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Abstract

The subject of this thesis is the analysis and development of new numerical methods
for Ordinary Differential Equations (ODEs). This studies are motivated by the
fundamental role that ODEs play in applied mathematics and applied sciences in
general. In particular, as is well known, ODEs are successfully used to describe
phenomena evolving in time, but it is often very difficult or even impossible to find
a solution in closed form, since a general formula for the exact solution has never
been found, apart from special cases. The most important cases in the applications
are systems of ODEs, whose exact solution is even harder to find; then the role played
by numerical integrators for ODEs is fundamental to many applied scientists. It is
probably impossible to count all the scientific papers that made use of numerical
integrators during the last century and this is enough to recognize the importance
of them in the progress of modern science. Moreover, in modern research, models
keep getting more complicated, in order to catch more and more peculiarities of
the physical systems they describe, thus it is crucial to keep improving numerical
integrator’s efficiency and accuracy.

The first, simpler and most famous numerical integrator was introduced by Euler
in 1768 and it is nowadays still used very often in many situations, especially in edu-
cational settings because of its immediacy, but also in the practical integration of
simple and well-behaved systems of ODEs. Since that time, many mathematicians
and applied scientists devoted their time to the research of new and more efficient
methods (in terms of accuracy and computational cost). The development of numer-
ical integrators followed both the scientific interests and the technological progress
of the ages during whom they were developed. In XIX century, when most of the cal-
culations were executed by hand or at most with mechanical calculators, Adams and
Bashfort introduced the first linear multistep methods (1855) and the first Runge-
Kutta methods appeared (1895-1905) due to the early works of Carl Runge and
Martin Kutta. Both multistep and Runge-Kutta methods generated an incredible
amount of research and of great results, providing a great understanding of them
and making them very reliable in the numerical integration of a large number of
practical problems.

It was only with the advent of the first electronic computers that the computa-
tional cost started to be a less crucial problem and the research efforts started to
move towards the development of problem-oriented methods. It is probably possible
to say that the first class of problems that needed an ad-hoc numerical treatment was
that of stiff problems. These problems require highly stable numerical integrators
(see Section ??) or, in the worst cases, a reformulation of the problem itself.

Crucial contributions to the theory of numerical integrators for ODEs were given
in the XX century by J.C. Butcher, who developed a theory of order for Runge-Kutta
methods based on rooted trees and introduced the family of General Linear Methods
together with K. Burrage, that unified all the known families of methods for first
order ODEs under a single formulation. General Linear Methods are multistage-
multivalue methods that combine the characteristics of Runge-Kutta and Linear
Multistep integrators.

In recent times, the researchers started to develop new methods designed for the
efficient solution of particular problems, i.e. taking into account the specific expres-
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sion and properties of the problem itself and paying attention to the preservation
of the intrinsic structures of the solutions in the numerical approximation. This is
for example the case of exponentially fitted methods, introduced by L. Gr. Ixaru,
which are especially designed for oscillatory or periodic problems. Another import-
ant example is that of geometric integrators, that are also one of the main topics
of the present thesis. The main idea behind such integration techniques is that of
preserving the geometric properties of the solution of an ODE system, such as the
presence of invariants or the belonging of the solution to a particular surface. This
is for example the case of conservative mechanical systems or of systems with space
constraints. It is obvious that the numerical solution of such problems must share
these properties of the exact one, or its practical usefulness would be poor and even
its significance would be lost. We can think for example to the motion of planets
of the Solar System, which move on closed planar trajectories (ellipses): we need
a numerical integrator to provide closed trajectories, or the approximation of the
motion would be completely useless.

The main result achieved in this thesis is the construction of four nearly-conservative
methods belonging to the family of General Linear Methods. In particular, two of
these methods proved to be very efficient also compared to classical methods both
in terms of computational cost and accuracy. We also studied some theoretical
aspects of these techniques, highlighting the presence of parasitic components in
the numerical approximation and finding a condition for their boundedness. Para-
sitic components arise in the application of General Linear Methods due to their
multivalue nature and they cannot be completely removed, but only controlled, in
order to avoid them to destroy the overall accuracy of the numerical scheme. We
found an algebraic condition under which the parasitic components give a bounded
contribution to the numerical solution and this is small enough to avoid the per-
turbation of the geometric properties that we aim to preserve. We also addressed
the question of which link exists between the accuracy of a numerical scheme and its
ability to preserve geometric invariants, providing a Theorem regarding the family
of non-parasitic B-series methods.

Another important class of problems that deserves a special treatment is that of
the special second order autonomous ODE presented in Section ??. For these prob-
lems, R. D’Ambrosio, E. Esposito and B. Paternoster introduced a general family
of numerical methods extending the ideas of General Linear Methods. This new
family is called the General Linear Nyström (GLN) methods family. The original
contribution to this theory that is presented in this thesis is the formulation of an
algebraic theory of the order based on a particular set of bi-colored rooted trees.
Since GLNs are multivalue methods, an initial approximation of the starting values
must be provided by the user. This can be avoided by forging our methods around
the so-called Nordsieck vector, i.e. requiring our method to approximate the solution
and its derivatives, whose initial approximations can be computed exactly from the
initial value provided by the problem. We studied in deep this important subclass of
numerical integrators, exploiting the expression of the order conditions and proving
a theorem where the explicit expression of the local truncation error has been found.

The thesis is organized as follows: the first Chapter is devoted to basic defini-
tions and properties concerning ODEs and numerical methods. In particular, the
well-posedness problem is addressed and a few examples from the applications are
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presented. We also introduce numerical methods and their basic properties, such as
order and stability. The methods presented in this Chapter are the classical Lin-
ear Multistep and Runge-Kutta families. Chapter 2 is devoted to General Linear
Methods, both for first and second order differential problems. In this Chapter we
introduce the theory of order for General Linear Nyström methods and the other
results discussed above. The discussion on geometric integration is performed in
Chapter 3, where we present more in detail the geometric properties of ODE sys-
tems and of numerical methods and introduce the concept of G-symplecticity, that
is the main conservation property we require General Linear Methods to possess.
The final Chapter concerns the topics studied by the author in two academic vis-
its to the Department of Computer Science of the University of Oxford, namely
the extraction on cardiac tissue structure information from a particular Magnetic
Resonance Imaging technique.
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