉
=

− 2πi

2j+p+r

2j+1−1∑

mj=2j

2p+1−1∑

mp=2p

2r+1−1∑

mr=2r

mp · e2πi
(

mjk

2j +
mpq

2p −mrs
2r

)
δmj+mp ,mr .

(3.5.3)

The set of wavelet functions {ψj,k(x)} does not form a complete basis for a finite

interval of a non-periodic localized in the space solution. It unavoidably appears the

problem of boundary effects. Therefore, the fulfillment of the boundary conditions

presents a difficulty. Although, it is possible to construct an orthonormal wavelet

basis for a finite interval. Nevertheless, the boundary effects for functions with a

compact support will be localized in the neighbourhood of both end points of the

interval. These effects can be neglected in the majority of problems.
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3.5.3 Wavelet-Galerkin method for solution of

the KdV equation

By implementing the standard approach in the Galerkin method, we can assume that

the unknown function (or weak solution) can be represented as follows:

PVnu (x, t) =

n−1∑

j=0

2j−1∑

k=0

aj,k(t)ψj,k(x), (3.5.4)

on the interval x ∈ [0; 1] with the given initial and boundary conditions4 for (3.5.1)

u(x∗, 0) = −4sech2(x∗) ;

u(x∗,min, t) = u(x∗,max, t) .
(3.5.5)

The solution of the KdV equation (3.5.1) is searched in the map x∗×t→ [x∗,min;x∗,max]×
[0; tmax].

In order to proceed the solution, we must introduce new variables:

x =
1

L
(x∗ − x∗,min), L = x∗,max − x∗,min.

Then equation (3.5.1) with boundary and initial conditions (3.5.5) becomes

∂u

∂t
− 6

L
u(x, t)

∂u

∂x
+

1

L3

∂3u

∂x3
= 0 ,

u(x, 0) = −4sech2
(
L
(
x+

x∗,min
L

))
;

u(0, t) = u(1, t) .

(3.5.6)

The substitution of expansion (3.5.4) into rescaled KdV equation (3.5.6) yields us the

following expression:

n−1∑

j=0

2j−1∑

k=0

daj,k
dt

ψj,k−
6

L

n−1∑

j=0

n−1∑

p=0

2j−1∑

k=0

2p−1∑

q=0

aj,kap,qψj,k
dψp,q
dx

+

1

L3

n−1∑

j=0

2j−1∑

k=0

aj,k
d3ψj,k
dx3

= 0 .

(3.5.7)
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Figure 3.3: Initial condition for the KdV equation.

The graph, which represents initial condition (3.5.5) is shown in Fig. 3.3.

The product between equation (3.5.7) and ψ∗
r,s(x), taking into account the orthog-

onality of the basis functions and the definition of the connection coefficients (3.5.2)

and (3.5.3) is

dar,s
dt

− 6

L

n−1∑

j=0

n−1∑

p=0

2j−1∑

k=0

2p−1∑

q=0

N jpr
kqsaj,kap,q +

1

L3

n−1∑

j=0

2j−1∑

k=0

Ljrksaj,k = 0 . (3.5.8)

This means that we have reduced our PDE (3.5.1) to the system of ordinary differ-

ential equations. We will skip the detailed analysis of system (3.5.8), which should

be solved in order to find the Galerkin solution.

3.5.4 Results and analysis of the solution

In order to illustrate the results of the proposed approach, we plot a graph, which

displays the solution of the KdV equation (3.5.1) for n = 8 on the map x∗ × t →
[−12; 12] × [0; 1] (See Fig. 3.4).

4In fluid dynamics, a nonlinear and exact periodic wave solution of the KdV equation is called
a cnoidal wave. A cnoidal wave, characterised by sharper crests and flatter troughs than in a sine
wave.
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Figure 3.4: Wavelet solution for evolution of wave propagation.

Now we are in a position to find the unknown wavelet coefficients, {aj,k} at the

initial moment t = 0 by employing the discrete Newland transform (see Section 2.3.8

and reference [58]):

1. The interval [0; 1] is divided into 2n equal subintervals; the discrete values of

the function u(x, 0) are defined.

2. The Fourier transform of the discrete values of the initial function is computed,

and the Fourier coefficients are {ûi}, where i = 0, . . . , 2n − 1.

3. By taking the inverse Fourier transform, we can write out the set of coefficients

{aj,k}, which gives us the initial conditions for solution of ODE (3.5.8).

The solution of the KdV equation (3.5.8) was obtained by using the Adams

method, and then making the substitution of the corresponding wavelet coefficients

{aj,k} into expansion (3.5.4). The result of our computations is shown in Fig. 3.4,

and it represents the evolution of wave propagation in dispersive medium.
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In order to give a numerical value of the error, recall that (3.5.1) has analyti-

cal solution for several initial conditions with the periodic boundary conditions. In

particular, one of such functions is:

u(x, t) = −2sech2(x− 4t) .

The maximum value of absolute error εmax = |PVnu(x, t)−u(x, t)| was compared with

the analytical solution for several values of t, and the results are presented in Table

3.1.

n t εmax

7 0.25 3.4 · 10−3

7 0.75 7.5 · 10−3

8 0.25 1.4 · 10−4

8 0.75 5.6 · 10−4

Table 3.1: Maximum absolute error for the given val-
ues of time.

Let us note that the overall the error is contributed by the discrete wavelet trans-

form and the numerical solution of system (3.5.8). Indeed, the exactness of the

projection of the solution of equation (3.5.1) in the finite space with basis functions

depends on the level of approximation n (See C. Cattani and A. Kudreyko [89]).

The application of the Galerkin method for solution of nonlinear PDEs depends

if the recursive formulae were found. In general, the computation of connection

coefficients represents rather difficult problem, and there are two visible reasons. The

first reason is that wavelets are not always analytically defined functions by a single

formula. The second reason is that a single formula, which defines a family of wavelets

does not always yield the corresponding connection coefficients.

There are three important facts to remark about the wavelet approximation.

1. High resolution of a rapidly changing function is the consequence of a large

number of wavelet coefficients appearing at fine scales.

2. The fact that the error is restricted to a small neighbourhood of the discontinuity
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is the result of the “locality” of wavelets. The behaviour of f(x) at one location

affects only the coefficients of wavelets close to that location.

3. Most of the linear part of f(x) is represented exactly.

Conclusion of Chapter 3

Examples of numerical solutions of PDEs were given. In particular, we developed a

wavelet approach for nonlinear Burgers’ and the KdV equations. We may conclude

that PHW adequately characterize solutions with strong gradients, and allow to re-

duce the number of connection coefficients in the description of hierarchical processes

with localized structures.

It is evident that this approach can be applied for many other types of differential

equations. However, there are several restrictions and generalizations for this method:

- It is supposed that u (x, t) is differentiable everywhere.

- A function u (x, t), which is to be projected on the space of wavelets, must

belong to the same space of function ψ(x).

- Periodic boundary conditions.

- The solution of a problem should exhibit a (traveling) wave, which can explain

the choice of wavelets.

It was observed that the Galerkin method with PHW as basis functions is stable even

for small viscosities. However, the main difficulty of this method consists in large

sizes of matrices, which describe nonlinear terms of equations (in our case, it is N).

There exist some potential opportunities in reduction of the computational costs.

For example, it is possible to create numerical schemes, which automatically set up

the scale and the number of basis functions for a certain space and time intervals

(e.g. [38]). Whereas it is easy to obtain the wavelet expansion of a known function,
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it can be exceedingly difficult to obtain the wavelet coefficients for PDEs. Similar

conclusions were reached in [17, 28, 38].

This methodology can be easily applied for solution of other nonlinear partial

differential equations.

We conclude by pointing out that we have a competitive wavelet based method

for PDEs and there is always a finer level of approximation inherent to all wavelet

approaches. Another interesting problem is that compression errors tend to accumu-

late when we go to higher levels [86]. This puts severe restriction on the amount of

admissible levels. Also, when errors are introduced, the solution may become smooth,

which means that the subsequent wavelet compression potential drops.

Much of the research in this field is in progress and it is too early to say wheather

the problems mentioned above will be solved or not. However, there is no doubt

that wavelet analysis has earned its place as an important alternative to the Fourier

analysis – only the scope of its applicability remains to be settled.



Chapter 4

Multiscale analysis of the
Fredholm type integral equations

Overview. In this chapter we present the application of periodized wavelets for solu-

tion of the Fredholm type integral equations. The efficiency of the wavelet approach

was demonstrated on several illustrative examples. We show that the application of

PHW is capable to be compared with other numerical methods.

4.1 Introduction

We are concerned with solutions of the Fredholm type integral equation of the second

kind which is defined as follows:

f(x) = λ

b∫

a

K (x, t)f (t) dt+ g (x) , (4.1.1)

where a and b denote finite or infinite numbers, K (x, t) ∈ L2 ([a; b]× [a; b]), g(x) ∈
L2[a; b]. The number λ is called the characteristic value of integral equation (4.1.1) if

there exist nontrivial solutions of the corresponding homogeneous equation (g(x) ≡
0). Nontrivial solutions are called eigenfunctions of the integral equation correspond-

ing to the characteristic value λ.

There exist two different methods to solve an IE numerically: expand the unknown

function into a series of orthogonal basis functions, and to reduce the equation to

73
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simultaneous ones with respect to the expansion coefficients. The second approach

employs the trapezoidal formula for integration. All these approaches may be used

with advantage for suitable types of problem but, in general, they suffer from various

well understood limitations.

Analytical solution of IE can be obtained only in exceptional cases. Therefore

there were developed many special methods, such us the quadrature method, degen-

erate kernel approximation, method of least squares (the description of these methods

is given in Appendix C), the Bateman method [67] etc. There exist many papers

which have obtained important results (e.g. [18, 21, 50, 51]). For solving this kind

of bounded problems, C.A. Micchelli and Y. Xu [50] constructed orthonormal mul-

tiwavelet bases on bounded domain. In reference [18] interpolating wavelets were

constructed on invariant sets. These multiwavelets on bounded domains were stud-

ied for efficient solution of IEs. The multiscale representation of integral operators

based on these wavelets lead to linear systems with sparse coefficients matrices whose

condition numbers are bounded. These sparse representations form the base of fast

numerical algorithms for solution of such IEs.

The approach we take in the thesis, employs harmonic and periodized wavelets.

The main advantage of our approach over the existing wavelet methods is that the

wavelet expansion coefficients can be computed analytically. In addition, the com-

putational cost of our approach is low and the accuracy is high. It is necessary

to emphasize that the application of wavelets plays a special place in the modern

computational methods thanks to quick convergence of a series of wavelets and the

possibility to get the solution with any given approximation error.

One of the early investigations on the wavelet approach for solution of IEs belongs

to Beylkin et al. [6]. Another efforts to the solution of this problem are presented

in references [42, 48, 79]. The interest to the wavelet approach for solution of IEs is

popular nowadays [44].

The most part of the existing research programs is devoted to solution of the

Fredholm and Volterra type integral equations. The Galerkin and collocation methods
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are mainly used in such research programs.

There were applied different wavelet bases. Besides the well-known Daubechies

wavelets, many other wavelets have been used, such as the Haar wavelets [42, 43, 44]

and CAS-wavelets [81] etc.

In our opinion, the attention to periodic wavelets and their application for solution

of IEs is not sufficient. Another advantage of our choice is that PHW are continuous

and differentiable everywhere functions.

This chapter shows that PHW, which satisfy the axioms of the MRA, can be

used as basis functions in solution of IEs. The main purpose of the present chapter

is to propose for numerical solution of IEs a simple method based on PHW. The

recommended technique is also applicable with minor changes to the Volterra and

integro-differential equations. The error estimation shows that the accuracy of com-

putations is very high even when the scaling parameter is small.

4.2 Wavelet-Galerkin method for solution of

low-dimensional integral equations

Let us consider the Fredholm type of the second kind, which has the form:

f(x) −
1∫

0

K(x, t)f(t)dt = g(x) , x ∈ [0; 1] (4.2.1)

where f(x), g(x) ∈ L2[0; 1], and the kernel K(x, t) ∈ L2([0; 1] × [0; 1]). Using the

operator

(Kf)(x) =

1∫

0

K(x, t)f(t)dt , x ∈ [0; 1]

it is usually convenient to write the equation as follows:

(F −K)f = g .
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According to the idea of the Galerkin method, we look for an approximate solution

f ∈ VN of equation (4.2.1) by requiring that the error equation fj −Kfj − g must be

orthogonal to spaces {Vj}.
Then we find coefficients {aj,k} for

PVjf(x) =
2j+1−1∑

k=0

aj,kψj,k(x) ,

such that

〈PVjf −Kf − g, ψj,k〉L2[0;1]
= 0 , k = 0, . . . , 2N+1 − 1 .

All that we need, is to solve the following system of linear algebraic equations with

the unknown vector ~aN = (aj,0, . . . , a2N+1−1)
T , i.e.

(~I − ~AN)~aN = ~gN ,

where ~I is the 2N+1-identity matrix, ~AN = {ck,k′} and ~gN = (g1, . . . , g2N+1−1)
T with

ck,k′ =

1∫

0




1∫

0

K(x, t)ψN,k′(t)dt


ψN,k(x)dx

gk =

1∫

0

g(x)ψN,k(x)dx .

If f(x) ∈ L2[0; 1], then the error of the projection of the solution on the space of

periodic wavelets V per
N can be estimated (3.3.4) as follows: |PVN

f(x) − f(x)|L2[0;1] =

O(2−NP ).

4.3 Wavelet-Galerkin method for solution of the

Fredholm type integral equations in two di-

mensions

Integral equations with two variables arise in many problems of mathematical mod-

elling. Solution of two-dimensional IEs by means of regular methods can be reduced
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to a system of linear algebraic equations with dense matrices. The present approach

suggests the use of wavelets for solution of two-dimensional IE. The novelty consists

in the extension of one-dimensional wavelet-Galerkin theory (see e.g. [27]) for integral

equations to two dimensions.

Multiscale analysis allows to analyze multidimensional problems. The method of

tensor product represents a natural way to the development of multiscale decompo-

sition, which leads to multidimensional wavelets with compact support.

Consider the Fredholm type integral equation of the second kind:

b∫

a

b∫

a

K(x, y, u, v)J(u, v)dudv + J(x, y) = f(x, y) , (4.3.1)

where f(x, y) is the given function, and J(x, y) is an unknown continuous function.

Let us suppose that the kernel satisfies the estimation:
∣∣∣∣
∂lK(x, y, u, v)

∂xl1∂yl2∂ul3∂vl4

∣∣∣∣ ≤
C

(√
(x− u)2 + (y − v)2 + α2

)l , l = l1 + l2 + l3 + l4 (4.3.2)

where α is a parameter of Pocklington’s equation [20, 69].

The most trivial approach for construction of two-dimensional orthonormal wavelet-

basis from one-dimensional basis (2.3.13) consists in the tensor product of two one-

dimensional bases [23, 78].

Proposition. Let ψj1,k1(x) and ψj2 ,k2(y) be wavelets defined on R, and assume

ψj1,k1;j2 ,k2(x, y) = ψj1,k1(x)ψj2,k2(y) ,

then the system

2
j1+j2

2 ψ
(
2j1x− k1, 2

j2y − k2

)

∀j1, j2 and k1, k2 ∈ Z forms orthonormal basis in L2(R × R).

For example, a graph of two-dimensional harmonic wavelet for j = 0, k = 0, l = 1

is shown in Fig. 4.1.

Remark. It should be noted that the multivariable wavelet theory is much less

developed than the theory of one variable presented in Chapters 1 – 2.
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Figure 4.1: Real part of 2D harmonic wavelet ψ0,0
0,1(x, y).

Under the previous proposition, we can create an orthonormal basis in Wj , where

we must involve the following family of three products:

ϕj,k(x)ψj,l(y) , ψj,k(x)ϕj,l(y) , ψj,k(x)ψj,l(y) ,

which means that the variation of the scale along the X and Y -axes goes with the

equal resolution. Since functions ϕ(x− k) constitute an orthonormal basis in V0, the

product ϕj,k(x)ϕj,l(y) presents orthonormal basis in V0, and formed by Z2 shifts of a

single function ϕ(x, y). Then the family of orthogonal scaling functions and wavelets
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is searched in the form

J(x, y) =

2N−1∑

i,j=−m+1

di,jϕN,i(x)ϕN,j(y) +

2N−1∑

i=−m+1

k−N∑

s=1

2N+s−1−m∑

j=−m+1

di,j,sϕN,i(x)ψN+s,j(y)+

2N−1∑

j=−m+1

k−N∑

q=1

2N+q−1−m∑

i=−m+1

di,j,qϕN,j(y)ψN+q,i(x)+

k−N∑

s=1

k−N∑

q=1

2N+q−1−m∑

i=−m+1

2N+s−1−m∑

j=−m+1

ci,j,s,qψN+q,i(x)ψN+s,j(y) ,

and presents a general solution of equation (4.3.1). Functions ϕ(x), ψ(x) are de-

fined by formulae (2.3.16) and (2.3.13). The idea of the wavelet-Galerkin method is

presented by the following conditions:

b∫

a

b∫

a

b∫

a

b∫

a

K(x, y, u, v)J(u, v)ϕN,r(x)ϕN,t(y)dxdydudv+

b∫

a

b∫

a

J(x, y)ϕN,r(x)ϕN,t(y)dxdy =

b∫

a

b∫

a

f(x, y)ϕN,r(x)ϕN,t(y)dxdy , −m+ 1 ≤ r, t ≤ 2N − 1 ;

b∫

a

b∫

a

b∫

a

b∫

a

K(x, y, u, v)J(u, v)ϕN,r(x)ψN,t(y)dxdydudv+

b∫

a

b∫

a

J(x, y)ϕN,r(x)ψN,t(y)dxdy =

b∫

a

b∫

a

f(x, y)ϕN,r(x)ψN,t(y)dxdy , −m+ 1 ≤ r ≤ 2N − 1 ,

−m+ 1 ≤ t ≤ 2n−1 −m,N + 1 ≤ n ≤ k;
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b∫

a

b∫

a

b∫

a

b∫

a

K(x, y, u, v)J(u, v)ψN,r(x)ϕN,t(y)dxdydudv+

b∫

a

b∫

a

J(x, y)ψN,r(x)ϕN,t(y)dxdy =

b∫

a

b∫

a

f(x, y)ψN,r(x)ϕN,t(y)dxdy , −m+ 1 ≤ t ≤ 2N − 1 ,

−m+ 1 ≤ r ≤ 2n−1 −m, N + 1 ≤ n ≤ k;

b∫

a

b∫

a

b∫

a

b∫

a

K(x, y, u, v)J(u, v)ψN,r(x)ψN,t(y)dxdydudv+

b∫

a

b∫

a

J(x, y)ψN,r(x)ψN,t(y)dxdy =

b∫

a

b∫

a

f(x, y)ψN,r(x)ψN,t(y)dxdy , −m+ 1 ≤ r, t ≤ 2n−1 −m,N + 1 ≤ n ≤ k

where ψN,t, ψN,r, ϕN,t, ϕN,r are observation wavelets and scaling functions. The set

of these conditions represents a system of linear algebraic equations with a squared
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Gramian matrix 5 A:



A11
11 . . . A11

1k−N+1 A12
11 . . . A12

1k−N+1 . . . A1k−N+1
1k−N+1

A21
11 . . . A21

1k−N+1 A22
11 . . . A22

1k−N+1 . . . A2k−N+1
1k−N+1

...
...

...
...

...
...

...
...

Ak−N+11
11 . . . Ak−N+11

1k−N+1 Ak−N+12
11 . . . Ak−N+12

1k−N+1 . . . Ak−N+1k−N+1
1k−N+1

A11
21 . . . A11

2k−N+1 A12
21 . . . A12

2k−N+1 . . . A1k−N+1
2k−N+1

...
...

...
...

...
...

...
...

Ak−N+11
21 . . . Ak−N+11

2k−N+1 Ak−N+12
21 . . . Ak−N+12

2k−N+1 . . . Ak−N+1k−N+1
k−N+1k−N+1

...
...

...
...

...
...

...
...

Ak−N+11
k−N+11 . . . Ak−N+11

k−N+1k−N+1 Ak−N+12
k−N+11 . . . Ak−N+12

1k−N+1k−N+1 . . . Ak−N+1k−N+1
k−N+1k−N+1




It is important to underline that we only consider the sparsity of matrices. The use

of classical functions in the Galerkin method yields matrix A with nonzero elements

or its values are not enough small to consider A as a sparse matrix. Then let us

estimate elements of matrix A if basis functions are wavelets.

Ats
pq = {aptqsijrf} , 1 ≤ p, t, q, s ≤ k −N + 1 ,

A11
11 = {a1111

ijrf } ,−m+ 1 ≤ i, j, r, f ≤ 2N − 1 ,

App
pp = {appppijrf } , 2

N+p−2 ≤ i, j, r, f ≤ 2N+p−1 − 1 ,

aptqsijrf =

b∫

a

b∫

a

b∫

a

b∫

a

K(x, y, u, v)ψptij (u, v)ψ
qs
rf(x, y)dxdydudv+

b∫

a

b∫

a

ψptij (x, y)ψ
qs
rf(x, y)dxdy .

Consider only those elements of matrix A, whose wavelet supports do not intersect.

In particular, the term
b∫

a

b∫

a

ψptij (x, y)ψ
qs
rf(x, y)dxdy

5The set of functions ψj,k(x), ψj,l(y), ϕj,k(x), ϕj,l(y) ∈ L2(R) in an inner product space.
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equals to zero, and where ψptij (x, y) is the observation function with scaling (upper

indices) and translation (lower indices) parameters.

Theorem 4.3.1. Elements of matrix A satisfy the following estimate:

|aijrfpqts| ≤ 2−
q+s
2

C(2−4p + 2−4s)
(
ρ2(suppψptij , ψ

qs
rf) + α2

)2 ,

where ρ(A,B) is the euclidean distance between sets A and B on the plane.

Proof. Consider a function:

g(x, y) =

∫ ∫

suppψpt
ij

K(x, y, u, v)ψptij (u, v)dudv .

If p 6= q, s 6= t then we must choose max(p, q) and max(s, t). Taking into account the

approximation properties of wavelets and estimation (4.3.2), suppose ∃N(x, y) such

that

|g(x, y)−N(x, y)| ≤
C
(√

2−2p + 2−2s
)4

(√
(r − i)222p + (f − j)222s + α2

)4

≤ C(2−2p + 2−2s)
(
22p (r − i)2 + 22s (f − j)2 + α2

)2 =
C(2−4p + 2−4s)

(
ρ2(suppψptij , ψ

qs
rf ) + α2

)2 .

Then, let us estimame

|apqtsijrf | =

∣∣∣∣
b∫

a

b∫

a

b∫

a

b∫

a

K(x, y, u, v)ψptij (u, v)ψ
qs
rf(x, y)dxdydudv

∣∣∣∣

=

∣∣∣∣
∫ ∫

suppψqs
rf

(∫ ∫

suppψpt
ij

K(x, y, u, v)ψptij (u, v)dudv

)
ψqsrf(x, y)dxdy

∣∣∣∣

≤ C(2−4p + 2−4s)
(
ρ2(suppψptij , ψ

qs
rf) + α2

)2
∫ ∫

suppψqs
rf

ψqsrf (x, y)dxdy

= 2−
q+s
2

C(2−4p + 2−4s)
(
ρ2(suppψptij , ψ

qs
rf) + α2

)2 ,

which completes the proof of our theorem.
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It follows from the obtained estimation that at large scaling parameters, the ab-

solute value of many elements in matrix A is small, i.e. the matrix is pseudo-sparse.

Therefore, quick solution of the corresponding system of linear algebraic equations

can be obtained thanks to pseudo-sparse matrices.

This result can be useful to offload the CPU by operating with quickly convergering

series of wavelet coefficients and pseudo-sparse matrices, and thus obtaining additional

speedup for no cost.

4.4 Collocation method for solution of integral equa-

tions

Another way for handling low-dimensional IEs is the collocation method. Following

the idea of all projection methods, we involve the operator of orthogonal projection

PV per
N

(see Definition 1.2.3). This operator projects a function from the space L2[0; 1]

onto the space of periodic wavelets V per
N .

In view of Theorem 3.2.1, periodic wavelets form MRA, and f(x) ∈ L2[0; 1] can

be presented as the following series of wavelets with the corresponding coefficients:

f (x) = a0 +
∞∑

j=0

∞∑

k=−∞

{aj,kψj,k(x) + ãj,kψ
∗
j,k(x)} ,

In particular, the projection of function f(x) onto the space of PHWs VN as basis

functions is written as follows:

PVN
f (x) = a0 +

N−1∑

j=0

2j−1∑

k=0

{aj,kψj,k(x) + ãj,kψ
∗
j,k(x)} . (4.4.1)

Consider now analytical computations for the partial case, when N = 1, which form

the idea of our approach. The substitution of PV1f(x) into equation (4.1.1) gives us



84

the following linear equation

a0 + a0,0ψ0,0(x)+ã0,0ψ
∗
0,0(x) =

b∫

a

K(x, t){a0 + a0,0ψ0,0(t) + ã0,0ψ
∗
0,0(t)} dt+ g(x) .

(4.4.2)

Thus, we received equation with unknown coefficients a0, a0,0 and ã0,0, which can

be computed by employing the collocation method. In order to do this, let us define

the collocation points. Denote

a ≤ x1 < x2 < . . . < xn ≤ b .

In the wavelet-collocation algorithm a set of collocation points {xj} is defined in such

a way that the collocation points of the coarser level of resolution are the subset of

the collocation points of the finer level of resolution. In our case, when N = 1, we

need to choose two collocation points 6: x1, x2 ∈ [a; b], and also recall the equality,

which states that if f(x) : R → R, then ãj,k = a∗j,k [57, 58]. The substitution of such

{xj} into (4.4.2) gives us the following system of algebraic equations

a0 + a0,0ψ0,0(xj) + ã0,0ψ
∗
0,0(xj) =

b∫

a

K(xj, t){a0 + a0,0ψ0,0(t)+

ã0,0ψ
∗
0,0(t)}dt+ g(xj),

(4.4.3)

where j = 1, 2. The analysis of the system for higher values of N represents a distinct

problem, which is beyond the scope of the research. In order to demonstrate our

approach, we solve several IEs (See C. Cattani and A. Kudreyko [92]).

4.4.1 Implementation of the collocation method

As an example, let us apply the proposed algorithm for equation of the following type

f (x) −
1∫

0

sin (4πx+ 2πt)f(t)dt = cos (2πx) +
1

2
sin (4πx) . (4.4.4)

6If [a; b] differs from [0; 1], then [x× t] map must be rescaled.
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It is evident that the solution of this equation is: f(x) = cos 2πx. One can show

that this solution can be obtained by the Fourier method. For example, if we choose

x1 = 0.5 and x2 = 0.75 as the collocation points, the solution of system (4.4.3) can be

easily found, and it is: a0 = 0; a0,0 = ã0,0 = 0.5. The substitution of these coefficients

into equation (4.4.1) for N = 1 yields us directly the solution f(x) = cos 2πx.

Let us note that we obtained the projection of the solution of equation (4.4.4)

onto a finite space with the corresponding basis functions. Wavelet coefficients {aj,k}
for the successive levels (N > 1) are zeros.

The same result was obtained in reference [79], but there periodic Daubechies

wavelets were applied as basis functions. The numerical solution, which was obtained

has an absolute error of 10−15 for N = 10, which is quite good, but comparing

with the Daubechies wavelets, harmonic wavelets are analytically defined, infinitely

differentiable and band limited. Thus, it enables us to study, their differentiable

properties.

4.4.2 Construction of eigenfunctions

Consider the homogeneous Fredholm integral equation

f∗(x∗) − λ

π∫

0

cos (x∗ + t∗)f∗(t∗)dt∗ = 0 , (4.4.5)

and solve it by using the collocation method. Denote the collocation points by

a ≤ x1 < x2 < . . . < xl < . . . ≤ b .

Recalling the decomposition of a real periodic function (4.4.1) on the space of PHW,

we have

PV1f(x) = a0 + ψ0,0(x) + ã0,0ψ
∗
0,0(x)

for N = 1. In addition, for f(x) : R → R, we can use the equality a∗0,0 = ã0,0. In

order to deal with 1−periodic functions, it is convenient to introduce new variables:
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x∗ = 2πx and t∗ = 2πt, and we get a rescaled equation

f(x) − 2πλ

0.5∫

0

cos [2π(x+ t)]f(t)dt = 0 , (4.4.6)

which we will solve by using the collocation method. The corresponding choice of

the collocation points {xl} leads us to a system of linear algebraic equations with the

parameter λ

a0+a0,0e
2πixl + ã0,0e

−2πixl−

2πλ

1/2∫

0

cos[2π(xl + t)](a0 + a0,0e
2πit + ã0,0e

−2πit) = 0 .

Thus, we can find parameters λ1 =
2

π
;λ2 = − 2

π
and eigenfunctions f∗

1 (x∗) = cos x∗,

f∗
2 (x∗) = sin x∗. Note, that the obtained projection for N = 1 coincides with the

analytical solution. If we had continued to search for the solution on the successive

levels of approximation, the wavelet coefficients {aj,k; j ≥ 0, 0 ≤ k ≤ 2j − 1} would

be zeros (A. Kudreyko and C. Cattani [91]).

4.4.3 MRA for the Fredholm type integral equation

This section illustrates our approach and the property of periodic harmonic wavelets

to construct the multiresolution analysis. Consider the following integral equation:

1∫

0

f(t)et sinxdt = −(1 − esinx)(sin3 x+ 16π2 sinx− 8π3 − 2π sin2 x)

(sin2 x+ 8π2)2 + 4π2 sin2 x
. (4.4.7)

Remark. It should be noted that such a special form of equation (4.4.7) is taken only

to demonstrate the applicability of periodized harmonic wavelets and multiresolution

analysis. In fact, there could be any 1-periodic function from space L2[0; 1].

Let us find the solution on the lowest approximation level, i.e. N = 1. Then,

taking into account (4.4.1) and (2.3.44), the projection of the solution on the space
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of periodic harmonic wavelets is

PV1f(t) = a0 + a0,0e
2πit + ã0,0e

−2πit .

If the expression for PV1f(t) is substituted into (4.4.7), we obtain

1∫

0

(a0 + a0,0e
2πit + ã0,0e

−2πit)et sin xdt = X ,

where X is the right hand side of (4.4.7). Denote the collocation points as follows:

x1 = 0, x2 = π/6, x3 = π/4. Then we will get a system of linear algebraic equations

with respect to wavelet-coefficients

1∫

0

(a0 + a0,0e
2πit + ã0,0e

−2πit)et sinxldt = Xl ,

where l = 1, 2, 3. If we assume that f(t) ∈ R, then we can take advantage of the

equality a∗j,k = ãj,k [57]. The solution of such system yields us the following coeffi-

cients: a0 = 0, a0,0 = 0.487, ã0,0 = 0.487 and the corresponding plot is presented in

Fig. 4.1 by a dashed line. In the case if we take N = 2, we find

PV2f(t) =a0 + a0,0ψ0,0(t) + ã0,0ψ
∗
0,0(t)

+ a1,0ψ1,0(t) + ã1,0ψ
∗
1,0(t) + a1,1ψ1,1(t) + ã1,1ψ

∗
1,1(t).

And the corresponding choice of the collocation points will also give us a system of

algebraic equations with respect to the wavelet coefficients. It can be shown that these

coefficients are a0 = 0, a0,0 = ã0,0 = 0.5, a1,0 = −i/8, ã1,0 = i/8, a1,1 = −i/8, ã1,1 =

i/8. The plot for N = 2 is shown in Fig. 4.1 by a solid line. It is obvious that the first

approximation represents the raw approximation of the second level. The projection

of the solution on the second approximation level represents the exact solution of

integral equation (4.4.7).

If we had continued our computations for N = 3 etc, the proceeding wavelet

coefficients would eventually be zeros (C. Cattani, A. Kudreyko [93]).
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Figure 4.2: Multiscale solution of equation (4.4.7) at N = 1- dashed line
and N = 2 solid line.

4.4.4 Wavelet-collocation method for integro-

differential equations

Consider another type of problem, i.e. an integro-differential equation [22]





y′(x) =

1∫

0

sin(2πt+ 4πx)y(t)dt− cos 2πx(1 + sin 2πx) − 2π sin 2πx;

y(0) = 1 .

(4.4.8)

Similar to the previous example, we can assume that the solution can be represented

in terms of periodic harmonic wavelets (2.3.44), i.e.

PV1f(t) = a0 + a0,0e
2πit + ã0,0e

−2πit .

The corresponding choice of the collocation points x1, x2, x3 gives us a system of linear

algebraic equations with respect to a0, a0,0, ã0,0. The values of the wavelet coefficients

are a0 = 0; a0,0 = ã0,0 = 0.5; and we can conclude that PV1f(t) = cos 2πt.
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Conclusion of Chapter 4

In order to verify our approach, we included the results of a number of numerical

examples. The advantages of the application of PHW for solution of integral equations

are:

1. The resulting function for every level of approximation is analytically defined,

which differs our approach from many other methods.

2. The approximation error of our approach is considerably less than it is in other

methods.

However, the algorithmic complexity of our approach is proportional to the num-

ber of significant coefficients in the wavelet expansion. The approach, that we propose

does not claim to be a universal, and it is not considered as the best, we only extended

the borders of the application of PWH. Unfortunately, in the theory that of periodic

wavelets that we develop does not approximate non-periodic functions nearby bounds,

and the choice of the wavelet family for the analysis of data represents more “art”

than a routine operation.

Our research is not intended to provide a complete discussion on the subject. We

concentrated on the specific properties, which are useful for numerical solutions of

integral and differential equations. As it was mentioned in Chapter 3, the current

wavelet theory does not give a clear answer about the best choice of a wavelet [60].

The most important criterion in the choice of a wavelet is its belonging to a certain

functional space, where it is expected to get a solution. Another criterion is a quick

convergence of the wavelet series with respect to the classical methods (e.g. Fourier

method). Indeed, there exist a lot of alternative (traditional) methods of solution

of PDEs (see Appendix B) as well as integral equations (see Appendix C), and each

of these methods has its own disadvantages, which can be equilibrated by using

other methods. Wavelet approach represents one of such methods, and it finds its

applications with the increasing frequency in many engineering and mathematical

problems.



Main results and conclusions

In this thesis we studied PHW in the context of solution of PDEs and IEs, and the

following results were obtained:

1. It was proved that periodic harmonic wavelets satisfy the properties of the MRA.

It was also shown that periodic wavelets form a complete basis for periodic

functions in L2[0; 1]. The obtained results allow us to use PHW in solution to

some applied problems.

2. The solution of the Burgers equation was given by means of PHW, and the cor-

responding connection coefficients were discussed. In particular, it was obtained

that the maximum scale can be chosen from the initial condition, and the range

of variation of the translation parameter is related with boundary conditions.

The model makes it possible to simulate the solution even for small values of

the viscosity coefficients. It means that the application of PHW allows us to

describe periodic processes with strong gradients.

The Korteweg-de Vries equation was solved as another example. In this case,

the system of PHW does not form a complete basis in a finite interval of a non-

periodic function localized in the space function. The lack of such approach

for solutions (e.g.) of the KdV equation is that there unavoidably appears the

problem of boundary effects.

3. The proposed approximation scheme for a function is also useful in computation

of some integral equations. The application of the collocation method with
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PHW as basis functions permits to find solution at low scale, which means a

quick convergence of the wavelet series.

4. The analytical formula for the computation of the approximation of projec-

tion on the space of periodic wavelets was obtained. The error exponentially

decreases if the resolution and the number of vanishing moments grow, i.e.

|eperN | = O(2−NP ).

5. The application of wavelet functions for two-dimensional integral equations al-

lows to reduce the computational costs and system requirements for the random

access memory of a computer.

According to the ISI Web of Knowledge as of March 8, 2011, author’s main pub-

lications [86, 91, 92] were cited 25 times.



Appendix A

A.1 Fourier transform of periodic function

Let x (t) be a periodic function with period T , which satisfies the Dirichlet conditions

on (−π, π):

- x (t) is continuous or has a finite number of breakpoints of the first kind;

- the interval (−π, π) can be divided on a finite number of subintervals, where

the function changes monotonously,

as shown in Fig. A.1, then we can express x (t) as an infinite Fourier series

x (t) = a0 +
∞∑

k=1

(
ak cos

2πkt

T
+ bk sin

2πkt

T

)
, (A.1.1)

where {a0, ak, bk; k ≥ 1} are constant Fourier coefficients defined by

a0 =
1

T

T/2∫

−T/2

x (t) dt;

ak =
2

T

T/2∫

−T/2

x (t) cos
2πkt

T
dt;

bk =
2

T

T/2∫

−T/2

x (t) sin
2πkt

T
dt.

(A.1.2)
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Figure A.1: Arbitrary periodic function of time

Suppose that the position of the t-axis in Fig. A.1 is adjusted in such a way, that

the mean value

∫

R
x(t)dt = 0. Then, according to (A.1.2), the coefficient a0 will be 0.

The frequency of the k-th coefficient is

ωk =
2πk

T
. (A.1.3)

The spacing between adjacent harmonics is

∆ωk =
2π

T
, (A.1.4)

and it is evident that when the period T becomes greater, the frequency spacing ∆ω

becomes smaller, and the Fourier coefficients are getting tightly packed. In the limit,

when T → ∞, these harmonics will be merged together.

The substitution of (A.1.2) into (A.1.1) gives
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x (t) =
∞∑

k=1





2

T

T/2∫

−T/2

x (t) cos
2πkt

T
dt





cos
2πkt

T
+

∞∑

k=1





2

T

T/2∫

−T/2

x (t) sin
2πkt

T
dt





sin
2πkt

T

for a0 = 0. Further, substituting for 2πk/T from (A.1.3) and 1/T from (A.1.4), we

obtain

x (t) =
∞∑

k=1





∆ω

π

T/2∫

−T/2

x (t) cosωkt dt





cosωkt+
∞∑

k=1





∆ω

π

T/2∫

−T/2

x (t) sinωkt dt





sinωkt .

When the period T → ∞, then ∆ω → dω, and the
∑

becomes an integral with limits

from ω = 0 to ω = ∞. In this case,

x (t) =

∞∫

0

dω

π





∞∫

−∞

x (t) cosωt dt



 cosωt+

∞∫

0

dω

π





∞∫

−∞

x (t) sinωt dt



 sinωt

or, denoting

A (ω) =
1

2π

∞∫

−∞

x (t) cosωt dt;

B (ω) =
1

2π

∞∫

−∞

x (t) sinωt dt,

(A.1.5)

we obtain

x (t) = 2

∞∫

0

A (ω) cosωt dω + 2

∞∫

0

B (ω) sinωt dω. (A.1.6)

The terms A(ω) and B(ω) defined by (A.1.5) are the components of the Fourier

transform of x(t), and equation (A.1.6) is the representation of x(t) by the inverse or

integral Fourier transform.
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A Fourier integral may be regarded as the formal limit of the Fourier series when

the period is tending to infinity. The reason for introducing this concept is because

Fourier integrals indicate the frequency composition of an aperiodic function. Usually,

equations (A.1.5) and (A.1.6) are written in the complex form, making use of Euler’s

formula

eiθ = cos θ + i sin θ. (A.1.7)

Defining function x̂(ω) as

x̂ (ω) ≡ A(ω) + iB(ω) , (A.1.8)

and recalling formulae (A.1.5) and (A.1.7), we have

x̂ (ω) =
1

2π

∞∫

−∞

x (t) e−iωt dt. (A.1.9)

Equation (A.1.9) is the formal definition of x̂(ω) and it is called Fourier transform of

x (t).

In order to put (A.1.6) into a compact form, we must first note from (A.1.5) that

A(ω) is an even function of ω and B(ω) is an odd function of ω. The reason for this

is that, if the sign of ω is changed in both formulas (A.1.5), A(ω) remains the same,

but B(ω) changes its sign. It means that both A(ω) cosωt and B(ω) sinωt are even

functions of ω and both remain the same when the sign of ω is changing. The Fourier

integral equation (A.1.6) can be written in the following form:

x (t) =

∞∫

−∞

A (ω) cosωt dω +

∞∫

−∞

B (ω) sin ωt dω. (A.1.10)

where −∞ < ω < ∞, and the factor 2 disappears. Thus, the idea of “negative”

frequency has introduced, which is only a mathematical trick to simplify equations.

Furthermore, since A(ω) is an even function and sinωt is an odd function of ω, then
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A(ω) sinωt is an odd function. In the same way for term B(ω) cosωt

∞∫

−∞

A(ω) sinωt dω = 0 ;

∞∫

−∞

B(ω) cosωt dω = 0.
(A.1.11)

Integrals (A.1.10) and (A.1.11) can be summated without making any difference to

the value of x(t). This can be written as follows:

x(t) =

∞∫

−∞

A(ω) cosωt dω +

∞∫

−∞

B(ω) sinωt dω+

i

∞∫

−∞

A(ω) sinωt dω − i

∞∫

−∞

B(ω) cosωt dω .

Since both integrals in (A.1.11) are equal to zeros, then

x(t) =

∞∫

−∞

{A(ω) − iB(ω)}{cosωt+ i sinωt} dω =

∞∫

−∞

x̂(ω)eiωt dω.

(A.1.12)

Equations (A.1.9) and (A.1.12) represent Fourier transform and inverse Fourier trans-

form.

A disadvantage of the Fourier transform is that frequency information can be only

extracted for the complete duration of a signal (function) x(t). Since the integral in

the equation of the Fourier transform (A.1.9) extends all over time from −∞ to ∞, the

information it provides arises from the average over the whole length of the signal. If at

some point of the lifetime of the function x(t), there is a local oscillation representing

a particular feature, this will contribute to the calculated Fourier transform x̂(ω), but

this oscillation on the time-axis will be lost. There is no way to know whether the
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value of x̂(ω) at a particular ω derives from frequencies present throughout the life

of x(t) or during just one or a few selected periods. This disadvantage overcomes in

the wavelet analysis [1, 23, 24, 49], which provides an alternative way of breaking a

signal down into its constituent parts.



Appendix B

B.1 Fourier method

A general difficulty in dealing with PDEs is that their solutions involve more than one

independent variable. The method of the Fourier transform allows to reduce a PDE to

one independent variable. We commonly try to transform the x-dependence through

the Fourier transform, provided that the space domain is infinite, i.e. −∞ < x <∞.

Consider a function u(x, t) with −∞ < x <∞, t ≥ 0, and let

û(ω, t) =

∞∫

−∞

u(x, t)eiωt dx

be a FT of u(x, t) with respect to x. The original function can be reconstructed from

the inverse Fourier transform:

u(x, t) =
1

2π

∞∫

−∞

û(ω, t)e−iωx dω . (B.1.1)

The differentiation of equation (B.1.1) with respect to x and t gives us the most

oft-used derivatives:

ux(x, t) =
1

2π

∞∫

−∞

(−iω)û(ω, t)e−iωx dω ,

uxx(x, t) =
1

2π

∞∫

−∞

(−iω)2 û(ω, t)e−iωx dω ,
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ut(x, t) =
1

2π

∞∫

−∞

ût(ω, t)e
−iωx dω ,

utt(x, t) =
1

2π

∞∫

−∞

ûtt(ω, t)e
−iωx dω .

B.2 Finite element and finite difference method

One of the first steps in using finite difference methods is to replace the continuous

problem domain by a discrete mesh or a grid. Let f (x) be a function with the

single independent variable x, where a ≤ x ≤ b. The interval [a, b] is discretized by

considering the nodes a = x0 < x1 < . . . < xN < xN+1 = b, and we denote f (xi) by

fi. The mesh size is xi+1 − xi. But for the simplicity we assume a constant mesh size

h =
b− a

N + 1

and

xi = a+ ih, i = 0, 1, 2, . . . , N + 1 .

In two dimensional case function f (x, y) can be specified at a nodal point (xi, yi) by

fij. The spacing in the x direction is hx and in the y direction is hy [56].

The difference approximations for the derivatives can be expanded in Taylor series.

The truncation error is the difference between the partial derivative and its finite

difference representation.

B.3 Galerkin and collocation methods

Let us show general ideas with the linear two-point boundary-value problem

u′′(x) + q(x)u = f(x), 0 ≤ x ≤ 1, (B.3.1)

with

u(0) = 0, u(1) = 0 .
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Suppose that we look for an approximate solution of (B.3.1) in the form of

u(x) ≈
n∑

j=0

cjφj(x), (B.3.2)

where φj(x) are the basis functions, which satisfy the boundary conditions:

φj(0) = φj(1) = 0, j = 0, . . . , n . (B.3.3)

If (B.3.3) holds true, then the approximate solution of u, given by (B.3.2), satisfies

the boundary conditions. A classical example of a set of basis functions, that satisfies

(B.3.3) is φj(x) = sin jπx, j = 0, . . . , n.

The collocation method is a member of the family of methods known as residual

methods. Let x1, x2, . . . , xn be n grid points on the interval [0, 1]. Then we can

require that the approximate solution satisfies the differential equation in these n

points. Thus, for equation (B.3.1) and approximation (B.3.2) we require that

d2

dx2

(
n∑

j=1

cjφj (x)

)∣∣∣∣∣
xi

+ q (xi)
n∑

j=1

cjφj (xi) = f (xi) , i = 1, . . . , n (B.3.4)

and we assume that the basis functions at least are twice differentiable. If we carry

out the differentiation in (B.3.4) and collect unknown coefficients cj, we obtain

n∑

j=1

cj[φ
′′
j (xi) + q(xi)φj(xi)] = f(xi) .

Thus, we received a system of n linear equations with n unknowns c1, c2 . . . , cn [31].

The Galerkin method is based on the concept of orthogonality of functions. Recall

that two vectors ~f and ~g are orthogonal if the inner product satisfies

(
~f,~g
)

=
n∑

j=0

fjgj = 0 .

Now suppose that the components of vectors ~f and ~g are the values of two functions

f and g at n equally spaced grid points within the interval [0, 1]
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~f = (f(h), f(2h), . . . , f(nh)) ,

where h = (n + 1)−1 is the grid-point spacing, and similarly for ~g. Then the orthog-

onality relation for discrete f and g is

n∑

j=0

f(jh)g(jh) = 0 ,

and this relation is unchanged if we multiply it by h→ 0. Assume, that the functions

f and g are integrable, then

1∫

0

f(x) g(x)dx = 0 . (B.3.5)

With this motivation we define two functions f and g to be orthogonal on the interval

[0, 1] if the relation (B.3.5) holds.

Let the residual function for u(x) be defined by

r(x) = u′′(x) + q(x)u(x)− f(x), 0 ≤ x ≤ 1 . (B.3.6)

If u(x) was exact solution of equation (B.3.1), then the residual function would be

identically zero. The Galerkin criterion is to choose u(x) in such a way that, its resid-

ual function (B.3.6) must be orthogonal to all the basis functions, i.e. φ1, φ2, . . . , φn:

1∫

0

r(x)φi(x) dx, i = 0, . . . , n . (B.3.7)

By substitution (B.3.2) into (B.3.7), we obtain a system of equations, which depends

on only the unknown coefficients {cj} [31].

If the number of equations is large and matrices, which apprear in this method

are dense, then there appears the main difficulty of this method, which consists in

high computational costs.



Appendix C

C.1 Integral equations

Integral equations are encountered in various fields of science and numerous appli-

cations (in elasticity, plasticity, heat and mass transfer, oscillation theory, fluid dy-

namics, filtration theory, electrostatics, electrodynamics, biomechanics, game theory,

control, queuing theory, electrical engineering, economics, medicine, etc.) [67].

There is a number of classifications of integral equations, which distinguish differ-

ent kinds of equations. The following classification is the most frequently used

b∫

a

K(x, t)φ(t)dt = f(x) ; (C.1.1)

φ(x)− λ

b∫

a

K(x, t)φ(t)dt = f(x) ; (C.1.2)

a(x)φ(x)− λ

b∫

a

K(x, t)φ(t)dt = f(x) . (C.1.3)

The above equations (C.1.1) – (C.1.3) are generally known as Fredholm equations

of the first, second, and third kind, respectively. The interval (a, b) may in general

be a finite interval, semi-infinite or infinite. If a(x) does not vanish, one can divide

(C.1.3) by a(x) and reduce it to (C.1.2). The functions f(x), a(x) and K(x, t) are

presumably known functions and the function φ(x) is unknown. The parameter λ
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could be absorbed by function K(x, t), but more convenient to retain it in the equa-

tion, since its role becomes clearer in the study of integral operators. The function

K(x, t) is generally known as the kernel of the equation (kernel function).

Remark 1. The variables x and t may vary in different ranges (e.g., a ≤ t ≤ b

and c ≤ x ≤ d).

Remark 2. In general, the case where the limits of integration a and/or b can

be infinite is not excluded; however, in this case, the validity of the condition that

the kernel K(x, t) is square integrable on the square S = {a ≤ x ≤ b, a ≤ t ≤ b} is

especially significant.

The second class of integral equations is the Volterra equations of the first, second,

and third kind, namely
x∫

a

K(x, t)φ(t)dt = f(x) ; (C.1.4)

φ(x)− λ

x∫

a

K(x, t)φ(t)dt = f(x) ; (C.1.5)

a(x)φ(x)− λ

x∫

a

K(x, t)φ(t)dt = f(x) . (C.1.6)

One can study these equations as a special case of the Fredholm type IEs. These

equations reduce to the corresponding Volterra equations if K(x, t) = 0 for t > x.

Nevertheless, the Volterra equations have many interesting properties which do not

emerge from the general theory of the Fredholm equations [35].

C.2 Quadrature method

In dealing with integral equations, the reduction to solution of systems of algebraic

equations, obtained by replacing the integrals with finite sums, is one of the most

effective tools. The method of quadratures is related to approximate methods. It is

a widespread in practice because it is rather universal with respect to the principle of
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constructing algorithms for solving both linear and nonlinear equations. The method

is based on the quadrature formula

b∫

a

ϕ(x)dx =

n∑

j=1

Ajϕ(xj) + εn[ϕ] , (C.2.1)

where {xj} are the nodes of the quadrature formula, coefficients {Aj} are independent

from ϕ(x), and εn[ϕ] is the error of the replacement of integration by summation.

Let us consider the Fredholm integral equation of the second kind

y(x)− λ

b∫

a

K(x, t)y(t)dt = f(x) , a ≤ x ≤ b (C.2.2)

where we assume that x = xj (i = 1, . . . , n), then we obtain the following relation:

y(xi) − λ

b∫

a

K(xi, t)y(t)dt = f(xi) , i = 1, . . . , n (C.2.3)

which represents the basic formula for the method of quadratures. The application

of formula (C.2.1) to integral (C.2.3) gives us the following system of equations:

y(xi) − λ

n∑

j=1

AjK(xi, xj)y(xj) = f(xi + λεn[y]) .

By neglecting infinitely small term λεn[y] in the latter formula, we obtain a system

of linear algebraic equations for approximate values of yi, which is the solution y(x)

in the nodes xi

yi − λ
n∑

j=1

AjKijyj = fi , i = 1, . . . , n (C.2.4)

where Ki,j = K(xi, xj), fi = f(xi). The solution of system (C.2.4) gives the values

y1, . . . , yn, which determine approximate solution of integral equation (C.2.2) in the

interval [a; b]. Here, for the approximate solution we can take the function obtained

by linear interpolation, i.e. the function which coincides with yi in nodes xi and
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linearly dependent within intervals [xi, xi+1]. Moreover, for the analytic expression of

the approximate solution, we can write:

ỹ(x) = f(x) + λ
n∑

j=1

AjK(x, xj)yj .

C.3 Degenerate kernel approximation

For approximate solution of the Fredholm integral equation of the second kind

y(x)−
b∫

a

K(x, t)y(t)dt = f(x) , a ≤ x ≤ b

we assume that functions f(x) and K(x, t) are continious. In this case, the kernel

K(x, t) can be replaced by a degenerate one, i.e.

K(n)(x, t) =
n∑

k=0

gk(x)hk(t) .

Let us show several ways on how to perform such replacement. If the kernel is a

differentiable function with respect to x on the interval [a; b] sufficientely many times,

then for a degenerate kernel K(n)(x, t) we can apply a finite segment of the Taylor

series:

K(n)(x, t) =
n∑

m=0

(x− x0)
m

m!
K(m)
x (x0, t) ,

where x0 ∈ [a; b]. A similar trick can be used for the case if K(x, t) is differentiable

sufficientely many times with respect to t on the interval [a; b].

To construct a degenerate kernel, a finite segment method of the double Fourier

series can be used [67]:

K(n)(x, t) =
n∑

p=0

n∑

q=0

apq(x− x0)
p(t− t0)

q ,

where

apq =
1

p!q!

∂p+q

∂xp∂tq
K(x, t)

∣∣∣∣
x=x0,t=t0

a ≤ x0 ≤ b, a ≤ t0 ≤ b .
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A continious kernel K(x, t) admits approximation by a triginometric polynomial

of period 2l, where l = b− a. For instance, we can set

K(n)(x, t) =
a0(t)

2
+

n∑

k=1

ak(t) cos

(
πkx

l

)
,

where ak(t) are the Fourier coefficients

ak(t) =
2

l

b∫

a

K(x, t) cos

(
πkx

l

)
dx .

A similar decomposition can be obtained by interchanging variables x and t. One can

use other methods of intepolation and approximation of the kernel [67].

C.4 Method of least squares

Let,

ε[y(x)] ≡ y(x) − λ

b∫

a

K(x, t)y(t)dt− f(x) = 0 . (C.4.1)

Suppose that we have the following basis

Yn(x) = ϕ0(x) +
n∑

i=1

Aiϕi(x) , (C.4.2)

where {ϕi(x)} are given linear independent functions, and A1, . . . , An are the coef-

ficients. The substitution of (C.4.2) into the left-hand side of (C.4.1), yields us the

residual term

ε[Yn(x)] = ψ0(x, λ) +
n∑

i=1

Aiψi(x, λ) ,

where ψ0(x, λ) and ψi(x, λ) are defined by

ψ0(x, λ) = ϕ0(x)− f(x) − λ

b∫

a

K(x, t)ϕ0(t)dt ;

ψ0(x, λ) = ϕi(x)− f(x) − λ

b∫

a

K(x, t)ϕi(t)dt , i = 1, . . . , n .



107

According to the method of least squares, coefficients {Ai} can be found from the

condition of the minimum of the following integral

I =

b∫

a

{ε[Yn(x)]}2dx =

b∫

a

[
ψ0(x, λ) +

n∑

i=1

Aiψi(x, λ)

]2

dx .

This requirement leads to a system of algebraic equations

∂I

∂Aj
= 0 , j = 1, . . . , n .

The method of least squares can also be applied for approximate construction of

characteristic values and eigenfunctions of the kernel K(x, t).
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[28] J.Frölich, K.Schneider. An adaptive wavelet-vaguelette algorithm for the solu-

tion of PDEs. J. Comput. Phys. 130 (1997) 174 - 190.

[29] M.Gallegati. Wavelet analysis of stock returns and aggregate economic activity,

Comput. Stat. Data Anal. 52 (2008) 3061 - 3074.



111

[30] S.Goedecker, O.Ivanov. Solution of multi-scale partial differential equations us-

ing wavelets, Computers in Physics 12, Issue 4 (1998) 548 – 555.

[31] G.H.Golub, J.M.Ortega. Scientific Computing and Differential Equations. An

Introduction to Numerical Methods, Academic Press, San Diego – New York –

Boston, 1992, 337 p.

[32] M.Gulsu, T.Ozis. Numerical solution of Burgers’ equation with restrictive Tay-

lor approximation, Appl. Math. Comput. 171 (2005) 1192 – 1200.

[33] S.K.Haigh, B.Teymur, S.P.G.Madabhushi, D.E.Newland. Applications of

wavelet analysis to the investigation of the dynamic behaviour of geotechni-

cal structures, Soil Dynam. Earthquake Eng. 22 (2002) 995 - 1005.

[34] H.Heinrich, G.H.Molla, H.Dickhausb, V.Kolevc, J.Yordanovac,

A.Rothenberger. Time-on-task analysis using wavelet networks in an event-

related potential study on attention-defcit hyperactivity disorder, Clin.

Neurophysiol. 112 (2001) 1280 – 1287.

[35] H.Hochstadt. Integral Equations, New York, 1978, 282p.

[36] M.Holmström. Wavelet based methods for time dependent PDE, Ph.D. thesis,

Uppsala University, Sweden, 1997.

[37] D.Huybrechs. Multiscale and hybrid methods for the solution of oscillatory

integral equations, Ph.D. thesis, Katholieke Universiteit Leuven, Belgium, 2006.

[38] L.Jameson. On the wavelet-optimized finite difference method. Technical Re-

port NASA CR-191601, ICASE Report No. 94-9, 1994.

[39] G.Kaiser. Physical wavelets and radar. IEEE Antennas and Propagation Mag-

azine, Feb. 1996.

[40] J.M.Keiser.Wavelet Based Approach to Numerical Solution of Nonlinear Partial

Differential Equations. Ph.D. thesis, University of Colorado, 1995.



112

[41] P.K.Kundu, I.M.Cohen. Fluid Mechanics, Second Edition. San Diego, Academic

Press, 2002, 730 p.

[42] U.Lepik, E.Tamme. Application of the Haar Wavelets for Solution of Linear

Integral Equations, Dynamical Systems and Applications, Proceedings, 510 July

2004, Antalya, Turkey, pp. 494 – 507.

[43] U.Lepik. Numerical solution of evolution equations by the Haar wavelet method,

Appl. Math. Comput. 185 (2007) 696 – 704.

[44] U.Lepik. Solving fractional integral equations by the Haar wavelet method,

Appl. Math. Comput. 214 (2009) 468 - 478.

[45] E.B.Lin, X.Zhou. Connection coefficients on an interval and wavelet solutions

of Burgers equation, J. Comput. Appl. Math. 135 (2001) 63 – 78.

[46] B.Liu. Adaptive harmonic wavelet transform with applications in vibration

analysis, J. Sound Vib. 262 (2003) 45 - 64.

[47] Y.Liu, I.T.Cameron, F.Y.Wang. The wavelet-collocation method for transient

problems with steep gradients, Chem. Eng. Sci. 55 (2000) 1729 – 1734.

[48] Y.Mahmoudi. Wavelet Galerkin method for numerical solution of nonlinear in-

tegral equation. Appl. Math. Comput. 167 (2005) 1119 – 1129.

[49] S.Mallat. A Wavelet Tour of Signal Processing, École Polytechnique, Paris,
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