
UNIVERSITÀ DEGLI STUDI DI SALERNO
DIPARTIMENTO DI INFORMATICA “RENATO M. CAPOCELLI”

DOTTORATO DI RICERCA IN INFORMATICA

XIII CICLO

TESI DI DOTTORATO IN INFORMATICA

ID-Based Key Agreement for WANETs

Candidato
Francesco Rossi

Coordinatore

Prof. Giuseppe Persiano

Tutor

Prof. Alfredo De Santis

Co-Tutor

Prof. Giovanni Schmid

Anno Accademico 2013/2014

Declaration

I herewith declare that i have produced this work without the prohibited assistance

of third parties and without making use of aids other than those specified. Notions

taken over directly or indirectly from other sources have been identified as such.

Some results in this thesis are present in the following papers:

Rossi, F. and Schmid, G. (2015). Implementing identity-based key agreement in embedded de-

vices. In PECCS 2015 - Proceedings of the 5st International Conference on Pervasive and Embedded

Computing and Communication Systems, Angers, France, 11-13 February, 2015, pages 117–123

Schmid, G. and Rossi, F. (2012). QR code-based identification with mobile devices. In PECCS

2012 - Proceedings of the 2nd International Conference on Pervasive Embedded Computing and

Communication Systems, Rome, Italy, 24-26 February, 2012, pages 79–86

Schmid, G. and Rossi, F. (2011). Secure ad-hoc routing through a-codes. In PECCS 2011 - Pro-

ceedings of the 1st International Conference on Pervasive and Embedded Computing and Commu-

nication Systems, Vilamoura, Algarve, Portugal, 5-7 March, 2011, pages 151–156

Dedication and Acknowledgments

I dedicate this thesis to Imma and to my family, who made it possible and supported

me throughout these years.

I am heartily thankful to Prof. Giovanni Schmid, whose guidance accompanied me

from the early stages of my writing until the very end. This thesis would not have

been possible without his commitment, suggestions and feedbacks.

I am indebted to Francesco Maione, whose help has been essential to my writing.

Finally, a last thank to Prof. Alfredo De Santis and to my friends of University

of Salerno, it has been an honor for me to meet all of you.

Contents

1. Introduction . 8

2. Authentication in WANETs . 12

2.1 Security attacks . 14

2.2 Authentication mechanisms . 17

2.2.1 Certificate-Based key distribution 18

2.2.2 ID-based key distribution . 19

2.3 Key establishment . 20

2.4 Dieffie-Hellman protocol . 21

3. Theoretical background . 24

3.1 Finite fields and discrete logarithm systems 24

3.2 Elliptic curves . 26

3.3 Bilinear pairings and co-Diffie-Hellman problems 27

3.3.1 Bilinear pairings from the tate pairings 29

3.4 ID-based cryptography and hashing function algorithms 31

3.5 Point compression . 34

4. ID-based signature . 35

4.1 IBS-1 and IBS-2 schemes . 37

4.2 GS-IBS scheme . 42

4.3 Comparison of computational costs 43

5. ID-based key agreement . 45

5.1 eFG protocol . 46

5.2 Extending the DH-protocol to n parties 50

5.3 Constant round protocols . 52

5.4 GKA protocols . 54

5.4.1 Protocol GKA v1 . 56

5.4.2 Protocol GKA v2 . 59

5.4.3 Comparison of computational costs 61

5.4.4 Run example . 62

5.4.5 Correctness and security . 64

5.5 GKA dynamic procedures . 69

5.5.1 Group creation and key updating 70

5.5.2 Group joining and leaving . 74

6. Java for ID-based key agreement . 80

6.1 JIKA software architecture . 81

6.2 Implementation of elliptic curves and tate pairing 83

6.3 Performance evaluation . 85

6.3.1 Enrollment . 85

6.3.2 Signature schemes . 87

6.3.3 Key agreement protocols . 88

eFG protocol . 88

GKA protocols . 91

Conclusions . 99

Bibliography . 101

List of Figures

2.1 A WANET organized in flat and hierarchical topologies respectively.

Red circles and orange nodes represent different clusters with their

cluster heads. 13

2.2 Instance of unicast, multicast and broadcast communications. The

red and green colors indicate sender and receiver nodes respectively. . 17

2.3 DH protocol. 22

2.4 Man in the middle attack against DH protocol. 22

2.5 STS protocol. 23

6.1 JIKA framework software architecture. 81

6.2 GKA v1 computing times versus involved parties on the PC platform

using elliptic curves ssTate160 and nssTate160, respectively. 93

6.3 GKA v2 computing times versus involved parties on the PC platform

using elliptic curves ssTate160 and nssTate160, respectively. 94

6.4 GKA v1 computing times versus involved parties on Raspberry PI

using elliptic curves ssTate160 and nssTate160, respectively. 95

6.5 GKA v2 computing times versus involved parties on Raspberry PI

using elliptic curves ssTate160 and nssTate160, respectively. 96

List of Algorithms

Algorithm Page

MapToGroup .. 34

ID-based signature schemes

Setup .. 36

KeyGen .. 37

IBS-1 .. 38

IBS-2 .. 40

GS-IBS ... 42

Key agreement protocols

eFG Setup .. 46

eFG KeyGen ... 47

eFG .. 48

GKA v1 .. 57

GKA v2 .. 59

Introduction

In the last few years, the research in the area of wireless ad hoc networks (WANETs)

has steep growth. The increasing interest about ad hoc networks is due to some key

features not owned by traditional networks such as nodes mobility, network self-

organization and the ability to rely on infrastructure-less setup. Due to the absence

of a fixed infrastructure, WANETs can be used in many application scenarios. A

set of possible applications includes the following:

• Health Care: Wearable sensors can help patients by providing healthcare ser-

vices such as medical monitoring and communication systems with healthcare

provider in emergency situations. Moreover, they can provide methods to

remotely access to physiological informations, thus allowing people control

continually patients conditions, improving their life quality.

• Environmental monitoring: Natural disasters are increasing due to climate

changes and pollution. Sensor nodes can be used to monitor habitats, air con-

ditions, geographic areas, animal habits and many other phenomena. WANETs

equipped with sensor nodes can be deployed in inaccessible areas, in order to

observe phenomena locally and transmit data to sync nodes, that can perform

different operations such as collecting data or activating alarms.

• Rescue operations: WANETs have the capability of managing data in real-

time and sending them with a minimum delay. Hence, these systems can be

used to support rescue operations and save people life.

• Military: WANETs can be used to establish communications among soldiers

and vehicles for tactical operations in battlefields.

The open nature of the communication channel exposes WANETs to a great num-

ber of security threats. For example, malicious adversaries can eavesdrop messages,

impersonate legitimate nodes, manipulates routing paths and cause many others

misbehaviours. The security of WANETs hinges on node authentication, which by

mean of Cryptography can be obtained through key distribution mechanisms. Unfor-

tunately, traditional key distribution mechanisms can be inapplicable for WANETs.

For example, certificated-based approaches require high computational capabilities

for verification, update and revocation of public key certificates (PKCs), thus being

impractical for resource constrained nodes. Alternatively, identity-based (ID-based)

mechanisms use identity attributes instead of PKCs requiring less resources con-

suming than certificated-based approaches.

Generally, the design of cryptographic protocols must necessary take into account

different efficiency parameters such as number of operations, use of network band-

width and energy consumption. In particular, power conservation takes on addi-

tional importance when nodes are equipped with external batteries having limited

lifetime.

WANET applications often require the establishment of session keys, that will be

used for encryption, authentication and others cryptographic purposes. Key agree-

ment protocols provide session keys thorough contributory approaches, which means

that nodes can’t predetermine keys and they give the same contribution to carrying

out the protocol. This way, it’s possible to increase node lifetime, since the resource

consumption is equally distributed among all nodes.

9

Our Contribution

In this thesis we present a cryptographic framework for WANETs, named JIKA

(Java framework for ID-based key agreement). The JIKA framework takes advan-

tage of the portability of Java programming language, and due to a modular software

architecture, it can be easily extended to encompass many cryptographic schemes

and protocols.

JIKA simulates a key generation center (KGC) and offers an ID-based key distri-

bution service for signature schemes and key agreement protocols. It requires each

node storing in memory only long-term keying materials and system public parame-

ters. Moreover, JIKA makes use of elliptic curve cryptography (ECC) which allows

fast computations, small key size and short signatures of messages. ECC operates

on groups of points where the elliptic curve discrete logarithm problem (ECDLP) is

hard to solve. Whereas sub-exponential algorithms are known to solve the discrete

logarithm problem (DLP) problem, only exponential algorithms are known to solve

the ECDLP.

JIKA includes two new ID-based signature schemes IBS-1 and IBS-2, that were

derived from the BLS scheme of [Boneh et al., 2004] and the ZSS scheme of [Zhang

et al., 2004]. Thanks to pairing-based cryptography, both schemes get shorter sig-

natures if compared to other signature algorithms over elliptic curves, e.g. the

signature standard algorithm ECDSA [Johnson et al., 2001]. JIKA includes also

an ID-based two-party key agreement protocol, named eFG. This protocol, derived

from [Fiore and Gennaro, 2010], requires just one round and it appears very suit-

able for ad hoc networks where nodes need to establish session keys quickly and

at low computational cost. As another contribution, JIKA includes new group key

agreement protocols, named GKA. They are full-contributory protocols that offer

implicit key authentication through the ID-based signature schemes described above,

at the cost of just two rounds. GKA provide resilience against passive and active

10

attacks performed by an adversary which is not a legitimate node. Related to GKA

protocols, we propose a set of procedures for dynamic group management. These

procedures allow for group creation, key updating, node joining and node leaving,

respectively. In order to measure the performance of the proposed algorithms, we

implemented in JIKA some notable signature schemes and key agreement proto-

cols [Johnson et al., 2001],[Gentry and Silverberg, 2002],[Rogaway et al., 2001] and

[Burmester and Desmedt, 1994]. Moreover, in order to emulate executions on a

WANET, we run the above algorithms on the embedded devices Raspberry PI [Up-

ton and Halfacree, 2013]. Indeed, Raspberry PI devices support standard wireless

adapters that can be used to setup a WANET through a suitable configuration

[Debian, 2015]. The same tests were executed on a Personal Computer (PC) plat-

form, so as to compare results between devices with very different computational

resources.

Roadmap

This thesis is organized as follows. In the next chapter, Chapter 2, we introduce

WANETs and discuss briefly their security issues. Moreover, we overview basic

results concerning entity authentication and key establishment that are useful for the

sequel. Chapter 3 is related to theoretical background about hardness assumptions,

elliptic curve arithmetic and ID-based schemes. Chapter 4 is related to schemes

IBS-1 and IBS-2. We analyze their computational costs and prove their correctness

and security. Chapter 5 concerns instead ID-based key agreement protocols. We

discuss the two-party key agreement protocol eFG and the group key agreement

protocols GKA, proving their correctness and security. Moreover, we introduce a

set of procedures for the management of dynamic groups of parties. Finally, in

Chapter 6 we illustrate the software architecture of JIKA and present the tests

performed on a Raspberry PI and PC platform.

11

Authentication in WANETs

A WANET is a collection of wireless mobile nodes that dynamically form a network

without the aid of any infrastructure [Sarkar et al., 2007]. WANETs can be arranged

in hierarchical and flat topologies. The hierarchical topology allows to organize the

network in two or more clusters and communications inside a cluster are routed by

cluster heads. Unfortunately, if a cluster head goes down, a complete section of the

network will be unreachable. Although hierarchical topologies provide a good scal-

ability, the cluster heads create single points of failure. The flat topology consists

of nodes which have the same purposes and offer the same functionalities. These

organization allows for a batter distribution of workload and it aims in to reduce

resources consumption.

The open nature of wireless communication channel makes WANETs vulnerable to

different kind of security attacks. Generally, we classified passive and active at-

tacks. A passive attack is mainly against data confidentiality, it’s performed by an

adversary who has eavesdropped network messages to gain sensitive informations.

Instead, an active attack involve an adversary who attempts to modify or inject

network messages. For example, it could initiate new protocol instances or imper-

sonates others nodes. The adversaries can also classified in outsider and insider.

An outsider adversary is an unauthorized node without special privileges or knowl-

edges of the network. Instead, an insider adversary is a legitimate node of network

with additional reserved informations such as secret keys and routing paths [Pathan,

2010].

Fig. 2.1: A WANET organized in flat and hierarchical topologies respectively. Red circles
and orange nodes represent different clusters with their cluster heads.

WANETs nodes can be equipped with different wireless media, according with

devices and applications. The most used wireless standards are IEEE 802.11 [Stan-

dards association, 2012] and IEEE 802.15 [Standards association, 2005][Gislason,

2008], that transmit radio signals at different frequencies (from 2.4 to 5 GHz). Un-

like traditional infrastructure-based wireless networks, nodes of WANET don’t re-

quire IP address reconfiguration when they move in different network access points.

WANETs include the following sub-categories: wireless sensor networks (WSNs),

wireless mesh networks (WMNs), and vehicular networks (VANETs). WSNs consist

in a collection of devices that can sense the environment and communicate infor-

mations through collector nodes, named sink. Sensors have limited computational

capabilities and they are generally powered by an external battery with a limited

capacity. WMNs provide interoperability among different networks and also a flex-

ible access to Internet. They offer the possibility to connect heterogeneous devices

using different wired and wireless media types. Moreover, WMNs offer important

13

proprieties such as self-configuration, self-healing and self-management. VANETs

were designed to improve the safety of vehicles which automatically warn nearby

vehicles about movements averting them regarding dangerous situations.

2.1 Security attacks

WANETs can be openly accessible and adversaries can easy gain access to wireless

communications without breaking any physical barriers. Hence, they result vul-

nerable to different security attacks [Di Pietro et al., 2014]. Table 2.1 reports the

different type of attacks to the physical layer: Jamming, Tampering, Eavesdropping,

and Node Replication. Jamming [Mpitziopoulos et al., 2009] is a denial of service

(DoS) active attack which disrupts network communications. An adversary intro-

duces noise in the carrier transmitting radio signals at target frequency or multiple

frequencies. Jamming can be executed continually or at random intervals. A possi-

ble countermeasure is the adoption of spread spectrum technologies (FHSS or DSSS)

[Pickholtz et al., 1982], that increase the resistance to radio interferences. Tamper-

ing is another example of active attack. An adversary attempts to steal data stored

in nodes memory (such as cryptographic keys), with the intent of compromising

their secrecy. Possible countermeasure are the design of tamper-resistant nodes or

the implementation of defence mechanisms able to detect tampering attempts. Fur-

thermore, a node could run a self-terminate procedure erasing cryptographic keys

and all sensitive informations stored in memory. An adversary can easily perform

an eavesdropping attack listening network communications. Thereafter, it can ana-

lyze captured data obtaining sensitive information such as events occurred, routing

paths and commands. Data encryption can be an acceptable countermeasure to this

last attack. Node Replication attack consists in a indefinitely replication of network

nodes. To prevent node replication, one or more legitimate nodes should be used as

traffic monitors to control network activities.

14

Attack Target Countermeasures

Jamming Service integrity and
availability

Spread Spectrum techniques,
Jamming detection

Tampering Service integrity and
availability

Tamper-resistant hardware,
Tamper-resistant software

Eavesdropping Privacy and confiden-
tiality

Data encryption

Node Replication Data Integrity Traffic monitors

Tab. 2.1: Attacks against the physical layer.

Table 2.2 reports different type of attacks to the link layer: Collision, Exhaus-

tion, Unfairness and Sleep Deprivation. A collision occurs when a radio signal is

sent at the same time and frequency of others signals. An adversary causes colli-

sions in order to corrupt network messages and reduce node resources. A possible

countermeasure is the adoption of error-detecting and error-correcting codes to re-

cover corrupted messages. Moreover, an adversary could cause energy exhaustion by

attempting continuous service requests. A networking rate limitation allows nodes

to discard excessive requests. An unfairness attack consists in the transmission of

a large number of messages, in order to make difficult for legitimate nodes the use

of communication channel. This attack can be considered a denial of service (DoS),

limited to a short time period. WANET nodes can remain in sleep mode for a long

time preserving their residual power. The Sleep Deprivation attack aims to awake

nodes with the deliberate intention of drain their power and reduce drastically their

lifetime.

15

Attack Target Countermeasures

Sleep Deprivation Service integrity and
availability

Authentication

Unfairness Service integrity and
availability

Error-detecting, Error-
correcting

Exhaustion Privacy and confiden-
tiality

Rate limitation

Collision Data Integrity Error-correcting

Tab. 2.2: Attacks against the link layer.

Table 2.3 reports the different type of attacks to network layer which aim to

interruption of network availability. An adversary can perform a Hello flooding at-

tack sending a large number of hello messages to its neighbors. In this way, it will

quickly drain their residual power. Using message authentication is possible to mit-

igate hello flooding attacks.

The Sink, Black and Wormhole attacks aim to route network message through ma-

licious nodes. In particular, sink and black hole attacks aim to drop all routing

packets. Instead, in order to perform an wormhole attack, an adversary needs to

compromise two or more nodes in different position of the network. The compro-

mised nodes fake routing paths that appear shorter than original one. They confuse

routing mechanisms which rely on metric distances among nodes.

Attack Target Countermeasures

Hello flooding Network availability Entity authentication

Synk, Wormhole, Black Network availability Entity authentication

Packets alteration, injection Data integrity Message authentication

Tab. 2.3: Attacks against Network Layer.

Concerning network layer, we distinguish unicast, multicast and broadcast com-

16

munications. Unicast is a communication between a single sender and a single

receiver. Indeed, If some node needs to send messages to multiple nodes, it will

have to send multiple unicast messages, each message addressed to a specific node.

Alternatively, multicast communications disseminate messages from a single sender

to multiple receiver (e.g. a groups of nodes). A node can send messages to all

network nodes using broadcast communications.

Fig. 2.2: Instance of unicast, multicast and broadcast communications. The red and green
colors indicate sender and receiver nodes respectively.

2.2 Authentication mechanisms

Entity authentication is the process whereby one party is assured (through acqui-

sition of corroborative evidence) of the identity of others parties involved in a pro-

tocol [Menezes et al., 1996]. Entity authentication is an essential security service

to prevent attacks against WANETs, since cryptographic services like confidential-

ity, integrity and non-repudiation depend on authentication. A trust third party

(TTP), can offer key distribution services deploying cryptographic materials on

nodes through a secure communication channel. Nodes use cryptographic mate-

rials to carrying out authentication processes and then establish secure association

with others through key establishment protocols.

17

2.2.1 Certificate-Based key distribution

We distinguish symmetric and asymmetric key distribution. Both require a TTP,

which distributes secret keys preserving their confidentiality. If we assume a network

of n nodes, a TTP can give rise to three possible symmetric key distribution schemes,

as follows:

1. A unique key k for all nodes of the network. This approach is the simplest, but

it offers lowest level of security, since compromise a single node could disrupt

the entire network.

2. Each node has n − 1 keys. This way, each pair of nodes shares a distinct

secret key, for a total number of n(n− 1)/2 keys. This approach results an

unacceptable number of keys when the network size increases and thus can

not be considered a scalable approach.

3. An equal-sized pool of keys from the set of all possible keys. In this scheme

previously proposed by [Eschenauer and Gligor, 2002], each node has proba-

bility P of sharing a key with other nodes in the network. If two nodes don’t

share a key, they can do that through a chain of third nodes in the network.

A certification authority (CA) can be used for asymmetric key distributions. It

releases digital certificates which contain a data part and a signature part. The

data part includes node identity and the corresponding public key. The signature

part consists in CA’s signature over the data part, in order to bind univocally node

identity to its public key.

Distribute certification authority (DCA) can offer more resilience and fault tolerance

than a single CA. As shown in Table 2.4, DCA consists in a sub-group (m < n)

of special nodes having t different partial signature keys (denoted as shares). A

node’s certificate is signed with a threshold mechanism collecting t shares. A node

combiner collects the t partial signatures and obtains a full signature. The goal of

18

this approach is a trade-off between mitigation of impersonation attacks and fault

tolerance, at the cost of more resources and network bandwidth. In the fully DCA

(FDCA) approach, all network nodes are DCA nodes (m = n). It allows for a better

fault tolerance and higher security than DCA, at the cost of a more expensive setup.

Approach Share Sever nodes Fault tolerance

CA - 1 Low

DCA t <= m m < n Medium

FDCA t <= m m = n High

Tab. 2.4: Asymmetric certificate-based key distribution schemes.

2.2.2 ID-based key distribution

ID-based key distribution relies on a key generation center (KGC). After that the

KGC generates its master secret key and a set of system public parameters, each

node can be registered to KGC obtaining a private key associated to its identity. An

ID-based key distribution offers different advantages, due to the fact that identities

can be free-text strings suitably chosen to convey appropriate information. It re-

quires each node storing in memory only its private keys and the public parameters.

This can be much less bandwidth and memory consuming than certificate manage-

ment in CA’s schemes. A possible drawback of identity-based cryptosystems is that

they are exposed to the key escrow problem [Lee et al., 2004], since the KGC knows

by construction the secret keys of all its users. That is clearly unacceptable in open

networks such as the Internet. However, this is not a concern in the application

scenario we are interested in, since WANETs are typically deployed by an off-line

KGC.

19

2.3 Key establishment

Accordingly to paper of [Menezes et al., 1996], a key establishment protocol provides

a shared secret key between two or more parties for encryption, message authen-

tication and others cryptographic purposes. Formally, a secure key establishment

protocol is said to have the implicit key authentication property if unauthorized

parties can’t gain access to the shared secret key. Furthermore, the key confirma-

tion property means that any party has evidence of the possession of the shared

secret key by the others parties involved in the protocol. A protocol with both

proprieties is said to have explicit key authentication.

An output of a key establishment protocol is typically a session key valid only for

a short time period (usually a communication session). The use of session keys can

provide different advantages, such as:

• Limited exposure of data in the event of session key compromise.

• Limited number of ciphertexts available for cryptanalysis.

• Short-term storage of possible shared keys.

A key establishment protocol is said to have perfect forward secrecy if a session

key is not compromised in case one of the (long-term) private keys will be com-

promised in the future. Instead, the protocol is said to have key independence, if

knowledge of some session keys doesn’t allow an adversary to compromise past or

future session keys.

Key establishment protocols can be subdivided into key transport and key agreement

protocols. They are defined by [Menezes et al., 1996] as follows:

Definition 2.3.1. A key transport protocol is a key establishment technique where

one party creates or otherwise obtains a secret value, and securely transfers it to the

other(s).

20

Definition 2.3.2. A key agreement protocol or mechanism is a key establishment

technique in which a shared secret is derived by two (or more) parties as a function of

information contributed by, or associated with, each of these, (ideally) in such a way

that no party can predetermine the resulting value (full contributory key agreement).

Key agreement protocols are thus contributory mechanisms whereas the parties

cooperates in the same way to establish a common secret. The number of proto-

col participants can range from two (two-party key agreement) to group of parties

(group key agreement or a.k.a conference keying, although this last is a somewhat

obsolete term by now). In the next Section, we will illustrate the first two-party key

agreement protocol published by [Diffie and Hellman, 1976], that provides the basis

for a variety of key agreement protocols.

2.4 Dieffie-Hellman protocol

In 1976 in their seminal academic work considered the startup of public key cryp-

tography, [Diffie and Hellman, 1976] (DH) presented a key agreement protocol that

allows two parties to obtain a shared secret key over a public communication chan-

nel. Given a large prime number l and the multiplicative group Z∗l with generator

g, Alice a Bob execute the protocol as follows:

Alice chooses a random number x ∈ Z∗l and Bob chooses a random number y ∈ Z∗l .

Alice sends gx to Bob and Bob sends gy to Alice. Alice calculates (gx)y and Bob

computes (gy)x so that K = (gx)y = (gy)x = gxy

21

Alice

x
$←− Z∗l

Bob

y
$←− Z∗l

gx

gy

(gx)y = K (gy)x = K

Fig. 2.3: DH protocol.

The DH key agreement protocol is secure against passive adversaries, assuming

that an Eavesdropper E who sees gx and gy is not able to calculates gxy. An

adversary could perform different kind of security attacks against DH protocol. For

example, it could impersonate the parties or prevent from carrying out the protocol

session. Moreover, it could delete messages exchanged overcoming communication,

causing a denial of service (DoS). Referring to secure key establishment properties

described in the previous Section, the DH protocol is also vulnerable to know-key

attacks [Menezes et al., 1996]. The involved parties can preserve key independence

using different secret keys in protocol runs.

Alice

x
$←− Z∗l

Bob

y
$←− Z∗l

Eve

gx

gx
′

gy

gy
′

gxy
′
= K

′
gx
′y = K

′′
gxy

′
= K

′

gx
′y = K

′′

Fig. 2.4: Man in the middle attack against DH protocol.

22

Figure 2.4 illustrates a man in the middle attack [Desmedt, 2011]. In this case,

Eve intercepts gx and gy, replacing them with gx
′ and gy

′ . Alice will believe that

its shared key is gxy′ and Bob will believe that its shared key is gx′y. Both values

are available to Eve, who can impersonate Bob with Alice and Alice with Bob, thus

eavesdropping their confidential communications.

Figure 2.5 illustrates the station-to-station (STS) protocol of [Diffie et al., 1992]

which is one of authenticated versions of DH protocol. It makes use of public key

certificates (PKCs) and symmetric encryption, providing implicit key authentication

and perfect forward secrecy.

Also in this case, Alice chooses a random number x ∈ Z∗l and sends gx to Bob. Bob

chooses a random number y ∈ Z∗l , computes the secret key k = gxy and encrypts

with key k its signature over the concatenation of exponentials (gy, gx). Bob sends to

Alice the message gy, CertB, Ek(SB(gy, gx)). Alice also computes the key k = gxy,

decrypts and verifies Bob’s signature using asymmetric public key included in the

his digital certificate. After that, Alice encrypts its signature over the concatenation

of exponentials (gy, gx) and sends to Bob the message CertA, Ek(SA(gy, gx)). Bob

decrypts and verifies Alice’s signature using asymmetric public key included in her

digital certificate. Thus, they obtain a mutual authentication and the shared secret

key K at same time.

Alice

x
$←− Z∗l

Bob

y
$←− Z∗l

gx

gy, CertB, Ek(SB(gy, gx))

CertA, Ek(SA(gy, gx))

gxy = K gxy = K

Fig. 2.5: STS protocol.

23

Theoretical background

In this Chapter we briefly review some basic facts about discrete logarithms, elliptic

curves and bilinear pairings, that notions and/or assumptions will be used in the

sequel. More details about these topics have been previously published by [Koblitz,

1994] and [Silverman, 2009].

3.1 Finite fields and discrete logarithm systems

If Fq = Fq(+, ·) denotes a field with q elements, then it follows that q = pd, where

p is a prime number and d is a positive integer. Moreover, for every prime power

q = pd there exists a field Fq of q elements (up to isomorphism). The sum of p

times the multiplicative identity 1 equals the additive identity 0 and it is called the

characteristic of Fq. The integer d is the extension degree of the field, since Fq

contains the prime field Fp and it is a vector space of dimension d over Fp. The

(q− 1) non zero elements of Fq, form an abelian group with respect to multiplication

and it is often denoted as F∗q = F∗q(·).

Each point P ∈ F∗q admits a least positive integer l such that P l = 1, which is

called the order of P and divides (q− 1). Moreover, if ϕ(n) denotes the number of

positive integers i < n such that gcd(i,n) = 1, there are exactly ϕ(q− 1) elements

G ∈ F∗q having order l = q − 1. Each such G is called a generator of Fq, since

〈G〉 = {Gi : i = 1, . . . q − 1} coincides with F∗q . We will suppose from now to

choose P ∈ F∗q in such way that its order l is prime, so that l is a prime factor of

q − 1 and gcd(l, q) = 1. The cyclic multiplicative group generated by any of such

P , 〈P 〉 = {P i : i = 1, . . . , l}, is a subgroup of F∗q which has order l and exhausts

all no zero residue classes modulo l. Thus, we can consider the following problem

in 〈P 〉:

Definition 3.1.1 (Discrete Logarithm problem). Let P ∈ F∗q be of prime order l.

The discrete logarithm (DL) problem in G = 〈P 〉 is as follows: given Q ∈ G, find

x ∈ Zl such that Q = P x. The integer x (which is unique modulo l) is called the

discrete logarithm of Q to the base of P , and denoted logP Q.

The size q of the finite field and that of the cofactor c = (q− 1)/l are obviously

related to the difficulty of the DL problem in 〈P 〉. The standard rule is to choose

q to be a very big integer and the cofactor c to be as small as possible.1 The two

best known algorithms to solve the DL Problem for general finite fields Fq are both

based on the index calculus method [Diem, 2011]. The first algorithms is derived from

[Schirokauer, 2000], and if d <
√

ln p, attains a sub-exponential expected running

time of

(3.1) exp((1.923 + o(1))(ln q)1/3(ln ln q)2/3

The second is due to [Coppersmith, 1984], applies only to d > (ln p)2, and runs

substantially faster than [Schirokauer, 2000], but only on fields of small character-

istic. For example, if p = 2, Coppersmith’s algorithm expected running time is

given by equation (3.1) with factor 1.923 replaced by 1.588. The DL problem is at

least as difficult as the Diffie-Hellman problems in G, that are at the basis of many

cryptosystems.

Definition 3.1.2 (Diffie-Hellman problems). Let P ∈ F∗q be of prime order l. The

computational (CDH) and decisional (DDH) Diffie-Hellman problems in G = 〈P 〉

are as follows:
1 it is suggested this results in a prime l at least of order 21024, and this threshold is going to

increase over time.

25

1. CDH: given Q = P x and R = P y find P xy, where x, y are randomly chosen

in Zl.

2. DDH: given Q = P x, R = P y and S = P z decide if (Q,R,S) is a DH-triple,

i.e. if z = xy, where x, y, z are randomly chosen in Zl.

3.2 Elliptic curves

An Elliptic curve over Fq, denoted as E(Fq), is the set of solutions (x, y) of an

equation in Fq of the form:

(3.2) y2 + a1xy+ a3y = x3 + a2x
2 + a4x+ a6

together with an additional point at infinity O, which represents the direction of the

y-axis. Equation (3.2) reduces to a simpler form according to the field characteristic

p, as follows:

y2 + xy = x3 + ax+ b (p = 2, E supersingular)

y2 + xy = x3 + ax2 + b (p = 2, E ordinary)

y2 = x3 + ax2 + bx+ c (p = 3)

y2 = x3 + ax+ b (p > 3)

The number of points of an elliptic curve E(Fq), denoted |E(Fq)|, is called the

order of the curve and is given by |E(Fq)| = q + 1− t, where |t| ≤ 2√q. If q = pd

(d > 1), then for each |t| ≤ 2√q such that p does not divide t there exists an

elliptic curve defined over Fq with |E(Fq)| = q + 1− t. If q = p, then for each

|t| < 2√p there exists an elliptic curve defined over Fp with |E(Fp)| = p+ 1− t. In

particular, for any field Fp of prime order p, all supersingular elliptic curves over Fp

have exactly p+ 1 elements [Silverman, 2009]. From now, given an arbitrary curve

26

over a finite field E(Fq), we will denote with “+” also the binary operator which to

P ,Q ∈ E(Fq) associates the point on E(Fq) which is symmetric w.r.t. the x-axis

to the intersection of the straight line passing through P and Q (or tangent to E, if

P = Q). Indeed, likewise the set of integers with the standard operation of addition

between numbers, it can be shown that E(Fq) has an abelian group structure with

respect to the previous operation, called addition of points. Since the straight line

“passing through” P and O is the line from P having the direction of the y-axis, it

should be clear that P +O = O+ P = P for each P ∈ E(Fq); that is, the point at

infinity O represents the identity element of the group.

Groups over elliptic curves are particularly relevant in cryptography, since there are

well known curves for which the DL problem (and the Diffie-Hellman problems) are

much more difficult than in standard groups. Indeed, the best generic algorithm

known for solving the DL problem over elliptic curves is the rho method of [Pollard,

1978], which has an expected running time of order
√
|E(Fq)|, that is exponential

in ln q.

3.3 Bilinear pairings and co-Diffie-Hellman problems

Some special mappings between groups, called bilinear pairings, were firstly de-

scribed by [Menezes et al., 1993] that reported the DL problem over elliptic curves

to that over a standard group in a field; this way, the hardness of the native DL

problem can be reduced, provided that the co-domain of the mapping is of suit-

able size. A notable set of cryptanalytic methods work on this idea, alongside with

strategies for choosing curves in order to circumvent related attacks. Later on, bi-

linear pairings have also been used to realize cryptosystems with improved efficiency

and/or special properties, like the signature schemes discussed in this thesis.

Definition 3.3.1 (Bilinear Pairing). Let G, G′ be two (additively written) cyclic

27

groups of prime order l, and let Ḡ be a multiplicative group. The mapping:

e : G×G′ → Ḡ

is said a bilinear pairing if it has the following properties:

1. Bilinearity: for all (P ,P ′) ∈ G × G′ and a, b ∈ Z∗p then e(aP , bP ′) =

e(P ,P ′)ab ∈ Ḡ.

2. Not-degeneracy: for all (P ,P ′) ∈ G×G′ then e(P ,P ′) 6= 1.

3. Computability: there is an efficient algorithm which computes e(P ,P ′) for all

(P ,P ′) ∈ G×G′.

With this setup we obtain natural generalizations of the CDH and DDH prob-

lems, that reduce to standard CDH and DDH when G = G′:

Definition 3.3.2 (co-Diffie-Hellman problems). Let G = 〈P 〉, G′ = 〈P ′〉 be two

(additively written) cyclic groups of prime order l. The computational (co-CDH)

and decisional (co-DDH) co-Diffie-Hellman problems on (G, G′) are as follows:

1. co-CDH: given Q′ = xP ′ and R = yP find xyP , where x, y are randomly

chosen in Zl.

2. co-DDH: given Q′ = xP ′, R = yP and S = zP decide if (Q′,R,S) is a

co-DH-triple, i.e. if z = xy, where x, y, z are randomly chosen in Zl.

Hardness of the co-CDH problem on (G, G′) implies the hardness of the DL

problem on G′, but in general no more. In other words, the DH problems could

be easy to solve in G′, and the DL problem could be easy in G (and thus the DH

problems, too). Analogously, and with a subtle difference w.r.t. the standard DDH

problem, the hardness of the co-DDH problem on (G, G′) implies only that of the

DL problem on G′.

28

Things change radically if one suppose that a bilinear pairing e and an efficiently

computable isomorphism ψ exist such that:

e : G×G′ → Ḡ, ψ : G′ → G

Indeed, it can be proved that:

Proposition 3.3.1. Let e be a bilinear pairing as in definition (3.3.1). Let ψ be a

bijection from G′ in G such that ψ(Q′ +R′) = ψ(Q′) + ψ(R′). Then:

• The co-CDH problem on G×G′ is no more difficult than each one of the DL

problems on G, G′ and on the ground field in which Ḡ is constructed.

• The co-DDH problem on G×G′ can be efficiently solved.

This gap between the two Diffie-Hellman problems is at the basis of many modern

cryptosystems, as the short signature schemes introduced in paper of [Boneh et al.,

2004]. We wish to stress that, as it should be clear from what stated before, the

existence of the isomorphism ψ is mandatory for the security of these cryptosystems.

This paper gives an example for which the co-CDH problem on (G, G′) is believed

to be hard and yet their signature scheme is insecure.

3.3.1 Bilinear pairings from the tate pairings

An important class of bilinear pairings for elliptic curves over finite fields can be

deduced from the pairing [Frey et al., 1999]. These pairings maps couples of points

placed in two cyclic subgroups G, G′ of prime order l in E(Fq)(+) into an order l

subgroup Ḡ of some extension field Fqk . The degree k = k(l) of this extension is

called the embedding degree of the pairing (for the order l), and it is the smallest

positive integer k such that l divides qk − 1.

More precisely, let P ∈ E(Fq)(+) be a point of prime order l, and suppose gcd(l, q−

1) = 1 (i.e. k > 1). If E is supersingular, then E admits an endomorphism

29

φ : E → E for which φ(P) /∈ 〈P 〉, which is called a distortion map. In this case, it

can be shown that the mapping defined by:

(3.3) e : (Q,R) ∈ 〈P 〉 × 〈P 〉 −→ e(Q,R) = τ (Q,φ(R))

where τ is the value assumed by the Tate pairing, is a symmetric (i.e. G = G′)

bilinear pairing in the sense of definition (3.3.1). If E is ordinary, then no distortion

maps exist. However, selecting P ′ /∈ 〈P 〉 results in the asymmetric bilinear pairing

given by:

(3.4) e : (Q,R′) ∈ 〈P 〉 × 〈P ′〉 −→ e(Q,R′) = τ (Q,R′)

From Proposition 3.3.1, it follows that for a cryptosystem based on the previous

setup the integers q, l and k must all be considered security parameters, and that

they should satisfy the following conditions:

1. l should be sufficiently large so that known methods (i.e. exponential-time

methods) for computing the DL problem in an order l subgroup of E(Fq)(+)

are infeasible.

2. k should be sufficiently large so that index-calculus methods for solving the

DL problem in F∗
qk are infeasible.

3. q and k should be small enough so that arithmetic in Fq and Fqk can be

efficiently performed.

Table 3.1 shows values of the parameters q, l, k such that the security of DL-based

cryptosystems related to the above setting of bilinear pairings is equivalent to that

of a state-of-the-art symmetric-key cipher (e.g. AES) for common key lengths.

30

Security Level q l k

80-bit key 2160 2160 7

80-bit key 2256 2160 4

80-bit key 2512 2160 2

128-bit key 2256 2256 12

128-bit key 2512 2256 6

128-bit key 21024 2256 3

192-bit key 2384 2384 20

192-bit key 2512 2384 15

192-bit key 21024 2384 8

Tab. 3.1: Security Levels of a DL-based system for different values of the size q of the
ground field, the order l of the cyclic groups where the DL-system is defined,
and the embedding degree k of the bilinear pairing.

As we have seen in the previous subsections, solvers of the DL problem in stan-

dard groups and in elliptic curve groups have sub-exponential and exponential ex-

pected running time, respectively. Then, in order to avoid attacks, the size qk of the

embedding field must be proportionally greater than the order l of the groups over

elliptic curves as l increases. This is reflected by the behaviour of the embedding

degree k versus the security level in case of a cofactor c = 1, as shown in Table 3.1.

3.4 ID-based cryptography and hashing function

algorithms

The concept of ID-based signature (IBS) was introduced in the seminal paper of

[Shamir, 1985]. The innovation was the use of identity attributes instead of public

keys for data signature, thus avoiding the generation and management of users’

public key certificates. That can significantly reduce the computational overheads

introduced by cryptography for application security.

31

In the 2001, [Boneh and Franklin, 2001] solve the problem of ID-based encryption

(IBE). In the years that followed, inspired to works of Shamir and Boneh, many IBE

[Sakai and Kasahara, 2003],[Cocks, 2001],[Lynn, 2002] and IBS [Hess, 2003],[Barreto

et al., 2005] were proposed.

An identity-based signature (IBS) scheme is a quadruple of probabilistic polyno-

mial time (PPT) algorithms IBS = (Setup, KeyGen, Sign, Vrf).

• Setup takes as input a security parameter k and returns system parameters

params. They include the system master-key s, the corresponding public key

V and a description of a message space M.

• KeyGen takes as inputs the master key s and a string id ∈ {0, 1}∗, and returns

a secret signature key s(id).

• Sign takes as inputs the secret signature key s(id) and a message m ∈ M,

and returns the signature Σ of m.

• Vrf takes as inputs V , id,m and Σ. It returns 1 if Σ is a valid signature of m

related to id, and 0 otherwise.

The Setup and KeyGen algorithms are performed by a KGC. We also refer to

these procedures user Enrollment. We remark that users can obtain more then one

private signature keys (s1(id), s2(id), .., sn(id)) from KGC.

In IBS schemes it is customary to shrink user identities id and messages m (which are

binary strings of variable length) to elements in suitable groups. From a theoretical

point of view, these shrinking mappings are often modeled as random oracles (RO),

i.e. functions whose outputs appear to an observer like uniformly distributed random

variables. In practice, such functions are actually realized through cryptographic

hash functions, as suggested in [Bellare and Rogaway, 1993]. For the IBS schemes

provided in our implementation, we had to consider the two hash function functions.

h : {0, 1}∗ → Z∗l , H : {0, 1}∗ → G ,

32

where G is the group of prime order l considered in Section 3.3.1. The first function

can be easily obtained by computing an hash function and keeping the most sig-

nificant dlog2 le bits of its digest, and finally by considering the integers that have

these bits as their binary representation and fall in Z∗l . Indeed, it can be shown that

truncating the output of a pseudo-random function to an arbitrary number of bits

results again in a pseudo-random function. On the other hand, the SHA-2 family

of hash function is supposed to emulate fairly well pseudo-random functions, and

digest bit sizes up to 512 allow to encompass all the values of l required for elliptic

curve cryptography. Our implementation makes use of the family member having

512 bit output, known as SHA-512. This function is considered secure as far as

input messages are no more than 2128− 1 bits, a value far beyond the requirements

of our applications.

The construction of function H is more involved. Since hashing directly onto a

subgroup of an elliptic curve is a difficult task, we followed the construction for H

given in [Boneh et al., 2004], which consists in what follows. Let suppose p ≥ 3,

then from equation (3.2) it follows that elliptic curves over Fq are defined by an

equation of type y2 = f(x), where f(x) is a quadratic polynomial. Let E(Fq) be

a curve of order m, and let P ∈ E(Fq) be a point of prime order l, where l2 does

not divide m. Suppose now we have the function H ′ : {0, 1}∗ → Fq ×{0, 1}, which

likewise h can be built from a standard hash function. The following algorithm uses

H ′ to hash strings in {0, 1}∗ onto G = 〈P 〉 with a failure probability no more than

δ > 0, where δ can be chosen arbitrarily small.

33

MapToGroup

Given the function H ′ and I = dlog2 log2 δ
−1e, the Map to group

algorithm does the following:

1. Set i = 0, where i is represented as an I-bit string.

2. Set (x, b) = H ′(i‖str), where str ∈ {0, 1}∗.

3. If f(x) is a quadratic residue in Fq then do:

(a) Use b to choose between the two square roots y1 > y0 of f(x) and

set P (str) = (m/p)(x, yb) ∈ G.

(b) If P (str) 6= O then output MapToGroup(str) = P (str) and

stop; otherwise, continue with step 4.

4. Increment i and go to step 2, if i = 2I report failure.

3.5 Point compression

If the ground field Fq (q = pd) is of odd characteristic p, then all the IBS schemes

discussed later can take advantage of point compression [Boneh et al., 2004],[Zhang

et al., 2004]. It is because of compression that conventional pairing-based schemes

gets half-sized signatures compared to ECDSA. Indeed, since for an elliptic curve

there are at most two points with the same x-coordinate of equation (3.2) for p ≥ 3,

then one can save such coordinate and one bit to uniquely identify a point in G (or

G′).

34

ID-based signature

In this Chapter, we present two new ID-based signature schemes, named IBS-1

and IBS-2. They make use of bilinear pairing to get shorter signatures and can

be considered the ID-based counterparts of [Boneh et al., 2004] (BLS) and [Zhang

et al., 2004] (ZSS) conventional signature schemes. The new signature schemes will

be compared with the signature scheme of [Gentry and Silverberg, 2002] (GS-IBS).

The users obtain signatures keys making an Enrollment to KGC which runs Setup

and KeyGen algorithms (see detail in Section 3.4). The first task of the Setup

algorithm is to define the elliptic curve E(Fq) to be used, and a point P ∈ E(Fq)

of prime order l. Moreover, this algorithm computes the description of a suitable

Tate-based pairing e, plus that of its related distortion map φ or isomorphism ψ,

depending if the elliptic curve is supersingular or ordinary, respectively. The KeyGen

computes two kinds of signature keys, since the IBS-1 and the GS-IBS schemes adopt

the same type. It’s important to notice that users signature keys are now points in

G(+) = 〈P 〉, whereas they are integers in Z∗l in the related conventional signature

schemes BLS and ZSS.

Setup Algorithm

The scope of the Setup algorithm is the setting of public parameters for the

intended service. The KGC does the following:

• Choice of an elliptic curve E(Fq), and a point P ∈ E of prime order l

with gcd(l, q− 1) = 1.

• If E is supersingular then:

– Selection of a distortion map φ in E with P ′ = φ(P),

and definition of the symmetric bilinear pairing e

given by equation (3.3).

Otherwise, if E is ordinary, then:

– Selection of a point P ′ ∈ E(Fqk) of order l which is linearly

independent of P , and definition of the asymmetric bilinear

pairing e given by equation (3.4).

• Choice of a pseudo-random integer s ∈ Z∗l as its master-key, and

computation of its public verification key V ′ = sP ′.

• Publication of E, e, l,P ,V ′ and of the two hash functions:

H : {0, 1}∗ → G , h : {0, 1}∗ → Z∗l

36

KeyGen Algorithm

The scope of the KeyGen algorithm is the generation of private

signature keys for a set of users registered through suitable identities.

The KGC does the following:

• For each binary string id in a suitable finite set:

• Computation of digests H(id) and h(id).

• Computation of the elements of G(+) = 〈P 〉:

(4.1) S1(id) = sH(id), S2(id) =
P

s+ h(id)

which represent private signature keys corresponding to the identity id.

4.1 IBS-1 and IBS-2 schemes

The IBS-1 scheme, illustrated in Figure 4.1, uses the signature key S1(id) returned

by algorithm KeyGen. The signer id uses its private signature key S1(id) given by

expression (4.1) and the public parameters returned by the Setup algorithm in order

to compute the signature (Σ,R′) ∈ G×G′ of message m. The verifier can check the

signature due to the knowledge of the signer identifier id and the public parameters

returned by the Setup algorithm.

37

IBS-1 signature scheme

• Sign: the signer id does the following

– Choice of a pseudo-random integer r ∈ Z∗l , and computation of

the public element R′ = rP ′.

– Computation of the element of G(+) = 〈P 〉:

(4.2) Σ =
S1(id)

r+ h(m)

The couple (Σ,R′) represents the signature by user id for message m.

• Vrf : the verifier does the following

– Computation of digests H(id), h(m) and point R′ + h(m)P ′.

– Check of the equality

(4.3) e(Σ,R′ + h(m)P ′) = e(H(id),V ′)

and acceptance of the signature only if expression (4.3) is true.

It is easy to verify the correctness of the IBS-1 signature scheme. Substituting

the value S1(id) given by (4.1) in the expression (4.2) of Σ, from the Bilinearity of

e.

Proposition 4.1.1. Suppose that no adversaries interfere with execution of signa-

ture scheme. For equation (4.3), the scheme is correct:

38

e(Σ,R′ + h(m)P ′) = e

(
sH(id)

r+ h(m)
, (r+ h(m))P ′

)

= e(sH(id),P ′)

= e(H(id),V ′) .

Proposition 4.1.2. Let G = 〈P 〉 and G′ = 〈P ′〉, as returned by algorithm Setup,

constitute a group pair of prime order l for which the co-CDH problem is hard to

solve. Let the two functions H : {0, 1}∗ → G and h : {0, 1}∗ → Z∗l , returned

by algorithm Setup, behave as random oracles. Then the IBS-1 scheme is secure

against existential forgery under adaptive chosen-message attacks.

Proof. Under the given assumptions both the BLS and ZSS schemes are secure

against existential forgery under adaptive chosen-message attacks, as respectively

proved in [Boneh et al., 2004] and [Zhang et al., 2004]. The existential unforgeability

[Goldwasser and Micali, 1982] of BLS implies that it is unfeasible to compute a forged

signature key S̄1(id) 6= S1(id) for any given id and any given master verification

key V . On the other hand, the existential unforgeability of ZSS implies that it is

unfeasible to compute a forged signature Σ̄ 6= Σ for any given message m and any

given public element R′.

Scheme IBS-2 requires just one pairing computation for signature verification,

instead of the two ones required by the IBS-1 scheme. This is because, in analogy

with the ZSS scheme, one pairing computation can be precomputed by the KGC.

This scheme, described by Figure 4.1, turns out by applying the ZSS signature

S2(id) returned by algorithm KeyGen for id, and then using such signature as the

base point to compute again a ZSS signature for message m. The signer id uses its

private signature key S2(id) given by (4.1) and the public parameters returned by

the Setup algorithm in order to compute the signature (Σ,Q) ∈ G×G for message

39

m. The verifier can check the signature thanks to the knowledge of the signer iden-

tifier id and the public parameters returned by the Setup algorithm.

IBS-2 signature scheme

• Sign: the signer id does the following

– Choice of a pseudo-random integer r ∈ Z∗l .

– Computation of the element of G(+) = 〈P 〉

(4.4) Σ =
S2(id)

r+ h(m)

– Computation of the public element Q = rΣ.

The couple (Σ,Q) represents the signature by user id for message m.

• Vrf : the verifier does the following

1. Computation of digests h(id), h(m) and the related

points Q+ h(m)Σ, V ′ + h(id)P ′

2. Check of the equality

(4.5) e(Q+ h(m)Σ,V ′ + h(id)P ′) = e(P ,P ′)

and acceptance of the signature only if (4.5) is true.

The correctness of the IBS-2 scheme follows from the bilinearity of e and by

substituting the expression of S2(id) in (4.4):

Proposition 4.1.3. Suppose that no adversaries interfere with execution of signa-

ture scheme. For equation (4.5), the scheme is correct:

40

e(P ,P ′) = e

(
P , s+ h(id)

s+ h(id)

r+ h(m)

r+ h(m)
P ′
)

= e

(
r+ h(m)

(r+ h(m))(s+ h(id))
P ,V ′ + h(id)P ′

)

= e(Q+ h(m)Σ,V ′ + h(id)P ′) .

Proposition 4.1.4. Let G = 〈P 〉 and G′ = 〈P ′〉, as returned by algorithm Setup,

constitute a group pair of prime order l for which the co-CDH problem is hard to

solve. Let the function h : {0, 1}∗ → Z∗l , returned by algorithm Setup, behave as

a random oracle. Then scheme IBS-2 is secure against existential forgery under

adaptive chosen-message attacks.

Proof. Under the given assumptions the ZSS scheme is secure against existential

forgery under adaptive chosen-message attacks [Zhang et al., 2004]. On the other

hand, the existential unforgeability of ZSS implies that: (a) it is unfeasible to com-

pute a forged signature key S̄2(id) 6= S2(id) for any given id and any given master

verification key V ; (b) it is unfeasible to compute a forged signature Σ̄ 6= Σ for any

given message m and any given public element Q. That concludes the proof.

In the signature scheme GS-IBS, the signer id uses its private signature key

S1(id) given by (4.1) and the public parameters returned by the Setup algorithm in

order to compute the signature (Σ,R′) ∈ G×G′ for message m. The verifier can

check the signature due to the knowledge of the signer identifier id and the public

parameters returned by the Setup algorithm.

41

4.2 GS-IBS scheme

GS-IBS signature scheme

• Sign: the signer id does the following

– Choice of a pseudo-random integer r ∈ Z∗l , and computation of

the public element R′ = rP ′.

– Computation of the element of G(+) = 〈P 〉

(4.6) Σ = S1(id) + rH(id‖m)

The couple (Σ,R′) represents the signature by user id for message m.

• Vrf : the verifier does the following

– Computation of digests H(id) and H(id‖m).

– Check of the equality

(4.7) e(Σ,P ′) = e(H(id),V ′) e(H(id‖m),R′)

and acceptance of the signature only if (4.7) is true.

Again, the correctness of the GS-IBS scheme easily follows from the bilinearity

of e, since:

Proposition 4.2.1. Suppose that no adversaries interfere with execution of signa-

ture scheme. For equation (4.7), the scheme is correct:

42

e(Σ,P ′) = e(S1(id) + rH(id‖m),P ′)

= e(S1(id),P ′) e(rH(id‖m),P ′)

= e(H(id),V ′) e(H(id‖m),R′) .

The following proposition, concerning the security of scheme GS-IBS, is a direct

consequence of the results in [Gentry and Silverberg, 2002]:

Proposition 4.2.2. Let G = 〈P 〉 and G′ = 〈P ′〉, as returned by algorithm Setup,

constitute a group pair of prime order l for which the co-CDH problem is hard to

solve. Let the function H : {0, 1}∗ → G, returned by algorithm Setup, behave as

a random oracle. Then scheme GS-IBS is secure against existential forgery under

adaptive chosen-message attacks.

4.3 Comparison of computational costs

The three IBS schemes previously considered are equivalent in terms of signature

size, thus being roughly as bandwidth-efficient as the scheme [Barreto et al., 2005]

(BLMQ-IBS), if point compression is put in place. Nevertheless, they differ in terms

of computing costs. Table 4.1 shows operation counts for such schemes, distinguish-

ing between signature and verification operations.

43

PC SM PA I M A DC RC

IBS-1 Sign - 2 - 1 - 1 1 1

IBS-1 Vrf 2 1 1 - - - 2 -

IBS-2 Sign - 2 - 1 - 1 1 1

IBS-2 Vrf 1 2 2 - - - 2 -

GS-IBS Sign - 2 1 - - - 1 1

GS-IBS Vrf 3 - - - 1 - 2 -

Tab. 4.1: Comparison of computational costs among ID-based signature schemes IBS-1,
IBS-2 and GS-IBS

Operations are denoted as acronyms of two-letter, as follows: PC = Paring Com-

putations; SM = Scalar Point Multiplications; PA = Point Additions; I = Scalar

Inversion ; M = Scalar Multiplications; A = Scalar Additions; DC = Digest Compu-

tations (i.e. evaluations of functions h or H); RC = Random number Computation.

The comparison shows that the most efficient of the three schemes is IBS-2, which

requires just one pairing computation. However, this gain in pairing computations

among the considered schemes does not come for free as shown in Table 4.1, each

pairing is offset by a point multiplication plus a point addition.

44

ID-based key agreement

In this Chapter, we present our contributions on ID-based key agreement protocols.

According to the fact that WANETs communications can involve just two parties

or a group of them, our work started from considering two notable protocols in

the literature, one for two-party key agreement and the other for group key agree-

ment. The first protocol was the natively ID-based one-round protocol of [Fiore and

Gennaro, 2010], which can be implemented over any cyclic group of prime order

where the CDH problem is supposed to be hard, without any bilinear structure. We

propose here its elliptic curve version, named eFG, which requires just four scalar

points multiplication and two point addition for each party. Instead, the group

key agreement (GKA) protocol we started from was that of [Dutta and Barua,

2008] (DB), which in turn was derived by the famous unauthenticated protocol of

[Burmester and Desmedt, 1994] (BD). The two GKA protocols discussed in the fol-

lowing Sections were both derived from elliptic curve version of the DB Protocol.

Moreover, we introduce a set of procedures for the management dynamic groups of

parties. Although these protocols can use a generic signature scheme, we coupled

each of them with one of the ID-based signature schemes introduced in Chapter 4,

in order to benefit of the advantages offered by the ID-based trust model in the

context of WANETs, as described in Chapter 2. As we are going to show in the

next Chapter, by coupling the GKA protocols introduced here with the ID-based

signatures schemes of Chapter 4, we got authenticated GKA protocols that require

small memory footprints and can achieve very low communication bandwidth and

local computation costs for each of the involved parties.

5.1 eFG protocol

According to the ID-based enrollment procedure discussed in Section 3.4, protocol

eFG requires the identifiers A and B of the two communicating parties plus all other

parameters made public by the KGC. The first task of KGC is to define the elliptic

curve E(Fq) to be used, and a generator P of a group G of prime order l, where

p is the prime order of the field Fq and l is a big prime factor of p− 1. Then,

the KGC sets an hash function h with values in Z∗l and a group to string map in

G×G. Finally, the KGC generates its private-public key pair s,V . The system

public parameters are returned by algorithm eFG Setup, as follows:

eFG Setup

• the KGC returns the elliptic curve E(Fq) to be used.

• the point P ∈ E of prime order l, which generates the cyclic group

G ⊂ E where the Diffie-Hellmann system will be considered and the

two hash functions.

h : {0, 1}∗ → Z∗l , H : G×G→ {0, 1}n

where n is a suitable positive integer.

• the public key V = sP ∈ G of the KGC, where s ∈ Z∗l is the

corresponding secret key, chosen randomly by the KGC.

Moreover, as result of an interaction with the KGC through a properly protected,

out-of-band channel, each user receives its own private key related to its identity

U . This key is the output of the KeyGen algorithm described in the following. It

46

consists in a couple (RU , sU) ∈ G×Z∗l , which represents the elliptic version of the

Schnorr’s signature [Schnorr, 1991] of the string U under the public key V .

eFG KeyGen

KGC: nU
$←− Z∗l

RU = nUP

sU = nU + sh(U‖RU)
RU ,sU−−−−→ {U}

Protocol eFG computations can be subdivided in two steps. In the first step, each

user U asynchronously calculates its ephemeral private-public key couple (tU ,TU) ∈

Z∗l ×G. Then, each user U sends to the other party a packet with its identifier

U alongside with the two points RU ,TU ∈ G. Finally, in the second step each

user U computes a couple of points (ZU ,Z ′U) ∈ G × G and derives the key as

K = H(ZU ,Z ′U). The computation of (ZU ,Z ′U) requires the private information of

U , together with V and the information received from its peer due to the previous

communication step. Since each user computes the same couple (ZU ,Z ′U), the

computed key K is actually the same for both users. It is worthwhile to note that

the protocol actually does not rely on message authentication, since each of the two

messages exchanged at first two are actually not signed by the sender. However, the

way to derive (ZU ,Z ′U) assures that only the two parties with identities A and B

can compute the key K.

47

eFG protocol

begin Round

A: tA
$←− Z∗l ; TA = tAP

B: tB
$←− Z∗l ; TB = tBP

A
A,RA,TA−−−−−−→ {B}

A
B,RB ,TB←−−−−−− {B}

end

begin KeyDerivation

A: ZA = (tA + sA)(TB +RB + h(B||RB)V); Z
′
A = tATB

K = H(ZA,Z ′A)

B: ZB = (tB + sB)(TA +RA + h(A||RA)V); Z
′
B = tBTA

K = H(ZB,Z ′B)

end

It easy to show that protocol eFG is correct, meaning that it actually results in

a key shared between users A and B.

Definition 5.1.1. A key establishment protocol is correct if it results in a same,

unique key shared among all the involved parties, assuming all of them execute the

protocol in the right way and no adversary interferes with protocol execution.

Proposition 5.1.1. Suppose that parties A and B are honest and that no adver-

saries interfere with the execution of protocol eFG. Then, both A and B compute

the same key K given by K = H(ZB,Z ′B)

Proof. The key expression K = H(ZU ,Z ′U) is actually the same for U = A and

U = B as shown by the following calculations:

48

ZA = (tA + sA)(TB +RB + h(B||RB)V)

= (tA + nA + sh(A||RA))(tBP + nBP + h(B||RB)sP)

= (tA + nA + sh(A||RA))((tB + nB + sh(B||RB))P)

= (tAP + nAP + sh(A||RA)P)(tB + sB)

= (TA +RA + h(A||RA)V)(tB + sB)

= ZB

Z ′A = tATB = tAtBP = TAtBP = Z ′B

Protocol eFG is secure under the strong Diffie-Hellmann assumption, if the hash

functions h and H behaves as random oracles (see theoretical notions in Chapter

3). This is a direct consequence of the fact that eFG is the elliptic version of

protocol introduced in [Fiore and Gennaro, 2010], and that this last protocol was

proven secure by their authors under the above assumptions. For each node, the

eFG protocol requires 4 point-scalar multiplications, 2 point additions and 2 hash

computations. Moreover, each node has to send and receive one message, which

composes of the sender identifier and two points in G.

PC SM PA I M A DC RC

eFG Protocol - 4 2 - - - 2 -

Tab. 5.1: Operation required by each of the two parties involved in protocol eFG.

Operations in Table 5.1 are denoted as acronyms of two-letter, as follows: PC =

Paring Computations; SM = Scalar Point Multiplications; PA = Point Additions;

49

I= Scalar Inversion; M = Scalar Multiplications; A = Scalar Additions; DC =

Digest Computations (i.e. evaluations of functions h or H); RC = Random number

Computation.

5.2 Extending the DH-protocol to n parties

A natural way to get an authenticated group key agreement protocol is through

an extension of the DH exchange to more than two parties, coupled with a mes-

sage signing procedure for assuring that protocol messages are actually from the

intended parties and pertain to the current protocol session. As previously illus-

trated in Chapter 2, if correctly implemented, this approach has the advantage of

inheriting from the DH protocol the security properties of key independence and

perfect forward secrecy. Actually, the large majority of authenticated group key

agreement (AGKA) protocols proposed up to now derive in some way from the DH

protocol [Boyd and Mathuria, 2003],[Dutta and Barua, 2005],[Dutta and Barua,

2008],[Yao et al., 2008],[Joye and Neven, 2009].

Let us consider a cyclic (multiplicative) group of prime order l, and let g be one

of its generators. Moreover, let Z∗l denote the set of principal residues modulo l

being co-prime to l, and let ni ∈ Z∗l be a secret chosen at random1 by party Mi. A

naive way to generalize the DH key agreement protocol to a set of m parties is to

order them in a ring {Mi}, that is Mi 6= Mj if i 6= j mod m, and to perform m− 1

communication rounds as follows. At round j (j = 1, . . . ,m− 1), each Mi sends

to its next party the DH exponential given by χi,j = χni
i−1,j−1, where χi,0 = g for

each i and all computations are performed modulo l.

This is precisely the [Ingemarsson et al., 1982] (ITW) protocol, which was perhaps

the first attempt of group key agreement based on generalized DH exchanges. It

should be clear that all parties after the (m− 1)-th round can compute the same
1 Actually, Z∗

l for a prime l consists of all the positive integers smaller than l, and 1 < ni < l is
usually calculated thanks to a pseudo-random bit generator.

50

session key, given by

(5.1) k = gn0n1...nn−1

and that such protocol is secure against passive adversaries by assuming the hardness

of the computational Diffie-Hellman (CDH) problem. The ITW protocol is very

expensive: not only each party has to compute m modular exponentiations; it must

also send and receive m− 1 messages, for a total of m(m− 1) messages exchanged

in m− 1 rounds.

The three Group Diffie-Hellman protocols of [Steiner et al., 1996] are variations

of the ITW protocol. They all compute the shared key given by equation (5.2),

but differ in where computations are done and which messages are communicated.

GDH.1 and GDH.2 protocol are both optimal with respect to the total number of

messages sent by parties during a session, respectively for the case with and without

broadcast (see [Becker and Wille, 1998] for an analysis of communication complexity

bounds for GKA protocols). Indeed, GDH.1 attains the lowest bound of 2(m− 1)

messages, whilst GDH.2 requires m messages to be sent, one of which is a broadcast.

However, all the GDH protocols require a number of rounds that linearly increase

with m. Moreover, the total number of modular exponentiations is m(m+3)
2 − 1 for

GDH.1 and GDH.2, and 5m− 6 for GDH.3.

ITW GDH.1 GDH.2 GDH.3

Full-contributory Y es No No No

Rounds m− 1 2(m− 1) m m+ 1

Total messages m(m− 1) 2(m− 1) m 2m− 1

Total exponentiations m2 m(m+3)
2 − 1 m(m+3)

2 − 1 5m− 6

Tab. 5.2: Comparing some group key-agreement protocols that generalize the DH two-
party key exchange.

51

The AGKA protocols considered in [Bresson et al., 2001b],[Bresson et al., 2002]

are all derived by GDH.2, thus becoming unpractical already for modest size groups

of parties. However, the main contribution of these works is the first formal treat-

ment of security for AGKA protocols. The model given in [Bresson et al., 2001b]

was used to prove implicit key authentication and perfect forward secrecy in case of

static groups of members, by assuming the intractability of the CDH problem and

the the existence of a hash function behaving as a random oracle. This model has

been successively extended to encompass dynamic groups [Bresson et al., 2001a] and

strong corruption [Bresson et al., 2002], where a corruption other than long-term

keys can reveal all not explicitly erased internal data. It has been adopted in various

protocols by other authors in the following years, in order to prove the security of

their AGKA proposals, and must be considered the reference model for the security

of AGKA protocols.

5.3 Constant round protocols

A requisite for a scalable GKA protocol is to have a small number of rounds re-

gardless the number of involved parties. Indeed, the running time of a protocol is

proportional to the number of its communication rounds. Different GKA protocols

have been proposed so far in the literature that attain a constant number of rounds,

usually comprised between 2 and 3, but at the price of one or more of the following

issues: expensive per node cryptographic operations which increase with the number

of parties [Bresson and Catalano, 2004], high bit transfers over the network or big

memory footprints for the involved parties, the burden and unbalance concerning

the establishment of a group leader [Augot et al., 2007][Nam et al., 2004] or the lack

of some important security property [Boyd and Nieto, 2002]. Moreover, many proto-

cols assume knowledge of the authentic public-keys for all the parties involved into

a session, as trust anchor point for the authenticated key agreement. This raises the

problem of long-term public key management (i.e. key authentication, distribution

52

and revocation) which although a once in issue could be extremely difficult or costly

to solve for some environments and application scenarios.

A round-optimal AGKA protocol is [Boyd and Nieto, 2002], which requires just one

round and is perhaps the most efficient authenticated group key agreement protocol

ever designed. It makes use of hashed values instead of DH exponents, and was

proven secure in the random oracle model. However that comes at the cost of some

unbalance in computation efforts for parties, the initiator node being much more

involved than the other nodes, and more important, the lack of the property of

perfect forward secrecy.

Burmester-Desmedt (BD) proposed an unauthenticated group key agreement pro-

tocol [Burmester and Desmedt, 1994] which exchanges over the network also the

second order DH exponentials, without exposing the factors χi,2 of k. Each Mi,

after receiving gni−1 from Mi−1 and gni+1 from Mi+1, broadcasts to the other mem-

bers the value xi = g(ni+1−ni−1)ni . Key k can be indeed computed by each Mi as:

(5.2) k = gni−1nimxm−1
i xm−2

i+1 . . . x2
i+m−3xi+m−2

This broadcast version of the BD protocol requires two rounds, which is nearly

optimal, since [Becker and Wille, 1998] gave the lowest bound of one single round for

key agreement using broadcast. Computations involve a total of m(m+ 1) modular

exponentiations. The BD protocol was proven secure against passive attacks in

the standard model by assuming the hardness of the CDH problem [Burmester

and Desmedt, 1995]. Later, security against active adversaries for an authenticated

version obtained through a general ”authentication compiler” was proven by [Katz

and Yung, 2003], assuming the hardness of the DDH problem and the existence of

a random oracle.

Dutta and Barua followed a more efficient approach [Dutta and Barua, 2008] in

53

which K is computed as K = k0k1 . . . km−1, and each Mi gets the kj(j = 0, . . . ,m−

1) due to the iterative formula:

ki = gni−1ni(5.3)

ki+h = ki
i+h−1∏
j=i

xj (h = 1, . . . ,m− 1)

in which indices are modulo m. With such a formula, computation of k requires one

(full-length) modular exponentiation and 2m− 2 modular multiplications (m− 1

multiplications to compute the ki plus m− 1 multiplications to compute k from the

ki).

Formula (5.3) offers two other advantages with respect to computation of k through

expression (5.2). First, each member Mi can detect if there was a misbehaving

party by checking that gni+1ni = ki+m−1. Second, precomputed data allows get-

ting less overhead in the management of dynamic groups, for example groups where

membership varies because of leaving or joining members. The authors got also an

improvement in communication overhead for the authenticated version of the proto-

col. They consider as nonces to face replay attacks deterministic and unique instance

numbers instead of the random values provided by the authentication compiler in

[Katz and Yung, 2003], thus being able to reduce number of rounds by one. Their

protocol was proven secure under the same hardness assumptions and adversarial

model than [Katz and Yung, 2003].

5.4 GKA protocols

In this section we present two GKA protocols for authenticated group key agree-

ment, that allow for implicit key authentication in two communication rounds. The

proposed protocols turn out by combining the ID-based signature schemes described

in Chapter 4 with variations of the DB protocol for elliptic curves. In practice, the

way to compute the shared key is derived by iterative formula (5.3), rewritten in the

54

elliptic curve arithmetic. Given an elliptic curve E(Fq), let P ∈ E and G = 〈P 〉

be the additive group of prime order l generated by P on E. Moreover, for any

integer i, let [i]m ∈ {0, . . . ,m− 1} denote the last non-negative residue of i modulo

m. Then (5.3) can be rewritten as follows:

Xi = n[i−1]mniP (i = 1, . . . ,m− 1; n[i−1]m ,ni ∈ Z∗l)(5.4)

X[i+h]m = Xi +
i+h−1∑
j=i

(X[j+1]m −X[j]m) (h = 1, . . . ,m− 1)

and the shared key is given by

K = X0 +X1 + · · ·+Xm−1(5.5)

Actually, our protocols use a slight modification of (5.4), which allows to com-

pute K using, just two communications among each party Mi and its adjacent nodes

Mi−1,Mi+1 at round one. In the sequel we refer to these protocols as GKA v1 and

GKA v2, respectively.

Any multi party protocol requires a group initialization phase, in which each party

of a suitable set of m members becomes aware of all other parties belonging to the

multicast group and of an integer t. Such integer t uniquely identifies the communi-

cation session, and by incrementing in a suitable way its value, the different rounds

during protocol execution.

After group initialization, GKA protocols order the set of participants in a lexi-

cographic cyclic way {Mi} (i ∈ {0, . . . ,m− 1}), and associate this ordered set to

the identifier t. It is worth to stress here that a cyclic ordering among participants

is required by each BD derived protocol, whilst the use of a round identifier is an

approach often adopted in protocol design to counterfaith reply attacks and attacks

55

caused by interleaving messages, both in the same session and among multiple con-

current sessions.

A natural way to achieve group initialization is due to a member acting as protocol

initiator, that can be efficiently and securely achieved by splitting the first round

of the protocols into a request-response interaction between the initiator and the

recipients that agree in forming the group. The initialization and others procedures

for GKA protocols are discussed in Section 5.5. Thus, we can assume for the mo-

ment that each party knows the ordered set {Mi} (i = 0, . . . ,m− 1) and the value

of the identifier t. After that, authenticated key agreement is accomplished through

the two message exchanges procedures Round1, Round2 and the local computation

KeyDerivation.

5.4.1 Protocol GKA v1

Protocol GKA v1 is as follows:

• Round1: Each memberMi generates its ephemeral Diffie-Hellman couple (ni,Zi),

where Zi = niP ∈ G\{O}. Mi signs the binary string mi = {j,Zi} with key

si and the signing algorithm Sign. Finally, Mi sends (j,Zi) along with the

signature tag σi to nodes M[i−1]m and M[i+1]m .

• Round2: Each member Mi verifies the authenticity of the two messages re-

ceived from previous round thanks to the Vrf algorithm. If such verification

succeeded, then Mi computes Xi = niZi+1, Yi = Xi − niZi−1 and signs the

string mi = {t+ 1,Yi} to get the tag ∑i. Afterwards, Mi broadcast (t+ 1,Yi)

along with σi to the other group members. Otherwise, Mi broadcast the signed

string corresponding to t+ 1 and stops, indicating that the signature verifica-

tion failed.

• KeyDerivation: Each member Mi verifies the authenticity of the m−2 messages

received from the previous round and that none of these message corresponds

56

to the binary representation of t+ 1. If verification succeeded, then Mi com-

putes Xj from Yj (j 6= i) and Xi through equation (5.4) and gets the session

key K =
∑m−1
j=0 Xj . Otherwise, Mi performs a third communication round by

multicasting the signed string corresponding to (t+ 2) and stops, in order to

indicate its failure in computing the session key.

Protocol GKA v1

Setup: A group G = 〈P 〉, where P is a point of prime order p over an

elliptic curve.

Result: A secret multicast key K computed with the pairwise

contribution of all members Mi.

begin Round1

for i← 0 to m− 1 do

Mi : priv ni
$←− Z∗l , pub Zi = niP , t = Cnt({Mi}), σi =

Sign({t,Zi})

Mi
t,Zi,σi−−−−→ {M[i−1]m ,M[i+1]m}

end

end

→

57

←

begin Round2

for i← 0 to m− 1 do

if Mi : Vrf(σ[i−1]m) ∧ Vrf(σ[i+1]m) then
Mi : Xi = niZ[i+1]m ,Yi = Xi − niZ[i−1]m , σi =

Sign({t+ 1,Yi})

Mi
t+1,Yi,σi−−−−−−→ {Mι : ι 6= i}

else
Mi : σi = Sign({t+ 1})

Mi : t+1,σi−−−−→ {Mι : ι 6= i} Mi : exit

end

end

end

begin KeyDerivation

for i← 0 to m− 1 do

if Mi :
∧
ι 6=i (Vrf(mι,σι,Mι) ∧ msgι 6= {t+ 1}) then

for h← 1 to m− 1 do
Mi : X[i+h]m = X[i+h−1]m + Y[i+h]m

end

if Mi : X[i+m−1]m = niZ[i−1]m then
Mi : priv Ki = X0 +X1 + . . .+Xm−1

else
Mi : σi = Sign({t+ 2})

Mi
t+2,σi−−−−→ {Mι : ι 6= i} Mi : exit

end

end

end

end

58

5.4.2 Protocol GKA v2

In protocol GKA v1, the number of signature verifications performed by each party

increases linearly with the number m of parties. That can result in significant com-

putational and power costs in case of suitably large groups of parties, preventing

the use of this protocol in some applications scenarios. Since bilinear pairing com-

putations are much more expensive then others elliptic operations, the above is

particularly true for ID-based signature schemes as those considered in Chapter 4.

Indeed, such schemes get shorter signatures at the price of bilinear pairing computa-

tions during the verification process. Protocol GKA v2 uses a cooperative checking

of the values transferred among parties in order to avoid the signing of messages at

Round two and their verification during the key derivation phase. This allows to

avoid for each party a signature generation and m− 1 signature verifications, saving

local operations costs and network bandwidth.

Protocol GKA v2

Setup: A group G = 〈P 〉, where P is a point of prime order p over an

elliptic curve.

Result: A secret multicast key K computed with the pairwise

contribution of all members Mi.

begin Round1

for i← 0 to m− 1 do

Mi : ni
$←− Z∗p, Zi = niP , σi = Sign({t,Zi})

Mi
t,Zi,σi−−−−→ {M[i−1]m ,M[i+1]m}

end

end

→

59

←

begin Round2

for i← 0 to m− 1 do

if Mi : Vrf(σ[i−1]m) ∧ Vrf(σ[i+1]m) then
Mi : Xi = niZ[i+1]m ,Yi = Xi − niZ[i−1]m

Mi
Yi−−→ {Mι : ι 6= i}

else
Mi : σi = Sign({t+ 1})

Mi
t+1,σi−−−−→ {Mι : ι 6= i} Mi : exit

end

end

end

begin KeyDerivation

for i← 0 to m− 1 do

for h← 1 to m− 1 do
Mi : X[i+h]m = X[i+h−1]m + Y[i+h]m

end

if Mi : X[i+m−1]m = niZ[i−1]m then
Mi : priv Ki = X0 +X1 + . . .+Xm−1

else
Mi : σi = Sign({t+ 2})

Mi
t+2,σi−−−−→ {Mι : ι 6= i} Mi : exit

end

end

end

60

• Round1 performs the same operation of GKA v1.

• Round2: Mi verifies the authenticity of the two messages received from the

previous round thanks to the Vrf algorithm. If such verification succeeded,

then Mi computes Xi = niZ[i+1]m , Yi = Xi − niZ[i−1]m . Afterwards, Mi

multicasts Yi to the other group members. Otherwise, Mi multicasts the

signed string corresponding to the binary representation of t+ 1 and stops,

indicating its failure in authenticating one of its neighbours.

• KeyDerivation: Mi, using the points Yj (j 6= i) received from the previous

round, computes iteratively X[i+h]m (h = 1, . . . ,m− 1) from Xi due to (5.4).

Afterwards, it checks if point X[i+m−1]m obtained is equal to point niZ[i−1]m

computed at round Round2. If that is the case, Mi gets the session key

K =
∑m−1
j=0 Xj . Otherwise, Mi performs a third communication round by

multicasting the signed string corresponding to (t+ 2) and stops, in order to

indicate its failure in computing the session key.

5.4.3 Comparison of computational costs

Table 5.3 shows a performance comparison among the different authenticated GKA

protocols obtained by coupling GKA v1 and GKA v2 with one of the signature

schemes IBS-1, IBS-2 and GS-IBS. Computational costs are relative to a single

party, and take into account only pairing computations and scalar multiplications.

Other operations (i.e. point addition, hashing, random number generation, sending

and receiving messages) were omitted, because they result on similar overheads for

both protocols. For example, both GKA v1 and GKA v2 send and receive (m + 1)

messages.

61

Protocol / Scheme Pairing Computation Scalar Multiplication

GKA v1 / IBS-1 2(m+ 1) m+ 8

GKA v2 / IBS-1 4 7

GKA v1 / IBS-2 (m+ 1) 2m+ 9

GKA v2 / IBS-2 2 9

GKA v1 / GS-IBS 3(m+ 1) 7

GKA v2 / GS-IBS 6 5

Tab. 5.3: Comparison of computational costs among the authenticated group key agree-
ment protocols discussed in this Chapter.

5.4.4 Run example

As an illustrative example of GKA v1 protocol run, let us consider the case of four

members {Mi}, (i = 0, 1, 2, 3).

At Round 1, each member Mi choices randomly a secret exponent ni ∈ Z∗l , com-

putes point Zi = niP , and gets through algorithm Sign signature σi of the string

corresponding to the concatenation of the binary representations of t and Z(i).

Then the following communications occur:

M0 : t,Z0,σ0−−−−→ {M3,M1}

M1 : t,Z1,σ1−−−−→ {M0,M2}

M2 : t,Z2,σ2−−−−→ {M1,M3}

M3 : t,Z3,σ3−−−−→ {M2,M0}

At Round 2, each member Mi verifies the authenticity of the two messages it

received from Round 1, computing Xi = niZi+1 and Yi = Xi−niZi−1 = Xi−Xi−1

if such verification succeeds. Then Mi the signature σi of the string corresponding

62

to the concatenation of the binary representations of t+ 1 and Yi (signature at this

Round were named in the same way, since they supersede those of Round 1). Then

the following communications occur:

M0 : t+1,Y0,σ0−−−−−−→ {M1,M2,M3}

M1 : t+1,Y1,σ1−−−−−−→ {M2,M3,M0}

M2 : t+1,Y2,σ2−−−−−−→ {M3,M0,M1}

M3 : t+1,Y3,σ3−−−−−−→ {M0,M1,M2}

After a successful verification through algorithm Vrf of the authenticity of messages

received from the other three members, each Mi computes points Xj (j 6= i) as

follows:

M0 : X1 = X0 + Y1, X2 = X1 + Y2, X3 = X2 + Y3

M1 : X2 = X1 + Y2, X3 = X2 + Y3, X0 = X3 + Y0

M2 : X3 = X2 + Y3, X0 = X3 + Y0, X1 = X0 + Y1

M3 : X0 = X3 + Y0, X1 = X0 + Y1, X2 = X1 + Y2

After which, each node can compute the session key K = X0 +X1 +X2 +X3.

Things go in the same way for protocol GKA v2, except that in this case the

broadcast messages sent at Round 2 are not signed by the sender and are not verify

by their receivers. Rather, after computing the Xj(j 6= i) as in protocol GKA v1,

each member does the following respective checks:

63

M0 : X3
?
= n0Z3

M1 : X0
?
= n1Z0

M2 : X1
?
= n2Z1

M3 : X2
?
= n3Z2

If the check is passed and the member does not receive messages from any other

member (meaning that all checks were passed), then it assumes that the computed

key K = X0 +X1 +X2 +X3 is authentic.

5.4.5 Correctness and security

In this Section, we discuss the correctness and the security of GKA protocols. The

correctness property assures that normal executions of a given protocol always ter-

minate and return the expected outcomes. In the case of protocol GKA v1 and

GKA v2 it suffices to prove that each involved party computes the same key K

given by (5.4). That is stated in the following

Proposition 5.4.1. Suppose that all parties {Mi} (i ∈ {0, . . . ,m− 1}) involved

in protocol GKA v1 (GKA v2) are honest and that no adversaries interfere with

protocol execution. Then, each Mi computes a unique Ki such that Ki = Kj for

any 0 ≤ i < j ≤ m− 1

Proof. Under the given assumptions, at round one of both protocols GKA v1 and

GKA v2 each Mi computes Zi = niP , and receives Y[j]m = X[j]m − n[j]mZ[j−1]m

j ∈ {i− 1, i+ 1}.

Thus, starting from j = i+ 1, eachMi can iteratively computeX[j]m = n[j]mZ[j−1]m +

Y[j]m = n[j]mn[j+1]mP for each j 6= i. Moreover, since Mi knows the secret ni and

at round one has received Z[i+1]m = n[i+1]mP , it can compute Xi = niZ[i+1]m =

nin[i+1]mP . Thus Mi terminates by computing

64

Ki =
m−1∑
j=0

Xj = (n0n1 + n1n2 + · · ·+ nm−2nm−1 + nm−1n0)P(5.6)

which is the same point regardless of the value of the index i.

The sequel of this Section deals with the security of GKA protocols. As we

told in Chapter 2, the main notion of security for key establishment protocols is

that of (implicit) key authentication. However, it is important to stress here that

this notion actually comes in two flavors in the literature, that we denote here as

computationally-hard and semantically-hard key authentication, respectively. The

first notion establishes that an adversary cannot compute the key, whilst the second

notion requires that no information at all can be derived by the adversary about

the key.

Definition 5.4.1. A GKA protocol is said to have the property of implicit key

authentication if each player is assured that no other players from the arbitrary pool

of players can compute the session key.

Definition 5.4.2. A GKA protocol is said to have the property of implicit key

authentication if each player is assured that no other players from the arbitrary pool

of players can learn any information about the session key.

If each player is moreover assured that its parties actually have possession of the

same key, the protocol is said to have the property of explicit key authentication.

The second Definition, introduced in [Bellare et al., 1998] for two party protocols

and in [Bresson et al., 2001b] for multi-party protocols, is a semantically oriented

notion of security [Goldwasser and Micali, 1982]. It is clearly more strong than the

first one, in the sense that if a protocol satisfies Definition 5.4.1 then it must satisfy

Definition 5.4.2, too.

65

The following propositions are about the security of the GKA protocols introduced

in Section 5.4. It is worth to note at this point that protocols very similar to GKA

v1 were already proved to have the property of implicit key authentication [Katz

and Yung, 2007], [Dutta et al., 2004]. However, the above proofs are relative to

the semantically-hard notion of implicit key authentication, and require the DDH

hardness assumption plus the existence of a random oracle.

On the other hand, the signature schemes introduced in Chapter 4 are based on a gap

between the difficulty of the DDH problem and the CDH problem, i.e. they work on

groups where the DDH is easy to solve but the CDH is not. Thus, our proofs must

work under the weaker assumption of the hardness of the CDH, and can moreover

be conducted in the standard model. The payoff for these less stringent assump-

tions is that our proofs allow to deduce the weaker goal of computationally-hard

key authentication given by Definition 5.4.1. However, keys are not semantically

meaningful text messages but rather strings of randomly chosen bits. Thus, by as-

suming that keys are obtained through a cryptographically secure pseudo-random

generator, the two notions of key authentication should actually be equivalent. This

is confirmed by the fact that an heuristic to achieve property (5.4.2) from a key K

satisfying (5.4.1) is to consider the key given by H(K), where H is a pseudo-random

function [Burmester and Desmedt, 2005].

Proposition 5.4.2. The authenticated protocols obtained by coupling GKA v1 with

one of the signature schemes introduced in Chapter 4 achieve perfect forward secrecy

and computationally-hard implicit key authentication under CDH hardness assump-

tion. Moreover, under the extra hypothesis that radio jamming 2 is detected by each

legitimate party and results in aborting the protocol session, such protocols achieve

explicit key authentication.

Proof. Let {Mi} (i ∈ {0, . . . ,m− 1}) denote the set of intended participants. Since
2 Radio jamming works by the transmission of radio signals that disrupt communications by

decreasing the signal-to-noise ratio. It is usually easy to detect because it can be heard on the
receiving equipment [Berg, 2008]

66

the Mi behave honestly, an attacker A 6= Mi can get the key K given by (5.5) using

only one of the following ways:

1. Computing K from the messages exchanged by the Mi over the network.

2. Impersonating one or more of the Mi, so that the protocol actually runs among

a subset of Mi and one or more A’s instances.

3. Altering protocol execution in a way that he/she can derive the current session

key.

Case (2) is ruled out by the fact that each message sent over the network is signed

by the legitimate party, and that the signature schemes of 4 have the property of

existential unforgeability [Goldwasser et al., 1988]. Indeed, in order to impersonate

one or more of the Mi, A should be able to send at least one authenticated message

pretending to be one of the Mi. Case (3) is ruled out by similar reasoning since no

messages can be altered in any way, and each messages is uniquely binded to the

current protocol session through its signature and the session identifier t. Ad for

case (1), suppose A got K from eavesdropping the values Zi and Yi. From (5.4) and

(5.5) it follows that

K = Xj +
∑
h 6=j

Xh = mXj + S(Y)

where S(Y) is a quantity depending from Yi (i 6= j) only. Thus A knows mXj =

K − S(Y) for at least one j ∈ {0, . . . ,m− 1}. However, this would require A to

solve the CDH problem Xj = nj−iZj , which by the contrary is assumed to be hard.

Finally, the perfect forward secrecy is a consequence of the fact that K is obtained

from a DH type exchange. Actually, protocols implementing such exchange achieve

the stronger property of key independence [Boyd and Mathuria, 2003].

Under the extra hypothesis of radio jamming detection, each party has corroborate

evidence that, if it has not received any exception message, then all other parties

67

actually computed the same key, as prescribed by Proposition 5.4.1. Indeed, all

messages exchanged over the network can neither be altered nor blocked

Proposition 5.4.3. The authenticated protocols obtained by coupling GKA v2 with

one of the signature schemes introduced in Chapter 4 achieve perfect forward secrecy

and computationally-hard explicit key authentication under the CDH hardness as-

sumption and and the extra hypothesis that radio jamming is detected by each of the

involved party and results in aborting the protocol session.

Proof. We will show that under the extra hypothesis of jamming detection the un-

signed messages Yi broadcasted at round two must coincide with the ones computed

by their legitimate senders. If that is the case, then all messages exchanged through

GKA v2 are actually unforgeable as in protocol GKA v1, and the statement follows

form Proposition 5.4.2. Thus, let us suppose that the adversary A changes one or

more values Yi broadcasted by legitimate nodes at round two, and let Ỹi denote these

possibly forged values. Since the exception messages broadcasted by each party at

round two are signed, jamming is the only way A has to avoid that any such message

reaches the other involved parties. However, jamming is detected. Thus, it suffices

to prove that if neither exception messages are received by node Mi nor it detects a

jamming attack, and if moreover the check provided at round two of protocol GKA

v2.

(5.7) X[i+m−1]m
?
= niZ[i−1]m

is passed, thenMi has corroborate evidence that Ỹj = Yj for each j ∈ {0, . . . ,m−

1}. If check (5.7) is passed, then Mi has evidence that

(5.8)
m−1∑
h=1

Ỹ[i+h]m =
m−1∑
h=1

Y[i+h]m

68

since it received the authentic Z[i−1]m and Z[i+1]m at round one. On the other hand,

since parties are honest and neither exception messages were received by Mi nor it

detected jamming attacks, then Mi must likewise assume that

(5.9)
m−1∑
h=1

Ỹ[j+h]m =
m−1∑
h=1

Y[j+h]m (j 6= i)

Thus we obtain the set of m relations

m−1∑
h=1

Ỹ[j+h]m =
m−1∑
h=1

Y[j+h]m (j = i, . . . ,m− 1, 0, . . . , i− 1)

and, by subtracting each one with its next, we get

Ỹ[i+1]m − Ỹi = Y[i+1]m − Yi

Ỹ[i+2]m − Ỹ[i+1]m = Y[i+2]m − Y[i+1]m

.

Ỹi − Ỹ[i−1]m = Yi − Y[i−1]m

Since for node Mi by construction Ỹi = Yi, then the claim follows by applying

recursively the above equalities.

One more consequence of the hypothesis concerning radio jamming detection is

that each party has corroborate evidence that, if it has not received any exception

message, then all other parties actually computed the same key, as prescribed by

Proposition 5.4.1. Thus, protocol GKA v2 achieves explicit key authentication.

5.5 GKA dynamic procedures

We describe a set of procedures for GKA protocol, designed to manage dynamic

group of members. These procedures allow respectively for group creation, key

69

updating, joining and leaving.

5.5.1 Group creation and key updating

Group creation is a basic operation for group communications, whose main task is

to associate to each group a unique (valid) shared session key. As we said, GKA pro-

tocol group creation requires the arrangement of group members into a ring, which

results in defining the effective set M of participants, establishing a lexicographic

cyclic order forM = {Mi} (i ∈ {0, . . . ,m− 1}), and associating to this ordered set

an unique element t as group identifier. In such respect, it is worthwhile to assume

that a group of members comes to life when its shared key is created, and ceases to

be when such key is expired or revoked. Thus, it is proper to associate a group and

its key to the same identifier, and to allow just one identifier for each group. How-

ever, in case of key updating, it seems proper also taking the same group identifier

but changing the key identifier, in order to account for the key change. As shown in

what follows, we solve these two seemingly conflicting requirements by setting both

identifiers to the same integer at group creation, then incrementing it as protocol

rounds and sessions go on. This way, the same integer serves both as group and

round/session identifier. A natural way to obtain group initialization is through a

request-response interaction between a member M , acting as protocol initiator, and

a setM′ of recipients representing a (possibly proper) superset ofM\M . That can

be efficiently achieved by reformulating Round1 of protocol (5.4.1) in the following

two rounds:

Create request M computes an ephemeral DH couple (nM ,ZM) ∈ (Z∗l , G) and the

integer t = Cnt(ZM), where Cnt is a public known function. Then it signs the

string {t,ZM} and multicast t and ZM along with the signature to the set of

members M′ ⊇M\M with which it intends to form a group.

Create response If a recipient S ∈ M′ does not agree in belonging to the group,

70

then it discards the received packet (and all packets received form the other

members inM′ as replies to M query). Otherwise, after a successful verifica-

tion of M signature, S computes t = Cnt(ZM) and its ephemeral DH couple

(nS ,ZS) ∈ (Z∗l , G), signs the string {t,ZS} with its own signature key, and

then multicasts t and ZS along with the signature to M′.

It should be clear that, after the above two rounds, each member in M can estab-

lish which are the other members belonging toM, and compute the group identifier

through the public function Cnt. Thus, by ordering lexicographically the identities

in M, each member can order M = {Mi} (i ∈ {0, . . . ,m− 1}). This way, each

party inM can run the two last steps of protocol GKA and compute the group key

K, resulting in the following Create procedure.

Create Procedure

Summary: A member M (the protocol initiator) asks a set M′ of

members. This way, a cyclic lexicographically ordered

group M⊆M′ which include M is established, and a

shared secret key is univocally associated to the group.

Result: The set M = {Mi} (i = 0, . . . ,n− 1; n > 1) and its unique

identifier t, with M ∈M. A secret shared key K computed

with the pairwise contribution of all Mi.

begin Create request

M : nM
$←− Z∗l , ZM = nMP , t = Cnt({ZM}), σM = Sign({t,ZM})

M
t,ZM ,σM−−−−−−→ M′\M

end

71

begin Create response

for S ∈M\M do

if S : Vrf(σM) then

S : nS
$←− Z∗l , ZS = nSP , j = Cnt({ZM}), σS =

Sign({t,ZS})

S
t,ZS ,σS−−−−−→ M′

else
S : exit

end

end

end

begin Group key computation

if Round2(j,M) then
KeyDerivation(t+ 1,M)

end

end

Key updating occurs when a previous group key is revoked and the same group

needs another key to continue its operations. Updating a group key provides better

security in case of long sessions, and it is necessary in case a current key is compro-

mised. In the following we consider only the simplest case where key revocation is

asked by a member of the same group, and not discuss how such revocation takes

place. Although very important in real world scenarios, a comprehensive analysis of

key revocation requires indeed tools that go beyond cryptography and may strictly

depend on the considered application scenario. Thus, we assume here that if a node

asks for a new group key that request is mandatory to the other group members.

Key updating procedure, coherently with the assumption that legitimate nodes be-

haves honestly, implements such kind of interaction. It consists of an upgrade request

72

procedure in which the requester Mk ∈ M computes new cryptographic material,

signs its public components and multicasts them alongside its signature to the other

group members. Then an update response procedure takes place, in which only the

two neighbours M[k−1]m ,M[k+1]m ∈ M have to compute and send updated public

cryptographic material. The protocol ends with a call to procedure KeyDerivation

with new inputs from nodes M[k−1]m ,Mk and M[k+1]m .

Key Update Procedure

Summary: A member Mk ∈M (the protocol initiator) asks the other

members to update the key associated to M. This way,

the old key is revoked, and a new shared secret key is

computed from the old one and univocally associated to

the group through its identifier.

Setup: The current key K and identifier t for group M.

Result: A new secret multicast key K ′, computed from the old one K

with the pairwise contribution of all M ∈M and binded to

the value of t.

begin Update request

Mk : n′k
$←− Z∗l , Z ′k = n′kP , X ′k = n′kZ[k+1]m , Y ′k =

X ′k − n′kZ[k−1]m , σk = Sign({t+ 1,Z ′k,Y ′k})

Mk
t+1,Z′k,Y ′k,σk−−−−−−−−→ M\Mk

end

73

begin Update response

for S ∈M\Mk do

if S : Vrf(σk) then

if S = M[k−1]m then
S : X ′[k−1]m = n[k−1]mZ

′
k,Y ′[k−1]m =

X ′[k−1]m − n[k−1]mZ[k−2]m

S
Y ′[k−1]m−−−−−→ {Mι : ι 6= [k− 1]m}

end

if S = M[k+1]m then
S : Y ′[k+1]m = X[k+1]m − n[k+1]mZ

′
k

S
Y ′[k+1]m−−−−−→ {Mι : ι 6= [k+ 1]m}

end

else
S : exit

end

end

end

begin Key update
KeyDerivation(Y0, . . . ,Y ′[k−1]m ,Y ′k,Y ′[k+1]m , . . . ,Ym−1)

end

5.5.2 Group joining and leaving

Group modifications occur when a single member join or leave a previously estab-

lished multicast group. We assume that the joining and leaving of single members

do not affect the identity of a group. In other words, addition or subtraction of

single participants leave the group identifier unaffected. This is because group mod-

ification, likewise key updating, can be performed through lightweight procedures

74

which preserve most of the cryptographic material employed during group creation.

The Join procedure implements the case of a member M joining a group M of

which it knows all members. This way, M can multicast its join request to all the

intended recipients, and can determine the ordered set {Mi} =M∪{M} and the

index k such that M = Mk. If that were not the case, M could easily get such

information by interacting with anyone of the group members, without any crypto-

graphic operation. Procedure resembles the key updating procedure, but there are

two main differences:

• M cannot send in the join request the 2nd order public element YM , since it

does not know the 1st order public elements of its neighbours.

• nodes inM have to compute the new cycling ordering of the group to encom-

pass the entry of M .

Join Procedure

Summary:

A member M (the protocol initiator) asks to join the multicast group

M. A new shared secret key is univocally associated to the ordered

group M′ =M∪{M} = {Mi, } where M = Mk, in such a way that

computations related to procedures Round1 and Round2 for members of

M are preserved.

Result: A new secret multicast key K ′ for the group M′, computed

from the old key K of M with the pairwise contribution of all

members in M′.

begin Join request

Mk : nk
$←− Z∗l , Zk = nkP , σk = Sign({Zk}) Mk

Zk,σk−−−−→ M

end

75

begin Join response

for S ∈M\Mk do

if S : Vrf(σk) then

if S = M[k−1]m then
S : σ[k−1]m = Sign({t+ 1,Z[k−1]m})

S
t+1,Z[k−1]m ,σ[k−1]m−−−−−−−−−−−−−→ Mk

end

if S = M[k+1]m then
S : σ[k+1]m = Sign({t+ 1,Z[k+1]m})

S
t+1,Z[k+1]m ,σ[k+1]m−−−−−−−−−−−−−→ Mk

end

else
S : exit

end

end

end

begin Round2 update

if S = M[k−1]m then

if S : Vrf(σk) then
S : X ′[k−1]m = n[k−1]mZk,Y ′[k−1]m =

X ′[k−1]m − n[k−1]mZ[k−2]m S
Y ′[k−1]m−−−−−→ {Mι : ι 6= [k− 1]m}

else
S : σ[k−1]m = Sign({t+ 2})

S
t+2,σ[k−1]m−−−−−−−−→ {Mι : ι 6= [k− 1]m}

end

end

end

76

if S = Mk then

if S : Vrf(σ[k−1]m) ∧ Vrf(σ[k+1]m) then

S : Xk = nkZ[k+1]m ,Yk = Xk − nkZ[k−1]m S
Yk−−→ {Mι : ι 6= k}

else

S : σk = Sign({t+ 2}) S t+2,σk−−−−→ {Mι : ι 6= k}

end

end

if S = M[k+1]m then

if S : Vrf(σk) then
S : Y ′[k+1]m = X[k+1]m − n[k+1]mZk

S
Y ′[k+1]m−−−−−→ {Mι : ι 6= [k+ 1]m}

else
S : σ[k+1]m = Sign({j + 2})

S
t+2,σ[k+1]m−−−−−−−−→ {Mι : ι 6= [k+ 1]m}

end

end

begin Key update
KeyDerivation(Y0, . . . ,Y ′[k−1]m ,Yk,Y ′[k+1]m , . . . ,Ym−1)

end

77

Leave Procedure

Summary:

A member Mk ∈M (the protocol initiator) asks to leave the multicast

group M. A new shared secret key is univocally associated to the

group M′ =M\Mk in such a way that computations related to

procedures Round1 and Round2 for members of M′ are preserved.

Result: A secret multicast key K ′ for M′, computed from the old one

of M with the pairwise contribution of all members in M′.

begin Leave request
Mk : σk = Sign({j + 1})

Mk
σk−−→ M\Mk

end

begin Leave response

for S ∈M\Mk do

if S : Vrf(σk) then

if S = M[k−1]m then
S : σ[k−1]m = Sign({t+ 1,Z[k−1]m})

S
t+1,Z[k−1]m ,σ[k−1]m−−−−−−−−−−−−−→ M[k+1]m

end

if S = M[k+1]m then
S : σ[k+1]m = Sign({t+ 1,Z[k+1]m})

S
t+1,Z[k+1]m ,σ[k+1]m−−−−−−−−−−−−−→ M[k−1]m

end

else
S : exit

end

end

end

78

begin Round2 update

if S = M[k−1]m then

if S : Vrf(σ[k+1]m) then
S : X ′[k−1]m = n[k−1]mZ[k+1]m ,Y ′[k−1]m =

X[k−1]m − n[k−1]mZ[k−2]m

S
Y ′[k−1]m−−−−−→ {Mι : ι 6= [k− 1]m}

else
S : σ[k−1]m = Sign({t+ 2})

S
t+2,σ[k−1]m−−−−−−−−→ {Mι : ι 6= [k− 1]m}

end

end

if S = M[k+1]m then

if S : Vrf(σ[k−1]m) then
S : Y ′[k+1]m = X[k+1]m − n[k+1]mZ[k−1]m

S
Y ′[k+1]m−−−−−→ {Mι : ι 6= [k+ 1]m}

else
S : σ[k−1]m = Sign({t+ 2})

S
t+2,σ[k+1]m−−−−−−−−→ {Mι : ι 6= [k+ 1]m}

end

end

end

begin Key update
KeyDerivation(Y0, . . . ,Y ′[k−1]m ,Y ′[k+1]m , . . . ,Ym−1)

end

79

Java for ID-based key agreement

JIKA cryptographic framework implements the ID-based signature schemes and key

agreement protocols described before. It simulates a key generation center (KGC)

offering an ID-based key distribution service for all proposed algorithms. The JIKA

implementation was tested on two different devices: PC platform and Raspberry

PI [Upton and Halfacree, 2013]. Raspberry PI is a low-cost ARM-based device,

become popular in the last years. It runs different Linux distributions and sup-

ports common programming languages (Java, C/C++, Python, Perl). Moreover,

Raspberry PI allows network cards configuration in order to perform ad hoc com-

munications. In this Chapter, we describe JIKA software architecture which relys

on jPair [Dong, 2010] library. It implements mathematical operations required by

arithmetic over elliptic curves and their embedded fields. Although others libraries

exist with similar characteristics (e.g. the reference benchmark C library PBC of

[Lynn, 2007] and its Java porting jPBC of [De Caro and Iovino, 2011]), jPair is a

pure Java implementation with no dependencies on external libraries and a very

small memory footprint. Java allows for portability and due to continuous improve-

ments in the HotSpot technology, latest runtime environments greatly outperform

previous versions, thus being practical also in network constrained environments.

At the end of this Chapter, we discuss computing times of JIKA signature schemes

and key agreement protocols.

6.1 JIKA software architecture

JIKA software architecture complies with modular programming, in which the func-

tionality of a program is supported into independent and interchangeable modules.

In this way, we can reuse modules to design new schemes and protocols with ex-

tended functionality. JIKA software architecture is depicted in Figure 6.1, it consists

in the following modules:

Fig. 6.1: JIKA framework software architecture.

• The Java Setup module relates to the Java virtual machine installed on the

operating platforms. On both platforms we installed the Java Standard Edi-

tion Embedded 8. It introduces a new concept called Compact Profiles, which

enables reduced memory footprint for applications that do not require the en-

tire Java Standard Edition. This version supports three profiles: compact1,

compact2 and compact3. Each Profile contains all of the APIs in the previous

profiles, adding appropriate APIs on top. We used NetBeans 8 IDE for JIKA

development, which supports compact Profiles and allows the deployment of

Java application remotely.

• The Network Manager module is responsible of node synchronization, data

81

transmission and error handling. It was implemented through the JGroups

toolkit library [JGroups, 2014]. For any given TCP or UDP communication

channel, JGroups offers services for joining and leaving, membership detection

and notification, detection and removal of crashed users, sending and receiving

of unicast and multicast messages. The most powerful feature of JGroups is

its flexible protocol stack, which allows developers to adapt it to exactly match

their application requirements and network characteristics. We chosen an UDP

asynchronous communication channel that guarantee a better performance

then TCP.

• A communication protocol requires that data are sent and received according

to specific packeting rules (data field order and type). The Message Manager

(MM) module is responsible of data serialization and de-serialization. These

operations split and merge data sequencing due to special characters as sepa-

rators. It is mandatory for MM to know order and type of data. For example,

referring to eFG protocol, node A has to send the data fields A,RA,TA to

recipient node B. The MM module sends an UDP packet which results of the

serialization of three fields above. The MM module of recipient node B per-

forms the inverse operations of de-serialization in order to properly identify

the fields.

• The Elliptic Curve module implements mathematical operations required by

elliptic curve module arithmetic. This includes finite fields, groups, integer

arithmetic, bilinear pairings and hash functions. Many APIs of this module

were implemented using jPair library [Dong, 2010] which was extended by

adding the elliptic curves nssTate160, nssTate192 and nssTate224 (6.1).

• The module Enrollment allows nodes to store in memory cryptographic ma-

terials generated by the key generation center (KGC). The KGC performs

enrollment off-line and then it distributes cryptographic materials on nodes

82

through a secure out-of-band communication channel with authenticity and

confidentiality properties.

• Module Scheme implements the ID-based signature schemes IBS-1, IBS-2 and

GS-IBS. Each scheme requires the implementation of two methods: (Sign) for

signature generation and (Vrf) for signature verification algorithms. The Sign

method takes in input a message and the signer’s secret key, and returns the

related message signature. The Vrf method takes in input the message, its

signature and node identity, and returns a boolean value which indicates if

verification succeeds or not.

• Finally, the Protocol module implements the ID-based key agreement protocols

eFG, GKA v1 and GKA v2. In particular, GKA protocol comes in three

different flavours protocols, which depends on the specific signature scheme

adopted for message authentication.

6.2 Implementation of elliptic curves and tate pairing

JIKA extends jPair implementation [Dong, 2010] by adding some elliptic curves.

jPair natively supports some supersingular and ordinary elliptic curves over large

prime fields, and implements all the arithmetic required for finite fields and tate pair-

ings over such curves. In general, bilinear pairing computations are quite expensive

and require carefully optimized implementations. The implementation of tate pair-

ings in jPair is inspired to [Chatterjee et al., 2005], that introduced the idea of

encapsulated point doubling/addition based on projective coordinate system. Many

different coordinate systems can used to represent points on elliptic curves. The

selection of the points coordinate systems has a significant influence on the perfor-

mance of the elliptic curve arithmetic operations. For instance, point multiplication

algorithm can be expedited by using efficient representation of elliptic curve points

using projective coordinates. In general Jacobian coordinates are faster in doubling

83

algorithm then projective coordinates and slower in addition algorithm. This ap-

proach applies to elliptic curves over large prime fields with embedding degree 2,

leading to an improvement of around 33% over the best known algorithm [Izu and

Takagi, 2003] for the general case where the curve parameter a of equation (3.2) for

p > 3 is an arbitrary field element, and around 20% over the algorithm in [Scott,

2005] in the special case where a = −3. Natively, jPair supports only the following

curves over prime fields Fp, where p ≡ 3 mod 4:

• supersingular curves of equation y2 = x3 + x, for randomly chosen values of

the prime p and of the prime order l of group G, where l divides p+ 1 (3).

• ordinary curves of equation y2 = x3 − 3x+ b, for some selected values of the

160-bit prime l, and some corresponding values for the prime p and the integer

b.

We have extended the jPair API by adding to the second class curves for selected

values of 192 and 224-bit primes l. Since all the above curves have embedding de-

gree k = 2, one has to choose suitable big cofactors c in order to have an adequate

level of security (see details in Section 3). For example, to achieve security equiva-

lent to 1024-bit RSA, l should be at least 160-bit and p should be at least 512-bit.

Analogously, to achieve 2048-bit RSA security, l should be 224-bit and p should

be 1024-bit. Table 6.1 shows the bilinear pairing implemented at the time being

in our extension of jPair, along with the order (in bit size) of group G, (and G′

for ordinary curves), and the corresponding order (in bit size) of Fp such that the

resulting bilinear DL system has a consistent level of security.

84

Name Elliptic curve Order of G Order of Fp

ssTate160 y2 = x3 + x 160-bit 512-bit

ssTate192 y2 = x3 + x 192-bit 768-bit

ssTate224 y2 = x3 + x 224-bit 1024-bit

nssTate160 y2 = x3 − 3x+ b 160-bit 512-bit

nssTate192 y2 = x3 − 3x+ b 192-bit 768-bit

nssTate224 y2 = x3 − 3x+ b 224-bit 1024-bit

Tab. 6.1: The Elliptic Curves implemented in JIKA and used in our tests. Names are
consistent with those of jPair. They indicate: the type of curve (supersingular
(ss) or ordinary (nss)), type of pairing supported (Tate) and the order in bit size
of the cyclic group(s) considered on the curve.

6.3 Performance evaluation

A set of tests were executed on a PC platform and a Raspberry PI, in order to

measure the performances of schemes and protocols implemented in JIKA. We used

an Intel Core 2 Duo E6600 with 4096 MBytes of RAM, equipped with Microsoft

Windows 7 SP1 and Java Standard Edition 8. The Raspberry PI is an embedded

device developed in UK by the Raspberry Pi Foundation. Its design is based on

a Broadcom BCM2835 system on chip (SoC), which includes an ARM1176JZF-S

700MHz processor, 512 Megabytes of RAM and an SD card. We installed Java

Standard Edition Embedded 8 on Raspberry PI. The experiment results are the

average of 1000 executions, in order to keep out computing time outliers, due to the

Java virtual machine and its interactions with operating system.

6.3.1 Enrollment

The first set of tests measures enrollment computing times. As we told in Section

3.4, Enrollment consists in the initialization of public parameters and generation of

85

the user signature keys for schemes IBS-1, IBS-2 and GS-IBS. Moreover, the enroll-

ment includes the pre-computation of the bilinear pairing value e(P ,P ′) required

for signature scheme IBS-2.

PC platform

Computing Time (s)

Procedure Enrollment EC. ssTate160 EC. nssTate160

n = 10 0.96 0.767

n = 50 3.893 3.427

n = 100 7.392 6.930

Raspberry PI

Computing Time (s)

Procedure Enrollment EC. ssTate160 EC. nssTate160

n = 10 34.795 31.288

n = 50 148.858 141.645

n = 100 294.137 277.206

Tab. 6.2: Computing times for the enrollment of 10, 50 and 100 nodes using elliptic curves
ssTate160 and nssTate160 on the PC platform and a Raspberry PI.

Table 6.2 shows computing times on the PC and Raspberry PI for the enroll-

ment of n nodes (m = 10, 50, 100). On both operating platforms and for each

of the indicated elliptic curves, the results show a linear increment of computing

times versus the number of nodes. However, results are 5-15% better on nssTate160

curve than on ssTate160. Moreover, the test results indicate that the enrollment

procedure runs on the PC platform 30-40 times faster than on a Raspberry PI. This

is a remarkable gap in performance, due to the constrained computing resource of

the embedded devices. However, enrollment is a one-time procedure that can be

executed off-line on any Java equipped platform.

86

6.3.2 Signature schemes

Table 6.3 shows the computing times required by signing and verification algorithms

of IBS-1, IBS-2 and GS-IBS schemes. Overall the three IBS schemes perform very

well, with computing times never exceeding the threshold of 100 milliseconds on the

PC platform and 2 seconds on the Raspberry PI. IBS-2 is the most efficient scheme:

it slightly outperforms IBS-1 of about 8% in both signing and verification time, but

its gain versus GS-IBS is about 45-50% in signing time and 15-20% in verification

time, where percentages are higher on the supersingular curve (since computations

are slightly faster here than on the ordinary curve).

PC platform

Computing Time (ms)

Scheme EC. ssTate160 EC. nssTate160

Signature

IBS-1 Sgn 38 42

IBS-2 Sgn 35 39

GS-IBS Sgn 69 74

Verification

IBS-1 Vrf 74 79

IBS-2 Vrf 69 74

GS-IBS Vrf 85 89

Tab. 6.3: Computing times required by IBS-1, IBS-2, and GS-IBS signature and verifica-
tion algorithms on the PC platform.

87

Raspberry PI

Computing Time (ms)

Scheme EC. ssTate160 EC. nssTate160

Signature

IBS-1 Sgn 661 736

IBS-2 Sgn 631 702

GS-IBS Sgn 1491 1566

Verification

IBS-1 Vrf 1493 1534

IBS-2 Vrf 1425 1462

GS-IBS Vrf 1752 1798

Tab. 6.4: Computing times required by IBS-1, IBS-2, and GS-IBS signature and verifica-
tion algorithms on a Raspberry PI.

6.3.3 Key agreement protocols

We discuss a set of tests relative to the key agreement protocols introduced in the

previous Chapter. In some cases, we consider simulations instead of runs over real

networks, in order to keep out initialization and synchronization time delays, that

can introduce a substantial noise in performance measurement.

eFG protocol

Table 6.5 show computing times of the eFG protocol versus the two-party key agree-

ment protocol ECMQVS [Rogaway et al., 2001]. This last protocol is widely stan-

dardized and it is considered one of the most efficient two-party key agreement

protocol. It requires four scalar point multiplication and three hash function com-

putations for each node. However, unlike the eFG protocol, ECMQVS requires

Public Key Certificates (PKCs) for nodes authentication. It’s difficult to estimate

the costs of PKCs management in term of computing time, but anyway it results in

88

a significant overhead if compared with the ID-based approach.

PC platform

Computing Time (ms)

Elliptic curve eFG ECMQVS

nssTate160 99 135

nssTate192 105 138

nssTate224 108 140

Raspberry PI

Computing Time (ms)

Elliptic curve eFG ECMQVS

nssTate160 2088 3105

nssTate192 2280 3267

nssTate224 2439 3490

Tab. 6.5: Computing times for eFG and ECMQVS protocols simulations, using elliptic
curves nssTate160, nssTate192, nssTate224 on the PC platform and a Raspberry
PI.

A comparison in computing times between eFG and ECMQVS protocol simula-

tions, illustrated in Table 6.5, shows that eFG is a very efficient protocol. Indeed, it

outperforms ECMQVS of 25% on the PC platform and of 30% on a Raspberry PI.

A second set of tests was relative to executions of eFG on a real network and in-

cluded times required for message exchanges. The tests were performed using both

wired IEEE 802.3 network card and wireless IEEE 802.11 adapter. Table 6.6 re-

ports averages computing times on both platforms over elliptic curves nssTate160,

nssTate192 and nssTate224. The values indicate that eFG is about 20 times faster

on the PC platform than Raspberry PI. Finally, Table 6.7 reports computing times

of protocol eFG including nodes initialization, messages exchange and synchroniza-

tions time delays. Also in this case, execution times on the PC platform were about

89

20 times faster than on the Raspberry PI.

PC platform

Computing Time (ms)

Elliptic curve Wired Wireless

nssTate160 140 161

nssTate192 151 171

nssTate224 155 180

Raspberry PI

Computing Time (ms)

Elliptic curve Wired Wireless

nssTate160 2450 2528

nssTate192 2780 2849

nssTate224 2970 3042

Tab. 6.6: Computing times of protocol eFG on a real network using the elliptic curves
nssTate160, nssTate192 and nssTate224. The values include message exchange
times.

90

PC platform

Computing Time (ms)

Elliptic Curve Wired Wireless

nssTate160 232 290

nssTate192 259 333

nssTate224 295 376

Raspberry PI

Computing Time (ms)

Elliptic Curve Wired Wireless

nssTate160 3002 3060

nssTate192 3250 3302

nssTate224 3384 3471

Tab. 6.7: Computing times of protocol eFG on a real network using the elliptic curves
nssTate160, nssTate192 and nssTate224. The values include nodes initialization,
messages exchange and synchronizations time.

GKA protocols

In this Section, we discuss a set of tests relative to GKA protocols. Specifically,

GKA v1 and GKA v2, were combined with the signature schemes IBS-1,IBS-2 and

GS-IBS in order to compare their performances.

The experiment results are relative to elliptic curves ssTate160 and nssTate160.

Figures 6.2 and 6.3 show total computing times required on the PC platform to

derive a group session key versus number of nodes involved. The same tests were

repeated on a Raspberry PI, and the experiment results are reported in Figures 6.4

and 6.5. Besides the fact that the better performance of schemes IBS-1 and IBS-2

can lead to relevant improvements for a large number of nodes, the main point to

91

notice here is that one has to replace the GKA v1 protocol with protocol GKA v2 in

order to get group key agreement with a quite large group of users at an affordable

computing time. This is because protocol GKA v1 does a number of signatures

and verifications which linearly increases with the number of the nodes involved,

whilst GKA v2 only performs a constant number of such verifications. The best

performances on both Raspberry PI and PC platform were reached by GKA v2

with signature scheme IBS-2. The computing times on Personal Computer were

about 30-40 times faster than on a Raspberry PI.

92

Fig. 6.2: GKA v1 computing times versus involved parties on the PC platform using el-
liptic curves ssTate160 and nssTate160, respectively.

93

Fig. 6.3: GKA v2 computing times versus involved parties on the PC platform using el-
liptic curves ssTate160 and nssTate160, respectively.

94

Fig. 6.4: GKA v1 computing times versus involved parties on Raspberry PI using elliptic
curves ssTate160 and nssTate160, respectively.

95

Fig. 6.5: GKA v2 computing times versus involved parties on Raspberry PI using elliptic
curves ssTate160 and nssTate160, respectively.

Finally, we compared the following four group key agreement protocols with re-

spect to involved parties: the unauthenticated protocol of [Burmester and Desmedt,

96

1994] over standard groups (BD protocol), the unauthenticated protocol derived

by GKA (uGKA), GKA v2/IBS-2 and GKA v2/ECDSA. It is worth to stress here

that all the above protocols use two communication rounds and the same number

of messages to compute the key.

This set of tests was performed to evaluate both the gain in performance due to

elliptic curve cryptography and the overhead introduced by pairing-based signature

versus standard signatures.

Personal Computer

Computing Time (ms)

Number of users BD uGKA GKA v2/IBS-2 GKA v2/ECDSA

m = 10 143 24 196 158

m = 30 509 29 197 160

m = 50 2886 35 201 162

m = 70 10443 38 204 166

m = 90 25881 41 207 169

Raspberry PI

Computing Time (ms)

Number of users BD uGKA GKA v2/IBS-2 GKA v2/ECDSA

m = 10 34425 1063 8017 6459

m = 30 / 1143 8027 6505

m = 50 / 1218 8084 6580

m = 70 / 1289 8163 6658

m = 90 / 1373 8261 6746

Tab. 6.8: Computing times of protocol DB and protocols uGKA, GKA/IBS-2 and
GKA/ECDSA over the elliptic curve ssTate160 results are relative to the PC
platform and the Raspberry PI, respectively.

The advantages in using elliptic curve cryptography over standard cryptography

are clearly shown by the comparison between protocols BD and uGKA. Notice

97

however that a significant amount of the gap in performance is due to the different

way to compute the session key. As we told in Section 5.3, indeed, protocol BD

requires a total of m(m+ 1) modular exponentiations, whilst uGKA requires just

one scalar point multiplication (corresponding to a full modular exponentiation)

and 2m− 2 point additions (corresponding to 2m− 2 full modular exponentiations).

In particular, the large amount of memory and computational power required by

modular exponentiations hanged executions of protocol BD for more than m = 90

users on the PC platform and m ≥ 30 users on the Raspberry PI.

Ultimately the obtained results show the effectiveness of GKA v2 for large group of

parties also on constrained devices such as the Raspberry PI. Moreover, the overhead

introduced for this protocol by pairing-based computations through scheme IBS-2

was about 20% of the computing time of the scheme ECDSA. Although that gap is

not negligible, we have to consider that ECDSA requires the management of PKCs

and a more expensive initialization of nodes, since the lack of identities attributes

doesn’t allow an easy arrangement of nodes into a cyclic lexicographic order.

98

Conclusions

WANETs applications are quickly increasing over time and actually, due to unique

features (such as node mobility and self-organization), they are often preferred to

infrastructure-based wireless networks. However, the open nature of the wireless

communication channel exposes WANETs to a great number of security threats.

In this context, the aim of this thesis was to propose a cryptographic framework,

named JIKA, which provides authentication through an ID-based key distribution

mechanism and key agreement protocols.

In particular, JIKA includes a two-party key agreement protocol (eFG) and two new

group key agreement protocols (GKA v1 and GKA v2). We coupled the group key

agreement protocols with the new ID-based signature schemes (IBS-1 and IBS-2),

in order to get authenticated group key agreement protocols that require low com-

putational costs and bandwidth for each of the involved parties.

We provided a proof sketch for all proposed algorithms and contextually demon-

strated their correctness. Furthermore, we scheduled a set of benchmarks over

Raspberry PI and PC operating platforms to evaluate the performances of JIKA

algorithms in term of computing times, comparing them with performances of oth-

ers standard algorithms. Interestingly, our results obtained by eFG protocol which

outperformed ECMQVS of with a percentile degree of 25% on the PC platform and

of 30% on a Raspberry PI. Moreover, a very good performances on both Raspberry

PI and PC platforms were reached by GKA v2 with signature scheme IBS-2.

The results of this thesis pave the way for future work/s planned to extend JIKA

with others algorithms and contextually to increase its performances with the imple-

mentation of new pairing-friendly curves and cryptographic primitives for arithmetic

over elliptic curves. Moreover, we will consider the implementation of JIKA with

others programming languages spreading its applicability to new generation plat-

forms.

100

Bibliography

Augot, D., Bhaskar, R., Issarny, V., and Sacchetti, D. (2007). A three round au-

thenticated group key agreement protocol for ad hoc networks. Pervasive and

Mobile Computing, 3(1):36–52.

Barreto, P. S., Libert, B., McCullagh, N., and Quisquater, J.-J. (2005). Efficient and

provably-secure identity-based signatures and signcryption from bilinear maps. In

Advances in Cryptology - ASIACRYPT 2005, pages 515–532. Springer.

Becker, K. and Wille, U. (1998). Communication complexity of group key distribu-

tion. In Proceedings of the 5th ACM conference on Computer and communications

security, pages 1–6. ACM.

Bellare, M., Canetti, R., and Krawczyk, H. (1998). A modular approach to the

design and analysis of authentication and key exchange protocols. In Proceedings

of the thirtieth annual ACM symposium on Theory of computing, pages 419–428.

ACM.

Bellare, M. and Rogaway, P. (1993). Random oracles are practical: A paradigm

for designing efficient protocols. In Proceedings of the 1st ACM conference on

Computer and communications security, pages 62–73. ACM.

Berg, J. S. (2008). Broadcasting on the short waves, 1945 to today. McFarland.

Boneh, D. and Franklin, M. (2001). Identity-based encryption from the weil pairing.

In Advances in Cryptology CRYPTO 2001, pages 213–229. Springer.

Boneh, D., Lynn, B., and Shacham, H. (2004). Short signatures from the weil

pairing. Journal of Cryptology, 17(4):297–319.

Boyd, C. and Mathuria, A. (2003). Protocols for authentication and key establish-

ment. Springer.

Boyd, C. and Nieto, J. M. G. (2002). Round-optimal contributory conference key

agreement. In Public Key Cryptography - PKC 2003, pages 161–174. Springer.

Bresson, E. and Catalano, D. (2004). Constant round authenticated group key

agreement via distributed computation. In Public Key Cryptography–PKC 2004,

pages 115–129. Springer.

Bresson, E., Chevassut, O., and Pointcheval, D. (2001a). Provably authenticated

group diffie-hellman key exchange in the dynamic case. In Advances in Cryptology

- ASIACRYPT 2001, pages 290–309. Springer.

Bresson, E., Chevassut, O., and Pointcheval, D. (2002). Dynamic group diffie-

hellman key exchange under standard assumptions. In Advances in Cryptology -

EUROCRYPT 2002, pages 321–336. Springer.

Bresson, E., Chevassut, O., Pointcheval, D., and Quisquater, J.-J. (2001b). Provably

authenticated group diffie-hellman key exchange. In Proceedings of the 8th ACM

conference on Computer and Communications Security, pages 255–264. ACM.

Burmester, M. and Desmedt, Y. (1994). A secure and efficient conference key dis-

tribution system. In Pre-proceedings EUROCRYPT’94, pages 275–286. Scuola

Superiore G. Reiss Romoli.

Burmester, M. and Desmedt, Y. (1995). A secure and efficient conference key distri-

bution system. In Santis, A., editor, Advances in Cryptology - EUROCRYPT’94,

volume 950 of Lecture Notes in Computer Science, pages 275–286. Springer Berlin

Heidelberg.

102

Burmester, M. and Desmedt, Y. (2005). A secure and scalable group key exchange

system. Information Processing Letters, 94(3):137–143.

Chatterjee, S., Sarkar, P., and Barua, R. (2005). Efficient computation of tate

pairing in projective coordinate over general characteristic fields. In Information

Security and Cryptology ICISC 2004, pages 168–181. Springer.

Cocks, C. (2001). An identity based encryption scheme based on quadratic residues.

In Cryptography and Coding, pages 360–363. Springer.

Coppersmith, D. (1984). Fast evaluation of logarithms in fields of characteristic two.

Information Theory, IEEE Transactions on, 30(4):587–594.

De Caro, A. and Iovino, V. (2011). jpbc: Java pairing based cryptography. In

Computers and Communications (ISCC), 2011 IEEE Symposium on, pages 850–

855. IEEE.

Debian (2015). WiFi Ad-hoc Network. https://wiki.debian.org/WiFi/AdHoc.

Desmedt, Y. (2011). Man-in-the-middle attack. In Encyclopedia of Cryptography

and Security, pages 759–759. Springer.

Di Pietro, R., Guarino, S., Verde, N., and Domingo-Ferrer, J. (2014). Security in

wireless ad-hoc networks–a survey. Computer Communications, 51:1–20.

Diem, C. (2011). On the discrete logarithm problem in elliptic curves. Compositio

Mathematica, 147(01):75–104.

Diffie, W. and Hellman, M. (1976). New directions in cryptography. Information

Theory, IEEE Transactions on, 22(6):644–654.

Diffie, W., Van Oorschot, P. C., and Wiener, M. J. (1992). Authentication and

authenticated key exchanges. Designs, Codes and cryptography, 2(2):107–125.

103

https://wiki.debian.org/WiFi/AdHoc

Dong, C. (2010). Jpair: A quick introduction. https://personal.cis.strath.

ac.uk/changyu.dong/jpair/intro.html.

Dutta, R. and Barua, R. (2005). Constant round dynamic group key agreement. In

Information Security, pages 74–88. Springer.

Dutta, R. and Barua, R. (2008). Provably secure constant round contributory group

key agreement in dynamic setting. Information Theory, IEEE Transactions on,

54(5):2007–2025.

Dutta, R., Barua, R., and Sarkar, P. (2004). Provably secure authenticated tree

based group key agreement. In Information and Communications Security, pages

92–104. Springer.

Eschenauer, L. and Gligor, V. D. (2002). A key-management scheme for distributed

sensor networks. In Proceedings of the 9th ACM conference on Computer and

communications security, pages 41–47. ACM.

Fiore, D. and Gennaro, R. (2010). Identity-based key exchange protocols without

pairings. In Transactions on computational science X, pages 42–77. Springer.

Frey, G., Muller, M., and Ruck, H.-G. (1999). The tate pairing and the discrete

logarithm applied to elliptic curve cryptosystems. Information Theory, IEEE

Transactions on, 45(5):1717–1719.

Gentry, C. and Silverberg, A. (2002). Hierarchical id-based cryptography. In Ad-

vances in Cryptology - ASIACRYPT 2002, pages 548–566. Springer.

Gislason, D. (2008). ZigBee wireless networking. Newnes.

Goldwasser, S. and Micali, S. (1982). Probabilistic encryption & how to play mental

poker keeping secret all partial information. In Proceedings of the fourteenth

annual ACM symposium on Theory of computing, pages 365–377. ACM.

104

https://personal.cis.strath.ac.uk/changyu.dong/jpair/intro.html
https://personal.cis.strath.ac.uk/changyu.dong/jpair/intro.html

Goldwasser, S., Micali, S., and Rivest, R. L. (1988). A digital signature scheme

secure against adaptive chosen-message attacks. SIAM Journal on Computing,

17(2):281–308.

Hess, F. (2003). Efficient identity based signature schemes based on pairings. In

Selected Areas in Cryptography, pages 310–324. Springer.

Ingemarsson, I., Tang, D., and Wong, C. (1982). A conference key distribution

system. Information Theory, IEEE Transactions on, 28(5):714–720.

Izu, T. and Takagi, T. (2003). Efficient computations of the tate pairing for the

large mov degrees. In Information Security and Cryptology ICISC 2002, pages

283–297. Springer.

JGroups (2014). Jgroups toolkit. http://www.jgroups.org/.

Johnson, D., Menezes, A., and Vanstone, S. (2001). The elliptic curve digital signa-

ture algorithm (ecdsa). International Journal of Information Security, 1(1):36–63.

Joye, M. and Neven, G. (2009). Identity-based cryptography, volume 2. IOS Press.

Katz, J. and Yung, M. (2003). Scalable protocols for authenticated group key

exchange. In Advances in Cryptology - CRYPTO 2003, pages 110–125. Springer.

Katz, J. and Yung, M. (2007). Scalable protocols for authenticated group key

exchange. Journal of Cryptology, 20(1):85–113.

Koblitz, N. (1994). A course in number theory and cryptography, volume 114.

Springer.

Lee, B., Boyd, C., Dawson, E., Kim, K., Yang, J., and Yoo, S. (2004). Secure key

issuing in id-based cryptography. In Proceedings of the second workshop on Aus-

tralasian information security, Data Mining and Web Intelligence, and Software

Internationalisation-Volume 32, pages 69–74. Australian Computer Society, Inc.

105

http://www.jgroups.org/

Lynn, B. (2002). Authenticated identity-based encryption. IACR Cryptology ePrint

Archive, 2002:72.

Lynn, B. (2007). On the implementation of pairing-based cryptosystems. PhD thesis,

Stanford University.

Menezes, A. J., Okamoto, T., and Vanstone, S. A. (1993). Reducing elliptic curve

logarithms to logarithms in a finite field. Information Theory, IEEE Transactions

on, 39(5):1639–1646.

Menezes, A. J., Van Oorschot, P. C., and Vanstone, S. A. (1996). Handbook of

applied cryptography. CRC press.

Mpitziopoulos, A., Gavalas, D., Konstantopoulos, C., and Pantziou, G. (2009). A

survey on jamming attacks and countermeasures in wsns. Communications Sur-

veys & Tutorials, IEEE, 11(4):42–56.

Nam, J., Lee, J., Kim, S., and Won, D. (2004). Ddh based group key agreement for

mobile computing. Cryptology e-Print Archive, Report, 127.

Pathan, A.-S. K. (2010). Security of self-organizing networks: MANET, WSN,

WMN, VANET. CRC press.

Pickholtz, R. L., Schilling, D. L., and Milstein, L. B. (1982). Theory of spread-

spectrum communications–a tutorial. Communications, IEEE Transactions on,

30(5):855–884.

Pollard, J. (1978). Monte carlo methods for index computation (modp). Mathemat-

ics of Computation, pages 918–924.

Rogaway, P., Bellare, M., and Boneh, D. (2001). Ecmqvs (from sec 1).

Rossi, F. and Schmid, G. (2015). Implementing identity-based key agreement in em-

bedded devices. In PECCS 2015 - Proceedings of the 5st International Conference

106

on Pervasive and Embedded Computing and Communication Systems, Angers,

France, 11-13 February, 2015, pages 117–123.

Sakai, R. and Kasahara, M. (2003). Id-based cryptosystems with pairing on elliptic

curve. IACR Cryptology ePrint Archive, 2003:54.

Sarkar, S. K., Basavaraju, T., and Puttamadappa, C. (2007). Ad hoc mobile wireless

networks: principles, protocols and applications. CRC Press.

Schirokauer, O. (2000). Using number fields to compute logarithms in finite

fields. Mathematics of Computation of the American Mathematical Society,

69(231):1267–1283.

Schmid, G. and Rossi, F. (2011). Secure ad-hoc routing through a-codes. In PECCS

2011 - Proceedings of the 1st International Conference on Pervasive and Embed-

ded Computing and Communication Systems, Vilamoura, Algarve, Portugal, 5-7

March, 2011, pages 151–156.

Schmid, G. and Rossi, F. (2012). QR code-based identification with mobile devices.

In PECCS 2012 - Proceedings of the 2nd International Conference on Pervasive

Embedded Computing and Communication Systems, Rome, Italy, 24-26 February,

2012, pages 79–86.

Schnorr, C.-P. (1991). Efficient signature generation by smart cards. Journal of

cryptology, 4(3):161–174.

Scott, M. (2005). Computing the tate pairing. In Topics in Cryptology CT-RSA

2005, pages 293–304. Springer.

Shamir, A. (1985). Identity-based cryptosystems and signature schemes. In Ad-

vances in cryptology, pages 47–53. Springer.

Silverman, J. H. (2009). The arithmetic of elliptic curves, volume 106. Springer.

107

Standards association (2005). IEEE 802.15: Wireless personal area networks

(PANs). http://standards.ieee.org/about/get/802/802.15.html.

Standards association (2012). IEEE 802.11: Wireless local area networks (LANs).

http://standards.ieee.org/about/get/802/802.11.html.

Steiner, M., Tsudik, G., and Waidner, M. (1996). Diffie-hellman key distribution

extended to group communication. In Proceedings of the 3rd ACM conference on

Computer and communications security, pages 31–37. ACM.

Upton, E. and Halfacree, G. (2013). Raspberry Pi User Guide. John Wiley & Sons.

Yao, G., Wang, H., and Jiang, Q. (2008). An authenticated 3-round identity-based

group key agreement protocol. In Availability, Reliability and Security, 2008.

ARES 08. Third International Conference on, pages 538–543. IEEE.

Zhang, F., Safavi-Naini, R., and Susilo, W. (2004). An efficient signature scheme

from bilinear pairings and its applications. In Public Key Cryptography–PKC

2004, pages 277–290. Springer.

108

http://standards.ieee.org/about/get/802/802.15.html
http://standards.ieee.org/about/get/802/802.11.html

	Introduction
	Authentication in WANETs
	Security attacks
	Authentication mechanisms
	Certificate-Based key distribution
	ID-based key distribution

	Key establishment
	Dieffie-Hellman protocol

	Theoretical background
	Finite fields and discrete logarithm systems
	Elliptic curves
	Bilinear pairings and co-Diffie-Hellman problems
	Bilinear pairings from the tate pairings

	ID-based cryptography and hashing function algorithms
	Point compression

	ID-based signature
	IBS-1 and IBS-2 schemes
	GS-IBS scheme
	Comparison of computational costs

	ID-based key agreement
	eFG protocol
	Extending the DH-protocol to n parties
	Constant round protocols
	GKA protocols
	Protocol GKA v1
	Protocol GKA v2
	Comparison of computational costs
	Run example
	Correctness and security

	GKA dynamic procedures
	Group creation and key updating
	Group joining and leaving

	Java for ID-based key agreement
	JIKA software architecture
	Implementation of elliptic curves and tate pairing
	Performance evaluation
	Enrollment
	Signature schemes
	Key agreement protocols
	eFG protocol
	GKA protocols

	Conclusions
	Bibliography

